

HOLY MACRO! BOOKS
PO Box 82, Uniontown, OH 44685

by

Bill Jelen

with 112K contributors

and 6,156,123 guests

Excel Gurus Gone Wild

© 2009 by Bill Jelen

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information or storage retrieval system without written permission from
the publisher.

All terms known in this book known to be Trademarks have been appropriately
capitalized. Trademarks are the property of their respective owners and are not
affi liated with Holy Macro! Books

Every effort has been made to make this book as complete and accurate as
possible, but not warranty or fi tness is implied. The information is provided on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book.

Printed in USA by Malloy

First Printing: March 2009

Author: Bill Jelen

Technical Editor: Bob Umlas

Editor: Kitty Wilson

Interior Design: Fine Grains (India) Private Limited, New Delhi, India

Cover Design: Shannon Mattiza, 6Ft4 Productions

Published by: Holy Macro! Books, 13386 Judy Ave, PO Box 82,
Uniontown OH 44685

Distributed by Independent Publishers Group

ISBN 978-1-932802-49-8

Library of Congress Control Number: 2008923727

Bill Jelen is the host of MrExcel.com and the author of 24 books. But
this book was really written by thousands of people who contributed to
the MrExcel.com message board or who have spoken up at one of my
Power Excel seminars with a cool trick. In many cases, new ideas at the
board happen through a collaborative process – someone asks a question,
others answer, others build on that answer, Someone posts something
simply amazing, more people build on the amazing concept, and then a
whole bunch of really talented Excel gurus will offer kudos for a really
slick solution. If you are one of the people who have participated in this
process, this this book is also written by you.

About the MrExcel Message Board: While MrExcel.com debuted on
November 21, 2008, the message board did not debut until 2009. Using a
script from Matt’s Script Archive, the original message board was born.
Bill wrote, “you can still keep sending your questions to me via e-mail, or
you can post them at the message board. And, if you happen to be at the
message board and see an easy question, give that person an answer.”
He fi gured it would be sort of like the take-a-penny, leave-a-penny cup
that you see by the cash register. In the early months, Ivan Moala,
Dave and Cecilia became frequent regulars at the board. Today, over
100,000 people have signed up as members, there are many hundreds of
regulars, and six million unique visitors pass through the site annually.
The community at the MrExcel.com message board continues to provide
answers to 30,000 questions a year. In fact, with 365,000 answers
archived, it is likely that the answer to nearly any Excel question has
already been posted.

ABOUT THE AUTHOR

ACKNOWLEDGMENTS

Thank you to the entire community at the MrExcel.com message
board. This includes everyone who has posted a question, suggested an
answer and those who lurk without posting.

MrExcel.com was started in 1998. Over the years, a number of folks
have been on the payroll and helped grow the site: Anne Troy. Mala
Singh. Juan Pablo Gonzalez. Tracy Syrstad. Suat Ozgur. Far more
people volunteer and keep the community humming. Kristy Sharpe,

iii

Greg Truby, Nate Oliver, Paddy Davies, Richard Schollar, Chris Smith,
Suat Ozgur, Zack Barresse, Ivan Moala, Joe4, all volunteer as admins
and moderators.

Thanks to the pioneers – the fi rst regulars, back when it might take
4 hours before Ivan Moala, Dave from Oz or Cecilia from the Pacifi c
Northwest would check in with an answer.

Mala Singh of XLSoft Consulting wrote the speedometer and
macroeconomic supply curve add-ins and does all of our engineering
projects (see examples at http://www.mrexcel.com/graphics.shtml). Mala
pitched in to help write up some topics in this book. Thanks to Mala for
helping to get the book to press.

Aladin Akyurek is the king of Ctrl+Shift+Enter formulas. Like
everyone else, I usually have to run his formulas through the Auditor
Toolbar’s Evaluate Formula feature before I can fi gure out how it is
working, but they always impress. Aladin’s tireless formula examples
have raised many to the level of Excel guru.

This list could fi ll an entire book, but thanks to the folks who answer a
lot of questions: Norie, Aladin Akyurek, Andrew Poulsom, Smitty, Jindon,
Erik.Van.Geit, Richardschollar, Vog, Jonmo1, Von Pookie, Paddyd,
Joe4, Barry Houdini, Juan Pablo González, Mark W., Yogi Anand,
HOTPEPPER, Peter_Sss, Just_Jon, Zack Barresse, Nateo, Fairwinds,
Tusharm, Tom Urtis, Greg Truby, Sydneygeek, Brian From Maui, Joe
Was, Lenze, Oaktree, Halface, Domenic, Brianb, Glennuk, Datsmart,
Donkeyote, Nimrod, Tom Schreiner, Rorya, Mikerickson, Pgc01, NBVC,
Acw, Onlyadrafter, Andrew Fergus, Daniels012, Tommygun, Tazguy37,
Steveo59l, Ivan F Moala, Schielrn, Texasalynn, Fazza, Barry Katcher,
Lewiy, Alexander Barnes, Phantom1975, Damon Ostrander, DRJ, Ralpha,
Domski, Mark O’Brien, Tactps, Stanleydgromjr, Mudface, Richie(UK),
Starl, Parry, Al_B_Cnu, Cbrine, Jack In The UK, Todd Bardoni, Jon
Von Der Heyden, Gerald Higgins, Iridium, Jon Peltier, Dougstroud,
Seti, Thenooch, Stormseed, Jaafar Tribak, Dk, PA HS Teacher, Xlgibbs,
Xld, Anne Troy, Ravishankar, Dave3009, Hatman, Jimboy, Barrie
Davidson, Venkat1926, Krishnakumar, Njimack, Jay Petrulis, Vicrauch,
Iliace, P Sitaram, Gates Is Antichrist, Oorang, XL-Dennis, Shajueasow,
Markandrews, RAM, Santeria, SIXTH SENSE, Giacomo, Chris Davison,

iv

Eliw, IML, Nbrcrunch, Cornfl akegirl, Agihcam, Itr674, Dave Hawley,
Mike Blackman, Sweater_Vests_Rock, Derek, Dominicb, Shades, Travis,
Corticus, Brew, Plettieri, Dave Patton, Hawaiian Harry, Iggydarsa,
Glaswegian, Bat17, Boller, Al Chara, Brian.Wethington, Colo, Ekim,
Mortgageman, Jim May, Russell Hauf, Babycody, Yee388, Btadams,
Mdmilner, Ktab, Howard, Mrkowz, Kskinne, Mickg, Gord, Earlyd,
Pekkavee, Ian Mac, Kenneth Hobson, Verluc, Fergus, Willr, CT Witter,
Davers, Ndendrinos, Arthurbr, Ajm, Sal Paradise, Thorpyuk, Staticbob,
Pauljj, Dbmathis, Brettvba, Chitosunday, Pcc, ADAMC, PATSYS,
Ponsy Nob., Ponsonby, Sykes, Martinee, Justinlabenne, Bubbis Thedog,
Shippey121, Harvey, Excelr8r, Yard, Sssb2000

 I appreciate the people from the MrExcel community whom I’ve
had the opportunity to meet over the years. It is always cool to discuss
Excel tricks over lunch or dinner. I’ll miss a few, but Tracy, Juan Pablo,
NateO, Greg Truby, Smitty, Richard, Jon, Bryony, Russ, Mel, Aaron,
Brian from Maui, Matt aka Oaktree, Jay Petrulis, Tushar, Chip Pearson,
Duane Aubin, Asaad Alli, Freddy Fuentes and a dozen more who I aren’t
popping into my head at this moment.

 Thanks to the guys on the Excel team who I know on a fi rst name
basis. Dave, Chad, Charlie, Joe, - your dedication to the world’s best
spreadsheet is appreciated. I also appreciate that you always answer my
e-mails when I have a bizarre Excel question or oddity.

 Thanks to my friends; facebook friends, Facebook fans, Twitter
followers, podcast viewers, friends from the old TechTV, readers who
write in with ideas, anyone wearing an Excel Master pin, those who
reaches for a MrExcel book when they have a problem, people who come
to my seminars in places like Springfi eld Missouri, Columbus Indiana,
and Madison Wisconsin (at least one cool tip in this book came from
those cities and more).

 At the offi ce, thanks to Lora White for keeping things running
and editing the podcasts and thanks to my sister Barb Jelen who packed
and shipped this book to you.

 Thanks to my family. Josh, Zeke, and Mary Ellen.

v

DEDICATION

Dedicated to every person who has ever answered a question at the
MrExcel Message Board.

vi

FOREWORD

This book was born in a British pub.

I was in England in 2007 to perform a couple more Power Excel
Seminars. The night before the seminar in Southampton, a group of
people from the MrExcel Message board got together for dinner. Russ
Cockings, Bryony Stewart-Seume, Richard Schollar, Jon Von Der
Hayden and Mel Smith were talking about some amazing tricks that
they’ve seen at the board when someone, probably either Jon or Richard
comments that their MrExcel favorites list was a veritable reference
guide to Excel and VBA. These are very smart people who know a whole
lot about Excel. You have to wonder what types of things would impress
this group enough to cause them to add it to their favorites list.

You can check out that favorites list at http://www.mrexcel.com/
favorites.html. You will fi nd amazing ideas as you browse those topics.
Yes, some are niche topics and many are arcane. However, if you use
Excel all day, it is pretty wild to fi nd someone who was able to coax the
impossible out of our favorite spreadsheet.

To say that this book is a niche book is an understatement. I am not
out to reach the masses with this book. Topics in this book are arcane.
A person who uses Excel for 2000 hours per year might need to use any
given topic once every 20,000 years. It is probably 1 tenth of one percent
of the people using Excel will fi nd any of this stuff fascinating. If you
happen to be one of these people, then this book is for you. For the other
99.9%, take this book back to the bookstore and exchange it for Learn
Excel 97-2010 from MrExcel or Pivot Table Data Crunching.

For the fi rst two sections of this book, my general requirement for
inclusion was that the topic had to be amazing to either me or favorited
by a number of MrExcel MVP’s. Some things came from the MrExcel
Message Board, others came up during my Excel seminars. In the third
section, I go through some basics to get you comfortable with Excel VBA
and then launch into some amazing VBA utility macros. The appendix
is an Excel function reference, with suggested uses for 120 of the 362
functions.

If you want to try out a technique, the fi les used in the production of
the book are available for download at http://www.mrexcel.com/gurufi les.
html.

vii

Contents

ABOUT THE AUTHOR iii

ACKNOWLEDGEMENTS iii

DEDICATION vi

FOREWORD vii

SECTION 1 - FORMULAS

FIND THE FIRST NON-BLANK VALUE IN A ROW 2
CALCULATE WORKDAYS FOR 5, 6, 7 DAY WORKWEEKS 4
STORE HOLIDAYS IN A NAMED RANGE 9
SUM EVERY OTHER ROW OR EVERY THIRD ROW 10
WHY THE MINUS MINUS? COERCE NUMBERS FROM TRUE/
FALSE 12

INTRODUCING THE BORING USE OF SUMPRODUCT 15
UNDERSTAND BOOLEAN LOGIC: FALSE IS ZERO; AND IS
*,OR IS + AND EVERYTHING ELSE IS TRUE 16

USE GET.CELL TO HIGHLIGHT NON-FORMULA CELLS 20
REFER TO A CELL WHOSE ADDRESS VARIES, BASED ON A
CALCULATION 27

POINT TO ANOTHER WORKSHEET WITH INDIRECT 30
GET DATA FROM ANOTHER WORKSHEET BY USING
INDIRECT 34

USE INDIRECT TO GET A DATA FROM A MULTI-CELL RANGE 36
ALWAYS POINT TO CELL B10 37
USE NATURAL LANGUAGE FORMULAS WITHOUT USING
NATURAL LANGUAGE FORMULAS 38

SUM A CELL THROUGH SEVERAL WORKSHEETS 39
SUM VISIBLE ROWS 40
LEARN R1C1 REFERENCES 43
RANDOM NUMBERS WITHOUT DUPLICATES 46
SORT WITH A FORMULA 49
DEAL WITH DATES BEFORE 1900 51
USE VLOOKUP TO GET THE NTH MATCH 52

USE A SELF-REFERENCING FORMULA 55

USE TWO-WAY INTERPOLATION WITH A SINGLE FORMULA 57

FIND THE SUM OF ALL DIGITS OCCURING IN A STRING 61

GET AN ARRAY OF UNIQUE VALUES FROM A LIST 62
AUTO-NUMBER RECORDS AND COLUMNS IN AN EXCEL
DATABASE 65

SECTION 2 - TECHNIQUES

USE AUTOFILTER WITH A PIVOT TABLE 70

SORT SUBTOTALS 71

COPY AN EXACT FORMULA BY USING DITTO MARKS 72

RIGHT-DRAG BORDER TO ACCESS MORE COPYING OPTIONS 73

QUICKLY CREATE A HYPERLINK MENU 75

QUICKLY CREATE MANY RANGE NAMES 76

ADD FORMULAS TO SMARTART 79
CREATE A PIVOT TABLE FROM DATA IN MULTIPLE
WORKSHEETS 82

DETERMINE THE HEIGHT AND WIDTH OF THE DATALABEL
OBJECT 85

ADJUST XY CHART SCALING FOR CORRECT ASPECT RATIO 88

SECTION 3 - MACROS

MAKE A PERSONAL MACRO WORKBOOK 96

RUN A MACRO FROM A SHORTCUT KEY 100

RUN A MACRO FROM A BUTTON 102

RUN A MACRO FROM AN ICON 109

CREATE A REGULAR MACRO 115

CREATE AN EVENT HANDLER MACRO 116
EXTRACT AN E-MAIL ADDRESS FROM A CELL CONTAINING
OTHER TEXT 118

FIND THE CLOSEST MATCH 121

USE TIMER TO MICRO-TIME EVENTS 123

DISCOVER THE TEMP FOLDER PATH 125
USE EVALUATE IN VBA INSTEAD OF LOOPING THROUGH
CELLS 127

RENAME EACH WORKSHEET BASED ON ITS A1 VALUE 129
USE A CUSTOM PULL FUNCTION INSTEAD OF INDIRECT
WITH A CLOSED WORKBOOK 130

IN VBA, DETERMINE THE NUMBER OF THE ACTIVE WORK-
SHEET 131

CREATE WORKSHEET NAMES BY USING THE FILL HANDLE 132
COPY THE PERSONAL MACRO WORKBOOK TO ANOTHER
COMPUTER 136

ADD FILTER TO SELECTION FUNCTIONALITY 138

USE A MACRO TO HIGHLIGHT THE ACTIVE CELL 142

REMOVE THE CAPTION BAR FROM A USER FORM 145

KEEP A BUTTON IN VIEW 147

ADD A RIGHT-CLICK MENU TO A USER FORM 148
FORMAT A USER FORM TEXT BOX AS CURRENCY OR A
PERCENTAGE 152

DELETE RECORDS IN VBA 154

SELF-SIGN YOUR MACROS FOR CO-WORKERS 156

MAGNIFY A SECTION OF YOUR SCREEN 160

LIST COMBINATIONS OF N ITEMS TAKEN M AT A TIME 161

APPENDIX 1 - ALPHABETICAL FUNCTION REFERENCE 167

INDEX 233

1

P A R T 1

FORMULAS

2 of 236 PART 1: FORMULAS

Challenge: You want to build a formula to return the fi rst non-blank cell in a row.
Perhaps columns B:K refl ect data at various points in time. Due to the sampling
methodology, certain items are checked infrequently.

Solution: In Figure 1, the formula in A4 is:

=INDEX(C4:K4,1,MATCH(1,INDEX(1-ISBLANK(C4:K4),1,0),0))

Although this formula deals with an array of cells, it ultimately returns a single
value, so you do not need to use Ctrl+Shift+Enter when entering this formula.

Figure 1. You fi nd the fi rst non-blank cell in each row of C2:K12 and return that value in
column A.

Find the First Non-Blank
Value in a Row

Breaking It Down: Let’s start from the inside. The ISBLANK function returns
TRUE when a cell is blank and FALSE when a cell is non-blank. Look at the row
of data in C4:K4. The ISBLANK(C4:K4) portion of the formula will return:

{TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE}

Notice that this array is subtracted from 1. When you try to use TRUE and
FALSE values in a mathematical formula, a TRUE value is treated as a 1, and
a FALSE value is treated as a 0. By specifying 1-ISBLANK(C4:K4), you can
convert the array of TRUE/FALSE values to 1s and 0s. Each TRUE value in the

Part
I

3 of 236EXCEL GURUS GONE WILD

ISBLANK function changes to a 0. Each FALSE value changes to a 1. Thus,
the array becomes:

{0,0,1,0,0,1,0,1,0}

The formula fragment 1-ISBLANK(C4:K4) specifi es an array that is 1 row by
9 columns. However, you need Excel to expect an array, and it won’t expect
an array based on this formula fragment. Usually, the INDEX function returns a
single value, but if you specify 0 for the column parameter, the INDEX function
returns an array of values. The fragment INDEX(1-ISBLANK(C4:K4),1,0)
asks for row 1 of the previous result to be returned as an array. Here’s the
result:

{0,0,1,0,0,1,0,1,0}

The MATCH function looks for a certain value in a one-dimensional array and
returns the relative position of the fi rst found value. =MATCH(1,Array,0)
asks Excel to fi nd the position number in the array that fi rst contains a 1. The
MATCH function is the piece of the formula that identifi es which column contains
the fi rst non-blank cell. When you ask the MATCH function to fi nd the fi rst 1 in
the array of 0s and 1s, it returns a 3 to indicate that the fi rst non-blank cell in
C4:K4 occurs in the third cell, or E4:

Formula fragment: MATCH(1,INDEX(1-ISBLANK(C4:K4),1,0),0)

Sub-result: MATCH(1, {0,0,1,0,0,1,0,1,0},0)

Result: 3

At this point, you know that the third column of C4:K4 contains the fi rst non-
blank value. From here, it is a simple matter of using an INDEX function to
return the value in that non-blank cell. =INDEX(Array,1,3) returns the value
from row 1, column 3 of an array:

Formula fragment: =INDEX(C4:K4,1,MATCH(1,INDEX(1-ISBLANK(C4:
K4),1,0),0))

Sub-result: =INDEX(C4:K4,1,3)

Result: 4

Additional Details: If none of the cells are non-blank, the formula returns an
#N/A error.

Alternate Strategy: Subtracting the ISBLANK result from 1 does a good job
of converting TRUE/FALSE values to 0s and 1s. You could skip this step, but
then you would have to look for FALSE as the fi rst argument of the MATCH
function:

=INDEX(C4:K4,1,MATCH(FALSE,INDEX(ISBLANK(C4:K4),1,0),0))

4 of 236 PART 1: FORMULAS

Summary: The formula to return the fi rst non-blank cell in a row starts with
a simple ISBLANK function. Using INDEX to coax the string of results into an
array allows this portion of the formula to be used as the lookup array of the
MATCH function.

Source: http://www.mrexcel.com/forum/showthread.php?t=53223

CALCULATE WORKDAYS
FOR 5-, 6-, AND 7-DAY WORKWEEKS

Challenge: Calculate how many workdays fall between two dates. Excel’s
NETWORKDAYS function does this if you happen to work the fi ve days between
Monday and Friday inclusive. This topic will show you how to perform the
calculation for a company that works 5, 6, or 7 days a week.
Background: The NETWORKDAYS function calculates the number of workdays
between two dates, inclusive of the beginning and ending dates. You specify
the earlier date as the fi rst argument, the later date as the second argument,
and optionally an array of holidays as the third argument. In Figure 2, cell C3
calculates only 5 workdays because February 16, 2009, is a holiday. This is a
cool function, but if you happen to work Monday through Saturday, it will not
calculate correctly for you.

Setup: Defi ne a range named Holidays to refer to the range of holidays.
Solution: The formula in C3 is:
=SUMPRODUCT(--(COUNTIF(Holidays,ROW(INDIRECT(A3&":"&B3)))
=0),--(WEEKDAY(ROW(INDIRECT(A3&":"&B3)),3)<6))

Figure 2. Traditionally, NETWORKDAYS assumes a Monday–through-Friday workweek.

Part
I

5 of 236EXCEL GURUS GONE WILD

Although this formula deals with an array of cells, it ultimately returns a single
value, so you do not need to use Ctrl+Shift+Enter when entering this formula.
Breaking It Down: The formula seeks to check two things. First, it checks
whether any of the days within the date range are in the holiday list. Second,
it checks to see which of the dates in the date range are Monday-through-
Saturday dates.
You need a quick way to compare every date from A3 to B3 to the holiday list.
In the current example, this encompasses only 8 days, but down in row 5, you
have more than 300 days.
The formula makes use of the fact that an Excel date is stored as a serial
number. Although cell A3 displays February 10, 2009, Excel actually stores the
date as 39854. (To prove this to yourself, press Ctrl+` to enter Show Formulas
mode. Press Ctrl+` to return to Normal mode.)
It is convenient that Excel dates in the modern era are in the 39,000–41,000
range, well within the 65,536 rows available in Excel 97-2003. The date
corresponding to 65,536 is June 5, 2079, so this formula will easily continue
to work for the next 70 years. (And if you haven’t upgraded to Excel 2007 by
2079, well, you have a tenacious IT department.)
Excel starts evaluating this formula with the fi rst INDIRECT function. The
arguments inside INDIRECT build an address that concatenates the serial
number for the date in A3 with the serial number for the date in B3. As you can see
in the sub-result, you end up with a range that points to rows 39854:39861:
Formula fragment: INDIRECT(A3&":"&B3)
Sub-result: INDIRECT("39854:39861")
Normally, you would see something like "A2:IU2" as the argument for
INDIRECT. However, if you have ever used the POINT method of entering
a formula and gone from column A to the last column, you will recognize that
=SUM(2:2) is equivalent to =SUM(A2:IV2) in Excel 2003 and =SUM(A2:
XFD2) in Excel 2007.
The fi rst step of the formula is to build a reference that is one row tall for each
date between the start and end dates.
Next, the formula returns the ROW function for each row in that range. In the
case of the dates in A3 and A4, the formula returns an array of eight row
numbers (in this case, {39854;39855;39856;…;39861}). This is a clever
way of returning the numbers from the fi rst date to the last date. In row 5, the
ROW function returns an array of 364 numbers:
Formula fragment: ROW(INDIRECT(A3&":"&B3))
Sub-result: {39854;39855;39856;39857;39858;39859;39860;39861}

6 of 236 PART 1: FORMULAS

Now you can compare the holiday list to the range of dates.
=COUNTIF(Holidays,sub-result) counts how many times each holiday
is in the range of dates. In this case, you expect the function to return a 1 if
a holiday is found in the range of dates and a 0 if the holiday is not found.
Because you want to count only the non-holiday dates, the formula compares
the COUNTIF result to fi nd the dates where the holiday COUNTIF is 0:
Formula fragment: --COUNTIF(Holidays,ROW(INDIRECT(A3&":"&B3)))=0
Result: {1;1;1;1;1;1;0;1;1}
For every date in the date range, the COUNTIF formula asks, “Are any of the
company holidays equal to this particular date?” Figure 3 illustrates what is
happening in the fi rst half of the formula. Column E represents the values
returned by the ROW function. Column F uses COUNTIF to see if any of the
company holidays are equal to the value in column E. For example, in E3,
none of the holidays are equal to 39855, so COUNTIF returns 0. However,
in F8, the formula fi nds that one company holiday is equivalent to 39860, so
COUNTIF returns 1.
In column G, you test whether the result of the COUNTIF is 1. If it is, the TRUE
says to count this day.
In column H, the minus-minus formula converts each TRUE value in column G
to 1 and each FALSE value in column G to 0.
In Figure 3, cells H2:H9 represent the virtual results of the fi rst half of the
formula, which fi nds the dates that are not holidays.

Figure 3. Th e fi rst half of the formula counts days that are not holidays.

Part
I

7 of 236EXCEL GURUS GONE WILD

The second half of the formula uses the WEEKDAY function to fi nd which dates
are not Sundays. The WEEKDAY function can return three different sets of
results, depending on the value passed as the Return_Type argument. Figure
4 show the values returned for various Return_Type arguments. In order
to isolate Monday through Saturday, you could check to see if the WEEKDAY
function with a Return_Type of 1 is greater than 1. You could check to see
if the WEEKDAY function with a Return_Type of 2 is less than 7. You could
check to see if the WEEKDAY function with a Return_Type of 3 is less than 6.
All these methods are equivalent.

Figure 4. Th e WEEKDAY function can return 1, 7, or 6 for Sundays.
The second half of the formula uses many of the tricks from the fi rst half. The
INDIRECT function returns a range of rows. The ROW function converts those
rows to row numbers that happen to correspond to the range of dates. The
WEEKDAY(,3) function then converts those dates to values from 0 to 6, where
6 is equivalent to Sunday. The virtual result of the WEEKDAY function is shown
in column L of Figure 5. The formula compares the WEEKDAY result to see if
it is less than 6. This virtual result is shown in column M of Figure 5. Finally,
a double minus converts the TRUE/FALSE values to 0s and 1s, as shown
in column N. Basically, this says that we are working every day in the range,
except for N7, which is a Sunday.
Formula fragment: --(WEEKDAY(ROW(INDIRECT(A3&":"&B3)),3)<6)
Result: {1;1;1;1;1;1;0;1}

8 of 236 PART 1: FORMULAS

Finally, SUMPRODUCT multiplies the Not Holiday array by the Not Sunday
array. When both arrays contain a 1, we have a workday. When either the Not
Holiday array has a 0 (as in row 8) or the Not Sunday array has a 0 (as in
row 7), the result is a 0. The fi nal result is shown in the SUM function in P10:
There are 6 workdays between the two dates.
As with most array solutions, this one formula manages to do a large number
of sub-calculations to achieve a single result.
Additional Details: What if you work 7 days a week but want to exclude
company holidays? The formula is simpler:
=SUMPRODUCT(--(COUNTIF(Holidays,ROW(INDIRECT(A2&":"&B2)))=0))

The problem becomes trickier if days in the middle of the week are the days
off. Say that you have a part-time employee who works Monday, Wednesday,
and Friday. The Not Sunday portion of the formula now needs to check for
3 specifi c weekdays. Note that the Return_Type 2 version of the WEEKDAY
function never returns a 0. Because this version of the WEEKDAY function
returns digits 1 through 7, you can use it as the fi rst argument in the CHOOSE
function to specify which days are workdays. Using =CHOOSE(WEEKDAY(Some
Date,2),1,0,1,0,1,0,0) would be a way of assigning 1s to Monday,
Wednesday, and Friday.
Because CHOOSE does not usually return an array, you have to enter the
following formula, using Ctrl+Shift+Enter:
=SUMPRODUCT(--(COUNTIF(Holidays,ROW(INDIRECT(A3&":"&B3)))=0),-
-(CHOOSE(WEEKDAY(ROW(INDIRECT(A3&":"&B3)),2),1,0,1,0,1,0,0)))

Figure 5. Th e 1s in column N mean the date is not a Sunday.

Part
I

9 of 236EXCEL GURUS GONE WILD

Summary: This topic introduces the concept of creating a huge array from two
simple values. For example, =ROW(INDIRECT("1:10000")) generates a
10,000-cell array fi lled with the numbers from 1 to 10,000. You can use this
concept to test many dates while only specifying a starting and ending point,
thus solving the NETWORKDAYS problem for any type of workweek.
Source: http://www.mrexcel.com/forum/showthread.php?t=69761

STORE HOLIDAYS
IN A NAMED RANGE

Challenge: The NETWORKDAYS and WORKDAY functions can take a list of
company holidays as the third argument. If you store the list of holidays in AZ1:
AZ10, there is a chance that someone will inadvertently delete a row, so you
want to move the range of company holidays to a named range.
Solution: There is an easy way to convert the range of holidays to a named
range. Follow these steps:

Type your company holidays as a column of dates in E1:E10.
In a blank cell, type =E1:E10. Do not press Enter. Instead, press the F9 key.
Excel calculates the formula and returns an array of date serial numbers,
as shown in Figure 6. Notice that everything after the equals sign is already
selected.
Press Ctrl+C to copy the array to the Clipboard.
Press Esc to exit Formula Edit mode. The formula disappears.
Visit the Name dialog box. (In Excel 97-2003, select Insert, Name, Defi ne.
In Excel 2007, select Formulas, Defi ne Name.)
Type Holidays as the name.
In the Refers To box, clear the current text. Type an equals sign. Press
Ctrl+V to paste the array of dates to the box. Click OK.

1.
2.

3.
4.
5.

6.
7.

Figure 6. Press F9, and Excel converts the range reference to an array of serial numbers.

10 of 236 PART 1: FORMULAS

Now you can use the named range Holidays as the third argument of the
WORKDAY and NETWORKDAYS functions.
Gotcha: While these names work fi ne with WORKDAY and NETWORKDAYS,
they fail in complex array formulas.

Summary: You can convert a range of dates to a named array to simplify the
use of the WORKDAY and NETWORKDAYS functions.

SUM EVERY OTHER ROW
OR EVERY THIRD ROW

Challenge: In Figure 7, someone set up a worksheet with dollars in rows 2, 4,
6, 8, and so on and percentages in rows 3, 5, 7, 9, and so on. You want to sum
only the dollars, which are stored in the even rows. While you’re at it, you’d like
to know how to sum the odd rows or every third row.
Solution: There are a lot of possible approaches to this problem, some of
which require you to fi gure out which rows to sum.

To sum the odd rows: =SUMPRODUCT(MOD(ROW(3:100),2),(C3:
C100))

To sum the even rows: =SUMPRODUCT(--
(MOD(ROW(2:99),2)=0),(C2:C99)) or =SUMPRODUCT(MOD(ROW
(1:98),2),(C2:C99))

To sum every third row (2, 5, 8, etc.): =SUMPRODUCT(--(MOD(ROW(2:
148),3)=2),(C2:C148)). See Figure 8

•

•

•

Summing the Odd Rows
Think back to when you were just learning division. If you had the problem 38
divided by 5, you would write that the answer is 7 with a remainder of 3. Excel

Figure 7. You want to sum the even rows.

Part
I

11 of 236EXCEL GURUS GONE WILD

provides the MOD function to return the remainder in a division problem. –For
example, =MOD(7,2) calculates 7 divided by 2 and returns 1 as the remainder.
The remainder of an odd number divided by 2 is 1. It is 0 for all even numbers.
You can therefore use MOD to assign a 1 to each odd-numbered row and a 0
to each even-numbered row.
The problem is simple if you want only the odd rows. You can use an array of
1s and 0s in SUMPRODUCT. Multiplying the range C3:C100 by the result of the
MOD function (an array of alternating 1s and 0s) results in every other number
being added up.
Summing the Even Rows
The MOD(ROW(),2) function returns 1 for an odd row, and it returns 0 for
an even-numbered row. Therefore, if the result of the MOD function is 0, you
know you’re working with an even-numbered row. Using MOD(ROW(),2)=0
will return an array of TRUE and FALSE values. You can then use the double
minus sign to convert the TRUE/FALSE values to 1/0 values.
A simpler but less intuitive solution is to adjust the MOD argument so that it is
one row behind the sum range. If you hope to grab the even rows from C2:
C99, you can specify a range for the ROW function that starts one row above the
real range. Use MOD(ROW(1:98),2) to ensure that the fi rst value MOD returns
is 1, followed by 0, 1, 0, 1, and so on.
Summing Every Third Row
Figure 8 shows a situation in which cost rows have been added. In this case,
you would like to sum every third row—rows 2, 5, 8, etc. If you use =MOD(Row,
3), you get 1 for rows 1, 4, and 7. You get 2 for rows 2, 5, and 8. You get 0 for
rows 3, 6, and 9. To sum only the sales rows, you need to test if the result of
the MOD function is a 2. Since this test will return True/False values, use the
double minus to convert the True/False values to 1/0 values. So the formula
becomes:
=SUMPRODUCT(--(MOD(ROW(2:148),3)=2),(C2:C148))

Figure 8. You want to sum every third row.

12 of 236 PART 1: FORMULAS

Alternate Strategy: While all the solutions presented so far are going to amaze
your co-workers, they are all inherently dangerous. If someone inserts a new
row in the worksheet, the MOD functions won’t work as you want them to.
It was not stated in the original problem, but if the worksheet really has a
column B that identifi es Dollars and GP%, then it would be safer to use a
SUMIF function to sum the dollar amounts:
=SUMIF($B2:$B99,"Dollars",C2:C99)

This formula instructs Excel to look through B2:B99. If the value in that row
says "Dollars", Excel adds up the corresponding value from column C. With
this solution, there is no worry that dollars on even rows will accidentally shift
to odd rows.
Summary: While you can guru-out with SUMPRODUCT solutions galore, the
simplest solution might be to use SUMIF.
Source: http://www.mrexcel.com/forum/showthread.php?t=232025

WHY THE MINUS MINUS?
COERCE NUMBERS FROM TRUE/FALSE

Challenge: While IF and other functions that expect logical tests can easily
convert TRUE and FALSE values to 1s and 0s, the SUMPRODUCT function
cannot do this. Why do you sometimes use a minus minus in SUMPRODUCT?
In Figure 9, for example, the SUMPRODUCT formula to calculate a 2% bonus for
sales above $20,000 and with GP% above 50% fails:
=SUMPRODUCT((C4:C14>20000),(D4:D14>0.5),C4:C14)*0.02

If you simply build a SUMPRODUCT formula with your criteria and the numeric
fi eld, you end up with calculations such as TRUE * TRUE * 21000, which
SUMPRODUCT incorrectly evaluates to 0.

Figure 9. You would think Excel’s Boolean
logic rules could handle this.

Part
I

13 of 236EXCEL GURUS GONE WILD

In Figure 10, the fi rst term of SUMPRODUCT has been evaluated. You see the
array TRUE;TRUE,….

Figure 10. Th e SUMPRODUCT function does not deal well with
TRUE * TRUE * a number.
Solution: You need a way to convert the TRUE/FALSE values to 1/0 values.
Excel gurus use the minus minus in order to coerce Excel to change an array
of TRUE/FALSE values to 1s and 0s:
--(C4:C14>20000)

As shown in Figure 11, this formula does the trick:
=SUMPRODUCT(--(C4:C14>20000),--(D4:D14>0.5),C4:C14)*0.02

Figure 11. By using minus
minus, you convert the
TRUE/FALSE to 1/0,
and the formula works.

14 of 236 PART 1: FORMULAS

Alternate Strategy: In fact, all the following operations also convert an array
of TRUE/FALSE to an array of 1/0:
N(C4:C14>20000)
1*(C4:C14>20000)
(C4:C14>20000)+0
(C4:C14>20000)^0

You could multiply the criteria terms together, replace the comma with an
asterisk, and let Excel perform all the logical tests. The formula to calculate the
bonus would be:
=SUMPRODUCT((C4:C14>20000)*(D4:D14>0.5),C4:C14)*0.02

This syntax allows you to combine AND and OR logic. Say that you want to pay
the bonus if both conditions are met or if the rep is Joey. You would add some
parentheses and indicate that the bonus is also paid when the rep is Joey:
=SUMPRODUCT(((C4:C14>20000)*(D4:D14>0.5))+(B4:
B14="Joey"),C4:C14)*0.02

Figure 12 shows a formula that conditionally sums based on two AND and one
OR criteria.

Figure 12. You can build the Boolean logic as one term of the SUMPRODUCT function.

Summary: To use logical tests in SUMPRODUCT, you can convert the TRUE/
FALSE values to 1/0 values by using minus minus or other methods described
in this topic.
Source: http://www.mrexcel.com/forum/showthread.php?t=221125 and http://
www.mrexcel.com/forum/showthread.php?t=128907

Part
I

15 of 236EXCEL GURUS GONE WILD

INTRODUCING THE BORING
USE OF SUMPRODUCT

Challenge: Your IT department sends you a fi le with unit price and quantity
sold. You need to calculate total revenue. You usually add a new column and
total that column, but there must be a way to total the 5,000 line items with only
one formula.

Solution: There is an Excel function designed to solve this very problem. The
SUMPRODUCT function takes two or more similar-shaped ranges, multiplies
them together, and sums the results.

In Figure 13, the range C4:C5003 contains quantities. Cells D4:D5003 contain
unit prices. The formula =SUMPRODUCT(C4:C5003,D4:D5003) performs
5,000 multiplications and adds up the results. For example, Excel fi nds that
C4*D4 is 57,473.95, and C5*D5 is 31,488.30. This process continues for
all the cells in the array. Finally, Excel sums the individual multiplication results
and returns the answer 181,056,129.80.

Figure 13. SUMPRODUCT can do many intermediate
multiplications and sum the results.

Additional Details: You can specify up to 30 similar-shaped arrays as
arguments for SUMPRODUCT (255 arrays in Excel 2007)

Summary: SUMPRODUCT can multiply two or more arrays and sum the
results.

16 of 236 PART 1: FORMULAS

UNDERSTAND BOOLEAN LOGIC: FALSE IS ZERO; AND
IS *,OR IS + AND EVERYTHING ELSE IS TRUE

Challenge: You want to become a guru at Excel formulas. To master conditional
computing formulas, you need to understand Boolean logic facts.

Background: For a brief time, I was planning on being an electrical engineer.
While most of the Notre Dame electrical engineering curriculum and I did not
get along, my favorite class was logic design. I learned how to reduce many
decisions down to a series of wires, electricity, and tiny chips that could perform
AND, OR, and NAND operations. I learned how to use Karnaugh maps to reduce
a circuit down to the minimal number of chips. It was fascinating stuff, and it
translates amazingly well to writing criteria in Excel.

With integrated circuits, a circuit is either on or off. On means TRUE, or 1.
Off means FALSE, or 0. The table on the left is the truth table for a simple
AND operation. While one approach is to memorize these rules, you can also
convert a problem to a simple mathematical calculation, as in the table on the
right, which converts TRUE to 1, converts FALSE to 0, and multiplies the two
values. Notice that the results in A and B in the left table are equivalent to the
results in A*B in the right table.

Boolean Values Digital Values

Condition
A

Condition
B A and B Condition A Condition B A*B

FALSE FALSE FALSE 0 0 0

FALSE TRUE FALSE 0 1 0

TRUE TRUE TRUE 1 1 1

TRUE FALSE FALSE 1 0 0

With integrated circuits, an OR gate accepts two or more incoming wires. If any
of the incoming wires are on, the output wire is on. Again, you can memorize
the facts in the table on the left below, or you can simply change the TRUE to
1, the FALSE to 0, and the OR sign to a plus sign, as in the table on the right. If
the result is 1 or greater, the entire problem is TRUE.

Part
I

17 of 236EXCEL GURUS GONE WILD

Boolean Values Digital Values

Condition
A

Condition
B A or B Condition A Condition B A+B

FALSE FALSE FALSE 0 0 0

FALSE TRUE TRUE 0 1 1

TRUE TRUE TRUE 1 1 2

TRUE FALSE TRUE 1 0 1

Solution: How does this talk of integrated circuits apply to Excel? When you
build IF functions that require multiple logical tests, you frequently string together
many AND, OR, and NOT functions to achieve a result. These formulas can get
unduly complex, and you can use Boolean logic facts to simplify them.
Let’s say that you need to design a formula to calculate a 2% bonus. The bonus
is paid if revenue is > 20,000 and gross profi t percentage is > 50%. The bonus
is also paid whenever the sales rep name is Joey. (Joey is the boss’s son.)
If you only needed to see whether the revenue is greater than 20,000, the
formula would be:
=IF(C4>20000,0.02*C4,0)

When you add in the additional condition that GP% needs to be > 50%, the
formula is:
=IF(AND(C4>20000,D4>0.5),0.02*C4,0)

Add in the wrinkle that Joey always get paid, and you have:
=IF(OR(AND(C4>20000,D4>0.5),B4="Joey"),0.02*C4,0)

Figure 14. A nonzero number used as a logical test is TRUE

18 of 236 PART 1: FORMULAS

Using the Excel logic rules, you can restate any AND function by simply
multiplying the logical tests together. To do so, you surround each logical test in
parentheses. For example, you could rewrite:=AND(C4>20000,D4>0.5)
as:
=(C4>20000)*(D4>0.5)

In Figure 15, column E shows the results of the latter formula.

Figure 15. If your operation is AND, multiply the various logical tests together.

The result of this calculation is always 0 or 1. It is 0 when the bonus should
not be paid, and it is 1 when the bonus should be paid. Thus, if all your terms
need to be joined by an AND, you can simply multiply the terms by the bonus
calculation:

=(C4>20000)*(D4>0.5)*0.02*C4

Figure 16 shows the results of this calculation.

Any time a formula calls for a logical test, you can include a calculation that
generates a number. If the resulting number is 0, the logical test is FALSE. If
the resulting number is anything else, the logical test is TRUE. In Figure 14,
column A contains several numbers. Column B tests whether column A is TRUE
or FALSE. You can see that all positive and negative numbers are TRUE, and
the 0 in A4 is considered FALSE.

Part
I

19 of 236EXCEL GURUS GONE WILD

Figure 16. You can multiply the bonus calculation by the results of your AND
operations.

Excel’s Boolean logic rules run into some problems when you introduce OR
operations.

When you convert an OR to an addition operation, there is a chance that the
result might be > 1. Figure 17 shows this. You can restate this formula:

=IF(OR(AND(C4>20000,D4>0.5),B4="Joey"),0.02*C4,0)

as:

=((C7>20000)*(D7>0.5))+(B7="Joey")

In row 7, Joey actually qualifi es for a regular bonus, so the result of the logical
test is 2. It would be incorrect to multiply the revenue by 2%. (Actually, Joey’s
dad might like this idea.…) Any time you have an OR in the equation, you have
to convert the result to TRUE or FALSE, or 0 or 1. Either of these formulas
would calculate the bonus correctly:

=IF((C4>20000)*(D4>0.5)+(B4="Joey"),TRUE,FALSE)*C4*0.02

=IF((C4>20000)*(D4>0.5)+(B4="Joey"),1,0)*C4*0.02

20 of 236 PART 1: FORMULAS

Figure 17. You can convert OR functions to addition and test whether the result is
TRUE.

Summary: Understanding the Boolean logic facts can simplify your IF
calculations. Remember that FALSE is 0, AND is *, OR is +, and everything
else is TRUE.

USE GET.CELL TO HIGHLIGHT
NON-FORMULA CELLS

Challenge: You want to highlight all the cells on a worksheet that do not contain
formulas.

Solution: Before VBA, macros were written in an old macro language now
known as XLM. That language offered a GET.CELL function, which provides
far more information than the current CELL function. In fact, GET.CELL can tell
you more than fi ve dozen different attributes of a cell.

GET.CELL is cool, but there is one gotcha. You cannot enter this function
directly in a cell. You have to defi ne a name to hold the function and then
refer to the name in the cell. For example, to fi nd out whether cell A1 contains
a formula, you use =GET.CELL(48,Sheet1!A1). However, you need
something more generic than this for the conditional formatting formula. Using
=INDIRECT("RC",False) is a handy way to refer to the cell in which the
formula exists. Thus, the formula to tell if the current cell contains a formula
is:

=GET.CELL(48,INDIRECT("RC",False))

Part
I

21 of 236EXCEL GURUS GONE WILD

Figure 18. You use the Defi ne Name dialog to defi ne a name in Excel 2003.

To make use of this formula, follow these steps in Excel 2003:
To defi ne a new name, select Insert, Name Defi ne and use a suitable name,
such as HasFormula. In the Refers To box, type =GET.CELL(48,INDIR
ECT("RC",FALSE)), as shown in Figure 18. Click Add. Click OK. You use
the Defi ne Name dialog to defi ne a name in Excel 2003.

1.

Figure 19. You can use the relatively obscure Formula Is version of conditional formatt ing.

Select a range of cells.
Select Format, Conditional Formatting. Change the fi rst dropdown to
Formula Is. Type =HASFORMULA, as shown in Figure 19. Click the Format
button and choose a format for the cell. Click OK.

2.
3.

22 of 236 PART 1: FORMULAS

To make use of this formula, follow these steps in Excel 2007:

To defi ne a new name, select Formulas, Name Manager, New and use a
suitable name, such as HasFormula. In the Refers To box, type =GET.CEL
L(48,INDIRECT("RC",FALSE)), as shown in Figure 20. Click OK. Click
Close. You use the New Name dialog to defi ne a name in Excel 2007.

1.

Figure 20. You use the New
Name dialog to defi ne a name
in Excel 2007.

Select the cells to which you want to apply the conditional formatting.

Select Home, Conditional Formatting, New Rule. Choose Use a Formula
to Determine Which Cells to Format. In the lower half of the dialog type
=HASFORMULA, as shown in Figure 21. Click the Format button and choose
a format for the cell. Click OK.

2.

3.

Figure 21. You use the New
Formatt ing Rule dialog to set up
conditional formatt ing in Excel
2007.

Part
I

23 of 236EXCEL GURUS GONE WILD

To highlight every cell that does not contain a formula, use =NOT(HasFormula)
in the conditional formatting dialog.
Massive Gotcha: You cannot copy any cells that contain this formula to a
different worksheet without risking an Excel crash.
Breaking It Down: While most people typically use A1-style references, the
R1C1-style reference works better in the INDIRECT function. Normally, an
R1C1-style reference points to another cell. For example, =RC[-2] refers
to the current row and two cells to the left of the current cell. =R[10]C[3]
refers to 10 rows below and 3 columns to the right of the current cell. An R1C1
formula without any modifi ers, =RC, refers to the current cell. This is a case
where an R1C1 formula is far simpler than the equivalent A1 formula, =ADDRE
SS(ROW(),COLUMN(),4).
Alternate Strategy: The advantage of using the method described above is that
the formatting will automatically update whenever someone changes a cell to
contain either a formula or a constant. If you simply need to get a snapshot of
which cells contain formulas, follow these steps:

Select all cells by pressing Ctrl+A.
Press Ctrl+G to display the Go To dialog.
Click the Special button in the lower-left corner of the Go To dialog.
In the Go To Special dialog, choose Formulas and click OK.
Choose a color from the Paint Bucket icon.

Additional Details: The complete list of GET.CELL arguments follows. Note
that in some cases, functionality has changed signifi cantly, and the argument
may no longer return valid values.

1.
2.
3.
4.
5.

Argument Returns
1 Absolute reference of the upper-left cell in reference, as text in the

current workspace reference style (usually A1 style, but it might be
R1C1 style if someone has chosen R1C1 style in their Excel Options
dialog).

2 Row number of the top cell in the reference.
3 Column number of the leftmost cell in the reference.
4 Same as TYPE(reference).
5 Contents of the reference.
6 Formula in the reference, as text, in either A1 or R1C1 style, depending

on the workspace setting.
7 Number format of the cell, as text (for example, “m/d/yy” or “General”).
8 Number indicating the cell’s horizontal alignment:

1 = General
2 = Left

24 of 236 PART 1: FORMULAS

3 = Center
4 = Right
5 = Fill
6 = Justify
7 = Center across cells

9 Number indicating the left-border style assigned to the cell:
0 = No border
1 = Thin line
2 = Medium line
3 = Dashed line
4 = Dotted line
5 = Thick line
6 = Double line
7 = Hairline

10 Number indicating the right-border style assigned to the cell. See
argument 9 for descriptions of the numbers returned.

11 Number indicating the top-border style assigned to the cell. See
argument 9 for descriptions of the numbers returned.

12 Number indicating the bottom-border style assigned to the cell. See
argument 9 for descriptions of the numbers returned.

13 Number from 0 to 18, indicating the pattern of the selected cell, as
displayed in the Patterns tab of the Format Cells dialog box, which
appears when you choose the Cells command from the Format menu.
If no pattern is selected, returns 0.

14 If the cell is locked, returns TRUE; otherwise, returns FALSE.
15 If the cell’s formula is hidden, returns TRUE; otherwise, returns FALSE.
16 A two-item horizontal array containing the width of the active cell and a

logical value that indicates whether the cell’s width is set to change as
the standard width changes (TRUE) or is a custom width (FALSE).

17 Row height of cell, in points.
18 Name of font, as text.
19 Size of font, in points.
20 If all the characters in the cell, or only the fi rst character, are bold, returns

TRUE; otherwise, returns FALSE.
21 If all the characters in the cell, or only the fi rst character, are italic,

returns TRUE; otherwise, returns FALSE.
22 If all the characters in the cell, or only the fi rst character, are underlined,

returns TRUE; otherwise, returns FALSE.
23 If all the characters in the cell, or only the fi rst character, are struck

through, returns TRUE; otherwise, returns FALSE.
24 Font color of the fi rst character in the cell, as a number in the range 1 to

56. If font color is automatic, returns 0.

Part
I

25 of 236EXCEL GURUS GONE WILD

25 If all the characters in the cell, or only the fi rst character, are outlined,
returns TRUE; otherwise, returns FALSE. Outline font format is not
supported by Microsoft Excel for Windows.

26 If all the characters in the cell, or only the fi rst character, are shadowed,
returns TRUE; otherwise, returns FALSE. Shadow font format is not
supported by Microsoft Excel for Windows.

27 Number indicating whether a manual page break occurs at the cell:
0 = No break
1 = Row
2 = Column
3 = Both row and column

28 Row level (outline).
29 Column level (outline).
30 If the row containing the active cell is a summary row, returns TRUE;

otherwise, returns FALSE.
31 If the column containing the active cell is a summary column, returns

TRUE; otherwise, returns FALSE.
32 Name of the workbook and sheet containing the cell. If the window

contains only a single sheet that has the same name as the workbook,
without its extension, returns only the name of the book, in the form
BOOK1.XLS. Otherwise, returns the name of the sheet, in the form
[Book1]Sheet1.

33 If the cell is formatted to wrap, returns TRUE; otherwise, returns
FALSE.

34 Left-border color, as a number in the range 1 to 56. If color is automatic,
returns 0.

35 Right-border color, as a number in the range 1 to 56. If color is automatic,
returns 0.

36 Top-border color, as a number in the range 1 to 56. If color is automatic,
returns 0.

37 Bottom-border color, as a number in the range 1 to 56. If color is
automatic, returns 0.

38 Shade foreground color, as a number in the range 1 to 56. If color is
automatic, returns 0.

39 Shade background color, as a number in the range 1 to 56. If color is
automatic, returns 0.

40 Style of the cell, as text.
41 Returns the formula in the active cell without translating it. (This is useful

for international macro sheets.)
42 The horizontal distance, measured in points, from the left edge of the

active window to the left edge of the cell. May be a negative number if
the window is scrolled beyond the cell.

43 The vertical distance, measured in points, from the top edge of the
active window to the top edge of the cell. May be a negative number if
the window is scrolled beyond the cell.

26 of 236 PART 1: FORMULAS

44 The horizontal distance, measured in points, from the left edge of the
active window to the right edge of the cell. May be a negative number if
the window is scrolled beyond the cell.

45 The vertical distance, measured in points, from the top edge of the
active window to the bottom edge of the cell. May be a negative number
if the window is scrolled beyond the cell.

46 If the cell contains a text note, returns TRUE; otherwise, returns
FALSE.

47 If the cell contains a sound note, returns TRUE; otherwise, returns
FALSE.

48 If the cells contains a formula, returns TRUE; if a constant, returns
FALSE.

49 If the cell is part of an array, returns TRUE; otherwise, returns FALSE.
50 Number indicating the cell’s vertical alignment:

1 = Top
2 = Center
3 = Bottom
4 = Justifi ed

51 Number indicating the cell’s vertical orientation:
0 = Horizontal
1 = Vertical
2 = Upward
3 = Downward

52 The cell prefi x (or text alignment) character, or empty text (“”) if the cell
does not contain one.

53 Contents of the cell as it is currently displayed, as text, including any
additional numbers or symbols resulting from the cell’s formatting.

54 Returns the name of the PivotTable view containing the active cell.
55 Returns the position of a cell within the PivotTable view.
56 Returns the name of the fi eld containing the active cell reference if

inside a PivotTable view.
57 Returns TRUE if all the characters in the cell, or only the fi rst character,

are formatted with a superscript font; otherwise, returns FALSE.
58 Returns the font style as text of all the characters in the cell, or only the

fi rst character, as displayed in the Font tab of the Format Cells dialog
box (for example, "Bold Italic".)

59 Returns the number for the underline style:
1 = None
2 = Single
3 = Double
4 = Single accounting
5 = Double accounting

Part
I

27 of 236EXCEL GURUS GONE WILD

60 Returns TRUE if all the characters in the cell, or only the fi rst character,
are formatted with a subscript font; otherwise, returns FALSE.

61 Returns the name of the PivotTable item for the active cell, as text.
62 Returns the name of the workbook and the current sheet, in the form

[book1]sheet1.
63 Returns the fi ll (background) color of the cell.
64 Returns the pattern (foreground) color of the cell.
65 Returns TRUE if the Add Indent alignment option is on (Far East versions

of Microsoft Excel only); otherwise, returns FALSE.
66 Returns the book name of the workbook containing the cell in the form

BOOK1.XLS.

Summary: You can use GET.CELL to return more information than is available
by using the CELL function. You can then use conditional formatting to highlight
every cell that does not contain a formula.
Source: http://www.mrexcel.com/archive2/18800/21312.htm

REFER TO A CELL WHOSE ADDRESS
VARIES, BASED ON A CALCULATION

Challenge: You need to refer to a cell, but the cell address varies, based on a
calculation.
Solution: The INDIRECT function takes an argument that looks like a cell
reference and returns the value in that reference.
In Figure 22, the formula in row 2 asks for the INDIRECT of the cell immediately
above the formula. So, in D2, the formula tells Excel to get the INDIRECT of
cell D1. Cell D1 has a valid cell address of C9. The formula returns the current
value from cell C9, which is 17.

Figure 22. You can use the INDIRECT function to specify a cell
address, and Excel returns the value at that address.

28 of 236 PART 1: FORMULAS

Additional Details: In Lotus 1-2-3, this function was the @@ (“at-at”) function.
Additional Details: The argument for INDIRECT can be a named range.
You could create an ad hoc reporting engine by using named ranges and
INDIRECT.
In Figure 23, a named range has been set up for each column in a report.

Figure 23. You can set up a named range for each column.

Cell C12 in Figure 24 contains a validation dropdown list that allows a person
to choose any of the headings in A1:F1 (Figure 24).

Tip: See page 76 for a method to quickly create many range names.

Figure 24. You can add a
validation dropdown to allow
someone to select a heading.

Part
I

29 of 236EXCEL GURUS GONE WILD

The formula in B13 uses concatenation to build a proper label for the cell. The
formula could be:
="Total "&C12 or =CONCATENATE("Total ",C12)

The formula in C13 asks for the SUM of the INDIRECT of the name in C12.
In Figure 25, C12 contains the word COGS. Because COGS is defi ned as C2:
C10, Excel sums the range C2:C10 and returns the answer as the result of the
formula.

Figure 25. Th e INDIRECT formula returns all the values in a named range.

When someone chooses a new metric from cell C12, the INDIRECT formula sums a
different column. Figure 26 shows the total expenses.

Figure 26. When you change the metric in C12, the formula
totals a diff erent column. Th e total in the status bar in the lower
right verifi es that the formula is working.

30 of 236 PART 1: FORMULAS

Additional Details: The argument for INDIRECT can be calculated on the fl y. In
Figure 27, cell C3 concatenates a column letter from C1 and a row number from C2,
and it returns a value from B8.

Figure 27. Here, the reference is concatenated from values in other cells.

Summary: The INDIRECT function allows you to calculate from where to pull a
value.

POINT TO ANOTHER WORKSHEET
WITH INDIRECT

Challenge: You need to grab cell B4 from one of many worksheets. You have
to determine which worksheet, based on a cell label or a calculation, and you’re
wondering if INDIRECT can point to another worksheet.
Setup: INDIRECT can point to another worksheet. However, it requires special
handling if the worksheet name contains spaces or a date.
If a worksheet has a space in the name, you must build the reference to the
worksheet by using apostrophes around the worksheet name, followed by an
exclamation point and then the cell address. For example:
=‘Income Statement’!B2

If the worksheet name contains no spaces, you can leave out the
apostrophes:
=Revenue!B2

However, if you have a mix of worksheet names that may or may not contain a
space, you might as well plan on including the apostrophes.

Part
I

31 of 236EXCEL GURUS GONE WILD

Solution: Figure 28 shows six branch worksheets. Each has data in column B.
The goal is to write a formula in row 4 that will pull data from column B of the
various worksheets, based on the labels in row 3. The formula in cell G4 in
Figure 28 works fi ne for row 4:
=INDIRECT("’"&G$3&"’!"&"B4")

Note: This formula includes the extra hassle of using apostrophes, even though
only one of the worksheets, Eden Prairie, contains a space.

Figure 28. Th ese INDIRECT function points to a variable worksheet.

However, the problem with the formula in G4 is that it is hard-coded to grab
data from B4, so it cannot automatically copy to rows 5 through 7. To allow the
formula to grab data from other rows, you can use the CELL function or the
ADDRESS function. Both of these methods work. You can be up and running
using CELL in a matter of seconds, but ADDRESS might ultimately be easier,
once you understand the nuances of using it.
=CELL("address",$B4) returns the text B4. This is perfect for inserting
in the INDIRECT function. The dollar sign before the B makes sure that the
formula points to column B on each worksheet. The lack of a dollar sign before
the 4 in $B4 allows the formula to point to row 5, 6, 7, and so on as you copy
down. In Figure 29, the formula in cell C5 is:
=INDIRECT("’"&C$3&"’!"&CELL("address",$B5))

This formula can be copied throughout the table.

Figure 29. Adding CELL allows you to copy one formula throughout the table.

32 of 236 PART 1: FORMULAS

You can use the ADDRESS function instead of the CELL function. In its simplest
form, =ADDRESS(Row,Column) returns a cell address. For example,
=ADDRESS(5, 2) returns the text B5. Initially, it might seem more complex
to write =ADDRESS(ROW(),2) instead of using CELL in order to refer to
column B in the current row. However, ADDRESS offers three additional optional
arguments:
Note: The third and fourth arguments do not help you in this topic, but you
have to learn them so that you can get to the fi fth argument.

The third argument controls whether and where dollar signs appear in the
address. Here is an easy way to remember how this argument works:. The
number in the argument corresponds to how many times you press the F4
key to achieve the combination of dollar signs:
=ADDRESS(5,2,1) gives you B5.

=ADDRESS(5,2,2) locks only the row (B$5).

=ADDRESS(5,2,3) locks only the column ($B5).

=ADDRESS(5,2,4) locks nothing (=B5).
The fourth argument controls whether you get an A1-style reference or an
R1C1-reference:

=ADDRESS(5,2,1,1) return the A1-style reference B5.
=ADDRESS(5,2,1,0) return the R1C1 reference R5C2.

The fi fth argument can accept a sheet name. In this case, Microsoft
examines the sheet name and fi gures out whether you need apostrophes:
=ADDRESS(5,2,4,1,"Atlanta") returns Atlanta!B5.
=ADDRESS(5,2,4,1,"Eden Prairie") returns ‘Eden Prairie’!B5.

Note: You don’t really have to remember how the third and fourth arguments
work. If you simply use =ADDRESS(5,2,,,"Atlanta"), Excel returns
Atlanta!B5.
The version of ADDRESS with the fi fth argument returns text that can be used
in the INDIRECT function. In Figure 30, the formula in cell D6 is:
=INDIRECT(ADDRESS(ROW(),2,4,1,D$3))

The fi rst argument in ADDRESS is ROW(), which ensures that Excel grabs the
row where the formula is. The second argument is hard-coded to a 2 to make
sure you always get column B. The third and fourth arguments return a relative
A1-style reference. The fi fth argument contains only a dollar sign before the
row to make sure you always get a sheet name from row 3, but the column can
change as the formula is copied.

●

»

»

»

»

●

»

»

●

»

»

Part
I

33 of 236EXCEL GURUS GONE WILD

Figure 30. Using ADDRESS is a bit more complicated than using CELL, but
it involves a shorter formula.
Additional Details: There is a version of INDIRECT that works with R1C1-
style references because there are times when using R1C1 is actually easier.
So far, all the examples of INDIRECT have used only a single argument.
Leaving off the second argument:
=INDIRECT("B4")

or specifying TRUE as the second argument:
=INDIRECT("B4",TRUE)

 tells Excel to interpret the reference as an A1-style reference. Using FALSE
as the second argument:
=INDIRECT("RC",False)

tells Excel to interpret the reference as an R1C1 reference.
The reference =RC points to the current row and the current column. Including
a number after the R or C creates an absolute reference to a particular row or
column. =RC2 is the R1C1 method for referring to column B of this row. If you
use R1C1, you don’t have to worry about using CELL or ADDRESS. In Figure
31, the formula used in C7 is:
=INDIRECT("’"&C$3&"’!RC2",FALSE)

This formula can be copied throughout the table. Note that you do not have to
switch the worksheet to R1C1 style in order to use this formula.

Figure 31. R1C1 style is not popular, but it certainly makes this formula easier to write.
Summary: With a little extra thought, you can use INDIRECT to point to another
worksheet.

34 of 236 PART 1: FORMULAS

GET DATA FROM ANOTHER WORKSHEET
BY USING INDIRECT

Challenge: You have 31 daily worksheets in a workbook, 1 for each day of
the month. A cell on the summary worksheet contains a date. You want to use
the date cell in INDIRECT to grab data from a certain day’s worksheet, but the
formula always returns a #REF! error.
In Figure 32, cell E3 contains a date. You’ve used the custom number format
MMM D YYYY to ensure that the date in E3 looks like the worksheet name.
The formula returns an error.

Figure 32. Using INDIRECT based on a date doesn’t seem to work.

Background: No matter how you format cell E3, Excel converts the date back
to a serial number when it is used in INDIRECT. You might hope for a reference
like ‘Sep 1 2008’!B4 but instead get =‘39692’!B4. Figure 33 shows the
formula after you use Evaluate Formula. 39692 is how Excel actually stores
the date September 1, 2008, on a Windows PC.

Figure 33. Th e reference fails because Excel changes the date back
to a serial number.

Part
I

35 of 236EXCEL GURUS GONE WILD

Solution: You need to specify the correct custom number format by using the
TEXT function. In Figure 34, the formula is =INDIRECT("’"&TEXT(A3,"mmm
d yyyy")&"’!B4"). This builds a reference such as ‘Sep 1 2008’!B4.

Figure 34. You use the TEXT function to convert the date to
text that looks like a date.
The second argument of the TEXT function coerces the date to match the style
of the worksheet name. If someone built a worksheet with a name such as
Sep-1, the formula would be:
=INDIRECT("’"&TEXT(A3,"mmm-d")&"’!B4")

If your worksheets are named 9-1, the formula would be:
=INDIRECT("’"&TEXT(A3,"m-d")&"’!B4")

If you are lucky enough that your worksheets are simply named 1, 2, 3, and so
on, you can use =INDIRECT(DAY(A3)&"!B4"), as shown in Figure 35.

Figure 35. In this case, TEXT can be replaced with DAY.

36 of 236 PART 1: FORMULAS

Gotcha: Formulas built with INDIRECT are particularly susceptible to
generating #REF! errors if someone changes a worksheet name. Say that you
have the =3!B4. If you change the name of the worksheet from 3 to Sep 3, the
formula automatically changes to =‘Sep 3’!B4. However, when you start
using INDIRECT, the formula fails when someone changes the name of the
worksheet. If you use INDIRECT, you need to convince people not to change
the worksheet names or protect the workbook.
Summary: A date used in INDIRECT always changes back to the date serial
number. You need to use other functions to force the date to appear in the
proper format.

USE INDIRECT TO GET A DATA FROM A
MULTI-CELL RANGE

Challenge: As described in several other topics, INDIRECT is pretty cool for
grabbing a value from a cell. Can INDIRECT point to a multi-cell range and be
used in a VLOOKUP or SUMIF function?
Solution: You can build an INDIRECT function that points to a range. The
range might be used as the lookup table in a VLOOKUP or as a range in SUMIF
or COUNTIF.
In Figure 36, the formula pulls data from the worksheets specifi ed in row 4.
The second argument in the SUMIF function looks for records that match a
certain date from column A.
Note: Because each worksheet might have a different number of records, I
chose to have each range extend to 300. This is a number that is suffi ciently
larger than the number of transactions on any sheet. The formula in cell B5
is:
=SUMIF(INDIRECT(B$4&"!A2:A300"),$A5,INDIRECT(B$4&"!C2:C300"))

Figure 36. Each INDIRECT points to a rectangular range on the other worksheet.

Summary: You can use INDIRECT to grab data from a multi-cell range.

Part
I

37 of 236EXCEL GURUS GONE WILD

ALWAYS POINT TO
CELL B10

Challenge: You want to create a formula that always points to cell B10. Normally,
if you have a formula that points to B10 or even B10, the formula changes if
you cut and paste B10 or if you insert or delete rows above row 10.
In Figure 37, a formula in D1 checks to see if a value is in cell B10. In Figure
38, even after items are deleted from rows 6, 8, and 9, the formula still reports
an item in B10, even though cell B10 is empty. This is because the formula has
changed to point to B7 in Figure 38.

Figure 37. Th is formula points to B10

Figure 38. Th e reference moves to B7 if you delete three rows above B10.

38 of 236 PART 1: FORMULAS

Solution: You can use INDIRECT("B10") to ensure that the formula always
points to cell B10. Even if you delete or insert rows, and even if you cut B10
and paste to B99, your formula will always point to B10 (Figure 39).

Figure 39. INDIRECT("B10") tells Excel to
always look in cell B10.

Gotcha: If you are a fan of formula auditing, note that the Trace Dependents
and Trace Precedents commands do not recognize the relationship between
cell B10 and the formula in Figure 39. If you use Trace Dependents from cell
B10, Excel will report that there are no dependents.
Summary: To force a formula to always point to cell B10, you can use
INDIRECT("B10").

USE NATURAL LANGUAGE FORMULAS WITHOUT
USING NATURAL LANGUAGE FORMULAS

Challenge: Excel 2003 offers relatively obscure natural language formulas, but
they were removed from Excel 2007. The table nomenclature in Excel 2007 isn’t
as easy to use.
Solution: To solve this problem, you can use the intersection character in your
SUM function. Everyone knows that =SUM(A2:A10) sums the nine-cell range
from A2 through A10. Most people realize that =SUM(A1,A3,A5,A7,A9) adds
up the fi ve cells specifi ed. However, very few people understand that the space
character is actually an intersection operator when used in a SUM function!
Say that you have the worksheet shown in Figure 40. As discussed in “Quickly
Create Many Range Names” on page 76, you can add range names by using
these steps:

Select the range A1:F13.
Use Insert, Name, Create (in Excel 2003) or Formulas, Create from Selection
(in Excel 2007).
In the Create Names or Create Names from Selection dialog, select Top
Row and Left Column. Click OK. Excel creates names for the 12 cities in
column A. For example, the name Louisville applies to cells B13:F13. Excel

1.
2.

3.

Part
I

39 of 236EXCEL GURUS GONE WILD

also creates fi ve range names for the headings in row 1. For example, the
GP range refers to D2:D13.

You can now easily sum a range by using =SUM(Sales) or
=SUM(Atlanta,Charlotte). However, if you include a space between the
named ranges, Excel includes only the cells at the intersection of the two ranges.
The formula =SUM(Boston COGS) fi nds the one cell at the intersection of the
Boston range (B3:F3) and the COGS range (C2:C13). Only one cell is in common
between these two ranges, so the result is the 88,351 found in cell C3.

Figure 40. Excel creates fi ve named ranges in this selection.

Summary: When you use a space between arguments in a SUM function, Excel
returns only the intersection of the ranges.

SUM A CELL THROUGH
SEVERAL WORKSHEETS

Challenge: You have 12 identical worksheets, one for each month. You would
like to summarize each worksheet. Is there a better way than using =Jan!B4
+Feb!B4+Mar!B4+Apr!B4…?
Solution: You can use a 3-D formula such as =SUM(Jan:Dec!B4), as shown
in Figure 41.

40 of 236 PART 1: FORMULAS

Figure 41. A 3-D formula adds up all instances of B4 on
the 12 sheets from Jan through Dec.
If the fi rst or last worksheet contains a space in the name, you have to use
apostrophes around the pair of worksheet names: =SUM(‘Jan 2009:Dec
2009’!B4).
You can easily copy this formula to other cells on the summary worksheet.
Gotcha: Do not drag the summary worksheet to appear after the Jan worksheet,
or you will set up a circular reference.
Additional Details: It is possible to set up a named range that refers to a 3-D
range. Here is an interesting way to set up a named range:

Go to cell B4 on the Jan worksheet.
Select Insert, Name, Defi ne.
The Refers To box contains =Jan!B4. Click in the box. Hold down the Shift
key. Click on the Dec worksheet. The Refers To box changes to =Jan:
Dec!B4.

Summary: A 3-D formula can sum a specifi c cell on several worksheets.

1.
2.
3.

SUM VISIBLE ROWS
Challenge: A SUM function totals all the cells in a range, whether they are hidden
or not. You want to sum only the visible rows.
Solution: You can use the SUBTOTAL function instead of SUM. The formula
you need is slightly different, depending on how you hid the rows.
If rows are hidden by using Format, Row, Hide, you use:
=SUBTOTAL(109,E2:E564)

This is an unusual use for SUBTOTAL. Normally, SUBTOTAL is used to force
Excel to ignore other SUBTOTAL cells within a range. SUBTOTAL can perform

Late-breaking Tip: To add up
cell B4 on all the worksheets
with Sales in the sheet name,
type =SUM(‘*Sales’!B4) and
press Enter.

Part
I

41 of 236EXCEL GURUS GONE WILD

any of 11 operations. The fi rst parameter indicates Average (1), Count (2),
CountA (3), Max (4), Min (5), Product (6), StdDev (7), StdDevP (8), Sum (9),
Var (10), or VarP (11). When you add 100 to this parameter, Excel includes
only visible cells in the result.
In Figure 42, you can see that the result of the SUM in row 565 and the result of
the SUBTOTAL(9, in row 567 are identical. When you switch to SUBTOTAL(109,
in row 566, Excel total only the visible cells in the range.

Figure 42. Th e 100 series of SUBTOTAL functions sum, average, and count only the visible rows.

Gotcha: There is an error in Excel Help. The Help topic says that the 100
series parameters sum only visible cells. This is true only of cells that are in
hidden rows. If your data is hidden due to hiding a column, Excel still includes
those cells (Figure 43).

Figure 43. Th e formula fails to ignore cells hidden using hidden columns.

Additional Details: There is an unusual exception to the behavior of the
SUBTOTAL function. When your rows have been hidden by any of the Filter
commands (Advanced Filter, AutoFilter, or Filter), Excel includes only the visible
rows in a SUBTOTAL(9, function. There is no need to use the 109 version.
In Figure 44, Advanced Filter is used to fi nd only the AT&T records for two
products. The regular SUBTOTAL with an argument of 9 works fi ne to sum only
the visible rows.

42 of 236 PART 1: FORMULAS

Figure 44. You don’t have to use 109 if your rows are hidden as the
result of a fi lter.

Why even mention this strange anomaly? Because there is a little-known
shortcut key to sum the visible rows as the result of a fi lter. Try these steps:

Choose one cell in your data set.
From the Excel 2003 menu, choose Data, Filter, AutoFilter. From the Excel
2007 ribbon, choose Data, Filter. Excel adds dropdowns to each heading.
Open the Customer dropdown. In Excel 2003, choose one customer. In
Excel 2007, uncheck Select All and then choose one customer.
Move the cell pointer to a cell immediately below the fi ltered data. Choose
a cell below one or all of the numeric columns.
Press Alt+= or click the AutoSum icon. Instead of using a SUM function,
Excel uses =SUBTOTAL(9, which totals only the rows selected by the fi lter
(Figure 45).

1.
2.

3.

4.

5.

Figure 45. Pressing Alt+= fi lls in the SUBTOTAL functions in the selection.

Part
I

43 of 236EXCEL GURUS GONE WILD

Tip: After adding the formulas shown in Figure 45, insert two blank rows above
row 1. Cut the formulas in the total row and paste to the new row 1. After you
do this, your ad hoc totals are always visible near the headings.

Summary: You can use variations of the SUBTOTAL function to ignore hidden
rows.

LEARN R1C1 REFERENCES
Challenge: R1C1 cell referencing comes in handy in several situations, such
as in VBA, when you’re using INDIRECT, and with conditional formatting. It isn’t
hard to learn.
Background: VisiCalc introduced the A1 naming style for cells. Lotus 1-2-3
used the same system. With the Multiplan product, Excel used a system in
which columns were numbered. The cell that you and I know as D10 would
have been referred to as R10C4 in Multiplan (for row 10, column 4).
During the spreadsheet wars, Microsoft realized that most of the world was used
to A1 referencing, and to compete, it would have to pretend that Excel used
A1 references. Of course, Excel only pretends to use A1. It really uses R1C1
behind the scenes. If you don’t believe me, in Excel 2003 select Tools, Options,
Generaal, R1C1 style as shown in Figure 46. In Excel 2007, use Offi ce Icon,
Excel Options, Formulas, Working with Formulas, R1C1 Reference Style..

Figure 46. You are one click away from R1C1-style
spreadsheets.

44 of 236 PART 1: FORMULAS

Note that I am not suggesting that you switch over to R1C1 references. That
would be as crazy as suggesting that Microsoft replace the familiar File, Edit,
View, Insert, Format, Tools, Data, Window, and Help with a new user interface.
Instead, I am suggesting that you understand the reference style because there
are times when it is easier to use R1C1 than A1 (as with INDIRECT or VBA).
Solution: An R1C1-style reference contains the letter R and the letter C. With-
out any modifi ers, the R means “the same row where this formula is entered,”
and the C means “the same column where the formula is entered.”
The simplest R1C1 reference is =RC. If you are in cell C10 and enter =RC, you
are referring to cell C10. (This would also cause a circular reference error.)
When you follow the R or the C with a number in square brackets, you are re-
ferring to a cell that is some number of cells away. For example =RC[-1] in
C10 refers to B10. =R[10]C in C10 refers to C20. You can modify both the row
and column. For example, =R[1]C[1] in C10 refers to D11.
Note: For rows, positive numbers move down the worksheet. Negative num-
bers move up the spreadsheet. For columns, positive numbers move to the
right on the worksheet. Negative numbers move to the left on the worksheet.
If you want to build a formula to calculate GP% in column I, you have to divide
this row’s column H by this row’s column F. This is a bit of a hassle to do, and
the formula is different in each row (Figure 47).

Figure 47. With A1 references, the formula in each cell is diff erent.

Think about the formula you use to do this in R1C1 style. You want this row,
one column to the left divided by this row, 3 columns to the left. You can use
exactly the same formula, no matter which row you are in: All the formulas in
Figure 48 are =RC[-1]/RC[-3]. This is pretty cool.

Part
I

45 of 236EXCEL GURUS GONE WILD

Figure 48. With R1C1, the formula is the same in each cell.

How about absolute references? In Figure 49, the formula =F2*M1 ensures
that you always use the tax rate in cell M1. To specify an absolute reference
using R1C1, you leave off the square brackets. Cell M1 is the 13th column
of row 1, so by using R1C13, you always point to M1.

Figure 49. Absolute references in A1 style require dollar signs.

In Figure 50, the formula becomes =RC[-4]*R1C13.

Figure 50. To specify an absolute value in R1C1, you omit the square
brackets. Th e number now refers to a specifi c row and column number.

Summary: R1C1-style referencing is not hard to learn and enables easier use
of INDIRECT.

46 of 236 PART 1: FORMULAS

RANDOM NUMBERS WITHOUT
DUPLICATES

Challenge: You want to generate random numbers between 1 and 100 without
any duplicates. Excel offers the functions RAND() and RANDBETWEEN(), but
both of them are likely to generate duplicates, and you frequently need to
generate a series of random numbers without duplicates.
Background: I frequently use a three-column method to solve this problem,
but PGC01 posted an impressive formula to handle this problem.
To understand the formula, you have to understand how the SMALL function
works. Typically, SMALL returns the kth-smallest value in an array. For example,
=SMALL({60,10,20,30,40,50},3) returns 30, as 30 is the third-smallest
number in the list.
If the array specifi ed as the fi rst argument contains anything non-numeric,
those entries are ignored. =SMALL({60,10,FALSE,30,40,50},3) returns
40 because the 20 has been replaced by FALSE.
Solution: PGC01’s formula builds an array of the unused numbers in the
range and then selects from those numbers.
To illustrate, consider Figure 51.

Figure 51. Formulas generate six sets of the numbers, 1 to 10, randomly
sequenced.

Part
I

47 of 236EXCEL GURUS GONE WILD

In fi gure 51, the array formula in cell B9 is:
=SMALL(IF(COUNTIF(B$3:B8,ROW($1:$10))<>1,ROW($1:$10)),1+I
NT(RAND()*(10-ROW()+ROW(B$4))))

Excel starts evaluating this formula with the COUNTIF function. ROW($1:$10)
generates an array of the numbers, 1, 2, 3,…10. The COUNTIF function tells
Excel to look through the numbers generated so far in B$3:B8 and count how
many are equal to 1. This answer is either going to be 1 or 0. Because 1
already occurs in the range, the COUNTIF will be 1. But, for the number 2, the
answer will be 0 because a 2 has not been chosen yet.
Figure 52 shows what is happening in the IF(COUNTIF()) portion of the
formula:

Figure 52. Range E4:H14 shows how half the formula calculates cell B9.

Cells E5:E14 show the results of the ROW function, numbers 1 to 10.
Cells F5:F14 count how many times the number in E already appears in the
previous random numbers in B4:B8.
Cells G5:G14 check to see if the result in F is equal to 1.
The IF function in H says that if the value in G is TRUE, bring over the
number from E; otherwise, Excel puts in a FALSE.

At this point, the array action of the formula is complete. PGC01 has succeeded
in building an array of the available numbers. At this point, you simply have to
ask for one of the numbers from that remaining array. Basically, the formula is
then:

●
●

●
●

48 of 236 PART 1: FORMULAS

=SMALL(H5:H14,RANDBETWEEN(1,5))

Of course, fi guring out that there are fi ve numbers left is more diffi cult than in
the above line. To make the formula compatible with Excel 2003, PGC01 uses
RAND() instead of RANDBETWEEN. The RAND function returns a random integer
between 0 and 0.99999. =INT(RAND()*5) returns a random integer between
0 and 4. 1+INT(RAND()*5) returns a random integer between 1 and 5.
Because the 5 portion of that formula has to be different in each row of the
formula, you can use (10-ROW()+ROW(B$4)) instead of hard-coding the 5.
Alternate Strategy: Let’s say that you wanted to return a random check
number between 1501 and 1850 in cells H11:H35.
Note that the fi rst random number cannot be generated in row 1 because there
always has to be a blank anchor cell above the fi rst random number. In this
case, the fi rst random number is in H11, so the anchor cell becomes H10.
The start of the formula refers to the anchor cell twice, once with a dollar sign
before the row and once without:
=SMALL(IF(COUNTIF(H$10:H10,
Next, you specify the fi rst and last numbers in the range twice:
=SMALL(IF(COUNTIF(H$10:H10,ROW($1501:$1850))<>1,ROW($1501
:$1850)),

Note: You cannot use this method to generate numbers larger than 65,536 in
Excel 2003 and earlier. In Excel 2007, you are limited to 1,048,576.
For the fi nal portion of the formula, you need to fi gure out how many numbers
are in the pool of numbers. In this case, 1850–1501+1 is 350 numbers. Plug
in the 350 where shown and then plug in the address of the fi rst cell in this
fragment of the formula:
Note: While the fi rst portion of the formula uses H10 as the anchor cell, this
portion uses H11—the cell that contains the fi rst random number.
1+INT(RAND()*(350-ROW()+ROW(H$11))))

The entire formula is:
=SMALL(IF(COUNTIF(H$10:H10,ROW($1501:$1850))<>1,ROW($1501
:$1850)),1+INT(RAND()*(350-ROW()+ROW(H$11))))

Type this formula in H11 and press Ctrl+Shift+Enter.
Copy cell H11 and paste it to H12:H35.

Tip: The sample fi le for this chapter includes a worksheet where you can type
in three values, and the worksheet builds the formula for you.

Part
I

49 of 236EXCEL GURUS GONE WILD

Figure 53. Type in values in F5, F7, F8 and this worksheet will build the formula to use..

Summary: A fairly complex array formula can generate random numbers
without any duplicates.
Source: http://www.mrexcel.com/forum/showthread.php?t=222922

This formula was nominated by Barry Houdini.

SORT WITH A FORMULA
Challenge: You have a range of numbers in cells D2:D11. You want a formula
to rearrange the numbers into ascending or descending sequence.
Solution: You can use either the SMALL or LARGE function to solve this problem
quickly. =SMALL(D2:D11,1) returns the smallest number in the range,
=SMALL(D2:D11,2) returns the second-smallest number, and so on. Unlike
the RANK function, the SMALL and LARGE functions deal well with ranges that
contain ties.
Of course, you need to make the fi rst argument absolute by adding dollar signs:
D2:D11. In addition, you need to fi nd a way to change the 1 in the second
argument to 2, 3, 4, and so on as you copy down the range.
Instead of typing a 1 in the formula, you can use ROW(A1). This function returns
a 1, and as you copy the formula down the page, it changes to ROW(A2),
ROW(A3), etc.

50 of 236 PART 1: FORMULAS

In Figure 54, the SMALL formulas in column F sort the data in ascending
sequence. The formula =LARGE(D2:D11,ROW(A1)) in H3 and copied
down sorts the numbers in descending sequence.

Figure 54. Formulas in F and H sort the data from D in ascending or
descending sequence.
Note: Excel properly handles the duplicate values. Cells F4 and F5 show
both of the 10s from the original data set. Excel returns 10 as the answer for
the second- and third-smallest items in the range.
In Figure 55, notice how the ROW(A1) argument changes as you copy it
down the range.

Figure 55. Using ROW(A1) is an easy way to make the second
argument change from 1 to 2, 3, 4, etc. as it copied down.
Summary: You can use the SMALL or LARGE function to sort with a formula.

Part
I

51 of 236EXCEL GURUS GONE WILD

DEAL WITH DATES BEFORE 1900
Challenge: Excel stores a date as the number of days that have elapsed since
January 1, 1900. This means that all the cool date functions do not work for
dates in the 1800s. This is a problem for historians and genealogists.
Solution: A formula proposed by Boller calculates elapsed days going back
to January 1, 1000. I’ve adapted this formula a bit. Boller’s original formula
solved the problem by adding 1,000 years to the date. Thus, a valid date such
as January 23, 2009, would become January 23, 3009. An invalid date such as
February 17, 1865, would become February 17, 2865. Because Excel can deal
with dates up through the year 9999, this method works suffi ciently.
You need to enter a start date in A4 and an end date in B4. Use a format such as
2/17/1865 when entering dates. If your date is after 1900, Excel automatically
converts the date to a date serial number. If the date is before 1900, Excel
stores the date as text.
If the cell contains a real date, you want to add 1,000 years. An easy way
to do this is to use the EDATE function and add 12,000 months to the date.
=EDATE(A4,12000) returns a date that is 1,000 years after a valid date in
A4. Note that this function requires the Analysis Toolpak in versions prior to
Excel 2007. If you can ensure that the Analysis Toolpak is installed, you can
use =DATE(YEAR(A4)+1000,MONTH(A4),DAY(A4)).
If the cell does not contain a real date, you need to break the date apart, add
1,000 years, put the date back together, and convert it to a real date:
• To get the left portion of the date, use =LEFT(A4,LEN(A4)-4)
• To get the year portion of the date, use =RIGHT(A4,4)
• To add 1,000 years to the date, use =RIGHT(A4,4)+1000
• To put the month, day, and year+1,000 back together, use
=LEFT(A4,LEN(A4)-4)&RIGHT(A4,4)+1000

• To convert that result back to a true date, use =DATEVALUE(LEFT(A4,
LEN(A4)-4)&RIGHT(A4,4)+1000)

You now need to selectively use either the EDATE or the DATEVALUE portion
of the formula, depending on whether Excel sees the date in A4 as text. Enter
this IF statement in cell C4:
=IF(ISTEXT(A4),DATEVALUE(LEFT(A4,LEN(A4)-4)&RIGHT(A4,4)+1
000),EDATE(A4,12000))

Copy it to cell D4 to get a modifi ed date from column B.
You can now use these results with any available date functions.

52 of 236 PART 1: FORMULAS

In Figure 56, cell E4 calculates the number of elapsed days with =D4-C4.
Cell F4 calculates the number of years with =DATEDIF(C4,D4,"y"). Note
that you can combine the formulas from C4, D4, and E4 into a single mega-
formula:
=IF(ISTEXT(B4),DATEVALUE(LEFT(B4,LEN(B4)-4)&RIGHT(B4,4)+1
000),EDATE(B4,12000))-IF(ISTEXT(A4),DATEVALUE(LEFT(A4,LEN
(A4)-4)&RIGHT(A4,4)+1000),EDATE(A4,12000)).

Figure 56. Excel seems to be able to handle dates from before 1900 when you use this
formula.
Gotcha: Historians note that calendar reform in 1752 removed 12 days from
the calendar. Be particularly careful when fi guring dates before this period. The
formula here does not deal with that anomaly. For details, see
http://www.adsb.co.uk/date_and_time/calendar_reform_1752/.
Summary: Although Excel doesn’t deal with pre-1900 dates, you can do date
math with these dates by adding enough years to bring them into the post-
1900 era.
Source: http://www.mrexcel.com/forum/showthread.php?p=1382146

This formula was nominated by Barry Houdini

USE VLOOKUP TO GET THE NTH MATCH
Challenge: Your lookup table contains multiple occurrences of each key fi eld.
You would like to return the second, third, or fourth occurrence of the key.
Solution: VLOOKUP cannot solve this problem. OFFSET with MATCH could do
it, provided that the lookup table is sorted by key. But if your table is not sorted,
you need to turn to this user-defi ned function from Zack Barresse and Peter
Moran:

Part
I

53 of 236EXCEL GURUS GONE WILD

Function VLOOKUPNTH(lookup_value, table_array As Range, _

 col_index_num As Integer, nth_value)

‘ Allows for fi nding the nth item

‘ that matches the lookup value.

Dim nRow As Long

Dim nVal As Integer

Dim bFound As Boolean

 VLOOKUPNTH = "Not Found"

 With table_array

 For nRow = 1 To .Rows.Count

 If .Cells(nRow, 1).Value = lookup_value Then

 nVal = nVal + 1

 ‘ Check to see if this is the nth match

 If nVal = nth_value Then

 VLOOKUPNTH = .Cells(nRow, col_index_num).Text

 Exit Function

 End If

 End If

 Next nRow

 End With

End Function

You need to add this function to your workbook’s VBA project. It works like
VLOOKUP, but instead of specifying FALSE as the fourth argument, you specify
which value match you want to return.
In Figure 57, a regular VLOOKUP appears in column F, and VLOOKUPNTH
appears in columns G:H.

Figure 57. Formulas in G:H grab the nth match from the lookup table.

54 of 236 PART 1: FORMULAS

Breaking It Down: table_array is a range passed to the function. When the
function uses table_array, the future references to CELLS(nRow, 1).Value
always look through the fi rst column of the lookup table. Later, VLOOKUPNTH is
assigned to be Cells(nRow, Col_index_number). If Col_Index_Number
contains the number N, this refers to the nth column of the lookup table.

Additional Details: In my seminars, I frequently lament that VLOOKUP cannot
grab a value that appears to the left of the key fi eld. You could use a similar
approach to Barresse and Moran’s user-defi ned function to build a VLOOKUP
that will work to the left of the key fi eld:
Function VLOOKNEW(lookup_value, table_array As Range, _

 col_index_num As Integer, CloseMatch As Boolean)

‘ Allows for col_index_num to be negative

‘ that matches the lookup value.

Dim nRow As Long

Dim nVal As Integer

Dim bFound As Boolean

 VLOOKNEW = "Not Found"

 ‘ if positive, treat as a regular VLOOKUP

 If col_index_num > 0 Then

 VLOOKNEW = Application.WorksheetFunction.VLookup(lookup_value, _

 table_array, col_index_num, CloseMatch)

 Else

 ‘ Do a VLOOKUP Left

 nRow = Application.WorksheetFunction.Match(lookup_value, _

 table_array.Resize(, 1), CloseMatch)

 VLOOKNEW = table_array(nRow, 1).Offset(0, col_index_num)

 End If

End Function

VLOOKNEW is similar to VLOOKUP, except that you can use a negative value for
the column index number (Figure 58).

Part
I

55 of 236EXCEL GURUS GONE WILD

Figure 58. VLOOKNEW returns a value that appears to the left of the key fi eld

Summary: User-defi ned functions can provide improvements on the VLOOKUP
function.
Source: http://www.mrexcel.com/forum/showthread.php?t=112275

The post was nominated by Matt Hohbein. Thanks to Zack Barresse and Peter
Moran.

USE A SELF-REFERENCING FORMULA
Challenge: Shades was looking for a formula to reverse letters in a cell. This can
easily be accomplished using a VBA function. However, Shades had challenged
people to write a formula. A new member, Hady, came along with this solution.
Gotcha: The technique in this topic is not compatible with the Evaluate Formula
feature. If you use Evaluate Formula on a self-referencing formula, you run the
risk of crashing Excel and losing your work.
Solution: To solve this problem, you use a self-referencing formula. Follow
these steps:

Select Tools, Options, Calculation. Choose Iteration and set the maximum
iterations to 100.
Enter any sentence in A1.
In cell B1, enter this formula and press Enter: =IF(LEN(B1)<LEN(A1)+1
,B1&MID(A1,LEN(A1)+1-LEN(B1),1),IF(MID(B1,1,1)<>"0",B1,R
IGHT(B1,LEN(A1))&" ")), When you press Enter, you get a result of 0
and the last character from cell A1. This is normal.
Press F9 again, and you get 0, the last character, and the second-to-last
character.
Press F9 again, and you get 0 and the last three characters in reverse.

1.

2.
3.

4.

5.

56 of 236 PART 1: FORMULAS

Keep pressing F9. When you have 0 and all of the characters, press F9 one
last time, and the 0 is removed.
To start over, go to B1, press F2 to put the formula in Edit mode, and press
Ctrl+Shift+Enter.

Breaking It Down: Let’s say you put AbCdWxYz in cell A1. When the formula
starts, the value of B1 is 0. The LEN of A1 is 8, and the LEN of B1 is 0, so the
formula takes whatever is in B1 and concatenates it with the MID of A1. The
MID function says to start at the character that is the LEN of A1 minus the
LEN of B1 + 1. In the fi rst calculation, this appends the starting 0 with the fi nal
character, and you will have 0z in cell B1 (Figure 59).

6.

7.

Figure 59. Initially, you get a 0 and the last character.

As the result in B1 gets longer, the formula keeps appending characters further
from the end of A1. After you press F9 a few more times, you have 0zY in B1.
The LEN of A1 is still 8. The LEN of B1 is 3. You are using 8+1–3, so you are
now asking for the sixth character to be appended to B1, and you now get
0zYx in B1, as shown in Figure 60.

Figure 60. With each press of the F9 key, you get an additional character.

You eventually get to the point where you have a 0 and the complete text from
A1, in reverse, as shown in Figure 61.

Figure 61. Aft er gathering all the characters, you still have a starting 0.

Part
I

57 of 236EXCEL GURUS GONE WILD

The formula fi nally gets to use the last part of the formula, where it takes the
RIGHT characters from B1, this time grabbing only the LEN of A1. This strips
out the leading 0, as shown in Figure 62.

Figure 62. Th e fi nal portion of the formula strips off the leading 0
when the LEN of B1 is greater than the LEN of A1.

Additional Details: Although this formula can do something VBA-like without
using any VBA, it has limited use. You cannot copy the formula down to any
other cells. And if you change A1, you need to start over and press F9 a bunch
of times.
However, it is an interesting technique, and there have been a few instances at
the MrExcel message board where Hady’s approach was suggested:
http://www.mrexcel.com/forum/showthread.php?t=309945
http://www.mrexcel.com/forum/showthread.php?t=325172
http://www.mrexcel.com/forum/showthread.php?t=150637
Summary: You can use a self-referencing formula to replace a VBA user-
defi ned function.
Source: http://www.mrexcel.com/forum/showthread.php?p=1107631

The post was nominated by Andrew Fergus.

USE TWO-WAY INTERPOLATION WITH A
SINGLE FORMULA

Challenge: Many engineering design problems require
designers to use tables to compute values of design
parameters. Such tables contain values of the required
parameter for a range of values of a control parameter,
arranged in discrete intervals, and the designer is
permitted to use linear interpolation for obtaining the
parameter value for intermediate values of the control
parameter.
A simple example is a two-column table comprising
height above ground (the control parameter) and wind

Height Velocity

20 10

30 40

40 130

50 180

60 240

58 of 236 PART 1: FORMULAS

How would you do this for a two-way table in which there are two control
parameters? Is it possible to do so using a single formula? The table in Figure
63 illustrates values of wind pressure for the control parameters Height of
structure and Span, and you need to compute the wind pressure for a height of
25 meters and a span of 300 meters.

Figure 63. Interpolate values from column B and row 2.

Solution: The procedure you use to solve this problem is essentially an
extension of the method used for the single control parameter table. Follow
these steps:

Start with the worksheet shown in Figure 63. Add input cells for height and
span in J1 and J2 respectively.
For ease of formula readability, defi ne the following names:

ColHd =Sheet1!B1:F1

RoHd =Sheet1!A2:A9

Dat =Sheet1!B2:F9

Ht =Sheet1!J1

Sp =Sheet1!J2

1.

2.

velocity (a design parameter to be read from the table). In the table above, if
you need to fi nd the velocity corresponding to a height of 47 meters, it is a fairly
simple matter to devise a formula that computes 130 + (180 – 130) * 7 / 10 =
165 meters/sec.

Part
I

59 of 236EXCEL GURUS GONE WILD

Figure 64. Th e formulas in J3:J17 fi nds the result.

You can solve the problem using a series of formulas as shown in J3:J17 of
Figure 64:

The MATCH in J3 fi nds the row number in Figure 63 that is less than or
equal to the height in cell J1.
The MATCH in J5 fi nds the column number in Figure 63 that is less than or
equal to the span in J2.
Formulas in J4 and J6 add one to the previous cell.
Formulas in J7:J10 use INDEX functions based on rows J3 & J4 and
columns J5 & J6 to get the lower & higher height & spans.
The HtDiff in J11 is the amount at which the sought height is in excess of
the previous height.
The SpanDiff in J12 is the amount at which the sought span is in excess of
the previous span.
The intervals in J13:J14 calculate the delta between the previous and next
height or span.
Cells J15:J17 then complete the interpolation

●

●

●
●

●

●

●

●

60 of 236 PART 1: FORMULAS

 Building the Mega-formula
You can now integrate the formulas in J3:J17 into a single formula to get the
required wind pressure:

Copy the text of the formula in J17 to, say, J20—so the formula in J20 is:
=J15+(J16-J15)*J12/J14

Substitute the cell references for each precedent cell in this formula with
the formula in the cell. To illustrate, the fi rst cell reference is J15, which
occurs at two places in the formula:

=J15+(J16-J15)*J12/J14

The formula in cell J15 is:
=J7+(J8-J7)*J11/J13

Copy the text of the formula (without the = sign) and replace the J15s in
the formula in J20 so that the formula now becomes:

= J7+(J8-J7)*J11/J13 +(J16- J7+(J8-J7)*J11/J13)*J12/J14

Do the same with the remaining references J16, J12, and J14.
Successively repeat the procedure of back-substitution for the new set of
references until all references in the formula are reduced to the defi ned
names ColHd, RoHd, Dat, Ht, and Sp.

The resulting formula, after all substitutions, is:
=((INDEX(Dat,(MATCH(Ht,RoHd)),(MATCH(Sp,ColHd))))+((INDEX(Dat,
((MATCH(Ht,RoHd))+1),(MATCH(Sp,ColHd))))-(INDEX(Dat,(MATCH(Ht,
RoHd)),(MATCH(Sp,ColHd)))))*(Ht-INDEX(RoHd,(MATCH(Ht,RoHd))))/
(INDEX(RoHd,((MATCH(Ht,RoHd))+1))-INDEX(RoHd,(MATCH(Ht,RoHd)))))+((
(INDEX(Dat,(MATCH(Ht,RoHd)),((MATCH(Sp,ColHd))+1)))+((INDEX(Dat,((M
ATCH(Ht,RoHd))+1),((MATCH(Sp,ColHd))+1)))-(INDEX(Dat,(MATCH(Ht,Ro
Hd)),((MATCH(Sp,ColHd))+1))))*(Ht-INDEX(RoHd,(MATCH(Ht,RoHd))))/
(INDEX(RoHd,((MATCH(Ht,RoHd))+1))-INDEX(RoHd,(MATCH(Ht,RoHd))))
)-((INDEX(Dat,(MATCH(Ht,RoHd)),(MATCH(Sp,ColHd))))+((INDEX(Dat,
((MATCH(Ht,RoHd))+1),(MATCH(Sp,ColHd))))-(INDEX(Dat,(MATCH(Ht,
RoHd)),(MATCH(Sp,ColHd)))))*(Ht-INDEX(RoHd,(MATCH(Ht,RoHd))))/
(INDEX(RoHd,((MATCH(Ht,RoHd))+1))-INDEX(RoHd,(MATCH(Ht,RoHd))))))*(Sp-
INDEX(ColHd,(MATCH(Sp,ColHd))))/(INDEX(ColHd,((MATCH(Sp,ColHd))+1))-
INDEX(ColHd,(MATCH(Sp,ColHd))))

This impressive-looking formula is 867 characters long and, of course, totally
incomprehensible in its fi nal form.
Summary: You can build a single formula from a multiple-step calculation,
using successive back-substitution, starting with the last formula.

1.

2.

3.

4.
5.

Part
I

61 of 236EXCEL GURUS GONE WILD

FIND THE SUM OF ALL DIGITS
OCCURING IN A STRING

Challenge: You want to build a formula to return the sum of all the digits in a
string of text. For example, applying the formula on the text string “I am 24
years old and my Dad is 43" should yield 13 (2+4+4+3).
Setup: Assume that the text is in cell A1. Enter/copy the following formula in
B1:
=SUM((LEN(A1)-LEN(SUBSTITUTE(A1,{1,2,3,4,5,6,7,8,9},"")))*{1,2,3,4,5,6,7,8,9})

Seemingly incomprehensible, eh? Read on…
Background: You could do this manually. You know that the digits that are
signifi cant for an addition operation are the digits 1 through 9. So an algorithm
of the sum you are looking for would be:
1 × the number of 1s in the string +
2 × the number of 2s in the string +
…
…
9 × the number of 9s in the string = RESULT
You could consider substituting all occurrences of a digit (say, 4) with a null
string, using the SUBSTITUTE function. SUBSTITUTE(Txt,4,"") returns
the text without any 4s (i.e., ‘I am 2 years old, and my Dad is 3’).
Consider the formula fragment SUBSTITUTE(A1,{1,2,3,4,5,6,7,8,9},
""). This successively substitutes the digits 1 through 9 with a null string, to
yield an array of 9 modifi ed string values, stripped of all occurrences of the
corresponding digits.
Because the number of 4s in the string is 2, the length of the resultant
string is 2 less than that of the original: LEN(A1). Thus LEN(A1)-
LEN(SUBSTITUTE(A1,4,"") gives you 2. Accordingly, one step further up
the structure of the formula, LEN(A1)-LEN(SUBSTITUTE(A1,{1,2,3,4,5,6,7,8,9},""))
gives you an array of 9 values, indicating the number of occurrences of each
digit in the string. The array is {0,1,1,2,0,0,0,0,0}, refl ecting one occurrence
each of 2 and 3, two occurrences of 4, and no occurrences of the other digits.
At this point, the formula:
=SUM((LEN(A1)-LEN(SUBSTITUTE(A1,{1,2,3,4,5,6,7,8,9},"")))*{1,2,3,4,5,6,7,8,9})

translates to:
=SUM({0,1,1,2,0,0,0,0,0} *{1,2,3,4,5,6,7,8,9})

This is the summation of products of corresponding elements of two arrays:
0×1 + 1×2 + 1×3 + 2×4 + 0×5 + 0×6 + 0×7 + 0×8 + 0×9 = 13 (Required
result)

62 of 236 PART 1: FORMULAS

Alternate Strategy: If you replace SUM in the original formula with SUMPRODUCT
and replace the multiplication sign * with a comma, you could enter the formula
as:
=SUMPRODUCT((LEN(A1)-LEN(SUBSTITUTE(A1,{1,2,3,4,5,6,7,8,9},""))),{1,2,3,4,5,6,7,8,9})

This form would probably look a bit more intuitive to some users.

Text Comments Result
76432 22
*****(8,121) 12
76*432 22
764 test 32 22
1 test 2 3
156.546 27
3127543.791 44
t=18317; p=239317 45
24 / 12 9
30°54’43” 19
SSN 421-89-7322 38
800/555-1212 29
3.142 PI() displayed to 14 decimal points 77
06:00 PM Underlying value = 0.75 12

Summary: You can use SUM (or SUMPRODUCT) to build a formula that returns
the sum of all the digits in a string of text.
Source: http://www.mrexcel.com/forum/showthread.php?p=242929

Illustrative Examples:

GET AN ARRAY OF UNIQUE VALUES
FROM A LIST

Challenge: You want to extract all unique values from a column of text data
that may contain several instances of a particular value. A procedure like this is
useful when you need to populate a list box or combo box with unique values
for user selection.
Solution: Assume that your spreadsheet contains a list of names in the range
A2:A30 on Sheet1. Cell A1 contains the header Name.
You can manually solve this problem by selecting Data, Filter, Advanced Filter
dialog.

Part
I

63 of 236EXCEL GURUS GONE WILD

In the Advanced Filter dialog, select Copy to Another Location, set List Range
to Sheet1!A1:A30, leave Criteria Range blank, set Copy To to H1,
select Unique Records Only, and click OK.
The list of unique names (with the header Name) is pasted at H1.
After it is pasted, you can sort the list in alphabetical order, if required.
Alternate Solution: This topic demonstrates two approaches for obtaining
the unique values: one using the Collection object and the other using the
Dictionary object. The two approaches are similar in mechanism in that they
make use of the fact that a collection as well as a dictionary cannot contain
duplicates.
The Collection Object Approach
The code for the Collection object approach is:
Sub GetUnique_Collection() ‘Using the Collection object

 Dim SourceRng As Range

 Dim UniqColl As New Collection

 Set SourceRng = Range("A2:A30")

 On Error Resume Next

 For Each cell In SourceRng.Cells

 UniqColl.Add cell.Value, cell.Value

 Next

 On Error GoTo 0

 ReDim UniqArray(1 To UniqColl.Count)

 For i = 1 To UniqColl.Count

 UniqArray(i) = UniqColl(i)

 Next

 ‘Optional sort routine can be inserted here

 Range("H1").Resize(UniqColl.Count, 1).Value =
WorksheetFunction.Transpose(UniqArray)

End Sub

This code creates a new collection, UniqColl, and cycles through all the
values in the list of names, attempting to add each name to the collection.
Notice that the statement:

UniqColl.Add cell.Value, cell.Value

contains two references to cell.Value. This is because the fi rst two arguments
for the Add method are Value and Key. A collection cannot contain duplicate

64 of 236 PART 1: FORMULAS

Key values. Error trapping during the execution of the For...Next loop is
disabled, using On Error Resume Next, so whenever the code encounters
a duplicate value (which, if already present in the collection, cannot be added
to it), it simply skips to the next cell, without screeching to a halt with an error
message.

When all the items are added to the collection, the code creates an array
UniqArray of the same size as the collection UniqColl.Count and adds
each item of the collection to this array. The array is needed to transfer the
contents to the spreadsheet. Notice the use of the Transpose function
when transferring the array to a column in the sheet; this is needed because
UniqArray is a horizontal array.

Before transferring the unique list to the worksheet or control, it may be desirable
to sort the data alphabetically. To do this, simply insert the following code after
the comment ‘Optional sort routine can be inserted here:
 For i = 1 To UniqColl.Count - 1
 For j = i + 1 To UniqColl.Count

 If UniqColl(i) > UniqColl(j) Then

 Temp1 = UniqColl(i)

 Temp2 = UniqColl(j)

 UniqColl.Add Temp1, before:=j

 UniqColl.Add Temp2, before:=i

 UniqColl.Remove i + 1

 UniqColl.Remove j + 1

 End If

 Next j

 Next i

The Dictionary Object Approach
The code for the Dictionary object approach is:
Private Sub GetUnique_Dictionary() ‘Using the Dictionary object

 Dim UniqueDic As Object

 Dim cell As Range

 Set UniqueDic = CreateObject("Scripting.Dictionary")

 For Each cell In Range("A2:A30")

 If Not UniqueDic.Exists(cell.Value) Then

 UniqueDic.Add cell.Value, cell.Value

 End If

Part
I

65 of 236EXCEL GURUS GONE WILD

 Next

 UniqArray = UniqueDic.Items

 Range("H1").Resize(UniqueDic.Count, 1).Value = WorksheetFunction.
Transpose(UniqArray)

End Sub

This code works similarly to the previous routine. The points of difference are:

Instead of disabling error trapping, the Exists property of the Dictionary
object is used to decide whether a value has already been added to the
dictionary and needs to be skipped.

The dictionary contents are transferred to UniqArray in one go with:

UniqArray = UniqueDic.Items

Instead of transferring the unique items to the worksheet, you can fi ll a combo
box with the values, using a statement like:

UserForm1.ComboBox1.List=UniqArray

Summary: You can extract a list of unique values from a large list that may
contain multiple instances of a given value. The extracted values can be put
into a worksheet range or used to fi ll values in a combo box or list box.

Sources: http://www.mrexcel.com/forum/showthread.php?t=8485, http://www.
mrexcel.com/forum/showthread.php?t=217977, and http://www.mrexcel.com/
forum/showthread.php?t=41643

●

●

AUTO-NUMBER RECORDS AND COLUMNS
IN AN EXCEL DATABASE

Challenge: You want to build formulas to automatically serially number records
and column headers in a database to which AutoFilter is applied and in which
selected columns are hidden.

In the database shown in Figures 65 and 66, the records as well as columns
are numbered normally. Figure 66 illustrates how the database appears when
AutoFilter is applied to show records for total marks > 335 and the columns
for Chemistry and Math are hidden. You want to auto-number the records (1
through 7 in this example) and column headers (1 through 5 in this example)
by using formulas.

66 of 236 PART 1: FORMULAS

Figure 65. Th e complete database.

Figure 66. Your goal is to have row labels in A and column labels in row 2 get renumbered as
shown here.

Solution: You start by defi ning the name Database for the range A2:G13. This
excludes row 1 from the default selection when you apply AutoFilter. You need
to put a space in the fi rst cell immediately following the last record (A14 in this
case). (This is a workaround to an annoying Excel bug that shows the last
record, regardless of whether it meets the fi lter criteria.)

Part
I

67 of 236EXCEL GURUS GONE WILD

In cell A3, enter the formula:
=SUBTOTAL(3,B$3:B3)

and copy this formula to the range A4:A13.
Notice that the fi rst row reference is absolute and the second one is relative.
The formula in A13 is thus:
=SUBTOTAL(3,B$3:B13)

In cell A2, enter the formula:
=IF(CELL("width",A1)=0,0,1)

In cell B2, enter the formula:
=IF(CELL("width",B1)=0,0,MAX($A2:A2)+1)

and copy it to the range C2:G2.
Notice that the fi rst column reference is absolute and the second one is relative.
The formula in G2 is thus:
=IF(CELL("width",G1)=0,0,MAX($A2:F2)+1)

Now you are set. Breaking It Down: Let’s start with the auto-numbering of
the records. The SUBTOTAL function has the syntax SUBTOTAL(type,ref). In
your formula, you specifi ed type as 3, which is the equivalent of the COUNTA
function. Column B contains names and thus qualifi es for use of this subtotal
type because the COUNTA function counts the number of text values in a range.
The formula makes use of the fact that SUBTOTAL excludes hidden cells from
its calculation.
Consider the formula in A10: =SUBTOTAL(3,B$3:B10). The total number of
text values in this range is eight, but only fi ve values are visible, so the formula
returns 5, which is the serial number you want!
For auto-numbering of the columns, you use the CELL function. The syntax
for this function is CELL(info_type, [reference]). When you specify
"width" as info_type, the function returns the column width of the top left
cell in reference.
The formula in cell A2, =IF(CELL("width",A1)=0,0,1), returns 0 if
column A is hidden and 1 if it is not.
To understand how the formulas in B2:G2 work, fi rst consider the formula in
D2:
=IF(CELL("width",D1)=0,0,MAX($A2:C2)+1)

Because CELL("width",D1)=0 (column is hidden), the formula evaluates
to 0.
The formula in the cell in the next visible column, F2, is:
=IF(CELL("width",F1)=0,0,MAX($A2:E2)+1)

68 of 236 PART 1: FORMULAS

Because CELL("width",F1)>0, this evaluates to MAX($A2:E2)+1, which
is Max(1,2,3,0,0)+1 = 4.
Gotcha: Although the record numbering auto-updates with changes in AutoFilter
settings, the column header numbering does not update as you hide/show
columns. You need to force a recalculation by pressing F9 in order for these
formulas to update.
Summary: You can build formulas to automatically number records and column
headers in a database to which AutoFilter is applied and in which selected
columns are hidden.

69

P A R T 2

TECHNIQUES

70 of 236 PART 2: TECHNIQUES

Challenge: You’ve created a pivot table to summarize sales by customer. You
now want to fi lter those results to show only the customers with sales between
$20,000 and $30,000. The AutoFilter command is grayed out for pivot tables.
Solution: You can fool Excel into turning on the AutoFilter dropdowns by
starting your selection one cell to the right of the pivot table headings. In Figure
67, select cell E4. Hold down the Shift key and press the left arrow key four
times to select E4:A4.

Figure 67. Start your selection just to the right of the pivot table headings.

USE AUTOFILTER WITH A
PIVOT TABLE

In Excel 2003, you can select Data, Filter, AutoFilter to turn on the AutoFilter
dropdowns. In Excel 2007, choose the Filter command from the Data tab.
Figure 68 shows how you apply a custom fi lter to limit the customers to those
with sales between $20,000 and $30,000.

Figure 68. Use the fi lter
dropdowns on the pivot
table.

Part
2

71 of 236EXCEL GURUS GONE WILD

Summary: You can trick Excel into allowing fi lters in a pivot table by starting
the selection outside the pivot table.
Source: Podcast episode 793 http://www.mrexcel.com/podcast/2008/07/
episode-793-pivot-fi lter-hack.html

SORT SUBTOTALS
Challenge: You want to chart the sales for the fi ve largest customers in a data
set.
Solution: You can sort the collapsed view of a subtotaled data set. Here’s
how:

Choose one cell in the customer column. Click the AZ button to sort in
ascending order.
Choose Data, Subtotals. In the Subtotal dialog box, change the At Each
Change In dropdown to Customer. Make sure the Use Function dropdown
is Sum. Choose at least the Sales column from the Add Subtotal To section.
Click OK. Excel adds subtotals for each customer.
Look at the left of column A. Excel has added three group and outline buttons,
labeled 1, 2, and 3. Click the 2 button to see one line per customer.
Choose one cell in the Sales column. Click the ZA button to sort the largest
customers to the top of the list.
Select cell A1 through the fi fth customer total. In Excel 2003, press F11 to
create a chart. In Excel 2007, press Alt+F1 to create a chart on the current
page.

As shown in Figure 69, Excel creates a chart of the fi ve largest customers.

1.

2.

3.

4.

5.

Figure 69. You can quickly create a
chart of your fi ve largest customers.

72 of 236 PART 2: TECHNIQUES

Breaking It Down: There are two amazing features here. First, you can
successfully sort a subtotaled data set when it is in the collapsed state. Excel
actually rearranges groups of rows while doing the sort. (Each group contains
the hidden detail rows for one customer and the visible subtotal row.)
Second, in step 5, you take advantage of the fact that charts by default hide
data that is hidden in the worksheet. Although your selection might include
rows 1 through 21, the chart shows only the visible subtotals in rows 5, 9, 13,
17, and 21.
Summary: Excel properly sorts data when you’ve collapsed the view to show
only the subtotals. After you sort the data to fi nd the fi ve largest customers, you
can use Excel to create a chart based on the data.

COPY AN EXACT FORMULA
BY USING DITTO MARKS

Challenge: You’ve entered total formulas in row 23 of Figure 70. Immediately
below those formulas, you want to enter average formulas. However, if you
copied cell B23 to B24, the range referenced in the formula would automatically
change.

Figure 70. You want to replicate the total formulas in row 23 as averages in row 24.

Solution: Do you remember back in school, when you used to use ditto marks
to mean “repeat the same value as above”?

Title Author
Learn Excel 2007 from MrExcel Jelen, Bill

“ “ “ “ “ “

Part
2

73 of 236EXCEL GURUS GONE WILD

Well, the quotation mark key on your keyboard operates sort of like a ditto
mark shortcut!

Follow these steps:

Select cells B24:E24.

Hold down the Ctrl key while pressing the apostrophe/quotation mark key.
Excel copies the exact formula from cell B23 in cell B24. Excel leaves the
formula in Enter mode, with the insertion point at the end of the formula.

Press F2 to change the mode from Enter to Edit.

Press Home to move to the beginning of the formula. Press the right arrow
key. Type Average. Press the Delete key three times.

Press Ctrl+Enter to enter similar formulas in B24:E24.

Alternate Strategy: Another solution to this problem is to copy the result of the
formula as a value. If you go to cell B24 and press Ctrl+Shift+”, Excel copies
the result from B23 as a value in cell B24. Unfortunately, you cannot use this
method to fi ll an entire range, such as B24:E24. In that case, you could follow
these steps:

Select cells B23:E23

Right-click the border of the selection. While holding down the right mouse
button, drag down to row 24.

Release the mouse button and choose Copy Here as Values Only.

Summary: Use the Ctrl+quotation mark to make an exact copy of a formula.

1.

2.

3.

4.

5.

1.

2.

3.

RIGHT-DRAG BORDER
TO ACCESS MORE COPYING OPTIONS

Challenge: You once stumbled upon a handy menu for accessing extra copying
options. But how did you open it, and what can it do for you?

Solution: Excel has an incredibly useful but obscure shortcut menu, as shown
in Figure 71. To open it, you select a cell or a range of cells. Then you right-
click and drag the border of the range to a new location. When you release the
right mouse button, Excel opens this menu, which has the following options,
among others:

74 of 236 PART 2: TECHNIQUES

Figure 71. Th is menu off ers faster ways
for Paste Values, Format Painter, and
more. How do you fi nd the menu?

Copy Here as Values Only: Using Copy Here as Values Only is an
incredibly fast way to convert a range of formulas to values. A good method
is to select a range of formulas, right-click, drag right, drag back to the
original location, let go of the right mouse button, and choose Copy Here
as Values Only.
Copy Here As Formats Only: You can copy numeric formatting, borders,
and more by using Copy Here As Formats Only. For example, you can
copy column widths by selecting a range of entire columns, such as A:C.
Then you right-click and drag the border to E:G. When you let go of the
mouse button, if you choose Copy Here As Formats Only, Excel changes
the column widths of E:G to match those of A:C.
Link Here: For a faster way to set up formulas to point to a range, you can
select A1:A10, right-click and drag the border to C5, and select Link Here.
Cell C5 now contains the formula =A1, and cell C14 contains the formula
=A10.
Create Hyperlink Here: This is a cool option but is rather diffi cult to use,
and it does not work in an unsaved fi le. For details on how to use it, see
“Quickly Create a Hyperlink Menu.”

Gotcha: When you click on the border of a selection, do not click on the square
dot in the lower-right corner of the cell. This dot is the fi ll handle, and clicking it
invokes the AutoFill options instead of this menu.
Summary: By right-clicking and dragging the border of a selection, you can
get quick access to several options.

●

●

●

●

Part
2

75 of 236EXCEL GURUS GONE WILD

QUICKLY CREATE A HYPERLINK MENU
Challenge: You are building a reporting package for people who are not familiar
with Excel, and you want to add a menu worksheet to help them navigate through
the workbook (see Figure 72). Usually, creating hyperlinks to another place in a
document is kind of a pain, and you’d like to create a menu more quickly.

Figure 72. You want to repeat the titles and headings at the top of each printed page.
Solution: Make sure your workbook is saved and is the only workbook open
in Excel.
In Excel 2007, select View, New Window. In Excel 2003 and earlier, select
Window, New Window. This will open two views of the same workbook.
In Excel 2007, select View, Arrange All. Then choose Vertical and click OK. In
Excel 2003, select Window, New Window, Vertical, OK. This allows you to see
one worksheet in the left window and another sheet of the same workbook in
the right window.
In the left window, navigate so you can see the menu worksheet. In the right
window, press Ctrl+Page Down to move to the fi rst page of the report.
The goal is to take an identifying title from each worksheet of the workbook and
build a hyperlink to that worksheet on the menu sheet. In Figure 73, select the
A1 title from the right window. Right-click the border of A1, drag to cell B4 in the
menu worksheet, and select Create Hyperlink Here.

Figure 73. Th is context menu
provides a quick way to create a
hyperlink.

76 of 236 PART 2: TECHNIQUES

To repeat this with the next sheet, use Ctrl+Tab to switch to the right window
and press Ctrl+Page Down to go to the next sheet. Right-click the border of
A1, drag to B5 in the left window, and select Create Hyperlink Here. Repeat for
each additional sheet.
Additional Details: If you want to also provide a “Return to Menu” hyperlink at
the top of each worksheet in the reporting workbook, follow these steps:

In the right window, move to the fi rst report worksheet.
In the left window, type Return to Menu in cell A3 of the menu.
Select cell A3. Right-click the border and drag to cell H1 of the right window.
Choose Create Hyperlink Here.
In the right window, put the worksheets in Group mode. With the fi rst
worksheet selected, Shift+click the last worksheet.
In Group mode, go to cell H1. Press F2 and then press Enter to copy the
words Return to Menu in cell H1 of all the worksheets. (Unfortunately,
this by itself does not establish the hyperlink in each worksheet.)
Press Ctrl+C to copy the hyperlink from the fi rst worksheet.
Press Ctrl+Page Down and Ctrl+V to paste the hyperlink on the next
worksheet. Repeat this step for each additional worksheet.
Close the second window by clicking the X at the top of the right window.

Summary: Dragging titles as hyperlinks is a fast way to create a hyperlink
menu.

1.
2.
3.

4.

5.

6.
7.

8.

QUICKLY CREATE MANY RANGE NAMES
Challenge: Quickly create many range names in a worksheet. If you decide
that complicated formulas would benefi t from referring to named ranges instead
of cell addresses, you might have a daunting task of individually naming many
ranges.

Setup: If your headings are suitable range names, you can use them to quickly
create the range names. The commands are slightly different in Excel 2003
and earlier and in Excel 2007.

Solution: In any Excel version, select the data set, including the headings that
will be used a range names.

In Excel 2003 and earlier, choose Insert, Name, Create. In the Create Names
dialog, choose Top Row and click OK (Figure 74).

Part
2

77 of 236EXCEL GURUS GONE WILD

Figure 74. Excel 2003 creates fi ve named ranges in this selection.
In Excel 2007, with the data set selected, from the Formulas tab, choose Create
from Selection. In the Create Names from Selection dialog, choose Top Row
and click OK (Figure 75).

Figure 75. Excel 2007 creates fi ve
named ranges in this selection.

78 of 236 PART 2: TECHNIQUES

In this example, Excel creates fi ve named ranges. The Sales range includes
B3:B14. You can now use =SUM(Sales) as a valid formula (Figure 76).

Figure 76. You can create fi ve named ranges using a single command.

Gotcha: If your headings contain a space or other punctuation that is not valid
in a named range, Excel substitutes an underscore for each invalid character.
If your heading happens to contain a name that is also a valid cell address,
Excel appends an underscore to the end of the name. Figure 77 shows several
examples in which dashes, spaces, at symbols, and colons are all replaced
with underscores when the names are created. Note that the heading I42 in
cell G1 generates the range name I42_ to differentiate it from the cell address
I42.

Figure 77. Created range names diff er from the headings if the headings
contained invalid characters.

Additional Details: The following characters are valid in a range name:
Letters A through Z and a through z
Digits 0 through 9
Period, question mark, backslash, underscore
Euro symbol (character 128)

●
●
●
●

Part
2

79 of 236EXCEL GURUS GONE WILD

Script f (character 131)
Letters in other alphabets (such as characters 192–214, 216–246, and
248–255)

Additional Details: Formulas that existed before the named ranges were
created do not automatically update to use the new named ranges. To
retroactively apply a name to formulas, you can use Insert, Name Apply in
Excel 2003. In Excel 2007, the Apply command is hidden behind a dropdown
at the end of the Defi ne Name command.
Summary: Rather than defi ne range names individually, you can use existing
headings to create many names at once.

●
●

ADD FORMULAS TO SMARTART
Challenge: For Excel fans, the biggest disappointment with Excel 2007 SmartArt
diagrams is that their text is static. You cannot have the text for a SmartArt
diagram dynamically calculated by Excel.

Solution: As a workaround, you can use the SmartArt tools to build a diagram
and then convert the diagram to shapes. You can then apply formulas to the
shapes.

In Figure 78, a database query feeds individual sales fi gures in columns A:
C. SUMIF formulas in G4:G6 show the current sales for each rep. RANK
formulas in E4:E6 fi gure out which rep is in the lead. VLOOKUP formulas in F8:
H10 combine an associate’s name and sales total. This report is functional, but
it lacks visual interest.

Figure 78. Formulas create a functional but uninteresting report.

Follow these steps:
Build a SmartArt diagram that has three shapes. Use dummy text of about
the right length. Use the SmartArt tools to format the diagram. In Figure 79,
the Format ribbon was used to resize the individual shapes.

1.

80 of 236 PART 2: TECHNIQUES

Click inside the SmartArt but not on any shape. Press Ctrl+A to select all
the shapes in the SmartArt diagram (Figure 80).

2.

Figure 79. Th e text is still static text as this point. It is there to help with sizing the boxes.

Press Ctrl+C to copy the shapes.
Click outside the SmartArt and press Ctrl+V to paste the shapes onto the
worksheet.
Delete the original SmartArt diagram.
Click the fi rst shape in the worksheet. Drag to select the text in the shape.
Click in the formula bar, type =H8, and press Enter. The text in the selected
shape changes to refl ect the result of the formula in H8.

3.
4.

5.
6.

Figure 80. All the shapes are selected.

Part
2

81 of 236EXCEL GURUS GONE WILD

Repeat step 6 to assign =H9 to the second shape and =H10 to the third
shape.

You now have something that looks like a SmartArt diagram, but the text for the
shapes comes dynamically from the worksheet (Figure 81).

7.

As the query in A:C updates with new sales, the formulas in E:H and thus the
text in the diagram automatically update. While Mary was on a break, Ted
made a $395 sale. The worksheet updates as shown in Figure 82.

Figure 81. Now the text in the diagram is a live result from the data.

Summary: Although SmartArt in Excel 2007 cannot dynamically update,
you can use SmartArt to create a diagram and then convert it to shapes and
dynamic formulas.

Figure 82. Excel dynamically calculates the text in this SmartArt.

82 of 236 PART 2: TECHNIQUES

CREATE A PIVOT TABLE FROM DATA IN
MULTIPLE WORKSHEETS

Challenge: You have more data than will fi t on a single worksheet. You would
like to create a pivot table from the data spread across multiple worksheets. The
Multiple Consolidation feature only works when your data has a single column
of text labels on the left with additional numeric columns to the right. You’d like
to be able to grab similar data from multiple worksheets and summarize it in a
pivot table.
Background: Fazza from Perth, Australia, posted a remarkable bit of code in
2008 that allows you to build a pivot cache from multiple worksheets or even
multiple workbooks. Amazingly, the pivot cache is stored with the workbook, so
you can effectively build a report from more than 65,536 rows in Excel 2003.
Solution: The solution here involves building a SQL statement to grab data
from each worksheet into an array. You then merge the worksheets into a
single recordset. You open a new workbook and create a pivot table to an
external dataset—in this case, the recordset you just created. The result is
a blank workbook with a blank pivot table and the cache stored in memory
behind the scenes.
Breaking it Down: You create code that sets up an array of SQL statements.
The complete code is as follows:
Sub BuildPivotCache()

 Dim i As Long
 Dim arSQL() As String
 Dim objPivotCache As PivotCache
 Dim objRS As Object
 Dim wbkNew As Workbook
 Dim wks As Worksheet

 With ActiveWorkbook
 ReDim arSQL(1 To .Worksheets.Count)
 For Each wks In .Worksheets
 i = i + 1
 arSQL(i) = "SELECT * FROM [" & wks.Name & "$]"
 Next wks
 Set wks = Nothing
 Set objRS = CreateObject("ADODB.Recordset")

 objRS.Open Join$(arSQL, " UNION ALL "), _
 Join$(Array("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=", _
 .FullName, ";Extended Properties=""Excel 8.0;"""), vbNullString)

Part
2

83 of 236EXCEL GURUS GONE WILD

 End With

 Set wbkNew = Workbooks.Add(Template:=xlWBATWorksheet)

 With wbkNew
 Set objPivotCache = .PivotCaches.Add(xlExternal)
 Set objPivotCache.Recordset = objRS
 Set objRS = Nothing

 With .Worksheets(1)
 objPivotCache.CreatePivotTable TableDestination:=.
Range("A3")
 Set objPivotCache = Nothing
 Range("A3").Select
 End With
 End With
 Set wbkNew = Nothing
End Sub

If the active workbook contains fi ve worksheets, the array might look as shown
in Figure 83.

Figure 83. You build multiple SQL statements to grab all the data from each worksheet.

84 of 236 PART 2: TECHNIQUES

The code then builds a new recordset that unions all the queries from Figure
83. This recordset will contain all records from all worksheets.
Where is the recordset saved? It is simply resident in memory as the object
variable objRS.
Later, the code adds a new workbook and uses the recordset as the source for
an external pivot cache:
Set objPivotCache = .PivotCaches.Add(xlExternal)

Set objPivotCache.Recordset = objRS

You end up with a new workbook that appears to be blank. An empty pivot
table is in cell A3. As shown in Figure 84, the pivot table fi eld list contains a list
of all fi elds from your worksheets.

Figure 84. Although the workbook contains no visible data, the
fi elds are in the pivot cache.

From this point, you can drag fi elds into the pivot table.
If the pivot cache contains fewer records than there are rows in your worksheet,
you can try double-clicking the Grand Total cell. You then see the data that is
stored in the pivot cache.

Note: It is interesting that the workbook containing the data stored in the pivot
table cache is much smaller than the original workbook. Excel doesn’t have
to store fonts, styles, formulas, etc.

Part
2

85 of 236EXCEL GURUS GONE WILD

Gotcha: Unlike pivot tables built from data in a worksheet, this pivot table does
not calculate until you drag one fi eld to the data area. Don’t worry if you drag a
region to the row area and nothing happens. As soon as you add Revenue to
the data area, the pivot table calculates, and the regions fi ll in.
Summary: You can create code that grabs similar data from multiple worksheets
and summarizes it in a pivot table.
Source: http://www.mrexcel.com/forum/showthread.php?t=315768

This topic was nominated by Denis Wright (aka SydneyGeek), who builds
custom Excel and Access solutions in Sydney, Australia, and loves to solve
problems. Among other things, he maintains a website with Excel and Access
tutorials; see http://www.datawright.com.au.

DETERMINE THE HEIGHT AND WIDTH
OF THE DATALABEL OBJECT

Challenge: The DataLabel object does not have either a height or width
property, and Excel does not permit the user to resize a data label. In some
situations, you may need to determine these properties. A case in point is a
series with long, wrapping label text or labels of points that are very close to
each other, where it is intended to programmatically adjust label position to get
rid of any overlaps (Figure 85).

Figure 85. You want to fi nd the height and width of the DataLabel
object for point 210, 414.

86 of 236 PART 2: TECHNIQUES

Background: The solution to this problem makes use of the fact that it is not
possible to move a data label (or, for that matter, any movable chart element,
such as a legend, a chart title, an axis title etc.) even partially off the chart
area. To verify this, select a single data label with two single clicks and try
dragging it off the chart through the bottom-right corner. You cannot drag it
beyond the point where the bottom-right corners of the data label and the
chart coincide.
Figure 86 illustrates the situation that prevails when the label is moved to the
bottom-right corner of the chart area. The origin (0,0) for the chart coordinates
is the top-left corner of the chart area.

Using VBA, Wd =ChartArea.Width, Ht = ChartArea.Height
The values of x and y are obtained from the Top and Left properties of the
DataLabel object.
.
The height and width of the label can be calculated as:
h = Ht – y
w = Wd – x
 Solution: Ensure that the chart in question is the active chart and use the
following code:

Figure 86. Th e label has been moved to the bott om-right corner.

Part
2

87 of 236EXCEL GURUS GONE WILD

Sub FindLblSize()

 Dim Lbl As DataLabel

 Set Cht = ActiveChart

 Set Lbl = Cht.SeriesCollection(1).Points(3).DataLabel

 ‘Get height and width of the chart area

 ChartWd = Cht.ChartArea.Width

 ChartHt = Cht.ChartArea.Height

 ‘Store old position of data label

 OldTop = Lbl.Top

 OldLeft = Lbl.Left

 ‘Attempt to move data label so that top left corner

 ‘coincides with bottom right corner of chart area

 Lbl.Top = ChartHt

 Lbl.Left = ChartWd

 ‘Above move makes bottom right corner of data label

 ‘to coincide with bottom right corner of chart area

 ‘as it cannot be moved any further

 ‘Calculate and display the label dimensions

 LblWd = ChartWd - Lbl.Left

 LblHt = ChartHt - Lbl.Top

 MsgBox "Label dimensions: Width = " & LblWd & " Height
= " & LblHt

 ‘Restore label to a slightly staggered position to remove
overlap

 Lbl.Left = OldLeft

 Lbl.Top = Cht.SeriesCollection(1).Points(2).DataLabel.Top -
LblHt

End Sub

With the background discussed earlier, the comments in the code are self-
explanatory. Figure 87 shows the chart after the label’s position has been
adjusted

88 of 236 PART 2: TECHNIQUES

Figure 87. Th e label position has been adjusted.

Summary: Excel restricts movement of objects on a chart to within the chart
boundaries in order to programmatically determine the height and width of a
data label. By itself, the code in this solution is not of much use, but the technique
illustrated could form the basis of a larger routine for programmatically examining
a series for overlapping data labels and staggering them, if required.

ADJUST XY CHART SCALING
FOR CORRECT ASPECT RATIO

Challenge: You want to adjust an XY (scatter) chart so that both axes have the
same scale per unit axis value. That is, you need to adjust the chart in Figure
88 so the square and a circle appear as shown in Figure 89.You want to adjust
an XY (scatter) chart so that both axes have the same scale per unit axis value.
That is, you need to adjust the chart in Figure 88 so the square and a circle
appear as shown in Figure 89.

Part
2

89 of 236EXCEL GURUS GONE WILD

Figure 88. You start with an oval and a rectangle.

Figure 89. You want a circle and a square, as shown here.

Solution: The following code works on both embedded charts and chart sheets.
Ensure that the chart is selected or that the chart sheet is activated and then
run the following code:
Sub ScalePlot()
 Dim Cht As Chart, Ser As Series, AxX As Axis, AxY As Axis
 Set Cht = ActiveChart

 With Cht
 ‘Determine MinX, MinY, MaxX, MaxY across all series
 For i = 1 To Cht.SeriesCollection.Count

90 of 236 PART 2: TECHNIQUES

 Set Ser = Cht.SeriesCollection(i)
 XVals = Ser.XValues
 YVals = Ser.Values
 If i = 1 Then
 MinX = WorksheetFunction.Min(XVals)
 MaxX = WorksheetFunction.Max(XVals)
 MinY = WorksheetFunction.Min(YVals)
 MaxY = WorksheetFunction.Max(YVals)
 Else
 MinX = WorksheetFunction.Min(MinX, XVals)
 MaxX = WorksheetFunction.Max(MaxX, XVals)
 MinY = WorksheetFunction.Min(MinY, YVals)
 MaxY = WorksheetFunction.Max(MaxY, YVals)
 End If
 Next

 ‘Maximize the plot area and get its dimensions
 With .PlotArea
 .Top = 0
 .Left = 0
 .Width = Cht.ChartArea.Width
 .Height = Cht.ChartArea.Height
 PWd = .Width
 PHt = .Height
 PWd1 = .InsideWidth
 PHt1 = .InsideHeight
 End With

 Set AxX = .Axes(xlCategory)
 Set AxY = .Axes(xlValue)

 ‘Range of X and Y Values from series data
 XDiff = MaxX - MinX
 YDiff = MaxY - MinY

‘Set a buffer space of 10% of XDiff and YDiff so there is
‘a margin between series boundary and plot area

 Buffer = 0.1

 ‘Adjust values of Max/Min X/Y for buffer

Part
2

91 of 236EXCEL GURUS GONE WILD

 MaxX = MaxX + Buffer * XDiff
 MinX = MinX - Buffer * XDiff
 MaxY = MaxY + Buffer * YDiff
 MinY = MinY - Buffer * YDiff

 ‘Revised range of X and Y Values with buffer
 XDiff = MaxX - MinX
 YDiff = MaxY - MinY

 ‘Rescale Axes for max possible magnifi cation
 With AxX
 .MaximumScale = MaxX
 .MinimumScale = MinX
 End With
 With AxY
 .MaximumScale = MaxY
 .MinimumScale = MinY
 End With

 ‘Calculate scaling of plot area per unit X and Y
 WdScale = PWd1 / XDiff
 HtScale = PHt1 / YDiff

 If WdScale > HtScale Then
 ‘X axis needs to be adjusted
 ‘keeping Y axis scale unchanged
 XDiff1 = (XDiff * WdScale / HtScale - XDiff) / 2
 AxX.MinimumScale = MinX - XDiff1
 AxX.MaximumScale = MaxX + XDiff1
 Else
 ‘Y axis needs to be adjusted
 ‘keeping X axis scale unchanged
 YDiff1 = (YDiff * HtScale / WdScale - YDiff) / 2
 AxY.MinimumScale = MinY - YDiff1
 AxY.MaximumScale = MaxY + YDiff1
 End If
 End With
End Sub

92 of 236 PART 2: TECHNIQUES

The sample chart in Figure 89 is a plot of a circle of radius 4 units, with a center
at (5,5), and a square of side 8 units, with the top-left corner at (4.5,12).

Breaking It Down: This problem crops up in situations where the x and y
data are of similar orders of magnitude—for example, when you are plotting
a shape rather than an algebraic function. In the general case, when such a
chart is created, the scaling of the x and y axes are not the same. The height
and width of the plot area also contribute to the degree of distortion of the
plotted series. The idea is to determine which of the two axes needs to be
set to a larger range of Min/Max scale values so the series appears with the
correct aspect ratio, so the required Min/Max scale values are calculated, and
so the axis scale is set accordingly.

The following section of code calculates the Min/Max x and y across all series
in the chart:

For i = 1 To Cht.SeriesCollection.Count
 Set Ser = Cht.SeriesCollection(i)
 XVals = Ser.XValues
 YVals = Ser.Values
 If i = 1 Then
 MinX = WorksheetFunction.Min(XVals)
 MaxX = WorksheetFunction.Max(XVals)
 MinY = WorksheetFunction.Min(YVals)
 MaxY = WorksheetFunction.Max(YVals)
 Else
 MinX = WorksheetFunction.Min(MinX, XVals)
 MaxX = WorksheetFunction.Max(MaxX, XVals)
 MinY = WorksheetFunction.Min(MinY, YVals)
 MaxY = WorksheetFunction.Max(MaxY, YVals)
 End If
Next

The following section maximizes the plot area to the chart boundaries and gets
the inside dimensions of the plot area (these dimensions are required for the
scaling exercise):
With .PlotArea
 .Top = 0
 .Left = 0
 .Width = Cht.ChartArea.Width
 .Height = Cht.ChartArea.Height
 PWd = .Width

Part
2

93 of 236EXCEL GURUS GONE WILD

 PHt = .Height
 PWd1 = .InsideWidth
 PHt1 = .InsideHeight
End With

The next section calculates the range of extreme x and y values,:
XDiff = MaxX - MinX

YDiff = MaxY - MinY

‘Set a buffer space of 10% of XDiff and YDiff so there is

‘a margin between series boundary and plot area

Buffer = 0.1

‘Adjust values of Max/Min X/Y for buffer

MaxX = MaxX + Buffer * XDiff

MinX = MinX - Buffer * XDiff

MaxY = MaxY + Buffer * YDiff

MinY = MinY - Buffer * YDiff

‘Revised range of X and Y Values with buffer

XDiff = MaxX - MinX

YDiff = MaxY - MinY

‘Rescale Axes for max possible magnifi cation

With AxX

 .MaximumScale = MaxX

 .MinimumScale = MinX

End With

With AxY

 .MaximumScale = MaxY

 .MinimumScale = MinY

End With

A buffer of 10% of x and y ranges is set to accommodate the series comfortably
within the plot area, the ranges are recalculated (including the buffer zone),
and the Min/Max scales of the axes are set to the newly calculated Min/Max
values.

The fi nal section of code calculates the new scaling of the internal dimensions
of the plot area for the modifi ed x and y ranges:

94 of 236 PART 2: TECHNIQUES

WdScale = PWd1 / XDiff
HtScale = PHt1 / YDiff

If WdScale > HtScale Then
 ‘X axis needs to be adjusted keeping Y axis scale unchanged
 XDiff1 = (XDiff * WdScale / HtScale - XDiff) / 2
 AxX.MinimumScale = MinX - XDiff1
 AxX.MaximumScale = MaxX + XDiff1
Else
 ‘Y axis needs to be adjusted keeping X axis scale unchanged
 YDiff1 = (YDiff * HtScale / WdScale - YDiff) / 2
 AxY.MinimumScale = MinY - YDiff1
 AxY.MaximumScale = MaxY + YDiff1
End If

If the horizontal scaling is greater than the vertical scaling, the x axis needs
to be set to a larger scale range (XDiff1), which is calculated from the
horizontal scaling of the inside width of the plot area. XDiff1 is applied
symmetrically to the x axis scaling (i.e., the minimum scale for the x axis is
reduced by XDiff1/2), and the maximum scale is incremented by the same
amount. The same is done with the y axis if the vertical scaling is greater than
the horizontal scaling.

Summary: The code in this solution programmatically adjusts a scatter chart
containing series of similar orders of magnitude to display correctly proportioned
series.

95

P A R T 3

MACROS

96 of 236 PART 3: MACROS

Challenge: Macros stored in the Personal Macro Workbook are always at
your disposal. You can run the macros on any workbook that you open on the
computer. Also, you do not have to jump through security hoops to run macros
stored in the Personal Macro Workbook.

If you have never used the Personal Macro Workbook, it does not exist on your
computer. You need to create one.

Solution:

For Excel 2003 and Earlier

In Excel 2003 or an earlier version of Excel, open any workbook. Choose Tools,
Macro, Record New Macro.

In the Macro Name fi eld, type HelloWorld (without a space). Open the Store
Macro In dropdown and choose Personal Macro Workbook. Leave the Shortcut
Key fi eld blank. There is no need to change the Description fi eld for this tiny
macro. The dialog should appear as in Figure 97. Click OK.

Figure 97. To force Excel to create a Personal Macro Workbook, record
a tiny macro to go there.

MAKE A PERSONAL
MACRO WORKBOOK

Part
3

97 of 236EXCEL GURUS GONE WILD

When you click OK, the macro recorder runs. You have to do at least one
action in Excel that is recordable. Perhaps you can press Ctrl+B to bold the
current cell or type Hello in the current cell. After you have performed this
action, you can stop recording. The reliable way to stop recording is to choose
Tools, Macro, Stop Recording. You might also see the Stop Recording button
on the tiny Stop Recording toolbar (Figure 98).

When you’ve recorded a macro, Excel creates the Personal Macro Workbook.
On my Windows XP computer, the fi le is stored in C:\Documents and Settings\
Bill \Application Data\Microsoft\Excel\XLSTART\Personal.xls.

The Personal Macro Workbook is a hidden workbook. There is nothing special
about the workbook. If you are curious, you can unhide it by selecting Window,
Unhide and then selecting PERSONAL.XLS and clicking OK. It should contain
one worksheet and will be completely blank. All the good stuff in the Personal
Macro Workbook is visible from the VBA editor.

To see the code pane in the Personal Macro Workbook, follow these steps:

Press Alt+F11 or select Tools, Macro, Visual Basic Editor. If you have never
used macros before, you see a menu bar, a toolbar, and a lot of gray.

Press Ctrl+R or select View, Project Explorer to show the Project Explorer
pane. As shown in Figure 99, the Project Explorer lists each open workbook,
plus one workbook for each standard add-in installed on your computer.
Figure 99 shows the workbooks in collapsed mode. You might fi nd that
some of your workbooks have been expanded to show worksheets and
modules.

1.

2.

Figure 98. You can click this butt on
to stop recording.

Figure 99. You want to locate PER-
SONAL.XLS in the Project Explorer.

98 of 236 PART 3: MACROS

Use the + sign next to PERSONAL.XLS to expand the tree view. Click the +
sign next to Modules to see a list of modules. If you just recorded your fi rst
macro, you see only Module1. If you record more macros, Excel adds new
modules such as Module2, Module3, and so on (Figure 100).

3.

Figure 100. You double-click a module name to see the code
in that module.

To see the code in any module, double-click the module in Project Explorer.
Alternatively, right-click the module and choose View Code.

4.

If you want to run a macro from this book, you can type or paste it in any existing
module in PERSONAL.XLS. Note that after you change code in PERSONAL.
XLS and then you close Excel, you are prompted about whether you want to
save your changes to PERSONAL.XLS. Don’t forget to save at this point!
For Excel 2007
In Excel 2007, follow these steps:

Open any workbook in Excel 2007.
Look near the lower-left corner of the Excel window. To the right of the word
Ready in the status bar is the Record Macro icon. Click it (Figure 101).
Excel displays the Record Macro dialog.

1.
2.

Figure 101. Th e Record Macro icon is one
of the few icons outside the ribbon.

Part
3

99 of 236EXCEL GURUS GONE WILD

In the Record Macro dialog, enter a macro name, such as HelloWorld
(no spaces). Leave the Shortcut Key fi eld blank. Change the Store Macro In
dropdown to Personal Macro Workbook. Leave the Description fi eld blank.
Click OK (Figure 102).

3.

Figure 102. Choose to create this macro in the
Personal Macro Workbook.

Perform one action that the macro recorder can record. Perhaps you can
press Ctrl+B to bold the current cell or type Hello in the current cell.

Stop the macro recorder by pressing the square icon in the lower-left corner
of the window, near the word Ready in the status bar (Figure 103). This icon
and the Record Macro icon share the same location; the Stop Recording
icon replaces the Record Macro icon while you are recording.

4.

5.

Figure 103. Look for the Stop Recording butt on in the
same place you found the Record Macro icon.

Note: You can also record a macro by selecting View, Macros, Record Macro
or Developer, Record New Macro. The Stop Recording button is found in
these same locations while you are recording a macro.

100 of 236 PART 3: MACROS

The Personal Macro Workbook is a hidden workbook. There is nothing special
about the workbook. If you are curious, you can unhide it with the Unhide
command on the View tab. It should contain one worksheet and will be
completely blank. All the good stuff in the Personal Macro Workbook is visible
from the VBA editor.

To see the code pane in the Personal Macro Workbook, follow these steps:

Press Alt+F11 or select Developer, Visual Basic. If you have never used
macros before, you see a menu bar, a toolbar, and a lot of gray.

Press Ctrl+R or select View, Project Explorer to show the Project Explorer
pane. As shown in Figure 99, the Project Explorer lists each open workbook,
plus one workbook for each standard add-in installed on your computer.
Figure 99 shows the workbooks in collapsed mode. You might fi nd that
some of your workbooks have been expanded to show worksheets and
modules.

Use the + sign next to PERSONAL.XLS to expand the tree view. Click the +
sign next to Modules to see a list of modules. If you just recorded your fi rst
macro, you only see Module1. If you record more macros, Excel adds new
modules, such as Module2, Module3, and so on (Figure 100).

To see the code in any module, double-click the module in the Project
Explorer. Alternatively, right-click the module and choose View Code.

If you want to run a macro from this book, you can type or paste it in any existing
module in PERSONAL.XLS. Note that after you change code in PERSONAL.
XLS and then you close Excel, you are prompted about whether you want to
save your changes to PERSONAL.XLS. Don’t forget to save at this point!

Summary: Several code samples in this book are appropriate for the Personal
Macro Workbook. By following the steps in this selection, you can create the
Personal Macro Workbook.

1.

2.

3.

4.

RUN A MACRO FROM
A SHORTCUT KEY

Challenge: You recorded a macro but forgot to assign it to a shortcut key. Now
you need to change the shortcut key used for the macro. Excel documents the
shortcut key used when recording a macro in the comments at the top of the
macro. However, changing the comment in the macro does not have any effect
on the actual shortcut key used.
Solution: To change the shortcut key, press the F8 key to see a list of macros.
Click the macro in question and click the Options button in the Macro Options
dialog. You can edit the shortcut key here (Figure 104).

Part
3

101 of 236EXCEL GURUS GONE WILD

Additional Details: You can temporarily assign a macro to a shortcut key by
using a macro. Perhaps you want to turn on a shortcut key during one section
of a process and turn it off later in the process. The following line of code
temporarily assigns the MoveDown procedure to Ctrl+m:

Application.OnKey Key:="^m", Procedure:="MoveDown"

To cancel this assignment and return Ctrl+m to its normal function, use:

Application.OnKey Key:="^m"

To permanently change the shortcut key via code, use:

Application.MacroOptions Macro:="MoveDown", ShortcutKey:="m"

Additional Details: Excel stores the shortcut key in the code module, but it is
not visible in the Visual Basic editor. You have to export the module from VBA.
Follow these steps:

Right-click the module in the Project Explorer and choose Export File.

Save the fi le in a place where you can fi nd it later. Excel proposes a name
such as Module1.bas. You can use this name.

Open the .bas fi le in Notepad.

You see an attribute near each module. The shortcut key is listed, followed by
/n14. So, in Figure 105, the g\n14 attribute means the macro is assigned to
Ctrl+g. The G\n14 attribute means the macro is assigned to Ctrl+Shift+G.

1.

2.

3.

4.

Figure 104.Y ou can change the shortcut key using this dialog.

102 of 236 PART 3: MACROS

Figure 105. You can export the module to see all the shortcut keys used.
Summary: There are several ways to assign the shortcut key associated with
a macro.
Source: http://www.mrexcel.com/archive2/39200/45444.htm

Challenge: You want an easy way to run a macro. Can you run it from a button
on the worksheet?
Solution: There are many ways to run a macro. Figure 106 shows seven
different methods in Excel 2003. All of them except the custom toolbar translate
to Excel 2007.

RUN A MACRO FROM A BUTTON

Figure 106. You can run a macro from
any of these elements.

Part
3

103 of 236EXCEL GURUS GONE WILD

The Assign Macro dialog appears. Click your macro and then click OK.
The button initially appears with the generic name Button 1. To change the
name: Ctrl+click the button to select the button without running the macro. The
button is surrounded by dots. Drag across the words on the button to select
them for editing. The button is now surrounded by diagonal lines. Type new
words.

Method 1: Forms Button
To run a macro from a forms button, in Excel 2003, select View, Toolbars,
Forms. Click the Button icon (Figure 107) and then drag in the worksheet to
draw a button.

Figure 107. Th is is how you create the forms butt on
in Excel 2003 and earlier.

In Excel 2007, go to the Developer tab. Open the Insert dropdown and choose
the icon shown in Figure 108. Drag a rectangle on the worksheet to draw your
button.

Figure 108. If you can’t fi nd the Developer tab in
Excel 2007, use Offi ce Icon, Excel Options, Popular,
Show Developer Tab in the Ribbon. Th e Insert
dropdown then off ers the forms butt on.

104 of 236 PART 3: MACROS

You can change the font, font size, alignment, and color of the button. If you
are in Text Edit mode, click the diagonal lines surrounding the button to return
to the dots border. Otherwise, Ctrl+click the button to select the button. Press
Ctrl+1 to edit the font, alignment, size, and more. Right-click the button and
choose Assign Macro to change the macro assigned to the button.

Method 2: ActiveX Button

An ActiveX button looks like a forms button, but it is more fl exible, as you will
soon learn. Follow these steps to build one in Excel 2003:

Select View, Toolbars, Control Toolbox.

Click the Button icon and drag in the worksheet. Notice in Figure 109 that
the Design Mode icon is turned on when you draw a new control. Design
Mode is the icon in the top left, with the ruler, triangle, and pencil. Design
mode has to be on when you are working with this control. When you exit
Design mode, the button you create acts as a button when you click on it.

1.

2.

Figure 109. Design mode must be on to work
with the butt on.

Click the second button, the Properties button, to display the properties
for the button. Find the line for Caption. Click in the second column of
the Properties dialog, next to the word Caption, and type the words
that should appear on the button (Figure 110). Note that you can change
the appearance of the button by using properties such as BackColor,
ForeColor, and Font. While the Caption property is a simple text box
where you can type a new caption, many choices lead to fl y-out menus or
even to new dialog boxes. You can add a picture to the button, change the
color, etc. These features make the ActiveX controls far more fl exible than
the forms controls. Note that you still have not assigned a macro to the
button.

3.

Part
3

105 of 236EXCEL GURUS GONE WILD

Figure 110. You can change properties in the
Properties dialog to change the appearance of the
butt on.

With the button still in Design mode, click the View Code icon. This is the
third icon in the Control Toolbox—a magnifying glass looking at a sheet.
When you click View Code, you are taken to a brand new macro in the VBA
editor. The new macro lives on the code sheet for the workbook.
You can write the macro steps in this new macro. Or, if you want to call an
existing macro, simply type the name of the macro as the only code in the
macro, as shown in Figure 111.

4.

5.

Figure 111. When you click View Code, you are taken to a
new macro on the code pane for the worksheet.

106 of 236 PART 3: MACROS

Back in the Excel worksheet, you need to close the Properties dialog by clicking
the red X in the upper-right corner. You also need to exit Design mode by
clicking the Design Mode icon in the Control Toolbox toolbar. If you are done
adding buttons, hide the Control Toolbox by clicking the red X in the upper-right
corner.
In Excel 2007, the process is similar. You use the Button icon at the bottom of
the Insert dropdown. The Design Mode, Properties, and View Code icons are
in the same group on the Developer tab. Microsoft nicely added words so you
can easily identify each icon.
Method 3: From Any Shape, Picture, SmartArt, or Clip Art
To set up a macro to run from any shape, picture, SmartArt, or clip art, add
an AutoShape or clip art to your worksheet. Right-click the object and choose
Assign Macro. You can assign a macro to the shape just as in Method 1 for the
forms button.
In Excel 2003, use Insert, Picture to access a number of objects. Choose
ClipArt, Picture, or AutoShape. If you are going to use AutoShapes, it is best to
display the Drawing toolbar. You can use the icons on the Drawing toolbar to
change the color, shadow, text, number of dimensions, and so on.
In Excel 2007, use the Insert tab of the ribbon. AutoShapes have been renamed
Shapes. You can also add SmartArt. Right-click the diagram when you are
done and choose Assign Macro.
Method 4: From a Hyperlink
Setting up a macro to run from a hyperlink is tricky but possible. To begin,
add some text to a cell—perhaps Run the Macro!. Then choose Insert,
Hyperlink and make the hyperlink jump to the cell that contains the text. This
basically prevents the hyperlink from going anywhere.
Next, switch to VBA. In the Project Explorer, look for the entry for the worksheet
where the hyperlinks are. Right-click that sheet name and choose View Code,
as shown in Figure 112.

Figure 112. Th e code to intercept the hyperlink has to be
on the code pane for the worksheet.

Part
3

107 of 236EXCEL GURUS GONE WILD

There are two dropdowns above the code pane. From the left dropdown,
choose Worksheet. From the right dropdown, choose FollowHyperlink.
You now have the makings of a Worksheet_FollowHyperlink macro.
Every time someone clicks a hyperlink on this worksheet, this bit of code will
run. The Target variable tells you about the hyperlink that was clicked.
If there is only one hyperlink on the worksheet, then you can simply run the
macro:
Private Sub Worksheet_FollowHyperlink(ByVal Target As
Hyperlink)

 TestMacro
End Sub

However, if you have multiple hyperlinks on the worksheet, you can use the
Target.TextToDisplay property to distinguish between hyperlinks:
Private Sub Worksheet_FollowHyperlink(ByVal Target As
Hyperlink)
 Select Case Target.TextToDisplay
 Case "Run Report 2"
 TestMacro
 Case "Run Report 2"
 TestMacro2
 Case "Run Report 3"
 TestMacro3
 End Select
End Sub

Using a hyperlink to run a macro is a favorite trick when you want to toggle
between different states. Perhaps you want to toggle between sorting ascending
and sorting descending in a column. This macro will perform an action and
change the text in the hyperlink so that a different action can be performed the
next time:
Private Sub Worksheet_FollowHyperlink(ByVal Target As
Hyperlink)
 Select Case Target.TextToDisplay
 Case "A-Z"
 SortMacroAscending
 Target.TextToDisplay = "Z-A"
 Case "Z-A"
 SortMacroDescending

108 of 236 PART 3: MACROS

 Target.TextToDisplay = "A-Z"
 End Select
End Sub

Method 5: Custom Toolbar (Excel 2003 Only)
In Excel 2003, you can create your own fl oating toolbar. Choose Tools,
Customize. In the Customize dialog, choose the Toolbars tab and then click
New. Type a name for the toolbar and click OK.
Keep the Customize dialog open. Go to the Commands tab. In the left dropdown,
choose Macros. In the right dropdown, drag either Custom Menu Item or the
Custom Button to the new toolbar. Keep the Customize dialog open. Right-
click the new icon in the toolbar. You can choose a new icon, choose a ToolTip,
and assign a macro to the button (Figure 113).

Figure 113. You can customize the
butt on on the new toolbar.

Summary: There are several ways to start a macro by using controls that
appear on a worksheet.

Part
3

109 of 236EXCEL GURUS GONE WILD

RUN A MACRO FROM AN ICON
Challenge: You want an easy way to run a macro, and you don’t especially like
the options presented in “Run a Macro from a Button.” Can you run a macro
from an icon on a toolbar?

Solution: The process of setting up a macro to run from a toolbar icon changed
dramatically between Excel 2003 and Excel 2007. You have far more options
in Excel 2003.

For Excel 2007

In Excel 2007, the only non-programmatic method for adding a macro button to
a toolbar is to add a button to the Quick Access toolbar. Follow these steps:

Right-click anywhere in the ribbon and choose Customize Quick Access
Toolbar. Excel opens the Customize section of the Excel Options dialog.

Open the Choose Commands From dropdown and select the fourth item,
Macros.

Choose a macro from the left list box.

Press the Add>> button in the center of the dialog.

Use the up or down arrow button on the right side of the dialog to rearrange
the icon within the ribbon, if desired (Figure 114).

1.

2.

3.

4.

5.

Figure 114. You can add an icon to the Quick Access toolbar and
adjust its location.

110 of 236 PART 3: MACROS

By default, every macro starts out with an identical fl owchart icon. To change
the icon, click the Modify button, which appears below the right list box.
There are 181 icons available (Figure 115). Choose one that will remind
you of the action in the macro. Change the display name to something
friendlier. This name will be displayed when you hover over the icon in the
Quick Access toolbar.

6.

Figure 115. You customize the icon from this
selection of icons.

Click OK to close the Excel Options dialog. The new icon appears in the
Quick Access toolbar, as shown in Figure 116.

7.

Figure 116. Th e new icon appears in the Quick Access toolbar.

Tip: There is one bit of new functionality in Excel 2007: You can add to the
Quick Access toolbar an icon that appears only when a particular workbook
is open. To add an icon for one workbook, use the top-right dropdown in the
Customize dialog. Change the setting from For All Documents (Default) to For
<workbook name>.

Part
3

111 of 236EXCEL GURUS GONE WILD

For Excel 2003
Excel 2003 and prior versions offer more options for adding icons to your
toolbars. The icon can be added to any toolbar or even to a new toolbar. (See
“Run a Macro from a Button” on page 102). You can use a selection of default
icons, draw your own icon, or even copy an icon from another application.
Here’s how:

Right-click any toolbar and choose Customize or select Tools, Customize.

Select the Commands tab in the Customize dialog.

Scroll down in the left list box to almost the end. Choose Macros, the third
item from the end of the left list box. The right list box offers two icons: a
smiley face and an icon with nothing. Even if you hate the smiley face, use
it for now.

Drag the smiley face icon from the right list box and drop it in the desired
location on any toolbar or menu. Figure 117 shows the new icon being
added to the Filter fl y-out on the Data menu.

1.

2.

3.

4.

Figure 117. You can drag the smiley face to any existing toolbar or
menu.

112 of 236 PART 3: MACROS

Keep the Customize dialog box open. Find your new icon on the menu or
toolbar. Right-click the icon or click it and choose Modify Selection in the
Customize dialog. From the menu that appears, adjust the settings in step
6 and optionally follow any of steps 7 through 11.

From the bottom of the menu, choose Assign Macro. Choose the appropriate
macro and click OK.

Choose Change Button Image and select one of the 48 default images
instead of the smiley face (Figure 118).

5.

6.

7.

Figure 118. You are not stuck with the smiley face.

Type a new name for the button. This name will appear in menus and will
appear as the ToolTip when the icon is in a toolbar.

8.

Tip: If your icon is in a menu, add a shortcut key by preceding one letter in the
name with an ampersand. For the menu shown in Figure 119, for example,
the name is Filter &to Selection. This causes the t in to to be underlined,
and it makes the command sequence to access the new button Alt+D+F+T
(D opens to Data menu, Filter opens the Filter menu, and T selects Filter to
Selection).

Part
3

113 of 236EXCEL GURUS GONE WILD

Figure 119. In menus, you can specify one lett er to have an accelerator key.

If desired, use the Begin a Group menu item to tell Excel to insert a separator
before the menu item.

If you have way too much time on your hands, choose Edit Button Image
and create any icon that fi ts in a 16-by-16 grid (Figure 120). Before you try
this, see if another Offi ce application offers the icon you need and follow the
instructions below for copying an icon from another Offi ce application.

9.

10.

Figure 120. In Excel 2003 and earlier, you can edit to create
your own custom icons.

11. By default, a custom menu item appears with an image and text. A
custom toolbar item appears with only an image. You can override this style by
using the Text Only or Image and Text settings in the menu.

114 of 236 PART 3: MACROS

Copying Icons from Other Offi ce Applications

Rather than create your own icon using the Button editor, as shown in Figure
120, see if another application already has the icon. For example, the idea
for Filter to Selection came from Access. It is likely that Access already has
an icon called Filter to Selection. If so, you can copy the icon from one Offi ce
application to Excel. Follow these steps:

Keep Excel open and open Access (or Word or PowerPoint).

In Access (or Word or PowerPoint), fi nd the Filter to Selection icon, which
appears only when you are viewing a table. Finding the icon might require
a few steps. If you don’t have an Access table, use File, Import to import
an Excel worksheet into a table. Then double-click the table to view it in
Data Sheet mode. The desired icon now appears on the Table Datasheet
toolbar.

Right-click the toolbar and choose Customize.

While the Customize dialog is displayed, right-click the desired icon and
choose Copy Button Image.

Switch back to Excel.

Choose Tools, Customize.

Right-click the desired icon and choose Paste Button Image. A new menu
item is added, with a shortcut key and a professional-looking icon. As shown
in Figure 121, this item looks like it is part of the core Excel product.

1.

2.

3.

4.

5.

6.

7.

Figure 121. A custom butt on with
an image copied from Access runs
the macro in the Personal Macro
Workbook.

Summary: Excel 2003 is better than Excel 2007 for adding custom menu
items.

Part
3

115 of 236EXCEL GURUS GONE WILD

CREATE A REGULAR MACRO
Challenge: You’ve found a cool VBA macro on the MrExcel message board.
Your workbook doesn’t currently have any macros. How can you get the macro
into your workbook?
Solution: You can type regular macros in a module in the VBA editor. Follow
these steps to insert a new module:

Open the workbook in which you want to save the macro.
Switch to the VBA editor by pressing Alt+F11. Alternatively, you could select
Tools, Macro, Visual Basic Editor in Excel 2003 or Developer, Visual Basic
in Excel 2007.
From the VBA editor menu, choose Insert, Module. A new blank code pane
appears on the right side of the screen.
Copy the code from the webpage. Click in the blank code module and
choose Paste.

If it is not already visible, display the Project Explorer by pressing Ctrl+R. In
the Project Explorer, you should be able to see the Module1 entry listed below
your workbook. If you plan to have several macros, you can organize them
into multiple modules. To rename a module from a generic name, follow these
steps:

Display the Properties window by pressing F4.
Click Module1 in the Project Explorer.
The Properties window shows only one property: (Name).
Click in the text box for (Name) and type a new name, such ad
ModuleReports.

As you add modules, you can name them to make it easier to locate particular
macros later (Figure 122).

1.
2.

3.

4.

1.
2.
3.
4.

Figure 122. Organize your modules by
changing their name in the Properties
window.

116 of 236 PART 3: MACROS

Tip: You may get to the point where you have many macros spread across
many modules. You can quickly fi nd a macro in the regular Excel interface
by pressing Alt+F8 to bring up an alphabetical list of all the macros. Find the
desired macro and click the Edit button. Excel switches to VBA, opens the
correct module, and scrolls so this module is in view. Unfortunately, this trick
does not work for macros in hidden workbooks, such as the Personal Macro
Workbook.
Summary: You type regular VBA macros into standard modules in the VBA
editor.

CREATE AN EVENT HANDLER MACRO
Challenge: While typical macros are entered in modules, a few special macros,
called event handler macros, are run automatically in response to an event that
happens in Excel.
Background: Some common event handler macros are:

Workbook_Open: This macro runs when a workbook is opened.
Workbook_BeforeClose: This macro runs after someone tries to close
a workbook but before the person is asked whether to save changes.
Workbook_BeforePrint: This macro runs when someone issues a print
command but before the job is sent to the printer. This macro allows you to
adjust something in the workbook, such as adding the current fi le location
and the user name in the footer of the worksheet.
Worksheet_Change: This amazing macro runs every time someone
enters a value in any cell in the worksheet.
Worksheet_Activate: This is sort of a a Workbook_Open macro but
for an individual worksheet. Maybe you want certain menu items to appear
only when someone is on a particular worksheet.
Worksheet_SelectionChange: This macro runs every time someone
moves to a new cell in the worksheet.

Event handler macros are powerful, but they do not work correctly unless
they are entered properly in the VBA editor. The VBA code is not entered in a
traditional module but is entered in the code pane attached to the worksheet or
to the ThisWorkbook object.
Solution: Say that you have found some code for the BeforePrint event.
This is a workbook-level event, so it needs to go on the code pane for the
workbook. Follow these steps:

Open the workbook in Excel.
Switch to the VBA editor by pressing Alt+F11.
Open the Project Explorer by pressing Ctrl+R.
Find your workbook in the Project Explorer list. If necessary, click the + sign
to the left of the workbook name to expand the tree view for the workbook.

●
●

●

●

●

●

1.
2.
3.
4.

Part
3

117 of 236EXCEL GURUS GONE WILD

If necessary, click the + sign to the left of Microsoft Excel Objects to expand
the view of worksheets and the workbook. You now see an entry for each
worksheet in the workbook and an entry for ThisWorkbook.
Double-click ThisWorkbook. Alternatively, right-click ThisWorkbook and
choose View Code (Figure 123).

5.

6.

Figure 123. You need to access the code pane for
the ThisWorkbook object.

If you are copying a macro from the web, paste it to the code window now.
If you are typing the macro yourself, follow steps 8 and 9.

From the left dropdown at the top of the code window, choose Workbook.
By default, Excel types the start of a Workbook_Open macro in the code
window. You can delete it later, if needed.

Open the right dropdown at the top of the code window. These are all
the workbook-level events that can have a macro associated with them.
Choose BeforePrint from the dropdown. Excel types the start of the
Workbook_BeforePrint macro in the code window.

The process is similar if you want to create a worksheet-level event handler.
In that case, you follow the steps above, but in step 6, you double-click the
worksheet name in the Project Explorer, and in step 8, you choose Worksheet
from the left dropdown. Excel automatically creates the start of the Worksheet_
SelectionChange macro.

 Summary: You need to type event handler macros in special code panes
attached to the worksheet or workbook.

7.

8.

9.

118 of 236 PART 3: MACROS

EXTRACT AN E-MAIL ADDRESS
FROM A CELL CONTAINING OTHER TEXT

Challenge: You have cells that contain e-mail addresses as well as other text.
You need to extract just the e-mail address from a cell.
Solution: There are three solutions to this problem: Use a macro, use a user-
defi ned function, or use a very large formula.
Macro Solution
The macro solution makes use of the SPLIT function in VBA. Let’s say that a
cell contains the text Write to lora@mrexcel.com to book a seminar.
If you pass this text to the SPLIT function and indicate that the text should be
split at every space character, VBA will return an array, with each word at a new
position of the array. Figure 124 shows the value of x after you use SPLIT.

Figure 124. Th e SPLIT function returns a 0-based array,
with each word broken out.

Part
3

119 of 236EXCEL GURUS GONE WILD

The macro then simply loops through each position in the x array, looking for
a word that matches the pattern *@*.*. (Rather than test for equality, the LIKE
operator looks for a word that matches a pattern.)
When a match is found, the macro writes the e-mail address to the right of the
original cell.
With the following macro, you select all the cells that contain text e-mail
addresses somewhere within the cell:
Sub getEmailMacro()
 Dim x As Variant
 Dim i As Integer
 For Each cell In Selection
 x = Split(cell.Value, " ")

 For i = 0 To UBound(x)
 If x(i) Like "*@*.*" Then
 cell.Offset(0, 1) = x(i)
 Exit For
 End If
 Next i

 Next cell
End Sub
When you run the macro, the e-mail address portion of the cell is written to the
right of the original values.
User-Defi ned Function Solution
You can adapt the macro above into a user-defi ned function that accepts one
cell value as an argument and returns the e-mail portion of the text:
Public Function getEmail(note As String) As String
Dim x As Variant
Dim i As Integer
x = Split(note, " ")
For i = 0 To UBound(x)
 If x(i) Like "*@*.*" Then
 getEmail = x(i)
 Exit Function
 End If
Next i
End Function

120 of 236 PART 3: MACROS

Formula Solution

While the following formula would take some time to build, it is clever and
remarkably simple in its operation:

=TRIM(MID(SUBSTITUTE(" "&A1," ",REPT(" ",20)),FIND("@",SUBST
ITUTE(" "&A1," ",REPT(" ",20)))-20,40))

The formula initially uses the SUBSTITUTE function to replace every occurrence
of a space with 20 spaces. This serves to separate every word in the text by
many spaces:

Original Text: Tell bill@mrexcel.com hello

New Text: Tell bill@mrexcel.com
hello

The FIND function locates the @ sign in the new text. The MID function starts 20
characters before the @ and grabs text for 40 characters. I used 40 characters
because that should be long enough to handle any possible e-mail address. In
fact, it would fail if you had john.jacob.jingleheimer.schmidt@gmail.
com in your database. However, for a normal-sized e-mail address, you end
up with something like:

 bill@mrexcel.com

Finally, the TRIM function removes all leading and trailing spaces, so you end
up with:

bill@mrexcel.com

Figure 125 shows the result of the formula.

Figure 125. Th e formula isolates the e-mail portion of the text.

Summary: You can use three different methods to extract the e-mail address
from a cell that contains an e-mail address as well as other text

Source: http://www.mrexcel.com/forum/showthread.php?t=226840

Part
3

121 of 236EXCEL GURUS GONE WILD

FIND THE CLOSEST MATCH
Challenge: People enter data in various ways. If you ask 50 sales reps to record
a forecast for General Motors, you will fi nd that there are a dozen ways to spell
and/or abbreviate the name of that customer. Combine all the forecasts from
all the sales reps, and you will have the same customer spelled a multitude of
ways. Column A in Figure 126 shows some of the different ways to enter the
names of customers whose offi cial names are listed in column D.

Figure 126. When asked to type customer names, various employees will spell
or abbreviate them in various ways.

Setup: This is a classic problem known as the fuzzy match problem. The
problem was fi rst discussed at the MrExcel message board back in fall 2001,
with the fuzzy match challenge of the month. At that time, Juan Pablo Gonzalez
wrote in with a routine to determine the percentage match between two strings.
Damon Ostrander and others later followed up.
The question arose again at the message board in late 2003. Al_B_Cnu
adapted the code from the challenge to write complete FuzzyVLOOKUP,
FuzzyHLOOKUP, and FuzzyPercent functions. I won’t reprint the 373 lines of
code here, but you can examine them in the sample fi le for this topic (download
from www.MrExcel.com/gurufi les.html).
Solution: The FuzzyPercent function compares text from two cells and
determines what percentage of the characters in the fi rst cell are in the same
sequence in the second cell. In Figure 127, cells A2 and B2 share 11 characters
in common. Because cell A2 contains 11 characters total, 73% of the characters
match cell B2, and the FuzzyPercent is 73%. Note that if you reverse A2

122 of 236 PART 3: MACROS

and B2, the result may be different, as shown in row 3. Here, A3 and B3 share
the same 11 characters, but 11 characters is only 50% of the 22 characters
found in A3.

Figure 127. Th e FuzzyPercent user-defi ned function in this
workbook calculates the percentage of the characters that are in the same
sequence.

Note that the algorithm is not perfect. Elvis and lives contains exactly
the same characters, but in a completely different order. But is it completely
different? Both cells have the characters l-v-s in the same sequence, so it
appears to be a 3-out-of-5, or 60%, match.
The problem becomes more complex when you have to fi nd the best matches
from two lists. In Figure 128, a two-dimensional table shows how well each
item from the forecast list in column A matches up with the offi cial customer list
in row 1.
Note that GM Lordstown shares just as many characters in common with
General Motors as it does with Abbott Laboratories. To combat this, Al_B_
Cnu offered alternative algorithms for the FuzzyPercent test. You can try
out =FuzzyPercent2() in the sample workbook to see if is matches up your
data better.

Figure 128. Th is table highlights the best match in each row using FuzzyPercent.

Part
3

123 of 236EXCEL GURUS GONE WILD

To make Juan Pablo Gonzalez’s function easier, Al_B_Cnu wrote Fuzzy-
VLOOKUP and FuzzyHLookup. Like VLOOKUP, the FuzzyVLOOKUP function
can return a specifi c column from a table. It can also return the best match,
second-best match, and so on. In Figure 129, FuzzyVLOOKUP returns the
three best matches for each forecasted customer. Someone is going to have
to go through the choices to fi gure out which entries are correct matches.

Figure 129. FuzzyVLOOKUP compares every item in the list to
fi nd the best, second-best, and third-best matches.
Summary: Custom functions in VBA help solve the fuzzy match problem.
Source: http://www.mrexcel.com/forum/showthread.php?t=69491

USE TIMER TO MICRO-TIME EVENTS
Challenge: Two Excel gurus walk into a bar. One of them says it is faster
to use =MAX(0,MIN(A2,B2)), and the other thinks it is better to use
=MEDIAN(0,A2,B2). Which one is correct?

Solution: You can fi nd the answer by fi ring up a VBA macro to calculate each
formula 50,000 times. Before the macro starts, you save the value of Timer
to a variable. When the 50,000 calculations end, you can compare the original
and fi nal values of Timer.

On a Windows PC, Timer shows the number of seconds and fractional seconds
elapsed since midnight. On a Mac, the function returns only whole seconds but
no fractions. You need to make the process repeat enough times to actually
show a difference in the number of seconds. Also, you need to make sure that
the process does not extend past midnight!

124 of 236 PART 3: MACROS

The following code compares MIN(MAX to MEDIAN on 60,000 cells:
Sub TestMinMaxVsMedian()
 Application.ScreenUpdating = False
 Range("A1:B65000").Formula = "=Randbetween(-1000,1000)"
 Range("A1:B65000").Value = Range("A1:B50000").Value

 StartTime = Timer
 Range("C1:C65000").FormulaR1C1 = "=MAX(0,MIN(RC1,RC2))"
 Application.Calculate
 Range("C1:C65000").Value = Range("C1:C65000").Value
 ElapsedTime1 = Timer - StartTime

 StartTime = Timer
 Range("C1:C65000").FormulaR1C1 = "=MEDIAN(0,RC1,RC2)"
 Application.Calculate
 Range("C1:C65000").Value = Range("C1:C65000").Value
 ElapsedTime2 = Timer - StartTime

 Application.ScreenUpdating = True
 MsgBox "MAX(MIN takes: " & ElapsedTime1 & vbCr & "MEDIAN
takes: " & ElapsedTime2

End Sub

By comparing the Timer values before and after critical sections of code, you can
compare the times required for various approaches. As shown in Figure 130,
using the functions MIN and MAX is faster than using the MEDIAN function.

Figure 130. MEDIAN is just a bit
slower than MAX and MIN.

Part
3

125 of 236EXCEL GURUS GONE WILD

Additional Details: Different computers might run at different speeds, so it
is important to test the two processes on the same computer, preferably with
similar items running in both cases.
Also, note that the difference in Figure 130 is just over two-hundredths of
a second for 60,000 cells. The actual time difference for one cell is 3.9E-7
seconds—a time that will not matter to most end users. However, you, as the
reader of this book, know that even such a small difference makes a difference
between winning and losing a bar bet.
Summary: You can use the Timer function to calculate how long a process
takes.
Source: http://www.mrexcel.com/forum/showthread.php?t=258950 and http://
www.mrexcel.com/pc17.shtml

DISCOVER THE TEMP FOLDER PATH
Challenge: I want to fi nd the path to my computer’s temp folder in VBA.
Solution: To discover the path to your computer’s temp folder, use this code:
TempPath = Environ("Temp")
The Environ function provides a remarkable amount of information about a
system. However, you should be careful because the variables available on
one computer may not be available on another computer.
To discover which variables are available on your system, use this code:
Sub ListEnvironVariables()
 For i = 1 To 99
 Cells(i, 1).Value = Environ(i)
 Next i
End Sub
When you run this code, you get a listing similar to the one shown in Figure 131.

Figure 131. A list of environment variables and their values for one particular system.

126 of 236 PART 3: MACROS

Each entry in the list contains the environment variable name, an equals sign,
and the value on that computer. When you know what variable names are
available, you can pass the variable name in quotes:
Msgbox "You are signed in as " & Environ("USERNAME") & " to
domain " & _

 Environ("USERDOMAIN")

Some common environment variables that appear on most systems include:
ALLUSERSPROFILE
APPDATA
CommonProgramFiles
COMPUTERNAME
ComSpec
FP_NO_HOST_CHECK
HOMEDRIVE
HOMEPATH
LOGONSERVER
NUMBER_OF_PROCESSORS
OS
Path
PATHEXT
PROCESSOR_ARCHITECTURE
PROCESSOR_IDENTIFIER
PROCESSOR_LEVEL
PROCESSOR_REVISION
ProgramFiles
SESSIONNAME
SystemDrive
SystemRoot
TEMP
TMP
USERDOMAIN
USERNAME

Additional Details: The Environ function does not work in the Excel grid.
You can build a user-defi ned function to make it available to the Excel interface.
To do so, use this code:
Function MyEnviron(ByVal Key)

 MyEnviron = Environ(Key)

End Function

Part
3

127 of 236EXCEL GURUS GONE WILD

You can then use =myenviron("COMPUTERNAME") in a cell in Excel.
Summary: On a Windows PC, the VBA Environ function provides information
about the path to the temp folder, the path to the application data folder, and
more.
Source: http://www.mrexcel.com/forum/showthread.php?t=240975

USE EVALUATE IN VBA
INSTEAD OF LOOPING THROUGH CELLS

Challenge: You need to change all the cells in a range based on a calculation.
You are planning on looping through all the cells with this code:
For Each cell In Selection

 cell.Value = -1 * cell.Value

Next cell

Solution: The Evaluate function can perform this function faster than a loop.
Replace the above code with this single line of VBA:
Selection.Value = Evaluate(Selection.Address & "*-1")

I used the Timer code to compare the two methods. The loop method required
8.3 seconds for 100,000 cells. The evaluate method ran in 0.09 seconds—a
99% improvement in processing time!
Breaking It Down: You might thinking that this is a cool function that could
be used to quickly transform any range of data. Unfortunately, most of Excel’s
functions will fail when used inside Evaluate. For example:
Range("C2:C99").Value = Evaluate("lower(C2:C99)")

will fi ll the range with the lowercase version of just cell C2. The general rule
is that if the Excel function does not normally accept an array, the Evaluate
function will not return an array.
However, PGC01 at the MrExcel message board wrote an excellent tutorial,
demonstrating how to coax Evaluate to work on a range by introducing
an extra dummy range outside the function. PGC01 would use the following
expression to solve the above problem:
Range("C2:C99").Value = Evaluate("if(ROW(2:99),LOWER(C2:C99))")

In this case, ROW(2:99) returns the numbers from 2 to 99. When a logical test
returns any numeric value other than 0, the result will be considered TRUE.
Thus, the text inside the function is saying, “Here are 98 vertical true values.
For each one, calculate the lowercase version of the corresponding cell from
C2:C99.”

128 of 236 PART 3: MACROS

Additional Details: You can also use Evaluate to change a horizontal vector:

Range("A1:J1") = Evaluate("if(row(1:10),upper(A1:J1))")

Using Evaluate on a rectangular range is a bit trickier. You need to introduce
both a vertical array such as ROW(1:10) and a horizontal array such as either
COLUMN(A:J) or TRANSPOSE(ROW(1:10)). The following code uses two IF
functions, the fi rst of which introduces a vertical array and the second of which
introduces a horizontal array:

Range("A1:L23") = Evaluate("IF(ROW(1:23),IF(TRANSPOSE(ROW(1:
12)),LOWER(A1:L23)))")

You can generalize this code to work on any range. The following code performs
the UPPER function on all cells in the selection:
Sub RectangularProper()
 ‘ Convert all cells in the selection to proper case
 Dim rngRectangle As Range, rngRows As Range, rngColumns
As Range
 Set rngRectangle = Selection
 ‘ Defi ne a vertical vector array
 Set rngRows = rngRectangle.Resize(, 1)
 ‘ defi ne a horizontal vector array
 Set rngColumns = rngRectangle.Resize(1)
 rngRectangle = Evaluate("IF(ROW(" & rngRows.Address & "),
_
 IF(COLUMN(" & rngColumns.Address & _
 "),PROPER(" & rngRectangle.Address & ")))")
End Sub

While the examples here deal with changing the case of text using UPPER,
LOWER, and PROPER, you can use them to perform calculations with most of
Excel’s functions.

Gotcha: Although this method improves the speed of your code substantially,
it also makes your code far more diffi cult for someone else to understand.

Summary: You can use Evaluate to perform simple transformations on vector
ranges.

Source: http://www.mrexcel.com/forum/showthread.php?t=246143

Part
3

129 of 236EXCEL GURUS GONE WILD

RENAME EACH WORKSHEET
BASED ON ITS A1 VALUE

Challenge: You have a workbook that has numerous worksheets. The title of
each worksheet is in cell A1. You want to name each worksheet based on its
cell A1 value.
Solution: You can quickly and automatically solve this problem by using a tiny
bit of VBA code. Here’s how:

Press Alt+F11.
Press Ctrl+G to open the immediate pane.
Type the following code and then press Enter:

For Each ws In Worksheets : ws.Name = Left(ws.Cells(1, 1).Value, 31) : Next

This is actually a three-line macro, with the lines separated with colons.
Additional Details: If any value in cell A1 contains more than 31 characters,
the name is shortened to 31 characters.
If any worksheet has an illegal character in cell A1, the macro stops with an
error. For worksheet names, the illegal characters are ’, *, /, :, ?, [, \, and]. To
simply skip the worksheets that contain illegal characters, you can use this
macro:
Sub NoErrorNameThem()
 On Error Resume Next
 For Each ws In ThisWorkbook.Worksheets
 ws.Name = Left(ws.Cells(1, 1).Value, 31)
 Next
 On Error GoTo 0
End Sub

To use alternate characters instead of the illegal characters, use this macro:
Sub ReplaceIllegalCharactersNameThem()
 For Each ws In ThisWorkbook.Worksheets
 NewName = ""
 For i = 1 To Len(ws.Name)
 ThisChar = Mid(ws.Name, i, 1)
 Select Case ThisChar
 Case "’", "*", "/", ":", "?", "[", "\", "]"
 NewName = NewName & " "
 Case Else

1.
2.
3.

130 of 236 PART 3: MACROS

 NewName = NewName & ThisChar
 End Select
 Next i
 ws.Name = Left(NewName, 31)
 Next
End Sub

Summary: You can use a short macro to rename worksheets.

USE A CUSTOM PULL FUNCTION INSTEAD
OF INDIRECT WITH A CLOSED WORKBOOK
Challenge: As you know from several other topics, the INDIRECT function is
fairly cool. Say that you want to use INDIRECT to go out to a variable workbook
and grab a value. You store each day’s records in a workbook with a name
similar to C:\aaa\Sales20090801.xls. INDIRECT does not work in this
situation because it cannot point to a closed workbook. It can point to an open
workbook, but you would not want to open 365 workbooks every time you had
to calculate the worksheet.
Solution: As documented by Frank Kabel, at http://www.dailydoseofexcel.
com/archives/2004/12/01/indirect-and-closed-workbooks/, there are three
workarounds for this problem. The one I use is Harlan Grove’s custom function
PULL. The function can even return a range of cells from the closed workbook,
so it can be used as the table range in a VLOOKUP.
Follow these steps to install PULL in your workbook:

Browse to http://members.aol.com/hrlngrv/pull.zip to get the latest version
of PULL.
Unzip pull.bas from the zip fi le.
Open the workbook where you want to use PULL.
Switch to the VBA editor by pressing Alt+F11.
From the VBA editor menu, choose File, Import.
Browse to and select pull.bas.

Figure 132 illustrates the use of PULL. Column A contains a date. Based on
this date, you want to look up sales from a different daily workbook. All the
workbooks are stored in C:\aaa\, with names such as SALESyymmdd.xls.
Cell C3 formats the date in YYYYMMDD format using the formula
=TEXT(A3,"yyyymmdd").

Cell D3 builds the fi le path and name with ="C:\aaa\[Sales"&C3&".xls]".

1.

2.
3.
4.
5.
6.

Part
3

131 of 236EXCEL GURUS GONE WILD

Gotcha: Be careful with PULL. The function actually opens a new instance of
Excel, opens the external workbook, and then builds an array using a cell from
the external workbook. This works fi ne for a few cells, but it would take a very
long time to calculate 10,000 formulas, each containing a PULL function.
Summary: You can use the custom PULL function to extend the INDIRECT
concept to closed external workbooks.

Cell E3 contains the worksheet name in the external workbook.
Cell F3 contains the range name in the external workbook.
Cell G3 builds an external VLOOKUP using =VLOOKUP(B3,PULL("’"&D3&E3&
"’!"&F3),2).
In real life, you may opt to forgo columns C:G and use this single formula:
=VLOOKUP(B3,PULL("’C:\aaa\[Sales"&TEXT(A3,"yyyymmdd")&".xls]
Sheet1’!A4:B12"),2,FALSE)

Figure 132. Harlan Grove’s custom PULL function can replicate INDIRECT
for external workbooks.

IN VBA, DETERMINE THE NUMBER OF
THE ACTIVE WORKSHEET

Challenge: You want to refer to the worksheet two sheets to the right of the
active worksheet in VBA. How can you fi gure out the index number of the current
worksheet?
Solution: You can fi gure out the index number of the current worksheet by
using ActiveSheet.Index.

Figure 133. How can a macro tell that you are on worksheet 2?

132 of 236 PART 3: MACROS

In Figure 133, the active worksheet could be referred to as either Worksheets(2)
or Worksheets("Patient Accounting"). In my VBA books and seminars,
I tell people that it is better to use Worksheets("Patient Accounting").
However, in some situations, you might really need to refer to a worksheet with
an index number. Perhaps if you needed to refer to a sheet two sheets to the
right of the active sheet, you could refer to Worksheets(x+2). Is there an
easy way to fi gure out the index number of the active sheet?
You might fi gure it out using a brute-force loop:
Ctr = 1
For each WS in Activeworkbook.Worksheets
 If WS.Name = ActiveSheet.Name then Exit For
 Ctr = Ctr + 1
Next WS

However, this is the long way around. The Index property of a worksheet
identifi es the location of the worksheet within the workbook. You could use
Worksheets("Patient Accounting").Index to return the number 2, or
you could simply use ActiveSheet.Index to return the number 2.
Summary: The Index property returns the position of a worksheet in the
workbook.

CREATE WORKSHEET NAMES
BY USING THE FILL HANDLE

Challenge: You type Jan into a cell, grab the fi ll handle, and drag down fi ve
cells. Excel types Marcia, Cindy, Bobby, Greg, and Peter. No, sorry. Excel
types Feb, Mar, Apr, May, Jun. The fi ll handle can do all sorts of amazing fi lls,
handling months, quarters, weekdays, dates, and so on. If you set up a custom
list, Excel can even extend your list of departments, products, or Brady Bunch
kids. The fi ll handle is so useful, wouldn’t it be cool if you could use it to copy
the current worksheet into new worksheets that have appropriate names? For
example, if you have a worksheet named Tuesday and used the fi ll handle, you
could have Excel add new worksheets Wednesday, Thursday, and Friday to
the right of Tuesday.
Solution: Add the following code to your Personal Macro Workbook:
Sub FillHandleSheets()
‘
‘ Make copies of the current worksheet
‘ The new worksheets will have names as if using the Fill
Handle
‘

Part
3

133 of 236EXCEL GURUS GONE WILD

Dim ws As Worksheet ‘ original worksheet, the one to copy
Dim wst As Worksheet ‘ worksheet to hold fi ll handle series
Dim wb As Workbook ‘ temporary workbook to hold fi ll handle
series
Dim wbt As Workbook ‘ activeworkbook
Dim wsn As Worksheet ‘ most recently created sheet

Set ws = ActiveSheet
Set wbt = ActiveWorkbook
Application.ScreenUpdating = False

‘ Which index number is the current sheet?
‘ Note that Ctr will be 1 less than the current sheet, so that
in the loop, you can use Ctr+i
Ctr = ws.Index - 1

x = InputBox(_
 Prompt:="How many new worksheets to create?", _
 Title:="Fill Handle for Worksheets", Default:=11)

‘ Add a temporary workbook with a single worksheet
Set wb = Workbooks.Add(xlWBATWorksheet)
Set wst = wb.Worksheets(1)

‘ Enter current worksheet name in cell A1 of temp worksheet
wst.Cells(1, 1).Formula = "’" & ws.Name
‘ Using xlFillSeries instead of xlFillDefault will allow
‘ a number such as "1" to extend to "1", "2", "3".
wst.Cells(1, 1).AutoFill Destination:=wst.Cells(1, 1).Resize(x
+ 1, 1), Type:=xlFillSeries

For i = 2 To x + 1
 ws.Copy after:=wbt.Worksheets(Ctr + i - 1)
 Set wsn = ActiveSheet
 ‘ if duplicate name, don’t bother renaming
 On Error Resume Next
 wsn.Name = wst.Cells(i, 1).Value
 On Error GoTo 0
Next i

‘ Close the temporary workbook

134 of 236 PART 3: MACROS

wb.Close SaveChanges:=False

‘ Go back to the original worksheet
wbt.Activate
ws.Select
Application.ScreenUpdating = True

End Sub
This macro creates a temporary workbook. It types the sheet name into cell A1
of the temporary workbook and then fi lls the series. A loop then starts copying
the original worksheet and uses names from the fi lled series.
Press Alt+F8, choose the macro, choose Options, and assign the shortcut key
Ctrl+Shift+F to the macro.
When you run the macro, Excel asks how many sheets you want to insert (Figure
134). Because my most common situation is copying Jan to the remaining 11
months, I used 11 as the default in the input box. Feel free to adjust it to your
most common situation.

The macro works well for months, day names, and quarters. It even works for
numbers, a slight improvement on the fi ll handle because you need to hold
down the Ctrl key to coax 1 to fi ll 1, 2, 3. However, the macro has problems
with dates.
The standard U.S. date format is 9/15/2009 for September 15, 2009. This is an
illegal sheet name because you cannot include slashes in a worksheet name.
So, although no one would have a worksheet name like 9/15/2009 to begin
with, you might have worksheet names that spell out dates in another format.
For example, 9-15, Sep 15, and 9-15-2009 are all valid worksheet names.
Here is the problem: When the macro types those names into cell A1 of a
temporary worksheet, Excel instantly converts the value to 9/15/2009. The
fi lled series contains slashes, which are invalid worksheet names.
Even more frustrating, the logic to fi gure out the custom number format to
replicate the original date is diffi cult. You can’t learn the correct format from

Figure 134. Excel asks how many sheets to copy.

Part
3

135 of 236EXCEL GURUS GONE WILD

Summary: Perhaps Microsoft will add this functionality to a future version of
Excel. Until it does, use this macro to copy worksheets and change their names
to a known series.

Cells(1, 1).NumberFormat because in most cases, typing the value
causes Excel to change the number format.
As a compromise, the macro types the worksheet name preceded by an
apostrophe. This allows 9-15 and Sep 15 entries to work through the end of
the month. Note that these text entries work just like Room 101 works in the fi ll
handle. Sep 15 accurately jumps to Sep 16, but Jan 31 inaccurately jumps
to Jan 32! Figure 135 shows several examples of workbooks where the fi rst
worksheet was copied using the macro in this chapter.

Figure 135. Th e macro correctly handles
many items but fails when extending Apr 30.

Tip: If you defi ne a custom list, you can have this macro use the names in the
custom list.

136 of 236 PART 3: MACROS

COPY THE PERSONAL MACRO
WORKBOOK TO ANOTHER COMPUTER

Challenge: You have a bunch of cool macros in your Personal Macro Workbook.
You would like to get them in a co-worker’s Personal Macro Workbook.
Setup: This process is not as daunting as it may seem. Basically, you need to
save your Personal.xls fi le with a new name, send that fi le to the co-worker,
and drag modules from your workbook to your co-worker’s workbook in the
VBA editor.
Solution: Follow these steps to save your Personal.xls fi le:

Open the VBA editor by pressing Alt+F11.
Find Personal.xls in the Project Explorer. Click on this entry once.
Click the Save icon in the toolbar to ensure that your latest changes are
saved (Figure 136).
Press Ctrl+G to display the immediate window.
In the immediate window, type ThisWorkbook.SaveAs "C:\MyPersonal.
xls". You can use any folder you like, but make sure to save it with a name
other than Personal.xls.
Close Excel.
Navigate to the folder from step 5. E-mail MyPersonal.xls to your co-
worker.

1.
2.
3.

4.
5.

6.
7.

Figure 136. You choose Personal.xls in the
Project Explorer.

Part
3

137 of 236EXCEL GURUS GONE WILD

On your co-worker’s computer, follow these steps:
Open Excel.
Open to VBA editor by pressing Alt+F11. If this computer does not already
have a Personal.xls fi le in the Project Explorer, create one by choosing to
record a new macro and specifying that it should be saved in Personal.
xls. When the macro recorder starts, move to a new cell and then stop
recording. This will create the Personal.xls in the proper folder.
Open MyPersonal.xls on this computer.
In the VBA Project Explorer, expand Personal.xls so you can see the
modules entry. Expand MyPersonal.xls so you can see each individual
module.
Drag the modules from MyPersonal.xls into the Modules folder in Personal.
xls (Figure 137).
Close Excel. Reopen Excel. All the macros will have been copied into
Personal.xls on the new computer.

1.
2.

3.
4.

5.

6.

Figure 137. You drag modules from
MyPersonal.xls to Personal.xls
on the new computer.

Summary: You can copy macros from your Personal.xls fi le to other
computers.

138 of 236 PART 3: MACROS

ADD FILTER TO SELECTION
FUNCTIONALITY

Challenge: Access offers a cool feature called Filter to Selection. If you are
looking at a data sheet in Access, click the value XYZ in Field22 and click
Filter to Selection, Access shows you only the records where Field22 is equal
to XYZ. Excel does not offer this feature. Instead, you have to turn on the Filter
(known as AutoFilter in Excel 2003 and before) and choose the desired value
from the Filter dropdown.
Solution: It takes only a few lines of code to replicate this feature in VBA. Add
the following macros to your Personal Macro Workbook. (To get a Personal
Macro Workbook, see “Make a Personal Macro Workbook.”)
Sub FilterToSelection()
 ColNum = ActiveCell.Column - _
 (ActiveCell.CurrentRegion.Column - 1)
 Selection.AutoFilter _
 Field:=ColNum, Criteria1:=ActiveCell
End Sub

Sub AutoFilterToggle()
 Selection.AutoFilter
End Sub
Assign the macros to shortcut keys or to custom buttons on your toolbar or
Quick Access toolbar in Excel 2007.
Using the First Macro
To use the fi rst macro, in any data set that has a row of headings at the top,
select one cell in any column. Click the Filter to Selection icon, as shown in
Figure 138.

Figure 138. To see all the General Motors records, select one cell that contains
General Motors and click Filter to Selection.

Part
3

139 of 236EXCEL GURUS GONE WILD

Excel hides all the rows that do not contain General Motors in column F
(Figure 139).

Figure 139. You can fi lter the data set to show only General Motors records.

Note that the macro is additive: After fi ltering by customer, you can fi lter to just
ABC records in column D by selecting D8 and clicking Filter to Selection again.
You end up with just the sales of ABC to General Motors. Choose the word
Central in C8 and click Filter to Selection. You now have just the Central
region sales of ABC to General Motors.

To return to all records, you can run the AutoFilterToggle macro or simply
turn off the Filter feature. In Excel 2007, you click the large Filter icon on the Data
tab. In Excel 2003, you select Data, Filter, Show All or Data, Filter, AutoFilter.

How the Code Works

The heart of the code is the line with the AutoFilter method. In this case,
the AutoFilter method is applied to the Selection. You are taking advantage
of the fact that applying AutoFilter to a single cell automatically applies the
fi lter to the current region. Two named parameters control AutoFilter in
this macro. The fi rst parameter is the Field parameter. This is an integer that
identifi es the column number. In Figure 138, notice that columns A and B are
blank. Thus, the current region is C2:H564. The AutoFilter method numbers
columns starting with 1 as the leftmost column in the data set. Because column
C is the fi rst column in the data set, you specify Field:=1 to fi lter based on
column C.

To make the macro more general, you fi lter to the fi eld number of the active
cell. This is stored in a variable called ColNum. You’ll see how ColNum is
assigned below.

The second parameter for the AutoFilter method is the Criteria1 parameter.
To fi lter the data set to only Exxon customer records, you might use:

140 of 236 PART 3: MACROS

Selection.AutoFilter Field:=4, Criteria1:=”Exxon”

The macro specifi es a Criteria1 of ActiveCell. The ActiveCell
property returns a range object that contains the one cell that is the active cell.
Note that someone might select a rectangular range such as C8:H13. Only one
of these cells is the active cell. It is the cell listed in the name box. Technically,
you should be asking for ActiveCell.Value, but it turns out that the .Value
property is the default property returned from a range, so simply fi ltering to
ActiveCell causes Excel to fi lter to General Motors in Figure 139.

Handling the Unexpected
Most data sets I encounter start in column A. Why would anyone leave columns
A and B blank? If you could guarantee that your data sets would always start in
column A, then it would be easy to identify the Field parameter as:

Field:=ActiveCell.Column

If you are in column C, then ActiveCell.Column is 3. Simple enough.

But the macro goes an extra step and envisions someone daring to start a data
set in a column other than column A. The logic works sort of like this:

What column is the active cell in? It’s in column F, which is column 6.
Okay. What column is the leftmost column in the data set? It’s in column C,
which is 3.
Hmmm. Okay. Then how many blank columns are to the left of the fi rst
column? Well, that is the column number of column C minus 1 (i.e., 3 – 1, or
2). In most cases, the calculation for the number of blank columns evaluates
to 0. Column A is column number 1, and 1 – 1 is 0.

To translate this logic to VBA, Figure 140 asks many of these questions in the
VBA immediate window.

●
●

●

Figure 140. Th ere are some logical steps in calculating the fi eld parameter.

Part
3

141 of 236EXCEL GURUS GONE WILD

The active cell is F7.
Cell F7 is column number 6.
The current region around F7 is C1:H564. To fi nd the current region, Excel
proceeds from the active cell in all directions and stops when it encounters the
edge of the spreadsheet or an edge of the data set. An edge of the data set
requires the cells in the row below the data set to be completely blank.
When you ask for CurrentRegion.Columns, you are referring to six columns.
You might feel compelled to ask for CurrentRegion.Columns(1).Column
to fi nd out that the data set starts in column 3. However, a shortcut is to ask
for the Column property of CurrentRegion.Columns. The Column property
happens to return the column number of the fi rst column in the range. So,
when you ask for CurrentRegion.Column, you get a 3, which indicates that
the fi rst column of the current region is in column C.
The fi rst line of the macro goes through all this logic to fi gure out that Customer
is the fourth column in the current data set. ActiveCell.Column is 6. The
number of blank columns to the left of the data set is 2. This is ActiveCell.
CurrentRegion.Column (3) minus 1. So, the ColNum variable is 6 – 2,
or 4.
In order to handle the unexpected, the macro grows to two lines of code. The
fi rst line calculates the column number within the current data set:
ColNum = ActiveCell.Column - _

 (ActiveCell.CurrentRegion.Column - 1)

The second line of code turns on AutoFilter and fi lters the specifi c column
to the value in the current cell:
Selection.AutoFilter _

 Field:=ColNum, Criteria1:=ActiveCell

Using the Second Macro
The second macro needs to turn off AutoFilter. If you use the AutoFilter
method with no parameters, it simply toggles the AutoFilter dropdown on
or off. If a data set is fi ltered and you use Selection.AutoFilter, Excel
turns off AutoFilter and shows all records again. So the second macro is
one line of code:
Selection.AutoFilter

Summary: You can use macros to add the Filter to Selection functionality to
Excel.

Tip: After this book was written, I learned that this functionality is already in
Excel! See the Learn Excel podcast episode 851.

142 of 236 PART 3: MACROS

USE A MACRO TO HIGHLIGHT
THE ACTIVE CELL

Challenge: Microsoft changed the selection highlighting in Excel 2007. If you
select 20 cells, Excel highlights those cells in super-ultra-light blue. Imagine if
you had 5 gallons of white paint and dropped in one drop of blue paint. That
paint would have more color than the new selection color in Excel 2007. You
want to highlight the active cell so it’s easier to spot.
Solution: There is a cool event macro that can add a splash of color to the
selection and draw crosshairs to help you locate the row and column where the
active cell is located. In Figure 141, bright yellow highlight indicates the active
cell in D16. Lighter yellow is used to mark column D and Row 16. As you move
the cell pointer, the highlights change. Figure 142 shows the crosshairs pattern
for B20.

Figure 141. Th e macro draws yellow highlights to help you
locate the active cell.

Figure 142. As you move to a diff erent cell, the
yellow highlights move to track the active cell.

Part
3

143 of 236EXCEL GURUS GONE WILD

This macro runs every time you move to a new cell in the worksheet. The
macro works for one worksheet.
Note: If you want it to work on all worksheets, put this code in the
SheetSelectionChange macro in the ThisWorkbook code pane.
Follow the instructions in “Create an Event Handler Macro” to open the
worksheet code module. Then paste in the following code:
Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 Dim wi As Window
 Set wi = ActiveWindow
 Cells.Interior.ColorIndex = xlNone
 Target.Interior.ColorIndex = 6
 For i = wi.VisibleRange.Rows(1).Row To Target.Row - 1
 Cells(i, Target.Column).Interior.ColorIndex = 36
 Next i

 For i = wi.VisibleRange.Columns(1).Column To Target.Column - 1
 Cells(Target.Row, i).Interior.ColorIndex = 36
 Next i
End Sub

Here is how the code works:
The fi rst line indicates that you will have access to a range variable called
Target:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

This is an object variable, so it not only tells you the value of the active cell
(Target.Value or simply Target), it can tell you information about the active
cell, such as Target.Row or Target.Column
The Dim and Set lines defi ne an objet variable to refer to the current window
in Excel:
Dim wi As Window
Set wi = ActiveWindow

While many macros refer to the current worksheet, you need to refer to the
active window here so you can capture the top row in the visible portion of the
worksheet.
This line resets the color of all cells to have no fi ll:

Cells.Interior.ColorIndex = xlNone

This erases all the yellow highlighting drawn in by the last running of the
macro. Because you don’t specify which cells, this resets all cells in the entire
worksheet.

144 of 236 PART 3: MACROS

This line changes the color of the selection to bright yellow:

Target.Interior.ColorIndex = 6

It uses the old Excel 2003 concept of ColorIndex so that it will work in either
Excel 2003 or Excel 2007. Excel 2007 supports more than 56 colors, so you
can use the RGB function to return any of 16 million colors.

Target.Interior.Color = RGB(200,200,228)

Next, you draw in the crosshairs in a lighter yellow. This involves looping from
the top row in the visible section of the worksheet down to the row above
the selection. To fi nd the top row of the visible section of the worksheet, use
wi.VisibleRange.Rows(1).Row. To fi nd the row immediately above the
selection, use Target.Row – 1. The following loop goes through each of the
cells from the selection up to the top of the visible worksheet:
For i = wi.VisibleRange.Rows(1).Row To Target.Row - 1
 Cells(i, Target.Column). Interior.ColorIndex = 36
Next i

The line of code inside the loop colors the cell at the intersection of i and the
same column as the Target. 36 is the color code for light yellow.
Only a minor adjustment is needed to build a second loop to color in all the
cells in the current row from the left edge of the worksheet up to one column to
the left of the selection:
For i = wi.VisibleRange.Columns(1).Column To Target.Column - 1
 Cells(Target.Row, i).Interior.ColorIndex = 36
Next i

You might be wondering what would happen if Target is the top row of the
visible window. Say that you select cell A11 in Figure 142. The macro clears all
the yellow formatting from all cells in the worksheet, resetting all cells back to
their original color. The macro then colors the Target cell bright yellow. This
colors A11.
The fi rst line of the loop uses row 11 as the fi rst row of the visible window. It
uses row 10 as the row above the target cell. When the loop says For i = 11
to 10, Excel simply skips the loop. Nothing gets colored light yellow in the fi rst
loop. Similarly, the second loop is skipped as Excel tries to loop from 1 to 0.
Excel does a very quick and smooth job of running event handler macros run.
As you move from cell to cell in the worksheet, Excel constantly redraws the
yellow highlights to help you fi nd the active cell.
Summary: An event handler macro can help you keep track of the active
cell.

Part
3

145 of 236EXCEL GURUS GONE WILD

REMOVE THE CAPTION BAR
FROM A USER FORM

Challenge: You want to show a user form in Excel and prevent users from
closing the form by clicking the red X close button in the corner.
Solution: You can hide the caption bar—and therefore also the red X close
button—in a user form. Doing so requires a bit of Windows API.
One problem is that no one can move the form if the caption is missing. The
last bit of code in the macro below therefore uses the MouseDown method to
allow the form to be moved.
In VBA, you select Insert Userform. Draw one button on the form (or users
won’t have any way to close the form!). Right-click the form and choose View
Code. Paste the following code into the code pane for the form:
Private Declare Function FindWindow Lib "user32" _
 Alias "FindWindowA" (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long
Private Declare Function GetWindowLong Lib "user32" _
 Alias "GetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long) As Long
Private Declare Function SetWindowLong Lib "user32" _
 Alias "SetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long, ByVal dwNewLong As Long) As Long
Private Declare Function DrawMenuBar Lib "user32" _
 (ByVal hwnd As Long) As Long
Private Declare Function SendMessage Lib "user32" _
 Alias "SendMessageA" (ByVal hwnd As Long, _
 ByVal wMsg As Long, ByVal wParam As Long, _
 lParam As Any) As Long
Private Declare Function ReleaseCapture Lib "user32" () As Long
Private Const GWL_STYLE As Long = (-16)
Private wHandle As Long

Private Sub CommandButton1_Click()
 Unload Me
End Sub

Private Sub UserForm_Initialize()
 Dim frm As Long, frmstyle As Long
 If Val(Application.Version) >= 9 Then
 wHandle = FindWindow("ThunderDFrame", Me.Caption)
 Else
 wHandle = FindWindow("ThunderXFrame", Me.Caption)

146 of 236 PART 3: MACROS

 End If
 If wHandle = 0 Then Exit Sub
 frm = GetWindowLong(wHandle, GWL_STYLE)
 frm = frm Or &HC00000
 SetWindowLong wHandle, -16, frmstyle
 DrawMenuBar wHandle
End Sub

Private Sub UserForm_MouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 ‘Code to drag the form

 If wHandle = 0 Then Exit Sub
 If Button = 1 Then
 ReleaseCapture
 SendMessage wHandle, &HA1, 2, 0
 End If
End Sub

In a regular module, use this line of code to launch the form:
Sub ShowForm()
 UserForm1.Show
End Sub

When you run the macro, you have a user form that must be dismissed using
the button on the form instead of using the red X close button (Figure 143).

Figure 143. You can create a user form that
doesn’t have a red X close butt on.

Summary: You can prevent the red X close button from appearing in a user
form.
Source: www.mrexcel.com/forum/showthread.php?t=45533

Part
3

147 of 236EXCEL GURUS GONE WILD

KEEP A BUTTON IN VIEW
Challenge: You have a worksheet that contains 10,000 rows of data. As people
scroll through the workbook, you want the macro button to always be in view.
Solution: One option is to use Freeze Panes to keep a few rows visible at the
top of the screen and place the button in that area. If you are in Excel 2003,
you could use a custom fl oating toolbar for this. In any recent version of Excel,
you could use a modeless user form to hold the button. Another method, as
described in this topic, is to use the worksheet SelectionChange macro to
reposition the button at the top of the screen.
Add a forms button to your worksheet. If you use the Forms dialog, the button
will have a name such as Button 1. If you use an ActiveX control, it will
have a name such as CommandButton1. This concept works with any other
control (such as a combo box). Simply replace the name of the control in the
ActiveSheet.Shapes("Button 1") line of code.
Access the code pane for your worksheet by right-clicking the tab name in
Excel and choosing View Code. Paste the following code into the code pane:
Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 Dim ScrollRw As Long
 Dim ScrollCol As Integer
 ScrollRw = ActiveWindow.ScrollRow
 ScrollCol = ActiveWindow.ScrollColumn
 With ActiveSheet.Shapes("Button 1")
 .Top = Cells(ScrollRw, ScrollCol).Top
 .Left = Cells(ScrollRw, ScrollCol).Left
 End With
End Sub

As long as the user uses the keyboard to navigate the worksheet, the button
will reliably stay in the top left of the window. Using Page Down, Page Up,
Alt+Page Down, and Alt+Page Up to scroll works best. If a user scrolls by
using the arrow keys, the button annoyingly dance around. If a user scrolls
using the wheel mouse or the scrollbars, the button disappears until the user
clicks inside the worksheet.
Additional Details: The button has a Top property and Left property. These
indicate the distance from A1 in pixels or points. The macro fi nds the top row in
the visible window by using ActiveWindow.ScrollRow. The macro fi nds the
left column in the visible window by using ActiveWindow.ScrollColumn.
These two lines might tell you that the top-left cell in the window is G501.
Interestingly, you can learn the distance from the top-left corner of A1 to cell
G501 by using Range("G1").Top and Range("G1").Left.

148 of 236 PART 3: MACROS

The lines inside the With block assign the Top property for the button to be
the same as the Top property for the cell at the top-left corner of the visible
window.
As you scroll through the worksheet, the button stays at the top of the window
(Figures 144 and 145).

Summary: You can use a macro to keep a button visible in a worksheet.
Source: http://www.mrexcel.com/forum/showthread.php?t=86319

Figure 144. If you scroll down, the butt on moves.

Figure 145. Th e butt on moves as you scroll
through the worksheet.

ADD A RIGHT-CLICK MENU
TO A USER FORM

Challenge: You’ve designed a custom user form. You want to add a right-click
menu (also called a context menu) to it.
Solution: Many people are used to right-clicking in Excel. If you’ve designed
a custom user form, people might want to right-click the form to get additional
options. A solution Haluk posted at the MrExcel message board takes advantage
of the user form’s MouseDown event. This event is run when someone clicks
on the user form. A variable called Button indicates whether the left or right
mouse button is clicked. Another variable, Shift, indicates which combinations
of the Shift, Ctrl, and Alt keys are held down.
For the Button variable, 1 indicates a left-click, and 2 indicates a right-click.
For the Shift variable, 0 indicates that no keys are used in combination with the
mouse click, 1 indicates the Shift key, 2 indicates the Ctrl key, and 4 indicates

Part
3

149 of 236EXCEL GURUS GONE WILD

the Alt key. If someone holds down multiple keys, Excel adds the values (for
example, 5 indicates Alt+Shift). Here is the complete table of possible values
for the Shift variable:

Shift Value Meaning
0 No keys
1 Shift
2 Ctrl
3 Shift+Ctrl
4 Alt
5 Shift+Alt
6 Ctrl+Alt
7 Shift+Ctrl+Alt

The event handler macro fi rst makes sure that Button is 2 and Shift is 0.
The macro uses API calls to build a menu. You can customize the menu by
adding additional options to the menu, using:
AppendMenu hMenu, MF_STRING, 1, "Menu Text Here"

In this case, the 1 indicates the value returned to the macro if that menu item
is selected.
The TrackPopupMenu function displays the menu and determines which
item is selected by the person using the form. The selection is returned to the
variable ret. After this line of code, the ret variable indicates the numeric
menu value selected.
Later in the macro, a Case Select handles the possible menu choices and
calls an appropriate procedure for each.
Place all this code in the code pane for the user form:
Private Type POINTAPI
 X As Long
 Y As Long
End Type
‘
Private Declare Function CreatePopupMenu Lib "user32" () As Long
Private Declare Function TrackPopupMenuEx Lib "user32" _
 (ByVal hMenu As Long, ByVal wFlags As Long, ByVal X As Long,
ByVal Y As Long, _
ByVal hWnd As Long, ByVal lptpm As Any) As Long

150 of 236 PART 3: MACROS

Private Declare Function AppendMenu Lib "user32" Alias "AppendMenuA"
_
 (ByVal hMenu As Long, ByVal wFlags As Long, ByVal wIDNewItem
As Long, _
 ByVal lpNewItem As Any) As Long
Private Declare Function DestroyMenu Lib "user32" (ByVal hMenu As
Long) As Long
Private Declare Function GetCursorPos Lib "user32" (lpPoint As
POINTAPI) As Long
Private Declare Function FindWindow Lib "user32" Alias "FindWindowA"
_
 (ByVal lpClassName As String, ByVal lpWindowName As String)
As Long
‘
Const MF_CHECKED = &H8&
Const MF_APPEND = &H100&
Const TPM_LEFTALIGN = &H0&
Const MF_SEPARATOR = &H800&
Const MF_STRING = &H0&
Const TPM_RETURNCMD = &H100&
Const TPM_RIGHTBUTTON = &H2&
‘
Dim hMenu As Long
Dim hWnd As Long
‘
Private Sub UserForm_Initialize()
 hWnd = FindWindow(vbNullString, Me.Caption)
End Sub
‘
Private Sub UserForm_MouseDown(ByVal Button As Integer, ByVal Shift
As Integer, ByVal X As Single, ByVal Y As Single)
 Dim Pt As POINTAPI
 Dim ret As Long
 If Button = 2 Then
 hMenu = CreatePopupMenu()
 AppendMenu hMenu, MF_STRING, 1, "Menu Item 1"

Part
3

151 of 236EXCEL GURUS GONE WILD

 AppendMenu hMenu, MF_STRING, 2, "Menu Item 2"
 AppendMenu hMenu, MF_SEPARATOR, 3, ByVal 0&
 AppendMenu hMenu, MF_STRING, 4, "Menu Item 3"
 GetCursorPos Pt
 ret = TrackPopupMenuEx(hMenu, TPM_LEFTALIGN Or TPM_RETURNCMD
Or _
 TPM_RIGHTBUTTON, Pt.X, Pt.Y, hWnd,
ByVal 0&)
 DestroyMenu hMenu

 Select Case ret
 Case 1
 Call MenuProc1
 Case 2
 Call MenuProc2
 Case 4
 Call MenuProc3
 End Select
 End If
End Sub
‘
Private Sub MenuProc1()
 MsgBox "PopUp menu-1 is activated !"
End Sub
‘
Private Sub MenuProc2()
 MsgBox "PopUp menu-2 is activated !"
End Sub
‘
Private Sub MenuProc3()
 MsgBox "PopUp menu-3 is activated !"
End Sub

Private Sub CommandButton1_Click()
 Unload Me
End Sub

152 of 236 PART 3: MACROS

When someone right-clicks the form, the menu is displayed (Figure 146).

Figure 146. Th e custom right-click menu is displayed.

Summary: You can add right-click menu functionality to a user form.

Source: http://www.mrexcel.com/forum/showthread.php?t=97871

This topic was nominated by Microsoft MVP Greg Truby.

FORMAT A USER FORM TEXT BOX AS
CURRENCY OR A PERCENTAGE

Challenge: You are building a custom user form to calculate a monthly payment,
based on loan amount, number of payments, and interest rate. You would like one
text box on the form to be formatted as currency and another to be formatted as
a percentage. There do not appear to be a properties to format the text boxes.

Solution: You can use the BeforeUpdate code to grab what the person
types into a text box and format it properly. If someone types 20, you can have
it automatically change to 20% when the user tabs out of the fi eld.

In the VBA editor, right-click your text box and choose View Code. Excel takes
you to the code pane and inserts a new procedure called TextBoxName.
Change. This is a good guess on Excel’s part, but you are going to use a
different event. From the right dropdown at the top of the dialog, choose
BeforeUpdate. Excel enters the start of the macro, and you need to fi ll in the
remaining lines.

To format a value as currency with two decimal places, use:

Part
3

153 of 236EXCEL GURUS GONE WILD

Private Sub tbPrin_BeforeUpdate(ByVal Cancel As MSForms.
ReturnBoolean)
 If Int(Me.tbPrin.Value) = tb.Prin.Value Then
 Me.tbPrin.Value = Format(Me.tbPrin.Value, "$#,##0")
 Else
 Me.tbPrin.Value = Format(Me.tbPrin.Value, "$#,##0.00")
 End If
End Sub

To format a value as a percentage, you must handle the situation where the
user already typed in a percentage. You also have to deal with the possibility
that someone would enter 20% as 0.2 and someone else might enter 20. Use
this code:
Private Sub tbInt_BeforeUpdate(ByVal Cancel As MSForms.
ReturnBoolean)
 ‘ Handle if they entered a % sign already
 If Not Right(Me.tbInt.Value, 1) = "%" Then
 If Me.tbInt.Value >= 1 Then
 Me.tbInt.Value = Format(Me.tbInt.Value / 100, "0.00%")
 Else
 Me.tbInt.Value = Format(Me.tbInt.Value, "0.00%")
 End If
 End If
End Sub

The text box derived from this method will look great. The downside is that when
you use those values, the percentage value is stored as text. Excel ignores the
currency character, but it does not ignore the percent symbol. You need to use
the following code to strip out the percent sign and divide the number by 100
before it can be used in a loan calculation:
Private Sub CommandButton1_Click()
 MyPct = tbInt.Value
 MyPct = Left(MyPct, Len(MyPct) - 1) / 100
 PmtAns = Application.WorksheetFunction.Pmt _
(MyPct / 12, Me.tbMonths, -Me.tbPrin.Value)
 Me.LabAns = "The monthly payment is " & Format(PmtAns,
"$#,##0.00")
End Sub

The resulting user form is shown in Figure 147.

154 of 236 PART 3: MACROS

Figure 147. Th e BeforeUpdate procedure
formats the entries in the text boxes.
Summary: Although text boxes on user forms do not offer a numeric format
property, you can use code to format the values entered in the text box.
Source: http://www.mrexcel.com/forum/showthread.php?p=66754

Nate Oliver, Microsoft Excel MVP, provided this solution. He humbly serves as
MrExcel.com’s administrator, using the handle NateO. He resides in Minneapolis
and entertains rather sophisticated fi nance and IT projects.

DELETE RECORDS IN VBA
Challenge: You need to delete records that match a certain criterion, and you’d
like to do it by using a VBA macro.
Solution: The typical solution involves running a For…Next loop backward,
from the last row up to row 1, checking each record and deciding whether
that record should be deleted. The code to delete all the records with S29 in
column D would be something like this:
Sub LoopWay()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 For i = FinalRow To 2 Step -1
 If Cells(i, 4) = "S29" Then
 Cells(i, 1).EntireRow.Delete
 End If
 Next i
End Sub

Richard Schollar offered code that achieves this task quickly and effi ciently by
using the Excel AutoFilter command to isolate the desired records and then the
SpecialCells property to delete only the visible cells.

Part
3

155 of 236EXCEL GURUS GONE WILD

For a 25,000-row data set, Excel can delete the matching records by running
three commands instead of running through a loop and executing an IF
statement 25,000 times. The code for this macro is:
Sub FasterWay()
 Dim rng As Range
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

 ‘ While the headings are in row 1, this range start in row 2
 Set rng = Cells(2, 1).Resize(FinalRow - 1, 1)

 ‘ Apply a fi lter to the dataset
 Cells(1, 1).AutoFilter fi eld:=4, Criteria1:="S29"

 ‘ Delete the visible cells starting in row 2
 rng.SpecialCells(xlCellTypeVisible).EntireRow.Delete

 ‘ Turn of the fi lter
 Cells(1, 1).AutoFilter
End Sub

The macro fi rst fi nds how many rows are in the data set. It then defi nes an
object variable that ignores the headings in row 1, starts in A2, and extends
down through the data.
After you run the AutoFilter command, only the S29 records are visible, as
shown in Figure 148.

Figure 148. One line of code turns on the AutoFilter
dropdowns and chooses S29 from the sales rep dropdown.

156 of 236 PART 3: MACROS

In the next line of code, the rng variable points to A2:A999. Using SpecialC
ells(xlCellTypeVisible) is equivalent to clicking the Special button on
the GoTo dialog and choosing Visible Cells Only. This selects A9, A116, A134,
and so on. In the same line of code, the EntireRow.Delete method removes all
the rows that match the criterion.
The last bit of cleanup is to get rid of the AutoFilter dropdowns. You can
issue the AutoFilter command without any arguments, as shown in the last
line of code, to turn them off.
Summary: Using AutoFilter is a fast way to delete records that match a
criterion.
Source: http://www.mrexcel.com/forum/showthread.php?t=185408

The code was proposed by Richard Schollar and nominated by Jon von der
Heyden.

SELF-SIGN YOUR MACROS
FOR CO-WORKERS

Challenge: You’ve created some macros for co-workers to use. Having them
click Enable Macros each time is tiresome, but you don’t want them to drop their
macro security settings too low.
Solution: You can provide a self-signed certifi cate for your macros. Getting an
“offi cial” certifi cate can be pricey, but you can create one yourself.
To create the certifi cate, select Start, All Programs, Microsoft Offi ce, Microsoft
Offi ce Tools, Digital Certifi cate for VBA Projects. Type a name for your certifi cate,
as shown in Figure 149.

Figure 149. You can create your own certifi cate.

Part
3

157 of 236EXCEL GURUS GONE WILD

Excel confi rms that a new signature has been created.
To sign a macro, follow these steps:

Go to the Visual Basic editor.
From the Visual Basic editor menu, choose Tools, Digital Signature.
Click the Choose button in the Digital Signature dialog.
Choose the signature you just created and click OK.

Excel now lists the project as signed, as shown in Figure 150:

1.
2.
3.
4.

Figure 150. You att ach the certifi cate to the project.

To enable the certifi cate on another computer, follow these steps for Excel
2003:

Open Excel.
Select Tools, Macro, Security. In the Security dialog, select Medium.
Open the workbook that is signed. Excel displays the Security Warning
dialog shown in Figure 151.

1.
2.
3.

Figure 151. Excel indicates that the macro is signed by you.

158 of 236 PART 3: MACROS

Click the Details button in the Security Warning dialog. The Digital Signature
Details dialog appears (Figure 152).

4.

Figure 152. You can view the certifi cate.
Click View Certifi cate . The Certifi cate dialog appears (Figure 153).5.

Figure 153. You use this dialog to install the
certifi cate on this machine.

Click Install Certifi cate.

Click Next three times. Click Yes. Click OK three times to return to the
Security Warning dialog.

6.

7.

Part
3

159 of 236EXCEL GURUS GONE WILD

Back in the Security Warning dialog, choose Enable Macros.

Close the workbook.

Reopen the workbook. You get the same security warning shown in Figure
152, but the checkbox for Always Trust Macros from This Publisher is now
enabled. Check this box. Click Enable Macros.

From now on, this computer will be able to open your signed macros without
any hassle!

In Excel 2007, the process is similar:

Open Excel. Make sure the macro security is set to Disable All Macros with
Notifi cation.

Open your workbook. The information bar says Macros Have Been
Disabled.

Click Options. The next dialog warns that the digital signature is invalid and
cannot be trusted. Below that, click Show Signature Details.

Click View Certifi cate.

Click Install Certifi cate.

Click Next three times and click OK four times.

Close the workbook in Excel.

Reopen the workbook in Excel.

Click the Options button in the information bar.

 Choose Always Trust Content from This Publisher.

This computer is now ready to open your signed macros.

Additional Details: The one downside of using this approach is that if a bug
arises at your co-worker’s computer, you can no longer fi x the macro there on
the spot. You have to send the macro back to yourself, fi x the macro, re-sign
the macro, and send it back to your co-worker.

Summary: Self-signing your macros makes it easier for your co-workers to
use them.

Source: http://www.mrexcel.com/forum/showthread.php?t=110793

The original post was provided by Greg Truby. The topic was nominated by
Joe4.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

160 of 236 PART 3: MACROS

MAGNIFY A SECTION OF
YOUR SCREEN

Challenge: You would like to display 48 months of data across your monitor.
When you zoom down to 40%, you can see all the columns, but you cannot
make out any numbers on the screen.

Solution: You can use a cool utility written by Ivan F. Moala and Jaafar Tribak
and posted at the MrExcel message board. Jaafar started out with a modal user
form that would display a magnifi cation of the screen underneath the cursor.
Ivan jumped in with improvements to allow the user form to be modeless and
to update as you scroll around the worksheet.

The code is shown at the message board and in both Ivan’s and Jaafar’s
versions of the program. They make use of a Windows API to return a stretched
version of the screen underneath the cursor.

As you can see in Figure 154, as you move around the screen, an enlarged
version of the area around the cell pointer is shown in the form.

Figure 154. As you move the mouse around the screen, the user form
shows a magnifi ed picture of the area under the cursor.

If you move the cursor close to the magnifi er, a magnifi ed version of the magnifi er
appears in the form. In Figure 155, the magnifi er appears three times.

Part
3

161 of 236EXCEL GURUS GONE WILD

Figure 155. Th e magnifi er even magnifi es itself!

Breaking It Down: The user form runs a macro called
GetMagnifi edImageUnderCursor. This macro loops continuously. To stop the
macro from running, a UserForm_DblClick procedure sets the value of a global
variable to TRUE. When the loop inside GetMagnifi edImageUnderCursor
sees that this variable is set to TRUE, the loop is allowed to end.
Note: The accessibility options in Windows provide a magnifi er. It is not as cool
as this one, though.
Summary: You can use a utility to magnify a section of an Excel document.
Source: http://www.mrexcel.com/forum/showthread.php?t=288381

The post was nominated by Greg Truby. Thanks to Ivan F Moala and Jaafar
Tribak for collaborating on the code in this topic.

LIST COMBINATIONS OF N ITEMS
TAKEN M AT A TIME

Challenge: You want to list all unique combinations of m items from a population
set of n items. For example, you might want to generate all possible unique
groups of 4 employees from a set of 10.
Solution: There are two ways to go about this: the quick-and-dirty way and the
better-but-more-diffi cult way.
Quick-and-Dirty Solution
An unimaginative (and rather kludgey) approach to solving the problem for
m=3 could be:

162 of 236 PART 3: MACROS

Sub ClumsyCombin()
 Dim n As Integer
 n = InputBox("Number of items?", "Combinations")
 NumComb = 0
 Range("A:A").ClearContents
 Range("A1").Select
 For i = 1 To n-2
 For j = 2 To n-1
 For k = 3 To n
 If i < j And j < k Then
 ActiveCell = i & " " & j & " " & k
 ActiveCell.Offset(1, 0).Select
 NumComb = NumComb + 1
 End If
 Next k
 Next j
 Next i
 MsgBox (NumComb & " combinations listed")
End Sub

A major problem with this approach is that the number of For...Next loops
is hard-coded in the routine. If you need to fi nd combinations of, say, 4 items at
a time, an additional For...Next loop has to be inserted, and the condition
check needs to be modifi ed. For combinations of 2, a loop would need to be
removed or skipped.
A Better Solution
This problem is an ideal candidate for a recursive function. This solution
comprises a subroutine to specify the inputs n (population set size) and m
(subset size), initialize a combinations counter, and set things up for entry of
the combinations in column A of the active worksheet. This routine then calls
a recursive function to generate the combinations. After all combinations are
generated, the program exits, with a message with information on the number
of combinations found.
Copy the following code to a blank module in a workbook:
Dim NumComb ‘Combinations counter
Sub Combinations()
 Dim n As Integer, m As Integer
 NumComb = 0
 n = InputBox("Number of items?", "Combinations")
 m = InputBox("Taken how many at a time?", "Combinations")

Part
3

163 of 236EXCEL GURUS GONE WILD

 ‘Application.ScreenUpdating = False
 Range("A:A").ClearContents
 Range("A1").Select
 Comb2 n, m, 1, ""
 MsgBox (NumComb & " combinations listed")
End Sub

‘Generate combinations of integers k..n taken m at a time,
recursively
Private Function Comb2(ByVal n As Integer, _
ByVal m As Integer, _
ByVal k As Integer, ByVal s As String)
 ‘Debug.Print m, k, s
 If m > n - k + 1 Then Exit Function
 If m = 0 Then
 ActiveCell = s
 NumComb = NumComb + 1
 ActiveCell.Offset(1, 0).Select
 Exit Function
 End If
 Comb2 n, m - 1, k + 1, s & k & " "
 Comb2 n, m, k + 1, s
End Function

The Sub procedure is fairly straightforward. The power play begins from the
point where the function is called:
Comb2 n, m, 1, ""

Let’s start by analyzing how to logically build the combinations. Let’s say you
want to generate combinations of 5 items taken 3 at a time (i.e., output 3
characters from 1,2,3,4,5). You would build the strings as follows:

Starting with 1, add values sequentially until your subset has a size of 3.
The next value is 2, so you get 1,2. The following value is 3, so you get
1,2,3, at which point your subset size of 3 elements is attained. Then you
look for other combinations by varying the third value, and you get 1,2,4
and 1,2,5. Thus with 1,2 you get 1,2,3 and 1,2,4 and 1,2,5.
Increment the second value to 3 to get the two-piece fragment 1,3. The third
value in sequence is 4, so you get 1,3,4, at which point your subset size of
3 elements is attained. Then you look for other combinations by varying the
third value, and you get 1,3,5. Thus with 1,3 you get 1,3,4 and 1,3,5.

1.

2.

164 of 236 PART 3: MACROS

Increment the second value to 4 to get the two-piece fragment 1,4. The third
value in sequence is 5, so you get 1,4,5, at which point your subset size of
3 elements is attained. In your quest for other combinations by varying the
third value, you fi nd none because 5 is already used. Thus with 1,4 you get
1,4,5 only.
Increment the second value to 5 to get 1,5. You fi nd that you have no next
value for the third element.
Increment the fi rst value to 2, set the second element to 3, and get the
combinations 2,3,4 and 2,3,5 and so on to get the remaining combinations
2,4,5 and 3,4,5.

Let’s now examine the function Comb2. Notice the ByVals in the function
arguments, which cause arguments to be passed by value. When fi rst called
from the subroutine (Comb2 n, m, 1, ""), for our example of 5 items taken
3 at a time, the arguments are n=5, m=3, k=1, and a null string indicating
that the 3-element string is yet to be built.
At the initial entry point, the two Ifs (which we look at more closely later) are
skipped. The line executed is:
Comb2 n, m - 1, k + 1, s & k & " "

Notice that this is a call to the function itself (which is why it is called a recursive
function), with m reduced by 1 (m=2 now), k incremented by 1 (k=2 now),
and the string being set to “1 “. The code again skips the two Ifs, and the line
Comb2 n, m - 1, k + 1, s & k & " " calls the function recursively again, with
m=1, k=3, and s="1 2 " and then with m=0, k=4, and s="1 2 3 “. At this
point, you have obtained the fi rst combination.
When the same line calls the function next, the condition m=0 is satisfi ed, and
the code enters this block:
If m = 0 Then
 ActiveCell = s
 NumComb = NumComb + 1
 ActiveCell.Offset(1, 0).Select
 Exit Function
End If

This part of the code enters the combination (‘1 2 3 ‘) in the active cell, activates
the next cell, and exits the last call to the function. Remember that the function
was last called by:
Comb2 n, m - 1, k + 1, s & k & " "

The Exit function makes it branch to the next line, Comb2 n, m, k + 1, s.
At this point, the last value in the string (“1 2 3”) is incremented to the extent

3.

4.

5.

Part
3

165 of 236EXCEL GURUS GONE WILD

possible to get “1 2 4” and “1 2 5” in subsequent calls. When “1 2 5” is obtained,
the next call by Comb2 n, m, k + 1, s is done with m=1 and k=6.
These values of m and k satisfy the condition for If m > n - k + 1 Then Exit
Function because 1 > 5 – 6 + 1 and the call to the function exits, signifying
the end of the loop for combinations for 12*.
The function thus continues to run, building the combinations for 13*, 14*,
23*, 24*, and 34*, and it fi nally exits to the Sub Combinations function from
which it was fi rst called, and a message box says that 10 combinations were
generated.
An easy way to monitor the fl ow of calculations is to uncomment the line Debug.
Print m, k, s in the code for Comb2 and watch the output in the immediate
window:
m k s

3 1

2 2 1

1 3 1 2

0 4 1 2 3

1 4 1 2

0 5 1 2 4

1 5 1 2

0 6 1 2 5

1 6 1 2

2 3 1

1 4 1 3

0 5 1 3 4

1 5 1 3

0 6 1 3 5

1 6 1 3

2 4 1

1 5 1 4

0 6 1 4 5

1 6 1 4

2 5 1

3 2

2 3 2

166 of 236 PART 3: MACROS

1 4 2 3

0 5 2 3 4

1 5 2 3

0 6 2 3 5

1 6 2 3

2 4 2

1 5 2 4

0 6 2 4 5

1 6 2 4

2 5 2

3 3

2 4 3

1 5 3 4

0 6 3 4 5

1 6 3 4

2 5 3

3 4

Summary: This topic illustrates how a problem that would otherwise require
a variable number of For...Next loops can be effi ciently solved using a
subroutine/recursive function combination.
Source: http://www.mrexcel.com/forum/showthread.php?t=63064

167

While you’ve seen function references before, this one is different in a couple
of ways. First, it is alphabetical, so you don’t have to fi gure out if AVERAGE is
considered to be in the math category or the statistics category. Second, I’ve
added guru tips on about a third of the functions. These will often give ideas of
how you can use the function.
ABS(number) [Category: Math]
Returns the absolute value of a number. The absolute value of a number is the
number without its sign.
ACCRINT(issue,fi rst_interest,settlement,rate,par,frequency,basis)
[Category: Financial]*
Returns the accrued interest for a security that pays periodic interest.
ACCRINTM(issue,maturity,rate,par,basis) [Category: Financial]*
Returns the accrued interest for a security that pays interest at maturity.
ACOS(number) [Category: Math]
Returns the arccosine of a number. The arccosine is the angle whose cosine is
number. The returned angle is given in radians in the range 0 (zero) to pi.
ACOSH(number) [Category: Math]
Returns the inverse hyperbolic cosine of a number. Number must be greater
than or equal to 1. The inverse hyperbolic cosine is the value whose hyperbolic
cosine is number, so ACOSH(COSH(number)) equals number.
ADDRESS(row_num,column_num,abs_num,a1,sheet_text) [Category:
Lookup & Reference]
Creates a cell address as text, given specifi ed row and column numbers. Guru
Tip: Use when you need to generate a cell address for use with INDIRECT,
as shown on page 32. In Excel 2007, use =ADDRESS(2^20,2^14) to return
XFD1048576. Also see page 32.
AMORDEGRC(cost,date_purchased,fi rst_period, salvage, period, rate,
basis) [Category: Financial]*
Returns the depreciation for each accounting period. This function is provide
for the French accounting system. If an asset is purchased in the middle of the
accounting period, the prorated depreciation is taken into account. The function
is similar to AMORLINC, except that a depreciation coeffi cient is applied in the
calculation depending on the life of the assets.

APPENDIX 1
ALPHABETICAL FUNCTION REFERENCE

168 of 236 APPENDIX

AMORLINC(cost,date_purchased,fi rst_period,salvage,period,rate,basis)
[Category: Financial]*
Returns the depreciation for each accounting period. This function is provided
for the French accounting system. If an asset is purchased in the middle of the
accounting period, the prorated depreciation is taken into account.
AND(logical1,logical2, ...) [Category: Logical]
Returns TRUE if all its arguments are TRUE; returns FALSE if one or more
arguments is FALSE. Guru Tip: Use the AND function as the fi rst argument in an
IF function. To pay a $1000 bonus only when cell F2 is greater than 20000 and
cell H2 is greater than 45%, use =IF(AND(F2>20000,H2>0.45),1000,0).
AREAS(reference) [Category: Lookup & Reference]
Returns the number of areas in a reference. An area is a range of contiguous
cells or a single cell.
ASC(text) [Category: Text]
Changes full-width (double-byte) English letters or katakana within a character
string to half-width (single-byte) characters.
ASIN(number) [Category: Math]
Returns the arcsine of a number. The arcsine is the angle whose sine is number.
The returned angle is given in radians in the range -pi/2 to pi/2.
ASINH(number) [Category: Math]
Returns the inverse hyperbolic sine of a number. The inverse hyperbolic sine is
the value whose hyperbolic sine is number, so ASINH(SINH(number)) equals
number.
ATAN(number) [Category: Math]
Returns the arctangent of a number. The arctangent is the angle whose tangent
is number. The returned angle is given in radians in the range -pi/2 to pi/2.
ATAN2(x_num,y_num) [Category: Math]
Returns the arctangent of the specifi ed x- and y-coordinates. The arctangent is
the angle from the x-axis to a line containing the origin (0, 0) and a point with
coordinates (x_num, y_num). The angle is given in radians between -pi and pi,
excluding -pi.
ATANH(number) [Category: Math]
Returns the inverse hyperbolic tangent of a number. Number must be between
-1 and 1 (excluding -1 and 1). The inverse hyperbolic tangent is the value whose
hyperbolic tangent is number, so ATANH(TANH(number)) equals number.
AVEDEV(number1,number2, ...) [Category: Statistical]]
Returns the average of the absolute deviations of data points from their mean.
AVEDEV is a measure of the variability in a data set.

169 of 236EXCEL GURUS GONE WILD

AVERAGE(number1,number2, ...) [Category: Statistical]]
Returns the average (arithmetic mean) of the arguments. Guru Tip: One of the
top fi ve functions, right up there with SUM. Annoyingly, the AVERAGE of a range
of blank cells returns a division by zero error.
AVERAGEA(value1,value2,...) [Category: Statistical]]
Calculates the average (arithmetic mean) of the values in the list of arguments.
In addition to numbers, text and logical values such as TRUE and FALSE are
included in the calculation.
AVERAGEIF(range,criteria,average_range) [Category: Statistical]]
Returns the average (arithmetic mean) of all the cells in a range that meet a
criteria. New in Excel 2007. Guru Tip: Microsoft added this function in Excel
2007, apparently for people who were tired of using SUMIF()/COUNTIF.
AVERAGEIFS(average_range,criteria_range1,criteria1,[criteria_
range2,criteria2,…]) [Category: Statistical]]
Returns the average (arithmetic mean) of all the cells that meet multiple criteria.
New in Excel 2007. Guru Tip: One of three "plural" functions added in Excel
2007, designed to increase the number of criteria in SUMIF and COUNTIF from
1 to 127.
BAHTTEXT(number) [Category: Text]
New in Excel XP: Converts a number to Thai text and adds a suffi x of "Baht".
BESSELI(x,n) [Category: Engineering]*
Returns the modifi ed Bessel function, which is equivalent to the Bessel function
evaluated for purely imaginary arguments. Guru Tip: The BESSEL functions
are useful in physics when solving partial differential equations in cylindrical
coordinates. It is also useful for getting a laugh in front of a room full of
accountants; "the fi rst question ever sent in to MrExcel.com asked me to explain
how to use the BESSELJ function".
BESSELJ(x,n) [Category: Engineering]*
Returns the Bessel function.
BESSELK(x,n) [Category: Engineering]*
Returns the modifi ed Bessel function, which is equivalent to the Bessel functions
evaluated for purely imaginary arguments.
BESSELY(x,n) [Category: Engineering]*
Returns the Bessel function, which is also called the Weber function or the
Neumann function.
BETADIST(x,alpha,beta,A,B) [Category: Statistical]]
Returns the cumulative beta probability density function. The cumulative beta
probability density function is commonly used to study variation in the percentage

170 of 236 APPENDIX

of something across samples, such as the fraction of the day people spend
watching television.
BETAINV(probability,alpha,beta,A,B) [Category: Statistical]]
Returns the inverse of the cumulative beta probability density function. That is, if
probability = BETADIST(x,...), then BETAINV(probability,...) = x. The cumulative
beta distribution can be used in project planning to model probable completion
times given an expected completion time and variability.
BIN2DEC(number) [Category: Engineering]*
Converts a binary number to decimal. Guru Tip: Frustratingly, this function only
works with numbers up through 511. Otherwise, using BIN2DEC and DEC2BIN
might be a great way to code and decode fi nancial statements with bad fi nancial
news. See ROMAN.
BIN2HEX(number,places) [Category: Engineering]*
Converts a binary number to hexadecimal.
BIN2OCT(number,places) [Category: Engineering]*
Converts a binary number to octal. Guru Tip: If you are of the age where you
learned about alternate numbering systems from Tom Yohe’s singing about Little
TwelveToes on Saturday mornings, then imagine a planet where everyone only
has eight fi ngers and you’ve got the concept behind this numbering system.
Both Octal and Hexadecimal were popular in the early days of computing.
BINOMDIST(number_s,trials,probability_s,cumulative) [Category:
Statistical]]
Returns the individual term binomial distribution probability. Use BINOMDIST in
problems with a fi xed number of tests or trials, when the outcomes of any trial are
only success or failure, when trials are independent, and when the probability of
success is constant throughout the experiment. For example, BINOMDIST can
calculate the probability that two of the next three babies born are male.
CALL(register_id,argument1,...)
Calls a procedure in a dynamic link library or code resource. Use this syntax
only with a previously registered code resource, which uses arguments from the
REGISTER function.
CALL(fi le_text,resource,type_text,argument1,...)
Calls a procedure in a dynamic link library or code resource. Use this syntax to
simultaneously register and call a code resource for the Macintosh.
CALL(module_text,procedure,type_text,argument1,...)
Calls a procedure in a dynamic link library or code resource. Use this syntax to
simultaneously register and call a code resource for Windows machines.

171 of 236EXCEL GURUS GONE WILD

CEILING(number,signifi cance) [Category: Math]
Returns number rounded up, away from zero, to the nearest multiple of
signifi cance. For example, if you want to avoid using pennies in your prices and
your product is priced at $4.42, use the formula =CEILING(4.42,0.05) to round
prices up to the nearest nickel.
CELL(info_type,reference) [Category: Information]
Returns information about the formatting, location, or contents of the upper-left
cell in a reference. (See page 31)
CHAR(number) [Category: Text]
Returns the character specifi ed by a number. Use CHAR to translate code page
numbers you might get from fi les on other types of computers into characters.
Guru Tip: character 65 is a capital letter A. Character 90 is a capital letter Z. To
fi ll the letters of the alphabet, select cells A1:A26. Type =CHAR(ROW(A65)) and
press Ctrl+Enter.
CHIDIST(x,degrees_freedom) [Category: Statistical]]
Returns the one-tailed probability of the chi-squared distribution. The γ2
distribution is associated with a γ2 test. Use the γ2 test to compare observed
and expected values. For example, a genetic experiment might hypothesize that
the next generation of plants will exhibit a certain set of colors. By comparing the
observed results with the expected ones, you can decide whether your original
hypothesis is valid.
CHIINV(probability,degrees_freedom) [Category: Statistical]]
Returns the inverse of the one-tailed probability of the chi-squared distribution.
If probability = CHIDIST(x,...), then CHIINV(probability,...) = x. Use this function
to compare observed results with expected ones to decide whether your original
hypothesis is valid.
CHITEST(actual_range,expected_range) [Category: Statistical]]
Returns the test for independence. CHITEST returns the value from the chi-
squared (γ2) distribution for the statistic and the appropriate degrees of freedom.
You can use γ2 tests to determine whether hypothesized results are verifi ed by
an experiment.
CHOOSE(index_num,value1,value2,...) [Category: Lookup & Reference]
Uses index_num to return a value from the list of value arguments. Use CHOOSE
to select one of up to 29 values based on the index number. For example, if
value1 through value7 are the days of the week, CHOOSE returns one of the
days when a number between 1 and 7 is used as index_num. See Page 8.
CLEAN(text) [Category: Text]
Removes all nonprintable characters from text. Use CLEAN on text imported
from other applications that contains characters that may not print with your

172 of 236 APPENDIX

operating system. For example, you can use CLEAN to remove some low-level
computer code that is frequently at the beginning and end of data fi les and
cannot be printed. Guru Tip: Clean is a great idea that is severely out of date. It
removes character codes 1 through 31, 129, 141, 143, 144, and 157. It misses
a number of other characters which have become popular due to HTML and
web pages. Personally, I wish that CLEAN and TRIM would work with character
160 – the non-breaking space that happens when someone codes into
a web page.
CODE(text) [Category: Text]
Returns a numeric code for the fi rst character in a text string. The returned code
corresponds to the character set used by your computer. Guru Tip: Use this
to learn the character code for a letter. For example, =CODE("A") will remind
you that a capital A is 65. This is good for discovering the character number
of an problematic character. In the fi gure below, someone used Alt+Enter to
enter three lines of an address in cell A1. The formula in D11 identifi es that the
Alt+Enter actually inserts a character code 10 to represent the Alt+Enter. The
formula in E1 then uses SUBSTITUTE and CHAR to replace the line feeds with
semi-colons. After using paste values in E, you could use Text to Columns to
successfully break out a whole column of addresses entered like cell A1.

173 of 236EXCEL GURUS GONE WILD

COLUMN(reference) [Category: Lookup & Reference]
Returns the column number of the given reference. Guru Tip: Writing
=COLUMN(B1) is a great way to write the number 2. This is particularly handy
when you have to use a similar VLOOKUP to return the 2nd, 3rd, … 12th
columns from a lookup table. Rather than hard-coding 2 as the 3rd argument
in the VLOOKUP, specify COLUMN(B1). As you copy this formula to the right,
the reference will automatically update to return COLUMN(C1) which is 3, then
COLUMN(D1) which is 4, and so on.

COLUMNS(array) [Category: Lookup & Reference]
Returns the number of columns in an array or reference.
COMBIN(number,number_chosen) [Category: Math]
Returns the number of combinations for a given number of items. Use COMBIN
to determine the total possible number of groups for a given number of items.
Guru Tip: You can fi gure out the probability of your state lottery game using
COMBIN. If your lotto drawing draws 6 numbers from a pool of 40 numbers, use
=COMBIN(40,6) to show you that there are 3.8 million combinations.

COMPLEX(real_num,i_num,suffi x) [Category: Engineering]*
Converts real and imaginary coeffi cients into a complex number of the form x +
yi or x + yj.
CONCATENATE(text1,text2,...) [Category: Text]
Joins several text strings into one text string. Guru Tip: Jeff Bissell notes that
you can also use the ampersand to join text together: =A2&B2&C2 is equivalent
to =CONCATENATE(A2,B2,C2).
CONFIDENCE(alpha,standard_dev,size) [Category: Statistical]]
Returns the confi dence interval for a population mean. The confi dence interval
is a range on either side of a sample mean. For example, if you order a product
through the mail, you can determine, with a particular level of confi dence, the
earliest and latest the product will arrive.

174 of 236 APPENDIX

CONVERT(number,from_unit,to_unit) [Category: Engineering]*
Converts a number from one measurement system to another. For example,
CONVERT can translate a table of distances in miles to a table of distances in
kilometers. Guru Tip: Check out the help topic for this function to get the exact
abbreviations for the various measurement units. The function is incredibly
versatile, offering conversions of weight, distance, time, pressure, force, energy,
power, magnetism, temperature, and liquid measure. Some of the more common
abbreviations are shown below.

CORREL(array1,array2) [Category: Statistical]]
Returns the correlation coeffi cient of the array1 and array2 cell ranges. Use
the correlation coeffi cient to determine the relationship between two properties.
For example, you can examine the relationship between a location’s average
temperature and the use of air conditioners.
COS(number) [Category: Math]
Returns the cosine of the given angle. Guru Tip: Although you probably learned
about the cosine function in a high school geometry class where the cosine of
360 degrees is 1, the cosine in Excel does not work with degrees, it works with
radians. There are 2 x Pi radians in a circle. To convert the degrees shown in
column A to radians, use the RADIANS function.

175 of 236EXCEL GURUS GONE WILD

176 of 236 APPENDIX

COSH(number) [Category: Math]
Returns the hyperbolic cosine of a number.
COUNT(value1,value2, ...) [Category: Statistical]]
Counts the number of cells that contain numbers and numbers within the list
of arguments. Use COUNT to get the number of entries in a number fi eld in a
range or array of numbers. Guru Tip: COUNT only counts numeric entries. If you
have to count cells in a range that might contain text or TRUE/FALSE values,
use COUNTA. If you have to count cells in a vertical range that might contains
blanks, use ROWS.

COUNTA(value1,value2, ...) [Category: Statistical]]
Counts the number of cells that are not empty and the values within the list of
arguments. Use COUNTA to count the number of cells that contain data in a
range or array.
COUNTBLANK(range) [Category: Information]
Counts empty cells in a specifi ed range of cells. Guru Tip: Use =COUNTA(Rang
e)+COUNTBLANK(Range) to count all the cells in the range. You could also use
=ROWS(Range)*COLUMNS(Range). Both seem equally annoying.
COUNTIF(range,criteria) [Category: Math]
Counts the number of cells within a range that meet the given criteria. Guru Tip:
Along with SUMIF, added to Excel to prevent people from having to use array
formulas. The one drawback is that COUNTIF and SUMIF can only handle a
single criteria. Although most people don’t realize that the criteria in COUNTIF
can be dynamic as shown below. Also see pages 6 & 47.

177 of 236EXCEL GURUS GONE WILD

COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2,…])
[Category: Math]
Applies criteria to cells across multiple ranges and counts the number of times
all criteria are met. Added in Excel 2007. Guru Tip: This is the plural version of
COUNTIF.You can specify up to 127 pairs of criteria range and criteria.
COUPDAYBS(settlement,maturity,frequency,basis) [Category: Financial]*
Returns the number of days from the beginning of the coupon period to the
settlement date.
COUPDAYS(settlement,maturity,frequency,basis) [Category: Financial]*
Returns the number of days in the coupon period that contains the settlement
date.
COUPDAYSNC(settlement,maturity,frequency,basis) [Category:
Financial]*
Returns the number of days from the settlement date to the next coupon date.
COUPNCD(settlement,maturity,frequency,basis) [Category: Financial]*
Returns a number that represents the next coupon date after the settlement
date. To view the number as a date, click Cells on the Format menu, click Date
in the Category box, and then click a date format in the Type box.
COUPNUM(settlement,maturity,frequency,basis) [Category: Financial]*
Returns the number of coupons payable between the settlement date and
maturity date, rounded up to the nearest whole coupon.
COUPPCD(settlement,maturity,frequency,basis) [Category: Financial]*
Returns a number that represents the previous coupon date before the settlement
date. To view the number as a date, click Cells on the Format menu, click Date
in the Category box, and then click a date format in the Type box.
COVAR(array1,array2) [Category: Statistical]]
Returns covariance, the average of the products of deviations for each data
point pair. Use covariance to determine the relationship between two data sets.
For example, you can examine whether greater income accompanies greater
levels of education.
CRITBINOM(trials,probability_s,alpha) [Category: Statistical]]
Returns the smallest value for which the cumulative binomial distribution is
greater than or equal to a criterion value. Use this function for quality assurance
applications. For example, use CRITBINOM to determine the greatest number
of defective parts that are allowed to come off an assembly line run without
rejecting the entire lot.

178 of 236 APPENDIX

CUBEKPIMEMBER(connection,kpi_name,kpi_property,[caption])
[Category: Cubel]*
New in Excel 2007. Returns a key performance indicator (KPI) property and
displays the KPI name in the cell. Used for OLAP Cubes.
CUBEMEMBER(connection,member_expression,[caption]) [Category:
Cube]*
New in Excel 2007. Returns a member or tuple from the cube. Used for OLAP
Cubes.
CUBEMEMBERPROPERTY(connection,member_expression,property)
[Category: Cube]*
New in Excel 2007. Returns the value of a member property from the cube.
Use to validate that a member name exists within the cube and to return the
specifi ed property for this member. Used for OLAP Cubes.
CUBERANKEDMEMBER(connection,set_expression,rank,[caption])
[Category: Cube]*
New in Excel 2007. Returns the nth or ranked member in a set. Use to return
one or more elements in a set, such as the top sales performer or the top 10
students. Used for OLAP Cubes.
CUBESET(connection,set_expression,[caption],[sort_order].[sort_by])
[Category: Cube]*
New in Excel 2007. Defi nes a calculated set of members or tuples by sending a
set expression to the cube on the server, which creates the set, and then returns
that set to Microsoft Excel. Used for OLAP Cubes.
CUBESETCOUNT(set) [Category: Cube]*
New in Excel 2007. Returns the number of items in a set. Guru Tip: the set
argument may be a CUBESET function. Used for OLAP Cubes.
CUBEVALUE(connection,member_expression1) [Category: Cube]*
New in Excel 2007. Returns an aggregated value from the cube. Used for OLAP
Cubes.
CUMIPMT(rate,nper,pv,start_period,end_period,type) [Category:
Financial]*
Returns the cumulative interest paid on a loan between start_period and end_
period. Guru Tip: great for calculating how much interest you will pay in each
year of your housing mortgage. While I usually use a negative value for the pv
argument in the PMT function, this function requires pv to be positive. Note that
in the image below, I used a positive value for pv, but preceded the CUMIPMT
function with a minus sign. Also, the type argument is no longer optional.

179 of 236EXCEL GURUS GONE WILD

CUMPRINC(rate,nper,pv,start_period,end_period,type) [Category:
Financial]*
Returns the cumulative principal paid on a loan between start_period and end_
period. Guru Tip: See the example shown for CUMIPMT, above.
DATE(year,month,day) [Category: Date & Time]
Returns the serial number that represents a particular date. Guru Tip: Say that
you have a date entered in D2. To fi nd the fi rst of that month, use =DATE(YE
AR(D2),MONTH(D2),1). To fi nd the last of the month, use =DATE(YEAR(D2),
MONTH(D2)+1,0). Amazingly, the DATE function has no problem with months
in excess of 12. If you ask for the 45th day of the 17th month of 2009 with
=DATE(2009,17,45), Excel will correctly report June 14, 2010.
DATEDIF(start_date,end_date,unit) [Category: Date & Time]
Calculates the number of days, months, or years between two dates. This
function is provided for compatibility with Lotus 1-2-3. Guru Tip: DATEDIF has
only been documented in Excel 2000. The trick is to fi gure out the proper code
for unit. Column C below shows the valid units for DATEDIF. Using these codes,
you can express an age in years, months, day or years, days, or even decimal
years.

180 of 236 APPENDIX

181 of 236EXCEL GURUS GONE WILD

DATEVALUE(date_text) [Category: Date & Time]
Returns the serial number of the date represented by date_text. Use
DATEVALUE to convert a date represented by text to a serial number. Guru
Tip: Use DATEVALUE to correct a spreadsheet where all of the dates have
been entered as text. If you don’t format the cell that contains DATEVALUE, you
will see the serial number used to represent the date. In the image below, you
can format column B as a date to display the results as a date. On a Windows
PC, 40363 is the serial number for July 4, 2010. Note that DATEVALUE works
with some surprising abbreviations such as 4-Jul-2010, but then fails with
others such as Jul-4-2010. The result of DATEVALUE will change based on
the Regional and Language option of your computer. In many countries, the
DATEVALUE("07/04/2010") will return April 7, 2010.
DAVERAGE(database,fi eld,criteria) [Category: Database]
Averages the values in a column in a list or database that match conditions that
you specify. Guru Tip: See DSUM.
DAY(serial_number) [Category: Date & Time]
Returns the day of a date, represented by a serial number. The day is given as
an integer ranging from 1 to 31.
DAYS360(start_date,end_date,method) [Category: Date & Time]
Returns the number of days between two dates based on a 360-day year
(twelve 30-day months), which is used in some accounting calculations. Use
this function to help compute payments if your accounting system is based on
twelve 30-day months.
DB(cost,salvage,life,period,month) [Category: Financial]
Returns the depreciation of an asset for a specifi ed period using the fi xed-
declining balance method. Guru Tip: VDB seems to run circles around this
function.
DCOUNT(database,fi eld,criteria) [Category: Database]
Counts the cells that contain numbers in a column in a list or database that
match conditions that you specify. Guru Tip: See DSUM.
DCOUNTA(database,fi eld,criteria) [Category: Database]
Counts all of the nonblank cells in a column in a list or database that match
conditions that you specify. Guru Tip: See DSUM.
DDB(cost,salvage,life,period,factor) [Category: Financial]
Returns the depreciation of an asset for a specifi ed period using the double-
declining balance method or some other method you specify. Guru Tip: VDB
seems to run circles around this function.

182 of 236 APPENDIX

DEC2BIN(number,places) [Category: Engineering]*
Converts a decimal number to binary. Guru Tip: Returns up to a 10 character
result. Since each character holds a single bit, you have one sign bit and 9
magnitude bits. This means that DEC2BIN works with numbers from -512 to
+511.

DEC2HEX(number,places) [Category: Engineering]*
Converts a decimal number to hexadecimal. Guru Tip: Returns up to a 10
character result. Since each character holds 4 bits (2^4=16), the function can
represent one sign bit and 39 magnitude bits. This means that DEC2HEX works
with numbers in the range of -549,755,813,888 to +549,755,813,887. A real-life
use for DEC2HEX is converting RGB values to color codes for use in web page
design.

183 of 236EXCEL GURUS GONE WILD

DEC2OCT(number,places) [Category: Engineering]*
Converts a decimal number to octal. Guru Tip: Since each character in the
result holds 3 bits (2^3), the 10 character result can hold up to 29 bits plus a
sign bit as the most signifi cant bit. The result is that DEC2OCT can work with
positive numbers up to 536,870,911 and negative numbers (expressed in two’s
complement notation) to -536,870,912. If the places argument is omitted, Excel
will return only as many characters as necessary.
DEGREES(angle) [Category: Math]
Converts radians into degrees. Guru Tip: Cosine and sine functions in Excel
work with radians instead of degrees. There are 2 x Pi radians in a circle and
360 degrees in a circle. You can convert radians to degrees by dividing the
radians by (PI()/180) or instead use this handy function.
DELTA(number1,number2) [Category: Engineering]*
Tests whether two values are equal. Returns 1 if number1 = number2; returns 0
otherwise. Use this function to fi lter a set of values. For example, by summing
several DELTA functions you calculate the count of equal pairs. This function is
also known as the Kronecker Delta function.
DEVSQ(number1,number2,...) [Category: Statistical]]
Returns the sum of squares of deviations of data points from their sample
mean.
DGET(database,fi eld,criteria) [Category: Database]
Extracts a single value from a column in a list or database that matches conditions
you specify. Guru Tip: Please read and understand DSUM fi rst. This is the one
unique function amongst the database functions. It will return a single value at

184 of 236 APPENDIX

the intersection of many criteria. In the fi gure for DSUM, the formula in cell J18
is =DGET(A3:D15,"Revenue",F18:H19) and will fi nd the single cell which
matches all three criteria.
DISC(settlement,maturity,pr,redemption,basis) [Category: Financial]*
Returns the discount rate for a security.
DMAX(database,fi eld,criteria) [Category: Database]
Returns the largest number in a column in a list or database that matches
conditions you specify. Guru Tip: See DSUM.
DMIN(database,fi eld,criteria) [Category: Database]
Returns the smallest number in a column in a list or database that matches
conditions you specify. Guru Tip: See DSUM.
DOLLAR(number,decimals) [Category: Text]
Converts a number to text using currency format, with the decimals rounded to
the specifi ed place. The format used is $#,##0.00_);($#,##0.00).
DOLLARDE(fractional_dollar,fraction) [Category: Financial]*
Converts a dollar price expressed as a fraction into a dollar price expressed as
a decimal number. Use DOLLARDE to convert fractional dollar numbers, such
as securities prices, to decimal numbers. Guru Tip: This function is pretty much
obsolete since Wall Street switched to decimal prices for stock quotes in 2001.
DOLLARFR(decimal_dollar,fraction) [Category: Financial]*
Converts a dollar price expressed as a decimal number into a dollar price
expressed as a fraction. Use DOLLARFR to convert decimal numbers to
fractional dollar numbers, such as securities prices.
DPRODUCT(database,fi eld,criteria) [Category: Database]
Multiplies the values in a column in a list or database that match conditions that
you specify. Guru Tip: See DSUM.
DSTDEV(database,fi eld,criteria) [Category: Database]
Estimates the standard deviation of a population based on a sample, using the
numbers in a column in a list or database that match conditions that you specify.
Guru Tip: See DSUM.
DSTDEVP(database,fi eld,criteria) [Category: Database]
Calculates the standard deviation of a population based on the entire population,
using the numbers in a column in a list or database that match conditions that
you specify. Guru Tip: See DSUM.
DSUM(database,fi eld,criteria) [Category: Database]
Adds the numbers in a column in a list or database that match conditions that
you specify. Guru Tip: Before pivot tables, most analysts made frequent use
of DSUM and the similar database functions such as DAVERAGE, DCOUNT,

185 of 236EXCEL GURUS GONE WILD

etc. If you have the space to enter a criteria range, this function certainly did
SUMIFS before there was a SUMIFS. It also replaces the need for AVERAGEIF,
STDDEVIF, VARIANCEIF, COUNTAIF, etc. The fi gure below shows the DSUM
result for several types of criteria ranges. In J4, the DSUM adds up all records
where the region is East. In J7, the criteria range fi nds East & Central region
sales of product A. In J11, the formula adds up Joe’s sales of product A in the
East and West. Notice the criteria range in F14:F15. The heading in F14 is left
blank and cell F15 contains a formula which points to the fi rst data row of the
database. In this image, the formula is =D4<32 and causes Excel to pull all of
the records where column D is less than 32. You can use complex formula here
such as =NOT(ISNA(VLOOKUP())) to fi nd records that match a list.

DURATION(settlement,maturity,coupon yld,frequency,basis) [Category:
Financial]*
Returns the Macauley duration for an assumed par value of $100. Duration is
defi ned as the weighted average of the present value of the cash fl ows and is
used as a measure of a bond price’s response to changes in yield.
DVAR(database,fi eld,criteria) [Category: Database]
Estimates the variance of a population based on a sample, using the numbers
in a column in a list or database that match conditions that you specify. Guru
Tip: See DSUM.
DVARP(database,fi eld,criteria) [Category: Database]
Calculates the variance of a population based on the entire population, using
the numbers in a column in a list or database that match conditions that you
specify. Guru Tip: See DSUM.

186 of 236 APPENDIX

EDATE(start_date,months) [Category: Date & Time]*
Returns the serial number that represents the date that is the indicated number of
months before or after a specifi ed date (the start_date). Use EDATE to calculate
maturity dates or due dates that fall on the same day of the month as the date
of issue. See page 51
EFFECT(nominal_rate,npery) [Category: Financial]*
Returns the effective annual interest rate, given the nominal annual interest rate
and the number of compounding periods per year.
EOMONTH(start_date,months) [Category: Date & Time]*
Returns the serial number for the last day of the month that is the indicated
number of months before or after start_date. Use EOMONTH to calculate
maturity dates or due dates that fall on the last day of the month. Guru Tip:
=EOMONTH(TODAY(),1) will return the last date of this month. This is a function
which returns the correct result in the wrong format. Always format the cell as
a date.
ERF(lower_limit,upper_limit) [Category: Engineering]*
Returns the error function integrated between lower_limit and upper_limit.
ERFC(x) [Category: Engineering]*
Returns the complementary ERF function integrated between x and infi nity.
ERROR.TYPE(error_val) [Category: Information]*
Returns a number corresponding to one of the error values in Microsoft Excel
or returns the #N/A error if no error exists. You can use ERROR.TYPE in an IF
function to test for an error value and return a text string, such as a message,
instead of the error value. Guru Tip: Here are the 7 types of errors and the result
from ERROR.TYPE:

187 of 236EXCEL GURUS GONE WILD

EUROCONVERT(number,source,target,full_precision,triangulation_
precision)
New in Excel XP - Converts a number to euros, converts a number from euros to
a euro member currency, or converts a number from one euro member currency
to another by using the euro as an intermediary (triangulation). The currencies
available for conversion are those of the European Union (EU) members that
have adopted the euro.
EVEN(number) [Category: Math]
Returns number rounded up to the nearest even integer. You can use this
function for processing items that come in twos. For example, a packing crate
accepts rows of one or two items. The crate is full when the number of items,
rounded up to the nearest two, matches the crate’s capacity. Guru Tip: I’ve been
waiting most of my Excel career to fi nd a product that comes in crates of two so
that I can use this function. It has never happened yet. The book that you are
holding comes in crates of 24. Sigh.
EXACT(text1,text2) [Category: Text]
Compares two text strings and returns TRUE if they are exactly the same,
FALSE otherwise. EXACT is case-sensitive but ignores formatting differences.
Use EXACT to test text being entered into a document. Guru Tip: Excel will
generally ignore case of text. In the image below A1 and B1 are considered
equal. In the VLOOKUP in cell A4, the lower case "hello" is considered a match
for "HELLO". While this is mostly convenient, you might need to really know if
two cells have the exact same capitalization. In that case, use EXACT.

EXP(number) [Category: Math]
Returns raised to the power of number. The constant equals 2.71828182845904,
the base of the natural logarithm.
EXPONDIST(x,lambda,cumulative) [Category: Statistical]]
Returns the exponential distribution. Use EXPONDIST to model the time
between events, such as how long an automated bank teller takes to deliver

188 of 236 APPENDIX

cash. For example, you can use EXPONDIST to determine the probability that
the process takes at most 1 minute.
FACT(number) [Category: Math]
Returns the factorial of a number. The factorial of a number is equal to 1*2*3*...*
number.
FACTDOUBLE(number) [Category: Math]*
Returns the double factorial of a number. Guru Tip: The double factorial of a
number is the product of every other number. For example, the double factorial of
9 is 9 x 7 x 5 x 3 x 1. It is fairly diffi cult to fi nd real-life examples for this function. It
does something mathematically interesting when you chart the double factorial
from -2 to -1, but Excel won’t calculate double factorial for negative numbers.
So – the two examples that I have found: used to calculate the number of
permutations of the fi ve-card board that can be dealt in a game of Texas Hold-
em (the formula involved the FACTDOUBLE of the number of players sitting at
the table) and the number of games in a round-robin tennis match.
FALSE() [Category: Logical]
Returns the logical value FALSE. Guru Tip: This seems redundant. Any place
where I might want to use =FALSE(), I could simply type FALSE. Am I missing
something?
FDIST(x,degrees_freedom1,degrees_freedom2) [Category: Statistical]]
Returns the F probability distribution. You can use this function to determine
whether two data sets have different degrees of diversity. For example, you
can examine test scores given to men and women entering high school and
determine if the variability in the females is different from that found in the
males.
FIND(fi nd_text,within_text,start_num) [Category: Text]
FIND fi nds one text string (fi nd_text) within another text string (within_text), and
returns the number of the starting position of fi nd_text, from the fi rst character of
within_text. You can also use SEARCH to fi nd one text string within another, but
unlike SEARCH, FIND is case sensitive and doesn’t allow wildcard characters.
Guru Tip: I frequently use FIND when I need to categorize data. For example,
say I have 800 rows of data and each record contains a paragraph of description
for an episode of the MrExcel podcast. A formula of =FIND("pivot",lower(D2))
will mostly return a #VALUE! error. (fi rst fi gure below) However, sort the FIND
column ascending and all of the episodes which mention a pivot will sort to the
top. (second fi gure below).

189 of 236EXCEL GURUS GONE WILD

Note that in the second fi gure the episodes are sorted by how early in the
description the pivot table is mentioned. If I wanted them to be sorted in episode
sequence, I could have used =NOT(ISERROR(FIND("pivot",LOWER(D2)))).
Also note that instead of hard-coding "pivot" in the function, I refer to cell G1
instead. This way, I can enter subtotal in G1 and re-sort by column E to fi nd
items that contain the word subtotal.

Note that people frequently ask me why I go to all this trouble when I could use
a custom AutoFilter of *pivot* as shown here. Well…I guess it is because old
habits are hard to break. Based on the fi rst paragraph, I really should be using
SEARCH instead of FIND.

FINDB(fi nd_text,within_text,start_num) [Category: Text]
FINDB fi nds one text string (fi nd_text) within another text string (within_text), and
returns the number of the starting position of fi nd_text, based on the number of

190 of 236 APPENDIX

bytes each character uses, from the fi rst character of within_text. This function
is for use with double-byte characters. You can also use SEARCHB to fi nd one
text string within another.
FINV(probability,degrees_freedom1,degrees_freedom2) [Category:
Statistical]]
Returns the inverse of the F probability distribution. If p = FDIST(x,...), then
FINV(p,...) = x.
FISHER(x) [Category: Statistical]]
Returns the Fisher transformation at x. This transformation produces a function
that is approximately normally distributed rather than skewed. Use this function
to perform hypothesis testing on the correlation coeffi cient.
FISHERINV(y) [Category: Statistical]]
Returns the inverse of the Fisher transformation. Use this transformation when
analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
FISHERINV(y) = x.
FIXED(number,decimals,no_commas) [Category: Text]
Rounds a number to the specifi ed number of decimals, formats the number in
decimal format using a period and commas, and returns the result as text. Guru
Tip: =TEXT(number,"0.00") would do the same thing, with additional fl exibility.
FLOOR(number,signifi cance) [Category: Math]
Rounds number down, toward zero, to the nearest multiple of signifi cance. Guru
Tip: CEILING will round up to the nearest nickel, which seems a more likely
scenario.
FORECAST(x,known_y’s,known_x’s) [Category: Statistical]]
Calculates, or predicts, a future value by using existing values. The predicted
value is a y-value for a given x-value. The known values are existing x-values
and y-values, and the new value is predicted by using linear regression. You can
use this function to predict future sales, inventory requirements, or consumer
trends. Guru Tip: FORECAST is used with linear progression. Cells B25:B29 of
this image use FORECAST to predict future sales. This is theoretically easier
than calculating =INTERCEPT()+SLOPE()*A25. Also see LINEST, INTERCEPT,
SLOPE.

191 of 236EXCEL GURUS GONE WILD

Note that if you create a line chart from A1:B23, you can right-click the line,
choose Add Trendline. In the Options tab of the dialog, ask for Excel to add the
equation to the chart. This will describe the slope and y-intercept.
FREQUENCY(data_array,bins_array) [Category: Statistical]]
Calculates how often values occur within a range of values, and then returns a
vertical array of numbers. For example, use FREQUENCY to count the number
of test scores that fall within ranges of scores. Because FREQUENCY returns
an array, it must be entered as an array formula. Guru Tip: This is a tough
function to set up. In my example, I have 1000 test results in A2:A1001. In D2:
D11, I enter a series of bin values. To see scores less than 10, I enter 10 in D2.
To see scores between 10 and 20, I enter 20 in D3, and so on down to 100 in
D11. Then, to compute the frequency distribution, select E2:E12 (one more row
than you have in the bins range). Type =FREQUENCY(A2:A1001,D2:$

192 of 236 APPENDIX

D$12) and press Ctrl+Shift+Enter. This one function returns an entire range of
results. In the image below, I’ve added a comment about the meaning of each
result. Note that any entries in the last row are for scores above the largest bin
value.

If you don’t need a "live" formula, it is faster to create the frequency distribution
using a pivot table. Create a pivot table from A1:A1001. Put Result down the
row area. Put Count of Result in the data area. Right-click the fi rst result in the
row area of your pivot table and choose Group and Show Detail, Group. In the
Grouping dialog, choose to group from 1 to 110 in groups of 10. The result is
shown below.

193 of 236EXCEL GURUS GONE WILD

FTEST(array1,array2) [Category: Statistical]]
Returns the result of an F-test. An F-test returns the one-tailed probability that
the variances in array1 and array2 are not signifi cantly different. Use this function
to determine whether two samples have different variances. For example, given
test scores from public and private schools, you can test whether these schools
have different levels of diversity.
FV(rate,nper,pmt,pv,type) [Category: Financial]
Returns the future value of an investment based on periodic, constant payments
and a constant interest rate.
FVSCHEDULE(principal,schedule) [Category: Financial]*
Returns the future value of an initial principal after applying a series of compound
interest rates. Use FVSCHEDULE to calculate future value of an investment
with a variable or adjustable rate.
GAMMADIST(x,alpha,beta,cumulative) [Category: Statistical]]
Returns the gamma distribution. You can use this function to study variables
that may have a skewed distribution. The gamma distribution is commonly used
in queuing analysis.
GAMMAINV(probability,alpha,beta) [Category: Statistical]]
Returns the inverse of the gamma cumulative distribution. If p = GAMMADIST(x,...),
then GAMMAINV(p,...) = x.
GAMMALN(x) [Category: Statistical]]
Returns the natural logarithm of the gamma function, Γ(x).
GCD(number1,number2, ...) [Category: Math]*
Returns the greatest common divisor of two or more integers. The greatest
common divisor is the largest integer that divides both number1 and number2
without a remainder. Guru Tip: With all due respect to Nick Irwin, my 7th grade
math teacher, Excel just made the need for one month of your math class
disappear.
GEOMEAN(number1,number2, ...) [Category: Statistical]]
Returns the geometric mean of an array or range of positive data. For example,
you can use GEOMEAN to calculate average growth rate given compound
interest with variable rates.
GESTEP(number,step) [Category: Engineering]*
Returns 1 if number ≥ step; returns 0 (zero) otherwise. Use this function to
fi lter a set of values. For example, by summing several GESTEP functions, you
calculate the count of values that exceed a threshold.

194 of 236 APPENDIX

GETPIVOTDATA(pivot_table,name) [Category: Database]
Returns data stored in a PivotTable report. You can use GETPIVOTDATA to
retrieve summary data from a PivotTable report, provided the summary data
is visible in the report. Guru Tip: While a few people swear by this function,
most swear at it, when Microsoft automatically inserts it in any formula outside
of a pivot table that points inside the pivot table. To enter a formula without
getting GETPIVOTDATA, type the cell references rather than using the mouse
or arrow keys. To turn it off permanently in Excel 2007, go to PivotTable Tools
Options. Open the Options dropdown and uncheck Generate GetPivotData. In
Excel 2003, there is an icon available, but you have to add it to a toolbar. Use
Tools, Customize. Go to the Commands tab. On the left side choose Data. On
the right side, scroll almost to the bottom. Drag the Generate GetPivotData icon
onto any toolbar (even the Pivot Table Toolbar). Click the icon to turn off the
annoying feature.
GROWTH(known_y’s,known_x’s,new_x’s,const) [Category: Statistical]]
Calculates predicted exponential growth by using existing data. GROWTH
returns the y-values for a series of new x-values that you specify by using existing
x-values and y-values. You can also use the GROWTH worksheet function to fi t
an exponential curve to existing x-values and y-values.
HARMEAN(number1,number2, ...) [Category: Statistical]]
Returns the harmonic mean of a data set. The harmonic mean is the reciprocal
of the arithmetic mean of reciprocals.
HEX2BIN(number,places) [Category: Engineering]*
Converts a hexadecimal number to binary.
HEX2DEC(number) [Category: Engineering]*
Converts a hexadecimal number to decimal. Guru Tip: Useful for converting
Hex color codes from a web page into RGB values. See DEC2HEX for an
example.
HEX2OCT(number,places) [Category: Engineering]*
Converts a hexadecimal number to octal.
HLOOKUP(lookup_value,table_array,row_index_num,range_lookup)
[Category: Lookup & Reference]
Searches for a value in the top row of a table or an array of values, and then
returns a value in the same column from a row you specify in the table or array.
Use HLOOKUP when your comparison values are located in a row across the
top of a table of data, and you want to look down a specifi ed number of rows.
Use VLOOKUP when your comparison values are located in a column to the left
of the data you want to fi nd. Guru Tip: If you can use VLOOKUP, you know how
to use HLOOKUP. If you know how to use VLOOKUP and also Paste Special
Transpose, then you never have to use HLOOKUP!

195 of 236EXCEL GURUS GONE WILD

HOUR(serial_number) [Category: Date & Time]
Returns the hour of a time value. The hour is given as an integer, ranging from
0 (12:00 A.M.) to 23 (11:00 P.M.).
HYPERLINK(link_location,friendly_name) [Category: Lookup &
Reference]
Creates a shortcut or jump that opens a document stored on a network server,
an intranet, or the Internet. When you click the cell that contains the HYPERLINK
function, Microsoft Excel opens the fi le stored at link_location. Guru Tip: These
hyperlinks are not as good as the ones created by the Insert Hyperlink dialog.
Yes, I understand that you are using this function because you have the web
page URL right over there in column C. If you want to add a bunch of hyperlinks,
select the range where the hyperlinks to be and run this three line macro:
Sub AddRealHyperlinks()
For Each cell In Selection
 ActiveSheet.Hyperlinks.Add Anchor:=cell, Address:=cell.Offset(0, 1).Value
Next cell
End Sub

HYPGEOMDIST(sample_s,number_sample,population_s,number_
population) [Category: Statistical]]
Returns the hypergeometric distribution. HYPGEOMDIST returns the probability
of a given number of sample successes, given the sample size, population
successes, and population size. Use HYPGEOMDIST for problems with a fi nite
population, where each observation is either a success or a failure, and where
each subset of a given size is chosen with equal likelihood.
IF(logical_test,value_if_true,value_if_false) [Category: Logical]
Returns one value if a condition you specify evaluates to TRUE and another
value if it evaluates to FALSE. Guru Tip: To make this function more powerful,
replace the logical_test argument with a combination of AND, OR, NOT functions.
See page 17
IFERROR(value,value_if_error) [Category: Logical]
Returns a value you specify if a formula evaluates to an error; otherwise, returns
the result of the formula. New in Excel 2007. Use the IFERROR function to trap
and handle errors in a formula. Guru Tip: IFERROR is designed to speed your

196 of 236 APPENDIX

worksheet calculation. Many gurus routinely have their spreadsheets calculate
every VLOOKUP twice with =IF(ISNA(VLOOKUP(A2,MyTable,2,False)),0, VLO
OKUP(A2,MyTable,2,False)). The problem with this long formula is that Excel
fi rst does the VLOOKUP to see if the result is #N/A. If the result is not #N/A, the
formula then makes Excel do the VLOOKUP a second time to use the result in
the value_if_false portion of the formula. If you are doing this in 500,000 cells,
calculation time will slow dramatically. The IFERROR function fi rst calculates
the formula in the value argument. If that formula does not evaluate to an error,
calculation stops and the result of the fi rst argument is used in the cell. If the
calculation results in any error such as #N/A or #DIV/0, the function will use the
2nd argument instead. This means that time-consuming calculations only have
to be performed once per cell. =IFERROR(VLOOKUP(A2,Table,2,False),0).
IMABS(inumber) [Category: Engineering]*
Returns the absolute value (modulus) of a complex number in x + yi or x + yj
text format.
IMAGINARY(inumber) [Category: Engineering]*
Returns the imaginary coeffi cient of a complex number in x + yi or x + yj text
format.
IMARGUMENT(inumber) [Category: Engineering]*
Returns the argument
 (theta) an angle expressed in radians, such that:
IMCONJUGATE(inumber) [Category: Engineering]*
Returns the complex conjugate of a complex number in x + yi or x + yj text
format.
IMCOS(inumber) [Category: Engineering]*
Returns the cosine of a complex number in x + yi or x + yj text format.
IMDIV(inumber1,inumber2) [Category: Engineering]*
Returns the quotient of two complex numbers in x + yi or x + yj text format.
IMEXP(inumber) [Category: Engineering]*
Returns the exponential of a complex number in x + yi or x + yj text format.
IMLN(inumber) [Category: Engineering]*
Returns the natural logarithm of a complex number in x + yi or x + yj text
format.
IMLOG10(inumber) [Category: Engineering]*
Returns the common logarithm (base 10) of a complex number in x + yi or x +
yj text format.
IMLOG2(inumber) [Category: Engineering]*
Returns the base-2 logarithm of a complex number in x + yi or x + yj text
format.

197 of 236EXCEL GURUS GONE WILD

IMPOWER(inumber,number) [Category: Engineering]*
Returns a complex number in x + yi or x + yj text format raised to a power.
IMPRODUCT(inumber1,inumber2,...) [Category: Engineering]*
Returns the product of 2 to 29 complex numbers in x + yi or x + yj text format.
IMREAL(inumber) [Category: Engineering]*
Returns the real coeffi cient of a complex number in x + yi or x + yj text format.
IMSIN(inumber) [Category: Engineering]*
Returns the sine of a complex number in x + yi or x + yj text format.
IMSQRT(inumber) [Category: Engineering]*
Returns the square root of a complex number in x + yi or x + yj text format.
IMSUB(inumber1,inumber2) [Category: Engineering]*
Returns the difference of two complex numbers in x + yi or x + yj text format.
IMSUM(inumber1,inumber2,...) [Category: Engineering]*
Returns the sum of two or more complex numbers in x + yi or x + yj text
format.
INDEX(array,row_num,column_num) [Category: Lookup & Reference]
Returns the value of a specifi ed cell or array of cells within array. Guru Tip:
INDEX is often paired with the MATCH function to do a lookup which is more
fl exible than VLOOKUP (see page 54 for an example). Column_num is optional
if you have only a single column of data in the array. If you want to select a
random item from J1:J20, use =INDEX(J1:J20,RANDBETWEEN(1,20)).
To turn a range on its side, use INDEX and ROW as shown below:

198 of 236 APPENDIX

INDEX(reference,row_num,column_num,area_num) [Category: Lookup &
Reference]
Returns a reference to a specifi ed cell or cells within reference. See MATCH for
an example. Also see page 2.
INDIRECT(ref_text,a1) [Category: Lookup & Reference]
Returns the reference specifi ed by a text string. References are immediately
evaluated to display their contents. Use INDIRECT when you want to change the
reference to a cell within a formula without changing the formula itself. Guru Tip:
Guru Asad Ali calls this his favorite function. There are many uses for INDIRECT.
It can be used to point to another worksheet, but fails when you need to point to
another workbook. Some examples: =INDIRECT("A2") will always point to A2.
See pages 5, 20, 27, 30-38, and 130 for more examples.
INFO(type_text) [Category: Information]
Returns information about the current operating environment. Guru Tip: British
Guru Bryony Stewart-Seume uses =INFO("directory") to put the current folder
in a cell. She also uses it in combination with INDIRECT and CONCATENATE
to build complicated lookups and references to other documents.

INT(number) [Category: Math]
Rounds a number down to the nearest integer. Guru Tip: Often used with RAND
to generate random integers: =INT(RAND()*100)+1 will generate a random
integer between 1 and 100. Also, note that INT might not act as you would
expect for negative numbers. The INT(-3.1) is -4. See TRUNC.
INTERCEPT(known_y’s,known_x’s) [Category: Statistical]]
Calculates the point at which a line will intersect the y-axis by using existing x-
values and y-values. The intercept point is based on a best-fi t regression line
plotted through the known x-values and known y-values. Use the intercept when
you want to determine the value of the dependent variable when the independent
variable is 0 (zero). For example, you can use the INTERCEPT function to
predict a metal’s electrical resistance at 0°C when your data points were taken
at room temperature and higher. Guru Tip: See image under FORECAST. Use
with SLOPE to describe the linear regression line. The intercept value is also
the second value returned from the LINEST function.
INTRATE(settlement,maturity,investment,redemption,basis) [Category:
Financial]*
Returns the interest rate for a fully invested security.

199 of 236EXCEL GURUS GONE WILD

IPMT(rate,per,nper,pv,fv,type) [Category: Financial]
Returns the interest payment for a given period for an investment based on
periodic, constant payments and a constant interest rate. For a more complete
description of the arguments in IPMT and for more information about annuity
functions, see Excel help for PV. Guru Tip: See ROW for an example of building
an amortization table using IPMT and PPMT.
IRR(values,guess) [Category: Financial]
Returns the internal rate of return for a series of cash fl ows represented by the
numbers in values. These cash fl ows do not have to be even, as they would be
for an annuity. However, the cash fl ows must occur at regular intervals, such as
monthly or annually. The internal rate of return is the interest rate received for
an investment consisting of payments (negative values) and income (positive
values) that occur at regular periods. Guru Tip: IRR is related to NPV. The IRR
is the interest rate at which a series of cash fl ows would generate a NPV of zero.
For an example of IRR, see the image after NPV.
ISBLANK(value) [Category: Information]
Returns TRUE if Value refers to an empty cell. Guru Tip: This is an unfortunate
name for this function. It really is testing for an empty cell. An empty cell has
nothing in the cell. If you type some spaces in a cell, it is no longer blank. If you
type a leading apostrophe in a cell, it is no longer blank. The net result is that
you will have a lot of cells that might appear to be blank and ISBLANK will not
report them as blank. Also see page 2.
ISERR(value) [Category: Information]
Returns TRUE if Value refers to any error value except #N/A. Guru Tip: Unless
you have some reason to accept #N/A in your worksheet, use ISERROR
instead.
ISERROR(value) [Category: Information]
Returns TRUE if Value refers to any error value (#N/A, #VALUE!, #REF!, #DIV/0!,
#NUM!, #NAME?, or #NULL!). Guru Tip: ISERROR checks for all 7 of the possible
error results. To test for a specifi c error result, see the ERROR.TYPE function.
ISERROR is more comprehensive than the older ISERR function. ISERR does
not recognize #N/A as an error.
ISEVEN(number) [Category: Information]*
Returns TRUE if number is even, or FALSE if number is odd.
ISLOGICAL(value) [Category: Information]
Returns TRUE if Value refers to a logical value.
ISNA(value) [Category: Information]
Returns TRUE if Value refers to the #N/A (value not available) error value. Guru
Tip: Specifi cally tests for #N/A error results. Good for preventing errors as the
result of VLOOKUP: =IF(ISNA(VLOOKUP(A2,MyTable,2,False)),0, VLOOKUP

200 of 236 APPENDIX

(A2,MyTable,2,False)). If you’ve upgraded to Excel 2007 and everyone who
might open your workbook has upgraded to Excel 2007, check out the new
IFERROR function instead.
ISNONTEXT(value) [Category: Information]
Returns TRUE if Value refers to any item that is not text. (Note that this function
returns TRUE if value refers to a blank cell.)
ISNUMBER(value) [Category: Information]
Returns TRUE if Value refers to a number.
ISODD(number) [Category: Information]*
Returns TRUE if number is odd, or FALSE if number is even. Guru Tip: You
could also use =MOD(Number,2)=1 to replace this function.
ISPMT(rate,per,nper,pv) [Category: Financial]
Calculates the interest paid during a specifi c period of an investment. This
function is provided for compatibility with Lotus 1-2-3.
ISREF(value) [Category: Information]
Returns TRUE if Value refers to a reference. Guru Tip: If you don’t want your
INDIRECT functions to return errors, you can check to see if it is a reference
with ISREF fi rst.
ISTEXT(value) [Category: Information]
Returns TRUE if Value refers to text.
JIS(text) [Category: Text]
Changes half-width (single-byte) English letters or katakana within a character
string to full-width (double-byte) characters.
KURT(number1,number2, ...) [Category: Statistical]]
Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
or fl atness of a distribution compared with the normal distribution. Positive
kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
relatively fl at distribution.
LARGE(array,k) [Category: Statistical]]
Returns the k-th largest value in a data set. You can use this function to select a
value based on its relative standing. For example, you can use LARGE to return
the highest, runner-up, or third-place score. Guru Tip: while =MAX returns the
largest value, =LARGE(range,2) will return the 2nd largest value. Great for
throwing out outliers. Also see PERCENTILE. Also see page 49.
LCM(number1,number2, ...) [Category: Math]*
Returns the least common multiple of integers. The least common multiple is
the smallest positive integer that is a multiple of all integer arguments number1,
number2, and so on. Use LCM to add fractions with different denominators.

201 of 236EXCEL GURUS GONE WILD

Guru Tip: If you have kids in middle school math, they can check their homework
using this function.
LEFT(text,num_chars) [Category: Text]
LEFT returns the fi rst character or characters in a text string, based on the
number of characters you specify. Guru Tip: In the image below, the item #
predictably has a 3 character prefi x. To isolate the prefi x, use =LEFT(A4,3). To
get the number after the dash, use =MID(A4,5,3) or =RIGHT(A4,3).

If the dash does not reliably occur in the 4th position in every value, use FIND to
locate the position of the dash and then subtract 1: =LEFT(F4,FIND("-",F4)-1

LEFTB(text,num_bytes) [Category: Text]
LEFTB returns the fi rst character or characters in a text string, based on
the number of bytes you specify. This function is for use with double-byte
characters.
LEN(text) [Category: Text]
LEN returns the number of characters in a text string. Guru Tip: See an example
under RIGHT where LEN is used in conjunction with RIGHT.
LENB(text) [Category: Text]
LENB returns the number of bytes used to represent the characters in a text
string. This function is for use with double-byte characters.

202 of 236 APPENDIX

LINEST(known_y’s,known_x’s,const,stats) [Category: Statistical]]
Calculates the statistics for a line by using the "least squares" method to calculate
a straight line that best fi ts your data, and returns an array that describes the
line. Because this function returns an array of values, it must be entered as an
array formula. Guru Tip: See image under FORECAST. For a simple straight-
line regression, you should select a 1 row x 2 column area and type the LINEST
function. Do not press Enter. Instead, press Ctrl+Shift+Enter. The fi rst value is
the slope and the second value is the intercept.
For multiple regression, you might have several columns of causal variables
and one dependent variable. In the image below, daily sales are in column G.
Several drivers of sales are in A:F.

To calculate multiple regression, select a range of blank cells that is fi ve rows
tall and several columns wide. You will need one column for every causal
variable (in this case, six) and one extra column to hold the intercept. Select
7 columns by 5 rows. Type =LINEST(G2:G363,A2:F363,FALSE,TRUE) and
press Ctrl+Shift+Enter. You then need to label the columns and rows. The fi rst
column in the result corresponds to the fi nal causal variable. I always type the
values from F1 to A1 backwards starting in the fi rst column above the LINEST
formula. (Type Cell F1 in J5. Type cell E1 in K5, and so on until you type cell A1

203 of 236EXCEL GURUS GONE WILD

in O5). The fi nal column is the intercept. The fi rst row of values is the slope. The
second line is the standard error. I always pay attention to line 3, column 1 as
this is the R-Squared. This ranges from 0 to 1. The closer you are to 1, the better
your regression is at predicting sales. In the present example, I would probably
go back and try to fi nd some other causal variables since an R-squared of 0.66
means that my current variables aren’t doing a good job of predicting sales.
They are better than random, but not perfect.

LN(number) [Category: Math]
Returns the natural logarithm of a number. Natural logarithms are based on the
constant e (2.71828182845904).
LOG(number,base) [Category: Math]
Returns the logarithm of a number to the base you specify.
LOG10(number) [Category: Math]
Returns the base-10 logarithm of a number.
LOGEST(known_y’s,known_x’s,const,stats) [Category: Statistical]]
In regression analysis, calculates an exponential curve that fi ts your data and
returns an array of values that describes the curve. Because this function returns
an array of values, it must be entered as an array formula.
LOGINV(probability,mean,standard_dev) [Category: Statistical]]
Returns the inverse of the lognormal cumulative distribution function of x, where
ln(x) is normally distributed with parameters mean and standard_dev. If p =
LOGNORMDIST(x,...) then LOGINV(p,...) = x.
LOGNORMDIST(x,mean,standard_dev) [Category: Statistical]]
Returns the cumulative lognormal distribution of x, where ln(x) is normally
distributed with parameters mean and standard_dev. Use this function to analyze
data that has been logarithmically transformed.
LOOKUP(lookup_value,lookup_vector,result_vector) [Category: Lookup
& Reference]
Returns a value either from a one-row or one-column range. This vector form
of LOOKUP looks in a one-row or one-column range (known as a vector) for a
value and returns a value from the same position in a second one-row or one-
column range. Included for compatibility with other worksheets. Use VLOOKUP
instead.
LOOKUP(lookup_value,array) [Category: Lookup & Reference]
Returns a value from an array. The array form of LOOKUP looks in the fi rst row
or column of an array for the specifi ed value and returns a value from the same
position in the last row or column of the array. Included for compatibility with
other spreadsheet programs. Use VLOOKUP instead.

204 of 236 APPENDIX

LOWER(text) [Category: Text]
Converts all uppercase letters in a text string to lowercase. Guru Tip: great
function for eliminating case differences between values. Also see UPPER and
PROPER.
MATCH(lookup_value,lookup_array,match_type) [Category: Lookup &
Reference]
Returns the relative position of an item in an array that matches a specifi ed value
in a specifi ed order. Use MATCH instead of one of the LOOKUP functions when
you need the position of an item in a range instead of the item itself. Guru Tip: If
the fi nal argument of MATCH is 0, then it fi nds an exact match from an unsorted
list, similar to using FALSE in VLOOKUP. If the fi nal argument is 1, then MATCH
will fi nd the value equal to or just larger the lookup value from a sorted list, the
same as using TRUE in VLOOKUP. MATCH offers further functionality in that
you can specify -1 as the fi nal argument and MATCH will fi nd a value equal to or
just smaller than the lookup value from an unsorted list. This option is beyond the
powers of VLOOKUP. Also, the function can fi nd a value from a single column
lookup-array like VLOOKUP or from a single-row lookup_array like HLOOKUP.
The one strange thing about MATCH is that it returns the relative position of the
match within the list. In the image below, Green Bay is the 7th city in A10:A19
so the formula in E5 returns a 7. For a long time, I could never fi gure out why
I would care to know that an item is the nth item in a list. My managers never
ask me, "Hey Bill, what relative row is that account found on?". The power is to

205 of 236EXCEL GURUS GONE WILD

use the result of the MATCH as the row and/or column argument in an INDEX
function. In the image below, a horizontal MATCH in E4 does a lookup to fi nd
which column has the selected product. A vertical match in E5 does a lookup
to fi nd which row has the selected city. The INDEX function in E6 grabs the
appropriate value at the intersection of the selected row and column.

If you have to do a dozen columns of VLOOKUP, you might consider replacing that
with a single MATCH column and then 12 columns of INDEX. While VLOOKUP
and MATCH take a long time to calculate, the INDEX function calculates very
rapidly. Also see page 2.
MAX(number1,number2,...) [Category: Statistical]]
Returns the largest value in a set of values. Guru Tip: You use MAX all the time
to fi nd the largest value in a list. Also check out LARGE which can fi nd the 2nd,
3rd, and 4th largest values.
MAXA(value1,value2,...) [Category: Statistical]]
Returns the largest value in a list of arguments. Text and logical values such as
TRUE and FALSE are compared as well as numbers.
MDETERM(array) [Category: Math]
Returns the matrix determinant of an array.
MDURATION(settlement,maturity,coupon,yld,frequency,basis) [Category:
Financial]*
Returns the modifi ed duration for a security with an assumed par value of
$100.
MEDIAN(number1,number2, ...) [Category: Statistical]]
Returns the median of the given numbers. The median is the number in the
middle of a set of numbers; that is, half the numbers have values that are greater
than the median, and half have values that are less. Guru Tip: For those of you

206 of 236 APPENDIX

who know Juan Pablo Gonzalez, he once wrote a macro which would simulate
having MEDIAN in a pivot table. Ask him how he did it.
MID(text,start_num,num_chars) [Category: Text]
MID returns a specifi c number of characters from a text string, starting at the
position you specify, based on the number of characters you specify. Guru Tip:
See an example under LEFT. You might sometimes need to use FIND and/
or LEN to fi nd the starting position or the number of characters. In the fi gure
above, the starting position is calculated using the FIND function. The number
of characters is calculated using LEN to get the length of the part number and
then subtracting the position of the dash. Instead of explicitly calculating the
number of characters in this case you could simply ask for a large number.
Excel will not pad the result with spaces: =MID(F4,FIND("-",F4)+1,50). Also see
page 120

MIDB(text,start_num,num_bytes) [Category: Text]
MIDB returns a specifi c number of characters from a text string, starting at the
position you specify, based on the number of bytes you specify. This function is
for use with double-byte characters.
MIN(number1,number2, ...) [Category: Statistical]]
Returns the smallest number in a set of values. Guru Tip: Check out SMALL as
well.
MINA(value1,value2,...) [Category: Statistical]]
Returns the smallest value in the list of arguments. Text and logical values such
as TRUE and FALSE are compared as well as numbers.
MINUTE(serial_number) [Category: Date & Time]
Returns the minutes of a time value. The minute is given as an integer, ranging
from 0 to 59. Guru Tip: If you ask for the minute of 1:30, the answer will be 30. If
you expect to fi nd the total number of minutes, use =TEXT(A2,"[m]") instead.
MINVERSE(array) [Category: Math]
Returns the inverse matrix for the matrix stored in an array.
MIRR(values,fi nance_rate,reinvest_rate) [Category: Financial]
Returns the modifi ed internal rate of return for a series of periodic cash fl ows.
MIRR considers both the cost of the investment and the interest received on
reinvestment of cash.
MMULT(array1,array2) [Category: Math]
Returns the matrix product of two arrays. The result is an array with the same
number of rows as array1 and the same number of columns as array2. Guru
Tip: You can use this to solve simultaneous equations in Excel. For an example,
check out Excel 2007 Miracles Made Easy.

207 of 236EXCEL GURUS GONE WILD

MOD(number,divisor) [Category: Math]
Returns the remainder after number is divided by divisor. The result has the
same sign as divisor. Guru Tip: Remember back to when you fi rst started
to learn division? 22 divided by 4 would be listed as 5 R 2? This function
returns the remainder. You could use this to count off by 3’s (as in gym class):
=MOD(ROW(),3) will classify a data set into groups numbered 0, 1, and 2. Guru
Dave Goodman suggests using =MOD(ROW(),2) as the formula in conditional
formatting to highlight every other row. Also see QUOTIENT. Also see page 11
MODE(number1,number2, ...) [Category: Statistical]]
Returns the most frequently occurring, or repetitive, value in an array or range
of data. Like MEDIAN, MODE is a location measure.
MONTH(serial_number) [Category: Date & Time]
Returns the month of a date represented by a serial number. The month is given
as an integer, ranging from 1 (January) to 12 (December).
MROUND(number,multiple) [Category: Math]*
Returns a number rounded to the desired multiple. Guru Tip: If you need to
round a price to the nearest nickel, use MROUND. If you price calculation is
=C2/0.45, then use =MROUND(C2/0.45,0.05).
MULTINOMIAL(number1,number2, ...) [Category: Math]*
Returns the ratio of the factorial of a sum of values to the product of factorials.
N(value) [Category: Information]
Returns a value converted to a number. Guru Tip: If value is numeric, then N
returns the value. If value is text, then N returns zero. I’ve seen people use
this to add a comment to a formula. At the end of the formula, type +N("this is
how the formula is working….."). Since the argument is text, N adds zero to the
formula.
NA() [Category: Information]
Returns the error value #N/A. #N/A is the error value that means "no value is
available." Use NA to mark empty cells. By entering #N/A in cells where you
are missing information, you can avoid the problem of unintentionally including
empty cells in your calculations. (When a formula refers to a cell containing #N/
A, the formula returns the #N/A error value.)
NEGBINOMDIST(number_f,number_s,probability_s) [Category:
Statistical]]
Returns the negative binomial distribution. NEGBINOMDIST returns the
probability that there will be number_f failures before the number_s-th success,
when the constant probability of a success is probability_s. This function is

208 of 236 APPENDIX

similar to the binomial distribution, except that the number of successes is fi xed,
and the number of trials is variable. Like the binomial, trials are assumed to be
independent.
NETWORKDAYS(start_date,end_date,holidays) [Category: Date & Time]*
Returns the number of whole working days between start_date and end_date.
Working days exclude weekends and any dates identifi ed in holidays. Use
NETWORKDAYS to calculate employee benefi ts that accrue based on the
number of days worked during a specifi c term. Guru Tip: This function assumes
that you work Monday through Friday. For other work weeks, see page 4. You
can optionally specify a range of company holidays as the third argument in the
function. See page 4

NOMINAL(effect_rate,npery) [Category: Financial]*
Returns the nominal annual interest rate, given the effective rate and the number
of compounding periods per year.
NORMDIST(x,mean,standard_dev,cumulative) [Category: Statistical]]
Returns the normal cumulative distribution for the specifi ed mean and standard
deviation. This function has a very wide range of applications in statistics,
including hypothesis testing.
NORMINV(probability,mean,standard_dev) [Category: Statistical]]
Returns the inverse of the normal cumulative distribution for the specifi ed mean
and standard deviation.
NORMSDIST(z) [Category: Statistical]]
Returns the standard normal cumulative distribution function. The distribution
has a mean of 0 (zero) and a standard deviation of one. Use this function in
place of a table of standard normal curve areas.
NORMSINV(probability) [Category: Statistical]]
Returns the inverse of the standard normal cumulative distribution. The
distribution has a mean of zero and a standard deviation of one.

209 of 236EXCEL GURUS GONE WILD

NOT(logical) [Category: Logical]
Reverses the value of its argument. Use NOT when you want to make sure
a value is not equal to one particular value. Guru Tip: Sometimes you write a
logical expression that is returning TRUE when it should be returning FALSE.
Reverse the TRUE/FALSE by using NOT. Also great for creating NAND logic;
=NOT(AND(condition 1, condition 2)).
NOW() [Category: Date & Time]
Returns the serial number of the current date and time. Guru Tip: =NOW() will
return the date and time of the last calculation of the worksheet. The cell does
not update every second unless you are pressing F9 to recalculate every second
(or entering numbers in other cells every second). While NOW is popular, you
should consider =TODAY() instead if you need to calculate the number of days
from now until a due date.
NPER(rate, pmt, pv, fv, type) [Category: Financial]
Returns the number of periods for an investment based on periodic, constant
payments and a constant interest rate.

210 of 236 APPENDIX

NPV(rate,value1,value2, ...) [Category: Financial]
Calculates the net present value of an investment by using a discount rate and
a series of future payments (negative values) and income (positive values).
Guru Tip: Unlike PV, the payments don’t have to be identical with NPV. In the
image below, you buy a business for $450,000 as represented by cell B4. Future
annual cash fl ows are shown in B5:B9. In the opinion of many, Excel doesn’t
calculate NPV correctly. Rather than including the cost of the business, run NPV
using the discount rate shown in B3 and then the cash fl ows in B5:B9. Excel
will report that the NPV is 716,329 which is not exactly right. To get what most
people would call Net Present Value, you have to add in the initial cash outlay.
Adding negative 450,000 to 716329 gives you the true Net Present Value of
266,329. The discount rate is the cost of capital. Think of it as the interest rate
you could get with that money if you did not invest it in this business.

OCT2BIN(number,places) [Category: Engineering]*
Converts an octal number to binary.
OCT2DEC(number) [Category: Engineering]*
Converts an octal number to decimal.
OCT2HEX(number,places) [Category: Engineering]
Converts an octal number to hexadecimal.
ODD(number) [Category: Math]
Returns number rounded up to the nearest odd integer.
ODDFPRICE(settlement,maturity,issue,fi rst_coupon,rate,yld,redemption,f
requency,basis) [Category: Financial]*
Returns the price per $100 face value of a security having an odd (short or long)
fi rst period.
ODDFYIELD(settlement,maturity,issue,fi rst_coupon,rate,pr,redemption,fr
equency,basis) [Category: Financial]*
Returns the yield of a security that has an odd (short or long) fi rst period.
ODDLPRICE(settlement,maturity,last_interest,rate,yld,redemption,freque
ncy,basis) [Category: Financial]*
Returns the price per $100 face value of a security having an odd (short or long)
last coupon period.
ODDLYIELD(settlement,maturity,last_interest,rate,pr,redemption,frequen
cy,basis) [Category: Financial]*
Returns the yield of a security that has an odd (short or long) last period.

211 of 236EXCEL GURUS GONE WILD

OFFSET(reference,rows,cols,height,width) [Category: Lookup &
Reference]
Returns a reference to a range that is a specifi ed number of rows and columns
from a cell or range of cells. The reference that is returned can be a single cell or
a range of cells. You can specify the number of rows and the number of columns
to be returned. Guru Tip: OFFSET is a powerful function for returning a dynamic
range. In the example below, OFFSET starts at cell B12. It goes down 5 rows
and right 4 columns to get to the starting point of the range. The range is then 5
rows tall and 2 columns wide. Because OFFSET is returning multiple values in
this case, you will often use OFFSET as an argument in another function. In this
example, the result of the OFFSET is calculated with the SUM function. In other
cases, OFFSET might be used to describe a dynamic range for a VLOOKUP
lookup range.

OR(logical1,logical2,...) [Category: Logical]
Returns TRUE if any argument is TRUE; returns FALSE if all arguments are
FALSE. Guru Tip: Use the OR function in place of a logical_test as the fi rst
argument of the IF function.

212 of 236 APPENDIX

PEARSON(array1,array2) [Category: Statistical]]
Returns the Pearson product moment correlation coeffi cient, r, a dimensionless
index that ranges from -1.0 to 1.0 inclusive and refl ects the extent of a linear
relationship between two data sets. Guru Tip: When the Microsoft MVP’s get
together in Seattle for the annual MVP Summit, only Chip Pearson can claim
that he has an Excel function named after him. If you haven’t done so already,
check out the great articles at cpearson.com.
PERCENTILE(array,k) [Category: Statistical]]
Returns the k-th percentile of values in a range. You can use this function to
establish a threshold of acceptance. For example, you can decide to examine
candidates who score above the 90th percentile. Guru Tip: the second argument
needs to be a percentage or a decimal. Use 0.1 for the 10th percentile. Also be
aware that the percentiles are extrapolated and often will be a number which
does not appear in the data set.

PERCENTRANK(array,x,signifi cance) [Category: Statistical]]
Returns the rank of a value in a data set as a percentage of the data set. This
function can be used to evaluate the relative standing of a value within a data
set. For example, you can use PERCENTRANK to evaluate the standing of an
aptitude test score among all scores for the test. Guru Tip: Unlike RANK, this
function always assumes that the largest score is at the 100th percentile. You

213 of 236EXCEL GURUS GONE WILD

PHONETIC(reference) [Category: Text]
Extracts the phonetic (furigana) characters from a text string.
PI() [Category: Math]
Returns the number 3.14159265358979, the mathematical constant pi, accurate
to 15 digits. Guru Tip: Useful for fi guring out which pizza deal is best for the
offi ce staff meeting. The area of a circle is PI()*Radius^2. A 16" pie has a radius
of 8" and contains 201 square inches of piizza. A 12" pie has a radius of 6" and
contains 113 square inches of pizza. To compare these round pizzas to square
pizzas, see SQRTPI.

can’t specify that lower scores are better, although you could subtract the result
from 100% to reverse the sequence. If signifi cance is omitted, a value of 3 is
used, meaning that the result will contain 3 signifi cant digts. A result of 0.123 will
appear at 12.3% when properly formatted as a percentage.
PERMUT(number,number_chosen) [Category: Statistical]]
Returns the number of permutations for a given number of objects that can be
selected from number objects. A permutation is any set or subset of objects
or events where internal order is signifi cant. Permutations are different from
combinations, for which the internal order is not signifi cant. Guru Tip: Use
COMBIN for lottery probabilities where the order of the numbers drawn does
not matter. Use PERMUT when the order of the results matter. To fi nd out how
many possible ways that 8 greyhounds can fi nish in fi rst-second-third, use
=PERMUT(8,3).

214 of 236 APPENDIX

PMT(rate,nper,pv,fv,type) [Category: Financial]
Calculates the payment for a loan based on constant payments and a constant
interest rate. Guru Tip: there are several gotchas in this function. The rate is
the percentage rate per period of the loan. So, while your car loan might have
a 5.25% interest rate, the monthly interest rate is 5.25%/12. Also, the present
value argument should be negative, as this is money coming out of the bank.

POISSON(x,mean,cumulative) [Category: Statistical]]
Returns the Poisson distribution. A common application of the Poisson distribution
is predicting the number of events over a specifi c time, such as the number of
cars arriving at a toll plaza in 1 minute.
POWER(number,power) [Category: Math]
Returns the result of a number raised to a power. Guru Tip: this function seems
irrelevant given the carat operator. =POWER(8,7) returns the same result as
=8^7.

PPMT(rate,per,nper,pv,fv,type) [Category: Financial]
Returns the payment on the principal for a given period for an investment based
on periodic, constant payments and a constant interest rate. Guru Tip: Column
C of the image for the ROW function is built using PPMT.

215 of 236EXCEL GURUS GONE WILD

PRICE(settlement,maturity,rate,yld,redemption,frequency,basis)
[Category: Financial]*
Returns the price per $100 face value of a security that pays periodic interest.
PRICEDISC(settlement,maturity,discount,redemption,basis) [Category:
Financial]*
Returns the price per $100 face value of a discounted security.
PRICEMAT(settlement,maturity,issue,rate,yld,basis) [Category:
Financial]*
Returns the price per $100 face value of a security that pays interest at
maturity.
PROB(x_range,prob_range,lower_limit,upper_limit) [Category:
Statistical]]
Returns the probability that values in a range are between two limits. If upper_
limit is not supplied, returns the probability that values in x_range are equal to
lower_limit. Guru Tip: Used frequently in statistics. I had an opportunity to use it
once, when I was in a statistics class.
PRODUCT(number1,number2, ...) [Category: Math]
Multiplies all the numbers given as arguments and returns the product.
PROPER(text) [Category: Text]
Capitalizes the fi rst letter in a text string and any other letters in text that follow
any character other than a letter. Converts all other letters to lowercase letters.
Guru Tip: PROPER is great for putting upper case names into proper case.
Although, watch out for names where an interior letter is supposed to be
capitalized. =PROPER("MCCARTNEY") is going to return Mccartney.
PV(rate,nper,pmt,fv,type) [Category: Financial]
Returns the present value of an investment. The present value is the total
amount that a series of future payments is worth now. For example, when you
borrow money, the loan amount is the present value to the lender.
QUARTILE(array,quart) [Category: Statistical]]
Returns the quartile of a data set. Quartiles often are used in sales and survey
data to divide populations into groups. For example, you can use QUARTILE to
fi nd the top 25 percent of incomes in a population.
QUOTIENT(numerator,denominator) [Category: Math]*
Returns the integer portion of a division. Use this function when you want to
discard the remainder of a division. Guru Tip: For the opposite of QUOTIENT,
see MOD.
RADIANS(angle) [Category: Math]
Converts degrees to radians. Guru Tip: See COS.

216 of 236 APPENDIX

RAND() [Category: Math]
Returns an evenly distributed random number greater than or equal to 0 and
less than 1. A new random number is returned every time the worksheet is
calculated. Guru Tip: To generate random numbers between 1 and 10, use
=INT(RAND()*10)+1
RANDBETWEEN(bottom,top) [Category: Math]*
Returns a random number between the numbers you specify. A new random
number is returned every time the worksheet is calculated. Guru Tip: Unlike
RAND, this function returns integers. When I need to add some "noise" to data,
I will add =RAND(-3,3) to subtract/add anywhere from 1 to 3 to each number in
a range. If you want to select random items from a list, the RANDBETWEEN() is
a perfect argument for INDEX: =INDEX(J1:J30,RANDBETWEEN(1,30)).
RANK(number,ref,order) [Category: Statistical]]
Returns the rank of a number in a list of numbers. The rank of a number is its
size relative to other values in a list. (If you were to sort the list, the rank of the
number would be its position.) Guru Tip: most people leave off the 3rd argument
which means that the highest value receives a rank of 1. However, if you are
ranking golf scores, put any non-zero value as the 3rd argument. Then the
lowest score receives a rank of 1.
Rank deals with ties in the same way that the sporting pages would. In the
example below, two scores are tied for second. Both of these scores receive a
2 and none of the scores receive a 3. The next score receives a 4. Similar ties
at 5th and 7th mean that no one is ranked 6th or 8th.

217 of 236EXCEL GURUS GONE WILD

While the tie method is correct, you might be trying to sort with a formula. If
subsequent VLOOKUP formulas will be attempting to pull every name from the
list, those VLOOKUP formulas will be expecting there to be a #3 ranking. In
this case, force the later occurrence of rank #2 to appear as #3 by adding a
COUNTIF function to count how many times this score has previously appeared
in the list. Note the severely mixed reference as the second argument of the
COUNTIF: The row number of the heading is frozen with a dollar sign, but the
last cell in the range is a relative reference pointing to the row above the current
formula.

RATE(nper,pmt,pv,fv,type,guess) [Category: Financial]
Returns the interest rate per period of an annuity. RATE is calculated by iteration
and can have zero or more solutions. If the successive results of RATE do not
converge to within 0.0000001 after 20 iterations, RATE returns the #NUM! error
value.
RECEIVED(settlement,maturity,investment,discount,basis) [Category:
Financial]*
Returns the amount received at maturity for a fully invested security.
REGISTER.ID(fi le_text,resource,type_text)
Returns the register ID of the specifi ed dynamic link library (DLL) or code
resource that has been previously registered. If the DLL or code resource has
not been registered, this function registers the DLL or code resource and then
returns the register ID for the Macintosh.
REGISTER.ID(module_text,procedure,type_text)
Returns the register ID of the specifi ed dynamic link library (DLL) or code
resource that has been previously registered. If the DLL or code resource has

218 of 236 APPENDIX

not been registered, this function registers the DLL or code resource and then
returns the register ID for Windows.
REPLACE(old_text,start_num,num_chars,new_text) [Category: Text]
REPLACE replaces part of a text string, based on the number of characters
you specify, with a different text string. Guru Tip: I am betting you don’t want
REPLACE. You really want SUBSTITUTE. See SUBSTITUTE.
REPLACEB(old_text,start_num,num_bytes,new_text) [Category: Text]
REPLACEB replaces part of a text string, based on the number of bytes you
specify, with a different text string. This function is for use with double-byte
characters.
REPT(text,number_times) [Category: Text]
Repeats text a given number of times. Use REPT to fi ll a cell with a number of
instances of a text string. Guru Tip: create in-cell bar charts using REPT and the
pipe character as shown below:

RIGHT(text,num_chars) [Category: Text]
RIGHT returns the last character or characters in a text string, based on the
number of characters you specify. Guru Tip: See an example under LEFT where
you can extract a specifi c number of characters from the right side of text. In
many cases, you will have to use LEN and FIND to calculate the number of
characters.

219 of 236EXCEL GURUS GONE WILD

RIGHTB(text,num_bytes) [Category: Text]
RIGHTB returns the last character or characters in a text string, based on
the number of bytes you specify. This function is for use with double-byte
characters.
ROMAN(number,form) [Category: Math]
Converts an arabic numeral to roman, as text. Guru Tip: Great for presenting
bad fi nancial news. Convert your fi nancial statements to Roman numerals
using ROMAN. If you need to create an outline using Roman numerals, use
=ROMAN(ROW(A1)) and copy down.
ROUND(number,num_digits) [Category: Math]
Rounds a number to a specifi ed number of digits. Guru Tip: =ROUND(A1,2)
will round to two decimal places. =ROUND(A2,-3) will round to the nearest
thousand!
ROUNDDOWN(number,num_digits) [Category: Math]
Rounds a number down, toward zero.
ROUNDUP(number,num_digits) [Category: Math]
Rounds a number up, away from 0 (zero).
ROW(reference) [Category: Lookup & Reference]
Returns the row number of a reference. Guru Tip: =ROW(A1) is a clever way of
writing the number 1, because as this formula is copied down a column, it will
automatically point to ROW(A2) for 2, ROW(A3) for 3, and so on. In the image
below, both IPMT and PPMT need payment numbers as the second argument.
Rather than adding a new column with the numbers 1, 2, 3, …, 180, the formula
uses ROW(A1) as the second argument in row 8. As this gets copied down, the
second argument will generate the numbers 1 through 180. See Page 11

220 of 236 APPENDIX

ROWS(array) [Category: Lookup & Reference]
Returns the number of rows in a reference or array. Guru Tip: You might use
ROWS to fi gure out how many rows are returned by a dynamic range generated
by OFFSET.
RSQ(known_y’s,known_x’s) [Category: Statistical]]
Returns the square of the Pearson product moment correlation coeffi cient
through data points in known_y’s and known_x’s. The r-squared value can be
interpreted as the proportion of the variance in y attributable to the variance in
x.
RTD(ProgID,Server,Topic,[Topic2],…) [Category: Lookup & Reference]
New in Excel XP – Retrieves real-time data from a program that supports COM
automation.
SEARCH(fi nd_text,within_text,start_num) [Category: Text]
SEARCH returns the number of the character at which a specifi c character or
text string is fi rst found, beginning with start_num. Use SEARCH to determine
the location of a character or text string within another text string so that you
can use the MID or REPLACE functions to change the text. Guru Tip: SEARCH
is more fl exible than the more popular FIND function. SEARCH allows for
wildcards in fi nd_text. Also, SEACH is not case-sensitive, so there is no need to
use LOWER to modify within_text as you might have to do with FIND.
SEARCHB(fi nd_text,within_text,start_num) [Category: Text]
SEARCHB also fi nds one text string (fi nd_text) within another text string (within_
text), and returns the number of the starting position of fi nd_text. The result is
based on the number of bytes each character uses, beginning with start_num.
This function is for use with double-byte characters You can also use FINDB to
fi nd one text string within another.
SECOND(serial_number) [Category: Date & Time]
Returns the seconds of a time value. The second is given as an integer in the
range 0 (zero) to 59.
SERIESSUM(x,n,m,coeffi cients) [Category: Math]*
Returns the sum of a power series based on the formula:
SERIES(x,n,m,a) » a1xn + a2x(n+m) + a3x(n+2m) + ... + aix(n+(i-1)m)
SIGN(number) [Category: Math]
Determines the sign of a number. Returns 1 if the number is positive, zero (0) if
the number is 0, and -1 if the number is negative.
SIN(number) [Category: Math]
Returns the sine of the given angle. Guru Tip: While the sine function that you
learned about in geometry dealt with degrees, Excel’s function needs a number of
radians as an argument. To fi nd the sine of 90 degrees, use =SIN(RADIANS(90)).
In the fi gure below, three sine waves fi gure out the current day’s biorhythm
chart.

221 of 236EXCEL GURUS GONE WILD

SINH(number) [Category: Math]
Returns the hyperbolic sine of a number.
SKEW(number1,number2,...) [Category: Statistical]]
Returns the skewness of a distribution. Skewness characterizes the degree
of asymmetry of a distribution around its mean. Positive skewness indicates
a distribution with an asymmetric tail extending toward more positive values.
Negative skewness indicates a distribution with an asymmetric tail extending
toward more negative values.
SLN(cost,salvage,life) [Category: Financial]
Returns the straight-line depreciation of an asset for one period.
SLOPE(known_y’s,known_x’s) [Category: Statistical]]
Returns the slope of the linear regression line through data points in known_
y’s and known_x’s. The slope is the vertical distance divided by the horizontal
distance between any two points on the line, which is the rate of change along the
regression line. Guru Tip: See image under FORECAST. Use with INTERCEPT
to describe the linear regression line. The slope value is also the fi rst value
returned from the LINEST function.
SMALL(array,k) [Category: Statistical]]
Returns the k-th smallest value in a data set. Use this function to return values
with a particular relative standing in a data set. Guru Tip: While you frequently
use MIN to fi nd the smallest value, =SMALL(A2:A1000,2) will return the 2nd
smallest value. Great for eliminating outliers. See pages 46 & 49.
SQL.REQUEST(connection_string,output_ref,driver_prompt,query_
text,col_names_logical)*

222 of 236 APPENDIX

Connects with an external data source, and runs a query from a worksheet.
SQL.REQUEST then returns the result as an array without the need for macro
programming. If this function is not already available, install the Microsoft Excel
ODBC add-in (XLODBC.XLA).
SQRT(number) [Category: Math]
Returns a positive square root. Guru Tip: Sure – it is nice of Microsoft to provide
this function, but what if you need a cube root or a fi fth root? To fi nd a square
root, raise a number to the (1/2) power. =25^(1/2). To fi nd a cube root, raise the
number to the (1/3) power: =125^(1/3).
SQRTPI(number) [Category: Math]*
Returns the square root of (number * pi). Guru Tip: This obscure function is used
to convert round objects into equivalent sized square object. If you have a round
pizza with a radius of 8", use =SQRTPI(8^2) to see that the equivalent sized
square pizza is 14.18".

STANDARDIZE(x,mean,standard_dev) [Category: Statistical]]
Returns a normalized value from a distribution characterized by mean and
standard_dev.
STDEV(number1,number2,...) [Category: Statistical]]
Estimates standard deviation based on a sample. The standard deviation is
a measure of how widely values are dispersed from the average value (the
mean).
STDEVA(value1,value2,...) [Category: Statistical]]
Estimates standard deviation based on a sample. The standard deviation is
a measure of how widely values are dispersed from the average value (the
mean). Text and logical values such as TRUE and FALSE are included in the
calculation.
STDEVP(number1,number2,...) [Category: Statistical]]
Calculates standard deviation based on the entire population given as arguments.
The standard deviation is a measure of how widely values are dispersed from
the average value (the mean).

223 of 236EXCEL GURUS GONE WILD

STDEVPA(value1,value2,...) [Category: Statistical]]
Calculates standard deviation based on the entire population given as arguments,
including text and logical values. The standard deviation is a measure of how
widely values are dispersed from the average value (the mean).
STEYX(known_y’s,known_x’s) [Category: Statistical]]
Returns the standard error of the predicted y-value for each x in the regression.
The standard error is a measure of the amount of error in the prediction of y for
an individual x.
SUBSTITUTE(text,old_text,new_text,instance_num) [Category: Text]
Substitutes new_text for old_text in a text string. Use SUBSTITUTE when you
want to replace specifi c text in a text string; use REPLACE when you want to
replace any text that occurs in a specifi c location in a text string. Guru Tip: This
function is great for replacing a substring with another substring. Also great for
getting rid of strange characters. =SUBSTITUTE(A2,CHAR(160),CHAR(32)) will
replace all non-breaking spaces from web data with regular spaces. For another
example, see CODE. Also see page 120.
SUBTOTAL(function_num,ref1,ref2,...) [Category: Math]
Returns a subtotal in a list or database. It is generally easier to create a list
with subtotals using the Subtotals command (Data menu). Once the subtotal
list is created, you can modify it by editing the SUBTOTAL function. Guru Tip:
In layman’s terms, the SUBTOTAL function will sum all entries in a range but
will ignore other SUBTOTAL functions within the range. This allows you to add
multiple levels of subtotals in a range without affecting the grand total. Microsoft
fi gured this functionality would be useful for SUM and the 10 other standard
calculation functions: AVERAGE, COUNT, COUNTA, MAX, MIN, PRODUCT,
STDDEV, STDDEVP, VAR, and VARP. Rather than adding 11 new functions
(such as SUBMAX, SUBAVERAGE…), they added a single function and allow
you to specify the calculation using the function_num. If you ever wondered
why the number 9 is used to represent the popular SUM function, it is because
SUM falls 9th alphabetically in the list when you are using the English version
of Excel. Function_num values from 1 to 11 perform the "classic" SUBTOTAL
calculation which includes visible and hidden rows. Using 101 to 111 performs
the "new" SUBTOTAL calculation which excludes hidden rows. Nothing you can
do will make it exclude hidden columns. Also see page 41.
SUM(number1,number2, ...) [Category: Math]
Adds all the numbers in a range of cells. Guru Tip: a workhorse function that is
probably the most used function in Excel. Use the Sigma icon or Alt+= to enter
a sum function. If you replace the comma with a space, the SUM will add up the
intersection of the ranges. For an example, see page 39.

224 of 236 APPENDIX

SUMIF(range,criteria,sum_range) [Category: Math]
Adds the cells specifi ed by a given criteria. Guru Tip: Added in Excel 97 to make
simple conditional sums easier than using array formulas or SUMPRODUCT.
To look through the items in B2:B20 for rows that match "ABC", then add up the
corresponding revenue from column C, use =SUMIF(B2:B20,"ABC",C
2:C20). While most people will use a sum_range that is the same size and
shape as the range, you can specify just the top left cell of the sum_range and
Excel will expand the range to be the same size and shape as the range: =SUM
IF(B2:B20,"ABC",C2). In the unusual case where range and sum_range
are the same, you can omit the third argument. This happens when you are
testing if the numbers to be added are larger than a threshold as in cell F18
below. Also see page 12

SUMIFS(sum_range,criteria_range1,criteria1,[criteria_range2,criteria2,…]
[Category: Math]
Adds the cells in a range specifi ed by multiple criteria. Guru Tip: New in Excel
2002. While SUMIF can only test for a single condition, SUMIFS can test for up
to 127 pairs of criteria. Note that the argument order is rearranged from SUMIF.
In the plural version of SUMIFS, the sum_range appears fi rst, followed by a pair
of arguments for each criteria. Using the same data set as shown in SUMIF, the
following image shows how to fi nd sales by sales rep and item using SUMIFS.

225 of 236EXCEL GURUS GONE WILD

SUMPRODUCT(array1,array2,array3, ...) [Category: Math]
Multiplies corresponding components in the given arrays, and returns the sum of
those products. Guru Tip: SUMPRODUCT allowed you to do SUMIF, COUNTIF,
SUMIFS long before these functions existed. See numerous examples at the
beginning of this book. To replace the SUMIFS in the image above, use the
SUMPRODUCT in the image below. Also see page 15

SUMSQ(number1,number2, ...) [Category: Math]
Returns the sum of the squares of the arguments.
SUMX2MY2(array_x,array_y) [Category: Math]
Returns the sum of the difference of squares of corresponding values in two
arrays.
SUMX2PY2(array_x,array_y) [Category: Math]
Returns the sum of the sum of squares of corresponding values in two arrays. The
sum of the sum of squares is a common term in many statistical calculations.
SUMXMY2(array_x,array_y) [Category: Math]
Returns the sum of squares of differences of corresponding values in two
arrays.
SYD(cost,salvage,life,per) [Category: Financial]
Returns the sum-of-years’ digits depreciation of an asset for a specifi ed period.
Guru Tip: VDB is more fl exible.
T(value) [Category: Text]
Returns the text referred to by value. Guru Tip: This is the corollary to the N
function. =T of text is text. =T of number is nothing. While people have found

226 of 236 APPENDIX

something actually useful for N, I am not sure why you would want to wipe out
all the numbers in a range.
TAN(number) [Category: Math]
Returns the tangent of the given angle.
TANH(number) [Category: Math]
Returns the hyperbolic tangent of a number.
TBILLEQ(settlement,maturity,discount) [Category: Financial]*
Returns the bond-equivalent yield for a Treasury bill.
TBILLPRICE(settlement,maturity,discount) [Category: Financial]*
Returns the price per $100 face value for a Treasury bill.
TBILLYIELD(settlement,maturity,pr) [Category: Financial]*
Returns the yield for a Treasury bill.
TDIST(x,degrees_freedom,tails) [Category: Statistical]]
Returns the Percentage Points (probability) for the Student t-distribution where
a numeric value (x) is a calculated value of t for which the Percentage Points
are to be computed. The t-distribution is used in the hypothesis testing of small
sample data sets. Use this function in place of a table of critical values for the
t-distribution.
TEXT(value,format_text) [Category: Text]
Converts a value to text in a specifi c number format. Guru Tip: This is very
useful when you are joining text and a date or text and currency. To ensure that
the currency shows up with two decimal places and a comma, use ="Please
remit "&TEXT(F20,"$#,##0.00"). See page 35
TIME(hour,minute,second) [Category: Date & Time]
Returns the decimal number for a particular time. The decimal number returned
by TIME is a value ranging from 0 to 0.99999999, representing the times from
0:00:00 (12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.). Guru Tip: Say that you
have someone who entered a column of times. They entered 2:30 thinking
that it meant 2 minutes and 30 seconds, but Excel interpreted it as 30 minutes
past two o’clock. To convert that column back to something usable, the formula
=TIME(0,HOUR(A2),MINUTE(A2)) would do the trick.
TIMEVALUE(time_text) [Category: Date & Time]
Returns the decimal number of the time represented by a text string. The
decimal number is a value ranging from 0 (zero) to 0.99999999, representing
the times from 0:00:00 (12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.). Guru Tip:
Like DATEVALUE, this function is used to convert a range of text that looks like
times to real times. After converting the values, apply a time format to get the
results to look like times instead of decimals. The advantage, of course, is that
you can now do time calculations on the real times.

227 of 236EXCEL GURUS GONE WILD

TINV(probability,degrees_freedom) [Category: Statistical]]
Returns the t-value of the Student’s t-distribution as a function of the probability
and the degrees of freedom.
TODAY() [Category: Date & Time]
Returns the serial number of the current date. The serial number is the date-
time code used by Microsoft Excel for date and time calculations. Guru Tip: This
is often better than the more popular =NOW() function, particularly if you are
calculating the number of days between today and another date. With =NOW(),
your date difference calculation will refl ect decimal portions of a day as the
workday elapses. With =TODAY(), the number of days will remain constant until
midnight.
TRANSPOSE(array) [Category: Lookup & Reference]
Returns a vertical range of cells as a horizontal range, or vice versa. TRANSPOSE
must be entered as an array formula in a range that has the same number of rows
and columns, respectively, as array has columns and rows. Use TRANSPOSE
to shift the vertical and horizontal orientation of an array on a worksheet. For
example, some functions, such as LINEST, return horizontal arrays. LINEST
returns a horizontal array of the slope and Y-intercept for a line. Guru Tip: In the
image below, select blank cells A3:A7. Type =TRANSPOSE(A1:E1) and press
Ctrl+Shift+Enter. To turn the vertical array back to horizontal, select fi ve blank
cells A12:E12. Type =TRANSPOSE(A3:A7) and press Ctrl+Shift+Enter. Note
that you do not type the curly braces shown in the formula. Excel adds those
when you press Ctrl+Shift+Enter to signify that this is an array formula.

TREND(known_y’s,known_x’s,new_x’s,const) [Category: Statistical]]
Returns values along a linear trend. Fits a straight line (using the method of
least squares) to the arrays known_y’s and known_x’s. Returns the y-values
along that line for the array of new_x’s that you specify. Guru Tip: I usually use
LINEST and then enter a range of formulas multiplying the slope and adding the
constant. Instead, you could use TREND.
TRIM(text) [Category: Text]
Removes all spaces from text except for single spaces between words. Use
TRIM on text that you have received from another application that may have

228 of 236 APPENDIX

irregular spacing. Guru Tip: If your VLOOKUP functions are not working, check
to see if one list has extra spaces at the end of the value. =TRIM(" ABC DEF
") will return "ABC DEF". TRIM removes leading spaces, trailing spaces and
replaces multiple interior spaces with a single space. See page 120.
TRIMMEAN(array,percent) [Category: Statistical]]
Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
taken by excluding a percentage of data points from the top and bottom tails of
a data set. You can use this function when you wish to exclude outlying data
from your analysis.
TRUE() [Category: Logical]
Returns the logical value TRUE. Guru Tip: See FALSE().
TRUNC(number,num_digits) [Category: Math]
Truncates a number to an integer by removing the fractional part of the number.
Guru Tip: For positive numbers, INT and TRUNC operate the same. However,
for negative numbers, TRUNC will move towards zero and INT will move away
from zero. As you see in this image, the INT(-1.6) is -2, while TRUNC(-1.6) is
-1

TTEST(array1,array2,tails,type) [Category: Statistical]]
Returns the probability associated with a Student’s t-Test. Use TTEST to
determine whether two samples are likely to have come from the same two
underlying populations that have the same mean.
TYPE(value) [Category: Information]
Returns the type of value. Use TYPE when the behavior of another function
depends on the type of value in a particular cell. Guru Tip: Type returns 1 for
numbers, 2 for text, 4 for TRUE and FALSE, 16 for errors, and 64 for an array.
UPPER(text) [Category: Text]
Converts text to uppercase. Guru Tip: Perfect for converting lower case text to
upper case to facilitate matching two lists. Also see PROPER and LOWER.

229 of 236EXCEL GURUS GONE WILD

VALUE(text) [Category: Text]
Converts a text string that represents a number to a number. Guru Tip: Guru
Jonathon Broughton uses this function for all the times that others enter numbers
as text indiscriminately. In the fi gure below, VALUE handles text, spaces, plus
signs, minus signs, and even scientifi c notation. It will not work with the word
"one", though.

VAR(number1,number2,...) [Category: Statistical]]
Estimates variance based on a sample.
VARA(value1,value2,...) [Category: Statistical]]
Estimates variance based on a sample. In addition to numbers, text and logical
values such as TRUE and FALSE are included in the calculation.
VARP(number1,number2,...) [Category: Statistical]]
Calculates variance based on the entire population.
VARPA(value1,value2,...) [Category: Statistical]]
Calculates variance based on the entire population. In addition to numbers, text
and logical values such as TRUE and FALSE are included in the calculation.
VDB(cost,salvage,life,start_period,end_period,factor,no_switch)
[Category: Financial]
Returns the depreciation of an asset for any period you specify, including partial
periods, using the double-declining balance method or some other method you
specify. VDB stands for variable declining balance. Guru Tip: There are many
depreciation functions in Excel: SLN, DB, DDB, SYD. The VDB method handles
does SLN, DB, and DDB better than those individual functions do them. You
can specify partial periods with VDB. If Factor is 1, then you are using DB. If
factor is 2, then you are using DDB or double declining balance. If Factor is 4,

230 of 236 APPENDIX

then you are making stuff up and using a mythical QDB or quadruple declining
balance. You could use a factor of 11 for HDB or Hendecuple Declining Balance
but you might end up in tax court. (This is my 24th book that I’ve written but
the fi rst time I ever used the word Hendecuple). If switch is FALSE, then the
calculation switches over to straight-line as soon as that method would yield a
higher depreciation.
VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)
[Category: Lookup & Reference]
Searches for a value in the leftmost column of a table, and then returns a value
in the same row from a column you specify in the table. Use VLOOKUP instead
of HLOOKUP when your comparison values are located in a column to the left of
the data you want to fi nd. Guru Tip: VLOOKUP is the workhorse of Excel, says
guru John Conmy. Use VLOOKUP to fi nd the description for an item number as
shown below.

WEEKDAY(serial_number,return_type) [Category: Date & Time]
Returns the day of the week corresponding to a date. The day is given as an
integer, ranging from 1 (Sunday) to 7 (Saturday), by default. Guru Tip: The
return_type argument controls the results. Use a return type of 1 and the days
are numbered as 1 for Sunday, 2 for Monday, … 7 for Saturday. If you use a
return type of 2, then Monday is 1 and Sunday is 7. If you use a return type of 3,
then Monday is zero and Sunday is 6. Also see page 7.

231 of 236EXCEL GURUS GONE WILD

WEEKNUM(serial_num,return_type) [Category: Date & Time]*
Returns a number that indicates where the week falls numerically within a
year.
WEIBULL(x,alpha,beta,cumulative) [Category: Statistical]]
Returns the Weibull distribution. Use this distribution in reliability analysis, such
as calculating a device’s mean time to failure.
WORKDAY(start_date,days,holidays) [Category: Date & Time]*
Returns a number that represents a date that is the indicated number of working
days before or after a date (the starting date). Working days exclude weekends
and any dates identifi ed as holidays. Use WORKDAY to exclude weekends or
holidays when you calculate invoice due dates, expected delivery times, or the
number of days of work performed. To view the number as a date, click Cells on
the Format menu, click Date in the Category box, and then click a date format in
the Type box. Guru Tip: Say that you hire an employee and need to know when
a 60-workday probation period is over. Just as in the NETWORKDAYS example,
you can specify a range of holidays as the third argument in the function. This
function assumes that your workweek is the fi ve days from Monday through
Friday. If you work any other work week, see page 4.
XIRR(values,dates,guess) [Category: Financial]*
Returns the internal rate of return for a schedule of cash fl ows that is not
necessarily periodic. To calculate the internal rate of return for a series of periodic
cash fl ows, use the IRR function.
XNPV(rate,values,dates) [Category: Financial]*
Returns the net present value for a schedule of cash fl ows that is not necessarily
periodic. To calculate the net present value for a series of cash fl ows that is
periodic, use the NPV function.
YEAR(serial_number) [Category: Date & Time]
Returns the year corresponding to a date. The year is returned as an integer in
the range 1900-9999. Guru Tip: Use YEAR, MONTH, DAY, HOUR, MINUTE, and
SECOND to break a date and time into component parts. Join the component
parts back into a date using DATE or TIME.

232 of 236 APPENDIX

YEARFRAC(start_date,end_date,basis) [Category: Date & Time]*
Calculates the fraction of the year represented by the number of whole days
between two dates (the start_date and the end_date). Use the YEARFRAC
worksheet function to identify the proportion of a whole year’s benefi ts or
obligations to assign to a specifi c term.
YEN(number,decimals) [Category: Text]
Converts a number to text, using the ¥ (yen) currency format, with the number
rounded to a specifi ed place.
YIELD(settlement,maturity,rate,pr,redemption,frequency,basis)
[Category: Financial]*
Returns the yield on a security that pays periodic interest. Use YIELD to calculate
bond yield.
YIELDDISC(settlement,maturity,pr,redemption,basis) [Category:
Financial]*
Returns the annual yield for a discounted security.
YIELDMAT(settlement,maturity,issue,rate,pr,basis) [Category: Financial]*
Returns the annual yield of a security that pays interest at maturity.
ZTEST(array,x,sigma) [Category: Statistical]]
Returns the two-tailed P-value of a z-test. The z-test generates a standard score
for x with respect to the data set, array, and returns the two-tailed probability for
the normal distribution. You can use this function to assess the likelihood that a
particular observation is drawn from a particular population.

233

INDEX

Symbols
--
 Explained 12
@@ 28
3-D formula 39

A
ADDRESS 32
Ad-Hoc totals 43
Alphabet
 Filling with CHAR 171
Alt-Enter
 Replacing 172
Alternating rows
 Summing 10
Amortization table 219
AND 168
 Replacing 18
AutoFilter
 Pivot table 70
 wildcard 189
Auto-Number
 Records 63
AVERAGE
 #DIV/0! 169
AVERAGEIF 169

B
BIN2DEC 170
Binary
 Converting 182
Biorhtym 221
Blanks
 Counting 176

Boolean logic 16
Button
 for macros 102
 Keep in view 147

C
Calendar reform 52
Case-sensitive
 using EXACT 187
Categorizing data
 with FIND 188
CELL 31
Characters
 Strange 223
Charting
 Aspect ratio 88
 Labels 85
 Visible data 71
CHOOSE 8
CLEAN
 Limitations 172
Closest match 121
CODE 172
Color codes 183
COLUMN
 in VLOOKUP 173
COMBIN 173
Combinations 161
Comment
 a formula 207
Concatenation 29
Conditional formatting 21
CONVERT 174
Copy formula

 using ditto 72
COS
 using degrees 174
COUNT 176
COUNTIF 6, 47
 with dynamic criteria 176
Crates
 of two 187
Criteria range 185
Current cell
 Highlight 142

D
Data label
 Height/width 85
Database functions
 Criteria range 185
 DGET 183
 DSUM 184
DATEDIF 180
Dates
 End of month 186
 in INDIRECT 5
DATEVALUE 180
DEC2BIN 182
Degrees
 from Radians 183
Delete records 154
Depreciation
 with VDB 229
Ditto
 Formula copying 72
Dropdown 28
DSUM 184

234 of 236 INDEX

Dynamic range
 using OFFSET 211

E
EDATE 51
E-Mail address
 Extract from cell 118
End of month 186
Evaluate
 instead of looping 127
Every other row
 Summing 10
EXACT 187

F
Fill Handle
 for worksheets 132
Filter
 Pivot table 70
Filter to Selection 138
FIND
 vs SEARCH 188
 with LEFT 201
Finding Non-Blank 2
FLOOR
 vs CEILING 190
Forecasting
 with FORECAST 190
 with INTERCEPT 198
 with LINEST 202
 with SLOPE 221
 with TREND 227
Format
 Text box 152
Formats
 Copy here as 74
Formula
 3-D 39
 Exact copy 72
 Self-Referencing 55

 Spearing 39
Formula Auditing
 with INDIRECT 38
Formulas
 in SmartArt 79
Frequency Distribution 191
Fuzzy Match 121

G
GET.CELL 20
 Arguments 23
GETPIVOTDATA 194
Golf
 Ranking 216

H
Hexadecimal 182
Hidden Rows
 Ignore 40
Highlight
 Current cell 142
HLOOKUP
 vs VLOOKUP 194
Holidays 9
Hyperlink
 for macros 106
Hyperlink Here
 Right-Drag menu 74
Hyperlink Menu 75
Hyperlinks
 Macro to add 195

I
Icon
 Copying fromWord 113
 Editor 113
 for macros 109
IF
 Simplifying 17
IFERROR

 vs ISNA 195
Ignore Hidden 40
In-Cell Charts
 with REPT 218
INDEX 2
Index Number
 of worksheet 131
INDIRECT 5, 27
 and formula auditing 38
 Closed workbook 130
 for worksheets 30
 in VLOOKUP 36
 to really lock 37
 with dates 34
 with GET.CELL 20
 with R1C1 33
INT
 vs TRUNC 198
Interest Payment 178
Interpolation
 Two-way 57
Intersection Operator 39
IPMT 199
 using ROW 219
IRR 199
ISBLANK 2
ISERR
 vs ISERROR 199
ISNA
 vs IFERROR 199
ISREF
 with INDIRECT 200

L
LARGE 49
LEFT 201
LINEST
 for forecasting 202
Link here
 Right-Drag menu 74

235 of 236EXCEL GURUS GONE WILD

Loan payments 214
Lookup
 Two-way 204
Lottery probability
 with COMBIN 173
Lower case 204

M
Macro
 Button 102
 Creating 115
 Event handler 116
 Shortcut key 100
Macros
 Signing 156
Magnifi er 160
MATCH 2
 Fuzzy 121
 vs VLOOKUP 204
MAX
 vs LARGE 200
MegaFormulas
 Building 60
Menu
 with hyperlinks 75
MID 120, 206
MIN
 vs SMALL 221
Minus minus
 Explained 12
Minutes
 in excess of an hour 206
MOD 11
MROUND 207
Multiple regression 202

N
N/A
 effect on formula 207
Named range

 3-D reference 40
 Creating from headings 76
 for array of dates 9
 Valid characters 78
 with GET.CELL 20
NAND
 using NOT 209
NETWORKDAYS 4, 208
Non-Blank
 Finding 2
NOW
 vs TODAY 209
NPV 209

O
OFFSET 211
OnKey 101
OR
 Replacing 18

P
Path
 Function to return 198
Pearson, Chip 212
Percentile 212
PERCENTRANK 212
Permutations 213
Personal macro workbook
 Copying 136
 Creating 96
Pivot table
 AutoFilter 70
 from many worksheets 82
 GETPIVOTDATA 194
 Grouping 192
 with median 206
Pizza
 PI 213
 vs square 222
PMT 214

POWER
 vs carat 214
PPMT
 using ROW 219
Proper
 a rRange 128
Proper case 215
PULL function 130

R
R1C1
 Explained 23
 History 43
Random 216
 from list with INDEX 197
 without Duplicates 46
RANK 216
RC
 in INDIRECT 20
Records
 Auto-Number 63
Regional and language
options 180
Regression
 Multiple 202
Remainder
 with MOD 207
Rename worksheets 129
REPLACE
 vs SUBSTITUTE 218
REPT
 for in-cell charts 218
RIGHT 218
Right-Drag menu 73
Roman numerals 219
Rounding
 CEILING 171
 FLOOR 190
 MROUND 207
Round-Robin tennis 188

236 of 236 INDEX

ROW 11, 219
ROWS
 with OFFSET 220

S
SEARCH
 vs FIND 188, 220
Self-Referencing formula 55
Shortcut key
 for macros 100
Side by side
 Worksheets 75
Sigma 223
Signing macros 156
SMALL 46, 49
 vs MIN 221
SmartArt
 using formulas 79
Sort
 with formula 49, 217
Sorting
 Subtotals 71
Space
 in SUM 39
Spearing formula 39
SUBSTITUTE 120, 223
SUBTOTAL 223
 Function numbers 41
 Hidden columns 41
Subtotals
 Sorting 71
Sum
 every other row 10
Sum digits in string 61
Sum visible 40
 when AutoFiltered 42
SUMIF 12, 224
SUMIFS 225
SUMPRODUCT 225
 Introduced 15

 T
Temp folder path 125
Texas hold-Em poker 188
TEXT 35, 226
 Counting 176
Text box
 Format 152
Ties
 in RANK 217
Timer 123
Times 226
TODAY
 vs NOW 227
Totals
 Ad-Hoc 43
Transpose 194, 227
 with formula 197
Trendline
 adding to chart 191
TRIM 120
 with VLOOKUP 228
TRUNC
 vs INT 228

U
Unique values 62
User Form
 Right-Click menu 148
 without title bar 145

V
Validation 28
VALUE 229
Values
 Copy here as 73
Visible data
 Charting 71
Visible rows
 Sum only 40
VLOOKUP 230

 vs INDEX/MATCH 205
 vs MATCH 204
VLOOKUP left 54
VLOOKUPNTH 53

W
WEEKDAY 7, 230
WORKDAY 231
Workdays
 Alternate workweeks 4
Worksheet
 Fill handle 132
Worksheet index 131
Worksheets
 Renaming 129
 Side by side 75

Y
YEAR 231
Yohe, Tom 170

Also from Bill Jelen
Available at Bookstores Everywhere

Liven up your next annual conference by having MrExcel
perform his Power Excel Seminar live for your audience.
Whether you need a 2 hour breakout at the next controller’s
conference or a half-day training session for the accounting
department, Bill Jelen will entertain and inform your audience.
Visit speaking.html at MrExcel.com.

Train Your Staff

Connect with MrExcel
Visit the MrExcel Message Board at http://www.mrexcel.
com/forum/index.php to connect with a community who is
passionate about Excel.

As of early 2009, there are two podcasts featuring Bill’s
Excel tips. At iTunes, search for Learn Excel for a daily
video podcast. Also, search for OnHomeAndOffice for a
weekly video podcast. Other feeds might be in the works.
Visit www.MrExcel.com/podcast.html for the latest podcast
news.

Follow Bill Jelen on Facebook. All friend requests gladly
accepted. Also, become of fan of MrExcel.com on
Facebook.

Follow MrExcel on Twitter, Bill Jelen on LinkedIn, Bill
Jelen on Plaxo.

»

»

»

»

	FRONT COVER
	TABLE OF CONTENTS
	ABOUT THE AUTHOR ACKNOWLEDGEMENTS
	FOREWORD
	DEDICATION
	PART 1
	FIND THE FIRST NON-BLANK VALUE IN A ROW
	CALCULATE WORKDAYS FOR 5, 6, 7 DAY WORKWEEKS
	STORE HOLIDAYS IN A NAMED RANGE
	SUM EVERY OTHER ROW OR EVERY THIRD ROW
	WHY THE MINUS MINUS? COERCE NUMBERS FROM TRUE/ FALSE
	INTRODUCING THE BORING USE OF SUMPRODUCT
	UNDERSTAND BOOLEAN LOGIC: FALSE IS ZERO; AND IS *,OR IS + AND EVERYTHING ELSE IS TRUE
	USE GET.CELL TO HIGHLIGHT NON-FORMULA CELLS
	REFER TO A CELL WHOSE ADDRESS VARIES, BASED ON A CALCULATION
	POINT TO ANOTHER WORKSHEET WITH INDIRECT
	GET DATA FROM ANOTHER WORKSHEET BY USING INDIRECT
	USE INDIRECT TO GET A DATA FROM A MULTI-CELL RANGE
	ALWAYS POINT TO CELL B10
	USE NATURAL LANGUAGE FORMULAS WITHOUT USING NATURAL LANGUAGE FORMULAS
	SUM A CELL THROUGH SEVERAL WORKSHEETS
	SUM VISIBLE ROWS
	LEARN R1C1 REFERENCES
	RANDOM NUMBERS WITHOUT DUPLICATES
	SORT WITH A FORMULA
	DEAL WITH DATES BEFORE 1900
	USE VLOOKUP TO GET THE NTH MATCH
	USE A SELF-REFERENCING FORMULA
	USE TWO-WAY INTERPOLATION WITH A SINGLE FORMULA
	FIND THE SUM OF ALL DIGITS OCCURING IN A STRING
	GET AN ARRAY OF UNIQUE VALUES FROM A LIST
	AUTO-NUMBER RECORDS AND COLUMNS IN AN EXCEL DATABASE

	PART 2
	USE AUTOFILTER WITH A PIVOT TABLE
	SORT SUBTOTALS
	COPY AN EXACT FORMULA BY USING DITTO MARKS
	RIGHT-DRAG BORDER TO ACCESS MORE COPYING OPTIONS
	QUICKLY CREATE A HYPERLINK MENU
	QUICKLY CREATE MANY RANGE NAMES
	ADD FORMULAS TO SMARTART
	CREATE A PIVOT TABLE FROM DATA IN MULTIPLE WORKSHEETS
	DETERMINE THE HEIGHT AND WIDTH OF THE DATALABEL OBJECT
	ADJUST XY CHART SCALING FOR CORRECT ASPECT RATIO

	PART 3
	MAKE A PERSONAL MACRO WORKBOOK
	RUN A MACRO FROM A SHORTCUT KEY
	RUN A MACRO FROM A BUTTON
	RUN A MACRO FROM AN ICON
	CREATE A REGULAR MACRO
	CREATE AN EVENT HANDLER MACRO
	EXTRACT AN E-MAIL ADDRESS FROM A CELL CONTAINING OTHER TEXT
	FIND THE CLOSEST MATCH
	USE TIMER TO MICRO-TIME EVENTS
	DISCOVER THE TEMP FOLDER PATH
	USE EVALUATE IN VBA INSTEAD OF LOOPING THROUGH CELLS
	RENAME EACH WORKSHEET BASED ON ITS A1 VALUE
	USE A CUSTOM PULL FUNCTION INSTEAD OF INDIRECT WITH A CLOSED WORKBOOK
	IN VBA, DETERMINE THE NUMBER OF THE ACTIVE WORK-SHEET
	CREATE WORKSHEET NAMES BY USING THE FILL HANDLE
	COPY THE PERSONAL MACRO WORKBOOK TO ANOTHER COMPUTER
	ADD FILTER TO SELECTION FUNCTIONALITY
	USE A MACRO TO HIGHLIGHT THE ACTIVE CELL
	REMOVE THE CAPTION BAR FROM A USER FORM
	KEEP A BUTTON IN VIEW
	ADD A RIGHT-CLICK MENU TO A USER FORM
	FORMAT A USER FORM TEXT BOX AS CURRENCY OR A PERCENTAGE
	DELETE RECORDS IN VBA
	SELF-SIGN YOUR MACROS FOR CO-WORKERS
	MAGNIFY A SECTION OF YOUR SCREEN
	LIST COMBINATIONS OF N ITEMS TAKEN M AT A TIME

	APPENDIX 1 - ALPHABETICAL FUNCTION REFERENCE
	INDEX

