]

-

Read Less-Learn More* 'J
s
Visual

Microsoft” Office

Excel 2007 Programming

Companion Web site features code
examples from the book as well as
sample macros

Your visual blueprint™ for
creating interactive spreadsheets

e

SASS

-\\\\\"‘-_: | \“‘... - Y ! , .j I. .
SN ~NA N T

WY \\
| L

e
Wiley Publishing, Inc.

e

SASS

-\\\\\"‘-_: | \“‘... - Y ! , .j I. .
SN ~NA N T

WY \\
| L

e
Wiley Publishing, Inc.

Microsoft® Office Excel® 2007 Programming: Your
visual blueprint™ for creating interactive spreadsheets

Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Published simultaneously in Canada
Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, Online: www.wiley.com/go/permissions.

Library of Congress Control Number: 2007933273
ISBN: 978-0-470-13230-2
Manufactured in the United States of America

0 9 8 76 5 43 21

Trademark Acknowledgments

Wiley, the Wiley Publishing logo, Visual, the Visual logo, Simplified,
Master VISUALLY, Teach Yourself VISUALLY, Visual Blueprint, Read Less -
Learn More and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates. Microsoft and
Excel are registered trademarks of Microsoft Corporation in the United
States and/or other countries. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND
TECHNIQUES DESCRIBED IN THIS BOOK, THE AUTHOR HAS
CREATED VARIOUS NAMES, COMPANY NAMES, MAILING, E-MAIL
AND INTERNET ADDRESSES, PHONE AND FAX NUMBERS AND
SIMILAR INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY
RESEMBLANCE OF THESE FICTITIOUS NAMES, ADDRESSES, PHONE
AND FAX NUMBERS AND SIMILAR INFORMATION TO ANY ACTUAL
PERSON, COMPANY AND/OR ORGANIZATION IS UNINTENTIONAL
AND PURELY COINCIDENTAL.

Contact Us

For general information on our other products and services, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER
AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE
SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE
OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD
BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ.

The Roman Theater of Aspendos

Built when Marcus Aurelius was Emperor of Rome (161-180 A.D.),
this magnificent theater, faithful to the Greek tradition, nestles
into the side of a hill. It is among the best preserved of its era,
and concerts and operas are still performed upon its stage today.
Its acoustics are quite literally legendary. A favorite story tells
how the architect, Zeno, won the king’s daughter by creating this
masterpiece in which a word murmured from the stage could be
heard throughout the arena.

Learn more about Aspendos and its artifacts in Frommer’s Turkey,
available wherever books are sold or at www.frommers.com.

Sales
Contact Wiley

at (800) 762-2974

- or (317) 572-4002.

www.frommers.com
www.wiley.com
www.wiley.com

P RAISE

“This is absolutely the best computer-related book
| have ever bought. Thank you so much for this
fantastic text. Simply the best computer book
series | have everseen. | will look for, recommend,
and purchase more of the same.”

—DavidE. Prince (NeoNome.com)

FOrR VISUAL BOOKS ...

“lam an avid fan of your Visual books. If | need to
learn anything, | just buy one of your books and
learn the topic in no time. Wonders! | have even
trained my friends to give me Visual books as gifts.”

—IlllonaBergstrom (Aventura, FL)

“|'have several of your Visual books and they are
the best | have everused.”
—StanleyClark (Crawfordville, FL)

“| just want to let you know that | really enjoy all
your books. I'm a strong visual learner. You really
know how to get people addicted to learning! I'm
a very satisfied Visual customer. Keep up the
excellentwork!”

—HelenLee (Calgar y, Alberta, Canada)

“|'have several books from the Visual series and
have always found them to be valuable resources.”
—StephenP. Miller (Ballston Spa, NY)

“This book is PERFECT for me —it’s highly visual
and getsright to the point. What | like most about
it is that each page presents a new task that you
can try verbatim or, alternatively, take the ideas
and build your own examples. Also, this book isn't
boggeddown with trying to ‘tell all' - it gets right
to the point. This is an EXCELLEN T, EXCELLEN T,
EXCELLENT book and | look forward to purchasing
other books in the series.”

—Tom Dierickx (Malta, IL)

“|'have quite a few of your Visual books and have
been very pleased with all of them. | love the way
the lessons are presented!”

—Mary Jane Newman (Yorba Linda, CA)

“I just had to let you and your company know how
great | think your books are. | just purchased my
third Visual book (my first two are dog-eared
now!) and, once again, your product has surpassed
my expectations. The expettise, thought, and effort
that go into each book are obvious, and | sincerely
appreciate your efforts.”

—Tracey Moore (Mempbhis, TN)

“Compliments to the chef!! Your books are
extraordinary! Or, simply put, extra-ordinary,
meaning way above the rest! THANK YOU THANK
YOU THANK YOU! | buy them for friends, family,
and colleagues.”

—Christine J. Manfrin (Castle Rock, CO)

“I write to extend my thanks and appreciation for
your books. They are clear, easy to follow, and
straight to the point. Keep up the good work! |
bought several of your books and they are just
right! No regrets! | will always buy your books
because they are the best.”

—SewardKollie (Dakar , Senegal)

“l am an avid purchaser and reader of the Visual
series, and they are the greatest computer books
I've seen. Thank you very much for the hard work,
effort, and dedication that you put into this series.”

—Alex Diaz (Las Vegas, NV)

July 05

'Lv--_'l

Credis

Project Editor
Jade L. Williams

Acquisitions Editor
Jody Lefevere

{)y Editor
Marylouise Wiack

Technical Editor
Lee Musick

Editorial Manager
Robyn Siesky

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Manufacturing
Allan Conley
Linda Cook
Paul Gilchrist
Jennifer Guynn

Book Design
Kathryn Rickard

Production Coordinator
Adrienne Martinez

Layout
Carrie A. Foster
Joyce Haughey

Jennifer Mayberry
Amanda Spagnuolo
Christine Williams

Screen Artist
Ronda David-Burroughs
Jill Proll

Cover lllustration
Cheryl Grubbs

Proofreader
Broccoli Information Management

Quality Control
Laura Albert

Indexer
Infodex Indexing Services, Inc.

Vice President and Executive

Group Publisher
Richard Swadley

Vice President and Publisher
Barry Pruett

Composition Director
Debbie Stailey

Wiley Bicentennial Logo
Richard J. Pacifico

O AR =

Denise Etheridge is a certified public accountant as well as the president and founder of Baycon
Group, Inc. She publishes Web sites, provides consulting services on accounting-related software, and
authors computer-related books. You can visit www.baycongroup.com to view her online tutorials.

RN

I would like to thank all of the people at Wiley who assisted me in writing this book. | would also like to

thank Malinda McCain for her assistance. | have said it before and | will say it again, “Malinda, you are
the best!”

This book is dedicated to Frederick Douglas Etheridge, Jr.

TABLE OF CONTENTS

HOWTOUSETHISBOOKciviviiinineneea i

1 USING MACROS AND FORM CONTROLS2

Introducing EXcel PrOZIammingc..cecveerrveervrersreerrureenueenueessseesssreesseessseesssees 2
INELOAUCING MACTOS ...eeuvveeerrreerreerereenreeeisresssseessseessaesssesssseessseessseessssessssaesseesssees 4
SEL MACTO SECUIILY teeveeuevvrrreeeeeereiirireeeeeenniiirreeeeesenssrrreeeesssssmreseeessssssssssaeesssssnsnn 6
Create a Digital SIENATULEccc.eevuieriiiriiniinieiieeieeiteteeeette st 7
RECOTA @ MACTO ..eeuvveeniveeririeeiteenireeniteesiteeniteesineesntaesnsaeensaeesseeesnsaessneensueessseesseees 8
Assign a Digital Signature t0 @ MACIOcovevverrvveerveerieernireeriveenreesseeenueeniseennn 10
RUN @ MACIO ...coooiiiiiiiiiiiiiiiiiiiiiiiie e e e 12
Create and Launch a Keyboard SNOTTCULccveerveeriireeriveenieenieeeireenireennveennees 14
Assign a Macro to the Quick Access TOOIDATcccvevverierierienienieeieeieeiene 16
DEIELE @ IMIACIO eeevvvvreeenvrreeerrreeeeerreesetreeeenereeesesseessnnsseessssseeesnsseessnsseessnssseessnsses 18
Add a Form Control t0 @ WOTKSNEetcocveevieerniieiniiiniieriieniieenieeeieeeieeenns 20
Assign Values to @ FOrm CONLIOLoovvvevrieerieernireenieenieenieennireeneeessnesnseesnens 22
Add a Macro to @ FOrm CONEIOL.......cccuverrurernreenreenireenireenreenieessreenneenneesseesnens 24
2 USING THE VISUAL BASICEDITOR26
Introducing the Visual BasiC EAItOr........cccueerveirieriienienienienienieeieeieeieeieeieenne 26
Activate the Visual BasiC EQILOTcccvveieriuieerriiieerriieeeeiieeeeniieeeenirreeenvaeesennnns 28
Open Visual Basic EAitor WiNAOWS.........ccovueerriieenieenieennieerniieenieenieesnieeeniveenneees 30
Set Properties fOr @ PIOJECEc.eeeveeveerieerieerieenieenieenereesteneeenesnsesseeseenseesessesnses 32
Set Display Options for the Code WindOW...........cocveeriveerveenveeniueensieennnesnveennees 34
Add @ NEW MOUIEeeiiiireniieriiieiteeiieeteeieettenttenitesie et e it et siresaneeateeneeenaeenee 36
ReMOVE @ MOAUICeovieiiiiiiriiieitieitceeeteee ettt ettt et 38
HI@ @ MACTO .vveeeivireeeiiieeeniiteeeiiteeseireeessirteeentseeesnnsseesssseeesnssseessnsssessnssseesssses 40
UPAALE @ MACIO...ceeuvteeiieeriiieeiieeniteeeieeeiteeniteesiteesbteensaeesaneessaeessreensaeessseesnseesnnns 42
3 INTRODUCING VISUAL BASIC
FOR APPLICATIONS i iiiiiiiiiiiiinnnnnnns 44
Create SUD PrOCEAUIESeovveeriierriiienieenieeeiieeniteenieeeieeensreenseeesssaesnsaesnseeeseees 44
CIeate FUNCHIONS . eeeeiiiriiiiiieeetieeiiiiieeeeeeeiiiiteeeeeeeitttteeeeeseennraneeeeeesemmnnnaaeeeesonnnes 46
COMMENE YOUL COUEvenvrierirnieeniieiieniienitenitenteenteenteeteeteenteeneeesieesmaessaessseenneenne 48
Understanding Variables and Data TYPESccevvveervveerveenivreervreersveeniveeeseesssnesnnns 50
Reference Cells and RANGEScccueeveeierierieinieeniieniienitenitenitesiteeieeenneereenreenaeenne 59)

DECIALE VATIADIES ..ovvveeeeeeeeiiiiiiiiiieeee ettt e e e e eeeeeeeaasssseesseessssannnnsssssssseeees 54

WOTK WItH NUITIDEIS w.vvvveiiiiiiiiiiiieeeeeeeeeeeeiedeeeeee e eeeeeevviieeeseesseeeevssaannsssesssesseens 56

WOTK WIth SEHNZS...cvvevverieriiiiieiieieeniensleniieieeieciecie ettt 58
Create @ CONSLANToovvvivriiiiiiiiiiiiiiiiieie ettt ssanarrreeesssans 60
4 INTRODUCING THE EXCEL OBJECT MODEL62
Discover the EXCel ODJeCt MOAELc..ievveerirrernireenieeriireenireenveenseesnneenveessseesnn 62
Access the Excel Object Model REfEIENCecccvveervveerveeniveeerirenrireeniveeeieeennreennns 64
Create an ODbJECt VALIADIEcccvvevviitovieeiiieeiieeiiieerireeereeenreesireernreessreesnseeennees 66
Change the Properties of an ODJECt.......cccueerieerierierienienieeieeie et 68
Compare ODbJect VariabIesccceoviitiiiiiinieiniieniieeiieeeeeee et 70
Using an ODbject MEthOdccveevireeniiberieiniieeiieenieesieesireesieeesereeesieesneneesnraesnne 72
Display a Built-in DIalog BOXcccvveeriuibrrreeriirernireenreenieesnueesiueesseesnaesnuesssseesnn 74
S UNDERSTANDING ARRAYSccivvvee....76
DECIATE QI ATTAY ..ecuvvreerreeevreerireenrreesureesssiserseeenseeesssesssseessseessssessssesssessseessssesnsns 76
Declare a Multidimensional AITAY.........cccvviiererrrveerieeerieeenreesveeeseesseesnseessseesnns 78
Convert @ LiSt 0 @n AITAY ...cccovvvveeerrurreernireeiimreeennieeeesnireeeenuueeessmmeeeosmmeeessmneees 80
REdIMENSION AN ALTAY ..eevrvveerireerireeniieenieenieeeiieeensreenseeesnsreesseeessseessseesnseeesseesnn 82
Create a User-Defined Data TYPEccccoververuerreesiivrenmeeuenenreeruensesseesensesuensessenne 84
6 CONTROLLING PROGRAMFLOW86
Create COMPATISOIS ..cuvvvvrreeeerenriiireeeeeeeniieireeeeesenurrrreeeeessnsstineeeeesssnmmeeseeeesssnnnes 86
Make Use 0f LOGICAl OPEIALOTSveeuveenrieiieniieniieniienireeieeteeieeneeenstsiaeseensresenenne 87
EmPploy DO WHile LOOPSccvevuveeiieiiiiiiiiiniieniieniieeieeiesereeneenneeneeueeneesaeesieone 88
Create DO UNLL LOOPS ...eeouveerereeniieeriteniieeniteenieeeieeeireesieeesereesieesssneessseessseeensees 90
Create FOr NEXt LOOPS ooevviiiiiiiiiiiiiiiitetititieteeeeeeeeee e eeeeeeeeeeeeeeees 92
Execute FOr EQCh IN LOOPS ..veovveerrireeriveeriieenieeeireenieesueesnsneessessseessaesnssessseesnns 94
Create If Then EISe STAteMEILSccc.eeveeuerrieenieeniienienieniteeitenirenieeeeeneeeieeneennes 96
Construct Select Case SLALEMENLSc..ceeverreruerrueerieenieenieenieenreneeseesreereeneenne 98
GOTO @ Named LOCALION ...uvvveeeeurieerriireerniieeeniiireeenureeessneeesnnnvneessssneesssssneesnnns 100
Call @ PIOCEAULE ...vveeeeivieeeeriiieeeeirieeeeiieeeentteeeesiraeesenssaessnssseessssssesssssseesssssaeesnnes 102
7 USING EXCEL WORKSHEET FUNCTIONS104
Work with Excel Worksheet FUNCHONSccovevvenienienienierienieeieeieeieenieenaes 104
Work with @ MSZBOX FUNCLONeoveriieiieniieniienieniteniteeiieeieete et enieeneees 106
Using the INputBoX FUNCLON «...ccveeieriieniieniieniienieniteeiteeieeieete et enieenieeneees 108

Retrieve the Current Date and TIMEooovvveeveeeerieeeiiririiiieeeeeeeeeerrraniseseeeeenns 110

TABLE OF CONTENTS

Perform Date and Time CalCulationscocueeeeeuerieriernieenieenieenieenieenieeneeeniens 112
Format @ Date EXPIeSSION....cceeiierriurrrreeeeerriiiirteeeeeeniiirrreeeeessnerereeeeeessnmmrreeeeeens 114
Format @ NUmMeric EXPIeSSION........ceeevuurtierriiieerniieeeriiieeeniieeeennieeessireeeesnneeennns 116
Change the Case 0f @ SIINGcccovevviririenienieiiienteieneetetene et eeee 118
Return a POrtion of @ StrNGccveeverveerieeiieieeieeieeieesieeeeeeieeeve e eaeenve v 120
8 DEBUGGINGMACROSciiiiiinnnerenna. 122
Debug a Procedure with Inserted Break POINEScevvveerveeriveeriiveenveeniveennunenns 122
Using the Watches Window to Debug a Procedureccceevvveerveerveeniveenrunenns 124
Step through @ PrOCEAUIEc.eevuiiriieriieriieniteniteeieeieeie ettt et et sieens 126
Use the Immediate WINAOWcccueeeeririeeiriiieeeniiieeeeiieeeennieeeesnreessneeeesnsveeenns 128
Resume Execution When an Error Is ENCOUnteredceevveerrieernveenueennunenns 130
Process @ RUN-TIME EITOTccceirrriiiiiiieeeerniiiiiiieeeeenniiiieeeeeeennnirreeeeeessnmmmeeeeeeens 132
9 WORKING WITH WORKBOOKS AND FILES134
Open @ WOTKDOOKcccuvieriieeiiieeiieeiiieeieeeiteesteeeieeesiaeesaneenseesssnesnsseessseesnsnenns 134
Open a Text File as @ WOTKDOOKeoevviiiiiiienieiiiieeiiecnieeereeeieeeiveeeveeeine e 136
Open a File Requested by the USETcoovveevieenieiniierniiienieenieeeiieenieenieens 138
SaVE @ WOTKDOOKccovuiiiiiiiiiieieiiieeeeiiteeeieeeeeiteeeeiraeeeeaveeesennaeeesnnsaeessnnnaasanns 140
Save a Workbook in a Format Specified by the USercccccevveevvevcvevcveeveennenn 142
Determine if @ WOrKbooK IS OPEI.......cocvverriveerieeriireeniieenieenieesireeniveensneesvaennn 144
CloSE @ WOTKDOOKccuveimiiiiiiiiiniieeiieeieeiceieett ettt 146
Create @ New WOTKDOOKcocueriiiiiiriiiiiiiieiteitetentesteeteeeeeeeie et 148
DELELE @ FIl@ ..eevvieevieeeiiieeiieeiiteesiie et eereeeiteeeiveeesseessaessseenssaessseesssesnsseennseenns 150
10 WORKING WITH WORKSHEETS 152
A @ SHEEL ..veeniiiiiiieeiteeiieeeiteete ettt et ettt e sabaesba e et e e siteesabaesbaeennneens 152
DELELE @ SHELE...c.vveouieruiiriiieiiieieeteeie ettt sttt eete st et et et ebeebeenbeenueenueens 154
MOVE @ SHEEL ...eeneveiieeiieeiiieieeieeitenite sttt et eate et et et esbeenbeenbeesbaesbaesnnesanes 156
COpY and PaSte @ SNEEL.......cccveerireeireeriieenieeiieeesireenreeeseeeieesnsreesseesseesseesnnns 158
HIA@ @ SHEEL ...vvevieiieeiieitet ettt st ettt ettt ettt 160
Change the Name of @ SHEet.........cooueviirriiiriieriieniieierieeteeteeteeie et 162
Save a Sheet t0 ANOLhEr Filecocceevviiriiiiniieeniieiiieiieenieeneeeieeenieeeeiee e 164
Protect @ WOTKSHEEEvvevuvveriieeniiieniieniteeniieeniieesiteeiaeenireesiteesnsaeenseesnsseesssaesnn 166
PrOteCt @ CRATT «o.veouiieiiiiiieieeieeicee ettt ettt et e saee e 168
PLNE @ SHEEL....eeoviiiiiieiiiiiieit ettt st ettt et et e e 170

SOrt WOTKSheets by NAIME.ceevvveeririeereeiiieenieenieeesieeesireenreeeseeesreessveesseenns 172

11 DEFININGRANGES/cvviiiieee... 174

Using the RANGE PrOPEILYccceevuieriiereeluvemierienienieereeieeieeieenieenieesseesneennnes 174
UsSIng the CellS PIOPEILYvevrvverrirrerieeeshreeniieenieeniieernireeniteeneeesieesnsreesseeesueenns 176
Combine MUILIPIE RANZES ...cevvrerurrerrvreeioreerurernireenueeniieessuaeenueesueesssuessueesneenns 178
Using the OffSEt PIOPEILY ...veevvveerireriedeniieeniieenieeniieesniteesiueenseesssnesssseesueesseenns 180
Delete @ RANGE Of CEIIS ..ivuvvrervrieriieeiieioieeeiteeireesreesinaeevneensreesseessneessseessseenns 182
Hide @ Range Of CElISeovuieiiriiiiiesiieiieniteitesiteste sttt et ieens 184
Create @ Range NAIMEooooiviiiiiiiiiitoiiiiiiiiiiiteeeeeeeeereeeeeeaees 186
RESIZE @ RANGE ...covvveiiiiieiiiiiiiieiiiciiibteceite ettt st ean 188
INSEIt @ RANGE ..ovvvviviiiiiiiiiiiiiiiiiiiiiiiiidiiiiiiiiiiiiieeieieeeeee it eeaeeeaeeeaee 190
Set the Width of Columns in @ RANGEeceveerriveerieeriivenieeenieenieennireenveenneenns 192
Set the Height of ROWS i @ RANGEccobuvervreeniieenieeriieerireenreeniveesnnreesveessnenns 194
Convert a Column of Text into Multiple COIUMNSccceevvvierveerireerrireerieeninens 196
Find the Intersection of TWO RANGES.........leeveerierierierierieeieeieeieenieenieenieenieens 198
12 WORKINGWITHCELLSc0000vee....200
Cut and Paste Ranges Of CElIS........ccvervrerrerriersivrenieeieeeeereeseenseenseenseesseenseens 200
Copy and Paste Ranges of CElIScccvevierreereeesiorieeieeieereeieeieesieenneenseenseens 202
Using Paste Special Options When Pasting..........cocvveiviveerveennvreerveenveeniveesnnnenns 204
Add Comments t0 @ CILcoueriiiriieiiiiieniienierierteete e Sttt 206
Automatically Fill @ Range of CellScovvevieriirieniiiiieie ettt 208
Copy a Range to Multiple SREetsc..ccocevveriiniiniiiniiniiiiieee e 210
Place a Border Around a Range of CellSccceeveruerieeiieieeiernieeieeeeessisnens 212
Find Specific Cell VAIUEScecveeveerieeiieiieniieeiteeeeeteeteeeeeveeseeseenseeseenseenseens 214
Find and Replace Values in CellScocvvervvernveerveeriiieerieeenieenieesnireenveesneenns 216

13 CREATING DIALOG BOXES AND CUSTOMIZING
THERIBBONciiiiiiiiiiiee.....218

USEIFOIM BASICS....uvviiviiiiiiiiiiiiiiiiiiiiiiieeiiiice ettt ettt saiaeeesaneeeesnnneeesaen 218
Create @ CUStOM DIalog BOXeeveerueeniieniieniieniieniienientesiteereeteeieeieeaeeneeenseens 220
Call a Custom Dialog Box from a Procedurecccceeevevueeueeriersieenieenieenieennens 222
Capture Input from a Custom Dialog BOXcccoveeveruereeruenreneenueneeuenueneenenne 224
Validate Input from @ Dialog BOXcccveevveeruerieerveeriienieeieenirenrenseennessessesuennns 228
Create Custom USErFOrm CONLIOLS.c.eevueerreerreenuenierienieerenrenieeieeueenueenneens 230
Create @ USErFOIrm TEMPIALEccvveervreerrreerrureenreerueenireeesuneenueesueesnsuessuessneenns 232

Create @ CUStOMULXIML FIl€......ccoovvvviiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneaeneeeennnnnnnennns 234

TABLE OF CONTENTS

Customize the RIDDOM........cocueviiriiiiiiiiiiiiieitetetcte et 236
Add Additional Options to the RIDDONcccveeviveeiiieriiieriieniieerieeeveeeieeeineens 238
14 WORI(ING WITH CHARTS ® © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .242
Create @ ChArt SHEELcccvviiieiiieeeiiiee et e et e et e e ereeeeetaeeesetvaeeeensbaeesnnnes 242
Embed a Chart in @ WOTKSREEEeevvvverniiieniiiniieeiieiiieenieesieeeiee e e 244
Apply Chart Wizard Settings to @ ChaItcccocveeriveerrirernivernveeniieennireeneeenveens 246
Add a New Data Series t0 @ Chart..........cocveeveriernieinieenieenieenieenieeneeneeeee e 248
FOIMAat Chart TEXE.....eeuverieeieeieeieenieeniteniteniteniteetteeitesateenteenteenteeteenseenseenseenseens 250
Create Charts with Multiple Chart TYPES ...cveeevvveerrieerreerreeeireerireenveeenressneeenns 252
Add a Data Table t0 the ChaIt..........ccovviveeiiiiieeeeiiieeeniieeeeireeeeieeeeenreeeseiraeeens 254
CUSLOMIZE @ CHAIT AXIS ieovvvrieerevreeeiiiireeeiireeeeiieeeeenreeeesnreeeesnsaeeesssseessssseeesnnes 256
15 AUTOMATING PROCEDURES WITH

EXCELEVENTS ... ittt iiiiitennnnnnnns 258
Understanding EXCEl EVENTScccuveeriverrieerieerniieenieenieesieeenireeseeesseesnseesnsneens 258
Run a Procedure as @ WOrkbOOK OPENScevveervreeniveenireenieenieeeniveenneenveennes 262
Run a Procedure before Closing @ WOorkbookccccueevveeniivenviveenveeniieenninenns 264
Run a Procedure before Saving @ WOrkbooK.............ceevveerveervieenivennveeniieenninenns 266
Run a Procedure When Excel Creates a WOrkbookccoceeveeenieenienieniennnene 268
Execute a Procedure at a SPecific TIMEccvevveeverrierrieeiieiierieenieenieenieeneeenenens 272
Execute a Procedure When YOu Press KEYScceevveervieerriveenieeniieennireenieenninenns 274
16 BUILDINGADD-INSciiiiiiinnnnnes....276
Create an Add-TN c..oooierienierienieeieeieeie ettt sttt et et ebe e enaeenaeens 276
Set Add-IN PIOPEITIES ...veevvveerrreeriieerieenireeeiireesreenseessiaeessneensseesssnesssseessseesnsnenns 278
INSEALl AQA-TNS wevviiiiriiiiiieieeieeie ettt et sate et ettt et enbeenbeenaeesieens 280
Using VBA t0 Load Add-INS ...ccverierierieeieeierieeiienitenieenieesiresresveeeeeseenseenns 282
17 UNDERSTANDING XMLciiiiiineennnns 284
INEEOAUCING XML ...evveeniieeiieeriieeniieeniteeniieeeteesnsreensaeesnseesssaesnsreessseessseessseesnsneens 284
Understanding EXcel XML FileScccveerveerieerniveeniveenieenieennieeenineenneesiveesnsneens 286
Open an XML File in Excel as @ Tablecccccoceeieviiriienniienieniieneenecnieeneeneene 290

Create an XML MaD .ccoovvviiiiiiiiiiiiiiiiiiiiee ettt eeetetuniiiiieseeeeeevtannaasaneees 292

Import and Export XML Files USiNg EXCEl ./.ccccvverrveernveenueenieenieernireenueeninenns 294

Load XML Files USING VBAccocverrieerreionueenreeniineesiueenueessseesssnesnsueessuesssseenns 296
Import XML FileS USINZ VBAcccvvevviveessheenieerieeeiieeenueenseensseesssnesssseessseessseenns 298
APPENDIX A: VBA QUICK REFERENCE 300

APPENDIX B: RIBBON CONTROLS QUICK
REFERENCEcciiiiiiiinn 320

\/ 4

" HOW TO USE THIS BOOK

Microsoft Office Excel 2007 Programming: Your visual
blueprint for creating interactive spreadsheets uses
clear, descriptive examples to show you how to use
powerful Excel macros. If you are already familiar with
Excel macros, you can use this book as a quick
reference.

Who Needs This Book

This book is for the experienced computer user who
wants to find out more about Excel programming. It is
also for more experienced Excel users who want to
expand their knowledge of the different features that
Excel has to offer.

Book Organization

Microsoft Office Excel 2007 Programming: Your visual blueprint
for creating interactive spreadsheets has 17 chapters and 2
appendices.

Chapter 1, “Using Macros and Form Controls,” shows
you how to work with macros in Excel, how to record a
simple macro, how to assign macros to the Quick
Access toolbar, how to launch a macro, and how to
remove a macro from a workbook.

Chapter 2, “Using the Visual Basic Editor,” is about the
Visual Basic Editor (VBE) that comes with Microsoft
Office applications. This chapter shows you how to set
up your Visual Basic Editor window to quickly create
and modify code modules.

Chapter 3, “Introducing Visual Basic for Applications,”
introduces you to the essentials of Visual Basic for
Applications (VBA). This chapter also covers some VBA
programming fundamentals that enable you to use the
material in the chapters that follow to create your own
Excel macros.

Chapter 4, “Introducing the Excel Object Model,”
shows you how to work with the Excel Object Model to
access the various elements that make up the Excel
application. This chapter provides a foundation for the
information covered in the remainder of the book,
particularly Chapters 9 to 12.

“

Chapters 5 to 7 build on the VBA programming
language by showing you how to work with variables
and create arrays. You also learn how to use the various
control statements to specify the code that executes
when you run a macro. You create dialog boxes using
the MsgBox and InputBox functions.

Chapter 8, “Debugging Macros,” shows you how to use
the various features of the Visual Basic Editor to find
programming and logical errors within your VBA code.

Chapters 9 to 12 illustrate how you can use the
Workbook, Worksheet, and Range objects to create
custom macros. You also learn how to use the
corresponding properties and methods associated with
these objects.

Chapter 13, “Creating Dialog Boxes and Customizing
the Ribbon,” shows you how to create a graphical
interface for your macros by creating custom dialog
boxes and adding items to the Ribbon.

Chapter 14, “Working with Charts,” shows you how to
create and modify charts from within your macro.

Chapter 15, “Automating Procedures with Excel
Events,” shows you how to capture user events and use
those events to trigger procedures. You also learn how
to execute a procedure at a specific time, or how to
determine when a specific key sequence is pressed.

Chapter 16, “Building Add-Ins,” shows you how to
create and load add-ins.

Chapter 17, “Understanding XML,” introduces you to

Extensible Markup Language (XML). You learn how to

open an XML file, create an XML map, import an XML
file, and export an XML file.

The appendices are reference sections. After you
become familiar with the contents of this book, you can
use the appendices to obtain at-a-glance information
about VBA statements, functions, constants, and
controls used by functions, properties, methods, and
RibbonX.

What You Need to Use This Book

Windows Requirements

® 256 megabyte (MB) RAM or higher

® 500 megahertz (MHz) processor or higher

® 2 GB of available hard disk space

® CD-ROM or DVD drive

® Keyboard and pointing device, such as a mouse

® 1024x768 or higher resolution monitor
Microsoft Windows XP with Service Pack (SP) 2,

Windows Server 2003 with SP1 or later operating
system.

The Conventions in This Book

A number of styles have been used throughout
Microsoft Office Excel 2007 Programming: Your visual
blueprint for creating interactive spreadsheets to designate
different types of information.

Courier Font

Indicates the use of VBA and scripting language code,
such as tags, attributes, statements, operators,
functions, objects, methods, or properties.

Bold

Indicates information that you must type.

Italics

Indicates a new term.

[ool ic I

An Apply It section takes the code from the preceding
task one-step further. Apply It sections allow you to
take full advantage of VBA code.

i Extra |}

An Extra section provides additional information about
the preceding task. Extra sections contain the inside
information to make working with Excel easier and
more efficient.

What’s on the Web Site

The Web site accompanying this book contains the
sample files for the book that you can use to work with
Microsoft Office Excel 2007 Programming: Your visual
blueprint for creating interactive spreadsheets.

Introducing

Excel Programming

s you probably know, Microsoft Excel is an
electronic worksheet you can use for a variety of

purposes, including the following: maintain lists;
perform mathematical, financial, and statistical
calculations; create charts; and analyze your data with a
PivotTable. Excel can also help you locate data, find
trends in your data, and present your data to others.

This book is about automating the tasks you perform in
Excel by using Visual Basic for Applications (VBA). You
can use VBA to automate those repetitive tasks you
perform frequently. For example, if the layout of your
monthly report rarely changes, you can use VBA to set
up your report each month.

VBA is a programming language; however, you do not
have to be a programmer to automate the tasks you
perform in Excel. You can also automate a task by using
the macro recorder to create a macro. A macro is a

Introducing Excel Programming

recording of the steps you want to automate. You just click
a button to turn on the macro recorder and begin
performing the steps as you normally would. Excel records
each step and creates the VBA code. When you finish, you
click the Stop Record button. When you select your macro
in the Macro dialog box and click the Run button, Excel
plays back the steps you recorded. For example, if you
record the steps necessary to create your monthly report,
all you have to do each month thereafter is click a button
and Excel automatically sets up your report.

With VBA, you can do more that just create macros. You
can use VBA to edit macros, create new functions, create
custom applications, and create add-ins. For these tasks,
you must learn the VBA programming language. This
book teaches VBA. It is based on Office 2007; code you
write for Office 2007 may not be compatible with earlier
versions of Excel.

@ Click the Developer tab.

Note: See the section, “Introducing Macros,” to learn how to
display the Developer tab.

Use the options in the Code group to automate your tasks.

@ Click either of these Record Macro buttons to record a
macro.

Note: See the section, “Record a Macro,” for more details.
9 Click Macros to run a macro.
Note: See the section, “Run a Macro,” for more details.
® Use the options in the Controls group to add check boxes,
fields, and other form controls to your worksheet.
® Use the options in the XML group to work with XML.
@ Click here or press Alt+F11.

Excel moves to the Visual Basic for Applications Editor (VBE).

6

x
— i |

P ————— -

e [T e e —)

Use the VBE to write and edit code.
Note: See Chapter 2 to learn more about the VBE.

6 Click the proper module to access your
macros or the VBA code you have written.

@ Type or edit your code here.
@ Press Alt+F11 to return to Excel.

The VBA returns you to Excel.

= Microsoft Visual Basic - Introduction, xism -

[Module? (Code)]

‘Created By: Denise Etheridge
'Date: September 29, 2008
'Purpose: Calculate annual bonus

Function Bonus(Salary, Percent) 4—0

‘Multiply salary times annual percentage
Bonus = Salary * Percent "Approved by KP

End Function

|=jwal | 2
(o) - R~ Introsduction sm - Mi -t
=t et Paplawd fwedn Dis e em L)
— T B b
S e bt St
-
P 1, M ety
P . e
AL o 3 &
A B c D E F G H I |]
S —
2
3
4
5
&
7
8
9
10
1
12
13
14
15
16
50 e sty e ey 3
] EET 7 -

You can also use Microsoft Visual Studio Tools for the Microsoft Office System (Visual Studio) to develop
programs for Microsoft Office products. With Visual Studio, you can write in languages such as Visual Basic
.NET, Visual C#, and Managed Extensions for C++. Visual Studio is not part of Microsoft Office; you must
purchase it. Microsoft supports both VBA and Visual Studio.

Visual Studio is more difficult to learn than VBA and setting up and using Visual Studio is much more
difficult than setting up and using VBA. However, Visual Studio offers better security, a more sophisticated
development environment, and built-in Web services.

1 1dey)

.
.

C
=
=
uQ
=
o)
(@)
-
o
wn
&
=
(=W
"1
o
=)
=
Q
o
=
=
-
o
p—
75}

Introducing

Macros

ou can use macros to automate many of the tasks
you perform in Excel. For example, if you

frequently format your data in a particular way,
you can use Excel’s macro recorder to record the steps
you use to format your data. You can then play back the
recorded steps whenever you want to apply your format.
Any series of commands you can execute in Excel, you
can also record and play back.

The commands you use to create and execute macros are
located on the Developer tab. By default, the Developer
tab does not display in Excel. To display it, you must
choose the Show Developer Tab in the Ribbon option in
the Excel Options dialog box.

You begin recording macros by clicking Record Macro on

the Developer tab or by clicking the Record Macro button

on the status bar. Both commands open the Record Macro
dialog box. For detailed instructions on how to use the

Introducing Macros

Record Macro dialog box, see the section, “Record a
Macro.”

When you record a macro, you can record it using an
absolute reference or a relative reference. If you record
using an absolute reference, when Excel plays back your
macro, it plays back the exact cells you clicked when you
recorded the macro. If you record using a relative
reference, Excel plays back the relative location of the
cells you used when you recorded your macro. Click the
Use Relative References button on the Developer tab to
record using a relative reference. To learn more about
absolute and relative references, see the section, “Record
a Macro.”

When you save a workbook that has macros, you must
save it as a macro-enabled workbook. Excel gives macro-
enabled workbooks an .xIsm file extension.

SHOW THE DEVELOPER TAB

@ Click Customize Quick Access Toolbar and then click More
Commands.

The Excel Options dialog box appears.

Click Popular.

Click OK.

000

The Developer tab appears in the Ribbon.
® (lick to record a macro.
® C(lick to record with a relative reference.
Click to change macro security.
Click to run macros.

® (lick to open the Visual Basic Editor.

°

Click Show Developer Tab in the Ribbon ([_] changes to [«]).

e T L Py

tro Amien Perdem— e 0 iy

SAVE A WORKBOOK
o Click the Microsoft Office button.

A menu appears.

1 1dey)

Income Statement

.
.

@ Click Save As - Excel Macro-Enabled

Workbook g el wihen fiar 2 Year3 Yeard Year 5 | c
= D00.00 325.000.00 450,000.00 500,000.00 m
& £00.00 150,000.00 150,000.00 150,000.00 [|=©
2 p00.00 175,000.00 300,000.00 450,000.00 =
D00.00 50,000.00 45,000.00 55,000.00 | CIQ
[00 125,000.00 255,000,00 355,000.00 | g
I (]
B | n
n | =t
(]
73
&
e e =
(<N
The Save As dialog box appears. e T G s i g 31
:cw S] e -
@ Click here and then select the folder in which e i s =]
you want to save your workbook. AL Gt : : ' . — Q
@ Type the name you want to give your ’, _w, — S— | =
workbook. rtsies [)
s Cost nlgm.xh solllaN w
@ Click Save. e

» Net income

Excel saves your workbook as a macro-enabled
workbook.

"

8:0:0-8| Foetl Pt} - Shoet) L) 1.
I R e T | faa

Because of problems with macro viruses, Excel
disables all macros by default when you open a
workbook. You can click the Macro Security button
on the Developer tab to change the default setting.
To learn more about macro security, see the
sections, “Set Macro Security,” “Create a Digital
Signature,” and “Assign a Digital Signature to a
Macro.”

If you have programming experience or aptitude,
you can edit Excel macros by using the Visual Basic
Editor, which is available by pressing the Visual
Basic button on the Developer tab.

You can use the Macro dialog box to run a macro.
To open the Macro dialog box, click the Macro
button on the Developer tab, press Alt+F8, or place
the View Macros button on the Quick Access
toolbar.

To place the View Macros button on the Quick
Access toolbar, click the Microsoft Office button,
and then click Excel Options. The Excel Options
dialog box appears. Click Customize. The Customize
the Quick Access Toolbar pane appears. In the
Choose Commands From field, choose Popular
Commands and then click View Macros. Click the
Add Button. Click OK. The View Macros button
appears on the Quick Access toolbar.

Set Macro

Security

viruses, specifically macro viruses, the default

Excel macro security setting disables all macros
when you open a workbook, and allows you to decide on
a case-by-case basis whether you want to enable them.
This is true whether you created the macros or someone
else created them.

You can change the Excel macro security setting. Excel
provides four options:
® Disable all macros without notification: This
option disables all macros and does not provide you

B ecause of increasing problems with computer

with any security alerts to let you know macros exist.

® Disable all macros with notification: This is the
default setting. It notifies you if macros are present
So you can enable them on a case-by-case basis.

® Disable all macros except digitally signed
macros: This option disables all macros except
those digitally signed by a trusted publisher. If the

Set Macro Security

publisher has digitally signed the macro but you
have not opted to trust the publisher, you can
enable the macro or trust the publisher. See the
“Extra” information in the section, “Run a Macro,”
to learn how to trust a publisher.

® Enable all macros (not recommended; potentially
dangerous code can run): This option allows you to
run all macros. Because potentially dangerous code
can run, Microsoft does not recommend this option.

Changes you make to macro security in Excel do not
change the macro security in other Office programs.

Macro creators use digital signatures to verify the safety
of the macros they create. You can create your own
digital signature by using the Microsoft Selfcert.exe tool,
or you can obtain a digital certificate from a commercial
certificate of authority vendor. For more information on
the Microsoft Selfcert.exe tool, see the next section,
“Create a Digital Signature.”

o Click the Developer tab.

Note: See the section, “Introducing Macros,” to learn how to
display the Developer tab.

@ Click Macro Security in the Code group.

The Trust Center dialog box appears.
@ Click to select a macro setting (O changes to ®).
@ Click OK.

Excel changes your macro security setting.

e

i |

Trust Center %

Create a

Digital Signature

you should consider using a digital signature. A
digital signature provides assurance that the
workbook file is valid and no one has altered it. You
can create a personal digital signature by using the
Microsoft Selfcert.exe tool. Projects signed with digital
signatures created with the Selfcert.exe tool only
work on computers that have the certificate in their
Personal Certificates store.

Digital signatures that you create with the
SelfCert.exe tool work well for personal workbooks;
however, if you plan to distribute your workbook to
users outside your workgroup, you should consider
acquiring a commercial digital signature file. When
you use a commercial digital signature file, the digital
ID attaches to the macro and remains with it; if
anyone alters the macro, Excel notifies the user that

Create a Digital Signature

I f you create a workbook that contains macros,

someone has changed the macro and therefore the
macro should not be trusted.

The most common provider of commercial digital
certification is VeriSign, Inc. You can find out more
about obtaining a commercial certification from
VeriSign at www.verisign.com.

To view the certificates in your Personal
Certificate store, open Internet Explorer. On the
Internet Explorer menu, click Tools and then
click Internet Options. The Internet Options
dialog box appears. Click the Content tab. Click
the Certificates button. The Certificates dialog
box appears. Click the Personal tab. All of your
personal certificates appear.

@ Click Start.

@ Click All Programs = Microsoft Office -
Microsoft Office Tools - Digital Certificate
for VBA Projects.

The Create Digital Certificate dialog box
appears.

9 Type the name you want to give your
certificate.

@ Click OK.

Excel creates a Personal Digital Certificate.

goodododododddo0odocOfooodO00d0000000 AL

1 1dey)

.
.

S[ONU0) W0 pue solew Suisn

Record a

Macro

macro enables you to automate common tasks.

You can use a macro to record any series of

commands you can execute in Excel. For
example, if you frequently apply a certain format to your
worksheet, you can record the steps for creating the

format and then play them back each time you want to
apply the format.

Clicking the Macro Recorder button opens the Record
Macro dialog box in which you can name your macro,
assign your macro to a shortcut key, and tell Excel where
you want to store your macro. You can name your macro
anything you want, with the following limitations: the
name must start with a letter; it can only contain letters,
numbers, and underscores; and it cannot contain any
spaces. You can assign any uppercase or lowercase letter
to act as the shortcut key.

Record a Macro

In the Record Macro dialog box, the Store Macro In field
tells Excel where to store your macro. You can choose to
store your macro in the Personal Macro Workbook, a New
Workbook, or This Workbook. Use the Personal Macro
Workbook option if you want to make your macro
available to all Excel files. After you have stored a least
one macro in the Personal Macro Workbook, the
workbook opens whenever you open an Excel file. Use
the New Workbook option if you have specialized macros
that you want to use with multiple files. If you store your
macro in a new workbook, you can use the macros
whenever that workbook is open. Use the This Workbook
option if you want your macro to be in the workbook in
which you are currently working.

@ Click the Developer tab.

Note: See the section, “Introducing Macros,” to learn how to
display the Developer tab.

® Alternatively, click the Record Macro button on the status
bar and skip step 2.

@ Click Record Macro in the Code group.

The Record Macro dialog box appears.

Type the name you want to give your macro.

Type the shortcut key you want to assign to your macro.
Press Shift as you type to assign an uppercase key.

Click here and then select the workbook in which you
want to store your macro.

Type a description of your macro.

Click OK.

G

OO0 & 00

Income Statement

Yearl Year 2 Year3 Year 4 Year 5
200,000.00 | 250.000.00 32500000 450,000.00 600,000.00
150,000.00 150.000.00 150,000.00 150,000.00 150,000.00

s Netsales

& |Cost of goods sold

7 |Gross profit on sales
» Expenses

» Netincome

50,000.00 100,000.00 175,000.00 300,000.00 &50,000.00
2500000 3500000 50,00000 4500000 55,000.00
25,000.00 6€5,000.00 125,000.00 25500000 395,000.00

Years
500,000.00
150,000.00
450,000.00

55,000.00
395,000.00

s Netsales

1 Cost of goods sold

7 |Gross profit on sales
» Expenses

» Netincome

You are now ready to record your macro. e g
A | GF e
@ Perform the steps you want to record. Sd ssaiss - o
) 200000 =g
This example changes the number format. - 8 -
: Income Statement P
: Yearl Year 2 Year3 Year 4 Year 5
+ et sales 250,000.00 32500000 450,000.00 §00,000.00 C
1 | Cost of goods sold 150,000.00 150,000.00 150,000.00 150,000.00 150,000.00 E.
 Gressprofitonsales 50,000.00 100,000.00 17500000 300,000.00 450,000.00 =
» Expenses 25,000.00 35.000.00 30,000.00 4500000 55,000.00 oq
+ Metincome 25,000.00 65,000.00 12500000 255,000.00 395,000.00
5 &
: e
u -
(]
7
— - =
e o ey, E-
© Click the Developer tab. = | I
. 0 n =)
® Alternatively, click the Stop Recording button - — =
on the status bar and skip step 10. i a
. N L -]
(Click Stop Recording in the Code group. : Income Statement =
4 Yearl Year 2 Year3 Year 4 Year 5 :
Excel stops recording your macro. + et sales 250,000.00 32500000 450,000.00 600,000.00 (o)
1 Cost of goods sold 150,000.00 150,000.00 150,000.00 150,000.00 150,000.00 |—
 Grossprofitonsales 50,000.00 100,000.00 175,000.00 300,000.00 450,000.00 m
Your macro is ready for you to use. + Expenses 25,000.00 3500000 50,00000 4500000 55,000.00
+ Metincome 25,000.00 65,000.00 12500000 25500000 395,000.00
Note: See the section, “Run a Macro,” to learn how u
to run a macro. z
o e o — == —

A macro you create in Excel can have a relative, absolute, or mixed reference. If you use a relative reference,
Excel performs the macro based on a relative location. For example, suppose you move up two cells from cell
A3 to A1 when creating your macro. When you run your macro, if you are in cell C3, Excel moves up two cells
from cell C3 to C1. However, if you use an absolute reference, Excel performs the macro based on the exact
cell addresses. For example, suppose again that you move up two cells from cell A3 to A1. When you run your
macro, if you are in cell C3, Excel moves from there to the cells you used when you recorded your macro. That
is, Excel moves from cell A3 to cell A1.

By default, Excel creates macros with an absolute reference. To create a macro with a relative reference, click
the Use Relative Reference button on the Developer tab to toggle the relative reference option on. To create a
macro with both a relative and an absolute reference — a mixed reference — toggle the Use Relative Reference
on and off as needed as you create your macro.

Assign a Digital

Signature to a Macro

digital signature provides assurance that a

workbook file is valid and no one has altered it.

There are two types of digital signatures:
personal digital signatures and commercial digital
signatures. You can create a personal digital signature by
using the Microsoft Selfcert.exe tool, or you can purchase
a digital signature. Refer to the section, “Create a Digital
Signature,” to learn how to create digital signatures.

After you create a digital signature, you must attach it to
your workbook. Attaching a digital signature is similar to
sealing an envelope. If an envelope arrives sealed, you
have some level of assurance that no one has tampered
with its contents.

Use the Digital Signature dialog box to attach a digital
signature. The Visual Basic Editor is a separate Excel

Assign a Digital Signature to a Macro

module that you can use to edit your macro. You access
the Digital Signature dialog box by opening the Visual
Basic Editor. The Digital Signature dialog box lists valid
certificates. You can use the Digital Signature dialog box
to view certificates and to select the one you want to use.

Unless you have on your computer a valid digital
signature certificate for the signature used to sign a
macro, Excel removes the digital signature if you modify
a macro in a workbook, and you must reattach it. If you
are not sure if a workbook has a digital signature, you
can check the signature by reviewing the Digital
Signature dialog box. If a workbook has a digital
signature, the name of the signature appears in the
Certificate Name field. If you click the Remove button in
the Digital Signature dialog box, Excel removes the
digital signature.

@ Click the Developer tab.

Note: See the section, “Introducing Macros,” to learn how to
display the Developer tab.

@ Click Visual Basic in the Code group.

The Visual Basic Editor appears.

@ Click Tools - Digital Signature.

.
v -

Income Statement

Yearl Year 2 Year3 Year 4 Year 5
[200.000] 250.000.00 325,00000 450,000.00 600,000.00
150,000.00 150,000.00 150,000.00 150,000.00 150,000.00
50,000.00 100,000.00 175,000.00 300,000.00 450,000.00
2500000 3500000 50,000.00 4500000 55,000.00
2500000 6500000 12500000 255,000.00 395,000.00

s Netsales

1 Cost of goods sold

7 |Gross profit on sales
» Expenses

» Netincome

If you have macro security
enabled, Excel displays a warning
just below the Ribbon when you
open a workbook containing a
signed macro. You can click the
Options button located next to
the warning to open the
Microsoft Office Security
Options dialog box, where you
can indicate that you trust the
publisher. Excel then saves the
name of the publisher in the
Trusted Publishers section of the
Trust Center.

If you click the Macro Security
button on the Developer tab, the
Trust Center dialog box appears.
Click Trusted Publisher to display
a list of your trusted publishers.
If you no longer want to trust
macros from a publisher listed
on the Trusted Publishers page,
click the name of the publisher
and then click Remove. The next
time you open a workbook with
a macro from a removed
publisher, Excel again warns you
about its macros.

Unless you have your macro
settings set to enable all macros,
Excel checks all documents you
open for macros. See the section,
“Set Macro Security,” for more
information. If you have a file
that you do not want Excel to
check, you can store it in a
trusted location. In the Trust
Center dialog box, click Trusted
Locations to define a trusted
location.

The D|g|ta| Signature d|a|og box appears. [< Microvatt Vil Basie Arrgn & Digrtal Signatirs ta & Macea.siam - [Madsia] (Codal] - g
=
@ Click Choose. 1| IS
o=
(¢}
-
ve
(=
)
Eo
Q
&
O
-
(o}
73}
i &
el of =
. . o
The Select Certificate dialog box appears. < Wiccosoh Vil Ravls A a pialSigaersia s Macre sl - Nodele] (Codal] |
B pebie five ey 2 o
2k
Note: See the section, “Create a Digital Signature,” to E 5
learn how to create a digital signature. o
6 Click the signature you want to apply. e g
o=
O Click OK to close the Select Certificate dialog box. §
7
0 Click OK to close the Digital Signature dialog box.
Excel attaches the digital signature to your
workbook. 7
el of

acros enable you to perform quickly tasks that

would normally take multiple steps. When you

run a macro, Excel replays the steps you
recorded when you created the macro. You can run any
macro located in any workbook as long as the workbook
in which the macro is located is open. To run a macro,
you can press the shortcut key you assigned when you
created the macro or you can select the macro from the

Macro dialog box.

When you create a macro, you can choose to store it in
one of three locations: the current workbook, a new
workbook, or the Personal Macro Workbook. By default,
the Macro dialog box lists all of the macros in open
workbooks. If a macro is stored in the Personal Macro
Workbook, the workbook opens as a hidden file each

Run a Macro

time you open a file. By default, the macros in the
Personal Macro Workbook always appear in the Macro
dialog box.

You can use the Macros In field to limit the number of
macros listed in the Macro dialog box. To see the macros
in any open workbook, including the Personal Macro
Workbook, select the All Open Workbooks option. To see
the macros from a specific workbook, select the name of
the workbook from the Macros In drop-down list. To see
global macros stored in the Personal Macro Workbook,
select the Personal.xIsb option.

To run a macro from another workbook, the macro must
be from a signed source or you must enable all macros.
You can set the security setting for macros. See the
section, “Set Macro Security,” for more information.

o Select the cells to which you want to
apply your macro.

@ Click the Developer tab.

Note: See the section, “Introducing
Macros,” to learn how to display
the Developer tab.

9 Click Macros in the Code group.
Alternatively, click Alt+F8.

The Macro dialog box appears.

6 If your macro does not appear in the
Macro dialog box, click here and
then select the workbook that
contains your macro.

i |

Income Statement

Year1 Year 2 Year3 Year 4 Year 5

s MNetsales $ 200,000 [250.000.00 325.000.00 450,000.00 EDﬂ.ODD.WI

» Cost of goods sold 150,000.00 150,000.00 15000000 150,000.00 150,000.00
¢ Gross profitonsales 50,000.00 100,000.00 175,000.00 300,000.00 450,000.00

+ Expenses 2500000 3500000 50,00000 4500000 55,000.00
+ Metincome 25,000.00 6€5,000.00 125,000.00 25500000 395,000.00
1

s

"

..-

i s, A -

o Pt ova 3 = e 0 vttt rerome (O D

Mot et Paptlted Pemdw Gets Bewi Ve | Dewen | b .
5

s Netsales

& |Cost of goods sold
v Gross profiton sales 50,000,
1 Expenses 25,000,
+ Netincome 25,000

——ho00 150,000.00
bo.oo 450,000.00
\pooo 55,000.00
1 b0.00_ 395,000.00

L Ee——
] e AR fremd e tARSES |

6 Click the name of the macro you want to run.
O Click Run.

s
=1

1 1dey)

.
.

Year I
s Netsales i
s |Cost of goods sold 150,000 "
v Gross profiton sales 50,000,
1 Expenses 25,000,
+ Netincome 25,000

Excel runs the macro.

® |n this example, the macro adds dollar signs and
removes the decimal places.

You can also run your macro by pressing the

Income Statement

C
=
=
uQ
=
o)
(@)
-
o
wn
&
=
(=W
"1
o
=)
=
Q
o
=
=
-
o
p—
75}

shortcut key you assigned when you created : Yearl Year2 Year3 Yeard YearS _
our macro 5 Metsales 5 200000 S 250,000 5 325000 $ 450,000 S 600,000‘—.

y " 4 | Cost of goods sold 150,000.00 | 150,000.00 150,000.00 150,000.00 150,000.00

+ Gressprofiton sales 50,000.00 100,000.00 17500000 300,000.00 450,000.00

» Expenses 25,000.00 35.000.00 30,000.00 4500000 55,000.00

s+ Netincome 25,000.00 6£5,000,00 12500000 255000,00 395000.00

i s ™~

ey uratvoms 5 PEEET— i

Excel differentiates between macros listed in the
Macro dialog box by placing the name of the
workbook that contains the macros in front of the
macro name. For example, Excel lists a macro

If you have macro security enabled, the Trust Center
checks the macros when you open a workbook to
see if the macros are valid. If there are any
problems, Excel displays a warning just below the

named Sum_Expenses in the Personal Macro
Workbook as PERSONAL.XLSB!Sum_Expenses. If
the macro Sum_Cells exists in both the Budget.xlsm
and Expenses.xlsm workbooks, Excel treats them as
two different macros. The Macro dialog box lists
them as Budget.xlsm!Sum_Cells and
Expenses.xlsm!Sum_Cells.

Ribbon. You can click the Options button located
next to the warning to open the Microsoft Office
Security Options dialog box.

In the Microsoft Office Security Options dialog box,
click Help Protect Me from Unknown Content
(Recommended) to disable the macros, click Enable
the Content to enable the macros, or click Trust All
Documents from this Publisher to add the macro
publisher to the Trusted Publisher list. Excel does
not display a warning when you open workbooks
with macros if the publisher is on the Trusted
Publisher list.

Create and Launch a

Keyboard Shortcut

press to execute a command. You can use a

keyboard shortcut to launch an Excel macro
command. You can assign an uppercase or lowercase key
to a macro when you create it, or assign one later by
using the Macro Options dialog box. You execute a macro
keyboard shortcut by pressing the Ctrl key along with
that uppercase or lowercase key. Refer to the section,
“Record a Macro,” to learn how to create a macro.

Keyboard shortcuts are case sensitive. For example, Excel
interprets a lowercase m and an uppercase M as two
different keys. To execute a macro you have assigned to
a lowercase letter, press Ctrl plus the letter, such as
Ctrl+m. To execute a macro you have assigned to an
uppercase letter, press Ctrl and Shift plus the letter, such
as Ctrl+Shift+M.

Create and Launch a Keyboard Shortcut

A keyboard shortcut is a combination of keys you

If you assign the same keyboard shortcut to macros in
two different workbooks, you may execute the wrong
macro if you use the shortcut while you have both
workbooks open. Excel cannot discern from which
workbook you want the macro. You can use the Macro
Options dialog box to reassign one of the conflicting
macros to a new key.

You should also be careful not to assign the macro to a
keyboard shortcut that Excel uses. If you do, Excel
executes your macro instead of the command it created.
For example, by default, Ctrl+o opens the Open dialog
box. If you assign o to a macro, your macro overrides
Excel’s assignment.

CREATE A KEYBOARD SHORTCUT
0 Click the Developer tab.

@ Click Macros in the Code group.
The Macro dialog box appears.
© Click the desired macro.

Click Options.

The Macro Options dialog box appears.

Type the desired shortcut key.

Press Shift as you type to assign an uppercase key.
Type a description.

Click OK.

@900 o

Click Close to close the Macro dialog box.

G

e

‘ Year1l 4 Year 5
s | Met sales 9 § 200,04 Sjocd 5 600,000
1 Cost of goods Av g —— .00 150,000.00
v Gross profit on sales 50,000.9 D.00 450,
1 Expenses 25,000.4 o=}
+ Netincome 25,000.4 o100 395,000.00
= T
u [r—
2 L D T ere———
-

[
s
s
1
040 0 sty - St ety 1
brasy ars v [Er] i
oy e I P— BEE]
L s Mgl i B s W Lain w -
A 3 e b ™. . _?{I T

el |] =

.
o

c
= |

= |Net sales S 200,000
+ Cost of goods sald
r Gross profit on sales 50,000.00
1 Expenses 25,000.00
+ Netincome 25,000.00

JIEE T E——

LAUNCH WITH A KEYBOARD SHORTCUT

o Select the cells in which you want the macro
to execute.

@ Press Ctrl and the shortcut key.

v Gross profit on sales
» Expenses
» Netincome

Income Statement

Year1
5 200000 S 250,000 5 325000 $ 450000 S 600.000
.
50,000.00 100,000.00 175,000.00 300,000.00 450,000.00
25.000.00
25,000.00

Year 2 Year3 Year 4 Year 5
Net sales

Cost of goods sold

3500000 50,000.00 4500000 55,000.00
£5,000.00 125,000.00 255,000.00 395,000.00

prommmrenl 1
o NN Cowed tem PROW (OO pem

® The macro executes.

9 Repeat steps 1 and 2 to execute the macro

again.

3

'

-
— i

Income Statement

Yearl Year2 Year3 Year 4 Year 5
Met sales § 200000 § 250,000 % 325000 $ 450,000 5 600,000
Cost of goods sald 150,000 150,000 150,000 150,000 150,000
Gross profit on sales 100,000.00 17500000 300,000.00 450,000.00
Expenses 2500000 3500000 5000000 4500000 5500000
Net income 25,000.00 65000.00 12500000 255000.00 395,000.00

SN ety Sl eeets ES ol 1

e |

If you do not use a macro shortcut frequently, it is
easy to forget the keyboard shortcut you assigned
to your macro. If you forget your keyboard shortcut,
you can view it in the Macro Options dialog box.

You can execute a macro by assigning the macro to a
picture, clip art, shape, or SmartArt. For example, if
you want to assign a macro to a picture, you start by
inserting the picture into your worksheet by clicking
the Insert tab and then clicking Picture. The Insert
Picture dialog box appears. In the Look In field,
select the folder in which you stored the picture you
want to insert. The pictures in that folder appear.
Click the picture you want to insert and then click
the Insert button. The picture appears in the
worksheet. Click and drag the picture to place it
where you want it and then double right-click the
picture. A menu appears. Click Assign Macro. The
Assign Macro dialog box appears. Click the macro
you want to assign to the picture and then click OK.
Excel assigns the macro to the picture. Click the
picture when you want to execute the macro.

1 1dey)

.
.

C
=
=
uQ
=
o)
(@)
-
o
wn
&
=
(=W
"1
o
=)
=
Q
o
=
=
-
o
p—
75}

: VAR
Assign a Macro to the N4

Quick Access Toolbar

2

toolbar. You can execute macros assigned to the

Quick Access toolbar using a shortcut key or the
Macro dialog box; however, using the Quick Access
toolbar means you can access the macros by clicking the
appropriate button.

When you add a button to the Quick Access toolbar, you
can specify whether it should appear on the toolbar of all
Excel workbooks or only on the Quick Access toolbar in
the workbook you specify. By default, the button appears
in all workbooks. If you have placed your macro in the
Personal Macro Workbook, you will probably want your
macro button to appear in all workbooks. If your macro is
only available to a single workbook, your macro button
should only appear on the Quick Access toolbar for that
workbook.

Assign a Macro to the Quick Access Toolbar

You can assign a macro to the Excel Quick Access

RN,
You can use the Customize the Quick Access Toolbar
pane of the Excel Options dialog box to add a macro
button to the Quick Access toolbar. The Customize the
Quick Access Toolbar pane has a number of options you
can set. You can use the Modify button to specify the
button you want to use to represent your macro. You can
specify where on the Quick Access toolbar your button
appears and whether the Quick Access toolbar appears
above or below the Ribbon. You can click the Reset
button to return the Quick Access toolbar to its default
state.

Deleting a macro does not remove the macro button from
the Quick Access toolbar. You use the Remove button on
the Customize the Quick Access Toolbar pane of the Excel
Options dialog box to remove a macro button.

o Click Customize Quick Access Toolbar and then click
More Commands.

The Excel Options dialog box appears.
Click here and then click Macros.

Click here and then click the workbook in which the
button should appear.

9 Click the macro you want to assign to the Quick
Access toolbar.
@ Click Add.

°

The macro appears in the box on the right. Macros
display on the Quick Access toolbar in the order
shown here.

® (lick to move the macro up.
Click to move the macro down.
O Click Modify.

Click if you want the Quick Access toolbar to appear
below the Ribbon ([] changes to [v]).

@

Income Statement

s Year 3 Year 4 Year 5

+ Net sales = b § 250000 § 325000 § 450,000 $ 600,000
« Costofgoodiiold __TS0000 150,000 150,000 150,000 150,000
 Gross profit on sales [_50,000.00] 100,000.00 175,000.00 300,000.00 450,000.00
+ Expenses 2500000 3500000 50,000.00 4500000 55,000.00
+ Netincome 25,000.00 6500000 125,000.00 255,000.00 395,000.00

The Modify Button dialog box appears.

Click the button you want to use to represent
your macro.

Click OK to close the Modify Button dialog box.
Click OK to close the Excel Options dialog box.

«e©®0® ©

Click to return the Quick Access toolbar to its
default state.

® (lick the macro and then click the Remove
button to remove a macro.

The button appears on the Quick Access toolbar.

Click the button to execute your macro.

Eacaitmiions 7

St
ADOQ0QL! *FHES
Yaugaseasaaso

LG

nIEg

Income Statement

Yearl Year2 Year3 Year 4 Year 5

s MNetsales § 200000 § 250,000 % 325000 $ 450,000 5 600,000
+ Cost of goods sold 150000 150,000 150,000 150,000 150,000
+ Gross profit on sales 100,000.00 17500000 300,000.00 450,000.00
+ Expenses 2500000 3500000 5000000 4500000 5500000
+ Netincome 25,000.00 65000.00 12500000 255000.00 395,000.00

i

You can add commands you frequently use to the
Quick Access toolbar. Click the Microsoft Office
button. A menu appears. Click the Excel Options
button located in the bottom-right corner. The Excel
Options dialog box appears. Click Customize.

The Customize the Quick Access Toolbar page
appears. Click the down arrow next to the Choose
Commands From field and select All Commands.
Click the command you want to add to the Quick
Access toolbar and then click the Add button. Click
OK. Excel returns you to your workbook, and the
command you chose appears on the Quick Access
toolbar.

You can add commands you cannot find in the
Ribbon by choosing Commands Not in Ribbon in
the Choose Commands From field. If a command
from a previous version of Excel is not in the
Ribbon, you may find it listed under Commands
Not in the Ribbon. For example, in previous versions
you could format your documents quickly by using
AutoFormat. Excel 2007 uses styles, but you can
still access AutoFormat through the Commands Not
in Ribbon feature.

1 1dey)

.
.

C
=
=
uQ
=
o)
(@)
-
o
wn
&
=
(=W
"1
o
=)
=
Q
o
=
=
-
o
p—
75}

Delete a

Macro

ou can delete macros you no longer need by
clicking the Delete button in the Macro dialog box.
Because the Macro dialog box only displays

macros in open workbooks, the workbook that contains
the macro must be open before you can delete it.

The Personal Macro Workbook stores macros you want to
make available to all workbooks. Excel creates the
Personal Macro Workbook when you choose to store your
first macro in it. After Excel creates the Personal Macro
Workbook, the workbook opens as a hidden file every
time you open Excel. To learn more about storing macros
in the Personal Macro Workbook, see the section,

“Record a Macro.”

If your macro is in a hidden workbook such as the
Personal Macro Workbook, you must unhide the
workbook before you can delete the macro. If you try to

Delete a Macro

delete a macro from the Personal Macro Workbook prior
to unhiding it, Excel displays the following message:
“Cannot edit a macro on a hidden workbook, Unhide the
workbook using the Unhide command.” You can unhide
the Personal Macro Workbook and other hidden
workbooks by executing the Unhide command on the
View tab.

If you unhide the Personal Macro Workbook, make sure
you hide it again using the Hide command on the View
tab after you delete the macros. Hiding the workbook
prevents you from making inadvertent changes to it.

You cannot undo the deletion process, but if you delete a
macro by mistake, you can close the workbook without
saving. Of course, if you close without saving, you will
lose all of the work you have done since saving. Your
only other alternative is to re-create the macro.

UNHIDE A WORKBOOK
@ Click the View tab.

9 Click Unhide in the Window group.

The Unhide dialog box appears.
@ Click the workbook you want to unhide.
@ Click OK.

Excel unhides the workbook.

@

Income Statement

Yearl Year 2 Year3 Year 4

Year 5
s |Met sales S5 200000|% 250,000 5 325000 $ 450,000 5 600,000
1 Cost of goods sold

' Grossprofitonsales $ 50,000 $ 100,000 $ 175000 5 300,000 5 450,000

150,000 150,000 150,000 150,000 150,000

» Expenses
» Netincome

25,000 35,000 50,000 45,000 55,000
§ 25000 § 65000 § 125000 $ 255000 § 395000

©

"

1

=855, Jheet] - fet) - Pheet) “E)4 T

= G F—

Year 4 Year 5
$ 450,000 $ 500,000

150,000 150,000
$ 300,000 $ 450,000
| as000 55,000
“ |5 255000 § 395,000

©

"

1

=405, Jheet] - fet) - Sheety Eho4 Be

ey e beomm] [r=] 5 &

s Netsales

1 Cost of goods sold
r Grossprofitonsales § S0,
1 Expenses 23,001
» Metincome 5 25

DELETE A MACRO

(2]
(3]
o

Click the Developer tab.

Click Macros in the Code group.
The Macro dialog box appears.
Click the macro you want to delete.

Click Delete.

A message box appears, asking you to confirm
that you want to delete the macro.

Click Yes.

Excel deletes the macro.

== 1|

Year s

Net sales $ 800,000

& |Cost of goods sold 54 150,000
v Gross profitonsales § 54 00,000 5 450,000
1 Expenses 2 45,000 55,000
» Metincome $ 2% 55,000 § 395000

©

"

S ety Sl eets 5 ol |

e i |

ey aa-s

own ¢

R I L T I i N]

.
= =3

Income Statement

Yearl Year 2 Year3 Year 4 Year s

Met sales $ 250,000 § 325000 § 450,000 5 600,000
+ Cost of goods sold 150,000 150,000 150,000 150,000 150,000
: Grossprofitonsales § 50,000 $ 100,000 § 175000 § 300,000 $ 450,000
+ Expenses 25,000 35,000 50,000 45,000 55,000
+ Metincome $ 25000 § 65000 $ 125000 § 255000 $ 395000

ol

Typically, you do not share the Personal Macro
Workbook with other users. Excel creates a different
Personal Macro Workbook for each username on a
computer. If you have multiple users on your
computer with different usernames, Excel creates a
different Personal Macro Workbook for each of
them. You can copy a Personal Macro Workbook
from one user to another. The Personal Macro
Workbook is stored in the XLStart folder and is
named PERSONAL.XLSB. In Windows XP, you can
usually find the XLStart folder by following this
path: C:\Documents and Settings\username \
Application Data\Microsoft\Excel\XLStart. In
Windows Vista, you can usually find the XLStart
folder by following this path: C:\Users\username\
Application Data\Microsoft\Excel\XLStart.

Each user can only have one PERSONAL.XLSB file.
If a user already has a Personal Macro Workbook,
you should rename the old PERSONAL.XLSB file
and place the new PERSONAL.XLSB file in the
user’s XLStart folder. All files stored in the XLStart
folder open when you open Excel, and so both files
become available each time the user opens Excel. If
you have other files you want to open when you
open Excel, place them in the XLStart folder.

1 1dey)

.
.

C
=
=
uQ
=
o)
(@)
-
o
wn
&
=
(=W
"1
o
=)
=
Q
o
=
=
-
o
p—
75}

Add a Form Control

to a Worksheet

ou can add controls to a worksheet to make it

easier to enter data into a cell. Form controls can

help users who are not familiar with Excel and
can increase the accuracy of data entry by limiting a
user’s options. For example, you can add check boxes to
your worksheet so it looks like a paper form. You can
also add a list box from which users can select an entry.

Excel provides nine controls you can add to a worksheet.
You add controls by selecting the control you want from
the Forms Control menu. After you add a control, you

can adjust its size by dragging the side or corner handles.

When you add a control or right-click a control to edit,
you are in design mode. In design mode, you can modify
the properties and size of the control, but you cannot test
its functionality.

Add a Form Control to a Worksheet

When you place a control on a worksheet, it sits on top
of the worksheet. You can size it so it appears to be
located in a cell, but controls are separate from cells and
you can place them anywhere on the worksheet. A
control can cover any portion of a cell or range of cells.

After you add controls to a worksheet, you can assign
them values. See the section, “Assign Values to a Form
Control,” for more information on assigning control
values. Form control options are located on the Developer
tab. See the section, “Introducing Macros,” to learn how
to display the Developer tab.

@ Click the Developer tab.

Note: See the section, “Introducing Macros,” to learn how to
display the Developer tab.

@ Click Insert in the Controls group.
The Forms Control menu appears.

@ Click to select the control you want to add.

Drag the cursor to create the control.

® 0

Drag the handles on the sides and corners to adjust the
size.

P
)
= v et Paplat b

— T P i
) - Lol

]
F G H]
1 Item Cost |
5 MeAdZ%R Computer 1,295.00
3 Menitor 995.00
4 Keyboard 55.00
3 Mouse 75.00
& Speakers 55.00
z
B
9
10
11
12
13
14
15
1 I 0 S I — — _
St (ERER o=l
e -
e e e w--
i e % -
A | 52 B T D e
e o LT
- . I i Senh s . —
Spinner2 - B LY
Pl_s 8 I o E F G H]
1 Quantity Description Price Total ltem Cost |
2 Computer 1,295.00
- Monitor 985,00
'__"_,4_6 Keyboard 55.00
l Sy Mouse 75.00
Speakers 55.00

Hobe] sheetl - heets - Sheens 7 L

JIEE =

@ Place your pointer on the border of a control and

drag the control to change its location.

The control appears on the worksheet.

9
10
11
12

=) YT Add Frm Cantrolse - Microsoft Exeel - o x
~ bem bt Peplied budn Des b e -
— D B e = s F bpetem 4 3 e
20, I A e bt b, 32 Vo e) -l
Vsl bl D Sty
" PYTem— = 0 Ry .
e [e
c4 - g ik]
A B c D E E G H | |
1 Quantity _ Description Price Total Item Cost
2 '—@ Computer 1,295.00
3 Menitar $95.00
4 — Keyboard 55.00
5 Mouse 75.00
B Speakers 55.00
7
B

x - Microsoft Excel - x
. . . . — T B bl e L
® Right-click the control to place it in design mode. T o fad ks
® To cancel design mode, click any cell in the ___C8 - i &
A B C D E F G H | |
worksheet. 1 Quantity Description Price __ Total Item Cost
E - Computer 1,295.00
. . 3 Monitor 995.00
To remove a control, right-click the control to 7 Vadoard i
i 5 Mouse 75.00
select it and then press Delete. : R o
7
¢ [—
&
10
1
12
13
14
15
AT R W —
s T - [EE T e

You can add the controls listed in the following table to your worksheets.

CONTROL CONTROL NAME DESCRIPTION

[= Button Runs an associated macro when the user clicks it.

= Combo box Displays a list of items as a menu.

[Check box Selects or deselects an option.

E] Spinner Scrolls up and down through a list of numeric values.

= List box Displays a list of items for selection.

[@ Radio button Selects one of a group of items when the user clicks it.

) Group box Places related controls together.

[42 Label Provides information about an associated control.

o Scroll bar Increases or decreases a value when the user clicks the arrows or drags the bar.

1 1dey)

.
.

C
=
=
uQ
=
o)
(@)
-
o
wn
&
=
(=W
"1
o
=)
=
Q
o
=
=
-
o
p—
75}

Assign Values to ¢ ‘

a Form Control

fter you add a control to a form, you can assign

it the values you want associated with the

control. For example, if your worksheet contains
a list box, you can assign the list of values that you want
to appear when users access the list box. Some controls
enable you to define a range of valid numeric values for
the control. For example, if you use a spinner, you define
the starting value and the maximum value for the
control. For combo boxes and list boxes, you can place
the options associated with the control in a range of cells.
For example, if you use a combo box, you tell Excel the
list of values used by the control by entering the range of
cells containing the values. The values can be located on
another worksheet or even in another workbook, as long
as Excel can access the workbook when users view the
worksheet that contains the control.

Assign Values to a Form Control

You can link a cell to a control. If you link a cell to a
control, the value associated with a user selection
becomes the value of the linked cell. If you use a combo
box control or list box control, the value in the linked cell
is a number that represents the user’s selection. Excel
assigns the number based on the position of the selected
value in your list. If the list contains the values
Computer, Monitor, and Keyboard, and the user selects
Monitor, the linked cell receives the value 2, because
Monitor is second in the list.

With a control such as a check box, you can tell Excel
whether you want the option to be initially selected or
unselected. Each option — selected or unselected — has a
value associated with it.

o Right-click the selected control.

A menu appears.
9 Click Format Control.

The Format Object dialog box appears.
@ Click the Control tab.

The available fields are different, depending on the
control type.

This example uses a list box.

9 Drag to select a range, or type the range that lists
the valid values.

6 Click a cell to assign a linked cell.

The value associated with your selection appears in
the linked cell.

e Type the number of values in your list.
@ Click OK.

e

o) FERCED Asshgn Valiesxisk - Microsoh Excal &=
— b et Page Loyt Pareedn Dets Pewws g Aasin - - -
B - T T - . - E AT

PRI = == awn 5 I3 e+ | 2 el

[Peeen vl B B AN AN S, |

Drop Down 3 - 5 &
Pl_.a. Bl C D £ F_G__H I]
1 Quantity Item # Description Pri(e‘.Tutal Item Cost |
2 2 3 o lEes . Computer 1,295.00 |
3 < Manitor 935.00 |
4 B e Keyboard 5500 |
3 Mouse 7500 |
6 Speakers 5500 |
4
] i
9
10
11
12
13
14
15

) s et i W =

— O e E——
o) ‘ B
= et Page Lyt Parmddn Drts Peeww Crmge Lasbm w-"x

T S | e p o S
P = 5 A lewajew e 18 P+ || 2 e

b o SRS . e crac pclerbe D1 e L . .

Drop Down 3 - £ &
Pl 4. 8l C E F_ G H I]
1 Quantity Item # Desc Price Total Item Cost |
2 2B $ Computer 1,295.00 |
3 Monitor 995.00
4 Keyboard 55.00 |
5 A il Mouse 75.00 |
& ool =] Speakers 5500 |4
4 o e
8 ISP
)

10
1
12
13
14
15
16 | I, |

CRILIE T - J

= 120 Dl ol

@ Select the desired control value. Ty e— e g
B PO 1 T Sy - O [T : T L
e -
o e " o) M T sl - e -t

03 - Gl & (¢)
A__B_C o £ F 6 H 1 B =
1 Quantity Item# Description Price Total Item Cost P
2 F= — Computer 1,295.00 o
3 Manitar 995.00 c
a fi= | Keyboard 55.00)
5 Mouse 75.00 =
6 Speakers 5500 =
7
: Q
9
- =
11 &
12 sa
13 o
14 7
15
»‘5- * Shoetl Shestd - Sheet) S m
e 3 ELT p— =
)) (=W
® Excel places a numeric value representing the e |
control selection in the linked cell. — o
e =
] Q
A B C D E F G H I] (o)
1 Quantity Item # Description Price Total Item Cost =
2 = 2 [t =] Computer 1,295.00 =
3 .—»Mon.t:; 995.00 -
a Keyboard 55.00 o
5 Mouse 75.00 w
& Speakers 55.00
7
]
9
10
11
12
13
14
15
28 s o —
[[Ve m——)

When working with a value selected from a list box or combo box control, you may want to use that selection
to set the value of another cell. For example, assume you have the following Excel list in cells H2:14.

Example:

Computer $1295
Monitor $995
Keyboard S35

You can use the Tndex function to determine the price, based on the equipment selection. For example,
if the user selects Monitor from the control, Excel places a value of 2 in the linked cell. If you want
users to find the cost of the selection, you type a formula similar to the following, assuming that C2 is
the linked cell:

Example:

=INDEX (H2:$1$4, C2, 2)

The Index function actually creates an array of the Excel list and uses the control selection to determine which
element in the array to return, in this case the price, The function uses three arguments: Array, Row_num,
and Column_num.

Add a Macro to

a Form Control

ou can assign a macro to any form control on a

worksheet. For example, if a user clicks a radio

button control, you can have Excel add a postage
amount to an invoice.

You can create one macro for each control on a
worksheet. You create a macro either by recording a
series of keystrokes or by writing a VBA procedure in the
Visual Basic Editor. When you select the Assign Macro
menu option, Excel automatically creates a new macro
with the name of the control followed by an underscore
and an event name, such as _Click. Excel assigns the
control name to the control when you add it to your
worksheet. For example, the first OptionButton control
you add to a worksheet is named OptionButton1. If you

Add a Macro to a Form Control

create a macro for the option button, Excel gives the
macro the name OptionButton1_Click.

The portion of the macro name following the underscore
character corresponds to an action, commonly referred to
as an event. For example, with an OptionButton control,
the user clicks the radio button to select the option, and
so the event is Click. If you create a macro for a combo
box control, Excel assigns Change to the name of the
event because you want to execute the macro when the
value of the control changes. The event extension tells
Excel to monitor the control and execute the macro
whenever a user clicks the control.

No matter which option you select — recording or writing

VBA — Excel assigns the same name to the macro.

© Right-click your control.
A menu appears.

9 Click Assign Macro.

The Assign Macro dialog box appears.

Excel assigns a default macro name for the selected
control.

9 Click Record and then record your macro.

Note: See the section, “Record a Macro,” for more
information.

@

) o Add 3 Macrox Aicrosoft | -
=t L et Page Lyt rrin et Prows - Cromgw 2adbm - e
Vi SRS Aaara
g » u o EEa - T it [| 2 s e
e o S, I . AN . SN . |
[Option Butt... - 2 5 [
A T D £ F G H .
1 Quantity Item # Description Unit Price Total Item Price |
2 1 1 [comman > 1,295.00 1,295.00 Computer 1,295.00 |
3 =) 55,00 110.00 Monitor 995.00 |
4 EN = 95,00 2,985.00 Keyboard ~ 55.00 |
5 4 55.00 220.00 Mouse 75.00 |
3 1 75.00 75.00 Speakers 5500 |¢
7 =] |
8 |

Mo bowt Paplawd burdn Des R Ve | Crasen | Aabin w -
-~ — T i b B T - . P —

i . [T P, S ol] Gpon Pt =]
- . e

Megroa [g wertcacea -

= (=]

P B
A8l C D £ . G H L
1 Quantity Item # Unit Price Total Item Price |
2 1 B4 1 1,295.00 1,295.00 Computer 1,295.00 |
3 e 3 55,00 110.00 Monitor 995.00 |
a 3 2| 555.00 2,385.00 keyboard 55.00 |
5 4 s|s se 75.00 |
3 1 4 [kers 5: |4
T = = és |
]] |

e - - 150 0 e+

. . . R Add 3 Macro slsm - Microsoft Excel -
@ Click the control with the assigned macro. e S et e e g
fr LEETT # 3 heyetan e 1o
ol m B v Bt ey ’é s Vo e EJ ...i-.-----n =T w
B e Sty bt o L . | '.c
i Comteuty na (s
Fil - byl -]]
K Ao iBlC) E DE G H [] =
1 Quantity Item # Description Unit Price Total Item Price P
2 14 1 [cmn 1,295.00 1,295.00 Computer 1,295.00 s
3 2 3 i 55.00 110.00 Monitor 995.00 c
a 3 2 [] 995.00 2,385.00 Keyboard 55.00)
5 4 5 [oeaen 55.00 220.00 Mouse 75.00 e
s 1 4 [75.00 75.00 Speakers 5500 |4 =
; - - - C'q
: 0. =
10 s Subtotal 4,685.00
11 Shipping m
12 Total 4,685.00 Q
13 o
14 (775
15
e g ——] | " m
- 3 EEE — =
Excel executes the associated macro. PR T Wi i i - Moo e E -
e el met P Loywt Perrein Dets. Proee Vam s ®-"x o
— T i b = s L
; ; %,
® |n this example, Excel assigns postage to the e B b S :f ¥ola Balis =
. . B e Sy pre-al TN] Retrmst Dt a
Invoice. P ot .
e & 19.95 E a
) E. RN H (| (o)
Description Unit Price Total item Price :
v »| 129500 1,205.00 Computer 1,295.00 -
= - 55,00 110.00 Moniter 995.00 -
[1~] 995.00 2,565.00 Keyboard 55.00)
o - 55.00 220.00 Mouse 75.00 '_‘
e - 75.00 75.00 Speakers 55.00 |4
.—>‘?"f' Subtotal 4,685.00
. lshipping [1095 | ——@
Total 4,704.95
T n
JIETE i ——

The macros you assign to a control only execute when the corresponding event occurs for the control. For
example, you may have a macro assigned to a control that computes the total amount to be paid when the
user clicks the control. If you change the values needed to compute the total amount after a user clicks the
control, Excel does not update the total until the user clicks the control again.

If you no longer want a macro to be assigned to a control, right-click the control and then click the Assign
Macro option. In the Assign Macro dialog box, clear the macro name from the Macro Name field and then
click OK. Excel removes the macro assignment from the control, but the macro remains as part of the
workbook. To remove the macro from the workbook, click the View tab and then click Macros in the Macros
group to display the Macro dialog box. Select the macro you want to delete and then click Delete.

Introducing the

Visual Basic Editor

View of the Visual Basic Editor

O Project Explorer © Code Window @ Object List Box

The Project Explorer lists all projects. Use the Code window to write, edit, and The Object List box lists the objects
The VBE considers each open workbook display VBA code. Every VBA object has associated with a form.

and each add-in a project. Microsoft a Code window that stores the code

Office arranges projects in the Project associated with the object. In the Project @ Procedure List Box

Explorer in a tree-like structure. Click Explorer, double-click an object’s name

plus (+) to show more information. to see the associated code. To display The Procedure List box lists the

Click minus (-) to show less the Code window, click View = Code. procedures associated with the selected
information. To display the Project object.

Explorer, click View = Project Explorer.

Project - VIAProject [x] |

A0 |

W Sub MyProc()

i st s ‘Denise Etheridge
e g i s
L]
& o [A1].Value = 100
k= End Sub
n u
@-—f ' -0
@ Properties Window e e *'_,
apefresls False [FFva I

To select an object, click the prisirse o e o Tize =
object name in Project m“qumg -—0
Explorer. To display the e e
Properties window, click e s ' -
View = Properties Window. o — e
Use the Properties window to e . - e
set the properties associated N f =
with the selected object. L L4 b o
@ Locals Window © Watches Window @ Immediate Window
Use the Locals window to monitor Use the Watches window to monitor The Immediate window returns the

declared variables. To open the Locals properties and variables. To display the results of statements you type into
window, click View = Locals Window. Watches window, click View = Watch the Immediate window. To display the
Window. Immediate window, click View =
Immediate Window.

&

The Visual Basic Editor

Excel provides two ways to create a macro: You can
record a macro or you can type Visual Basic for
Applications (VBA) code into the Visual Basic Editor
(VBE). The VBE is a separate application you use to
write and edit VBA code. You can access the VBE

through all Microsoft Office applications, including Excel.

You access the VBE by clicking the Visual Basic button
on the Developer tab in the Code group, or by pressing
Alt+F11. Inside the VBE, you can reposition windows to
create the development environment you prefer. You can
use the View menu to tell Excel which windows and
toolbars you want visible.

The Project Explorer Window

Properties Window

The Project Explorer resembles the treelike structure
used by the Windows Explorer folders pane. When you
open the VBE, the VBE opens a VBA project for each
open Excel workbook. The VBE names each project
VBAProject (workbook name). Under the project name,
the VBE lists the workbook and each worksheet in the
workbook.

When you record a macro, you can choose to store it in
the Personal Macro Workbook. Once you have stored a
macro in the Personal Macro Workbook, the Personal
Macro Workbook opens as a hidden file whenever you
run Excel. If the Personal Macro Workbook is open, you
can see it listed as a project in the Project Explorer
window.

VBA executes procedures in response to a system action
or an action performed by a user. A module is a set of
procedures that Excel can execute. The VBE stores each
macro you create or record as a procedure in a module.
The Project Explorer lists each module a project contains.
You can add modules by using the steps outlined later in
this chapter. When you double-click a module name in the
Project Explorer, the contents of the module appear in the
Code window. Use the Procedure List box to select the
procedure you want to view.

You use VBA code to manipulate objects. Workbooks and
worksheets are examples of objects. A property is an
attribute of an object. VBA uses attributes to define such
things as the name, color, location, or size of an object.
The Properties window displays the properties associated
with the selected object. To select an object, you click the
object name in the Project Explorer window. A module has
only one property: its name. Hence, if you select a module,
the only property that you see in the Properties window is
the module name. Sheets have many properties, and if you
select a sheet, you can view and modify the many sheet
properties.

To change the properties associated with an object, you
simply click the field beside the property and make the
desired changes. Some property fields, such as Name,
require you to type a value. Other fields have drop-down
lists from which you can select the appropriate value.
Some properties are read-only. You cannot change read-
only properties.

¢ 1dey)

.
.

C
2.
5
UQ
=3
(S
=
n
<
&,
o¢]
)
2.
(@]
m
a
;0
)
-

Activate the

Visual Basic Editor

ere are two ways to create a macro. One way is to

use the macro recorder to record the steps needed

to perform the action. The other way is to create
the steps by typing the VBA code into the Code window
of the VBE. When you use the macro recorder, Excel
automatically creates the VBA code for you. You can use
the VBE to edit macros you have created with the macro
recorder. Often, it is convenient to use a combination of
the two methods to create your VBA code: You record part
of the VBA code and then you use the VBE to augment or
modify your code.

You can use several methods to activate the VBE: You can
press Alt+F11 while in Excel; click the Visual Basic
button in the Code group on the Developer tab; or click

Activate the Visual Basic Editor

the Edit button in the Macro dialog box. When the VBE is
open, you can open the Code window by pressing Ctrl+R.

If you create your macros using the macro recorder, Excel
defines each macro you create as a procedure and stores
each procedure in a module. The VBE lists modules in the
Project Explorer under the workbook in which they are
located.

If the Personal Macro Workbook, Personal.xIsm, contains
macros, the project for the Personal.xlsm workbook
opens when you access the VBE. You can view and
modify all of the macros in the Personal Macro
Workbook. See Chapter 1 to learn more about the
Personal Macro Workbook.

OPEN THE VBE BY USING THE RIBBON
0 Click the Developer tab.

Note: See Chapter 1 to learn how to display the
Developer tab.

@ Click Visual Basic in the Code group.

The VBE appears, with the Window layout you
last used.

9 Double-click a module name.
Excel shows the macro in the Code window.

® |f you placed more than one macro in the
module, you can click here and then select the
macro you want to see.

Press Alt+F11 to return to Excel.

@

"ERCEE I
)
~ b bt Poplied b

— Dt bl
P e

0
(-]
m
o
T
i |

W ot ot e puert fgmat Detug B Josh St jpede e
| | [

Sub MyProc()
'‘Denise Etheridge

[A1].Value = 100

OPEN THE VBE FROM THE MACRO (Eg) 2R S 0 e Q
DIALOG BOX ~ 1:3:’“‘.:;."1.:: "":‘_ "“ T S g
@ Click the Developer tab. S e _ E’
) . WPl ey c D E F G H I T =
Q Click Macros in the Code group. ; E@l - N

The Macro dialog box appears. : e =

5 lI<

@ Click the macro you want to edit. 7 =

5 ==

@ Click Edit. : =

teetr T F] -

The VBE appears, with the code for
the selected macro in the Code
window.

Sub MyProc()
'‘Denise Etheridge

[A1].Value = 100

(@
2.
=
uQ
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

End Sub

To make the VBE easier to navigate, Microsoft provides shortcut keys. These shortcuts work when the VBE
window is open.

SHORTCUT KEY DESCRIPTION

F1 When you select an item in the Code window and then press F1, the VBE displays online help
for the item you selected.

F4 Press F4 to switch to the Property window and display the properties for the selected object.
If the Property window is not open, the VBE opens it in the location where you last viewed it.

F7 You select an object by clicking it in the Project Explorer. When you press F7, the Code
window for the selected object appears on top of all other Code windows.

Ctrl+G When you press Ctrl+G, the VBE displays the Immediate window.

Cerl+R When you press Ctrl+R, you switch to the Project Explorer. If the Project Explorer window is

not open, the VBE opens it in the location where you last viewed it.

Alt+F11 When you press Alt+F11, you toggle between the VBE and Excel.

Open Visual Basic *

Editor Windows

when developing macros. Microsoft provides a

basic window setup; however, you can rearrange,
resize, remove, and add windows. The most commonly
used windows are the Project Explorer, the Properties
window, and the Code window. You may also find the
Immediate window useful for quickly testing a statement
before adding it to your code.

You can select which windows to display and where to
display them. The View menu lists the available VBE
windows. When you select a window from the menu, that
window appears in the location where you last placed it.
For example, if you placed the Project Explorer window in
the upper-left corner during your previous session, the
Project Explorer window reopens in the upper-left corner.

Understanding the Visual Basic Editor Windows

The VBE contains several windows you can use

You can move windows by using the standard drag-and-
drop feature found in all Windows applications. You can
resize a window by dragging its edges.

You can also attach windows to specific locations in the
VBE by using the docking feature. When you dock a
window, it becomes part of another window attached at
the specified location. If you set a window to dock, Excel
docks it in the location you specified each time it opens.
You can only dock windows on the top, bottom, left edge,
or right edge of the screen, application window, or
another dockable window. Docking a window does not
mean that the window always appears in the VBE.

You can have multiple Code windows open at the same
time. You can view multiple Code windows
simultaneously by tiling or cascading them.

DISPLAY A WINDOW
@ Click View.
Q Click the window you want to display.

You can choose from the Immediate Window, Locals
Window, Watch Window, Project Explorer, or Properties
Window.

The selected window appears in the last viewed location.
You can click and drag the window to a new location.

You can close a window by clicking the Close box or by
right-clicking and selecting Hide.

DOCK INDIVIDUAL WINDOWS
0 Click Tools = Options.

& Microsoft Yisusl Basic - Vis' sic Editor.xism - [Module1 (Code)]

1 oyegrregegr
= =] fae

Private Sub MyProc() E
'Denise Etheridge l
o

‘Created September 29, 2007

‘De:gration Procedure

[A1].Value = 100

T | S

4 Microsoft Visual Baskc - Visual Basic Editor. xsm - [Mod
R e
—,

-I “Code)]

Su
‘D¢

1
=
[A1].Value = 100
End Sub
=

The Options dialog box appears.
@ Click the Docking tab.

Sub MyP

[A1].Valu

B | s o | Gl D
[

@ Click the windows you want to dock ([] changes
to [V]).

@ Click OK.

¢ 1dey)

.
.

End Sub

6 Dock the window by clicking and dragging it to an !
edge. b

Excel moves the window to its new location.

[Fareame v Ttes Ces

DISPLAY CODE WINDOWS

@ Click Window and then click a tiling option. ARRAI, et fos)

Yisual Basic Editor.xism - Sheet! (Code)
I visuat Sasic Editar xism - Madule2 (Code
You can select Tile Horizontally, Tile Vertically, or ol e
Cascade. Sub MyProe()
'‘Denise Etheridge

[A1].Value = 100

(@
2.
=
¢Q
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

The VBE displays your Code windows either tiled
or cascading.

You can move windows around in the VBE by using When you have many lines of code, you may not be

the same techniques you use with all Microsoft able to see all of it at the same time. If you click
Windows programs. To move a window, click the Window => Split, the VBE splits the Code window so
title bar and drag it to the desired location. To you can view different parts of your code

resize a window, click a corner of the window and simultaneously. When you split your window, the
drag it to the desired size. VBE creates two windows with the same code. You

can manipulate each window independent of the
other so you can see different parts of your code at

To free up space, you can hide any of the VBE the same time.

windows. To hide a window, right-click anywhere in
the window. In the menu that appears, click Hide.

Set Properties

for a Project

ou can set the properties, such as the project thag perform a specific type of action, you can give your
Yname and the lock status, for each project you can ~ Project a name that makes its purpose readily apparent.

view in the Project Explorer window. When you If you plan to distribute your workbook to other users,
lock a project, the project is password-protected so that you may want to consider password-protecting your
only people who know the password can view and project. If a project is password-protected, the user must
modify the contents of the project. You can set both the enter the password to view or modify any portion of the
project name and the password in the Project Properties project. This step can protect VBA code that you do not
dialog box. want others to view or modify. Password-protecting the
Excel considers each open workbook to be a project when ~ Project does not lock the corresponding Excel workbook,
you access the VBE. By default, the VBE gives each but it can help keep others from viewing and changing
project the name VBA Project (WorkbookName). You can ~ your VBA code. Password-protection does not make your
change the name of a project. Changing the project’s code completely secure; there are password recovery
name can help distinguish between projects, especially if ~ utilities on the market that anyone can use to recover
you have several workbooks open simultaneously. For your password.

example, if you have a workbook that contains macros

Set Properties for a Project

CHANGE A PROJECT NAME

0 Click the project name you want to change.

 Microsoft Yisusl Baskc - Visual Basic Editor, xism - [Module1 (Code)]

Q Click Tools = Project Name Properties.

End Sub

=¥ | Ll

The Project Name Properties dialog box appears.

@ Click the General tab.

[%

VBADemonstration - Project Properties

9 Type the desired project name.
@ Click OK.

The project name changes within the Project
Explorer window.

@ b KTH 3]

LOCK A PROJECT FROM EDITING < Microsoft Vhual Bask: - Visual Basic Editor xtsm - (Module? (Code)]
@ Click the Protection tab. - "

0 Click the Lock Project for Viewing option
(] changes to [«1).

@ Type the password required to unlock the
project.

¢ 1dey)

.
.

Q Type the password again.
@ Click OK.

Excel locks your project.

The next time you open the workbook, you ot a1 1 »
will not be able to view the code unless
you know the password.

OPEN A LOCKED PROJECT

Save and close your workbook.

(@
2.
=
uQ
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

Open your workbook.

Press Alt+F11 to open the VBE.

Double-click the locked project.
The Password dialog box appears.

Type the password.

Click OK. LT of

©o® 006006060

Excel opens your project.

You can create forms to enable users to interact with macros. If you have multiple workbooks open in Excel,
you can copy modules and forms by using the Project Explorer window. To copy an object, click the object
and drag it to another project. When you release the mouse button, the VBE creates a copy of the selected
module or form in the specified project. By default, the VBE gives the copied module the same name as

the module in the original project. When you copy an object to another project, if one already exists with that
name, the VBE renames the object by adding a number to the end of the name. For example, if you copy
Module2 to a project that already contains a Module2, the copied module name becomes Module21. If you
have a Module21, the VBE names the copied object Module22.

Set Display Options

for the Code Window

s you develop your VBA code, you will spend a

lot of time interacting with the Code window. You

can use the Editor Format tab in the Options
dialog box to adjust many aspects of the Code window.

These adjustments can make it easier for you to create
and debug your VBA code.

You can enter many different categories of text into the
Code window. For example, you can use comments to
annotate your code. By using the Format Editor, you can
adjust the foreground, background, and indicator color for
each type of text listed in the Color Text list. When you
use colors, it is easier for you to locate a particular type of
text when you are creating or debugging your code.

You can use the Font field to select from the fonts
installed on your computer. When working with VBA

Set Display Options for the Code Window

code, you may find code easier to read if you use a fixed-
width font such as Courier New. With a fixed-width font,
the characters in the code align vertically, making it
easier to detect any spacing problems in your code. Use
the Size field to set the size of your font.

The Margin Indicator Bar check box indicates whether a
vertical indicator bar appears in the margin when you
debug your code. Make sure this option remains selected
so you can use the vertical indicator bar to spot the
appropriate line of code when you are debugging. The
VBE places symbols in the vertical indicator bar to
indicate errors and break points. See Chapter 8 for more
information on debugging.

As you make changes to the font settings for each of the
formatting types, Excel shows you a sample of the
changes in the Sample box.

@ Click Tools - Options.

The Options dialog box appears.
Click the Editor Format tab.

Click the type of text for which you want to change
the settings.

Click here and select a foreground color.

Click here and select a background color.

00 OO0

Click here and select an indicator color.

@

a Microsoft Visual Basic - Visual Basic Editor xism - [Mod
W ol [pes Pt Gymat Debug Ben | Jow

(Code)]

'Created September 29, 2007
'Demostration Procedure

[A1].Value = 100

End Sub

Sub MyProc()

'Denise @ridga
'Created $eptember 29, 2007
'Demostration Procedure

B vt (remst o sy

a1 [N S To—rre—
o

E
B

Excel sets the foreground, background, and
indicator colors for the category you
selected.

M MW S 8 eicoly

Sub MyProc()

® The selection appears in the Sample box. ‘Denise Etheridge
'Created September 29, 2007

'Demostration Procedure

¢ 1dey)

.
.

a1 Lt L Fomt | G| B |

4 Microsoft Visual Bask - Visual Bas

Click here and select a font.

Click here and select a font size.

'Denize Etheridgs
'Created September 29 ?_0014—.
'Demostration Procedurs

Make sure the Margin Indicator Bar check
box remains selected.

Click OK.

(@
2.
=
uQ
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

[Al].Value = 100

bibe Db ot | G| Do |

«e® 0©0O0OO

The text in the Code window changes to
reflect your modifications.

You can use the Editor tab in the Options dialog box to set the options shown in the table that follows. Click
Tools and then click Options to access the Options dialog box.

OPTION FUNCTION

Auto Syntax Check Allows the VBE to check the syntax of each line of code immediately after you
type it.

Require Variable Declaration Requires explicit variable declarations within all modules. See Chapter 3 for
more information.

Auto List Member As you type your code, you see a reminder of the next logical value for
completing the current statement.

Auto Quick Info Displays information about functions and their parameters as you type.

Auto Data Tips Displays the current value of a variable when you place your cursor over the

variable while in break mode. See Chapter 8 for more information about
debugging your VBA code.

Auto Indent After you set a tab location, all following lines start at the same tab location.
You specify the width of the tabs in the Tab Width field. You can set tabs from
1 to 32 spaces apart.

Add a New

Module

hen you begin writing code, you will use

variables to store information. A string is a

sequence of characters that does not
represent a numeric value. A string can consist of letters,
numbers, spaces, and punctuation marks. A variable can
hold a number, a string, or some other type of
information. When you tell VBA exactly what type of
information a variable can contain, you are declaring the
variable. A procedure is a sequence of code that, when
executed, performs an action in Excel. When you record a
macro, VBA stores it as a procedure. VBA uses modules
to store variable declarations and procedures. Whenever
you create a new macro by using the macro recorder,
VBA places the procedure in a module and associates the
module with the project. The VBE considers every open
workbook a project.

Add a New Module

When you type VBA code into the VBE, you place it in a
module. You can create a module to store your VBA code.
As you add new modules to a project, VBA names them
Module#. The VBE assigns numbers to the modules,
increasing the number by one each time you add a new
module. For example, the VBE names the first module in
the project Module1, the second Module2, and so on.

The Project Explorer lists all of the modules in a project.
When you add a new module, Excel selects that module
in the Project Explorer and creates a blank Code window.

You do not have to create a new module for each
procedure you add to a workbook. You can add multiple
procedures to the same module.

o Click the project to which you want to add a new
module.

@ Click Insert > Module.

Excel creates a new module and opens the
associated Code window.

9 Type the code for your macro.

® This is the macro name.

« Microsoft Visual Basic - Visual Basic Editor, xism - [Module1 (Code)]
B phe gt e k| favet [etug B Desh pdim fjedes bee

Sub MyProc()

'Denise Etheridge

‘Created September 29, 2007
'Demostration Procedure

[A1].Value = 100

End Sub

W bl Gt gws pesn Fgmat [ebug Bem Josh jom liedse bes f00h Wiy e
SR | [e a1 <] [Commmety =l

Sub ConstantExp() <«——@ =
Const NumOfQtr As Integer= 4
Dim NumSold As Integer

Dim ProductRevenue As Long 4—9

Dim ProductCost As Long

NumSold = 16000
ProductRevenue = 64000
ProductCost = 32000

AvgQtrSold = NumSold /| NumOfQtr
AvgQtrRev = ProductRevenue | NumOfQtr
AvgQtrCost = ProductCost /| NumOfQtr -

Cells(1, 1).Value = AvgQtrSold
| Cells(2, 1).Value = AvgQtrRev |
mel |

@ Press Alt+F11 to move from the VBE to Excel. T e — g
fr LEETT
. _J| va Brirty Sfern w
@ Click the Developer tab. 0 e ey 4=
. q Al - —]]
@ Click Macros in the Code Group. e o | Be
- — N
A 0
: 5
: =3
7
: -
9
10 =
1 (¢)
12
13 S
14 m
15
28 s s —— 5
ety EEE] ¥ *] P
. . - o
® The Macro dialog box lists all existing macros, () AR — &
including the ones you create in the VBE. o _ = 3 %
o e - @)
E6 3 & g‘
Wl_» B c o E F G H |] =0
1
: 2
3
4
L
&
7
B Co]
9 (o]
10 Mg M G st &
1 ey
12
13 e
14
15
T i
ro— L N e il

You can easily change the name of a module. When you create a new module, the VBE automatically names
the module Module#, with the number sequentially following the last module you created — for example,
Module1, Module2, and so on. If you have a project with several modules, distinguishing one module from
another without reviewing the source code can be difficult. You can rename modules with names that reflect
the actions that the contents of the module perform.

Use the Properties window to change the name of a module. In the Project Explorer window, click the name
of the module you want to rename. Press F4 to move to the Properties window. Type a new name in the
Name field and then press Enter. The name of the module changes on the corresponding node in the Project
Explorer window.

Remove a

Module

you remove modules that contain procedures you

no longer need. When you attempt to remove a
module, the VBE gives you the opportunity to export the
module to a file before removing it. If there is any
possibility that you will need to use a procedure in that
module in the future, exporting the module before
removing it is good idea.

Exporting a module creates a file with a .bas extension.
These files are text files, and you can open and read
them with any text editor.

Once you have exported a module, you can use the
Import File dialog box to import the module back into
the project from which you exported it or into another
project. If you have modules you want to share with
other programmers, you can export them so the other

Remove a Module

You can remove modules from the VBE. Typically,

programmers can import them. When you import a
module file, the VBE tries to assign it the same name as
the original module. If a module already exists with that
name, the VBE adds a sequential number to the end of
the module name. Therefore, if you named the original
module Module1 and a Modulel exists in the project,
Excel names the imported module Module11.

When you remove a module that contains code used by a
macro, you can no longer access the macro. If you
remove a module that contains code referenced by a
procedure in another module, an error message appears
when you run the code.

When you delete macros within Excel, Excel removes the
corresponding VBA code. If a VBA module does not
contain any code, Excel removes the entire module.

o Click the module you want to remove.

If the Project Explorer is not visible, press
Ctrl+R to display it.

@ Click File > Remove Module Name, where
Module Name is the name of the selected
module.

The Remove command always contains the
name of the selected module.

The VBE displays a message, asking whether
you want to export the module before
removing it.

9 Click Yes to export the module to a file.

Alternatively, click No if you want to delete
the module permanently.

@

4 Microsoft Yisusl Baskc - Visual Basic Editor, xism - [Module3 (Code)]

Sub ConstantExp()

* Donst NumOfQtr As Integer=4
im NumSold As Integer

Dim ProductRevenue As Long
Dim ProductCost As Long

0

o tochind
B v (RS A
21 Mermet Eseal et

NumSold = 16000
ProductRevenue = 64000
ProductCost = 32000

AvgQtrSold = NumScld / NumOfQtr
AvgQtrRev = ProductRevenue | NumOfQtr
AvgQtrCost = ProductCost /| NumOfQtr

Cells(1, 1).Value = AvgQtrSold

Sub ConstantExp() =
Const NumOfQtr As Integer= 4
Dim NumSold As Integer

gy ProductRevenue = 64000
ProductCost = 32000

AvgQtrSold = NumSold /| NumOfQtr
AvgQtrRev = ProductRevenue | NumOfQtr
AvgQtrCost = ProductCost /| NumOfQtr

Cells(1, 1).Value = AvgQtrSold
ST |

The Export File dialog box appears.

9 Click here and select the folder in which you

want to save the module code.

6 Type a name for the module code.
O Click Save.

The VBE removes the module from the project
and saves the module in the file you specified.

W ol G pes poet fymart Debug Ben ook gt fjedos s

Boar o0 s MEF L 8 i
== =] [t

Sub € tExp() =

Const NumOfQtr As Integer= 4

AvgQtrRev = ProductRevenue /| NumOfQtr
AvgQtrCost = ProductCost /| NumOfQtr

Cells(1, 1).Value = AvgQtrSold
=i s of?

Sub MyProc()
'Denise Etheridge

[A1].Value = 100

End Sub

You do not need to delete a module to save it as a
file. If you want to share your code with other VBA
developers, you can simply export the module to a
file and then distribute the file. To export a macro,
you select the module containing the macro and
then click File © Export File. The Export file dialog
box appears. In the Save In field, select the folder in
which you want to save the file. Type a filename in
the File Name field and then click Save.

When you export a module to a file, you can import
it into any workbook. To import an exported file,
click a project name to select the project into which
you want to import the file. Click File = Import File.
The Import File dialog box appears. Use the Look In
field to locate the folder in which you saved the
exported module. Click the filename and then click
Open. VBA imports the file.

¢ 1dey)

.
.

(@
2.
=
uQ
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

Excel Macro dialog box. If you create workbooks

you intend to share with others, you may want to
hide specific macros within your workbook to ensure that
users do not inadvertently delete those macros from your
workbook.

Because Excel cannot execute a hidden macro from the
Macro dialog box, you need to assign the hidden macro
to the Ribbon or have another macro call the macro.
When you hide a macro, shortcut keys no longer execute
the macro.

To hide a macro, open the module containing the macro
within the VBE and place the Private statement in front
of the Sub statement for the procedure. For example, you

You can hide macros so they do not appear in the

type the following to hide the ChangeText procedure:
Private Sub ChangeText ().

Hiding a macro does not prevent users from viewing or
modifying the macro in the VBE. If you want to keep
users from accessing the macro, you must password-
protect the project containing the macro by changing the
properties of the project. See the section, “Set Properties
for a Project,” for the details on setting project properties.
Locking the project prevents users from using the VBE to
view and modify the VBA code within that project. To
open the project, a user must enter the correct password.
Locking a project limits user accessibility, but Excel can
still execute any macros in the project.

@ Click the Developer tab.
@ Click Macros in the Code group.

The Macro dialog box appears.
9 Click the macro you want to hide.
@ Click Edit.

i
M|

Banm sheenl - dhenth et] W,
S PR [T ——
oy R R) BECE|
e S P i s e vy SO Y s w-mx
— T B b 2 3 " . o Y
atn) S i Brietn Bt el . —'{I T e Pkt
o i o o ey
e PP =
Al - - - T "
ToA B c D E F G H I]

I ¥ C———Pr]

The VBE opens to the macro you selected.

6 Type Private before the Sub statement.
@ Press Alt+F11 to return to Excel.

0 Repeat steps 1 and 2 to open the Macro
dialog box.

The macro no longer displays.

= Microsoft Visual Basic - Visual Basic Editor.xism - [Module1 (Code)]

Private Sub MyProc()
benise Etheridge
'Created September 29, 2007

'‘Demostration Procedure

[A1].Value = 100

ED]

End Sub
=¥ 4] | 1 [
) Rt - mErD|
= Ll it P Laywt Parmain Dets Paoee Vam L Aatim Ll
— D B bl P T
e} A e baintn by 4
R 8 M Sy (4
cate L e
Al -]
A B c D E F G | |

within the same code module.

To make a hidden macro visible again, you need to access the module containing the corresponding
procedure within the VBE and delete the Private statement in front of the Sub statement.

You should hide macros that are called by other macros if you do not want the user to be able to execute the
macro from the Macro dialog box. For example, you have a macro named ChangeCells that calls another
macro named AddCellValues. You can hide the AddCellValues macro so users cannot execute the macro from
the Macro dialog box. When you mark a procedure as private by placing the Private statement in front of the
Sub statement for the procedure, you can only access the procedure within the same code module. In other
words, the hidden macro and the procedure that corresponds to the macro calling the hidden macro must be

¢ 1dey)

.
.

(@
2.
=
uQ
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

removing VBA code. After you record a macro,

you can record it again to replace it, but you
cannot modify it in Excel. The only way to modify your
macro is to change the procedure by using the VBE. If
you do not know how to read and write the VBA code
required for the step you want to add to the macro, this
can be quite an undertaking.

Typically, modifying a macro — even one you create with
the macro recorder — requires manually specifying the
new VBA code you want to add to the macro. You can
quickly update an existing macro by recording the code
you want to add to the macro and then using the copy
and paste features within the VBE to add the new steps
to the old macro.

Update a Macro

You can update a macro at any time by adding or

For example, you create a macro that sums the values in
a column of cells but you forget to change the formatting
of the cell that contains the column total to Currency. You
can record a second macro in Excel that formats the
column. After you do that, you open the VBE, copy the
formatting code you created when you recorded the
second macro, and paste it into the procedure for the first
macro. When you copy the code, be sure you only copy
the portion of the procedure between the Sub and the
End Sub statements.

After you copy the code from the second macro into the
first macro, you can delete the second macro. You can
find out more about deleting macros in Chapter 1.

@ Click the Developer tab.

@ Click Macros in the Code group.
The Macro dialog box appears.

Q Click your original macro.

(4

Click Edit.

The VBE appears, and opens to the module that
contains your macro.

@ Click and drag to select the code in your second
macro.

Press Gtrl+C to copy the code.

[~ o

Place your cursor at the end of the last line of code
in your original macro and then press Enter.

The VBE creates a new line.

@ Press Ctrl+V to paste the code.

@

o T B b P T—
=3] e Rt it & x g
* i

oy e X ' ECE]
S ST O gt | |

e

B Py

1 Sales

2 January 3 303,969.00

3 February 132,165.00

4 March 350,835.00

5 April 123,914.00

& May 291,520.00

7 June 348,150.00

B July 273,898.00

9 August 402,685.00

10 September 443.867.00

11 October 208,832.00

12 November 415,390.00

13 5 3,336,330.00

14

15

Lrippremprespmegege T
B PRI YT Cr—P

4 Microsoft Visual Basic - Visual Basic Editor, xism - [Module3 (Code)]
Wtk Gt ywe Past famet Oebw D Iosh Ao lpedee Lbe o wreies

[=] [ot

Sub Sum_Column()

*Sum_Column Macro

Selection.Style = "Currency”
End Sub
Sub Format_Total()

ActiveCell.FormulaR1C1 = "=SUM(R[-11]C:R[-1]c}“‘-ﬂ

* Format Total Macro

Selection.Style ="C urrom:y"<—6

End Sub

=f5 o o

= Microsoft Visual Basic - Visual Basic Editor. xism

W ol Got pes punt fwat Debsy Ben LI
== g LR -

{Code)]

© Click Tools = Macros.

[Mod-

9

Sub Sum_Column()

' Sum Col Macr

¢ 1dey)

.
.

ActiveCell.FormulaR1C1 = "=SUM(R[-11]C:R[-1]C)"
Selection.Style = "Currency”

End Sub

Sub Format_Total()

' Format Total Macro

Selection.Style = "Currency”

End Sub
— o
The Macro dialog box appears. ot b ot o i Ut
(@ Select the second macro. e Sum _Column() . 5
@ Click Delete. * Sum Column Macro

(@
2.
=
uQ
=3
(&
=
@
s
=,
(or]
S
2.
a
e]
a
;0
S
-

The VBE deletes the macro.
ActiveCell.FormulaR1C1 = "=SUM(R[-11]C:R[-1]C)"
Selection.Style = "Currency”

End Sub
Sub Format_Total() ®—> ’

' Format_Total Macro |

: 0
Selection.Style = "Currency” D [Ty |

End Sub

[=f5 « o

When you view the VBA code for your macro, you may notice that an apostrophe (’) precedes several lines.
These are called comment lines. Programmers use comments to provide information about the code, such as
what the code does, when it was created, and who coded it. When you use the macro recorder to create a
macro, any information you type in the Description box appears as a comment.

Example:
Sub MyProc ()

'Denise Etheridge
'Created September 29, 2007
'Demonstration Procedure

[Al] .Value = 100

End Sub

Create Sub

Procedures

block of VBA code that performs a task is a

procedure. A Sub procedure is a special type of

procedure that performs a task but does not
return a value. Every time you record a macro, Excel
creates a Sub procedure. You can view the Sub
procedures in the VBE. You can also use the VBE to
create Sub procedures.

Every Sub procedure begins with the key word sub
followed by the name of the Sub procedure and
parentheses. If the Sub procedure does not take any
arguments, the parentheses are empty. If the Sub
procedure does take arguments, you place the arguments
between the parentheses, separated by commas. Sub
procedures end with the key words End Sub.

Understanding Sub Procedures

Every Sub procedure must have a name. You can name
your Sub procedure anything you want as long as you
follow these naming rules: The name must start with a
letter. The name can contain only letters, numbers, and
underscores and cannot contain any spaces. The name
cannot be longer than 255 characters. The name cannot
be a cell address; for example, you cannot name your

Sub procedure A1l. Procedure names in VBA are not
case-sensitive. The name of your Sub procedure should
describe the function the procedure performs. For example,
if your Sub procedure prints a sales report, you might want
to name it PrintSalesReport or Print_Sales_Report.

You place Sub procedures inside modules. See Chapter 2
to learn more about modules.

@ Click Insert - Module.

® The VBE creates a new module.

@ Type Sub.
® The VBE automatically adds the words End Sub.

 Microsoft Visual Baskc - Book? - ' “ile1 (Code)]

ol Hodet.
= B ViAot (AR LA

M Ele Gt yws et Fywat Qebey Ben Jooh gt fjedos pes = A

== B

Sub Assign_Number()
[A1].Value = 100
| End Sub

ol

ol Hodnt.
= B ViAot (AR A

@ Type your procedure name. g
4 Microsaft Viual Basic - Book? - [Module1 (Code (] V)
@ Type parentheses. L = - : T | st
Sub Assign_Number() 4—9 E D
Place arguments between the parentheses [A1].Value = 1»»4—6 =
separated by commas. i End Suh «
© B A RO) e
@ Type your code. =
=
@ Press Alt+F11 to switch from the VBE to Excel, 2
and then run your macro. g
[
Note: See Chapter 1 to learn how to run a macro. 0%
=
n
il =
o T B | " ?_J‘
In this example, VBA places the number 100 in T e —— g
cell A1. AR R KT &Y 2.
T iy [P i g e o a
A & 100 "] 6“
A B c [+] E F [} H |] -
;
2 >
3
_, o
5 o
s =
7 Q
8 &
2 =
10
1 o
2 =
13 m
14
15
16 o — . — _
R = s ___,I
Glossary
TERM DEFINITION
Argument An argument passes information from one procedure to another. An argument can be a constant,
a variable, or an expression.
Constant A value that remains the same.
Function A type of procedure. This is a block of code that performs a task (usually a calculation) and
returns a value.
Expression A combination of objects, numbers, text, operators, and variables that yield a result. A
mathematical equation is an example of an expression.
Procedure A sequence of code that, when executed, performs a task in Excel. There are several types of
procedures.
Sub procedure | A procedure that performs a task but does not return a value.
Variable A named location where you store information. In the expression x=1, x is a variable that has been
assigned the value 1.

Create

Functions

Excel has over 300 predefined functions, with sum

being the most commonly used. You use the sum
function to add a list of values. Like a Sub procedure, a
function is a special type of procedure. A _function is a block
of code that performs a task — usually a calculation — and
returns a value. There are three types of functions: VBA
functions, worksheet functions, and custom functions.

VBA functions are provided for your use by VBA. You
can use these functions in your code. The MsgBox
function is a popular VBA function explained in detail,
along with several other VBA functions, in Chapter 7.
When executed, the MsgBox function displays a pop-up
box with your message. Other VBA functions obtain
input from users, execute another program, return the
current date, or return the current time.

Understanding Functions

You are probably already familiar with functions.

If an analogous VBA function is not available, you can
use Excel’s worksheet functions in your code. Chapter 7
explains how to use worksheet functions in detail.

If none of the VBA or worksheet functions suits your
needs, you can create a custom function. Every custom
function begins with the key word Function followed by
the name of the function and parentheses. If your
function takes arguments, you place the arguments
between the parentheses, separated by commas. Every
Custom Function ends with the key words End Function.
There are only two ways to execute a custom function: by
using the function in a formula or by calling the function
from a procedure. Excel lists custom functions under User
Defined in the Insert function dialog box. See Chapter 7
for more information on custom functions.

@ Click Insert - Module.

® The VBE creates a new module.

Q Type Function.

® The VBE automatically adds the words End Function.
© Type your procedure name.
9 Type parentheses.

@ Type arguments between the parentheses, separated
by commas.

@

4 Microsoft Visual Basic - Ch 03 M>

b L R S TR
Praws < WoPvumi |

wdsm - [Module? (Code)]

o e—1 @

B L v -

0 ® (=] | 3]
M e G ywe jart fgmat Oebeg Bl Josh Adtim e - Ry
SR e Y Bl A

| Eunction Bonus(Salary, Percent)

:End Function L

e
= B A (AR A

4 Microsoft Visual Basic - Ch 03 Macros xdsm -
A pie g

[Module? (Code)]
we purt fgmat Detwy Bem Jooh potim fjedse e
i = =] e

O Type your code.
o Press Alt+F11 to switch from the VBE to Excel.

Function Bonus(Salary, Percent)

Bonus = Salary * Poﬂ:onl<—e

End Function

v
= B A (AR A)

You can use your function to perform = B0 |
calculations. -
G H I]
1
S
3
4
5 R
B
!
-]
9
10
11
12
13
14
15
] ety TS E——] 1 "
1+ EEE e

You can create VBA functions you can use within Excel to perform calculations. When you create a public
function in the VBE, the function is listed in the Insert Function dialog box that appears when you click
Formulas => Insert Function within Excel. The VBE places the functions you create under the User Defined
category in the Insert Function dialog box. You can use these VBA functions in your worksheet to create
formulas in the same way that you use the built-in functions that are standard with Excel. The VBA functions
you create are available in the Insert Function dialog box only when the workbook containing the functions is
open. Therefore, if you create a specific function you want to use in all your workbooks, you should add the
function to your Personal Macro Workbook, Personal.xlsm, to ensure that it is always available from within
Excel. The Personal Macro Workbook always opens with Excel, so any macros and functions it contains are
always available. See Chapter 1 for more information on the Personal Macro Workbook.

¢ 1dey)

1eorpddy 10J o1seq [ensiA Suonponuy :

.

.
o
=
7]

Comment

Your Code

ith comments, you can document each step of

your code. You can use comments to

document such things as the person who
created the code, the date when you last updated the
code, the purpose of the code, and the purpose of each

step of the code. When you are working in a collaborative
environment, comments are essential.

In VBA you start a comment by typing an apostrophe (’).
When you execute the code, VBA ignores everything after
the apostrophe. Comments and code appear in different
colors. After you add an apostrophe, the VBE changes the
color of the commented text.

You can place an apostrophe anywhere in a line of code,
and VBA views the text after the apostrophe as a

comment. There is one exception to this rule: If you type
an apostrophe within double quotation marks, VBA does

Comment Your Code

not view it as a comment. For example, VBA would not
view the text after the apostrophe in the following
example as code: Ssaying = "That's Life!"

Comments only help if they provide enough information
to describe the code. A reader should be able to read the
comments without studying the code and get a good
sense of what the code does. For example, a comment
such as “Sums the values” does not provide enough
information about the code. Saying “Sums the values in
cells A1 and A2 and places the result in cell A3” is better
because it describes the actual process.

You can turn several lines of code into a comment by
using the Comment Block option on the Edit toolbar.

Later, if you want to make the commented lines code
again, you can click the Uncomment button.

o Double-click the module that contains the code you
want to document.

Your code appears in the Code window.

 Microsoft Visual Baskc - Ch 03 Macros xdsm - [Module? (Code)]
M e 9 ywe Pt fyme [evey Ben Josh St lpedss Ly
(R TR | [T =] [iiamm—

off Hoddel
= B A (AR A

M Ele Gt gws et fywat Debwy Ben Jooh gt fjedes pes
(R] [=] (B

| Function Bonus(Salary, Percent)

| Bonus = Salary * Percent

e
= B A (AR A

| End Function

9 Type an apostrophe followed by your comments.

You can place your comments anywhere.

9 Press Alt+F11 to switch from the VBE to Excel,

and then run the code.

The comments do not affect your code.

= Microsoft Visual Basic - Ch 03 Macros xdsm - [Module? (Code)]

o Ele Gt yws peet Fgwat Debey Ben Jooh gt fjedes pes
e 2, o [o =

‘Created By: Denise Etharidga!
'‘Date: September 29, 2008

-—0

L
8
)
]

vt 'Purpose: Calculat I b

= B A (AR A

Function Bonus(Salary, Percent)
‘Multiply salary time annual percentage

Bonus = Salary * Percent Approved by KP

End Function

=Bonus(42000,.07)

EL]

ol T I
ECE]
Dets Fovws Vum Owwigw Aawim . -"x
j e =
" . ottt e Fireda Busttemy g
¢ & | =Bonus|42000,.07) -]
A c o E F G H I]

You can use comments when you are testing your
code. If you suspect a line of code is causing your
code to run improperly, you can comment it out
and run your procedure without it. The process
eliminates the need to delete the line of code. You
can reactivate the commented-out code by simply
removing the apostrophe.

In the VBE, you can use the Edit toolbar to
comment out a block of code. To access the Edit
toolbar, click View = Toolbars = Edit. The Edit
toolbar appears. Select the lines of code you want
to comment out. Click the Comment Block button
([Z)- The VBE comments out your code. When you
run your procedure, the lines of code do not
execute. To uncomment the lines of code, select
them and then press the Uncomment Block

([Z) button.

¢ 1dey)

.
.

|
=
(=3
-
o
(=W
s
a
e
=
uQ
=
17;]
=1
ts)
[=="1
o}
ts)
2]
=
(@]
S
-
>
=
=)
=
(@]
<)
=
o
=
75}

Understanding Variables

and Data Types

ou use variables to store information for later use.

YThe following syntax stores information to a
variable.

VaribleName = Value

VariableName represents the name you give to the

variable. The equal sign is the assignment operator. The

assignment operator tells VBA you want to assign

something to a variable. Value represents what you want

to assign to the variable. Once you assign a value to a

Variable Names

You can name your variables anything you like; however, you
must follow these rules:

® The first character of the variable name must be a
letter.

® Your variable name cannot include a space or any of
the following: . ! @ & $ or #.

® Your variable name cannot exceed 255 characters.

® Generally, you should not use names that are the same
as functions, statements, or methods.

® Your variable name must be unique within its scope.

® You do not need to start each word in your variable
name with an uppercase letter; however, that is the
convention used in this book. If you develop a
convention and use it consistently, you will have an
easier time debugging your code.

variable, VBA retrieves the assigned value whenever you
use the variable name. For example, you might make the
following assignment:

x=2

With this assignment, every time VBA sees the variable
X, it interprets it to mean 2. You can change the value
assigned to a variable many times and at any point in
your code.

Data Types

In VBA, a variable can store many data types, including
strings, dates, Booleans, and a variety of number types. A
string is any sequence of characters consisting of any
combination of letters, numbers, or punctuation marks. A
Boolean is a value that is either true or false. A numberis a
value on which you can perform mathematical operations
such as addition, subtraction, multiplication, and division.

If you do not declare a data type, VBA assigns the default data
type of variant. When a variable is a variant data type, VBA
examines the variable to determine if the value is an integer,
string, date, Boolean, or other data type. When you change
the value assigned to the variable, VBA automatically changes
the data type if needed. For example, if you assign x =

true, VBA evaluates the expression and determines that x is
a Boolean. If you later change the assignment to x =
"George", VBA reevaluates the expression and determines x
is a string. Having VBA evaluate your variables slows down
your code.

When you declare a variable in VBA, you explicitly tell VBA
the variable’s data type. In other words, if your variable
contains an integer, you declare an integer variable. Because
declaring a variable makes your code run faster and more
efficiently, you should make a habit of declaring variables. To
ensure that variables are always properly declared, type
Option Explicit as the first statement in your module. If
Option Explicit is the first statement in your module, your
code will not run if you have any undeclared variables. You
must place the Option Explicit statement at the top of each
module you create.

Scope of Variables

Each Excel workbook is a project. Each Sub procedure and function you create is a procedure. You can place multiple
procedures in a single module, and you can have many modules in a project. VBA variables can be procedure only, module
only, or public. Only the procedure in which the variable resides can use a procedure-only variable. Any procedure in a
module can use a module-only variable. Any procedure in a project can use a public variable.

Use the Dim statement to declare a procedure-only variable. You place the statement after the Sub statement but before the
procedure code and End Sub statement in a Sub procedure. In a custom function, you place the Dim statement after the
Function statement but before the procedure code and the End Function statement. The following example includes several
Dim statements to declare procedure-only variables:

Example:
Option Explicit
Sub ProcedureOnlyExample ()
Dim EmpLastName As String
Dim Salary As Long
Dim StartDate As Date
' Place procedure code here
End Sub
When you want to create a module-only variable that any procedure in a module can use, you place your declarations

before the first Sub or Function statement in the module. You refer to this area of the module as the declarations area. The
example shown here includes several Dim statements used to declare module-only variables.

Example:
Option Explicit
Dim EmplastName As String
Dim Salary As Long
Dim StartDate As Date
Sub ModuleOnlyExample ()
' Place module only declarations here.
' Place procedure code here
End Sub
When you want to create a public variable that any procedure in your project can use, you place your declarations in the

declarations area before the first Sub or Function statement in the module and precede it with the keyword Public instead
of Dim.

Example:
Option Explicit
Public EmpLastName As String
Public Salary As Long
Public StartDate As Date
' Place module only declarations here
Sub PublicVariableExample ()
' Place module only declarations here.
' Place procedure code here

End Sub

¢ 1dey)

1eorpddy 10J o1seq [ensiA Suonponuy :

.

.
o
=
7]

Reference Cells

and Ranges

need to reference cells in an Excel worksheet

either to access the information in cells or to put
information there. VBA has several methods you can use
to reference cells.

One method is the Cells method. When using the

Cells method, you use an index to reference a row and
column. For example, if you want to reference cell A1,
you type the word Cells followed by an open parenthesis,
the row reference, a comma, the column reference in
quotes, a close parenthesis, a period, and the word
Value. The period and the word Value are optional.

Both of the following assign the value 1 to cell Al:
Cells(1,"A") .Value = 1,Cells(1l,"A") =1

A s you write your VBA code, you will frequently

Reference Cells and Ranges

When using the Cells method, you can also use numbers
to identify the column. The first column in your
worksheet is column 1, and each column thereafter is
numbered sequentially. To assign the value 10 to cell E1,
you would type either of the following:
Cells(1,5).Value = 10, Cells(1,5) = 10.Column
E is identified by a 5 because it is the fifth column in a
worksheet. Using numbers to identify a column is
preferable because you can use loops to manipulate your
row and column references. To learn more about loops,
see Chapter 6.

If you have a simple procedure and you would like to
access a cell, you can enclose the cell reference in square
brackets followed by a period and the word Value. For
example, you can use the following to place the number
25 in cell B3: [B3].value = 25.

@ Click Insert - Module.

® The VBE creates a new module.

@ Name your procedure.

Note: See the section, “Understanding Sub Procedures,”
to learn how to name a procedure.

9 Reference a cell by using the Cells method.
® This is a Row reference.

This is a Column reference.

@

4 Microsoft Visual Basic - Ch 03 Mo~

b .
Bateism—

: prisred <—J..

BF LT e————

wdsm - [Module3 (Code)]

M pe g3 pve pun fgmst etwg B Tofn dodm jpedss e
ot - Wbt L]

] [Fomora [e : - =]
Sub C ||_t.f{}<—g E

o3
Y
-u -:::‘;'--nu-m
[B2].Value = 25.99
Rang “is(4, 1), Cells(5, 6)).Value = "§"
End Sub
SR o

® 0

(6]

Reference a cell by using the cell address.
Fill a range of cells with a value.
This is the starting cell.

This is the ending cell.

Press Alt+F11 to switch from the VBE to Excel,

and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

The VBA places the values in the cells you
specified.

= Microsoft Visual Basic - Ch D3 Macros xdsm -

[Moduled (Code)]
Qiuwp-pmwmvxmmwm

(e

=] ot et

Sub Cell_Ref()
Cells(1, "A").Value = "Price List"
Cells(2, 1).Value = "Sweater"
.~ -
[B2].Value = 25.99 4—9
6 Range(Cells(4, 1), Cells(5, 6)).Value = "$"
End Sub
ST o
-
Wi
Al — & Price List]
A B c o F G H I]
1
2 Sweater 25.99
3
45 5 5 5) 5
5% 5 5 5 5 5
[
7
B
9
10
1
12
13
14
15
T I——— .
[[EfE e ——

You can also use the Range property to reference cells. The following table illustrates Range syntax:

SYNTAX REFERENCE
Range(“C4”) Cell C4
Range(“B1:B7”) Cells B1 to B7

Range(“D1:D8, F1:H2, F7:H8, G2:G6”)

Cells D1 to D8, F1 to H2, F7 to H8, and G2 to G6

Column |

Range(“11:117)

Row 11

Range(“L:M”)

Columns Lto M

(¢
(

(
Range(“J:)”)
(

(

(

Range(“14:16”)

Rows 14 to 16

¢ 1dey)

1eorpddy 10J o1seq [ensiA Suonponuy :

.

.
o
=
7]

Declare

Variables

If you are making an assignment to a variable, you

should start by declaring the variable. In its
simplest form, declaring your variable consists of telling
VBA what data type your variable will use.

You can assign one of several data types. Most are listed
in the “Extra” section of this task. Generally, if your data
consists of text or numbers you do not intend to use in a
mathematical calculation, you should declare your data
as a string. If your data is numerical data you do intend
to use in mathematical calculations, you should use one
of the many numeric data types. Use the data type that
uses the least amount of bytes but fully accommodates
your needs. If you do not declare your variables, VBA
assigns a variable type of variant. A variant data type
can hold any type of data. However, declaring your

Declare Variables

You use a variable to store information for later use.

variables makes your code run faster. You should declare
your variables.

You can declare a variable as procedure only, module
only, or public. To learn more, see the section,
“Understanding Variables and Data Types.” You use a
Dim statement to declare a procedure-only or module-
only variable. You type the word Dim followed by the
variable name, the As keyword, and then the variable
type — for example, Dim EmployeeName As String. If
you are declaring a public variable, you replace the Dim
keyword with Public: Public EmployeeName As
String.

After you have declared a variable, you assign a value to
it. Type the variable name, followed by an equal sign and
the value you want to assign the variable — for example,
EmployeeName = "John Smith".

@ Click Insert - Module.

® The VBE creates a new module.

Q Type Option Explicit.

Note: See the section, “Understanding Variables and Data
Types,” for more information.

® This is the declarations area.
9 Declare your public variables.
6 Declare your module-only variables.
6 Name your procedure.

@ Declare your procedure-only variables.

@

4 Microsoft Visual Basic - Ch 03 Mo

wlsm - [ModuleS (Code)]

h
i
L 1
[

2 s, <l
B VAP (R

M fe gt gwe pert Gyt Debug Ben losn pSdm e e s o
ot - Wt L}

Sub Declare. Var(|<—6
Dim Age As Integer 4—0

2 Mo
8 ke R A

@ Assign values to your variables.

Note: See the sections, “Work with Numbers” and
“Work with Strings,” to learn more.

@ Place the values in cells.

Q Press Alt+F11 to switch from the VBE to Excel,
and then run the macro.

VBA places the values in your variables in the
cells you specified.

= Microsoft Visual Basic - Ch

M Ele Gt yws et Fywat Qebey Ben Jooh gt fjedes L
. — e

03 Macros, xlsm - [Module’s (Code)]

prep—

pr
o i
pr Sheve

o it
o B VP (PR A

bption Explicit =
Public EmpLastName As String
Dim Salary As Long

Sub Declare Var()

Dim Age As Integer

EmpLastName = "Smith"

Salary = 80000 4_0

Age = 45

Cells(1, 1).Value = EmpLastName
Cells(2, 1).Value = Salary 4—6

Cells(3, 1).Value = Age =

End Sub
=i a1 o
P 8 R+« Ch DTN Microsoft ¢ - %
L
Al & | Senith ']
A B c D E E G H |
1
2 30000
3 45
4
5
[
7
B
9
10
1
12
13
14
15
16
2 40 0 Feeton Setwwss Cofs Sarge | Declars Variabies | ¥4
ety 3 JETE ey e————

You should choose the data type that uses the smallest number of bytes but can accommodate your data.
Excel provides characters you can use to set the data type for a variable. For example, you can use the
following syntax to declare a string: Dim EmployeeName$.
DATA TYPE BYTES USED RANGE OF VALUE DECLARATION CHARACTER
Boolean 2 bytes True or False
Date 8 bytes 1/1/100 to 12/31/9999
Double (negative values) | 8 bytes -1.79769313486231E308 to #
-4.9406564841247E-324
Double (positive values) 8 bytes 4.94065645841247E-324 to #
1.79769313486232E308
Integer 2 bytes -32,768 to 32,767 %
Long 4 bytes -2,147,483,648 to &
2,147,483,647
Object 4 bytes Any defined object
Single (negative values) 4 bytes -3.402823E38 to -1.401298E-45 | |
Single (positive values) 4 bytes 1.401298E-45 to 3.402823E38 !
String 1 per character | Varies $
Variant Varies Varies

¢ 1dey)

.
.

|
=
o=t
-
o
(=W
s
a
e
=
uQ
=
17;]
=1
ts)
[=="1
o}
ts)
2]
=
(@]
S
-
>
=
=)
=
(@]
<)
=
o
=
75}

Work with

Numbers

o perform mathematical calculations, you use

VBA'’s seven arithmetic operators: the plus (+),

minus (-), multiplication (*), division (/),
exponential (*), integer division (\), and Mod operators.
You use the plus operator to add, the minus operator to
subtract or negate, the multiplication operator to multiply,
the division operator to divide, and the exponential
operator to raise to a power.

The integer division operator divides two values and
returns only the integer portion of the result. VBA
discards the remainder when you use this operator. For
example, the expression x = 10\3 returns 3. The Mod
operator divides two numbers and returns only the
remainder. For example, the expression X = 10 Mod 3
returns 1. This operator works well for predetermining if

Work with Numbers

two values divide evenly. If the Mod returns a zero, the
values divide evenly.

You can assign the results of a mathematical calculation
to a variable, and you can include cells and variables in
your calculations. All of the following are valid: o = 5, x
= A + 25X =5+ 7, X =9 + Cells(1,1).vValue.

When you perform a mathematical calculation in VBA,
you must be careful of precedence — the order in which
VBA performs calculations. VBA performs calculations
from left to right, performing multiplication and division
before addition and subtraction. For example, the formula
= 3 + 4 * 2returns 11, VBA multiplies 4 times 2 and
then adds 3. If you want to change the order of
precedence, use parentheses. Excel calculates numbers in
parentheses first. The formula = (3 + 4) * 2 returns
14, VBA adds 3 plus 4 and then multiplies the result by 2.

@ Click Insert - Module.

® The VBE creates a new module.

@ Name your procedure.

@ Declare your variables.

4 Microsoft Visual Basic - Ch 03 Mo

M e g e R T
et - vt [

wdsm - [Moduleé (Code)]

A fie gt e puert fgmat Qetug Ben Josh pSdim jpedes e s o
Powect - Wt L}

] [Fomora Al of
Sub Number_Exp() <—0) E
Dim Salary As Single

Dim Raise As Single 4—9

Dim NewSalary As Single

Salary = 80000
Raise = Salary * 0.07
NewSalary = Raise + Salary

o Mot
o B WP (PR A

Cells(1, 2).Value = Salary
Cells(2, 2).Value = Raise
Cells(3, 2).Value = NewSalary

End Sub

@ Assign numeric values to variables.
® You can perform mathematical calculations.
@ Assign variables to cells.

@ Press Alt+F11 to switch from the VBE to Excel,
and then run the macro.

VBA places the values in your variables in the
cells you specified.

4 Microsoft Visual Basic - Ch 03 Macros xism - [Modules (Code)]

bub Number Exp()
Dim Salary As Single
Dim Raise As Single
Dim NewSalary As Single

ol e
90

End Sub
o KT e
-'_:'5) Mae R Ch 0 Macros skm - Microsoll Exced - x
et Heve imet Papleed Feesdn Dotz Powws Vam - - =
T bwrd bl % ' e 3
.T] ..:%. S n Pt e ::l :‘: :»—c-— E o
B £, Muc sy P VTS, -
cuke Py e
AL . 5 -]
| 4T c D g lemee G H I]
S —
2 5600
3 85600
4
5
&
7
B
9
10
1
12
13
14
15
3?.-— Fureten Sarge | Datiers vorbies | Mumbers 3 ST o "
-ty 3] 7 -

The following table shows the precedence order, from highest to lowest, that VBA uses to evaluate operators
in formulas. If the operators in the formula have the same order of precedence, Excel evaluates the equation
from left to right.

PRECEDENCE OPERATORS SYMBOL

1 Exponentiation n

2 Minus sign - (negates a number before any calculations)
3 Multiplication and division */

4 Integer division \

5 Modulus arithmetic Mod

6 Addition and subtraction + -

¢ 1dey)

.
.

|
=
o=t
-
o
(=W
s
a
e
=
uQ
=
17;]
=1
ts)
[=="1
o}
ts)
2]
=
(@]
S
-
>
=
=)
=
(@]
<)
=
o
=
75}

Work with

Strings

the string elsewhere in your code. A string is

any sequence of characters consisting of any
combination of letters, numbers, and punctuation marks.
A string can have up to two billion characters. When you
declare a string variable, you type the Dim keyword
followed by the variable name and As String — for
example, Dim SampleString As String.

You can assign a string data type to a variable by typing
the variable name followed by an equal sign and then the
value you want to assign to the variable within quotation
marks. For example, you could use the following syntax
to assign the name John Smith to the string variable
EmployeeName: EmployeeName = "John Smith".

You can assign strings to a variable so you can use

Work with Strings

You can join the contents of two or more strings to create
one string. The process of joining strings is called
concatenation. Use the concatenation operator (&) or the
plus concatenation operator (+) to combine strings. Using
the concatenation operator is the better choice because
the plus concatenation operator can be confused with the
plus arithmetic operator. The expression FirstName =
"David" assigns the string pavid to the variable
FirstName. The expression LastName = "Jackson"
assigns the string Jackson to the variable LastName.
The expression FullName = FirstName + " " +
LastName and the expression FullName = FirstName
& " " & LastName both return David Jackson. You
include the double quotation marks separated by a space
(“ “) to leave a space between the first and last names.

@ Click Insert - Module.

® The VBE creates a new module.

@ Name your procedure.

@ Declare your variables.

4 Microsoft Visual Basic - Ch 03 W adsm - [Module? (Code)]

o Ele Gt gws et Fgwat Debuj Ben Josh gt fjedos L s o
(e T |

Sub String__Eup(]J E
Dim LastName As String e

Dim FirstName As String

FirstName = "John"
LastName = "Smith"

Name = "John" & " " & "Smith"

Cells(1, 1).Value = Name
Celis(2, 1).Value = "0ld Salary™
Cells(3, 1).Value = "Raise"
Cells(4, 1).Value = "New Salary”

End Sub

=5 4| | LRl

@ 90006060

Assign string values to variables.
Concatenate the strings.

Assign a variable to a cell.

Assign strings to cells.

You can assign any data type to a cell.

Press Alt+F11 to switch from the VBE to Excel,
and then run the macro.

VBA places the values in your variables in the
cells you specified.

= Microsoft Visual Basic - Ch D3 Macros, xdsm -

[Module? (Code)]
Detwg Bem Tosh pStim fiedee felp A it

= <] et

hhhhhhh i

Sub String_Exp()
Dim LastName As String
Dim FirstName As String

IFirs‘l‘h.lam ::John'i‘ree

Name = "John" & " " & "Smith" 4—6
Celis(1, 1).Value = Nam‘—e

End Sub
/5o | A

(o) AR S
— e et P Laywt L - L
Aoy Uit
8 M Sy

Al - & lohn Smith]
A A B c D £ F G H B
: i
2 Oldsalary [
3 Raize :
4 New Salary |
5 |
5 |4
7
g |
] I
10 i
11 |
12
13
14
15
16
o e i B Aabarasas il Mg~ i varabins - At T
3 ELT 7 4

When you declare a string, you can declare it as a fixed-length or a variable-length string. A fixed-length string
can have between 1 and 65,526 characters. When declaring a fixed-length string, you specify the string’s

maximum length in characters. For example, you can use the following syntax to declare a fixed-length string
with a maximum of ten characters: Dim SampleString As String * 10.

When concatenating fixed-length strings, there is the potential for exceeding the declared or maximum length
of the string. VBA does not extend the size of a fixed-length string to store a larger string. If two joined strings
form a string larger than the space allows, VBA truncates the string to fit the allotted space. If each of the
strings you want to join is ten characters in length, you must make the variable that receives the concatenated
string at least 20 characters in length, or VBA will truncate the string.

¢ 1dey)

.
.

|
=
(=3
-
o
(=W
s
a
e
=
uQ
=
17;]
=1
ts)
[=="1
o}
ts)
2]
=
(@]
S
-
>
=
=)
=
(@]
<)
=
o
=
75}

Create a

Constant

declare it is as a constant. For example, there are

four quarters in a year. If, in your code, you
frequently divide an annual amount by four to get the
average quarterly amount, you can store 4 to a constant
named NumOfQuarters and use the constant when
performing calculations. When you review your code and
see the constant name, you instantly know you are
dividing by the number of quarters, whereas if you use
the number 4, the true meaning of the number would not
be as readily apparent. In short, using constants makes
your code easier to understand.

You declare constants with a specific data type. In fact,
constants use the same data types that variables use. As
with variables, if you do not specify a data type for a
constant, VBA treats the value as a variant. After you
assign a constant a value, you cannot alter the value.

Create a Constant

I f you often use a value that never changes, you can

If you want your constant to be available only to the
procedure in which it was created, declare your constant
after the Sub or Function statement. If you want your
constant to be available to all of the procedures in your
module, declare your constant in the declarations area. If
you want your constant to be available to any procedure
in the workbook, declare your constant in the
declarations area and use the Public keyword.

Declaration examples: Const NumOfQuarters As
Integer = 4, Public Const Region As String =
"New York"

To name your constant, you use the same naming rules
as for variables. For more information, see the section,
“Understanding Variables and Data Types,” eatlier in this
chapter.

@ Click Insert > Module.

® The VBE creates a new module.

@ Name your procedure.
@ Create your constant.

@ Declare your variables.

@

& Microsoft Visual Basic - Ch 03 Me _ ~odsm - [Module8 (Code)]

<] [3

-
o«
<
prShew
prr
off Hodien
off Hode? .

o kit
= B WAt (AR A

& Microsoft Yisusl Basic - Ch 03 Macros, xdsm - [Module8 (Code)]

M Ele Gt yws et ymat Debey Ben Jooh gt fjedes L s o
R TR | [T

e : I =] foommae T
C Sub Constant_Exp() <& &

K Const NumOfQtr As Integer = 44—9

hhhh?

it NumSeld = 16000

pr

b ProductRevenue = 64000

ol Hoded
o Lttt ProductCost = 32000
AvgQtrSold = NumSold /| NumOfQtr
AvgQtrRev = ProductRevenue | NumOfQtr
AvgQtrCost = ProductCost / NumOfQtr

Cells(1, 1).Value = AvgQtrScid
Celis(2, 1).Value = AvgQtrRev -
wal |

@ Assign values to variables. i i e !
. . 2 i &
@ Use your constant in calculations. =1
. 6 (¢’
® The results are stored in a variable. a
@ Assign variables to cells. o —
< =
@ Press Alt+F11 to switch from the VBE to Excel, = g
and then run the macro. e e .
~—0 &
(@)
=
=
End Sub C'Q
n u
=
)
£ of g
VBA places the values in your variables in the g AR DT Macros3ism - Wicrosoh Excel R -
cells you specified. Bim e |woa Bt T 2o gy gl o
R R e SR B I I R S Cut e~ T Pt [| 2 = par g.
“ﬂal = _“ . & 4000 - - . - '] O
8 c D E . G H I] 5“
1 4000] | -
|
S eow = >
. | =
: ! s
& L p—
7 =
2 Q
; e
10 o
1 | o
12 =
13 7,]
14
15
_~1..§-~ arge o varmiows _ nmbws_ wge | Comtants -+ S WL
i | El] s 4

VBA provides hundreds of built-in constants that you can insert into your code at any point without declaring
them. The Excel VBA object model adds over one thousand more, all of which begin with either x1 or vb.
Each constant has a numeric value. You can use these constants anywhere, and you do not need to know
their numeric value to use them. Two of the most commonly used VBA constants deal with inserting carriage
returns, vbCrLf, and tab characters, vbTab, in your output. Although each of these constants has a
numeric equivalent, you simply type the name of the appropriate constant value in your code. To find a list of
all VBA and Excel VBA Object Model constants, press F2 to view the Object Browser and search for
Constant. Most of the constant values are self-explanatory, based on the name. Appendix A also includes
many of the constant values used in this book. You can also find a listing of constants by typing constant in
the Help text box.

Discover the

Excel Object Model

bjects are the individual pieces of an properties to change the characteristics of an object, such
Oapplication. For example, a worksheet is an as the color of an object.
object, a range of cells is an object, and a chart ~ Excel has an enormous number of objects, properties,
is an object. You can use the Excel object model to and methods, and remembering all of them is virtually
interact with the objects. Using the object model, you can impossible. Luckily, the VBE provides a help system to
access everything from the entire application to an help you quickly locate objects and determine the
individual cell in a worksheet. Objects can have corresponding methods and properties that are available
properties and methods. You use methods to perform for the object. You can learn how to work with objects by
actions on objects, such as move an object. You use performing the tasks in this chapter.
The Excel object model has several hundred objects and You usually need to reference the parent object when
thousands of corresponding properties and methods. Each referencing the child object. For example, to access the second
object represents an element of the Excel application. For worksheet in the current workbook, you would type
example, the Application object refers to the entire Excel ThisWorkbook.Worksheets (2). The Application object
application, while the Worksheet object refers to an individual represents the entire Excel program. All other objects are
worksheet. children of the Application object in the Excel object model. The
)) .) L . Application object has several properties and methods. Those
Most objects have child objects. A child object is an object that return the most common user-interface values, such as
that is part of a larger object. For example, a Worksheet the activecell property, do not require the use of the
object is a child object to a Workbook object because Application object in the statement. Both of these statements
worksheets are part of a workbook. All objects in the Excel are valid:
object model except the Application object is a child of at
least one other object. The Excel Application object is the Example:
parent of all objects in Excel. Aepilication.Aetiveasii
The object model groups common objects into collections. ActiveCell
For example, the Workbook object identifies an individual
xg;tgggt,&but the Workbooks collection refers to all open

Every workbook you open in Excel is a workbook object. Every
Workbook object is part of the workbooks collection. The
Workbooks collection is part of the application object.
You can use the workbook object methods to do things such
as save or close a workbook. See Chapter 9 for more
information on working with the workbook object.

Worksheet Object

Every worksheet in Excel is a worksheet object. Every
Worksheet object is part of the worksheets collection. You
can use worksheet methods to do things such as add,
delete, or copy a worksheet. See Chapter 10 for more
information about working with the worksheet object.

Although the list of available objects is extensive, there are
Six objects that you use frequently: application,
Workbook, Worksheet, Chart, Range, and Dialog.
Because you use these objects frequently, it is a good idea to
familiarize yourself with them.

Every chart in a workbook is a Chart object. You can
embed a chart in a worksheet or you can place a chart
on a chart sheet. The chartobject object holds
Chart objects you embed in a worksheet. chart
objects you place on a chart sheet are part of the
Charts collection. All Chartobject objects are part
of a chartObjects object collection. See Chapter 13
for more information about working with charts.

Dialog Object

The pialog object references each of the built-in dialog
boxes available in Excel. Excel stores these dialog boxes
in the pialogs collection. VBA identifies each dialog
box by assigning it a constant value. The constant value
begins with x1pialog followed by the name of the
dialog box. For example, x1DialogSaveAs references
the Save As dialog box. You can use the constant value
associated with a dialog box to view the dialog box. You
view individual dialog boxes by using the show method.
The Dialog object refers to existing dialog boxes. For
information on creating dialog boxes, see Chapter 13.

Excel Methods

Each object in the Excel object model has methods. You
use methods to perform actions on objects For example,
you can use the copy method to copy a worksheet by
copying the worksheet object and placing it in another
location in the workbook.

To use a method with an object, you combine the object

name with the method name, as in the following example:

Example:
Worksheets (1) .CopyAfter:=Worksheets (3)

The rRange object enables you to reference an individual
cell or a range of cells. Several different methods and
properties use Range objects. See Chapter 11 for more
information on the Range object. The following
references cell B3.

Example:
Range ("B3")

Excel Properties

Each object in the Excel object model has properties.
Properties enable you to view or change the

characteristics of an object. For example, you can use the

value property to change the value of a cell. You can
also use properties to change other aspects of an object.
For example, you can use the Hidden property to hide
or unhide a worksheet. To change an object property, you
combine the object name with the property name and
then assign a property, as follows:

Example:
Range ("Al") .Value = 45

Object Collections

You can have multiple objects of the same type, such as
multiple worksheets in a workbook. To make these
objects more accessible, VBA groups them together in an
object collection. For example, each Workbook object
contains a Worksheets collection. You access a collection
in a manner similar to the way you access an array. You
use an index value to reference the desired object in the
collection. The following code accesses the second
worksheet in the Worksheets collection:

Example:
Worksheets (2)

TERM DESCRIPTION

Object An element in an application, such as a worksheet, chart, or form. You can use VBA to manipulate
objects.
Properties The characteristics of an object, such as its color, size, or location.

Methods

The actions VBA can perform on an object, such as copy, save, or move. For example, you can use
methods to copy, save, or move a worksheet.

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=t
=
(¢
e!
»
Q
()
J—
)
S
(¢
a
(o
=
o
U
(¢)
=

Access the Excel

Object Model Reference

hen you want to know what objects are

available to you and the properties and

methods associated these objects, you can
refer to the Excel Object Model Reference, which is part
of the VBA help system. The Excel Object Model
Reference provides documentation on every object,
method, property, and event in the Excel object model.
An event occurs in Excel whenever the user performs
any type of action. You can use events to trigger the
execution of a procedure by creating event-handling
procedures. See Chapter 15 to learn more about events.
The Excel Object Model Reference explains every object,
and provides you with sample code. You can cut and
paste the sample code into the VBE and then run it in
Excel. The Excel Object Model Reference explains each

Access the Excel Object Model Reference

method, provides you with the syntax for each method,
explains the parameters associated with each method,
and provides you with sample code for most methods.
The Excel Object Model Reference also explains each
object property and event and provides you with the
syntax and sample code for most properties and events.

When using the Excel Object Model Reference, there are
several ways you can access the information you want.
You can type the name of an object, method, property, or
event into the Search field and the Excel Object Model
Reference will bring back a list of topics. Then you can
click the topic in which you are interested. You also can
select a topic from the Developer Reference Table of
Contents, or you can use the Excel Object Model
Reference to find the topic you want.

o Type a question in the Help field in the upper-right
corner of the VBE and then press Enter.

The VBA Help system appears.
® You can select from the options in this menu.

Q Click Excel 2007 Developer Reference at the top of
the screen under the Search field.

4 Microsoft Visual Basic - Chap04-Macros.xism - [Module1 (Code)]
M pie ot gwe Pt fymat Qebug B Josh St lfpedse s
= <] [emenrin
Sub CreateObjVar()

Dim X As Range

Set X = ActiveSheet.Range("B7")
X.Value = 7104
X.Borders(xlEdgeTop).LineStyle = xIContinuous
X.Borders(xlEdgeBottom).LineStyle = xiDouble
X.Font.Bold = True
X.Font.Color = RGB(255, 0, 0)

End Sub

i T [| 3|

w Bl Help
sid ada

e Ewsian Rabrercs - B awh +

Searched for: “Developer Reference”

The Developer Reference Table of Contents
appears.

9 Click Excel Object Model Reference.

[Ty L e e —p——

0—» -

A list of the objects in the Excel object model
appears.

@ Click the object for which you want more
information.

A screen with links to the properties,
methods, and events appears.

Excel Object Model Reference

Sutcatmgrarion ol Tuisd ispoct Mosied Butincs

You can use the Object Browser to access a list of
objects, properties, and methods that are available
for your use. You open the Object Browser by
pressing F2, or by choosing View &> Object Browser
from the menu while in the VBE. In the field in the
upper-left corner of the browser, select Excel to
access the Excel Object Model Reference. Use the
Search field in the upper-left corner to search for
the object for which you are looking.

If you place your cursor over a keyword in your code
and then right-click, a contextual menu appears.
Click List Properties/Methods to see a list of
properties or methods that you can use with the
keyword. Click List Constants to see a list of
constants that you can use with the keyword. Click
Parameter Info to see a list of parameters.

As you type your code, the VBE provides you with a
list of properties, methods, and constants that you
can use with the object for which you are creating a
command.

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=t
=
(¢
e!
»
Q
()
J—
)
S
(¢
a
(o
=
o
U
(¢)
=

Create an

Object Variable

object reference each time you want to reference

the object, or you can assign an object to a
variable. You assign objects to variables because variable
names are usually shorter and easier to remember, and
you can change the objects that variables refer to while
your code is running. In addition, VBA code runs faster
when you use object variables.

You declare object variables in much the same way as
you declare a standard variable. You use the Dim
statement to declare the variable and the As statement to
identify the variable as an object variable. The data type
for the variable is the corresponding object type. For
example, the statement Dim SamplevVar As Worksheet
creates an object variable named Samplevar that is a
Worksheet object.

Create an Object Variable

You can reference objects by typing the complete

After you create an object variable, you assign an object
to the variable by using a set statement. The following
statement sets the value of samplevar to point to
Sheet1 in your workbook:

Set SampleVar = ActiveWorkbook
.Worksheets ("Sheetl")

When you assign an object to a variable, you are
assigning a reference to the object to the variable and not
the actual object value. For example, when you assign a
range to a variable without using a Set statement, you
are assigning the value in the cell to the variable. When
you assign a range to a variable using a Set statement,
you reference the actual cells. Assigning a range to a
variable by using the Set statement allows you to set
properties for the range using the variable.

@ Name your procedure.

@ Declare your object variable.

9 Use a set statement to assign an object to the
variable you created.

@ Assign the object properties.
® Assigns a value to a cell.
® Places a single line border at the top of the cell.

Places a double line border at the bottom of the cell.

@

e X.Borders(xlEdgeTop).LineStyle = xIContinuo us‘—’

 Microsoft Visual Baskc - Chap04-Macros.xism - [Module! (Code)]

M fie ot gwe Pt fgmat Qebug Ben Josh jSdm jpedes e

— =0 =]
Sub CreateObjVar() <& o g
Dim X As Range

 Microsoft Visual Basic - Chap04-Macros.xism - [Module1 (Code)]

M fie gt gwe poert fgmat Qebug B Josh podim jgedss s
=0 <] [crmmemiin

Sub CreateObjVar()
Dim X As Range

Set X = ActiveSheet.Range("B7") <& 9
X.Value = 7104 <«——@

P> X.Borders(x|lEdgeBottom).LineStyle = xIDouble <€«———
X.Font.Bold = True
X.Font.Color = RGB(255, 0, 0)
End Sub

Makes the font bold.
Makes the font color red.

Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

The macro places the value you
specified in the cell you specified,
adds a single-line border to the top
of the cell, adds a double-line border
to the bottom of the cell, makes the
font bold, and sets the font color

to red.

% Microsoft Visual Basic - ChapD4-Macros xlsm -

M Bl G e punt fgmat Debeg Ben Jooh gt fjedes b

[Module (Code)]

Crevvicpes Buferercs

==

=] [Cremeingia

Sub CreateObjVar()
Dim X As Range

Set X = ActiveSheet.Range("B7")
X.Value = 7104
X.Borders(xlEdgeTop).LineStyle = xIContinuous
X.Borders(xlEdgeBottom).LineStyle = xiDouble
X.Font.Bold = True @¢——

X.Font.Color = RGB(255, 0, 0) «——@

End Sub
_ =l
=jwal | o
(o) = ¥ i [1E - x
A T e o W LI
-)
o el LR 52 B
]
F G H 1]

Tuesday
‘Wednesday
Thursday
Friday

S8 Simell thaet] Gheet) e Dnivts Shert] et shwers 73 O

=] BT

If you want to refer to the currently selected
worksheet, you can use the ActiveSheet property.
You can use this property in place of an object
reference to the worksheet, such as

Worksheets (1), which refers to the first
worksheet in a workbook. By using the
ActiveSheet property, you reference the active
worksheet at the time your procedure executes. For
example, SheetName = ActiveSheet.Name
assigns the name of the currently active worksheet
to the SheetName variable.

The ActiveSheet property can refer to any type of
sheet within a workbook. Therefore, if the currently
selected sheet is actually a chart sheet, the
ActiveSheet property returns a reference to the
chart sheet. See Chapter 10 for more information
on working with worksheets.

When you create object variables, you are essentially
creating object pointers. Unlike a standard variable,
which is the name of a memory location containing
the variable’s value, an object variable actually
points to the memory location that stores a pointer
to the object. For example, in the following code,
ObjVar stores the pointer to cell B2 in the
worksheet.

Example:
Dim ObjVar As Range
Set ObjVar = ActiveSheet.Cells(2, 2)

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=t
=
(¢
e!
»
Q
()
J—
)
S
(¢
a
(o
=
o
U
(¢)
=

Change the Properties

of an Object

ou can change the value of an object, its

appearance, and other characteristics by modifying

the properties associated with the object. For
example, when working with a cell on a worksheet, you
use the Value property to change the value of the cell. If
you want to change the font style, you modify Font object
properties, such as Bold, Italic, Underline, and Size.
If you want to make several property changes to the
same object, you can create a statement for each property
you want to change. For example, you can enter the
following statements to change the properties of a cell:

ActiveSheet.Range ("B7") .Value = 7104

ActiveSheet.Range ("B7") .Borders_
(x1EdgeBottom) .LineStyle = xlDouble

ActiveSheet.Range ("B7") .Borders_
(x1EdgeTop) .LineStyle = x1lContinuous

Change the Properties of an Object

ActiveSheet.Range ("B7") .Font.Bold = True

ActiveSheet.Range ("B7") .Font._
Color = RGB(255,0,0)

You can simplify these statements by assigning
ActiveSheet.Range ("B7") to an object variable and
then referencing the variable for each statement. For
example, you can assign ActiveSheet.Range ("B7") t0
the variable X.

You can simplify the statements even further by using a
with statement. Instead of typing the object variable
reference, you simply type with VariableName followed
by each property statement. When you complete your list
of property settings, you type End with to mark the end
of your with statement. You can nest your with
statements to further simplify your code.

@ Name your procedure.

@ Declare your object variable.

9 Use a set statement to assign an object to the
variable you created.

9 Assign the object properties by using a with
statement.

® Assigns a value to a cell.
® Places a single line border at the top of the cell.

Places a double line border at the bottom of
the cell.

@

e = With X

 Microsoft Visual Baskc - Chap04-Macros.xism - [Module2 (Code)]
M fie gt gwe Pt fgmat Qetug Ben Josh jSdm jpede pwe

= <1 e)
Sub mthobj\.rarn<—o E
Dim X As Range 4—9

[r— -.ax

& Microsoft Visual Basic - ChapD4-Macros, xism - [Module? (Code)]
Bl G pws Pt Fgwat Debuy Ben Jooh gt fjedes b
e =] [r——

Sub WithObjVar() B

Dim X As Range
ge("B7") = 9

Value = 7104 <—@®

.Borders(xlEdgeTop).LineStyle = u{continnous<—.
.Borders(xlEdgeBottom).LineStyle = xIDouble <€———
With .Font
.Bold = True
.Color = RGB(255, 0, 0)
End With
End With

Crevvicper Buferercs

Set X = ActiveSheet.R

 End Sub

=i

Makes the font bold.
Makes the font color red.

Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

The macro places the value you
specified in the cell you specified,
adds a single-line border to the top
of the cell, adds a double-line border
to the bottom of the cell, makes the
font bold, and sets the font color

to red.

= M

icrosoft Visual Baskc - ChapQ4-Macros, xism - [Module? (Code)]

M s St we st fyws Detwg Ben Josh ASeim lpedse L Crioper Suserance o
e 2] [rmcnra =]
Sub WithObjVar() = |

Dim X As Range
Set X = ActiveSheet.Range("B7")

With X
Value = 7104
.Borders(xlEdgeTop).LineStyle = xIContinuous
.Borders(xlEdgeBottom).LineStyle = xIDouble

With .Font
.Bold = True €—— 4
.Color = RGB(255, 0, 0) «——@
End With
End With
End Sub e
=[5 4 :lJ
) C N LA ChaplM-Macros xbsm - Microsoft Excel -
R 1 e a1 i R | e | @ =in
N [T % Tl tdap bt T e
T-‘ - T 52 B L Vo e g [
R B M ey T U Rty |
cule [as
AL . sl &
A B c b E E G H] |
1 | Sales
2 Monday 1,759
3 Tuesday 1,319
4 Wednesday 1,628
3 Thursday 1,065
& Friday 1,333
T 7,104
B
9
10
1

S0 Shwerl | Shout) Sreet) betwe cuivts Shent shest shwers 73 T

teety 3 [EFT] L 4

Some objects, such as the Font object, have a Color property that determines the color of the object. You
can use the RGB function to set the font color. When you use this function, you select the desired color by

indicating the amount of red, green, and blue in the color. You specify the color values with an integer value
between 0 and 255. For example, you type (0,0,0) for the color black.

COLOR RED VALUE GREEN VALUE BLUE VALUE
Black 0 0 0

Blue 0 0 255

Cyan 0 255 255

Green 0 255 0

Magenta 255 0 255

Red 255 0 0

White 255 255 255

Yellow 255 255 0

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=t
=
(¢
e!
»
Q
()
J—
)
S
(¢
a
(o
=
o
U
(¢)
=

Compare Object

Variables

ou can use an object comparison to determine if

two object variables reference the same object.

Unlike standard variables, which actually contain
values that you can compare, the object variable does not
contain the object, but references it. When you compare
two object variables, you are checking to see if they point
to the same object. For example, you may want to find
out if the currently active worksheet is the first
worksheet. If so, you can perform an object comparison.

When you compare standard variables, you use the
equals (=) operator to determine if they are the same. For
example, If valuel = Value2 Then compares two
standard variables. See Chapter 3 for more information
on working with standard variables.

When comparing objects, instead of the equals operator,
you use the Is operator. For example, you write an 1f

Compare Object Variables

Then statement to compare two object variables as
follows:

If Objvall Is ObjVal2 Then

This statement looks at the object referenced by objvali
and checks to see if it is the same as the object
referenced by objval2.

In addition to comparing two objects, you can also use
the 1s operator to determine if an object variable has an
assigned value, as shown in the following example: If
Objvall Is Nothing Then. This comparison statement
returns a value of True if the object variable does not
point to an object. If the object variable points to an
object, the comparison statement returns a value of
False.

@ Name your procedure.

@ Declare your variables.

9 Assign objects to your object variables.

 Microsoft Visual Baskc - Chap04-Macros.xism - [Module3 (Code)]

[r—

M Ele G e et Fgwat Debey Ben Jooh gt fjedos b

Sub CompareObjVar()
Dim WSRef1 As Worksheet
Dim WSRef2 As Worksheet 4—9

Dim Result As Boolean

a Microsoft Visual Baskc - Chap04-Macros,xlsm - [Module3 (Code)]
Bl G e punt fywat Debej Ben ook pStim fjedes b
s T

Crevoicpes Buterercs

Sub CompareObjVar()

Dim WSRef1 As Worksheet
Dim WSRef2 As Worksheet
Dim Result As Boolean

Set WSRef1 = ActiveSheet
Set WSRef2 = Worksheets("Sheet1")

9 Compare the objects and assign the result to a
variable.

6 Display the result using the MsgBox function.

e Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

® [fyou are on Sheet1, the macro returns the value
True; otherwise, it returns the value False.

4 Microsoflt Visual Basic - ChapD4-Macros.xism - [Moduled (Code)]
M Ele G e punt fgwat Debey Ben Jooh gt fjedes b

Crevoicpes Buterercs

— i

Sub CompareObjVar()

Dim WSRef1 As Worksheet
Dim WSRef2 As Worksheet
Dim Result As Boolean

Set WSRef1 = ActiveSheet
Set WSRef2 = Worksheets("Sheet1”)

Result = WSRef1 Is W$R¢f2<—e
MsgBox (Rasult)<—6

End Sub
= K1 o
y e o . -
)
—" e et Papleed Furdn Dets Bews New - assim .-
_______ - Comt e
G57 & =G41-G55 &
A B c D E F G |
1 The Handyman, LLC |
2 Budgeted Cash Flow |
= .
4 Aug07 Sep07 QetO7 Novo7 Deco? |
E |
3 2500 5 3000 § 3000 § 3000
7 7000 5000 4000 2500
8 Drywall 1500 3000 3000 3,000
] Roofing 3,000 3,000 1,500 1,500
10 Total Cash Receipts 514500 514,500 $14000 514,000 511500 510,000
11
12 Cash Disbursements
13 Salaries and Wages $ 4200 § 43200 § 4300 § 4200 5 4300 § 4,200
14 Payroll Taxes & Employees Expense: 1,050 1,050 1,050 1050 1050 1,050
15 Cwner Withdrawals 2000 2000 2000 2000 2000 2,000
16 Rent 1,200 1200 1,200 1200 1200 1,200
17 Marketing 1500 1,500 1,500 1,000 1,000 1,000
ST e s Mh—wal .
reety BT

variable does not contain a reference to a valid object.

Example:

If ObjVar Is Nothing Then
MsgBox

End If

("Variable does not point to a valid object.")

You can also use the Is operator with the Nothing keyword to ensure that an object variable points to a
valid object. You can compare the value of the object variable to the Nothing keyword by using an If Then
statement, as shown in the following example. If the If Then statement returns a value of True, the object

You can use the Nothing keyword to clear the object variable. By doing so, you free up the memory required

to store the object pointer in the object variable.

Example:
Set ObjVvar = Nothing

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=t
=
(¢
e!
»
Q
()
J—
)
S
(¢
a
(o
=
o
U
(¢)
=

Using an

Object Method

an action on an object. The Excel object model

contains several hundred objects, and each object
has a list of methods you can use with it. For example,
you can use the Copy method to copy a Worksheet object
and then place the copy in another location in your
workbook.

To use an object method, you specify the appropriate
object, followed by a period and the method you want to
use. If the selected method has arguments, you place the
arguments after the method.

You use Excel object methods to modify or perform

Example:
Worksheet ("Sheet2") .Copy Before:= Worksheet ("Sheetl")

Using an Object Method

In this example, the code copies Sheet2 and places

the copy before Sheet1 in the current workbook.
Worksheet ("Sheet2") is the object, copy is the
method, and Before:= Worksheet ("Sheetl") is the
argument.

Most methods take arguments. Arguments tell VBA how
to modify the object. Usually, at least one argument is
required. In this example, the Copy method requires you
use either the Before or After argument to tell VBA where
to place the copied worksheet. Use the Before argument
to tell VBA the sheet before which you want to place the
copied worksheet. Use the After argument to tell VBA
the sheet after which you want to place the copied
worksheet. See Chapter 10 for more information about
copying Excel worksheets.

o Name your procedure.
@ Declare a Range object variable.

9 Store an object to an object variable.

9 Use a method to perform an action on an object.
In this example, you use the Delete method to delete a range.
® The Range object.
® The Delete method.
Assigns arguments to the method.

This argument is a constant that tells VBA to shift cells to the
left after deleting.

6 Press Alt+F11 to switch from the VBE to Excel, and run the
macro.

e

& Microsoft Visual Baskc - Chap04-Macros,xlsm - [Module4 (Code)]

M e g9 gwe peet fymet Detwy Ben Josh ASeim lpedse L e

Sub Us-Oth.thuu{}<—6_ B
Dim DeleteRange As Rangn‘—g
Set DeleteRange = Range("E4", “659"14—9

s Microsoft Visual Baskc - Chap04-Macros,xlsm - [Module4 (Code)]

M b g e ot fyme Debwg B Josh pSeim jpedes Lee Gy Srers ® o AR

= —

Sub UseObjMethod()
Dim DeleteRange As Range
Set DeleteRange = Range("E4", "G59")

DeleteRange.Delete (xIShiftToLeft) € a

End|Sub

The worksheet before you run the macro. (By) o il
- el it P Laywat Perreadn Dets. Paoee Vam . -"x
— T i bl = # 3 bpesen e
) - L —" 52 B :w.-u-. -‘m -..i-..-._-m_-'.. .
R M Sy e o [V
citd ot e
657 - by =G41-GS5 ™
A B (= D E F G n
1 The Handyman, LLC .
1 Budgeted Cash Flow !
3
4 107 Aug0? Sep07 Qo7 NowD? Decd? |
5 Cash Receipts \
B Painting Interior S 2000 5 2000 $ 2500 § 3000 5 3,000 5 3,000
7 ing Exterion 8,000 8,000 7,000 5,000 4,000 2,500
B Drywall 1,500 1,500 1,500 3,000 3,000 3,000
2 Roofing 3,000 3,000 3,000 3,000 1,500 1,500
10 Total Cash Receipts 514500 514,500 $14,000 $14,000 511500 510,000
1
12 Cash Disbursements
13 Salaries and Wages $ 4200 $ 4200 $ 4200 $ 4200 $5 4200 %5 4200
14 Payroll Taxes & Hn|\|n\lr1'\ Expense 1,050 1,050 1,050 1,050 1,050 1,050
15 Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000
16 Rent 1,200 1,200 1,200 1,200 1,200 1,200
17 Marketing 1,500 1,500 1,500 1,000 1,000 1,000
E 5w et Wl — —
3 LT 7 -
The worksheet after you run the macro. (g Hmam - o
— - met P Laywt Perreein Dets. e Vam n Ras b ® -"x
— D B b R T =
The macro deletes the range. O Bal. B MITD B TAT
b PP e o T .
o o ™
N2 - Qe .
VA Y—— c o E E G |
2 Budgeted Cash Flaw |
L
4 W07 AuR07 Sep-07 11
5 Cash Receipts |
3 Painting interior § 2000 § 2,000 § 2,500 L
7 Painting Exterior 8,000 8,000 7,000
B Drywall 1,500 1,500 1,500
9 Roafing 3,000 3,000 3,000
10 Total Cash Receipts $14500 $14,500 514,000
1
12 Cash Disbursements
13 Salaries and Wages S 4200 5 4200 § 4200
14 Payroll Taxes & Employees Expense: 1,050 1,050 1,050
15 Owner Withdrawals 2,000 2,000 2,000
16 Rent 1,200 1,200 1,200
17 Marketing 1,500 1,500 1,500
18 Legal & Accounting ano
%1 et
] LT ; -

You can use named arguments with functions, methods, and statements. Using named arguments is an easier
way to supply your functions, methods, and statements with the arguments, especially when a large number
of arguments are required. If you do not use a named argument, you supply arguments by placing them after
the method, enclosed in parentheses and separated by commas in the order VBA expects them. For example,
the Worksheet object Protect method has 16 optional arguments. If you do not use named arguments, then
calling this property requires a placeholder for each argument to specify a value for the last parameter, as
shown in this example:

Example:
Worksheets (1) .Protect ("Excel", , , , , + +» + + + + .+ . .True,)

If you use named arguments, you can provide the arguments in any order. You assign a value to the argument
by using a colon followed by an equals sign (:=).

Example:
Worksheets (1) . Protect Password:=

"Excel", AllowFiltering:=True

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=t
=
(¢
e!
»
Q
()
J—
)
S
(¢
a
(o
=
o
U
(¢)
=

Display a Built-in

Dialog Box

opens a built-in Excel dialog box. The Excel object

model contains a pialog object for each Excel
dialog box. These objects are part of the Dialogs
collection. You can access each of the Excel dialog box
objects by specifying its constant value. The constant
value for each dialog box begins with x1pialog followed
by the name of the dialog box. For example, the constant
for the Excel Save As dialog box is x1DialogSaveas.
You can find a complete list of the dialog box constants
in the help that comes with the VBE, by typing
X1BuiltInDialog in the Search field and then clicking
X1BuiltInDialog Enumeration.
You use the show method to display a built-in dialog box.
You cannot access the values that a user places in the
fields. You can only determine what the user selects by

Display a Built-in Dialog Box

You can incorporate code into your procedure that

looking at the results after the user dismisses the dialog
box. You can use arguments to assign values to a dialog
box. For example, the Properties dialog box
(x1DialogProperties) has the following arguments:
Title, Subject, Author, Keywords, and Comments. You
can enter the values for these arguments before you open
your dialog box. For a list of the arguments associated
with each dialog box, type “Built-In Dialog Box
Arguments List” in the Search field and then, in the list
of options that appears, click Built-In Dialog Box
Arguments Lists. If you want to use named arguments to
assign values to the arguments, use arg1 for the first
argument, arg2 for the second argument, and continue
in this manner. For example, if you are working with the
x1DialogProperties dialog box, you can use argl for
Title and arg2 for Subject.

@ Create a new procedure.

@ Type your command.
® The Show method.

® The title.

(2 WM

 Microsoft Visual Baskc - Chap04-Macros.xism - [Module3 (Code)]
M Ele G e et Fgwat Debuy Ben Jooh potim fjedes pes

=T

[y re—

Sub OpenDialogBox()

a Microsoft Visual Bask - Chap04-Macros,xlsm - [Module (Code)]
M Bl Gt e Pt Fgmat Debej Ben Jooh gt fjedes pes
e s

Sub OpenDialogBox()
Application.Dialogs(xIDialogProperties) _
Show _

Arg1:="Expenses”,

Arg2:=""2008 Expenses"
End Sub

The SUbJeCt % Microsoft Visual Basic - ChapD4-Macros.xism - [ModuleS (Code)]

N b g8 yws pu fyme Detwg Ben Josh pSeim lfjedes e [r————
= Bl =l
0 Press Alt+F11 to switch from the VBE to Excel, Sub OpenDialogBox() E
and run the macro Application.Dialogs(xIDialogProperties) _
' Show _
Arg1:="Expenses”,
Arg2:="2008 Expenses"” «——
End Sub
=% o
The macro adds the arguments to the dialog box) MR Y

and then opens the dialog box. R SEIE N ——— . Dt st

— T B b
atn) 3G a P R & e
8 M Sy e ¥
- — e
AL - byl .
A B C D E F G H I |]
1 :l Chap04-Macros, xlsm Properties [[
2 e e
3 = Exparsm
4 P T——
5 et Corea Pt
[Harager:
7 Copparer
= s
3:.
10
11 thowrint
o
12
13 [l o et
14
|
15
26, e
ooty 53 JETE e e—t——

Excel has hundreds of dialog boxes that display throughout the application. You can display them by using
the appropriate constant. The following table lists a few of the most commonly used Excel dialog boxes:

CONSTANT DISPLAYS

x1DialogFileDelete The Delete dialog box, where you select files to remove.
x1lDialogInsert The Insert dialog box for adding additional cells to a worksheet.
x1DialogNew The New dialog box.

x1DialogOpen The Open dialog box.

x1DialogPrint The Print dialog box.

x1DialogSaveAs The Save As dialog box.

¥ 191dey)

.
.

|)
=
(=3
-
o
(=W
s
Q.
=
V)]
=
=
(¢
M
»
Q
()
J—
)
S
(¢
a
=
=
o
U
(¢)
=

Declare

an Array

type, you can declare them as an array. You declare

an array in much the same way you declare other
variables and, as with other variables, you can declare
arrays as either local or global. You set the scope of an
array with the Dim or Public statement. See the section,
“Understanding Variables and Data Types,” in Chapter 3
for more information about setting the scope of a
variable.

You can use arrays to store a group of related data. Using
arrays simplifies your code because you can use one
variable to store several values. For example, you can
declare an array and use it to store all 12 months of the
year instead of creating a separate variable for each
month.

Declare an Array

I f you have a group of related values of the same data

When you declare an array, you specify the number of
elements in the array. For example, the declaration pim
Month(l To 12) As String declares 12 elements
numbered sequentially 1 through 12. In the example, the
Month array has 12 elements with a lower bound of 1
and an upper bound of 12.

An element is a data value in the array. You access the
elements in an array by using the index value that
represents the desired element. Elements are sequentially
numbered The lower bound of an array is the lowest
index value, and the upper bound of an array is the
highest index value. To access the second element of the
Month array, use the index value of 2, as in Month (2).

@ Name your procedure.
@ Declare your array.

Note: For more information on data types, see Chapter 3.

Q Assign values to the array elements.

® A number enclosed in parentheses identifies each
element.

4 Microsoft Visual Baskc - Chap05-Macros. xdsm - [Declare_Array (Code)] =]
e fo ew i Fomat Dty B Joth Ak fmdos et .o
B LT T =T

Sub Declare_Array()

Dim Month(1 To 3) As String <—1&)

Month(1) = "Jan"
Month(2) = "Feb"
Month(3) = "Mar"

Cells(1, 1) = Month(1)
Cells(1, 2) = Month(2)
Cells(1, 3) = Month(3)

End Sub

% Microsoft Visual Basic - Chap05-Macros, xism - [Declare_Array (Code)] (=]
e po ges P Fomat Deteg B Josh aoh fmdos el .o

Mrea agmany

Sub De-gare_nrray() #
Dim Mohth(1 To 3) As String

|
-~—0

=T

=] [peetae_tenmy

Cells(1, 1) = Month(1)
Cells(1, 2) = Month(2)
Cells(1, 3) = Month(3)

End Sub

Lal

=jwa | ol

@ Use the Cells method to assign the values in the
array to cells in the spreadsheet.

Note: For more information, see the section, “Reference
Cells and Ranges,” in Chapter 3.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

Note: See Chapter 1 to learn how to run a macro.

Excel places the values in the array in the specified
cell.

% Microsoft Visual Basic - Chapd5-Macros.xdsm - [Declare_Array (Code)]

Morsa aUOS D050 bk

E—

o124

Sub Declare_Array()
Dim Month(1 Te 3) As String

Month(1) ="Jan"
Month(2) = "Feb"
Month(3) = "Mar"

End Sub
el LI * o
(o) Wo-t-Rs Chap0s-Macrosxksm - Microsoft Exce -
= s | bt Papled s Des Beeen Vem Do dasin ® -
b e o -iae s Gwwsl - 1l Condaint Frvmating = | b o | -
Yo X - = Tl et - %r ﬁ
i BLR A SR S LR B LT IE R S Clt e~
gt e B Mg 5 e s
Al - & | Jan &
[t A (] L - [.-.i
an ___|Feb Mar ;
) [
: [
L |
: [
|
)
» [
_-l! e et | shosts st AT L
B FETE T WETE——)

When you specify the size of an array, you indicate the upper and lower bounds of the array, or the first and
last index values. In the example, Dim NewArray (1 To 45), the statement creates an array with 45

elements with a lower bound of 1 and an upper bound of 45. You can omit the lower bound value when you
declare an array, as in the example, Dim NewArray (45). If you do not specify the lower bound, VBA assigns
a lower bound value of 0. Therefore, the array NewArray actually has 46 elements starting with the first

element 0 and ending with the final element 45.

If you want all your arrays to have a lower bound value of 1, place the following statement before any
procedures in your module: Option Base 1. Making your arrays one-based is desirable because Microsoft
Excel collections are one-based and the arrays that Excel methods and properties return are one-based. If
your arrays are also one-based, your code will be easier to debug.

G 1dey)

.
.

C
=
o
)
-
72]
[
&
=
N
=
UQ
>
-
-
&
<
7]

Declare a

Multidimensional Array

ou can use a multidimensional array to store
related values within one array. VBA allows you
to create arrays with up to 60 dimensions.

However, working with arrays that have more than two
or three dimensions can be difficult.

By using multidimensional arrays, you can store related
values in one location. For example, you can store team
numbers and game scores. The first dimension of the
array can contain the team’s number, and the second
dimension can contain the team’s score.

To help envision a multidimensional array, try thinking of
a two-dimensional array as a worksheet, with rows and
columns. You access each element of the array by
specifying two index values. For example,
MultiArray(1,2) accesses the value whose first
dimension index is 1 and whose second dimension

index is 2.

Declare a Multidimensional Array

As you add a third dimension to an array, it gains depth.
Using the worksheet example, you can add a third
dimension to the two-dimensional array to make it
resemble a cube. Accessing an element of the array now
requires three index values, as in the example,
MultiArray(1,2,2).

As with other variables, you use the Dim statement to
declare procedure-only arrays and module-only arrays,
and the public statement for arrays that are accessible
to the entire workbook.

When you declare a multidimensional array, you indicate
the size of each dimension in the array. You do not have
to make the dimensions in the array equal. In the
example, Dim MultiArray(l To 4, 1 To 5, 1 To
3), the array contains four elements in the first
dimension, five in the second, and three in the third.

@ Name your procedure.
@ Declare your array.

9 Specify the range in your Excel worksheet in which VBA
will place the contents of your array.

4 Microsoft Visual Baskc - ChapD5-Macros.xdsm - [Create_MultiArray (Code)]
e
=0 <] [crnme Sbmtereg

Sub Create_MultiArray() =
Dim Title(1 To 2) As String <— &)
Dim TeamScores(1 To 4, 1 To 2) As Integer
Dim TitleRange As Range
Dim CellRange As Range
Set TitleRange = Range(Cells(1, 1), Cells(1, 2))
Set CellRange = Range(Cells(2, 1), Cells(5, 2))
Title(1) = "Team"
Title(2) = "Score”
TeamScores(1,1) =1
TeamScores(2,1) =2
TeamScores(3,1)=3
TeamScores(4,1)= 4
TeamScores(1, 2) = 205

@ Microsoft Yisual Baskc - Chap05-Macros.xdsm - [Create_MultiArray (Code)]
M fe ot gwe purt fgmat Qebug Sen Josh jpSdm e e
=0 <] [crnme sommtereg

Sub Create_MultiArray() £
Dim Title(1 To 2) As String
Dim TeamScores(1 To 4, 1 To 2) As Integer

Dim TitleRange As Range g

Set TitleRange = Range(Cells(1, 1), Cells(1, 2)) g

Title(1) = "Team"
Title(2) = "Score”
TeamScores(1, 1) =1
TeamScores(2,1) =2
TeamScores(3,1)=3
TeamScores(4,1) =4
TeamScores(1, 2) = 205

i o

Q Assign values to the array elements.

6 Assign the array values to the cells you specified in

step 3.

e Press Alt+F11 to switch from the VBE to Excel, and

run the macro.

The values in the array appear in cells in your
worksheet.

= Microsoft Visual Basic - ChapD5-Macros xlsm

M Ele G e punt fgwat Debey Ben Josh gt fjedes pes

- [Create_Multisrray (Code)]

Crarar b =] [Creame Mty =l
Title(1) = "Team" E|
Title(2) = "Score"

TitleRange.Value = Title
CellRange.Value = TeamScores<—9
End Sub

=[5 I ;ll

) ot & Chap0s-Macros xb fE -

— e met P Laywat Farrmeden Dets. Prowe - e

,-.l — D B bl v 3 brepwtan _{I

- L :f' o, V| B g
. __I“Tgam &

[Team _Jscore ' i

: 1 205 [

; 2 172 |

‘ 3 289 |

s 4 238 |

- i

P ==
3 ELE] i -

You can assign the contents of an array to a

series of cells in a worksheet by using the Value
property of the Range object. To learn more about
the Range object, see Chapter 11. When you create
a Range object, you can specify the cells you want
to include in the range by using the Set statement.
As the macro runs, VBA places any values you assign
to the Range object in the corresponding cells in
your worksheet.

Example:
Dim CellRange As Range

Set CellRange = Range(Cells(2,1),
CellRange.Value =

Cells(5,2))

TeamScores

The Set statement assigns the range of cells to the
Range object. You specify the range by using the
Cells property to determine the starting and ending
cells for the desired range. After you specify the
desired range, you assign the contents of an array to
the cells in the range by using the Value property.

When you use a multidimensional array, all elements
of the array must have the same data type. If you
plan to use the array to store different types of
values, such as strings and numeric values, you must
declare your array as variant.

Example:

Dim MultiArray
Variant

(1 To 4, 1 To 5, 1 To 3) As

G 1dey)

.
.

C
=
o
)
-
72]
[
&
=
N
=
UQ
>
-
-
&
<
7]

Convert a List

to an Array

access the individual values quickly using one
variable. You can convert a list of values to an
array by using a variety of methods.

You can assign values to your array by referencing the
index values of each element. Arrays use index values to
identify their elements. For example, if an array has ten
elements with a lower bound of 1, the third element in
the array has an index value of 3. To assign a value to an
array, you specify the index values that correspond to the
appropriate array element. For example, the following
code assigns a value of 45 to the third array element:
SampleArray (3) = 45.

With large arrays, assigning values to each element of
the array in a statement using the above method can be
cumbersome. Using a For Next loop is more efficient;

Convert a List to an Array

B y converting a list of values to an array, you can

you simply create a For Next loop to cycle through the
entire array. For Next loops work best for adding values
either from a series of cells or when values are
incremental. See Chapter 6 for more information about
working with For Next loops.

You can use the array function to add a list of values to
an array. The array function adds values to the array by
starting at the lower bound of the array and then adding
values consecutively. For example, the following code adds
the values “One”, “Two”, and “Three” to SampleArray:
SampleArray = Array("One", "Two", "Three").

You can produce the same results by specifying each
element individually; for example, you can assign a value
to the first element of the array, as follows:
SampleArray (1) = "One".

@ Name your procedure.
@ Declare your array.

@ Assign values to your array.

4 Microsoft Visual Baskc - Chap05-Macros.xism - [Convert_List (Code)]

M Ele G3 e punt fymat Doy Ben Jooh ot jiedee e
t List() ==

Sub € o E
Dim CellRange As Range

Dim RegionalSales As uari.-.m<—9

RegionalSales = Array("Region 1", 1000, "Region 2", 1500)
Set CellRange = Range(Cells(1, 1), Cells(1, 4))
CellRange.Value = RegionalSales

End Sub

4 Microsoft Visual Baskc - Chap5-Macros xism - [Convert_List (Code)]
M Ele G pes et Fymat Qebwg B Josh pStm jiedee e

Crarar

Sub Convert_List()

Dim CellRange As Range

Dim RegionalSales As Variant
RegionalSales = Array("Region 1", 1000, "Region 2", 1500}4——9
Set CellRange = Range(Cells(1, 1), Cells(1, 4))
CellRange.Value = RegionalSales

End Sub

9 Set the Range property.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

The values in the array appear in cells in your

% Microsoft Visual Basic - ChapD5.-Macros.xism - [Convert_List {Code)]
M Ele G e punt fywat Debey Ben Josh St fjedes s

] - | | - |

[=f5 « o

Sub Convert_List()

Dim CellRange As Rang-<—9

Dim RegionalSales As Variant

RegionalSales = Array("Region 1", 1000, "Region 2", 1500)
Set CellRange = Range(Cells(1, 1), Cells(1, 4))
CellRange.Value = RegionalSales

End Sub

o) da-t 8 Citiapds-Macros dsm - Microsoft Exce! - %
o

Hove et Paplowd bwedn Detn Besww um | Ovespn | datin w-mx

worksheet.

A 2 i b 8]‘I-'u:- = 5 by b J..“

Al - g & Regionl

X " g
1000 Region 2

B Sheet] AheetsSheen

5
1500

tenty]

EL] ¥ *]

The Array function uses the
variant data type. As a result,
you can have different data types
in a single array. As shown in the
example in this section, you can
add both strings and numeric
values to the same variable when
using the Array function.

You can use the ReDim
statement to change the size of
the array after you create it. You
can also use the Array function
more than once in the same
procedure to reassign the values
in the array. See the section,
“Redimension an Array,” for
more information on resizing an
array.

You can use the following code
to assign the numbers 1 to 10 to
an array. See Chapter 6 for more
information on For Next loops.

Example:

Sub Assign_Numbers ()
Dim X as Integer

Dim RecNo(l To 10) As

Integer
For X =1 To 10
RecNo (X) = X

Cells(X,1) = RecNo(X)
Next
End Sub

G 1dey)

.
.

C
=
o
)
-
72]
[
&
=
N
=
UQ
>
-
-
&
<
7]

Redimension

an Array

size and dynamic arrays. When you declare a

fixed-size array, you specify the number of
elements in the array. For example, the following code
creates a fixed-size array with seven elements: Dim
NewArray(l,7) As String.

If you do not know how large to make the array when
you declare it, you can use a dynamic array. A dynamic
array does not have a size until you use the ReDim
statement to change the array size. First, use the Dim
statement without a size to create a dynamic array — for
example: Dim NewArray() As String.

When you are ready to use the array, use the ReDim
statement to size the array so you can add values. For
example, in the code, ReDim NewArray(1l To 4), an
array that was initially declared as a dynamic array with

Redimension an Array

VBA lets you declare two types of arrays: fixed-

an unknown number of elements is redimensioned to
contain four elements.

VBA does not allow you to redimension a fixed-size
array. If you attempt to change the size of a fixed-size
array, you receive an “Array already dimensioned” error
message. However, if you declare your array as a
dynamic array, you can use the ReDim statement multiple
times within a procedure to change the size of the array.

Each time you redimension an array, you destroy the
existing elements in the array. If you want to preserve
the existing values, use the Preserve statement. For
example, the statement, ReDim Preserve

NewArray (7), instructs VBA to resize the array to seven
elements and maintain any existing values. If the array
has four values, those values remain the first four
values.

o Name your procedure.

Declare a dynamic array.

Set the initial dimension size.

Assign a value to the variable element.
Place the contents of the variable in a cell.
Redimension the array.

Assign values to the variable elements.

Place the contents of the variables in cells.

Redimension the array.
Assign values to the variable elements.
Place the contents of the variables into cells.

Preserve the first four elements and add space for
three more.

® 9060 000600

Assign values to the three new elements.

e

4 Microsoft Visual Baskc - Chap05-Macros.xism - [ReDem_Array (Code)] CEX)
x

M e b ges P foma ety B Joth gk fedos el -om

| Sub ReDem _Array() 4—0 =

Dim NewArray() As String
ReDim NewArray(1)
NewArray(1) = "Sales"”

Cells(1,1) = NowArray(1}<—6

ReDim NewArray(1 To 3)

4—0 i
~—0

ReDim NewArray(1 To 4)
NewArray(1) = "Region 1"
NewArray(2) = "Region 2"

==l | I

4 Microsoft Visual Basic - Chap05-Macros. xism - [ReDem_Array (Code)] =]
e f ges g Fpmat ety B Jooh Abe fedos e |

| ReDim NewArray(1 To 4}4_—0 -

~—OD

ReDim Preserve NewArray(1 To 7) 4—@

Cells(9, 1) = NewArray(1)
Cells(10, 1) = NewArray(2)
|

==l | 2

@ Place the values for all of the elements in the
worksheet.

@ Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

The values in the array appear in cells in your
worksheet.

® These values were preserved.

% Microsoft Visual Basic - Chap05-Macros.dsm - [ReDem_Array (Code)]
o pe g gew P fgmat Oty B Josh 4t ecss tee P ¢ SR
—y][Rt At

[cens(s, 1) = NewArray(3) 3
Cells(6, 1) = NewArray(4)

ReDim Preserve NewArray(1 To 7)

NewArray(5) = "Apr"

NewArray(6) = "May™

NewArray(7) = "June”

—0

End Sub

Oy e R Chapds-Macros xksm - Microsoft Exce -
.Mmr—lmmnﬁ“\w o | datim w -

f= PR D L]
—_
F-] - iia‘w—c— E.,i--—-n-. -

i Comm e

3 [] £ [} [¥

Region 3
Region 4

' Apr May June
+ Region 1

« Reglon 2 ¢ .

1 Region 3

= Region 4

RN = e T —

testy T) . <

Example:
UpperBound = UBound (NewArray)

LowerBound = LBound (NewArray)

Example:
UpperBounds = UBound(MultiArray, 2)

To find the upper and lower bounds of an array, VBA provides the UBound and LBound functions. The
sample code finds the upper and lower bounds and assigns them to variables.

Each of these functions returns a Long data type indicating the upper or lower bounds of the specified array.
If the array is multidimensional, you must specify the dimension for which you want the bounds.

G 1dey)

.
.

C
=
o
)
-
72]
[
&
=
N
=
UQ
>
-
-
&
<
7]

Create a User-Defined

Data Type

single variable that records multiple pieces of

information. User-defined data types resemble
multidimensional arrays in that you can store related
values by using one variable name. However, while all
elements in the array must contain the same data type,
you can create a user-defined data type that contains
multiple data types.

You declare user-defined data types at the top of your
module in the declarations area. You specify a user-
defined data type with the Type and End Type
statements. The Type statement indicates the start of the
user-defined data type definition, and the End Type
statement specifies the end. After the Type statement,
you indicate the name of the new data type; for example,
Type ItemInfo creates a data type called ItemInfo. To
create a user-defined data type to store an item price and

Create a User-Defined Data Type

U ser-defined data types enable you to create a

description, you can specify a user-defined data type with
two components.

After you create the data type, you can declare variables
that use the specified data type. You can use a user-
defined data type as the data type for an array. For
example, to create an array of the Iteminfo data type, you
enter Dim NewItems(l To 10) As ItemInfo.

To assign values to a user-defined array, you not only
specify the array element, but you also indicate the
component you want to change. For example, this code
changes the value of the first component in the array:
NewItems (1) .ItemDescription = "15 inch
Monitor".

Similarly, you can copy the entire contents of one element
to another by simply referring to the array element. The
following code copies ItemDescription and ItemPrice of
the first element of the array to the second array element:
NewItems (2) = NewItems(1l).

0 Create your user-defined data type in the declarations area.
9 Add the Type and End Type statements.

@ Declare the components.

6 Create a new procedure.
@ Declare your user-defined data type.
e Assign values to your user-defined data type.

@

4 Microsoft Visual Basic - Chap05-Macros.xism - [User_Defined (Code)] 3
M e G gew i foma Deteg B Josh sokis jjedse e .8
—D <] [eia

s =]

~—0

T

-

P PP

Sub Create_Customer()
Dim NewCust(1 To 2) As Custinfo
NewCust(1).ActNum = 135 Ll
NewCust(1).Company = "ABC Corp"
NewCust(1).CustN ="John Smith"
NewCust(1).Phone = "888 555 1414"

NewCust(2) = NewCust(1)

4 Microsoft Yisual Basic - Chap05-Macros.xdsm - [User_Defined (Code)] .
4 b g gew pen fpmat Oeteg B Josh sain edes twe O
= =] e

Type Custinfo =]
CustName As String * 40
Company As String * 35
Phone As String * 12
ActNum As Long
End Type

| Sub Gmat._Cus'lom-r()‘—e
Dim NewCust(1 To 2) 4—6

NewCust(2) = NewCust(1)

(7]
(8]
o

Copy the contents of one element to another
element.

Place the contents of both elements in worksheet
cells.

Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

The values from the user-defined data type appear in
cells in your worksheet.

VBA copies the values from the first element to the
second element.

% Microsoft Visual Basic - Chapd5-Macros.xdsm - [User_Defined (Code)]
M e g gew pem fgmat Oetwg B Joshs Aok ecss tee
Ty Bl =
El
NewCust(2) = Nowcust[1)<_e
End Sub
HLFT J _'_!:
ion) C R LS R Citiap0s-Macros dsm - Microsolt el - %
e e 1 P e A NS e # -
— T Bt bl = 2 T b 4 i P p—
o B bt St 52 B 3 Vo e g @ e Py <] e
v e A PO =)
e Comin s
Al -Q b 135 "
[t A a [+] [}] -] 1
| 135']
: ABC Corp
1 John Smith
« BBB 555 1414
' 135 .
 |ABC Comp
» John Smith
» 888 555 1414
"
u I
"
0 m | e Shants | wnor 2 0 . —
] LI ; .

As you use VBA to develop macros, the complexity
of your code may make it difficult to keep track of
variables. To simplify the process, many developers
use a standard naming convention where the
variable name reflects the variable type. When using
this type of naming convention, you preface each
variable name with a standard lowercase prefix that
identifies the data type of the variable. For example,
you can identify an integer variable by prefixing it
with i to create the variable name iNumvisits. The
integer prefix makes it clear at any location in the
code that the variable holds an integer value. The
following table lists the standard variable-naming
conventions for Visual Basic and VBA.

PREFIX DATA TYPE

b Boolean
corecur Currency
dt Date/Time
d Double
iorint Integer
lorling Long

obj Object

s or sng Single

str String

u User-defined
v or var Variant

G 1dey)

.
.

C
=
o
)
-
72]
[
&
=
N
=
UQ
>
-
-
&
<
7]

Create

Comparisons

expressions‘ Comparison expressions always equal to (<=) to determine if one value is less than or

omparison operators enable you to compare two greater than or equal to another value. Use less than or
equal to another value.

return True Of False. For example, the
expression, A = B, compares the variable a to the
variable B. It then returns the value True if the value
stored in variable a is equal to the value stored in variable
B, and False if the value stored in variable a is not equal The following table is a summary of the
to the value stored in variable B. comparison operators.

When writing a comparison expression, you use a OPERATOR FUNCTION
comparison operator. You place the comparison operator

between the expressions you want to compare. Use an = Equal to
equal (=) sign to determine if two values are equal. Use a < Not equal
not equal (<>) sign to determine if values are not equal.
Use a greater-than (>) sign to determine if one value is i Greater than
greater than another value. Use a less-than (<) sign to < Less than
determine if one value is less than another value. Use - L

. . = ess than or equal to
greater than or equal to (>=), to determine if one value is

>= Greater than or equal to

Create Comparisons

4 Microsoft Visual Baskc - Chap0é Macros.xism - [DoWhileExample (Code)]

q N b g gws et Fymet Detwg Ben Josh pSeim lfjedes e
o Add a comparison operator to your bo while loop. =0 = e _
Sub DoWhileLoop() E
In this example, If J is less than 11, VBA executes the Dim J As Integer
code inside the loop. A=
Note: See the section, “Employ Do While Loops,” in this oo wiite 4 < 11<—0
chapter to learn more about bo wWhile loops. Celis(J, 1) = J
J=sJ+1
Loop
End Sub
=m0 JE

 Microsoft Visual Baskc - ChapD Macros,xism - [EtselExample (Code)]

9 Add a comparison operator to your If and ElseIf P ord s e B 82 Y g =
statement. Dim R As Integer B
R=2
Note: See the section, “Create If Then Else Statements,” in Do While Not {l?-m lis(R, 2)))
this chapter to learn more about Tf Then

If Cells(R, 2) = "TX" [Then
statements. Cells(R, 3) = C3lis(R, 1) * 1.05
Elself Cells(R, 2) = "FL" Then

Celis(R, 3) = Cells(R, 1) * 1.08
Elself Cells(R, 2) = "CA" Then
Cells(R, 3) = Cdlis(R, 1) * 1.1
Else
Cells(R, 3) = CeWS(R, 1) * 1
End If
R=R+1

N Loo
P -
@ /5« of

Make Use of

Logical Operators

When writing VBA code, you can use logical
operators to link together comparison expressions to

Using Logical Or

create complex comparison expressions. There are six
logical operators: or, and, Xor, Eqv, Imp, and Not.

The logical operator or returns the value True if
expression A is true or expression B is true.

EXPRESSION A EXPRESSION B RESULT

True True True
True False True
False True True
False False False

Using Logical AND

The logical operator and returns the value True if
expression A is true and expression B is true.

EXPRESSION A EXPRESSION B RESULT

True True True
True False False
False True False
False False False

Example:

Sub LogicalOr ()

Dim Result As Boolean

Result = 10 < 20 Or 30 < 20 'Returns True
MsgBox (Result)

End Sub

Using Logical XOR

The logical value xor returns the value True if
expression A is true and expression B is false, or if
expression A is false and expression B is true.

EXPRESSION A EXPRESSION B RESULT

Using Logical Eqv

The Eqv operator returns the value True if expression A
is true and expression B is true, or if expression A is false
and expression B is false.

True True False
True False True
False True True
False False False

Using Logical IMP

The Tmp operator returns True unless expression A is

true and expression B is false.

EXPRESSION A EXPRESSION B RESULT
EXPRESSION A EXPRESSION B RESULT
True True True
True True True True False False
True False False False True True
False True False False False True
False False True
Using Logical NOT
The Not logical operator negates an expression. If the
expression would normally return True, using a Not Example:

operator causes it to return False and vise versa.

Sub LogicalNot ()

Dim Result As Boolean

Result = Not (10 = 10) 'Returns False
MsgBox (Result)

End Sub

9 191dey)

.
.

mo[q weidoid Sulonuo)

While Loops

ou can execute a VBA statement or a series of

VBA statements as long as a condition is true by

using a bo while loop. The following is the
syntax for a Do While loop:

Do [While condition]
[statements]
Loop

A condition is an expression that evaluates to either True
or False. When VBA encounters a Do while loop, it
evaluates the condition. If the condition is true, it executes
the statements. After it executes all of the statements,
VBA returns to the bo while statement and evaluates the
condition again. If the condition is still true, it executes
the statements again. If the condition is false, VBA
executes the first statement after the Loop statement.

Employ Do While Loops

A Do While loop consists of four basic parts: The po
statement initiates the loop. The while statement
evaluates the condition that must be met. The body of
the loop contains a series of statements to perform as
long as the condition is true. Finally, the Loop statement
marks the end of the loop.

You can use the following syntax to create a Do-Loop
While loop:

Do

[statements]

Loop [While condition]

A Do-Loop While loop is similar to a Do While loop.
The primary difference is VBA evaluates the condition at
the end of the block of statements so the loop always
executes at least once.

@ Name your procedure.
@ Declare your variable.
@ Assign a value to your variable.

This example assigns the number 1 to the variable J
and uses variable J as a counter.

@ Useanpo while statement to evaluate whether a
condition is true.

In this example, the code looks at the value assigned to
the variable g and performs the statements inside the
loop if 7 is less than 11.

@ Place the value of 7 in the specified cell.

In this example, the cell row is equal to the value of J
and the cell column is 1.

s Microsoft Visual Baskc - ChapD8 Macros, xism - [DoWhileExample (Code)]
M Ele [pes Pt Fgwat Debey Ben Jooh gt fjedes b

= Al = =
Sub nuwmchonp{}<—0 E
Dim J As Integer 4—9

J=1

Do While J =11

Cells(J, 1) =J
J=Jd+1

Loop

End Sub

a Microsofl Visual Bask - ChapDé Macros, xism - [DoWhileExample (Code)]

M Bl G e et Fgmat Debey Ben Jooh gt fjedos b
e =] [romt e

Sub DoWhileLoop()
Dim J As Integer
J=1

Do While J = 114—6
Cells(J, 1) = 44—6

J=J+1
Loop

End Sub

@ Increase the value of J. R e R
o Bl i
In this example, VBA adds 1 to the current value of J. Pub DoWhileLoop() 7
Dim J As Integer
@ Add the Loop statement. S
Do While J <11
VBA returns to the bo while statementand o fhlled=
continues looping until your code no longer meets Cells(J, 1) = J
the condition. JEd+ 14—0
@ Press Alt+F11 to switch from the VBE to Excel, and Loop <—@
then run the macro. End Sub
Note: See Chapter 1 to learn how to run a macro.
=[5+ ;F
The macro places the numbers 1 to 10 in column A,) s
rows 1 to 10. S To—
o
A -G ~E "
£ —] .
" ;
4
5
' [}
r 7
' 8
y 9
a 10
:.'j.'” Lo | Do Wil | D6l ot S et e B 8 Prem tatu _
o i DD N e e s

A loop must contain a statement that changes the condition, and the condition must eventually evaluate to
False, or the loop will continue endlessly. Programmers refer to this condition as an infinite loop.

To avoid an infinite loop, you can use a counter. In the following example, the procedure assigns the counter
variable J an initial value of 1. The Do While loop verifies that it is less than 5, and then executes the loop.
The loop assigns a value of 1 to the first cell on the worksheet, cell A1. The counter variable J increments by
1 and the loop retests the condition. The looping continues until the condition is false. In this example, the
loop repeats four times. When J equals 5, the looping stops.

Example:

Dim J As Integer

J =1

Do While J < 5
ActiveSheet.Rows (J) .Cells (1) .Value = J
J=J + 1

Loop

9 191dey)

.
.

Q
o
=
o=
-
=
=7
=]
(V)]
o)
-
R
]
o)
=
e
o
]
s

Create

Do Until Loops

statements until a condition is met, you can use a Do

until loop. For example, you can use a Do Until
loop to apply changes to a series of cells until you
encounter an empty cell.

When you use the Do until loop, the statements you
place between the po Until and Loop statements
execute until the specified condition is met. As soon as
the looping structure determines that the condition is
true, control moves to the next statement outside the
loop.

A Do Until loop consists of four basic parts: The po
statement initiates the loop. The until condition
specifies the condition that must be met. The body of the
loop contains a series of statements that execute until the

Loop Until a Condition Is Met

I f you need to execute a statement or a series of

value of the statement meets the condition of the loop.
Finally, the nLoop statement marks the end of the loop.

When the until condition follows the Do statement, the
Do Until loop checks to see if the condition is true
before executing. If the condition is not true, the loop
executes. If the condition is true, the loop does not
execute. When you use this structure for a o until
loop, the code inside the loop may never execute.

You can also place the until condition at the end of the
loop. When you place the until condition at the end of
the loop, the po Until loop always executes at least
once before checking the condition. If the condition is
true, the Do until loop stops execution, and control
passes to the next VBA statement in your procedure.

@ Name your procedure.
@ Declare your variable.
9 Assign a value to your variable.

In this example, the variable J is used to set the row
number.

Q Add your bo uUntil statement.

In this example, the loop continues until it reaches an
empty cell.

 Microsoft Visual Baskc - ChapD8 Macros, xism - [DoUntiExample (Code)]
M Ele G pes Pt Fgwat Qebuy Ben Jooh gt fjedes b

=0 [camamaton
Sub CalculateTax() <& ﬂ

Dim J As Integer<—9

J= 24—9

Do Until IsEmpty(Celis(J, 1))

Cells(J, 2).Value = Cells(J, 1) * 0.07
J=Js1

Loop

End Sub

 Microsoft Visual Baskc - ChapDé Macros, xism - [DoUntilExample (Code)]
Bl G e pun fgwat Debey Ben Josh gt fjedes pes

Lt =] [Coa e

Sub CalculateTax()
Dim J As Integer
J=2

Do Until IsEmpty(Cells(J, 1}}4—9

Cells(J, 2).Value = Cells(J, 1) * 0.07
J=Jds1

Loop

End Sub

6 Type the statements you want to execute.

= Microsoft Visual Basic - ChapD6 Macros. xism -

[DoUntiExample (Code}]
M fie g3t e poert fgmat Debwg Be lowh jpSdm jpedes e

e

=] [Comaten

In this example, VBA multiplies the value in column
A by 0.07 and places the result in column B.

e Add the Loop statement.

VBA returns to the o until statement and
continues looping until the condition is met.

0 Press Alt+F11 to switch from the VBE to Excel, and
then run the macro.

Note: See Chapter 1 to learn how to run a macro.

Sub CalculateTax()
Dim J As Integer

J=2

Do Until IsEmpty(Celis(J, 1))

Loap‘—o

End Sub
[=[& 1 ﬂl
The procedure places 7 percent of column A in i) RER ¥ E
I B — - met P Laywt Parmain Dets. P Ras b - - -
column b. - P T L — T
e B a Bt e 52 B o Vo e g -] e =] bt
et e ety i "
Al = __ __ ;__Pnce =
Y A i 3 3 -
' I P:i:el 7 Percent Tax Cansmy Ta .
i+ § 500 § 0.35 |
3 6.50 0.46
. 17.65 1.24
385.00 26.95
52.00 364
£63.00 47.81
14.50 102
3.00 oz
" 11.45 0.80
WS 117810 8 82.47
n
[8 5 o e D0 Whvis | Do Unid - ber et b e et biee B Phen atu L
e [ey ——|

When working with loops, you may have situations where you want to jump out of a loop before executing
the remaining statements in the loop. You can use an Exit Do statement. You can place an Exit Do

statement anywhere within the body of your loop, and you can have multiple Exit Do statements. When
VBA encounters an Exit Do statement, the control immediately transfers out of the current loop to the next

statement outside the loop.

Typically, a conditional statement such as If Then appears before the Exit Do statement. The conditional
statement looks for a condition to meet and then executes the Exit Do statement when your code meets the

condition.
Example:
Do While Conditionl = True
If Condition2 = True
Exit Do
End If

Loop

9 191dey)

.
.

Q
o
=
o=
-
=
=7
=]
(V)]
o)
-
R
]
o)
=
e
o
]
s

Create For

Next Loops

ou can use a For Next loop to execute a
statement or a series of statements a specific
number of times. For example, by using a For

Next loop, you can place text in a specified number of
cells.

When you use a For Next loop, you must create a
counter variable. The statements you place between the
For and Next statements execute until the counter
variable exceeds the maximum value. As soon as the
looping structure determines that the current value of the
counter is greater than the maximum value, control
moves to the first statement after the loop.

For Next loops consist of three basic parts: The For
statement initiates the loop. The For statement includes
a counter variable with an initial and maximum value,

Create For Next Loops

suchas x = 1 To 5. The the body of the loop consists
of a series of statements that perform until the counter
exceeds the maximum value of the loop. Finally, you
mark the end of the loop with the Next statement.

When the For wNext loop starts, it checks to make sure
the value of the counter variable does not exceed the
maximum value. If the variable is less than or equal to
the maximum, the loop executes. The counter variable is
a numeric value that increments by default by one each
time the loop executes. The loop continues to execute as
long as the initial value is less than or equal to the
maximum value specified for the counter variable. If the
initial value starts out greater than the maximum value,
the body of the loop never executes.

@ Name your procedure.
@ Declare your variable.
® Assign a value to your variable.

In this example, the variable Count is a counter.

Q Add your For statement.
® (Counter variable.
® |nitial value.
Maximum value.
@ Type the statement you want to execute.

This example places the text Region 1 through Region 4
in four consecutive cells.

@

 Microsoft Visual Baskc - ChapD Macros, xism - [ForNextExample (Code)]
M Bl G e Pt Fgwat Deboy Ben Josh gt fjedes pes

= =] [rem—
Sub FillRange() 4—0

e Dim Count As inlegar<—9

Py

ount =1
For Count=1To 4
ActiveCell.Offset(Count - 1, 0) = "Region " & Count

Next Count

End Sub

 Microsoft Visual Baskc - ChapDé Macros. xbsm - [ForNextExample (Code)]
M Ele G e punt fgmat Qebeg B Josh pStm jedee e

e Bl

Sub FillRange()

2:::::f:‘ ‘f 14

For Count=1To 4
e P ActiveCell.Offset(Count - 1, 0) = "Region " & Count
Next Count

End Sub

O Add Next.

VBA returns to the For statements and if the
counter exceeds the maximum value, VBA
moves to the first line of code after the Next
statement; otherwise, it executes the
statements inside the loop.

0 Press Alt+F11 to switch from the VBE to Excel,
and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

The procedure places the text Region 1 through
Region 4 in a column in four consecutive cells.

4 Microsoflt Visual Basic - ChapDé Macros, xism - [ForNex{Example (Code)]

M Ele Gt pes et Fymat Debey Ben Jooh St jedoe e

— = o

Sub FillRange()

Dim Count As Integer
Count =1

ForCount=1To 4

P Next Count

ActiveCell.Offset(Count - 1, 0) = "Region " & Count

End Sub
i T I | 3]
-"_.‘:j - . - x
~c ey Imet Page loyest Pareain Dats - - =
— D i b = -
g B i it e 53 B =
e -
e
]
=
: [Reglon 1
« Region 2
Region 3
« Region 4
'
"
-.
"
b et b o st B9 Thom it L

Example:

For J = 2 To 20 Step 2
Totalval = Totalval + J

Next

You can use any value to increment your counter variable. By default, the counter variable for a For Next
loop increments by one each time the loop executes. If you want to increment or decrement the counter
variable by a different value, you can use the Step statement to specify the increment value. If you specify a
positive value, the counter variable increments by that value each time the loop cycles. If you specify a
negative value, the counter variable decrements by that value each time the loop cycles. In the following
example, the For loop starts with an initial counter variable of 2 and a maximum value of 20. Each time the
loop cycles, the counter variable increments by two. The TotalVal variable increments by the value of the
loop. The loop executes ten times. When the initial and maximum values of the counter are equal, the loop
executes a final time before it passes control to the next statement after the loop.

9 191dey)

.
.

Q
o
=
o=
-
=
=7
=]
(V)]
o)
-
R
]
o)
=
e
o
]
s

Execute For

Each In Loops

ou can use a For Each In loop to execute a

series of statements for each element in an array

or each object in a collection. When you use a
For Each In loop, the statements you place between the
For and Next statements execute for each element in the
array or collection. After the statements execute for the
last element, control moves to the next statement outside
the loop. The following is the syntax for a For Each In
loop:

For Each element In group
[Statements]

Next [element]

Execute For Each In Loops

A For Each In loop consists of three parts. The For
Each element In group Statement initiates the loop.
An element is a variable used to hold an array or
collection element as you cycle through the For Each
Next loop. Group is the name of the array or collection
you want to cycle through. The body of the loop contains
a series of statements to perform for each element.
Finally, the Next statement marks the end of the loop.

If you are looping through an array, the variable you use
as the element in the For Each element In group
statement must be defined as a variant data type. If you
are working with a collection, you can define the variable
as a variant, generic object, or specific object.

o Name your procedure.
@ Declare your array.
Note: See Chapter 5 to learn more about arrays.

@ Declare your variables.

@ Assign values to your array.

In this example, the value in the active cell and three
subsequent cells in the same column are assigned to
the array.

a Microsoft Visual Basic - ChapDé Macros. xism - [ForEachNextExample (Code)]
M Ele G pes ot Fgwat Debuy Ben Jooh gt fjedes b

s = e :
Sub SumArray() 4—0 |
Dim NewArray(1 To 4) As Integer<—9

S ;

s Microsoft Visual Basic - ChapDé Macros. xism - [ForEachNextExample (Code)]
M fe gt gwe put fgmat Qebug Ben Josh podm jpedes pee
e s

Sub SumArray() B
Dim NewArray(1 To 4) As Integer
Dim N As Integer

Dim Total As Double

Dim CellValue As Variant

6 Add your For Each In Statements.
® \Variable that holds each element.
® Array or collection name.
Statements to execute.
@O Add the Next statement.
This example totals the elements in the array.

0 Type any statements you want to execute after the
For Each In loop executes.

@ Press Alt+F11 to switch from the VBE to Excel, and
then run the macro.

Note: See Chapter 1 to learn how to run a macro.

In this example, VBA totals the elements in the array
and places the total in the cell that follows the array.

4 Microsoft Visual Basic - ChapDé Macros, xism - [ForEachNextExample (Code)]

M Bl G e pon fgma Debsg Ben Jeth g jfjedos Les

— —

Dim NewArray(1 To 4) As Integer
Dim N As Integer

Dim Total As Double

Dim CellValue As Variant

ForN=1Toc 4
NewArray(N) = ActiveCell.Offset(N - 1, 0)
Next

For Each CellValue In Nowﬁmy‘—e

Total = Total + CellValue <«——
Next CellValue

ActiveCell.Offset(N - 1, 0) = Total 4—0

End Sub

=5

gy R Chap6 Macros slsim - Microsoft Excel
e e M RS

[T Ty o Fhwese 5
— 3
g B Pt Sty & b e Vo e £]
Vs dimizn ne D Yot
e 8

B Moo ety

e Comtt

-t

-mx

Sub BuildArray ()
Dim NewArray(l To 3, 1 To 3) As Integer
Dim K As Integer
Dim L As Integer
X =1
For K = 1 To 3
For L = 1 To 3
NewArray (K, L) = X
X=X+1
Next L
Next K
End Sub

You can nest loops to populate a multidimensional array. When you nest loops, you place one loop inside
another loop. To work with a multidimensional array, you create a separate loop for each dimension of the
array. The following code uses two nested For Next loops to access elements of the array. Notice that the
inside loop, with the L counter variable, completely cycles each time the loop with K runs once. Each Next
statement has a variable following it. You must exit the inside loop before you can exit outside loops.

TYPE THIS:

RESULT:

The code creates a two-dimensional
array with the values shown in the
following table:

®- 2 3
5 6
8 9

9 191dey)

.
.

Q
o
=
o=
-
=
=7
=]
(V)]
o)
-
)
s
Q
=
e
o
]
s

Create If Then Else

Statements

ou can conditionally execute a group of
statements by using an If Then Else Statement.
For example, you can calculate a bonus of five
percent of sales if an employee’s sales are greater than
$50,000, or enter the text “No Bonus” if an employee’s
sales are less than or equal to $50,000. The following is
the syntax for an If Then Else statement:
IF condition Then
[statements]

Else
[statements]
End If

An If Then Else statement evaluates a condition. A
condition is any expression that evaluates to either True
or False. For example: the expression 1f sales >

Create If Then Else Statements

50000 Then evaluates the variable Sales. If the variable
Sales is greater than 50,000, the expression returns
True; otherwise, it returns False. If the condition is true,
the statements that follow the Then statement execute. If
the condition is false, the statements that follow the E1se
statement execute. A null condition evaluates to false. An
End If statement marks the end of an If Then Else
statement.

If you have multiple conditions that you want to
evaluate, you can use ElseIf. For example, you can use
ElseIf when you want to calculate tax at a rate of 5
percent if the state is Texas, 8 percent if the state is
Florida, and no tax for all other states. When using
ElseIf, a single 1f Then statement is followed by
several ElseIf statements and a final E1se statement.

IF THEN ELSE
0 Add your If Then statement.
® Condition.
® Statement to execute.
@ Add your E1se statement.
Statement to execute.
©® TypeEnd If.
(4]

Press Alt+F11 to switch from the VBE to Excel, and then
run the macro.

Note: See Chapter 1 to learn how to run a macro.

In this example, if the Sales column is over 50,000, VBA
calculates a bonus of 4 percent of sales; otherwise, it
prints the words “No Bonus.”

 Microsoft Visual Baskc - ChapDé Macros,xism - [ElwExample (Code)]

M Ele G e et Fgwat Debey Ben Jooh gt fjedes L
el =] [poruen

Sub Bonus() =
Dim J As Integer
J=2

Do Until isEm%tCollle, 1))
Than<—o

If

.—> Cells(J, 3).Value = Cells(J, 2).Value * 0.05
Else
—>» Cells(J, 3).Value = "No Bonus"

End If
J=J+1
Loop
End Sub e
5 < o
on) [Chap06 Macros xlsm - Microsoft Excel -
o a1 s 7o aatin w -
— T B by % # F bopetm B 1
,—l B L 5 i‘— S Vo Gt —{I 7] . PO [
o tmt D et
= A path el R e
Comt e
5 & Salesperson &
[v r— 3 i 3) i im
lESnfesEemon I Sales Bonus Csumesons | I
= |Adams, Mike 93,224 4661.20 |
3 Childress, Mike B85 488 4274.40
« Cook, Allen 68 469 342345
Ford, Jacob 8,048 No Bonus
« | Franklin, Fred BB,648 4432 40
1 Hobbs, Linda B4.714 4235.70

17,993 No Bonus
37,788 No Bonus
56,635

&« Johnsen, Henry
» Smith, Jenny

= Thompson, Bill 2831.75

St gl o et st | B Thmn B Gate W

JIETE T E——

ELSEIF | nah .nn..l- (Cade)] o g
= =] [t =
@ Add your 1£ Then statement. Dim R As Integer 7 | B
R=2 =t
Condition. Do While Ni (IsEmpty(Cells(R, 2))) @
(o)}
® Statement to execute. If T"°“<—0 **
Cells(R, 3) = Cells(R, 1) * 1.05 <«—@& (@)
—3 Elself Cells(R, 2) = "FL" Then (@)
@ Add your E1se1f Statements. Colls(R, 3) = Colls(R, 1) * 1.08 <«——® =
3 Elself Cells(R, 2) = "CA" Then -
® Statement to execute. Cells(R, 3) = Cells(R, 1) * 1.1 <«——® =}
=3 Else =5
9 Add your El1se statement. Cells(R, 3) = Cells(R, 1) * 1 <€«—— Cl%
> End If
Statement to execute. R=R+1 = g
-
)
L -
@ Type End If. i Loop o | KE
@ Press Alt+F11 to switch from the VBE to Excel, and e == §
then run the macro. e e —
@ g ST D3)
Note: See Chapter 1 to learn how to run a macro. s v e e o
it Al . & TotalSale é s
In this example, the procedure calculates the sales o Tota)seh] state Tmiw.-.hsm e s i
q : 5, ™ 25 |
price plus tax, based on the state tax amount. ; 500 CA 550
5.00 FL 5.40
5.00 uT 5.00
. 10.00 T% 10.50
r 10.00 TX 10.50
' 10.00 CA 11.00
¥ 20.00 FL 21.60
20.00 TX 21.00
" 20.00 CA 22.00
q 20.00 uT 20.00
440 0 ot o ot e darple b et et B Then | ke B Gate . o
e | E] v 4

Although VBA does not require you to indent your code, you can use indentation to improve readability.
Indenting enables you to analyze the structure of the code without reading each line. When working with
conditional statements, such as If Then statements and looping statements, most programmers indent the
statements that execute. The following example shows how you can indent the code for a For Next loop so
you can easily locate the loop’s beginning and end. The example also indents an If Then statement.

Example:
For T =1 To 5
If J < 10 Then
J=J +1
End If
Next

If you have an If Then statement that consists of only one statement, you can combine the If statement
with the Then statement and eliminate the End If statement.

Example:
If Sum < 10 Then Sum = Sum + 1
'This is equivalent to typing the following:
If Sum < 10 Then
Sum = Sum + 1
End If

Construct Select

Case Statements

value by using a select case statement. Using

a select Case statement is similar to using
ElseIf. You can use select Case when you have
different statements to execute and the statements that
execute depend upon the value of a cell, variable,
number, or string. For example, you can base the
calculation of sales tax on the state. You can calculate a
tax rate of 5 percent if the state is Texas, 8 percent if the
state is Florida, and no tax for all other states. The
following is the syntax for select case statements.

Select Case testexpression

[Case expressionlist -n
[statements-n]]

[Case Else
[elsestatements]]

End Select

Construct Select Case Statements

You can execute a specific block of code based on a

The select case statement identifies the expression
against which you want to test each case statement.
Each case statement contains a value to test and the
statements to execute if the case statement is true, for
example:

Select Case UserVal
Case 4
Statements

End Select

The example determines whether Userval = 4 is True.
Under each case statement are statements that execute if
the expression evaluates to true. The End Select
statement marks the end of the select case statement.

You can also add a case Else statement that supplies
the statement to run if none of the case statements
evaluate to true.

@ Name your procedure.
@ Declare your variable.
@ Initialize your variable.

@ Create apo while Loop.

Note: See the section, “Employ Do While Loops,” in this
chapter to learn how to create a o while Loop.

@ Type your select case statement.
® FEach Case statement value is compared to this value.
O Type your case statements.

® |[f the value in the select case statement is equal to
the value in the case statement, the statements that
follow the case statement execute.

@

 Microsoft Visual Baskc - ChapD8 Macros, xism - [CaseExample (Code)]

M Ele G e et Fgmat Debwy Ben Jooh gt fjedes b
=0 <] [comion

i

Sub CaseTax() 4—08

Dim R As Integer
R=2

4 Microsoft Visual Baskc - ChapD8 Macros, xism - [CaseExample (Code)]
Bl G pes et Fgwat Debuy Ben Jooh gt fjedes L

Crarar b =] [Cmata

™ B3

Do While Not (IsEmpty(Cells(R, 21}]4—0
6 > Select Case Cells(R, 2) <«——=@
Case "TX"

Cells(R, 3) = CollsIR, 1) * 1.05
Case "FL"
Cells(R, 3) = col(aIR, 1) * 1.08
P Case "CA"

Cells(R, 3) = Cells(R, 1) * 1.1
Case Else
Celis(R, 3) = Cells(R, 1) * 1
End Select

R=R+1
Luop‘—o

End Sub
W

o)
Y

0 Add your case Else statement.

The statements after the case Else statement
execute if none of the other Case statements match
the select case value.

@ Addan Ena select statement.

Q Press Alt+F11 to switch from the VBE to Excel, and
then run the macro.

Note: See Chapter 1 to learn how to run a macro.

In this example, the procedure calculates the sales
price plus tax, based on the state tax amount.

4 Microsolt Visual Basic - Chap0é Macros, xism - [CaseExample (Code)]

(M Els gt yws poet Fgmat Detog B [osh Aotim fjedss s = s atin 1 fet__ (SIS
= =] [cmatm

Do While Not (IsEmpty(Cells(R, 2)))
Select Case Cells(R, 2)
Case "TX"
Celis(R, 3) = Cells(R, 1) * 1.05
Case "FL"
Cells(R, 3) = Cells(R, 1) * 1.08
Case "CA"
Celis(R, 3) = Cells(R, 1) * 1.1
—3-Case Else
Celis(R, 3) = Cells(R, 1) * 1
=3 End Select

R=R+1
Loop
End Sub p
=m0 e
,;'3‘3 s Tl L Chap0f Macros dlsm - Microsoft Excel -
Feve et Paglaed Ferede Dotz e Vam | Owewmpn Aarim ® -"x
- P—
o M e Yoy "?‘Ein-a-m o R e
Cmin Comtruty wa
Al - g &, Total Sale =
& T Em— L] £ [} 1 P]
([rotaisue] _state Total with Tax_ cees st |
: 500 TX 525
1 5.00 CA 550
' 5.00 FL 540
[5.00 uT 5.00
0 10.00 TX 10.50
Li 10.00 T 10.50 1
' 10.00 CA 11.00
’ 20.00 FL 2160
C] 20.00 TX 21.00
20.00 CA 22.00
20.00 uT 20.00

multiple values.

R

Select Case NumSales
Case 1 To 5
Commission = Total * .05
Case 6 To 15
Commission = Total * .1
End Select

TYPE THIS:

With the Select Case statement, you can use comparison statements to compare a range of values, or

RESULT:

The Select Case statement checks the
‘ value of NumSales to see whether it
falls into one of the two specified
ranges.

Select Case NumStudents
Case Is < 10

End Select

TYPE THIS:

MsgBox ("Not enough students enrolled")

RESULT:

' The Select Case statement displays the
message box if the value of
NumStudents is less than 10.

Select Case State
Case "TX", "CA"
Total = Total * 1.085
End Select

‘ If the value of State equals TX or CA,
the total is calculated using 8.5
percent for the sales tax.

9 191dey)

.
.

o
S
=
(=
-
S,
:
=

o
o)
-
S

QR
-
o)
=
!
—
S
=

Golo a

Named Location

ou can jump to a named location within your

macro by using a goTo statement. However,

before you can use a GoTo statement, you must
label the line in your procedure to which you want to
move. A label is a text string followed by a colon. The

GoTo command moves to the label, thereby passing
control from the current location in the procedure to the

label. The following is the syntax for the coTo command:

Goto label

As you can see, there are two parts to a GoTo command:
the coTo statement and the label. You can place a label
anywhere in your procedure. The GoTo command can
only jump to labels within the same procedure. They

GoTo a Named Location

cannot jump to a label in another procedure, even if both
procedures are in the same module. You can add multiple
GoTo commands to the same procedure, and each cGoTo
command can jump to the same or different labels.

You should only use GoTo commands in situations where
you cannot obtain the desired results using conditional
statements or looping structures. GoTo commands date
back to when each line of code had a specific line number
and coTo commands jumped to the specified line of code.
While coTo commands are often used for trapping errors
in VBA, many programmers consider it bad programming
to use GoTo commands too frequently. See Chapter 8 for
more information on using a GoTo statement when
debugging your code.

@ Create a new procedure.

@ Add your code.

Q Add your GoTo statements.

4 Microsoft Visual Baskc - ChapD8 Macros, xism - [GaToExample (Code)]
M e G ywe st fgvat Debeg Bem Josh Adtim fjedes Heg WHAT 15 NEW

= =] g -
Sub c-l:naatosmpping()J B

Select Case Cells(2, 2)
Case "TX"
Cells(2, 3) = Cells(2, 1) * 1.075
If Cells(2, 1) > 50 Then GoTo NoShipping
GoTo Shipping
Case "FL"
g Cells(2, 3) = Cells(2, 1) * 1.085
If Cells(2, 1) > 50 Then GoTo NoShipping
GoTo Shipping
Case Else
Cells(2, 3) = Cells(2, 1) * 1.09
If Cells(2, 1) > 50 Then GoTo NoShipping
GoTo Shipping
End Select

mfEa o

 Microsoft Visual Baskc - ChapD Macros,xism - [GaToExample (Code)]
M e Gt ywe et fgrmat Debeg Bem Josh Adtim jedes Hee WHAT 15 NEW
o =] [Cunasasing

Sub CalculateShipping() |

Select Case Cells(2, 2)
Case "TX"
Cells(2, 3) = Cells(2, 1) ¥ 1.075

If Cells(2, 1) > 50 NoShipping
e P GoTo Shi
Case "FL"
Cells(2, 3) = Cells(2, 1)} 1.085
e If Cells(2, 1) > 50 NoShipping
» GoTo Shippi
Case Else
Celis(2, 3) = Cells(2, 1) Y 1.09

PPing

If Cells(2, 1) > 50 NoShipping
3 WAy b
End Select
5 < o

e Add yOUI’ GoTo |abe| & Microsoft Visual Basic - Chap0é Macros xism -

M Bl G pes ot Fawat Debey Ben Josh gt fjedes pes

[GaTaExample (Code)]

=y =] [Cortas g
® | abel names are followed by a colon. e B e
Aol call.st.z, ;} :cellstz, 3)
@ Add any additional code. Calleid, Me N S chae—0)
q Exit Sub
@ Press Alt+F11 to switch from the VBE to Excel, @ shipping:<—@)
and then run the macro. Cells(2, 4) = Cells(2, 3) + 104—6
End Sub
Note: See Chapter 1 to learn how to run a macro.
el o
In this example, the procedure calculates a o) e P06 Matioa s - Mictosoft Exce et
shipping charge if the cost with tax is less than Tt e
$50.00. e e
i Al = é
1 [Cost State 5 Cost ;vith Tax Sth I .
£5.00 T 8525 51538

0

-s I
% 4 8 8 Fomt o bk et dopie | for kst Than e B | Guln 8

tosty] 2 i . %

You place labels in a procedure to mark the location of code. Labeling code does not change how it executes.
Code within a loop or conditional statement executes only when the condition is met. Labeled code executes
when a GoTo statement jumps to it, or when the program reaches that line of code.

If you have multiple areas of labeled code, you may not want it all to execute. To avoid execution of code that
follows a labeled section, you can use another GoTo statement or an Exit Sub statement to terminate the
current procedure.

The following example uses the Exit Sub command before the label procedure to avoid execution of the T
=50 statement. The GoTo command jumps to the IncreaseValue label, and the T = T * 5 statement does
not execute.

Example:

Sub TestGoTo ()

Dim T As Integer

T = Cells(1l,1)

If T < 5 Then GoTo IncreaseValue
T =T * 5

Exit Sub

IncreaseValue:
T = 50

End Sub

9 191dey)

.
.

Q
o
=
o=
-
=
=7
=]
(V)]
o)
-
R
]
o)
=
e
o
]
s

Call a

Procedure

another procedure, you can use a call statement.

You simply type the word ca11 followed by the name
of the procedure you want to call, as well as any
arguments the procedure requires, in parentheses and
separated by commas. When you call a procedure, VBA
moves to the first line of code in the called procedure and
begins processing. After the called procedure completes
processing, VBA returns to the next line of code after the
call and continues processing the original procedure.

You can conditionally call a procedure by using a
conditional VBA statement, such as an If Then
statement with a call statement. When you combine the
call statement with a conditional statement, VBA
executes the called procedure only if the specified

Call a Procedure

I f you are in one procedure and you want to execute

condition is met. The Tf Then statement checks the
specified condition. If the value of the condition is true,
the control passes to the called procedure or function and
then, upon the called procedure’s completion, returns to
the original procedure. If you do not want to continue
processing the first procedure after calling the second,
you can use an Exit Sub Statement to exit the
procedure.

The keyword cal1 is optional when executing a call
statement. You can call a procedure simply by typing the
procedure name. If you omit the ca11 keyword, do not
place your arguments in parentheses. Simply type the
procedure name followed by its arguments, separated by
commas. You can call Sub procedures, Function
procedures, or Dynamic-Link Library (DLL) procedures.

o Name your procedure.
@ Declare and initialize any variables.
You may need to make your variable public.

Note: See Chapter 3 to learn more about public variables.

@ Createan 1£ Then condition.

9 Call another procedure.

 Microsoft Visual Baskc - ChapD8 Macros. xism - [CallExample (Code)]

M fe gt gwe Pt fgmat Debug Ben losh jSdm jpedes e

= ! [B
Public R As Double 4—9 3

Sub CallTax() 4—0
R=2
s o

« Microsoft Visual Basic - ChapDé Macros. xism - [CallExample (Code)]
M fe ot e put fgmat Qetwg Ben Josn jddm jpedes e
= <] [camen

Public R As Double =
Sub CallTax()
R=2

|
Do While Not (IsEmpty(Celis(R, 2)))
If Cells(R, 2) = "TX" Theu<—e
Call FivePercent
Elself Cells(R, 2) = "FL" Then
Call TenPercent
Elself Cells(R, 2) = "CA" Then
Call FivePercent =
Else

Cells(R, 3) = Cells(R, 1) * 1
End If
R=R+1

Loop
W4

@ Create called procedures. A T TR A L T -
=y =] (Ve .j
Type code to run when the procedure is called. i
e yp p Sub Fiv-P-u-n!{}‘—e
@ Press Alt+F11 to switch from the VBE to Excel, and <o e i G
then run the macro.
bub TanP-mont{]<—6
Note: See Chapter 1 to learn how to run a macro. Cells(R, 3) = Cells(R, 1) * 1.14—@
End Sub
=g o
When the condition is met, the If Then statement o Wmn ¥ Chap6 Macios s - Microson Excel @
calls the procedure. T Y V2 farll T
T M M ety s 1 i g [9 it ity
i Al ~ Gy Total Sale]
L -—m Tﬂt';!!'ﬂ'l Tax ’-u:-l-- g x
2 500 T 525
1 5.00 CA 525
' 5.00 FL 5.50
5 5.00 uT 5.00
. 10.00 TX 10.50
r 10.00 TX 10.50
' 10.00 CA 10.50
’ 20.00 FL 22.00
L] 20.00 TX 21.00
" 20.00 CA 21.00
L] 20.00 uT 20.00
B, e S
Penty)

You do not need to use the Call keyword when you call another procedure or function. However, using the
Call keyword eliminates confusion by clearly indicating that you are calling a function or Sub procedure.
When you use the Call keyword, you must enclose any arguments passed in parentheses. If you call a
procedure without the Call keyword, you must omit the parentheses around the argument list, as follows:

R

IS EQUIVALENT TO:

Call NewProc(Varl, Var2). NewProc Varl, Var2.

9 191dey)

.
.

(@
o
=
o=
-
=
=7
=]
(V)]
o)
-
)
0’9‘
Q
=
e
o
]
s

Work with Excel

Worksheet Functions

_function is a block of code that performs a task
and returns a single value. There are three types
of functions: VBA functions, Excel worksheet

functions, and custom functions. A VBA function is a
function supplied by VBA. An Excel worksheet function
is a formula that Excel has predefined. You can use them
to do things such as add numbers, find an average, or
find the highest number in a list. Excel provides you with
more than 300 worksheet functions. Custom functions
work like worksheet function; however, you define the
formula the function uses.

Use the worksheetFunction property to place

an Excel worksheet function in your VBA procedure.
The worksheetFunction property is available
through the application object. To access a
function in the worksheetFunction object, you type
Application.WorksheetFunction.fbnowedbythe

Work with Excel Worksheet Functions

function you want to use and the function arguments
enclosed in parentheses. If you want, you can omit
Application. from the expression. For example, if you
want to sum a range of cells and store the result to a
variable, both of these expressions are valid:

SumVal = Application.WorksheetFunction_
.Sum (Range ("Al:A4"))

SumVal = WorksheetFunction.Sum_
(Range ("Al:24"))

Generally, you cannot use an Excel worksheet function
that has an equivalent VBA function. For example, both
VBA and Excel have a cos function that returns a
numeric value that represents the cosine of an angle. If
you try to use the Excel worksheet function cos in your
VBA procedure, you receive an error message.

@ Name your procedure.

Declare the variables you want to use to store the results
of your worksheet functions.

9 Declare any other variables you will use.

Activate the worksheet that uses this procedure by typing
.Activate after the worksheet reference.

Create your worksheet functions.

e« ®

The underscore indicates that the statement is continued
on the next line.

® The name of the function.
Arguments.
A VBA function.
@ Store the result to a variable.

@

 Microsoft Visual Baskc - Ch 07 macros, xism - [WorkshestFunctionExample (Code)]
M fe gt e put fgmet Qetug B losn pSdm jgede e

] =] [e
Sub UseWorksheetFunction() <& 0

Dim MaxVal As Double

Dim MinVal As Double 4_9

Dim AvgVal As Double

Dim Msg As String 4—9

Worksheets("Worksheet F ti

il

—

WorksheetFunction.Max(Range("B2:B13"))
MinVal =

el $E 4

AvgVal =
Round(Application.WorksheetFunction. _

Average(Range("B2:B13")), 0) ~
0 P

Min(Range("B2:B13"))

@ Microsoft Visual Baskc - Ch 07 macros, xism - [WorksheetFunctionExample (Code)]
M pe g8 e Pt fyme Debwg B Josh pSeim jpedes bee
e e -

3

Sub UseWorksheetFunction()
Dim MaxVal As Double
Dim MinVal As Double
Dim AvgVal As Double

Dim Msg As String

Worksheets("Worksheet Function”).Activate -

> MaxVal = _4—.
P> WorksheetFunction.Max(Range("B2:B13"))
3 MinVal =

> WorksheetFunction.Min(Range("B2:B13"))

> AvgVal =
Round(Application.WorksheetFunction. 4—6

~ Average(Range("B2:B13")), 0) .
i T I | &

0 Use a message box to display the result.

Note: See the section, “Work with the MsgBox Function,”
to learn more about message boxes.

® The variable.
® This codes creates a blank line.

@ Press Alt+F11 to switch from the VBE to Excel, and
then run the macro.

Note: See Chapter 1 to learn how to run a macro.

The results of the worksheet functions appear in the
message box.

4 Microsoft Visual Baskc - Ch 07 macros, xism - [WorksheetFunctionExample (Code)]

g g ot fFgmat Oetog Ben Iosh pSim lfgedss s] L
Crarar b =] [t bt s =l
ol
=
Msg I;Iighnsl Sales: " & MaxVal
Msg = Msg & vbNewLine & vbNewlLine <—.
Msg = Msg & "Lowest Sales: " & MinVal
Msg = Msg & vbNewLine & vbNewLine
Msg = Msg & "Average Sales: " & AvgVal
MsgBox (Msg)
End Sub
_ =
it T 3|
-l_.‘:j v * -
oy met P Laywat Farrmeien Dets. e R - "
— D i b 2 $ T hopesn |
g B ra Paiets St 39 B o Vom Cue g a
e Tty il o RPN
. St s
Al =g & Month "]
Tl P & : [i “m
1 !Montll Sales ey Eormary |
+ | January $ 45,630
1 February 98,200
+ March 69,116
April 53,277
« May 23,793
1 June 45857
o July 72,285
+ August 66,659
= September 61,896
. October 21,462
= November 51,182
u December 44,351
u Total 5 653.708
"
e Pp— Dl b Vo VS Bt~ e S T
tety (=i " 4

The Object Browser lists the functions that are part
of the WorksheetFunction object. You can view
this list using WorksheetFunction as the search
criterion in the Object Browser. Press F2 to open
the Object Browser. See Chapter 4 for more
information on the Object Browser.

If a VBA statement does not fit on a single line, you
can use the underscore (_) character to tell Excel

The example in this section uses the underscore
character as a continue statement indicator.

you want to continue the statement on another line.

The remainder of this chapter discusses and
illustrates VBA functions. The Round function used
in the following example is a VBA function. The
Round function takes two arguments: an expression
and the number of decimal places to which you
want to round the number. If you do not specify the
number of decimal places, the Round function
rounds to an integer.

Example:

Result = Round(124.4589, 2) returns 124.46

You can also use the Excel worksheet function
ROUND when writing a VBA procedure.

1, 191dey)

.
.

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Work with a

MsgBox Function

he MsgBox function is a VBA function that makes

writing code easier. See Chapter 3 to learn more

about functions. You can use the MsgBox function
to display a dialog box that provides information to the
user and, if you want, returns a value to VBA that
represents the user’s response. The MsgBox function has
a preset list of values it can return. For example, you can
use the MsgBox function to prompt the user for a Yes or
No response; VBA returns 6 if the user clicks Yes and 7 if
the user clicks No.

When using the MsgBox function, you use arguments to
designate the prompts, buttons, and title that appear in
your message box. The Button and Title arguments
are optional. Use the prompt argument to specify the text

Work with a MsgBox Function

that displays in the message box. You can use a text
string enclosed in quotes or you can use a variable. You
can combine strings and variables by using the
concatenation operator (&), as in this example:
MsgBox ("Total Sum: " & TotalSum).

Use the Buttons argument to specify a constant that
indicates the buttons and icons that display in the
message box. If you do not specify a button constant, the
MsgBox function uses the default vbokonly and only
displays the OK button. Use the Title argument to
display the title that appears on the title bar of the
message box. If you omit this argument, Excel displays
the default title, Microsoft Excel.

@ Name your procedure.

@ Declare the variables you want to use as arguments in the
MsgBox function.

Alternatively, you can type the arguments directly into the
MsgBox function.

9 Declare the variable you want to use to store the value
returned by the MsgBox function.

9 Activate the worksheet that uses this procedure by typing
.Activate after the worksheet reference.

6 Store your message to a variable.

® This line of code concatenates the text stored in the
mbPrompt variable with additional text.

@ Store the values that represent the buttons you want to use
to a variable.

Place a plus sign between each button you want
represented.

0 Store the title you want your message box to have to a
variable.

@

4 Microsoft Visual Baskc - Ch 07 macros, xism - [MsgBoxExample (Code)]

M pie gt e purt fgmat Detug S losh psdm jpede e

Sub nisplayMsgauqu—* E

s integer <—O)
Worksheets("Display MsgBox™").Activate 4—6

mbPrompt = "Do you want to calculate™ ||
mbPrompt = mbPrompt & " the total? ™

Dim A

mbButton = vbYesNo + vbQuestion

mbTitle = "Calculate Region Totals"

5y o

a Microsoft Visual Basic - Ch 07 macros, xism - [MsgBoxExample (Code)]
M pie gt e poert fgmat etug B losh pSdm jgedes e
= s

Faman e

Sub DisplayMsgBox() =
Dim mbPrompt As String
Dim mbTitle As String

Dim mbButton As Integer
Dim Answer As Integer

Worksheets("Display MsgBox").Activate

mbPrompt = "Do you want to :alculuto"<—6 |

mbPrompt = mbPrompt & ™ the total? ™

mbButton = vbYesNo + vbﬂuaslion<—°
Totals" <& o

T of

mbTitle = "Calculate Regi

@ Create the MsgBox function. e e o
T =T
® Your message. 0 Y Y Y é
A = MsgBox(mbPrompt, mbButton, mbTitle)
The buttons you want to display.
The title.
© Assign the value returned by the message
box to a variable.
End Sub
(Write code to execute an action based on
the value returned by the message box.
@ Press Alt+F11 to switch from the VBE to
Excel, and then run the macro. .
Note: See Chapter 1 to learn how to run a macro. T
= P et Paplomd fuedn Des Amws Vem | Drespn | Assin o -mx
The message box displays when you run the e e ol St 1 miareties
macro. S etk i
B - £]
® The title. \ Distric g Regionl _ Region2 : “Region3 N |
= | District 1 3425 9,163 9813
1 District 2 8379 3,488 9,281
® The prompt. ¢ Oistrct 3 3,501 7.830 9,647
District 4 3,749 2,002 1,502
The vbYesNo buttons. e e Sar? -
& |Total 31,866 29,689 | |
;_j e 1 -
» —_—
_:;;"‘: - Dutpiay rgutBen _ Owin & Vv l-.m—;;nl;-d >—-—-.‘.wr|r-|r.--n .

You can use 20 different constant values as the Buttons value for the MsgBox function. You can use these
values separately, or combine them by placing a plus (+) sign between each constant value. The following
code creates a message box containing Yes, No, and Cancel buttons, as well as the Question icon.

Example:

Response = MsgBox("Select button.", vbYesNoCancel + vbQuestion)

The MsgBox function returns an integer value between 1 and 7, which represents the button the user clicked.
You can interpret the value the MsgBox function returns by looking at the integer value. The following table
shows the integer values returned by the MsgBox function and their associated constant values.

MSGBOX RETURN VALUE CONSTANT DESCRIPTION
1 vbOK OK button clicked

2 vbCancel Cancel button clicked

3 vbAbort Abort button clicked

4 vbRetry Retry button clicked

5 vbIgnore Ignore button clicked

6 vbYes Yes button clicked

7 vbNo No button clicked

1, 191dey)

.
.

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Using the

InputBox Function

function. You can use the InputBox function to

prompt the user for information during the
execution of a procedure. The InputBox function
displays a dialog box that requests information from the
user and returns the user response to your procedure.
You capture the user response by assigning the results of
the InputBox function to a variable. The following is the
syntax for the ITnputBox function:

InputBox (Prompt [, Title] [,Default]
[,yPos])

I ike MsgBox, the InputBox function is a VBA

[, xPos]

Use the prompt argument to specify the text that displays
in the input box. You can combine strings and variables
by using the concatenation operator (&). The Title
argument is optional. You can use it to specify the title of

Using the InputBox Function

your input dialog box. You can use either a text string
enclosed in quotes or a variable. If you omit the Title
argument, Excel displays the default title, Microsoft
Excel.

The Default argument is optional. You can use it to
specify the default value that displays when your text
box appears. You can specify the display position of the
dialog box by using the optional xPos and yPos
arguments. If you omit these arguments, the dialog box
displays in the center of the screen. These arguments use
units of measurement called /wips. One twip equals 1/20
of a point, or 1/1,440 of an inch. The xPos argument
indicates the distance from the left side of the screen to
the left side of the dialog box. The yPos argument
indicates the position from the top of the screen to the
top of the dialog box.

@ Name your procedure.

@ Declare the variables you want to use as arguments in the
InputBox function.

Alternatively, you can type the arguments directly into the
InputBox function.

Declare the variable you want to use to store the value
returned by the InputBox function.

Declare any other variables you will need.

Activate the worksheet that uses this procedure by typing
.Activate after the workbook reference.

Store your prompt to a variable.

Store the title you want your message box to have to a
variable.

Store the default value you want your input box to display to
a variable.

Create your InputBox function.

®@0 © 090 00 ©o

Assign the value returned by the InputBox function to a
variable.

@

a Microsoft Visual Basic - Ch 07 macros, xism - [InputBoxExample (Code)]
M pie ot gwe Pt Gyt Qetwg B losh pddm e twe

re = - =
Sub DisplaylnputBox() <& 5'" =

DimU As String 9

Dim ibPrompt As String

Dim ibTitle As String 4—9

Dim ibDefault As String

Faman e

Dim IBlue As Integer

Dim IGreen As Integer "

Dim IRed As Integer
Dim ISilver As Integer

Worksheets("Display InputBox").Activate 4—6

4 Microsoft Visual Basic - Ch 07 macros, xism - [InputBoxExample (Code)]
M pie gt gwe punt fgmat Qebug B losh podim jgedss e
e S

|

ibPrompt = "What color do you want?" 4—0
ibTitle = "Select a Colnr‘"—e

ibDefault = "Bllu"<—e

Faman e

Lt

Userlnput = InputBox(ibPrompt, ibTitle, ibDefault) 4—0

@ Write code that executes based on the value returned R e et —_— B
by the input box. = R =
Note: See Chapter 6 to learn more about If Then Else
statements.
(Press Alt+F11 to switch from the VBE to Excel, and
then run the macro. m
Note: See Chapter 1 to learn how to run a macro.
End Sub
=[5«
The input box displays when you run the macro. oy e
® The title. et e Sl E A g
B B 1 Mo ol . -,.: 9 b ey - "1 ne .
® The prompt. YT — : , , B
1 [Product Color Available | .
The default value. o OTBes (B 2 ’
« JX-07893 Red 4
o JX-07893 Silver B
e —— sttt s 1

You can use named arguments to simplify your functions. Many VBA functions have optional arguments. For
example, although the InputBox function has several arguments, only the first one is required. If you want
to include additional arguments, you specify the argument values in order, leaving a space between two
commas as a placeholder for any arguments you do not want to use.

Example:
UserInput = InputBox("Type a value:", ,"5")

Instead of specifying a placeholder for each value, you can use named arguments with the VBA functions.
When using a named argument, you specify the name of the argument along with the corresponding value.
You type the name of the argument followed by a colon, an equal sign, and the value of that particular
argument. You can place named arguments in any order, and you do not have to specify a value for every
argument.

Example:
UserInput = InputBox (Prompt:="Type a value:", Default:="5")

1, 191dey)

.
.

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Retrieve the Current

Date and Time

BA includes several date-related, built-in
functions that you can add to the procedures and
functions you create. You can use these functions

to return a system date and/or time, perform date
calculations, set a date, or even time a process.

If you want to display the current date or time, you can
select from three different functions. The pATE VBA
function returns the current system date, the TTME VBA
function returns the current system time, and the now
VBA function returns both the date and time. VBA
formats the date and time information in your system’s
short date format. You can modify the date and time
formats by using the Control Panel.

When working with dates, you can avoid displaying a
date outside of range by remembering the date range that

Retrieve the Current Date and Time

Excel accepts. VBA accommodates a much larger date
range than Excel. It accepts dates between January 1,
0100, and December 31, 9999. Excel accepts dates
between January 1, 1900, and December 31, 9999. If you
use Excel on a Macintosh, the date range is even smaller.
The acceptable date range is January 2, 1904 to
December 31, 9999. If you need to display a date outside
the range, you can do so by placing the date in a string
variable.

You can assign the results of the Date or Time function
to a variable, a worksheet cell, or another function.
The following example stores the Now function to a
message box:

MsgBox ("Current Date and Time: " & Now())

RETRIEVE THE CURRENT DATE
@ Name your procedure.
9 Type the Date function.

In this example, the Date function is part of the prompt
argument for the MsgBox function.

Note: See the section, “Work with a MsgBox Function,” in this
chapter to learn more about the MsgBox function.

9 Press Alt+F11 to switch from the VBE to Excel, and then run
the macro.

Note: See Chapter 1 to learn how to run a macro.

The current system date displays in the message box.

 Microsoft Visual Baskc - Ch 07 macros, xism - [ShowDateExample (Code)]
M pe gt e purt fgmat Qetwg S losh pSdm jpedes e

o=y o] [hnbmn =i
Sub smmnato(}<—0 B

MsgBox ("Current Date: " & Date)

Faman e

End Sub

i T I | o

iy MR v
oy

—" teww buet Puplaws s Dis Rews Vam | Orewen | dasin e -
— D i b 3] # X et 4 . |

ato B metioy [4 i
e ™

.
—miE= |

Microsoft Excel (3%

Clarart Cute- 4145507

RETRIEVE THE CURRENT TIME Ehelt Ve Bk 0 2 it o Bl ot — g
et =] [t =l
@ Name your procedure. Sub ShowTime() <—@) E %
@ Type the Time function. MsgBox ("Current Time: " & Time) 2
In this example, the Time function is part of the End Sub N

prompt argument for the MsgBox function.

Note: See the section, “Work with a MsgBox Function,” in
this chapter to learn more about the MsgBox
function.

9 Press Alt+F11 to switch from the VBE to Excel, and
then run the macro.

Note: See Chapter 1 to learn how to run a macro. =l o

The current system time displays in the message
box.

»
—Mf-

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Microsoft Excel [3

In Excel, you can convert dates and times into a serial value that Excel can add or subtract and then convert
back into a recognizable date or time. Excel calculates a date’s serial value as the number of days after
January 1, 1900, and represents each date with a whole number. Excel calculates a time’s serial value in units
of 1/60 of a second. Each time can be represented as a serial value between 0 and 1. A date and time, such
as January 1, 2000, at noon, consists of the date to the left of the decimal and a time to the right. In the
example August 25, 2005, 5:46 p.m., the date and time serial value is 38589.74028.

VBA uses the same serial number system for dates and times as Excel. Each date and time is stored as a
numeric value. Because VBA stores dates and times as numeric values, you can add and substract to perform
date calculations.

Perform Date and

Time Calculations

dates by using the patepiff VBA function. With

this function, you can obtain time intervals
between two date values, such as the number of months,
days, hours, minutes, or seconds.

The patepiff function takes five arguments: Interval,
Datel, Date2, Firstdayofweek, and
Firstweekofyear. The first three arguments are
required. Use the Interval argument to specify the unit
of time to use when returning the difference between the
two dates. Use a constant value to specify the interval.

Use the Datel and Date2 arguments to specify the dates
you want to compare. You can use a date string, a value
returned by a function, or the contents of a cell, as long
as you use a valid date. To ensure the date is valid, you

Perform Date and Time Calculations

You can determine the amount of time between two

can use the IsDate VBA function, which returns the
value True if an expression is a date.

You can use the optional Firstdayofweek argument if
you want to use a day other than Sunday as the first day
of the week. To create the constant value you use as this
argument, type vb before the appropriate day of the
week. For example, to use Monday as the first day of the
week, type vbMonday as the argument value.

You can use the optional Firstweekofyear argument to
indicate what you want to treat as the first week of the
year. If you omit this argument, VBA considers the week
that contains the date January 1 as the first week of the
year. If you want to have the first week contain at least
the first four days, specify a value of vbFirstFourDays.
See Appendix A for a list of Firstweekofyear constant
values.

o Name your procedure.
@ Declare the variables you want to use to store your dates.

9 Declare any other variables you need.

This example uses a Do While loop and an If Then
Else Statement.

Note: See Chapter 6 to learn more about loops and Tf Then
Else Statements.

® This example evaluates two columns of cells, starting at
row two.

Store the cell values to variables.

6 Use the TsDate VBA function to make sure the cells
contain valid dates.

Use the MmsgBox function to display an error message if the
dates are not valid.

@

4 Microsoft Visual Baskc - Ch 07 macros, xism - [DiffDateExample (Code)]

M fie Gt s Pt Gyt Qetug B Jowh pSdm jpedes e
T T

Sub CalulateDiffDate() =

Dim N As Iuleger‘—@

N=2
Do While Not IsEmpty(Cells(N, 1))
Date1 = CDate(Cells(N, 1))
Date2 = CDate(Cells(N, 2))
If IsDate(Date1) And IsDate(Date2) Then
Cells(N, 3) = DateDiff("h", Cells(N, 1), Cells(N, 2))
Else
MsgBox ("Type valid dates in cells.")
End If
N=N+1
Loop
 End Sub

=%

 Micrasoft Visual Baskc - Ch 07 macros, xism - [DiffDateExample (Code)]

M pie ot s puert fgmat Qebwg Sen Josh jpodim jpede pws
— s

Faman e -.ax

Sub CalulateDiffDate() B
Dim Date1 As Date
Dim Date2 As Date
Dim N As Integer

@ >n=2

Do While Not IsEmpty[(;ls{N, 1))
(Date1) And (Date2) Then

Cells(N, 3) = DateDiff("h", Cells(N, 1), Cells(N, 2))

Else
MsgBox ("Type valid dates in colls."]‘—e
End If

N=N+1
Loop
| End Sub

=¥

@ Use the pateni ££ function to determine the e e
amount of time between two dates. = SESs -
Sub CalulateDiffDate() =
Dim Date1 As Date
® The Interval. Dim Date2 As Date
Dim N As Integer
Date1. N=2
Do While Not IsEmpty(Cells(N, 1))
Date2. Date1 = CDate(Cells(N, 1))
e Date2 = CDate(Cells(N, 2))
Place the results in a cell. '8, If IsDate(Date1) And IsDate(Date2) Then
Celis(N, 3) =
© Press Alt+F11 to switch from the VBE to Excel, and - S Y i"s" T
then run the macro. P il oy ey ey et
N=N+1
Note: See Chapter 1 to learn how to run a macro. Loop
d Sub .
i o
The procedure calculates the difference between two o HanesT 07 macios i - Microso Excel =
fimes. O 2 G ST R
gl e U ey | = s .
You can use the DateDif £ function to find the P i i _ -
difference between two times. e — e C—
2 8:05 AM 612 PM 10
) 8:14 AM 5:23 PM 9
912 AM 5:14 PM 8
7:34 AM 811 PM 1"
7:55 AM 6:00 PM 1
srent - O .
You can use one of ten constant values to specify the Interval argument and the type of date interval to
return.
INTERVAL VALUE DESCRIPTION
yyyy Year Only compares the year portion of both dates. The dates 12/31/1999 and
1/1/2000 return a value of 1 year.
q Quarter Divides the year into four quarters and returns the number of quarters between
dates.
m Month Only compares the month portion of both dates. The dates 12/31/1999 and
1/1/2000 return a value of 1 month.
d Day The number of days between two dates.
y Day of Year The same results as using d.
w Weekday Determines the day of the week of the first date — for example, Wednesday — and
then counts the number of Wednesdays between the dates.
ww Week Relies on the value specified as the Firstdayofweek argument to determine the
number of weeks between two dates.
h Hour The number of hours between to times. If a time is not specified, it uses midnight
or 00:00:00.
n Minute The number of minutes between two times.
s Second The number of seconds between two times.

1, 191dey)

.
.

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Format a Date

Expression

ou can format an expression that uses a date or
Ytime by using the FormatDateTime VBA

function. The FormatDateTime function takes
two arguments: Date and NamedFormat. The Date
argument is required. It identifies the date expression
that you want to format and accepts cell references,
variable references, string expressions, or numeric
values. You can reference a cell using any of the cell
range reference options discussed in Chapter 11. For
example, if the date you want to format is located in cell

A1, you can use the following code to reference that cell:

X = FormatDateTime (Range("Al"))

You use the NamedFormat argument to specify the
formatting you want to use. You can use any of the
predefined formatting constants. If you omit the

Format a Date Expression

NamedFormat argument, the FormatDateTime function
uses the vbGeneralDate constant.

The vbGeneralDate constant instructs Excel to format
the date portion of the expression in the system short
date format and to format the time portion of the date in
the system long time format. Windows maintains your
default date and time settings in the Regional and
Languages Options dialog box, which you can access
through the Control panel. When you use a constant as
the NamedFormat argument, you specify which of these
settings you want to use to format your date and time
values. By changing the values in the Regional and
Languages Options dialog box, you affect how the dates
and times display when you use the FormatDateTime
function.

@ Name your procedure.

@ Declare the variables you want to use to store your
unformatted dates.

Q Store the contents of the cells with unformatted dates to
variables.

4 Microsoft Yisusl Basic - Ch 07 macros, xdsm - [FormatDatesTimesExample (Code)]
M Bl G0 ywe e fgat Qeteg Bem Tosh gStim lfgedse e [—p—

E e — -.
;'f'uh FormatDateTimeValues() ;

Date1 = Cells(2, 1)
Date2 = Cells(3, 1)
Datel = Cells(4, 1)
Dated = Cells(5, 1)

4 Microsoft Yisual Basic - Ch 07 macros, xism - [FormatDatesTimesExample (Code)]
M pe G0 ywe e Gyt Oetug Bem Josh gStim lfjedos feis [—p—

L b o] [rotis T

Sub FormatDateTimeValues() =

Dim Date1 As Date
Dim Date2 As Date
Dim Date3 As Date
Dim Dated As Date

-—O

@ Use the FormatDateTime function to format the g g S e g
variables in which you stored the dates. — = = g
PY . " = FormatDateTime(¥ Dnh)‘—e =t
The variable containing the date. g
= FormatDateTime(5 Dalo)‘—e

® The format you want to apply. N
. = FormatDateTime(- Date)<—° G
@ Assign the results to cells. @
= FormatDateTime(s Time) E’
@ Press Alt+F11 to switch from the VBE to Excel, and @
then run the macro. End Sub m
A
Note: See Chapter 1 to learn how to run a macro. 8
(-1
5
5 « of? =
&
The procedure formats the dates in column A and) e i =
places the results in column B. QI QI g ren 3 8
Ay [S ma = =
Al ..“- s e Dng‘l’l’_‘a-l‘ '] g

[t ry = B 3 i
' ! OlEmaII Formatted Type of Format =
62198 3:.45 PM 6211999 vbGeneralDate n
1 8/10/00 11:23 AM Thursday, August 10, 2000 vblLongDate :f.
7111101 5:45 PM 7/11/2001 vbShortDate o
4/23/99 9:45 AM 9:45:00 AM vblongTime =
; 7

AL e
e — —_— e ene_a

You can specify the formatting for a date and time by using the NamedFormat argument. If it is omitted,
Excel uses the vbGeneralDate constant. When you use the NamedFormat argument, you can pass it a
constant value or the numeric value that corresponds to the constant, as outlined in the following table. The
actual formats used as a result of specifying these constant values are based upon the system date and time
settings in the Regional and Language Options dialog box.

CONSTANT VALUE DESCRIPTION

vbGeneralDate 0 The default value if the NamedFormat argument is omitted. This value displays
the date using the short date format and the time using the long time format.

vbLongDate 1 Displays the date using the system long date format.

vbShortDate 2 Displays the date using the system short date format.

vbLongTime 3 Displays the time using the system long time format.

Format a

Numeric Expression

ou can format a numeric expression by using

the FormatNumber, FormatCurrency, Of

FormatPercentage function. These functions all
take a numeric value and return the value formatted in
the format you specify. The FormatNumber function
returns a formatted number, the FormatCurrency function
returns a formatted number preceded by a currency
symbol, and the FormatPercentage function returns a
number followed by a percentage sign.
Each function takes the same five arguments:
Expression, NumDigitsAfterDecimal, Include
LeadingDigit, UseParensForNegativeNumbers, and
GroupDigits. The Expression argument is required.
The Expression argument specifies the numeric value to
format. The NumDigitsAfterDecimal argument
indicates the number of decimal places to display on the

Format a Numeric Expression

right side of the decimal. The ITncludeLeadingDigit
argument determines whether a zero displays before
fractional values. The UseParensForNegativeNumbers
argument specifies whether to place parentheses around
negative numbers. Finally, the Groupbigits argument
determines whether Excel groups numbers to make them
more readable. With this argument, you can specify
whether to display fifty thousand as 50,000 or 50000.

The last three arguments, IncludeLeadingDigit,
UseParensForNegativeNumbers, and GroupbDigits, all
use the same three constant values. Use vbTrue as the
as the argument to use the formatting, and vbralse if
you do not want to use the formatting. If you do not
specify a value, or if you specify vbuseDefault, the
function uses your computer’s regional settings.

@ Name your procedure.

@ Declare the variables you want to use to store your
formatted numbers.

@ Declare any other variable you need.

9 Store the numeric values you want to format to variables.

 Microsoft Visual Baskc - Ch 07 macros, xism - [NumerkFormatExample (Code)]

M fie Gt e Pt Gyt Debwg B losh jSdm jpedes e

— — ol
Sub NnmborFurmat(}J |

~—0
Dim Msg As String‘—e

MaxVal = _ -~
WorksheetFunction.Max(Range("B2:B13"))
MaxPerct = _
WorksheetF tion.Max(R:
TotalVal = Cells(14, 2)

ge("C2:C13"))

M fe ot e put fgmat Detug S losh jpSdm jpede e
=0 =] [wamirt et

Sub NumberFormat() = |

Dim MaxVal As Double
Dim MinVal As Double
Dim TotalVal As Double
Dim Msg As String

@ Apply a format to the variables.

4 Microsoft Visual Basic - Ch 07 macros xdsm - [NumericFormatExample (Code)]
M Bl g9 yws punt fywst Detwy Ben Tosh ASeim lgedse e

Farman e

==

R

In this example, the formatted numbers are part

Msg = "Highest Sales: " _ =
of the message box prompt. & Formathumber(iaxVal, 0, vbFaiss, vbFaise, vTrue) <——E)

Msg = Msg & vbNewLine & vbNewLine

1, 191dey)

e Press Alt+F11 to switch from the VBE to Excel,
and then run the macro.

.
.

Msg = Msg & "Percent of Total Sales: " &
FormatPercent(MaxPerct, 0, vbFalse, vbFalse, vbFalse) 4—6

Note: See Chapter 1 to learn how to run.a macro.
Msg = Msg & vbNewLine & vbNewLine

Msg = Msg & "Total Sales for Year: " & _
FormatCurrency(TotalVal, 0, vbFalse, vbFalse, vbTrue)

MsgBox (Msg)

10UNJ 199YsYIom [90xd Sursn

nd Sub e
=/s < P
In this example, the procedure formats the () B v -
. . — - e P Loyt Parrein Dets. e Vam Crowmpn - "
numbers and displays the results in a g Dt (5 \p Free)
el DLy — = Vo e a
message box. e e = e
Al > & Month]
[al Y] 3 B]
'!Mon:h Sales Percent Femst lbes
= January 45630 o.07
1 February 98200 0.15 =
« March 89116 o1 o
April 53277 0.08 . [
« May 23793 0.04 Microsoft Excel | =
| June 45857 0.07 [©
+ July 72285 0.11
» August BBE59 0.10
w September 61896 0.09
w1 October 21462 0.03
= November 51182 0.08
« Dacember 44351 0.07
4 Total 653708 1.00
| Moot Unaptey tuglun Oute & Tome- Formt Daten e Tems 01 L Mumbsers
— i TEE e 7 S ==

If you want to customize the way a number displays, you can also use the Format function. You can create
your own number formats by combining specific characters along with symbols that represent the numbers,
as in the following example: Format(NumVal, “##.##”).

NUMERIC CHARACTERS DISPLAYS

0 A numeric digit or a zero if the number does not have a digit in that place. Use this
character to ensure that a digit appears in a specific place. For example, 0000
always displays a four-digit number. If there are fewer digits, a zero displays for the
non-specified digits.

A numeric digit if the number has a digit in that place. If there is no digit, a value
does not display in that place.

A decimal-point placeholder.

% An expression as a percentage by multiplying by 100 and adding a percent sign.

, A thousands separator.

E-, E+, e, e+ A numeric expression in scientific format. The number of digits on the right side of

the symbol indicates the number of digits in the exponent.

\ The character that follows a backslash or is enclosed in quotes. For example, to
place a plus sign (+) in the number string, you would type \+ in the desired
location.

Change the Case

of a String

ou can use the Lcase and Ucase VBA functions
to change the case of your text. This is useful
when you are formatting output or when you
want to compare strings without regard to case. The
Lcase function changes all characters that are not
already lowercase, to lowercase. The ucase function
changes all characters that are not already uppercase, to
uppercase.
To use the L.case function, simply type LCase followed
by the expression you want to convert to lowercase in
parentheses.
Example:
MyVariable = "HELLO"
SampleText = LCase(MyVariable)
Result:
hello

Change the Case of a String

The syntax for the ucase function is similar to the
syntax for the L.case function. To use the ucase
function, you type ucase followed by the expression you
want to convert to uppercase in parentheses.

Example:

MyVariable = "hello"
SampleText = UCase (MyVariable)
Result:

HELLO

Both the Lcase and the ucase functions ignore numbers
and symbols. The expression can be an actual string
enclosed in quotes, or a reference to a string such as a
cell or variable name. If the string contains no data, both
functions return Null.

o Name your procedure.

@ Declare your variable.

9 Use an InputBox function to retrieve a user entry.

9 Use the ucase function to change the entry to uppercase.

Alternatively, you can use the L.case function to change the
entry to lowercase.

@ Use a message box to display the entry.

@ Press Alt+F11 to switch from the VBE to Excel, and then run
the macro.

Note: See Chapter 1 to learn how to run a macro.

4 Microsoft Visual Baskc - Ch 07 macros, xism - [ChangeCaseExample (Code)]

M Bl G pes Pt Fgwat Debuy Ben Josh gt fjedes s

ey _] [Oopecons =l
Sub Changmas-[’<—o =
Dim YourEntry As Slring<—9

YourEntry = InputBox("Type your entry in lower case:") <——9
YourEntry = UCase(YourEntry)

MsgBox (YourEntry)

End Sub

Bl G pes punt fymat Debeg B Josh potm jedoe e

— i

Sub ChangeCase()
Dim YourEntry As String

YourEntry = InputBox("Type your entry in lower case:")
YourEntry = UCase(YourEntry)

MsgBox (Ynuﬁntw}<—6

End Sub

0 Make an entry using lowercase text. [Y R Ll o el
) g | SR Mot B S e
e 8 Mty e g [T T
ce “ii . =]
_l- Oca-!:\xlk. " . g ' i

Trish as ey e it

RN ey oot Dt et T Changn Case - borsen o 5wy 5 ST |

—_—— JIEe T W P
® The message box displays the text in uppercase.) s B T —_—

A gisine) @ Jrn M me

O ety | T B et e

118 F = EO— . ‘ . B

-l O mpus Nea. .

[
TV A ENTIY DY LOWER CASE VilA DESPLAYE IT B LPPER Gl <—. |

: | |

"

u

.

4 40 0wt et it e Tome Change Case Porsen o g 3

a3 JIEe e Ve E———

The example used in the section, “Using the InputBox Function,” earlier in this chapter, converts the user’s
entry to lowercase and then compares the entry to a string. Converting the entry to lowercase allows you to
make a comparison without regard to case. For example, if the user types GREEN, green, or GrEen, the
procedure returns the value True when it compares the user input to green.

Example:

If LCase(UserInput) = "blue" Then
Inventory = IBlue

ElseIf LCase(UserInput) = "green" Then
Inventory = IGreen

ElseIf LCase(UserInput) = "red" Then
Inventory = IRed

ElseIf LCase(UserInput) = "silver" Then
Inventory = ISilver

Else

Inventory = 0
End If

To see this function in action, refer to the example file for Chapter 7, which is on the Web site for this book.

1, 191dey)

.
.

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Return a Portion

of a String

functions available in VBA to return a portion of a

string. You can use three different functions: reft,
Right, and Mid. The Left function returns the specified
number of characters starting at the left side, or
beginning, of the string. The rRight function returns the
specified number of characters starting at the right side,
or end, of the string. These functions use similar syntax:
Left (String, Length) and Right (String,

The string argument specifies the string from which
you want to return the specified number of characters.
You can make the argument an actual string enclosed in
quotes, a variable that contains a string, or a cell
reference. The Length argument indicates the number of
characters to return from the string.

Return a Portion of a String

I nstead of an entire string, you can use the built-in

Length).

The third built-in function for returning a portion of a
string is the mid function. Use this function to retrieve
characters from the center of a string. When you use this
function, you indicate the character with which to start
and how many characters to return. There are three Mid
function arguments: Mid (String, Start, Length).

Similar to the Left and Right functions, the Mia
function string argument specifies the string to use
with the function. The start argument indicates the
position of the first character in the string to return. The
Length argument is the only optional argument when
using the mid function. If you omit the length argument,
the function returns the remaining portion of the string.
Otherwise, the Length argument indicates the number of
characters to return.

@ Name your procedure.
@ Declare your variables.

@ Use an TnputBox function to capture a user entry.

9 Use the Left function to retrieve the left portion of a user
entry.

® The variable that you want to examine.
® The number of characters from the left you want to retrieve.

In this example, if the first two characters of the user entry
are not “0S”, then the user receives an error message.

@

 Microsoft Visual Baskc - Ch 07 macros, xism - [PortionOfStringExample (Code)]
M pe ot e purt fgmst Qetwg Ben losh jpSdm jpedes e

Sub runionorstring()<_0-

Dim ProductlD As Variant
Dim Description As String<—9

Dim Price As Double

Ok B

On Error GoTo ErrorFound
Worksheets("Portion of String”).Activate

ProductiD = InputBox{"Enter a Product ID:") 4—9

If Left(ProductID, 2) <> "O0S™ Then
Msg = "The first two characters of the "
Msg = Msg & "product ID must be 0S. "
MsgBox (Msg)

Exit Sub

End If

If Mid(ProductID, 3, 1) <> "-" Then
Msg = "The third character of the ™
Msg = Msg & "product ID mustbea-. "
MsgBox (Msg)

Exit Sub

End If

i T I | i)

6 Use the mid function to retrieve a portion of a string.

 Microsoft Visual Basic - Ch 07 macros, xism - [PortionOfStringExample (Code)]
M e G0 gwe et fyws Detwg Ben Josh ASeim lpedse L

Faman e

==y

The variable you want to examine.
The position of the first character you want to return.
® The number of characters you want to return.

In this example, if the third character of the user
entry is not a “-”, then the user receives an error
message.

@ Use the Right function to retrieve the right portion
of the user entry.

® The variable that you want to examine.

The number of characters from the right you want to
retrieve.

This example uses the TsNumeric function.

In this example, if the last four characters of the user
entry are not numbers, then the user receives an
error message.

If Left(ProductID, 2) <> "OS™ Then
Msg = "The first two characters of the ™
Msg = Msg & "product ID must be 0S. "
MsgBox (Msg)

Exit Sub

End If

@—DfMid(ProducllD, 3, 1) <> "-" Then

Msg = "The third character of the "
Msg = Msg & "product ID musthbhea-. "
MsgBox (Msg)

Exit Sub

End If

 Microsoft Visual Basic - Ch 07 mar
e e e §

6 “Asm - [PortionDfStringExample (Code)]
ram oty oz

et

ot

If IsNumeric(Right(ProductiD, 4)) <> True Then
Msg = "The last four characters of the
Msg = Msg & "product ID must be a number. "
MsgBox (Msg)

Exit Sub
End If
S o

You can use the IsNumeric VBA function to
determine if a value is a number. The IsNumeric
function takes one argument, the value you want to
examine. The IsNumeric function returns True
when the value is a number, and False when the
value is not a humber.

You can determine the length of a string with the
Len function, Len (String), which takes one
argument, String. You can make the string
argument an actual string, or the name of a variable
that contains a string. The following example checks
to see if the length of the string is not equal to 7. If
the length of the string is not equal to 7, the
procedure displays an error message.

Example:

Dim ProductID As String

ProductID = InputBox("Enter a ProductID:")
If Len(ProductID) <> 7 Then

MsgBox ("The Product ID must be 7
characters long.")

Exit Sub
End If

1, 191dey)

.
.

10UNJ 199YsYIom [90xd Sursn

.

[
o
=
7]

Debug a Procedure with

Inserted Break Points

C

a normal part of writing a program. VBA has

several tools you can use to help debug your
procedures. For example, you can insert break points in
your procedures. Break points suspend the execution of
your procedure at the points you specify. Once the
program stops, you can examine the results and then
continue the execution of the program.

You set a break point by clicking the margin of the Code
window next to the line at which you want to insert the
break point. The VBE places a circle in the margin and
highlights the line of code using the display options you
set for the Code window. See Chapter 2 for more
information on setting the display options for the Code
window. While in the Break mode, if you move your cursor
over a variable name, the value of the variable appears.

Debug a Procedure with Inserted Break Points

c orrecting errors, often referred to as debugging, is

The VBE has a Locals window, which displays the
expressions in your procedure, their current value, and
their type. When you are debugging your code, you
should dock the Locals window at the button of the VBE.
You can then use the Locals window to view the value of
expressions and variables at each break point. See
Chapter 2 for more information on using the VBE
windows.

When your procedure stops at a specified break point,
VBA places you in break mode and stops the current
procedure from running. You can continue running

your procedure until it encounters another break point

or the procedure ends. Each time VBA encounters a break
point, the current values of the local variables appear in
the Locals window.

o In Project Explorer, open the module containing the
procedure you want to debug.

To open a module, double-click the module name.

@ Click View = Locals Window.

® The Locals window appears.
9 Click in the margin where you want to add a break point.

® You can add additional break points as needed.

 Microsoft Visual Baskc - Che” _~ Macros. xism [break] - [BreakPointExample (Code)]
0 g i Rar Josh Adtim jedee L

=] menrae =l

1o

png

Tota . |Num2
CellE vowntw =i pa
End Sub

M ple G e et Fyma Debug Ben ook gt fjedes s

PN L LR F T
et i e

Sub BreakPoints()
Dim Num1 As Long
im Num2 As Long
im TotalVal As Long
Num1 = Cells(1, 1)
Num2 = Cells(2, 1)

UlTotalVal = Num1 + Num2)]
HiCells(3, 1) = TotalVal

mEnd Sub
=

Ij

@ Click Run = Run Sub/UserForm.

Alternatively, press F5.

The values of the locally declared variables
display in the Locals window.

Move you cursor over a variable name to see
the current value.

4 Microsoft Visual Basic - Chap0B Macros.xism - [Br 4 vintExample (Code)]
im0 A

Dim Num2 As Long
Dim TotalVal As Long
Num1 = Cells(1, 1)

Num2 = Cells(2, 1)
UlTotalVal = Num1 + Num2]
LiCells(3, 1) = TotalVal

End Sub

s Microsoft Visual Basic - Chap08 Macros xism [break] - [BreakPointExample (Code)]
M pie g6 e Pt Gyt Detug B Dosn pSdim e bei
M ia a9ps 005wy

= o (e

Sub BreakPoints()
Dim Num1 As Long
Dim Num2 As Long
Dim TotalVal As Long

The value of the variable appears.

Num1 = Cells(1, 1)

Priam. = Celis(2, 1)

Press F5 to run the procedure.

Click Run => Reset to stop.

Click Debug => Clear All Breakpoints to clear
all break points.

¢ TotalVal = Num1 + Num2

LiCells(3, 1) = TotalVal

End Sub

The VBE has three different modes: Design, Run,
and Break. You use the Design mode to create new
VBA procedures. You use the Run mode to execute a
procedure. To activate the Run mode, click Run =
Run Sub/UserForm, or press F5. The VBE runs your
procedure.

The VBE places you in the break mode whenever a
procedure stops running due to a break point, a
Stop statement, or a Watch statement, or when it
encounters an error during execution. When the
VBE places you in the break mode, the VBE
highlights the line of code that caused the error and
places the word break in the caption of the title bar.
To exit the break mode, click Run => Reset.

If you select a line of code, you can toggle a break
point on and off by pressing F9 or by clicking
Debug = Toggle Breakpoint. You can remove a
break point by clicking it with your mouse. You can
clear all break points from your code by pressing
Ctrl+Shift+F9 or by clicking Debug => Clear All
Breakpoints. Remember to clear all break points
after you finish debugging your code.

8 131dey)

.
.

soIdeN SuIssngaa

Using the Watches Window i'

to Debug a Procedure

AR

“ \

point, when a variable or expression reaches a certain
value, or when the value of a variable or expression
changes, the Watches window can be of use to you.

You can use the Add Watch dialog box to set up a watch.
You start by entering an expression in the Expression
field. For example, if you suspect that an error occurs
when the variable K is equal to two, you can enter the
expression k = 2 to have your procedure break when
the variable X is equal to two. In the Procedure field of
the Add Watch dialog box, select the proper procedure. In
the Module field, select the proper module. If you have
multiple procedures or modules that call one another and
you are not sure which procedure is causing the error,
you can opt to monitor all procedures and/or all modules.

Using the Watches Window to Debug a Procedure

I f you suspect an error occurs at a particular break

The Add Watch dialog box offers three watch types:
Watch Expression, Break When Value Is True, and Break
When Value Changes. You can set a break point and
select Watch Expression to display the expression you are
evaluating and its current value in the Watches window
when your procedure breaks. You can select Break When
Value Is True to have your procedure break when an
expression evaluates to True. For example, by using this
option, you can break when the variable K is equal to
two. You can select Break When Value Changes to have
you procedure break when the value of an expression
changes. For example, if you are using a counter, you can
break every time the variable you are using to count
changes.

o In the Project Explorer, open the module containing the
procedure you want to debug.

To open a module, double-click the module name.

@ Click View = Watch Window.

® The Watches window appears.

@ Click Debug = Add Watch.

4 Microsoft Visual Baskc - Chr " Macros,xism - [WatchWindowExample (Code)]

" Range
inge(Cells(1, 1), Cells(3, 3))

X et
ForK=1To3
ForL=1To 3
NewArray(K, L) = X
X=X+1 |
Next L
Next K

4 Microsoft Yisusl Basic - Chap0B Macros, xism -

“stchWindowExample (Code)]
N b g s punt Fget | Oete 4

Bl S S232.00 ek ¢
Dim K As Inte- =
pimLAsinte” Zio o @)
Dim X As Inte
Dim c-“nllls oo i Bruskpomts Culeshm Ry
Set CellRange 1), Celis(3, 3))

X=1
ForK=1To 3
ForL=1To 3
NewArray(K, L) = X

90000 .

The Add Watch dialog box appears.

pa 89ty

==

2 Microsoft Visual Baskc - Chap08 Macros. xism - [WatchWindowExample (Code)]
M ple G e et famat Debeg Ben ok St fjedes s

Bl

Type the expression to watch in the Expression field. e

Click here and select a procedure.

Click here and select a module.

Click to select a watch type (O changes to (e)).

Click OK.

The Watches window lists each watch.

Press F5 to run your procedure.

The procedure breaks when the expression you

entered evaluates to True.

Dim K As Integer

X=1
ForK=1To 3
ForL=1To 3

Dim L As Integer [EIKNZ]

NewArray(K, L) = X

o pie gt gwe Pt Gyt Detug B Dosh pSdm jpedes pee
a cMBS 30S- 5%

=y

< o

Dim K As Integer
Dim L As Integer
Dim X As Integer

X=1
ForK=1To 3

< ForL=1To 3
NewArray(K, L) = X

Dim CellRange As Range
Set CellRange = Range(Cells(1, 1), Cells(3, 3))

When you are in the Break
mode, you can find the current
value of a variable or expression
by using VBA’s Quick Watch
feature. Select the variable or
expression for which you want to
find the value. Click Debug =
Quick Watch or press Shift+F9.
The current value of the
expression appears in the Quick
Watch dialog box. If you want to
continue to monitor the variable
or expression value, click Add to
add the item to the Watches
window.

To delete a watch, right-click in
the Watches window and then
click Delete Watch in the context
menu that appears. To edit a
watch, right-click the watch you
want to edit and then click Edit
Watch in the context menu. The
Edit Watch dialog box appears.
Use it to edit your watch.

When evaluating an expression,
such as X > 5, the value in the
Watches window is either True
or False, indicating whether the
expression is valid. For example,
if the current value of X is 6, the
expression X > 5 has a value of
True because 6 is greater

than 5.

8 131dey)

.
.

)
&
=3
UQ
e,
=]
V)]
=
)
a
-
(=]
@

Step through a

Procedure

code one line at a time ¢racing. With break points,

VBA executes the code until it encounters a break
point. With tracing, VBA executes one line of code and
waits for you to indicate that you want to execute the
next line of code. Tracing is an excellent way to debug
your code when you do not know where your error is
located.

As you step through your code, you can use the Watches
and Locals windows to monitor the value of variables
and expressions. See the section, “Using the Watches
Window to Debug a Procedure,” to learn more about the
Watches window. See the section, “Debug a Procedure
with Inserted Break Points,” to learn more about the
Locals window.

Step through a Procedure

P rogrammers call the process of stepping through

You start tracing by executing the Step Into command on
the Debug menu, or by pressing the F8 key to begin the
tracing process. When you are ready to move to the next
statement, you execute the Step Into command or press
the F8 key again. You can continue executing the Step
Into command or pressing F8 for each line of code you
want to execute.

Each time you execute the Step Into command or press
F8, the VBE highlights the next line of code. The Locals
window updates the value of the local variables and the
Watches window monitors the values of any watch
expressions created for the procedure.

As you step through a procedure, if a code statement
calls another procedure, the VBE also steps through the
called procedure. After that procedure runs, the control
returns to the original procedure.

o In the Project Explorer, open the module containing the
procedure you want to debug.

To open a module, double-click the module name.
@ Click View = Watch Window.

Click View => Locals Window.

® The Watches and Locals windows appear.
@ PressFs.
Alternatively, click Debug => Step Into.

® As you begin stepping into the code, VBA highlights the
first line of code.

@

4 Microsoft Visual Baskc - Chr . Wacros.xism - [WatchWindowExample (Coda)]
> 3 B Iesh patim jigedos s

Bl

Sub
Dim |
VI

Dim|. .
Dim &

s |

Lop31) As Integer
-

Dim Range
Set E_xzoin, v synge(Cells(1, 1), Cells(3, 3))

X=1
ForK=1To 3 (]
ForL=1To 3
NewArray(K, L) = X
X=X+1
Next L

T o

a Microsoft Visual Basic - ChapOB Macros. xism [braak] - [WatchWindowExample (Code)]
M pie gt gwe puert fgmat Qetog B Josh pddm lfpedss e

M2 8990 30505y
= o] [r—

-/ 'sub WatchWindow() «——® 1

Dim NewArray(1 To 3,1 To 3) As Integer
Dim K As Integer
Dim L As Integer
Dim X As Integer

Dim CellRange As Range
Set CellRange = Range(Cells(1, 1), Cells(3, 3))

X=1
ForK=1To 3

gy Fvma Tt [— |

4 Microsoft Visual Basic - ChapDB Macros, xism [break] - [WatchWindowExample (Code)]

6 Continue pressing F8 to step through the entire e =
procedure. %2 890500500

s =] e

Dim CellRange As Range
Set CellRange = Range(Cells(1, 1), Cells(3, 3))

X=1
ForK=1To 3
ForL=1To 3
L NewArray(K, L}BX<—6
X=X+1

Next L
Next K

As you step through the code, local variable values A T L T R T T e =
appear in the Locals window, and any watches that X+ o4 8909 30500,

f . s = [rin
are set appear in the Watches window. Dim CellRange As Range

Set CellRange = Range(Cells(1, 1), Cells(3, 3))

X=1
ForK=1To 3
ForL=1To 3
NewArray(K, L) = X
X=X+1
< NextlL
Next K

You step into procedures by pressing F8 or by clicking Debug => Step Into. If your procedure contains calls to
other procedures, you can step through those procedures by using the Step Into command. If you do not want
to step through called procedures, you can step over them. To step over a called procedure, click Debug =
Step Over or press Shift+F8. VBA executes the entire called procedure without stopping and then returns
control to the next line in the original procedure.

If you decide to step through the called procedure, you still have the option of stepping out of it at any time.
To step out of a called procedure, click Debug => Step Out or press Ctrl+Shift+F8. The remainder of the

called procedure runs, and then control returns to the next line of code after the called procedure in the
original procedure.

If your code is running and you need to break, press Ctrl+Break. This feature is useful when you find yourself
in an infinite loop.

8 131dey)

.
.

soIdeN SuIssngaa

Immediate Window

evaluate expressions, find out the value of a
variable, or quickly test a procedure. You can
open the Immediate window by pressing Ctrl+G.

You can print values to the Immediate window by placing
a Debug.Print command in your code. When VBA
executes the Debug. Print command, it prints the value
you indicate to the Immediate window. For example, if
you place bebug.Print X in your code, and then you
step through your code, when VBA executes the
Debug.Print X command, the value of the variable X
appears in the Immediate window.

You can use the Immediate window to return a value. Use
the print statement or a question mark (?) to return the

Use the Immediate Window

T he Immediate window is useful when you want to

value of a variable or expression. For example, if you
want to display the value of the variable X, you can go to
the Immediate window and type:

Print X

or
? X

You can also use the Immediate window to execute
commands. Type the command in the Immediate window.
As soon as you press Enter, VBA executes the command.
When using the Immediate window, control statements
must appear on a single line. For example, you would use
the following code for a For Next loop:

For J = 1 to 4: Print J: Next J

USE DEBUG PRINT
@ Add the bebug Print command to your code.

Q Click View = Immediate Window, or press Ctrl+G.
® The Immediate window appears.

9 Press F8 to step through your code.

As you step through your code, the values you requested with
the bebug Print command appear in the Immediate window.

® The X value.
The Y value.

The TotalVal value.

USE PRINT
@ Create a break point.

@ Press F5 to run your code.

9 Type Print followed by the variable you want to retrieve.
Q Press Enter.

® The Immediate window retrieves the value.

6 Type ? followed by the value you want to retrieve.
°

The Immediate window retrieves the value.

@

a2 893S D059

=D = frearees A
Dim TotalVal As Long =
X = Cells(1, 1)

Debug.Print X

Y = Cells(2, 1)

Debug.Print Y<—0
TotalVal= X + Y

Debug.Print TotalVal 4—0

<| cells(3, 1) = TotalVal

il L) 1 o
43 ' -

110 €—

M pie g6 gwe Pt Gyt ebug B Dosh ot e fee Ll
2 0W2S 00w hp
="y =] [mesrees

Dim Y As Long |
Dim TotalVal As Long

X = Cells{1, 1)

Y = Cells(2, 1)
TotalVal= X + Y

¢ Cells(3, 1) = TotalVal
M End Sub

Print X
43 <@

? Y<—6
e7<«—0
|

d Sed

EVALUATE AN EXPRESSION
0 Type your expressions.

The Immediate window evaluates the expressions.

EVALUATE A FOR NEXT LOOP
0 Type your For Next loop.

All of the statements must be on one line.

The results appear in the Immediate window.

4 Microsoft Visual Basic - Chap0B Macros xism - [DebugPrintExample (Code)]

A b g8 ywe et Fymet Detwg Ben Josh pSeim lfjedee e el

X= C¢Ils{1,1}ﬂ 1

X
-

43
Y= c-ustz,11<—o

7Y

67
2=X+Y+200<—o

'?ZE

310

A=X> Y<—o

7A

False

B= lsEmpty{Cells(1,1n<—0

7B 8
False

LI o

« Microsoft Visual Basic - ChapDB Macros. xism - [DebugPrintExample (Code)]
M b §S yws Pt Tymet Detwg Be Josh pStim lfpedes e T

For X =1 to 10: Print X *10: Next Xﬂ

10

20

30

40

50 =
60

70

80

20

100

toolbar perform.

FUNCTION
RunSub/Userform

The VBE has a toolbar you can use when debugging your code. To view the toolbar, click View = Toolbars &>
Debug. The toolbar appears below the menu. The following table lists the functions the buttons on the

o)

=
‘

z

Break

Reset

Toggle Breakpoint

Step Into

Step Over

Step Out

Open Locals Window

Open Immediate Window

Open Watches Window

] (& Tl || (5§ (R e e (=] (R

Open Quick Watch

8 131dey)

.
.

)
&
=3
UQ
e,
=]
V)]
=
)
a
-
(=]
@

Resume Execution When

an Error Is Encountered

run-time error is an error that occurs when your

code attempts to perform an invalid operation,

such as trying to access a value that does not
exist. If you do not provide a way for VBA to handle run-
time errors, when VBA encounters them, it stops running
your code and displays an error message to the user, or it
acts in an unpredictable way.
VBA has special code you can use to handle run-time
errors. You can instruct VBA to continue the execution of
a procedure when it encounters an error by using the on
Error GoTo statement. The following is the syntax for
the on Error GoTo command:

On Error GoTo label

Resume Execution When an Error Is Encountered

When you use this command, control jumps to a labeled
section of code whenever VBA encounters a run-time
error. A label is a text string followed by a colon. The on
Error GoTo command moves to the label, thereby
passing control from the current location in the procedure
to the label. Usually, you place your labeled code at the
end of your procedure. For example, you can use
ErrorFound: as a label for the code you want to run if
VBA encounters an error.

An Exit Sub Or Exit Function Statement causes VBA
to end the execution of your procedure. You can place an
Exit Sub or Exit Function statement prior to the labeled
section of your code to keep the procedure from
executing the labeled code when VBA does not encounter
an error.

o Name your procedure.
@ Type your on Error GoTo command.
® This is the label.

@ Type the VBA code for the procedure.

@ Type Exit Sub at the end of the main procedure
code.

The Exit Sub statement causes the procedure to
exit without running the error code.

@ Create a label.

VBA moves to the label when a run-time error
occurs.

@

a 490% D05 hy

Sub ErrorEncountor:ﬂ<—0 E

Dim ProductlD As Variant

Dim Description As String
Dim Price As Double

g——.} On Error GoTo ErrorFound 4—.

Worksheets("Resume Execution™).Activate

ProductiD = InputBox("Enter a Product ID:")

If Left(ProductiD, 2) <> "0S" Then
Msg = "The first two characters of the " < G’
Msg = Msg & "product ID must be 05.
MsgBox (Msg)

Exit Sub

End If

If Mid(ProductiD, 3, 1) <> "-" Then
Msg = "The third character of the "
f5 < o

H pia gt e Pt Gyt Detwg B Dowh jdm e be B
P ha 890G OO0k
= T o] [P,

'‘Uses the Viookup worksheet function. |
D iption = WorksheetFuncti

VLookup(ProductiD, Range("ProductList”), 2, False)
Price = WorksheetFunction. _

VLookup(ProductlD, Range("ProductList”), 3, False)
Msg = "Product: " & UCase(ProductiD) & " "
Msg = Msg & Description & " Price: "
Msg = Msg & FormatCurrency(Price, 2, vbFalse,
vbFalse, vbTrue) & " "
MsgBox (Msg)
Exit 5ub<—e

ErrorFound: 4—6

MsgBox ("You have entered an incorrect product ID")
End Sub

i T I | 3|

@ Type the VBA code to execute when an error
oceurs.

0 Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

If a run-time error occurs, the appropriate
VBA code executes.

 Microsoft Visual Basic - ChapDB Macros.xism [break] - [ErrorEncounterExample (Code)]
M Ele G pes punt fywat Debeg Ben ook gt fjedes s c.mn
K sa 905 005uby
prisaire ﬂ ’r“"" ‘_A
'‘Uses the Viookup worksheet function. =
Description = WorksheetFunction.
VLookup(ProductiD, Range("ProductList”), 2, False)
Price = WorksheetFunction. _
VLookup(ProductlD, Range("ProductList”), 3, False)
Msg = "Product: " & UCase(ProductiD) & ™"
Msg = Msg & Description & " Price: "
Msg = Msg & FormatCurrency(Price, 2, vbFalse,
vbFalse, vbTrue) & " "
MsgBox (Msg)
Exit Sub
ErrorFound:
MsgBox ("You have entered an incorrect product ID")
End Sub

=50 il
o) FE) _

— Wews et Pagleea Parmadn Dotz P Vam Crowmpn Ran b ®»-"x

.- =) gt T * ey Pt 3
el [l St 1 et
e M 0 ey [S |
cise ey e
F2 i b]

s I— i 3 3 i (3 - g
@ Product ID [Description | _ Price] Pt Frca

: 0S5-2004 Document Mailers 4298 |j

» 0S-2005 Whiteboard Easel 149.99

« 0S-2006 Glue Sticks 7.98

¢ 0S8-2007 Tape Refill Rolis 13.99

s« OS-2008 Tape Dispenser 228 Micrasoft Excel %

¢+ 05-2009 Staple Remover 1.88 -
£105.2010 Incsx Card Fle 158 gt

+|08-2011 Index Cards 274 =
w 0S5-2012 Stacking Trays 798
1 0S-2013 Wall Calendar 799
= 08-2017 Paper Clips 228
0/ 05-2035 Razor Point Pens 12.49
w 0S5-2038 CD/OVD Envelopes 5.78
» 05-2040 Seif Sealing Envelopes 20.78
« 08-2042 Hanging Data Binders 4.39
[4 5 & weanh Pty v Shound T4 T .
tety 3 EFIE) ; e

If you place a Resume statement at the end of your labeled code, control returns to the line of code that
caused the run-time error, and the line of code executes again. If the code produces an error, the error-
handling code executes again. This option enables you to recheck for the error.

If you place a Resume Next statement at the end of your labeled code, control returns to the next line of
code in the procedure after the location that produced the run-time error. Your code continues execution
without the line of code that produced the error. This option enables you to complete the procedure.

If you place a Resume Label statement followed by a label name at the end of your block of code, you can
transfer control to the labeled line of code.

8 131dey)

.
.

)
&
=3
UQ
e,
=]
V)]
=
)
a
-
(=]
@

Process a

Run-Time Error

henever VBA encounters a run-time error, it
W places the error information, which includes

an error code and description, in the Exrr
object. You can use this information to correct the error.

To capture the error without halting the execution of your
code, you can place the on Error Resume Next
statement immediately after the sub statement for your
procedure. This statement instructs VBA to capture the
error and continue processing.

The Err.Number property contains the most recent run-
time error code. The error codes for run-time error are
always numbers. Essentially, if the Err.Number property
has a value greater than zero, then an error has occurred.
You can quickly check to see if an error exists by
checking the number property of the Err object. If an
error exists, you can use If Then Statements or Case

Process a Run-Time Error

statements to respond to the error, as in the following
code: If Err.Number = 13 Then.

You can design your error-processing code to react to the
specific run-time error encountered. For example, if the
Err.Number property has a value of 13, the value passed
to a variable is not the correct data type; the user may
have entered a string for a variable that requires a
number. You can write code that examines the run-time
error and prompts the user for the correct data type.

If you want to see the error description, use the
Err.Description property. The following code creates a
Division by Zero error and then displays the error
number and code in a message box:

On Error Resume Next
X =1/0
(Err .Number & " "

MsgBox & Err.Description)

@ Name your procedure.

@ Type the on Error GoTo command. (2]

® This is the label.

9 Type Exit Sub at the end of the main body of code.

@ Create a label.

@ Create a conditional statement to check the value of
the Err . Number object property.

a Microsoft Visual Basic - Chap0B Macros. xism - [Module? (Code)]
M pie gt e Pt Gyt Detug B Dosn pSdim e fe
Moraa 89373 D056 Ly

Sub ChockEnCodes[}<—ﬂ E

On Error GoTo ChockNumhar‘—.

Dim Val1 As Double
Dim Val2 As Double
Dim Result As Double

Valt = 100

Yourlnput:
Val2 = InputBox("Type a number.”)
Result = Val1 / Val2
MsgBox "Result is: " & Result

Exit Suh<—9

i T :lﬂ

 Microsoft Visual Baskc - Chap0B Macros. xism - [CheckErrorCodesExample (Code)]
M Ele G pes Pt Fgmat Debey Ben [osh potm jiedoe e
=0 <] [hmentimtacien

Exit Sub
ehockhamber: <—0)
Select Case Err.Numbnr‘-@
Case 13
MsgBox ("You must type a number.")
Resume Yourlnput
Case 11
MsgBox ("The number cannot be zero.”)
Resume Yourlnput

Case Else
MsgBox ("An Error has occured"”)
Exit Sub
End Select

End Sub

i T I | 32|

4 Microsoft Visual Baskc - Chap0B Macros, xism - [CheckErrorCodesExample (Coda)]

@ Type the code to execute if a specific error occurs. T YA S et e Dok e s 10

Carar b =] [reestiLomten

o Press Alt+F11 to switch from the VBE to Excel, and Exit Subs g

then run the macro.

CheckNumber:

Select Case Err.Number,
Case 13 4—0
MsgBox ("You must type a number.")

Resume Yourlnput
Case 11 4—6

MsgBox ("The number cannot be zero.")
Resume Yourinput

Case Else
MsgBox ("An Error has occured”)

Exit Sub
End Select
End Sub
| =/5 « _l’
If a run-time error occurs, the appropriate VBA code L -
executes.

Hoe et Paplowd B

A g Dt
3 o baietn At
[—
s 1, M ety

n
W=

=

4 4 5 o s fots i o fomiston | Choc v conten 7 ST
Penty] S) " 4

The following table lists some of the most common errors that VBA returns when it encounters a run-time
error. Each error code has a description message you can display using the Err.Description property. You

can also capture the code and display your own custom messages.

CODE ERROR REASON

3 Return without GoSub The Return statement exists without a corresponding GoSub
statement.

5 Invalid procedure call The call to another procedure or function cannot be made. This is
usually due to a problem with the arguments; either not calling with a
valid number of arguments, or the value of an argument is not valid
for the procedure.

9 Subscript out of range An attempt was made to access an array element that does not exist.

10 The array is fixed or This occurs when you try to redimension a fixed length array.

temporarily locked

11 Division by zero This occurs when the divisor is zero.

13 Type mismatch The value passed to a variable is not the correct data type.

35 Sub, Function, or Property This occurs when you attempt to call a procedure, function, or
not defined property that does not exist.

8 131dey)

.
.

)
&
=3
UQ
e,
=]
V)]
=
)
a
-
(=]
@

Open a

Workbook

object to open a workbook. This is similar to

clicking the Office button and using the menu to
open a workbook. Each time you open a new workbook,
Excel adds the workbook to the Workbooks collection.

The open method has 16 parameters. This section
discusses the FileName, WriteResPassword, Password,
ReadOnly, IgnoreReadOnlyRecommended, and
AddToMru parameters. Refer to VBA help for a discussion
of the remaining parameters.

Use the FileName parameter to tell VBA the workbook
you want to open. You can use the name of the
workbook if the workbook is located in the current folder.
If the workbook is located in another folder, enter the
path to the workbook. You must enclose the workbook
name or path in quotes.

Open a Workbook

You can use the open method with the workBooks

If you want the user to enter a password before they can
modify the workbook, set the writeResPassword
parameter to the password you want them to enter. If you
want the user to enter a password before they can open a
protected workbook, set the password parameter to the
password you want them to enter.

Set the Readonly parameter to True to make a
workbook Read-Only. If the workbook is Read-Only
Recommended, Excel prompts users to open the file as
Read-Only each time the workbook opens. To eliminate
the prompt, set the IgnoreReadonlyRecommended
parameter to True.

Set the AddToMru parameter to True to add the
workbook to the Recent Documents list.

@ Name your procedure.

@ Create your open command.

® The workbook you want to open.

® Adds the file to the Recent Documents list. g

Sets the file to Read-Only.

9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

4 Microsoft Visual Basic - Chap09-Macros,xdsm - [Madule 1 (Code)]

M e g9 ywe et Fymst Detwg Ben Josh Aot lgedse e Crioper Suserance

Sub OpenWorkbook()

& Microsoft Visual Basic - Chap09-Macros.xism - [Madule 1 (Code)]

[y —

o pie gSt yws puent fgmat Qetog B Josh pasm lfgedse e
= ==t

Sub OpenWorkbook()

\

Workbooks.Open Filename:="Budget.xlsx", _
AddToMRU:=True, -
ReadOnly:=True €———

End Sub

The macro opens the file and adds the filename P R e (@)
. - ®»-"x :
to the Recent Documents list. |- [(S}
T _
o
H Yot -
- ‘ |
- ©
e I’
W basies & 97 AugD? Gepd? Qa7 MNowQ7 DecO7 | é
d Sond - _[I’ $ 2000 $ 2500 S 3000 $5 3000 S 3,000 g
o 8,000 7,000 5,000 4,000 2,500 w
o e > {11 1,500 1,500 3,000 3,000 3,000 .
- o 3,000 3,000 3,000 1,500 1,500 :
i o DO $14500 $14,000 514,000 $11500 $10,000
(T
o Salaries and Wages $ 4200 $ 4200 § 4200 5 4200 § 4200 $ 4200 2
“ Payroll Taxes & Employees Expenses 1,050 1050 1,050 1,050 1,050 1,050 | rd
-] Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000 H
" Rent 1,200 1,200 1,200 1,200 1,200 1,200 :
1 Marketing 1,500 1,500 1,500 1,000 1,000 1,000
wl__leeal & Arcounting o ET s
L S g e B dﬁq.
ey 3 R Wy EE—Y (o)
-
If users try to make a change and save the file,) e sl (el O] - Wicrosol Ex - # ~
. . — e et Page Laywnd Furein Dets. P Vam o s . - x G
Excel warns that the file is Read-Only. oy =y bt 9 B Frem 1) G o o
3 3 [e Rt | T T e T tapansnn Pite. =] bt (o)
T B b Sy s W ey | =
rlte - =
- & 8000 B 7]
L] A 0 I3 a 5 ¥ s “m
1 The Handyman, LLC .. QJ
+ |Budgeted Cash Flow =
. WhO7 Aug07 Sep07 Q07 Mowd7 Decd?
s Cash Receipts 1
s I’alnfulglnk‘:'llm) § 3,000 i o
J o PAPIBEEIO] I\ st s 4 s [0 2500 %
Roofing 1] 1,500
1 Total Cash Receipts 515500 514,500 514000 514,000 $11,500 $10,000
12 Cash Disbursements
o Salaries and Wages $ 4200 5 4200 5 4200 5 4200 5 4200 5 4200
“ Payroll Taxes & Employees Expenses 1,050 1050 1,050 1,050 1,050 1,050
-] Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000
" Rent 1,200 1,200 1,200 1,200 1,200 1,200
17 Marketing 1,500 1,500 1,500 1,000 1,000 1,000
" Lpeal & Arpounting 0 300
%0 5 % Shectl Shews - Shevti E ’+ﬂ L
oty 3 ETE T WEyE——

When working in Excel, use the Save As dialog box to set a password for your file, set your file to Read-Only
Recommended, or set your file to Read-Only. To open the Save As dialog box, click the Office button, click
Save As, and then click any Save As option. The Save As dialog box appears. In the lower-left corner of the
Save As dialog box, click the Tools button. The Tools menu appears. Click General Options. The General
Options dialog box appears. Enter a password in the Password to Open or Password to Modify field to
password-protect your file. Select the Read-Only Recommended option to set your file to Read-Only
Recommended. Click OK to close the dialog box. To make your file Read-Only, click Properties on the Tools
menu. The Properties dialog box appears. Click the General tab and then select the Read-Only attribute.

Open a Text File

as a Workbook

any software applications have an option for

exporting the application’s data to a text file.

You can use VBA'S openText method with the
Workbooks object to import a text file. You can then use
all of Excel’s data-analysis capabilities to analyze the file.
With the openText method, Excel opens the text file as a
single worksheet in a new workbook. The file remains a
text file. Users can modify it and save it as a text file or
as an Excel worksheet.

The list of parameters for the openText method is
extensive. Only the FileName parameter is required. You
use the FileName parameter to tell VBA the name of the
file to open. You can enter the name of a file as the
parameter if the workbook is located in the current folder.
If the file is located in another folder, enter the path to

Open a Text File as a Workbook

the file. Make sure you enclose the path statement in
quotes.

The openText method can handle any delimited or
fixed-width file. A delimited file uses a comma, space,
semicolon, tab, or other character to mark the end of
each column. A fixed-width file aligns the columns and
gives each column a defined width. Use the DataType
parameter to tell VBA whether your file is a delimited file
or a fixed-width file. Use the constant x1Delimited for
delimited files, and the constant x1Fixedwidth for
fixed-width files.

If your file is delimited, you can tell VBA what the
delimiter is. For example, if the delimiter is a comma,
then you set the comma parameter to True.

@ Name your procedure.

@ Create your openText command.

® The file you want to open.

® The file type. g

The delimiter.

9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

 Microsoft Visual Bask: - Chap09-Macros,xdsm - [Module? (Code)]
M Ele G yws et Fgmat Debey Ben Jooh potm jiedoe e

je——y —~q

Sub OpenTextDoc() E

4 Microsoft Visual Basic - Chap09-Macros.xism - [Madule? (Code)]
o fie Gt yws puen fgmat Qetog B Josn pdsm lfpedse s

e =] [owentamar

Sub OpenTextDoc() =
Y
Workbooks.OpenText Fil: "Purch t”,
DataTypo==xanlimilnd,<—._
Comma:=True €——
End Sub
=fa i

The text file appears.

Lo L
Purchase_bate , Item_No,Description,Quantity,unit_Price,Total_Price
1/21/2007,2004,Document Mailers - 25 pack,10,42 98, 4288
1/2/2007,2011,Index cards - 100 pack,50,2.74,137

1/11/2007,2011, Index cards - 100 pack 10,2.74,27.4
1/30/2007,2017 ,Paper Clips - Box 100,100,2. 28,218
1/26/2007,2035,Razor Point_Pens - Box 12,12,12.49,149.88
1/22/2007,2038,C0/OVD Enve'lopes = 25 pack, SD 5.78,289
1/10/2007,2040,5e1f sealing Envelopes - 100 box,25,20.78,519.5
1/9/2007,2042 ,Hanging Data Binders - Each, 50 4. 39 210.5
1/26/2007 2048, Dask Stapler - Each,24,15.7 378

You can open the file in Excel. Bg) BB - puchaesi - - o
— . Weww et Pagrleed Frredn Dets e w-=x
. . sy Dsemttine 52 a3
The macro opens the text file as a worksheet in Wt o T et
R £, o bty il TP
Excel. - .
Al - & Purchase_Date &
] A 8 c D E F o
The file remains a text file. 1 [Purchase_Dateitem_No Description Quantity Unit_Price Total_Price
2 1/21/2007 2004 Document Mallers - 25 pack 10 42398 4298
3 1f2/2007 2011 Index Cards - 100 pack 50 274 137
4 1/11/2007 2011 Index Cards - 100 pack 10 274 274
5 1/30/2007 2017 Paper Clips - Box 100 100 228 228
[1/26/2007 2035 Razor Point Pens - Box 12 12 1243 14588 .
7 1/22/2007 2038 CD/DVD Envelopes - 25 pack 50 5.78 89
B 1/10/2007 2040 Self Sealing Envelopes - 100 box 25 20,78 519.5
] 1f9/2007 2042 Hanging Data Binders - Each S0 439 219.5
10 1/26/2007 2048 Desk Stapler - Each 24 1575 ars
11

12
13
14
15

bty EFIE]

Use the following parameters with the OpenText method to open a text file in a workbook.

PARAMETERS DESCRIPTION

FileName The name and location of the text file.

Origin Indicates the original file platform: x1Macintosh or x1Windows
StartRow The first row to import.

DataType The format of the text file, either x1FixedWidth or x1Delimited.
TextQualifier The character that identifies text.

ConsecutiveDelimiter

Type True to treat consecutive delimiters as one delimiter.

Tab, Semicolon, Comma, Space

Set each of these parameters to True if they are a delimiter.

Other

Set to True to specify the delimiter.

OtherChar If Other is set to True, use this parameter to specify the character to use
as a delimiter.

FieldInfo The column number followed by an X1ColumnDataType constant.

DecimalSeparator The character VBA recognizes as a decimal separator.

ThousandsSeparator

The character VBA recognizes as a thousands separator.

TrailingMinusNumbers

Set to True to designate trailing minus signs as negative numbers.

Local

Set to True to use the computer’s regional settings.

6 1dey)

.
.

'9€§
w
[
=
(V)]
z
=3
'9€§
&
o
)
w
75}
k)
=
(=W
=
=1
(97
75}

Open a File Requested

by the User

open by prompting the user with an Open dialog ~ specify multiple file types if you separate the file types

ou can retrieve the name of the file a user wants to ~ VBA that Excel should only open XML files. You can
box and then using a method to open the file. with commas. Users can then select the file type they

To display an Open dialog box from an Excel procedure, want to use. o

use the GetOpenFilename method. This method does Use the FilterIndex parameter to indicate the default
not open the file when the user clicks OK. Instead, the FileFilter option. You specify a filter value between 1
method passes the name of the file the user selects to a and the number of filters you selected. If you omit this

variable you assign to the statement. If you want to open ~ Parameter, VBA uses the first filter specified as the
the selected file, you must use a method. If the user does default value.

not select a file, the statement returns False. Use the Title parameter to place a title on your dialog
The GetOpenFilename has several optional parameters. ~ DoX. For example, for a dialog box that opens text files,
The FileFilter parameter lets users select the type of ~ you can change the title of the dialog box to “Open Text
file they want to open. You can create a list of values for ~ Files”.

the Files of Type drop-down menu in the Open dialog To enable users to select and open multiple files at once,

box. For example, "XML Files (*.xml), *.xml" tells setthe MultiSelect parameter to True.

Open a File Requested by the User
‘i_'-_ _(ﬂ' dws peet Fymet Qetwg B Josh pMdim jgedos e CpuF e

@ Name your procedure. o e

Sub GetUserFileName()
@ Create a variable to store the filename returned by Dim UFile As Variant <—&)
the GetopenFilename method.

& Microsoft Visual Basic - Chap09-Macros xdsm - [Maduled (Code)]

e Create your GetOpenFilename Command. 4 Microsoft Visual Basic - Chap09-Macros.xism - [Module3 (Code)]

M e 3t e pmn fgmat [ebeg Be Josh podm liedse b ———r——
T e

® Types of files the user can open. 2'}“ 3:‘_:";""‘:"‘_"'"0
m ne s arian

The title of the Open dialog box.

UFile = Application.
e GetOpenFilename

(FileFilter:="Text Files(*.txt), *.txt,Modules(*.bas),*.bas",
Title:="Text Files'

Create a command to open the workbook.

®©0 .

Press Alt+F11 to switch from the VBE to Excel,

and run the macro. If UFile <> False Then _
Workbooks.OpenText Fil UFile == 9

End Sub

@ o ﬂ

The macro opens the Open dialog box. By haectr R e s

L

Pt St

The list of file types the user can open.

The title of the dialog box.

@ Double-click the file you want to open.

The macro opens the file. By Wi e
— b bt Peplyed s D #-=x
i e % ¥
e e RS
T Mty s ol [RTES e T
cotr e el
Al -9 4 Purchase_Date -
| 4 A 8 c D E £ GH
1 llem_,No Description Quantity Unit_Price Total_Price
2 1/21/2007 2004 Document Mallers - 25 pack 10 4298 4298
3 1/2/2007 2011 Index Cards - 100 pack 50 274 137
4 1/11/2007 2011 Index Cards - 100 pack 10 .74 74
5 1/30/2007 2017 Paper Clips - Box 100 100 2.28 228
[1/26/2007 2035 Razor Point Pens - Box 12 12 1245 l49.88 .
7 1/22/2007 2038 CD/DVD Envelopes - 25 pack 50 5.78 289
B 1/10/2007 2040 Self Sealing Envelopes - 100 box 25 20.78 5195
] 1f9/2007 2042 Hanging Data Binders - Each 50 4.39 2195
10 1/26/2007 2048 Desk Stapler - Each 24 15.75 378
11
12
13
14
15
16 .
-t 0] purchasms 43
i] 2) 4

The FileFilter parameter enables you to create a list of files users can select in the Open dialog box. You
describe the file and follow the description with a comma and a wildcard file specification. If you do not set
this parameter, VBA lists all of the file types Excel can open.

Example:
Text Files (*.text), *.txt

An asterisk (*) is a wildcard character that represents any string of characters, and a question mark (?) is
a wildcard character that represents a single character. The notation *.txt means any filename that ends

with .txt.

*.axt, *.prn, *.csv Text files

*xls, *.xlm, * xI, * xlc, *.xlsx, * xlsm Microsoft Excel files
*.htm Web pages

* xml XML files

*.odc, *.udl, *.dsn Data sources

*.mdb, *.mde Access databases

* wk? Lotus files

*.wks Microsoft Works 2.0 files
*.dbf dBase files

M Suryiom :6 101dey)d

.

=
v9€=
&
o
o
=~
%)
)
=
(=N
=
|1
(97
»

Save a

Workbook

or saveas method of the Workbook object. VBA

creates a workbook object for each workbook you
open. You can reference a specific workbook object by
name. For example, Workbooks ("Sample.xlsx") refers
to the sample.x1sx workbook.

If you do not know the name of the workbook you want
to save, you can make the workbook you want to save
the active workbook, and then use the activeWorkbook
property to save the workbook. For example, the code
ActiveWorkbook.Save saves the active workbook.

If the workbook you want to save contains the macro
that is currently running, you can use the Thisworkbook
property. For example, the code Thisworkbook . Save
saves the workbook in which the macro is located. The
workbook that contains the macro is often the active
workbook. However, if you open a new workbook during

Save a Workbook

T o save an Excel workbook, you can use the save

the execution of a macro, the new workbook can become
the active workbook.

To set save specifications for a workbook, use the
Workbook . SaveAs method, which has the following
parameters: FileName, FileFormat, Password,
WriteResPassword, ReadOnlyRecommended,
CreateBackup, AccessMode, ConflictResolution,
AddToMru, and Local.

Use the FileName parameter to specify the filename and
the folder in which to save the workbook. If you do not
set this parameter, Excel uses the workbook’s filename.

Use the FileFormat parameter to specify the file format
for saving the file. You can use any of the file formats
that Excel supports by entering one of the x1FileFormat
constant values. See Appendix A for a list of the
X1FileFormat constant values. Set the addToMru
parameter to True if you want to add the workbook to
the Recent Documents list.

@ Name your procedure.

@ Create your saveas command.
® The name you want to give the saved file.
® The file format.
Adds the file to the Recent Documents list.

9 Press Alt+F11 to switch from the VBE to Excel, and run the
macro.

@

s Microsoft Visual Baskc - ChapD3-Macros,xdsm - [SaveWorkbookExample (Code)]

N b g8 ywe punt fyme Detwg B Josh pStim lfjedes e Fleformat

[y Bl]
Sub SaveCurrentWorkbook() 4—0 3

e
]
=

4 Microsoft Visual Baskc - ChapD9-Macros,xdsm - [SaveWorkbookExample (Code)]

M e GS pee pun fame Dty B Jesh ptim ledes bee ikt s.mx
=0 <] [iamrr e

Sub SaveCurrentWorkbook()

ThisWorkbook.SaveAs <& 9
FiI-n:nﬂ:I"Sampln.xlsm",ﬂ—.
FileFormat:=xI0OpenXMLWorkbookMacroE
AddToMRU:=True €—

End Sub

The macro saves your file.

® The macro adds your file to the Recent Documents list.

) L — Siiimigile akirn - Microsoft Excel -
= b bt Paplyed Fedn Ois e Vem | Ovesen | Sathn ®-n
— T i bl = - L D ey Booputers T gt
anljer sl [g = i trwwen Pt =] e
il b= o [V T
e [wa
Al - g 3 -]
[& i i]
) I—
[
[
L]
u
=
T =
=] (e e e —
& e ¥ Samprle xism - Microsoft Exced -t
[P — e, -
. Bt e e -
chescer -2 T o Picta =] bure
ue
17 s f
| £ =
B = n
& e
i
= fy
o
[ety [[Xt et |
u
=
00 0 m simet1 thastt Shwecs sl §
toaty] =] 4

The SaveAs method has several optional parameters that determine how the file is saved. Remember to use
the named parameter option to specify parameter values for the method.

SAVEAS PARAMETER DESCRIPTION

FileName Indicates the name and location to save the file.

FileFormat Contains an X1FileFormat constant that indicates the format for saving the file.
See Appendix A for a list of X1FileFormat constant values.

Password Contains up to a 15-character password that is required to open the file.

WriteResPassword

Contains the password for write-restricting the file.

ReadOnlyRecommended Set to True to display a message that recommends that the user open the file as
Read-Only.

CreateBackup Set to True to create a backup file.

AccessMode Contains a constant value of xIExclusive, xINoChange, or xIShared to indicate access

mode.

ConflictResolution

Contains a constant indicating how to resolve conflicts. A value of xlUserResolution
displays a Conflict Resolution box, xILocalSessionChanges accepts a local user’s
changes, and xIOtherSessionChanges accepts changes from other users.

AddToMru

Set to True to add a workbook to the Recent Documents list.

Local

Set to True to save files in the language used by Excel; set to False to save files in
the language used by VBA.

6 1dey)

.
.

§
w
P o
=
(0)°]
g
=3
'9€'§
&
o
)
w
75}
k)
=
(=W
=
=1
(97
75}

Save a Workbook in a

Format Specified by the User

ou can use the GetSaveAsFilename method to

request the name, location, and format to use

when saving a workbook file. This method
displays the Save As dialog box from which the user
selects the file they want to save. The
GetSaveAsFilename method does not save the file;
instead, VBA returns the user’s information to the
variable you assign to the GetSaveAsFilename
statement. If the user does not make an entry, the
variable returns False. To save the file, use the saveas
method. See the section, “Save a Workbook,” for more
information. The GetSaveAsFilename method has the
following optional parameters: InitialFilename,
FileFilter, FilterIndex, and Title.

Use the InitialFilename parameter to suggest a name
for the file. If you do not suggest a name, Excel uses the
name of the active workbook. Use the FileFilter

Save a Workbook in a Format Specified by the User

parameter to create a list of file formats users can use to
save the file. If you do not include this parameter, Excel
lists all available formats. To create the list, describe the
file type, place a comma after the description, and then
place a wildcard specification after the comma, for
example:

Text Files (*.text), *.txt

An asterisk (*) is a wildcard character that means any
string of characters. The notation *.txt means any file
that ends with .txt.

Use the FilterIndex parameter to select a default file-
filtering option from the Filerilter parameter options.
You can use a filter value between 1 and the total
number of filters. If you omit this parameter, VBA uses
the first filter as the default value. Use the Title
parameter to place a title on the dialog box.

@ Name your procedure.

@ Declare your variables.

e Create a GetSaveAsFilename cOmmand.
® The filter list.

® The dialog box title.

4 Microsoft Visual Baskc - Chap09-Macros, xlsm - [Module5 (Code)]
M Ele G e punt fgwat Debey Ben ook gt fjedes b
o e =

PeR—

Sub GetUserSaveFile()
Dim UserFile As Varianl<—9

 Microsoft Visual Baskc - Chap09-Macros, xlsm - [ModuleS (Code)]
M pe gt gws put fgmat Qebug Ben Josn jpddm jpedes tee
=03 <] [cmtiomatin

e ———

Sub GetUserSaveFile()
Dim UserFile As Variant

UserFile = Application. _
GetSaveAsFilename _
(FileFilter:="Excel Workbooks(*.xlIsx; *.xlsm),*.xlsx;*.xIsm)",

Title:="Save Workbook As")

@ Create a command to save the file.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

The macro opens the Save Workbook As dialog box
and then saves the file you specify.

4 Microsoft Visual Bask - Chap09-Macros,xlsm - [Module5 (Code)]
M Bl G e et Fgwat Debug Ben Jooh gt fjedos b

P R—

Lrarar =] [t

Sub GetUserSaveFile()
Dim UserFile As Variant

UserFile = Application. _

GetSaveAsFilename

(FileFilter:="Excel Workbooks(*.xlsx; *.xIsm),".xlsx;*.xlsm)",
Title:="Save Workbook As")

If UserFile <> False Then _
ThisWorkbook.SaveAs Fil UserFile <& e
End Sub
=15 « o
o9 Wt
— . e L Page Loywd Prreain Drte. e Viam o Rad b ¥ - = x
] B bl # T b 3
T g | 5% W0
Vet i e v
e R e ety prw b I
<o ot e
oz -G £ 7
== .
" eap [(Qee - ¢ axXma-
3]
Bowien
i
s
e

files have an .xlw filename extension.

parameter.

Examples:
Application.SaveWorkspace ("Sample")

Instead of saving an individual workbook, you can save the entire workspace. Saving workspaces enables you
to save all open workbooks as a group. When you open a workspace, all of the workbooks open. Workspace

To save a workspace, use the Savellorkspace method of the Application object. The SaveWorkspace
method has one parameter: FileName. To save your file in the current folder, enter the name of the file as
the FileName parameter. To save to another folder, enter the path and the filename as the filename

Application.SaveWorkspace ("C:\Workbooks\Sample")

6 1dey)

.
.

§
w
P o
=
(0)°]
g
=3
'9€'§
&
o
)
w
75}
k)
=
(=W
=
=1
(97
75}

Determine If a

Workbook Is Open

he Workbooks collection contains all of the
I workbooks that are open in Excel. You can

determine if a workbook is open by examining
the workbooks in the workbooks collection. As a new
workbook opens, it becomes a Workbook object and
Excel adds it to the workbooks collection. Excel stores
workbooks in the Workbooks collection sequentially and
assigns each workbook an index value based on its
sequence. For example, the first workbook opened is the
first workbook in the collection, and VBA assigns it an
index value of 1; the next workbook opened is the
second workbook, and VBA assigns it an index value of
2. If you know the order in which a workbook opened,
you can access the workbook by using the associated
index value.

The code MyWorkbook = Workbook (1) .Name uses the

Name property to return the name of the first workbook in

Determine if a Workbook Is Open

the collection to the MyWorkbook variable. The Name
property is a read-only property. You can use it to return
the name of a workbook, but you cannot use it to change
the name of a workbook. To learn how to change the
name of a workbook, see the section, “Save a Workbook.”

To locate a workbook, look at each workbook in the
Workbooks collection. With a For Each Next loop
statement, you can cycle through all open workbooks.
See Chapter 6 for more information about using a For
Each Next loop statement.

Within a looping structure, you can compare the name of
each workbook with the name of the desired workbook.
With an If Then statement, you can check the name of
each workbook and then execute a series of statements
when the workbook you want is found. See Chapter 6 for
more information about using an 1f Then statement.

@ Name your procedure.
@ Declare your variables.
@ Assign Fa1se to a Boolean variable.

You set this variable to True if the active
workbook is the workbook that you want to
activate.

e Assign the file you are looking for to a variable.

@ cCreatea For mach Inloop.

This statement allows you to review every open
workbook.

@ Createan 1£ Then statement.

The code looks at every open workbook; if it finds
the workbook you requested, it activates the
workbook and displays a message.

® |f the macro does not find the workbook, it looks
in the current directory and opens the workbook.

0 Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

@

4 Microsoft Visual Basic - Chap09-Macros.dsm - [sOpenExample (Code}]

M i Gt ywe et fgrmet Debeg Ben Josh jodm lijedse be p— .
= =] e

Sub CheckWorkbook() 2

D)

whOpen = False‘—e
whFilename = "Budget.xlsx™ 4—9

4 Micrasoft Visual Basic - Chap09-Macras, xism - [sOpenExample (Code)]

A e Gt e pun fgma Detwg B Josh pStim ledse bee itk s.mx
=0 <] [t

whbOpen = False
wbFilename = "Budget.xlsx™

For Each wh In Application.Workbooks
If wb.Name = wbFilename Then 4—0
wbOpen = True
whb.Activate
MsgBox "Workbook is already open.”
End If
Next
If wbOpen = False Then
Workbooks.Open thIIanam‘—.
End If

End Sub

ST o

The macro opens the file you specified and activates it.

If the file is already open, the macro displays the
message, “Workbook is already open.”

TR Budget xiex - Microsoft Excel -t
) et Exe
" Mo buet Paplams beedn D Bews e -
— D B bl - T
2o I A e baintn by e Vo o)
[T D o
B M e Gl T
e [e
B2 -Gt i
L] x N & 2 i 3 “m
1 The Handyman, LLC |.
2 | Budgeted Cash Flow I | |
' |
* W07 Aug07 Sep07 OCt07 NowQl Decd?
+ Cash Receipts

. Painting Interior $ 2000 § 2000 5 2500 5 3000 5 3000 5 3,000
r Painting Exterior 8,000 8,000 7,000 5,000 4,000 2,500
1 Drywall 1,500 1,500 1,500 3,000 3,000 3,000
s Roofing 3000 3,000 3,000 3,000 1,500 1,500
10 Total Cash Receipts $14500 $14500 $14,000 $14000 $11500 $10,000

12 Cash Disbursements
| Salaries and Wages

$ 4200 5 4200 5 4200 5 4200 §5 4200 5 4,200

| Payroll Taxes & Employees Expenses 1,050 1050 1,050 1050 1050 1050
5| Owner Withdrawals 2000 2000 2000 2,000 2000 2,000
" Rent 1,200 1,200 1,200 1,200 1,200 1,200
© Marketing 1.500 1500 1000 1,000

. eeal & Arcounting
@ 4 5 0 Shect] - Shests - Sheesd

ety T =i]

300,

= Weew et Puplawd s D Rews fam
gy et

=3 [s Batets Rt
Vel bimren
-

P T— .
ok [

B2 il &
Il A [3 o t . o ‘ i
1 | The Handyman, LLC I
2 | Budgeted Cash Flow I_I
3 ‘
“ b0 Aug-07 Sep-07 Oct-07 Now-07 ec-07

+ Cash Recelpts

[Painting Interior $ 2000 5 2,000 5 2,500 5 3000 5 3000 5 3,000
r Painting Exterior 8,000 8,000 7,000 5,000 4,000 2,500
[Duywall 3,000 3,000 3,000
s Roofing 3,000 1,500 1,500
12 Total Cash Recelpts £14,000 $11,500 $10,000

u
12 Cash Dishursements

0 Salaries and Wages i XTI » § 4200 § 4200 5 4200

;- Payroll Taxes & Employees Expenses 1050 1,050 1,050 1,050 1,050 1,050

3 Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000

" Rent 1.200 1,200 1200 1,200 1,200 1,200

o Marketing 1,000 1,000 1,000
300

. leeal K Arcounting
| et St et

ERE]

If a workbook is open, you can activate it by using
the Activate method of the Workbook object.
The activated workbook becomes the currently
selected workbook in Excel. The Activate method
has no parameters. Specify the workbook to
activate, followed by the method.

Example:
Workbooks ("Budget .x1sx") .Activate

Using Application.Workbooks returns all
workbooks, including hidden workbooks, but it
does not return any open add-ins. To return a
specific add-in, reference the add-in by name.

Example
Workbooks ("OpenAddin.xla") .

The Open method opens the specified add-in file. If
you do not specify the path, Excel looks for the
workbook in the current folder. See Chapter 16 for
more information on add-ins.

6 1dey)

.
.

'9€§
w
[
=
(V)]
z
=3
'9€§
&
o
)
w
75}
k)
=
(=W
=
=1
(97
75}

Workbook

ou can close a workbook by using the ciose

method and referencing the workbook object that

contains the workbook you want to close. When
you open a workbook, VBA assigns the workbook an
index value. For example, VBA assigns the first workbook
you open an index value of 1, and the next workbook you
open an index value of 2. The Workbooks collection
contains all open workbooks as individual Workbook
objects. You can reference a workbook by using an index
value, the name of the workbook, the ActiveWorkbook
property, or the Thisworkbook property. If you close a
workbook that is running the macro and you have code
after the close statement, Excel may ignore the code. The
following examples close a workbook:

Workbooks (1) .Close

Workbooks ("Budget .x1sx") .Close
ActiveWorkbook.Close
ThisWorkbook.Close

Close a Workbook

The close method has three optional parameters:
SaveChanges, Filename, and RouteWorkbook. Set the
SaveChanges parameter to True to save changes to a
workbook as it closes. A saveChanges value of False
closes the workbook without saving, and you lose any
changes you have made since your last save. Use the
FileName parameter to tell VBA the name you want to
give your file when you save it.

If you set up the workbook to route, you can use the
RouteWorkbook parameter to route the workbook to the
next recipient on the routing list. You specify a value of
True to route the workbook; you specify a value of
False if you do not want the workbook to be sent to the
next recipient.

@ Name your procedure.

@ Create your close command.

® The workbook that you want to close.

® Saves any changes. g

The new filename.

@

 Microsoft Visual Baskc - Chap03-Macros,xdsm - [CloseExample (Code)]
M Ele G pes et Fgmat Debwy Ben Josh potim jiedoe e koo a%

e < [o)
Sub CloseOpenWorkhbook() 4_-—-—5 B

4 Microsoft Visual Basic - Chap09-Ma s.xlsm - [CloseExample (Code)]
N g Got ywe puet Fgma Detwy Bl Tosh pddim fedos e p—re—
=0 <] [chmvecwememetiest

Sub CloseOpenWorkbook()
Y

Workbooks("Budget.xlsx").Close _
SaveChanges:=True, =

Filename:="Budget2.xlsx"” <€—

@ Create a message for the user. e e S -

= i —

@ Press Alt+F11 to switch from the VBE to Sub CloseOpenWorkbook()
Excel, and run the macro.

Workbooks("Budget.xlsx™).Close _
SaveChanges:=True, _
Filename:="Budget2.xIsx"

6 1dey)

.
.

MsgBox "Budget.xIsx saved as Budget2.xlsx and closod.“‘——e §

-

End Sub o0

P o

=

uQ

z.

=

=

SO 2 2

The macro closes the file specified in the i) e - i — =
macro, saves it under the name specified P ——G—— e g
in the macro, and then displays a message e = o
to the user. 2 -G “] g?
= ; : ; . =

z | =

" Micresolt Exeel 3 ! '-ﬂ

: ST ! =

: o

: i n

PRTIPITORTRRERRIIE]
= TERE So===——

By using the Close method with the Workbooks object, you can close all workbooks that you have open in
Excel. If the SaveChanges parameter does not have a value specified, Excel checks to ensure that you have
saved each workbook since its last modification. If a workbook contains modifications, Excel prompts you to
save the workbook. The following example closes all open workbooks.

Example:
Workbooks.Close

When you close all workbooks, Excel remains open. If you want Excel to close, use the Quit method with the
Application object.

Example:
Application.Quit

Before closing Excel, the Quit method first closes the open workbooks. If any of the workbooks contain
changes, Excel prompts you to save the changes. If you do not want to save modified worksheets and you do
not want the dialog box to ask you to save changes, set the DisplayAlerts property to False. This
property determines whether the alert message displays when Excel performs a task.

Example:
Application.DisplayAlerts = False

Create a New

Workbook

o create a new Excel workbook, use the add
I method with the workbooks collection. The aad
method has one optional parameter: Template.
The following is the syntax for the add method:

Workbooks .Add (Template).

To tell VBA how to create a workbook, use the Template
parameter. You can use another workbook or one of the
four x1wBATemplate constant values as the template
parameter.

When you use a workbook as the template, Excel copies
the workbook into a new workbook. You can use the
name of the workbook as the parameter if the workbook
is located in the current folder. If the workbook is located
in another folder, use the path to the workbook.

Create a New Workbook

The x1wBATemplate constant has four values. You can
use x1WBATWorksheet to create a workbook containing
one worksheet; x1WBATChart to create a workbook
containing one chart sheet; x1WBATExcel4MacroSheet
to create an Excel 4.0 macro sheet; and
x1WBATExcel4IntMacroSheet to create an international
macro sheet.

When you use the ada method without the template
parameter, Excel creates a new workbook with the name
Book1.xIsx. If a workbook already exists with that name,
Excel assigns the name Book2.xlIsx. You can use the
Title property to specify the title of the workbook. To
name and save the new workbook, you can use the
saveas method. See the section, “Save a Workbook,” for
more information on the saveas method.

o Name your procedure.
@ Declare a new Workbook object.
@ Create your ada command.

® The workbook that you want to use as a template.

Q Assign a title to your workbook.
6 Name and save your workbook.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

 Microsoft Visual Baskc - Chap03-Macros,xdsm - [NewWorkbookExample (Code)]

M Ele G e punt fywat Debey Ben Josh gt fjedos pee waribook
=0 <] [rvmmemesbens

Sub CreateNewWorkbook() =
Dim NewWB As Workbook 4—9

Set NewWB = Workbooks.Add("Budget.xIsx") 4—9

M fe gt gwe Pt fgmat Qebug Ben Josn ot lfgedse e koo
e ==

Sub CreateNewWorkbook()
Dim NewWB As Workbook

Set NewWB = Workbooks.Add("Budget.xIsx")

NewWB.Title = "Budget File 2"4—9
NewWB.SaveAs “anBudget.xlsx’"—e

End Sub

@ The macro creates and saves the new workbook. oy 7 @ et o e e g
D JaENT. R ITI BT &

T 8 b Sy b e ol L T WSS '.c

ol Gt s =t

i Al = - & 7heHand\rm.an,LL|‘_] ,9;

1 [The Handyman, LLC | |F O

+ | Budgeted Cash Flow
)

* W07 Aug07 Sep07 OCt07 NowQl Decd?

.
.

+ Cash Receipts

. Painting Interior $ 2000 § 2000 5 2500 5§ 3000 5 3000 5 3,000
? Painting Exterior 8,000 8,000 7,000 5,000 4,000 2,500
1 Drywall 1,500 1,500 1,500 3,000 3,000 3,000
3| Roofing 3000 3,000 3,000 3,000 1,500 1,500
10 Total Cash Receipts $14500 $14500 $14,000 $14,000 $11500 $10,000

12 Cash Disbursements

u Salaries and Wages 5 4200 5 4300 5 4200 § 4300 5 4200 § 4,200
| Payroll Taxes & Employees Expenses 1,050 1050 1,050 1050 1050 1050
5 Owner Withdrawals 2000 2000 2000 2,000 2000 2,000
" Rent 1,200 1,200 1,200 1,200 1,200 1,200
0 Marketing 1500 1,500 1500 1000 1,000 1,000

W eeal & Arcounting
B4 Sheell - Shest - Shest)

1 Budgeted Cash Flow

besty T
The macro adds the title to the Document o) e T —
SRS TS T e b FE I e e
L) Snrtien (I fomare P~ i
® e e e i
2 - - o prec
]
Al - & | The Handyman, LL& 1
1i¥he!undmlﬂ,LLL‘ I ’ : ! ')) : F

'9€§
w
[
=
(V)]
z
=3
'9€§
&
o
)
w
75}
k)
=
(=W
=
=1
(97
75}

k07 Aug07 Sep07 Octd7 Nowd7 Decd?

'
.

s Cash Recelpts

[Painting Intetior $ 2000 5 2000 5 2500 5 3,000 5 3000 5 3,000
T Painting Exterior 8,000 8,000 7,000 5,000 4,000 2,500
' Drywall 1,500 1,500 1.500 3,000 3,000 3,000
’ Roofing 3,000 3,000 3,000 3,000 1,500 1,500
1 Tatal Cash Recelpts $14500 $14500 $14,000 514,000 $11,500 $10,000

1
12 Cash Disbursements

— 4200 S 4200 S 4200 5 4
e 3 - EI] 7 g

You can use the following properties with the Workbook object.

PROPERTY DESCRIPTION

ActiveSheet The string indicating the name of the active sheet in the workbook.

FileFormat The Read-Only value indicating the format of the workbook. This value returns an
X1FileFormat constant; see Appendix A for more information.

FullName The Read-Only string indicating the name and complete path to the workbook.

HasPassword The Read-Only Boolean value indicating whether the workbook is password-
protected.

Name A string indicating the name of the workbook.

Password Returns or sets the password string for the workbook.

Path Returns the complete Excel application path.

ProtectStructure The Read-Only Boolean value indicating whether the order of the sheets in the
workbook is protected. If True, you cannot move, delete, or add worksheets.

ReadOnly The Read-Only Boolean value indicating whether the workbook was opened as
Read-Only.

ReadOnlyRecommended The Read-Only Boolean value indicating whether the workbook was saved as
Read-Only.

Saved Contains a Boolean value indicating whether changes were made since the

workbook was saved.

file. You can use this statement to delete any file
that the user has permission to delete. The
following is the syntax for the k111 statement:

Kill (Pathname)

The VBA kill statement deletes a workbook or

The ki11 statement requires one argument: Pathname.
The pathname argument is a string referencing the files
you want to delete. You can use the name of a workbook
as the parameter if the workbook is located in the current
folder. If the workbook is located in another folder, use
the path to the workbook. Make sure you enclose the
path in quotes.

You can specify the name of a single file by typing the
complete filename, including the extension. You can

Delete a File

remove multiple files at once by using wildcard symbols
to specify multiple characters. An asterisk (*) represents
multiple characters, and a question mark (?) represents a
single character. For example, you can remove the entire
contents of a folder by using the *.* specification. The
statement Kill "C:\Excel Files*.*" deletes every
file in the Excel Files folder. If you only want to remove
the Excel workbooks, you can use ki1l "cC:\Excel
Files*.xls?".

You cannot delete open files. If you attempt to do so, a
Permission Denied error appears. You also cannot delete
files that are Read-Only. If you attempt to delete a Read-
Only file, Excel displays a Path/File access error message.

@ Name your procedure.
@ Declare your variables.

This example uses the peletewb variable to store the
name of the file you want the user to delete.

e Use the GetsaveaAsFilename method to request from
the user the file that the user wants to delete.

Note: See the section, “Save a Workbook in a Format Specified
by the User,” to learn more about the
GetSaveAsFilename méthod.

@

 Microsoft Visual Baskc - Chap09-Macros,xlsm - [DeleteF llesExample (Code)]
Bl [e et Fywat Qebuy Ben Jooh gt fjedes b waribook f-BK

o=y =] [Pt =
Sub nnlnmnl-sn<—o E
Dim DeleteWb As String 4—9

 Microsoft Visual Basic - Chap09-Macros. xism - [Deletef ilesExample (Code)]
M Bl St e et Fgmat Osbeg B ook Ritim fiedew G s B LR
= =] eietion v

Sub DeleteFiles()
Dim DeleteWb As String

DeleteWhb =
Application.GetSaveAsFilename
(Title:="Select Files to Delete")

@ Delete the file.

6 Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

The macro requests a filename and then deletes
the file.

 Microsoft Visual Baskc - ChapD3-Macros,xlsm - [DeleteF llesExample (Code)]
M Ele Gt pes punt fgmat Debey Ben Jooh pSeim e

=0 <] [imimstae

Sub DeleteFiles()
Dim DeleteWb As String

DeleteWb =

Application.GetSaveAsFilename
(Title:="Select Files to Delete")

Kill (DeleteWh) 4—9

End Sub

Move et Paplod fwedn Dets

sy Dbt
2 e Bttt Bt

2 W-G s

S - m—
7 Select Files to Delete 7%
| e 5 @-a N

3 el

e |
[T

-

The Ki11 statement only removes files; it does not
remove folders. To delete a folder, use the RmDir
statement. The RmDir statement takes one
argument: Path. If you omit the argument, VBA
tries to delete the current folder. For the path
argument, specify the location of the folder that you
want to remove. For example, the code

RmDir ("Excel Files") removes the Excel Files
folder. The RmDir statement only removes folders;
it does not remove any files. If the folder you are
deleting contains any files, an error appears telling
you that Excel cannot remove the folder.

When working with folders, you may need to know
the current path. To determine the path to the
current folder, use the CurDir function. The
CurDir function returns a string containing the
path to the current folder. You can assign the value
returned by the function to a variable, as shown in
following example.

Example:
CurrentFolder= CurDir

6 1dey)

.
.

§
w
P o
=
(0)°]
g
=3
'9€'§
&
o
)
w
75}
k)
=
(=W
=
=1
(97
75}

o0 add a new sheet to a workbook, you can use

the add method with the sheets object. You can

use this method to add a worksheet, chart sheet,
or macro sheet. The add method has four optional
parameters that specify where in the workbook to place
the sheet, the number of sheets to add, and the type of
sheet to create. The following is the syntax for the aad
method when used with the sheets object:

expression.Add (Before, After, Count, Type)

Use the expression to identify the workbook to which
you want to add a worksheet. Use the Before parameter
to tell VBA the worksheet before which you want to place
the new worksheet, or use the aAfter parameter to tell
VBA the worksheet after which you want to place the
new worksheet. Excel references sheets in a Wworksheets
collection based on the order of the sheets in the

workbook from left to right. The first worksheet on the
left has an index value of 1 and is referred to as
Worksheet (1). To reference a sheet, you can use the
sheet name or the worksheets collection with an index
value, as in this example: ThisWorkbook.Sheets.Add
Before:=Worksheets (1).

You can use the count parameter to add multiple sheets
to a workbook. If you do not specify a value for the
count parameter, Excel adds one sheet.

By default, the Ada method creates a worksheet. You can
also use this method to create chart or macro sheets. You
specify the type of sheet you want to create by using one
of the four x1sheetType constant values: You use
x1lWorksheet to add a new worksheet, x1chart to add a
chart sheet, x1Excel4Macrosheet to add a macro sheet,
and x1Excel4IntMacroSheet to add an international
macro sheet.

@ Name your procedure.

@ Create your ada command.

® The sheet before which you want to add the new
sheets.

® The number of sheets you want to add.
The type of sheet you want to add.

9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

 Microsoft Visual Baskc - Chap10-Macros,xlsm - [AddSheetExample (Code)]

B gl S yws pet Fymat Oebug Bem Josh hotm fjedee e

. R 2
Sub AddSheettoWorkbook() 420 B

 Micrasoft Visual Baskc - Chap10-Macros.xlsm - [AddSheetExample (Code)]
@ e 3t yws puent Fymat Debeg B Josh podim jljedee e
T i

Sub AddSheettoWorkbook() g
4—.
0
-
End Sub
-5 o

The workbook before you run the macro. (o) ey Rk s
i e PSSl 1E
e ey [A s e
Al - i fi Sales =
: : .
January 5) 128,569 5 . 134,578 5] 1}'5,37 5 439,939
« February 112,115 112,926 136,305 361,346
& March 156,411 147,791 118,184 422,386
s April 149,427 101,633 104,102 355,162
* May 121411 126,557 184,693 432,661
1 June 100,643 107,442 143.001 351,086
» Total $ 768,996 5 730,927 % 862,657 $ 2,362,580
5!
o =) 5
® The workbook after you run the macro. owa el —F
. o Comimrnel iy 7 ot © fi? J}
The macro adds two worksheets before the first e
worksheet in the workbook. L S
: ; z i

If you know that you want Excel to add new sheets before the first sheet in the workbook or after the last
sheet, reference an element of the Worksheets collection. Excel always makes the first sheet in the
workbook the first element in the Worksheets collection. You can refer to it as Worksheets (1) . You can
use the Count method with the Worksheets object to determine the last sheet in the workbook. The
expression Worksheets.Count returns the total number of worksheets in the Worksheets collection.
The following example places a worksheet after the last sheet in the workbook.

Example:
ThisWorkbook.Sheets.Add _
After:=Worksheets (Worksheets.Count)

You can also reference a sheet by name. For example, by default, Excel names worksheets Sheet1, Sheet2, and
so on. If you want to place new sheets before Sheet1, use the following as the Before parameter:
Before:=Worksheets ("Sheetl").

o1 Iadey)

.
.

5
Z.
=
V)]
z
=x
5
w
2]
=
(¢
(¢
o=t
75}

Delete a

Sheet

ou can delete or remove from a workbook any

sheet you can modify. If you open the workbook

in Read-Only mode or if someone has protected
the worksheet, you may not be able to remove the sheet.

To delete worksheets, use the pelete method with the
Sheets object. You can remove any sheet from the
workbook, including sheets, chart sheets, and macro
sheets. To use the pelete method, you simply identify
the sheet you want to remove. The following example
removes the first sheet in a workbook:

Sheets (1) .Delete

Every sheet has an index value. This example deletes the
sheet with the index value of 1. Excel numbers sheets
and charts as you add them to the workbook as follows:
Sheet1, Sheet2, and so on (or Chart1, Chart2, and so on).

Delete a Sheet

However, the VBA index number does not always
correspond with the number given to the sheet by Excel.
VBA assigns index values numerically, starting with the
first sheet on the left. If you move sheets within your
workbook, Excel reorders them in the sheets object. The
first sheet on the left always has an index value of 1.

You can also use the sheet name to reference the sheet
you want to delete. You must enclose the name of the
sheet in quotes, as in the following example:

Sheets ("Sheet3") .Delete

Whenever you perform a deletion, Excel displays a
message box to verify that you really want to remove the
sheet. Click Yes to remove the specified sheet from the
workbook. Remember that if the sheet contains any data,
Excel permanently removes the data.

Name your procedure.
o @

@ Declare your variables.

@ Create an input box.

The users enter the name of the sheet they want to
delete into the input box, and VBA stores the name
to a variable.

9 Create a Delete command.

® The variable containing the worksheet that the user
wants to delete.

@ Press Alt+F11 to switch from the VBE to Excel and
then run the macro.

@

« Microsoft Visual Basic - Chap10-Macros xlsm - [RemoveSheetExample (Code)]
B phe ot e peet gt Oebug B ek hodim ljedes g v R
= <] [Pememipactcsier

Sub R S

pecificSheet()
Dim DeleteWS As Slring<—9

4 Microsoft Visual Basic - Chap10-Macros.xism - [RemoveSheetExample (Code)]

B pl g9 yws poet Fgmat Debug Ben Tosh Ao fedos Hes
oot - (e i

Sub RemoveSpecificSheet()
Dim DeleteWS As String

DeleteWs =
InputBox("Which sheet do you want to delete?")

otows) Dotete<—O

Sheets(D

End Sub

® The macro displays the message box requesting the
sheet the user wants to delete.

The macro deletes the sheet.

oo B
=)

ant ! bt b W " s

] —

Movs et Paplawd fuedn Des Bews Vem | Croewen | lavkn w -

.
: E
[
[
= s s ks et 2 e
i |
u
"
4 0 ety e bty ket shoets Y W
reety T =] 4
(o) @t Bl [} ot -
—7 v | et Pagrieed beeedn Des Beews Ve Oewigw ladde Wiec®
= & o . o I Contmerat Fvmaig | v+ | Ei
4 LA et Bl S
— 4 L PR | S P Poenec @ Qr "“
"y R sA B e gy S Calayim Ehhot | 2* fase tamns
. T p—— 3L i - I
Al J— =
3] E t]
.E:: |
3 i
' |
3 |
'
o
m— s s i ———
i | 2) 4

If you want to create a procedure that removes only
worksheets from the workbook, you can use the
Delete method with a Worksheets object instead
of the Sheets object. The Sheets object contains
all worksheets, chart sheets, and macro sheets that
are open in a workbook, whereas the Worksheets
object only keeps track of the open worksheets. If
you use the Worksheets object to remove the first
worksheet in the workbook, Excel ignores any chart
sheets before the first worksheet. The following
statement deletes the first worksheet in the
workbook and ignores any other sheet types.

Example:
Worksheets (1) .Delete

If you want to create a procedure that removes only
chart sheets from a workbook, you can use the
Delete method with the Charts object. The
Charts object contains all of the chart sheets that
are contained in the workbook. This method works
only with chart sheets, not charts embedded in
worksheets. When you use the Charts object with
the Delete method, Excel only considers actual
chart sheets and ignores any worksheets, even if
they exist before the specified chart sheet. The
following statement deletes the first chart sheet in
the workbook and ignores any other sheet types.

Example:
Charts (1) .Delete

01 1dey)d

.
.

5
Z.
=
V)]
z
=x
5
w
2]
=
(¢
(¢
o=t
75}

ou can use the Move method with the sheets
object to rearrange sheets within a workbook.
When you move a sheet, you indicate the new

location by specifying the name of the sheet before or
after which you want to place the sheet you are moving.

The Move method has two optional parameters: Before
and after. Although both parameters are optional, you
can use only one of them at a time. Use the Before
parameter to specify the sheet in front of which you want
to place a sheet, and the aAfter parameter to specify the
sheet after which you want to place a sheet. For example,
the following statement moves the first sheet in a
workbook and places it after the third sheet:

Sheets (1) .Move After:=Sheets(3)

Move a Sheet

If you do not specify a Before or after parameter value,
Excel creates a new workbook and places the worksheet
in that workbook. The worksheet becomes the only
worksheet in the new workbook.

The sheets object references all sheets in the workbook,
including all worksheets, chart sheets, and macro sheets.
As shown in the example, you can use index values to
reference specific sheets based on their order in the
workbook. You can also reference a sheet by using the
name on the sheet tab.

Moving a sheet before or after a nonexistent sheet causes
VBA to display a “Subscript out of range” error. To avoid
this error, you can use the count method to determine
the number of sheets in the workbook before you attempt
to move the sheets.

@ Name your procedure.
@ Declare your variables.

9 Count the number of sheets in your workbook.

@ Create your Move command.
® The sheet you want to move.
® The location where you want to move your sheet.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

4 Microsoft Visual Baskc - Chap10-Macros,xlsm - [MoveShestExample (Code)]

B gl o0 yws put Fymaet Oebug B Josh hodm fjedee e

) el o
Sub MoveSheet() 4—0 g
Dim LastSheet As Long 4—9

LastSheet = 5hnets.¢nunl<—9

 Micrasoft Visual Baskc - Chap10-Macros.xdsm - [MaveSheetExample (Code)]

B pl g0 yws pun fgvat [ebug Be Josh pStm fgedes e
— i

Sub MoveSheet()
Dim LastSheet As Long

LastSheet = Sheets.Count

Sheets(1).Move After:=Sheets(LastSheet) 4—9

End|Sub

T

The worksheet before the move.

Move et Paploed bwedn Dets Bews Vam

fr LT = # T byt k.
PR et o 50 S =7
=

."-‘5) v R Chap10-Macros xksm - Microsoft Excel -
: Rasbm - -

i Vo e
o M ey 2 L
e [wa
Al =i & Sales

1 | January 5 128,569 5 134,578 S 176,372 § 439,939
« February 112,115 112,926 136,305 361,346
& March 156,411 147,791 118,184 422,386
s April 149,427 101,633 104,102 355,162
' May 121411 126,557 184,693 432,661
1 June 100,643 107442 143,001 351,086
» Total $ 768,996 5 730,927 § 862,657 § 2,362,580
"

L]

]

u

"

=

W=

The worksheet after the move. [Koo i el i S
= Hovw et Paplewd Feesdn Dets Bewm R o Rt b - - =
S @ R K |
e T i Mty O g | T
Al = &, Sales

1 Total
3 January 5 128,983 $ 134,578 & 176372 § 439,939
4 February 112,115 112,926 136,305 361,346
s March 156,411 147,791 118,184 422,386
& April 143,427 101,633 104,102 355,162
+ May 121,411 126,557 184,693 432,661
& June 100,643 107,442 143,001 351,086
» Total 5 768,996 § 730,927 § 862,657 § 2,362,580

L]

"

M=

As you work with Excel objects in VBA, especially collection objects that contain several objects, you
frequently must determine the number of objects in the collection. Because the number of objects in a
collection varies, you may need to determine the number of objects as your code runs. The best way to do
this is by using the Count property, which works with virtually all VBA collection objects and returns the
number of items in the collection.

Example:
NumSheets = Worksheets.Count

The Count property is Read-Only, meaning you can use it to count, but not change, the number of sheets in
a workbook.

o1 Iadey)

.
.

§
z.
=]
uQ
=
=
§
=
2]
=
(¢”]
(¢
o=t
7))

Copy and Paste

a Sheet

you can use the copy method with the sheets

object. When you copy a sheet, you indicate where
you want to place the copy by specifying the name of the
sheet before or after which you want the copy to appear.

The copy method has two optional parameters: Before
and after. Although both parameters are optional, you
can only use one of them at a time. Use the Before
parameter to specify the sheet in front of which you want
to place the copy of the sheet, or use the After parameter
to specify the sheet after which you want to place the
copy of the sheet. The following statement copies the first
sheet in a workbook and places the copy after the third
sheet: sheets (1) .Copy After:=Sheets (3). If you do

I f you want to copy and paste sheets in a workbook,

Copy and Paste a Sheet

not specify a Before or After value, Excel creates a new
workbook and places the copy in the new workbook.

When you use the sheets object, you can reference all
sheets within a workbook, including chart sheets and
macro sheets. You can use index values to reference
sheets based on their order in the workbook, or you can
reference sheets by using their sheet names.

Be careful with the sheet references you use. If you try
to place a copy of a sheet before or after a nonexistent
sheet, VBA displays a “Subscript out of range” error. To
avoid this error, consider using the count method to
determine exactly how many sheets you have in a
workbook before you copy and paste.

@ Name your procedure.
@ Declare your variables.

9 Count the number of sheets in your workbook.

@ Create your copy command.
® The sheet you want to copy.
® Where you want to place the copy.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

 Micrasoft Visual Baskc - Chap10-Macros.xdsm - [CopySheetExample (Code)]

B gl o yws pet Fymat Oebug B Josh podm fjedee e

] =] [Copmen” =l
Sub CopySheet() 4—0 g
Dim LastSheet As Long 4—9

LastSheet = 5hnets.¢nunl<—e

 Microsoft Visual Baskc - Chap10-Macros.xdsm - [CopySheetExample (Code)]
B pe [ywe pun fgwe etwg B Dosh Aot ledee e
T T

Sub CopySheet()
Dim LastSheet As Long

LastSheet = Sheets.Count

ts(1) < 9

Sheets(LastSheet).Copy Bef: Sh

End Sub

The workbook before you run the macro. g aneal AT NSO S a
= baew et Paplaged bwedn Drs Rewm Vam Crospn | Addie w-nx :‘
— T S e = 2 X hopene 3 e St T et
A] S e Brietn A ’cl E el o e m e Pty <] m
e M bty || T e | % et =)
ol Comtnt e o=
AL - & Sales & (]
._ : i i -
: . = E;
1 January 5 128989 S 134,578 5 176,372 5 439,939 55
4+ February 112,115 112,926 136,305 361,346
& March 156,411 147,791 118,184 422,386 2
+ April 149,427 101,633 104,102 355,162 o
1 May 121,411 126,557 184,693 432,661 1
1 June 100,643 107,442 143,001 351,086 w
+ Total 5 768,996 5 730,927 % 862,657 2,362,580 [=0y
P
= s
u i o
” =t
e o &
] 53 o :E
The workbook after you run the macro. S =
¥ -"x w
72)
Al 5 Sales & (@)
= .- 5 i £ ; Cas] o=t
N : 7,
?) ict 2 T
1 January 5 128,989 5 134,578 S 176372 § 439,939
4 February 112,115 112,926 136,305 361,346
s March 156,411 147,791 118,184 422,386
& April 145,427 101,633 104,102 355,162 !
1 May 121,411 126,557 1E4,693 432,681
1 June 100,643 107,442 143,001 351,086
+ Total 5 768,996 5 730,927 § 862,657 S 2,362,580
L
i}
;
AT, s 1 A
Sesty)

The Copy method produces the same results when you use it with a Chart object, Charts collection object,
Worksheet object, or Worksheets collection object instead of the Sheets object. You can use these other
objects when you want to work with a specific type of sheet. For example, to make a worksheet the first
worksheet in a workbook, type Worksheet(3).Copy Before:=Worksheets(1). This code places a copy of the
third worksheet in front of the first worksheet. If the first sheet in the workbook is a chart, the copied sheet
comes after the chart but before the first worksheet. You can copy chart sheets the same way, but use the
Charts collection object to specify the chart sheet to copy. You can combine your object references within a
Copy statement. For example, you can place a copy of the first worksheet before the first chart sheet.

Example:
Worksheets (1) .Copy Before:=Charts(1)

When you copy a sheet in a workbook, Excel indicates the sheet is a copy by placing a number in parentheses
after the sheet name. For example, for Sheet3, Excel indicates the copied sheet as Sheet3 (2), with the
number in parentheses indicating that the sheet is the second version. Copying the worksheet again creates
Sheet3 (3).

use the visible property with the sheets object.

You may want to hide sheets in a workbook to
prevent users from viewing them. These sheets might
contain the raw values that you use to calculate data.

Hiding a sheet does not always keep users from
accessing it. Users can unhide sheets in Excel by using
the Unhide option on the Format menu. If you want
others to be able to unhide a sheet but not be able to
change a sheet, protect the sheet. See the section,
“Protect a Worksheet,” for more information about
protecting sheets.

Using the visible property, you can determine the
current state of a sheet — visible or not visible — or you
can change the state of a sheet. To determine the current

Hide a Sheet

I f you want to hide sheets in a workbook, you can

state of a sheet, you assign the visible property to a
Boolean variable as follows: SheetProps =

Sheets (1) .Visible. If you declare the SheetProps
variable as a Boolean value, the variable receives a value
of True if the specified sheet is visible; otherwise, it
receives a value of False. If you do not declare the
variable as Boolean, Excel assigns a numeric value of -1
if the sheet is visible and O if the sheet is not visible.

To change the visibility of a sheet, you can assign a
Boolean value of True or False to the sheet’s visible
property. You can hide all but one sheet in a workbook,
because Excel requires that a workbook have at least one
visible sheet. The following example hides a sheet:

Sheets (2) .Visible = False

@ Name your procedure.
@ Declare your variables.

9 Count the number of sheets in your workbook.

@ Setthe visible property to False.

® This example uses a For Next loop to hide every
worksheet except for the first one.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

4 Microsoft Visual Baskc - Chap10-Macros,xlsm - [HideShee1Example (Code)]

B pl ot yes pun fymat Oebeg Bem Josh hodm fjedse e

Trararar =] [wdean =]
Sub Hidosm-tu<—o g
Dim LastSheet As Long 4—9

LastSheet = 5hnets.¢nunl<—9

4 Microsoft Visual Basic - Chap10-Macros. xism - [HideSheetExample (Code)]

B pls G ges pun Famal Qsboy B Dh pim imdse ew
= =] st

Sub HideSheet()
Dim LastSheet As Long

LastSheet = Sheets.Count

For N =2 To LastSheet

Sheets(N).Visible = False 4—9

Next

End Sub

® The workbook before you execute the macro.

The workbook after you execute the macro.

.'_:‘3') v I) Chap10-Macros xism - Microsoft Excel -t
—" baws bowt Paplied burdn Deis Beww Vam | Ceowspn | At w -
b b - - =
_—
e A bt Sty b e)
o e ey et L
e [

i £y Seles &

[t i = -
5 |
+ | lanuary 5 128,569 5 134578 & 176372 § 439,939
4 |February 112,115 112,526 136,305 361,345
& |March 156,411 147,791 118,184 422,386
& April 149,427 101,633 104,102 355,162
1 | May 121411 126,557 184,693 432,661
5 June 100,843 107,442 143,001 351,086
» Total $ 768,996 § 730,927 % 862,657 $ 2,362,580
o
o
u
u
teety 3
) "L Chap10-Macros absm - Microsoft Cecel -
—" e bt Papliwd foeds D ®-=

— T B b = o 3 ey 3
ﬁ ol - Lol e e E"-J--—(m E o
Mt M Rty e o ST

- [e

Al & Sales 5

[a1 3 [i

! : Total
3 |January 5 128989 § 134578 § 176,372 & 439,939
4 February 112,115 112,926 136,305 361,346
s |March 155,411 147,791 118,184 422,386
& |April 145,427 101,633 104,102 355,162
+ May 121,411 126,557 184,693 432,661
i June 100,643 107,442 143,001 351,086
+ Total 5 768,996 § 730,927 § 862,657 § 2,362,580
6
"
o
"
"
tety T3

Sheets that you hide by setting the Visible
property to False are still accessible to users from
within Excel. To see which sheets are hidden in a
workbook, on the Home tab, click Format 2Hide &
Unhide ®>Unhide Sheet. The Unhide dialog box
appears, listing all of the sheets that you have
hidden. To unhide a sheet, click the sheet and then
click OK. This is equivalent to setting the Visible
property for a sheet to True.

There are three X1SheetVisibility constant
values. You can use them to set the visibility status
of a sheet.

CONSTANT VALUE FUNCTION

xISheetHidden Hides a sheet. The user
can use the Ribbon to

unhide the sheet.

Hides a sheet. The user
cannot use the Ribbon to
unhide the sheet.

xISheetVeryHidden

xISheetVisible

Displays a sheet.

Example:

Sheets ("Formulas") .Visible = xlSheetVeryHidden

o1 Iadey)

.
.

§
z.
=]
uQ
=
=
§
=
2]
=
(¢”]
(¢
o=t
7))

Change the

Name of a Sheet

naming your sheets enables your users to determine

which sheet they want to access. For example, if you
keep your budget on a sheet named Budget and your
sales figures on a sheet named Sales, when a user opens
your workbook, they can quickly determine the sheet
they want to access.

To change the name of a sheet in a workbook, use the
Name property of the sheets object. By default, Excel
names all worksheets Sheet#, replacing # with the order
in which you add the sheet to your workbook. For
example, a typical workbook contains three worksheets:
Sheet1, Sheet2, and Sheet3. If you add a worksheet,
Excel names it Sheet4. Excel uses the name Chart# for
chart sheets. Again, Excel assigns chart sheets numbers,
based on the order in which you add them, with the first

Change the Name of a Sheet

I t you have a number of sheets in a workbook,

chart sheet being Chart1. Macro sheets and dialog sheets

have the same naming conventions. Excel names the first
macro sheet you add to a workbook Macro1 and the first

dialog sheet Dialog1.

You can change the name of a sheet by assigning a name

to the Name property of the sheet object. For example, the
following code changes the name of Sheet1 to Budget:

Sheets (1) .Name = "Budget"

You can assign a string or a variable to the Name
property. You can determine what the current name of a
sheet is by assigning the Name property to a variable, as
in the following example:

StringName = Sheets (1) .Name

This example returns the name of sheet (1) to the
variable stringName.

@ Name your procedure.

@ Declare your variables.

@ Create an input box.

The users enter the name they want to change the
active sheet to into the input box, and VBA stores
the name to a variable.

9 Create a Name command to rename the sheet.

® The variable containing the name the user wants to
give to worksheet.

® The sheet to be renamed.

In this example, the code is renaming the active
sheet.

6 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

4 Microsoft Visual Baskc - Chap10-Macras.xdsm - [NameExample (Code)] [
B B G ywe poet fgmst Debwy B Jesn hSeim ledse e = s.ax

— <] o =l
Sub ChangeSheetName() <€ -‘n“ E
Dim SheetName As String‘-@

4 Microsoft Visual Basic - Chap10-Macros. xism - [NameExample (Code)]

B ph §ot gwe pun fgmat Qebwg B Joth Aot jpedee twe = -.mn
— e -

Sub ChangeSheetName()
Dim SheetName As String

SheetName =

InputBox("Type a new sheet name.") 4—9
ActiveSheet.Name = 5hutNam<—e

End Syb

The macro displays a message box requesting the
name the user wants to give the active sheet.

The macro renames the sheet.

-

&

. B
1 | January 5 128,969 5 134,578 5 176,372 § 439,939
« February 112,115 112,926 136,305 361,345
& March 156,411 147,791 118,184 422,386
s April 149,427 101,633 104,102 355,162
1 | May 121,411 126,557 184,693 432,661
1 June 100,643 107442 143,001 351,086
» Total $ 768,996 730,927 862,657 $ 2,362,580

I!f;;.‘..',._';_'

128989 §

3 January 5

1 |February 112,115

s |March 155,411

& April 145,427

r May 121,411

& [June 100,643

+ Total $ 768,996 §

=] = i " T
M. Chapl0-Macrasxksm - Microsoft Excel - @ x
(o) r 1
" Mo et Puplawa boedn Des Rews Ve D #-=x
2 bt b % F 3 Frapeam 3
Il
gen B e | 7S 24 o Y e = o
) M bty e ol [ST R AR
Cnbi i ne
Al &y Sales =
[& r3 & o £ P ilm

Product 2

! Total
134578 § 176372 § 439,939
112,926 136,305 361,346
147,791 118,184 422,386
101,633 104,102 355,162 !
126,557 184,693 432,661
107,442 143,001 351,086
730,927 § 862,657 § 2,362,580

You can manually change the
name of a sheet in Excel by
clicking the Home tab and then
selecting Format => Rename
Sheet. Excel highlights the sheet’s
name tab. You click the tab and
type the new name. After you
modify the name, click elsewhere
on the sheet and Excel updates
the sheet name.

Because users can easily modify
the name of a worksheet, be
careful when referencing sheet
names with your macros. If you
reference the name of a sheet
that has a changed name, Excel
returns an error message.

No matter what the sheets are
named, Excel keeps track of
them based on the order in
which they exist within the
Sheets collection. If you use
Project Explorer to view the list
of sheets in the workbook, you
see listings of Sheet1, Sheet2,
and so on, with the
corresponding sheet name in
parentheses.

You can also use the Name
property in conjunction with the
Parent property to determine
the name of the workbook that
contains the current sheet. To
determine the name of the
corresponding workbook, use
the code CurrentWB =
ActiveSheet.Parent .Name.

o1 Iadey)

.
.

§
z.
5
uQ
=
=
§
w
2]
=
@
@
o=t
7,

Save a Sheet to

Another File

saveAs method with a sheets collection object.

The saveas method has eight parameters that tell
VBA how to save the sheet: FileName, FileFormat,
Password, WriteResPassword, ReadOnlyRecommended,
CreateBackup, AddToMru, and Local.

The FileName parameter is required. You use the
FileName parameter to specify the name of the file you
want to save the sheet to, and the folder in which you
want to save the sheet. If you do not specify a path when
you specify a filename, Excel saves the file in the current
folder.

Use the FileFormat parameter to specify the file format
in which you want to save the file. You can save in any
file format supported by Excel, by using one of the
X1FileFormat constant values. See Appendix A for a list
of the x1FileFormat constant values. If you do not

Save a Sheet to Another File

You can save any sheet to another file by using the

specify a file format, Excel uses the format that was
previously used to save the file if the file was previously
saved or the file format used by the current version of
Excel is the file has never been saved. Use the password
parameter to specify a password of up to 15 characters
for opening the file. Use the writeResPassword
parameter to restrict the file to open as Read-Only, unless
the user has the password.

The remaining parameters accept the Boolean values
True O False. YOU Set ReadOnlyRecommended tO True
to display a message to the user when the file opens,
suggesting that they open the file as Read-Only. You set
CreateBackup to True to create a backup file; AddToMru
to True to add the file to the Recent Documents list;
Local to True if you want to save the file in the
language used by Excel; and Local to False if you want
to save the file in the language used by VBA.

@ Name your procedure.

@ Create your saveas command.
® The name of the new file.
® The format in which you want to save the file.
This example saves the file in HTML format.
Creates a backup.

Adds the file to the Recent Documents list when the
file is saved.

9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

4 Microsoft Visual Baskc - Chap10-Macros.xism - [SaveWorkshee1Example (Code)]
B g o ywe put Fywat Oebuy Bem Jesh jotim fjedse pes D

e e — | B =

s Microsoft Visual Baskc - Chap10-Macros,xlsm - [SaveWorksheetExample (Code)]

B e Go ywe Pt Fgma Debey B T pdeim ledse e oritonk
=0 <] [iamermaanees

Sub SaveWorksheet()

ActiveSheet.SaveAs _4—9

Filename:="Sales Web Furm:t",‘—._
FileFormat:=xIHtml, <
CreateBackup:=True, €——
AddToMru:=True <€——

End Sub

The HTML file that the macro created,
displayed in a browser.

G - [vmurmers et St _Crer'tar s o in
ﬁ -

S Doty el Setror e _Cerm g [B0 &-lpe-Omps-"

® The macro saves the file in HTML format, @ O A— e g
adds the file to the Recent Documents list, - [— = ;"‘L‘:; @ T dmee: o
and creates a backup. ;o ST o =

L o 4. = =
2 - , - @
£ e] —_
H o L] 176,372 § 439,939 9
B e H 136,305 361,345
“:: 1 118,184 422,388 2
] Papes b] 104,102 355,162 o
- ! 184,693 432,661 -
A ! 143,001 351,086 w
=] 862,657 5 2,362,580 i
=]
V)]
- -ﬁn--c—--«-xuﬂ----_ s
- =
. =
P - L 2
2
&~
7
=
o
o
o=
7

Jenusry § 128989 $ 134578 § 176,372 § 439,939

February 112,115 112,926 136,305 361,348

March 156,411 147,791 118,184 422,386

april 149,427 101,633 104,102 355,162

May 121,411 126,557 184,693 432,661

June 100,543 107,442 143,001 351,086

Total $ 768,996 $ 730,927 § 862,657 § 2,362,580

T st [TR TG =
| o My Corputer 100%

The FileFormat parameter accepts any of the X1FileFormat constant values that are listed in Appendix A.
The list of available file formats is rather extensive. You can save a worksheet to another workbook by
specifying the x1WorkbookNormal constant. This constant creates a new workbook based on the default
workbook format for the current version of Excel. If you need to save the workbook in a format used by an
earlier version of Excel, you need to specify the appropriate format parameter. For example, x|Excel5 saves the
workbook in a format that you can open in Excel 5.0 or later. To save an Excel 2007 file in a macro-enabled
format, use x10penXMLWorkbookMacroEnabled.

Protect a

Worksheet

rotecting your worksheet enables users to make

certain types of changes while disallowing others.

For example, you can allow users to make changes
to formats; insert or delete columns, rows, or hyperlinks;
sort; filter; use PivotTables; and edit objects or scenarios.

You use the worksheet . Protect method to protect a
worksheet. The wWorksheet.Protect method has
several parameters, all of which are optional. With the
exception of the Password parameter, you use the
Boolean value True to activate a parameter and the
Boolean value False to deactivate a parameter. The
parameters are Password, DrawingObjects, Contents,
Scenarios, UserInterfaceOnly, AllowFormatting
Cells, AllowFormattingColumns, AllowFormatting
Rows, AllowInsertingColumns, AllowInsertingRows,
AllowInsertingHyperlinks, AllowDeletingColumns,
AllowDeletingRows, AllowSorting, AllowFiltering,
and AllowUsingPivotTables.

Protect a Worksheet

If you want to password-protect your worksheet, set the
Password parameter to the password you want to use.
You can use any string as a password, but remember
passwords are case-sensitive. In other words, Excel
interprets “Password” and “PASSWORD” differently.

Set the DrawingObjects parameter to False if you want
the user to be able to modify shapes. The default value is
True. By default, Excel protects locked cells, to remove
this protection, set the contents parameter to False. To
unprotect scenarios, set the scenarios parameter to
False. If you set the UserInterfaceOnly parameter to
False, Excel applies protection to macros and to the user
interface. If you only want the user interface protected,
set the UserInterfaceOnly parameter to True.

The remaining parameters are self-explanatory and they
all have a default value of False. To allow any of these
options, set the parameter to True.

@ Name your procedure.
@ Create your Protect command.
® Sets the password.
® Protects the user interface only.
Allows format changes.

9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

If the user tries to change a cell, Excel does not
permit the change.

 Microsoft Visual Baskc - Chap10-Macros.xlsm - [Protect WorksheetExample (Cade)]
B B G ywe P fgme Debwg B Jesn hSeim ledse e waritook

ey -] Jm — =l
Sub rmuctw.:rkshntu<—n g
Worksheets(1).Protect _4—9
4—.

Password:="Excel",

UserinterfaceOnly:=T rue,‘—.

AllowFormattingCells:=True <€———

End Sub

— -

@ Budgeted Cash Flow
b

‘ Jub07 Aug07 Sep07 Oct-07 Nowd? Decd?
+ Cash Recelpts

8,000 8,000 7,000 5,000 4,000 2,500

© Tatal Cash Receipts

« Cash Dishursements

Salaries and Wages T LI00 5 L0 5 LJ00 5 500 5 L0 § 4,200

| Payroll Taxes & Employees Expenses 1,050 1,050 1050 1050 1050 1050

-\ vner Withidrawels 2000 2000 2000 2000 2000 2,000

L 1,200 1,200 1,200 1,200 1,200 1,200

T Marketing 1500 1500 1500 1000 LOO0 1,000
Legal & Accounting %00 0

Office Supplies 200 200 200
Swet] theet | Sheen) - Owtt ¥ A

Senty)

The user can make permitted changes. oy Smm CHaplo Macrosim Wicroson el B (@)
—" v | bt Pagrlawd s Dets Bevws Vem Owwhgw Adbie @ -nmnx :‘
: T4od caan IR e [S - ot i« Eear o
g T &
In this example, the user can change the formats. b TR A RN i | o e =
it [: Algporan) |3 M T St Lavwy o=
Al - &, The Handyman, LLC '] (]
= = 3 3 £ i 7 3] -
1 [The Handyman, LLC
R — =
i Jub07 Aug-07 Sep-07 Oct-07 Now-07 Dec-07 s
s Cash Recelpts
. Painting interior $ 2000 $ 2000 § 2500 5 3000 § 3,000 S5 3,000
Pointing Exterior 8,000 8,000 7,000 5,000 4,000 2,500
L] Drywall 1,500 1,500 1,500 3,000 3,000 3,000
» Roofing 3,000 3,000 3,000 3,000 1,500 1,500
1 Total Cash Recelpts 514500 $14,500 514,000 514000 $11,500 510,000
12 Cash Disbursements
o Satarfes ond Woges S 4200 $ 4200 5 4,200 5 4200 § 4200 5 4,200
u Payroll Taxes & Employees Expenses 1,050 1,050 1,050 1,050 1,050 1,050
" Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000
Rent 1,200 1,200 1,200 1,200 1,200 1,200
Ma!l’rl'.'r.‘q 1,500 1,500 1,500 1,000 1,000 1,000

] Legol & Accounting
o] Sheetl Sheet) Sheer) Ot 3
i] =31 »

If the user knows the password, they can enter the o e TR e
password to unprotect the worksheet. :

Moe et Paplod bwedn Dde e

ol |18 Frotm e S ket
g

e
e e
T Weabesk Weskbosh o Troik Changen «

L T S R B Bl |

o Prinwe Thasaaas Toumsiity | foe

5
Z.
=
V)]
z
=x
5
w
2]
=
(¢
(¢
o=t
75}

Py [— -
Al - g 4 The Handyman, LLC =
1 [The Handyman, LLC F
i —
. !
'l Jul-07 Aug-07 Sep07 007 Now-07 Dec-07
© Cash Receipts

. Painting interior 5 2000 5 2000 5 2500 5 3000 5 3000 5 3,000

inting Exterior 8000 000 7000 5000 4000 2,500
1 Doywall 1,500 1,500 1,500 3,000 3,000 3,000
s Roofing EL - . =000 1500 1,500
+ Total Cash Receipts [RPY: Unprotect Sheet 000 $11,500 $10,000

3 [

= Cash Disbursements =3

L] Safarfes and Wages $ 4200 5 4200 5 4200 5 4200 § 4200 § 4,200
u| Payoll Taves & Employers Expenses. 1,050 1,050 1,050 1,050 1,050 1,050
] Owner Withdrowals 2,000 2,000 2,000 2,000 2,000 2,000
- Rent 1,200 1,200 1,200 1,200 1.200 1,200
o Marketing 1,500 1,500 1,500 1,000 1000 1,000
u

Legal & Accounting 500
B ee] Sheetl thestt Shwets Owal)

Renty] 2) 4

After you password-protect a worksheet, a user can unprotect the worksheet by clicking the Review tab,
clicking Unprotect Sheet in the Changes group, and then typing the correct password in the Unprotect Sheet
dialog box that appears.

You can unprotect the worksheet from within a procedure by using the Unprotect method. The only
parameter the Unprotect method takes is the Password parameter. You set this parameter to the
worksheet password.

Example:
ActiveSheet.Unprotect Password:="Excel"

This example unprotects the active worksheet by passing it the correct password. Remember to keep track of
the passwords that you have assigned to worksheets. If you lose your password, you cannot access the
password-protected document.

Protect

a Chart

a chart so that a user cannot modify it. The remember that passwords are case-sensitive. In other
Chart . Protect method takes several parameters ~ Words, Excel interprets “Password” and “PASSWORD”
that enable you to determine the type of protection you differently.
want to assign to the chart. All of the parameters are If you set the DrawingObjects parameter to False, the
optional. With the exception of the password parameter, user can add shapes to your chart and modify the shapes
you use the Boolean value True to activate a parameter in your chart. The default value is True. If you set the

You can use the Chart . Protect method to protect ~ Want to use. You can use any string as a password, but

and the Boolean value False to deactivate a parameter. Contents parameter to False, the user can modify the
The following is the syntax for the chart.Protect chart. If you set the UserInterfaceonly parameter to
method: False, Excel applies protection to macros and to the user
expression.Protect (Password, DrawingObjects, interface. If you only want the user interface protected,
Contents, UserInterfaceOnly) set the UserInterfaceOnly parameter to True.

To unprotect a chart using a procedure, use the
Unprotect method. You must include the password if
the chart is password-protected, as follows:

Charts (1) .Unprotect Password:="Excel"

The expression parameter identifies the chart you want
to protect. If you want to password-protect your chart,
you can set the Password parameter to the password you

B g GOt ywe pun e Qv B Dsh Mt fedse e oo

Protect a Chart
o Name your procedure. = “ =

Sub ProtectChart()

 Microsoft Visual Baskc - Chap10-Macros,xlsm - [ProtectChartExample (Code)]

Create your Protect command.
9 J rores l:lurtx(ﬂ.l’mteotﬂ—@
) Password=="ExceI“,<—.
Sets the paSSWOFd. Userlutorfaceﬂnly:=True,<—.
® Protects the user interface only. b
Allows the user to draw objects. End Sub |
9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.
g o
If the user tries to make a change that your macro & VoM e M e O, ——
does not permit, Excel does not allow the user to & W = # g = = = ;
make the change. o bl o] < :

& =SERIES(Sheet2|5AS55,Sheet2|5852:5052 Sheet215B55:5055,3)

-

® Excel grays out the Ribbon options to indicate that
they are not available.

i . ol i =
e B ee—
@ |

The user can make permitted changes.

® |n this example, the user can add shapes.

o) k0 i ¥ Chap10-Macros.sdsm - Microsoft Ex Tt Tt - x
= o | ot Pagrlod s Dts Resew Viw Owelper dbhn Owgn Lo Feea w-=
=, I - x

| POl i r

=, A e a - R - sl
G & ft [l M o Laswy

h

2t e S oweti e u-.nl.uEl J
e | B T v 4
If the user knows the password, they can enter the o) e - i e St

password to unprotect the worksheet.

Mevs et Paplawd foedn s | beos

Jll_lﬂb _J’_J_J_J

<t et Thersras Vs

Vem Dewige b Demn Leet e #-mx

8 Froteet amt Sy b

[

]
.
[(EXIE—Em - SET EE . - J
] ELRE] . <

these properties is Read-Only.

VBA provides properties that you can use with Worksheet and Chart objects to determine if parts of a
sheet are protected. This helps eliminate errors caused by attempting to modify a protected sheet. Each of

PROPERTY

ProtectContents

DESCRIPTION

Returns a value of True if the sheet is protected. For a chart, the property
looks to see if the entire chart is protected. For a worksheet, the property
looks to see if the cells are protected. To turn off this property, set the
Contents parameter of the Protect method to False.

ProtectDrawingObjects

Returns a value of True if the shapes in the sheet are protected. To turn
off this property, set the DrawingObjects parameter of the
Protect method to False.

ProtectScenarios Returns a value of True if the scenarios are protected. To turn off this
property, set the Scenarios parameter of the Protect method to
False.

ProtectionMode Returns a value of True if the user interface is protected.

o1 Iadey)

.
.

5
Z.
=
V)]
z
=x
5
w
2]
=
(¢
(¢
o=t
75}

Print a

Sheet

ou can use the printout method to create a

procedure to print the contents of a sheet. The

Printout method has several parameters for
specifying how Excel prints the sheet: From, To, Copies,

Preview, ActivePrinter, PrintToFile, Collate, and
PrToFileName.

Use the From and To parameters to indicate the range of
pages within the specified sheet that you want to print.
Indicate the page number of the first page to print as the
value of the From parameter, and the page number of the
last page as the value of the To parameter. If you omit
these parameters, Excel prints the entire sheet.

By default, Excel prints one copy of the sheet. For
multiple copies, use the copies parameter to indicate the
desired number. You can specify a value of True for the
Collate parameter to have Excel collate the copies.

Print a Sheet

If you want the Excel preview window to show the
contents of the print selection, set the value of the
Preview parameter to True. The Print button on the
Print Preview screen prints the copy, and the Close button
cancels the print.

To specify a printer, use the ActivePrinter parameter.
If you do not set the ActivePrinter parameter, VBA
uses the computer’s default printer.

You can send the printout to a file instead of a printer by
setting the PrintToFile parameter to True, and
specifying the name of the file to which you want to send
the printout by using the PrToFileName parameter. If
you do not specify a filename, Excel prompts you for one
when your procedure runs.

o Name your procedure.
@ Set up your page.
® Sets the orientation to landscape.

® Sets the print area.

@ Create your printout command.
The number of copies to print.

Displays the Print Preview before printing.

 Microsoft Visual Baskc - Chap10-Macros,xism - [Module10 (Code)]

B ph go yws peen Fgat Debug Ben Tosh At fedes e ek

= S [rresiaaet |
Sub PrintSiunt(}<—o =

—0
S ST)
g o

4 Microsoft Visual Basic - Chap10-Macros.xism - [Madule 10 (Code)]

B Bl B3 yes et fpmal Debop B Jooh piiim jinces i wakbock
e =

Sub PrintSheet()

ActiveSheet.PageSetup.Orientation = xlLandscape
ActiveSheet.PageSetup.PrintArea = "AS1:SE$13"

ActiveSheet.PrintOut
Copies:=2,<€———
Preview:=True, €——
ActivePrinter:="HP DeskJet 894Cxi"

End Sub

® The printer to which you want to send the alcmwn Visual Basic - Chap10-Macros.dsm - [Module 10 (Code)]
t - ‘.."..“"""’"“‘"MWIW‘MW;_?:“ prerren
report. = S [rresiueet

Sub PrintSheet()

9 Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

ActiveSheet.PageSetup.Orientation = xILandscap
ActiveSheet.PageSetup.PrintArea = "A1:SE$13"

o1 Iadey)

.
.

ActiveSheet.PrintOut

Copies:=2, 2
Preview:=True, _ (o)
ActivePrinter:="HP DeskJet 894Cxi" <«——@ ;
[0S
End Sub =)
(V)]
z
=
=5 e 2
. . .)
The macro displays the Print Preview screen.) by NG A i ;
© The Print button prints the file. O A | e =
e poadd)
The Close button cancels the printing. gr
Franklin Skyes
Cost of Goods Sold
Product Product Product Product
A B c [}

Sales $34,474 $33,397 $37.372 $33.148

Sales Retumns 969 1,458 1,284 565

Net Sales $33505 531938 536088 532583

Inventory, lanuary 1 6,737 5358 6,379 5126

Purchases

Cost of Goods Available for Sale
Less: Inventory, Dec 31
Cost of Goods Sold

You can set a print area for a worksheet by using the PageSetup object with the PrintArea property.
Assign the PrintArea property a range of cells as the print area. For example,
ActiveSheet.PageSetup.PrintArea = "$AS1:$ES$9" sets the range of cells in the print area from A1
to E9. If cells outside that range contain data, Excel does not print them.

When you use the PrintArea property to set the range of cells to print, you can omit the From and To
parameters of the PrintOut method. To clear the print area, assign the PrintArea property a value of
False or an empty string. Both of the following lines of code clear the print area:

Examples:
ActiveSheet.PageSetup.PrintArea = False
ActiveSheet.PageSetup.PrintArea = " "

When printing, you can set the orientation by using the PageSetup object with the Orientation property.
Use the x1Landscape constant value to set the orientation to landscape. Use the x1Portrait constant
value to set the orientation to portrait.

Sort Worksheets

based on the worksheet names. When you first

create a new workbook, Excel lists the sheets in
order: Sheet1, Sheet2, Sheet3. However, as you add
sheets, the order of the sheets can change dramatically.
For example, if your active sheet is Sheet2 and you
instruct Excel to add a new sheet, Excel adds it before
Sheet2 and names it Sheet4, making the order of your
sheets Sheet1, Sheet4, Sheet2, Sheet3.

You can easily resolve this problem by manually
renaming or moving the sheets within the workbook.
Alternatively, you can create a procedure that sorts the
worksheets and lists them in alphabetical order. You start
by using the count property to determine the number of
sheets in the workbook. When you know the number of

Sort Worksheets by Name

You can use VBA to sort worksheets in a workbook

sheets in a workbook, you can use a For Next loop to
cycle through the sheets so that Excel can compare the
names and place the sheets in order. You use nested
looping, which is the process of placing one loop inside
another loop. The inside loop executes completely, and
then control returns to the outside loop. See Chapter 6 for
more information on using For Next loops.

Within the second For Next loop, use an If Then
statement to compare the name of a sheet to the sheet
that is currently considered the alphabetically lowest
sheet name. If the compared name is alphabetically lower,
it becomes the new alphabetically lowest name. Excel
does an alphabetical comparison when you are working
with strings.

@ Name your procedure.
@ Declare your variables.

9 Count the number of sheets.

0 Create a For Next loop to loop through each
index position.

6 Store the name of the sheet with the index value of
N to the variable sheetName.

N starts at 1 and increments with each loop.

@ Create a For Next loop within the previous loop,
assign the value of N to M, and loop through the
total number of sheets, starting at the value of M.

0 If the name of the sheet with an index value of M is
less than sheetName, store the name of the sheet
with an index value of M to the variable
SheetName and then keep looping; otherwise, do
nothing and keep looping.

@

End If
0 Next

4 Micrasoft Visual Baskc - Chap10-Macros.xdsm - [SortSheetsExample (Code)]
M e goe gwe e fge Detwg B Josh poeim lpedse e T T

[<] [rerrimesms =
Sub s.msn-.ts()<—o g
SheetCount = Sheets.Count 4—9

4 Microsoft Visual Basic - Chap10-Macras, xism - [SortShestsExample (Code)]

M i §ot we puet Fywat [ebug Bem Josh pdtim lfpedse bep T FYr g
= <] [rersinesms

Sub SortSheets()

Dim SheetName As String
Dim SheetCount As Integer
SheetCount = Sheets.Count

ForN=1To 5hoel¢ounl<—e
SheetName = Sheets(N).Name 4—9

For M = N To SheetCount

Sheets(SheetN)-Move Bef Sheets(N)

Next

End Sub s
=[5« o

When the loop has finished, sheetName
contains the lowest value.

@ Move the sheet identified by the variable
SheetName hefore the sheet with an index
value of N.

Q Move to the sheet with the next index value
and perform the loop again.

@ Press Alt+F11 to switch from the VBE to
Excel, and run the macro.

4 Microsoft Visual Baskc - Chap10-Macros,xdsm - [SortSheetsExample (Code)]
M Bl G pes punt fywat Debey Ben Josh gt fjedes pes il

—_— -2

Dim SheetName As String
Dim SheetCount As Integer
SheetCount = Sheets.Count

For N =1 To SheetCount
SheetName = Sheets(N).Name
For M = N To SheetCount
If Sheets(M).Name < SheetName Then
SheetName = Sheets(M).Name

® The macro sorts the sheets.

Sub SortSheets() =

Hove et Paplomd fwedn Dets

— Dbt b T Rt e
am [T ermrr— (L L Serrsmgl:
[iy 3
s .

End If
Next
Sheets(SheetN)-Move Bef 5ho¢ts{N)<—e
MNext 4
End Sub .
ot T :lJ
.C\j, = N L Chap10-Macrasdsm - Microsaft Excel - x

o - - ~
Santy 1 ELRTE] = *)

If Sheets(SheetName) <> Sheets (N) Then
Sheets (SheetName)
End If

. Move Before:=Sheets (N)

The steps in this section determine the sheet with the lowest name in the inside loop and place that sheet
before the index value that it is evaluating. Although this code works correctly, it is not the most efficient
method for sorting a large list of items. The code attempts to move the sheet without first checking to see if
the smallest sheet is also the current sheet. To make the execution of the code more efficient, add a
conditional If Then statement that compares the two sheets and performs the move only if they are not the
same sheet. The code runs more effectively because it determines that no move is required if the sheets are
already in the correct order.

RESULT:

‘ This code checks that the sheet you are
moving and the sheet before which you
intend to move it are not the same sheet. If

the sheets are the same, Excel ignores the
Move statement and continues with the
looping statements.

o1 Iadey)

.
.

§
z.
5
uQ
=
=
§
w
2]
=
@
@
o=t
75}

Using the

Range Property

hen working in Excel, a lot of the work that

you do involves ranges. You can define a

range by using the rRange property. Defining
a range creates a Range object, which can be a single

cell, an entire column, a row, or a selection of multiple
cells.

You can use the Range property with the application,
Worksheet, Or Range objects. The statements
Application.Range and ActiveSheet.Range return
the same results. If you use the Range property without
an object, Excel assumes you are referencing the
ActiveSheet.

You can use two syntax forms with the range property.
The first form requires two parameters: ce111 and
Cel12. This form of the Range object references the
upper-left corner of the desired range with the ce111

Using the Range Property

parameter, and the lower-right corner of the range with
the ce112 parameter. For example, to specify a range of
cells between A1 and E15, you would use the code
Range ("Al", "E15").

The other form of the Range property requires a Name
parameter. This required parameter indicates a range,
using the A1-style reference. You place a colon between
two cells to specify a range. For example,

Range ("A3:F5") refers to the range of cells from A3 to
F5. You place a comma between the range definitions to
refer to two or more noncontiguous ranges. For example,
Range ("A3, Al, B4:C10") specifies the range of cells
A3, A1, and B4 to C10. You leave a space between the
two range definitions to specify the location where two
ranges intersect. For example, Range ("A3:F3 D2:G5")
specifies where the range of cells A3 to F3 intersects with
the range of cells D2 to G5.

@ Name your procedure.
9 Define a range and select it.
® The range.

9 Ask the user if they want to calculate a total.

9 If the user responds, “Yes,” then calculate the total.

® This same range was selected in step 1 using a different
syntax.

@ Press Alt+F11 to switch from the VBE to Excel, and run
the macro.

@

 Microsoft Visual Baskc - { 11-Macros,xlsm - [RangeExample (Code)]
M pie gt gwe posrt fgmat] Detwg Ben Dosh pdim jpede e % =0

Sub Rangncmalo{}<—ﬂl B
Y

Range("B11", "D11").Select 4—@
Msg = MsgBox("Do you want to lnlal?",<—9

vbYesNo + vbQuestion,
"Calculate Total"”)

4 Microsoft Visual Basic - Chap11-Macros. xism - [RangeExample (Code)] I
M s Eot e puet Fgwer Deteg Bem Josh pddim lpedes e n L
=0 <] [Pmrcaran

Sub RangeCreate()

Range("B11", "D11").Select

Msg = MsgBox("Do you want to total?”, _
vbYesNo + vbQuestion, _

"Calculate Total")

If Msg = 6 Then
Range("B11:D11").Formula = "=SUM(B6:B10)" 4—9

End Sub

The macro selects the range and then displays
a message box.

If the user clicks the Yes button, the macro
totals the columns.

(B WA -

— Mo et Paplaea -

— Tt bl
s v e e Rt
s 1 Mo Sty
El - g &]
Y £ [5
Franklin Skys Company
Assets
December 31, 2007 2 eorsrm o
Divisions
Davis Fratt Cornell (=] = |

& |Cash 25,800 39,489 29,788

' Accounts Receivable 50,587 34,527 47,962

1 Office Supplies 1713 1,251 1737

% Land 176,892 186,454 134,365
/| Building 581,432 458,384 480,455
1 Total Assets
u
L3
o aa m
Font,
(B SRR

Few bt Pagrlayet
sy o Dbt
el - oL

e
e 1 M ety

- — ot

Bl - 5 =sUnM(B6:B10)
]

— 3 [i
Franklin Skys Company
Assets
December 31, 2007
Divisicns

s Davis Fratt Cornell
& Cash 25,800 39,459 29,789
1 | Accounts Receivable 50,987 34,527 47,962
1 Office Supplies 1,713 1,251 1,737
s |Land 176,892 186,434 134,365
= Building 591432 459,384 490,455
1 Total Assets 816,824 721,125 704,308 jet——
o
u
=
Betunisi rroperty L N
o dowwye TUAID o] WemeCoow Mo TN M B e TP e et

To highlight a cell or range of cells in a worksheet, use the Select method with a Range object. For example,
to select the range of cells from A3 to A6, you would type Range(“A3:A6”).Select.

When you use the Select method with a Range object, the active cell becomes the first cell in the specified
range. If you specify individual cells with the Select method, the active cell is the first cell specified. For
example, Range ("A3, Al, A5").Select makes cell A3 the active cell.

You can also use the Activate method to highlight a cell or range of cells. With the Activate method, the
first cell referenced in the range is the active cell, but VBA highlights all of the other cells in the range to
indicate that VBA has selected them as well. For example, the code Range ("B4:C6") .Activate, makes B4
the active cell and highlights cells B4 to C6. When you use the Activate method, the first cell in the range
becomes the active cell. The Select method and the Activate method are interchangeable.

11 1deyd

.
.

=
()
=d
=
=
@
=
&
&
(¢
7]

Using the

Cells Property

ou can use the cells property to reference

specific cells in a worksheet and make changes to

the values or properties of the cells, such as the
font settings. The Excel object model does not contain a
cells object. To reference specific cells, use either the
Cells property or the Range property, each of which
returns a Range object with the specified cells. See the
section, “Using the Range Property,” for more
information about the range property.

You can use the cells property with the Application,
Range, and Worksheet objects. Using the cells property
with the Application and worksheet objects returns
the same result. For example, you can type
Application.Cells, O ActiveSheet.Cells to return

a Range object containing all cells in the active worksheet.

Using the Cells Property

The cel1s property has two parameters. The first
parameter, Row, contains a value indicating the row
index. The second parameter, Column, contains a value
indicating the column index. For example, to reference
cell B5, you assign a value of 5 for the row parameter
and a value of 2 for the column parameter, as shown in
the code cells(5,2).

One advantage of using the cel1s property instead of
the Range property is that you can use variables to
change the values easily. For example, you can use a
variable to represent either the row or column, as shown
in the code cel1s (N, 1) = 5. which sets the value of a
cell in column A and a row specified by N to 5.

@ Name your procedure.
@ Declare your variable.

@ Create a For next loop.

Q Use the Cells property to indicate the cells you want to
format.

@ Format the cells.

e Press Alt+F11 to switch from the VBE to Excel, and run
the macro.

@

0 Sub CellsFormat() g
Dim N As Integer<—9

 Microsoft Visual Baskc - Chap11-Macros,xlsm - [CellsExample (Code)]

Bl G e poet Fgwat Debey Ben Jooh St fjedes s
= =] [commrorma

 Microsoft Visual Baskc - Chap11-Macros.xlsm - [CellsExample (Code)]
M Bl G e punt fgwat Debej Ben Jooh gt fjedes L

=0 =] [cotmtoema

Sub CellsFormat()
Dim N As Integer

= True
= True

e—-!»ForN=3T09
(3

b b

= Next

End Sub

The worksheet before you run your macro. SR R
A 3 al &
e S =
ol o=
Al -3 L3 » 0
AL Gl i £ =
[I Sales —
1 Product 1 Product 2 Product 3 —
1 January 5 12425 § 13,736 § 17,389 55
« February 19.596 11,968 11,904
March 14,609 11,838 18,761 U
s April 10,897 13,959 18,322 ('D
+ May 12.556 13,906 11,548 :Q
1 June 18.651 19,850 13.072 =
0 5 88734 S 85267 § 91,996 [=%
= =
i (V)]
- &
: o
e — EEF] : 4 (¢
73
The worksheet after you run your macro. ik
® The macro moves down the first column and
adds bold and italic formatting to each cell. . -
| — — Sales r
2 Product 1 Product 2 Product 3
3] 12425 § 13736 5 17,389
i 19,596 11,968 11,904
. 3 14,609 11,838 18,761
-.> 10,897 13,969 19,322
12.556 13,906 11,548
' 18,651 19,850 13,072
’ S 88734 § 85,267 § 91,996
:. - [
| B E] v

To set the font attributes for objects in Excel, use the Font object. You typically use the Font object to
modify the attributes of a cell or a range of cells. The Font object has several properties for obtaining or

modifying the attributes of a specified object. Some of these properties are listed in the following table.

FONT PROPERTY DESCRIPTION

Bold A Boolean value indicating whether the font for the object is bold.

Color Indicates the color of the font. Use the RGB function to set the font color.

FontStyle Indicates the font style. For example, to set both a bold and an underline font style,
specify Font.FontStyle = “Bold Underline”.

Italic A Boolean value indicating whether the font for the object is italic.

Shadow A Boolean value indicating whether the font is a shadow font.

Size Indicates the size of the font.

Strikethrough A Boolean value indicating whether to use a strikethrough font to draw a horizontal
line through each character.

Subscript A Boolean value indicating whether the font is subscript.

Superscript A Boolean value indicating whether the font is superscript.

Underline A Boolean value indicating whether the font is underlined.

Combine

Multiple Ranges

o create a multiple area range, you can use the
Union method. A multiple area range contains
more than one block of cells, and the blocks of
cells are noncontiguous. For example, you can use the

Union method to create a Range object containing the
cells A1 to B5 and D1 to E5.

When you use the Range property in conjunction with
the union method, you can specify up to 30 ranges, and
you must specify at least two ranges. You assign the
ranges by using any option that returns a valid Range
object, such as the Range property or the cel1s property.
See the sections, “Using the Range Property” and “Using
the Cells Property,” for more information. The following
example specifies two ranges:

Dim RangeVar As Range

Combine Multiple Ranges

Set RangeVar = Union
Range ("A5:A15"))

(Range ("Al:A3"),

The code Set RangevVar = Union (Range("Al:A3"),
Range ("A5:A15")) uses the union method to combine
two Range objects created with the Range property and
assigns the result to a range object variable. With this
sample code, the new range contains the cells A1 to A3
and A5 to A15. Notice that the two blocks of cells are
noncontiguous.

Because you must declare the variable to which you
assign the multi-area range as a Range object, you use
the set statement when creating the assignment
statement. You must use the set statement whenever
you assign an object to an object variable. See Chapter 4
for more information on assigning objects to variables.

@ Name your procedure.

Declare the Range object variables that you will use to
store your ranges.

2]
9 Store each range to a variable.
o

Use the Union method to create a single range object that
contains multiple ranges.

Apply formats to multiple ranges using one Range object.

0

Press Alt+F11 to switch from the VBE to Excel, and run
the macro.

 Microsoft Visual Baskc - Chap11-Macros,xlsm - [MultiRangeExample (Code)]

M pie gt e Pt fgmat Debug B Josn pSdm jpedes pwe

1 <] [hpeiian - .
Sub RangeMulti() 4—0 B

~—0
~—O
Set RAIl = Union(R1, R2, 3314—9

« Microsoft Visual Basic - Chap11-Macros,xlsm - [MultiRangeExample (Code)]
M pe ot gwe punt fgmat Debug B Josh pSdm jpedes e
= T

Sub RangeMulti()
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim RAIl As Range

Set R1 = Range("A3:E3")
Set R2 ange("A5:E5")
Set R3 | Range("AT7T:ET")
Set RAJl = Union(R1, R2, R3)

With RAlLInterior
.ThemeColor = xIThemeColorLight2
.TintAndShade = 0.9

End With

End Sub
=3 «

)

The worksheet before you run your macro. gy H e B crstan W b EEE:

Hevs et Papled fwedn Dets Bees fam 2asim -

— D P i % e B
SO RN T
£ P

e - impen
i e Pt =] e
bint D o

1 M Sty et ol LT] e

:
= |Product 1
1 |Product 2 1,740
« Product 3 1,418
Product 4 1.3
+ Product 5 1.374
1 Product 6 1,765 1
» Total 9,330
.:.'.::.__ =
tenty Er] %
The worksheet after you run your macro. o — il
. Nl S
The macro uses a Union range to apply a format to o i
multiple ranges. T B
A] " 3 [£ i

Region 1

2 Product 1 1.708 1,881 1.642
» Product 2 1.811 1,781 1.740
4« Product 3 1.314 1,155 1,418
+ Product 4 1,055 1,000 1.391
s Product 5 2,000 1,738 1.374
rifroducte' 1,328 1604 2001748 00 00 4,76
+ Total 9,216 7,969 9,313 9,330
"

n

u

"

LERREY 117 < L

i | B]

When you use the Union method, you combine multiple ranges. Each range is a Range object and is part of
the Areas collection. Each member of the Areas collection represents a contiguous block of cells, with one
Range object representing each contiguous block of cells.

You cannot apply some VBA operations to ranges that contain multiple areas; therefore you may need to
determine the number of areas in a range. To do this, use the Count property. The Count property counts
the number of areas in the range; if the Count property returns a value greater than 1, the range contains

more than one area. The following example uses the Count property to determine the number of areas in
a range:

Example:
NewRange = Selection.Areas.Count

Each range in an Areas collection has an index value. The first range added to the collection has an index
value of 1, the next 2, and so forth. You can reference an area by its index value.

11 1deyd

.
.

saguey Suruyyadg

Using the

Offset Property

sing the of fset property is another way to
specify a range of cells. The of fset property
defines a range as an offset from another range,

with the offset being the distance in rows and columns
between the new range and the existing range.

The offset property has two parameters. Although both
are optional, if you do not specify at least one of the
parameters, the of fset property returns the current
range. Use the Rowoffset parameter to indicate the
number of rows to offset the new range from the current
range. A positive number offsets the range downward. A
negative number offsets the range upward. The of fset
property bases the offset on the upper-left cell in the
active range. For example, if the active range is cells A1
to B4, the Offset property bases the offset values on the

Using the Offset Property

number of rows and columns from cell A1. Use the
ColumnOffset parameter to specify the number of
columns to offset the range from the current range. A
positive number offsets the range to the right. A negative
number offsets the range to the left. The default value for
both parameters is zero.

If you only assign a value to one of the parameters, Excel
gives the other parameter a value of zero. For example,
with a value of 5 for the Rowoffset and no

ColumnOf fset parameter value, the property returns the
range that is five rows from the current range selection.

If you specify a value outside the valid number of rows
and columns in a worksheet (for example, if you specify
Offset(-1, -1) and the current cell is A1, VBA returns an
error.

@ Name your procedure.

@ Declare the Range object variables that you will use to
store your ranges.

9 Store your range to an object variable.

@ Use the Offset property to define the range.
® The same row.
Four columns to the right.

Place a formula in the offset range.

00 .

Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

 Microsoft Visual Baskc - Chap11-Macros,xlsm - [OffsetExample (Code)]
e R - *aBK

= | [t =l
Sub OffsetRange() 4—0 =

Set FirstRange = Rango("AS:A10“}<—9

4 Micrasoft Visual Basic - Chap11-Macros.xism - [OffsetExample (Code)]
M pe gt gwe puen fgmat Oetog B Josi pSsm lfgedse e
] =] [omeetbanen

Sub OffsetRange()
Dim FirstRange As Range
Dim NewRange As Range

Set FirstRange = Range("A6:A10")

Set NewRange = FirstRange.Offset(0, 4) 4—9

NewRange.Formula = "=SUM(B6:D6)"

End Sub

The worksheet before you run the macro.

The worksheet after you run the macro.

The macro uses the offset property to create the
values under the Total column.

.O]) e R Chap11-Macros skm - Microsoht Exce -t
— e et Puplaws Fedn Das Bews Vem | On e w -
Aoy gy e S e g
T 8 b Sy R T U Rty |

e [ue
Al - g v -]
i] 3 G i P]

1 Franklin Skys Company

1 Assets

3 December 31, 2007

‘ Divisions

[Davis Fratt Cornell Total

s |Cash 25,800 39,489 29,788

* Accounts Receivable 50,587 34,527 47,962 1

1 Office Supplies 1713 1,251 1737

% Land 176,892 186,494 134,365

| Building 581,432 458,384 480,455

| Total Assets 846,824 721,125 704,308

u

"

*

wer e oftwt oL

ety 3 JEE Ve ———

) R hap11-Macrosxism - M -
= Wew et Puplamd boedn D Rews Vem #-=x

e e o — 3
E E e Bt Rt .f: :: :\-—;--. E L)
fems £, e bty proe o J O UEY]
) e e
Al -@ s ®
i] 3 [E F]
| Franklin Skys Company

z Assets

3 December 31, 2007

i Divisions

L Davis Fratt Cornell Total

& Cash 25,800 39,459 29,789 95,058

+ Accounts Receivable 50,987 34,527 47,962 133,476 1

& |Office Supplies 1713 1,251 1737 4,701

s |Land 176,892 186,434 134,365 497,751

= Building 591,432 459,384 490,455 1,541,271

i |Tetal Assets 846,824 721,125 704,308 2,272,257

L]
u
%
=

v olivet <ot il

ety T

You can use the Of fset property in a For Next loop to cycle through a range of cells.

Example:

Dim Count As Integer

Count = 1

For Count = 1 To 4
ActiveCell.Offset (Count -1, 0)

Next Count

& Count

The initial value of Count is 1. Count -1 is equal to zero. The code offsets from the ActiveCell. As a

result, the code starts executing from the active cell, ActiveCell.Offset (Count

-1, 0), which resolves

to ActiveCell.Offset (0, 0). With each loop, the value of Count increases by 1, and so VBA stays in the
same column, but moves down one row. See Chapter 6 to learn more about using a For Next loop and to

see this code in action.

11 1deyd

.
.

=
o
o)
E.
=
uQ
=~
S
0
o
7

Delete a Range

of Cells

the pelete method. Excel completely removes the

cells and adjusts the remaining values in the
worksheet to fill the gap left by the deletion. For
example, if you remove column B, Excel shifts the values
in column C to the left to become the new column B
values, and all remaining column values shift to the left
as well. Conversely, if you delete a row, Excel shifts all
values up one row. You can reference an entire column by
using the syntax columns (ColumnNumber). You can
reference an entire row by using the syntax
Rows (RowNumber) . The following examples delete
column 2 and row 3, respectively:

Columns (2) .Delete

T o remove a range of cells from a worksheet, use

Rows (3) .Delete

Delete a Range of Cells

Excel easily determines how to shift the cells when you
remove entire rows and columns, but if you remove a
block of cells, you must specify how the remaining values
fill by using the shift parameter with the pelete
method. When you use the shift parameter, you assign
it one of the x1DeleteshiftDirection constant values.
The value, x1shiftToLeft, tells Excel to shift values

to the left to fill the gap created by the deletion. The
x1Shiftup constant value tells Excel to shift values up
to fill the gap. For best results, specify how to shift

the cells.

Excel ignores the shift parameter value if it is not a
valid shift direction for the deleted range. For example,
the code column (2) .Delete Shift:=x1ShiftUp
deletes a column, but Excel shifts the cells to the left
because there are no cells to shift up.

o Name your procedure.
@ Declare a Range object variable.

9 Store your range to an object variable.

@ Delete your range.
® The range you want to delete.
® The instruction to shift up.

@ Press Alt+F11 to switch from the VBE to Excel, and run
the macro.

@

 Microsoft Visual Baskc - Chap11-Macros.xdsm - [DeleteExample (Code)]
M Bl G e et Fgwat Qebey Ben Jooh gt fjedes b

Sub DeleteRange() <
Dim RangeDelete As Rang-‘-@
Set R Delete = Rang :"AB:E14“34—9
g o

 Microsoft Visual Baskc - Chap11-Macros,xdsm - [DeleteExample (Code)]

M Ele G pes et Fgmat Qebey Ben Jooh st fjedee
Posmran =l

Sub DeleteRange()
Dim RangeDelete As Range

Set R ge("A9:E14")
RangeDelete.Delete Shift:=xIShiftUp 4—9

End Su|

The worksheet before you run your macro. i e M s @
= el met P Loyt Parrain Dets. P Vam - R b w -"x :
) o ﬂllv\—lum" x:l ¥4 X brepetan = ‘ '- J»—q w
The rows that the macro will delete. e e e b =
- 1, Mo oty v hete § BBy 1
i P . (o
AL ubid I 2
1 . ; egion 1 : ; 1 p—
+ | Product 1 43979 § —
s Product 2 25,225 55
« Product 3 33,587
Product 4 27,710 c
+ Product 5 41,130 ('D
: Product 6 33 470 1 :Q
s Product 7 26,951
: _—— V)]
5
2 g
= Total 3 441,274 § 477,411 § 421,184 § 528,462 =
.
[2 0 0| Detete QQ
o) (¢}
73
The worksheet after you run your macro. oy e - o
— . e et Pagr Loyedt Prrrain ¥ -=x
0 Bk e o3 Z
T e | 92 0
A e o
Al H—)]
A & [[[B
[tegion 1 Region 2 on 3 Region 4 E
: Product 1] 43979 § 42,347 § 349 § 48,825
s Product 2 25,225 35714 25,819 38,996
« Product 3 33,587 40,384 28,248 49,422
s Product 4 21710 42 467 20,587 407
s Product 5 41,130 30917 33.353 38,482
t Product 6 33,470 36,432 29,034 31,096 1
+ Product 7 26,951 45,621 24,996 49,969
+ Total $ 232,052 § 273,882 § 201,396 § 200,787
.
B
:
wovnl ocete
| B E] v (4]

You may not be able to remove cells from or add cells to a protected worksheet. You can use the AllowEdit
property to determine if you can modify a range. The A1lowEdit property returns a Boolean value of True if
you can modify the specified range. In the example code, the A11lowEdit property checks a range to make
sure you can modify the range before it calls the Delete method.

Example:

If RangeDelete.AllowEdit Then
RangeDelete.Delete Shift:=x1ShiftUp

End If

The code checks the AllowEdit property for the specified Range object. The If Then statement ensures
that the code attempts to delete the specified range of cells only if you can modify the range. Otherwise, Excel
ignores the Delete statement.

To protect worksheets, use the Protect method. See Chapter 10 for more information on using the
Protect method to protect a worksheet.

Hide a Range

of Cells

object to hide a range of cells. You commonly hide

portions of a worksheet so that you can focus in
on other data. For example, a worksheet may contain
monthly data and quarterly summaries. You can hide the
monthly data so you can focus on the quarterly
summaries.

With the zidden property, the range of cells you hide
must consist of an entire row or column. You hide a
range by assigning a value of True to the Hidden
property for the specified range. You make the range
visible again by assigning the value False to the Hidden
property. When you hide a range of cells, Excel sets
either the width of the columns or the height of the rows
to zero, as in the following example:

Rows (2) .Hidden

Hide a Range of Cells

You can use the Hidden property with the Range

You can use the Hidden property either to determine if a
range is hidden. You can find out if a range of cells is
hidden by checking the ridden property. For example,
you can check to see if column A is hidden by typing
HiddenRange = Columns (1) .Hidden. If you declare
the HiddenRange variable as a Boolean value, the
variable receives a value of True if the specified range is
hidden; otherwise, it receives a value of ralse. If you do
not declare the variable as Boolean, Excel assigns a
numeric value of -1 if the range is hidden and zero if the
range is visible.

@ Name your procedure.

@ Create For Next loops. (2]

In this example, the For Next loop enables you to
hide multiple columns — columns 2 to 4 in the first

loop and columns 6 to 8 in the second loop. @

9 Set the Hidden property to True to hide the
columns.

You can set the Hidden property t0 False to
unhide the columns.

Q Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

 Microsoft Visual Baskc - Chap11-Macros,xdsm - [HideExample (Code)]

Bl G pes punt fgwat Doty Be Josh pStim fjedes pes

e =] [watman o]
Sub HideRang .{}4—0 E

ForN=2To 4
Columns(N).Hidden = True

Columns(N).Hidden = True

Next
End Sub

4 Microsoft Visual Basic - Chap11-Macros.xism - [HideExample (Code)]
M Ele Gt e poet Famat Qebwg Ben Josh pStm jedee e
— —=

Sub HideRange()
ForN=2To 4

Columns(N).Hidden = Trua<—9

Next

ForN=6To 8
Columns(N).Hidden = Tme‘—@

Next
End Sub

The worksheet before you run the macro.) Amm Y ChapTE MacroA M - Wicrosoh Bee E g
= el met P Loyt Perradn Dets. Proee Vam Cvowmpn R b - =
O e | SR N e B S e &
s R poeel s =
Comtnt e o=
Al o & 0
-y i c 5 i 7 3 5 : G -
' Jan Feb Mar Qtr1 Apr May Jun Qtr2 —
: Region 1 105 179 121 405 200 173 178 551 —
1 |Reglon 2 116 151 109 are 152 139 132 423 55
« Region 3 127 160 188 475 196 152 188 536
Regiond 127 176 137 440 170 114 130 414 ()]
+ Total 475 666 555 1,696 T18 578 628 1,924 ('D
A | ":3
A =
i o
) =)
{ (V)]
= &
: =
[+ 0 o viate Cobmen L aq
" 3 [[YEm——) (93
73
The worksheet after you run the macro. S Mo e et
. s Nl A S 1
The macro hides the columns you specified. e T
Al = Ay B
1 - (:rllr1 Il:!t.r 2) I ; ;) B
: Region 1 405 551
3 Region 2 ave 423
« Region3 475 536
+ Region 4 440 414
« Total 1,698 1,924
8 e Range
¥ Shew Rasge
®
CRTree—
| B] &

see the column labels for columns A, B, E, F, and so on.

When you hide a row or column in Excel, you can still access the values contained in the cells by referencing
them in functions and macros. Excel indicates the existence of hidden rows and columns by skipping over the
hidden rows and columns in the row and column headings. For example, if you hide columns C and D, you

To unhide rows or columns in a worksheet, set the Hidden property to False. The following code unhides all

columns in a worksheet.

Example:
Columns.Hidden = False

This statement is useful for ensuring that all cells in a worksheet are visible. You can use the Rows property to

unhide all hidden rows.

Example:
Rows.Hidden = False

Create a

Range Name

easier to remember than cell addresses. When you

name a range, you can refer to the range using the
range name when creating formulas or performing other
tasks. When you move a range to a new location, Excel
automatically updates any formulas that refer to it.

When you use a named range in a procedure, you do not
need to know the location of the cells that contain the
desired values. For example, if cell B3 contains the sales
tax rate, assign the name 7ax_Rate to the cell so you can
reference the cell by name when you want to use it.

In VBA, you use the Name property to assign a name to a
range of cells, as follows:

I n Excel, you can name ranges. Range names are

Columns (3) .Name = "May_ Sales"

Create a Range Name

This example assigns the name May_Sales to Column C
in the active worksheet. To view the assigned name in
Excel, you select the range, and the name appears in the
Name box on the Formula bar.

Whenever you need to reference a range in your
procedure, you can use its range name. You can reference
range names created by your procedure and range names
created manually in Excel. You can modify and delete the
range names you define in a VBA procedure in Excel.

To delete a range name using a procedure, use the
Delete method. The following example deletes the range
name Maqy_Sales:

ActiveWorkbook.Names ("May_Sales") .Delete

o Name your procedure.
@ Declare your variable.
9 Assign a name to a range.
® The range to which you want to assign a name.

® The name that you want to assign the range.

@ Use the range name.

In this example, the worksheet function Sum totals
the range.

Assign the result of the worksheet function to a cell.

Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

©0

@

 Microsoft Visual Baskc - Chap11-Macros,xlsm - [Module (Code)]
M Bl G e punt fywat Debej Ben ook gt fjedes pes

) a1 - =
Sub Nam-Rang.U‘-ﬂ =

Dim Total As Long

.Name = "Sales" 4—9

 Micrasoft Visual Basic - Chap11-Macros.xism - [Madule8 (Code)]

M Ele Gt pes poet fgmat Qebwg B Josh potm jiedoe e
e e

Sub NameRange()
Dim Total As Long

Range("B2:B9").Name = "Sales"
Total = WorksheetF ti S (R

Range("B10") = Tutal<—6

End Sub

ge("Sales"))

The worksheet before you run your macro. g bt s . g
sl - s e L
B e E
Al - & Sales Person & (]
T % 3 i -
fsales Person ___________Sales| —_
: Smith, Sam 296,264
: Jones, John 216,048 t-.‘
« Smith, Fred 203,723
Hansen, April 284,213 U
+ Anderson, Tom 252,195 (¢°)
+ Adams, Jerry 295 063 :Q
1 Peterson, Paul 272,263 =
+ Garcia, Juan . 253648 —-
« Total =
i UQ
z &
S EEF] 7 o (¢
©v
The worksheet after you run your macro. (B M 2wt e e
PR e 2 g - 150
The macro uses the named range to sum a range i b ol g P
Of Ce”S' Al - b Salels Persan]
fsales Person —_______Sals| "
: Smith, Sam 296,264
1 Jones, John 216,049
« Smith, Fred 203,723
+ Hansen, April 284 213
+ Andersen, Tom 252,195
+ Adams, Jerry 295,063
+ Peterson, Paul 272,263
» Garcia, Juan 253.648
 Total 2,073,418 —
i s :
| B])

To create a named range in Excel, select the range, click the Formulas tab on the Ribbon, and then click

Define Name in the Defined Names group. The New Name dialog box appears. Type a name in the Name
field, and then click OK.

Click Name Manger on the Formulas tab to open the Name Manger. The Name Manager contains a list of all
named ranges. To see which cells a named range includes, select the range name in the Name Manager; the
corresponding range displays in the Refers To field. If you want to delete a named range, highlight the range

name and then click Delete. If you delete a named range, any macros that reference the named range will
not work.

You can also use the Name Manager to modify a named range. In the Name Manager, click the Edit button.

The Edit Name dialog box appears. Use the Refers To field to define the range of cells to which the range
name refers.

Resize a

Range

ou can use the Resize property to change the

size of a range. When you resize a range, you

change the number of rows and columns. You can
specify either more or fewer rows or columns.

The rResize property has two optional parameters;
however, you should set at least one of the two
parameters. If you do not use either parameter, Excel
returns the original range. The first parameter, RowSize,
sets the number of rows in the new range. The second
parameter, ColumnSize, sets the number of columns in
the new range.

When you resize the range, the upper-left corner of the
original range remains the same. For example, if the
original range is B1 to C4 and you resize the range to
contain only two rows and two columns, then B1 remains

the upper-left cell value. VBA adjusts the range based on
that cell, creating a new range of cells from B1 to C2.

You may need to know how many rows and columns
currently exist in a range before you can determine how
to resize it. If you are working with a range that is
defined elsewhere, such as a named range, use the
Count property to determine the number of rows and
columns in the range, as shown in the following code:
NumberOfRows =

Range ("Named_Range") .Rows.Count. The count
property counts the number of rows in Named_Range
and assigns that result to the NumberofRows variable.
You use the same syntax with the columns property to
count the number of columns in a range. Once you know
the size of the range, you can use the Resize property to
modify the number of rows and columns.

@ Name your procedure.
@ Declare your variables.

9 Count the number of rows in a range and assign the result
to a variable.

9 Count the number of columns in a range and assign the
result to a variable.

6 Add 3 to the values stored in your variables.

s Microsoft Visual Baskc - Chap11-Macros,xlsm - [Moduled (Code)]
e R N

=] [Pt :
Sub ResizeRa ng-()<—o E

pinf ").Rows.t:uunl<—9
ge("Emplnf “].Columns.t’:ount<—e

PO = ™
= Range("E
" =R

4 Microsoft Visual Basic - Chap11-Macros. xism - [Module$ (Code)]
M fe ot gwe Pt Gyt Qetug Ben losn pddm e e
e e
Sub ResizeRange()

Dim NumRows As Integer

Dim NumCol As Integ
NumR = Range("Empinfo"”).Rows.Count
NumCol = Range("Emplinfo”).Columns.Count

R 5

@ Resize your range. e A L AN A e

S X ;
® The range you want to resize. Sub ResizeRange() i
Dim NumRows As Integer
® Sets the number of rows to the value in e e
your NumRow variable. NumRows = Range("Emplnfo”).Rows.Count
NumCol = Range("Emplnfo").Columns.Count

Sets the number of columns to the value

in your NumCol variable. NumRows =|NumRows{® 3
NumColumns = NumCgdlumns + 3

0 Press Alt+F11 to switch from the VBE to e
Excel, and run the macro.

B g ("Emplinfo”).

Resize[RowSizo::N_umRuws.

& RSk s
End Sub
SO N
The macro resizes the range. S
The original size of the range.
® The current size of the range. . .
: |
| = |
:
; B |
" i
5 |
—— : _
sty] B MTH o) fnemealCrew d S 1000 e DO S P00 o N e i

Besides determining the number of rows and columns in a range, you may need to know the exact row or
column in which the range begins. To do this, use either the Row property or the Column property. The
following code determines the number of the first row in a range:

Example:
FirstRowNum = Range ("EmpInfo").Row

This code assigns the integer value representing the first row in the specified range to the FirstRowNum
variable. You can also determine the first column in the range by using the Column property, as shown in
this code:

Example:
FirstColNum = Range ("EmpInfo") .Column

11 1deyd

.
.

=
()
=d
=
=
@
=
&
&
(¢
7]

ou can use the Insert method to insert a range

of cells into a worksheet. When you insert a range

of cells, VBA adjusts the values in the existing
cells by moving them either down or to the right so that
it can insert the new cells into the specified location. For
example, if you insert a new row of cells in row 3, VBA
shifts the existing values in row 3 down to row 4 and
shifts all of the values in cells below row 3 down as well.
If you add a new column, Excel shifts all existing values
to the right. The following examples insert a column and
a row, respectively:

Columns (2) . Insert
Rows (3) .Insert

How the cell values in the worksheet should shift when
you add an entire row or column is obvious. With a

Insert a Range

smaller block of cells, you must use the InsertShift
parameter to tell VBA how the cells shift. To make sure
the cells shift correctly, assign the shift parameter one of
the Xx1InsertshiftDirection constant values. You can
use the x1shiftToRight constant value to shift the cell
values to the right. You can use the x1ShiftDown
constant value to shift the cell values down. The
following example shifts cells to the right:

Range ("B5:B7") .Insert:=x1ShiftToRight

You use the cut and copy methods to paste data to the
Office Clipboard. You can insert data that is on the Office
Clipboard into your worksheet by placing a cut or copy
command before the Insert command in your
procedure. See Chapter 12 to learn more about the cut
and copy methods.

o Name your procedure.
@ Copy arange.

@ Insert the range.
® The point at which to begin the insertion.
® The shift direction.

9 Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

@

4 Microsoft Visual Baskc - Chap11-Macros.xdsm - [InsertExample (Code)]
M Ele G pes pun fgwat Qebey Ben Josh gt fjedes pes

= inserdbias
Sub InsertARange() 4—0
Range("E2:E4").Copy 4—9

sl

 Microsoft Visual Baskc - Chap11-Macros.xdsm - [InsertExample (Code)]

M Ele G5 pes et Fgmat Debwy Ben Jooh gt fjedes b
— e

Sub InsefARange() =

Range("ER:E4").Copy

(3

Range("B5").
Insert Shift:=xIShiftDown

End Sub

The worksheet before you run the macro. i) e T Chab1 - Macroaxkim - Miciosof Bce S

Pews et Paplawd Fudn Des Bews Vem | Crowen | Ladhn -

— T B b 2 T hupesen
_"-l o _J B L bttt ’é i‘— & Vot e E
B M Sty a4 RTN

Cule [e

3 i g 3
[No._|Employees New Hires
2 1 Adams, Jerry Best, Marvin
1 2 Anderson, Tom Caldwell, Steven
‘ 3 Andrews, Andy Davis, Joan

4 Garcia, Juan
i 5 Hansen, April

& Jones, John [
' 7 Peterson, Paul !
» 8 Smith, Fred |
a 9 Smith, Sam

10

11

teety T EFIE] # 4

-
@®-mx

The worksheet after you run the macro. [R— i W B

— Wew bt Pagleed bodn

Ay Dttt

The macro places the copied data in the insert o o R
location. = - =

Al Sk No.

£ b E
1 @Emproym New Hires
1 Adams, Jerry Best, Marvin <——
2 Anderson, Tom Caldwell, Steven
i 3 Andrews, Andy Davis, Joan
4 Best, Marvin <———
. 5 Caldwell, Steven
@& Davis, Joan
' 7 Garcia, Juan
B Hansen, April
L] 9 Jones, John
10 Peterson, Paul
=| 11 Smith, Fred
w12 Smith, Sam

=
T M-

CRIR T § a
[Py r———— I 1] .)

You can also use the Insert method to add a value to a cell. To insert a value in a cell, use the Insert
method with the Characters object. You can insert a string of characters at the beginning of a cell or at any
location in the cell. For example, to insert the string “New String” in cell B1 and replace the contents, type
the following code:

Example:
Range ("B1l") .Characters.Insert ("New String")

To place the new string within the existing string of characters, indicate the location to place the new string
and the number of characters to replace at that location. For example, in the string “Excel 2008 Worksheet,”
you can replace the “2008” with “2009” by using the Insert method. The following code illustrates how to
make the replacement when the string is located in cell A1.

Example:
Range ("Al") .Characters(7,4) .Insert ("2009")

The Characters object has two parameters, Start and Length. The Start parameter indicates the
number of the character at which to start the insert — in this case, character 7. The Length parameter
indicates the number of characters to replace.

11 1deyd

.
.

=
()
=d
=
=
@
=
&
&
(¢
7]

Set the Width of

Columns in a Range

o set the width of a column, use the

Columnwidth property. By default, Excel assigns

a width of 8.43 characters to each column. Excel
bases this width size on the number of zeros it can place
in the cell using the Normal style. One unit is equal to
one character. In the following example Excel sets column
1 to 15 characters in the Normal style:

Columns (1) .Columnwidth = 15

You can also use the Columnwidth property to determine
the width of the columns in a range. If all columns in the
range have the same width, the columnwidth property

returns the number of characters that can display in each

Set the Width of Columns in a Range

column using the Normal style. If the column widths in
the selected range vary, the columnwidth property
returns Null. The following example,

ColwWidth = Columns (1) .ColumnWidth

returns the width of column 1.

Every worksheet has a default width, commonly referred
to as the standard width. You can use the
Standardwidth property to set the columns in a
worksheet to the standard width. The following example
sets every column in a worksheet to the standard width:
Columns.ColumnWidth = _
ActiveSheet.Standardwidth

SET A COLUMN WIDTH
@ Name your procedure. (D)

 Microsoft Visual Baskc - Chap11-Macros.xlsm - [Module11 (Code)]

M Ele G e et Fgwat Debuy Ben Jooh gt fjedes L

[anrah | ——— = =
Sub SttGolnmnWiﬂlh(}‘-“- =

@ Create a For Next loop. (2]
@ Create a columnwidath command.
°

The column for which you want to set the
column width.

® The amount to which you want to set the
column width.

SET COLUMNS TO A STANDARD WIDTH

Forl=1To 3
ColumnWidth = 4—9
Next
End Sub
S i

 Microsoft Visual Basic - Chap11-Macros xism - [Module11 (Code)]
M s gt gwe puet Fgwer [ebug Bem Josh pSim jpedse bep n v el
=0 <] [ioncommmen T

0 Name your procedure. Sub SetColumnWidth()
Forl=1To 3
9 Create a For Next loop. Columns(l).ColumnWidth = 35
MNext
Create a ColumnWidth command. End Sub
9 g Sub SolcnlumnsToStdWidlh(]<—0
The column for which you want to set the Eorl=1To 3c —
i LColumnWi = -
column width. e Ja—
. End Sub
The amount to which you want to set the
column width.
9 Press Alt+F11 to switch from the VBE to
Excel, and run the macros.
-5 o

@

When you run the setColumnwidth macro, the
macro sets columns 1, 2, and 3 to 35.

When you run the setColumnstoStdwidth
macro, the macro sets columns 1, 2, and 3 to the
standard width.

T
) .

A 2 b b

— Wemw et Pagpleed buredn

i) Employee Name
+ Hansen, April
Anderson, Tom
Adams, Jerry

s Peterson, Paul

« Garcia, Juan

+ Andrews, Andy
Wilson, Sam
Jones, Wendy
Smith, Fred

u Jensen, George
= Adams, Mary

= Hansen, April

u Anderson, Tom
« Adams, Jerry
0 0w ek oghe

&, Employee Name
i

Sr. Developer
Accountant

Vice President
Receptionist

Sr. Developer
Software Developer
Systems

Software Developer
Sales Manager
Northeast Sales
Secretary

cTO

CEC

Systems

=8

;
90,000 San |
95,000 |

145,000
25,000]
93,000 it
85,000
82,000
81,000

100,000
75.000
25,000

195,000

195,000
85,000

testy T

=) T
PR 3 b i

T
B 1 M Sty

— W et P e

- LT

1
L]
*®

: Hansi Sr. Di##sn
AndelAccol #382
Adam Vice F #3848
« Peter Rece| ##8%
« Garci Sr. Disssn
+ Andre Softw s
Wilso Syste ##88
» Jone: Softw ss
« Smith Sales ##8#
n Jense North s
© Adam Secre ¥
o HansCTO ##82
u AndelCEQ ##a2
« Adam Sysie #as#
e oo i egne

i 3 £ B

£
M

testy]

=}

|

You can also use the Width property to obtain the width of a particular column. The Width property returns
the measurement of the column width in points, unlike the Columnwidth property, which returns characters.
You typically use points to reference font sizes (1 point is equivalent to 1/72 of an inch).

The width property is Read-Only, meaning that you can only use it to return the width of a column. To
return the Width property of a column, assign the value to a variable, as shown in the following code.

Example:
Colwidth = Column(4) .Width

The width property is useful when you want to compare a column width to a row height, because Excel

stores row heights in points.

11 1deyd

.
.

=
o
o)
E.
=
uQ
=~
S
0
o
7

o modify the height of rows in a range, you can

use the RowHeight property. By default, Excel

assigns a height of 12.75 points to each row. Excel
measures font sizes in points, with each point being
approximately 1/72 of an inch. Because the default font
size in Excel is 10 points, the default row size of 12.75
points is usually adequate for displaying text in cells. For a
larger font size or text that wraps in a cell, you can specify
a larger row size by using the RowHeight property.

You can set the height of the row by assigning a numeric
value to the RowHeight property. For example, to change
the height of row 2 to 25 points, use the code

Rows (2) .RowHeight=25. When you use the rRows
property without referencing a Range object, Excel
automatically uses the active sheet. If the row height you
specify is not high enough to display the entire font, the
text appears cut off in the row when you view it in Excel.

Set the Height of Rows in a Range

You can also use the RowHeight property to obtain the
height of the rows in a range. If all rows in the range
have the same height, the height is returned as the
number of points. If the rows in the selected range do not
have the same height, the RowHeight property returns
Null. The following example demonstrates how to use the
RowHeight property to obtain the height of a row:

RowHeight Rows (1) .RowHeight

Every worksheet has a default height, commonly referred
to as the standard height. You can use the
StandardHeight property to set the standard height for a
worksheet and to set rows in a worksheet to the standard
height. The following example sets every row in a
worksheet to the standard height:

Rows .RowHeight ActiveSheet.StandardHeight

SET THE ROW HEIGHT
o Name your procedure.

 Microsoft Visual Baskc - Chap11-Macros.xdsm - [HelghtExample (Code)]

M pe gt e puet fgmat Debwg Ben losh St jpedes e
ieen e

——

Sub SetRowsHeight()

Forl=1To 23

s(I).RowHeight = 25 <<——@
Next

@ Create a For Next loop.
@ Create a RowHeight command.
® The rows for which you want to set the height.

® The amount to which you want to set the row
height.

SET ROWS TO THE STANDARD HEIGHT
o Name your procedure.

@ Create a For Next loop.

9 Create a RowHeight command.

(2

End Spb

4 Microsoft Visual Basic - Chap11-Macros xism - [HeightExample (Code}]
Bt gwe pun fymat Debwg B Josh pStim lgedee tee
=] [iebe e

4t

===y

Sub SetRowsHeight()

Forl=1To 23
Rows(l).RowHeight = 25

Next

End Sub

Sub SetRowsToStdHeight()

Forl=1To 23

The row for which you want to set the height.

4 CtarndardHei

2/

R (1).RowHeight = ActiveSh

The amount to which you want to set the row
height.

e Press Alt+F11 to switch from the VBE to Excel,
and run the macros.

@

Next

End Spb

T

e

R

When you run the setRowsHeight macro, the
macro sets rows 1 to 23 to 25.

':;_5} ol Chapl1-Macros xdsm - Microsoft Excel

Pame et Paploged bwedn Des Rews Vem | Orosen

2asim

When you run the setRowstoStdHeight macro,
the macro sets rows 1 to 23 to the standard height.

A 3 i b

D T | 1) 5 e

S e bt St] tu-—-!m <t
M M Sty B AT U bty et
i ot ue
Al - & | Employee Name
[am [3
1
: Hansen, April Sr. Developer
» Anderson, Tom Accountant
i Adams, Jerry Vice President
« Peterson, Paul Receptionist
« Garcia, Juan Sr. Developer
+ Andrews, Andy Software Developer
» Wilson, Sam Systems
» Jones, Wendy Software Developer
w| Smith, Fred Sales Manager
n Jensen, George Northeast Sales
« Adams, Mary Secretary
« Hansen, April cTO
u Anderson, Tom CEC
« Adams, Jerry Systems
LCRICICIE " T — . —
Peady)
’:;_5-} "R Chapil-Macros dsm - Microsaht Excel -
> Povs et Paplawd feedn Dds Bews Ve Crewen | Aasim # -
2 b b = 3 byt ; TRTGRPE
J—
o - LT 2 B 3 Vo e ﬂ @ e Pty =] e
M M Sty DO g | it e
ol e ue
Al - & Employes Name ']
T : E P]
. S e
oy R =
¥ CH, J L v Feirrrt ﬁl
TMNIUIEWS, MUY DUIWATE LEveIupe oAy
T VVISW, Salll SysiEs 0L vy
§oJuiies, vvenay SUnware UEVCIUHEI o
= D, Fied Sdies wal el U, wuy
T JETSEN, GeuyE U LTSS DaEs [EATLY
oAU, ey SELivary Lo
e, AP [ECRE
MOANUEESUE, o ey (SR T +
5 A T, JETY DY SN [CERvYY
Norew s, Faun AUl EsSUUIceEs e
1T ASdilre, JUdll L au
1 ALITEWS, ALY I 1L e e S
T VYIS, Sen il SELuny U ug
s, Yy ey 31, Leveuper a1
1 3N, Fied an.umy S0, LU
T JEISE, Geuige ELEpiU e Fanny
_J MU, Ay n‘.il uoveiupel AV
b4
il

Example:

ActiveSheet.Rows (1) .UseStandardHeight =

True

You can also use the UseStandardHeight property to set a row to the standard height. The following
example sets row 1 of the active sheet to the standard height.

You can use the Height property to determine the total height of a range of cells. Excel returns the height of
the range in points. The Height property is Read-Only. You can obtain the range height by assigning the
height value to a variable, as shown in this code.

HeightofRange

= Range("Al:A10") .Height

The code assigns the total height of the rows
specified by the Range object to the
HeightofRange variable.

11 1deyd

.
.

=
o
=t
E.
5
(T
=
k)
=
i
(¢
7]

Convert a Column of

Text into Multiple Columns

hen you need to break a column of text into

multiple columns, you can use the

TextToColumns method. For example, if a list
contains both first and last names in one column, you can
use TextToColumns to break that list into two columns —

one for the first name and one for the last name.

You use the TextToColumns method with the Range
object. The range object should contain the columns

that you want to parse into multiple columns. The
TextToColumns method provides several optional
parameters you can use to specify how to separate

the text.

You use the Destination parameter to specify the range
into which VBA should place the results. For the
DataType parameter, you specify a constant value of
x1Delimited to break the text based on a delimiter
value. You use x1Fixedwidth if the text is a fixed width.
You use one of the x1TextQualifier constants,
x1TextQualifierDoubleQuote, x1TextQualifierNone,

Convert a Column of Text into Multiple Columns

Or x1TextQualifierSingleQuote, to indicate the text
qualifier character.

A delimiter is a character, such as a comma or space, which
indicates a separation between strings. Specify a value of
True for the consecutiveDelimiter parameter to have
consecutive delimiters treated as one. For the Tab,
Semicolon, Comma, Space, and Other parameters, specify
a value of True for each delimiter that is used in the
selected range. If you specify other as the delimiter, set
value for the otherchar parameter to the delimiter
character.

The FileInfo parameter contains information for
parsing individual columns in the range, with the first
element being the column number, and the second
element being one of the x1ColumnDataType constants.

Specify the character used to separate decimals with the
DecimalSeparator parameter, and the character used to
thousands with the ThousandsSeparator parameter
value.

@ Name your procedure.
@ Declare a Range object variable.

9 Store column 1 to the Range object variable.

@ Create your TextToColumns command.
® \Where you want to place the separated text.
® The type of data.

The delimiter.

e Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

@

@— > pataType:=xIDelimited,

 Microsoft Visual Baskc - Chap11-Macros.xism - [ConvertTextRxample (Cade)] 3
Mt G Gwe et gt Debwy Ben oo kst fedee i I

e] g =1
Sub SeparateColumn() <& “ E
Dim RangeVar As R:ng-‘—@

Set RangeVar = columns{1}<—e

 Microsoft Visual Basic - Chap11-Macros.xism - [ConvertTextRxample (Code)]

M pe G gwe e fgme Qebop B Josh ki jmdes i
=03 =] oo

Sub SeparateColumn()
Dim RangeVar As Range

Set RangeVar = Columns(1)

geVar.TextToCol

Destination:=Range("B1 "_}, 4—.

Comma:=True €——

End Sub

The worksheet before you run your macro. oy e CHapTE Macr oA - Wicrosoh Bee e g
ol i S SaTage &
A1 Ko Tty i o | L STV '.c
cte e e o=t
G1 - i3 13 s (¢)
Cal e m— 3 : 'i -
1 [Hansen, April —
: Anderson, Tom
» Adams, Jerry t-,‘
« Peterson, Paul
Garcia, Juan U
+ Andrews, Andy (¢°)
1 Wilson, Sam 1
1 Jones, Wendy ?
+ Smith, Fred |t
w Jensen, George =
Adams, Mary OQ
= g
[p—— 9
v 3 ELT pm— g
The worksheet after you run your macro. By SmamT ChaE11-Macros xhim - Wiciosof Exce -
— . Wewm et Pagleea Prrin Dets P R Rt b ®-=x
. o bt ﬂl [e E 30 =
The macro separates one column of data into two i 1 e R | S et
columns of data. . s =
G1 -8 A]
1 Hansen, April Hansen = April)) E
: Anderson, Tom Anderson Tom
y |Adams. Jerry Adams Jerry
« |Peterson, Paul Peterson Paul
+ Garcia, Juan Garcia Juan
« Andrews, Andy Andrews Andy
+ Wilson, Sam Wilson Sam 1
+ Jones, Wendy Jones Wendy
» Smith, Fred Smith Fred
w Jensen, George Jensen George
n Adams, Mary Adams Mary
v et o Cobme B
toty 3 EFIE] " o

You can use the Parse method to separate data values in one column into multiple columns. This method
works well for string data that is the same length, such as phone numbers. When using the Parse method,
you specify how the strings in each cell should break, and VBA applies that format to each cell.

There are two optional parameters for the Parse method. The first parameter, ParseLine, is a string
containing left and right brackets, indicating where the cells should split. For example, [xxxx][xxxx] breaks
each string so that the first four characters are placed in the first column and the second four characters are
placed in the second column. Any characters outside those eight characters are ignored. For example, for the
string "alphabetical", Excel would place the first four characters (alph) in the first column and the
second four characters (abet) in the second column. Excel would ignore the remaining characters in the
string. The second parameter, Destination, specifies the range where the Parse method places the data.

If the range has more than one cell, Excel uses the upper-left corner of the range as the first cell.

Find the Intersection

of Two Ranges

ou can use the Intersect method to determine

where multiple ranges intersect on a worksheet. A

multiple-area range contains more than one block
of cells that may or may not be connected. Use the
Intersect method to create a Range object containing the
cells that are common between two ranges. For example,
for the ranges A1 to C5 and C1 to E5, the Intersect
method returns the range C1:C5 because those cells are
common to both ranges. If the specified ranges have no
cells in common, the Intersect method returns an empty
range.

With the Intersect method, you can assign up to 30
parameter values and you must specify at least two. Each
parameter value must be a range of cells. You specify the
ranges for the Intersect method by using any option
that returns a valid rRange object, such as the rRange
property or the cells property. See the sections, “Using

Find the Intersection of Two Ranges

the Range Property” and “Using the Cells Property,” for
more information on the Range and cells properties.

The following example uses the Intersect method:

Dim NewRange As Range

Set NewRange = _
Intersect (Range ("Al:C5") ,Range("Cl:E5"))

This example assigns the intersection of A1:C5 and
C1:E5, which is C1:C5, to the object variable NewRange.

Because you must declare the variable to which you
assign the multiple-area range as a Range object, use the
Set statement as part of the assignment statement. You
must use the set statement whenever you assign an
object to a variable. When you assign an intersecting
range to a range object variable, the Intersect method
only assigns the cells in the intersection of the range to
the variable. See Chapter 4 for more information on
assigning objects.

@ Name your procedure.
@ Declare your Range objects.

9 Assign your ranges to your object variables.

9 Create a range from the intersection of the two ranges.
6 Clear the intersection range.

e Press Alt+F11 to switch from the VBE to Excel, and run
the macro.

@

 Microsoft Visual Basic - Chap11-Macros,xism - [IntersectExample (Code)]
M Bl Gt e Pt Fgwat Qebey Ben Jooh gt fjedes b Moot

1 -] e]
Sub Findint t() <t n B

—0

M pls [t ywe et fgvat Detug B Josh pdém fgedse bep [resre—— P
= <] [reessen

Sub Findintersect()

Dim Range1 As Range
Dim Range2 As Range
Dim NewRange As Range

Set Rangel = Range("B2:E13")
Set Range2 = Range("E2:G13")

Set NewRange = Intersect(Range1, Rang-214—e

NewRange.Clear 4—6

End Sub

The worksheet before you run your macro. () el v Chapti- Macicsdsm - o (@)
—" e et Paglawd buvedn Dets Rews Vem Crospn | Astim @ -nmx :‘
A giina) e i o g &
8 b Sy et g [T T "c

i oty s o=t
Al =3 & s (¢)
T e vy I ; 3 —3 -
||:| Billow Hoffer Millstone Total Average Highest —
: January ara 884 542 2305 TE8 B854 —
+ February 760 533 605 1898 633 TE0 55
« March 605 955 970 2530 843 970
April 561 655 973 2189 730 973 U
« May T96 750 931 2477 826 931 ('D
1 June B17 518 873 2209 736 873 1 :Q
» July 780 710 9 2481 827 291 =
» August 937 T24 527 2188 729 837 ==
w September 939 550 764 2253 751 939 =
n October 643 518 555 1716 572 643 QQ
= Movember 964 819 922 2705 902 964
u December 557 788 755 2100 T0O 788 w
= &
=
.
P Trpe—" uQ
23 ELE] : o (¢
©

The worksheet after you run your macro. g e Ll ez

— . - It Poge Logwdt Prrreadn Drte e Voam Crowmen Ead b - = x
, , e
® The macro clears the intersection range. s G 8 e e
Al . Ay]
1 !:' Billow Hoffer Millstone Total Average Highest
¢ January ara 884 542 TE8 884
+ February T80 533 B05 633 T80
i« March 805 955 970 843 a70
« April 561 655 873 730 973
« May 796 750 931 826 931
t June 817 519 873 736 873 1
s July 780 710 891 827 291
» August 937 724 527 729 937
w Seplember 938 550 764 751 939
n October 643 518 555 572 643
= November 964 819 922 902 G964
u December 557 788 755 T00 788
atobhit "1"1"_‘_-
| B E] v v

You can use one of the Clear methods to clear the contents of a cell or range of cells in your worksheet. The
Clear method clears the entire contents, including cell values, formatting, and formulas, from the specified
cells. The following is an example of the Clear method:

Example:
RangeVar.Clear

Use the ClearFormats method to clear all formatting from the specified range. All cell values and formulas
remain in the cells. With this method, the contents of the specified range use default-formatting options. The
following is an example of the ClearFormats method:

Example:
RangeVar.ClearFormats

You can clear the cell values and formulas from a range of cells by using the ClearContents method. This
method clears everything except the formatting that you applied to the cells. When you add new values to the
cells in the range after you have cleared the range, Excel uses the applied formatting. The following is an
example of the ClearContents method:

Example:
RangeVar.ClearContents

Cut and Paste

Ranges of Cells

ut, Copy, and Paste are among the most

commonly used commands, and you can find

them in almost every application. When writing
VBA code, you can use the cut and copy methods to cut,
copy, and paste a range of cells. The following is the
syntax for the cut method (see “Copy and Paste Ranges
of Cells” for an explanation of the copy method):

expression.Cut ([Destination])

The cut method enables you to cut a range of cells and
paste them either to the Windows Clipboard or to another
range of cells. The expression identifies the range you
want to cut. You can use the cut method’s optional
Destination parameter to tell VBA where you want to

Cut and Paste Ranges of Cells

paste. If you do not include a destination, VBA pastes to
the Windows Clipboard.

If you include a destination, you can use a Range object
to specify the location to which you want to paste. The
following example uses the cut method to cut and paste
a range of cells:

Range ("Al1:A5") .Cut Range("C1l:C5")

When using this syntax, you must make the cut range
and the destination range the same size or VBA returns
an error. Alternatively, you can specify a single cell as the
destination range. VBA makes the cell you specify the
upper-left corner of the paste range.

CUT AND PASTE A SINGLE CELL

@ Create your cut statement.
® The range you are cutting.
® The upper-left corner of the range to which you are pasting.

This code resizes columns to ensure that the contents
display in the cells.

CUT AND PASTE A RANGE OF CELLS
o Create your Cut statement.

The range you are cutting.
® The range to which you are pasting.

Note: The range from which you cut must be the same size as the
range to which you paste.

9 Press Alt+F11 to switch from the VBE to Excel, and run the
macro.

@

 Microsoft Visual Baskc - Chap12-Macros.xdsm - [CutandPasteExample1 (Code)]

S ;e vt B Jesn poti s - -
Moaa anin oolEe sy
el = BT =3 =
Sub CutAndPaste() -
Y]
Range("E1:F14").Cut Range("C1") <& ‘.
Range("C1:D14").Col AutoFit <€
End Sub
=5 « E

o B Josh patm lfpedos Hee ry— e

=N =
= .

Sub CutAndPaste2()

Ml g8 e st Favat
Mraaa®

=] [oar

‘;14"14—0

Range("E1:F14").Cut Range("C1:
Range("C1:D14").Col AutoFit

End Sub

The original worksheet.

® The macro cuts and pastes this information.

The worksheet after the cut-and-paste macro has
executed.

Both of the macros shown in this example yield the
same result.

“ 5
"
i ot st T

o) R S Chapl 2-Macras xikm - Microsoft Exce -
— Wews et Pagleea Pareadn Dotz Bavws b o 2asbm w»-"x
et b - + Th ¥ s =
gl o [S il | et
8 M Sy bt g TV T
uie Comt ua

12 - g & -]

iE 3 o i P i
1 Manth Prajected Sales Actual Sales Ditference
& January 5 124,102 5 175,083 § 50,980
1 | February 107 400 157,134 49734
+ March 139,194 119,435 (19.759)
+ April 138,596 122,307 (17.289)
« May 169,264 199,114 29,850

r June 177,753 . > 141,629 (36,124) 1
s July 100,266 170,731 70,465
» August 148,391 143,542 (4,849)
» September 146,509 158 852 12,343
n October 126 461 114,789 (11.672)
= November 120,550 120,308 (242)
« December 189,111 171,699 (27.412)
1,698,598 $ 1794623 S 96.025

testy]

"D
oy

T 't gt
A= [TN

3 gt bt
e T e Wit

2 " Cm—t
1 Marnth Projected Sales Actusl Sales Difference
s January] 124103 § 175083 550,980
1 February 107,400 157,134 49734
« |March 139,184 119,435 (19,759)
« April 139,596 122,307 (17,289)
s May 169,264 199,114 20,850
* | June 177,753 141629 (36,124)
o July 100,266 170,731 70465
» August 148,391 143,542 {4,849)
« September 146,509 158,852 12,343
n October 126,461 114,788 (11,672)
= November 120,550 120,308 (242)
1 December 199,111 171699 (27412)
u 5 1,698,508 $1.794.623 $96.025

"

s o s st L

sty)

ERE] ¥ *)

When you paste values in cells, the cells may not be able to hold the new content. If the values you paste are
numeric and the cells are not wide enough for the numbers, Excel displays pound signs (####) in the cells.

When you write a VBA procedure, VBA provides formatting options you can use to resize cells so that your
values fit into the cells to which you paste them. For example, you can use the AutoFit method to resize the
rows and columns. The AutoFit method uses the following syntax:

Example:
Range ("C1l:D14") .Columns.AutoFit

You can use the ShrinkToFit property to reduce the font size of the text so the entire contents of the cell
display. You set the ShrinkToFit property by assigning the Range property the value of True, as shown in

the following example:

Example:
Range ("C1:D14") .ShrinkToFit=True

You can also use the WrapText property to ensure text displays properly. Assigning a value of True to the
WrapText property causes text to wrap within the cell.

Example:
Range ("C1l:D14") .WrapText=True

¢1 1dey)

.
.

s
z.
=]
V)]
=
=x
(@)
e,
|
75}

Copy and Paste

Ranges of Cells

of cells. You can copy and paste cell ranges by using

the copy method. The copy method is essentially the
same as the Copy and Paste commands within Excel. The
following is the syntax for the copy method:

expression.Copy ([Destination])

I n this section, you learn how to copy and paste a range

The copy method enables you to copy a range of cells and
paste them either to the Windows Clipboard or to another
range of cells. The Copy method enables you to copy a
range of cells and paste them either to the Windows
Clipboard or to another range of cells. The expression
identifies the range you want to copy. You can use the
copy method’s optional Destination parameter to tell
VBA where you want to paste the cells. If you do not
include a destination, VBA pastes the cells to the
Windows Clipboard.

Copy and Paste a Range of Cells

If you include a destination, you can use a Range object
to specify the location to which you want to paste. The
following code illustrates using the copy method to cut
and paste a range of cells:

Range ("Al:A5") .Copy Range("C1l:C5")

When using this syntax, you must make the copy range
and the destination range the same size or VBA returns
an error. Alternatively, you can specify a single cell as the
destination range. VBA makes the cell you specify the
upper-left corner of the paste range.

A block of cells surrounded by blank cells is called the
current region. You can use the CurrentRegion property
to copy and paste or to cut and paste when using VBA.
When entering the range, you specify any cell within the
block of cells you want to cut or copy as the range, and
then follow the range specification with .currentRegion.

COPY AND PASTE BY USING A SINGLE CELL
0 Create your copy Statement.
® The range from which you are copying.
This example uses CurrentRegion.

The CurrentRegion property enables you to manipulate
a range of cells without specifying the entire range.

® The upper-left corner of the range to which you are
pasting.

@ Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

The macro copies and pastes the information.
The range you copied.

The pasted data.

e =
=

Sub CopyAndPaste()

Y
Range("F1") 4—0

Range("F1:114™).Col AutoFit

End Sub

I

F =]

COPY AND PASTE BY USING A RANGE OF CELLS

0 Create your copy Statement.
® The range from which you are copying.
® The range to which you are copying.

The range to which you copy must be the same size as
the range from which you copy.

Formats the copy to range.

Changes the color of the interior of cells, the border
that surrounds cells, and the font

Q Press Alt+F11 to switch from the VBE to Excel, and run
the macro.

The macro copies and pastes the information.
The range you copied.

® The pasted information.

L
[

4 Microsoft Visual Baskc - Chap12-Macros,xlsm - [CopyAndPasteExample? (Code)]

i ot

EEEN Ry

=y

Bl

Sub CopyAr

Range("A1:

Y

idPaste2()

D14").Copy R:
Range("F1:114").Columns.AutoFit

Y

ge("F1:114") =€ 0

End Sub
i T 3]
,,,Ju ¥ nl 1 Microsatt £ -
oy

= e et Papleed L R — =m
sy Dbmtie

il - Lol

Vo i

—— P T—

Kd -3 £ o
A] E ¥ n i

)
s
'
]
u
5 K
"
Wos v] Copy and paatn 3
sty TJ

You can use the ColorIndex property with the
Interior, Borders, and Font objects to change
the color of the interior of cells, the border that
surrounds cells, and the font. You can assign an
index value of 1 to 56 to the ColorIndex property
to assign the color you want. The following example
demonstrates the ColorIndex property.

Examples:
Range ("F1:I14").Interior.ColorIndex = (1)
Range ("F1:I14") .Borders.ColorIndex = (2)

Range ("F1:I14") .Font.ColorIndex = (2)

The following table lists 16 of the possible colors
you can use with the ColorIndex property. Refer
to VBA help for a complete list.

INDEX COLOR

1

Black

White

Red

Green

Blue

Yellow

Fuchsia

Light Blue

O |0 | N | |n|bd|lw|N

Brown

i
o

Forest Green

—_
-

Navy Blue

Y
N

Yellow-Brown

—_
w

Maroon

_
N

Blue-Green

Y
(9]

Light Gray

—
[e)}

Gray

¢1 1dey)

.
.

s
z.
=]
V)]
=
=x
(@)
e,
|
75}

Using Paste Special

Options When Pasting

use the pastespecial method, you decide

exactly what information you want to paste. You
can choose to paste everything or you can choose to
paste just one element of the cell’s contents, such as the
formula, value, or column width. You can also use the
PasteSpecial method to perform simple arithmetic
operations on each cell in a range. For example, in a list
of salaries, you may want to increase every salary by five
percent. You can use the PasteSpecial method to make
the change quickly. Just copy the value by which you
want to multiply to the Clipboard and then use
x1PasteSpecialOperationMultiply when you paste
with the PasteSpecial method.

You can use the pastespecial method with values you
have added to the Windows Clipboard using the cut or
copy methods. The following is the syntax for the
PasteSpecial method:

Using Paste Special Options When Pasting

c ells can contain a lot of information. When you

expression.PasteSpecial (Paste,
SkipBlanks, Transpose)

Operation,

Use the paste parameter to indicate how you want to
paste the information into the new range. By default,
Excel uses the x1pasteall constant value for this
parameter, which pastes the entire contents of the copied
or cut cells into the new range.

Use the operation parameter to perform a mathematical
operation, such as multiplying the current value of a cell
by the pasted value. The default constant value used by
Excel is x1PasteSpecialOperationNone, which does
not perform any mathematical operations.

Set the skipBlanks parameter to True if you do not
want to overwrite a destination cell with a blank cell if
the destination cell contains data in it and the copied cell
does not.. If you want to transpose the data values from
rows to columns or vice versa, set the Transpose
parameter to True.

PASTE PARAMETER
@ Copy a range of cells to the Clipboard.

Do not include the Destination parameter.
@ Type your PasteSpecial command.
® The range to which you are pasting.

® This statement pastes the column widths, thereby
making sure that the source column widths match the
destination column widths.

This statement pastes the data.

OPERATION PARAMETER
@ Copy a cell to the Clipboard.

In this example, cell B1 contains the number needed
to calculate an annual salary increase.

Q Type your PasteSpecial command.
The range to which you are pasting.

In this example, range B5 to B10 contains the salaries
you want to increase.

® The Operation parameter.

@

 Microsoft Visual Baskc - Chap12-Macros.xdsm - [CopyAndPasteSpecialExample (Code)] !
oD oo A oo 1 pep—— e

M g g e et Fgema
raa aapa od S e Ly
[I] -__
Sub CopyAndPasteSpecial() =
g Range ["A1L1 4").Copy 4—0
- 4—.
-
End Sub
i
T o

M g g9t ywe pmn Ggvst Detug B Tost pddim fgedon e ot W =X
PRa 89y 005w g

e — T =
Sub PasteSpecialCells()
Range("B1").Copy 4—0

.PasteSpecial 4—9
Operation:=xIPasteSpecialOperationMultiply <——®

End Sub

=fFa | o

Q Press Alt+F11 to switch from the VBE to Excel, and run

the macro.

The worksheet before you run the macro.

® The cell you copied.

The worksheet after you run the macro.

The PasteSpecial range.

The macro multiplies each cell in the PasteSpecial tl -8 £

range by the value in the cell you copied.

e - (] 3 B i [
1 Annual Salary Inc.see—>1 05 Cacum

+ |Employee Name Salary

» Mayfield, Adam 100,000
« Lome, Harry 50,000
r | Jacs, Henry 20,000
+ Mathews, John 50,000
» Jones, Libby 60,000
= Bradley, Florence 10,000

-

oo
11 ey]
=

Heve et Py Lot

sy D
e - oLt
S —"

- P

+ Annual Salary Increase 1.0 o |
: e

i Ernployes Mame Salary
« Mayfield, Adam

s« Lome, Harry

» | Jacs, Henry

Mathews, John

» Jones, Libby

w« Bradley, Florence

Risaa G spociat 2 [-
Resty] B]

The Paste parameter requires one of the following constant values.

NAME

DESCRIPTION

xIPasteAll

The default value, which pastes the entire contents of the cells.

xIPasteAllExceptBorders

Pastes everything except border settings.

xIPasteAllUsingSourceTheme

Pastes everything using the source theme.

xIPasteColumnWidths

Pastes the column widths.

xIPasteComments

Pastes the cell comments only.

x|PasteFormats

Pastes the formats only.

xIPasteFormulas

Pastes the formulas only.

xIPasteFormulasAndNumberFormats

Pastes the formulas and number formats.

xIPasteValidation

Pastes the cell validation only.

xIPasteValues

Pastes the cell values only.

xIPasteValuesAndNumberFormats

Pastes the cell values and number formats.

You can use the following values with the Operation parameter:

x1PasteSpecialOperationAdd, x1PasteSpecialOperationSubtract,
x1lPasteSpecialOperationMultiply, x1PasteSpecialOperationDivide, and

x1PasteSpecialOperationNone.

¢1 1dey)

.
.

s
z.
=]
V)]
=
=x
(@)
e,
|
75}

Add Comments

to a Cell

hen several people work on a single

workbook, comments can provide useful

information. Excel associates a comment with
an individual cell and indicates its presence with a small,
red triangle in the cell’s upper-right corner. You can view
a comment by clicking in the cell or by moving your
cursor over the cell. In VBA, by using the Addcomment
method with the Range object, you can add a comment to
any cell in your worksheet.

When the user creates a comment in Excel, Excel adds
the user’s name to the comment. When you create a
comment by using the addCcomment method, VBA does
not automatically include a username. The following is
the syntax for the aAddcomment method:

expression.AddComment (Text)

Add Comments to a Cell

The expression is the variable or range object that
represents the cell to which you want to add a comment.
The following code adds a comment to cell A1:

Cells(1,1) .AddComment "Sample Comment Text"

If you want to add the same comment to multiple cells,
you can use a looping statement, such as a o Until
loop, to cycle through the range of cells. See Chapter 6 to
learn more about loops.

If you attempt to add a comment to a cell that already
contains a comment, Excel returns an error message. To
avoid errors, you can use the clearcomments method to
clear an existing comment from a cell. The following is
an example of the clearComments method:

Cells(1,1) .ClearComments

o Add a loop, if you are going to loop through a
series of cells.

@ Add Case statements, if you are going to add
comments selectively.

9 Add a clearComments statement.
® The range.

The ClearComments statement clears any
comments that are already in the cell.

Q Add an AddComment statement.
® The range.
The comment.

The AddComment statement adds comments
to your worksheet.

@ Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

@

Poe ©®

4 Microsoft Visual Baskc - Chap12-Macros.xdsm - [AddCommentsExample (Code)]

Ml Gt gwe pwrt fgmat Doty B Toh Aot fiedee L Ak N

(AN L RN 1-F- T

e o o] [rerran =
Sub AddComments() =
Worksheets("Add C ts”).Activate
J=2

Do Until IsEmpty(Cells(J, 4]]4—0

Cells(J, 4).ClearComments

Cells(J, 4).AddComment "Bob, please review."
Case ls>=0

Cells(J, 4).ClearComments
End Select

JsJ+1

] > Cells(J, 4).AddComment "Bob, please review.” 4—9

Loop
End Sub

Ml St e P Fgmal Osbog B ook Gitim fiedew Gl T o
=N =P

e BT

Sub AddComments()

Worksheets("Add C

J=2

Do Until IsEmpty(Cells(J, 4))
Select Case Cells(J, 4)

Casels <0
L > .ClearComments 4—9

ts").Activate

. Case ls>=0
End Select
JsJd+1

ClearComments

Loop
End Sub

o LT IR 2 (5

The worksheet before you run the macro. () sl v Chap 2 Mac Miciosoft xce - o
— e It Page Loyt Perrein Dot e Vam Rasbm w-"x
fr LERTT = » Frpetan k.- - + i wen
.’: “l__i] :E! :f—' :‘—c.— f;l] 5 +
Bee B Men ety P TS
K1 bl Bl -]
[4 A) 3 [] [[] [" i
1 Marith Projected Sales Actusl Sales Difference Ase Comments | Cnm Camrwrts | [
= January $ 124103 § 175083 $50980 '
1 February 107,400 157134 49734 |
« March 139,194 119435 (19,759) |
« April 139,596 122307 (17.289) |
« May 169,264 199114 29,850 |
r June 177,753 141629 (36,124) |1
+ July 100,266 170731 70465 |
» August 148,391 143542 (4,849) |
« September 146,509 158852 12,343 I
u Oclober 126,461 114789 (11,672) |
= November 120,550 120,308 (242) |
v December 199,111 171,699 (27,412) |
“ $1.698598 $1.794623 596,025
-\
EE L
ety JETE e Ve ———
The worksheet after you run the macro. o) 8 . Chiap12-Macrosdsm - Microso e S
— . . it Page Loy Prrrdn Drte. P Voam Ead b - = x
,.:l - .g...-u..- ﬂl (O e E 3!-—1
The macro adds the comments to your worksheet. S G T e et [S L W2
[B, Mo ety e L 1
- el e
KL L B
1 Manth Projected Sales Actual Sales Difference
: January § 124103 § 175,083 550980
1 |February 107,400 157,134 49,734 =
« |March 139,184 119,435 {19.?59}‘
= April 139,596 122,307 (17,289)
s May 169,264 199,114 20850 L
¢+ June 177,753 141,629 (36,124) 1
v July 100,266 170,731 70465 L
s August 148,391 143542 (4,849) |
= Seplember 146,509 158,852 12,343 T
n October 126,461 114,789 (11.6?2}‘ -
2 November 120,550 120,308 (242),
o December 199,111 171699 (27.412)
u $1.698598 51794623 596025
"
LEAY L M
Ronty B E] v (4]

access the second comment in a worksheet, you would type the following:

Example:

When you add a comment to a cell, Excel creates a Comment object for that cell. The Comment object is part
of the Comments collection, which contains all comments within a particular range of cells. You can reference
particular comments in a worksheet using the Comments collection and an index value. For example, to

SecondComment=ActiveSheet.Comments (2) . Text

You can also use the properties of the Comment object. If you want comments to automatically display on the
worksheet, you can set the Visible property to True as shown below.

Example:

Cells(1l,1) .Comment.Visible = True

You may want to delete comments that a particular author created. The Comment object provides an Author
property that you can use to return the author of a comment. Excel adds the author when it creates a
comment. The following example deletes a comment by a particular author:

Example:
CountComments = ActiveSheet.Comments.Count
For N = 1 To CountComments

If Comment (N).Author =
Comment (N) .Delete
End If
Next

"John Smith" Then

¢1 1dey)

.
.

s
z.
=]
V)]
=
=x
(@)
e,
|
75}

Automatically Fill a

Range of Cells

data series has an intrinsic order such as days of the

week, months of the year, or numeric increments.
You can use the AutoFill method to create an AutoFill
using VBA. The following is the syntax for the autorill
method:

expression.AutoFill (Destination,

I n Excel, AutoFill helps you quickly enter data when a

Type)

The expression is the variable or range object that
represents the cell or cells you want to use when you
create an AutoFill. VBA uses the values in this source
range to determine the type of values to add to the cells
in the destination range. For example, if the source range
is cells A1 and A2 and the cells contain the values
January and February, respectively, then Excel fills the
cells in the destination range with the months of the year

starting with March.
Automatically Fill a Range of Cells

The autorill method has two parameters,
Destination and Type. The Destination parameter,
which is required, must contain a range indicating which
cells to fill. The pestination range must encompass the
source range. For example, if the source range is A1 and
A2, these cells must be included in the destination range,
as shown in the following example:
Range ("Al:A2") .AutoFill _
Destination:=Range ("Al:A12").

VBA uses the values in the source range to determine the
pattern you want to use when adding values to the cells
in the destination. If you want to tell VBA the pattern to
use to add values to the destination, you must include the
Type parameter. The Type parameter accepts an
x1AutoFillType constant, which specifies the type of fill.

FILL A RANGE
0 Type your AutoFill command.
® The range you want to use as the source.
® The cells you want to fill.
The fill type.
This example uses months.

9 Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

The worksheet after you run the macro.
The source cells.

® The destination cells.

 Microsoft Visual Baskc - Chap12-Macros,xdsm - [AutoFillExample (Code)]

Sub AulnFiannths{)

ge("A1:A2").AutoFill
Destination:=Range("A1:A12"), Type:=xIFillMonths

End Sub

N L Chap12-Macros xkm - Microsolt Exce
oy

v | et Feplowd fwdn Dets e

- - EA] (BT
ow e
R UL R E e

K__-§ %

B]
tenty]

JIEE =

CREATE AN AUTOF"_L 4 Microsoft Yisual Basic - Chap12-Macros. xism - [AutoFillExample? (Code)]
M B g9 ywe e fgat Db
Mraaauga o0Sdy
@ Create your AutoFill command. = S o)
Sub AutoFillCells() =
® The range you want to use as the source. Q \
Range(ActiveCell.Address).AutoFill
q q q q Destination:= _
Thls_example. uses the act!ve Ce”’ which is Range(ActiveWindow.RangeSelection.Address)
the first cell in your selection.
End Sub
The cells you want to fill.
|
This example uses your selection.
No fill type is given, as VBA bases the fill
type on the cell you use as the source.
Q Press Alt+F11 to switch from the VBE to /5.« o
Excel, and run the macro.
) o Chag12-Macros xlsm - Microsoft Excs -
The worksheet after you run the macro. a2 @ e 6 -
i RS o S o
The macro fills the cells. - - s
A1 - g | Sunday e
A [] _’. i
The source cell. : ' = !
; I
® The fill [S |
5 11
You must type the first value in the range, ! !
select the cells you want to fill, and then , I
press Enter. 7 '
mov e | s i
e ce N i)
The X1AutoFillType constant values specify how Excel fills the range of cells for the Destination
parameter. The following table describes each of the X1AutoFillType constant values.
CONSTANT DESCRIPTION
x1FillDays Increments the values by days. If only one date is specified for the source, it
increments by one day. If multiple dates are specified, it uses those dates to
determine the increment value.
x1FillFormats Applies the formats of the source cells to the destination cells.
x1FillSeries Creates a series based upon the contents of the source range.
x1FillWeekdays Increments based on weekdays, omitting dates that fall on Saturday or Sunday.
x1GrowthTrend Fills cells based on a growth trend.
x1FillCopy Copies the formatting and values, and increments based on source values.
x1FillDefault The default value. Excel determines the fill type based upon values in the source
cells.
x1FillMonths Increments by month.
x1Fillvalues Copies the values in the source cells.
x1FillYears Increments the year portion of the date.
xlLinearTrend Fills cells based on a linear trend.

¢1 1dey)

.
.

s
z.
=]
V)]
=
=x
(@)
e,
|
75}

Copy a Range to

Multiple Sheets

ou can copy a range of cells and place the required, specifies the range of cells you want to copy to

contents in the same location on multiple sheets ~ the other worksheets. You can specify the range of cells

with the FillAcrosssheets method. When you using any valid range statement. See Chapter 11 for more
use this method, Excel copies the cells you specify to information on specifying ranges.

each worksheet you specify. You can copy everything in The Type parameter is optional. Use this parameter to
the range of cells, just the values in the cells, or just the tell VBA what you want to copy. The Type parameter

formatting. The following is the syntax for the accepts one of the three x1Fillwith constant values. If
FillAcrossSheets method: you do not specify a Type parameter, VBA uses the
expression.FillAcrossSheets (Range, Type) default value of x1rillwithall, which copies the entire

contents of the range of cells, including the formatting.
The expression is the variable or object that represents I you only want to copy the cell values, use the
the list of worksheets to which VBA copies the range of X1FillwithContents constant value. This constant

cells. The worksheets must exist within the current value instructs Excel to copy everything but the cell
workbook and you must include the worksheet that you formatting. If you only want to copy the formatting, use
are copying from in the list. the x1FillwithFormats constant value. When you use
The Fillacrosssheets method has two parameters: X1FillwithFormats, Excel ignores the values and
Range and Type. The Range parameter, which is applies the formatting only.

 Microsoft Visual Baskc - Chap12-Macros.xlsm - [CopyToSheatsExample (Code)]

. M B g9 ywe paen Gyt Oetug Bem Tosh Stim lfgedse e s W c.an
@ Declare a variable to store your array. e aanaandcal i
. . Sub CopyToOtherSheets() B
You use an array to store the list of worksheets to which you S 0
want to copy.

@ Create your array and store it to the variable you created.

M B G e pan Ty Detug Be Josh pdim fgedos e ot W c.mx

B8 8939 D056 L

|~y] [comatetmimymests =]
Sub CopyToOtherSheets()
Dim WS As Variant

WS = Array("Sheet1”, "Sheet2"”, "Sheet3"”, "Sheetd")

 Microsoft Visual Baskc - Chap12-Macros.xlsm - [CopyToSheatsExample (Code)]

M ple G e et Gywat Debeg Ben ook gt fjedes s O Wk
L AT D050 0

® Add your FillacrossSheets command.

e 2] [cmestommimy ey

® The sheets to which you want to copy. Sub CopyToOtherSheets()

Dim WS Variant
® The range you want to copy.

WS = Array("Sheet1", "Sheet2", "Sheet3", "Sheetd")

What you want to copy. Y
e Sheets(WS).FillAcrossSheets _
Use x1Fillwithall to copy everything. Worksheets("Sheet1").Range("A1:D8"), _
Type:=xIFilIWithAll
Use x1FillwithContents t0 copy the
End Sub

contents only.

Use x1FillwithFormats to copy the

formats only.
=[5 o

@ Press Alt+F11 to switch from the VBE to o b—C s

Excel, and run the macro. A e G
Vo) O [

Your macro copies the range you specified to e E— -

the worksheets you specified. i e e e n
¢ January S 145914 S5 136805 § 170.328 |
1 |February 159,412 197,966 159,239 |
« |March 181,873 103,739 114,754 2
« April 117,738 197.543 141,966 !
s May 160,519 179,471 143,890 |
r June 117 444 177,723 171,647 |4
» Total $ 882900 $ 993,347 § 901824 :
TR, e, A |
| B] v

You can fill a range of cells in a specific direction within a worksheet using one of the fill methods. For
example, you may want to fill across a worksheet with the first value in the left corner of the range. VBA

FillLeft.

cell A10 copies and pastes in cells AT:A9.

Example:
Range ("Al1:A10") .FillUp

range and copies it to all the other cells.

Al:G1, Excel takes the value in cell A1 and pastes it into cells B1 to G1. The FillLeft method works

all cells to the left.

offers four Range object methods for filling in a specific direction: F111Up, FillDown, FillRight, and

You can use the F111Up method to fill a range of cells with the value specified in the last cell of the range.
For example, if you have the range A1:A10 and you apply the Fil1Up method, as shown here, the value in

The FillDown method works opposite to the Fi11Up method. This method takes the value in the top of the

You can use the Fil11Right method to fill across rows. For example, if you use this method with the range

opposite to the Fi11Right method. This method takes the value in the last cell on the right and copies it to

Z1 @™deyd

.
.

s
z.
=]
V)]
=
=x
(@)
e,
|
n

[N
Place a Border Around i'

a Range of Cells

AR

hen creating an Excel worksheet, you can
Whighlight important information by adding a

border. A border adds color to the lines that
surround a range of cells. In VBA, you can add borders to
a range of cells using the Borderaround method. When
you use this method, the border outlines the range, not
each individual cell. The BorderAaround method uses the
following syntax:
expression.BorderAround (LineStyle,
ColorIndex, Color)

Weight,

The expression identifies the range you want to place the
border around. Use an x1LineStyle constant value to
set the style of the line. If you do not set an x1LineStyle,
VBA uses the default value, x1Continuous, to draw a
continuous line around the range of cells. Use an

Place a Border Around a Range of Cells

X1BorderWeight constant value to set the weight of the
line. If you do not set a weight, VBA uses the default
value x1Thin, which draws a thin line around the range
of cells. VBA sets either the line style or the line weight,
not both.

You can use either a colorIndex or the rGB function
to set the color of a border; however, you cannot use
both. Use a colorIndex value between 1 and 64. See
the section, “Copy and Paste Ranges,” for a partial list
of colorIndex values. Set the colorIndex to
x1ColorIndexAutomatic to use the default line color.

If you want to use an RGB color value to assign a color,
use the color parameter and assign it an RGB color with
the reB function. When you use the reB function, you
specify three values from O to 255 indicating the red,
green, and blue component values.

COLOR INDEX BORDER

@ Create your Borderaround command.

® The range that the border surrounds. 0

® The color index.
The line style.

@ Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

The worksheet after you run your macro.

VBA places a border around the range you
specified.

4 Microsoft Visual Baskc - Chap12-Macros,xlsm - [BorderindexExample (Code)]

Ao g e
) aa audalans e g

e Bl
Sub Bordegindex()
Y

ol

Range("C2:F9").BorderAround
Colorindex:=1,=
LineStyle:=xIDouble <€——

End Sub

=

™.

2 Manth Region 1 Region 2 Region 3|
1 January 5 145914 5 136905 § 170328
. February 159,412 197 966 159,239
1 March 181,873 103,738 114,754
. April 117,738 197,543 141,966
r May 160,618 179,471 143,890
' June 117 444 177,723 171,647
N Total § B82900 $ 993,347 § 901,824
"

CERS ST

testy]

JEE v E——)

RGB coLOR BORDER 4 Microsoft Yisual Basic - Chap12-Macros, xism - [BorderAGBExample (Code)] O
:;.. ™ ,....q....,.‘ |~'._-|n.-"v Toth Motim lpedes Ly Boroder Amourd T :.‘
@ Create your Borderaround command. s I TEe—= 2 | B
Sub BordefRGB() = P
(¢}
The range that the border surrounds. 0 /P -
Color:=RGB(255, 0, 0), < =
. The RGB CO|0I’. Weight:=xIThick !\.)
® The weight. End Sub g
. =
9 Press Alt+F11 to switch from the VBE to =
Excel, and run the macro. E
(V)]
=
DT o (@)
o
The worksheet after you run your macro. o) s a2 Macros = 7
i S rell " Sl -1
VBA places a border around the range you o e | e
specified. — ol i
w;«o- i “—__ 5 = : i
2| Rt ot Manth Region 1 Region 2 Region 3
January $ 145914 § 136905 § 170,328
February 159,412 197 966 159.239
C March 181,873 103,739 114,754
[April 117,738 197,543 141,966
d May 160,519 179,471 143 850
[June 117,444 177,723 171,647
] Total $ 882900 § 9893347 § 901,824
e m— : EEE] o

You use the X1BorderWeight constant values, x1Hairline, x1Medium, x1Thick, and x1Thin, to specify
the width of the line used to draw a border around a range of cells.

VBA bases the style of line that it draws upon the x1LineStyle parameter. You use the x1LineStyle
constant values, outlined in this table, to specify the line style.

CONSTANT DESCRIPTION

x1Continuous The default value, which draws a continuous line around the range of cells.
x1Dash Draws a dashed line around the range of cells.

x1DashDot Draws a broken line using a dash-dot pattern.

x1DashDotDot Draws a broken line using a dash-dot-dot pattern.

x1Dot Draws a dotted line around the range of cells.

x1Double Draws a double continuous line around the range of cells.
x1LineStyleNone Does not modify the line style.

x1SlantDashDot Draws a broken line in a dash-dot pattern using a slanted line.

Find Specific

Cell Values

within a range of cells. This method is similar to
the Find command in Excel. The following is the
syntax for the Find method:

You can use the Find method to search for a value

expression.Find (What, After, LookIn,
LookAt, SearchOrder, SearchDirection,
MatchCase)

The expression identifies the range you want to search.
The what parameter is the only required parameter. You
can use the what parameter to tell VBA what you want to
find. You can use the after parameter to tell VBA the
cell before which you want to start searching. If you omit
this parameter, Excel starts the search with the top-left
cell in the range. The LookIn parameter tells VBA what
you want to search. You can assign one of the
x1FindLookIn constants: x1values searches cell values,

Find Specific Cell Values

x1Comments searches comments, and x1Formulas
searches formulas.

The Lookat parameter tells VBA how to match your
search criteria. Assign the Lookat parameter x1whole if
you want your search criteria to match the contents of the
cell exactly; assign x1Part if you want VBA to return a
match if your search criteria is found anywhere in the cell.

The x1Searchorder parameter tells VBA the order in
which you want to search. Assign the value x1ByRows if
you want to search by rows, or assign the value
x1ByColumns if you want to search by columns.

Use the searchbirection parameter to indicate the
direction you want to search. A value of x1Next finds the
next matching value. A value of x1Previous finds the
previous matching value. Assign True to the Matchcase
parameter if you want your search to be case-sensitive.

In this example, the user enters a value in a cell
and VBA searches a range for the value.

@ Declare the variable VBA uses to store the
search criteria.

Q Type On Error Resume Next.

This statement tells VBA to continue
processing if an error occurs.

9 Activate the relevant worksheet.

If a procedure only works with a particular
worksheet, activate the worksheet.

0 Store the contents of the cell in which the user
enters the search criteria to a variable.

@

0 Sub FindCells()

 Microsoft Visual Baskc - Chap12-Macros.xdsm - [FindCellsExample (Code)] I
M Ele G e et Gywat Debeg Ben ook pStim fpedos s o L
Moraaa®2S D050 g

= o o] [rmacens

Dim FindData As Variant
On Error Resume Next 4—9

Sub FindCells()
Dim FindData As Variant
On Error Resume Next

Worksheets("Find Data").Activate 4—6

FindData = Celis(1, 6)

@ Type your Find command. g oy e e g
‘._-.a;?), 10 G g = = (]
® The range you want to search. Sub FindCells() 3 "2
) . Dim FindData As Variant)
® The data for which you are searching. On Error Resume Next ~
[,
In this example, the data is stored in the Worksheet$("Find Data").Activate I
FindData Variable. FindData =|Cells(1, 6) 2
(5) Renge(“A1ID2S ") o
ge("A1:D25").Find =
What you want to search. (What:=FindData, =)
Lookl Values, =& E'
ng you want to match your search LookAt:=xIPart, <€—— A oo
criteria. SearchOrder:=xIByColumns).<<——@&
Activate §.
® The search order.)
End Sub =3
@ Your instruction as to what VBA should sl o g
do when it finds the item for which you T = =
are searching. 7 st Bl]
T L SR
Nt el ﬂ'.\ilw'.-lw:ﬁw.n - : o .- =1
@ Press Alt+F11 to switch from the VBE to e
Excel, and run the macro. e , =
1 Region Qw Product Units $oid VWhat are you looking for? th:.
The cell in which the user places the : Region 1 [a1 fe—hez06- 7000
o :Regionl Q2 R6790 5000
search criteria. « Region1 Q3 R6790 4000
. Region1 Q4 R6790 6000
When you execute the macro, if VBA dRegion Qi X5495 4300
finds the item, Excel moves to the first . Regionl Q2 X5495 5450
instance of the item for which you are ‘Regionl Q3 X5495 6975
looking. . Regionl Q4 X5495 2004
<Regionl Q1 Y7746 519
s Regionl Q2 Y7746 5123
«Regionl Q3 Y7746 5248
- i
JETE e ———
The introduction to this task VBA remembers the values You can continue a search and
does not mention two Find specified for the What, LookIn, find the next match using the
method parameters: MatchByte LookAt, SearchOrder, and FindNext or FindPrevious
and SearchFormat. If you have MatchByte parameters. If you methods. When using these
installed double-byte language run a search again without methods, you must specify an
support on your computer, setting these parameter values, After parameter. The After
assign the value True to the Excel uses the settings from the parameter tells Excel the cell
MatchByte parameter. previous Find or Replace after which you want to execute
method execution. These values the next search.
The SearchFormat parameter .
bl X cch f s, If are also set when you run a Find
ena es.youtho mlat ¢ o ormta st.h' or Replace from within Excel. To Example:
you assntgn eva uet Tue oth 'S avoid running searches that have SearchRange.FindNext (After)
parameter, you mus 'SPeC"fY e unexpected results, you should SearchRange.FindPrevious
format for the Application . (After)
) . set these parameters each time
.FindFormat object. .
you run the Find method.

Find and Replace

Values in Cells

replace values within a range of cells. This

method is similar to the Find and Replace
command in Excel. The following is the syntax for the
Replace method:

You can use the Replace method to search for and

expression.Replace (What, Replacement,
LookAt, SearchOrder, MatchCase,
SearchFormat, ReplaceFormat)

The expression identifies the range you want to search.
The Replace method has two required parameters: what
and Replacement. The what parameter tells VBA what
you want to find. The Replacement parameter tells VBA
with what you want to replace the data you find.

The Lookat parameter tells VBA how to match your
search criteria. You can assign the LookAt parameter
x1whole if you want your search criteria to match the

contents of the cell exactly. You can assign x1part if you
Find and Replace Values in Cells

want VBA to return a match if your search criteria is
found anywhere in the cell.

The x1searchorder parameter tells VBA the order in
which you want to search. You can assign the value
x1ByRows if you want to search by rows, or assign the
value x1ByColumns if you want to search by columns.

You can assign True to the Matchcase parameter if you
want your search to be case-sensitive.

The SearchFormat and the ReplaceFormat parameters
tell VBA the format you want to search for or replace. If you
want to search for or replace a format, then you must set
the appropriate parameter to True and specify the format
properties for the Application.FindFormat object or the
ReplaceFormat object, or both. For example, to replace
text with a bold format, you can use the following code:

Application.ReplaceFormat.Font.FontStyle =
IIBOld"

o Type On Error Resume Next.

This statement tells VBA to continue processing if an
error occurs.

@ Activate the relevant worksheet.
9 Type your ReplaceFormat Of FindFormat
command.

In this example, you make the replacement text bold
and italic.

9 Type your Replace command.
® The range you want to search.
® The data for which you are searching.
Your replacement.
Your ReplaceFormat Object is set to True.
VBA will use your ReplaceFormat command.

How you want to match your search criteria.

@

4 Microsoft Visual Basic - Chap12-Macros.xdsm - [ReplaceExample (Code)]

M e G Gwe peet gt Debwy Ben oo kot fgedee e d G
La 890 D050 Ly

— = Bl

Sub ReplaceCellContents()

On Error Resume Next 4—0
Worksheets("Replace Data"}.Activah‘—O

Annlicati Repl E

"Bold Italic™

t.Font.FontStyle = _

Mt 3 g Pee famel Dby B Dok biiim fmor ew b it S

WYY
e ——

Sub ReplaceCellContents()

On Error Resume Next
Worksheets("Replace Data"”).Activate

Application.ReplaceFormat.Font.FontStyle = _
"Bold Italic

Range("A2:D13").Repl
What:="Region 1",4—.
Replacement:="North", €——
ReplaceFormat:=True, _

LookAt:=xIWhole <€——

End Sub

e L :lﬂ

v et Paplegd fuedn s Bews Ve

@ Press Alt+F11 to switch from the VBE to Excel, and run < Sl e e e

(@)
= - e =

the macro. P e e T M T e) S)
Your worksheet before you execute your macro. T . . : | B
1 R-!I‘Uﬂ‘ QI-I-I ;mdm U.:iusold :. .

: Region1 Q1 R&6790 7000 bz | N

 Region1 Q2 R6790 5000 Pt | o

Region1 Q3 R6790 4000
+ Region1 Q4 R6790 6000 |
+ Region2 Q1 X5495 4300 !
+ Region2 Q2 X5495 5450
Region2 Q3 X5495 6975
» Region2 Q4 X5495 2004
» Region1l Q1 Y7746 5196

n Region1 Q2 Y7746 5123
= Region1 Q3 Y7746 5248

s
z.
=]
V)]
=
=x
(@)
e,
|
75}

Your worksheet after you execute your macro.

The macro replaces the Region 1 text with North and
applies bold and italics.

Regon O | Produs Unimsold |
. North Q1 R6790 7000 s l
. North Q2 R6790 5000 e | [
.Nerth Q3 R6790 4000 (1
. North Q4 RE790 6000
+ Region2 Q1 X5495 4300
‘ Region2 Q2 X5495 5450
+ Region2 Q3 %5495 6975
. Region2 Q4 X5495 2004
<North Q1 Y7746 5196
o Nerth Q2 Y7746 5123
«North Q3 Y7746 5248
mot s m | mepece pata L - -
| B] . 5

When you specify a value of True for the SearchFormat parameter or for the ReplaceFormat parameter,
VBA looks for the search or replacement format settings. If you want to use formatting as part of the search
criteria, you need to specify the format settings by using the FindFormat property of the Application object.
With the ReplaceFormat parameter, you need to specify the replacement format settings by using the
ReplaceFormat property. Set these properties at the top of the procedure, before the code that sets the
associated parameter. You can use these properties to set the Font object properties for searching and
replacing text. You can use the With statement to set the property values. For example, to set replacement
text properties, you can type code similar to the following:

Example:

With Application.ReplaceFormat.Font
.Name = "Arial"
.FontStyle = "Bold"

.Size = 12

End With

UserForm

o
Basics
very Windows application uses dialog boxes to ready-made dialog boxes, MsgBox and InputBox, that
gather information from the user, and Excel is no you can use with your code. In addltlon, you can create
exception. For example, you can use the Open you own custom dialog boxes. See Chapter 7 for more

dialog box in Excel to select a file to open. VBA has two information on the MsgBox and InputBox dialog boxes.

Parts of the Visual Basic Editor

By using the VBE, you can create custom dialog boxes to use dialog boxes as UserForms. When you create a UserForm, you
with your Excel procedures. The VBE refers to these custom design it by using the various controls available in the Toolbox.
Arrow Button Label Button Textbox Button Combobox Button
h: A abl B2
Listbox Button Checkbox Button Option Button Toggle Button
=H ~ o =

Controls I

RNADEBEBF & £

M= =g 2 0E

Frame Button Command Button Tabstrip Button Multipage Button
[— o= =
Scrollbar Button Spin Button Image Button Refedit Button

= s [=

o

Visual Basic Editor Toolbox

The VBE Toolbox appears only when you select a
UserForm in the VBE. The Toolbox contains controls that
you can add to your custom UserForm. See the section,
“Create a Custom Dialog Box,” for more information about
adding Toolbox controls.

The Toolbox contains several standard controls that you
can add to a userForm. You can also create custom
controls and add them to the Toolbox. See the section,
“Create Custom userrForm Gontrols,” for more
information on adding custom controls.

Label

For adding text to a UserForm. This control is not
designed to interact with the userForm; you add labels
for informational purposes only.

TextBox

Enables the user to type in text.

CommandButton

A user clicks a button to perform a specific action. When
you create a GCommandButton control, you specify the
text that displays on the button as part of the control
property.

ComboBox

A user can either click an item from the list or type the
appropriate value.

ListBox

Presents a list of items from which a user can select the
desired item.

MultiPage

Tabbed dialog boxes with which a user can switch
between pages of options in the dialog box.

By default, when you add the MultiPage control to your
UserForm, it creates two pages. To add additional pages,
right-click one of the Page tabs and select the New Page
option.

CheckBox

A user can select or deselect options. Typically, a
CheckBox control returns a value of True if it is selected,
and rFalse if it is not selected.

ScrollBar

A user can scroll through information that is not on the
screen, or indicate a position on a scale.

OptionButton

A user can select from a list of items. You place Option
Button controls in a group. When the user selects a
control, the other controls are automatically deselected.

SpinButton

A user can specify a value by clicking one of the arrow
buttons to increment or decrement the value.

ToggleButton

The button appears to be either pressed or unpressed.
When pressed, the button returns a value of True; when
unpressed the button returns a value of False.

Image

Use this control to add a graphic to the UserForm. Excel
stores the graphic in the worksheet. If you distribute the
worksheet, Excel includes the graphic. You can use a
graphic that is in any of the following file formats: BMP,
CUR, GIF, ICO, JPEG, and WMF.

Frame

This control is a container for grouped controls.

TabStrip

A multiple-page area for a section of your UserForm.

RefEdit

A text field and a button with which a user can select a
range of cells from a worksheet. When the user clicks a
button, the corresponding dialog box minimizes so that
the user can drag the pointer across the worksheet to
select the desired range of cells.

¢1 1dey)d

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
Q
o
%
(¢
7]
&
=)
(=%
@)
s
72]
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

Create a Custom

Dialog Box

of your macros. Dialog boxes are a user interface

that enable users to click buttons to indicate a
desired selection or type appropriate values in a field. You
can use VBA to create custom dialog boxes. VBA refers to
these dialog boxes as Forms or UserForms.

To create a custom dialog box in the VBE, select the
UserForm option on the View menu. The VBE creates a
new UserForm called UserForm# and creates a Forms
folder in the Project Explorer window. The Forms folder
displays only if you have created UserForms. See Chapter 2
for more information about the Project Explorer window.

You can change the name of a UserForm to make it easier
to identify when you look at the UserForms list in the
Project Explorer window by changing the Name property

Create a Custom Dialog Box

You can create custom dialog boxes to use with any

in the Properties window. To open the Properties window
press F4.

After you create a UserForm, you can custom design it by
using the Toolbox controls, which only appear when you
select the UserForm window. You add controls to the
UserForm by dragging them from the Toolbox to the
appropriate location on the UserForm. For example, to
request a text value from the user, you drag the TextBox
control onto the UserForm. After you add a control, you
can resize it as needed. The VBE assigns default values
to the control’s properties. You can change the assigned
values in the Properties window. You must select the
control on the UserForm before you can set the
properties.

In the Project Explorer window, click
the project to which you want to add

a UserForm.
Click Insert & UserForm.

(2]

® The VBE creates a blank UserForm
with a default name of UserForm1,
and the Toolbox appears.

Press F4.
® The Properties window appears.

Type a form name in the Name field
of the Properties window.

Click the UserForm.

The Toolbox reappears.

@

4 Microsoft Visual Basic - UserForr

M b g e L 2
o - Wit Y hoy

w - [UserFarm 1 (UserForm)]
b st fpedes Lul

[r—

CRAMEEF 7 o
Ooauzd@mn

VAMEWE T oo
Duuiyzan

T

EER e R

"id
BE

@ Click and drag a control from the
Toolbox to the UserForm.

Continue adding controls as needed.

0 Type captions in the caption field.

Use the Properties window to
change any properties you want to
change.

@ Press F5.

The VBE moves you to Excel and
provides you with a preview of the
dialog box.

Q To return to the VBE, click the Close
button in the dialog box.

rASpES - 2
(= WSTR[|

-"_.‘-51 =l * * .
— . e e Poge Loywdt Prrrdn Drte. P Voam v Lad b - - =
F— P S
g s [S gl B
e A U My R e
peiin e
A B G G I]

: S))

2

3

4

5

6

7

8

9

10

1

12

13

14

15

16)
00l Shout] ~Shemt - Shaeth <),

Sonty) i *)

control properties.

You can specify several properties for each control you add to a UserForm. Although each control type
has unique properties, most of the properties are common to all controls. To change the value of a control,
either type a new value or click a value from the drop-down list. The following table describes some common

CONTROL PROPERTY DESCRIPTION

(Name) The name of the control.

BackColor The background color of the control.

Caption The text that displays on the control, such as the button text.
Font The font used to display all values on the control.

Height The height of the control in pixels.

Text The default text value of the control.

TextAlign The way text aligns on the control.

Width The width of the control in pixels.

¢1 1adey)

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

Call a Custom Dialog

Box from a Procedure

ou can call and display custom dialog boxes.
Moreover, you can use custom dialog boxes to
obtain user input. For example, you can use a

dialog box to request the values you need from the user
to perform a calculation.

To display a custom dialog box, use the show method of
the UserForm object. The show method instructs Excel to
display the specified UserForm. The show method has
one optional parameter, modal. The following is the
syntax for the show method:

UserForm.Show modal

The Modal parameter determines whether the UserForm
displays as a modal or modeless dialog box in Excel. The
default value of vbModal makes the dialog box modal,

Call a Custom Dialog Box from a Procedure

which means that users must either close or hide the
dialog box before selecting any other options in Excel.
When Excel opens a modal dialog box, Excel passes
control to the dialog box, and the user can only interact
with the dialog box. A value of vbModeless means that
although the dialog box remains open until a user closes
it, the user can perform other functions.

Dialog boxes contain a Close or Cancel button a user can
click to close the dialog box. In a procedure, you can also
close a dialog box by using the unload method. You
must use a Click event with CommandButton controls to
create a procedure that calls the unload method. See the
section, “Capture Input from a Custom Dialog Box,” for
more information about specifying the code to run when
a user clicks a button.

@ Create a UserForm.

Note: See the section, “Create a Custom
Dialog Box,” to learn how to create
a UserForm.

@ Create a new Sub procedure.

AAMHWE ¢ o
L |Ossuz @M

UserForm, xism - [Module! (Code)]
M Eie [t yws et fgwat Debey Ben Jooh gt fjedes pes
vt it [T

[t =] [Commaotiar = =l
Sub callDiahyBuxﬂ‘—@ =

End Sub

@ Create a Show command.

Q Press Alt+F11 to switch from the

VBE to Excel, and run the macro.

Excel displays the dialog box.

4 Microsoft Visusl Basic - UserForm . xdsm - [Module1 (Code)]

= Bl
Sub CallDialogBox() =
SampleForm.Show vbMud-l<—9
End Sub
[
L KT JJ

) e
) x

Hore bt Paplod bwedn Des Bews W

You can use the Unload statement to remove a
UserForm from memory. When you call the
statement, all controls on the UserForm are reset to
their default values; as a result, you cannot access
the options specified by the user after the UserForm
unloads from memory. To maintain access to the
necessary values, you can either store the values in
global variables or hide the UserForm until your
procedure terminates. To unload a UserForm,
specify the Unload statement followed by the name
of the UserForm that you want to unload, or use the
following shorter code:

IS EQUIVALENT TO:

Unload UserForml Unload Me

You can hide a UserForm so that it is no longer
visible. To hide a UserForm, use the Hide method.
When you hide a UserForm, you can still access it
from your procedure.

UserForml.Hide ‘ Excel hides the form.

After hiding a form, Excel may appear to freeze as
your code continues to access the UserForm. This
condition clears as soon as the code that accesses
the UserForm finishes processing.

¢1 1adey)

.
.

(@)
-
(]
<)
=
=
uQ
=)
P o
kY]
[
o
uQ
o
Qo
»
(97
7]
ko)
=
(=W
@)
s
n
=t
o
=3
E.
uQ
=
(¢
=
=N
=
o
=

Capture Input from

a Custom Dialog Box

ialog boxes in Excel gather input from the user.

The input can be anything, from which button

the user clicks to text the user types into a field.
You can capture user input by using UserForm events. For
example, when the user clicks an OK CommandButton
control, you can use a CommandButton_Click Sub
procedure to tell Excel what to do next.

Excel considers every user interaction that occurs in a
dialog box to be an event. For example, scrolling through
a list of items, clicking an OK button, and typing text in
a text box are all events. Each UserForm control has
several events that you can capture. The most common
event is the c1ick event, which occurs each time a user
clicks a control. To make UserForms interactive, you can
create procedures that execute when specific events occur.

Capture Input from a Custom Dialog Box

Each UserForm has two views: a graphical layout
window and a code window. The graphical layout
window is where you add controls that display in the
dialog box. See the section, “Create a Custom Dialog
Box,” for more information on designing custom dialog
boxes. The code window contains the code associated
with the UserForm. You can use the code window to
create event procedures for each control. To create event
code, you double-click the control. By default, the VBE
creates a private click event for a control when you
double-click it. If a Click event already exists, the VBE
simply displays the code window. Users cannot execute
private click event procedures by using the Macro dialog
box. The only way execute a private click event procedure
is to click the appropriate control.

@ Create a UserForm.

Note: See the section, “Create a Custom
Dialog Box,” for information on
creating UserForms.

@ Double-click a Command button.

In this example, you write code for
the OK button, and so you double-
click OK.

T T T
O-=4yzsd@3m

RAMB@RFE 7 o
O-=azd@m

[] VBA Creates a SUb procedure_ 4 Microsoft Visual Basic - CustomForm, xlsm - [SampleForm (Code)] 0
L Ea E e - =
| ——— =] o=
Private Sub CommandButton1_Click() <«——® g
=
End Sub 2
[y
o

=¥l | off

9 Assign the user selection to a
variable.

Oetwg Bem Josh pddim ifjedes e
[Commetot <] fon

Private Sub CommandButton1 _Click()
UserSelection = ListBox1 .\hlu-‘—@
Unload SampleF

End Sub

@ Close the dialog box.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

SO s

A Click event occurs when the user clicks a control If you need to capture the Click event to determine
or a value in a control. For most controls, you can the page or tab selected with a MultiPage or
write a procedure to handle the Click event by TabStrip control, the procedure also includes an
simply placing _Click after the control name. index parameter value that specifies the index to the

page or tab.
Example:
Sub CommandButtonl_Click() Example:

Sub MultiPagel_Click (1)
A Click event also occurs when the user presses With the MultiPage and TabStrip controls, create a
Enter while a control has focus, when the separate procedure to handle the selection of each
user presses the accelerator key that corresponds to page or tab by using the corresponding index value.

the control, or when the user presses the Spacebar
while a CommandButton has focus.

continued 9

Capture Input from a Custom

Dialog Box (continued)

ou can create code to monitor events and

determine when specific code should execute.

Each control has its own events, and the VBE lists
them for you in the procedure list box. You can quickly
create an event procedure in the code window by
selecting the appropriate control name in the Object list
box and then selecting the corresponding event from the
Procedure list box. When you select an event, the VBE
creates a procedure with the name of the control followed
by the event name.

The dialog box displays and returns. Control values on a
UserForm are only active as long as the dialog box is
open. If you close the dialog box prior to saving user
input values, you lose the user input. To avoid potential
problems relating to lost data, consider saving user
responses to global variables that can pass into other
procedures. For example, you can call a UserForm from

Capture Input from a Custom Dialog Box (continued)

another procedure to capture user responses and then
pass the values back to the main procedure.

You declare public variables at the top of your module,
before any procedure code, by using the Public statement.
Declaring public variables enables you to declare
variables that all procedures in a project can access. See
Chapter 3 for more information on declaring variables.

When working with a single-column list box or combo
box, you can use the add1tem method to create the list of
choices that appears in the box. The following is the
syntax for the AddItem method:

object.AddItem Item

You can use the with statement to shorten the code
required to create the list. See Chapter 4 for more
information on using the with statement.

@ Create a new module.

Note: See Chapter 2 to learn how to
create a new module.

e Declare a public variable to hold
the user selection.

@ Create a Sub procedure.

@ Add items to the list box.

4 Microsoft Visual Baskc - CustomForm.xlsm - [Madule? (Code)]
M Ele Gt yws et Fgmat Debey Ben Jooh gt fjedes pes hor % = 0%
(T |

= 2] [t =
Public UserSelection As sning<—e E

Sub ShowUserForm()

& Microsoft Yisusl Basic -

Oebwg Bem Josh jodim jfjedos e
=0 <] [t

Public UserSelection As String
Sub ShowUserForm()

-—0

© Show the dialog box.

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

The dialog box displays and then a
message box returns.

4 Microsoft Visual Baskc - CustomForm.xlsm - [Madule? (Code)]

LIy]| [t

Public UserSelection As String

Sub ShowUserForm()

With SampleForm.ListBox1
.Additem "Quarter 1"
.Additem "Quarter 2"
.Additem "Quarter 3"
Additem "Quarter 4"

End With
SampleForm.Show & 0

B Mo focarty e

MsgBox "You selected " & UserSelecti
End Sub
=54 |
e R i
T e e e R o e
- P —
aim| =2 [i B Rt A e
Ve Mren et Do o
- 1

the selected control.

You use control events to determine when to execute specific code. The following list identifies the most
common events that occur with the various controls placed on UserForms. Not all events are available for
each control. In the code window, check the Procedure list box to see the events that are associated with

CONTROL EVENT OCCURRENCE

BeforeDragOver The user is dragging-and-dropping data onto a control.
BeforeUpdate Before data on a control is changed.

Change The Value property of the control changes.

Click The user clicks the control.

DblClick The user clicks the control twice.

Enter Before a control receives focus.

KeyDown The user presses a key.

MouseDown The user presses the left mouse button.

¢1 1adey)

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

Validate Input

from a Dialog Box

a dialog box before passing them to your

procedure. You validate the data values for two
reasons: First to ensure the user specifies a value for a
control. Second, and probably more important, to ensure
errors do not occur in your code as a result of wrong data
passing to a procedure.

You can create code that validates the user input for any
event that occurs in a UserForm. The best time to
validate is prior to closing the dialog box. For example, if
a CommandButton control, such as an OK button, passes
values to variables and closes the dialog box, the OK
button is the ideal place to validate your data. When you
create the validation code, you can use a conditional
statement, such as an I1f Then statement, to check the
properties of each control. For example, to make sure the
user typed a string in the Name text field of a dialog box,

Validate Input from a Dialog Box

You can validate the values returned by controls in

you can add the following 1f Then statement to your
procedure: Tf TextBoxl.Text = " " Then.

The 1f Then statement checks the Text property for the
specified TextBox control to ensure that it contains a
value. If the TextBox control does not contain a value,
your VBA code can call the MsgBox function and display
a message telling the user that a value must be entered.

In addition to checking for values, you can also use the VBA
validation functions to verify that the control contains the
appropriate data type. For example, you can use the
statement If Not IsNumeric (TextBoxl.Value) Then to
ensure that the user typed a number in a TextBox control.

When working with a list box, you can use the
ListIndex property to find out if the user typed in a
value. The ListIndex property returns -1 if the user did
not type in a value, O if the user selected the first value
in the list, 1 if the user selected the second value in the
list, and so on.

@ Double-click the control to which
you want to add validation.

® The code window opens.

4 Microsoft Visual Baskc - CustomForm.xlsm - [CustomForm, xlsm - SampleForm (LserForm)]

[y r—

RAMEEF 7 o
Oz s@n

Fgrat Detug Bem Josh padim [pedes e

O e go we pun
L |t

-] foms
Private Sub CommandButton1_Click()
UserSelection = ListBox1.Value

| Unload SampleForm
End Sub

@ Add the validation code.

In this example, if the user does not
make a selection, a message box
appears.

@ Press Alt+F11 to switch from the

VBE to Excel, and run the macro.

If you do not make a selection, a
message box appears.

4 Microsoft Visual Baskc - CustomForm.xlsm - [SampleForm (Code)]
O fie §ot yws pun fgwe etwg B Joh ASeim lwdee e
rrcs v e Sl

Private Sub CommandButton1_Click()

D)

| UserSelection = ListBox1.Value
Unload SampleForm
End Sub

T T——
)
L e R Y S

Py 3 Fwed b

i R P
o

- 2 b

Micrasoft Excel [

Plaase ruks 8 soiscrEn

=

(]
-
— %

JEFTE [Ve ——

You can use the UserForm events to
launch validation code, as shown in the
following example. The code captures
the QueryClose event to ensure that
the user selected a ListBox control
prior to the dialog box closing. A
QueryClose event occurs before a
UserForm closes.

Example:

Private Sub
UserForm_QueryClose (Cancel As
Integer, CloseMode As Integer)

If Not IsNumeric (TextBoxl.Value)
Then

MsgBox "Must be a number"
Cancel = 1
End If

The QueryClose event has two arguments, Cancel and
CloseMode. The Cancel argument accepts an integer value.

If the value of the argument is anything other than zero, the
QueryClose event stops and the associated dialog box remains
open. The CloseMode argument contains a constant value
indicating the cause of the QueryClose event, as shown in the
following table.

CONSTANT VALUE DESCRIPTION

vbFormControlMenu 0 The user selected the Close
button in the dialog box.

vbFormCode 1 The code initiated an
Unload statement.

vbAppWindows 2 The Windows operating
session is ending.

vbAppTaskManager 3 The Windows Task Manager
is closing Excel.

¢1 1adey)

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
Q
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

Create Custom

UserForm Controls

The Toolbox that displays when you select a

UserForm in the Visual Basic Editor contains all of
the standard controls you can add to a UserForm. These
controls display on a single tabbed page called Controls.
By using the Properties window, you can change the tip
text that displays when a user drags across the icon, the
color of the control and many other features. You can
also create new controls and add them to the Toolbox.

To create new controls, you customize and combine the
existing controls. For example, if you add an OK button
to all of your UserForms, you can create a custom button
and set the appropriate properties, such as Caption,
Width, Height, and Default. If you place the button in the

You can customize the Toolbox to suit your needs.

Create Custom UserForm Controls

Toolbox, the VBE adds it as a new control. Alternatively,
you can create new controls by combining multiple
controls. For example, you can create a new control that
consists of an OK and a Cancel button.

To keep your custom controls separate from the existing
controls in the Toolbox, you can add a new page to the
Toolbox. You create a new page in the Toolbox by using
the New Page option. You can assign a name to the new
page by using the Rename option.

When you create a custom control by dragging a control
from a form to the Toolbox, you only transfer the
properties. Code that you have added to the control does
not transfer. Each time you use a custom control you
must add the necessary code.

o In the Toolbox, click the control you
want to customize.

9 Drag the control to the UserForm.

9 In the Properties window, type the
control name in the Name field.

9 Type the text you want to appear on
the control in the Caption field.

@ In the Toolbox, right-click the
Controls tab.

@ Click New Page.

The VBE adds a new page to the
Toolbox.

@

 Micrasoft Visual Baskc - CustomControls. xism - [UserForm 1 (UserForm)]
O Bl §ot yws post Fymat Debeg Ben Josh jodim lijedes e
rrwcs ks .

4 Microsoft Visual Bask - Custom Controls xdsm - [UserForm 1 (UserFarm)]
0N fie [t yws paen Fymat Qebug Bem Josh pdtm fpedos s et
T

0 Click the control on the UserForm
and drag the control to the Toolbox.

The control appears on the new page
of the Toolbox.

You can add multiple pages to the Toolbox. To change the order of the pages, right-click the page tab and
then click the Move option on the menu to display the Move dialog box. Click the desired page to select it,
and then click the Move Up or Move Down buttons to reorder your pages.

If you want to rename a tab, right-click the tab, and then click Rename. The Rename dialog box appears. Type
the name you want to give the tab in the Caption field.

Creating a separate page in the Toolbox to store your custom controls gives you the ability to export the page
for loading on another computer. To export a page, right-click the page tab and then click the Export Page
option. In the Export Page dialog box, specify the name and location for the page file. The VBE assigns the
page file an extension of .pag.

To import a page file into the Toolbox, right-click a tab menu and then click the Import Page option. In the
Import Page dialog box, specify the name and location of the page file to import.

¢1 1adey)

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

repeatedly, you can create a UserForm template file to

save you time and effort. When you create
UserForms, the Visual Basic Editor attaches them to the
project in which you create them. Each time you create a
new project, you must re-create the UserForm or copy it
from another project by using the Project Explorer
window. See Chapter 2 for more information on working
with the Project Explorer window.

When you create a UserForm template, you design a
basic UserForm and save it to a file. You can then add the
UserForm to any other project you create. You can save a
UserForm to a file by using the Export File command on
the File menu. In the Export File dialog box, you specify
the name and location for saving the UserForm file. You

Create a UserForm Template

I f you find that you create the same basic UserForm

may want to create a folder in which to save Excel
project files.

When you create a UserForm for use as a template, you
should keep it generic so you can customize it for each
new project. For example, if you frequently create a
UserForm that contains a TextBox control for gathering
user input, as well as two CommandButton controls, OK
and Cancel, you can create a generic version with the
three controls. However, if you do not place the Label
control for the text box in the template version, you can
import the form and customize it for the type of data you
want to gather from the user.

To add a UserForm template to a project, you can use the
Import option. The VBE creates a new UserForm and
assigns it the next sequential name.

CREATE A TEMPLATE
@ Create a UserForm.

Note: See the section, “Create a Custom
Dialog Box,” for information on
how to create a UserForm.

@ Click File > Export File.

@ Locate the folder in which you want
to save the file.

Q Type the filename.
@ Click Save.
VBA exports the file.

@

& Microsoft Yisusl B

...

CustomForm, xlsm - [CustomForm xlsm - SampleForm (UserForm)]

o fh e |
Ko [D Ui oo
P
[CT I == o= Il"—e
Somm o [FomTmeT i =10 it
|

"VlPORT A TEM PLATE 4 Microsoft Visual B Boakd - [ThisWorkbook (Code)]

0 Click the project to which you want
to add a UserForm.

@ Click File = Import File.

¢1 1adey)

.
.

The Import File dialog box appears.

0 Locate the folder in which you saved

the form. é
@ Click the file containing the D
UserForm.
@ Click Open. T ——— = 2

The VBE adds the UserForm to the
project.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

You can specify the order that Excel uses to move between controls on the UserForm by setting the controls’
tab order. Tab order is the order in which the VBE selects the control to move to when a user presses the Tab
key. By default, the tab order is the order in which you add controls to a UserForm.

Each control has two properties that relate to tab order. You can use the Properties window to set these
properties. The first property, TabStop, determines whether focus stops on the control when the user
presses the Tab key. If you set the TabStop property for a control to False, then when the user tabs through
the controls, Excel skips the control. The second property, TabIndex, is a value between zero and the
number of controls, it sets the order in which Excel moves from control to control when the user presses the
Tab key. You can use the Tab Order dialog box to set the tab order. This dialog box appears when you right-
click the UserForm and then click Tab Order.

Create a

CustomUIl.xml File

ith Office 2007, Microsoft introduced a new

user interface for Excel. Earlier versions used

toolbars and menus to provide access to Excel
commands. Office 2007 uses the Ribbon. Using XML,
you can customize the Excel Ribbon. Microsoft refers to
the markup system you use as RibbonX. You create and
use a file named customUL.xml to modify the Ribbon.
Because you write XML in plain text, you can use any
text editor to create a customULxml file.

Creating a basic Ribbon modification requires that you
use control markups. The ribbon control markup
represents the Ribbon.

The tab control markups represent the tabs on the

Ribbon. All tab markups are contained within the tabs
control markup. The tabs control markup does not have
any attributes. You can set an id attribute and a 1abel

Create a CustomUIxml File

attribute for a tab control. You define id attributes. They
uniquely identify controls. Label attributes assign a label
to a control. You can assign many attributes to elements.

The group control markup identifies a group on a tab.
You can set an id attribute and a 1abel attribute with
the group markup.

The button control markup creates a button on a tab.
You can set id, label, imageMso, size, onAction, and
screenTip attributes for a button control. The imageMso
attribute identifies the built-in image you want to use as
the button. The size attribute determines the size of the
button. You can set the size attribute to either normal
or large. The customUILxml file can call the onAction
attribute when the user clicks a control. The screenTip
attribute specifies the screen tip that displays when the
user rolls the mouse pointer over the button.

@ Create a file named customUl.xml.

You can use Notepad or another text
editor to create the file.

(2]

Type <customUIl xmins="http://
schemas.microsoft.com/office/
2006/01/customui”>.

You start every customUl.xml file
with this code.

@ Create a ribbon markup control.
@ Create a tabs markup control.
6 Create a tab markup control.

@

P customUl xm| - Hotepad
Ele B Fgmal Yew b

<ribbon=
<tabs>
<tab id="cCustomTab"
label="sales">
<group id="Groupl"
Tabel=" quarterly Reports
<button id="Buttonl"”
imageMso=""ReviewAcceptChange”
size="large"
Tabel="sign and pate"
onAction="Thisworkbook.signandDate"
screentip = "Sign and Date Report” />
<button id="Button2"
imageMso="CreateReportilankReport”
size="large"
label="Report Format"
onAction="Thisworkbook.ReportFormat"”
screentip = "Create a Report Format” />

",

</group>
</tabs
</tabs>
</ ribbon=
</customuI=

P customUl xm| - Notepad
Bl B Fgreal Yew twh

<customuUl

xmlns="http: ;’fﬂms.mi crosoft.com/office/2006/01/customui >
<ribbon=

- <tabs> 6
<tab id="cCustomTab"
label="sales">
<group id="Groupl"
label=" quarterly Reports
<button jd="Buttonl"
imageMso="ReviewAcceptChange”
size="large"
label="sign and Date"
onaction="Thisworkbook.signandpate"
screentip = "Sign and Date Report” />
<button id="Button2"
imageM "CreateR
size="large"
label="Report Format"
onAction="Thisworkbook.ReportFormat"
screentip = "Create a Report Format” />

",

rtelank t"

</group>

</tab>

< /tabs>
</ribbon=

</customuI>

‘ »

O Create a group. Q
<customul -

xmins="http://schemas.microsoft.com/office/2006/01/customui"> &

o Create buttons. <ribbon> =

<tabs> o=

<tab id="CustomTab" ()

@ Save your file with the filename ‘grlﬂge}léglgzp;,, :

Tabel=" terly R T E
CUStomUI'XmL e——>-:buttl:wle'id="BE"£I2;niE ¥ Reports ” u

imageMso="ReviewAcceptChange”
size="large"

Tabel="sign and Date"
onAction="Thisworkbook.signAndpate”

screentip = "Sign and Date Report" />
a—>4button id="Button2"

imageMso="CreateReportilankReport"
size="large"

label="Report Format"
onAction="Thisworkbook.ReportFormat”

.
.

e_ screentip = "Create a Report Format” />
g </ FOUp>
</tab:
</tabs>
</ribbon>
</customuI=
After you add yourfile toa N L RLE
workbook, your Ribbon should look] — .
like the one shown here. e .
L
A -2 3
® XML adds a new tab. T e o : F G H —
|
® Two buttons. :
4
A group. :
7
8

ERICEIEESTRET SRR]
Rty] 2) 4

(@)
-
[
<)
=
=
uQ
=
e
&,
o
Q
o
%
(¢
7]
&
=)
(=W
@)
s
72]
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

You use the imageMso attributes to identify the built-in image you want to appear on the Ribbon by using
the following syntax:

imageMso = "ImageName"

To obtain the name of the image, click the Office button and then click Excel Options. The Excel Options
dialog box appears. Click Customize. In the Choose Commands From field, select All commands. Move the
mouse pointer over the command with the button that you want to use. A screen tip appears. The name of
the image appears at the end of the screen tip in parentheses.

You can also download 2007 OfficelconsGallery from the Microsoft Web site. The 2007 OfficelconsGallery is
an Excel workbook. When you open the workbook, galleries containing built-in images appear on the
Developer tab. When you place your mouse pointer over an image or click an image, the name of the image
appears. You can specify the size if the image by using the size attribute. Set the size attribute to large
to display a large button. Set the size attribute to normal to display a normal size button.

Customize the

Ribbon

create with the Microsoft Excel user interface, you

can place buttons on the Ribbon that will execute
your macro when the user clicks the button. You modify
the Excel Ribbon by placing a customUILxml file in your
workbook file, and then creating a relationship between
the workbook and the customization file. See the section,
“Create a CustomULxml File,” to learn more about
creating a customization file.

You can open an Excel workbook file by changing the
filename extension to .zip and then double-clicking the
file. When the file opens, you will see several files and
folders. You refer to this ZIP file as a package, and the
files in the ZIP file as parts. To modify the Ribbon, you
place your customULxml file in a folder named customUI
and then place the folder and file in the package.

Relationships define how the parts of a document come
together to form the document. Relationships are stored

Customize the Ribbon

T o seamlessly integrate the procedures that you

in the /_rels folders in .rels files in the root and in
subdirectories of the file. To modify the Ribbon, you
must create a relationship between the workbook and
the customization file by adding a relationship to the
.rels file under _rels in the root directory. You create the
relationship by placing the following code between the
last Relationship tag and the Relationships tag.

<Relationship Id="someID" Type="http://
schemas.microsoft.com/office/2006/relations
hips/ui/extensibility" Target=customUI/
customUI.xml" />

When your procedures are going to be executed through
Ribbon buttons, you place your procedures in the
ThisWorkbook module and place Byval control as
IRibbonControl between the parentheses if you are
using an onAction attribute with a button, as follows:
Sub SubName (ByVal control As
IRibbonControl)

0 Create a folder on your desktop named customUl.
@ Place your customUl.xml file in the folder.

Note: See the section, “Create a CustomUI.xml File,” to
learn how to create a custom Ul file.

9 Open the file that will contain the macros you want
to execute.

e In the VBE, double-click ThisWorkbook.

The workbook module opens.

6 Name your Sub procedure and place Byval e

control As IRibbonControl in parentheses.

You add this code because you are going to use an
onAction attribute.

e Type your procedure.
0 Save and close your file.

@

= =] [rraie

Sub SignAndDate(ByVal control As mihboncontml}<—6

Call SignAndDatex

End Sub

Sub ReportFormat(ByVal control As IRibbonControl)
Dim CopyRange As Range

Set CopyRange =

Workb ports2.xlsm")

kel™C P
\

Worksheets("Format”).Range("A1:D7")
CopyRange.Copy Destinati ActiveSheet.R
With ActiveSheet

.Columns(1).ColumnWidth = 16

("A1:D7")

e _ .Columns(2).ColumnWidth = 14

" .Columns(3).ColumnWidth = 14

.Columns(4).ColumnWidth = 14
| =f5 s o

Locate your file in Windows Explorer.

Change the extension on the filename
to .zip.

¢1 1adey)

Double-click the file to open it.

.
.

Drag the customUl folder from the
desktop to the ZIP file.

Drag the _rels folder from the ZIP file
to the desktop.

® ®© 66 00

Double-click the rels folder to open it.

The RELS file appears. T

Bl g3 Fomal Yew iwh

<7xm] version="1.0" encoding="UTF-8" standalone="yes'7 -
<Relationships xmIns="http://schemas.openxmlformats,org/package,/2006/relationships”:

ile i <Relationship Id="rId3" Type="http://schemas.openxm]formats,org/officebocument,/ 2006
Open the RELS flle n NOtepad or anOther <l¢1ahoﬂsh1g Ids"rId2 T\'sc- ‘http://schemas. openxm] formats. urg;’packwr}!ﬁ%:’rﬂah
. Aelationship Id="rIdl 'fypp ‘htep://schemas. openxmlformats.org/officebocument,/ 2006

teXt edltor <Aelationship Td="customUIRelId

<fRelationships>

Create a Relationship.
Save and close the file.

Delete the RELS file in the ZIP file and
replace it with the new RELS file.

® 9686 8

Rename the ZIP file back to its original
name.

A new tab appears in the file.

(@)
-
[
<)
=
=
uQ
=
i
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

The procedure outlined in the steps modifies the Ribbon for an individual workbook. If you want to modify
the Ribbon for multiple workbooks by using VBA, you can use an add-in. You create an add-in by saving a
workbook in the add-in format. Add-ins enable you to integrate additional functionality into Microsoft Excel.
You can create an add-in and distribute it to others. See Chapter 16 to learn more about add-ins.

If you are planning to convert a workbook with a modified Ribbon to an add-in, do not place your code in
ThisWorkbook. Create your Sub procedures in ThisWorkbook as you normally would. Place your code in
standard modules and then call the standard Sub procedure from the code in ThisWorkbook.

Example:

Sub SignAndDate (ByVal control As IRibbonControl)
Call SignAndDateX

End Sub

Add Additional

Options to the Ribbon

ou can create a customUILxml file, and use that

file to create a new Ribbon tab, add buttons to the
tab, and use the buttons to execute your

procedures. You can also add control markups to your

customUILxml file that will create launchers, combo
boxes, toggle buttons, check boxes, and edit boxes.

When creating your XML code, you use callbacks to run
procedures based on the information returned when the
user interacts with a control. For example, check boxes
return a Boolean value of either True or False when you
use the onAction callback. Your procedure can perform
one action if the value returned is True, and another
action if the value returned is False.

Excel uses dialog boxes to enable users to access
advanced features. The user is able to open the dialog box

Add Additional Options to the Ribbon

by clicking a launcher located in the lower-right corner

of the group. You can create launchers to open the dialog
boxes you create for your custom applications. Dialog
boxes are useful when you want to obtain information
from the user. Use the dialogBoxLauncher element

to create a launcher. Each group can have one launcher.
The launcher element must be the last element in the
group and must contain a button control. You can use

the onaction callback with a dialog box to tell VBA what
procedure to execute when the user clicks the launcher.

Use the comboBox element to present the user with a
menu of options. When you present the user with a
menu, the procedure that executes depends on the option
the user selects. You typically use conditional statements
with a combo box.

ADD A LAUNCHER
@ Add code to your customUl.xml file.

® The dialogBoxLauncher tag.

® The required button tag.

@ Open the VBE.

@ Add the code that will execute to
ThisWorkbook.

Opens an input box.

Inserts a title in your worksheet.

@

P customUlxm| - Hotepad

</group>
<group id="Group2"
label="Analyze Data'>
<comboBox id="combal"
label="select a Function"
onchange="Thi sworkbook.ChartFunction”>
<item id="functionl"” label="Create Data" />
<item id="function2" label="Create chart" />
</comboBox>
<checkBox id="CheckBox1"
abel="Hide Region 1"
onAction="ThisWorkbook.PressCheckBox" />
<toggleButton id="ToggleButtonl"
label="Show/Hide Product Detail”
size="normal"
onaction="Thisworkbook.Toggleme” />
</group>
</tab>
</tabs>

- Micrasoft Visual Basic - CreateReportd.xism - [ThisWorkbook (Cade)]
M 3 e pan Fgma Qe e Jeoh ke e G

— T

-

e

ADD A COMBO BOX

o
(2]

(3]

® 0

Add a tag to end the previous group.

Add tags for the new group.

This label will appear at bottom of the group.
Create your combo box tags.

Ids can be anything you want, but they must

P o of

P customUlxm| - Hotepad
Ele BN Fgmal Yew e

screentip = "Create a Report Format” />
<dialogBoxLaunchers

<button id="Launcherl”

screentip="select a Quarter"”

onAction="Thisworkbook.ReportForm” />
</dialogBoxLauncher>

= </ group:>

<group id="Group2"
label="Analyze Data">

- <comboBox 1d="Combol

label="select a Function"

onchange="Thi sworkbook.ChartFunction”>
<item id="functionl” label='Create Data" />
<item id="function2" label='"Create chart" />

e </ COMBOBOX >

<checkBox id="CheckBox1"

: label="Hide Region 1"
be unique. onaction="Thisworkbook.PresscheckBox" />
<toggleButton id="ToggleButtonl”)
label="Show/Hide Product Detail”
size="normal"
onaction="Thisworkbook.Toggleme” />
= </ group:>
</tab>
</tabs>
€ »
4 Microsoft Yisual Basic - CreateReport4 xism - [ThisWorkbook (Code)]
M Ele G8 pes punt Gpwat Debug Ben Joch gt fjedes L ¥
Open the VBE. s S o
End Sub |

Add the code that will execute to
ThisWorkbook.

Sub ChartFunction(control As IRi Control, id As String)
If id = "Create Data" ThenJ
R=4
c=2
ForX=CTo 4
ForY=RTo7
Cells(Y, X) = Application
.WorksheetFunction.RandBetween(100000, 200000)
Next
Next
Elself id = "Create Chart” Then
MsgBox ("Option not available.”)
End If
End Sub

' Sub PressCheckBox(control As IRibbonControl, pressed As 5_,
L) .

Prior to Office 2007, developers used command
bars to modify the user interface. In most cases,
this code will work in Office 2007 without any
modification. The changes appear on the Add-ins
tab. If the developer added an item to a menu in
Office 2003, then Office 2007 creates a Menu
Commands group and places the information there.
If the information was assigned to a toolbar, then
Office 2007 places the information in a Toolbar
Commands group.

You can use XML markup and any Microsoft .NET
framework-base language to make modifications to
the user interface.

A check box returns either the Boolean value
True or the Boolean value False. You can use
a checkbox to set a property to True or False.
For example, you can use a check box to set the
Hidden property for a worksheet column. If the
Hidden property is False the column is visible.
If the Hidden property is set to True the column
is not visible.

continued 9

¢1 1deyd

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
Q
o
%
(¢
7]
&
=)
(=W
@)
s
72]
=
o
=3
E.
UQ
=3
(¢
g
o
o
=)

Add Additional Options

to the Ribbon (continued)

“-
fffffffff e
/7

ou can use the toggleButton element to add a

toggle button to the Ribbon. Toggle buttons are

useful when you want to enable the user to turn
an option on and off with a single mouse click. For
example, if you have a worksheet in your workbook that
contains values on which you base calculations and those
values seldom change, you may want to hide the
worksheet. The example for this section has a
Workbook_Open command that hides the worksheet from
which VBA copies the report format that VBA places in
the active worksheet when the user presses the Report
Format button. You could add a toggle button to the
Ribbon to show and hide this worksheet by using an
onAction callback and adding the following code to
ThisWorkbook:

Sub HideSheets (control As IRibbon, _
pressed As Boolean)

Add Additional Options to the Ribbon (continued)

Sheets ("Format") .Visible =
End Sub

pressed

When used with a toggle button, the onaction callback
returns True when a toggle button is pressed, and False
when it is not. The values are returned to the variable
pressed. The code unhides the worksheet when the
button is in a pressed state, and hides the worksheet
when the button is in an unpressed state. Toggle buttons
are always in one of two states, pressed or unpressed. In
Excel, bold is an example of a toggle button.

You can use the checkBox element to add check boxes.
For example, if your data consists of three columns with
data for Region 1, Region 2, and Region 3, then you can
create a check box that hides and unhides the
information for each of the regions.

VIEW CHANGES TO THE RIBBON

o Click the launcher to open a dialog box.
The dialog box appears.
® Notice that there are two groups.

® Notice the custom tab.

The dialog box adds a title to your
worksheet.

@ Click this button to add a format to your
worksheet.

Note: To add this button, see the section,
“Customize the Ribbon”.

@

Sales
Quarter 4 <f—

Region 1 Region 2 Region 3

1

2

3

4 Productl
5 Product2
6 Product3
7 Productd
B

[T —

. . i R Createfoportd xom - Microssft Excel -
@ Click the combo box to see a list of T R S e
options. W e .
P L
Gt ot s P
AL " S il -]
[l A B c D E F]
2 Quarter 4
3 Region 1 Region 2 Region 3
4 Productl
5 Product2
6 Product3 1
7 Producta L L
8 5 - 8 $ =
]
10
11
12
13
14
15
.00 st it 3
e] E] 4
The Create Data option fills your By Hoam CresteReportd sism - Microsoh Excel B
A ' v et Pmplewd bwedn Ods Bews Gem Dwew dabhs | lem #-ax
worksheet with numbers. 2] Pt e
‘;—_’;ﬁ e P |
T reres | Do Dt
o —
Al - — =
7] A B c D E F]
S I Sales
2 Quarter 4
3 Region 1 Region 2 Region 3
4 Product1 s 151,167 § 115,381 $ 121,886
5 Product 2 104,173 189,568 105,234
6 Product3 134,021 115,850 103,229 1
7 Productd 167,578 141,469 183,843
8 5 556,939 % 562,318 $ 514,192
£l
esty T B] 4]

The following XML script creates a check box and a toggle button.

<checkBox id="CheckBoxl" label="Hide Region 1" onAction="ThisWorkbook.PressCheckBox" />
<toggleButton id="ToggleButtonl" label="Show/Hide Product Detail" size="normal"
onAction="ThisWorkbook.ToggleMe" />

The following code hides or unhides a column when the user clicks the check box. When the user checks the
check box the Boolean value True is returned to the variable pressed; when the user unchecks the checkbox
the Boolean value False is returned to the variable pressed.

Sub PressCheckBox (control As IRibbonControl, pressed as Boolean)
Columns (2) .Hidden = pressed
End Sub

The following code hides or unhides rows four through seven when a toggle button is pressed.

Sub ToggleMe (control As IRibbonControl, pressed As Boolean)
R =4
For X = R to 7
Rows (X) .Hidden = pressed
Next
End Sub

¢1 1adey)

.
.

(@)
-
[
<)
=
=
uQ
=
e
&,
o
uQ
o
%
(¢
7]
ko)
=)
(=W
@)
s
n
=
o
=3
E.
UQ
=3
(¢
=
=X
o
o
=)

Create a

Chart Sheet

workbook. When you create a chart, VBA creates a

new Chart object. Each chart object contains
several objects that represent the settings for the chart. For
example, the chartTitle object contains the chart title, its
font and border properties, and other associated
attributes.

When you create a chart, you can create a new chart
sheet or embed a chart in a worksheet. When creating a
new chart sheet, you use the chart object directly,
whereas when you create an embedded chart, you use a
ChartObjects object. See the section, “Embed a Chart in
a Worksheet,” for more information on creating
embedded charts.

Create a Chart Sheet

You can use VBA to add a new chart sheet to your

To create a new chart sheet, you use the Add method
with the charts object. After you create your chart, you
can use a wWith statement to set chart properties such as
chart type, the name you want to place on the chart’s tab,
the title of the chart, and the chart style. You select a
chart type by assigning an x1chartType constant value
to the chartType property. You use the Name property to
assign a name to the chart tab. If you want to place a title
on the chart, set the HasTitle property to True and then
use the chartTitle property to assign the title. If you
want to apply a style, assign a style number between 1
and 48 to the chartstyle property. Every style in the
Excel style gallery has a number, and you can run your
mouse pointer over the style to find out what the number
is. Use the setsourcebata method to tell VBA where
your data is located.

o Create a chart object variable.
@ Set the chart object variable.

® Use the ada method to add the new chart.

Create a with statement.

Use the chartType property to specify a chart type.
Name the chart sheet tab.

Place a title on the chart.

Assign a chart style.

Specify your data source.

The worksheet tab name.

©.000000

Press Alt+F11 to switch from the VBE to Excel, and
run your macro.

@

(5 .ChartType = xIColumnClusterad <& 4]

e P>.ChartStyle = 26

4 Microsoft Visual Baskc - Chap14-Macros.xdsm - [CreateChartShestExample (Code)]

M e Gt ywe et fgat Qebeg Bem Josh Aotim jedee Hee S S Te D
e o

Sub CreateChartSheet() B
Dim NewChart As Cbaﬂ<—0

Set NewChart = ThisWorkbook.Charts.Add() 4—0

M Bl g8 e pun Ty Detug Be Josh pStim jfjedes e Chart wecar c.mx
= <] [cremecrartimeet

Sub CreateChartSheet()
Dim NewChart As Chart
Set NewChart = ThisWorkbook.Charts.Add()

With NewC harl‘-g

- M
'

= "Sales by Region"

SetSourceData
Source:=Worksheets("Monthly Sales Data™). 4—@

Range("A2:D5")
End With

End Sub
=5 «

F

Your source data. e e S oot U RN C
CYid e BRI e O i nlt---‘ﬂ-—_-—-- 2= bt !_c‘ r ()
The worksheet tab name. Pt e e e | PR i il =
Clphes P : e b Mk Sy o=t
IR TSR T =y P
8 fegion _en _feb M| =
: Region 1 §$94104 $71752 $68691
« Region2 87,790 71986 81983 <— ~
s Region3 70202 63359 95858 'oloh
¢ Towl §252096 $207,097 $246533 <
1 S
g N
[y
=
uQ
_: <
. =
e EEE) pm—; (@)
=
The macro creates a chart.) A i Narowon Eree e~ g
— Wew et Pagleed b Dets Bovws el L Rad b w-=x H
® The tab name. Monthiy ales By Region <€———& | 7))

® The title.

Eww

-—-

el @Aa—a-n—é

When creating a chart, you must specify the chart’s data source. If you omit the data source information,
your chart appears blank. You use the SetSourceData method to specify the data source for your chart.
The following is the syntax for SetSourceData:

Example:
NewChart.SetSourceData (Source.Range, PlotBy)

Use the Source parameter to specify the actual data range your chart will use. The Source parameter can
reference any valid data range. See Chapter 11 for more information on defining a range of values. When
working with a chart sheet, you must indicate the name of the worksheet containing the data as part of the
range reference. For example, the following code references the range of cells contained in Sheet1 in the same
workbook.

Example:
NewChart.SetSourceData Source:=Worksheets ("Sheetl") .Range("Al:B15")

With the SetSourceData method, you can use the P1otBy parameter to tell VBA how to plot the data in
the specified range. You assign P1otBy one of the X1RowCol constant values.

Embed a Chart

in a Worksheet

ou can use VBA to embed a new chart in a

worksheet within a workbook. When you embed a

chart, Excel creates a new Chart object. Each Chart
object contains several objects that represent the settings
for the chart, such as the chartTitle object, which
contains the chart title, its font, border properties, and
other associated attributes.

When you embed a chart in a worksheet, the
corresponding chart object that Excel creates becomes a
part of the worksheet object. Because you can embed
multiple charts in one worksheet, the worksheet object
contains a Chartobjects collection object that contains
all chart objects on the worksheet. When you add or
remove embedded charts, you must use the
Chartobjects collection object.

Embed a Chart within a Worksheet

To add a chart to a worksheet, you must use the add
method with the chartobjects object. The add method
has four parameters you can use to set the location and
size of the chart in points: Left, Top, width, and
Height. Use the Left parameter to specify the location
of the chart in relation to the left edge of column A. Use
the Top parameter to specify the location of the chart in
relation to the top edge of row A. Use the width and
Height parameters to specify the initial width and the
height of the Chart object.

You specify the type of chart that Excel creates by using
the chartType property with one of the x1chartType
constant values. For example, to create a line chart, you
use the constant x1L.ine. See Appendix A for a list of the
X1ChartType constants.

(1]
(2]

Create a chart object variable.
Set the chart object variable to the new chart.

The name of the worksheet in which you want to
place the chart.

Sets the chart position and size.

Create a with statement.

Use the chartType property to specify a chart
type.

Place a title on the chart.

©® 00

Assign a chart style.

@

 Microsoft Visual Baskc - Chap14-Macros,xlsm - [EmbedChartExample (Code)]

M pie gt gws Pt Gyt Debwg B losn pSdm jpedes e Teriupce %
= <] [t

Sub EmbedChart()

Dim EChart As Ch-rlﬂbjn:l‘-ﬂ

Set EChart = Sheets("Sheet1").ChartObjects.Add 4—9
(Left:=300, Top:=175, Width:=400, Height:=300)

M Bl g9t ywe pmn fgvs Deteg Bem Josh pdtim lfiedse e Crarcnges

=0 <] [imbwnr

Sub EmbedChart()
Dim EChart As ChartObject

Set EChart = Sheets("Sheet1”).ChartObjects.Add _
(Left:=300, Top:=175, Width:=400, Height:=300)

With EChart 4—9
.Chart.ChartType = xI3DColumn 4—9

G—».c hart.ChartStyle = 26

.Chart.SetSour ge("A2:D6")
9 » End With i

 End Sub

S

@ Specify your data source. e e e S T e A —

— e

@ Press Alt+F11 to switch from the VBE to Excel, and Sah EmhedChart() N
Dim EChart As ChartObject
run your macro.

Set EChart = Sheets("Sheet1”).ChartObjects.Add
(Left:=300, Top:=175, Width:=400, Height:=300)

With EChart
.Chart.ChartType = xI3DColumn
.Chart.HasTitle = True
.Chart.ChartTitle.Text = Celis(1, 1)
.Chart.ChartStyle = 26
.Chart.SetSourceData Source:=Range("A2:D6")

End With
End Sub .
i e o
The macro creates your chart. o) s ChATe s Wil R
i ---: et nuu:v et Ln«- e :- o-lm uul-. . " . _u - o
1 Sales
Your source data. : —— T ;
. Dallas $154.943 5149161 5193062
< Afianta 175,116 197.034 188.209 g
The tab name. Miami 169,210 122,356 172,085
) « New York 142876 150437 148,503 [
® The title. + Total $642,145 $628,888 §701,859 |
: s —@ ||
| Embed Chat ;‘
5
AL, st A

e 1

The only real difference between embedded charts and chart sheets is the Chart object for an embedded
chart is part of the ChartObjects collection for the worksheet, whereas the Chart object for a chart sheet
is part of the Workbook object. If you compare the code that creates an embedded chart to the code that
adds a new chart sheet, you will notice that with an embedded chart, specifying chart methods and
properties requires reference to the Chart object. This is because when you create a new chart sheet, you
create a new Chart object, but when you create an embedded chart, you add a Chart object to the
ChartObjects collection for the worksheet; therefore the Chart object becomes a child of the
ChartObjects collection object. To set the chart type of an embedded chart, you can use the following
code:

Example:
Worksheets ("Sheetl") .ChartObject (1) .Chart.ChartType = xlColumnStacked

This code sets the chart type of the first chart object in the worksheet named Sheet1 to a stacked column
chart. If you compare this code to the code required for changing the chart type of a chart sheet, you can see
the similarities.

Example:
Sheets ("Chartl") .ChartType = xlColumnStacked

y1 19dey)d

.
.

5
Z.
=
V)]
z
=x
(@)
=
V)
-
=
75}

hen writing VBA code, you can use the

Chartwizard method to format or reformat a

chart quickly. You use the chartwizard
method with a chart object. This method has 11 optional
parameters that enable you to set chart properties. The

following is the syntax for the chartwizard method:

expression.ChartWizard (Source,
Format, PlotBy, CategorylLabels,
SeriesLabels, HasLegend, Title,
CategoryTitle, ValueTitle, ExtraTitle)

Gallery,

Use the Source parameter to specify or modify the chart’s
data source. When you are working with a chart sheet,
you must specify the name of the worksheet that
contains the data source. Use the Gallery parameter to
specify the chart type. Assign one of the x1chartType
constant values to indicate the desired chart type. See
Appendix A for a list of x1ChartType constants.

Apply Chart Wizard Settings to a Chart

Specify a value of 1 to 10 for the Format parameter. The
Format parameter applies one of VBA’s built-in formats.
The format that it uses depends on the chart type you
select. The PlotBy parameter tells VBA whether the data
series is in rows or columns. Assign the PlotBy
parameter x1Rows if the data series is in rows. Assign it
x1Columns if the data series is in columns.

Assign an integer value to the categoryLabels and
SeriesLabels parameters to indicate the number of
rows or columns in the category or series that have
labels. Assign the HasLegend parameter the value True
if you want your chart to have a legend.

Use the Title parameter to assign a title to your chart,
the categoryTitle parameter to assign a title to your
horizontal axis, and the valueTitle parameters to assign
a title to your left vertical axis. For a 3-D chart, you use
the ExtraTitle parameter to assign a title to your depth
axis. You must set any additional properties individually.

@ Create a chart object variable.

9 Set the chart object variable to the chart you
want to modify.

® The name of the chart sheet.

Create your Chartwizard command.

Set your parameters.

®0 0

Press Alt+F11 to switch from the VBE to Excel, and
run the macro.

 Microsoft Visual Baskc - Chap14-Macros,xdsm - [Chart WizardExample (Code)]

M pe gt e puert fgmat Qetug Se Josh podm e e % = 0%
= 2] [oescrtea |

Sub UseChartWizard() e

Dim SelectChart As Cllart<—o

Set SelectChart = ThisWorkbook.Charts("Monthly Sales™) <& 9
=fa | o

4 Microsoft Visual Baskc - Chap14-Macros,xdsm - [Chart WizardExample (Code)]

Mol gt gwe pue Fgve Deteg B Josh peim lgedes biew E ™
=03 <] [ovechermizms

Sub UseChartWizard()
Dim SelectChart As Chart

Set SelectChart = ThisWorkbook.Charts("Monthly Sales™)

SelectChart.ChartWizard _4—9
—0

End Sub =

e

=5 «

Your chart before you apply the macro. T T —o~ g
Monthly Sales by Region I m

' =

|l =

-

[y

e

2

w

[y

=]

o

g

=

(@)

=

Your chart after you apply the macro.) s [T e TE &
' dems et Feplemd fwedn e Bews Gum Oeeipw Aabbe #-mx :

Your macro changes the format of your chart. MonthlySuler by Bagion | d

i | s] 4

When working in Excel, once you have your chart designed exactly the way you want it, you can save your
design as a template. You can also use VBA to save your chart as a template.

Example:
Sub CreateTemplate ()
Dim SelectChart as Chart
Set SelectChart = ThisWorkbook.Charts ("Monthly Sales")
SelectChart. _
SaveChartTemplate ("My Template")
End Sub

To apply your template to an existing chart, in Excel, click your chart. The Chart tools become available. Click
the Design tab. Click Change Chart Type in the Type group. The Change Chart Type dialog box appears. Click
Templates, click your template, and then click OK. Excel applies your template to your chart.

Add a New Data

Series to a Chart

data series is a group of data values that Excel

displays in your chart. Each data series appears as

a legend item. After you create a chart, you can
redefine the range of data Excel uses to display values in
your chart by adding a new data series. For example, if
you have a bar chart showing the sales in Regions 1, 2,
and 3 for January, February, and March, you can add
another data series that contains the sales data for April.

The seriesCollection collection object contains all of
the data series that Excel plots on a specific chart, with
each data series representing a Series object. To define
a new data series, create a new Series object and add it
to the seriescollection collection object by using the
Add method.

When used with the seriescollection object, the add
method has five parameters: source, Rowcol,

Add a New Data Series to a Chart

SeriesLabels, CategoryLabels, and Replace. Use the
Source parameter to specify the data series you want to
add to the chart. Use the Rowcol parameter to tell VBA
whether the new series is in a row or a column. Use
x1Rows if the data series is in a row, or use x1Columns if
the data series is in a column.

Set the SeriesLabels to True if the first row or
column of the data series contains a label. Set the
CategoryLabels to True if the first row or column of
the data series contains a category label. Category labels
display on the horizontal axis of your chart. If you
specify a value of True for the categoryLabels
parameter and for the Replace parameter, Excel replaces
the current category labels with the labels from the new
range.

@ Create your Seriescollection Add statement.
® The worksheet name.

® |dentifies the chart.

The data series you want to add.
Tells VBA that the series has labels.
® Tells VBA the data is organized in columns.

9 Press Alt+F11 to switch from the VBE to Excel, and run the
macro.

@

« Microsoft Visual Basic - Chapl4-Macros.: 1 - [AddHewSeriesExample (Col]
M pie gt gws Pt fgmat Detug Ben Joshf potim jpedes e
= =] [Ameeciemien

Sub AddNewSeries() E
Y

End Sub

M s S fwe et Fgmal Qeboj B Josh pddim edew Ll [epr—— Py
T =] [tamentonen

Sub AddNewSeries()
Worksheets("Monthly Sales Data").ChartObjects(1). _
Chart.SeriesCollection.Add _
D —

SeriesLabels:=True, €—
RowcolimdColumns & ®

End Sub

Your chart before you apply the macro. CR B =

s Region1 $84,104 $71752 568691 $63,681
« Region2 87790 71986 81983 5437T1
s Region3 70202 63.359 95853 74231
¢ Total $252,096 $: $246,533 $192,283

¥1 191dey)

.
.

3| At S

Your chart after you apply the macro.

92-&
2
=]
uQ
s
=3
(@
=
k)
-
=
7]

® The macro adds a new data series.

B Region

1 Region1 594,104 $71,752 568691 563681
« Region2 87,790 71986 81983 54371
» Region3 70202 63359 95859 74231
S Tolal §262,096 $207,007 5246533 $192,263

3| Mt S . !
13 Dolets Sasen
2
o ! e

o e

se000 -
"
"

m .

] F] : -

Each chart embedded in a worksheet is a member of | You can remove a series from a chart using the

the worksheet’s ChartObjects collection. Delete method. The following code removes the
Each chart in the worksheet’s ChartObjects series that was added in the example.

collection has an index number. The first chart

is ChartObjects (1), the second chart is Example:

ChartObjects (2), and so on. You can refer to Worksheets ("Monthly Sales Data")._

a chart by its index number. You can also refer to a ChartObjects (1) ._

chart by its name. To find what a chart’s name, in Chart.SeriesCollection ("Apr")

Excel, click your chart. The Chart tools become -Delete

available. Click the Layout tab, and then click
Properties. The chart name appears.

Each chart sheet in a workbook is part of the
Charts collection. Each member of the Charts
collection has an index number. The leftmost chart is
Chart (1), the next chart is Chart (2), and so on.
You can refer to Chart objects by their index number.

Format

Chart Text

s with all text elements in a workbook, you can

format the text that displays in your chart by

changing the Font properties. When Excel adds
text to a chart, such as a chart title, axis label, or even data
label, it applies default formatting. You can reformat the
text by using the Font object properties. By setting the
Font properties, you can make your chart easier to read.

The chart area encompasses everything in your chart. By
applying Font object properties to the chartarea object,
you can set the font attributes for all of the text in the
chart. For example, if you want to change the font color
for the entire chart, you apply the Font object Color
property to the chartarea object.

Format Chart Text

Excel also enables you to format individual elements of
text that display in your chart. For example, if you use
the Font object properties with the chartTitle object,
you can modify the chart title. To change how Excel
displays legend text, use the Font object properties with
the Legend object.

You can use the chartarea object to set the font settings
for the entire chart and then use the individual objects to
customize various portions of the chart. You can set the
properties for any of the following objects by using the
Font object: ChartTitle, DataTable, Legend,
Characters, AxisTitle, DataLabel, and TickLabels.
See Chapter 11, “Using the Cells Property” to see a partial
list of the Font properties you can set.

@ Create a chart object variable.

@ Set the chart object variable to the chart you want to
format.

® The name of the chart sheet tab.

Format the text in the chart area.

Format the chart title.

o~

Press Alt+F11 to switch from the VBE to Excel, and run the
macro.

 Microsoft Visual Baskc - Chap14-Macros,xlsm - [FormatChart (Code)]
M Bl G e Pt Fgmat Qetwg B Josh potm jiedee e

=0 =] [romami

Sub FormatChart() =
Dim SelectChart As Cllart<—0

Set SelectChart = ThisWorkbook.Charts <& g

("Monthly Sales w Format")

 Microsoft Visual Basic - Chap14-Macros.xism - [FarmatChart (Code)]
Mt 3 e pue fgme Qebop B Joch pim jindes ey
=0 =] et

Sub FormatChart() =
Dim SelectChart As Chart

Set SelectChart = ThisWorkbook.Charts _
("Monthly Sales w Format")

With SelectChart

End With
End With
End Sub
5

e T I | :lﬂ

The chart without formatting.

,:5) TR Chap4-Macrss xkim - Microsaft Excel -
> Mo et Paglamd fedn D Bews Vew Oneigw ddsin ®-mx
Monthly Sales by Region l

R eTer—, - —
Pesty ol)

The macro formats the data.

) R Cliap14-Macras dsm - Microsot Excel -
’F‘B} Hevm bt Pagrleed Pl Dets Pevws e L b b - - = i
The chart with formatting. Monthly Sales by Region

95859
Region 3 63,359
70,202
81,983
Region 2 71986 - Mar
: 87790 ®Eeh

glons

Re

$68,691
Region 1
$94,104

§- $20,000 $40,000 $60000 $80,000 $100,000 $120,000
Sales

You may not want to apply the same font settings to an entire Chart object. For example, you may want to
underline the first character in the chart title. With the AxisTitle, ChartTitle, and DataLabel objects,
you can use the Characters object to specify the character within the text string where formatting should
start, as well as the number of characters to format. For example, to underline the first two characters in a
chart title, type code similar to that shown in the example. The Characters object has two parameters:
Start and Length. Use the Start parameter to indicate the character in the text string at which VBA
should begin applying the format. Use the Length parameter to indicate the number of characters to which
VBA should apply the format.

R

ThisWorkbook.Charts (1) .ChartTitle. .
Characters(1l,2) .Font.Underline = True

Excel underlines the first and second characters
in the chart title, but all remaining characters
maintain their original font settings.

¥1 191dey)

.
.

§
2
=]
¢Q
s
=
(@
=
k)
-
-t
7))

Create Charts with

Multiple Chart Types

f you show more than one type of data in your chart,

you may want to create a chart that uses a different

chart type for each data series. For example, if your
chart displays the population of various cities and the
average income in those cities, you may want to create a
column chart to display population, and a line chart to
display average income. A chart that uses more than one
chart type is called a combination chart.

To set the chart type for a data series, use the
SeriesCollection object. The seriesCollection
collection object contains each of the data series in the
range of data shown in your chart as an individual
SeriesCollection object. You reference an individual
object by using an index value. VBA numbers each data

Create Charts with Multiple Chart Types

series. The first data series is SeriesCollection (1),
the second is SeriesCollection(2), and so on.

To set the chart type for a data series, you set the
ChartType property for the specific seriesCollection
object. When you initially create your chart, you can use
this method to set the chart type for each individual data
series, or you can set the chart type for the entire chart,
and then modify the chartType property for the
individual data series you want to change.

When you use the ChartType property, you assign it an
X1ChartType constant value that represents the chart
type you want to use for the data series. See Appendix A
for a list of the x1chartType constant values that you
can assign to the ChartType property.

0 Create a chart object variable.
@ Set the chart object variable.

® Use the Aad method to add a new chart.

Set your data source.
Assign a chart type to your chart.
Assign a chart style to your chart.

Tell VBA whether your data is in columns or
rows.

Assign a new chart type to a data series.

O 0600

In this example, you assign a new chart
type to series 1.

o)

Format your chart.

@

(5

« Microsoft Visual Basic - Chap14-Macros,xism - [CombinationChartExample (Code)]
M pe gt gwe Pt fgmat Detug Ben Josh jSdm jpedes e \egwd
e

=] [Comtmamn s

Sub CombinationChart()
Dim NewChart As Chart 4—0

Set NewChart = ThisWorkhook.charts.ﬁdd(]<—g

 Microsoft Visual Basic - Chap14-Macros.xism - [CombinationChartExample (Code)]
M B3 we pun Fms Oeteg B Dk bkiim gmos e

=] -.ax

Sub CombinationChart()
Dim NewChart As Chart
Set NewChart = ThisWorkbook.Charts.Add()

With NewChart
g SetSourceData Source:=Worksheets("Sheet2"), _

Range("A1:C5")
.ChartType = xiLineMarkers 4—9

P> .ChartStyle = 26 e

.PlotBy = xIColumns
.SeriesCollection(1).ChartType = xICol

=] ot

Cluct A e
<

—0

End With

End Sub .
-f5 « af

© Press Alt+F11 to switch from the VBE to Excel, and I — Ry C
run the macro. i &
8 M ey s
e o=
Your data source. Al - Gl 5 e
. 1 I - I PA;I ulation AveraE; Income 1
® Series 1. : Atlanta :5 116 41,694 E
1 Chicago 102 876 70,670 %)
. + | Dall 84,943 32,334
Series 2. i F':H::elphla 119,210 54,310 2
f S
: N
[0S
= =)
. gQ
= =
i R 7 o (@)
- =
The macro creates a combination chart. iy SR - g
= L] bt Page Lywd Frean Bt T Drgmpr S - " H
Income/Population by City I 75}
140,000
120,000
100,000
80000 ‘
= Population |-
60,000 ~+ -jverage Income
40,000 |
20000 ‘
o Atlanta Chicago Dallas Philadelphia]
otem art T s
— T [EET 7 -

You can use a different chart type for each data series. Excel keeps track of the data series chart types, and
groups the common types together as ChartGroup objects. Each ChartGroup object contains one or more
data series with the same chart type. Excel stores all ChartGroup objects within the ChartGroups
collection object, which you can access through the ChartGroup property.

The ChartGroups object provides methods for returning the collection of the ChartGroup objects that
correspond to a particular type. For example, if you want to access the line chart type ChartGroup objects,
you can use the LineGroups method. The example that follows illustrates how to count the number of
column chart types in a chart. You can use the methods shown in the table with the ChartGroup objects.

Example:
DataSeriesCount = ThisWorkbook.Charts (1) .ColumnGroups.Count

METHOD DESCRIPTION

AreaGroups Determines the number of series with an area data type.
BarGroups Determines the number of series with a bar chart data type.
ColumnGroups Determines the number of series with a column chart data type.
DoughnutGroups Determines the number of series with a doughnut chart data type.
LineGroups Determines the number of series with a line chart data type.
PieGroups Determines the number of series with a pie chart data type.

Add a Data Table

to the Chart

can add data tables to any chart you create. VBA

A data table displays the values in your chart. You

stores the data table associated with a chart in
the DataTable object. Use the HasDataTable property
to tell VBA whether you want to include a data table in
your chart. This property accepts the Boolean values of
True and False. If you want to display a data table, set
this property to True. Conversely, if you do not want to
display a data table, set this property to False.

After you set the HasDataTable property, you can
format your data table by using the methods and
properties associated with the pataTable object. You
specify the font by using the Font properties. For
example, DataTable.Font.Name = "Arial" tells VBA
to use an Arial font in the data table. See the section,

Add a Data Table to the Chart

“Format Chart Text,” for more information on working
with the Font object in a chart.

You can choose to display or not display borders in
and around your data table by using the
HasBorderHorizontal, HasBorderOutline, and
HasBorderVertical properties. By default, Excel
displays all borders on a data table. If you do not want
to display one or more of these borders, set their value
to False. For example, the following code removes the
horizontal border from a data table:

.DataTable.HasBorderHorizontal = False

A legend key tells the user what each data series
represents. You can use the ShowlLegendKey property to
tell VBA whether you want to show a legend key in your
data table.

@ Create a chart object variable.

@ Set the chart object variable to the chart to which
you want to add a data table.

Create a with statement.
Set the HasDataTable property to True.
Assign a font to your data table.

Assign a border color.

o I~

Set the showLegendkey property for the data
table to True.

This code shows a legend in the data table.

@

e .DataTable.Border.Color = RGB(25, 25, 112) 4—6

9—-0» End With

 Microsoft Visual Baskc - Chap14-Macros,xlsm - [AddDateT ableExample (Code)]

M Ele G e et Fgwat Debuy Ben Jooh gt fjedes L Lo N—

= 2] [t
Sub AddDataTable() .
Dim TableChart As Cblrl<—o

Set TableChart = ThisWorkbook.Charts("Data Table")

4 Microsoft Visual Baskc - Chap14-Macros.xdsm - [AddDateT ableExample (Code)]
M e G pwe puet fame Detwg B Jooh At ledse e Lsgerc i
=0 =] [Aamitan

Sub AddDataTable() E
Dim TableChart As Chart

Set TableChart = ThisWorkbook.Charts("Data Table™)

With TableChart 4—9
.HasDataTable = True 4—9

.DataTable.Font.N = "Tak " 6

> .DataTable.ShowlLegendKey = True
.HasLegend = False
.ChartArea.Font.Name = "Cambria"
.ChartArea.Font.Size = 16

End Sub

g o

6 Set the HasLegend property for the Chart tO & Microsoft Visual Basic - Chap14-Macros,xsm - [AddDateT ableExample (Code)]

N b g8 gws punt Tyme Detwg Be Josh At lfjedes e Lo e
=0 o] [reaitan
False. =

Sub AddDataTable() E
Dim TableChart As Chart

This code suppresses the chart legend.

. Set TableChart = ThisWorkbook.Charts("Data Table")
Q Set the chart area properties.

With TableChart

@ Press Alt+F11 to switch from the VBE to Excel, and .HasDataTable = True
run the macro. .DataTable.Font.N = "Tal
.DataTable.Border.Color = RGB(25, 25, 112)
.DataTable.ShowLegendKey = True
g P .HasLegend = False

~—0

End With
End Sub
-5 R
The macro creates a chart with a data table. LR ChapT WAz oa - Wi B —E

Move et Paplawd fmedn s Beews Vew Owwign adde #-ax

Sales by Region l
120,000 -

100,000

80,000 +

60,000

40,000

20,000 +

o0 1

| Regi

When you add a data table to a chart, you can include the chart legend with the data table. To create a data
table that contains a chart legend, set the ShowLegendKey property to True for the DataTable object. The
following example sets the value of the ShowLegendKey property.

Example:
ThisWorkbook.Charts (1) .DataTable _
.ShowLegendKey = True

If you display the legend as part of your data table, you typically do not want the legend to display separately
on your chart. To hide the chart legend, set the HasLegend property for the Chart object to False.

Example:
ThisWorkbook.Charts (1) .HasLegend = False

¥1 191dey)

.
.

5
Z.
=
V)]
z
=x
(@)
=
V)
-
=
75}

Customize a

Chart Axis

axis object methods and properties. Most charts

that you create have two axes, a category axis
and a values axis. For example, if you look at a column
chart, the category axis runs horizontally across the
bottom, while the values axis runs vertically along the
left side of the chart. When working with 3-D charts,
there is also a series axis, which shows the depth.

Each chart axis is a separate axis object. The Axes
collection object contains all of the axis objects for a
chart. You can use the axes method to access an
individual chart’s Axis objects. When using the axes
method, use one of the x1axisType constants to indicate
the axis type. Use x1value for the value axis,
x1category for the category axis, or x1Seriesaxis

for the depth axis on a 3-D chart.

Customize the Chart Axis

You can customize each axis on your chart with the

You can modify each axis by using the AxisTitle,
Border, Gridlines, DisplayUnitLabel, and
TickLabels child objects. Each of these objects has child
objects and corresponding methods and properties. The
AxisTitle object represents the title that Excel adds to
the axis. You can modify the appearance of the axis title
by using the Font object properties. See the section,
“Format Chart Text” for more information on working
with the Font object in a chart. If you set the HasTitle
property to True, you can assign an axis title. You can
also modify other objects. For example, the Border object
refers to the axis border. The following code changes the
color of your border to blue.

.Border.Color = RGB(0,0,255)

@ Create a chart object variable.

@ Set the chart object variable to the chart for
which you want to modify an axis.

@ Create a with statement.
e Tell VBA which axis you want to modify.
@ Assign a title to the axis.

® Sets the HasTitle property to True.

® Assigns the title.

@

(5 WM

4 Microsoft Visual Basic - Chap14-Macros. xism - [AxkExample (Code)]

M fie gt gwe puet fgmat Qetwg Be Josh jpodm jpede e ot
e =

Sub CustomizeAxis()

Dim SelectChart As Chart‘-ﬂ

Set SelectChart = ThisWorkbook.Charts("Axes") 4—9

M Bl G pes punt fgwat Qebey Ben Josh gt fjedes b
e e

Sub CustomizeAxis() 5
Dim SelectChart As Chart

Set SelectChart = ThisWorkbook.Charts("Axes")

With SelectChart.Axes({xIValue) 4—9
0
—0

.HasMajorGridlines = True
.MajorGridlines.Border.Color = RGB(0, 0, 255)
.MajorGridlines.Border.LineStyle = xIDash

End With

End Sub

i T IS | 1|

@ Place major gridlines on the chart. A e : g
o = L
. . o i Bl 1 S
@ Assign a major gridline border color. Sub CustomizeAxis() 3 o
Dim SelectChart As Chart 8
. . . . <
@ Assign a major gridline borderline style. Sot SelectChart = ThisWorkbook.Charts(*Axes") ~
© Press Alt+F11 to switch from the VBE to Excel, and e
run the macro. With SelectChart.Axes(xIValue) 2
.HasTitle = True (o)
AxisTitle.Text = "Sales” =)
.HasMajorGridlines = Tru94—o E
.MajorGridlines.Border.Color = RGB(0, 0, 255)4—0 - =]
.MajorGridlines.Border.LineStyle = xlDash‘—G’ (V)]
End With s
P o
End Sub (5:
ST o (@)
=
The macro creates a chart with an axis label and jil SaEa— e Ml e s &
. e Marw bt Pagrlewd Fmedn Dee Beowes Vew Deeige dbbe ®-mx -
grld'lnes. Sales by Region l %)
100,000
80,000 +-
§ 60,000
40,000
20,000 -+
Mar
|® Region 1 94,104 71,752 68,691
:-Pomonzi 87.790 : 71986 f #1983 : !
|e Reglon 3| 70,202 | 63,359 | 95,859 |
L=r] II
Fenn, ER] v 4

Gridlines mark major and minor intervals in your chart. For example, if your axis values run from 0 to 200,000,
then major gridlines might appear at 20,000, 40,000, 60,000, and so on. Minor gridlines might appear at
2,000, 4,000, 6,000, and so on. Gridlines run either horizontally or vertically from the corresponding axis. You
can use the Gridlines object to add both major and minor gridlines. The following code illustrates how to use
the HasMajorGridlines property to turn on the gridlines, and how to customize the appearance of

the gridlines with the MajorGridlines properties. Notice that the code customizes the appearance of the
gridlines for the specified axis by using the Border object. You can use the following properties with the
Border object: Color, ColorIndex, LineStyle, Parent, and Weight.

Example:

With Charts(1l) .Axes(x1Value)
.HasMajorGridlines = True
.MajorGridlines.Border.Color = RGB(0,255,0)
.MajorGridlines.Border.LineStyle = xlDot
.MajorGridlines.Border.Weight = x1Thin

End With

Understanding

Excel Events

n event occurs in Excel whenever the user
A performs any type of action. For example, the

user closes the workbook. You can use events
to trigger the execution of a procedure by creating an

event-handling procedure. Event-handling procedures
are procedures that execute when a particular event

occurs.

capture an event with an event-handling procedure, you
must place the procedure code in the correct type of
module. For example, workbook-related events must be
in the Thisworkbook object standard module.

Each event category has a set of events associated with
it. For example, the BeforeClose event is a workbook
event that is activated when the user chooses to close a

There are five categories of events: workbook, worksheet, workbook, before the workbook closes.
chart, UserForm, and application events. To trap or

Workbook Events

Excel associates workbook-level events with the workbook in which they reside. You place workbook-
level event procedures in the ThiswWorkbook object module. You create workbook event procedures
by naming them workbook_event Name. The following table lists the workbook events.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates a workbook.

AddinInstall Occurs when a workbook is installed as an add-in.

AddinUninstall Occurs when a workbook is uninstalled as an add-in.

AfterXmlExport Occurs after XML data saves or the export of XML data.

AfterXMLImport Occurs after XML data is refreshed or imported.

BeforeClose Occurs before a workbook closes. See the section “Run a Procedure before
Closing a Workbook.”

BeforePrint Occurs before Excel prints a portion of a workbook.

BeforeSave Occurs before Excel saves a workbook. See the section “Run a Procedure
before Saving a Workbook.”

BeforeXmlExport Occurs before XML data saves or the export of XML data.

BeforeXMLImport Occurs before XML data is refreshed or imported.

Deactivate Occurs when Excel deactivates a workbook.

NewSheet Occurs when Excel adds a new sheet to a workbook.

Open Occurs when Excel opens a workbook. See the section “Run a Procedure as

a Workbook Opens.”

PivotTableCloseConnection

Occurs after a Pivot table report closes the data source connection.

PivotTableOpenConnection

Occurs after a Pivot table report opens the data source connection.

Rowset Complete

Occurs when a user drills through a recordset.

SheetActivate

Occurs when Excel activates a sheet in the workbook.

SheetBeforeDoubleClick

Occurs when a user double-clicks a sheet.

SheetBeforeRightClick

Occurs when a user right-clicks.

SheetCalculate

Occurs after Excel calculates a sheet.

SheetChange

Occurs when cells in a worksheet change.

@

o
&
£
SheetDeactivate Occurs when Excel deactivates a sheet. 2
SheetFollowHyperlink Occurs when a user clicks a hyperlink on a sheet. a
SheetPivotTableUpdate Occurs after Excel updates a sheet of a Pivot table report. -
SheetSelectionChange The selection changes in a worksheet.
Sync Occurs when a local copy of a worksheet is synchronized with a copy
on the server.

WindowActivate Occurs when Excel activates a workbook window.
WindowDeactivate Occurs when Excel deactivates a workbook window.
WindowResize Occurs when Excel resizes a workbook window.

UserForm Events

Excel associates userForm events not only with the form but also with the controls that exist
on the form. Event-handling procedures related to a UserForm should be in the standard
module for the UserForm object. The following table lists the UserForm events.

EVENT WHEN THE EVENT OCCURS

>
(=
=
o
3
<V}
=
=

UQ
)
-
]
(@)
(€]
Qu
=1
-
(0]
7,]
:
=
4
(@)
w0,
m
<
(¢)
=
o=
7))

Activate Occurs when Excel activates a UserForm.

AddControl Occurs when Excel adds a run-time control to a UserForm.

BeforeDragOver Occurs when the user performs a drag-and-drop operation.

BeforeDropOrPaste Occurs when the user is about to paste the data from the drag-and-drop
operation.

BeforeUpdate Occurs before a data control is changed.

Change Occurs when the value property changes.

Click Occurs when the user clicks on a UserForm object.

DblClick Occurs when the user double-clicks a UserForm object.

Deactivate Occurs when the user deactivates the UserForm.

Error Occurs when Excel detects a UserForm control error.

KeyDown Occurs when the user presses a key.

KeyPress Occurs when the user presses an ANSI key. ANSI keys produce visible
characters.

KeyUp Occurs when the user releases a key.

MouseDown Occurs when the user presses a mouse button.

MouseMove Occurs when the user moves the pointer on the UserForm.

MouseUp Occurs when the user releases the pointer.

QueryClose Occurs when Excel closes the UserForm.

RemoveControl Occurs when Excel removes a control from the UserForm at runtime.

Scroll Occurs when the user repositions a scroll box on a control.

Terminate Occurs when Excel terminates the UserForm.

Zoom Occurs when the user zooms the UserForm.

continued 9

Understanding Excel

Events (continued)

Chart Events

Excel associates chart-level events with the currently selected chart sheet. Event-handling
procedures related to a chart should be in the standard module for the chart object. The
following table lists the chart events for which you can create event-handling procedures.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates a chart sheet.

BeforeDoubleClick Occurs when the user double-clicks a chart sheet.

BeforeRightClick Occurs when the user right-clicks a chart sheet. See the section “Run a Procedure When Right-
Clicking a Chart.”

Calculate Occurs after Excel plots a chart.

Deactivate Occurs when Excel deactivates a chart sheet.

DragOver Occurs when the user drags a range of cells over a chart.

DragPlot Occurs when the user drags and drops a range of cells onto a chart.

MouseDown Occurs when the user presses a mouse button while over a chart.

MouseMove Occurs when the position of the pointer changes over a chart.

MouseUp Occurs when the user releases the mouse button over a chart.

Resize Occurs when the user resizes a chart.

Select Occurs when the user selects a chart element.

SeriesChange Occurs when the user changes the value of a chart data point.

Worksheet Events

Excel associates worksheet-level events with the currently selected worksheet. Event-handling procedures related to a
worksheet should be in the standard module for the worksheet object. The following table lists the worksheet events.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates a worksheet.

BeforeDoubleClick Occurs when the user double-clicks a worksheet.

BeforeRightClick Occurs when the user right-clicks a worksheet.

Calculate Occurs after Excel calculates a worksheet.

Change Occurs when a user or external link modifies cells on a worksheet. See the section “Monitor a

Range of Cells for Changes.”

Deactivate Occurs when Excel deactivates a worksheet.
FollowHyperlink Occurs when a user clicks a hyperlink on a worksheet.
PivotTableUpdate Occurs after a PivotTable report is updated on a worksheet.
SelectionChange Occurs when a selection changes on a worksheet.

@

Application Events

Application events include all events recognized by the Application object. To access an application
event, create a class module to contain your application event-handling procedure code. See the section
“Run a Procedure When Excel Creates a Workbook” for more information on placing event-handling
code in a class module. The following table lists the application-level events that occur in Excel.

EVENT TYPE DESCRIPTION

Application An event that occurs for the application. For example, Excel triggers the
NewWorkbook event when it creates a new workbook.

NewlWorkbook Occurs when Excel creates a new workbook. See the section “Run a Procedure
When Excel Creates a Workbook.”

SheetActivate Occurs when Excel activates any sheet in any workbook.

SheetBeforeDoubleClick

Occurs when the user double-clicks any sheet.

SheetBeforeRightClick

Occurs when the user right-clicks any sheet.

SheetCalculate Occurs when Excel calculates any worksheet.
SheetChange Occurs when cells on a worksheet are changed by a user or an external link.
SheetFollowHyperlink Occurs when a user clicks a hyperlink on a sheet.

SheetPivotTableUpdate

Occurs when Excel updates a worksheet of a PivotTable report.

SheetSelectionChange

Occurs when the selection changes on any worksheet.

WindowActivate Occurs when Excel activates a worksheet window.
WindowDeactivate Occurs when Excel deactivates a worksheet window.
WindowResize Occurs when the user resizes a worksheet window.
WorkbookActivate Occurs when the user activates a workbook.
WorkbookAddInInstall Occurs when an add-in installs a workbook.

WorkbookAddInUninstall

Occurs when an add-in uninstalls a workbook.

WorkbookBeforePrint

Occurs when Excel prints an open workbook.

WorkbookBeforeSave

Occurs when Excel saves an open workbook.

WorkbookDeactivate

Occurs when Excel deactivates a workbook.

WorkbookNewSheet

Occurs when Excel adds a new sheet to an open workbook.

WorkbookOpen

Occurs when Excel opens a workbook.

WorkbookPivotTableClose
Connection

Occurs after a PivotTable report closes the data source connection.

WorkbookPivotTableOpen
Connection

Occurs after a PivotTable report opens the data source connection.

g1 Jadeyp

.
.

>
(=
=
)
3
<V}
=
=

UQ
)
-
]
(@)
(€]
Qu
=1
-
(0]
7,]
:
=
4
(@)
w0,
m
<
(¢)
=
o=
7))

Run a Procedure as

a Workbook Opens

each time a particular workbook opens. Because

this type of procedure executes only when the
workbook opens, it works well for opening other
workbooks, determining if specific conditions are met,
and displaying welcome messages. The procedure
executes when the workbook opens by using the
Workbook_Open event, which is triggered by the opening
workbook.

To create a procedure that executes when a workbook
opens, create a new procedure and add it to the
ThisWorkbook object standard module for the workbook.
All event-handling procedures for monitoring workbook
events must reside in the Thisworkbook object if you
want Excel to execute them automatically. To create a
procedure that executes when a workbook opens, name
the procedure workbook_Open.

Run a Procedure as a Workbook Opens

You can create a procedure that runs automatically

Although the procedure resides in the Thisworkbook
object standard module, it can access other procedures in
the same workbook. Therefore, you can create a
Workbook_Open procedure that calls procedures in other
modules.

If you want a procedure to execute whenever Excel
opens, place the procedure in the Thisworkbook object
for the Personal Macro Workbook - Personal.xlIsb.
Because the Personal Macro Workbook always loads as a
hidden workbook in Excel, any procedures in this
workbook execute when Excel opens. Keep in mind,
however, that Excel associates the Personal Macro
Workbook with an individual user.

You can keep a workbook_Open procedure from
executing for a particular workbook by holding down the
Shift key as the workbook opens. Because workbooks
open quickly, make sure you press and hold the Shift key
as you select the workbook.

@ Open Project Explorer.

@ Double-click the Thi sworkbook
node under the workbook to which
you want to add a workbook_Open
event.

® The standard module for the
ThisWorkbook 0bject opens.

9 Click here and select the Workbook
option.

4 Microsoft Visual Baskc - WorkbookDpen.xism - [ThisWorkbook (Code)]
B e Ot ywe et fgwat Debug B Dooh pStm fiedee eis st g c.fx
(L

- BT

& Microsoft Visual Basic - Wo

® The Visual Basic Editor creates a

4 Microsoft Visual Baskc - WorkbookDpen.xism - [ThisWorkbook (Code)]

Private sub procedure and names it e — T
Workbook_Open. Private Sub Workbook Open()<«——® -
MsgBox ("Wel &
@ Type the VBA code to run when the L ;'s' ';, Hanlseitieue) <—
n u
workbook opens.
Displays the user’s name.
@ Press Ctrl+S to save your workbook.
O Close your workbook.
l=f5a s o
@ Open the workbook you just closed. B e Ve .
i e : ;
The Workbook_Open procedure = i
executes. AL - ry 5
A B c D E F G H i]
In this example, a welcome message - —
appears. :
5 Micrasoft Excel X
[Vemicarmy Corus Erer cin
7
8
9
10
11
12
13
14
15
T pea—
b 3 ELEI] 4

You can use the Workbooks collection object Open
method of to specify the workbook that Excel
should open along with the current workbook. For
example, if your workbook relies on data values in
another workbook, you can open the workbook
your workbook relies on, whenever your workbook
opens. See Chapter 9 for more information on using
the Open method.

You can use the Object drop-down list in the Code
window to create your Workbook_Open sub
procedure. The Object drop-down list contains the
objects for which you can create sub procedures in
the current standard module. If you access the
ThisWorkbook standard module, the only available
object is Workbook.

When you select the Workbook object from the
Objects drop-down list, the VBE automatically
creates a private Sub procedure called
Workbook_Open because the default event for the
Workbook object is the Open event.

g1 19dey)

.
.

>
(=
=
o
3
<V}
=
=

UQ
)
-
]
(@)
(€]
Qu
=1
-
(0]
7,]
:
=
4
(@)
w0,
m
<
(¢)
=
o=
7))

Run a Procedure before

Closing a Workbook

ou can create a BeforeClose event procedure

that runs automatically before a particular

workbook closes. If the user has made changes to
the workbook, the event executes before Excel asks users
if they want to save their changes. Because this type of
procedure executes only as the workbook closes, it works
well for recalculating, resetting the workbook back to
default values, and even automatically saving the
workbook.

To produce a procedure that executes when a workbook
closes, create a new procedure and add it to the
ThisWorkbook object standard module for the particular
workbook. All event-handling procedures that you create
for monitoring workbook events must reside in the
ThisWorkbook object for Excel to execute them
automatically. To create a procedure that executes

Run a Procedure before Closing a Workbook

when a workbook closes, name the procedure
Workbook_BeforeClose.

Although the procedure resides in the Thisworkbook
object standard module, it can access other procedures in
the same workbook. Therefore, you can create a
Workbook_BeforeClose procedure that calls procedures
in another module.

The BeforeClose event has one parameter, Cancel. You
can use the Cancel parameter to change what Excel does
after the BeforeClose event completes. If the cancel
parameter has a value of False, which is the default, the
workbook closes normally. If your procedure sets the
value of the cancel parameter to True, Excel cancels the
closing process and does not close the workbook. You
can set the cancel parameter to True and then prompt
the user for additional information before closing.

@ Open Project Explorer.

@ Double-click the Thi sworkbook node under
the workbook to which you want to add a
Workbook_Open event.

® The standard module for the Thisworkbook
object opens.

4 Microsoft Yisusl Basic - WorkbookClose. xism - [ThisWorkbook (Code)]

B phe gt we et fave Oetug Bem Dok Moéim ljedee Lip P Bl SR
R = [T

El— <] (v =]

Click here and select Workbook.

Click here and select BeforeClose

-

The Visual Basic Editor creates a new Private
Sub procedure named Workbook_BeforeClose.

Delete the workbook_open Sub procedure if
it appears.

& Microsoft Yisual Basic - Workbool

B Josh pdtim 3 e P — Lk
[meess =] et .

Private Sub Workbook BeforeClose({Cancel “

End Sub

@

@ Type the VBA code that will run

before the workbook closes.

@ Close the workbook.

The workbook_BeforeClose
procedure executes.

In this example, Excel asks if you
printed a report.

a Microsoft Visual Baskc - WorkbookClose.xism - [ThisWorkbook (Code)]
B e 38 yws peet Fymat Detwg Ben Josh pStim jedee e [r—

LTS =] [Beterstions

-

Private Sub Workbook BeforeClose _ B
(Cancel As Boolean)
Dim UserResponse As String
UserResponse =
MsgBox("Did you print a report for Bob? ",
vbQuestion + vbYesNo)
If UserResponse = vbNo Then
6—‘> Cancel = True
End If
If UserResponse = vbYes Then
Me.Save
End If
End Sub
plefma o
o - %

— Weww et Paplied bwedn Dds Reews Vem | Cvosen | Ladin #-mx

T Pr—
- [e w—
1, M e

Microsaft Excel

B ve st i der

=1 _=

B B)

You can use the Me operator in standard

modules for Excel objects. The Me operator
references the object associated with the module.
For example, code created in the ThisWorkbook
object module links to the actual workbook object.
When you use the Me operator, you reference the

workbook object. Therefore, when you add the code
Me.Close to a module, Excel closes the workbook.

The code Me.Close is equivalent to using the
ThisWorkbook object reference. You cannot use
Me in a standard module. You can use the Me
operator when working with UserForm modules.
When used with a user form, the Me operator
references the corresponding UserForm and not
the controls that you have added to the UserForm.

If your procedure has made a change that affects
all workbooks, you can use a BeforeClose
event procedure to undo the change before the
workbook closes. For example, if you have a
procedure that loads an add-in, you can use the
BeforeClose event procedure to unload the
add-in before the workbook closes.

g1 19dey)

.
.

>
(=
=
o
3
<V}
=
=

UQ
)
-
]
(@)
(€]
Qu
=1
-
(0]
7,]
:
=
4
(@)
w0,
m
<
(¢)
=
o=
7))

ou can create a BeforeSave event procedure that

runs automatically before Excel saves a

workbook. By creating a Beforesave procedure,
you can customize the save process. For example, when

users select the Save or SaveAs option, you may want to
ask if they have performed all required tasks.

To create a procedure that executes before saving a
workbook, create a new procedure using the Beforesave
event and add it to the Thisworkbook object standard
module for the particular workbook. All event-handling
procedures that you create for monitoring workbook
events must reside in the Thisworkbook object to have
Excel execute them automatically. To create a procedure
that executes before Excel saves the workbook, you
name the procedure Wworkbook_BeforeSave.

Although the procedure resides in the Thisworkbook
object standard module, it can access other procedures in

Run a Procedure before Saving a Workbook

the same workbook. Therefore, you can create a
Workbook_BeforeSave procedure that calls procedures
in another module in the same workbook.

The BeforeSave event has two parameters that VBA
passes to your procedure when the event triggers —
SaveasUI and cancel. Use the saveAsUTI parameter to
indicate whether the Save As dialog box displays during
the Save command. Set the value of the saveut
parameter to True to always display the Save As dialog
box. Use the cancel parameter to indicate whether the
workbook saves. If the cancel parameter has a value of
False, Excel saves the workbook. The default value is
False. If you set the value of the cancel parameter to
True, Excel does not save the workbook. From within the
Workbook_BeforeSave procedure, you can set the value
of the cancel parameter to specify whether the
workbook actually saves.

@ Open Project Explorer.

@ Double-click the Thi sworkbook node
under the workbook to which you want
to add a workbook_Open event.

The module for the ThiswWorkbook
object opens.

e Create a Private workbook_BerforeSave
Sub procedure.

Q Click the Close button to close Project
Explorer.

@

4 Microsoft Visual Baskc - WorkbookSave. xlsm - [ThisWorkbook (Code)]
B B g2 ywe put fgmat Debwg B Jesh hSeim ledse e nerrorm Ei
(R TR | [= -

=
om o
[T M wares cw-.—n_‘....a_

2

‘w

H

b
g

a:ucﬂ\h-wfwmy-mww
ot~ gt e = =]

Private Sub Workbook BeforeSave
(ByVal SaveAsUl As Boolea
Cancel As Boolean) 4—3

End Sub

@ Type the VBA code that will run when i i e S S —
the workbook saves. T =5 =)
Private Sub Workbook BeforeSave _ =

(ByVal SaveAsUl As Bool , G | As Bool)

@ Press Alt+F11 to switch from the VBE

to Excel. Dim UserResponse As String
Dim PromptUser As String

g1 19dey)

.
.

PromptUser = "Do you want to date stamp this workbook?" >
e—» UserResponse = MsgBox({PromptUser, _ :
vbQuestion + vbYesNo) 8
If UserResponse = vhYes Then E
Cells(1, 1) = "Last Saved: " & Date P
End If =3
End Sub C'Q
n uw
o)
. -
o |)
&
@ Click the Save button to save the workbook. o= | IS
s
The Workbook_BeforeSave procedure 8
executes. T - B ©®
| A B c D £ F G H 2
® |n this example, the procedure prompts you, .—T“‘“’““: S12007 (=0
“Do you want to date stamp this workbook?” 3 =3
4
n q . 5 Quarter 1 4 m
® (Click Yes if you want to date stamp your file. & Region 1 142438 |\Q) oupmwwssammanmitm st 11 a
7 Region 2 1938058 i 4 56 Q
& Region3 173178 82 'Q‘
9 Region4 129,708 515 0, 3,999
10 642,036 655,316 722,421 725,948 e
11 <
12 (¢°)
13 =
14 o=t
15 75}
P el et sheen s S L
toty T - EFIE] 4

When you want to make sure that a variable in a procedure does not change the value of variables in

other procedures, use the ByVal keyword. VBA uses the ByVal keyword. For example, the
Workbook_BeforeSave Sub procedure includes a ByVal, SaveAsUI parameter. To aid in your
understanding of ByVal, consider the following example, where the message box displays a value 10 because
the value of TestVal in the Test2 Sub procedure is ByVal. Any changes to TestVal in the Test2 Sub
procedure do not pass back to Test1.

Example:

Sub Testl()
Dim TestVal As Integer
TestVal = 10
Call Test2(TestVal)
MsgBox TestVal

End Sub

Sub Test2 (ByVal TestVal)
TestVal = 2598
End Sub

can use the NewWorkbook application event to set

those setting every time you open a workbook. For
example, when you open an Excel workbook, by default
it contains three worksheets. If you always need five
worksheets, you can create a NewWorkbook application
event to create two additional worksheets.

The NewWorkbook application event executes a procedure
whenever Excel opens a new workbook. The application
triggers the NewWorkbook event. Because the event
comes from the application and not from an individual
object such as a workbook or chart, the process of
creating an application event is a little more complex.
When working with application events, first create a class
module. Excel only makes code in a standard module
available to other modules in the same project or
workbook. When you create a procedure for an application

Run a Procedure When Excel Creates a Workbook

I f you have settings you apply to every workbook, you

event, you want all open projects to be able to access the
code; therefore, you need to use a class module.

Because Excel does not recognize your application event
code until the workbook containing the code opens, open
the workbook containing the code first. You may want to
consider adding the code to the Personal.xlsb workbook.
The Personal.xlsb workbook opens whenever you open
Excel, so the application event code activates as the
workbook opens. See Chapter 1 for more information
about the Personal Macro workbook.

In the class module, declare an event custom object by
using the withEvents keyword. The withEvents
keyword instructs Excel to notify you whenever the
Application object triggers a NewWorkbook event. Use the
public keyword because you want all open projects to
access this object variable. See Chapter 3 for more
information on using the public keyword.

o Click the workbook in which you
want to add a Newworkbook event.

@ Click Insert - Class Module.
VBA creates a blank class module.

© PressFa.

The Properties window opens.

9 Type a Name for your class module
in the Name field.

@ Declare a public Application object
using the withEvents keyword.

@

 Microsoft Visual Baskc - Workboe £y ‘pentiew.xism - [ThisWorkbook (Cade)]

WorkbookOnOpenhew. xism - [AppEvent (Code)]
gvat Dobwg Bm Josn jdm fgedse e re—r— B

=0

=] [t e =
Public WithEvents AppEvent As Appllcatlcm‘—:—e

e

« Microsoft Visual Baskc - WorkbookOnOpenbiew. xism - [AppEvent (Code)]
B pls ot yws e fywet Detug Ben Iosh AStim ledse Lee narForm Everin
rt o e

@ Click here and select the name you typed
in step 5.

- \Event As Application

g1 19dey)

.
.

® \/BA creates a Private AppEvent_NewWorkbook 4 Microsoft Visual Basic -

narForm Everm

>
(=
=
o
3
<V}
=
=

UQ
)
-
]
(@)
(€]
Qu
=1
-
(0]
7,]
:
=
4
(@)
w0,
m
<
(¢)
=
o=
7))

Sub procedure. i) i =T fomeiees
Public WithEvents AppEvent As Application
@ Type the code you want to execute when a new o Private Sub AppEvent NewWorkbook
workbook opens (ByVal Wb As Workbook)
p . Dim WsCount As Integer
. o WsCount = Wh.Sheets.Count
@ In Project Explorer, double-click the A C Ut <& Then
ThisWorkbook node. Whb.Sheets.Add After:=Sheets(WsCount),
@ > count:=(s - wscount
End If
End Sub
« |=fw . | _l_l

When you use the WithEvents keyword to declare a public Application object, the VBE creates a new object
and adds it to the Object drop-down list. When you select this object, the Procedure box contains a list of all
corresponding application events. To create a new event procedure, select the object from the Object drop-
down list and the appropriate event from the Procedure drop-down list. The VBE creates a new Sub
procedure with the appropriate arguments. For example, if your object is AppEvent and you select the
WindowActivate event, the Editor adds the following code to the class module:

Example:
Private Sub AppEvent WindowActivate (ByVal Wb As Workbook, ByVal Wn As Window)

You can use the Object Browser to find out more about a particular event by pressing F2 while in the VBE.
Type the event you want to know about and click Search. The Object Browser displays a list of matching
items. Excel indicates the Events with a small lightning bolt. If you click an event, the event syntax displays at
the bottom of the Object Browser window.

continued 9

Run a Procedure When Excel ¢ ‘

Creates a Workbook (continued)

fter you declare an event custom object by using ~ Application event code is meant to work with all
the withEvents keyword, use the Newworkbook €vents generated by the application, you want to add a

event to specify that the event executes when class module and the activation code in a workbook you
Excel creates a new workbook. The NewWorkbook event open frequently, such as the Personal Macro workbook.
has one parameter, wb, which passes into the Sub See Chapter 1 to learn more about the personal macro
procedure. The wb parameter contains the newly created workbook.
workbook. You can access any of the methods and To activate the class module code, the module containing
properties of the new workbook by using the wb the activation procedure must contain a Dim statement,

parameter. For example, you can use the Name property to which declares an object of the type defined in the class
return the name of the new workbook. See Chapter 9 for ~ module. Place the pim statement at the top of the

more information on working with the workbook object. standard module. For example, Dim NewSheets As
Creating the Newworkbook Sub procedure in the class New AppEvent Creates a new object variable of the type
module defines the code to run for the event but does not ~ created in the class module. In a procedure, a set

activate the code. To activate the Sub procedure, add code ~Statement actually activates the event. To make the Set
to a Workbook_Open procedure that activates the statement execute automatically, place the set statement

Application event procedure. Because the in the workbook_Open procedure.

Run a Procedure When Excel Creates a Workbook (continued)

4 Micrasoft Visual Baskc - WorkbookDnOpenhew. xism - [ThisWorkbook (Cade)]

The standard modulg opens for the e e
ThisWorkbook 0bject. Dim NewSheets As New AppE\mnt<—0_7

© Declare an object variable using the
Application object you created.

@ Create a private workbook_Open
Sub procedure.

gt Qetug Ben Josh Atim ljedes s Lo B
= s

Dim NewSheets As New AppEvent

Private Sub Workbook _Open() 4—@
Set NewSheets.AppEvent = Excel.Application ‘—m
End Sub

@ Use a set statement to activate
your event.

(Close and reopen Excel.

@

@ Open the workbook containing the
Workbook_open Sub procedure.

@ Click the Office button and then
click New.

(@ Click Create.

g1 19dey)

.
.

The event-handling procedure
executes the code.

® |n this example, the procedure adds -
two sheets to the new workbook. | AT c 5 E F G H |

__[I&]

>
(=1
=
o
=
<V}
=
=
(V)]
)
-
]
(@]
(0]
Qu
=1
-
(4]
7,]
z
=
4
(@)
w0,
i
<
(']
=
o=
7))

When you open the workbook containing the code that activates the application event, the code executes
each time you trigger the event. You may find circumstances where you need to deactivate an event so that it
no longer triggers. You can create a separate Sub procedure that you can call from within Excel at any point
to cancel an event. Essentially, you set the property of the application object to Nothing, as shown in the
following example:

T

Sub CancelEvent () Sub CancelEvents ()
Set OpenAppEvent.AppEvent = Nothing Application.EnableEvents = False
End Sub End Sub

RESULT: RESULT:

The code cancels the event for the current session This code disables all event-handling procedures
of Excel. The next time you start Excel, the event for the current session of Excel. The next time you
is reactivated. Creating this type of Sub procedure start Excel, the event-handling procedures are

so you can disable an event-handling procedure reactivated.

at any time is a good idea. You can also set the
EnableEvents property to False for the
Application object, as shown in this code:

Execute a Procedure

ou can create a procedure that executes at a specific

at a Specific Time
time by using the onTime event. For example, you

I can create a MsgBox, which reminds the user of

an event 5 minutes before the event starts. Unlike most
other events, the onTime event is not associated with a
specific object. You must access this event by using the
onTime method with the Application object.

The onTime method has four parameters; only the first two
are required: EarliestTime, Procedure, LatestTime,
and schedule. Use the EarliestTime parameter to
specify the time at which the procedure executes. Use
the Excel time-numbering system. Use the Procedure
parameter to indicate the procedure to execute at the
specified time. Enclose the procedure name in quotes.

Use the optional LatestTime parameter to indicate the
latest time when the procedure can run. If the procedure
has not run by the time specified by this parameter, it

Execute a Procedure at a Specific Time

will not run. The other optional parameter, Schedule,
has a default value of True to schedule the onTime
procedure to run again at the specified time or False to
clear a previously set procedure.

Because the onTime event is not associated with a specific
object, you can place a procedure containing the method
for accessing the event in any standard module. If you
place the onTime method procedure in a standard module,
you must run that module to activate the onTime event
code. You can also place the onTime method in the
Workbook_Open procedure so that the event code loads
as the workbook opens. See the section “Run a Procedure
as a Workbook Opens” for more information.

When using the onTime event, you can use Excel’s
time-numbering system or you can use VBA'S TimeValue
function. Using VBA's Timevalue function simplifies

the process.

4 Microsoft Visual Baskc - TimeEvent.xism - [Module1 (Code)]

& ple [l s e Fgmst [ebeg Ben Josh gddim jffedes e

CREATE AN ONTIME EVENT USING

Crarar b

EXCEL'S TIME-NUMBERING SYSTEM

] [
Sub SetM g F

. -

() —€

@ Name your procedure.
@ Create an onTime event.

® This is the time the procedure will
execute.

This will execute a procedure at
11:25 AM.

Application.OnTime 0.47569444, "MeetingNotice™
End Sub

CREATE AN ONTIME EVENT USING VBA’S

& ple gdt yws e Fgmalt Qebey Ben Josh pddim fedos pein

Microsoft Visual Basic - TimeEvent. xtsm - [Module (Code)]

TIMEVALUE FUNCTION

==y

@ Name your procedure.

e —
Sub SetMeetingNoticeWFunction() 4—0

@ Create an onTime event.
® This is the time the procedure will execute.
This will execute a procedure at 11:25 AM.

This is the procedure that will execute.

Application.OnTime TimeValue("11:25 AM"), "MeetingNotice"<
End Sub

@

CREATE A PROCEDURE T

icrosoft Visual Baskc - TimeEvent.xism - [Moduled (Code)]

e Bl

Ele [df yws paet Fgrmat [ebey Hen oo Addim fedos Eelp

@ Name your procedure.

@ Type the code that you want to
execute.

Sub SetMeetingNoticeWFunction()
Application.OnTime TimeValue("11:25 AM"), "MeetingNotice"

End Sub
Sub MeetingNotice() 4—0

This causes the computer to beep.
® This displays a message box.

@ Press Alt+F11 to switch from the
VBE to Excel and run the macro.

Beep
MsgBox "Staff meeting in 5 minutes.” 0
End Sub

=[5 4« e
Excel executes the procedure at the) s J
designated time. g B g T g B S
T T M Sty . m T St o R B
Al -2 & &
A B c D E F G H . |
1

s e I T P ——

The EarliestTime and LatestTime parameters
expect time values based on Excel’s time-numbering
system, which stores all times as decimal values
ranging from 0.0 to 0.99999999. For example, Excel
stores 12:00 noon as 0.5 and 6:00 PM as 0.75.
Because fractional times can be overwhelming, VBA
provides the TimeValue function with which you
can convert a standard time into the decimal
equivalent required. To use the TimeValue
function, enclose the time you want to convert in
quotes. For example, TimeValue ("5:45 PM")
converts 5:45 PM to the appropriate decimal value.

Another useful VBA time function is the Now
function, which returns the current date and time.
When you use the Now function in combination with
a TimeValue function, you can specify how long
before an event occurs. For example, to have an
event take place in 30 minutes, express the time as
follows:

Example:
Now + TimeValue("00:30:00")

g1 19dey)

.
.

>
(=
=
o
3
<V}
=
=

UQ
)
-
]
(@)
(€]
Qu
=1
-
(0]
7,]
:
=
4
(@)
w0,
m
<
(¢)
=
o=
7))

Execute a Procedure

When You Press Keys

ou can use the onkey event to create a procedure

that executes when you press a specific key or

combination of keys. For example, you can press
Alt+S to sign and date a worksheet. To do this, you
define the keys you want to use to execute an event. If
you specify a key combination that Excel already uses,
your new definition overrides the Excel combination.

Unlike most other events, the onkey event is not
associated with a specific object. For that reason, you
access this event by using the onkey method with the
Application object.

The onkey method has two parameters, xey and
Procedure. Use the Key parameter to specify the key
combination, which you express as a string consisting of
the combined keys you capture. Represent standard keys,
such as a and 5, by simply typing the character for the

Execute a Procedure When You Press Keys

key. Specify nonstandard keys, such as Delete and
Insert, by placing the key name in curly braces:
{DELETE} Or {INSERT}.

Use the Procedure parameter to indicate the name of the
procedure to execute. Enclose the procedure name in
quotes.

Because the onkey event is not associated with a specific
object, you can place your procedure containing the
method for accessing the event in any standard module.
However, if you place the onkey method procedure in a
standard module, you need to run the macro to activate
the code. You can place the onkey method in the
Workbook_Open procedure so that it loads as the
workbook opens. See the section “Run a Procedure as a
Workbook Opens” for more information.

o Double-click the Thisworkbook node under
the workbook to which you want to add a
Workbook_Open event.

® The module for the ThiswWorkbook object
opens.

@ Click here and select the Workbook option.

® The Visual Basic Editor creates a private Sub
procedure and names it workbook_Open.

Note: See the section “Run a Procedure as a Workbook
Opens” for information on the workbook_Open
procedure.

@ Create your onkey command.
This is the Alt key.
See the Extra section of this task for more information.

This is the name of the procedure you want to run.

@

om o

4 Microsoft Visual Baskc - UseKeys xism - [ThisWorkboak (Code)]

@ ple (e ew peet fgmat Debeg B Josh kosim fyedes te o .8

2] | ararats =] et o

a6 e past Fgmat [abeg B Jooh MG jedos el
VAP o [T i

Private Sub Workbook Open()
Application.OnKey "%s", "SignAndDate"
End Sub

@ Create a Sub procedure with the A g o g e B2 !
same name you specified in step 3. agi F“; :6“‘ L ()
el ub SignAndDate() =
5 2L Cells(1,1) = _ =
@ Type the code that you want to Pt Reviewsd by: = & Agplication.UserName & " & Date <)
execute. #| | End Sub
&
@ Press Alt+F11 to switch from the -
VBE to Excel and run the macro. ?
=
S
(<)
=
[
=
uQ
. | I
o wl=fia 4 of o
. (@)
When you press the designated Ay an CreKer s T Wierosoht el = g
= Favn et Page Ly Frrmnaian Bets Mo e Drenope | Al ®.-=x
keys. Excel executes the macro. oy B a3 Ee
. o Wi Mo Sy Tt Dot 8 g | " bkt e o
In this example, Excel places the o | o 73
user name and the date in cell A1 e — : <
. A B c D E B G H
1 Reviewed by: Denise Etheridge 5/19/2007 <@ e
<]
3 =
4 Sales
5 Quarter 1 Quarter 2 eﬂunrlcr:i Quarter 4 m
& Region 1 142,454 167,023 196,245 178,711 L ><
7 Region2 195,758 192,859 197,169 190,756 (@)
& Region3 174,119 103,502 158,832 196,482 g
3 Region 4 129,705 191,532 170,175 159,599
10 642,036 655316 722421 725,948 m
11 <
12 o
13 =
14 =
15 n
-ﬁ * Sheet] - Shewth Sheety)
e =I5]
When specifying keys that do not create a character, such as Delete
pecifying key racten CHARACTER ~ REPRESENTS
or Down Arrow, enclose the name of the key in curly braces:
+ {Delete} or {Down}. For some keys, Excel provides special + SHIFT
! characters to represent the key when you combine it with other A CTRL
characters:
% ALT
~ ENTER
To reassign a particular key combination to its original meaning, omit the Procedure parameter:
Application.OnKey._ "+"{LEFT}" I The custom key combination assignment is removed,
and Excel executes the default command for that key
combination, if one exists.
To use one of the special characters in your key combination, enclose the character in braces. For
example, to specify a procedure to execute when you press the percent sign, type the following code:
Application.OnKey "{%}", _ . Whenever the user presses %, the ExecutePercent
Fxecutepercent procedure executes.

Create an

Add-In

ith add-ins, you can seamlessly integrate
W additional functionality into Microsoft Excel.

You can create an add-in and distribute it
to others. An add-in can contain user-defined functions,
custom dialog boxes, Sub procedures, and a custom
Ribbon. When you open the Insert Function dialog box,
add-in functions appear in the User Defined category.
You can select and use them just as you would any other
functions. See Chapter 3 to learn more about functions.
When you install an add-in, any key combinations you
assign to a Sub procedure become available to the user.

You create an add-in by saving a workbook in the
add-in format. When you attempt to save a workbook
in add-in format, Excel suggests the AddIns folder in
your user directory; for example, C:\Documents and
Settings\user\Application Data\Microsoft\AddIns. Saving

Create an Add-in

the file to this folder makes the add-in available to

only the current user. To make the add-in available to
others, save the file under the Office program in the
Library folder. Excel gives Office 2007 add-ins an .xlam
extension. After you save a workbook in add-in format,
the worksheets in the workbook are no longer visible
and users cannot make them visible by using the Unhide
command. You can copy and paste information from the
add-in workbook to other workbooks, but users cannot
see or edit the sheets in the add-in workbook. In
addition, the add-in workbook does not become a part
of the Workbooks collection.

Before you convert a workbook to add-in format, you

should thoroughly test it. Simulate how the macro will
function by opening another workbook and executing

the macros.

o Create the workbook you want to use
as an add-in.

Make sure it is completely debugged.

@ Click the Office button.

© Click Save As.
@ Click Other Formats.

P
g_)ﬁ, *

Sabesidddinxdsm - Microsoft Excel - x
= vee | et Peplews fedn D Rews Vew Do AStin e w -
e N e e
foir 3 B L e A (R aa T 1) i+ || 2 =
Sy 7 i ___il By AR LS. . I [S
Al -‘ & E
A B c D E E]
L 1 Sales ;
2 Region 1 Region 2 Region 3
3 Product1
4 Product 2
5 Product3
6 Productd
7 $ k- $
B
9
10
1
12
13
14
15
£ —- - _
bty 3 EEE T
9= mi ¥ Saleshdelin xlsm - Microsoft Excsl - x
3 (i | L @ -"
] o ! S —) . _ x
'] M| Fo [B
- g & o+ T R L e
| e I [)
c D E B]
Sales |
Region 2 Region 3
i [B sy
=t
BT
o s Hi ey —
S -8
I
T .
12
13
14
15
-“E' | rormat 3 THL 5
] [T T ——

OO0

The Save As dialog box appears.

Click here and select Excel Add-In
(*.xlam).

Excel moves to the AddlIns directory
for the user.

Type a name for your file.

Click Save.

Excel creates your add-in.

Note that no worksheets appear
in the window.

gy AR
e T e S ssbim tem -
— T B M T L ey P T
T a8 W TR LR .
M M Sty T ¥ iy st Dot
e Comt na
Save As [71% L
il aive -0 Xode E F |]
D
St
i
9 e
Cln
e ._L-<_‘E, .
S 0 Lokt v
15
16
etabaiiy decmet £ | &
i 1 e e e+
og) =2 . Microsoft Excel -\ x
) et Pt Pk | B Wi | v | u
p— e
el - LR
o s
o PTem—
- Comtot na
o
sy EEE e

To distribute your add-in to others, give them

a copy of your XLAM file and tell them the

proper directory in which to install it. You should
password-protect your file. See the task “Set Add-In
Properties” to learn how to password-protect an
add-in file. You do not need to distribute copies of
your XLSM file.

You can open an add-in file by clicking the Office
button, clicking Open, locating the add-in, and then
clicking Open. The add-in opens; however, the name
of the macro does not appear on the title bar and
no worksheet appears. You can open another
worksheet and use the add-in. This is a great way to
test your macro before making it available to the
Add-Ins manager. When you save your add-in to the
office library or to a user’s AddIns directory, the
add-in becomes available in the Add-ins section of
the Excel Option dialog box for you to load.

91 1dey)d

.
.

o]
=
o1
=
5
0Q
>
(=W
Qu
—
=)
9]

Set Add-in

Properties

hen you create an add-in, the sheets included

in the add-in file are not visible to users;

however, if users press F11 or click the
Visual Basic button on the Developer tab of the Ribbon,
they move to the VBE where they can view and modify
your code. If you do not want users to modify your
code, you must use the Project Properties dialog box
to password-protect your code. Although password
protecting provides some level of security, you should be
aware that there are products on the market that can
recover your password.

Use the General tab of the Project Properties dialog box to
name and describe your add-in. The Project Name and
description appear at the bottom of the View and Manage
Microsoft Office add-ins pane and provide the user with
brief introduction to your add-in before installing.

Set Add-in Properties

The sheets associated with an add-in workbook are not
visible. If you want to view the sheets, open the Properties
window in the VBE by pressing F4. If you then click
ThisWorkbook in the Project Explorer, the properties for
the workbook become available. If you set the 1saddin
property to False, the sheets in your workbook become
available.

All functions you create in an add-in file are normally
available to users through the Insert Function dialog box
whenever the add-in is available. If you create functions
you intend to only be available to other functions or
procedures, use the private keyword when you create
them. To learn more about the private keyword, see
Chapter 3.

NAME AND PASSWORD PROTECT
0 Click Tools = Filename Properties.

The Project Properties dialog box appears.
Click the General tab.

Type a project name.

L~

Type a project description.

Click the Protection tab.

Select the Lock project for viewing option
(] changes to [v]).

Type a password.
Type the password again.

Click OK.

O 00

VBA password-protects and adds a name
and description to your project.

@

4 Microsoft Yisusl Basic - SalesAddin, xlam - [Module3 (T -I

M Bl G jes peen Gyt [ebug B Josh A0Sm fiedes e hor L
R S T || [<] [arnas o

Sub SignAndDate()
ActiveSheet.Cells(10, 1) = "Reviewed by: " &
End Sub

SalesAddin - Project Prope
e 5

SET ISADDIN TO FALSE
@ PressF4.

Alternatively, click View = Properties Window.

The Properties window appears.
@ Click ThisWorkbook.
The workbook properties appear.

9 Set Isaddin to False.

The worksheets appear in the add-in.

4 Microsoft Visual Baskc - SabesAddin, xlam - [Module3 (Code)]
ebeg Ben Tosh Addm jifedes Lelp

[

x| [smtntia

ﬁﬂ"

nanzeas Hio N

Sub SignAndDate()
ctiveSheet.Cells(10, 1) = "Reviewed by: " &
End Sub

3]
o) o + Saleshdinxdam - Microsoft Exced - x
= b bt Prplewd fwedn Oes b e -=x
3 bt e = [
‘g u?f.] :ﬁ :‘: :u_c-— Ej. @
e PRTR. il o ol L0 Y .
- e s
Al . L] &
: A B c D E 3]
[1] sales !
2 Region 1 Region 2 Region 3 !
3 Product1 |
4 Product2 |
5 Product3 |
6 Productd L | |8
7 5 - % 5 |
8 |
g |
10 |
11 |
12
13
14
15
16
petubaiiy fpungd S5
ety 53 JEIE | We——

Before creating your add-in, a
good idea is to add information
to the Properties pane. Click the
Office button, click Prepare, and
then click Properties. The
Properties pane appears. Type a
title in the Title field, type a
description in the Comments
field, and then close the
Properties pane.

In addition to the add-ins you
create, you can obtain add-ins
from third parties. To learn about
special-purpose Excel add-ins in
your field, perform a Google
search by going to www.google.
com. Your search terms should
include Excel; the field of
knowledge — for example,
chemistry; and other information
you might have, such as vendor
name. Third-party vendors are
responsible for supporting their
own products.

As with macros, add-ins

can spread viruses. For Excel

to consider an add-in safe, the
add-in must have a current valid
digital signature issued by a
certificate authority, and the
developer of the add-in must be
a trusted publisher. If the Excel
Trust Center considers an add-in
unsafe, it disables the add-in and
displays a message bar to alert
you to the potentially unsafe
add-in. You can click the Options
button on the message bar to
enable the add-ins.

o1 1adey)

.
.

o]
=
o1
=
5
0Q
>
(=W
Qu
—
=)
75}

Install

Add-Ins

undled add-in software is included with Excel, You install bundled add-ins and the add-ins you create
B but Excel does not automatically install the by using the Excel Options dialog box. You can find all
Software when you install Excel. The following add"lns m the Add"InS section. When you save an
are among the add_ins that come Standard with ExceI: add“in toa user’S AddInS fOldeI' or to the leral’y fOlder

under the Office program, it becomes available for
installation in the Excel Options dialog box. Once installed,
the add-in is available right away.

You can download additional Excel add-ins from
the Microsoft download site. For example, for Excel 2007,

® The Conditional Sum Wizard enables you to create
a formula that sums only the values that meet the
criteria you specify.

® The Euro Currency Tools add-in enables you to

calculate exchange rates between the Euro and Microsoft has an add-in that adds a Get Started tab to the
other currencies. Excel 2007 Ribbon. The commands on this tab give you
® The Data Analysis Toolpak provides a number of quick access to free online content to help you learn
tools you can use for statistical analysis. Excel 2007 quickly.
® Solver enables you to produce the formula result You can take advantage of third-party add-ins. Consult
you want by directly or indirectly adjusting cells the developer of these programs for documentation.

related to the cell that contains the formula.

Install Add-Ins
@ Click the Office button. QO—s e — e

Pt Dumsments

] e g O - Dby e X #r H

bowos B 1 Do || -
A menu appears. oo il] = oo [
| I — —_— — - 1
9 Click Excel Options. e [« F 3 H —
= '
d o

PEeiatARE Shaet), =
e [ETF T WEE——

The Excel Options dialog box appears.
® Click Add-Ins.

® The View and Manage Microsoft Office Add-Ins
Sscreen appears. e

Q Click an add-in.

The example uses the Sales Report Helper add-in
created earlier in this chapter.

@ Click Go. e

\]

The Add-Ins dialog box appears and provides () - — ALEE— E_— g
access to several options. o [P R (]
. .) B S G B I R IE R S ol i - Dt c | L~ Fans oo "U
@ Click to select the add-in you want to install B S w— ey I~
(] changes to [v)). i m | I
[S=Y
@ Click OK. o)
oy
c
[==y
[—%
(=W
3 Bamats e crmaron of w1 i o
10 =
11 OQ
12
13 >
14 (=W
15 Qu
16 |
At e shosdl - Shestd - Shesd 7 40 :a-. e H
ten 3 JIETE] Wy E—_— =
Excel installs the add-in .
- . oo . Bookl - Microsoft Excel -
.l"_;) Pavw et Peplewd feedn Dds Bews Vem Ovesen Sable ,-.‘—. W
® |n this example, you know Excel installed the 3
add-in because you can see the custom Dy e
R Al) 3]
Ribbon tab. A s c o E il
S sales
2 Region 1 Region 2 Region 3
3 Productl
4 Product2
5 Product3
6 Productd et
7 s s s
8
9
10 Reviewed by: Denise Etheridge 5/25/2007
11

=t 0] Shontl - Sheet? - Sheet) T3

bty] 2) ’ 4

Removing an add-in from Excel The only way to remove an Microsoft has a set of SQL

is easy. Click the Office button,
click Excel Options, click Add-ins,
click the add-in you want to
remove, and then click Go. The
Add-Ins dialog box appears.
Click to deselect the add-in you
want to remove and then click
OK. Excel removes the add-in.

add-in from the Add-Ins section
of the Excel Options dialog

box is to delete the file from

the folder in which it is stored.
Then try to use the add-in.

Excel realizes it is not there and
deletes it from the Excel Options
dialog box.

Server 2005 Data Mining
add-ins for Office 2007 with
which you to take advantage of
SQL Server 2005’s predictive
analytics in Excel 2007. The
add-ins are named Table
Analysis. You can download
these add-ins from the Microsoft
Web site.

Using VBA to

Load Add-Ins

use the Add method with an Add1n object. The adad

method adds an add-in to the Excel Options dialog
box. The add method does not install an add-in. The
following is the syntax for the aad method:

I f you want to add an add-in by using a procedure,

expression.Add (Filename, Open)

Use the expression to identify the add-in or a variable
that represents the add-in. Use the Filename parameter
to identify the add-in you want to add. If the file is
located in the current folder, type the file name, enclosed
in quotes. If the file is located in another folder, type the
path to the file enclosed in quotes. If your add-in is
located on a removable disk such as a floppy disk or a
compact disc and you want to move the file from the

Using VBA to Load Add-Ins

removable disk to the Library folder under the Office
program, set the open parameter to True. If you want
the file to remain on the removable disk, set the open
parameter to False. If you do not include this parameter
and your add-in is located on a removable disk, Excel
displays a prompt asking the user if he or she wants
to move the file to the hard drive. If your add-in is not
located on a removable disk, VBA ignores the open
parameter.

As stated earlier, the ada method does not install an
add-in. To install an add-in, you must set the Install
property to True. You can add an add-in and install it
in a single step by using the following syntax:

AddIns.Add("Sample.xlam") .Installed = True

@ Name your procedure.

@ Declare a variable as an AdaTn object.

@ Add the add-in.

® This is the add-in file you want to add.

e Set SalesAl = AddIns.Add(Filename:=" B

4 Microsoft Visual Basic - Load Add-ins.xism - [Module1 (Code)]
o fle Gt ew poert fgmat Debey Ben Josn Aidm fpedos ey

=7 | [: =1
Sub AddAddin() 4—0 E
Dim SalesAl As Addin 4—9

 Microsoft Visual Baskc - Load Add-irs.xtsm - [Module1 (Code)]

M Ele G e peet Fgmat Qebeg Ben Josh pddim jffedos fee
e T

Sub AddAddin()
Dim SalesAl As Addin

SalesAl.Installed = True

MsgBox SalesAl.Title & " has been installed”

End Sub

@ Display a MsgBox letting you know N L e . g
the add-in has been installed. e B 2 (]

Sub AddAddin() 2 =

@ Press Alt+F11 to switch from the Diey Sutesil A Al)
VBE to Excel, and run the macro. Set SalesAl = Addins.Add(Fil nS alesAddin.xiam") ~
SalesAl.Installed = True (o))

MsgBox SalesAl.Title & " has been installed™ 4—9 g

End Sub E

[

=]

(0)°]

>

(=W

T

S o E

@)

The macro installs the add-in and (o B v

displays a message box.

EfEre gy]
Sty 2D JlETe T Ve E————

The Add-Ins dialog box tells you a lot about add-ins. To open the Add-Ins dialog box, click the Office button,
click Excel Options, click Add-Ins, and then click Go. The Add-Ins dialog box appears. All of the add-ins
available in Excel appear in the Add-Ins dialog box. Each add-in listed is part of the AddIns collection. You
can reference Add-ins in the AddIns collection by their title or by their index value. You determine the index
value by the order in which Excel lists the add-ins in the Add-Ins dialog box. The first add-in has an index
value of 1, the second 2, and so on. The title of an add-in is the name listed in the Add-Ins dialog box.

You can reference the index value of an add-in or its title to uninstall the add-in. To uninstall an add-in, set
the Installed property to False. The following example uninstalls an add-in.

Example:
Addins. ("sample") .Installed = False

Introducing

XML

The default file format for Office 2007 is
EXtensible Markup Language (XML). For this
reason, as a VBA programmer, you should have

a basic understanding of XML. The appeal of XML is that
it makes exchanging data between different software
applications and different computer systems easier. When
you markup up your data using XML, it is then available
to be processed by a variety of different systems, without
regard to hardware or operating system. You can use the
same XML data in Word, Excel, Access, and other
programs. Prior to Office 2007, Office files were in a
proprietary format. Manipulating and sharing the data
with other applications and systems was difficult.

XML is similar to HyperText Markup Language (HTML),
the language used to format data displayed in a Web
page. If you are familiar with HTML, learning XML will
be easy. Both HTML and XML are markup languages

Declaration Statement

You start each XML file with a declaration. The declaration lets
the program processing your file know that your file is an XML
file. The following is an example of a declaration statement:

<?xml version="1.0" encoding="UTF-8 "standalone="yes" ?>

xm1 identifies the file as an XML file, 1.0 is the version of XML
used, urT-8 is the character set used to encode the data, and
standalone tells the processing program whether the
document contains references to other documents.

In XML, you call a unit of data an element. You use tags to
describe each element. Angle brackets surround tags: < and >.
In this example, <CustomerName>Royal Flyers
</CustomerName>, <CustomerName>, and
</CustomerName> are the opening and closing tags for the
element. They tell you that Royal Flyers is the name of the
customer. The opening tag marks the beginning of the element.
The closing tag marks the end of the element. The closing tag
always includes a forward slash. In addition, be aware that XML
is case-sensitive. The tag <unitPrice> is not the same as
<unitprice>. Your opening tag and closing tag must be in
the same case. You place your data between the opening tag
and the closing tag. Every tag must include a closing tag or be
an empty tag.

"E:"i

and, as such, they both use tags. In HTML, the tags are
predefined; in XML, you define the tags.

XML and HTML have different purposes. You use HTML
to format data so you can display your data in a Web
page. You use XML to describe your data. Your XML tags
can be anything you want them to be, but they should
describe your data. Each XML tag describes the data
contained in the tag.

You do not need to purchase any software to create an XML
file; you can create XML in any text editor. For example,
you can use Notepad to create an XML file. However, you
must give your XML files an .xml file extension.

A complete explanation of XML is beyond the scope of
this book. However, the brief overview of XML that
follows provides a basic understanding of the examples
provided in this book.

Attributes

You can include attributes within an XML tag. Attributes
provide information to the program that is manipulating the
data. The following is an example of a tag that includes a
FileType attribute.

<CustomerName FileType ="J5793" > Royal Flyers
</CustomerName>

You must enclose attributes in quotes. You can use single
quotes or double quotes. An element can have multiple
attributes.

Empty Tags

Empty tags are tags that do not have any content. Empty tags
do not require a closing tag. However, empty tags must
include a forward slash as part of the tag. The following is
an example of an empty tag.

Example:
<button id="Buttonl" imageMso="AccessFormWizard"
size="large"

onAction= "ThisWorkbook.SignAndDate" />

label = "Report Format"

In the example, the element has attributes but no content.
You use the element to pass information to the reading
program.

You structure XML hierarchically. Consider the following
example:

<CustomerInfo>
<CustId>C001</CustId>
<CustomerName>Royal Flyers</CustomerName>
<TransDate>2007-06-01</TransDate>
<PurchaseInfo>
<Quantity>12</Quantity>
<ItemNo>0S-001</ItemNo>
<Description>Pencils</Description>
<UnitPrice>3.99</UnitPrice>
</PurchaseInfo>
<PurchaseInfo>
<Quantity>6</Quantity>
<ItemNo>0S-004</ItemNo>
<Description>Paper</Description>
<UnitPrice>25.98</UnitPrice>
</PurchaseInfo>
</CustomerInfo>
The data between the customerInfo tags contains
information about a single customer. The file can contain
multiple customers. The information between the
PurchaseInfo tags contains information about an
individual purchase. In the example, a single customer
made two purchases, so the PurchaseInfo tags are

inside the customerInfo tags. Shown graphically, you
can structure data as follows:

Element Names

You can name elements anything you want; however,
element names should describe your data. Element
names must also conform to the following rules:

® Names can contain letters, numbers, and other
characters.

® Names cannot contain spaces.

® Names cannot start with the letters XML, a number,
or a punctuation character.

® You can use an underscore to separate the words in
a name, as in Gustomer_Information.

You should try to keep your element names short and,
although it is allowed, avoid using the “—” and the “.”

in your element names. If you create an element name
such as Customer-Info, the reading program may try to
subtract Customer from Info; if you create a name such
as Customer.Info, the reading program may think Info is a
property of customer.

CustInfo
Customer 1
Purchase 1
Purchase 2
Customer 2
Purchase 1
CustInfo
Every XML file must have a set of root tags. The root tags
describe the document and surround the child tags. Every
document ends with a root tag. In the example,
<CustomerInfo> and </CustomerInfo> are root

tags. All of the tags between the <customerInfo> tags
are child tags.

When structuring your XML file, you must properly nest
your tags. In the example, you must close each purchase
before you start a new purchase.

If you want to exchange your data with other systems, your
XML file must be well formed. If your data is not well
formed, your XML file will not work. Well-formed XML files
comply with the following rules:

® They begin with a declaration.

They contain a root tag.

Every tag either has a closing tag or is an empty tag.
Opening and closing tags use the same case.

Tags are properly nested.

Attributes are enclosed in either single or double quotes.

Schemas are another important component of XML.
Schemas contain the rules that help the processing
program validate your data. For example, a schema tells
the processing program whether a tag should contain
text or a number. In that way, the schema prevents the
entry of invalid data. For example, if data between your
LastName tags should always be a string, a schema
prevents the entry of numbers.

If you are importing an XML file into Excel, and your XML
file does not have a schema, Excel creates one. Excel
maps the items in cells to the items in the schema.
Mapping allows you to display in your worksheet only
the data you want to see. It also allows you to refresh
your data and save your data in XML format.

21 1dey)

.
.

c
=
o
)
=
0
(s
(S
=]
o
Eo
UQ
o

Understanding

Excel XML Files

saved as binary files in a proprietary format. You

can still save your files in the binary format by
saving them as Excel 97-2003 files if you need to share
files with users who do not have Office 2007. However,
the binary file type is no longer the default. Moreover,
when you save your file as an Excel 97-2003 file, Office
2007 features that are not supported in earlier versions
are lost.

In Office 2007, the default file type is based on XML. The
XML file format has several advantages.

® XML files are smaller. The XML file format uses Zip
technology, which compresses the files. As a result,
when you compare XML files to binary files, the
XML files can be up to 75 percent smaller. This

Understanding Excel XML Files

P rior to Office 2007, by default, Office files were

means they take up less space and are easier to
transfer via mechanisms such as e-mail.

® XML files are more secure. In the default XLSX

format, you cannot include macros. This gives you
assurance that your XLSX files do not include

any malicious macro viruses. If you want to save
macros in your Excel file, you must save the file
with an .xIsm extension. Excel places the macros in
a separate part of the file that is more secure.

® Data is easier to recover in XML files. XML files are

human-readable. You can open the files and read
the contents by using a text editor such as Notepad.
If part of the file becomes corrupted, you can open
the file and recover the part that is not corrupted.

CREATE AND SAVE AN EXCEL FILE

@ Create an Excel file. S

® |nclude an Image.

® Include a comment.
Include data.
Include properties.

@ Click the Save button to save the file.

OPEN AN EXCEL FILE

o In Windows Explorer, move to the
folder where you saved your file.

@ Right-click the file name.
© Click Rename.

@

#u ST QuartertySales xisx - Microsoft Excel - x
— e, L P Leywt Srrrain Drts. P N g Add bm L I
O Dot Fragerten = i) Dty el St 1D P Doty Bl P wew @ Rl el X
pos - [y - camper -
e tri e —
s
Al £ E
AT B = D E F G H
'8 I | FLOWER SALES [
2 June July August
3 Regionl 5 92,780 & 59,801 % 84,084
Region 2 72,243 92,685 65,315
Region 3 87,967 80,478 99,910
& Regiond 90,810 81,811 77,118
7 § 343800 § 314775 % 326427

9 | Denise Etheridge:

@3 We should have done

better,

9 Change the file extension to .zip.

Windows asks if you are sure you want
to change the file extension. Click Yes.

@ Double-click the file.

The file opens.

® The _rels folder stores information about
relationships.

® The [Content_Types].xml part stores
information about what is in the package.

The xI folder stores the workbook
component files.

The docProps folder stores information
about the document properties.

Bl D08 yew Favetm Dok twh

[rapeT——

Qs - O F | Do i [

5 ([e ;-‘;. " 6

™ QuarterlySales.zip

To assign properties to a file,
click the Office button, click
Prepare, and then click
Properties. The Properties pane
appears in your workbook. Enter
the properties you want to enter.
In the upper-right corner of the
Properties pane, click Document
Properties, and then click
Advanced Properties. The
Properties dialog box appears.
You can use the Properties dialog
box to review properties and to
add custom properties.

If you have a computer with
Excel 97-2003 installed, you can
go to the Office Update Web
site and download the 2007
Microsoft Office system
Compatibility Pack for Excel.
After you install the Compatibility
Pack, you can open Excel 2007
files in Excel 97-2003. Excel
features and formatting may
not display in the earlier version,
but they are still available when
you open the file again in

Excel 2007.

To view the contents of an
Excel workbook file, change the
file extension to .zip and then
double-click the file. To use the
file again, change the extension
back to the extension the file
originally had.

continued 9

21 1dey)d

.
.

C
=
QU
(€]
-
n
=
&
=
QU
[=
=
uQ
-

Understanding Excel

XML Files (continued)

file, change the file extension on the Excel file to .zip
and then double-click the file. The file opens and
several folders and files appear.

Office 2007 files are in a compressed ZIP format; each
ZIP file is called a package. A package has three major
components: Part Items, Content Type Items, and
Relationship Items.

Each file inside a package is called a part. When you
open an Excel file, a workbook.xml file is in the xI folder.
You may also find a styles.xml file. These files are
“parts” of the package. Most parts are XML files that
describe the data contained in the Excel workbook.

Excel uses content type items to describe the contents of
a part. These descriptions enable you to determine the

Content Type.xml

I f you want to see the XML layout for an Excel 2007

contents of a file so you can write code that correctly
processes the file.

Relationships define how the parts of a document come
together to form a document. The relationships are
stored in the /_rels folders in .rels files in the root and
in subdirectories of the file.

Excel divides a workbook package into several parts.
Some of the parts you may see in a package are charts,
comments, themes, styles, and workbook drawings. You
can manually modify and replace document parts, and
you can write programs to modify and replace document
parts.

If your document includes images, the actual images are
stored in the file. For security proposes, the images are
named image1, image2, and so on.

XML FILE
@ Double-click Content_Type.xml.

The file opens in Internet Explorer or
your default XML Editor.

_RELS FILE
0 Double-click the _rels folder to open it.

The rels file appears.
@ Double-click the .rels in the file.
The file opens in Internet Explorer.

The file sets relationships.

e
‘application/ vnd opensmbarmats-

XL FILE = image 1. jpeg - Windows Picture and Fax Viewer
o Double-click the xI folder to open it.

A number of files and folders appear.
9 Double-click each part and examine it.

This example opens the media folder
and then opens the image file.

o0 S0 AP ae XeHE w

DOCPROPS FILE
0 Double-click the docProps folder.
9 Double-click the parts and examine them.

The document properties appear.

This example opens the core XML file.

For a detailed explanation of the concepts presented in this section, download “Introducing the Office (2007)
Open XML File Formats” (http://msdn2.microsoft.com/en-us/library/aa338205.aspx) from the Microsoft
Web site.

You can modify the contents of an Excel package. In the example, you opened the media folder and viewed
the image in your Excel document. If you want to change the image, you can take out the image that is in the
file and replace it with a new image manually or by using a program. You can also change the text in the
document manually or by using a program. For example, if you open a comment file, you will see comments.
If you change a comment, the new comment will appear when you open your workbook in Excel again.

As you can see, the XML file format gives you a great deal of flexibility by making your files easy to modify.

21 1dey)d

.
.

C
=)
QU
(€]
-
n
=
&
=
QU
[=
=
uQ
-

Open an XML File -

in Excel as a Table

can convert your data to a table. In Excel, tables

allow you to manipulate your data easily. Each
column heading in a table contains a down arrow. Use
the down arrow to sort, filter, and otherwise manipulate
your data. Having your data in an Excel table greatly
enhances your ability to work with your data.

If you have data that is in well-formed XML format, you
can easily open the XML file in Excel as a table and then
use Excel to manipulate the data. To find out more about
well-formed XML format, see the section “Introducing
XML”.

Excel needs a schema to import your XML data. Schemas
enable processing programs such as Excel to validate
your data. For example, a schema tells the processing

Open An XML File in Excel

I f your Excel data consists of columns and rows, you

program whether a particular element should contain
text or a number. When you open an XML file, if your
data does not have a schema, Excel creates one. Excel
infers the schema from the data that is contained in
the XML file.

When you open an XML file as a table, Excel also creates
an XML map. Excel uses the map to relate the schema

to the data in the worksheet. A single workbook can
contain several XML maps, and several maps can refer
to the same schema.

Excel creates a graphical hierarchical representation of
your data in the XML Source task pane when it opens
your XML file as a table. Open the Source pane to see the
representation.

@ Click the Office button.
@ Click Open.

The Open dialog box appears.

@ Locate the folder that contains your
XML file.

@ Click the file.
@ Click Open.

@

‘. D Book! - Microsoh Excel -
e L rasim w-=x
] i s I Comttara Fumtin + | el | K
o= Gt s .
=4 s -% 5 Pt i Tl - P dowe - @ #r A
- O il s = Cotagie - B+ | 2+ s
A AN oy
o - "
[| E F G H I B
e
o
]
o =
S Py
I' oo
e BT
1 :
12
13
14
15
16
S ety et ey) W
BAppED [EE] ===
(O *
Y e | gt | s Gl e Wi DA ®-=
L e e - Gww L Gt vty © | et ¢+ E
= il i il Boom s e T - e 3 Qr i
e, LR EAS-A e E e E g o Cb e + Tt [| 2w g, qa
ol ™ . e iinin) e L) il -]
Al 3 =
A []
1 (. ¥ @@ Xmd-
D O .
e L I A Do ARG 7
3 (.
3 O
5 L
& & ~-an
7
B
9

The Open XML dialog box appears.
@ Click As an XML table (O changes to (®).

If Excel asks if you want to create a schema,
click Yes.

@ Click OK.

The file appears in Excel as an Excel table.
@ Click the Developer tab.
© Click Source.

The map to your data appears.

g B 0 & ~
Ly
— | b Imet Peplewd Fersda Dets P Vew Crvwmpn Aadim . -"x
= B e G = | Coniiona Fromating | 3= Iart » | || X
4 Can L L A el e W
" & = B % o et ek - e 3 2? i
el BB SRt Sl B LT IE Sy r—— Tt || 2 s S
It . Lty
.
G H [|]
|
|
i
El T %)
oy @ " I _®x

P bt Peplewd s Do beve
i et P T—

3] s Bt Rt

M M bty s 9 Masu |
- b na

Al - | Custld B
[A B c D E B v
: :
2 €001 Royal Flyers 6/1/2007 12 05-001
3 €001 Royal Flyers 6/1/2007 6 05-004 T
4 €002 PetFarm 6/1/2007 6 05-002 g Cotamnrtime | il ot |
5 €003 Hobbiesand Crafts 6/1/2007 10 059712 o & Purcheirts
& €003 Hobbiesand Crafts 6/1/2007 25 059865 |- e B
7 €003 Hobbiesand Crafts 6/1/2007 16 05-9925)
& €004 lamesRealEstate 6/1/2007 3 05-007
9 €005 Wills Car Wash 6/1/2007 25 05-207
10
11

12
13
14
15

b et et et 3 A W

The Open XML dialog box presents three choices.
You can open the file as an XML table, as a Read-
Only workbook, or as a read-only file, or you can

use the XML Source task pane. The As an XML table

task option is explained in this section. The As a
read-only workbook opens the file as read-only and
does not create a map to your data. The Use the
XML Source task pane option creates a map but
does not place any elements in your worksheet. For
details on how to work with an XML map, see the
section “Create an XML Map”.

When you import or open an XML file, if the

file does not have a schema, Excel creates one for
you. To view the schema, click the Developer tab
and then click Visual Basic to open the VBE. Once
in the VBE, press Ctrl+G to open the Immediate
window. In the Immediate window, type Print
activeworkbook.XmlMaps (1) .Schemas (1) .
xml. VBA prints the schema to the Immediate
window. You can copy and paste it into a text or
XML editor.

21 1dey)d

.
.

C
=)

QU
(€]

-

n

=
&

=

QU
[=
=
uQ

-

Create an

XML Map

hen you open your file as an Excel table,

Excel places all of your data in your

worksheet, and you can use the table
features in Excel to manipulate your data. You can also
create a map to map just the elements you want to use to
your worksheet. You complete the process in three steps:
create a map, map the elements you want to use to your
worksheet, and then refresh your data.

When you use the mapping method, you choose which
elements you want to appear in your worksheet. This is
especially useful when your XML file has a large number
of elements and you only want to work with a subset of
those elements. Click on an element in the XML Source
task pane and then drag the element onto your

Create an XML Map

worksheet. Excel calls the list of data elements in the
XML Source task pane a map, and the process of clicking
and dragging elements to your worksheet is mapping.
Excel creates a connection between the element in the
XML Source task pane and your data. If you want to see
the connection after you place an element in your
worksheet, click the element in the Source task pane and
Excel highlights the data in your worksheet. If you click
data in your worksheet, Excel highlights the element
name in the XML Source task pane.

When you create a map and then bring your data into
Excel, you gain the same benefits as when you open a
file in XML format. You can use all of Excel’s table
features to sort and filter your data.

@ Click the Developer tab.
@ Click Source.

The XML Source task pane appears.
@ Click XML Maps.

The XML Maps dialog box appears.
Click Add.
The Select XML Source dialog box appears.

Locate the folder that contains the file you
want to map.

Click the file.

0 & ©

Click Open.

If Excel asks if you want to create a schema,
click Yes.

@

15 Piow of Do 13 0 Dt Somprmn (7 ok * e -
-‘u:"] ety ety tid 1| e—btzl L

® FExcel creates your map.

© Click OK.

Excel adds a map to the XML Source
task pane.

Q Click and drag elements from the
XML Source task pane to your
worksheet.

(Click Refresh Data.

® Excel adds the data in your XML file
to your worksheet.

)
4

IR T

Paws et Paplowd badn Des Beews Ve | Orempn | Aadle

f T Rre— . gl | V-

i Camtenn ue

R Po—— 3 e
2]

S e Bt St . | i e Prchs. =] b

ot M s S iy

- § A

A B c D E F
L1 pm Maps [2 1%
2 e

e
,_) s

Al bl ufi

.
e J [[ome J[o J[o]

Lo JL_ox

3] s Bt R
o v—
-

Createbap isx - Microsoft Bxcel

Havw et Pepled Feesdn Dets v Vem | Cwewmpm R b
Foom 0 b bl ,EL T Fropeten |ﬂ3«w—-’- Hiepen
S o

o Vo e
1, Mo ity . A T

- [

Eopmen Pt] gt

& -1.._.9.:.4_@
n

C001 Rovyal Flyers

Co02 Pet Farm

C003 Hobbies and Crafts
O
Coos Wills Car Wash

c1 - 4 TransDate

B
%(uﬂld =) CustomerName .
2
3
4
5
&
7
B
9
10

A [D

6/1/2007
6/1/2007
5,-'1;30074—.
&/1/2007
6/1/2007,

04 James Real Estate

= @ Cusemerh
1 Earaid [G001)

After you add an element from your XML file to your Excel worksheet, you may want to delete it. If so, right-
click the field heading, click Delete, and then click Delete Columns. Excel deletes the column. If you want to
remove the connection between the XML map and your worksheet, right-click the item in the XML Source
task pane and then click Remove Element. If you want to restore a connection, right-click the item in the XML
Source task pane and then click Map Element. The Map XML Elements dialog box appears. Type the cell
address where you want to place the field heading and then click OK.

You can copy and paste your mapped table, but your copy will not have a connection to your map. However,
if you move your mapped table by cutting and pasting, your table maintains its connection to the XML map.

21 1dey)d

.
.

TWX Surpueisiopun

Import and Export

XML Files Using Excel

hen working with XML data, the data in the

XML file may change or you may want to

import the additional data. Conversely, you
may make changes to the data and want to export the
changes to an XML file. If you want to import and export
XML data into and out of Excel, use the Import and
Export features on the Developer tab. The Import feature
opens the Import dialog box, where you can choose the
file you want to import. The Export feature opens the
Export dialog box, where you can name the file you are
exporting.
Importing data enables you to either overwrite your
current data or append data to your table. You can use
the XML Map Properties dialog box to specify which you
want to do. The default is to overwrite existing data with
new data. If the system outputting the data has corrected

Import and Export XML Files

the data or if your old data is no longer relevant,
overwriting your data is the better choice. If the system
outputting the data outputs data periodically, appending
data is the better choice. Appending data enables you to
keep your database up-to-date.

You can export data in XML format by using the
Export feature on the Developer tab. When you export
data, all of the data must be from a single node in your
XML map. If you want to verify that Excel can export
your data, click Verify Map for Export on the XML
Source task pane before exporting. Excel exports your
data as a well-formed XML file. A well-formed XML file
adheres to all the rules for creating XML files. For more
information about well-formed files, see the section
“Introducing XML".

IMPORT AN XML FILE
0 Click the Developer tab.

9 Click Import.

The Import XML dialog box appears.

@ Locate the folder where the file you
want to import is located.

9 Click the file you want to import.
6 Click Import.

@

(O

ave et Paploed Faedn Creren aadim - -

ikt - Microsof Excel

Ao Db -
il [T

et

1, e Sty -

flcenaic { coan) |
J Cuntommimee [Riryd Thyers §

e e [oy fhyers)
e [20070661 }

Excel imports the XML data.

EXPORT AN XML FILE
Click the Developer tab.

Click Export.
The Export XML dialog box appears.

Locate the folder where you want to
save the file.

Type a file name.

©0 6 o0

Click Export.

Excel exports the file.

(o) e ook - Microsoft Excel Toble T - %
~ beww buet Puplewd Fevdn D Mews Vem | Ovowen | AsdEn g ®-m
A g Bt ris) 3 bropesen [157]73 tep bperis gt

S e Bt Bt T Ve e | e P

[e f

R

1 Macms Sty b b Oy

g [

1 =

2 i

3 Royal Flyers i

4 €002 PetFarm 605002 !

5 Coo3 Hobbies and Crafts 6/1f2007 10 059712 |

6 €003 Hobbiesand Crafts 6/1/2007 25059865 |-

7 €003 Hobblesand Crafts 6/1/2007 16 059926 |

B COO4 JamesReal Estate 6/1/2007 305007 |

9 CDOS Wills Car Wash &/1/2007 25 05-207]

10

11

12

13

14

15

16

AN e e shetl et sheens 3 S L

besty)

t‘:] o - B Toise T
= el ot Py Loywd Formian Twrerape b ey $.-=x
T B | SR S Y C e ;::4_9
o M M e b il [P VRS

o e i

1

1
2
3
4
5
[
7
8

]
10
11
12
13
14
15

A

Al M # | Custld

€001 Roy
C002 Pet
C003 Hob)
004 Jam:
CO005 Wil

[T ——

——— p

When you import or refresh data, you can either
overwrite your current data or append data. Use
the XML Map properties dialog box to specify
which you want to do. To open the XML Map
properties dialog box, click the Developer tab, and
then click Map Properties in the XML group. The
overwrite and append options are at the bottom
of the dialog box.

The XML Source task pane has several options you
can set by clicking the Options button in the lower-
left corner. Select the Preview Data in Task Pane
option to see a sample of the data elements in your
XML file in the task pane. Select the Hide Help Text
in the Task Pane to prevent Help from appearing at
the bottom of the task pane. Select Automatically
Merge Elements When Mapping to create a single
table when you place elements side by side in a
single row in the worksheet.

21 1dey)d

.
.

C
=)
QU
(€]
-
n
=
&
=
QU
[=
=
uQ
-

Load XML Files

Using VBA

f you want to automate the process of loading

XML data, use the openxML method. OpenxML is

the VBA equivalent to opening an XML file as a
table. When you open an XML file as a table,
openxML provides several choices. Make your choice by
specifying one of the following x1xmlLoadoption
OptiOIlS: x1XmlLoadImportToList, xlXmlLoadMapXml,
Or x1XmlLoadPromptUser.

If you select the x1xmllL.oadTmportToList option, VBA
creates a map of your data, places the map in the XML
Source task pane, and then places all of your XML data
in a worksheet formatted as a table.

If you select the x1xmlLoadMapxml option, VBA creates a
map of your data and places the map in the XML Source
task pane. Excel does not place any data in a worksheet.

If you select the x1xmlLoadPromptUser option, VBA
displays the Open XML dialog box. The user can choose

Load XML Files using VBA

to open the XML file as a table or as a read-only
workbook or to use the XML Source task pane. Opening
the file as a table is equivalent to the
x1xmlLoadImportToList option. Using the XML Source
task pane is equivalent to the x1xmlLoadMapxml option.

The following is an example of the openxmr. method:
Sub OpenXMLPromptUser ()

Application.Workbooks.OpenXML _
Filename:"invoices.xml",
LoadOption:=x1XmlLoadPromptUser

End Sub

Use the FileName parameter to specify the name of the
file you want to load. If the file is not located in the
current folder, specify the path to the folder.

@ Name your procedure.

@ Create your OpenXML command.

® This is the file you want to load.

9 Sub LoadXML()

4 Microsoft Visual Baskc - Open, xism - [Module? (Code)]
M Bl [e peet gt Qebeg Ben Josh Addim jffedos fee Farar

=y =] o j
Sub LuadXMLu<—0 e

P> Application.Workbooks.OpenXML
Filename:="C:\XML Files\invoices.xml", 4—.
LoadOption:=xIXmliLoadlmportTolList

End Sub

4 Microsoft Visual Basic - Dpen,xism - [Module1 (Code)]

® This is the Load option you want

N ple gd ew poent Tyt [ebug Be Josh Aoéim jiiedes e

—

to use.

] e

Sub LoadXML()

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macro.
End Sub

Application.Workbooks.OpenXML _
Filename:="C:\XML Fileslinvoices.xml", _
LoadOption:=xIXmliLoadimportTolList

The macro loads the XML file.

Dok - Microsolt Excel

1

2

3 €001 Royal Flyers 6/1/2007
4 €002 PetFarm 6/1/2007
5 €003 Hobblesand Crafts 6/1/2007
6 €003 Hobbiesand Crafts 6/1/2007
7 CO03 Hobbiesand Crafts 6/1/2007
§ €004 lamesReal Estate 6/1/2007
9 €005 Wills Car Wash 6/1/2007

12 05001
6 05004
605002

10 059712

25 059865

16 059926
305007

25 05207

ItemNo g

Paper 25.98
Staplers 2598
Clay 1.98
Partfolio 7.85
Picture Frames 7.85
File Folders 554
Brush 10.98

If you want to use VBA to create a document map, use code similar to the following:
Sub CreateMap ()
'Create an XmlMap object
Dim InvMap As XmlMap
'Add a map and assign the map to the XmlMap Object
Set InvMap = Application _
.Workbook (1) _
.XmlMaps.Add ("C:\XML Files\invoices.xml")
'Name the Map

InvMap.Name = "Invoices"

L1 1dey)d

.
.

C
=
QU
(€]
-
n
=
&
=
QU
[=
=
uQ
-

Import XML Files

Using VBA

ou can use the xmlImport method to load data

into a map that already exists. This process is

similar to clicking the Import button on the
Developer tab. You can refresh your data or import new
data into your worksheet. The xm1Import method has
the following parameters: Url, ImportMap, Overwrite,
and Destination.

The url parameter is required. Use this parameter to
target a URL as a data source. Insert the URL as a string
enclosed in double quotes. You can also use this
parameter to target a file on your local computer. If the
file is located in the current directory, type the file name;
otherwise, type the path.

The ImportMap parameter is also required. For this

parameter, supply the schema map you want VBA to use.

You can identify the map by name. When you create a

Import XML Files using VBA

map, Excel assigns it a name. The name appears in the
drop-down list at the top of the XML Source task pane.
You can also view the list of XML maps in your
workbook by clicking the XML Maps button in the XML
Source task pane. If you want Excel to create the map,
assign Nothing to the parameter, as in
ImportMap:=Nothing.

Use the overwrite parameter to specify whether you
want to overwrite the existing data. Set the parameter to
True if you want to overwrite the data. Set the parameter
to False if you want to append to the existing data.
True is the default value.

Use the Destination parameter to specify the top-left
corner of the range where you want to create the table. If
you are importing data into a map that already exists, do
not set this parameter.

o Create a map and place the elements
in your worksheet.

Note: To learn how to create a map, see
the section “Create an XML Map.”

® This is the name of your map.

@ Press Alt+Fi1.

Excel moves you to the VBE.
Name your procedure.

Declare a variable as an xm1Map
object.

® 00

Assign your map the xm1Map object
variable.

® This is the map name.

@

oy ke ImgartyRA sism - Microsol Excel Table Tas -
Ly
—" e | et Pepleed fuesin Den bews Vew Dwwiw Sstim Dmige w=
= & e T A
B~ % v et o Tk -
wa 5 ot g -
Coptai et : st o M i
Al - 5 Custid
A B [D E

Custid @ Customesy TransDates Quantity gitemNo g Descril

s S e

Y
LR I A R T B N

1
2
3
4
5
[
7
8

10

M Ele ot es post Fgmat Qebeg Ben Josh hdeim ffedes e T

Sub ImportXMLFile() 4—6“ E

Dim InvoiceMap As XmIMap 4—9

Set InvoiceMap = _
ActiveWorkbook.XmiMaps("

n<—0

@ Create your xmlImport command.

® This is the file location.
® This is the map you want to use.

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

VBA imports your data.

4 Microsoft Visual Baskc - ImportVBA xlsm - [Madule1 (Code)]
M Bl G e Pt fgmat Qebeg Ben Josh Addim jffedos fee

e = e -
Sub ImportXMLFile() g
Dim InvoiceMap As XmiMap
Set InvoiceMap = _

ActiveWorkbook.XmlIMaps("Invoices Map")
End Sub
=fs < o
.t\-, ™ ¥ ImportViAsdex - Microsoft Excel Tolsle T -
e e e e s s I R SRS o [it #-ax
e LR = T Pt T op Pomprtins 5 gt
oo] s W Vo e E i tpeen Pocka =] et
= (PESTIES s 1 o Dl | o et O
- oty ne
A2 - Gy CO01 -]
""" A B C D E F G HEl

1 " ity g ItemNo g p itPri

2 001 |Royal Fiyers 1205001 Pencils 399

3 €001 Royal Flyers 6/1/2007 605008 Paper 2598

4 €002 PetFarm §/1/2007 605002 Staplers 2598

5 C003 Hobblesand Crafts 6/1/2007 10 05-9712 Clay 198

6 €003 Hobbiesand Crafts 6/1/2007 25 05-9865 Portfalio 7.85

7 €003 Hobbiesand Crafts 6/1/2007 16 05-9926 Picture Frames 7.85

& €004 lamesReal Estate 6/1/2007 305007 File Folders 554

9 €005 Wills Car Wash 6/1/2007 2505-207 Brush 1098,

Example:
Sub
ActiveWorkbook _

False
End Sub

XMLMaps ("Invoices_Map")
.Import "C:\XML Files\Invoices.xml", _

As an alternative to the syntax in the example, you can use the following syntax to import an XML file. This
syntax uses the XMLMaps Import method. The second parameter is Overwrite. Setting the Overwrite
parameter to False causes the command to append instead of overwriting data.

21 1dey)d

.
.

C
=

QU
(€]

-

n

=
&

=

QU
[=
=
uQ

-

VBA and Excel Object

Model Quick Reference

VBA Statements Quick Reference

Legend
Plain courier text = required [] = optional | = or
Italics = user-defined ... =list of items

File and Folder Handling

ChDir path Changes to the specified folder location.

ChDirive drive Changes to the specified drive.

Close [filenumber] Closes a file opened by using an Open statement.

FileCopy source, destination Copies a file from the source to the specified destination.

Kill pathname Deletes files from a disk. Use wildcards * for multiple characters and ? for single
characters.

Lock [#]filenumber], recordrange] Locks all or a portion of an open file to prevent access by other processes.

MkDir path Creates a new directory or folder.

Open pathname For mode Opens the specified file to allow input/output operations.

[Access access][lock] As
[#]filenumber [Len=reclength]

Print #filenumber|, outputlist| Writes display-formatted data sequentially to a file.
Put [#]filenumber,
[recnumber,] varname Writes data contained in a variable to a disk file.
Reset Closes all files opened using the Open statement.
RmDir path Removes the specified folder.
SetAttr pathname, attributes Sets the attribute information for the specified file.
Unlock [#]filenumber|, recordrange)] Unlocks a file to allow access by other processes.
Width #filenumber, width Assigns the output line width for a file opened using the Open statement.
Write #filenumber[, outputlist] Writes data to a sequential text file.
Interaction
AppActivate title[, wait) Activates an application window.
DeleteSetting appname, Deletes a section or key setting from an application’s entry in the Windows Registry

section[, key]

SaveSetting appname, Saves an application entry in the application’s entry in the Windows Registry.
section, key, setting

SendKeys string] , wait] Sends one or more keystrokes to the active window as if they were typed on the keyboard.

VBA Statements Quick Reference (continued)

Program Flow

[Public | Private] Declare Sub name Lib “libname”
[Alias “aliasname”] [([arglist])]

STATEMENT DESCRIPTION

Declares a reference to an external DLL library function.

Do [{While | Until} condition]

Repeats a block of statements while or until a condition is

Loop [{While | Until} condition]

[statements] true. The condition is checked at the beginning of the loop.
Loop
Do Repeats a block of statements while or until a condition is
[statements] true. Because the condition is checked at the end of the

loop, the block of statements always executes at least once.

Exit Do | For | Function | Property | Sub

Exits the specified Do Loop, For Next, Function, Sub, or
Property code.

For Each element In group
[statements)
Next [element]

Repeats a block of statements for each element in an array
or collection.

For counter = start To end [Step step]
[statements]
Next [counter|

Repeats a section of code the specified number of times.

[Public | Private | Friend] [Static] Function name
[(argist)] [As type]

[statements]

[name = expression]

End Function

Defines a procedure that returns a value.

If condition Then
[statements]

[Elself condition-n Then]
[elseifstatements] |

[Else [elsestatements]]

End If

Conditionally executes a block of statements based upon
the value of an expression.

[Public | Private | Friend] [Static] Property Get name
[(arglist)] [As type]

[statements]
[name = expression]

End Property

Declares the name and arguments associated with a
procedure.

[Public | Private | Friend] [Static] Property Let name
([arglist,] value)

[statements]

End Property

Declares the name and arguments of a procedure that
assigns a value to a property.

[Public | Private | Friend] [Static] Property Set name
([arglist,] reference)

[statements]

End Property

Declares the name and arguments of a procedure that sets
a reference to an object.

continued

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
o
-
(¢}
=
a
(¢’)

VBA and Excel Object Model
Quick Reference (continued)

VBA Statements Quick Reference (continued)

Program Flow (continued)

STATEMENT DESCRIPTION

Select Case testexpression Executes one block out of a series of statement blocks

[Case expressionlist-n depending upon the value of an expression.
[statements-n]]

[Case Else
[elsestatements]]

End Select

[Private | Public | Friend] [Static] Sub name [(arglist)] Declares the name, arguments, and code that form a
[statements] Sub procedure.

End Sub

While condition Executes a block of statements as long as the specified
[statements] condition is true.

Wend

With object Executes a block of statements on a single object or on a
[statements] user-defined data type.

End With

Variable Declaration

STATEMENT

[Public | Private] Const constname [As type] = expression

DESCRIPTION

Declares a constant value.

Dim [WithEvents] varname[([subscripts])] [As [New] type]

Declares variables and allocates the appropriate storage
space.

Friend [WithEvents] varname[([subscripts])] [As [New] type]

Declares a procedure or variable to only have scope in the
project where it is defined.

Option Compare {Binary | Text | Database}

Specifies the default comparison method to use when
comparing strings.

Option Explicit

Forces declaration of all variables within the module.

Option Private

Indicates that all code within the entire module is Private.
This option is used by default. You can overwrite the effects
of this option by declaring a specific procedure Public.

Private [WithEvents] varname[([subscripts])] [As [New] type]

Declares variables and procedures to only have scope within
the current module.

Public [WithEvents] varname|([subscripts])] [As [New] type]

Declares variables and procedures to have scope within the
entire project.

@

VBA Statements Quick Reference (continued)

~

Variable Declaration (continued)

Changes the dimensions of a dynamic array.

STATEMENT DESCRIPTION

ReDim [Preserve] varname(subscripts) [As type]

[Private | Public] Type varname
elementname [([subscripts])] As type
[elementname [([subscripts])] As type]

End Type

Defines a custom data type.

VBA Function Quick Reference

Legend

Plain courier text = required [] = optional | =or

Italics = user-defined ... = list of items

Array Functions
FUNCTION DESCRIPTION RETURNS
Array(argl,arg2, arg3, . . .) Creates a variant array containing the specified elements. Variant
LBound(arrayname|, dimension) Returns the smallest subscript for the specified array. Long
UBound(arrayname|, dimension)) Returns the largest subscript for the specified array. Long
Data Type Conversion Functions
FUNCTION DESCRIPTION RETURNS
Asc(string) Returns the character code of the first letter in a string. Integer
CBool(expression) Converts an expression to Boolean data type (True or False) Boolean
CByte(expression) Converts an expression to Byte data type. Byte
CCur(expression) Converts an expression to Currency data type. Currency
CDate(expression) Converts an expression to a Date data type. Date
CDbl(expression) Converts an expression to Double data type. Double
CDec(expression) Converts an expression to a decimal value. Variant
(Decimal)
Chr(charactercode) Converts the character code to the corresponding character. | Variant
Chr(9) returns a tab, Chr(34) returns quotation marks, etc.
Clnt(expression) Converts an expression to an Integer data type, rounding Integer
any fractional parts.
continued

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
FD“
-
(¢}
=
a
(¢’)

VBA and Excel Object Model
Quick Reference (continued)

VBA Function Quick Reference (continued)

Data Type Conversion Functions (continued)
FUNCTION DESCRIPTION RETURNS
Clng(expression) Converts an expression to the Long data type. Long
CSng(expression) Converts an expression to the Single data type. Single
CStr(expression) Returns a string containing the specified expression. String
CVar(expression) Converts any data type to a Variant data type. All Variant
numeric values are treated as Double data types and
string expressions are treated as String data types.
Format(expression|, format[, Formats the expression using either predefined or Variant
firstdayofweek] user-defined formats.
firstweekofyear]]])
FormatCurrency(Expression|, Formats the expression as a currency value using the Currency
NumDigitsAfterDecimal system-defined currency symbol.
[, IncludeLeadingDigit
[,UseParensForNegativeNumbers
[, GroupDigits]]]])
FormatDateTime(Date|, Formats an expression as a date and time. Date
NamedFormat])
FormatNumber(Expression Formats the expression as a number. Mixed
[, NumDigitsAfterDecimal
[, IncludeLeadingDigit
[, UseParensForNegativeNumbers
[, GroupDigits]1]])
FormatPercent(Expression Returns the expression formatted as a percentage with String
[,NumDigitsAfterDecimal a trailing % character.
[IncludeLeadingDigit
[,UseParensForNegativeNumbers
[,GroupDigits]11])
Hex(number) Converts a number to a hexadecimal value. Rounds String
numbers to nearest whole number before converting.
Oct(number) Converts a number to an octal value. Rounds numbers Variant (String)
to nearest whole number before converting.
Str(number) Converts a number to a string using the Variant data type. Variant (String)
Val(string) Returns the numeric portion of a string formatted as a Mixed
number of the appropriate data type.

@

VBA Function Quick Reference (continued)

Date and Time Functions

FUNCTION DESCRIPTION RETURNS

Date Returns the current system date. Date

DateAdd(interval, number, date) Returns a date that is the specified interval of time from Date
the original date.

DateDiff(interval, date1, date2], Determines the time interval between two dates. Long

firstdayofweek|,

firstweekofyear]])

DatePart(interval, date], Returns the specified part of a date. Integer

firstdayofweek]

firstweekofyear]])

DateSerial(year, month, day) Converts the specified date to a serial number. Date

DateValue(date) Converts a string to a date. Date

Day(date) Returns a whole number between 1 and 31 representing Integer
the day of the month.

Hour(time) Returns a whole number between 0 and 23 representing Integer
the hour of the day.

Minute(time) Returns a whole number between 0 and 59 representing Integer
the minute of the hour.

Month(date) Returns a whole number between 1 and 12 representing Integer
the month of the year.

Now Returns the current system date and time. Date

Second(time) Returns a whole number between 0 and 59 representing Integer
the second of the minute.

Time Returns the current system time. Date

Timer Indicates the number of seconds that have elapsed Single
since midnight

TimeSerial(hour, minute, second) Creates a time using the specified hour, minute, and Date
second values.

TimeValue(time) Converts a time to the serial number used to store time. Date

WeekDay(date, |firstdayofweek]) Returns a whole number representing the first day of Integer
the week.

Year(date) Returns a whole number representing the year portion Integer
of a date

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
o
-
(¢}
=
a
(¢’)

VBA and Excel Object Model
Quick Reference (continued)

VBA Function Quick Reference (continued)

File and Folder Handling Functions

a series of periodic cash flows

FUNCTION DESCRIPTION RETURNS

CurDir(drive) Returns the current path. String

Dir[(pathname], attributes])] Returns the name of the file, directory, or folder String
that matches the specified pattern.

EOF(filenumber) Returns -1 when the end of a file has been reached. Integer

FileAttr(filenumber, returntype) Indicates the file mode used for files opened with Long
the Open statement.

FileDateTime(pathname) Indicates the date and time when a file was last Date
modified.

FileLen(pathname) Indicates the length of a file in bytes. Long

FreeFile(rangenumber) Returns the next file number available for use by Integer
the Open statement.

GetAttr(pathname) Returns a whole number representing the attributes Integer
of a file, directory, or folder.

Input(number, [#]filenumber) Returns a string containing the indicated number String
of characters from the specified file.

Loc(filenumber) Indicates the current read/write position in an Long
open file.

LOF(filenumber) Returns the size in bytes of a file opened using the Long
Long Open statement.

Seek(filenumber) Specifies the current read/write position with a file Long
opened with the Open statement.

Financial Functions

FUNCTION DESCRIPTION RETURNS

DDB(cost, salvage, life, period|, factor]) Specifies the depreciation value for an asset during Double
a specific time frame.

FV(rate, nper, pmt{, pv[, type]]) Determines the future value of an annuity based Double
on periodic fixed payments.

IPmt(rate, per, nper, pv[, V[, type]]) Determines the interest payment on an annuity Double
for a specific period of time.

IRR(values(), [, guess]) Determines the internal rate of returns for a series Double
of cash flows.

MIRR(values(), finance_rate, reinvest_rate) Returns the modified interest rate of returns for Double

@

VBA Function Quick Reference (continued)

Financial Functions (continued)

FUNCTION DESCRIPTION RETURNS
NPer(rate, pmt, pv[, fv[, type]]) Returns the number of periods for an annuity. Double
NPV(rate, values()) Returns the net present value of an investment. Double
Pmt(rate, nper, pv[, [, type]]) Returns the payment amount for an annuity based Double
on fixed payments.
PPmt(rate, per, nper, pv[, fv[, type]]) Returns the principal payment amount for an annuity. Double
PV(rate, nper, pmt[, fv[, type]]) Returns the present value of an annuity. Double
Rate(nper, pmt, pv[, fV[, type|, guess]]]) Returns the interest rate per period for an annuity. Double
SLN(cost, salvage, life) Determines the straight-line depreciation of an asset Double
for a single period.
SYD(cost, salvage, life, period) Determines the sum-of-years’ digits depreciation of Double
an asset for a specified period.
Information Functions
FUNCTION DESCRIPTION RETURNS
CVErr(errornumber) Returns a user-defined error number. Variant
Error[(errornumber)| Returns the error message for the specified error number. | String
IsArray(varname) Indicates whether a variable contains an array. Boolean
IsDate(expression) Indicates whether an expression contains a date. Boolean
IsEmpty(expression) Indicates whether a variable has been initialized. Boolean
IsError(expression) Indicates whether an expression is an error value. Boolean
IsMissing(argname) Indicates whether an optional argument was passed to Boolean
a procedure.
IsNull(expression) Indicates whether an expression contains no valid data. Boolean
IsNumeric(expression) Indicates whether an expression is a number. Boolean
IsObject(identifier) Indicates whether a variable references an object. Boolean
TypeName(varname) Specifies the variable type. String
VarType(varname) Specifies the subtype of a variable. Integer

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
o
-
(¢}
=
a
(¢’)

VBA and Excel Object Model
Quick Reference (continued)

VBA Function Quick Reference (continued)

Interaction Functions

FUNCTION DESCRIPTION RETURNS

Choose(index, choice-1, Selects and returns a value from a list of arguments. Mixed

[choice-2, ...])

DoEvents() Yields execution so the operating system can process Integer
other events.

lif(expr, truepart, falsepart) Evaluates the expression and returns either the Mixed
truepart or falsepart parameter value.

InputBox(prompt][, title] Displays a dialog box prompting the user for input. String

[, default] [, xpos]

[, ypos] [, helpfie,

context])

GetAllSettings(appname, section) Returns a list of key settings and their values from Variant
the Windows Registry.

GetObject([pathname][, class)) Returns a reference to an object provided by an Variant
ActiveX Component.

GetSetting(appname, section, Returns a key setting value from an application’s Variant

key[, default]) entry in the Windows registry.

MsgBox(prompt[, buttons] Displays a message box and returns a value representing Integer

[, title] [, helpfile, the button pressed by the user

context])

Partition(number, start, stop, Indicates where a number occurs within a series of String

interval) ranges.

QBColor(color) Returns the RGB color code for the specified color. Long

Switch(expr-1, value-1[, expr-2, Evaluates a list of expressions and returns the value Variant

value-2 ...]) associated with the first True expression.
RGB(red, green, blue) Returns a number representing the RGB color value. Long

Mathematical Functions

FUNCTION DESCRIPTION RETURNS
Abs(number) Returns the absolute value of a number. Mixed
Atn(number) Returns the arctangent of a number. Double
Cos(number) Returns the cosine of an angle. Double

@

VBA Function Quick Reference (continued)

Mathematical Functions (continued)

FUNCTION DESCRIPTION RETURNS

Exp(number) Returns the base of the natural logarithms raised to Double
a power.

Fix(number) Returns the integer portion of a number. With Integer
negative values, returns the first negative value greater
than or equal to the number.

Int(number) Returns the integer portion of a number. With negative Integer
values, returns the first negative number less than or
equal to the number

Log(number) Returns the natural logarithm of a number. Double

Round(expression [, numdecimalplaces]) Rounds a number to the specified number of decimal Mixed
places.

Rnd[(number)| Returns a random number between 0 and 1. Single

Sgn(number) Returns 1 for a number greater than 0, 0 for a value Integer
of 0, and -1 for a number less than zero.

Sin(number) Specifies the sine of an angle. Double

Sqr(number) Specifies the square root of a number. Double

Tan(number) Specifies the tangent of an angle. Double

String Manipulation Functions

FUNCTION DESCRIPTION RETURNS

nStr([start, |stringl, Specifies the position of one string within another Long

string2 [, compare]) string.

InStrRev(stringcheck, Specifies the position of one string within another Long

stringmatch|, start], starting at the end of the string.

compare]])

LCase(string) Converts a string to lowercase. String

Left(string, length) Returns the specified number of characters from String
the left side of a string.

Len(string | varname) Determines the number of characters in a string. Long

LTrim(string) Trims spaces from the left side of a string. String

Mid(string, start|, length]) Returns the specified number of characters from String
the center of a string.

Right(string, length) Returns the specified number of characters from String
the right side of a string.

RTrim(string) Trims spaces from the right side of a string. String

Space(number) Creates a string with the specified number of spaces. String

continued

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
o
-
(¢}
=
a
(¢’)

VBA and Excel Object Model
Quick Reference (continued)

VBA Function Quick Reference (continued)

String Manipulation Functions (continued)

FUNCTION DESCRIPTION RETURNS
Spc(n) Positions output when printing to a file. String
Str(number) Returns a string representation of a number. String
StrComp(string1, string2[, compare]) Returns a value indicating the result of a string comparison. Integer
StrConv(string, conversion, LCID) Converts a string to the specified format. String
String(number, character) Creates a string by repeating a character the specified String
number of times.

Tab[(n)] Positions output when printing to a file. String
Trim(string) Trims spaces from left and right of a string. String
UCase(string) Converts a string to uppercase. String

VBA Function Constants and Characters

vbMsgBoxStyle Constants (MsgBox Function)
CONSTANT VALUE DESCRIPTION
vbAbortRetrylgnore 2 Displays Abort, Retry, and Ignore buttons.
vbApplicationModal 0 Creates application modal message box.
vbCritical 16 Displays Critical Message icon.
vbDefaultButton1 0 Makes first button default.
vbDefaultButton2 256 Makes second button default.
vbDefaultButton3 512 Makes third button default.
vbDefaultButton4 768 Makes fourth button default.
vbExclamation 48 Displays Warning Message icon.
vbInformation 64 Displays Information Message icon.
vbMsgBoxHelpButton 16384 Adds a Help button.

@

VBA Function Constants and Characters (continued)

vbMsgBoxStyle Constants (MsgBox Function) (continued)

CONSTANT VALUE DESCRIPTION

vbMsgBoxRight 524288 Right aligns text in the box.

vbMsgBoxRtIReading 1048576 Used only with Hebrew and Arabic systems
for right-to-left reading.

vbMsgBoxSetForeground 65536 Makes message box the foreground window.

vbOKCancel 1 Displays OK and Cancel buttons.

vbOKOnly 0 Displays only the OK button.

vbQuestion 32 Displays Warning Query icon.

vbRetryCancel 5 Displays Retry and Cancel buttons.

vbSystemModal 4096 Creates a system modal message box.

vbYesNo 4 Displays Yes and No buttons.

vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.

vhDayOfWeek Constants

CONSTANT VALUE DESCRIPTION

vbUseSystemDayofWeek 0 Uses the system defined first day of week.

vbSunday 1 Sunday (default).

vbMonday 2 Monday.

vbTuesday 3 Tuesday.

vbWednesday 4 Wednesday.

vbThursday 5 Thursday.

vbFriday 6 Friday.

vbSaturday 7 Saturday.

vhFirstWeekOfYear Constants

CONSTANT VALUE DESCRIPTION

vbUseSystem 0 Uses system defined first week of year.

vbFirstjan1 1 Starts with week in which January 1 occurs
(default).

vbFirstFourDays 2 Starts with the first week that has at least
four days in the new year.

vbFirstFullWeek 3 Starts with first full week of the year.

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
FD“
-
(¢}
=
a
(¢’)

VBA and Excel Object Model

Quick Reference (continued)

VBA Function Constants and Characters (continued)

Format Function Characters

DATE/TIME CHARACTERS DISPLAYS

d Day with no leading zero.

ddd Three-letter abbreviation of day (Sun. - Sat.).
dddd Full day name (Sunday).

ddddd Complete date using short date format.
dddddd Complete date using long date format.

w Day of week as number (1 for Sunday).

ww Week of year as number.

m Month with no leading zero.

mmm Three letter abbreviation of month (Jan.-Dec.).
mmmm Complete month name.

q Quarter of year.

y Day of year as number.

yy Year as 2-digit number.

yyyy Year as 4-digit number.

h Hour with no leading zero.

n Minutes with no leading zero.

s Seconds with no leading zero.

teeet Complete time using system time format.

c Date as dddddd and time as ttttt.

Format Function Predefined Formats

FORMAT DESCRIPTION

General Date Uses general date format.

Long Date Uses system-defined long date, such as Tuesday, August 7,
2007.

Medium Date Uses the medium date format, such as 07-Aug-07.

Short Date Uses system-defined short date, such as 8/7/2007.

Long Time Uses system-defined long time, such as 5:45:30 P.M.

Medium Time Uses the medium time format, such as 05:45 P.M.

Short Time Uses the short time format, such as 17:45.

@

VBA Function Constants and Characters (continued)

Format Function Predefined Formats (continued)
General Number Uses the general number format.
Currency Places the appropriate currency symbol in front of the number.
Fixed Uses a fixed decimal format.
Standard Uses standard formatting.
Percent Converts the expression to a percentage.
Scientific Displays the expression using scientific notation.
Yes/No Converts the expression to a Yes or No value.
True/False Converts the expression to a True or False value.
On/Off Converts the expression to an On or Off value.

Excel Object Model Constants

XIColumnDataType Constants

CONSTANT VALUE DESCRIPTION

xIDMYFormat 4 DMY format date.

xIDYMFormat 7 DYM format date.

xIEMDFormat 10 EMD format date.

xIGeneralFormat 1 General format.

xIMDYFormat 3 MDY format date.

xIMYDFormat 6 MYD format date.

xISkipColumn 9 Skip Column.

xITextFormat 2 Text format.

xIYDMFormat 8 YDM format date.

xIYMDFormat 5 YMD format date.

XIFileFormat Constants

CONSTANT VALUE DESCRIPTION

xIAddIn 18 Excel add-in.

xIAddIn8 18 Excel 2007 Add-In

xICSV 6 Comma-separated values format.

xICSVMac 22 Macintosh comma-separated
values format.

continued

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
FD“
-
(¢}
=
a
(¢’)

VBA and Excel Object Model

Quick Reference (continued)

Excel Object Model Constants (continued)

XIFileFormat Constants (continued)
CONSTANT VALUE DESCRIPTION
xICSVMSDOS 24 MSDOS comma-separated values format.
xICSVWindows 23 MS Windows comma-separated values format.
xICurrentPlatformText -4158 Text file based on current operating system.
xIDBF2 7 DBase Il format.
xIDBF3 8 DBase Il format.
xIDBF4 11 DBase IV format.
xIDIF 9 Data interchange format.
x|Excel12 50 Excel 12 format.
x|Excel2 16 Excel 2
x|Excel2FarEast 27 Excel 2.0 format - Far East version.
x|Excel3 29 Excel 3.0 format.
x|Excel4 33 Excel 4.0 format.
x|Excel4Workbook 35 Excel 4.0 workbook format.
x|Excel5 39 Excel 5.0 format.
x|Excel7 39 Excel 97 format.
x|Excel9597 43 Excel 95 - 97 format.
xIHtml 44 HTML format.
xlIntlAddIn 26 Excel international Add-in.
xlIntlMacro 25 Excel international macro.
xlIOpenXMLAddin 55 Open XML Add-In.
xIOpenXMLTemplate 54 Open XML Template.
xIOpemXMLTemplateMacroEnabled 53 Open XML Template Macro Enabled.
xlIOpenXMLWorkbook 51 Open XML Workbook.
xIOpenXMLWorkbookzMacroEnabled 52 Open XML Workbook Enabled.
xISYLK 2 Symbolic link format.
xITemplate 17 Template file format.
xITemplate8 17 Template.
xITextMac 19 Macintosh text file format.
x|ITextMSDOS 21 MSDOS text file format.
xITextPrinter 36 Text file created for a printer (.prn).
x|ITextWindows 20 MS Window text file format.

@

Excel Object Model Constants (continued)

XIFileFormat Constants (continued)

CONSTANT VALUE DESCRIPTION
xlUnicodeText 42 Unicode text file format.
xIWebArchive 45 Web archive format (.mht).
xIWJ2WD1 14 WJ2WD1
M 40 w3
xIWJ3FM3 41 WJ3F)3
xIWK1 5 Lotus 2.x format.
xIWK1TALL 31 Lotus 2.x .all format.
xIWK1FMT 30 Lotus 2.x .fmt format.
xIWK3 15 Lotus 3.x format.
xIWK3FM3 32 Lotus 3.x and Lotus 1-2-3 for Windows
format.

xIWK4 38 Lotus 4.0 format.
xIWKS 4 MS Works file format.
xIWorkBookDefault 51 Workbook default
xIWorkbookNormal -4143 Excel workbook format.
xIWorks2FarEast 28 MS Works file - Far East format.
xIWQ1 34 Quattro Pro for MSDOS format.
xIXMLSpreadsheet 46 XML format.

MsoFileType Constants
CONSTANT VALUE DESCRIPTION
msoFileTypeAllFiles 1 All file types.
msoFileTypeBinders 6 Microsoft Office Binder file.
msoFileTypeCalendarltem 11 Microsoft Outlook Calendar item.
msoFileTypeContactltem 12 Microsoft Outlook Contact item.
msoFileTypeDatabases 7 Database files.
msoFileTypeDataConnectionFiles 17 Database connection files.
msoFileTypeDesignerFiles 22 Designer files.
msoFileTypeDocumentlmagingFiles 20 Document imaging files.
msoFileTypeExcelWorkbooks 4 Microsoft Excel Workbooks.
msoFileTypeJournalltem 14 Journal items.
msoFileTypeMailltem 10 Microsoft Outlook Mail message.
msoFileTypeNoteltem 13 Microsoft Outlook Note item.
msoFileTypeOfficeFiles 2 All Microsoft Office file types.

continued

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
o
-
(¢}
=
a
(¢’)

VBA and Excel Object Model

Quick Reference (continued)

Excel Object Model Constants (continued)

MsoFileTypeConstant (continued)

CONSTANT VALUE DESCRIPTION
msoFileTypeOutlookltems 9 Microsoft Outlook files.
msoFileTypePhotoDrawFiles 16 Microsoft PhotoDraw files.
msoFileTypePowerPointPresentations 5 Microsoft PowerPoint files.
msoFileTypeProjectFiles 19 Microsoft Project files.
msoFileTypePublisherFiles 18 Microsoft Publisher files.
msoFileTypeTaskltem 15 Microsoft Outlook Task item.
msoFileTypeTemplates 8 Template files.
msoFileTypeVisioFiles 21 Visio files.
msoFileTypeWebPages 23 Web pages including .htm, .asp, and .mht files.
msoFileTypeWordDocuments 3 Microsoft Word documents.
XIChartType Constants
CONSTANT VALUE CHART TYPE
xI3DArea -4098 3D Area.
xI3DAreaStacked 78 3D Stacked Area.
xI3DAreaStacked100 79 100% Stacked Area.
xI3DBarClustered 60 3D Clustered Bar.
xI3DBarStacked 61 3D Stacked Bar.
x|3DBarStacked100 62 3D 100% Stacked Bar.
xI3DColumn -4100 3D Column.
xI3DColumnClustered 54 3D Clustered Column.
xI3DColumnStacked 55 3D Stacked Column.
xI3DColumnStacked100 56 3D 100% Stacked Column.
xI3DLine -4101 3D Line.
xI3DPie -4102 3D Pie.
x|3DPieExploded 70 Exploded 3D Pie.
xlArea 1 Area.
x|AreaStacked 76 Stacked Area.
xlAreaStacked100 77 100% Stacked Area.
x|BarClustered 57 Clustered Bar.

@

Excel Object Model Constants (continued)

XiChartType Constants (continued)

CONSTANT VALUE CHART TYPE

xIBarOfPie 71 Bar of Pie.

x|BarStacked 58 Stacked Bar.
xIBarStacked100 59 100% Stacked Bar.
xIBubble 15 Bubble.

xIBubble3DEffec 87 Bubble with 3D effects.
xIColumnClustered 51 Clustered Column.
xIColumnStacked 52 Stacked Column.
xIColumnStacked100 53 100% Stacked Column.
xIConeBarClustered 102 Clustered Cone Bar.
xIConeBarStacked 103 Stacked Cone Bar.
xIConeBarStacked100 104 100% Stacked Cone Bar.
xIConeCol 105 3D Cone Column.
xIConeColClustered 99 Clustered Cone Column.
xIConeColStacked 100 Stacked Cone Column.
xIConeColStacked100 101 100% Stacked Cone Column.
xICylinderBarClustered 95 Clustered Cylinder Bar.
xICylinderBarStacked 96 Stacked Cylinder Bar.
xICylinderBarStacked 100 97 100% Stacked Cylinder Bar.
xICylinderCol 98 3D Cylinder Column.
xICylinderColClustered 92 Clustered Cone Column.
xICylinderColStacked 93 Stacked Cone Column.
xICylinderColStacked 100 94 100% Stacked Cylinder Column.
xIDoughnut -4120 Doughnut.
xIDoughnutExploded 80 Exploded Doughnut.

xILine 4 Line.

xILineMarkers 65 Line with Markers.
xILineMarkersStacked 66 Stacked Line with Markers.
xlLineMarkersStacked100 67 100% Stacked Line with Markers.
xILineStacked 63 Stacked Line.
xILineStacked100 64 100% Stacked Line.

xIPie 5 Pie.

xIPieExploded 69 Exploded Pie.

xIPieOfPie 68 Pie of Pie.
xIPyramidBarClustered 109 Clustered Pyramid Bar.

continued

continued 9

v x1puaddy

3
.

{

>
)
=3
a
w
&
o
-
(¢}
=
a
(¢’)

VBA and Excel Object Model

Quick Reference (continued)

Excel Object Model Constants (continued)

XiChartType Constants (continued)

CONSTANT VALUE CHART TYPE

xIPyramidBarStacked 110 Stacked Pyramid Bar.

xIPyramidBarStacked 100 111 100% Stacked Pyramid Bar.

xIPyramidCol 112 3D Pyramid Column.

xIPyramidColClustered 106 Clustered Pyramid Column.

xIPyramidColStacked 107 Stacked Pyramid Column.

xIPyramidColStacked 100 108 100% Stacked Pyramid Column.

xIRadar -4151 Radar.

xIRadarfFilled 82 Filled Radar.

xIRadarMarkers 81 Radar with Data Markers.

xIStockHLC 88 High-Low-Close.

xIStockOHLC 89 Open-High-Low-Close.

xIStockVHLC 90 Volume-High-Low-Close.

xIStockVOHLC 91 Volume-Open-High-Low-Close.

xISurface 83 3D Surface.

xISurfaceTopView 85 Top View Surface.

xISurfaceTopViewWireframe 86 Top View Wireframe Surface.

xISurfaceWireframe 84 3D Surface Wireframe.

xIXYScatter -4169 Scatter.

xIXYScatterLines 74 Scatter with Lines.

xIXYScatterLinesNoMarkers 75 Scatter with Lines and No Data Markers.

xIXYScatterSmooth 72 Scatter with Smoothed Lines.

xIXYScatterSmoothNoMarkers 73 Scatter with Smoothed Lines and No Data Markers.
XlLineStyle Constants

CONSTANT VALUE DESCRIPTION

xIContinuous 1 Continuous solid line.

xIDash -4155 Dashed line.

xIDashDot 4 Line with the pattern dash dot.

xIDashDotDot 5 Line with the pattern dash dot dot.

xIDot -4118 Dotted line.

@

v x1puaddy

3
.

. 3

Excel Object Model Constants (continued) S
>
XlLineStyle Constants (continued) (@)
=1
CONSTANT VALUE DESCRIPTION '(;:
xIDouble -4119 Double solid line. =
xISlantDashDot 13 Slanted line with the pattern dash dot. gﬂ
xlineStyleNone -4142 No line. 8
=]
Q
XIBorderWeight Constants @
CONSTANT VALUE DESCRIPTION
xIHairline 1 Creates a very thin line.
xIMedium -4138 Creates a medium width line.
xIThick 4 Creates a thick line.
xIThin 2 Creates a thin line.

XIPattern Constants

CONSTANT VALUE DESCRIPTION
xIPatternAutomatic -4105 System default.
x|PatternChecker 9 Checkered pattern.
xIPatternCrissCross 16 Criss-cross pattern.
xIPatternDown -4121 Downward pattern.
xIPatternGray25 -4124 25% gray pattern.
xIPatternGray50 -4125 50% gray pattern.
x|PatternGray75 -4126 75% gray pattern.
xIPatternGrid 15 Grid pattern.
xIPatternHorizontal -4128 Horizontal pattern.
xIPatternLightHorizontal 11 Light horizontal pattern.
xIPatternLightVertical 12 Light vertical pattern.
x|PatternLightDown 13 Light downward pattern.
xIPatternLightUp 14 Light upward pattern.
xIPatternNone -4142 No pattern.
xIPatternSemiGray75 10 75% semi-gray pattern.
xIPatternSolid 1 Solid color, no pattern.
xIPatternUp -4162 Upward pattern.
xIPatternVertical -4166 Vertical pattern.

Ribbon Controls ¢ ,

Quick Reference

XML Controls

XML controls specific to the Ribbon.

CONTROL DESCRIPTION COMMON ATTRIBUTES CHILDREN
customUI The root tag for Ribbon None commands, ribbon
customizations.
commands Globally repurposed commands. None command
command Represents the command that enabled, getEnabled, contextualTabs, officeMenu,
you are repurposing. idMso (required), onAction qat, tabs
contextualTabs The contextual tabs that display in None tabSet
Excel. For example, the Chart tools.
tabSet A collection of tab controls. getVisible, idMso (required),
visible tab
qat The Quick Access Toolbar. Used None documentControls,
only in the start from scratch mode. sharedControls
sharedControls Controls shared across documents. | None button, control, separator
In general, you should use
documentControls, not
sharedControls.
documentControls | Controls specific to a document. None button, control, separator
officeMenu Microsoft Office menu controls. None button, checkbox, control,
dynamicMenu, gallery, menu,
menuSeparator, splitButton,
toggleButton
tabs Container for tab controls. None tab
tab A tab on the Ribbon. getKeytip, getlabel, getVisible, | group
id, idMso, idQ, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip, label,
tag, visible
group A group on a tab on the Ribbon. getlmage, getimageMso, box, button, buttonGroup,
getKeytip, getLabel, checkBox, comboBox, control,
getScreentip, getSupertip, dialogBoxLauncher, dropDown,
getVisible, id, idMso, idQ, editBox, gallery, labelControl,
image, imageMso, menu, separator, splitButton,
insertAfterMso, insertAfterQ, toggleButton
insertBeforeMso, insertBeforeQ,
keytip, label, screentip,
supertip, visible

XML Basic Controls 1
=

(@)

=
CONTROL DESCRIPTION COMMON ATTRIBUTES CHILDREN E;‘

box Use to arrange getVisible, id, idQ, insertAfterMso, box, button, o
controls within insertAfterQ, insertBeforeMso, buttonGroup, checkBox, o
a group. insertBeforeQ, visible comboBox, control,
dropdown,

dynamicMenu, editBox,
gallery, labelControl,
menu, splitButton,
toggleButton

button Use to represent description, enabled, getDescription, None
a button control. getEnabled, getimage, getimageMso,
getKeytip, getLabel, getScreentip,
getShowlmage, getShowLabel, getSize,
getSupertip, getVisible, id, idMso, idQ,
image, imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso, insertBeforeQ,
keytip, label, onAction, screentip, showlmage,
showlabel, size, supertip, tag, visible

5
o
o
=
Q
o
=
=
=
o
P
7
@)
=3
o
=~
)
()
@
=
o
=
Q
(¢’

buttonGroup | Use to create a getVisible, id, idQ, insertAfterMso, button, control,
grouping of insertAfterQ, insertBeforeMso, dynamicMenu, gallery,
buttons. insertBeforeQ, visible menu, splitButton,
toggleButton
checkbox Use to create description, enabled, getDescription, None
a check box getEnabled, getKeytip, getLabel,
control. getScreentip, getSupertip, getVisible, id,

idMso, idQ, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, keytip,
label, onAction, screentip, supertip,

tag, visible
comboBox Use to create enabled, getEnabled, getimage, getimageMso, item
a combo box getKeytip, getLabel, getScreentip, getShowlmage,
control. getShowlabel, getSupertip, getVisible, id, idMso,

idQ, image, imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso, insertBeforeQ,
label, screentip, showlmage, showLabel, supertip,
tag, visible, Shared with editBox: getText,
maxLength, onChange, sizeString

dialogBox Use to create a None button (required)
Launcher dialog box launcher
for a group. A
group control can
only have one
dialog box launcher,
the control must
contain a button
control, and must
be the final element
in the group
element.

continued

continued 9

Ribbon Controls Quick

Reference (continued)

XML Basic Controls (continued)

CONTROL

dropdown

DESCRIPTION

Use to create a
drop-down list
box.

COMMON ATTRIBUTES

enabled, getEnabled, getimage, getimageMso,
getKeytip, getLabel, getScreentip, getShowlmage,
getShowlabel, getSupertip, getVisible, id, idMso,
idQ, image, imageMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, keytip, label,
onAction, screentip, showlmage, showLabel,
supertip, tag, visible Shared with comboBox:
getltemCount, getltem|D, getltemImage,
getltemLabel, getltemScreentip, getltemSupertip,
showltemlmage, Shared with editBox: sizeString

CHILDREN

item

dynamicMenu

Use to create a
menu at run time.

description, enabled, getDescription, getEnabled,
getlmage, getimageMso, getKeytip, getLabel,
getScreentip, getShowlmage, getShowlabel,
getSize, getSupertip, getVisible, id, idMso, idQ,
image, imageMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, keytip, label,
screentip, showlmage, showlabel, supertip, tag,
visible

Same as a menu, but is
populated by using the
getContent callback.

editBox

Use to create an
edit box control.

enabled, getEnabled, getlmage, getimageMso,
getKeytip, getLabel, getScreentip, getShowlmage,
getShowlabel, getSupertip, getVisible, id, idMso,
idQ, image, imageMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, keytip, label,
screentip, showlmage, showlabel, supertip, tag, visible

None

gallery

Use to create a
gallery control.

description, enabled, getDescription, getEnabled,
getlmage, getimageMso, getKeytip, getLabel,
getScreentip, getShowlmage, getShowlabel,
getSize,getSupertip, getVisible, id, idMso, idQ,
image, imageMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, keytip, label,
onAction, screentip, showlmage, showLabel, size,
supertip, tag, visible, Shared with comboBox:
getltemCount, getltem|D, getltemImage,
getltemLabel, getltemScreentip, getltemSupertip,
showltemlmage, showltemLabel, Shared with
dropDown: getSelectedltemID, getSelecteditem
Index Shared with editBox: sizeString

item, button. Buttons must be
listed after the items, and all
buttons appear at the bottom
of the gallery.

item

A static gallery,
dropDown, or
comboBox item.

If you specify
static items, you
cannot also specify
dynamic items.

id, image, imageMso, label, screentip, supertip

None

XML Basic Controls (continued)

split button
control.

getSize, getSupertip, getVisible, id, idMso, idQ,
insertAfterMso, insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip, showlLabel (determines
whether the button or toggle button control
displays its label), size, supertip, tag, visible

CONTROL DESCRIPTION COMMON ATTRIBUTES CHILDREN
labelControl Use to create a enabled, getEnabled, getlLabel, getScreentip, None
label control. getShowlabel, getSupertip, getVisible, id, idMso,
idQ, insertAfterMso, insertAfterQ, insertBeforeMso,
insertBeforeQ, label, screentip, showLabel, supertip,
tag, visible
menu Use to create a description, enabled, getDescription, getEnabled, button, checkBox,
menu control. getlmage, getimageMso, getKeytip, getLabel, control, dynamicMenu,
getScreentip, getShowlmage, getShowlabel, getSize, | gallery, menu,
getSupertip, getVisible, id, idMso, idQ, image, menuSeparator,
imageMso, insertAfterMso, insertAfterQ, splitButton,
insertBeforeMso, insertBeforeQ, keytip, label, toggleButton
screentip, showlmage, showlabel, size, supertip,
tag, visible
menu Use to create a id, idQ, insertAfterMso, insertAfterQ, None
Separator separator line insertBeforeMso, insertBeforeQ
(which can
optionally include
a text label)
between menu
items.
separator Use to create a getVisible, id, idQ, insertAfterMso, insertAfterQ, None
separator line insertBeforeMso, insertBeforeQ), visible
between controls.
splitButton Use to create a enabled, getEnabled, getKeytip, getShowLabel, button or toggleButton

(required, only one
permitted, and must
appear before the
menu): The main button
for the split button
control menu (required,

and only one permitted):

The menu of a split
button control.

toggleButton

Use to create a
toggle button
control.

description, enabled, getDescription, getEnabled,
getimage, getimageMso, getKeytip, getlLabel,
getPressed, getScreentip, getShowlmage,
getShowlabel, getSize, getSupertip, getVisible,

id, idMso, idQ, image, imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso, insertBeforeQ,
keytip, label, onAction, screentip, showlmage,
showlabel, size, supertip, tag, visible

None

continued 9

d x1puaddy

.
.

5
o
o
=
Q
o
=
=
=
o
P
7
@)
=3
o
=~
)
()
@
=
o
=
Q
(¢’

Ribbon Controls Quick

Reference (continued)

Attributes and Methods of Ribbon Controls

The following tables list the attributes and methods related to
specific ribbon controls.

CONTROL ATTRIBUTE OR METHOD TYPE OR ACTION DESCRIPTION

customUI xmlns String You must set xmlns to http://schemas.microsoft.com/
office/2006/01/customui

customU| onload callback As the Ribbon load passes a Ribbon parameter to the
callback procedure. This enables the associated code
to store a reference to the Ribbon for later use.

customUI loadlmage callback Use to create a procedure to load all of the images
required by the Ribbon.

CONTROL ATTRIBUTE VALUES

ribbon startFromScratch True, False, 1, 0

DESCRIPTION

Set to True, to hide built-in Ribbon tabs and display a minimal
File menu.

CONTROL ATTRIBUTE VALUES

box boxStyle Horizontal, Vertical

DESCRIPTION

Sets the flow of the controls inside a box.

CONTROL ATTRIBUTE

checkBox getPressed callback

TYPE OR ACTION DESCRIPTION

Use to specify whether the checkBox control is pressed.

CONTROL ATTRIBUTE OR

METHOD

DESCRIPTION

comboBox getltemCount callback Returns the number of items in a comboBox.

comboBox getltemID callback Returns the ID of for the item.

comboBox getltemlmage callback Returns the image for the item.

comboBox getltemLabel callback Returns the label of for the item.

comboBox getltemScreentip callback Returns the ScreenTip of for the item.

comboBox getltemSupertip callback Returns the Enhanced ScreenTip for the item.

comboBox showltemlmage True, False, 1,0 Specifies whether to display the item image.

CONTROL METHOD ACTION DESCRIPTION

dropdown getSelectedltemID callback Asks for the item that should be selected by ID. Specify either this
attribute or the getSelectedItemIndex attribute, but not both.

dropdown getSelectedltemindex | callback Asks for the item that should be selected by index. Specify either
this attribute or the getSelectedltemld attribute, but not both.

dropdown showltemLabel True, False, 1,0 Indicates whether items should display labels.

@

d x1puaddy

.
.

Attributes and Methods of Ribbon Controls (continued)

CONTROL METHOD ACTION DESCRIPTION

dynamicMenu getContent callback Returns an XML string that contains the contents of the
dynamic menu.

CONTROL ATTRIBUTE TYPEOR DESCRIPTION
OR METHOD ACTION !
editBox getText callback Returns the text that displays in the edit box.
editBox maxLength Integer The maximum number of characters that a user can type in a
edit box.
editBox onChange callback Called when the value in the edit box changes.
editBox sizeString String A string, such as “wwwwwwwwww”. Determines the size of an
edit box.

g
=2
o
=
(@
=)
=
=
-
o
P
75}
®)
=
(@)
o~
=~
8
o
-
(]
=
(@)
(¢’

CONTROL ATTRIBUTE TYPEOR DESCRIPTION
OR METHOD ACTION

gallery columns Integer The number of columns in a gallery.

gallery getltemHeight callback Requests the height of items, in pixels.

gallery getltemWidth callback Requests the width of items, in pixels.

gallery itemHeight Integer The height of items, in pixels.

gallery itemWidth Integer The width of items, in pixels.

gallery rows Integer The number of rows in a gallery.

CONTROL ATTRIBUTE VALUES DESCRIPTION

menu itemSize Normal, The size of an item. The Description property shows for Large
Large menu items.

CONTROL ATTRIBUTE TYPEOR DESCRIPTION
ACTION

menuSeparator | title String The text for this separator.

menuSeparator | getTitle callback Callback for this separator’s text.

CONTROL ATTRIBUTE TYPEOR DESCRIPTION
ACTION

toggleButton getPressed callback Enables you to specify whether the toggle button control is

pressed.

continued 9

Ribbon Controls Quick

Reference (continued)

Callbacks

The following table lists all of the callbacks used by RibbonX.

CONTROL CALLBACK NAME SIGNATURES

(several controls) getDescription Sub GetDescription (control As IRibbonControl, ByRef description)

(several controls) getEnabled Sub GetEnabled (control As IRibbonControl, ByRef enabled)

(several controls) getlmage Sub Getlmage (control As IRibbonControl, ByRef image)

(several controls) getlmageMso Sub GetlmageMso (control As IRibbonControl, ByRef imageMso)

(several controls) getlabel Sub GetLabel (control As IRibbonControl, ByRef label)

(several controls) getKeytip Sub GetKeytip (control As IRibbonControl, ByRef label)

(several controls) getSize Sub GetSize (control As IRibbonControl, ByRef size)

(several controls) getScreentip Sub GetScreentip (control As IRibbonControl, ByRef screentip)

(several controls) getSupertip Sub GetSupertip (control As IRibbonControl, ByRef screentip)

(several controls) getVisible Sub GetVisible (control As IRibbonControl, ByRef visible)

button getShowlmage Sub GetShowlmage (control As IRibbonControl, ByRef showlmage)

button getShowlabel Sub GetShowlabel (control As IRibbonControl, ByRef showLabel)

button onAction - repurposed Sub OnAction (control As IRibbonControl, byRef CancelDefault)

button onAction Sub OnAction (control As IRibbonControl)

checkBox getPressed Sub GetPressed (control As IRibbonControl, ByRef returnValue)

checkBox onAction Sub OnAction (control As IRibbonControl, pressed As
Boolean)(pvarfPressed)

comboBox getltemCount Sub GetltemCount (control As IRibbonControl, ByRef count)

comboBox getltem|D Sub GetltemID (control As IRibbonControl, index As Integer, ByRef id)

comboBox getltemImage Sub GetltemImage (control As IRibbonControl, index As Integer, ByRef
image)

comboBox getltemLabel Sub GetltemLabel (control As IRibbonControl, index As Integer, ByRef label)

comboBox getltemScreenTip Sub GetltemScreenTip (control As IRibbonControl, index As Integer, ByRef
screentip)

comboBox getltemSuperTip Sub GetltemSuperTip (control As IRibbonControl, index As Integer, ByRef
supertip)

comboBox getText Sub GetText (control As IRibbonControl, ByRef text)

comboBox onChange Sub OnChange (control As IRibbonControl, text As String)

customU| loadlmage Sub LoadImage (imageld As string, ByRef image)

customUI onlLoad Sub OnLoad (ribbon As IRibbonUI)

dropDown getltemCount Sub GetltemCount (control As IRibbonControl, ByRef count)

@

Callbacks (continued)

CONTROL CALLBACK NAME SIGNATURES

dropDown getltem|D Sub GetltemID (control As IRibbonControl, index As Integer,
ByRef id)

dropDown getltemlmage Sub GetltemImage (control As IRibbonControl, index As Integer,
ByRef image)

dropDown getltemLabel Sub GetltemLabel (control As IRibbonControl, index As Integer,
ByRef label)

dropDown getltemScreenTip Sub GetltemScreenTip (control As IRibbonControl, index As
Integer, ByRef screenTip)

dropDown getltemSuperTip Sub GetltemSuperTip (control As IRibbonControl, index As Integer,
ByRef superTip)

dropDown getSelectedltemID Sub GetSelectedltemID (control As IRibbonControl, ByRef index)

dropDown getSelectedltemIndex Sub GetSelectedltemIndex (control As IRibbonControl, ByRef index)

dropDown onAction Sub OnAction (control As IRibbonControl, selectedld As String,
selectedindex As Integer)

dynamicMenu getContent Sub GetContent (control As IRibbonControl, ByRef content)

editBox getText Sub GetText (control As IRibbonControl, ByRef text)

editBox onChange Sub OnChange (control As IRibbonControl, text As String)

gallery getltemCount Sub GetltemCount (control As IRibbonControl, ByRef count)

gallery getltemHeight Sub getltemHeight (control As IRibbonControl, ByRef height)

gallery getltem|D Sub GetltemID (control As IRibbonControl, index As Integer,
ByRef id)

gallery getltemlmage Sub Getltemlmage (control As IRibbonControl, index As Integer,
ByRef image)

gallery getltemLabel Sub GetltemLabel (control As IRibbonControl, index As Integer,
ByRef label)

gallery getltemScreenTip Sub GetltemScreenTip (control As IRibbonControl, index as Integer,
ByRef screen)

gallery getltemSuperTip Sub GetltemSuperTip (control As IRibbonControl, index as Integer,
ByRef screen)

gallery getltemWidth Sub getltemWidth (control As IRibbonControl, ByRef width)

gallery getSelectedltemID Sub GetSelectedltemID (control As IRibbonControl, ByRef index)

gallery getSelectedltemIndex Sub GetSelectedltemIndex (control As IRibbonControl, ByRef index)

gallery onAction Sub OnAction (control As IRibbonControl, selectedld As String,
selectedIndex As Integer)

menuSeparator getTitle Sub GetTitle (control As IRibbonControl, ByRef title)

toggleButton getPressed Sub GetPressed (control As IRibbonControl, ByRef returnValue)

toggleButton onAction Sub OnAction (control As IRibbonControl, pressed As Boolean,
byRef cancelDefault)

toggleButton onAction Sub OnAction (control As IRibbonControl, pressed As Boolean)

continued 9

d x1puaddy

.
.

5
o
o
=
Q
o
=
=
=
o
P
7
@)
=3
o
=~
)
()
@
=
o
=
Q
(¢’

Ribbon Controls Quick

Reference (continued)

Attributes

The following table lists all of the Ribbon attributes used by

RibbonX.

ATTRIBUTE

DESCRIPTION

description String When the itemSize attribute is set to large, sets the description text that displays in
menus.

enabled true, false, Enables controls.

0,1

getContent callback Retrieves XML content that describes the menu. Used with a dynamic menu.

getDescription callback Returns the control description.

getEnabled callback Returns the control enabled state.

getlmage callback Returns the image.

getlmageMso callback Uses a control ID to returns a built-in control icon.

getltemCount callback Returns the number of items in a combo box, drop-down list, or gallery.

getltem|D callback Returns the ID for a specific item in a combo box, drop-down list, or gallery.

getltemlmage callback Returns the image for a specific item in a combo box, drop-down list, or gallery.

getltemLabel callback Returns the label for a specific item in a combo box, drop-down list, or gallery.

getltemScreentip callback Returns the ScreenTip for a specific item in a combo box, drop-down list, or gallery.

getltemSupertip callback Returns the Enhanced ScreenTip for a specific item in a combo box, drop-down list,
or gallery.

getKeytip callback Returns the KeyTip.

getlLabel callback Returns the label.

getPressed callback When used with a toggle button, gets a value that indicates whether the state is
pressed or not pressed. When used with a checkbox, gets a value that indicates
whether the state is selected or cleared.

getScreentip callback Returns the ScreenTip.

getSelecteditemID callback For a drop-down list or gallery, gets the ID of the selected item.

getSelectedltemindex | callback For a drop-down list or gallery, gets the index of the selected item.

getShowlmage callback Returns a value that sets whether to display the control image.

getShowlabel callback Returns a value that sets whether to display the control label.

getSize callback Returns a value that sets the size of a control (normal or large).

getSupertip callback Returns a value that sets the Enhanced ScreenTip for a control.

getText callback For a text box or edit box, gets the text to display in the edit portion of the control.

@

Attributes (continued)

ATTRIBUTE

DESCRIPTION

getTitle callback For a menu separator, sets the text to display (rather than a horizontal line).

getVisible callback Returns the value that determines whether the control is visible.

id String A user-defined unique identifier for a control. If you define an id, do not
assign an idMso or an idQ.

idMso control id Built-in control ID. If you define an idMso, do not assign an id or an idQ.

idQ qualified id Qualified control ID, prefixed with a namespace identifier. If you define an
idQ, do not assign an idMso or an id.

image String Sets the image for a control.

imageMso control id Sets the identifier for a built-in image.

insertAfterMso control id Specifes the identifier for the built-in control after which the control is
positioned.

insertAfterQ qualified id Specifies the identifier of a qualified control (that is, the control whose idQ
property was specified) after which the control is positioned.

insertBeforeMso control id Specifies the identifier for the built-in control before the control is positioned.

insertBeforeQ qualified id Specifies the identifier of a qualified control (that is, a control whose idQ
property was specified) before which the control is positioned.

itemSize large, normal Sets the size for the items in the menu.

keytip String Sets the KeyTip for the control. KeyTips display when the user presses the
ALT key plus a letter.

label String Sets the label for the control.

onAction callback Called when the user clicks the control.

onChange callback Called when the user commits text in an edit box or combo box.

screentip String Sets the control’s ScreenTip.

showlmage true, false, 0, 1 Specifed whether the control’s image displays.

showltemlmage

true, false, 0, 1

In a combo box, drop-down list, or gallery, specifies whether each item’s
image shows.

showltemLabel

true, false, 0, 1

In a combo box, drop-down list, or gallery, specifies whether to show each
item’s label.

showlabel true, false, 0, 1 Specifies whether the control’s label shows.

size large, normal Sets the size of the control.

sizeString String Sets a string, such as “MMMMM?”. The string sets the width of the control.

supertip String Sets the Enhanced ScreenTip for the control. An EnhancedScreenTip is a
longer screen tip.

tag String Sets user-defined text that enables you to store information about the
control that is not pertinent to any other specific property.

title String Used with a menu separator. Sets the text displayed (rather than a
horizontal line).

visible true, false, 0, 1 Determines whether the control is visible.

d x1puaddy

.
.

5
o
o
=
Q
o
=
=
=
o
P
7
@)
=3
o
=~
)
()
@
=
o
=
Q
(¢’

Symbols

& (ampersand), concatenation operator, 58
¢ (apostrophe), comment indicator, 48
* (asterisk)
multiplication operator, 56
wildcard character, 150
\ (backslash), integer division operator, 56
" (caret), exponential operator, 56
:= (colon, equal sign), assigning argument values, 73
= (equal sign), equals operator, 70, 86
> (greater than), greater than operator, 86

>= (greater than, equal), greater than or equal to
operator, 86

< (less than), less than operator, 86
<= (less than, equal), less than or equal to operator, 86
- (minus sign), subtraction operator, 56
+ (plus sign)
addition operator, 56
concatenation operator, 58
(pound signs), error indicator, 201
? (question mark)
in debugging, 128
wildcard character, 150
/ (slash), division operator, 56
_ (underscore), continuation character, 105
< > (angle brackets), not equal operator, 86

(A
<\A/,
absolute references, 4, 9
Activate method, 145, 175
ActiveSheet property, 67
Add method, 148-149, 152-153, 242-245, 248-249
AddComment method, 206-207
add-ins
Conditional Sum Wizard, 280
converting Ribbon to, 237
converting workbooks to, 276-277
creating, 276-277
Data Analysis Toolpak, 280
deleting, 281
digital signatures, 279
distributing, 277
downloading, 280
Euro Currency Tools, 280
installing, 280-281
loading, 282-283

@

naming, 278-279

open, checking for, 145

password protection, 278-279

protecting, 278-279

Solver, 280

standard with Excel, 280

third-party, 279, 280

viruses, 279
AddItem method, 226
AddToMru parameter, 134-135
AllowEdit property, 183
ampersand (&), concatenation operator, 58
And operator, 87
angle brackets (< >), not equal operator, 86
apostrophe (), comment indicator, 48
application events, 261
Application objects, 62
arguments, 45, 72-73
Array function, 80-81
arrays, 76-85, 94-95, 303. See also variables
asterisk (*)

multiplication operator, 56

wildcard character, 150
attributes, of objects. See properties
attributes, XML, 284
Auto Data Tips option, 35
Auto Indent option, 35
Auto List Member option, 35
Auto Quick Info option, 35
Auto Syntax Check option, 35
AutoFill method, 208-209
AutoFit method, 201
automation. See macros
Axis methods, 256-257

B

backslash (\), integer division operator, 56
backups, 38, 164

.bas file extension, 38

BeforeClose event, 264-265
BeforeSave event, 266-267

bold fonts, 177

Boolean data types, 50

BorderAround method, 212-213
borders, 203, 212-213, 319

Break mode, 123-124

breakpoints, 122-123

buttons, 107, 236-237. See also form controls

=

)
C)
=/

Call statement, 102-103
caret ("), exponential operator, 56
carriage returns, inserting, 61
case conversion, 118-119
case sensitivity
keyboard shortcuts, 14
passwords, 168
searches, 216
Sub procedures, 44
cells. See also ranges
borders, 212-213
color, 203
comments, 206-207
contents, clearing, 199
filling automatically, 208-209, 211
formats, finding, 215
formatting, clearing, 199
hidden, checking for, 184-185
highlighting, 175
inserting values into, 191
linking to form controls, 22-23
properties, changing, 176-177
reference type, setting, 9
referencing, 52-53, 176-177
values, changing, 176-177
values, finding, 214-215
wrapping text, 201
Cells method, 52-53
Cells property, 176-177
certificates, displaying, 7
chart events, 259
Chart objects, 63, 242-243
chart sheets, 154-155, 242-243, 245. See also worksheets
chart type constants, 316-319
ChartObjects objects, 242-243, 249
charts, 168-169, 242-257
ChartType property, 244-245
ChartwWizard method, 246-247
check boxes, 241. See also form controls
child objects, 62
ClearContents method, 199
ClearFormats method, 199
Click event, 224-225
Close method, 146-147
Code window, 26, 30-31, 34-35
collections, 62-63, 94-95, 157
colon, equal sign (:=), assigning argument values, 73

color. See also properties

borders, 203, 212-213

cells, 203

Code window, 34-35

comments, 48

fonts, 177, 203

list of colors, 203
Color property, 69
ColorIndex property, 203
Column property, 189
columns

hiding, 184-185

in a range, counting, 188-189

resizing, 188-189, 201

splitting, 196-197

transposing to rows, 204

width, 192-193
ColumnWidth property, 192-193
combination chart types, 252-253
combo boxes, 226, 239. See also form controls
Comment objects, 207
comments, 43, 48-49, 207
commercial digital signatures, 7, 10-11
comparisons, 70-71, 86-87, 99
compatibility with older versions, 287
concatenating strings, 58

conditional execution, 96-99, 102-103, 280. See also
events

Conditional Sum Wizard add-in, 280
ConsecutiveDelimiter parameter, 196
constants, 45, 60-61, 65
Copy method, 158-159, 202-203
copying

array elements, 84-85

modules, 33

objects, 33

and pasting, 158-159, 202-203. See also cutting and

pasting; paste special options

ranges to multiple sheets, 210-211
Count property, 179
counters, in loops, 89, 93
CurDir function, 151
currency, 117
currency values, 280
current region, 202
CurrentRegion property, 202-203
custom dialog boxes. See UserForms
custom functions. See functions, custom
customUl.xml file, 234-235

@

Cut method, 200-201
cutting and pasting, 200-201. See also copying, and
pasting; paste special options

D
Data Analysis Toolpak, 280
data entry. See form controls; UserForms
data mining, add-ins, 281
data tables, charts, 254-255
data types. See also specific types
arrays, 79, 81, 84-85
constants, 60
converting, 303-304
declaring, 50
default, 50
description, 50
table of, 55
variables, 50, 54-55
variant, 50
DATE function, 110-111
DateDiff function, 112-113
date/time operations, 110-115, 305, 311-312
DayOfWeek function, 311

debugging procedures, 34, 49, 122-133. See also Code
window; VBE (Visual Basic Editor)

debugging toolbar, 129
DecimalSeparator parameter, 196
declaration statement, 284
Delete method, 154-155, 182-183, 186
deleting

add-ins, 281

chart sheets, 154-155

comments, 207

digital signatures, 10

folders, 151

macro sheets, 154-155

macros, 16-17, 18-19, 24-25

modules, 38-39

ranges, 182-183

trusted publishers, 11

watches, 125

workbooks, 150-151

worksheets, 154-155

XML elements from worksheets, 293
delimiters, 136, 196
Design mode, 123
Destination parameter, 196

@

Developer tab, 4

dialog boxes. See also specific dialog boxes
built-in. See Dialog object
controls. See form controls

custom. See UserForms
input boxes, creating, 108-109
positioning, 108
titling, 138
Dialog object, 63, 74-75
digital signatures, 7, 10-11, 13, 279
disabling macros, 5-6, 13
Do Until loops, 90-91
Do While loops, 88-89
docking VBE windows, 30
Do-Loop While loops, 88-89
double-byte language support, 215
dynamic arrays, 82-83

=
‘\E>
editing code. See VBE (Visual Basic Editor)
ElseIf statements, 96-97
embedded charts. See charts
empty XML tags, 284
equal sign (=), equals operator, 70, 86
Eqv operator, 87
Euro Currency Tools, 280
events. See also specific events
application, 261
categories of, 258-261
chart, 259
deactivating, 271
description, 224-225
executing procedures, 262-275
handling, 226-227
UserForm, 226-227, 260
workbook, 258-259
worksheet, 259
Excel object model, 62-63, 313-319
Excel Object Model Reference, 64-65
Excel objects, 62
Exit Do statements, 91
Exit Function statement, 130
Exit Sub statement, 130
exporting
form controls, 231
modules, 38-39
XML files, 294-295, 296-297

expressions, 45, 86
EXtensible Markup Language (XML). See XML

F
file format constants, 313-315
file handling, VBA statements, 300
file type constants, 315-316
FileFilter parameter, 138-139, 142-143
FileInfo parameter, 196

FileName parameter, 134-135, 140-141, 146-147,
164-165

files, deleting, 150-151
FillAcrossSheets method, 210-211
FillDown method, 211
FillLeft method, 211
FillRight method, 211
Fi11Up method, 211
FilterIndex parameter, 138-139
financial functions, 306-307
find and replace, 216-217
Find method, 214-215
Firstdayofweek function, 112-113
Firstweekofyear function, 112-113, 311
fixed-length strings, 59
fixed-size arrays, 82-83
folder handling, VBA statements, 300
folders, 151
Font object, 177
fonts, 34-35, 177, 201, 203. See also properties; text
For Each In loops, 94-95
For Next statements, 92-93
form controls. See also UserForms
adding/deleting macros, 24-25
assigning values to, 22-23
combo boxes, populating, 226
creating, 230-231
customizing, 230-231
description, 20-21
events, 24
linking cells to, 22-23
list boxes, populating, 226
properties, 221
tab order, 233
types of, 21, 219
VBE Toolbox, 218-219
Format function, 117
FormatCurrency function, 116-117
FormatDateTime function, 114-115
FormatNumber function, 116-117

FormatPercentage function, 116-117
formatting
charts, 246-247, 250-251
clearing, 199
currency values, 117
date/time, 312-313
date/time values, 114-115
numbers, 116-117
percentages, 117
predefined formats, 312-313
Forms. See UserForms
functions. See also procedures; specific functions
creating, 46-47
custom, 104
definition, 104
information as you type, 35
named arguments, 73, 109
VBA
array, 303
characters, 310-313, 317-319
constants, 310-313, 317-319
data type conversion, 303-304
date/time operations, 110-115, 305, 311-312
definition, 104
file and folder handling, 306
financial, 306-307
Format, 117
FormatCurrency, 116-117
FormatNumber, 116-117
FormatPercentage, 116-117
formatting, 114-117, 312-313
information, 307
input boxes, creating, 108-109
InputBox, 108-109
interaction, 308
IsNumeric, 121
LCase, 118-119
Left, 120-121
Len, 121
mathematical, 308-309
message boxes, creating, 106-107
Mid, 120-121
MsgBox, 106-107
numeric values, identifying, 121
Right, 120-121
string operations, 309-310
strings, 118-121
UCase, 118-119
worksheet, 104-105

1\ /

N—

GetOpenFilename parameter, 138-139
GetSaveAsFilename method, 142-143
GoTo statement, 100-101

greater than, equal (>=), greater than or equal to
operator, 86

greater than (>), greater than operator, 86
gridlines, charts, 257
group boxes. See form controls

H
HasDataTable property, 254-255
HasMajorGridlines property, 257
help
automatic syntax check, 35
constants, listing, 65
functions, quick information, 35
hiding, 295
methods, listing, 65
parameters, listing, 65
parameters, quick information, 35
prompting for statement completion, 35, 65
properties, listing, 65
hidden cells, checking for, 184-185
Hidden property, 184-185
hidden workbooks, 18
Hide method, 223
hiding
columns, 184-185
help, 295
macros, 40-41. See also disabling macros
Personal Macro Workbook, 18
ranges, 184-185
the Ribbon, 241
UserForms, 223
VBE windows, 31
worksheets, 160-161
highlighting cells and ranges, 175

1
/

If Then Else statements, 96-97
IgnoreReadOnlyRecommended parameter, 134-135
images, on the Ribbon, 235

Immediate window, 26, 128-129

Imp operator, 87

@

importing

form controls, 231

modules, 38-39

XML files, 294-299
indenting code, 35, 97
infinite loops, 89
information functions, 307
InitialFilename method, 142-143
input boxes. See UserForms
InputBox function, 108-109
Insert method, 190-191
interaction functions, 308
Intersect method, 198-199
Is operator, 70-71
IsNumeric function, 121
italic fonts, 177

@
joining strings, 58
jumping
out of loops, 91
to specific statements, 100-101

,T(\
keyboard shortcuts, 14-15
Kill statement, 150-151

R

<\L/;
labels, 100-101. See also form controls
launchers, adding to the Ribbon, 238
LCase function, 118-119
Left function, 120-121
Len function, 121
less than, equal (<=), less than or equal to operator, 86
less than (<), less than operator, 86
line style constants, 318-319
list boxes, 226. See also form controls
lists, converting to arrays, 80-81
loading add-ins, 282-283
Locals window, 26
locking projects, 32-33
looping, 88-95, 181

,K/I\
macro sheets, 152, 154-155. See also worksheets

macro-enable workbooks, 4-5

macros
absolute references, 4, 9
assigning to shortcuts, 14-17
cell reference type, setting, 9
comments, 43
definition, 2
deleting, 18-19

disabling, 5-6, 13. See also hiding, macros

in form controls, 24-25

hidden workbooks, 18

hiding, 40-41

keyboard shortcuts, 14-15

listing, 12

mixed references, 9

names, distinguishing, 13

naming, 8

recording, 8-9

relative references, 4, 9

running, 12-13, 14-15

security, 5-6. See also digital signatures

sharing among Excel files, 8

shortcut keys, 8

storing, 8, 12

updating, 42-43
mapping XML files, 292-293
maps, naming, 298
MatchByte parameter, 215
mathematical calculations, 56-57
mathematical functions, 308-309
Me operator, 265
message boxes. See MsgBox function

methods, 63, 65, 72-73. See also specific methods

Microsoft products. See specific products
Mid function, 120-121

minus sign (-), subtraction operator, 56
mixed references, 9

Mod operator, 56

modal versus modeless UserForms, 222
module-only variables, 51, 54

modules, 27, 33, 36-39

Move method, 156-157

MsgBox function, 106-107, 310-311
multidimensional arrays, 78-79, 95

Name Manager, 187

Name property, 162-163, 186-187

named arguments, 73, 109
names of ranges, deleting, 186
naming
add-ins, 278-279
charts, 242-243, 249
constants, 60
macros, 8
modules, 36-37
projects, 32
ranges, 186-187
saving workbooks under a new name, 140-141, 146
Sub procedures, 44
UserForms, 220
variables, 50
worksheets, 162-163
nesting loops, 95
NewWorkbook event, 268-271
Not operator, 87
number data types, 50
numeric values, 116-117, 121

A
o

Object List box, 26
object model, 62-63, 313-319
object pointers, 67
object variables; 66-67, 70-71
objects
acting on. See methods
browsing, 64-65
copying, 33
definition, 62
methods, browsing, 64-65
properties, 64-65, 68-69
sample code, 64-65
selecting, 27
Offset property, 180-181
one-dimensional arrays, 76-77
OnError GoTo statement, 130-131
OnKey event, 274-275
OnTime event, 272-273
Open method, 134-135
opening workbooks, 134-139, 144-145
OpenText method, 136-137
OpenXML method, 296-297
Or operator, 87
order of precedence, 56-57

=
/

(P
{ i
\ /

N

packages, 236, 288-289
PageSetup object, 171
parameters. See also specific parameters
information as you type, 35
listing, 65
OpenText method, 137-138
SaveAs method, 140-141
Parse method, 197
parts, 288
parts, ZIP file, 236
Password parameter, 134-135
password protection
add-ins, 278-279
case sensitivity, 168
charts, 168-169
projects, 32-33
workbooks, 134-135
worksheets, 164, 166-167
paste special options, 204-205. See also copying, and
pasting; cutting and pasting
PasteSpecial method, 204-205
pattern constants, 319
percentages, formatting, 117
personal digital signatures, 7, 10-11
Personal Macro Workbook, 8,12, 18-19, 27
PERSONAL.XLSB file, 19
Personal.xlsm file, 28
pictures, 15, 235
playing back commands. See macros
plus sign (+)
addition operator, 56
concatenation operator, 58
pound signs (####), error indicator, 201
Preserve statement, 82-83
print area, specifying, 171
Print statement, 128-129
PrintArea object, 171
printer, specifying, 170-171
printing, 128-129, 170-171
PrintOut method, 170-171
procedure-only variables, 51, 54
procedures. See also functions; macros; Sub procedures
calling other procedures, 102-103
correcting errors. See debugging procedures
definition, 36
labels, 100-101

@

program flow, VBA statements, 301-302

Project Explorer, 26-27
projects, 32-33

prompting for statement completion, 35, 65
properties. See also specific properties

cells, changing, 176-177

changing, 27

definition, 27, 63

fonts, 177

listing, 65

for projects, 32-33

read-only, 27

Workbook object, 149
Properties window, 26-27
Protect method, 168-169
protecting

add-ins, 278-279

worksheets, 168-169
protection status, checking, 183
public variables, 51, 54

(Q
QueryClose event, 229
question mark (?)

in debugging, 128

wildcard character, 150
Quick Access toolbar, 5, 16-17
Quit method, 147

/‘\\

—
radio buttons. See form controls
Range objects, 63
Range property, 53, 174-175
ranges. See also cells
areas, counting, 179
assigning arrays to, 79
cell borders, 212-213
cell contents, clearing, 199
cell formats, finding, 215
cell values, finding, 214-215
column width, 192-193
combining, 178-179
comparing values, 99
copying and pasting, 202-203

copying to multiple sheets, 210-211
counting rows and columns, 188-189

current region, 202

cutting and pasting, 200-201
cycling through, 181
defining, 174-175, 180-181
deleting, 182-183
filling automatically, 208-209, 211
find and replace, 216-217
first row/column, identifying, 189
formatting, clearing, 199
hidden cells, checking for, 184-185
hiding, 184-185
highlighting, 175
inserting into worksheets, 190-191
intersections, finding, 198-199
names, deleting, 186
naming, 186-187
protection status, checking, 183
referencing, 52-53
resizing, 188-189
row height, 194-195
Read-Only
properties, 27
workbooks, 134-135, 150-151
worksheets, 164
ReadOnly parameter, 134-135
Recent Documents list, adding workbooks to, 134
recording commands. See macros
recording macros, 8-9
ReDim statement, 82-83
relative references, 4, 9
renaming. See naming
Replace method, 216-217
Require Variable Declaration option, 35
Resize property, 188-189
resizing
arrays, 82-83
columns, 188-189
ranges, 188-189
Resume Label statement, 131
Resume Next statement, 131-133
Resume statement, 131
Ribbon
buttons, adding, 236-237
check boxes, adding, 241
combo boxes, adding, 239
converting to add-in, 237
customUl.xml file, 234-235
hiding, 241
images on, 235
launchers, adding, 238

toggle buttons, adding, 240-241
XML controls, 320-329
Right function, 120-121
RmDir statement, 151
RouteWorkbook parameter, 146-147
Row property, 189
RowHeight property, 194-195
rows
counting, 188-189
height, 194-195
hiding, 184-185
resizing, 188-189, 201
transposing to columns, 204
Run mode, 123
run-time errors, debugging, 130-133

'S)
SaveAs method, 140-141, 164-165
SaveChanges parameter, 146-147
saving
charts as templates, 247
modules as files, 39
UserForms as templates, 232-233
workbooks, 140-143, 146
worksheets, 164-165
schemas, 285
scope, 51, 54, 60
scripts. See macros
scroll bars. See form controls
SearchFormat parameter, 215
security, 5-6
Select Case statements, 98-99
Select method, 175
selecting objects, 27
Selfcert.exe tool, 7
SetSourceData method, 243
shadows, fonts, 177
sharing
macros, 8
Personal Macro Workbook, 19
variables among projects, 51
shortcut keys, 8, 29
Show method, 74-75, 222
ShowLegendKey property, 254-255
ShrinkToFit property, 201
slash (/), division operator, 56
Solver add-in, 280
sorting worksheets, 172-173

spinners. See form controls TIME function, 110-111

splitting Title parameter, 138-139
Code window, 31 titles, charts, 242-243, 246
columns, 196-197 toggle buttons, adding to the Ribbon, 240-241
StandardHeight property, 194 tracing code, 126-127
Standardwidth property, 192 True or False comparisons, 86-87
statistical analysis, 280 truncating strings, 59
Step Into command, 126-127 trusted locations, 11
stepping through code, 126-127 trusted publishers, 11, 13
storing macros, 8, 12 twips, 108-109

strikethrough fonts, 177 .
strings (U>
assigning to variables, 58 S

case conversion, 118-119
concatenating, 58 underline fonts, 177

data types, 50 underscore (_), continuation character, 105
definition, 36 Union method, 178-179

fixed-length, 59 Unload method, 222-223

Unprotect method, 168

updating macros, 42-43

user input. See form controls; UserForms
UserForm events, 260

UserForms, 108-109, 218-229, 232-233. See also form
controls

UseStandardHeight property, 195

UCase function, 118-119

getting a portion of, 120-121
joining, 58

length, determining, 121
maximum length, 58
truncating, 59
variable-length, 59

VBA functions for, 309-310

Sub procedures, 44-45. See also procedures ~

subscript fonts, 177 ‘\y/‘

superscript fonts, 177 validity checking

syntax check, automatic, 35 date/time operations, 112-113
N object variables, 71
kT) UserForms input, 228-229

Value property, 79
variable-length strings, 59
variables
assigning values to, 54, 58
data type, 50, 54-55
declaring, 50, 54-55, 302-303
definition, 45
description, 50
groups of related data. See arrays
module only, 51, 54
naming, 50
naming conventions, 85
objects as, 66-67
procedure only, 51, 54
protecting, 267

tab order, form controls, 233
TabIndex property, 233
tabs, inserting, 61
TabStop property, 233
tags, XML, 284
templates, 148, 232-233, 247
text. See also fonts

in charts, 250-251

wrapping, 201
text files

delimiters, 136

opening as workbooks, 136-137
TextToColumns method, 196-197
ThousandsSeparator parameter, 196
time. See date/time operations

@

public, 51, 54
requiring declaration, 35
restricting access to, 51
scope, 51, 54
sharing among projects, 51
strings as, 58
values, displaying, 35, 122-123, 124-125, 128-129
variant arrays, 79, 81
variant data types, 50
VBA functions. See functions, VBA
VBA statements, 73, 105, 300-303
VBE (Visual Basic Editor)
activating, 28-29
Break mode, 123-124
debugging toolbar, 129
Design mode, 123
modules, 27, 33, 36-39
objects, copying, 33
objects, selecting, 27
projects, creating, 32-33
properties, 27, 32-33. See also specific properties
Run mode, 123
windows, 26-27, 30-31, 34-35
VBE Toolbox, 218-219, 230
VeriSign, Inc., 7
View Macros button, adding to Quick Access toolbar, 5
viruses, 279
visibility state, determining, 160-161
Visible property, 160-161
Visual Basic Editor (VBE). See VBE (Visual Basic Editor)
Visual Studio Tools, 3

O\

W

Watches window, 26, 124-125

watching variables and expressions, 124-125
Width property, 193

wildcards, 150

workbook events, 258-259

Workbook object, 62, 149
Workbook_Open event, 262-263
workbooks, 134-151, 163, 276-277. See also worksheets
worksheet events, 259

Worksheet objects, 62
WorksheetFunction property, 104

worksheets, 67, 152-173. See also chart sheets; macro
sheets

worksheets functions, 104-105
workspaces, saving, 143

wrapping text in cells, 201

WrapText property, 201
WriteResPassword parameter, 134-135

AN
X)

xlw file extension, 143

XML (EXtensible Markup Language), 284-287
XML files, 286-299

XmlImport method, 298-299

Xor operator, 87

.

\//
ZIP files, 236

For more professional
instruction in a visua
format, try these.

All designed for visual learners—just like you!

")
‘° Read Less—Learn More®
c'D

Visual

asia i Y
\ : . DAL |, §he L Excel PivotTables
E\L(.l Data Analysis : w? o and 1’1\e0t(,harts

2nd Editior

analyz rnu ..’.ﬂr charts, and Pivot Tables wm"‘ . wb"“’a @ the 9O5% . creating dynamic spreadsheets
Rt P U
Sueprint Je ;
,mn et app
Your ‘) vich [nterne 1%
ing

ISBN-10: 0-7645-9780-9
ISBN-13: 978-0-7645-9780-0

ISBN-10: 0-471-78489-3

afi ISBN-13: 978-0-471-78489-0
cred
ISBN-10: 0-470-04306-7

ISBN-13: 978-0-470-04306-6

Qo
4
- 0 - - 0 o
For a complete listing of Visual Blueprint - titles and other p
Visual books, go to wiley.com/go/visual . .
Visual
Wiley, the Wiley logo, the Visual logo, Read Less-Learn More, and Your Visual Blueprint are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. An Imprint of @WILEY

All other trademarks are the property of their respective owners. Now you know.

