Web Development with Apache and Perl

Web Development with
Apache and Perl

THEO PETERSEN

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Joel Rosenthal
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer; Leslie Haimes

ISBN 1-930110-06-5
Printed in the United States of America
12345678910 - VHG - 06 05 04 03 02

To Rachel
for saying yes

contents

preface Xii

acknowledgments xvi

author online xvii

about the cover illustration xviii

Part 1 Web site basics 1

1.1 What is Open Source? 3
And it’s free! 5

1.2 Why choose Open Source 5
Support 5 0 Quality 8 0O Security 10 O Innovation 11

1.3 A buyer’s guide to Open Source 14
Stable version and ongoing development 14 O Support 15
Leveraging other investments 15 0 Ongoing costs 16

1.4 Open Source licensing 17
The GPL and LGPL 18 0 The BSD/MIT license 18
The Artistic License/”Perl terms” 19 0O The right license? 19

2.1 What makes a good web server 21
Hardware 21 0 Operating system 22 0O Re-evaluation and installation 23

2.2 Securing the site 24

2.3 The case for Apache 25
Installation 26 O First tests 27

2.4 Apache configuration 28
The httpd.conf configuration file 28 O Things you need to change 29

2.5 Production server 30

vii

2.6 Development server 33
Allow everything 33 0 Allow documents and scripts 34
Allow approved documents 34

2.7 Using apachectl 35

2.8 Serving documents 36

2.9 thttpd 37

3.1 Why scripting 40
Scripting language choices 41
3.2 The case for Perl 42

Installing Perl 44 0 Testing a sample script 44
Updating Perl modules with CPAN 45

3.3 Inside CGI 46
Hello, Web! 48 0 Dynamic content 51 0O Interacting 54
HTML forms with CGl.pm 57 O Taking action 63

3.4 Strictness, warnings, and taint checking 66
3.5 CGI modules 67

Part 2 Tools for web applications 69

viii

4.1 Files 72
4.2 Address book 72

4.3 Hash files 75
Perl’s tie and hash files 76 0 Hash file address book 77

4.4 Relational databases 82
What's relational? 82 0 Choosing a relational database 84
MySQL 84 0 PostgreSQL 85 0 Which to choose 87

4.5 Installing MySQL 87
Set the root password 87 O Create a database 87
Add users and permissions 87 0 Create tables 88
Testing the server 88 O Learning more 89

4.6 DBI, Perl’s database interface 89
Installing the Perl modules 89 0 Making a connection 90
CGl scripts with DBI 91

4.7 Data maintenance via CGI 97
WDBI 97 0 HTMLView, an alternative to WDBI 97
Installing WDBI 98 0 Creating a definition file 99
Using WDBI 100 0 Enhancing forms 102

CONTENTS

CONTENTS

5.1 Why CGlisslow 105
Stateless protocol 106 0O Session-oriented persistent CGI 107

5.2 FastCGI 108
5.3 The case for mod_perl 109
Buyer’s guide 110
5.4 Installing mod_perl 111
Building and rebuilding 112 0 Apache run-time configuration 112

5.5 Scripting with mod_perl 114
Apache::Registry 115 0 Apache::DBI 117
When CGI attacks 118

5.6 Beyond CGI 119
Beyond CGl.pm? 121

5.7 mod_perl goodies 122
Apache::Status 123

5.8 Maintaining user state 123
Apache::Session 124 O A to-do list 125
Cookie sessions 129 0 Session management and
user management 132

6.1 Listening in on the Web 134

6.2 Secure Sockets Layer (SSL) 135
Legal issues 136

6.3 OpenSSL and Apache 137
Apache-SSL 137 0 mod_ssl 138 O Installing mod_ssl 138
Certificates 139 0 Configure and test 141

6.4 User authentication 143
Using HTTP authentication 144 0 Doing your
own authentication 146 0 Do I need SSL for this? 152

6.5 User management 152
6.6 Login sessions 156

7.1 HTML design 163
7.2 Server-side includes 164
SSI with mod_perl and Apache::Include 166

7.3 Scripting in HTML 167
Perl and HTML 168 O Templates 170

7.4 HTML::Mason 174
The case for Mason 174 0 Installation 175 0 Making pages from
components 176 0 How Mason interprets components 180
Faking missing components with dhandlers 181 0 Autohandlers 182
Session management 186 0 Mason resources 189

7.5 The Template Toolkit 190
Template environment 191 0 Uploading a document 194
Viewing the upload directories 198 0 Template Toolkit resources 202

7.6 XML alternatives 202

Part 3 Example sites 205

8.1 Serving the community 208
Community site examples 208

8.2 Implementing features 211
News 211 O Forums 214 O Chats 218 0 Search engines 221

8.3 Building asite 224
Installation 225 0O httpd.conf 226 0 mod_perl.conf 228
The front page 228 0 News 231 O Forums 232 0O Chat 232
Searching 233 O Improvements 233

8.4 Slash, the Slashdot code 234

8.5 Online resources 235
Search engine submission 235

9.1 Documentation and file server 238
Documentation directory tree 238 0O File server 239
Generating index pages 240 0O mod_perl for indexing 241
Searching 242

9.2 Office applications 242

Email 243 0 Calendar 247 O Project management 250
9.3 Interfaces to nonweb applications 251

Other Perl interface tools 252 0 Passwords 254 0O File management 255
9.4 System administration 256

WebMIN 257

9.5 Build your own portal 259
Maintaining links 260 O UserDir, Redirect, and mod_rewrite for user
maintenance 262 0 mod_perl for translation and redirection 264

9.6 Joining multiple intranets 269
VPNs 270 0 PPP 271 0 SSH 271 o0 Put it all together, it spells... 271

X CONTENTS

10.1 E-commerce requirements 274
Security and privacy 274 0O Stress testing 275

10.2 Components of an e-commerce site 276
Catalog 277 0O Account data 282 O Shopping cart 286
Taking the order 291 T Tracking shipments 296

10.3 Feedback 299
Product reviews 299 0 Customer feedback and other services 302

10.4 Open Source e-commerce tools 303
Interchange 304 O AllCommerce 308

10.5 Credit card processing 311
CCVS 313

Part4 Site management 315

11.1 Development life cycle 318
Development, staging, production 319
A staging area on your production server 319

11.2 Tools for content management 326
FrontPage 326 O rsync 327 0 Mason-CM 333 0 WebDAYV 343

11.3 Managing a production site 345
Configuration 345 0O Development to staging 349
Staging to production 350

11.4 Backup and recovery 352
Backup 353 O Recovery 355 0O Test and verify! 356

12.1 Victims of success 359
Monitoring system loads 361 O Stress-testing your server 364

12.2 Tuning your server 368
Apache configuration 369 0 mod_perl issues 373 O Socket tricks 380

12.3 Web farming 382
Reverse proxies 383 O Squid accelerator 388 T Load balancing 389

references 395
index 397

CONTENTS

preface

A quick look at your local bookstore’s Internet section will tell you that there are quite a few
commercial packages out there for building web sites. What those books often fail to mention is
that many of the world’s most popular web sites were built using freely available tools, and run
on free operating systems (OS). They also tend to be served up by Apache, the world’s leading
web server, which is also free.

I don’t think this omission is due to some vast commercial software conspiracy; there are
plenty of books about Linux, one of the free OSs in question. In fact, the success of Linux has
drawn much-needed attention to the Open Source software movement, and in turn helped to
make this book possible. If anything, the problem is lack of information about free tools, and mis-
conceptions about Open Source solutions.

My goal in writing this book is to make you aware of the amazing richness and quality of Open
Source tools for building web sites. I'm not selling anything (other than the book) and | won’t
profit from your buying decisions. While I will encourage you to consider the advantages of a free
OS, chances are good you can use these tools on a commercial OS you already have.

I should also point out that this is an idea book, not a comprehensive reference about any par-
ticular programming tool or operating system. As part of the task of making you aware of what
products are available and what you can do with them, I'll encourage you to look at online
resources and other books for more detailed information.

You can take any of several approaches to the material here, depending on what you want or
need.

If you are responsible for keeping a web site running, or you are just starting to build one, the
early chapters will provide a good checklist for your system; compare my suggestions to your own
ideas and see if you have the best tools for your job. The end chapters have guidelines on site main-
tenance that you might appreciate also.

Site developers and application programmers might be more interested in the middle chapters
where | discuss tools for specific needs and explain the advantages of different alternatives. Further
on we’ll get into designs for specific types of web sites, which may give you ideas as to how to
build one of your own.

Xiii

If you're the person who plans or manages the efforts of the people in the preceding para-
graphs, the discussions in all of the chapters may help you with choosing a strategy and architec-
ture for larger sites and more ambitious applications.

Perl provides the glue for tools I'll discuss here. While | intend to explain and illuminate the
concepts of various web technologies as | go, | expect the reader to be familiar enough with Perl
scripting to follow the examples, with appropriate reference material at hand. Teaching the basics
is beyond the scope of this book; and besides, | couldn’t do a better job than the many texts
already available to help you learn. Leaf through the early chapters and read an example or two,
and you’ll know if you are ready.

If you implement any of the design plans given here, you are going to get your hands dirty
and your feet wet, and you’ll slog through other hard-working analogies. Open Source tools are
about source after all, and you’re going to have to look at some to make your way through this
world. But don’t let that intimidate you; in spite of its geek-oriented, high-tech characterization,
the Open Source world is remarkably friendly, and actually provides a much more gentle learning
curve than some commercial products I've attempted to use over the years.

I expect you already know that web browsers talk to web servers; that’s as much architecture
as you'll need to get started. This book is about interesting things to do with servers, and we're
going to assume that browsers are the well-behaved, generic clients they really ought to be instead
of the crass, ghetto-forming pawns of commercial empires that they’ve become. (Hey, maybe
there is a conspiracy!)

But we were talking about you: this book will help you find useful tools and get them to work
faster. It’s a book for planners, developers, and dreamers of all kinds. As | said before, it's an idea
book, aimed at helping you realize how to make your own ideas work using freely available, qual-
ity tools.

The material is separated into four parts:

Part | discusses Open Source tools in general and those that make good choices for a web site
in particular. The first chapter talks about the methodology and how to choose good tools from
the huge selection available on the Internet. Chapter 2 discusses the selection of an OS, or con-
siderations for the one you already have, along with what to configure for a web site and, more
importantly, what to disable; it also explains the basic Apache setup. The third chapter discusses
the prevalence of scripting in web applications and introduces simple Perl CGI scripts.

Part Il is about tools for serious applications. Chapter 4 covers databases and how to use them
from inside a CGI script. Chapter 5 talks about ways to speed up the performance of CGI and
go beyond it into the deeper realms that mod_perl provides. Chapter 6 discusses secure commu-
nications between the browser and the server, which you’ll need for sensitive information such
as credit card numbers. Chapter 7 talks about tools for embedding Perl scripts into web pages for
better site design.

Part 111 uses the tools discussed so far to build three basic kinds of web sites. Chapter 8 is about
community sites, which focus on news, discussion, and other attractions for a given community.
Chapter 9 is for intranet sites, where a variety of applications and information are served up to a

Xiv PREFACE

protected network. Chapter 10 brings up the issues of e-commerce, such as user profiles, shopping
carts, and why we need those security tools from chapter 6.

Part 1V goes on to general issues that might come up as any sort of site matures. Chapter 11
covers strategies and tools for managing site content as your simple site grows beyond your initial
expectations. Chapter 12 concerns performance management. This includes issues such as how
to keep your site online as its popularity grows, especially as it starts receiving multiple servers,
and how to keep the hordes of users happy.

There’s also a bibliography, or as | prefer to think of it, a suggested book list for people who
do this kind of work. As I said earlier, I can’t hope to provide everything you need in one book
(and if I did, you probably couldn’t lift it), so I've gone through my own bookshelves, (both real
and virtual), and listed the things that helped me learn to do this job.

When scattered in with regular text, any code, file names, or other pieces of software will appear
inafixedw dt h font. The names of software (i.e., Apache and Perl) appear as normal text.
Code examples are in the same f i xed wi dt h font, and set off from the text:
foreach (sort keys %menbers) {
print "<TR><TD>$_</ TD><TD>$nenber s{$_} </ TD></ TR>";
}

But don't bother typing in the examples—all the code mentioned in this book is also available on
the publisher’s web site at http://www.manning.com/petersen.

PREFACE XV

acknowledgments

Anyone who works with programmers or writers learns quickly that both are typically optimistic
at the start of a project but late to finish. Imagine what life is like for the managers of these pro-
grammers and writers. The patient folks at Manning are a pleasure to work with and gave just
the right mix of understanding and expectation to bring this book into being. Marjan Bace took
my very different initial concept and developed it into the outline of the present work, refining it
further at various stages. Mary Piergies offered her resources and prodding as necessary to get the
project moving. When my family’s needs became overwhelming, they graciously suspended the
schedule, then helped to bring the book back on track when | returned to it.

Technical books, like good software, need plenty of eyes watching for bugs, wrong directions,
and shortcomings. Ted Kennedy at Manning brought a host of reviewers to help, doing his own
share of the prodding along the way. The reviewers included Bennett Todd, Clinton A. Pierce,
D. Jasmine Merced, Dave Cross, Gerald Richter, John Timon, Jonathan Swartz, Martien Ver-
bruggen, Stas Bekman, Randy Kobes, David Cantrell, Joshua Chamas, Vivek Khera, and Dennis
Cumro who also did a final technical review of the book shortly before it went to press. My thanks
to all of you, and apologies to anyone I've left out.

Writing a book on a subject you love is a wonderful project, and | recommend it wholeheart-
edly. It's also fun and challenging to move to a new home, raise an infant, and start a new job. |
will caution against doing all these in the same year, though, having tried it myself. My wife
Rachel did all the above with me, offering commentary on the book from her technical back-
ground while spending more than her share of time with our first son, Kai, and bringing our sec-
ond son, Rowan, into the world. Her faith in the project made possible its conclusion, and | give
her my thanks and love.

XVi

author online

Purchase of Web Development with Apache and Perl includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to http://www.manning.com/petersen. This page provides
information on how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful dialog
between individual readers and between readers and the author can take place. It is not a com-
mitment to any specific amount of participation on the part of the author, whose contribution
to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the
author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessible from the
publisher’s web site as long as the book is in print.

Xvii

about the cover illustration

The figure on the cover of Web Development with Apache and Perl is a “Mandarin de la China” or
a Chinese Mandarin, a public official of the Chinese Empire. A Mandarin was a person of posi-
tion and influence in intellectual or literary circles. The illustration is taken from a Spanish com-
pendium of regional dress customs first published in Madrid in 1799. The book’s title page
informs us:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo desubierto, dibu-
jados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en special para los que
tienen la del viajero universal

Which we loosely translate as:

General Collection of Costumes currently used in the Nations of the Known World, designed and
printed with great exactitude by R.M.V.A.R. This work is very useful especially for those who hold
themselves to be universal travelers.

Although nothing is known of the designers, engravers, and artists who colored this illustration
by hand, the “exactitude” of their execution is evident in this drawing. The “Mandarin de la
China” is just one of a colorful variety of figures in this collection which reminds us vividly of
how distant and isolated from each other the world’s towns and regions were just 200 years ago.
Dress codes have changed since then and the diversity by region, so rich at the time, has faded
away. It is now often hard to tell the inhabitant of one continent from another. Perhaps we have
traded a cultural and visual diversity for a more varied personal life—certainly a more varied and
interesting world of technology.

At a time when it can be hard to tell one computer book from another, Manning celebrates
the inventiveness and initiative of the computer business with book covers based on the rich diver-
sity of regional life of two centuries ago—brought back to life by the pictures from this collection.

xviii

PART

Web site basics

I his part deals with basic issues—what is Open Source, what makes a good web
server, and why is there so much Perl code involved?

e Chapter 1 discusses why Open Source is a good idea and presents a buyer’s
guide with some considerations for the long-term aspects of the decision to use
a product.

« Chapter 2 is about the web server, starting with the machine and operating sys-
tem (OS), then the case for using Apache to serve your site content.

» Chapter 3 explains why Perl is a good choice for scripting, and what the alterna-
tives are. We verify that the most recent version of Perl is installed and that it is
installed correctly. Then we and write some simple CGI scripts.

After reading these chapters and working out the installations and examples, you can
demonstrate a basic site that is ready for more interesting work.

1.1

CHAPTER 1

1.1 What is Open Source? 3

1.2 Why choose Open Source 5

1.3 A buyer’s guide to Open Source 14
1.4 Open Source licensing 17

WHAT IS OPEN SOURCE?

As the Internet grew from a few institutions with dial-up lines to a worldwide infor-
mation network, a software development methodology and culture grew with it:
share code freely, don't charge for it, keep everything in the open. This methodology
allowed the Internet’s underlying software tools to grow at an amazing speed that
caught the commercial software world by surprise; seemingly from nowhere, a set of
high-quality tools and protocols emerged that provided for a variety of communica-
tions media, including Sendmail (the program which has handled most of the mail
traffic on the Internet), BIND (which handles the distributed database of Internet
domain names and addresses), and, comparatively recently, the HTTP protocol that
makes the web browsers and servers work.

The culture developed as well, largely among devotees of the Unix operating sys-
tem. They applied the methodology to create tools, languages, and applications that
weren’t directly related to the Internet, but which couldn’t have grown as quickly

without the Internet’s ubiquitous distribution medium. The members of the culture
valued quality programming, for which they used the term hacking, borrowed from
another slang. They also valued sharing, and gave high status to those who created or
enhanced useful software and gave it back to their community.

During that same period, various companies created good network protocols, good
email tools, good news and collaboration programs which either fell into disuse or
merged with their Internet cousins. No proprietary system offered the wide access and
low cost of entry of the software shared openly by the Internet hackers. Without this
culture, and its open development methodology, the reliable, freely available programs
which carry the Internet’s traffic, and by extension, the Internet, would not exist.

The Internet became high profile as businesses caught on to the potential value of
the Web as a medium. Equally important was the advent of Linux, a free implemen-
tation of a Unix-like operating system developed by Linus Torvalds and the hacker
culture. Linux also seemingly appeared out of nowhere, and by the late "90s gained a
high profile as more and more people discovered that it provided a quality alternative
to commercial versions of Unix and other OSs. Linux is said to have “snuck into” cor-
porate America as system administrators realized that they could download it free (or
purchase a CD distribution for a small fee) and install it without going through the
acquisitions process required for an expensive OS license.

In 1998, some prominent members of the hacker culture got together to discuss
how to make their kind of development more attractive to corporate America. The
results of the meeting were the new label, “Open Source,” and an agreement to adopt
certain definitions of what constituted an Open Source license. This group styled
itself the Open Source Initiative (OSI), and you can read more about them at their
web site, http://www.opensource.org/. By sidestepping the issue of what the word
“free” meant in what had been called “free software,” some in the movement hoped
to bring code sharing back to the fore and to encourage licensing that allowed users
of a program to see and modify its source and to pass bug fixes and enhancements on
to the community.

For our purposes in this book, a software product is Open Source if its license fits
the OSI definitions. Some Open Source fans (myself included) complain about
licenses that the OSI has approved, and of course there is a large camp that doesn’t care
for the OSI at all; I hope that my choice doesn’t offend them, but I think the value
of the now-recognized Open Source label is greater than the political issues surround-
ing its adoption.

L Linux was not the first free operating system. Earlier programmers at Berkeley had taken on the task
of replacing the copyrighted code in the Unix kernel with free implementations, resulting in three
modern offshoots known as “the BSDs” for the original project title, Berkeley Software Distribution.
The fact that Linux gets referred to as “the free operating system” is a source of frequent annoyance
among *BSD aficionados.

CHAPTER 1 OPEN SOURCE

In choosing our jargon and labels, let’s not lose track of the fact that Open Source
software is also freely available software—you can download it from web sites or copy
it from CD distributions and other sources. Of course, CDs and Internet bandwidth
have costs, but the price of the software is still 0. For many users, this is the single
most important reason to choose Open Source. The budget of a small social organiza-
tion, a fledgling company, or an individual wanting to publish on the Web can easily
be taken up by the cost of hardware and bandwidth. In those cases, software with a
low acquisition price can make the difference between being heard or not.

Those who do have money to spend sometimes make the mistake of dismissing
Open Source software for this same reason; if you find yourself having that argument,
you should read the discussion of quality versus price.

Also, please note that the fact that a product can be downloaded free and/or in
source form says nothing about whether you can use it on a commercial web site or
sell products based on it. That is a complex issue that requires careful reading of the
license. Always read the license!

The complex issue of software cost will be covered in greater detail in section 13.4.

1.2 WHY CHOOSE OPEN SOURCE

Hacker culture, code sharing, Open Source—very interesting topics, but what do
they have to do with the real-world concerns of a business, an organization, or an
individual creating a web site?

The answer, of course, is: everything. If the cultural phenomenon of Open Source
isn’t of interest to you, then perhaps one of the following issues is: support, quality,
security, and innovation. In my opinion, and that of millions of satisfied downloaders
out there, Open Source software is superior on all these counts.

The essential distinction of Open Source software is, of course, source code: the
source files for each library and program are distributed with the product, along with
documentation (one hopes) and possibly, prebuilt binary executables. This is in com-
parison to “closed” software, commercial or otherwise, which includes only executa-
bles, possibly libraries, and, hopefully, even more documentation.

If you're not the sort of person who makes a hobby of poring through other peo-
ple’s programs, you may be wondering, “so what?” Having to build the program your-
self is at best a chore, and at worst an obstacle if you are using an OS different from
that of the program’s maintainer. Why is carrying all this source baggage important?

Suppose you are using a closed source program—a web server, let’s say—and you
discover that it has a bug: most files are served correctly, but files in the f oo directory
cause an error. You’ve checked the documentation and your configuration files and,
as far as you can tell, there’s nothing wrong with your setup. What do you do?

WHY CHOOSE OPEN SOURCE 5

If you have some support access to the maker of the program, you call them, send
them an email, consult your medium, or do whatever is required. Perhaps you also
consult newsgroups or web pages about the product in hopes that someone else has
encountered the problem. You may get a response from the responsible party or not,
and either way you'll probably work around the bug in the meantime.

In contrast, what would happen if in the same situation you were using Apache,
an Open Source web server. You've tried everything and can’t figure out why it won’t
serve up your f oo directory; you've read the fine manual, looked on the Apache web
site and sent messages to various newsgroups or your favorite mailing list. What hap-
pens next may not sound believable if you've never been through the process, but hav-
ing gone down this road before (with other products—not Apache) I can say it’s a
regular occurrence.

You get a response: a reply to your newsgroup posting, an email, or both, depend-
ing on how you reported the bug. Someone somewhere has a f oo directory that
behaved just as yours did, and the problem was caused by an obscure configuration
file entry that you've looked at a dozen times but didn’t realize mattered. Or a message
saying “I never tried a f oo directory before, and | just set one up on my server and
it worked; let’s compare our sites and see what’s different.” Or, more likely, a shorter
response that goes something like: “Yep, that’s a bug. Patches enclosed.”

Sometimes you get a less helpful response. Someone may complain to the news-
group that newbies should be forced to read the FAQ? on f 0o in Apache before being
allowed to post. Perhaps you get a smug “it works fine for me.” Or you might get an
acknowledgment that it is in fact a bug, with a good-natured “Patches welcomed.”

I've received all of the above in response to intelligent questions about Open
Source products, and have even received pleasant replies to more naive questions. I've
gotten rude replies too. It's a big Internet, and the Manners Police are rather over-
worked. The point, though, is that I never fail to get a helpful response as long as (a)
the question is reasonable for the product and the forum, (b) it's apparent from the
question that I've checked the documentation and obvious configuration issues
beforehand, and (c) the answer is not obvious to a beginner. Generally 1 know what
I need to know within a day, often within an hour.

I’d compare that to the kind of responses | get to problem reports sent to com-
mercial software companies, but for the most part | prefer to repress unpleasant mem-
ories. In defense of support staffers everywhere | will admit that they are typically
overworked and constantly besieged by questions that (a) aren’t reasonable, (b) show
no sign of any awareness of documentation, and (c) indicate the questioner hasn’t the
faintest idea what's on his system. If you have done time at a help desk, I salute you.
Nevertheless, I've had almost uniformly negative experiences in going to commercial

2 FAQ is shorthand for Frequently Asked Question file, or sometimes (more irritably) Frequently An-
swered Question. Popular products often have FAQs that explain solutions to common problems, and
you should always check for one before posting a message as I've described here.

CHAPTER 1 OPEN SOURCE

support operations for information when | didn’t fit those categories; generally they
are slow to respond even in the cases where | do get help, to the point where I've
worked around the problem or moved on by the time the information arrives.?

Professional customer support personnel have some very tough constraints on their
jobs: they can’t ignore questions from complete idiots, for example. They get paid to
answer the phones and are rated on customer satisfaction, so laughing and hanging up
are bad for business. Also, the support staff probably doesn’t have direct access to the
source code of the product, and probably lacks the long-term exposure needed to draw
quick answers from it if they did. Instead, if they can’t answer a question from their
own experiences or a problem database, they go to a higher level engineer, who also
may or may not have access to the actual source code.

Contrast that to the situation with an Open Source product. Upon getting an
email that reports a possible bug, a reader can do several things. He can delete it; per-
haps he’s busy or not interested in the problem. He can write a rude response; maybe
he’s having a bad day and doesn’t see why others should get help with their problems.
But there is also the excellent probability that he’s encountered the same or a similar
problem, and has time to write an illuminating response. If the problem is really a bug,
perhaps he knows where the bug is and how to fix it, or can point the questioner in
the right direction.

Given that variety of responses, you may be thinking that the chance of getting a
helpful reply from complete strangers is small. It would be if the number of Open
Source enthusiasts were about the same as the number of people who work at help
desks, but this is not the case: newsgroups and mailing lists for popular Open Source
products are read by hundreds or thousands of smart people, and chances are surpris-
ingly good that one or more of them can help with a question.

The helpful nature of the Open Source community is infectious. Assuming you
work through your problems and stay with the program for a while, you will one day
find in your mailbox or your news reader a question from some poor soul who's just
starting out and is having a problem with his f oo directory. Even if you never read
the source code for a program yourself, chances are good that you can help someone
else with a problem based just on your own experience as a fellow user. If your curiosity
is greater, you may delve into the code in search of your own answers, and soon you’ll
find yourself submitting patches.

At the very least, you'll get an opportunity to send rude responses to dumb ques-
tions. Just don’t let the Manners Police catch you.

3 A humorous “study” posted on Slashdot in 2001 compared the success rate of a commercial technical
support company with that of a psychic hotline, and found them to be about equal. I've resolved to try
the second approach next time | have a problem.

WHY CHOOSE OPEN SOURCE 7

Commercial support for Open Source products

In spite of my good experiences and optimism, you may not trust this nebulous sup-
port organization to work for your needs, or you may work for an organization that
requires critical software to have support contracts. In either case you can still choose
Open Source products, because there are a number of companies that will be happy
to sell you phone, email, or in-person support. | don't want to name some and miss
others, so if you are looking for such support, check the web sites and/or magazines
that deal with your products of choice; chances are good the support companies
advertise there. If you don't see any, ask in the forums that support the product.

Is Open Source software any good? After all, people give it away, and you get what
you pay for!

First of all, let’s say what quality means in regard to software. | rate the quality
of a program mostly on whether it does a good job of what it claims to do, without
bugs that keep me from doing what | want it to do. There are other factors of course,
documentation high among them, but let’s begin the discussion of quality with my
main issues.

The first issue is somewhat subjective: does the software do a good job for the user?
Does the software provide the features | need, as well as extras that will make my life
easier? Does the interface let me use it naturally in its own context? The interface for
a database might consist of libraries to link into my code; for a mail reader, the inter-
face probably consists of lists of messages and folders that contain them, with the usual
functions of reading, replying, deleting, and so on. A programming tool should pro-
vide functions for simple tasks; a database query should involve one library call, or at
most a few (prepare, execute, clean up). Software that interacts directly with the user
should have simple commands for normal tasks (or single buttons in the case of a
graphical interface). I'd be surprised if a mail reader program required more than one
step to read a message or switch folders.

The second quality issue is much more objective: how many bug reports are there,
and how long do they take to get fixed? Of course, all nontrivial software has bugs,
so we can’t expect perfection. Let’s say rather that good quality software is easy to use
and doesn’t fail due to bugs in the user’s normal work. Poor quality software annoys
the user regularly, especially to the point where the user considers some other product.
Bugs that stop the user from working should be fixed quickly, while bugs in secondary
features might be tolerated longer before we downgrade the quality rating.

To compare the commercial and Open Source worlds on these issues, let’s first look
at how commercial software achieves good quality. If a commercial software product
doesn’t have good quality, it won't get positive reviews, it won't make sales projec-
tions, and in the grimmest case, programmers won't get paid, so let’s assume we don’t
have to discuss poor quality systems. Software is developed by teams of programmers,
guided by knowledgeable team leaders and managers, with goals set by studying

CHAPTER 1 OPEN SOURCE

market needs and direction. Within the development teams, programmers review each
others’ code and conduct early testing; when the system achieves certain milestones it
is turned over for more rigorous testing by outside reviewers, and when it is approach-
ing the finish line it can be sent out in a prerelease form to eager customers who subject
it to real-world conditions. (I know how commercial development works since 1've
been employed by such companies all of my professional life, and every one of them
told their customers that they worked this way.)

After cycles of testing and refinement, the software is released to the general public.
When customers report problems, the reports are evaluated in terms of severity and
assigned back to the development team or to a maintenance team in the event that the
developers are working on the next version or a different product. After clearing the
bureaucracy, the bug gets fixed and is part of a new release. Similarly, if someone
requests a new feature, the request is evaluated and, if considered worthy, assigned to
the programmers for a later version.

The most striking aspect of this model is the isolation of the developers. Looking
into the source code is a privilege reserved for the programmers. It is often the only
privilege they have, as features, priorities, and overall direction are decided by higher
authorities. Features are decided by market researchers; bugs are prioritized by the sup-
port managers; the programmers might choose their tools and coding methodology,
but even that can be decided for them. Not all commercial companies are such gulags
for programmers, of course; in general, the smaller the company, the more influence
each programmer has on all of these decisions. But even so, the process remains closed
off from the actual users of the product, and the staff is told that this is to shield the
developers from distraction.

The “Open” in Open Source provides the key comparison here. It doesn’t refer just
to the source code, but to the development process. 1t’s not uncommon in repositories
of Open Source software to see programs marked with version 0.01, meaning more
or less, “this is an outline of a program.” One mantra of the movement is “release early,
release often,”* show your work at every stage to possible users and collaborators. Early
releases are not meant for the fainthearted; rather, they provide some publicity for the
program, allowing the developers to get feedback and perhaps volunteers to continue
the work. These releases may lack key features or interfaces, but can let potential users
try out the fledgling software and tell the developers what to work on to make it usable.
When version 1.00 is released, expect it to be very solid, though version 1.01 may fol-
low closely on as even more users start working with the “stable” release.

Thus Open Source software is subject to peer review, testing, and refinement from
a very early stage. While closed development is reviewed only by the development
group and tested by a staff of similar size, an open project can be reviewed by anyone

4 See Eric S. Raymond’s “The Cathedral and the Bazaar” for this and other inspirational phrases, at
http://www.tuxedo.org/.

WHY CHOOSE OPEN SOURCE 9

10

interested in the work, and tested thoroughly throughout its life cycle. When reviewers
find code that bodes ill for long-term success, or testers find a bug, the matter can be
discussed among the wider circle of Open Source developers, and suggestions may
come in from other programmers who’ve faced similar problems. Of course, some of
those reviewers and testers may submit fixes for the bugs they find, widening the devel-
opment pool considerably.

The Open Source movement likes using software that is a work in progress. It turns
out that this is a strength of such software. This release often mantra pushes software
into the hands of the ready and helpful users as soon as the developer is willing to let
it go, often as each new feature is built. While most developers employ some form of
regression testing as they go, the user base is far more skilled at trying out features in
a wider variety of contexts than is the developer. Open Source projects tend to get
released in a “feature, fix” cycle for that reason.

Most projects also mark a solid release as stable, while work on new features and
their fixes continues. Users who don’t insist on the latest big thing can stay with a sta-
ble release while new work is done. Those who need a new feature or like to see what'’s
going on can stay current with the developers. The stable releases correspond roughly
to versions of commercial software, since most closed companies don’t like showing
works in progress. The closed companies that do so limit exposure only to those who
sign nondisclosure agreements and beta test licenses.

Before Internet connectivity became common, most administrators’ security concerns
were restricted mostly to controlling user access to their servers. As more machines
became connected, “cracking” became more common and turned into big news.®
Security is an important concern, whether your site contains sensitive data or just an
online brochure—once you are connected, you are available to attack.

The literature of every commercial web product mentions security features—this
is a high profile area, and a bad reputation for vulnerability can and should kill an oth-
erwise good product. Less often, that literature will mention how those security fea-
tures have been verified. Was the code audited by professionals? Was the server
bombarded with real breach attempts mixed with regular traffic?

Closed development promotes a notion that code which is seen only by the select
is more secure than code which can be read by anyone. In cryptography circles, this
is known as the myth of security by obscurity. Some classic examples include encryp-
tion protections on word processing documents and spreadsheets and password guards
for desktop computer file systems. The files of law enforcement agencies provide any

5 The news media unfortunately refer to computer break-ins as “hacking” when this activity is prop-
erly called “cracking,” and likewise confuse hackers with crackers, perhaps because hacker sounds
more ominous.

CHAPTER 1 OPEN SOURCE

number of stories telling how easy it is for a professional to break such encryption
when those files have come up as evidence.

Serious computer cryptography researchers and programmers are among the stron-
gest proponents of sharing code. The reason is that they’ve learned through hard expe-
rience that their own clever ideas are often not as clever as they’d like to think, and
real security comes only through detailed analysis of every algorithm that touches sen-
sitive data. This is also the reason that there are a small number of accepted encryption
algorithms in use today. Very few pass through the analysis unscathed.

The Open Source movement embraces their attitude about code review and anal-
ysis, and extends it to whole programs, not just the sensitive bits. Security holes often
occur due to a bug in something that seems unrelated to security. For example, in
1999 various mail clients had to be patched to fix so-called “buffer overrun” bugs
wherein the software didn’t check that an incoming mail header fit into the amount
of memory allocated for it. By writing past the end of the buffer, a virus or mail bomb
could alter the program’s memory and cause it to do something unplanned.

There is also a secondary effect of having the code known to a wide audience: when
a vulnerability is discovered in one system, it is not unusual for a developer on another
project to say “I saw something similar in the code for Project X; here’s a patch.” Of
course, such familiarity and cross-fixing happens inside the development teams of
closed products also, but the sheer number of savvy people involved in Open Source
development makes it likely that security holes of similar kind get fixed across projects.

All nice in theory of course, but what about practice? The web sites and magazines
of the Open Source movement are full of tirades against closed products and self-
congratulation for the quality of their own work, but for confirmation we should turn
to other sources.

One study on the matter was conducted in early 2000 by Security Portal, a web
magazine devoted to security issues and announcements. Its editors gathered data on
the time delay between a public announcement of a security advisory to the release of
a patch, using reports from three OS vendors: RedHat Linux, Microsoft, and Sun
Microsystems. For the data they had, the Linux OS was patched most quickly for a
given advisory, followed by Microsoft and then Sun. RedHat Linux should not be
assumed to represent the Open Source community, but it provided enough data to
form a reasonable comparison and suggest that the movement was living up to its own
self-image in this regard.

I've mentioned just a few of the achievements of Open Source development—the
protocols and programs that make the Web, email, news, and many other Internet
services work, plus the Apache web server. These are enough to let anyone rest on
their laurels. Those and the many other working systems appear “out of nowhere”
from a mix of volunteer programmers, researchers, and commercial enterprises.

WHY CHOOSE OPEN SOURCE 11

12

It is an interesting facet of the Open Source movement that it draws in the “best
and brightest” through its frank openness. Suppose a commercial developer is looking
to add FTP services to his product, or a student needs an example of a security algo-
rithm for a class project. Either can find complete, working implementations already
built and available for download. Having taken advantage of the work of others, the
developer might be moved to contribute his own time to improve the project; or, con-
sidering the sort of egos typical among programmers everywhere, he might submit
improvement patches just to show off. Many find the cultural aspects of the Open
Source movement appealing and start contributing just to get involved.

Whether the ratio of contributors to users is one in five or one in a thousand, the
sheer numbers of people involved become amazing. With more companies and insti-
tutions than ever connected to the Internet, and the Web taken for granted by the cur-
rent generation of students, Open Source projects get a large “mindshare” of the
world’s talent pool. The best of those people become icons of the movement, earning
kudos from fellow developers as well as invitations to speak at conferences and business
seminars. Regular contributors get job offers from companies which know their talents
from working code instead of from a résumé. More recently, companies have been hir-
ing key Open Source developers into positions where they continue their work full
time. These developers can advance the company’s interests, sometimes by supporting
the support staff, while in other instances just giving the company a big nhame to use
in their public relations.

This is not meant to suggest that all the best programmers do Open Source; there
is talent everywhere, and closed development companies have strong incentives to
keep their best people happy. The great thing is, some of their best people also get a
kick out of working on Open Source projects—perhaps as an escape from the con-
straints of their day job, or for the opportunity to work on something related to their
career that doesn’t have commercial potential.

All of which paints a very happy picture of contented Open Source developers, but
the topic is innovation. Does the Open Source methodology produce the most up-to-
date features, headline-grabbing technologies, and best-of-breed solutions?

Sometimes. Open Source development plays the same features game that the
closed-product companies play, leading the pack in some areas while lagging in others.
Many have complained about the lack of comprehensive and high-quality Open
Source desktop. But in the long run, Open Source is a safe bet, for four good reasons,
as follows:

Bearing the standard

In many cases, especially with Internet technologies, Open Source products provide
reference implementations of protocols, clients, and servers. This has the same mean-
ing as a hardware reference design, where a vendor supplies a working version that
others can use in building larger products. The reference implementation of, say, a

CHAPTER 1 OPEN SOURCE

mail delivery protocol takes the specification and turns it into running code that
shows how the various components in a mail system should work.

Some products, including the Apache web server, are distributed with a license that
allows all or portions of the code to be used commercially, with the express hope that
other vendors will use the correct, accepted implementation.

Long-term development

An Open Source product may be developed by a commercial company, perhaps one
that sells support or consulting based on such products, or by individuals in their
spare time, or a mixture of both. As such, the market forces are somewhat different. If
the software doesn't have reasonable features and a usable interface it won't get used
widely, but that doesn't have to mean it leaves the market. If the program is someone’s
pet project, rather than their livelihood, it may stay available for many years, possibly
improving with time. If the developer abandons the project, others may pick up the
source code and continue the work. Thus it is not unusual to find obscure, quirky
Open Source products in the same market niche as more widely accepted, high pro-
file systems, commercial or otherwise.

This longer development time frame gives products a maturity and richness that
are hard to duplicate in a publish-or-perish development methodology. A commercial
product that doesn’t sell well seldom gets a chance to grow into its potential; the prod-
uct must be good in nearly all facets of its market to survive. By comparison, an Open
Source product can succeed in spite of scant documentation, a poor interface, or both,
if it does a valuable job well for its users.

The add-on market

The Open Source world is full of programs that are wrappers for other programs, in
part because of the long-term effect mentioned previously. If a tool does its job well
but has a poor user interface, another developer may come along and write a better
front end for the tool. Probably there will be more than one; the gnuplot graphics
generator has interfaces for the major scripting languages, and | can't begin to count
the number of mail folder utilities there are for Unix-style mailboxes.

This creates a good division of labor, where the developers of the quirky tool with
the poor interface can concentrate on the back-end features that make their tool pop-
ular, while others who know how to make a good interface can create wrappers that
help the user. In this way a secondary competition can take effect where multiple
development teams strive to make the best interfaces.

Feature competition

As we've discussed before, the Open Source world is vast, and given enough contrib-
utors it is possible that all of the above happens. In the particular case of Apache,
the group of developers managing the official version might respond to feature

WHY CHOOSE OPEN SOURCE 13

1.3

14

competition. After all, if it’s a good idea, Apache should have it. More likely, any
new kind of service or bundling of existing services will be relegated to the module
market, the world of developers who write add-ons which aren't part of Apache per
se but extend its capabilities. Thus Apache stays relatively small and secure, and
those who want a new feature such as script processing are welcome to use add-on
modules which provide it.

A BUYER’S GUIDE TO OPEN SOURCE

In spite of my high opinion of the Open Source movement and general optimism
about its potential, I'll admit that being just Open Source doesn't make a product a
good choice. When 1 evaluate a new tool | consider a few factors. Obviously the first
is technical quality, as nothing else matters if the tool doesn’t do a good job. But what
else is important?

In calling this a buyer’s guide | want to bring up an important point for business
users: Open Source software isn’t free in the free beer sense! Every product you install
and use has costs beyond acquisition price. The users have to learn it, programmers
have to get a sense of what it will do for them, administrators have to keep up with
changes and install updates, and so on. Those are the considerations that go into your
choice as a buyer—is this tool a good investment of your organization’s manpower?

My first question is always about the state of the product: has it reached the point of
having a stable version that users find useful? If so, how old is that version and is there
more being done?

We mentioned version 0 and version 1 in the prior discussion of quality. Though
there’s no law that says a developer has to follow any particular numbering scheme,
the usual arrangement is that version 1 represents the first stable release. That is, the
interfaces, underlying file formats and other important details are fixed, and the soft-
ware is reasonably bug-free and usable. Prior to version 1 the developer may change
the names of callable routines, the format for records and documents or other impor-
tant aspects of the product as he discovers problems or limitations, or just gets a better
idea. While the phase leading up to version 1 is often very exciting, you must think
twice before using a product that isn’t there yet. You could be adding to your own
users’ or developers’ headaches.

If there is a stable version, how old is it? If the answer is more than a year, it could
be that the project has stalled out or the developer has moved on. Of course it could
also mean that the product works and no one has any complaints, so look into the rea-
sons why nothing is changing.

For the most part, | prefer products that have ongoing development. Even if I don’t
care about any upcoming features, active development means active support—the pro-
grammers have the system fresh in their minds and will respond quickly to bug reports.
But let’s save the rest of that topic for the next point.

CHAPTER 1 OPEN SOURCE

When is it okay to use an unstable product? If a tool fits your needs well and scores
highly on other criteria, you can consider ignoring this rule and taking a risk on the
possibility of disruptive changes in the software. If you are going to get involved in the
development of the tool yourself, feel free to take on the challenge of unpolished soft-
ware and help move things forward.

As | mentioned previously, active development often means good support, but not
always. In the Open Source world, support is usually in the form of mailing lists,
newsgroups, web forums, or combinations of these. The developers should be active
participants in whatever form of support is chosen, and there should be archives and
a FAQ page somewhere to help new users get started without bugging the old hands.

When considering a product, look through the archives and see what sort of prob-
lems people have reported and what the responses were like. Helpful and amiable
responses from developers are a good sign; unanswered questions are not (even if the
answer is “read the FAQ”). You might also take note of who is using the product and
how. Someone might be working on the same kind of project that you are, or may
have run into an issue which is a show-stopper for your use. You may also get a sense
of name recognition as you read through Open Source forums and learn whose opin-
ions you trust.

As a product becomes popular (Open Source or not), its user community often
takes on a life of its own. This is a particularly good sign in the Open Source world,
because an active user community will have lively mailing list or news postings, plus
add-on documentation, front-ends, and other goodies. The existence of a supportive
user community is also excellent testimony to the quality of the product.

No product is an island! If this is an end-user tool, how well does it integrate with
other products your users regularly employ? If it is a development tool, does it have
interfaces to your favorite scripting language? Does it tie in to other tools that will
help your programmers?

Few things disappoint me as much as reading about an exciting new product and
discovering that the developer has created yet another scripting language, protocol, or
widget set. When choosing tools for my own development group, | accept only those
that work with Perl for scripting and C for low-level programming. My coworkers
don’t want to learn another language when we have excellent tools for these already.
Similarly, I look for tools that store data (or metadata) in XML formats, supply HTML
documentation (or something that converts easily), and work with the other tools we
depend on.

A BUYER'S GUIDE TO OPEN SOURCE 15

16

This aspect of the decision may be difficult to evaluate unless you have experience
with software product management. Ongoing costs for a development tool are proba-
bly small: time spent upgrading to new versions and performing any conversion nec-
essary (preferably none for a stable product). For a database or other product,
ongoing costs can be considerable. Data must be backed up at the very least, and
many databases have to be in a special clean state before a backup is useful. Also,
every product you install uses system resources: disk space for certain, but probably
memory and CPU as well.

A further consideration is upgrade cost: as the product is improved or bugs are
fixed, what does it take to get the changes into production? A perverse fact of software
is that the most critical systems are often the least maintained, if upgrading and fixing
requires downtime and commensurate loss of income. Systems which require shut-
downs for routine maintenance can run up a tab very quickly.

All of these factors together contribute to the buzz phrase total cost of ownership,
(TCO), which must balance favorably against the expected productivity gains or other
values of having the product. For many products, TCO can be evaluated in two phases
of ownership: deployment and maintenance.

Since practically any web site of significance will have a database lurking some-
where, let’s consider the example of two database products and evaluate TCO. This is
an Open Source book, so we’ll assume both products are freely available; costs are in
people time and system resources. The example database has three tables: users, prod-
ucts, and purchases, and the database engine consists of whatever code is required to
perform useful queries on them, such as, finding all the purchases made by a given
user. Don’t worry if any of the terms here aren’t familiar to you; we’ll explain them
in more detail in appropriate sections of the chapters to follow.

The first product is a flat file database; that is, a set of files on disk, each represent-
ing a table. The engine has clever code to make each table look like a Perl hash, pro-
viding simple queries. Installation is easy; just drop the Perl modules into the right
place, run a script that creates the tables, and start coding CGI interfaces. Access con-
trol is handled by the usual file permissions on the tables. Deployment costs consist
of that installation time, a quick tutorial session for the programmer who is writing
the CGlI code, and verification testing.

The second product is a relational database. Although it stores data on disk, we
consider it a black box in that we don’t know or care exactly how the data is arranged
into files. The database engine runs as a separate process which must be started when-
ever the system reboots. Queries are made via SQL, which is sent to the database server
via a special Perl interface. Installation requires getting the server installed correctly,
then installing the Perl modules for the query interface, and changing the system start-
up scripts to get everything going again after a boot. Additional deployment costs are
familiarizing the CGI programmers with SQL if they aren’t already and verifying that
all this works. Also, someone has to create the user, product, and purchase tables and

CHAPTER 1 OPEN SOURCE

administer user access to them, since relational databases almost inevitably have their
own separate internal set of users and permissions.

Deployment cost for the relational database is higher than that for the simpler flat-
file database. If the database is small, relatively inactive and unlikely to change much
over time, the flat-file database is probably the best choice, but we should consider
maintenance costs anyway.

Backing up the flat-file system is simple. A normal system backup will catch the
files, although it's possible for the back up process to record a file while it is being
updated, which could result in data that isn’t consistent. If we need to add a new table,
we create a file and run the initialization script again. Adding new data to existing
tables might be more complicated, perhaps requiring files to be converted to a new for-
mat while the system is offline.

Many relational database products require a special check-point status before back-
ing up the data, ensuring that the disk storage is in a consistent state. In a transactional
database this might require storing only completed transactions and ignoring work in
progress, so it doesn’t have to cause a dramatic pause in the action. Creating tables and
modifying existing ones is generally easy once an administrator has learned the appro-
priate SQL statements, and shouldn’t require any other special actions. Relational
engines are good at that sort of thing, which is one justification for their use.

While maintenance costs can be somewhat higher for a relational database, the
engines provide features that justify the expense for very active databases: superior
locking and transaction recovery, for instance, make it unlikely that a crashed process
or aborted application will leave the data in a bad state. A flat-file database might
require manual correction when things go wrong. In a high-traffic world, things will
go wrong quite often, and the tools used should take care of that.

Thus the TCO for a relational database is expected to be higher than for a flat-file
database, but it is a better choice for a busy system. For a less critical application, the
flat-file database might be acceptable.

1.4 OPEN SOURCE LICENSING

In an earlier section | mentioned licensing as an aspect of Open Source methodology.
Deciding on whether to choose an existing license or to create one is an important
step for the developer of a product. I'll reiterate my warning to always read the licenses
of any product you download.

For the most part however, a product license restricts how the licensed code can
be redistributed—whether you can charge money for it, in particular, and what sort
of notices you must include. Less often the license will restrict how it can be used on
your site.

This is in part due to the fact that Open Source developers are accustomed to peo-
ple downloading software to use it. As the Web increases in popularity however, more
and more software gets used through that medium instead of by directly deploying the

OPEN SOURCE LICENSING 17

18

software on the user’s machine. If your web site offers a commercial service, you may
be charging your subscribers for the use of Open Source software in spite of licenses
that would prevent you from charging for the software itself. When awareness of this
change gets through to the majority of developers, we may see changes in Open Source
licenses that restrict how the software can be used.

Many Open Source products are distributed with generic licenses. Although you
will, of course, read them yourself, I'll cover the three most common types here.

The GNU Public License (GPL) and its variant, the GNU Lesser General Public
License, (LGPL) in many ways define the Free Software movement. Created by Richard
Stallman and the Free Software Foundation, the GPL requires that any software
licensed under it must either be distributed as source code or with source code either on
the same media or made available for reasonable distribution fees.® It further specifies
that only products which are licensed by the GPL can make use of GPLed code. That is,
if you use any code that is licensed in these terms, you “infect” your product with the
GPL. The LGPL variant allows licensed libraries to be linked into other programs with-
out infection.

Linux is perhaps the most prominent example of GPL protected code. The oper-
ating system kernel and most of its utilities are so licensed. Companies that use altered
versions of Linux in their products must post the code for their alterations in promi-
nent places on their web sites, and companies that distribute Linux as a product have
to provide the Linux source code and their modifications as well. Linus Torvalds’ deci-
sion to license Linux under the GPL may be one of the most profound acts in the short
history of software.

These two licenses began separately, but in their modern versions are identical apart
from one clause. The license requires that both source and binary distributions of the
software must contain the copyrights, notices, and disclaimers given in the license,
whether or not the original software is modified to make the present distribution.
The BSD license further prevents any claim that the organizations mentioned in the
license or the contributors to the software endorse this or any later distribution.
These licenses are no longer used verbatim, as is the GPL. Instead, one copies a tem-
plate of the license and fills in a few blanks. We'll call such derivative licenses “a BSD
license” if it has the original clauses and “BSD-like” if they add anything new.

6 The confusion over the costs of “free” software was one consideration that lead the Open Source Ini-
tiative to move toward “openness” and away from “free” as the main descriptive term for software.
The Free Software Foundation disagrees with the move and specifies what it means by “free” in nearly
every document.

CHAPTER 1 OPEN SOURCE

This license accompanied Perl with version 4 and later. Perl had previously been
licensed under the GPL. Perl is currently distributed with a dual license of both the
GPL and the Artistic License, and those who download and install the package may
choose how they license the product. Many developers who create Perl modules
license them “under the terms of Perl itself,” by which they mean that dual license.

The Artistic License allows all parties to give away copies of the licensed software,
along with bug fixes and modifications for portability. To distribute any other mod-
ifications to the software, the licensee must either package them with the original ver-
sion or make the modifications Open Source. The licensee may also use the licensed
software in another product and distribute it in nonsource form so long as they pro-
vide the licensed software in original form also.

The license makes the software it protects explicitly available for use in commercial
products, so long as the licensee doesn’t charge for the protected software itself—that
is, you may charge for a product that includes Perl but you cannot charge for Perl. It
also has anti-endorsement provisions similar to the BSD license.

There is no one right license for Open Source software (or anything else). Choosing a
license can be a personal decision or a political one. A given author may feel strongly
about commercial software, for example, and so may choose to GPL all of his code to
avoid seeing others reselling his work. Others like the fact that Open Source code can
be widely used for many purposes, and so choose the Artistic License so as to see the
largest possible user base while still keeping the source available.

Developers who are motivated by setting standards often choose the BSD/MIT
license; | gave Apache as an example earlier. By publishing standard implementations
with few restrictions on reuse, there is a greater chance that new products will comply
with those standards.

My only strong recommendation to anyone who is writing Open Source code is:
don’t create a new license! Variant licenses (or worse, whole new attempts) slow down
acceptance of software at best, and at worst waste the community’s time by reinvigo-
rating arguments over what is best and right for the world.

Most often a new license is really a commercial license in disguise—"“anyone may
improve this software, but only I am allowed to sell it for money.” These pseudocom-
mercial licenses cause the worst debates about the OSI (which has blessed some of
them) and reduce the motivation of contributors to spend their time earning someone
else’s profits.

Now that I've gotten all my Open Source lecturing out of the way, let’s move on
to one of the premiere successes of the movement, the Apache web server.

OPEN SOURCE LICENSING 19

2

2.1 What makes a good web server 21 2.5 Production server 30

2.2 Securing the site 24 2.6 Development server 33
2.3 The case for Apache 25 2.7 Using apachectl 35
2.4 Apache configuration 28 2.8 Serving documents 36

2.9 thttpd 37

In this chapter we'll discuss the different aspects of the web server, by which we mean
both the physical machine and the program that responds to clients. It may seem
somewhat confusing to mean two or more different things at different times, but the
usage is normal in the industry. Context should make it clear when we mean hardware
or software.

20

2.1 WHAT MAKES A GOOD WEB SERVER

First we'll start with the physical machine and basic setup. In deciding what is good for
the task, we first have to consider what the task is. Is this a server for internal docu-
mentation that gets a handful of lookups an hour, or is it a major commercial site that
is expecting millions of visitors per day? Obviously those are extremes, so let’s consider
three scenarios:

e Community site—The server is exposed to the Internet and provides news and
information to a group of hobbyists, a profession or some similar association.
The traffic is mostly reads, with some messages written back to the site. Down-
time is annoying but won't result in lawsuits.

« Intranet site—This is a server that supports a workgroup within a company’s
protected network. It has a fast network connection to all the clients, and will
host a handful of applications as well as the bulk of the group’s online documen-
tation. The server needs to be available during work hours.

« Store front—An e-commerce server that hosts a database of product information
and creates catalog pages on the fly. Security and constant availability are the
highest priority, followed closely by speed.

Those three cases will be used as examples throughout the book, and each gets its
own chapter.

Obviously the three scenarios have varying hardware needs, depending on the traffic,
of course; a popular news site could be the busiest of the three. But in general, traffic
level is the first consideration for choosing a machine. A fast CPU makes for a more
responsive server; the operators of the e-commerce site might consider a multiproces-
sor system so that users won't have to fight for computing time.

To decide how much memory our systems need, we have to consider what appli-
cations the servers run. By applications we mean both what the web server does to
serve up pages, and the other programs running on the machine. The requirements
to run a large database might swamp the web server by comparison. If it does, there
should probably be a dedicated database server (that will be discussed in chapter 12)
If the site offers mostly static pages (HTML files that are sent as-is to the client) then
the web server itself won’t need as much memory, but if that site also has intense
traffic demanding those pages, then, to improve performance, we might need a lot
of memory for caches. A site that generates most of its pages dynamically (such as
the e-commerce site) will need more memory because each web server process will
put greater demand on the system.

Network bandwidth is the next consideration. Consider the size of a typical
response to a client and multiply that by the expected number of requests in a time
period to figure out your bandwidth requirements. A site that serves large graphics

WHAT MAKES A GOOD WEB SERVER 21

22

files to a few users per hour might need more bandwidth than a site with intense
traffic for textual stock quotes.

Disk space and I/0 bandwidth come last, in part because disk space is so cheap
these days that only sites with intensive requirements need to even consider that part
of the issue. But if your site runs database applications and performance is a chief con-
cern, disk 1/0 may be the limiting factor. Consider the best SCSI bus and drives for
the e-commerce site, and also look into trading memory for application time by cach-
ing the results of database queries.

We'll discuss all these issues in more detail later on. If 1 recommend using a tool
that causes memory consumption to soar I'll point out that you need to reconsider
your configuration. All of chapter 12 is devoted to performance analysis and prob-
lem resolution.

Since this is a book about Open Source tools, I'm going to recommend freely available
OSs, but let me first say this: beyond certain considerations, the OS doesn't matter that
much. If you've already paid for a commercial version of Unix (or your company says
you have to use one) or even (horrors!), one of those shrink-wrapped box OSs, you can
run almost anything discussed in this book. With that in mind, let’s consider what is
important in the choice of OS.

Server and application software—Does the necessary and desired software run on
this OS? That’s the most important consideration, beyond any brand name or fea-
ture. Software compatibility is the reason that a mediocre and buggy operating system
dominated desktop computing through the '90s, and it will continue to outweigh
other factors.

In the case of our example systems, we want an operating system that runs the
Apache web server, our scripting language of choice (preferably Perl, although there
are others), and the applications that the web clients will run via the server. There also
may be a preferred database and other packages that will support the applications
developed for the site.

We're in luck here: nearly any OS with a recent release can run Apache and the
major utilities. There are caveats for some operating systems, so check the documen-
tation thoroughly before committing to a decision, but we're largely free to choose one
based on other factors.

Performance—The OS can be a major factor in system performance. This is a very
complex issue, with reams of academic work on the relative merits of such choices as
micro versus monolithic kernels and other design factors. To evaluate it in terms that
are important to a web server, go back to the same issues used to evaluate hardware:
does the operating system support the amount of memory needed by the server? Does
it provide for the kind of network connection to be used? What file system options
are there and what features do they provide?

CHAPTER 2 THE WEB SERVER

Again, nearly any OS that supports the desired software will have the performance
features needed for a web server, but some offer goodies worth considering: journaled
file systems that recover quickly from crashes, for instance.

Hardware requirements—Didn’t we already cover hardware? In this case, we mean
any specific requirements for this OS. If some higher power has mandated the use of
a particular OS, then we have to use the hardware it supports. If you are making this
choice yourself, you may have hardware at hand that you want to use, such as the ever-
popular PC that can be recycled into a Linux system.

In either case, make sure that the hardware choice doesn’t limit your performance.
For instance, an older PC with IDE disk controllers might not support the update
speed needed for an e-commerce site, and a prior-generation motherboard could sur-
prise you with the amount of memory it can handle.

Support costs—If downtime will be costly for your site, then you must have ade-
quate support for your operating system. Adequate may be mailing list or news-
group support for an Open Source OS, if you are comfortable with the rapidity of
responses you see when others have emergencies (check the archives). If your OS
doesn’t have such venues, then you will need commercial support that promises to
help you in time of need.

However you choose to arrange your support, figure the ongoing costs in your TCO.

Having examined hardware and OSs and made a choice, go back to the beginning and
re-evaluate it. The costs for an adequate machine and a commercial operating system
may surprise you. If you are purchasing all this for a high-traffic site, you should never
buy a machine that is only adequate, because if your site is successful, you will find
yourself buying another machine soon.

If your first round of evaluations included a commercial OS, consider Linux or one
of the BSDs. The hardware coverage is very broad, as is choice of software for the web
server and application languages, and support is free. While the cost of the OS and ini-
tial software are not a large fraction of TCO, having more money for memory or disk
bandwidth at the start can help you avoid a costly migration early in your server’s life.

Install the OS with an eye toward the goal: a fast, secure web site. That means
avoiding unneeded services that will have to be disabled later, even if they would be
nice to have at the start. Assume that the server will be maintained via file copies and
minimal shell access, and don’t bother installing your favorite GUI, desktop, and edi-
tor. Less is more (more disk space, more security, more peace of mind later).

Where there is a need to assume things, for the rest of the book I'll assume that the
web server is running a reasonably modern Linux distribution or Unix operating sys-
tem, with adequate hardware for the task at hand. In chapter 12 we’ll discuss options
for improving performance with a marginal system.

WHAT MAKES A GOOD WEB SERVER 23

2.2

24

SECURING THE SITE

Whether you have just built a brand new machine or you are recycling an existing
server, it’s time for a security review. It may seem early in the process to be worrying
about this, but in my experience, starting with a secure system is better than trying to
lock down a finished installation. The former builds good habits early, while the latter
is prone to loose threads.

The particulars are OS-specific, but for most Unix-like systems the procedure is
roughly the same:

1 Go to the password file (/ et ¢/ passwd or / et ¢/ shadow) and disable shell
access for all accounts that aren't necessary for a functioning server. You can take
that to mean everything but root, although some people prefer to have one non-
privileged account with normal access.

2 If you are running inetd, open / et c/ i net d. conf (or whatever the configu-
ration file is on your system) and start commenting out services. Which services
do you need? Possibly none, in which case you can just shut down inetd all
together: chances are however, that you'll use ftp for maintaining your site, and
you'll need telnet to log in and do the rest of the configuration. Consider replac-
ing both of these with ssh; it provides scp to perform secure, password-
encrypted file transfers as well as a secure shell that doesn’t expose passwords to
plain text network traffic. In chapter 11 we’ll discuss rsync and other configura-
tion management tools that will ease your site-management tasks.

3 Moving on to tougher tasks, find out what scripts and configuration files your
system uses to start other services. Some have a master script (r c. boot), some
have a program that executes a series of scripts (often located in / et c/ rc. d).
On my system, /etc/rc.d has the boot-time scripts: rc. sysi nit runs
first, then rc executes a series of scripts from one of the subdirectories, then
rc. | ocal executes. Examine the scripts to find out what services they start,
and which of those services respond to commands from the outside world.

4 Disable services that you don't need for a web server. Some things you should
not need are: nfs or other networked file systems; network printer services; SMB
or other Windows connectivity services; Yellow Pages (yp) or NIS services; and
any remote management utilities you can live without on your system. If you
aren't expecting to receive email on this site, you can shut down sendmail, imap,
pop, and other such tools. You will probably find inetd’s startup somewhere
along the line, and you can shut it down also if you aren't using its services.

5 Create a nonprivileged account that the web server will use to own its files, with
a name such as www, web, or apache. If anyone other than the system adminis-
trator will be putting files on the server, let him use that account; otherwise dis-
able shell access.

CHAPTER 2 THE WEB SERVER

6 Change the root password, preferably using mkpasswd or a similar tool to gen-
erate a random string of 10-15 letters and numbers. Do the same for any
remaining accounts with shell access. | keep such passwords in a small notebook
that I can lock in a drawer or cabinet.

Now you are ready to reboot your system and verify that all is well and your system is
secure. While booting you may notice other services that should be disabled, so go
back to the research step and find out how to remove them. You might also investigate
tools such as nessus (http://www.nessus.org) that will help check your security.

Some systems don’t need to be locked down this tightly. In particular, an intranet
server can be considered secure if it has its own root password and there are no shell
accounts that have privileges to change configurations. Since the server is inside a pro-
tected network, you can take advantage of nfs and other LAN-level services to make
your workgroup’s life easier.

If your server has an open connection to the Internet, all these steps are required
and should be taken before you proceed with any other installations. From this point
on you’'ll be working with the machine either by logging in directly or via a remote
session (preferably protected by ssh). There should be no other way to get to the
server’s files.

Systems exposed to the Internet get attacked. It is a sad fact of life that crackers are
always finding new ways to find and exploit vulnerable systems. But protecting your
system isn’t as difficult as the media sometimes portrays: remove vulnerabilities by dis-
abling services that your system doesn’t need, and tightly secure the rest with pass-
words that can’t be guessed (or generated from a dictionary) and use configurations
that make sense.

From here on, I’ll assume that the system is secure. As configuration issues or
new potential vulnerabilities come up, I'll highlight the steps needed to keep things
that way.

2.3 THE CASE FOR APACHE

Now it is time to apply the Open Source value considerations and buyer’s guide prin-
ciples to a real-world choice: what web server should you use for your site?

In the rest of the book I'll present alternatives where possible, but in this case there
is only one strong choice: the Apache web server. There are other Open Source choices
(including thttpd, which we’ll discuss in section 2.9), but most are either experimental
or specialized; Apache is hardened by years of use at millions of web sites. Of the com-
mercial choices available, many are actually made from Apache itself; the code is
offered under a BSD-like license that doesn’t constrain commercial use. In fact, the
developers encourage other companies to use it as a reference implementation for the
HTTP protocol.

THE CASE FOR APACHE 25

26

4 - The Apache mindshare is one of the largest in
30 Million Open Source. Estimates of the number of active
developers run in the hundreds of thousands,
second only to Linux. Development began in
18 Million 1995, using the code from the original NCSA
server (all of which has been replaced in the
intervening years). By early 1996 the Apache
server was the most popular web server in use by
sites polled by Netcraft (http://www.net-
4 Million craft.com/survey), and in 1998 it gained over 50
’—‘ percent of the market, making it more popular
than all other commercial and Open Source
Total Apache 1IS Other servers combined. Its market share in 2001 has
Figure 2.1 Apache market share passed 60 percent, running on 18 million serv-
ers, more than twice that of Microsoft 1IS (the

only strong competition). This is illustrated in figure 2.1.

Apache is developed by the Apache Group, a cadre of programmers that was started
when a number of web administrators and programmers decided to make an official
release of the NCSA server based on their patches. From that beginning they embarked
on full-scale redevelopment of the server into their own product, with a stable release
in December 1995. The group develops the server and also coordinates the volunteer
efforts of countless other contributors, evaluating and accepting patches from outside
their number. The membership changes with time as some drop out and other vol-
unteer contributors are invited to join.

8 Million

There are a number of options for installing the web server. Prebuilt binary distribu-
tions are available for a number of operating systems, and for most sites this is the best
way to go. The source distribution is always there of course (this being Open Source),
and building Apache from source is quick and easy on most operating systems. Since
version 1.3.20, Apache’s configuration and build scripts have included support for the
free CygWin compiler and tools for Windows operating systems.

The binary distributions on Apache sites (http://www.apache.org) are built with
the default set of modules and options. We’ll cover what those are in other sections of
the book which discuss the need for something that isn’t a default. You may need to
build from source if your site requires special modules, although it is possible to use a
binary distribution with support for dynamically loaded libraries to add in the extras.
If you want to strip down Apache by taking out things you won’t use or that constitute
security risks for your site, make your own binaries. | recommend doing so anyway—
it isn’t difficult. I'll show you how 1 built special modules on my system.

CHAPTER 2 THE WEB SERVER

Given the number of people who build Apache by hand, it’s no surprise that there
are programs and tools made just for this purpose. Go to http://www.apache-tools.com/
and search for the Configurator category, where you will find Apache Toolbox,
Comanche, and other helpers.

If you download a binary distribution from the Apache site or another distribution
site, you will need to find out where it installs the server’s main directory. When build-
ing from source on Linux or Unix the main directory is / usr/ 1 ocal / apache
(unless you override the default when setting up the build). I'll refer to that as Apache’s
home directory from here on, and any relative file paths (those that don’t begin with
a leading /) are relative to that point.

Naturally you'll want to see results. Apache works on most systems without any further
configuration effort, so let’s get started. Your distribution directory contains directions
on how to launch the server; for Linux or Unix systems, run this command:

bi n/ apachect!| start

You should get a response back that says the server started. Fire up your favorite web
browser and direct it to your own system. For Linux and Unix users, http://localhost/
or your real host name should work. If all is well, you'll get the default page Apache
puts up as part of the installation, directing you to the included online documentation.

If the server doesn’t start, or you don’t get that page, round up the usual suspects:

1 If apachect | didn't start the server, examine the error message. If it reports a
problem with the configuration file then the default configuration doesn’t work
on your system; go on to section 2.4, which is about changing the things you'll
probably want to change anyway.

2 Apache may be configured to use another port; try http://localhost:8080/ (or
your real host name) instead.

3 Look in the log files, | ogs/ error _| og and| ogs/ access_| og. Run-time
errors are reported to er r or _| og, so if the server started but then had a prob-
lem talking to your browser a message will appear there. If there aren’t any mes-
sages in err or _| og, check access_| og, which logs every transfer to each
connected client. If there aren’t any messages in access_| og, then your
browser didn’t connect to your server in the first place.

4 Check for other conflicts on your system. Is there already a web server installed
that is using the HTTP port? By default, Apache listens for requests on port 80,
but it can be configured to use a different port if that’s a problem for your system.

THE CASE FOR APACHE 27

2.4

28

APACHE CONFIGURATION

Like most Open Source programs, Apache gets its knowledge of the system from text
files.1 Get out your favorite text editor and examine the contents of the conf directory
in Apache’s home; it contains a handful of files which are all readable by humans. Lines
beginning with ‘#’ (or any text after a ‘# that’s not in a quoted string) are comments;
the rest is information for the server.

The main configuration file for Apache is conf / ht t pd. conf . The other files in
the directory are auxiliaries (such as magi ¢ and i me. t ypes) or vestigial configu-
ration files that are left over from the way NCSA did things (access. conf and
srm conf). The .default files provide the original configuration info shipped with
Apache, and can be used as a reference if you want to go back to the way things started.

Note that in discussing configuration here, we mean run-time configuration.
Apache also has compile-time configuration, which uses a separate configuration file
(src/ Confi gurati on in the source distribution) as well as other sources that say
how Apache should be put together. One of Apache’s strengths is the flexibility each
site’s management has in deciding what to include in its server. We’ll discuss these
compile-time options in each section that requires them.

A quick look at ht t pd. conf can be intimidating; it’s a big file and it seems very
complex. You don't need to digest it all at once, though, and as you've perhaps seen,
Apache runs just fine without changing a single line.

The good news is that the file documents all of the defaults and explains which sec-
tions you might want to change and why. For further information you can look up
each of those options (and the ones not included by default) in the Apache documen-
tation that was installed with the distribution. Assuming you have a working server
and browser, go back to the default page and click the documentation link. You'll get
a page of documentation topics, including run-time configuration directives; go to
that page for a list of everything that can be set.

The configuration file contains comments (any unquoted text after a ‘#’) and direc-
tives; a directive is either a one-line command or a section containing a set of further
directives.

One-line directives begin with the directive name followed by arguments:

M nSpar eServers 5
MaxSpar eServers 10

1 Configuration files for Unix utilities are usually plain text delimited by white space. There is a move-
ment toward using XML for configuration information; this format looks more complex at a glance,
but it is also very readable once you get used to all the <br acket s>. XML-based configuration files
are easier for programs to parse, which in turn makes it simpler to write configuration helper programs.

CHAPTER 2 THE WEB SERVER

These lines contain two directives, setting the values of the M nSpar eSer ver s and
MaxSpar eSer ver s parameters to 5 and 10 respectively, meaning that Apache will
keep at least five servers ready and at most 10 inactive servers). The lines can start and
end with white space, and the amount of white space between the directive name and
the arguments isn't significant as long as there is some separation. If it reads correctly
to you, chances are good it will read fine for Apache.
Sections are bracketed by a pair of tags in the style of XML and HTML.:

<Location /server-status>

Set Handl er server-status

Order deny, al | ow

Deny from all

Al'l ow from . your_domai n. com
</ Locati on>

The Location section starts with <Locat i on ar gunent > and ends with </ Loca-
t i on>; between the < > brackets of the opening tag the directive works as a one-liner,
with the directive name followed by arguments. Any number of directives can appear
between the opening and closing tags, including other tag pairs that close off further
nested directives. By convention we indent the enclosed directives to show that they
apply only to surrounding tags, but again the white space isn't significant to Apache.

The most common of these section tags are <Locati on>, <Di rectory>,
<Fi | es>, and, if you are managing more than one host on a server, <Vi r t ual -
Host >. <Locat i on> specifies directives for a particular URL, while <Di r ect or y>
applies to directories on a file system and <Fi | es> applies to files that match a pat-
tern. If multiple blocks all match a given file, <Locat i on> has the highest impor-
tance, so you can set different rules for a file when it is accessed by different URLS.
After that, <Fi | es> overrules <Di r ect or y>.

Actually, Apache doesn’t need much configuration. Look for these sections and change
them if the conditions apply to your site.

* ServerRoot "/usr/local/apache"—Put the home directory for the
Apache server here if you aren't using the default. Then search through the rest
of the file and change the same string everywhere that it appears.

* Port 80—If you have another web server running already, you'll need to tell
your new Apache server to use a different port. 8080 is a common alternative.

e Server Adm n r oot @ ocal host —Replace the default address with your
email address.

e #Server Nane | ocal host —This directive is commented out by default,
and the server will use the regular host name for reporting its name (in error
messages for example). If you'd rather use a different name, uncomment the line
by removing the leading # and then replace the default with the name you
want. Virtual hosts require this directive in each site’s configuration section.

APACHE CONFIGURATION 29

2.5

30

PRODUCTION SERVER

When actively building web sites, a development group often needs a set of servers in
different roles: a “toy” server where the developers can experiment with things, a pro-
duction server where the finished product runs, and perhaps something in between.

If you are working alone and your server isn’t exposed to the great wide world, the
minimum configuration is fine for getting started and learning what to do next. If,
however, you are setting up a group of servers, you should secure your production
server immediately. While it’s unlikely that some cracker is lurking in the shadows
waiting to pounce on your hapless web site, securing the server from the start will
establish good habits all around by making developers learn how things need to work
in the final installation.

Apache’s default configuration has reasonable security practices in place, but not
as good as you might like. Read through the Security Tips page in the Apache online
documentation, set the protections on your files and directories as shown there, then
consider how permissive you want to be with your users.

After deciding on your site’s policies, you’ll want to look for the following direc-
tives in ht t pd. conf and change them accordingly:

Al | owOver ri de—Permits or disables the use of local configuration files (usually
called . htaccess) in directories, so examine carefully each occurrence in
ht t pd. conf . In general, a production server should disable this at the top directory,
and then enable it again if needed in specific directories or locations:

<Directory />

Al l owOverride None
</Directory>

This directive turns off the use of local configuration files in all directories. If you need
to enable it again for a given directory—say, the document directory of a trusted
user—you can use Al | owQver ri de again to enable some features:

<Directory /home/sysngr/public_htm >

Al'l owOverride Filelnfo AuthConfig Limt
</Directory>

This allows sysmgr to set some directives in a .htaccess file in / horme/ sysnyr/
publ i c_ht m . Not all directives will be honored; look up Al | owOverri de’s doc-
umentation to see exactly what we've permitted.

Note that allowing local configuration files slows down the server, as it has to parse
the local file for each request to a URL that permits them. This is not how you want
to run your primary applications.

Opt i ons—Permits or disables a grab bag of server features, including the execution
of CGlI scripts and browsing of directories. For a secure server, the top directory should
turn off everything:

CHAPTER 2 THE WEB SERVER

<Directory />
Opti ons None
</Directory>

Opt i ons None is as tight as it gets, but you might consider allowing Fol | owSy m
Li nks or SynlLi nksl f Oaner Mat ch. These two permit the use of symbolic links
on Linux and Unix, which is convenient as long as users don't have general write per-
missions to important directories. SynlLi nksl f Oaner Mat ch allows links only if
the link and the file it points to are owned by the same user. Using just Fol | owSy m
Li nks is the best option performance-wise, since it doesn’t require Apache to do extra
look-ups along file paths. See chapter 12 for more information.

Again, the Opt i ons directive can be used in specific <Di r ect or y> or <Loca-
t i on> sections to open up permissions as needed.

What if we had this section and the previous one setting Al | owOver ri de? They
would both apply; Apache neatly merges sections that apply to the same target in the
order they occur. The same applies to <Locat i on>, <Fi | es>, and so on. Sane
administrators will want to do that merging manually though, so that it is more obvi-
ous what directives apply to which sections.

User Di r—This directive controls the mapping of username URLs; that is, http://
www.example.site/~user. The default is to enable user directories for all users and map
them to publ i c_ht m , meaning that http:.//www.example.site/~bob/resume.html
gets mapped to / hone/ bob/ publ i c_ht m /resune. ht M (assuming / hone/
bob is Bob’s home directory). The argument can either be disabled or enabled (with
a list of users following either) or a path can be mapped onto the user’s home directory.
If your site doesn’t have general user accounts, you can turn this feature off: setting
User Di r di sabl ed will turn off the mapping functions. Better yet, if you build
Apache from source files you can leave out mod_user di r entirely. See the helpful
files on compile-time configuration in the source distribution. If you want to let a few
users do this but disable it for the rest, then use:
UserDir public_htm

User Dir di sabl ed
UserDir enabl ed bob carol ted alice

The more permissive variation is to disable user directories for sensitive accounts and
leave it open otherwise:

UserDir di sabl ed root www nobody ftp

If you allow user directories, then you should also have a <Di r ect or y> section
that specifies Al | owOverri de and Opti ons to control what users can do. The
default ht t pd. conf contains such a section (possibly commented out), so modify
it accordingly:

<Directory /home/*/public_htm >
Al l owOverri de None

PRODUCTION SERVER 31

32

Options | ndexes Syniinkslf Oaner Mat ch
</Directory>

This section disables the use of local configuration files and allows browsing of direc-
tories (that's what Indexes does) and symbolic links that are owned properly.

Mapping ~user URLS to the user’s publ i c_ht nl directory is a typical scheme,
but User Di r can also be set to map those requests onto an entirely separate directory
tree with a subdirectory for each user. For example, this arrangement directs the
requests to appropriate directories under / ww/ user s:

UserDir /ww/ users

Whether using subdirectories of the user’s home or a separate directory tree, each user
chooses what files to expose on the web site by moving those files to the appropriate
directory. Directory ownership and write permissions should be set accordingly.
User Di r should never map requests directly to a user’s home directory since that
could make all subdirectories visible, thus removing the active choice. Another expla-
nation given for this arrangement is that by not exposing the user’s home directory, you
also don't expose the various hidden files (those beginning with *.” on Linux and Unix)
that contain sensitive information such as passwords for mail servers, which are stored
by some mail clients. It's not a good idea to use such things on a server that has an open
Internet connection.
A third possibility is to direct ~user URLS to another server entirely:

UserDir http://another.exanpl e.site/hone_pages

This version causes User Di r to redirect requests for http://www.example.site/~user
to http://another.example.site/home_pages/user.

Scri pt Al i as—Specifies a directory that contains executable scripts. This is one
way to get the Apache server to execute a script for a URL, and is very secure as long as
the administrator controls the scripts. A typical setting is:

ScriptAlias /cgi-bin/ /usr/local/cgi/

The first argument matches the beginning of a URL, and the second specifies the direc-
tory that contains the script for the match. For example, http://www.example.site/cgi-
bin/hello_world.cgi would map to/ usr /1 ocal / cgi / hel | o_wor | d. cgi . Note
that directories containing executable scripts should not be viewable by browsers. Set
Docunent Root appropriately and don’t mingle the two.

That’s one way to handle executable scripts. The others are via the ExecC3
option in the Opt i ons directive and by setting special handlers for given files. We'll
cover special handlers in later chapters. Think twice about using ExecCQ , especially
in user directories. In conjunction with AddHandl er , this option can lead to Apache
running arbitrary code. Even if your users are trustworthy, you have to trust that they
are taking proper precautions with their directories, passwords, and so forth.

CHAPTER 2 THE WEB SERVER

2.6

If you have opened up directory permissions, then also use a <Di r ect or y> sec-
tion to lock down each script directory:
<Directory "/usr/local/cgi">
Al owOverride None

Opti ons None
</Directory>

The Scri pt Al i as tells Apache that the directory contains executable scripts in spite
of Opt i ons None, so everything is set and ready for testing.

After making all these changes, restart Apache and test the server again. You can
even skip to the next chapter and grab a few CGI sample scripts to make sure that
works. Your production server is now secure and running!

DEVELOPMENT SERVER

While it is possible to build a site using a single server, it's often handy to have a sep-
arate place for working on new programs and content (a “toy” server where security is
loosened and developers can try out their code without a lot of bother). As compared
to the production environment, a development server can allow open access to con-
figuration files, documents, and scripts so that programmers can drop in new works
quickly. Of course, this assumes that the server is not on an open Internet connec-
tion—it should be in a protected network or otherwise configured to refuse requests
from outside its LAN.
Here are a few possible configuration scenarios:

The following directives allow Apache to serve documents and scripts from users’
directories:

UserDir /hone
<Directory /hone/ *>

Al l owOverride All

Options Al

AddHandl er cgi-script .pl .cgi
</Directory>

The User Di r directive maps ~user URLS to the user’s home directory (assuming, of
course, your users’ directories are under / horre), allowing any unprotected document
to be read. We then open up permissions in those directories with Al | owQOverri de
Al and Opti ons Al | , and tell Apache to treat any file ending in .pl or .cgi as an exe-
cutable script.

Each developer can tailor what Apache shows and does by appropriate use of
.htaccess files, starting with one in his home directory that will be inherited by
each subdirectory.

It’s hard to imagine giving the users much more than this, but of course it is pos-
sible: we could give each user his own server! If you want to maintain the illusion of

DEVELOPMENT SERVER 33

34

a single site but map each user to a different server, look at combining User Di r with
a Redi r ect for each user to send requests to developer sites.

This scenario lets users publish documents and run CGI scripts, but only from certain
directories:
UserDir public_htm
ScriptAlias /~user/cgi-bin/ "/honme/user/cgi-bin/"
<Directory /home/*/public_htm >
Al l owOverride None

Options | ndexes Fol | owSynii nks
</Directory>

The User Di r directive maps requests for http://www.example.site/~user to / horre/
user/ public_htm , while ScriptAlias similarly sends http://www.exam-
ple.site/~user/cgi-bin/ requests to / home/ user/ cgi - bi n (and tells the server to
execute the resulting file—no need for an AddHandl er directive). Directories are
browsable (Opt i ons | ndexes) and users can manage their documents using sym-
bolic links (Fol | owSynLi nks), but can't override server configuration or options in
general (Al | owOverri de None).

Scri pt Al i as tells Apache that the given directory contains executable scripts.
The previous example works only for a user named “user.” For this scenario to work,
we need toadd a Scri pt Al i as line for each user who is allowed to run CGI scripts.
If all users are permitted, we can handle this in one directive using the Match variant
of Scri pt Ali as:

ScriptAliasMatch A ~([*]+)/cgi-bin(.*) /home/$1/cgi-bin$2

The parts that look like cartoon characters swearing are regular expression matches; see
your Apache documentation for more information on the Match variations of direc-
tives and how to use regular expressions in them. Briefly, this particular match looks
for URLs of the form /~user/cgi-bin/* and translates them to / hone/ user/ cgi -
bi n/ *, where the real user name is substituted for “user” in both cases.

As shown in one of the production server configurations, User Di r can also be used
to map ~user URLS to a separate directory tree. This variation stores users' public doc-
uments in subdirectories under / ww/ user s:
UserDir /ww/ users
<Directory "/ww users/*">

Al l owOverri de None

Opti ons None
</Directory>

This is as tight as it gets, assuming the directory protections are set properly. If write
permission is restricted to the system administrator then only those files permitted by

CHAPTER 2 THE WEB SERVER

2.7

the boss will be displayed on the web site. In such a scenario it makes no sense to dis-
cuss executing scripts, since a CGI could display arbitrary files (and leads one to won-
der if this is actually a development site).

USING APACHECTL

Having chosen a configuration and set things up properly, test your server again. This
is a good idea after any change to a configuration file, even if the changes look trivial.
If your configuration allows CGI then take an example from the next chapter and try
that out too.

The apachectl program includes helpful code for verifying configuration files. This
command checks that things are all proper:

/usr /1 ocal / apache/ bi n/ apachect| confi gtest

There are three options for restarting the server, in order of severity: graceful, imme-
diate, and hard.

A graceful restart allows Apache to complete work in progress; servers with open
connections won't restart until they finish their transfers or time out waiting for cli-
ents. A server won't close an open log file until the server shuts down. Your users will
appreciate having a chance to finish their business, but you might find it troubling if
you are looking for an immediate change.

Trigger this restart using apachectl or kill:

/usr /1 ocal / apache/ bi n/ apachect| graceful
or
kill -USRL httpd

If you use apachectl, it will also run a configtest for you automatically, so you can be
assured the server will start up again properly.

An immediate restart tells Apache to close log files and open connections and then
read the configuration files again:

/usr /| ocal / apache/ bi n/ apachect| restart
or
kill -HUP httpd

The apachectl program will confirm the configuration files with configtest before stop-
ping the server. If the server isn't running in the first place, it will just start it for you
without an error.

A hard restart is necessary if you have changed the Apache program itself or made
system changes that the server won’t normally track:

/usr /| ocal / apache/ bi n/ apachect| stop
/usr/ | ocal / apache/ bi n/ apachect| start

USING APACHECTL 35

2.8

36

or
kill -9 httpd
/usr/ | ocal / apache/ bi n/ apachect| start

Shutting the server down with apachectl is preferable, but not always possible if things
are going wrong.

SERVING DOCUMENTS

Your site now has a functional web server that can present static documents and run
CGil scripts. Most sites have some static content, and it’s easy to manage once you learn
how Apache translates a URL into a file path.

We've discussed URL mapping previously in the sections on User Di r. When
Apache receives a request for a particular URL, it translates it into a file path and then
figures out how to serve up that file. The rules for the latter can be quite complicated.
Later chapters will explore them in examples that use handlers to take over this process
for certain files or directories. The mapping rules themselves are generally simple:

1 If Apache is configured to handle multiple sites using <Vi r t ual Host > direc-
tives, it looks at the site specification to see which set of rules to use. The site is
the part of the URL between http:// and the next /. If there aren't any virtual
hosts, this part of the URL is ignored and the general rules are applied.

2 The section of the URL after the site specification is the path, composed of
words separated by /s; it can end in a file name such as document . htnl , a
trailing path component or just a /. Apache evaluates User Di r, Scri pt -
Ali as, <Locat i on>, and other directives to see if they match this path.

3 If the beginning of the path matches a Scri pt Al i as directive, the rest of the
path is mapped onto the given directory and the resulting file is executed as a
CGil script. Similarly Al i as directives, Redi r ect s, and other rewriting rules
are applied.

4 If Apache is built with mod_userdir and User Di r isn't disabled, it checks to
see if the path begins with a ~. If so, the first path component is considered to
be a user name and the User Di r rules discussed previously are applied to map
the rest of the URL as a file path onto the user’s document directory.

5 If the rules in number four didnt satisfy the most, the path is considered as a file
path relative to the directory given by the Docunent Root directive, usually
the ht docs subdirectory of Apache’s home. Any <Di r ect or y> directives
that match some or all of that file path are applied to the URL.

6 If the path ends in a file name and that file exists, <Fi | e> directives are
checked and the file is served if permissions allow. The browser receives the file
and displays it according to its rules and idiosyncrasies.

CHAPTER 2 THE WEB SERVER

2.9

THTTPD

7 If the path ends in a trailing /, Apache checks for the existence of a default file
(usually i ndex. ht ml') and serves that if it exists. Otherwise, if directory
browsing is allowed (Opt i ons | ndexes), Apache creates a document on the
fly that represents a directory listing. Depending on the other options you allow
and the number of icons supplied for file types, this directory listing can look
like a desktop file browser or an FTP site listing.

s If Apache hasn't figured out any other way of handling the path, it sends back
an error document. These too are configurable; some sites have nice, apologetic
error documents that offer an email address for sending complaints, while oth-
ers reroute the user to a site navigation page. My favorite variations are those
that use haiku:

You step into the stream,
but the water has moved on.
Document not found.

There is a bit more to it than that; when Apache decides what file to send to the
browser, it also tries to figure out what type of file it is so that it can send along appro-
priate headers to the browser. These types are managed in the m ne. t ypes file in
Apache’s configuration directory. If you are serving up unusual content, you'll need to
add types to this file so that browsers know what to do with the documents you send.

Suppose a browser sends a request for http://www.example.site/hello_web.html to
our server. The path consists of just a file name, so there isn’t much in the way of anal-
ysis to do; Apache looks up hel | o_web. ht m in the Docunent Root directory
and sends it back to the browser.

That file contains an IMG tag specifying a relative URL for images/hi.jpg. Assum-
ing the browser is displaying images, it sends a request for that URL back to Apache.
The URL has a path, images, and a file name, hi.jpg. Apache looks for directives that
apply to the path, and finding none, maps it onto the document root as a simple direc-
tory path. It sends the file back with appropriate headers and the image is displayed.

That’s static document handling in a nutshell. As I mentioned, there are plenty of
ways to make even this process more complicated. Apache has a rich set of directives
for rewriting URLs and managing changes of directories, file names, and so on that are
inevitable over the lifetime of a site.

If that’s all you need, Apache will serve you and your documents well. You might
consider an alternative, however, one specially built for speed at just this task.

THTTPD

thttpd is a small and versatile web server. Its flexibility begins with its name: the ‘t’
stands for tiny, turbo or throttling, take your pick. The author (Jef Poskanzer) offers
the software from its web page (http://www.acme.com/software/thttpd/thttpd.html).
While thttpd’s design goals are much the same as those for Apache—a secure, stable

37

38

web server that handles static documents and other tasks—thttpd is built for speed,
while Apache is meant to be a general platform for many other pieces of software.

thttpd’s feature list shows its focus: it serves static documents with a minimal
implementation of the HTTP 1.1 protocol, offers a few utilities such as CGI process-
ing, and a unique throttle utility which lets a webmaster allocate bandwidth to differ-
ent sections of a site. It handles virtual hosts (see chapter 11), an absolute necessity for
modern web sites. Other features such as redirection and server-side include (SSI) are
given over to external programs, keeping thttpd small.

One reason for its lean size is it runs as a single process, unlike Apache with its
separate children. The server listens on its socket for incoming requests and handles
each in turn, but it doesn’t bog down on any particular client. thttpd uses nonblock-
ing 1/0 via sel ect to fill each waiting socket and move on to the next, so it can
feed documents to a large number of browsers concurrently. That single process is
smaller than just one normal Apache child (of which a typical configuration has at
least several hanging around waiting for work).

Thus by keeping a tight focus and using a minimum of system resources, thttpd
provides a very high performance level for servers that run in small spaces. In a race
with Apache, thttpd can serve documents faster per second than the larger server can,
but the author points out that the bandwidth limitations of most sites limit the per-
formance of either server more than memory or other system resources. Don’t expect
thttpd to improve on a site that has a network bottleneck.

In chapter 12 we’ll discuss how thttpd can be used as a front-end server to handle
static documents while a more heavyweight Apache serves dynamic content. Don’t
consider it just for a secondary role, however; it’s a fine server for many workloads.

It is also easy to extend thttpd for more than static documents. PHP users can use
the popular mod_php module directly to run their applications, and Freshmeat lists
a thttpd variant, pthttpd, which has an embedded Perl interpreter for speeding up the
kind of code I'll be talking about in the rest of the book. The web page for thttpd lists
add-ons for SSL (see chapter 6) and other frequently needed options.

Ifyou need only to publish static documents, Apache or thttpd will work fine for you.
Chances are good you want more from your web server, however, and dynamic content
is where the action is, so let’s go on to the tools that make the exciting stuff happen.

CHAPTER 2 THE WEB SERVER

CHAPTER 3

3.1 Why scripting 40

3.2 The case for Perl 42

3.3 Inside CGl 46

3.4 Strictness, warnings, and taint checking 66
3.5 CGI modules 67

The Common Gateway Interface (CGI) began innocently enough as a way to make
the Web interactive through simple fill-in forms and basic controls. Developers soon
realized that even with just those simple controls they could create real applications
run via a browser in the same way that business applications have worked for
decades—the user fills in a form, the computer validates the input, spits back any-
thing that’s not right, or moves on to the next form (or completes the transaction,
whatever it is). This realization sparked the creation of thousands of web applications,
and possibly as many books about CGI programming.

What is almost as amazing is that while in the intervening years HTML and web
browsers have increased in complexity by many times, the CGI protocol and its basic
tools haven’t changed much at all. There are simple text boxes, multiline boxes, selec-
tion lists, and a few kinds of buttons—the same basic list of widgets you’d find in the
tool kit of most GUI programming libraries. Web application interfaces have certainly
become more attractive and more usable, but nearly all those changes have taken place

39

3.1

40

in the addition of HTML features and the use of client-side scripting, primarily
through JavaScript.

In this chapter (and most of the rest of the book) we’ll discuss server-side scripting,
which is visible to the browser only in the documents it sends back in response to
requests. Client-side scripting, like advanced HTML, is beyond the scope of this book.
There are several web sites with good introductions to JavaScript and another book-
shelf worth of detailed guides. The two are often combined, server-side scripts creating
client-side scripts embedded in the documents they serve, which in turn prepare the
responses sent back to the server.

WHY SCRIPTING

One of the first things to notice about CGI applications is that nearly everyone talks
about “CGI scripts” and few say “CGI programs.” In fact, most web applications are
written in scripting languages, by which I mean Unix shells, Perl, PHP, Python, Tcl,
and others. Of the remainder, a large proportion are written in Java, often using a
server specially made to serve Java components, or add-ons such as Apache’s JServ,
and shockingly few are in C or other compiled languages.

There are good reasons for so many web applications being written in scripting
languages, and some poor ones too. Scripts have a rapid development life cycle (impor-
tant for a medium in which “generation” refers to a year or so of product versions)
and are easy to maintain. CGI was created as a means for a web server to run simple
programs that parse textual inputs and send more text back in response. Scripting
languages are generally good at text manipulation as compared to nhumber crunching,
for example.

For every good feature of a technology, there are equal and opposite failings. If a
language provides for rapid development and easy maintenance, then it also unfortu-
nately provides for slap-dash development and unreadable code. The CGI world has
as many bad examples of programming as any other field of software, but in this case
the bad examples are highly visible, such as the various libraries of Perl applications
found scattered around. Some programming purists point to these as reasons why web
applications should be developed in more strict languages, and while | agree with the
desire for better programs, I can’t see the pace slowing down any time soon.

Given that we’re going to use a scripting language, what characteristics are impor-
tant for building web applications? How can we emphasize the strengths and diminish
the weaknesses? To me, the most important characteristics for a web development lan-
guage are:

LA misleadingly named language created by Netscape and made into a casualty of the browser wars; it
is as hard to write fancy JavaScript for multiple browsers as it is to write fancy HTML. Still, it’s not a
bad language and it is worth learning enough of the basics to improve the usability of your sites. Server-
side JavaScript is available for some platforms and as an ASP scripting language.

CHAPTER 3 CGISCRIPTS

« Easy to learn—T he language should have a gentle learning curve, since new pro-
grammers are entering web development at an amazing pace.

« Rapid development—The language should let programmers defer complex tasks
while creating the core of a new program, so that the user and developer can
work together on high-level features before investing valuable time in lower
level coding.

« Excellent text handling—CGI programs receive text inputs and often manipulate
text files; the output is usually text. The language should have string manipula-
tion, pattern matching, and file handling features that make these tasks simple.

« More than CGI—The language of choice (or its utilities) should provide a way
for programmers to go beyond the CGlI interface and let the script work closely
with the server when necessary.

« Tools for further development—Given the investment required to master a lan-
guage, our choice should offer more than just basic CGI. It must scale up to
complex web applications, and preferably work as well outside the server in
other application programming.

Our choices should also address as well as possible the weaknesses of scripting lan-
guages compared to compiled choices:

 Performance—Scripting languages run more slowly than C code due to the cost
of their high-level data types and memory. Also, scripts have a slow start-up
time if they have to be recompiled each time they run.

 Syntax checking—While rapid development calls for a forgiving language, main-
tainable code requires a tool that tells the programmer when he’s got problems,
preferably before it happens at run time.

« Resource usage—Any language with dynamic strings and automatic memory
management will take up more system resources than tightly written C code.

Obviously a book with Perl in the title isn't going to suggest you use something else,
but there are other choices. Tcl and Python are both mature languages with good
module-level support for web programming and Apache. Python is built into the
popular Zope application server engine, a powerful tool for Apache sites. Vbscript
and server-side JavaScript are both popular among ASP programmers. | think that
Perl is still the best choice, and the web development community appears to agree,
but if you have an investment in either you can certainly do all you wish to do in
either language.

A much stronger case can be made for PHP, which was released in 1995 and has
grown in both popularity and installed base at a tremendous rate. PHP was created as
a tool for generating HTML from templates and evolved into a web programming lan-
guage; scripts are embedded in HTML in special tags, much like ASP or the embedded

WHY SCRIPTING 41

3.2

42

Perl products we’ll discuss later. Given its web-centric focus and free availability, it’s
not surprising that the language took off and now touts an installed base of over one
million servers. The generosity of its developers in providing the sources for their own
sites helps too.

The PHP community contributes libraries, examples, and support, making it a very
good choice for any web developer, especially those who are starting afresh and don’t
have an investment in another language. For those sites doing web and nonweb devel-
opment, I still recommend Perl.

THE CASE FOR PERL

Perl has been the language of choice for CGI programming from almost the begin-
ning, as applications grew beyond what simple shell scripts could easily support. Perl’s
strengths for the task made it a great fit:

1 Perl’s text handling, pattern matching, and simple file management make it a
natural for dealing with the text-based medium of the Web. While other lan-
guages have come up to speed in this regard, Perl had a huge head start and has
improved in the meantime.

2 Perl is easy to learn, in spite of a reputation to the contrary. Developers are
rightly concerned about taking on new languages in the face of deadlines, but in
my experience and those of my coworkers, Perl lets new users be productive
without mastering the whole language at once.

3 Perl has a lot to offer in the long term as well. Perl is a mature language (some
would say feature-laden) that has been in development for over a decade. In part
due to its success as a web programming language, Perl has received a huge out-
pouring of contributed modules (the Perl equivalent to add-on programming
libraries) for CGI and nearly any other field of programming.

4 Its popularity with system administrators and other utility-oriented program-
mers has made Perl ubiquitous enough that someone at just about any large site
will have experience with it. Even if you don't know Perl yet, chances are good
you know someone who does.

On the other side of the balance sheet, Perl has a deserved reputation as a resource
hog; as a language that has modules for everything, it is hard to keep Perl programs
slim and trim.? Plain Perl would be a poor choice for a scripting language if there
were nothing we could do about that, but there is:

1 Apache has add-on modules that keep a Perl interpreter running in the server or
in a separate process. As scripts are compiled, they are saved in memory and run

2 Perl's lead developers are discussing the structure of Perl 6 as | write this book. One stated goal is to
reduce the size of the interpreter and the memory cost of running programs.

CHAPTER 3 CGISCRIPTS

again as needed, avoiding the overhead of compilation time. We'll discuss those
modules in chapter 5.

2 Perl can be trimmed down somewhat by building key modules into the inter-
preter to speed loading time and reduce overhead.

3 Compiled Perl has been high on the list of promises for the last couple of major
releases, and could be a reality soon. Of course, if we keep Perl running via the
modules mentioned in the first item the release of the compiled version becomes
less important, but it will still be a hit if it provides improved optimization.

What about the other issues from the buyer’s guide? Given Perl’s prevalence in the
web programming world it hardly seems necessary to prove the case, but nevertheless,
here are more advantages to Perl:

» Maturity and stability—Perl 1.0 was released in 1987, and has gone through five
major language revisions (where features and meanings of operators changed).
Perl 5 came out in 1995, and has undergone annual improvement releases since
then. The interpreter comes with most Unix-like operating systems and is avail-
able for Windows and Macintosh systems.

* Continued development—New versions of Perl are in active development, as are
the many hundreds of add-on modules. The Comprehensive Perl Archive Net-
work (CPAN, browsable at http://cpan.perl.org/ and http://search.cpan.org/)
has a vast repository of Perl scripts and modules for web programming, system
administration, and applications. The CPAN repository is one of Perl’s best fea-
tures; when developing applications I've often gone there to look for help and
found a module ready-made for the task at hand.

 Support—Perl is actively supported by commercial firms, user groups, web
sites, newsgroups, and mailing lists; see http://www.perl.com/ for a guide to
free resources as well as commercial organizations that sell training and various
levels of support. The Perl Monks at http://www.perlmonks.org/ offer a virtual
community site wherein members field questions and discuss Perl in forums
and chats, while the Perl Mongers (http://www.pm.org/) run many local user
groups. You may have one near you. There are many good books on Perl, some
by the language’s developers and others by community members. The Perl
Journal is a print magazine (http://www.tpj.com/). Online magazines include
http://www.useperl.org/ and http://www.perlmonth.com/. Perl has a diverse
community of users, with books, newsgroups, and mailing lists on various top-
ics including web programming.

e Good investment—Having gained proficiency in Perl for one task, you'll find
yourself applying it to others. | find it an excellent language for general business
application programming, partly because Perl is a good “glue” language for
sticking together other products and tools, such as databases and user interface
products. Writing reports and system administration tools are both easy.

THE CASE FOR PERL 43

44

» Ongoing costs—Perl gets a major release about once per year, with two or three
maintenance releases following. Modules are released on their own schedules,
and the CPAN interface provides easy updates.

e License—Perl is released under the Artistic License or the GPL; see the discus-
sion of the “Perl terms” in chapter 1.

Of all the reasons to like Perl, the strongest one for me is the development commu-
nity. The Support resources | mentioned are some of my favorites, but that list is
barely a start. The CPAN archive combined with web sites and mailing lists provide
amazing tools for new users and old hands.

The same options for obtaining and installing Apache apply to Perl: binary distribu-
tions, as well as the source distribution, come with many operating systems, and cur-
rent releases are available on Perl’s web site (http://www.perl.com/). The book’s web
site provides pointers to current distributions.

If Perl was installed with your operating system, consider upgrading or building
from source anyway. Some Linux distributions in the late "90s had broken versions of
Perl that caused endless headaches and new FAQ entries. If you installed Apache from
source, you probably won’t have any trouble building Perl.

Binary distributions of Perl have their own notions of where the Perl interpreter
and modules reside. The source build on my system puts executables in / usr/
| ocal / bi n (or it links to the executables there from / usr / bi n or another direc-
tory). My examples will assume that location, so correct as necessary if you have a dif-
ferent arrangement. The path to Perl is important due to the way most Unix systems
determine how to run a script. The first line can have a comment, sometimes called
the shebang, telling what interpreter to run, so if your Perl is in a different place, make
appropriate changes to the lines that look like this:

#!/usr/local/bin/perl -w

The location of the modules is less important, but the example explanations can be
confusing if you go looking for the files yourself and they aren't where | say they are.
Check the output of per | -V to find out what directories your installation uses.

While CGI scripts are meant to be run from a web server, they are all normal Perl
scripts and will run, or at least compile and start, from a regular shell. To test your
Perl installation, grab one of the scripts from the CGI samples directory on the book’s
web site and run it:

> . /hell o_web. pl

If you get an error such as “file not found” and the path to the script is correct, it
could be that the shebang line is wrong for your system. Make sure your Perl

CHAPTER 3 CGISCRIPTS

interpreter is / usr /1 ocal / bi n/ per| (or there is a link to it there). If the error
says that the file isn't executable, change the permissions or run it as an argument
for Perl:

> perl CG/hello_web. pl

Once you've got Perl running properly, take a few moments to get things up to date.
The CPAN module will do this for you somewhat automatically. Invoke it like so
from a privileged account:

> perl -MCPAN -e shell

If this is the first time you've invoked CPAN you will enter a configuration dialog;
CPAN will ask you where you want to store its cache of files and the maximum size of
the cache. Then it will offer choices for various utility programs—don’t worry if you
are missing one or more of them, it will compensate. When you get to parameters for
various Perl make commands, I strongly suggest that you have make i nstal | run
with UNI NST=1; this tells Perl to remove the previous version of an updated module
if the new one is being installed to a different directory, and helps avoid confusion
and errors caused by having multiple versions.

After setting up the caching and build process, CPAN will ask you about your net-
work configuration. If you run your server behind a firewall, you’ll need the address
and port of the FTP and HTTP proxies to get the Perl network modules to run through
it; supply each as a URL, such as http://security.example.site:3128/.

Beyond that, CPAN will locate mirror sites near you, and let you specify a set of sites
to check for new modules. Once thisis finished you are ready to update your installation.

Tell Perl to update all the modules that CPAN uses first (or else it will nag you to
do so later):

cpan> install Bundl e:: CPAN

Then use the ' r* command to get a list of modules that came with Perl which are
now out-of-date. Chances are good that CGl.pm is on the list, so update it as well:

cpan> install Cd

The modules on CPAN are often works in progress, and it is not uncommon to find
one which doesn't test properly on your system. If so, don't despair; fixes are probably
also in progress. If it is a module you need, look at the error and if it appears not to
interfere with your intended use, use the f or ce command to install it anyway:

cpan> force install Bundle::|libnet

As | was getting a machine up to date for work on this book, | found that the (then)
current version of the libnet module didn't test properly because | couldn't give it an
FTP site which allowed anonymous uploads to the / pub directory. No secure site

THE CASE FOR PERL 45

3.3

46

should allow that, so I didn't let it stop me; I installed anyway as shown, since the rest
of the tests passed.
I’ll point out other modules as they are needed.

INSIDE CGl

When Apache gets a request for a URL that maps to a file its configuration says is exe-
cutable, it runs the file as a program, passing along information about the request as
environment variables and possibly also as the program’s input. The file's permissions
have to be set to allow Apache to run it (that is, script is run as the user you tell
Apache to use in your ht t p. conf file). The file must also be marked as executable
in the configuration file, either by residing in a directory that has a Scri pt Al i as
or via the Opt i on ExecCd directive (in which case the file also has to have a han-
dler that says it is executable).
Figure 3.1 shows the flow of control for a simple CGI request:

browser 4—‘
\—> server

CGl script

The browser sends a request to Apache, which maps the request onto a file and
notices that the file is designated as a CGI script. Apache passes control to mod_cgi,
the internal module which handles CGI requests. mod_cgi first verifies that Apache’s
user has permission to run the script. Then it sets up an environment to pass infor-
mation along to the script, and forks off a process to execute it. In the case of a POST
request, it also sends input to the new process—see the Interacting section for more
information. Then Apache takes the output from the CGI process and passes that to
the user.

The default Apache configuration puts CGI programs in a directory separate from
documents, typicallythecgi - bi nsubdirectory of Apache’shome. Thisis partly for ease
of configuration, and partly to keep overly curious web surfers from reading programs.3

A Script Ali as directive such as this one marks all of the files in / usr/
| ocal / apache/ cgi - bi n as executable:

(CGl process) Figure 3.1
Control flow

3 f you'd rather keep scripts and documents together, it’s easy enough and doesn’t compromise your

security. Use the AddHandl er directive to tell Apache which files are scripts, and it will always treat
them as scripts, never as documents to send to a browser. This method avoids the use of Scri pt -
Al as also.

CHAPTER 3 CGISCRIPTS

ScriptAlias /cgi-bin/ "/usr/local/apache/cgi-bin/"

Any URL of the form http://www.example.site/cgi-bin/hello-web.pl gets mapped onto
that directory, and, assuming the correct file permissions and no script errors, / usr/
| ocal / apache/ cgi - bi n/ hel | o-web. pl gets run in response. The program’s
output is sent back to the requesting browser, just as a file would be if Apache were
serving a static document—except that Apache has rules for sending standard headers
along with documents. CGI programs have to do this on their own.

First-time CGI programmers have to learn more about HTTP interactions than do
writers of static pages. In particular, CGI scripts have to send correct headers before
their output. The web server takes care of headers for static pages using rules based on
the content.

The minimum required header is the Content-Type declaration which tells the
browser what sort of document it is receiving. Make this the first output of a shell
script and then the rest of the script can send whatever it wants:

echo "Content-Type: text/plain"
echo ""

The content type “text/plain” tells the browser that it is receiving a plain text file and

should display it as is. The blank line after the header tells the browser that it has

received all headers and what follows should be interpreted as the displayable text.
Here is a very minimal example of a CGI script:

#! / bi n/ bash

echo "Content-Type: text/plain"

echo ""
ps axw

The script sends the plain text header, then runs the ps command. Since all script out-
put is sent to the browser, the browser gets a list of processes running on the web server.

The content type can be any valid MIME type (and you have a list of them in
conf/ m ne. t ypes), but in practice, CGI scripts are most likely to send text/plain
or text/html; a script that sends back a graph might use one of the image types. While
plain text is convenient, it isn’t terribly interesting. In sending back HTML however,
ascript can make use of any of the features of modern web documents that the browser
is likely to understand. Unless otherwise specified, all programs from here on will send
back text/ntml.

The problem with sending back HTML, of course, is that one has to know how
to write HTML-tagged text. Fortunately, Perl programmers have the help of an
exceptionally talented module that will do all of the tagging for them: the aforemen-
tioned CGI.pm, which is the basic programming library for uncounted thousands of
web applications.

If you haven’t updated CGl.pm via CPAN yet as explained previously, do so now,
then take a brief look at its built-in documentation via the perldoc command:

per | doc CG

INSIDE CGI 47

48

You'll get a short example program, followed by quite a lot of information. Like most
things in Perl, you don't need to learn it all at once. Let’s start on some examples of
our own. (You'll find them all waiting for you on the book’s web site, so don’t waste
your time typing and learn it in pieces.)

In keeping with programming traditions, we should start by saying hello:
1 #!/usr/local/bin/perl -wT

Check for undeclared vari abl es.
2 use strict;

Load the CA nodul e.
3 use C3;

Make a query object for calling HTM. output functions.
4 nmy $q = CA - >new,

Print the standard HTM. headers:
5 print $g->header;

Send the opening <HTM.>, a <HEAD>, and <TI TLE> bl ock,
then the opening <BODY>.
6 print $g->start_htm ("M first C3");

Put sone text in an <H1> bl ock.
7 print $g->h1('Hello, Web!');

Print the closing </BODY> and </HTM.>.
8 print $g->end_htni;

That looks like a lot of work, especially compared to the plain text equivalent:

#!/ bi n/ bash

echo "Content-Type: text/plain"
echo ""

echo "Hell o, Web!"

The Perl version is written to be a good example, not a tight script, so it is more ver-
bose and clumsy than it needs to be. Let’s break it down line by line:

1 This is the shebang line that tells what shell to run; in this case Perl, with the - wT
switches to activate warnings and taint checking. While taint checks aren't actually
needed here, it’s a good habit to get into for CGI programs. We'll explain taint
checking later in this chapter.

2 The warning switch (- w) and use stri ct activate further error checking and
compiler feedback. Though optional, every Perl program that’s worth storing
on a disk should run with both. Programs that don't run when these checks are
turned on are rather suspicious. With Perl 5.6 and later you can replace the
warning switch with the pragma use war ni ngs, and be more selective, if nec-
essary, about what actions generate messages.

CHAPTER 3 CGISCRIPTS

use CA loads CGl.pm, the module that will write the HTML tags for us. The
documentation for CGl.pm (see the previous section) explains how to use the
functional interface as well as the object-oriented interface. I'm going to dem-
onstrate only the latter, in part because it will be the only way to use CGIl.pm if
we invoke other modules later, as we'll see in chapter 7. Don't let object-
oriented scare you off, though. There is nothing particularly difficult about Perl
objects when used in moderation.

C4 - >newcreates a query object as the comment says. For our immediate pur-
poses, the only matter of importance is that all the CGI functions are called via
this object, called $q in this example and the others. Rather a lot goes on
behind the scenes in this statement, as we’ll discuss later in this chapter.

$qg- >header prints the standard header: Content-Type text/html as men-
tioned earlier. You can pass parameters to this function to have it print other
headers for cases where the script isn't going to send HTML output.

$g->start_htm ("MW first CGA') outputs a flurry of tags necessary
before sending any actual document text. First, it sends a <! DOCTYPE> tag
that declares the document to be HTML (in case any XML parsers are listening),
followed by the opening <HTML> and <HEAD> tags, then the <TI TLE> tag
with the argument text (which most GUI-based browsers will display in the
window title bar). It then prints closing </ TI TLE> and </ HEAD> tags and
opens the <BODY> section, meaning that we can send the document text.

$g->h1(' Hel | o, Web! ") is the document text. The h1 function is a good
example of how CGIl.pm handles HTML tags: the argument text is placed
between <H1> and </ H1> tags, so that it will be displayed in the browser’s big
header font.

$g- >end_ht m prints the closing tags. The script ends here and the browser
displays the document it sent, shown in figure 3.2

Once you understand what it does, it’s clear that the script can be tightened up con-
siderably. It could be reduced to one print statement (after loading CGI.pm). If you
run the script from the command line, you can see the output yourself:

$./hell o-web. pl
Cont ent - Type: text/html; charset=I SO 8859-1

<?xm version="1.0" encodi ng="utf-8"?>
<! DOCTYPE htm

PUBLIC "-//WBC// DTD XHTM. Basic 1.0//EN'
"http://ww. w3. org/ TR/ xht m - basi ¢/ xht m - basi c10. dt d" >

<htm xm ns="http://ww.w3. org/ 1999/ xhtml " | ang="en- US" ><head>
<title>My first CA</title>
</ head><body><hl>Hel | o, Web! </ hl></body></htmi >

While CGI1.pm is certainly overkill for this example (as is any script at all), the HTML
functions become handy in any program that sends a lot of tagged text back to a browser.
CGI.pm won't forget closing tags, won't misspell tags, or perform other common errors

INSIDE CGI

49

50

Ce G Yww Jswth o Jooieets Tl =g Qeng @8

Hello, Web!

Figure 3.2 hello-web.pl output

of HTML text generated by humans. With a few exceptions noted in the documenta-
tion, it has functions for all the HTML tags that work as the h1 example.

For instance, if you want to print text in the browser’s bold font, you can do that
by using the “strong” tag:

print $g->strong(' nmy enphasis');
This results in a pair of tags with the argument text in between:
ny enphasi s</ STRONG>

CGIl.pm even does paragraph tags correctly, which few humans and fewer HTML edi-
tors seem to do. Text passed to the p() function is marked off with <P> and </ P>.
The function strings together multiple arguments with spaces, and other HTML
functions are welcome as inputs, so it’s easy to manage paragraphs:

print $g->p(' Now is the tinme',

$g->strong(' for all good programmers'),
'to come to the aid of their party.');

CGl.pm is particularly clever with array reference arguments. See the t abl ef orm
examples in section 3.3.4 for a demonstration.

Of course, this script serves static content, so it could be replaced with just a
hel | 0. ht M document.* Let's move on to a more interesting script.

4 Some Perl coders use CGl.pm outside of web programs, just for its helper functions in writing correct
HTML. Load CGIwith the -nodebug pragma, don’t print the Content-Type header, and terminate out-
putwith an extra newline for ease of (human) reading. See the ht n1 - out put . pl scriptforanexample.

CHAPTER 3 CGISCRIPTS

The arguments to the HTML output functions in the previous example were all con-
stant strings, but any Perl function or variable will work just as well:

#!/usr/ | ocal / bin/perl -wrl

use strict;
use C3;
ny $q = CA ->new,

Set up the headers and stuff.
print $qg->header, $g->start_htnl (' Wb C ock');

Print the program name in an Hl bl ock.
print $g->h1(' The tine according to', $0);

Print the time in bold.
print $g->p(' The date and tine is:', $g->strong(scalar(localtine)));

End the docunent.
print $g->end_htn ;

In this example, dynani c. pl , we include the program name in the H1 block via
the Perl variable $0, then print the time via the | ocal t i ne function. Notice how
the HTML functions string their arguments together by connecting them with white
space in the output, and the use of nested functions to put some text in the browser’s
bold font.

If you run this same script from the command line instead of a browser, you’ll see
all the tags for the formatting. It’s rather hard to read, though; most of the document
is on one line because CGl.pm doesn’t write extra white space into its output. The
browser will ignore the white space anyway, so it only slows down the transmission.

Often though, you’ll want to read the script output when debugging problems. For
such occasions there is a variant of CGI that creates more human-readable HTML: use
CA :: Pretty instead of use CQ@ at the beginning of the script.

Here’s an example of the output when we change CGI modules:

Content - Type: text/html; charset=I SO 8859-1

<?xm version="1.0" encodi ng="utf-8"?>
<! DOCTYPE htm
PUBLIC "-//WBC// DTD XHTM. Basic 1.0//EN'

"http://ww. w3. org/ TR/ xht m - basi ¢/ xht M - basi c10. dt d" >
<htm xm ns="http://ww. w3. org/ 1999/ xhtm " | ang="en- US" ><head><tit| e>Web
Clock</title>
</ head><body><h1>

The time according to cgi-bin/dynamnc.pl

</ hl>
<p>
The date and tinme is:
Sat Aug 11 14:36: 01 2001
</ strong>
</ p>

</ body></ htnl >

INSIDE CGI 51

52

You may already have realized the potential of CGI scripting: if you can write Perl
variables and functions back to the browser, you can send anything else that Perl can
do. Reports, searches, and all the other things that are easy to do with Perl scripts are
easy to do with Perl CGI scripts. In general, the Perl part is easy; the challenge is in
creating HTML that looks good to users. You'll need to combine some HTML exper-
tise with your Perl programming to make a good web site.”

Many organizations have a message of the day file containing messages displayed
to users upon logging in. Writing a message of the day script is easy: just use CGIl.pm
to write the HTML setup, then open the file in Perl and print the lines to the browser,
adding any HTML tags that are appropriate. Similarly, a script that fetches lines from
the beginning or end of a file, or reformats the output of another command is easily
translated into CGI.

Here’s a simple script, printsel f. pl, that attempts to print itself on the
browser:

#!/usr/local/bin/perl -wT

use strict;
use CQ3;
my $q = CG ->new,

HTM. header and starter.
print $g->header, $g->start_htnl ($0);

Print the programin a PRE bl ock.
open SELF, "<$0";

print $q->pre(<SELF>);

cl ose SELF;

End the docunent.
print $g->end_htm ;

The script opens itself as a file (using $0 again), then uses the special property of
the file 10 operator <> in a list context to read the whole file in as arguments to
$q- >pr e() . Remember that the HTML functions string together their arguments,
so the file contents will be printed with extra spaces at the beginning of each line.
The HTML <PRE> tag tells browsers to print the marked text as-is, including new-
lines and white space. Other than that, the output, shown in figure 3.3, is correct—
apart from one small problem!

Even in a PRE block, HTML tags are HTML tags (otherwise the browser wouldn’t
notice the ending </ PRE>), and browsers are supposed to ignore tags that they don’t
understand. The Perl code in this line looks (to the browser) like it has a tag in it:

5 CGl.pm has helper functions for all the HTML tags. What it lacks is documentation for them! You
need to know what HTML you want to write first. Having decided that, CGl.pm will make it easy for
you to write. The reason for this is mostly pragmatic; HTML is a large and growing specification, and
is better documented by its own experts than by Perl programmers.

CHAPTER 3 CGISCRIPTS

Eie ol Wiea Geancd o Popdranig Tesis Help Degag QR

#l fusrilacel /banparl -wT

Figure 3.3 printself.pl output

print $qg->pre(<SELF>);
The browser ignores the mysterious <SELF> tag and displays the output as:
print $g->pre();

This is a problem for any CGI program that gets its output from files, databases, or
any other source that it doesnt create itself. If the output contains something that
looks like HTML but isn't, the browser won't display it correctly.

There are a few workarounds to this problem. We could rewrite the code to avoid
<SELF> or break it up so that the browser doesn’t see it as a tag. It’s better to not send
anything HTML-like at all, however. CGl.pm supplies an escaping6 function for just
such occasions, escapeHTM., which takes care of the problem. Here’s
printsel f2. pl which works around that and the extra white space issue:

#!/usr/local/bin/perl -wT

use strict;
use C3;
ny $q = CG ->new;,

HTM. header and starter.
print $g->header, $g->start_htn ($0);

Print the programin a PRE bl ock.

6 Escape is an unfortunate bit of computer jargon that means “adding strange additional characters to
get the characters you wanted in the first place.”

INSIDE CGI 53

54

open SELF, "<$0";
print $g->pre($g->escapeHTM.(join("'"', <SELF>)));
cl ose SELF;

End the docunent.
print $g->end_htnl;

The Perl j oi n function is used to gather the file contents via <SELF> and concate-
nate the lines together without extra white space. This is not just to get around the
problem of leading spaces in the original script. Unlike HTML helper functions,
escapeHTM. works only on its first argument and ignores the rest, so we have to
feed it the whole file at once. Perl has other clever ways of reading a file into a single
string, such as changing the special $/ variable:

undef $/;
print $qg->pre($q->escapeHTM.(<SELF>));

printsel f3. pl demonstrates this technique, commonly called a slurp. Note that
it is not a good practice to use this method of reading a file into a variable if the size
of the file isn't known with confidence to be reasonable; slurping a several megabyte
file into a scalar is inefficient at best and may cause mysterious script failures.

In this example we used escapeHTM. to work around output that accidentally
resembled HTML tags. It is just as important to avoid letting users put arbitrary HTML
or JavaScript into text that will be displayed in a browser. Malicious users can break
applications or even steal information from unsuspecting sites, as seen in the uproar
over the so-called “Cross Site Scripting” bugs widely reported at the end of 1999.

It's time to move on to examples that are closer to real applications. CGI scripts
become interactive when they use HTML forms and controls as we’ll see next.

Interactive scripts use HTML forms, which are sections of a document bracketed by a
<FORM> </ FORM> pair. A form contains normal HTML as well as tags that are
allowed only inside form sections and which create the input elements and controls
which are familiar to anyone who has entered data at a web site.

Forms have their own special section in documents because, traditionally, browsers
ignore tags they don’t understand. A browser that doesn’t implement forms just
ignores everything from the opening <FORM> to the closing </ FORM>, displaying the
rest of the document normally. This used to be a major issue in site design, so one
would see pages with warnings that said they required a forms-capable browser. These
days, however, it’s not much of a worry.

Forms have been greatly enhanced via JavaScript to the point where a well-
designed web application looks as good and can be as useful as a desktop application.
In the original implementation, though, a form had various input elements (text,
check buttons, etc.) and three controls: a submit button that sends the form data to
the server (to be processed by a CGlI script), a reset button that sets all inputs to the
values they had when sent to the browser, and a default button that sets the inputs to

CHAPTER 3 CGISCRIPTS

their default values (which could be different than the starting values). The only
required control was the submit button, and only that button causes the browser to
send data back to the server.

For yet another trivial CGI example we can create a form which has only a submit
button. The example is called pr essnow. pl :

#!/usr/local/bin/perl -wT

use strict;
use CQ3;
ny $q = CA - >new,

HTML header and starter.
print $g->header, $qg->start_htm (' Press now and win!");

Make a sinple formcontaining only a button.
print $g->start_form
$g->submit (' button',' Press now and win!'),
$g->end_form

End the docunent.
print $g->end_htn ;

This script starts out like the others, until we get to $g- >st art _f or m As you may
have guessed, this function prints the opening <FORM> tag. The next line uses
$g- >submi t () to create a submit button—the first argument is the name of the
parameter, which I'll explain shortly, and the second is the value and also the text of
the button. $q- >end_f or mcloses the form section. Run the example to see the
form, as shown in figure 3.4.

. Eie El Wess Seach o Beokmais Tabs Help [edug O

Fiurka redéd @il sl I

Figure 3.4 pressnow.pl

INSIDE CGI 55

56

Clicking the button doesn’t appear to accomplish much; the browser refreshes and
shows the same form. The reason, however, is that the default action of a form when
completed via the submit button is to call the same CGl script that invoked it, passing
along the current values of the inputs. In this case the only value to pass along is the
value of the button, and the script doesn’t check that anyway.

The browser sends data back by requesting the URL of the receiving script and put-
ting the data either on the end of the URL or in a special header that is sent with the
request. The first method is called a get and results in URLS that include ? and &; the ?
signals the beginning of the data, which is written as “name=value” pairs separated by
&. The second method is called a post and is invisible to the user since the data is not
shown in the URL, but is sent along quietly as “name=value” pairs in the request header.

One of CGIl.pm’s best features is that it gathers the form data for you when the
query object is created. The script doesn’t have to know whether data was sent via a
get or a post, and doesn’t have to do any decoding on its own. All of the form data is
available via the par amfunction:

$q = CA - >new, # gather all form data.
print $g->param # print the names of all paraneters.

To get the value of a particular parameter, pass its name to the function. Without any
arguments, par amreturns a list of all parameter names, so it’s easy to write a script
that prints its parameters even if you don’t know them in advance:

foreach ny $name ($q->param {

print $name, ' ="', $q->paran{$name), $q->br;
}

Furthermore, a script that invokes itself can tell if it is being run for the first time or
via a submit button by checking whether or not par amreturns any values. An empty
list means that the script is running without any form data; otherwise the script has
been invoked with parameters, so it must be the second or later invocation.

We can use that trick to add some positive reinforcement to our previous example,
as shown in pr essnow2. pl :

#!/usr/local/bin/perl -wTl

use strict;
use C3;
ny $q = CA ->new,

HTM. header and starter.
print $qg->header, $g->start_htnl (' Press now and win!');

Print a very sinple formwith just a button.
print $g->start_form
$g- >submi t (' button',' Press now and win!'),
$g->end_form

G ve positive reinforcement for clicking it.
if ($9->paran()) {

CHAPTER 3 CGISCRIPTS

print $g->h1(' You won!');
}

End the docunent.
print $g->end_htnl ;

When run the first time, the script displays only the button; on subsequent runs it
adds the victory text.

Let’s expand the use of inputs and also show more of the capabilities of the submit
button with a more interesting example.

As the name suggests, HTML forms were created for fill-in forms. Here’s a CGI script
called t ext f or m pl that makes simple form with text fields:

#!/usr/local/bin/perl -wTl

use strict;
use C3;
ny $q = CA ->new,

Starters.
print $qg->header, $g->start_htm (' Address info');

Create a formwith text entry fields.

print $g->start_form
$g->h1(' Pl ease enter your address below '), $g->p,
"Nane:', $g->textfiel d(-nanme => 'nane'), $qg->br,
" Address: ', $g->textfield(-nanme => 'addressl'), $q->br,
" Address: ', $g->textfield(-nane => 'address2'), $q->br,
"City:',$g->textfield(-nane => 'city'),
"State/ Province:', $g->textfield(-name => 'state'),
' Zi p/ Postal code:', $qg->textfield(-name => 'zip'), $g->br,
"Country:',$qg->textfield(-nane => 'country'), $g->p,
$g->submit (' button',' Enter'),
$g->end_form

End the docunent.
print $g->end_htnl;

The t ext fi el d function creates a text input field. The argument is given as a Perl
key => val ue pair to specify the name of the input. Those names will become
important later when we look at scripts that get input data back from the browser.
Request the script to see how the form is set up, as shown in figure 3.5.

Though admittedly this works, it's not very attractive—we’d expect the fields to
be lined up at the very least. It also annoys users who don’t live in a state or province,
but that’s a bit beyond the scope of this example. All the fields are the same length,
but we’d expect to enter more characters into a street address than into a state or prov-
ince name. And of course the script doesn’t actually do anything with the data (a prob-
lem we’ll leave for the next chapter).

INSIDE CGI 57

58

. Elm Eipl Wiesa Search O Qeokmmis Tebs Help Dodg S8

Please enter your address below.

LR T

i L e e | ZigyPoartal ok
|

Coeriy|
o Eriwr

Figure 3.5 textform.pl

Let’s address the layout of the form first. One of the interesting challenges of HTML
layout is that the browser is in charge of displaying the document, and does so
according to its knowledge of fonts, window size, and other parameters that the
server and the HTML designer can't know. A common mistake among new web
designers is to attempt to force a layout on the browser by aligning characters, using
nonbreaking spaces, or other font tricks. Even if they succeed in making something
look good on their own browser, the result probably looks silly and amateurish on
any other configuration.

HTML form layout and most any other kind of document layout are managed via
tables, which let the designer place elements on a grid and apply justification and other
rules within cells. Though at first it seems like a clumsy mechanism, tables can produce
sophisticated documents. Most of those spiffy sites with sidebars, columns, and head-
ers use nested tables to create their layouts. Once you've learned a trick or two you can
guess the table grids for a site just by looking at how elements flow over the screen.

A table begins with a <TABLE> tag as you'd probably guess, and ends with the clos-
ing </ TABLE>. Each row of the table is set off by a <TR> </ TR> pair, and each cell
is marked by <TD> </ TD>. There are also header cells marked by <TH> </ TH>.
Browsers will render headers differently from normal cells,” usually with a bold font.

7 Assuming they render them at all. Remember that when a browser encounters a tag it doesn’t under-
stand it ignores it. If you find your table headers are missing, you're dealing with a browser that doesn’t
like them.

CHAPTER 3 CGISCRIPTS

CGIl.pm provides helper functions for tables and their elements. A table begins
with the t abl e function, whose arguments are usually Tr functions corresponding
to table rows, containing t d functions for elements in turn. Note that Tr is capitalized
to avoid conflicting with the Perl t r operator. We could lay out our form using the
table functions like so, from t abl ef or m pl :

$g- >t abl e(

$g->t d(' Nane: '),
$g- >t d($g- >t extfi el d(-name => 'nane'))

$q->Tr (
$g->t d(' Address: '),
$g->t d($g->textfiel d(-name => 'addressl'))

$q->Tr (
$g->t d(' Address: '),
$g->t d($g->textfi el d(-name => ' address2'))

$q- >Tr (
$g->td(' Gity:"),
$g->t d($g->textfield(-name => 'city')),
$g->td(' State/ Province:"),
$g->td($g->textfiel d(-nanme => 'state')),
$g->td(' Zi p/ Postal code:"),
$g->t d($qg->textfiel d(-name => 'zip'))

$q->Tr (
$g->td(' Country:"'),
$g->t d($g->textfiel d(-name => 'country'))

)

This works just fine, and the resulting form certainly looks better than the first one,
as you can see in figure 3.6.

CGIl.pm has a nice feature that simplifies table layout: if an HTML function
receives an array reference as an argument, it applies the requested tags to each element
of the array. Thus the following pieces of code create the same tags:

print $g->td(' A'), $g->td('B), $g->td('C);

print $g->td(['A, 'B, 'C]),

ny @etters = (A .. 'C);

print $qg->td(\@etters);

Here’s the same form layout using the trick from t abl ef or n2. pl :

print $g->start_form
$g->h1(' Pl ease enter your address below '), $g->p,
$qg- >t abl e(
$q->Tr ([

INSIDE CGI 59

$g->td([' Nane: ',
$g->textfield(-name => 'nane')]),
$g->td([' Address: ',
$g->textfiel d(-name => 'addressl')]),
$g->td([' Address: ",
$g->textfield(-name => 'address2')]),
$g->td(['City:",
$g->textfield(-name => 'city'),
' Statel/ Province: ',
$g->textfield(-nane => 'state'),
' Zi p/ Postal code:"',
$g->textfield(-name => 'zip')]),
$g->td([' Country:",
$g->textfield(-name => 'country')])
1.
)
$g->submit (' button',' Enter'),
$g->end_form

The code is more compact, but the table comes out the same. Now we need to
address the layout issues. We'll do so using attributes for the HTML tags.

Form input fields have attributes that alter the way the browser displays them, such
as the font or width of a text field. Attribute names and values correspond to the key
=>val ue pairs of the hash, which we’ve used so far to specify the names of the inputs.
To set the width of the country text field, we would call the function like so:

$g->textfield(-name => ‘'country', -size => 5)

. Eie Edl ‘wiesa Search G Brokmanis Tebks Help Dooug S8

Please enter your address below.

Name=

Addre=

Addresz |
| oy -—_'|.'|_'-__-'rr TncE I— _-;:F gl
|-
0 —

Figure 3.6 tableform.pl

CHAPTER 3 CGISCRIPTS

The size attribute sets the size of an input in characters. Figure 3.7 shows the output
of t abl ef or nB. pl with all the fields set to reasonable sizes:

. Eim Eal Wess Seamhi o Beokmaris Tebn Help [edsg A

Please enter your address below.

Nams=

Auddress

Address |
| ooy | StateProvine: [FFoStE
N B

|l |

Figure 3.7 tableform3.pl

Notice how the State/Province field is pushed far to the right, due to the width of the
address fields. We can tell the browser to let long fields like the addresses span multi-
ple columns using the COLSPAN attribute, set like so:

$g->td({-col span => 3},
$g->textfield(-nane => 'addressl', -size => 40))

Note the important difference: t d is an HTML helper function that displays content,
so to tell it that we also want to set attribute values, we have to pass the attributes in a
hash reference as the first argument. The content in this case is the output of the
t ext fi el d function, which doesn't display content itself, so it takes its attributes as
regular arguments.

To set the attributes of individual table cells, we’ll have to call t d for each one.
That makes using the array reference feature a little trickier, since each element of Tr ’s
array reference is a table row. Here’s how I did it in t abl ef or m4. pl :

$g- >t abl e
(
$q->Tr
([
$g->td([' Nane: ',
$g->textfield(-name => 'name', -size => 20)]),
$g->td(' Address:"') .
$g->td({-col span => 3},

INSIDE CGI 61

62

$g->textfield(-nane => 'addressl', -size => 40)),

$g->td .
$g->td({-col span => 3},

$g->textfield(-nane => 'address2', -size => 40)),
$g->td([' Cty:",

$g->textfield(-name => 'city', -size => 20),

' State/Province:"',

$g->textfield(-name => 'state', -size => 3),

' Zi p/ Postal code: ',
$g->textfield(-name => 'zip', -size => 10)]),
$g->td([' Country:",
$g->textfield(-name => 'country', -size => 5)])
1.
)

The cell with the ' Address: ' label is concatenated to the long text field using
Perl’s . operator, rather than just stringing them together with commas. That com-
bines the two t d calls into a single element of Tr ’s array and so they end up on one

row. The same trick works on the row after that. And figure 3.8 shows the result,
which is somewhat more pleasing to the eye:

. Eie Edl wiesa Search G Brokmans Tebks Help Dooug 8

Please enter your address below.

W
Name

Auddress

StesFrovines T ipiFroetal pode |
Uy

I i

Figure 3.8 tableform4.pl output

Note the use of an empty table cell in the third row, created by an empty call to t d.
There are plenty of useful attributes we could assign to fields. For instance, we could
set a black background on fields that are required by using the BGCOLOR attribute:

$g->td({-col span => 3, -bgcolor => 'black'},
$g->textfield(-name => 'nane', -size => 20))

CHAPTER 3 CGISCRIPTS

It's beyond the scope of this book to provide a full list of HTML tags and attributes.
Check an online or printed resource. There are several good books on the subject, but
with the speed of change in this business it’s worth knowing some good web sites too.
The authoritative specification is on the World Wide Web Consortium’s page; look
for pointers on http://www.w3.org/MarkUp/. The specification is rather formal,
though, and hard for a beginner to interpret. There is a link to a starter guide on the
same page, and more can be found elsewhere with a few clicks on your favorite web
search site. | found a good HTML tag library on ZDNet’s developer page at http://
www.zdnet.com/developer, and another on United Webmasters' site at http://
www.unitedwebmasters.com/rehtml.htm.

I hope that with a little digging and a good reading of CGl.pm’s documentation
you'll be able to generate any of the tags you want. Practice and exploration will teach
you what works.

Up to now, our scripts haven't done anything with their inputs. The most obvious
thing to do would be to store data in a file and retrieve it on some other form. Since
the next chapter is about databases I'll save that topic for later. But we need to know
something more basic first: how does a script get the information that it is sent? And
how can a script direct that information to the appropriate application?

I gave a preview of the answer to the first question in the examples for submit but-
tons: The script uses CGl.pm’s par amfunction to receive values and also to set them
to be displayed in the form. If you recall, | showed a simple way for a script to know
if it had been invoked with input data:

if ($g->paran()) {
print $g->h1(' You won!');

}

If the par amfunction returns anything at all, it means the script received input data.
In fact, what it is returning is a list of all the parameter names. If invoked with a sin-
gle argument, it is assumed to be a parameter name and the value of that parameter is
returned. If invoked with multiple arguments, those after the first are assigned as val-
ues to the parameter.

As for how to direct input data to another script: an HTML form has an ACTI ON
attribute that specifies the URL of a CGI program that is to receive the data when the
user clicks Submit. The default action is to invoke the current script again. This makes
it easy to write a single script that processes multiple pages of data, checking for various
parameters along the way to know which page to send to the browser. The action can
be any URL, however, and it’s not unreasonable to have different scripts for different
parts of an application.

Here’s yet another variation of the address entry form script checkdat a. pl that
demonstrates checking for input data:

INSIDE CGI 63

64

#!/usr/ | ocal / bin/perl -wrl

use strict;
use C3;
ny $g = CA->new, # all input data |oaded to $q

If we have data, display the confirnation.
if ($g->param {

}

print
$g- >header, $q->start_htm (' Confirmation'),
$g->h1(' Pl ease verify that this is correct:'), $g->p,
$g- >t abl e
(
$q- >Tr
(1
$g->td([' Nane:', $g->paran(' nane')]),
$g->td([' Address: ', $g->paran(' address1')]),
$g->td([' ", $g- >paran(' address2')]),
$g->td([' City:', $g->paranm(‘'city')]),
$g->td([' State/Pr:', $g->paran('state')]),
$g->td([' Zi p/ Postal :', $g->paran('zip')]),
$g->td([' Country', $g->paran(’' country')])
D
)
print
'Please click the button below if this is correct ',
‘or use your browser\'s Back button to return to ',
‘the formand make corrections.',
$g->start _form(-action => 'savedata.pl'),
map ({$g->hidden($_)} $g->paran),
$g->submit (" button',' Enter'),
$g->end_form

else { # No data, so print the form

print $qg->header, $qg->start_htm (' Address info'),
$g->start_form
$g->h1(' Pl ease enter your address below. '), $g->p,
$g->tabl e
(
$q- >Tr
q
$g->td([' Nane: ',
$g->textfield(-name => 'nane', -size => 20)]),
$g->t d(' Address: ")
$g->td({-col span => 3},

$g->textfield(-nanme => 'addressl', -size => 40)),
$g->td .
$g->td({-col span => 3},

$g->textfield(-name => 'address2', -size => 40)),
$g->td([' City:",

$g->textfield(-name => 'city', -size => 20),

' State/ Province: "',

$g->textfield(-nane => 'state', -size => 3),

CHAPTER 3 CGISCRIPTS

' Zi p/ Postal code: ',

$g->textfield(-name => 'zip', -size => 10)]),
$g->td([' Country:",
$g->textfield(-nane => 'country', -size => 5)])

1.
)
$g->subnit (' button','Enter'),
$g->end_form
}

End the docunent.
print $g->end_htm ;

The script uses par amto check whether or not it is receiving input. If it is, it uses fur-
ther calls to the same function to display the input values in a table and ask for confir-
mation. When the script is called without input it displays the now familiar form.

Note that in the section that displays the form, st art _f or mis called without
arguments. That means the form will use the default action when Submit is clicked.
The default action is to invoke the same script (the same URL, actually) and pass it
the input data, thus making the par amtrick work.

In the confirmation section, however, st art _f or mis called like so:

$g->startforn(-action => 'savedata.pl'),

The action is given explicitly, and when the submit button is clicked the data will be
sent to a different script, savedat a. pl , an example from the next chapter. We
could specify a complete URL here, including a different site. Most commonly, how-
ever, we want a different application in the same relative location, and this specifica-
tion works fine.

Also notice the line toward the end of that form:

map ({$g9->hidden($_)} $g->paranj,

This line creates hidden fields for all the parameters received by the script. Each hid-
den field is named for a parameter, but this code doesn't obviously assign a value.
Running the script shows that the values get carried forward, so how does it work?

The answer is that CGl.pm implements sticky parameters. If a parameter is present
when the script is invoked, any input named for the parameter will take that parame-
ter’s value automatically. Thus for each parameter (listed by $g- >par am the code cre-
atesa hidden field, and CGl.pm puts the parameter value in the field without being told.

Sticky parameters often surprise programmers when they try to set a value for an
input. When a script is invoked without parameters, this code will create a text field
named ' User nane' displaying a value of ' bob' :

print $g->textfield('Usernane', 'bob');

If the script is invoked with a parameter string of ' User nane=car ol e' then
that same code will display ' car ol e' in spite of the fact that it appears to set the
value. That’s because the parameter value sticks to the input.

INSIDE CGI 65

3.4

66

The way to override a parameter’s value is to call par amexplicitly, as in:

$g- >par an(' User nanme' , ' bob') ;

print $g->textfield('Usernane');

But why did the example script need hidden fields in the first place? The browser will
send CGlI data only for its current set of inputs. In order to pass along the form data
from the first invocation, we have to store that data in some kind of input. In this
case we use hidden fields to keep the data out of the user’s view.

This trick is not implemented well here for a general CGI application. In particular,
it doesn’t take into account an input with multiple values, which would have to be
copied separately, and it creates a hidden field for the button input. But it will serve
the needs of the current example, which are only to pass along the contents of the form
to savedat a. pl .

We could have used other tricks, such as tacking the form data onto the URL given
in the st ar t _f or mfunction, but this variation is compact and also provides debug-
ging information. With the confirmation screen loaded, use the "show page
sour ce" function of your browser to display the HTML code. You'll find the hidden
fields there with the contents that we're passing along.

STRICTNESS, WARNINGS,
AND TAINT CHECKING

The most common admonitions given by experienced Perl programmers to new CGI
coders are:

1 usestrict
2 Turn on warnings with - wor use war ni ngs
3 Any script that accepts user input needs taint checking (- T)

Many folks who are just learning Perl assume that since these features are optional,
programs don't require them. (The usual excuse that a short or simple script doesn't
need extra error checking is belied by the fact that any program under maintenance
tends to stop being short and simple.) Not so; they are optional partly for historic
reasons, and partly practical, since many sites use “one liner” scripts that are written
entirely on the command line to implement simple utilities. Perl tries to get out of
the way of such simple programs, but that’s no reason to turn down its help for
larger matters.

There is no significant run-time penalty for using Perl’s maximal error checking.
I’'ve encountered programmers who think they are getting more from their scripts by
turning off strictness and warnings in production, but in fact they are probably spend-
ing any such savings in the time used to edit the script and make the change. There
is a significant penalty in development time when a programmer tracks down a bug

CHAPTER 3 CGISCRIPTS

caused by misspelled variable names and other typo errors which are easily caught by
turning on the error checks.

For taint checking, Perl turns this on automatically for any script which runs under
an effective user or group that is different from the user who started the script (i.e.,
setuser and setgroup scripts). The value of taint checking extends far beyond those spe-
cial cases, though, and should be used by any script that takes user input or processes
data previously input by the user and stored in a file or database. Taint checks prevent
a program from taking external actions based on user input—opening a file named by
the user, say, or running a command via the backtick operator containing user values.
Before such tainted values can be used, a script must process them through a regular
expression to verify it is getting what it expects.

Perl explains all these issues in the appropriate perldoc entriess—stri ct and
war ni ngs (or per | run if you aren’t using version 5.6 or later) for those pragmas
and the per | sec page to explain taint checks and other security issues. Please see
those pages for more details, especially if you still think you can do without them.

3.5 CGIl MODULES

This chapter hardly scratches the surface of CGI programming or Perl’s helpful CGI
aides. While there are plenty of other good resources for learning the ins and outs of
CGil, new programmers generally have to fend for themselves in finding good tools.
While I don’t have space here to present or evaluate all of the variety of Perl’s web
programming modules, there are a handful available on CPAN that you may find useful:

« Validation tools—CGI::ArgChecker helps verify input parameters; register a test
function for each parameter, then call it with the query object to check all
inputs at once. CGI::Validate performs type checking and other tests in the style
of Getopt::Long, which may be familiar to Perl programmers who write com-
mand-line scripts.

e Caching—CGl::Cache stores the output of CGI scripts, along with the parame-
ters that generated the output. If it receives a request with parameters matching
a cached value, it sends back the associated HTML without running the script
again. It understands expiration time and other conditions for dropping HTML
from the cache.

e Form generation—CGl::QuickForm will build a form based on a hash of input
descriptions and other criteria. Developers who are familiar with 4GL form
manager programming might really like this module. CGI::Screen provides an
easy way to generate multipage forms with consistent controls.

e HTML templates/embedded scripting—There are so many Perl modules on this
theme that I've devoted a whole chapter to the subject.

CGl.pm is also bundled with other modules that are likely to feature in larger CGI
programs. I've mentioned CGI::Pretty for making more readable HTML output.

CGI MODULES 67

68

There is also CGI::Carp, which makes Perl’s error message functions (war n and di e,
as well as conf ess, cr oak, etc. from Carp.pm) write to the server error log with
time stamps and the name of the script logging the error. CGI::Cookie provides a
comprehensive API for managing cookies (see chapter 5).

Now that we have working CGI scripts, let’s investigate giving them something to
work on. The next chapter brings databases into the script tool set.

CHAPTER 3 CGISCRIPTS

PART

Tools for
web applications

Now that we have a web server and language in place, we can think about how to
build our site. This section is all about tools that will help you create your applications:

e Chapter 4 covers databases, starting with files and working up through rela-
tional engines.

e Chapter 5 brings mod_perl into Apache to combine the web server and lan-
guage interpreter into a powerful package.

» Chapter 6 discusses security issues, starting with encrypting web traffic via SSL
and continuing through techniques of user management.

e Chapter 7 shows how to merge Perl scripting into HTML documents for
dynamic web pages.

After you've worked through these chapters, you'll have a good set of tools for build-
ing your site.

CHAPTER 4

4.1 Files 72 4.5 Installing MySQL 87
4.2 Address book 72 4.6 DBI, Perl’s database interface 89
4.3 Hash files 75 4.7 Data maintenance via CGl 97

4.4 Relational databases 82

Now that we have a way to build web applications, we need to store and retrieve data
for them too. Fortunately the Open Source world is well-stocked with tools for this,
ranging from simple file managers to full-blown relational databases.

Database software is far more mature than web technology; SQL, the most com-
monly used relational database language, is over 20 years old, and that makes it a rel-
ative newcomer compared to some mainframe products that are still in use.
Commercial products dominate the scene, unlike the case of web servers and program-
ming languages. Mention SQL or relational database to other programmers and you're
likely to hear of experience with Oracle, Sybase, Informix, or other big players. If you
are building a commercial web site, chances are you've already chosen one of these.
These are fine products, and | won't try to dissuade anyone who can afford them.
However, there are alternatives which don’t involve huge licensing fees.

71

4.1

4.2

72

FILES

The first choice to consider for data storage is the simple, reliable file. Many applica-
tions can get by with plain file interfaces, especially if the load is light and there won't
be much contention for file access.

The problem with using a file interface is that the application has to do everything:
build the record, lock the file, write the record, and check for errors. When retrieving
data, the application either searches files sequentially for records or implements some
indexing scheme of its own to speed things along.

Many beginning programmers don’t consider the maintenance issues of their code
when making this kind of choice. If the needs of the application change, record layouts
or indexing systems might have to change with them. Code that depends on those will
then break unless everything is changed correctly at once. The hours spent writing
conversion scripts and testing changes to sensitive code might give the developer time
to consider another choice.

That said, files are perfectly fine for many needs. Data that is written in chrono-
logical order and seldom updated, such as logs, guest books, and other sequential
information can be handled easily. Perl is especially good at handling flexible text for-
mats for such data, though it can handle binary records as well.

ADDRESS BOOK

Our CGI address-gathering form in chapter 3 left off with checkdat a. pl , a script
that presents a form for information input and then offers a confirmation screen that
passes the data along to savedat a. pl . It’s time to look at that script, which uses
basic Perl file 1/0. The structure of the script is the same as the previous examples—if
it receives input it stores it, and if not it directs the user to enter the data.

#! /usr/ | ocal / bi n/ perl -wT

use strict;
use CQ3;
ny $g = CA->new, # all input data | oaded to $q

File for the addresses -- nmake sure Apache can wite here.
ny $addrs = '/usr/local /apache/ dat a/ address. dat";

print $q->header;

If we have data, save it to a file.
if ($9->param {
i f (open(ADDRESSES, ">>$addrs")) {
print ADDRESSES
join("\t",
$g- >par an(' nane'),
$qg- >par an(' addr ess1'),
$qg- >par an(' addr ess2'),
$g->paran('city'),

CHAPTER 4 DATABASES

$qg- >paran(' state'),
$qg- >paran(' zip'),
$qg- >paran(' country')
), "\n";
cl ose ADDRESSES;
print $g->start_htnl (' Thank you'),
$g->p(' Your address has been entered. Go to the',
$g->a({-href => 'showaddr.pl'}, 'show address'),
'page to see the current address book.'

)i

}

el se {
print $g->start_htm ("File error'),
$g->h1("Error in $0"), $g9->p,
"Coul dn't open $addrs: $!'";

}

}

else { # No data, so tell the user to start from scratch.
print $g->start_htm (' Address required'),
$g->h1(' Pl ease enter the data first."'), $g->p,
'Please go to the '
$g->a({-href => 'checkdata.pl'}, 'address entry page'),
' and enter your address there.';

}

End the docunent.
print $g->end_htn ;

Note the use of $qg- >a (for anchor) to create links in either section; the hr ef attribute
provides the URL for the link, and the remaining arguments form the link text.

As with any program that uses files, the script must ascertain whether it really
opened the address file. If not, it should take action to tell the system what went
wrong. Typically this is done with the Perl di e or war n functions, which will print
a message to the error output device—the er r or _| og file in the case of a CGlI script.
For an end-user application you should probably not print error messages in HTML.
In the case of these examples though, you are the end user, so | kept matters simple.

Assuming the file was opened, we print a line containing all the input parameters
from the form, separated by the tab character. This makes it easy to use Perl’s spl i t
function to turn a record back to a list of fields. Any character that is unlikely to be
in the input would do; browsers generally interpret tabs as meaning to go to the next
field, so it is difficult to put one in a text box. A robust implementation would still
escape the delimiter properly.

After writing the record, the script closes the file and prints a thank you, along with
a link to the script, showaddr . pl , that will display the data. That example follows:

#!/usr/local/bin/perl -wT

use strict;
use C3;

ADDRESS BOOK 73

74

ny $q = CA - >new,
ny $addrs = '/usr/|ocal / apache/ dat a/ addr ess. dat "' ;

Open the address book.
i f (open(ADDRESSES, "<$addrs")) {
Print the address book as a table.
print $g->header, $g->start_htn (' Address book'),

$g->h1(' Addresses as of ' . localtine);
my @eaders =

gw(Name Addressl Address2 City State Zip Country);
ny @ ows;

whi | e (<ADDRESSES>) {
push @ows, $qg->td([split /\t/]);
}
print $q->tabl e(
$g->Tr ([$9- >t h(\ Gheaders), @ ows])

)
cl ose ADDRESSES;

}

else { # Couldn't open the file.
print $g->start_htm ('Error'),
$g->h1("Error in $0"), $g9->p,
"Coul dn't open $addrs: $!";

}

End the docunent.
print $g->end_htnl ;

This example reads the address file and builds a table with a row for each record. This
is handled by the whi | e loop:
whi | e (<ADDRESSES>) {
push @ows, $qg->td([split /\|/]);
}

Perl’s <> operator reads a line from the given file and puts it in $__ if it isn't assigned
otherwise. That’s the same variable that spl i t operates on by default, as shown in
the next line. For each record in the file, the script creates an entry in the @ ows
array, created by feeding an array reference to the t d function. That’s a lot of short-
cuts for one task. If it isn't obvious to you on a first or second reading, look at it
this way:
ny $line, @ields;
while ($line = <ADDRESSES>) ({
@ields = split /\t/, $line;
push @ow, $g->td(\ @i elds);
}

It may seem odd that the script builds the rows of the table and then passes the results
to the t abl e function later to create the HTML. In fact, this is a common tactic,
since t abl e has to get its arguments all at once; a CGl.pm script commonly builds
temporary arrays and passes them along to the HTML functions.

CHAPTER 4 DATABASES

4.3

That makes the file example complete enough for argument’s sake. It uses three
scripts which gather input, save it, and display a simple report. But the application
isn’t very usable, since we can’t look up an address without printing the whole file, and
we can’t update any information at all. (Raise your hand if your address book doesn’t
have any out-of-date listings.)

In the next example we’ll make a more functional address book using a different
storage system.

HASH FILES

In the middle of the complexity scale between simple text files and relational data-
bases one finds various simple store and fetch systems. Some OSs have special
indexed files that store data along with a key that can be used to retrieve a particular
record quickly. Unix has various flavors of dom (gdbm, sdbm, ndom, odbm, and the
Berkeley DB) which use a hashing algorithm to transform the key into a record num-
ber. The various implementations differ on how the key is hashed and whether they
store hash tables and record data in one file or two, but the ingrained notion of key
hashing and record retrieval put the dbm family and other such software under the
umbrella of hash files.

There are a few important constraints to consider when using hash files for data
storage. The first is that these systems implement a single, unique key; data is associ-
ated with one tag, if you will, that can be used to pull it out of the file. If we store two
different records with the same tag, the second will be retained and the first will be
lost. If we need more than one tag for a record, we have to implement secondary keys
of our own in some fashion.

Another aspect comes from the use of hashing, whereby a string is converted to an
integer used to look up a stored record. Good hashing algorithms spread their results
across the full range of integer values, so keys won’'t clump together even if their string
values are similar. As a result, the lexical value of a key (the way you’d sort it alpha-
betically) has nothing to do with its hash value, and records are stored in a seemingly
random order in the file. Hash files don’t provide sorted or chronological retrieval. If
you need either, you again have to implement it yourself.

The other considerations are specific to the implementation. dbm and its early vari-
ants had small limits on the size of a record and the total size of data stored at a par-
ticular hash value, making them poor choices for applications with a lot of
unpredictable data. gdbm is superior for data that is mostly read, but requires that
writes to the file be exclusive—all other applications have to close the file and reopen
it afterward. The Berkeley DB implementation is very robust, and handles the locking
required for simultaneous reads and writes; many OSs ship with an older Open Source
version of the product, though the current version has a unique license that requires
royalty payments under certain circumstances. Check with the owner, Sleepycat

HASH FILES 75

76

Software at http://www.sleepycat.com/, to find out how the license works, or stick
with the old version.t

The programming interfaces for hash file implementations arent terribly compli-
cated—not much worse than for regular files. The program opens the hash file, then
calls routines to look up keys, retrieve records, and update them, not unlike the steps
for opening, reading, and writing a text file (except for the look up part).

Perl provides modules for hash files that make them so easy to use that most of the
code disappears. You've probably already considered that a hash file and a Perl hash
have the same conceptual interface and limitations. Perl hashes have a single unique
key that is used to store and retrieve arbitrary data, and don’t provide sorting or in-
order retrieval. Perl also hast i e, a function that lets a specially written object pretend
to be a Perl scalar, array, or hash. Put those two together and you have the various
DBM_File modules that provide a Perl hash interface to a hash file.2

Here is an example using DB_File, the Perl module that ties to the Berkeley DB
interface. The program calls t i e, which invokes the appropriate code in DB_File to
open the hash file:

use DB File;

DB_Fil e database of addresses.
ny $addrs = '/usr/local /apache/ dat a/ addr esses’ ;
nmy %lb; # This hash will stand for the database.

Open the data file or wite an error to the | og.
tie %@b, 'DB File', $addrs
or die "Couldn't open db file $addrs, $!";

The arguments to t i e are the hash or other Perl variable that is associated with the
file, the name of the module which contains the interface code, and the path to the
file.3 We can pass additional arguments to give the file’s mode and set other parame-
ters, but the defaults allow for reading and writing and will create the database if it
doesn't exist.

DB _File is a standard Perl module which gets compiled only if your system has
some version of Berkeley DB. The code loads it via use just as it does with the CGI

Berkeley DB implements more than just straight hashing; you can use it to build sorted indexes or map
onto flat files indexed by record number as well. I use it extensively, and my comments about its license
shouldn’t be taken as a warning against the product. You should of course read the license yourself.
There is also the AnyDBM_File module which will select from the DBM_File modules available from
your system based on its or your own ordering modules. If you are writing code for unknown systems,
use AnyDBM _File rather than a specific implementation for maximum portability. You’ll also have to
implement file locking and other services at the lowest common denominator.

That's how you tie hash files, at least. t i e can be used to bind most any kind of Perl variable to some
other object. Read the per | t i e documentation for more details.

CHAPTER 4 DATABASES

module. If you’re curious, locate DB_Fi | e. pmand browse through the code. You'll
notice functions that Perl will call to emulate all of the operations on a hash—storing
a value for a key, deleting entries, and so on. Creating a tied hash or other Perl object
isn’t a trivial coding task, but it's reasonably straightforward once you’ve seen it done
and read the per | t i e documentation.

After setting up the tied hash, the program treats it just as it would a normal Perl
hash, as you’ll see in the example code in the next section. When you release the hash
(by using unt i e, or just letting the hash variable go out of scope) you also close the
file and release any locks or other resources.

Let’s revisit our address book application with a hash file implementation in mind.
One limitation of the previous version was the lack of a query function to look up a
single address. Since hash files are very good at this task, we’ll focus on that improve-
ment in reworking the code.

Also, unlike the previous example, all the code for this application is in one file,
addr book. pl . Writing it this way makes some things easier; all of the initialization
is done in one spot, for instance. On the other hand, Perl has to compile the code for
all of the pages of the application, even though only one will be used for any given
invocation. We’ll address this problem in chapter 5.

My commentary is sprinkled through the example, but the code appears here in the
same order as it does in the file. Read the file directly if you want to see just the code.

We start with the usual set of use statements, adding use DB_Fi | e to get the
tied interface:

#!/usr/local/bin/perl -wTl

use strict;
use CQ3;
use DB File;

Load the CA input data.
ny $q = CA - >new,

List the inputs that correspond to formfields.
nmy @ields = g nane addressl address2 city state zip country);

DB_Fil e database of addresses.
ny $addrs = '/usr/local /apache/ dat a/ addr esses’ ;
my %lb; # This hash will stand for the database.

Open the data file or wite an error to the | og.
tie %b, 'DB File', $addrs
or die "Couldn't open db file $addrs, $!";

Now the hash file database is ready to use. It is somewhat inefficient to do this for
every invocation given that some pages won't read the database at all, but putting the

HASH FILES 77

78

initialization here prevents anything else from working if for some reason the pro-
gram can't open the hash file.
Next we have a couple of utility functions:

Print a navigation bar of submit buttons.
sub navbar {
return join('",
map {$g->subnit (' page',$_)}
@, 'Entry', 'Display', 'Query'
)
}

This function creates a row of buttons. If called with any arguments (which Perl
keeps in the special @ array), it creates buttons for those first, then adds in Entry,
Display, and Query. Note that all of these buttons are named ' page' to make it easy
to find out which button was pressed—the code will call $g- >par an{ "' page')
and the answer will be the name of the page to display next.

Print the entry/update form
sub entry_form {
return
$g- >t abl e
(
$q->Tr
(f
$g->td([' Full nane:',
$g->textfield(-nane => 'nane', -size => 20)]),
$g->td(' Address:"')
$g- >t d({-col span => 3},

$g->textfield(-name => 'addressl', -size => 40)),
$g->td .
$g- >t d({-col span => 3},

$g->textfield(-nane => 'address2', -size => 40)),
$g->td([' City:",

$g->textfield(-name => 'city', -size => 20),

' State/ Province: ',

$g->textfield(-name => 'state', -size => 3),

' Zi p/ Postal code: ',
$g->textfield(-name => 'zip', -size => 10)]),
$g->td([' Country:"',
$g->textfield(-nane => 'country', -size => 5)])
1.
)

}
This function creates the form for entering or modifying an address. While this
example doesnt actually have an update page, adding one is a simple matter as we’ll
see in the next example.

Display the appropriate form depending on input.
nmy $page = $q->paran(’ page');

CHAPTER 4 DATABASES

ny $find = $g->paran('find);

if (!$page || $page eq 'Qery' || $find && ! $page) {
print $qg->header, $qg->start_htm (' Query page'),
$g->h1(' Query address book'), $g->p;

if ($find) {
ny @alues = split(/\|/,$db{$find});
if (@alues) {

print $qg->table
(

$q- >Tr

(1
$g->td([' Full nanme:', $val ues[0]]),
$g->td([' Address: ', $val ues[1]]),
$g->td(["'", $val ues[2]]),
$g->td(['City:', $values[3]]),
$g->td([' State/Pr:', $val ues[4]]),
$g->td([' Zi p/ Postal : ', $val ues[5]]),
$g->td([' Country', $val ues[6]])

}
el se {
print "$find not found";
}
}
print $g->start_form"Enter a nane:",
$g->textfield(-name => 'find', -size => 20),

$g- >p, navbar, $g- >end_f orm
}

This section handles queries. The tangle of conditions in the i f statement display
this page by default if the script is invoked without parameters. This is a good choice,
since queries are the most used function in database applications. We also get here if
the Query button is pressed or the script is invoked with a f i nd parameter but no
page; here’s how that works.

Skip past the i f ($fi nd) { section and look at the end. At the bottom of the
page, the script creates a text entry box labeled “Enter a name:”. This input is called
"find' and isused to search for names in the database. If the user enters text there
and presses Enter, the browser will send that input back to the server. Thus the script
will have a f i nd parameter but no page. The user could also fill in the field and click
Query, so we need to check for both cases.

Moving back up to the beginning, if the script did get a f i nd parameter, it looks
up that string in the database, but if you don’t look carefully you'll miss it:
$db{ $f i nd} is the lookup code. Since the db hash is tied to the hash file, reading
a value in db causes DB_File to do the lookup for us and return the string stored in
the database.

HASH FILES 79

80

If there was a string stored for that key, the script displays a table with the values
that it retrieved. If not, it prints a message to that effect. In either case it lets the user
do another lookup.

A more robust script would let the user enter changes here and update the database.
You can work out how to do that yourself, or skip ahead to a later example.

elsif ($page eq 'Entry') {
print $qg->header, $qg->start_htm (' Entry page'),
$qg- >h1(' Address book'), $g->p,
"Enter an address:', $g->p,
$g->start_form entry_form
$g->hi dden(' function', ' Entry'),
navbar (' Confirm), $g->end_form
}

This section is invoked when the user clicks the Entry button. It puts up the entry
form, then calls navbar (* Confirmi) to putin the standard set of buttons plus an
additional confirmation button. The confirmation mechanism should be familiar
from the previous examples. The hidden field f uncti on is used to store the fact
that this is a new entry.

elsif ($page eq 'Display') {

print $qg->header, $qg->start_htm (' Di splay page'),

$g->h1(' Address book'), $g- >p,

' Address book listing:', $g->p;

ny @eaders =

gwW Nanme Addressl Address2 City State Zip Country);

ny @ows = map {$g->td([split /\|/])} values %b;

print $g->tabl e(
$g->Tr ([$9- >t h(\ Gheaders), @ ows])
)

print $g->start_form

navbar, $qg->end_form

}

The Display page shows a report of all the addresses in the database. This is similar to
the file example’s report, except that all the data is retrieved by this call: val ues
%b. Perl’s val ues function returns a list of all the values stored in a hash; db is tied
to a hash file, and DB_File obediently retrieves all the records from the file and
returns them as a list. One could get spoiled with such service.
The code is simple enough that the @ ows array isn’t really needed; the map call

could be embedded in the call to $g- >Tr .
elsif ($page eq 'Confirm) {

print $qg->header, $qg->start_htm (' Confirnati on page'),

$g->h1(' Confirm, $qg->paran(’'function'), ':'), $g->p,

$g->start_form

$g->tabl e

(
$qg->Tr

CHAPTER 4 DATABASES

$g->td([' Nanme: ', $g->paran(' nane')]),
$g->td([' Address: ', $g- >paran(' address1')]),
$g->td([' ", $g- >par an(' address2')]),
$g->td([' City:', $g->paranm(‘'city')]),
$g->td([' State/Pr:', $g->paran('state')]),
$g->td([' Zi p/ Postal :', $q->paran(’' zip')]),
$g->td([' Country', $g->paran(' country')])

)
print "If this is correct, press Update; if not, use '
'"the Back button on your browser to return to the form',
map ({$9->hidden($_)} @ields),
$g- >p, navbar (' Update'), $g->end_form
}

The confirmation page is essentially the same as it was in the file example. The
parameters listed in the @i el ds array are preserved for the next invocation of the
script by storing them in hidden fields. The f unct i on parameter is used to print a
confirmation message that tells the user what will happen.
elsif ($page eq 'Update') {

ny $nane = $qg->paran(' name');

ny $value = join('|',map {$g->paran($_)} @ields);

$db{ $nanme} = $val ue;

print $qg->header, $qg->start_htm (' Success'),

$g- >h1(' Update conpleted');

print $g->start_form navbar, $g->end_form

}

This section stores a record in the hash file. It creates a string by concatenating all of
the input fields with a separator character, then stores the string via the simple line:

$db{ $nanme} = $val ue;

This shows again how remarkably easy Perl can make our lives. Behind the scenes,
DB_File is called to store the string in $val ue at the key of $nane.
el se {
print $g->header, $qg->start_htm (' Error'),
$g->h1(' No input function'), $g->p,
$g->start_form navbar, $g->end_form
}

Through with the hash file.
unti e %lb;

End the docunent.
print $q->end_htmn ;

The rest of the script prints an error message as a catch-all case and ends the docu-
ment. The hash file will be closed automatically by the end of the script, so there isn't
any special code for it here.

HASH FILES 81

4.4

82

ti e and DB_File make hash files so easy to use that one can get carried away. In
a larger program it would be important to conserve operations on the db hash so that
code isn’t constantly running back to the hash file for keys and records.

Perl’st i e magic has been applied to other sorts of databases and functions. In fact,
there is a module that lets a relational database table act as a Perl hash, similarly to the
hash file implementation we’ve used here. CPAN listst i e implementations for clocks,
network services, encryption packages, and many other uses, so if you have a need for
such a module, check CPAN first.

RELATIONAL DATABASES

While hash files have a number of good applications, a complex web application will
soon find itself bumping up against their limitations. If you find yourself tempted to
add your own secondary indexing scheme to a hash file or to add other features, it’s
time to take a step back and look at a better solution.

Relational databases are the next step up in both resource cost and development
complexity. For application development purposes they should also be the final step—
relational databases have all the features an application needs. The relational model is
the child of the hierarchical and network models used in mainframe application devel-
opment in the 1960s and '70s. Although some new models have been developed
(notably object-relational, used by PostgreSQL), the application world has stuck to the
relational model since it became entrenched in the '80s.

Most of the argument since then has been over what features to add to SQL, the
query language used by relational databases. The widely adopted SQL92 standard pro-
vides a benchmark for compliance, somewhat simplifying the complex task of com-
paring and evaluating different database products.

As | mentioned at the beginning of the chapter, the commercial database market
is quite crowded, with major players jostling each other by adding new features and
services while newcomers attempt to carve out niche markets. The Open Source mar-
ket is smaller, with two widely used implementations: MySQL (http://www.
mysql.com/) and PostgreSQL (http://www.postgresqgl.org/). There are also new arriv-
als such as Interbase (http://www.interbase.com), somewhat free products like Mini-
SQL (which was mSQL) (http://www.hughes.com.au/), and ongoing experiments
including a proposal to write an entirely new database server all in Perl, making it
worth a look around to see what has been released.

From an application developer’s point of view, the primary characteristic of a rela-
tional database is the fact that it organizes data into tables that can be queried and
merged on the fly to produce compound data sets.

For example, suppose we have a personal information database that stores a contact
name and address in one table and phone numbers in another table. A given contact

CHAPTER 4 DATABASES

can have one or more phone numbers, and by storing them separately the application
doesn’t have to anticipate in advance how many are needed.
The following SQL statements would work in most databases to create the tables:

CREATE TABLE Contacts (
Nane VARCHAR(20) NOT NULL,
Addr ess1 VARCHAR(40),
Addr ess2 VARCHAR(40),
City VARCHAR(20),
State VARCHAR(3),
Zi p VARCHAR(10),
Count ry VARCHAR(5),

PRI MARY KEY (Nane)

)i

CREATE TABLE Phones (
PNurmber VARCHAR(12) NOT NULL,
Nanme VARCHAR(20) NOT NULL,
PRI MARY KEY(PNUMBER)

)
After loading the tables with data, we could query the Contacts table to search for a
given name or city:

SELECT * FROM Contacts WHERE Nane = "Theo Petersen";
SELECT Nane, Addressl FROM Contacts WHERE City = "Denver";

Of course, we could accomplish the same sort of thing with a set of flat files or hash
files. The relational part comes in when we use SELECT to join tables:

SELECT Nane, City, PNumber FROM Contacts C, Phones P
VWHERE C. Nane = P. Naneg;

This query creates a dataset that combines the Name and City fields from Contacts
and the PNumber field from Phones for all records where the Name fields match.

From the application’s point of view, the complexity of the query doesn’t increase
the complexity of the code that uses it. We could have the database merge additional
tables, sort and group the data, and perform calculations based on the fields and it
would still work pretty much the same. To do the same query with a pair of flat files,
we would at least have to write nested retrieval loops; adding any more constraints
would add correspondingly to the code.

Thus for the application developer, a relational database is a sort of data “black
box” that handles a great many implementation tasks. The application is correspond-
ingly simpler, while the cost in system resources is greater.

The application also doesn’t include the database code; most relational databases
are built on a client/server model in which the real database work is done in a sepa-
rate process (which can also be on a separate machine, as was mentioned in previ-
ous chapters and will come up again in chapter 12). This allows the database engine
to cache pages and perform other optimizations across queries. Some databases do

RELATIONAL DATABASES 83

84

run entirely in the application, saving connection and data transfer overhead for
higher performance.

Relational databases have some security features in common. In particular, users
have to identify themselves to the database server before they are allowed to get at the
data. Most servers keep their own list of users and permissions, although some will use
the OS’s user database. Thus when making the decision to use a relational database,
bear in mind that each application will have to log in to the database before it can
retrieve or update anything, adding a further layer of user administration to the overall
maintenance cost.

The choice of which commercial database product to use often comes down to bud-
get and politics. While we'd like to think that technical merit is the key issue, anyone
who has worked in business application development for long knows better. These
products are expensive, and so the choosing and licensing process happens high up on
the organization chart, whether for web applications or central accounting systems.

Chances are good then that a commercial web site designer already has a database
product in mind before development starts, either because the organization already
uses that database elsewhere or because the sales process has already occurred. But
that’s okay—chances are equally good that the choice will work fine for web applica-
tions. Long-term competition has forced the vendors to produce products that are
more or less alike from the point of view of typical usage. If your business has extreme
needs, such as tremendous size or amazing transaction counts, then evaluate your
choices more carefully.

If you have the luxury of making your own choice, consider one of the Open
Source implementations listed in the next section. You’ll be pleased with the support
you get from fellow developers and the number of free scripts and examples on various
web sites. If your budget forces you in this direction, don’t feel that you are settling
for poor man’s best, as these databases are in use at thousands of busy public and pri-
vate web sites, competing very well with their commercial cousins.

When you consider the technical issues for a database, check whether Perl’s DBI
package supports it; this is a crucial factor for any Perl-based applications, web or oth-
erwise. The two discussed next are both part of the DBI family, as are most of the com-
mercial products.

Like many Open Source products, MySQL began life as a tool for one company’s
internal applications, spread to its customers, and then took on a life of its own. TcX
was the original developer, and continues to contribute code and support although
the name has changed to MySQL AB, reflecting the emphasis on the product.

The original design goals for MySQL were speed and robustness for large databases.
In exchange, the developers sacrificed some features of the relational model that many

CHAPTER 4 DATABASES

critics feel are too important to lose, including the ability to roll back uncommitted
updates. This trade-off led to a seemingly endless discussion in various forums over
whether MySQL is a “real” database, which did not end when MySQL implemented
many of the features in questions (it’s hard to kill a good flame war).

I've studied the issues carefully, and have concluded that anyone who gets involved
in ending the argument wastes a lot of time that is better spent on more fruitful pur-
suits. Meanwhile, thousands of satisfied customers use MySQL every day for small to
very large databases, including some very high traffic, well-regarded web sites such as
Slashdot (http://slashdot.org), the news site renowned for the “SlashdDot Effect” of
causing other web servers to become unavailable after linking to them in a story.

Until 2000 MySQL had been released with its own license, which caused more
debate among Open Source developers than its database features did. MySQL is now
licensed under the GPL for the server and the LGPL for client libraries, making it free
to use in commercial and Open Source software. In the same move, MySQL made alli-
ances with commercial firms to offer a wider selection of support plans, as explained
on the web site.

How does it rate on the other buyer’s guide issues?

e MySQL has had stable releases since 1996. The web site clearly marks the cur-
rent development and stable releases, and the developers patch the stable release
often as they find and fix bugs while continuing work on newer versions.

* MySQL has excellent support via its mailing list. Typical new user questions are
answered quickly, and the lead developer often responds in person to more chal-
lenging bug reports.

e The product ships with adequate documentation and has pointers to add-on
tutorials and manuals on the Web. There are also several published books on
MySQL, and other books on Perl programming include MySQL examples.

* Most web programming languages and tools have interfaces to MysSQL, includ-
ing Perl, PHP, Java, and C. Some commercial development products support it
directly as well.

* MySQL has export abilities for saving copies of tables for backup, and a suite of
utilities for other maintenance tasks, so long-term cost of managing the data-
base shouldn’t be much different from that of commercial databases.

PostgreSQL turns up alongside MySQL in so many discussions that one would think
they are related. However, the main factor they have in common is their free availabil-
ity. PostgreSQL contrasts nicely with MySQL and often serves as the purists’ alterna-
tive in discussions of database merits.

The history of PostgreSQL spans over 20 years and includes luminaries of database
modeling, but the most important events for our purposes are more recent. The cur-
rent PostgreSQL Global Development Team took over what was then called

RELATIONAL DATABASES 85

86

Postgres95 and began working it into a manageable, maintainable product while hold-
ing to the goals of releasing a full-featured database. In a remarkably short time given
the size of the code base and the cast-of-thousands list of previous maintainers, they
were turning out bug fixes at first and then new features, returning PostgreSQL to its
proper place in the A-list of database choices.

2000 proved an interesting year for Open Source databases. A few months before
MySQL allied and changed licenses, the PostgreSQL developers announced a deal with
Landmark Communications to form a new company, Great Bridge. The purpose of
the merger was to offer commercial support and focus to PostgreSQL, and to provide
support from Great Bridge and PostgreSQL, Inc. In 2001 RedHat announced it would
sell its own commercial version of the product.

Developers coming from a commercial database background will feel at home with
PostgreSQL. It supports most of SQL92, including the more complex SELECT
options such as subselects that MySQL lacks. PostgreSQL has full transaction support,
meaning that an application can perform updates inside of a transaction and roll it
back if anything goes wrong; until the transaction is committed, no other process will
see the changes in the data.

Naturally these features have a performance cost, fueling the endless comparison
discussions | mentioned earlier. Chances are good, though, that PostgreSQL will meet
your needs for reasonable application workloads on reasonable hardware.

Comparing PostgreSQL to other databases misses many points of interest, how-
ever; | mentioned previously that PostgreSQL follows an object-relational model that
has many features which are lacking in relational databases. The one I like most is its
array type, which lets a record hold lists of values under one name and access them
using a syntax similar to that of C and Perl.

PostgreSQL scores very high on the buyer’s guide:

« Stable releases are updated 3—4 times a year from a mature code base.

 PostgreSQL has free support via a variety of mailing lists, including a list just for
novices. Some language interfaces and utilities have their own mailing lists as
well. Commercial support is also available as mentioned previously.

« The PostgreSQL Documentation Project has created an excellent set of manuals
that are the envy of most other Open Source products. The text of Bruce
Momjian's book on PostgreSQL is also online (http:\\www.ca.postgre-
sql.org/docs/awbook.html).

 PostgreSQL is widely supported by programming languages and utilities,
although it trails MySQL at least in the products | evaluated for this book.

 PostgreSQL has backup and archiving utilities that come with the distribution,
and others are available via Open Source web sites.

CHAPTER 4 DATABASES

4.5

Choosing between MySQL and PostgreSQL might seem simple—make a list of fea-
tures you need and see which product is best. As the two products mature however
the distinctions blur and the choice becomes more arbitrary.

My examples for the rest of the book will use MySQL, largely because certain prod-
ucts used in later chapters require it. Apart from those cases, however, PostgreSQL can
replace MySQL with only a few changes in the code.

INSTALLING MYSQL

MySQL is nicely self-contained, making it a good choice for installation from binary
distributions if there is one for your platform. By comparison, | find myself rebuild-
ing Apache with updates to various modules that | want built-in, so binary distribu-
tions don't do anything for me there. The download site (http://www.mysgl.com)
offers distributions for Linux and many Unix flavors, and the aforementioned
Microsoft versions that come with a price tag.

Building MySQL from source is easy on Linux, but more challenging for some
Unix-variants due to MySQL'’s reliance on threads, so read the documentation on con-
figuration requirements carefully. Once you've mastered a configuration however, you
should find it easy to keep your installation up to date new versions are released.

By either road, you should be able to get the server working quickly. Be sure to add
it to your system startup procedures as well so that MySQL will be waiting for you after
a reboot.

The installation procedure will admonish you to set a password for root, the account
with the highest level of privileges in the database. Do this before going onto the next
step, using a string you'll be able to remember (preferably without writing it down).

$ /usr/local/bin/nysqgladnmin -u root password 'nysqglrocks

Your applications will need at least one database in which to create tables and store
data. You can use multiple databases to organize your tables more closely. My exam-
ples use a database called | nf o:

$ nysql adnmin --user=root --password='nysqlrocks' create Info
Dat abase "I nfo" created

As | mentioned previously, you'll need to create at least one database user before any
applications can connect to the database. Do not use the root account for applications!
$ nysql --user=root --password='nysqlrocks

Wel come to the MYSQL nonitor. Commands end with ; or \g
Your MySQL connection id is 143 to server version: 3.22. 32

INSTALLING MYSQL 87

88

Type 'help' for help.

nysql > GRANT SELECT, | NSERT, UPDATE, DELETE ON | nfo.* TO web@ ocal host
-> | DENTI FI ED BY ' nouser';
Query OK, O rows affected (0.11 sec)

In this sample, the root account is used to log in to the database and create another
user called web with a password of nouser. The new user is allowed to retrieve and
update all of the tables in the | nf o database.

While you're logged in as root, add the table used by the example:

mysql > use Info
Dat abase changed
mysql > CREATE TABLE Addresses (
-> Ni cknanme VARCHAR(20) NOT NULL,
-> Name VARCHAR(20) NOT NULL,
-> Addressl VARCHAR(40),
-> Address2 VARCHAR(40),
-> City VARCHAR(20),
-> State VARCHAR(3),
-> Zip VARCHAR(10),
-> Country VARCHAR(5),
-> PRI MARY KEY (Ni cknane)
->)
Query OK, O rows affected (0.00 sec)

mysql > quit

If you've managed to perform the installation steps, you've already connected to the
database server successfully. You'll want the application user to be able to connect too.

$ nysql --user=web --password=nouser
nysql > | NSERT | NTO Addresses VALUES (' Theo', 'Theo Petersen',
-> '35 Home Address Lane', '', 'Hometown', 'CO, '80111', 'USA");

Query OK, 1 row affected (0.00 sec)

nysql > SELECT Nane, City FROM Addresses;

o o +
| Nane | Gty |
L [+
| Theo Petersen | Honetown |
o o +

1 rowin set (0.00 sec)

If your results look anything like this, your server is working fine.

CHAPTER 4 DATABASES

4.6

MysSQLs distribution includes a manual that is comprehensive but not aimed at
beginners. If you need help getting started with SQL, look for “SQL tutorial” on your
favorite web search site.

See the bibliography for suggestions to add to your bookshelf.

DBI, PERL’S DATABASE INTERFACE

In touting the strengths of Perl I mentioned its role as a glue language for sticking
other pieces of software together. One of the best examples of that gluing is the
DBI module.

DBI, (database interface), is similar in nature to other database connector products
such as ODBC and JDBC. Perl programs use DBI to connect a driver module called a
DBD (database driver) to a database server and send and receive data.

DBI is considered a “thin” interface because it does not attempt to completely
abstract the underlying databases. It provides generic functions for connecting to the
database, sending commands, and retrieving results, but those commands are given in
the native SQL dialect of the database server. DBI’s role is not to conceal database pecu-
liarities, but to provide a simple and common means of connecting Perl to servers.

As such, the key to DBI’s success has been the quality of its interface and the driver
modules. DBI provides very efficient methods for retrieving the results of queries, as
you'll see in the examples to follow. The DBD modules are provided by experts in their
respective databases who use Perl and DBI constantly in their own work and have every
reason to want the best linkage between the two.

Prior to DBI, database connectivity with Perl was a matter of creating specially
linked versions of the language or using an interface module specially created for that
database. Those solutions worked, but choosing one was a big commitment since
changing databases could potentially mean changing all of the code as well. With DBI,
the code that connects the application to the database is largely generic; if the appli-
cation sticks to generic SQL as well, it’s possible to switch databases without too much
code being lost.

Since applications don’t often switch databases, that portability is nice but not a
crucial concern. What’s more important is that the generic, but efficient DBI methods
make coding an application easy without sacrificing too much performance.

After looking through the examples here, you’ll probably want to learn more about
DBI’s capabilities. See the module’s built-in documentation, as well as the driver mod-
ules. There is also a separate DBI_FAQ module that contains pointers to further infor-
mation, including a book just on programming with DBI.

DBI and the driver modules are installed via CPAN. From a privileged account,
invoke the CPAN shell and tell it to grab the DBI module bundle for you:

DBI, PERL'S DATABASE INTERFACE 89

90

perl -MCPAN -e shell

cpan shell -- CPAN exploration and nodul es installation (vl.54)
ReadLi ne support enabl ed

cpan> install Bundle:: DBI

Then install the DBD module for your database of choice:
cpan> install Bundle::DBD:: nysql # MySQL

cpan> install DBD::Pg # PostgreSQL
While you're running CPAN, get the FAQ module:

cpan> install DBI::FAQ

Then read it via per | doc:

$ perldoc DBI:: FAQ

There are also a variety of helper modules in the DBIXx:: namespace. Look for them at
http://search.cpan.org/.

Perl scripts invoke the DBI module with the usual use syntax, but do not touch the
underlying DBD directly. DBI will call up the appropriate driver module when the
script calls connect , as shown here:

use DBI;

Open a MySQL dat abase.

ny ($dbname, $host, $user, $password) =
gw(I nfo | ocal host web nouser);

ny $dbh = DBl ->connect (" DBl : nysql : $dbnane: $host ", $user, $passwor d)
or die "Can't connect user $user to database $host: $dbnane”;

While this example has the database name, host, user, and password hard-coded, it
demonstrates passing them to connect via variables. Your own code might obtain
the user and password from a login form, or may use a generic user for all database
connections as my CGI examples do.

The connect function returns a database handle, which traditionally goes by the
name $dbh, although your code can call it anything you wish. This handle is used to
make further queries of the database, and to close the connection to the database when
the script is finished. DBI functions create other kinds of handles also; in particular,
statement handles are used to get data back from SQL statements that return results
which don’t fit easily into a Perl variable.

If your system is set up to run the book’s example scripts as-is, you can use
addr db. pl to test your DBI installation; it connects as shown in the example.

CHAPTER 4 DATABASES

The last CGI example used a hash file to implement an address book. It's time to
revisit that example using DBI and the table and user created via the commands given
previously. This version has a few other changes also; it provides a way to update an
address, and drops the confirmation page when making changes.

The code is in addr db. pl . It starts with the familiar opening:

#!/usr/local/bin/perl -wT

use strict;
use C3;

use CG3 :: Carp;
use DBI;

Load the CA input data.
ny $q = CA ->new,
List the inputs that correspond to formfields.

ny @ields =
gW(Ni cknane Name Addressl Address2 City State Zip Country);

Next, the script has to open the database, or exit if it can't. This is somewhat ineffi-
cient, as | commented before with the hash file example, since not every invocation
will use the database. It does make the code cleaner however, and I'll address the inef-
ficiency later.

Open the MySQL dat abase.

ny ($dbnarme, $host, $user, $password) =
gw(I nfo | ocal host web nouser);

ny $dbh = DBI->connect (" DBl : nysql : $dbnane: $host ", $user, $passwor d)
or die "Can't connect user $user to database $host: $dbnane"”;

In a more robust application we'd get the user and password from a prior form and
pass them in here. Until we have a way to get the password securely, though, I'll leave
that step out of the example.

Then we have helper functions, more or less the same as the previous example,
although this time the data entry form is used more often:

Print a navigation bar of subnmit buttons.
sub navbar {
return join('"',
map {$g->subnit (' page',$_)}
@, 'New, 'List all', 'Query'
)
}

Print the entry/update form
sub address_form {
ny $nmodify = shift;

DBI, PERL'S DATABASE INTERFACE 91

92

ny $nick = shift;
if ($nodify) {
$nick = $g->textfield(-name => ' Ni cknane',
-default => $ni ck,
-override => 1,
-size => 20);
}
el se {
$nick = $nick . $g->hidden(' Ni cknane', $nick);
}
return
$g- >t abl e
(
$q->Tr
(1
$g->td([' Ni cknane: ', $nick]),
$g->td([' Full nanme:',
$g->textfield(-nane => ' Nane',
-default => shift,
-override => 1,
-size => 20)]),
$g->td(' Address: ')
$g- >t d({-col span => 3},
$g->textfield(-name => ' Addressl’,
-default => shift,
-override => 1,
-size => 40)),
$g->td .
$g->td({-col span => 3},
$qg->textfiel d(-name => ' Address?2',
-default => shift,
-override => 1,
-size => 40)),
$g->td(['City:",
$g->textfield(-name => 'City',
-default => shift,
-override => 1,
-size => 20),
' Statel/Province: ',
$g->textfield(-name => ' State',
-default => shift,
-override => 1,
-size => 3),
' Zi p/ Postal code: ",
$g->textfiel d(-nanme => 'Zip',
-default => shift,
-override => 1,
-size => 10)]),
$g->td([' Country:",
$g->textfield(-name => 'Country',

CHAPTER 4 DATABASES

-default => shift,
-override => 1,
-size => 5)])

}

Note that addr ess_f or mnow takes parameters. $rmodi f y indicates whether the
nickname can be changed. If not, it’s displayed in normal text and also stored in a
hidden field so that the browser will pass it back unmodified. The rest of the parame-
ters are values for each field, supplied by Perl’s shi ft function; if address_form
is called without those parameters the fields will be filled with blanks. This allows the
script to call the function to display an existing address and use the same form to
modify it.

The code drops into sections for each page, again following the previous example.
The first is for queries (the default page if no parameters were received or only the
fi nd parameter was passed along). If the f i nd parameter was passed in, it also que-
ries the database via DBI:

Display the appropriate form depending on input.
ny $page = $q->paran(’ page');
ny $find = $g->paran('find');
if (!$page || $page eq 'Query' || $find && !$page) {
print $g->header, $qg->start_htm (' Query by nicknane'),
$g- >h1(' Query address book'), $g->p, $g->start_form
if ($find) {
ny @al ues =
$dbh- >sel ectrow_ar ray
(" SELECT * FROM Addresses WHERE Ni cknane = ?',
undef, $find);
if (@alues) {
print address_forn{0, @al ues), $g->p,
' Make any changes, then click',
$g->subni t (' page', ' Update'), $g->p,
'O click',$g->submt (' page', ' Delete'),
'"to delete this addres', $g->p;

}
el se {
print "$find not found", $q->p;
}
}
print "Enter a nicknane:",
$g->textfield(-nanme => 'find , -size => 20),

$g- >p, navbar, $g- >end_f orm
}

The call to $dbh->sel ectrow_array is the database query. It takes an SQL
SELECT statement and sends it to the database, then retrieves one row of output and

DBI, PERL'S DATABASE INTERFACE 93

94

puts the fields into an array. This is convenient for queries that return only one row,
such as those which look up a single address.
Note the odd WHERE clause in the query:

' SELECT * FROM Addr esses WHERE Ni cknane = ?'

The ‘?’ tells DBI to expect a bind parameter, a Perl variable that will replace it in the
statement. $fi nd then follows as a parameter to sel ectrow array and is
dropped into place when the query executes.

Since the SELECT statement is passed along as text to sel ectrow_arr ay,
we could have gotten the same effect by putting the value of $fi nd into the
query directly:

"SELECT * FROM Addresses WHERE Ni cknane = ' $find" "

By putting the query string in double quotes, Perl will interpolate $f i nd into the
string and pass the result along to the function. This is fine as long as the interpolated
variable won't contain quotes, which would disrupt the SQL syntax. In my own code
I tend to use interpolated strings as long as they are convenient and safe, since it is
more readable to me later.

Bind parameters have a strong advantage over interpolated strings: DBI automat-
ically escapes any characters in a bind parameter that would bother SQL. To do this
properly though, DBI needs to know what sort of value a parameter is. Note that in
the code, sel ect r ow_ar r ay receives a second parameter of undef ; that is a place-
holder for driver-specific query attributes, a hash of information you can pass in to help
the underlying database handle the parameters. (See the DBI documentation for more
information.) Lacking that information, DBI assumes the parameter is text, which
works fine for this example and most databases.

There is one other point to note here. Since | used SELECT * the fields of the row
are in the order that they are defined in the table, and sel ect r ow_ar r ay maintains
that order. I've conveniently defined the table and the address form with the same
fields in the same order. However, a change to either would cause this code to break.
A safer version would specify the desired fields in the proper order.

The code passes the retrieved data along to addr ess_f or mto be displayed to the
user, and also provides buttons for updating or deleting the data. This conveniently
ties all the functions that require retrieved data onto one page.

The next section lets the user add an address:
elsif ($page eq "'New) ({

print $qg->header, $qg->start_htm (' New address'),
$g->h1(' Address book'), $g- >p,
"Enter an address:', $g->p,

$g->start_form address_forn(1),
navbar (' Add'), $g->end_form

CHAPTER 4 DATABASES

It doesn't do much other than call addr ess_f or magain. Since no data is passed in
to display, the form will be blank.
The next section stores the data passed along when the user clicks the Add button:

elsif ($page eq 'Add') {

$dbh- >do(' | NSERT | NTO Addresses VALUES (?,?,2,2,2,2,2,2)",

undef, nmap({$qg->paran($_)} @ields))
or die $dbh->errstr;
print $qg->header, $qg->start_htm (' Success'),
$g->h1(' New address entered');

print $g->start_form navbar, $g->end_form
}

The SQL | NSERT statement adds a row to a table. Note the use of bind parameters
in the VALUES() clause. This version is somewhat fragile, since the fields have to be
defined in the table in the same order given by the @i el ds array. VALUES() could
be preceded by the list of field names in this form:

"I NSERT | NTO Addresses (N cknane, Nanme, Addressl, Address2,
Cty, State, Zip, Country) VALUES (?,?,?,?2,?2,?2,2,?)'

An even more clever version would construct the field list from the @i el ds array,
as I'll do in the update code which follows.

The function $dbh- >do is used to execute any SQL statement which doesn’t
retrieve data. It uses the same order of parameters as the sel ect functions: statement
first, then attributes, followed by bind parameters. do also returns a false value if some-
thing goes wrong in executing the statement, so we check for that possibility with the
or di e Perl idiom and get the error message using $dbh->errstr.

The next two bits of code handle updates and deletes:

elsif ($page eq 'Update') {
ny @odify = @ields[1 .. $#fields];

ny $sql = ' UPDATE Addresses SET '
join(',", map {"$_ = ?"} @uvdify) .
" WHERE Ni cknanme = '" . $g->paran(' N cknane') .

$dbh->do($sql, undef, map {$g->paranm($_)} @mwdify)
or die $dbh->errstr;
print $g->header, $qg->start_htm (' Success'),
$g- >h1(' Updates entered');
print $g->start_form navbar, $g->end_form
}
elsif ($page eq 'Delete') {
$dbh- >do(' DELETE FROM Addr esses WHERE Ni cknane = ?',
undef, $q->paran{' Ni cknane'))
or die $dbh->errstr;
print $g->header, $qg->start_htm (' Success'),
$g- >h1(' Address for', $qg->paran('N cknane'), 'deleted');
print $g->start_form navbar, $g->end _form

DBI, PERL'S DATABASE INTERFACE 95

96

As promised, the Update section builds its SQL UPDATE statement from the
@ el ds array, after first dropping out the Ni cknane field. The statement is then
passed as the first parameter to do as before. The Delete section is similar enough,
and both statements have a WHERE clause in common (though they pass in the nick-
name in different ways). When updating or deleting, you must tell the database
which record (or records) to affect by supplying a WHERE clause that would retrieve
the desired data in a SELECT statement.
The next section of the script displays all the records in a table format:

elsif ($page eq '"List all') {

print $qg->header, $qg->start_htm (' Di splay address book'),

$g- >h1(' Address book'), $g->p,

' Address book listing:', $q9->p;

ny $rows = $dbh->selectal |l _arrayref (' SELECT * FROM Addresses');

if ($rows) {

print $qg->tabl e($g->Tr([map {$g->td($_)} @rows]));
}

el se {
print $dbh->errstr;

}
print $g->start_form
navbar, $qg->end_form

}

This example shows another DBI select function, sel ectal | _arrayref. This
function takes a SELECT statement and retrieves all the rows it matches, then gives
them back to the program as a reference to an array of arrays. That is, it returns
$r ows, which is an array reference; each element of @r ows is also an array refer-
ence, and those arrays contain the fields of each row. If sel ectal | _arrayr ef
returns a false value then something went wrong in executing the statement.

The references to rows and fields may seem a bit deep there, but actually work
out to be very convenient, since CGl.pm’s HTML helper functions do clever things
with array references: $g- >t d makes each field into a table cell and $g- >Tr makes
each returned record into a row of the table. This allows for the very compact call
to $g- >t abl e which displays all the data.

The closing portion of the script isn’t all that interesting:
el se {

print $g->header, $g->start_htm (' Error'),
$g->h1(' No input function'), $g->p,

$g->start_form navbar, $g->end_form
}

End the docunent.
print $g->end_htnl ;
$dbh- >di sconnect ;

The main thing to note here is the call to $dbh- >di sconnect , which closes the
database connection.

CHAPTER 4 DATABASES

4.7

While there is still much to be desired for an address database, this script provides
a quick tour of DBI in a small space. It's time to drop the example for now and look
at other tools.

DATA MAINTENANCE VIA CGI

Putting Perl’s DBI and CGI modules together shows off much that is good about the
language. Perl has clever tools that make short work out of complicated tasks, once
you learn how to use them.

A common theme in web database applications is the generic web interface: given
the definition of a table, have Perl (or another language of choice) create CGI forms
and controls for displaying and maintaining the table. In fact, there are several such
tools available to the public, and probably more of them lurking privately. Perl imple-
mentations include WDBI and HTMLViews.

The Web Database Interface started out as Bo Frese Rasmussen’s WDB, then was
expanded and rewritten by Jeff Rowe (and later other contributors) into a very
complete toolkit for generating and running database query and update forms via
CGl. It is built on top of DBI, and uses an adapter module for each DBD that pro-
vides administrative functions for the database that are beyond the scope of normal
DBI operations. Adapters are provided for many DBDs, including those for MySQL
and PostgresQL.

WDBI is mature with an active user base. The home site (http://www.wdbi.net/)
offers the latest version, documentation, tutorials, and subscription to the mailing list.
The installation documentation is sparse, and getting WDBI to work initially required
a bit of trial and error. After getting the product in place, the online documentation
is very helpful in guiding users through the basics of queries and updates.

The product’s web site indicates that WDBI is in the process of a major overhaul,
so a modernized version may be available by the time you read this. If not, the version
I used makes a fine utility for database managers. With more effort it can be used as
a tool for general users.

DBIx::HTMLView is another Perl-based solution for creating CGI forms for tables. It
takes an object-oriented approach to the task, supplying object classes for almost
every entity one can imagine in a database interface—uvarious field types, tables, data-
bases, and so on. One nice effect of this approach is that collections of data, such as
rows selected from a table, can be used wherever fields are allowed, making it easy to
construct master/detail forms where a record in one table is associated with a set of
rows from another.

DATA MAINTENANCE VIA CGI 97

98

While I like the architecture of HTMLView, | find it to be more of an application-
building tool than a quick way to display and update records. For simple tasks I prefer
WDBI, so that’s what I'll show in the examples to follow.

After downloading and unpacking the distribution, go to your Apache root directory
(/ usr/ 1 ocal / apache in my examples) and create a wdbi subdirectory under
both cgi - bi n and ht docs. Then copy the files from WDBI’s ht Ml _docs and
i mages directories into ht docs/ wdbi ; they will provide graphics and online help
for the generated forms.

Next, copy the wdbi . cgi script from WDBI’s cgi - bi n directory to Apache’s
cgi - bi n. Goto cgi - bi n/ wdbi (under Apache’s root) and create a subdirectory,
conf, and copy in the distribution’s conf / wdbi . conf and the adapter for your
database (mysql _dbi . pl in my case).

WDBI uses form definition files (FDF) to describe database tables and set permitted
actions on their data. We’ll create an FDF shortly, but before that we need a place for
the files to live. In cgi - bi n/ wdbi create an f df subdirectory, then give it a subdi-
rectory for each database which will have WDBI interfaces. In my example I'll use the
Info database again, so I'll create cgi - bi n/ wdbi / f df / I nf 0.

Under Apache’s root directory you’ll now have a set of files and directories like the
following:

e ht docs/ wdbi —contains image files and HTML help

e cgi - bi n/ wdbi / f df —directory for database subdirectories

e cgi - bi n/ wdbi / f df / | nf o—example database subdirectory

e cgi - bi n/ wdbi / conf —directory for configuration files

e cgi - bi n/ wdbi / conf/ nysql _dbi . p| —DBD adapter

* cgi - bi n/ wdbi / conf / wdbi . conf —WDBI configuration

e cgi - bi n/ wdbi . cgi —main CGI script
Now it’s time to do the configuration. Edit wdbi . cgi and look for the variable
$CONFI G_DI R, then change the path to the full path of the conf directory—/ usr
/'l ocal / apache/ cgi - bi n/ wdbi / conf in my example. Then edit wdbi . conf

and read the documentation for each variable, setting the values appropriately. For my
example, these are the values that | changed from the defaults:

$WDBI = ($ENV{' SCRIPT_NAME }) ? $ENV{' SCRIPT_NAME'} : "/cgi-
bi n/ wdbi . cgi *;

$SECURE_WDBI = "/cgi-bin/wdbi.cgi";
$FORMDI R = "/usr/ | ocal / apache/ cgi - bi n/ wdbi / fdf ";
$USER = "web";

$PSWD = "nouser";

CHAPTER 4 DATABASES

These changes reflect the file layout given earlier and the username and password I've
used for the Info database.

Verify that the wdbi . cgi script is executable and that Apache’s user can read all
the files in both directory trees. WDBI is now installed, but before you can use it,
you have to give it more information about your database tables, as shown in the
next section.

While some systems generate interface forms on the fly, WDBI uses an FDF to
describe each table and set which actions are allowed on the data. By customizing
FDF files you can create very complete and usable interfaces for all of your tables.

The WDBI distribution’s bi n directory contains scripts for generating a basic FDF
file for a given table. Choose the script that matches your database adapter
(mysql f df in my case) and copy it to where you keep your executable scripts (such
as/ usr/ 1 ocal / bi n). Verify that it is executable, then go to the FDF directory for
your database (/usr/ 1 ocal/apache/cgi-bin/wdbi/fdf/Info for the
example) and run it to create a file.

Here is how I created an FDF for the Addresses table:

nmysql fdf -d Info -t Addresses -u web -p nouser -0 update,insert,delete

Most of the switches in the command line are self-explanatory. The options switch
(- o) determines what actions can be performed on the table besides selecting rows.
In this case, the user can insert, update and delete rows also.

The output of the command went to Addr esses. f df . You can use the file as-
is, but I wanted to modify the field labels (which by default will be marked only by
the field name) to match the previous example, so | edited the file and changed them:

FIELD = Name

| abel = Full nane
col um = Nane
type = char # 12
length = 20

FIELD = Addressl
| abel = Address
colum = Addressl
type = char # 12
length = 40
non_nul

FIELD = Address?2
| abel =

col um = Address2
type = char # 12
length = 40
non_nul

DATA MAINTENANCE VIA CGI 99

100

You can see from these attributes how FDF describes fields. You can also change the
labels on buttons and links if you wish, and add considerably more to the form. See
WDBI’s FDF documentation for more details.

The FDF file is ready, so let’s try it out in the browser. WDBI puts the database and
table names into the URL of a request; the form created earlier has a URL of
http://www.example.site/cgi-bin/wdbi.cgi/Info/Addresses/form. Note the path to the
wdbi.cgi script is followed by the database name (not fdf) and then the table; form
tells WDBI to display the main query form.

If you've set up the examples, change the URL in the example to match your site
name and give it a try. You should see something like the screen shown in figure 4.1.

_ B Emm Yiess Zaercw 5o pookmsanid Joaves Help [sboy Qo

Addresses Query Form

=

Plemes enter qualifisers tn the felds Belowr aod prese the “Search”’ ntton

St | B |)]

Feetiir i marimiam of B redords fnom this query,

= Higkmass |
= Pall naee:
< Adxiremy. . :.
F adidreast, 1|
- [H14] -
" Blabe. ...
Ll 1 TR
F pemtry. .o

[l

Figure 4.1 WDBI query screen

If you click Search you'll get a list of records in the Addresses table. Click More for a
one-page display of a record’s data; it doesn't look quite like our example, but it works
just as well.

Returning to the main query form, try searching for records by entering data into
one of the fields. WDBI’s default search mode is to match the entered characters any-
where in the field, so putting Rd into the address field will bring up any record con-
taining Rd. The search result is shown in figure 4.2.

CHAPTER 4 DATABASES

= Efa Bl Wies Seach G Brokmane Tkl Help Dedug S8

Addresses Query Result

Badches: 1.
Fiors Delekm Dpdats Fackoums Full s Afdroxs
MLEE Delste Epdeis Faa Lxi Walf Pebarsen Up in the caib
BUEE Uilsce Gelite Thed Thawe Persissn Lavey & Findisg Ad
-
ey B Homs

sl 1.5.0_0F = T6=Plip=-1205% Sered commeamy fo Fouiivoir oo

I : e ——]

Figure 4.2 Search results

When searching, you can clear the form by clicking Reset. Check the Use Full Page
Output box to have the search results displayed in a more readable format, as shown

in figure 4.3.
o Efm Bl Wiew Zearch Goo Brokmans Teba Heltp Debug SA
=
Addresses Query Result '
Bdaiches: 1.
[] |

& il mawewi FDid Wolf Patersm
& Mbdrmaw, .1 U'p inthe oib
o ¢ hbdeset

u & Migbnaes | Flul

» Biakw_ ...
U T v]
& Bty . US4

Micknama.: Theo
» Full mass: Thed Fetersen
® Adrman, . Long & Wieding Fd

L]

Figure 4.3 Full page output

DATA MAINTENANCE VIA CGI 101

102

After retrieving records with a search, WDBI offers links to Update and Delete along
with each row. (This requires the concise output, not the full-page output just dem-
onstrated.) Delete will remove the record from the table; Update takes you to a form
shown in figure 4.4, where you can change values and send them back to the database:

. Fie Edl Wi Semrh O HBeokmane Tk Help Dosug A
Addresses Update Form

Fleaee epter data in the '.-J be=fcrer oyl press the "Updale” button
Flalds marigsd with "1 ae redpnned

Update | Fisset FH==8FHom=1

inL sassell Wisamsach |- 1 |

B chnigen, 122
Fulll paey:fas Mell Pt
Aikdrosy, . jIP 10 ihp cous

Stats. ... 159

| T sy

LwiTy. . e E
Vptin | ot]] &

Figure 4.4 Update page

Inserting a record requires starting with a different URL: /cgi-bin/wdbi.cgi/Info
/Addresses/insert_form. That brings up a form similar to the update page, with an
Insert button to add the record to the database.

These examples show only the simplest of WDBI pages. FDF includes a large number
of attributes for forms that allow each operation to be customized.

To be a suitable tool for general users, WDBI has to provide more than a simple
form interface to SQL commands. For example, both individual fields and whole
records must be validated before an insert or update, and other constraints apply to
deleting records. While some databases allow administrators to specify these rules in
the database itself, that won’t help the hapless users whose form mysteriously doesn’t
do what he wants when he clicks a button.

FDF allows the form designer to include Perl code to perform these checks before
writing or deleting data. You can also use Perl expressions to reformat a field (when
retrieving or writing data, or both), compute a value, create menus, headers, and foot-
ers for your forms and take over almost any part of a query.

CHAPTER 4 DATABASES

The FDF generation program creates single table forms, but WDBI also allows
tables to be joined and sorted to create the query data. Some restrictions apply to
updating joined tables. You can control the format of the table and page views of que-
ries, set the maximum number of rows on a page and so on.

FDF also allows the designer to specify the user and password for a query, but
doesn’t allow them to be entered from a form. To provide secure interactions you'll
need to create a separate password file and use it to authenticate users. See chapter 6
for more information.

If you are going to use WDBI for a large set of tables, you’ll want to create admin-
istration menus for the various forms. A simple menu would consist of a list of FDF-
enabled tables with links to the URLS for the query and insert forms. Fancier schemes
might combine an authentication mechanism with a list of allowed actions permitted
to the user.

Regular users of WDBI will want better performance than the CGI version gives.
See the next chapter to find out how to make WDBI and other CGl scripts work faster
using mod_perl.

DATA MAINTENANCE VIA CGI 103

5

5.1 Why CGlisslow 105 5.5 Scripting with mod_perl 114
5.2 FastCGl 108 5.6 Beyond CGI 119

5.3 The case for mod_perl 109 5.7 mod_perl goodies 122

5.4 Installing mod_perl 111 5.8 Maintaining user state 123

The scripts from chapter 4 provide glimpses of real-world web applications, but their
usefulness stops at being examples. The scripts are slow, even with only one person
using them. And that single user focus is another problem, limiting us to a personal
web site application.

In this chapter we’ll address the real-world issues that we put off in the beginning
sections, and look at tools for better scripting.

104

5.1

WHy CGl IS sLow
Let’s look again at the workflow diagram (figure 5.1) of a CGI application:

browser
return output
request
server

map file

runscript

‘ CGl script H mod_cgi ‘* CGl process — Figure5.1
S CGl application workflow

An interactive CGI application is a two- or three-step process. To start things off, the
browser sends a URL request to the server, which is sitting around waiting for some-
thing to do. The server maps the URL onto a CGI script and runs it, shipping the
output from the script back to the browser. The browser then displays it to the user,
ending step one. We'll assume the script’s output included form elements to get some
kind of input from the user.

The user interacts with the form and clicks Submit, thus beginning step two. The
browser sends another request to the server, using the URL given in the form’s
ACTION attribute. It either sends the input values along as part of the URL or posts
them separately, depending on whether the action is a GET or POST. In any event,
the server receives the request and the inputs and maps the URL onto a CGI applica-
tion, either the same as in step one or a different script for handling inputs. It runs
this application and passes the inputs along.

If the application doesn’t give the user feedback, the process is complete. Com-
monly, however, an application will send some sort of confirmation back, which is
step three: the output of the CGl is again sent to the browser and displayed to the user.
Steps two and three are diagrammed in figure 5.2.

On a system with a bored web server and no other traffic, this scheme might work
quite well. But consider the implications for a production system receiving, say, five
queries or submissions per second: for each CGI interaction, the responding Apache

browser
return results

submit
GET or POST Server

map file
run script)

‘ CGl script H mod_cgi F» CGl process |
S Figure 5.2
pass input Steps two and three

WHyY CGI IS sLow 105

106

child must (1) fork off a new process to execute the command shell, (2) compile the
Perl script (or other interpreter action if the CGI app is in another language), (3) exe-
cute the scripts and clean up after itself.

Assuming the usual requirements of a business application make the picture even
worse: each of those requests will connect to the database, compile queries, then
disconnect. It’s an amazing amount of overhead for a single client-to-server round
of interaction.

The obvious method to reduce that overhead is to keep the CGI application alive
between requests: start up the shell and Perl once, connect to the database once, and
then keep talking to the browser until the user’s business is finished. The actual solu-
tion is made more complicated by the stateless nature of the HTTP protocol.

Programmers who want to build better web applications quickly encounter an inter-
esting challenge of web application programming: the HTTP protocol is stateless,
meaning that no inherent information about previous interactions is maintained by a
web server (or client for that matter).

This is a good thing if you are creating a web server for static content; Apache can
use any number of child processes your system can handle and doesn’t have to figure
out which child should respond to a given request. Since the protocol is stateless, any
Apache process listening at the given site and port can respond to any client.

Statelessness, however, adds to the challenge of speeding up CGI applications. If
the Apache process can’t predict who will talk to it next, it has to be ready to handle
messages from any number of clients. A given client could be starting a new applica-
tion, browsing through multiple pages of a list, or sending an update for the database.

One solution to both problems is to have the web server create “personalized” CGI
processes for each client. When an initial request comes in, the web server spawns a
new application process and redirects the browser to talk to it (by giving it a unique
port number, say). The application process compiles and connects to the database just
once, then acts as a miniserver for the browser, responding to each request until the
user indicates that he is finished. At that point the application process can disconnect
from the database and shut down.

While attractive at first, this approach has a number of drawbacks. For a busy site,
the number of clients could be quite large, making for an equally large number of
application processes on the server. Most of those processes will be idle, since the user
has to interact with the form on his browser and then respond. The user could also
make phone calls, read documentation, or forget to click the Finished button (this
being a purely hypothetical example, of course), leaving the application process inac-
tive for long periods. The programmer has to decide when to shut down an inactive
process and how to respond if the user then tries to get back in touch.

CHAPTER 5 BETTERSCRIPTING

Working around the statelessness of HTTP thus proves to open a can of worms that
we’d prefer to leave closed. How can we stay within the protocol and solve the CGI
performance problem?

There are a number of products available for speeding up CGI, mostly built around
the buzzword-laden model of persistent CGI applications with a session-oriented frame-
work. Persistent means that the CGI application runs in a process that stays alive in
between requests, allowing it to save on compile time and keep its database connec-
tions open. Session-oriented applications get around the statelessness of the protocol
by storing data about the running application in some sort of session database. Each
request is associated with a session, and the CGI application has some means of
retrieving state information from the session and storing it again as the user works.*

Going back to the Apache workflow diagram (figure 5.3), let’s see how this
changes things:

browser
return output
request
server -~

map file create or
resume session

CGil script

CGl process
persistent | @8 orocei |
CGl engine P
CGl process Figure 5.3

Workflow for persistent CGI

The user sends an initial request to the web server, which maps the request onto a
CGl application and passes it to a persistent application process. It may have to start a
new process if none are currently ready. The application process either creates a ses-
sion or resumes an old one, depending on how the session framework is used in each
case. The application sends a form back to the user’s browser along with some means
of identifying the session in the user’s reply; it could use cookies, a hidden field, a spe-
cially coded URL, or combinations of these. The user interacts with the form and
clicks Submit, which sends a request back to the server along with the inputs and the
session identifier.

1 Nonpersistent CGI applications also need some kind of session management if any of the data they
serve is user-specific. I'm discussing them together because it seems common for a CGI application
framework to offer both persistence and session management.

WHyY CGI IS sLow 107

5.2

108

The web server picks up the request and hands it to a persistent application process
as before. The request includes the session ID, which the application uses to retrieve
the session data. It now knows everything it needs about the user and the work in
progress, so it processes the user’s inputs and sends back only results. By using sessions
in this way, any ready application process can respond to any request.

After the exchange is over, the persistent application process goes into some form
of wait state while the web server listens for requests. The next message to the CGI
application could be from any user, so it can’t maintain any user-related information.
Neither can it expect to perform operations for different users in a given order. It’s still
stateless in that sense; all of the state information is kept in the sessions.

The persistent CGI applications must store any changes to the session data along
with the 1D each time the user sends a request to the server, and session data must be
available to all of the CGI application processes equally. This makes the session frame-
work a defining choice in how to implement faster CGI applications, along with the
choice in how to make the application processes persistent. While it would be ideal if
normal CGlI scripts could be made persistent without change, developers should expect
some trade-off of extra programming time for extra performance.

FASTCGI

There are a number of CGI application products available in the commercial and
Open Source spaces. FastCGl is one of the more popular entries, and happens to be
in both categories: there is an Open Source FastCGI module for Apache and commer-
cial versions of the product for other servers.

FastCGl is an interesting modification of the personalized application process
notion | mentioned earlier. A FastCGI application starts out as a normal CGI appli-
cation written in any language. To make it work as a persistent server, the developer
wraps the application in a small procedure that performs FastCGI initializations and
then enters a loop that waits for messages from the web server and processes them by
running the application with appropriate CGI inputs. In many cases the application
can be used as-is.

The Apache mod_fastcgi handles the web server portion of the FastCGI protocol.
Its configuration tells Apache to map certain URLS onto FastCGI application wrap-
pers. When Apache receives a request for a FastCGI application, mod_fastcgi inter-
cepts it and sends the appropriate message to the application (which is waiting for
messages in the FastCGI wrapper as described). If no application process is available,
the module can start new ones up to configured limits.

That’s the simple explanation, but FastCGI goes much further. Along with the
request information and CGI inputs, FastCGI sends an execution environment to the
application process. The CGI app can use environment variables and other system
information reliably, even if the application and the web server are on different
machines. That remote execution property allows FastCGI sites to balance their work
load on multiple machines and isolate sensitive information behind firewalls.

CHAPTER 5 BETTERSCRIPTING

5.3

FastCGl also has some goodies for developers: an application that has been mod-
ified for use in FastCGlI can still run as a normal CGI application, allowing program-
mers to run new code in simplified environments and take advantage of CGI
debugging aids.

FastCGl is a good choice for speeding up CGlI applications, and it scales well to
large, demanding sites. However, it does not provide anything further on the web
server side. If your application calls for closer integration with Apache, you need to
move on.

THE CASE FOR MOD_PERL

In selecting a web application platform, my own strong preference is for mod_perl,
which integrates Perl into the Apache server and gives programmers complete control
over their web applications.

Instead of making separate persistent CGI processes, mod_perl brings the applica-
tion back into the web server. Each Apache process has the Perl interpreter built in,
and can run Perl applications directly rather than spawning a child process to run the
CGl application. Once the Perl code has been compiled it stays ready in the server pro-
cess, along with any database connections made by the first pass, so the second and
further runs of the same code will be very fast.

mod_perl’s configuration directives allow the developer to specify modules and
scripts to load at initialization time. When Apache forks off child processes, each child
gets a copy of the parent’s memory;2 that includes the compiled Perl code and initial-
ized modules, so these become shared by all of the server processes, making the whole
setup even better for large applications.

It would be an injustice to compare mod_perl to other products only on the basis
of its CGI performance features. mod_perl doesn’t just embed Perl into Apache; it
gives Perl scripts all of Apache’s internal tools for translating and mapping requests
onto resources. Perl programmers can write scripts that translate complex URLS onto
applications (which can be mod_perl scripts or regular CGI) or files, or take over the
whole request-mapping process for a site in other ways.

For example, suppose a site has a photo archive where images are stored in a rela-
tional database. The site wants to present the database as a simple directory, http://
www.example.site/photos/, while keeping the images in the database instead of copy-
ing each to separate files. Using mod_perl, a developer could write Perl code which
does these translations:

1 Intercept incoming requests to http://www.example.site/photos/ and return a
page listing the images in the database as links. The page is created by querying
the database for the current list of available images.

2 Assuming you're using an OS that has fork, of course, and Apache is configured to use it. Thread-based
Apache will be even more efficient when it’s ready for production use.

THE CASE FOR MOD_PERL 109

110

2 For requests such as http://www.example.site/photos/cat.png, query the data-
base and retrieve the image data, then send it back to the browser with appro-
priate MIME headers so that the user will see the image.

Rememober, this all happens inside the same server process that received the request.

If those suggestions got you thinking about DBI queries and building HTML, you'll
want to learn more about mod_perl.

The questions from the buyer’s guide mostly bring up mod_perl’s strengths:

« Stable version—mod_perl releases are tied to stable versions of Apache, although
there is often more than one release of mod_perl for a given Apache version as
bugs get fixed. The mod_perl web site, http://perl.apache.org, always has a
pointer to the stable version of mod_perl that goes with the production version
of Apache.

e Ongoing development and support—mod_perl is developed primarily by Doug
MacEachern, who is a member of the Apache Group. He is a very active
member of the mod_perl mailing list, answering an amazing humber of ques-
tions and supplying patches for many bug reports. The list members are also
terrific about helping both new programmers and old hands who are trying
out new things.

» Documentation—mod_perl has both printed and online documentation. When
new converts send questions to the mailing list, replies often include pointers to
relevant sections of the amazingly comprehensive online guide at http://
perl.apache.org/guide/.

 Leverage—If you've committed to Perl for other business use, mod_perl is a ter-
rific investment. Many add-on tools that I'll discuss later either require
mod_perl or take advantage of it for better service.

« Continuing cost—mod_perl is not a trivial addition to Apache, but most of the
cost in human terms is paid at the beginning. Once you've configured mod_perl
and set up the applications, you'll find that it doesn't require any more on-going
administration than does Apache itself.

What is the downside? The two issues that seem to come up most often on the
mod_perl mailing list are resource usage and scalability.

As we’ve said, mod_perl brings all of Perl into the Apache web server. All of it. The
resulting processes use far more memory and start more slowly than does a “straight”
Apache process. Since Apache’s default means of handling more traffic is to fork off
more children, a busy mod_perl site can eat up memory at a frightening rate.

Being a glutton for system resources, mod_perl forces site administrators to face

scalability issues before deploying applications. How can the traffic be divided among
multiple machines? How do we get the best use of heavyweight mod_perl processes?

CHAPTER 5 BETTERSCRIPTING

5.4

We'll discuss those issues later, but for now the short answer is that since mod_perl
is in Apache, any scheme that would work for Apache can be employed to mod_perl’s
relief. Typical sites use a lightweight Apache or other server as a front-end that for-
wards traffic to the heavyweight application processes. More complex schemes use
additional Apache modules to balance the work load.

While FastCGl has built-in tools for shipping work off to other machines,
mod_perl has Apache. Apache’s redirection and other capabilities provide the toolkit
for handling these problems, but it is up to the site developers to use it.

INSTALLING MOD_PERL

While most Perl add-ons are easily installed using CPAN (as demonstrated in prior
sections), mod_perl has a more complex configuration process that makes using
CPAN difficult. You can download the module using CPAN, but then expect to con-
tinue the job by hand.

Apache modules can either be linked in statically or loaded at run-time from
dynamic link libraries (as can Perl modules). Until recently however the dynamic
method has been very buggy for mod_perl and some other Apache modules, and when
it does work it is a bit slower and uses even more memory. So it’s common to see
mod_perl built directly into Apache. The installation instructions in the mod_perl
distribution can guide you through either method, but in my examples I'll assume that
mod_perl is statically linked.

In the static case, mod_perl requires an Apache source distribution, which is one
reason | suggested earlier that most sites will want to install Apache from source. Dur-
ing the configuration and build process mod_perl compiles its library and stores other
needed files inside the Apache source tree. It does not modify any actual Apache source
files; the APACI configuration script finds the needed modules when you tell it to build
Apache with mod_perl support. Pass along the location of your Apache source via the
APACHE_SRC= option to Makef i | e. PL (the mod_perl configuration script).

mod_perl can be built dynamically without access to Apache sources using the
newer APXS tools. If you have installed a binary distribution of Apache, make sure it
came with APXS, and pass along its location to the mod_perl configuration via the
W TH_APXS= option of Makefi |l e. PL.

I mentioned that mod_perl’s configuration is complicated, but it’s actually very
simple if you have already built Apache and you tell mod_perl to build in all of its fea-
tures. That may sound as if it would make the already large mod_perl even larger, and
I’'m sure it does, but the difference between the minimum mod_perl server and the
fully loaded version is not enough to trouble over; or put another way, once you've
decided to link Perl into your web server, there’s not much point in quibbling about
details. Later, when you know what features you will be using you can strip down
mod_perl to eliminate overhead and security risks.

INSTALLING MOD_PERL 111

112

mod_perl is configured and built using the usual Perl process: run the Perl script
Makefi |l e. PL, then make, make t est, and make i nstal | . It requires a few
extra steps in between though to get Apache ready to run the tests.

Makef i | e. PL takes mod_perl configuration options as mentioned before. Here
is an example configuration which will build mod_perl statically into Apache with all
features enabled:
perl Makefile.PL APACHE_SRC=/usr/| ocal /apache_1.3.12/src DO HTTPD=1 \

PREP_HTTPD=1 USE_APACI =1 EVERYTHI NG=1
make

Substitute the correct path to your Apache sources. If Makefi | e. PL ran without
complaint, use make to build the Perl side of things. Then you can use make to
build Apache.

cd /usr/local /apache_1.3.12
./configure --activate-nodul e=src/ nmodul es/perl/libperl.a
make

If you previously built Apache with any other modules, add them to the conf i gur e
line here also. Then build Apache with the requested modules before returning to
mod_perl for testing.

cd /usr/local/mod_perl-1.24
make test && make install

If the tests went well, the Perl modules will be installed and ready for Apache to use.
Go back to Apache’s source directory one more time and install it also:

cd /usr/local/apache_1.3.12
make install

The installation documentation that ships with mod_perl will explain other ways of
doing this, without so much jumping back and forth. I prefer the method above
because it works from a clean set of sources as well as with an Apache I've built with
other modules.

When we set up CGI scripts in Apache we needed to add lines to the ht t pd. conf
configuration file telling the server what directory contained executable scripts. Simi-
larly, we need to tell Apache when to use mod_perl to process a script.

It's a common Apache technique to use a directory for each type of script the server
can run—CGl scripts go into cgi - bi n, for instance. For simple CGI-style Perl scripts
that run under mod_perl we’ll create a per | directory at the same level, and tell
Apache to send any requests to that directory through mod_perl:

Alias /perl/ "/lusr/local/apache/perl/"
<Directory "/usr/local/apache/perl">
Set Handl er perl-script

CHAPTER 5 BETTERSCRIPTING

Per | Handl er Apache:: Registry
Opti ons ExecCd
</Directory>

The directives in the example can be conveniently located next to the same set of
directives that tell Apache how to handle the cgi - bi n directory.

The first line creates a mapping from URLS that begin with / per | / onto the new
directory. The Di r ect or y block which follows tells Apache three thing.:

1 Set Handl er perl -scri pt tells Apache that all of the scripts in this direc-
tory are mod_perl scripts. An Apache handler is a procedure that is invoked
when a URL maps onto a file meeting certain conditions; the AddHandl er
directive applies handlers to files by type, while Set Handl er applies them to
filesina Directory or Locati on or Fi | e section. If we wanted to store
mod_perl scripts among the static documents in Apache’s ht docs directory we
could use AddHandl er perl-script pl to tell Apache which files were
mod_perl’s responsibility. Similarly, we could use the cgi - scri pt handler to
tell Apache to treat them as normal CGlI scripts.

2 Per | Handl er Apache: : Regi stry in turn tells mod_perl how to handle
the scripts. Think of it as the handler-within-a-handler that directs mod_perl to
run the script via the Apache::Registry module. We'll discuss Apache::Registry
in some depth shortly.

3 Options ExecCd tells Apache that these files are executable. Without that
option and appropriate file permissions, Apache would refuse to execute the
scripts via mod_perl or any other means. Refresh your memory about the pro-
cessing of Opt i ons directives to see how you could use this option to control
the use of your scripts.

As a web site gets more complicated it becomes important to look at ways to keep
the configuration manageable. In my server’s ht t pd. conf file 1 have the three
directives inside an | f Modul e section, along with settings for the usual command-
line switches:

nod_per!| scripts
<I f Modul e nod_perl.c>
Perl Varn On
Per | Tai nt Check On
Alias /perl/ "/usr/local/apache/perl/"
<Directory "/usr/local/apache/perl">
Set Handl er perl-script
Per | Handl er Apache: : Registry
Options ExecCd
</Directory>
</ | f Modul e>

| f Modul e applies its directives only if the Apache server is built with, or has dynam-
ically loaded, the corresponding module, which in this case is mod_perl. While

INSTALLING MOD_PERL 113

5.5

114

wrapping those directives inside another section might seem like wasted overhead in
this case, in principle it allows a site manager to create generic configuration files for
multiple servers with sections that will apply only to those servers that are built with
the appropriate code. To be more correct, the given section (and anything else which
uses Al i as or Scri pt Ali as) should be inside another | f Mbdul e block that
checks for mod_alias.

The Per | War nand Per | Tai nt Check directives take the place of Perl’s - wand
- T command line switches respectively. We need to specify those values via the con-
figuration file since Perl will be initialized by Apache, not a command line. If you are
using Perl 5.6 or later you can replace Per | War n with use war ni ngs in your
scripts and modules as you prefer, but there is no equivalent for taint checking—it is
on for the whole interpreter or not.

Another way to keep the configuration manageable is to use the I ncl ude direc-
tive, which loads a specified configuration file similarly to the way the C language uses
#i ncl ude. If your site makes extensive use of mod_perl you’ll probably have a cor-
respondingly large amount of configuration instructions. By isolating all of these into
their own file, say mod_per | . conf , you can edit the Perl and Apache configurations
separately. In your ht t pd. conf file include the mod_perl configuration like so:

<I f Modul e nod_perl.c>

I ncl ude conf/nod_perl . conf
</ 1 f Mdul e>

Note that the file path in the | ncl ude directive is relative to Apache’s root directory,
not to the current file.

Now you can build up your mod_perl configuration in its own file. This can be a
tremendous boon if you maintain multiple sites with similar configurations. Remem-
ber to tell Apache to reload its configuration after making these changes.

Along a similar vein, the I f Def i ne directive applies its section if a corresponding
- Dswitch was given on Apache’s command line. While used mostly for development
and debugging, it's possible for sites to turn on and off configuration settings for their
servers via this mechanism. See the Apache documentation for more details if this
sounds like something you can use.

SCRIPTING WITH MOD_PERL

Having Perl built into Apache opens up some amazing possibilities in the web appli-
cation world. Many sites start using mod_perl to get a performance boost for CGl,
which is where this book will start also. But to keep your mind open to greater
schemes, consider that with mod_perl:

1 Anything you can do in Perl you can now do in Apache.
2 Anything you can do in Apache you can now do in Perl.

To begin at the beginning, let’s see how to use mod_perl as a CGI booster.

CHAPTER 5 BETTERSCRIPTING

The sample configuration given above used Per | Handl er Apache: : Regi stry
to tell mod_perl how to handle scripts. Apache::Registry is mod_perl’s CGl emulator,
and so is commonly used at sites which are migrating from plain CGI. To explain
how it works, let’s follow a request through Apache to a sample script, hel | o-
mod_per | . pl, illustrated in figure 5.4.

Browser return
output

Server

http://www.site.com/perl/

hello-mod_perl.pl i%‘

‘ Iperl/hello-mod_perl.pl ‘

\—> mod_perl compile script

(once)

call handler

Figure 5.4
The request workflow

Y

Apache::Registry

Using the sample configuration given earlier, Apache gets a request for http://
www.example.site/perl/hello-mod_perl.pl. The Al i as directive maps /perl/ onto
{usr/ 1 ocal / apache/ perl, where the Di rect ory and Set Handl er direc-
tives tell Apache that mod_perl will handle files.

The mod_perl code inside the Apache process has a Per | Handl er directive
which tells it to use Apache::Registry to process scripts. It loads the module if it
hasn’t already, then calls the handl er function inside Apache::Registry to do the
actual work.

Since Apache::Registry is emulating a CGI environment it follows the same rules
about files as Apache does when spawning CGI processes. The file corresponding to
the URL has to exist and be executable, and has to have an ExecCG@ option applied
somewhere in the configuration file. If those conditions are met, it proceeds.

Apache::Registry speeds up CGI scripts by loading and compiling them once, then
re-executing the saved code. The next step then is to check whether this file has been
loaded already, and if so whether the file on disk has changed. If the saved version is
valid it jumps to the chase, but let’s assume not.

To follow what happens next, first consider that the Perl interpreter understands
only one program at a time; it can’t load any number of programs and switch from
one to another. A CGI script is written as a program, so we'll need some trick to load
more than one of them into a Perl interpreter.

That trick is next: Apache::Registry loads the file and wraps Perl code around it to
turn it into a function called a handler in a package that is unique to the file name.

SCRIPTING WITH MOD_PERL 115

116

It compiles that function and stores the modification time of the file so that it will
know in later checks whether the compiled version is current.

Since the script is wrapped into a function, it cannot use _ END __ or
__DATA . All other Perl code is valid, with this caveat: code which behaves well
when run as a standalone program may break when run repeatedly as a function.
Look for uses of global variables and other things which will retain their state between
runs, and be prepared to clean up your scripts when moving them over to mod_perl.
See the online guide for more common problems encountered by scripts that are
making the transition.

Assuming the wrapped script compiled and all is well, Apache::Registry calls the
handler function, which represents the original script. The script (now a function) can
use CGI.pm or almost any other Perl tools that it used before. It processes its inputs
and builds the HTML output which is sent back to the browser, hopefully more
quickly than the CGI would.

Here is an example to demonstrate CGI migration, called hell o-
nod_perl . pl:

#!/usr/local/bin/perl -w
use strict;

Use CA.pmfor inputs and output functions.
use CG;
ny $q = new C3;

Print the usual opening stuff.
print $qg->header, $g->start_htnml ($0 . ': nod_perl test');

Put sone text in an <H1> bl ock.
print $g->h1('Hello, Wb, it is', scalar(localtine));

Check if we're running inside Apache or as a Cd.
if (SENV{' MOD PERL'}) {
print "nmod_perl environnment detected";

}
el se {

print "running in CA node";
}

Print the closing </BODY> and </HTM.>.
print $g->end_htnl ;

It's not much of a script, but it demonstrates how Perl code can detect whether it is
running inside of mod_perl or not: the environment variable MOD_PERL is set to a
true value.

Note one other interesting feature of the script: the global Perl variable $0 ordi-
narily contains the name of the program being run, but Apache::Registry modifies it
to the name of the script it loaded before running the function it made from the script.
Apache::Registry also turns on warnings if your script (would have) invoked Perl with
the - wswitch.

CHAPTER 5 BETTERSCRIPTING

If you install this script in your regular CGI directory and run it, you'll see the “run-
ning in CGI mode” message. Then put it in a directory set up as per the example con-
figuration and try it a few more times. If your test machine is slow enough, you should
be able to see a speed difference on the second and later invocations of the mod_perl
version; remember that Apache::Registry still has to load and compile the script on the
first try.

When discussing the poor performance of regular CGI we mentioned that not only
does a script get compiled for every request, it also has to connect to the database. Just
handling the script with Apache::Registry doesn't fix that, but Apache::DBI does.
Apache::DBI is a module that takes over certain methods from DBI.pm. In partic-
ular, it catches connect and di sconnect calls made from mod_perl scripts. When
such a script calls connect , Apache::DBI checks a pool of open connections to see
if it is already in touch with the requested database, using the same host, username,
and password. If so, and the connection is still alive, it passes the cached connection
back to the requesting script. When the script calls di sconnect , Apache::DBI keeps
the connection in the pool but returns a success status so that the caller is kept happy.
What'’s even better is that all of this happens without changing the Perl scripts.
Instead, another configuration file change makes it work automatically. mod_perl’s
configuration file directive Per | Modul e tells each server process to load the named
module before processing its first request. Thus we can have Apache::DBI invoked like
so from nod_per| . conf:
Load these nodul es on start-up.

Per | Modul e Apache: : DBI
Per | Modul e Apache: : Regi stry

Apache:: Registry scripts

Alias /perl/ "/usr/local/apache/perl/"

<Directory "/usr/local/apache/perl">
Set Handl er perl-script
Per | Handl er Apache:: Registry
Options ExecCd

</Directory>

Note that | preload Apache::Registry in the same way; add any other modules to the
list if all or most of your scripts require them. Large modules such as CGl.pm should
also be in the list if any of your applications use them, since new server processes
forked off by Apache will get a copy of the compiled code for those modules without
compiling them individually.

Remember that a running Apache server needs to be informed when configuration
details change. If you are preloading Perl modules then you should restart your servers
instead of just signaling them to read the configuration files again; a running server
won't ordinarily reload Perl code. If your traffic load is too heavy to permit reloads,

SCRIPTING WITH MOD_PERL 117

118

look into using the Per | Fr eshRest ar t directive or other workarounds that reload
modules as they change.

You can now move one of the DBI example scripts to mod_perl’s script directory
and see how Apache::DBI works. For single user tests the difference might not be
noticeable unless the machine is slow to start with, but for more intense usage the
change can be dramatic.

Is Apache::DBI always a good idea? That depends on how many Apache processes
you run and how many distinct database users they employ. If you use a single user
login to connect to the database for all applications, then Apache::DBI will open one
connection per server process—ten servers means ten connections. However, if each
user has a distinct login, then it’s possible for each server to have a connection for each
user who sends it a request. Twenty very active users could mean 200 connections in
the same configuration.

No matter how you arrange your users and connections, occasionally monitor your
database to verify that you are not overloading it with connects. Some databases have
proxy schemes that allow multiple servers to pool connections to solve just this prob-
lem. Consider using the DBI::Proxy module or another solution.

As mentioned earlier, scripts run through Apache::Registry can exhibit odd behavior
or bugs that don't happen when run as normal CGI. The longer and more complex
the script, the more likely it is to have a problem. These problems usually stem from
the fact that a CGI script is normally run once, while Apache::Registry invokes the
same compiled code over and over, leaving global variables with whatever values they
hold. The way that Apache::Registry wraps scripts inside of a function can also make
the script’s own functions into closures that retain lexical values.®

If you have a script that misbehaves when run in Apache::Registry, you have three
options:

1 You can fix or rewrite it to get rid of the problem.

2 You can run it via Apache::PerIRun instead.

3 You can use FastCGl or another CGl tool to speed it up.
Assuming the first option is too time-consuming or otherwise expensive, give
Apache::PerlRun a try. This module works similarly to Apache::Registry in that it runs
Perl scripts inside of an Apache process and emulates the CGI environment. It com-

piles the requested script and runs it, but doesn't save it. Thus each time a script runs,
it is compiled and initialized from scratch, more like a traditional CGI application.

3 See the online mod_perl guide (http://perl.apache.org/) for a detailed explanation of the closure prob-
lem and how to deal with it.

CHAPTER 5 BETTERSCRIPTING

5.6

This is faster than CGlI, in that one process is used instead of two and the Perl
interpreter is saved. It is still not foolproof, however, since a script can alter package
variables or do other things to leave evidence of its presence even though the code is
not saved.

If a script still doesn’t work correctly using Apache::PerIRun, chances are it will
have problems using other CGI accelerator tools as well. Either leave it as plain CGI
or write a new application that behaves itself in public.

BEYOND CGl

Apache::Registry provides a good entry point for mod_perl, but it doesn't suggest
how to go further. mod_perl can invoke a Perl function directly from an Apache
request; indeed, that’s what happens inside of Apache::Registry.

Recall that we configured Apache::Registry in nod_per | . conf like so:

Alias /perl/ "lusr/local/apache/perl/"

<Directory "/usr/local/apache/perl">
Set Handl er perl -script
Per | Handl er Apache:: Registry
Options ExecCd

</Directory>

This string of directives tells Apache how to handle URLs beginning with / per| .
Map the URL onto the directory given by the Al i as, handle it via mod_perl, and
further tell mod_perl to use the Apache::Registry handler. Apache::Registry’s han-
dl er function does all the work to make CGI scripts run inside of Apache.

Now let’s take a look at Perl code handling a request directly. Here is the short
script we’ll use as an example, WebCl ock. pm

package Exanpl es:: Webd ock;

use strict;
use Apache:: Constants gw :conmon);

When our Perl Handl er matches a URL, call this:

sub handl er {
Get the request object, always the first argunent:
ny $r = shift;

Print the standard HTM. header.
$r->send_http_header('text/htnl');

Print the current tine in an <H1> bl ock.
print '<H1>The tinme is ' . localtime() . '</HLl>;

Tell Apache that all is well.

return OK;
}
Modul es return 1 to signal everything is set up.
1;

BeyonD CGI 119

120

The first thing to note is that this isn't a script at all; it’s a Perl module, as designated
by the . pmextension on the file. Perl modules generally contain packages named the
same as the file, where the "::" separator in a package name corresponds to a file path
separator. Thus we'd expect to find Examples::WebClock defined by Web-
Cl ock. pm in the Exanpl es directory. Similarly, the CGI package resides in
Cd . pmand Apache::Registry is in Apache/ Regi st ry. pmsomewhere in one of
Perl’s library directories.

The next notable difference is the fact that the code is contained in the handl er
function. The Per | Handl er directive specifies a package that handles certain
requests; that package must contain a handler function to receive the requests. The
first argument to the function is the request object, traditionally called $r ; which con-
tains everything the function needs to know about the request it is handling.

Finally there is the return value, OK. The function gets this value via the
Apache::Constants package; OK indicates that the request has been handled properly.
A handler can return DECLI NED, NOT_FQUND, or FORBI DDEN to tell Apache to
send back the usual error pages if the requester is not allowed or the request can’t be
handled for some reason. See the documentation on Apache::Constants for more
information and status values.

To tell mod_perl to use this function, we need to decide what URL it handles.
Rather than setting up an Al i as for directories as with Apache::Registry, we can map
requests directly to our handler in a Locat i on directive. Here’s a sample configura-
tion for nod_per | . conf:

Cust om nodul es
Per | Requi re "/ hone/t heo/ Exanpl es/ Webd ock. pnt
<Location /time>

Set Handl er perl-script

Per | Handl er Exanpl es:: Webd ock
</ Locati on>

The first directive, Per | Requi r e, is similar to Per | Modul e in that both load Perl
code into the servers at initialization. Per | Requi r e accepts a path to a file in the
same vein as Perl’s r equi r e function. This is convenient when developing a new
module, but when the code is ready it should be installed under Apache’s root direc-
tory and invoked via Per | Modul e. mod_perl looks for Perl modules in the usual
Perl library directories plus the I'i b and I i b/ per| directories under the Apache
root. So the module could be moved to /usr/ 1 ocal /apache/li b/ perl/
Exanpl es/ Webd ock. pmwhen it’s ready for prime time (assuming your Apache
root is the same as mine), then loaded in nod_per | . conf like so:

Per | Modul e Exanpl es: : Webd ock

The Locat i on directive tells Apache how to handle requests to the URL http://
www.example.site/time. The Set Handl er directive tells Apache to pass the request

CHAPTER 5 BETTERSCRIPTING

to mod_perl, and Per | Handl er in turn tells mod_perl to invoke the handler func-
tion of our Examples::WebClock module.

That’s not much work for something as powerful as this; set up your configuration
as shown or similarly and restart Apache. Check your error log to be sure that Exam-
ples::WebClock got loaded correctly; if so, invoke the URL and see the time on your
web server.

Notice how different this is from a CGI script. For one thing, there isno Al i as
to map the URL onto a file; instead we tell Apache how to handle requests to this one
URL directly. Also note that we didn’t tell Apache that the code is executable,
(although it needs to be readable by the web server processes).

At the start of our mod_perl discussion | gave an example of a Perl application
which made a database of photographs appear to be a directory structure. Perhaps you
can see now how that application would work: by associating a handler written in Perl
with a given URL (such as /photos/*), we could have the application translate the URL
into a database entry and return the appropriate image. If that prospect gets your imag-
ination going then read through the mod_perl documentation and guide for more
details on writing Perl handlers.

Note that the example didn't use CGIl.pm to print its headers and HTML. It could
have, although an extra initialization step is required: call Apache- >r equest to
save a pointer to the request object where CGI.pm expects to find it. Thus the code to
create the usual opening sequence for a handler that uses CGl.pm is:

Apache- >request ($r);
$g = new C3;

The rest of CGI.pm’s input and helper functions should work as usual.

In many developers’ minds the transition from Apache::Registry to direct handlers
goes hand in hand with dropping CGI.pm, using mod_perl’s helper functions for
headers and cookies, and writing HTML output by hand. After all, CGl.pm is for CGl,
and now we’re doing handlers. There is also the performance issue: CGIl.pm is a big
module and leaving it out will save memory, shared or not.

One important consideration though is the fact that mod_perl won’t automatically
segregate applications that use CGIl.pm from those that don’t. If a server is configured
to run Perl scripts (and possibly other handlers), and those scripts use CGl.pm, then
you can assume that eventually your server will load CGl.pm. Thus if you want to get
CGl.pm out of your servers, you have to take it out of all mod_perl scripts. Conversely,
if you use it at all, use it anywhere you like (and preload it).

To illustrate life after CG1.pm, the rest of my examples will do without it. As always
you should consult the readily available documentation in the Apache module to learn
more; it has helper functions for sending headers as well as a full interface to all aspects
of the request and server.

BeyonD CGI 121

5.7

122

There are two other important modules for making the transition:
Apache::Request analyzes a request object and parses out input parameters, and
Apache::Cookie handles cookie data. Despite the confusing name, Apache::Request is
not the request object ($r in the examples); it deals with the request data from the
browser, via a par aminterface that is very similar to CGl.pm’s function of the same
name. Examples that use Apache::Request will invoke it like so:
use Apache: : Request ;
sub handl er {

ny $r = shift;

ny $gq = Apache:: Request - >new($r);
Check for paraneters.

ny @arans = $q->param

Apache::Cookie provides the same functions as CGI::Cookie for setting cookies in
outgoing HTML and retrieving them from the current request. To retrieve the cookies
from a request into a hash, invoke it like so:

use Apache: : Cooki e;

sub handl er {

ny $r = shift;
ny $cooki es = Apache: : Cooki e->f et ch;

The cookies will be loaded in the $cooki es hash reference. Apache::Cookies will
create a hash directly if asked, as in:

my %ooki es = Apache: : Cooki e- >f et ch;

The Apache::Session example below makes use of both of these mod_perl modules.

MOD_PERL GOODIES

The Apache Perl module ships with a number of useful tools besides mod_perl. If these
brief comments spark your interest, check your documentation for more information.

Apache::Debug sends script errors to the browser instead of the error log. This is
very useful in the early phase of debugging a script.

Apache::File adds extra file handling methods to the Apache class and provides a
number of utility functions for applications. If your script needs to create uniquely
named temporary files, look here.

Apache::Include integrates mod_perl and mod_include for better server-side
includes. More tools for merging HTML and Perl are discussed in chapter 7.

Apache::Log provides an API for writing messages of different warning levels to
the Apache log file. This allows a script to write debugging messages, for example,
which will be kept in the log if the LogLevel directive is set to debug, and discard
them otherwise.

Apache::SizeLimit and Apache::Resource set configurable resource limits for server
processes. It provides a simple way to shut down processes that are using too much
memory or CPU time (in case a script goes into an infinite loop, for example).

CHAPTER 5 BETTERSCRIPTING

5.8

Apache::Table and Apache::Util provide Perl interfaces to various Apache internals.
Apache::URI has URL analysis functions that are faster than those in Perl’'s LWP
library.

While you might find a use for some or all of the goodies listed in the previous sec-
tion, you'll almost certainly want to install it. Apache::Status provides a menu with
classes of information about your mod_perl installation. You can see which version of
Perl, Apache, and other modules it is running, which Perl modules have been com-
piled, the environment variables passed to a script, and so on.

Apache::Status can be extended by other modules to include more classes of
information; you can build your own server command center using this feature. It is
a short and clever module which would make a terrific example if only it had some
internal documentation.

Enable Apache::Status in your nod_per | . conf file like so:

Server status
<Location /perl-status>

Set Handl er perl -script

Per | Handl er Apache: : St at us

order deny, al | ow

deny fromall

all ow from 192. 168.
</ Locati on>

Note the use of deny and al | ow directives to keep others from gathering informa-
tion about your server. Change the IP address in the al | ow directive to match the
network or machine you use to maintain your web server, and see the next chapter for
ways to set password protection on this page.

MAINTAINING USER STATE

Web users have rapidly grown accustomed to sites that remember where they left off.
E-commerce sites use shopping carts that hold users’ selections. Some news sites keep
track of what articles the user has read and bring unread material to the top of the list.

Cookies provide one way to keep track of the user. A cookie is a small piece of data
stored on the user’s system that is sent to the web server each time the user requests
a page from the matching URL. Cookies are much maligned due to their abuse by ban-
ner ad sites and other agencies that try to turn web browsers into automatic marketing
polls, but most users still run with cookies enabled and most sites that remember users
do so with cookies.

Cookies normally contain several bytes, ranging upward to around 200. Applica-
tions, however, shouldn’t trust browsers to store more than a short string, so cookies
normally store a user 1D of some sort on the client machine. When the user requests
a URL that has an associated cookie, the data is sent along with the request and can

MAINTAINING USER STATE 123

124

be read similarly to a form input; the script then uses the data to retrieve the user’s
information. Both the Apache and CGI.pm modules have helper functions for retriev-
ing cookie data from a request.

When using cookies, an application has to consider the cookie lifespan. The
browser can be told to hold onto a given cookie until the user ends the program
(known as a session cookie) or can be stored on the user’s disk with an expiration date.
The browser can delete cookies whenever it wishes, however, by accumulating more
than a given number or total size, so applications can’t count on them staying forever.
Further, a given user could browse a site from different machines and thus not have
the same set of cookies each time.

Unigue URLSs are another common means for keeping track of users. Each new user
is assigned a URL as he registers; some form of user ID makes up the unique portion.
By bookmarking this URL and returning to it the user tells the server who he is. The
server extracts the unique portion of the URL and again looks up the user’s data.

URL-based schemes fail when the user doesn’t bookmark his location. Also, they
open a security risk because one user could gain access to another user’s data by guess-
ing his URL.

Of course, the application could just ask the user to identify himself, and in prac-
tice most sites end up using that method in conjunction with cookies, URLS. or both.
If the cookie or URL is lost, the user goes to a login screen and enters his ID (or a hame
and password pair, or whatever). The application can then send another cookie, create
another URL, or proceed however it likes.

By whatever road, an application associates a user with an 1D that is stored in a data-
base along with whatever information the application needs to keep about the user.
The database code needed to store and retrieve the information is fairly simple, as is a
table layout for the fields that comprise the user data.

If an application does extensive database work, adding a table of user 1Ds is easy
enough. In many cases though, all the data used by the application would be stored
in the user table. The developer in that case would certainly appreciate a tool which
handled user information and let him concentrate on application business.

Apache::Session is such a tool. It keeps session data in a tied hash, such as
described in chapter 4; each session has a unique ID generated by Apache::Session
and whatever other data the script wishes to store in it, using hash keys and values as
normal. The script has to provide the means of giving the session ID to the user and
getting it back using cookies or URLs or what have you. Apache::Session takes care
of the database work.

In fact, Apache:Session works with more than one kind of database. The version
available at the time I'm writing works with MySQL, PostgreSQL, and Oracle data-
bases, Berkeley DB hash files, and plain text files. It also provides locking options and
other tools for more intensive applications.

CHAPTER 5 BETTERSCRIPTING

Since Apache::Session makes the session data look like a Perl hash, your script can
store anything it wants is a session such as strings, arrays, and more hashes, and does
not need to know in advance what fields will be associated with a user. This is more
convenient than database tables, where Perl data types are unlikely to be supported
and adding new fields is a chore.

It's time for an example to illustrate Apache::Session as well as some of the other
Apache modules described here. This script implements a simple to-do list (actually
just a free form text box). It will run as a Perl module loaded by mod_perl and be
invoked when a browser requests http://www.example.site/todo. The application uses
a very simple form shown in figure 5.5.

Eie Edl Wimd Sench O Beokmaey Tk Helw Doebeg G

Figure 5.5 ToDo list form

I mentioned previously that the examples of earlier chapters had a single user focus.
The to-do list is our first step away from that; this example will recognize new and
returning users and keep them separate. The first pass will use unique URLS to iden-
tify users, and then we’ll expand it to use cookies also.

Here is the application, ToDo. url . pm

package Exanpl es: : ToDo;

use strict;

use Apache:: Constants gw(: conmon);
use Apache: : Request;

use Apache:: Session:: DB File;

MAINTAINING USER STATE 125

126

Remember that a Perl module has to identify itself using the package statement. The
module uses Apache::Constants to get the return codes it needs and Apache::Request
to parse inputs. We don't have to invoke Apache.pm directly since Apache::Constants
and Apache::Request both do that.

I mentioned previously that Apache::Session could use various sorts of databases
to hold session data. This module invokes Apache::Session::DB_File, which is a sub-
class that stores session data in a hash file. Apart from this line and the invocation
below, the storage mechanism makes no difference to the Perl code.

The real application code is contained in the handl er function:

sub handl er {
Get the request object and parse it.
ny $r = shift;
ny $q = Apache: : Request - >new($r);

Note the use of Apache::Request to parse the inputs from the request object ($r) into
the client request data object ($q).

The code then uses the r equest object to start the response by sending the stan-
dard header and opening HTML tags:

Print the standard HTM. headers and start the docunent.
$r->send_http_header (' text/htm");
print '<!DOCTYPE HTML PUBLIC "-//1ETF// DTD HTM.// EN'>" ,

' <HTML><HEAD><TI TLE>To do |i st </ Tl TLE></ HEAD><BCODY>' ;

Now we check for a session ID in the URL. The request object knows what URI was
used to invoke the application, so we get that information via the uri function:

Get the URI of the request, /todo/???
ny $sessionlD = $1 if $r->uri =~ n{/todo/ (\w+)};

This portion of code shows a typical Perl shortcut for initializing a variable. If the
application was invoked as http://www.example.site/todo/id-string then the session
ID is present; the regular expression match (n{/t odo/ (\ w+) }) will not only find
it but store it in the special variable $1. The boolean expression (the i f clause) will
be true and $sessi onl Dwill be initialized with $1. If the application was invoked
as http://www.example.site/todo then there is no session ID and $sessi onl D will
be undefined.

Load the session or create a new one.
ny %ession;
tie Y%ession, 'Apache::Session::DB_File', $sessionlD,
{
Fil eName => '/usr/l ocal / apache/ dat a/ sessi ons',
LockDi rectory => '/usr/|ocal / apache/l ocks',
b

$sessionl D = $session{' _session_id'};

CHAPTER 5 BETTERSCRIPTING

Apache::Session is invoked via the ti e interface discussed in chapter 3. The argu-
mentstoti e are:

e The object to be tied, %sessi on;
« The Perl module that has the tied functions, Apache::Session::DB_File;

« Arguments to that module’s new function. In this case, $sessi onl Dand the
hash after it are the arguments.

Apache::Session examines the value in $sessi onl D; if not defined, Apache::Session
creates a new, unique ID and initializes it in the session store. When $sessi onl D
has a value, Apache::Session looks up that value in the hash and loads %sessi on
with the data stored there previously. This very helpful property saves the application
from having separate pieces of code for creating a session or loading an old one.

Whether it’s created a session or loaded an old one, the session ID is stored in
the sessi on_i d member of the hash, so the code reloads $sessi onl D with
that value.

Now it’s time to deal with user inputs:

Store paraneters in the session if received.

ny $p;

$session{'nane'} = $p if $p = $g->paran(' nane');

$session{'todo'} = $p if $p = $qg->paran('todo');
Note that $g- >par ambehaves very similarly to the CGl.pm examples of previous
chapters, in spite of the fact that we're using only Apache modules now. This code
uses more shortcuts to check for parameters and store their values in the session hash
if they are present. In each case, $p is true only if the corresponding parameter was
passed in from the browser, so the session hash is set only if the user has already
loaded the form and sent in a request. The nane parameter identifies the user, and
t odo contains the to-do list.

If this is the first request from the user then neither parameter will be set. How-
ever, if the user had a session and invoked the application with the right URL, then
previous values for name and t odo will be stored in the hash. The next section
makes use of that.

Put up the formfor entering ToDo information.
print "<FORM METHOD=\"POST\" ACTI ON=/t odo/ $sessi onl D>";
if ($session{'nane'}) {

print "<Hl>For $session{' nane'}</H1>";
}
el se {

print 'Nane: <INPUT TYPE="text" NAME="nane"',

' Sl ZE=20>
'

}
print ' <TEXTAREA NAVME="t odo" COLS=40 ROWS=8>',

MAINTAINING USER STATE 127

128

$session{'todo'}, '</ TEXTAREA><p>',

" <INPUT TYPE="submit" NAME="subnit" VALUE="Save">',

' </ FORW>'
The application starts a form with the <FORM> tag and sets the action to return to
this session—note how the session 1D is tacked on to the URL, so when the user sub-
mits the form the session ID will get passed back to the application. We could also
have used a hidden field for this; using a unique URL lets the user bookmark his ses-
sion and also separates session information from form data nicely.

If the session hash has a name stored in it, then that name is displayed over the to-
do list text box. If not then we create a text input for the user to identify himself. Below
that is the text box, created by the <TEXTAREA> tag. Unlike a text input, TEXTAREA
creates a multiline text box that lets the user enter free-form text and in most browsers,
provides simple editing functions.

The data between the opening <TEXTAREA> tag and the closing </ TEXTAREA>
is loaded into the box, including any white space and blank lines. This example loads
the text box with $sessi on{' t odo' }, the data stored in the session hash.

Below that is a simple submit button that will be labeled Save in the user’s browser.
The following </ FORM> tag ends the form.

Now you can see how the application works: when first invoked, the user sees any
data stored in $sessi on{' t odo' } by previous visits to the application. If he adds
or changes the text and clicks the submit button, the application will be invoked again
with the text data, and possibly the user’s name, as inputs. The application stores those
values in the hash, then displays the same form again.

We still have more to do:

Time stanp the session.

print "Last updated " . localtine($session{'tine'})
if $session{'tinme'};

$session{"tine'} = tinme();

End the docunent.

print '</BODY></HTM.>';

Tell Apache that all is well.
return OK;

}
1;

Each time the application runs, the session is time stamped and, it if were set, the
value of the previous time stamp is shown to the user. After that, the application prints
closing tags and returns the OK code to tell Apache that the request has been handled.
Don't forget the ending 1; which tells Perl that the module compiled normally.

The time stamp is important for two reasons. First, a more realistic application
would need some way of getting rid of sessions, so the application marks each session
with the time of its last use. Secondly, Apache::Session automatically updates sessions

CHAPTER 5 BETTERSCRIPTING

when the corresponding hash is untied (either deliberately by the code or by the end
of the scope containing the hash). However, it will update the hash only if one of the
key-value pairs of the hash has been changed.

In this example, all the data stored in the session is stored directly in key-value
pairs—the name, the to-do list, the session 1D, and the time all have their own keys.
A more complex application could store arrays or hashes within the session, via refer-
ences. If only referenced data changes, Apache::Session won’t know that it needs to
update the session data. Therefore it is always a good idea to time stamp your sessions
whenever any session data changes.

To tell Apache to run this application we need to put the code into the library
directory. In my server configuration it goes in /usr/| ocal / apache/li b/
per |/ Exanpl es/ ToDo. pm (Note the name change in the file.) We add it to
mod_per | . conf like so:

Per | Modul e Exanpl es: : ToDo
<Location /todo>
Set Handl er perl -script

Per | Handl er Exanpl es: : ToDo
</ Locati on>

After a restart, Apache will run the application whenever the matching URL is
invoked. Note that the Locat i on directive matches the beginning of the URL, so
the application still runs correctly when a session ID is tacked on.

While this code isn’t bad for an example, it’s too brittle to use in a real application.
The first problem that comes to mind (apart from the fact that it’s not much of a to-
do list) is that the URL-session 1D mechanism won’t work if the user doesn’t book-
mark the page. The application should warn the user of that of course, but there is no
way to force the user to do so.

The second problem is that there is no check for a bad session 1D. If the user types
in an invalid URL, or bookmarks a session that later is somehow expired, Apache::Ses-
sion will go looking for an 1D that doesn’t exist; it handles that situation by dying.
That is, it calls Perl’s di e function which prints an error message and exits the pro-
gram, which would be very bad indeed if we didn’t trap it.

The next section will expand this example and deal with these problems (except for
the one about this not being a very good to-do list).

As | mentioned, cookies are very commonly used to maintain user state in web appli-
cations. This example will show a combination of cookies and the unique URL
method shown previously to give a user two ways to store his ID.

When a web browser handles cookies, it stores them in a database by URL (among
other parameters). When the user requests a page, the browser checks its database for
any cookies that match the URL and sends along all that match. The match can be by
the site, some or all of the path, or both. (A cookie can also specify that it is sent only

MAINTAINING USER STATE 129

130

over secure connections. See chapter 6 for details.) The cookies are sent along in a for-
mat similar to CGI form data but in separate parts of the request.

Applications are more concerned with what a cookie holds than with how it is
stored. From the application’s standpoint, cookies are essentially key-value pairs; a
cookie has a name and one or more values. It's not surprising then that
Apache::Cookie and CGI::Cookie both implement a hash interface to cookie data.

Cookies also have a lifespan. If the application which sends the cookie doesn’t spec-
ify an expiration date, the browser will keep the cookie in memory and thus lose it
when the user closes the program. That’s fine in cases where we want the user to log
in via some other mechanism for each session, but in this example we’ll use cookies
that last longer.

This example expands on the previous section, and looks the same to the user; the
code is in ToDo. pm The initialization adds the cookie module:

package Exanpl es:: ToDo;

use strict;

use Apache:: Constants gw(: conmon);
use Apache: : Request;

use Apache:: Session::DB_File;

use Apache: : Cooki e;

The beginning of the handler function is also similar, receiving the request object,
parsing parameters, and storing the request’s URI:

sub handl er {
Get the request object and parse it.
ny $r = shift;
ny $gq = Apache:: Request - >new($r);
ny (@ds, $sessionlD);

As suggested by the existence of the @ ds array, the application is going to try more
than one ID. First it looks for one in a cookie:

Check for a cookie with the ID.
if (my $cookies = Apache:: Cooki e->fetch) {
$sessionl D = $cookies->{' 1D }->val ue
if $cookies->{'I1D};
push @ds, $sessionlD if $sessionlD;

}

An application which used more than one cookie could check them all inside the i f
block. Here we check only for a cookie called 1D; note that the application has to ver-
ify that the cookie is in the hash before getting its value.

Each element of the cookies hash is a cookie object created by Apache::Cookie.
Besides the value, the cookie objects have functions that return (or set) their expiration
time, URL path, and other attributes.

Now the application checks for a session ID in the URL:

CHAPTER 5 BETTERSCRIPTING

The URI might have the ID also.
push @ds, $1 if $r->uri =~ n{/todo/ (\w+)};

This is the same check that we had in the previous version, except that this time we're
storing the value in an array if the URL matched the regex.

The application pushes an undefined value onto the array also, which will tell
Apache::Session to create a new session if we get that far. It then loops over the values
and tries each:

Create a new session if all else fails.
push @ds, undef;

Load the session or create a new one.
nmy 9%session;
foreach ny $try (@ds) {
eval {
tie %ession, 'Apache::Session::DB File', $try,

{

Fil eName => '/usr/l ocal / apache/ dat a/ sessi ons',
LockDirectory => '/usr/local /apache/l ocks',

b

b

| ast unless $@
The eval block is Perl’s technique for trapping errors signaled via die; if
Apache::Session::DB_File errors out, the error message will be stored in the special
variable $@ If no error occurs inside the eval block, $@is false. Thus for each pass
through the loop, the code will try to load or create a session, and if it works the loop
exitsvial ast .

If trying to create a new session failed,

we have a serious problem

unl ess ($try) {

warn "Can't create session: $@n";
return SERVER ERROR;

}
}

$sessionl D = $session{' _session_id'};
If the final value (which was undefined) failed, the application can't create sessions for
some reason. In that case the script uses war n to write an error to the error log and
returns SERVER_ERROR to the browser to inform the user that there is a problem on
the server’s end.

Assuming we came out of the loop, the script grabs the session ID as the previous
example did. Now we want to send the ID back in a new cookie along with the HTML
form. If the browser already had a cookie, this will serve to update its expiration date,
so we send the cookie regardless:

Send the ID back in a cookie.
nmy $cooki e = Apache: : Cooki e- >new($r,

MAINTAINING USER STATE 131

132

-name => ' D,

-val ue => $sessionl D,

-path => '/todo',

-expires =>"'+1M,

$cooki e? ’>bake;

The newfunction creates the cookie object and sets its name, value, path, and expira-
tion date. The path matches the application’s URL. Since we don't specify the web site
explicitly, Apache::Cookie will use the current site automatically. The expiration
string ' +1M means that the cookie expires in one month.

The last function, humorously named bake, sends the cookie to the browser.
Cookies are sent as part of the header string, and so they must preceed any HTML
output. The browser parses the headers including the cookies and stores them (assum-
ing it handles cookies at all), then displays the accompanying HTML.

The rest of the application code is identical to that in the previous version, so we
don’t need to display it here. To run it, copy ToDo. pminto the appropriate Apache
directory as shown previously, then restart the server. Note that if you bookmarked
the URL of the previous version, you can return to your bookmark and your to-do list
is as you left it previously; this will also load a cookie with your previous session ID.

The main change is shown when you load the application as http://www.exam-
ple.site/todo. Rather than starting afresh, this version will give you your previous
to-do list, showing that the cookie with your session 1D was sent to the server with
the request.

The previous examples used Apache::Session to store all of an application’s data.
That’s fine for transient data that is not well-suited for a database. For example, a
shopping cart’s contents are associated with a particular user and need to be stored for
hours or perhaps days, but not longer (although an e-commerce site might want to
store a separate purchase history also).

If an application requires long-term information about a user, then an additional
scheme is required. As we’ve mentioned, we can’t trust the user’s browser to store
cookies indefinitely, and we also can’t rely on the user to bookmark a URL. Besides
that, either scheme would fail if the user loaded the application from a different
machine, lost the bookmark file, or just changed browsers.

Apache::Session doesn’t address the larger issue of user management. If the appli-
cation is going to work with users for more than a day or so, we need to fall back on
the familiar mechanism of user IDs and passwords to know who is who. We need user
data as well as session data.

Consider a user running a CGI application with multiple pages. Each page has data;
the application as a whole has more data, the sum of the pages, and any additional state
information required. The application could also have user preferences or security
information tied to the user name and password combination. Session data is the

CHAPTER 5 BETTERSCRIPTING

middle set—the data currently in the application, including state information—while
user data is the longer term information which probably doesn’t change much from
one session to another.

Apache::Session is a terrific tool for handling session data. A multipage CGI appli-
cation can store user inputs in a session hash, rather than building a large set of hidden
inputs to pass information from page to page (as the examples in previous chapters
did). Each time a request goes to the server, the application loads the session data via
the session 1D (stored in a cookie or unique URL) and thus has all the state information
it needs to move the user along in the process.

The user creates a session by logging in, although we might let the user store his
user ID and password in a cookie. The newly generated session ID is sent back in a
cookie that expires in a reasonable time for the application—if the user is idle for an
hour, say. Or, we could set no expiration and let the browser hold the 1D until the pro-
gram exits. As the user sends further requests to the server, the session data tells the
application where he is and what he’s been doing, creating the illusion of the appli-
cation running as a continuous process.

In this style of application, some kind of session management is required—uwe
don’t want to build up old sessions endlessly in our session store. Apache::Session does
not provide this directly, but it isn’t difficult to work out, especially if the sessions are
stored in a relational database; a small program can delete records from the table that
are time stamped past an expiration time. If the application uses Apache::Ses-
sion::DB_File or Apache::Session::File it will need to run through all the sessions and
check the time stamps individually.

The application will also need user management—it may let users create their own
user IDs or require a separate administrator action to do so, but in either case it
requires password verification to validate the user’s ID. That means the application is
now sending sensitive data—information that could be valuable to a snooper—and
should take precautions to hide that information from prying eyes.

Which leads us to the next chapter.

MAINTAINING USER STATE 133

6.1

CHAPTER 6

6.1 Listening in on the Web 134 6.4 User authentication 143
6.2 Secure Sockets Layer (SSL) 135 6.5 User management 152
6.3 OpenSSL and Apache 137 6.6 Login sessions 156

LISTENING IN ON THE WEB

It seems that every few months there are high-profile cases of credit card theft over
the Internet; a popular site reports that its customer database was cracked, or a new
exploit is discovered that lets a malicious application read information from browsers.
As with the case in the physical realm, the bulk of crimes are low-profile and not
reported to police. After a pleasant holiday season of shopping over the Web, strange
charges turn up on a credit card, and the card holder calls their bank to have the
charges removed and to get a new account number issued.

When these cases do make the news, consumers get vague warnings about using
proper security when shopping over the Internet. We can hope that those who
have been victimized learn their lesson and take precautions when giving out sensi-
tive information.

Seldom, however, is there any comment on the fact that the Internet is not built
for security. The most popular protocols for web browsing, email, and file transfer all
send their contents without even trivial encryption. The closest physical-world

134

analogy to normal email is to use postcards for all your letters; there isn’t a whole lot
stopping a snooper from invading your privacy.

Internet protocols send messages in the open primarily because it takes a deter-
mined effort to snoop on individual users. For instance, to read a romantic email mes-
sage from Bob to Carol as it is transmitted, a snooper would need privileged access to
Bob’s machine, Carol’s machine, or one of the machines along the route the message
follows. The snooper needs either to listen all the time or to know just when to collect
data. If one is really determined to read Bob’s love letters, it is probably easier to break
into his or Carol’s files than to grab the messages on the fly.

On the other hand, if a cracker breaks into a busy Internet service provider (ISP),
he can engage in a more opportunistic kind of snooping. By installing a “sniffer” pro-
gram that reads various kind of Internet traffic, the cracker can look for messages that
contain patterns of digits that look like credit card numbers, or phrases like “the pass-
word is ...” Bob’s passion for Carol might escape notice, but he could find his account
number stolen the next time he orders something over the Web, only because he or
the merchant used the cracked ISP.

Encrypting all Internet traffic sounds tempting at first, but would add expense and
delay in the form of additional computation and extra bytes for each message. The
most expedient solution is to encrypt traffic which contains sensitive data, and to leave
the rest in the open.

This chapter starts with a discussion of Secure Sockets Layer (SSL), the protocol
used for most encrypted Internet messages, and how to use it in your web applications.
It goes on to cover user authentication schemes and basic user information manage-
ment issues.

6.2 SECURE SOCKETS LAYER (SSL)

Consider the problem of creating secure Internet protocols. One might want to create
new protocols for secure HTTP, FTP, or SMTP email, but that would break programs
that worked with nonsecure versions.

HTTP and the other protocols are layered on top of TCP/IP, the basic communi-
cation layer of the Internet. Most applications that speak TCP/IP do so via sockets,
which were originally part of BSD Unix but have since been ported to everything from
handheld computers to mainframes. Network programmers talk about TCP/IP and
sockets almost interchangeably. When a web browser downloads a page from a server,
it first opens a socket to the server, which accepts or refuses the connection. Having
established communication via TCP/IP, the two then proceed to speak HTTP over the
socket connection. !

L purists will point out that a socket doesn’t have to use TCP/IP, and TCP/IP doesn’t have to use sock-
ets. The other common programming interface to TCP/IP is the Transport Layer Interface; interest-
ingly the protocol that is set to supersede SSL is called Transport Layer Security.

SECURE SOCKETS LAYER (SSL) 135

136

By replacing the regular socket library with a secure TCP/IP communication
scheme we can leave HTTP alone and still safely transmit sensitive information to and
from web browsers. That's the role of the SSL; if the browser and the web server are
built with SSL, they can create an encrypted channel and exchange data without fear
of snoopers. HTTP rides on top of the layer without additional programming.

SSL is a terrific boon to network applications, but gets surprisingly little use outside
of web traffic. Some mail servers and clients support it, but few require it, which is
odd, considering that POP and IMAP mail protocols require a username and password
to gain access to a server. Those passwords are all being sent in plain text across inse-
cure channels, just as they are for FTP and TELNET sessions (which is why you are
using ssh instead). Bob and Carol’s true feelings may be known to more people than
they realize.

SSL is itself a protocol description with both commercial and Open Source imple-
mentations, including SSLeay, a free implementation created by Eric A. Young and
Tim J. Hudson, and OpenSsL, which followed on from SSLeay and has become the
standard security library for Open Source network products. OpenSSL’s developers
include members of the Apache Group, so it’s no surprise that I'm going to recom-
mend it for use with their server.

You may be aware that there are both patent issues and import/export restrictions on
software that uses encryption. In the United States and other countries, commonly
used encryption algorithms are patented and require licenses from their patent hold-
ers for use. Export restrictions are changing as (some) governments realize that the
main effect of legislation is to move encryption development to other countries.

Still, these issues were enough to prevent most US-based sites from distributing
encryption software in the 1990s. Distribution web sites generally have guidelines on
where to download those libraries, but before doing so you should thoroughly inves-
tigate the legalities of their use in your locality.

As the disclaimer goes, I Am Not A Lawyer, but here is my understanding of the
legal situation in the United States: the patent holder of the RSA public key encryp-
tion algorithm placed the algorithm in the public domain in September 2000 (shortly
before the patent was due to expire), so it is no longer necessary to buy a license from
RSA or to use the RSAREF implementation. It is legal to use encryption on a US-hosted
web site that communicates with the world at large; it may not be legal to let others
download your encryption library however.

For hosting in other countries (or browsing, for that matter), see summaries of the
legal situation posted at http://www.openssl.org/ for more information although they
too will warn you that you need to investigate this on your own.

CHAPTER 6 SECURITY AND USERS

6.3

OPENSSL AND APACHE

So now that we know we want OpenSSL, how do we get Apache to use it?

I casually mentioned earlier that a server has to be built to use SSL instead of the
usual sockets layer (as do browsers). This is not a trivial change, and can’t be imple-
mented solely through an add-on interface to Apache, such as mod_perl is. The guts
of the server have to change to handle SSL.

There are commercial Apache SSL products that provide the necessary changes,2
as well as a pair of Open Source solutions. The first on the scene was Apache-SSL, cre-
ated by Ben Laurie; later Ralf Engelschall split off the Apache-SSL code to build
mod_ssl on an expanded architecture. Both products use OpenSSL, actively track
Apache versions (which is not surprising since the developers are part of the Apache
Group), use the same license, and accomplish the same goal.

In terms of the buyer’s guide, it is hard to tell the two products apart. Their mailing
lists are active and helpful. The development pedigree of each product is impeccable
and there is no reason to think that one is going to have more ongoing cost than the
other. Both products are trivially easy to build and install. The few reports I've read
comparing the two implementations comment as much on the developers as the code,
so the choice seems to be a matter of personality for those who are active in the devel-
opment community. I'll put forth a few technical issues and go on with my own
choice, mod_ssl. If you choose Apache-SSL instead, the only changes you'll need to
make to my examples are in the configuration files.

Both products assume that OpenSSL has been configured and built already. There
is some convenience to having all of Apache, OpensSSL, mod_perl, and mod_ssl in one
directory tree but it’s not a requirement.

Apache-SSL provides a set of patches to a given Apache version, plus additional source
files. Starting with a freshly unpacked Apache, unpack Apache-SSL into the same
directory and apply the patches as instructed. Then configure and build Apache as
you have previously, making sure you enable the apache _ssI module as well as
mod_perl and any others you use. There isn't much more to it.

There also isn’t much more to the documentation. Apache-SSL adds a page to the
online manual explaining its directives, and has a configuration example, but doesn’t
go any further. That'’s fine for someone who knows about SSL and has a good grasp
of Apache configuration, but personally | wanted more.

2 sSL products from RedHat, Raven, and Stronghold also provided licenses to the patented RSA algo-
rithms for U.S. customers, but that restriction has expired.

OPENSSL AND APACHE 137

138

One could argue that the main thing mod_ssl adds to Apache-SSL is polish. The
product has an extensive web site which looks better than that of most commercial
products. The site has pages for downloading the source, reading the documentation
or mailing list archives, getting news about mod_ssl, and checking the latest surveys
to track the number of installed servers.

The documentation is quite good, and explains the workings of SSL’s suite of cryp-
tographic tools and how a web browser and server decide what to use. The installation
instructions that ship with the source are better than the shortened online version, and
include instructions on how to build OpenSSL, Apache, mod_ssl, and mod_perl all
together. The process isn’t that hard to figure out, but having the commands laid out
in one file will help the first time web builder.

Those Apache developers who don’t like mod_ssl complain that it adds too much
to the server. mod_ssl patches Apache to include an extended API, then implements
SSL through that API. It also optionally uses the developer’s shared memory library
to speed up some operations between servers. The result, though, is that mod_ssl acts
in many ways like a standard Apache module, and | like the architecture almost as
much as I like the generous documentation.

mod_ssl versions are tied to Apache versions, so if you are downloading newer soft-
ware, make sure you get the distribution that matches your Apache source.

As mentioned, mod_ssl assumes the current release of OpenSSL is already in place.
If you are going to use the MM shared memory library you’ll need to set that up as well.
This example builds the server using OpensSsL 0.9.5a, Apache 1.3.12, mod_ss 2.6.4,
mod_perl 1.24, and MM 1.1.2, all unpacked in / usr /|1 ocal , following the build
process as described in the OpenSSL and mod_ssl installation documentation.
$ cd /usr/local /openssl-0.9.5a
$ sh config

$ nmake
$ make test

OpenSSL is built with all the defaults, which is fine for the U.S. | moved on to MM,
the shared memory module:
$cd../Mm1.1.2

$./configure --disable-shared
$ make

The - - di sabl e- shar ed directive here disables shared libraries, not shared mem-
ory. Since Apache is the only application we're likely to build with MM, there isn't any
benefit to having the MM code in a shared library.

Then we'll go to mod_ssl, telling it where to find OpenSSL and MM:

$cd ../nmd_ssl-2.6.4-1.3.12
$./configure --w th-apache=../apache_1.3.12 \

CHAPTER 6 SECURITY AND USERS

--with-ssl=../openssl-0.9.5a \
--with-mme. . /mm1.1. 2

And on to mod_perl. Here we skip testing mod_perl before going on, but if you've
built mod_perl previously that’s fine.

$ cd ../nmod_perl-1.24

$ perl Makefile.PL EVERYTH NG=1 APACHE_SRC-=../apache_1.3.12/src \
USE_APACI =1 PREP_HTTPD=1 DO _HTTPD=1

$ make

$ nmake instal

Finally, we build Apache. Note the configuration directives for mod_ssl and
mod_perl:

$ cd ../apache_1.3.12

$ SSL_BASE=../openssl-0.9.5a ./configure --enabl e-nodul e=ssl \
--activate-nodul e=src/ nodul es/perl/libperl.a\
- - enabl e- nodul e=per|

$ meke

$ nake certificate

$ nmake instal

Note the step to create the server’s certificate, which we discuss in the next section.

If you have already installed Apache, 1 recommend shutting down your current
server and moving its installation aside, letting make i nst al | start fresh. Among
other things, it will put in a new blank configuration file which has examples of all the
SSL directives and an | f Modul e section where you can put SSL-specifics. Compare
the newly created ht t pd. conf to your previous one and reinstate your changes (port
numbers, aliases, mod_perl configuration, etc.).

Before your server can engage in secure sessions it needs a valid certificate which iden-
tifies it to browsers. The certificate contains identifying information for your server, a
public key used to encrypt messages to you, identification of your certifying authority,
and a digital signature from the certifying authority that the browser can use to pre-
vent malicious servers from forging certificates.

As part of the mod_ssl installation you can create a temporary certificate to be used
for testing your server. That will get you through the rest of this book, but before you
open your site to the public you will need a proper certificate from a well-known cer-
tifying authority (CA).

To explain why this is, we need to delve for a moment into how SSL encrypts Inter-
net messages.3 When the SSL client contacts an SSL server, the server sends its certif-
icate back along with acknowledgment of the connection. This communication takes

3 Orat least, how SSL version 2 does so using the RSA algorithm. Version 3 is able to negotiate and use
other options for the first secret exchange and the session encryption method.

OPENSSL AND APACHE 139

140

place in the clear—no secrets have been exchanged yet. Figure 6.1 shows the exchanges
in this section.

browser server

\ connect /

certificate

key & algorithm

acknowledgment

Figure 6.1
Secret information exchange

HTTP activity

To establish an encrypted channel, the two parties need to exchange secret informa-
tion. In particular, they need to decide on a session key which will be used to encrypt
the data, and the encryption method which applies to it. Obviously if the session key
is sent in clear text it won't necessarily stay a secret. To exchange information before
establishing the session key, the two parties use asymmetric or public key encryption.

Public key cryptography, most strongly associated with the RSA algorithm, uses a
pair of large numbers called the public and private keys to encrypt and decrypt mes-
sages. A message encrypted with the public key can be decrypted with the private key,
and a message encrypted with the private key can similarly be decrypted with the pub-
lic key. The crucial aspect of the algorithm is that a party with only one key can not
both encrypt and decrypt a message, thus the term asymmetric encryption. Suppose
I give everyone my public key (which is why we call it that) and keep my private key
a secret. To send a secure message | encrypt it with my private key, and anyone who
has my public key can both decrypt it and also be certain that it came from me, since
only I can create a message that can be decrypted with the public key. Anyone who
has my public key can send me a secure message also, by encrypting it with that key.
Assuming that only | have the secret key, only | will be able to decrypt the result.

Public key cryptography is an amazing example of pure mathematics turned useful.
It is also computationally expensive, far too much so to be used for large amounts of
web traffic. That’s why SSL (and other security protocols) use public key cryptography
to exchange an initial message between parties that include a session key for symmetric
encryption, the more traditional kind of encoding where both parties use a single key
to encrypt and decrypt messages. The assumption is that if the session key is used only
briefly and is never reused, it is very unlikely that a snooper will figure out the encryp-
tion before it is changed again.

CHAPTER 6 SECURITY AND USERS

Back to our SSL example: the client verifies the certificate (more on this shortly)
and uses the server’s public key to encrypt a message containing a session key and a
choice of algorithm that both parties can use to quickly encrypt and decrypt further
messages. The server decrypts the message using its private key, then sends an
acknowledgment back that has been encrypted using the session key and a symmet-
ric algorithm.

The role of the certificate, then, is to package up the server’s public key along with
identifying information used to verify the certificate. This verification is important; it
prevents a malicious server from creating a certificate that identifies itself as another
party. Part of the certificate is the identity of a CA, which is basically a company that
sells trust.

As stated earlier, a certificate contains not only the server’s public key and iden-
tity but also the CA’s identity and digital signature of the public key. That signature
is created using the CA’s private key to encrypt the server’s identification and public
key; thus if you have the CA’s public key you can decrypt the signature and verify
that the server’s identification matches their key. Since only the CA’s private key can
be used to create a valid signature, the browser can trust the certificate—if it trusts
the CA, that is.

That sounds like a chicken-and-egg problem, but SSL-enabled web browsers are
typically shipped with the identification and public keys of a number of well-known
CAs. When a browser gets a certificate signed by an unknown CA it should display a
dialog explaining what has happened and warn the user of possible problems; the
user can then accept or reject the certificate. Chances are good that you've never seen
this warning since sites that use SSL are almost always registered with one of a few
popular CAs.

And that leads us to the point of this section: your site must go through the certi-
fication process with one of those CAs before you can expect to handle SSL traffic with
the Internet at large. Both the Apache-SSL and mod_ssl web sites have lists of CAs
which can create certificates for you. The security configuration of your browser will
also tell you which CAs your browser will recognize without a warning, so check that
list against the list of candidate CAs and then shop around for a good deal with a rep-
utable firm.

As mentioned before, the make certi fi cat e step will offer to create a tempo-
rary certificate for your testing purposes. Go ahead and use that for now; if nothing
else it will show you what the warning about an unknown certificate looks like.

If you let make i nstal | create an htt pd. conf file, open it and restore your
changes to the original for mod_perl and CGI. mod_ssl also will add a new port
number section such as:

<| fDefine SSL>
Li sten 80

OPENSSL AND APACHE 141

142

Li sten 443
</ | f Defi ne>

The Li st en directive tells Apache to open additional ports for requests. Port 443 is
the standard port for HTTPS (secure HTTP), just as port 80 is the standard for regu-
lar HTTP traffic. If your server is listening on some other port for HTTPS, you'll need
to specify the port number as part of the URL.
There should also be a new section in the virtual host configuration that looks

something like this:
<Virtual Host _default_: 443>

General setup for the virtual host

Docunent Root "/usr/| ocal / apache/ ht docs"

Server Nane secure. exanple.site

Server Adm n theo@xanple.site

ErrorLog /usr/local /apache/l ogs/error_| og
TransferLog /usr/local /apache/l ogs/ access_| og

Enabl e/ Di sabl e SSL for this virtual host.
SSLENngi ne on
</ Vi rtual Host >

Apache’s Vi r t ual Host sections create a sort of server within a server; the parame-
ters to the directive tell Apache when incoming requests are intended for the virtual
host. This is typically done by IP address, but can be managed by host name or by
port number as shown here. mod_ssl uses a virtual host section to contain directives
that apply only to secure HTTP.

A virtual host can have its own document root and log files, and directives placed
in this section will apply only to requests for that host. Thus in this case requests that
are sent to port 443 will share the usual log files with those sent to port 80, but any
error messages will identify the server as secure.example.site. Most importantly, the
directive SSLEngi ne turns on SSL communications for port 443.

You can use this section to configure rules that apply only to secure requests.
This is a good way to set up applications that require SSL, or to direct users to dif-
ferent applications depending on how they connect. Later we’ll use this trick to
have one URL display two different pages depending on whether the user makes a
secure connection.

After checking and changing your configuration, you are ready to restart Apache.
First bring it up in nonsecure mode:

/usr/ | ocal / apache/ bi n/ apachect| start

You should be able to browse the default Apache splash page with your browser. If you
have reconfigured your mod_perl and CGI scripts they should work as they did before.
Now shut down Apache and restart it with SSL enabled:

/usr /| ocal / apache/ bi n/ apachect| startssl

CHAPTER 6 SECURITY AND USERS

6.4

If you encrypted your temporary certificate during the installation, apachectl will
prompt you for your pass phrase when you start the server. That’s great for security
but not practical for a server that needs to be started from a script at boot time. To
decrypt your certificate, use the openssl utility that was built as part of OpenSSL:

cd /usr/local /apache/ conf/ssl. key

cp server. key server.key. crypt

/usr/ | ocal / openssl -0. 9. 5a/ apps/ openssl rsa -in server.key.crypt -out
server. key

Apache will now start without asking for the pass phrase. Make sure that
server . key is owned by root and that only root can read it.

When Apache starts correctly with SSL enabled you have a secure server. Tell your
browser to open https://www.example.site/ to see the default page. Note that URLS
beginning with https are directed to port 443 automatically; if you have Apache lis-
tening on a different port, you'll need to include the port number in the URL.

The rest of your applications should work fine. Your code can check the HTTPS
environment variable to determine if it is running in a secure session:

if ($ENV{' HTTPS' }) {
print 'SSL session'

}
el se {

print 'Not secure'
}

But we're getting ahead of ourselves. We want a secure channel so we can handle sen-
sitive information, which nearly always means we want to handle user data (as
defined in the last chapter). We'll start by identifying the users.

USER AUTHENTICATION

Novice web programmers are sometimes surprised that web servers have no real idea
whom they are talking to when serving up files and running scripts. Programmers
who learned their skills on Unix and other user-oriented operating systems are accus-
tomed to having a function that returns a user ID. Mailing lists for most any web
development product get questions like “Where do | get the user’s name?”

The web server knows the IP address of the requesting browser and an identifying
string that should indicate its make and model,* but not much more. Most ISPs recy-
cle 1P addresses for dial-up users, and even if the address is static there is no guarantee
that a particular user will always use the same machine, so this information isn’t useful
as a user ID.

4 Applications which use advanced HTML or client-side scripting rely on the HTTP_USER_AGENT
environment variable to identify the browser, so they can decide on which set of incompatible fea-
tures to use.

USER AUTHENTICATION 143

144

There are two basic approaches to user authentication in a web application: use the
authentication protocol built into HTTP or do it yourself.

Chances are you've already encountered the HTTP authentication protocol already:
you request a URL from your browser, and before a new page appears the browser
pops up a window or displays a prompt asking for your username and password.
That’s the authentication protocol in progress.

What'’s actually going on is more complex than it appears. The protocol works
this way:

1 The browser sends the usual request to the web server for a URL.

2 The web server’s configuration indicates that authentication is required for that
URL. It sends back a 401 response to the browser along with a realm for authen-
tication; the realm is a human-readable name used by the server to identify a
group of secured documents or applications.

3 If the browser implements authentication caching, it checks its cache for the
given realm and server ID. If it already has a username and password for the
realm, it uses it to skip the next step.

4 |If the browser doesn't have a cache, or the realm isn't there, it displays a dialog
box or prompts the user for his username and password for the given realm. The
realm should be displayed here so that the user knows which user and password
to send.

5 The browser sends the URL request to the server again, including the username
and password in the request headers.

6 The server checks the URL, sees that it requires validation (again—remember
that this is a stateless protocol), and sees that it has validation headers. It looks
up the given username and password in some form of database.

7 If the information is valid, the web server applies the authentication rules for
the URL and verifies that the user is authorized to read the associated document
or run the application. Everything proceeds as normal if so; if not, it sends back
an error page.

s If the username and password didn't validate, the server sends another 401
response back to the browser, and the cycle continues.

The main advantages of using HTTP authentication is that it already works; Apache
has excellent support for it and comes with a few simple user database modules.
mod_perl extends Apache with a module that provides authentication against any
DBI database, making it trivial to keep your user IDs and other user data together (see
the Apache::DBI module’s documentation for more information). Many databases
(including MySQL and PostgreSQL) have Apache authentication modules as well, so

CHAPTER 6 SECURITY AND USERS

slimmed-down Apache servers can share an authentication database with mod_perl
or other applications.

The primary disadvantage of the HTTP authentication mechanism is that it is
unfriendly to new users. GUI browsers display a small dialog box prompting for the
username and password without much in the way of helpful information. One way
to work around this problem is to send a helpful page of information when user
authentication fails, instructing the user on how to get an account or what to do at
the prompts; this also lets experienced users log in without hand-holding.

HTTP authentication is good for protecting static pages, download directories, or
other data for which you would not otherwise write a custom application. It’s also
fine for administrative functions or private applications when the users will know
what to do.

The next section will discuss other reasons to handle authentication yourself. In the
meantime, let’s look at an example using Apache’s simple text file user database.

Suppose we want to protect a page of server status information—the Apache::
Status example from the previous chapter. Recall that it was configured in
mod_per | . conf like so:

Server status
<Location /perl-status>
Set Handl er perl -script
Per | Handl er Apache: : St at us
order deny, al | ow
deny from all
al l ow from 192. 168.
</ Locati on>

The deny and al | ow directives restrict access to a protected network. For purposes
of remote administration it would be more helpful to set password protection on the
/perl-status URL. The new configuration to handle that is:
Server status
<Location /perl-status>

Set Handl er perl -script

Per | Handl er Apache: : St at us

Aut hUser Fi | e dat a/ adnmi n_users

Aut hNane "Adm ni strator functions"

Aut hType basic

require valid-user
</ Locati on>

Optionally we could keep the deny and al | owdirectives to further restrict access.

The Aut hUser Fi | e directive gives the path to a password file to be used in
authenticating requests. Remember that all relative file paths begin with Apache’s root
directory. Aut hNane gives the realm name for authentication, and Aut hType
basi c tells Apache that it shouldn’t expect the browser to encrypt the information—
more on that later in the chapter. The r equi r e val i d- user directive tells Apache
that any user with a valid password may retrieve the URL.

USER AUTHENTICATION 145

146

Now we need a password file. Apache comes with a utility for creating and man-
aging passwords: htpasswd. Run it with the - ¢ switch to create a password file and add
a user:

/usr/ | ocal / apache/ bi n/ ht passwd -c /usr/| ocal / apache/ data/ adm n_users theo

The name of the password file matches the path given in Aut hUser Fi | e earlier (if
you add Apache’s root directory to the front). The program will prompt for a pass-
word, or you can supply one on the command line after the username.

After performing these steps, restart Apache and try the /perl-status URL. If all
is well you will be prompted for the user you just created, and then will see the sta-
tus information page. That’s all there is to adding password protection to impor-
tant pages.

There are more options than shown in this example. For instance, r equi r e can
list a subset of valid users, or specify groups instead of usernames. See the online
Apache manual for more information.

The password file created by htpasswd contains user names and encrypted pass-
words. Make sure that the file is readable by Apache’s user. If your applications add
users automatically or let them change passwords, then the application’s effective user
will need write access also.

The text file system is fine for pages that aren’t accessed too often and only by a
small number of users. To validate the user, Apache has to scan through the file
sequentially until it matches the username, so this mechanism will be too slow for a
larger user base. Apache comes with hash file authentication modules that are more
efficient, but if you have a large user base you probably also have a relational database
somewhere. See the examples in the next section for ways to have Apache use your
database for authentication.

As you probably know, many web sites have their own login pages, rather than using
the mechanism shown in the previous section. Why is that preferable? There are a
number of reasons to choose to do your own logins:

» Having your own login page means not relying on browsers to behave correctly.
Some browsers had bugs in the caching code for realm information which
would cause the browser to send an invalid user and password pair to the server
over and over (as the server kept sending back invalid authentication responses).
It also allows the application to bypass the cache if the developer wants to force
the user to log in.

« | mentioned previously that the standard mechanism is unfriendly to new users.
By using your own page, you can control what your users see, provide clear
instructions, and tell them what authenticating information you want. You
might also use a cookie to store the username and prompt only for the pass-
word. I've seen sites that have a custom login page which offers an option to

CHAPTER 6 SECURITY AND USERS

store both username and password in a cookie, allowing the user to choose less
security and more convenience.

« Most browsers indicate when SSL is in use by displaying a lock icon. Letting the
user log in from a special page gives a visual reassurance that they are sending
their password securely. Alternatively, if you offer the page over both HTTP and
HTTPS you can warn users when they are using an insecure connection.

« A login page is one more chance to display announcements, important links,
and advertising.

The most obvious disadvantage of writing your own login page is that you have to do
the coding yourself, but that’s not terribly difficult. The CGI input set includes the
password input, which behaves like a regular text input but doesnt echo back the
user’s characters; and on most OSs Perl includes a cr ypt function which performs
quick one-way encryption. (You could store passwords in your database without
encrypting them, but then anyone with unrestricted access to the database could steal
user passwords, resulting in one of those high-profile cases mentioned at the start of
the chapter.)
Here is a very simple login procedure, from Logi n. pm

sub handl er {
Recei ve and parse the request.
ny $r = shift;
ny $g = Apache:: Request - >new($r);
ny $usernane = $qg->paran{'usernane’') || "'
ny $password = $q- >paran(' password');

This is the usual opening code; parse the request, get the expected parameters. The
application needs to display a login form, but it needs to display it in more than one
case, so the form is built in a variable using Perl’s here-doc syntax:

The login form
nmy $l ogi nForm = <<ENDHTM_;
<FORM METHOD="POST" >
<TABLE>
<TR>
<TD>User nane: </ TD>
<TD><I NPUT TYPE="text" NAME="user nane"
VALUE="$user nane" S| ZE=10></TD>
</ TR>
<TR>
<TD>Passwor d: </ TD>
<TD><| NPUT TYPE="password" NAME="password" S| ZE=20></TD>
</ TR>
</ TABLE>
<I NPUT TYPE="submit" VALUE="Log in">
</ FORM>
ENDHTML

USER AUTHENTICATION 147

148

The syntax looks odd but it works well once you are used to it. Everything from the
line after the label (marked by <<) to the next line beginning with the label is stored
in the variable $| ogi nFor m(or passed to the pri nt function in later examples). In
this case, the label is ENDHTML and the variable contains all those lines of HTML.
This syntax works anywhere that a quoted string would work. In fact, it behaves just
as double quotes, so that variables in the here-doc are interpolated as they are in a
double quoted string. We use that property to put the current value of $user nane
into the form. If the application is invoked more than once, the username will be pre-
served (but the password will not). That’s also why $user nane is initialized if the
parameter wasn't passed in, to avoid errors about use of uninitialized values.

The here-doc syntax can be used with other forms of quoting; see Perl’s perldata
documentation for more information. Since web applications often print large blocks
of HTML, it is common to see this syntax in Perl CGI or mod_perl scripts. It's not
uncommon to use an HTML editor to create the HTML blocks and then cut and paste
them into the body of the script. In the next chapter we’ll look at other ways to merge
Perl and HTML.

Meanwhile, back to the example. Note that the login form uses a password input
type (also named password). As you'll see if you run the example, the browser echoes
asterisks (or nothing) as the user types there. Also note that the form specifies
METHOD="PCST" . The default method is GET, which would pass the username and
password as part of the URL (and thus probably display them on the browser’s URL
line and log them in the server’s access log).

Having stored the form, the application can now print it:

|f no usernane then just display the form
unl ess ($usernane) {
ny $title = SENV{' HTTPS'} ?
"Secure login form : 'Insecure login form;
$r->send_http_header (' text/htm");
print <<ENDHTM;
<! DOCTYPE HTM. PUBLI C
<HTML>
<HEAD><TI TLE>$ti t | e</ TI TLE></ HEAD>
<BODY>
<H1>Ent er your usernanme and password</Hl>
$l ogi nFor m
To create an account, go here</ A>.
</ BODY>
</ HTML>
ENDHTM.
return OK;
}

If the username isn't passed in, the application assumes that the user hasn't yet seen
the login form. It prints it, then returns OK to Apache.

CHAPTER 6 SECURITY AND USERS

Note that the title of the page depends on whether or not the user is logging in over
a secure connection. Of course, a more security-minded application might want to
redirect users logging in without SSL to another page, or offer a stronger warning. The
title is interpolated into the string via the here-doc syntax again, as is the entire login
form. The application also offers a link to the page for creating an account (which we’ll
get to later in the chapter).

If we did get parameters, we check for the user and password in the database:

Check the username and password.
if (defined($usernane) && defined($password)) {
ny $dbh = DBl ->connect (' DBl : nysql : I nfo: | ocal host',
'web', ' nouser');
return error($r, "Can't connect to Info") unless $dbh;
nmy ($try) = $dbh->sel ectrow array
(' SELECT password FROM Users WHERE usernane = ?',
undef, $usernane);
if ($try & S$try eq crypt ($password, $try)) {
$r->send_http_header (' text/htm");
print <<ENDHTM;
<! DOCTYPE HTML PUBLI C
<HTM.>
<HEAD><TI TLE>Hel | o $user nanme</ Tl TLE></ HEAD>
<BODY>
Logi n successful. Please proceed.
</ BODY>
</ HTM.>
ENDHTML
return OK;
}
}

After getting the parameters and checking that we got some kind of value for each, the
code connects to the database as it did in the examples from chapter 4. I1f DBI - >con-
nect doesnt return a value, the handler calls er r or to display an error page; the
code is left out for brevity here.

Assuming we’re talking to the database, the code next retrieves the given user’s
record from the Users table. $t ry is set to the password retrieved from the table. If
$t r y is not set, that means there is no such user in the table, and the handler will drop
out to the next section.

The handler then calls cr ypt on the password and the value stored in the table.
(The need for passing in the already-encrypted value from the database is explained
later in this section.) If the given password encrypts to the same value stored in the
database, the user is valid and the application can go on to whatever it is going to do.

If not, or if any of the other tests given previously failed, the handler goes on to
the next section:

Invalid user or password.
$r->send_http_header (' text/htm");

USER AUTHENTICATION 149

150

print <<ENDHTM;
<! DOCTYPE HTM. PUBLI C
<HTM_>
<HEAD><TI TLE>I nval i d | ogi n</ Tl TLE></ HEAD>
<BCODY>
<H2>The username and/or password you entered is not valid.
Pl ease try again. </ H2>
$l ogi nFor m
To create an account, go here</ A>.
</ BODY>
</ HTM_>
ENDHTM.
return OK;
}

This section simply displays a page indicating that the user can't log in with the given
password. It offers the login form again right here, instead of just telling him to go
back. The username will be defaulted into the field already but he will have to type
his password again. This makes use of the default ACTI ON attribute for the form—
the Submit button invokes the same URL again with the current parameters.
The handler needs to be added to mod_perl’s configuration:

Per | Modul e Exanpl es: : Logi n
<Location /I ogi n>

Set Handl er perl -script

Per | Handl er Exanpl es:: Login
</ Locati on>

Before trying it, we need to create the Users table. Here is a ssmple command:

CREATE TABLE Users (

user nanme CHAR(12) NOT NULL,

password CHAR(13) NOT NULL,

nanme CHAR(30),

emai | CHAR(24),

PRI MARY KEY (user nane)

)i
Don't worry about the name and email fields for now. They’ll be used by a later
example.

We need to add a user to the table, along with an encrypted password. Suppose we
want the user to be named ‘fred’ with password ‘tuesday’. We need the encrypted
string before we can add Fred.

MySQL has an encryption function, so if that's our database of choice (as shown
in the examples) we could use that. But | previously mentioned that Perl makes the
crypt function available if the operating system provides it, so let’s look at a more
generic example:

The arguments for cr ypt are the string to encrypt and a two character salt value,
used by the algorithm in a way similar to the seed of a random number generator.

CHAPTER 6 SECURITY AND USERS

crypt returns a 13 character encrypted string whose first two characters are the salt
value. That’s why the last block of code retrieved the encrypted password value from
the database first before validating the unencrypted test string. The encrypted value
was passed along with the test string to cr ypt which looks only at the first two char-
acters of the salt. Without the correct password and salt string it is mathematically
unlikely that crypt will generate a matching value.®
To create a valid user entry then we need to first create a salt value and encrypt the

password with it. We could use any two characters for the salt (as long as they are let-
ters, numbers, or ' . * or' /"), but it would be best to generate a random value for
each user. Here is a short Perl procedure from the Examples::CreateUser module that
generates the salt and returns a string encrypted with it:
sub createPassword {

ny $password = shift;

my @alts =('a'.."'z", "A.."Z, 0..9, ".", "I");

ny $salt = join("", map {$salts[rand(scalar(@alts))]} (1,2));

return crypt($password, $salt);

}

We need to call this function with fred’s password. Fortunately, Perl lets us concoct
scripts on the command line. By invoking the Examples::CreateUser via the - M
switch we can call it like so:

perl -MExanpl es::CreateUser -e \
"print Exanpl es::Createuser::createPassword("tuesday"), "\n"'
PQTpxFNi roTcU

Note that you need to either tell Perl where to find Examples::CreateUser via the - |
switch or run the command from the directory which holds Examples, such as/ usr /
| ocal / apache/ | i b/ per!| in my example configuration.

Add user fred with the encrypted password to the database:

I NSERT | NTO Users VALUES ('fred', 'PQIpxFNiroTcU);

Now you should be able to log in as fred. Remember that the database user (web) and
password given in the example code have to be valid for the database, and the web
user must have access to the Users table.

The following examples will make use of cr eat ePasswor d in building a user
manager.

5 While it is important to keep the original password a secret, the salt string is less important. There are
4,096 possible salt values (64 choices for each of two characters), and while a human wouldn’t want to
type them all in, a trivial program could find the right salt given the correct password.

USER AUTHENTICATION 151

6.5

152

Whether you use HTTP authentication or write your own, you face the choice of
encrypting the login transaction or not. There are plenty of sites that don't, depend-
ing on the situation and what is at risk:

« If the application and its users are protected behind a firewall, encryption is
probably not necessary. Conversely, business data which needs to be hidden
from employees’ casual curiosity should not be on a web site.

« Encryption may be too expensive for high-traffic systems, especially if the user
data doesn't contain sensitive information. If you track only user preferences, for
example, you (and your users) probably aren’t concerned about password theft.

e The HTTP authentication protocol includes another Aut hType, digest, which
does not send passwords in clear text. If your users run browsers that implement
digest authentication, then you don't need to add the overhead of SSL. Unfortu-
nately, digest authentication isn't implemented dependably in browsers.

Obviously any e-commerce site which accepts credit cards, Social Security numbers,
or other important identifications should use SSL. If your site would be liable to a
suit were a user’s data stolen, you must encrypt the channel or warn the user of the
risk. The simplest practical test is: what could happen to a user whose information is
stolen from this site? If your users could be harassed in some way, or your data would
help a criminal in committing a crime against them, you are obligated to protect
their information.

USER MANAGEMENT

If a site has user data, it probably needs user management: functions for creating new
user accounts and modifying their information.

A site can offer public registration, which allows anyone to create an account and
access the site, or have private registration where the potential user fills in a form or
sends a mail message to an administrator who then creates an account. Sites that use
private registration might still have a web application to create accounts, although the
application and other administrative functions would be protected from public use.

To fill out the login handler started earlier, we’ll add a page for filling in user infor-
mation and creating an account. This will also extend the Users table into something
more useful and add goodies such as telling the user when the account was last used.

The code samples here are from Cr eat eUser . pm

sub handl er {
Recei ve and parse the request.
ny $r = shift;
ny $g = Apache:: Request - >new($r);
ny $usernane = $qg->paran(’'usernane') || "'
ny $password = $qg- >paran(' password');
ny $nane = $g->paran('nane') || '';

CHAPTER 6 SECURITY AND USERS

ny $email = $qg->paran(‘emmil’) || "';

This is the standard beginning, checking for and initializing parameters. It also builds
the entry form in a variable, using the parameter values:

The entry form
ny $f orm = <<ENDHTM,;
<FORM METHOD=" POST" >
<TABLE>
<TR>
<TD>Desi red user nane: </ TD>
<TD><I NPUT TYPE="text" NAME="user nanme"
VALUE="$user nane" S| ZE=10></ TD>
</ TR>
<TR>
<TD>Passwor d: </ TD>
<TD><| NPUT TYPE="password" NAME="password" S| ZE=20></TD>
</ TR>
<TR>
<TD>Your real nane: </ TD>
<TD><| NPUT TYPE="t ext" NAME="nane"
VALUE=" $nane" Sl ZE=30></ TD>
</ TR>
<TR>
<TD>Your e-nmil address: </ TD>
<TD><I NPUT TYPE="text" NAME="email"
VALUE="$emai | " S| ZE=24></ TD>
</ TR>
</ TABLE>
<I NPUT TYPE="submt" VALUE="Log in">
</ FORW>
ENDHTML

The code carries forward the previous values (if any) of the username, name, and
email fields, blanking the password (which isn't echoed anyway). You might recall
from the examples in chapter 3 that CGl.pm held onto parameter values automati-
cally (it calls them “sticky parameters”). Coding your own HTML means having to
take care of this yourself or it means not having to work around CGl.pm features,
depending on whom you ask.

If your password creation form doesn’t echo password inputs, you should probably
require the user to type the password twice and verify that both inputs are the same
before creating the account. Some registration systems create a random password for
the user and email it to a requested address. In that case, ask for the address twice to
help avoid typos.

Get all the required inputs
unl ess ($usernanme && $password) {
ny $title = $ENV{' HTTPS'} 2
"Secure login form : 'lInsecure login form;
$r->send_http_header (' text/htm");

USER MANAGEMENT 153

154

print <<ENDHTM;
<! DOCTYPE HTM. PUBLI C
<HTM.>
<HEAD><TI TLE>$t i t | e</ TI TLE></ HEAD>
<BODY>
<H2>Pl ease fill in the follow ng information: </ H2>
$form
</ BODY>
</ HTML>
ENDHTML
return K
}

This section prints the form if the required fields, username and password in this
case, haven't been filled in. A more complex application should give the user a clear
indication of what is required.

Note that when we created the Users table we allowed nulls in the name and email
fields. We also don’t require them to be input here. In general, a field which is required
on a form shouldn’t allow nulls in a database and vice-versa.

The next section verifies that the username is unique:

Check for a uni que usernane.
ny $dbh = DBl ->connect (' DBl : nysql : I nfo: | ocal host',
‘web', ' nouser');
return error($r, "Can't connect to Info") unless $dbh;
ny ($try) = $dbh->sel ectrow array
(" SELECT password FROM Users WHERE usernane = ?',
undef, $usernane);
if ($try) {
$r->send_http_header (' text/htm");
print <<ENDHTM;
<! DOCTYPE HTM. PUBLI C
<HTM_>
<HEAD><TI TLE>Al r eady exi st s</ Tl TLE></ HEAD>
<BCODY>
<H2>User $usernane al ready exists. </ H2>
$form
</ BODY>
</ HTM.>
ENDHTM.
return OK;

}

The retrieval code is the same as that of the previous example, but in this case a suc-
cessful SELECT means that the requested username is taken. It doesn't really matter
what we select from the table, so long as we’ll know if the record exists. If not, we can
go on to add the record:

Encrypt the password.
$password = creat ePasswor d($password) ;

CHAPTER 6 SECURITY AND USERS

Wite the user record.
$dbh- >do(' I NSERT | NTO Users VALUES (?,?,?,72)",
undef, $usernane, $password, $nane, $email)
|| return error($r, $dbh->errstr);

This uses the cr eat ePasswor d function shown earlier to encrypt the password
and then store it in the database. DBI’s convenient do function prepares and executes
the given statement. Recall that the first argument after the statement is for
attributes, and the rest are placeholder values. There’s nothing left to do but confirm
things with the user.

Tell the user that they're one of us now.
$r->send_http_header (' text/htnl');
print <<ENDHTM;
<! DOCTYPE HTM. PUBLI &
<HTM_>
<HEAD><TI TLE>Account cr eat ed</ Tl TLE></ HEAD>
<BODY>
<H2>Account created. </ H2>
Wel come to our site.
</ BODY>
</ HTML>
ENDHTML
return CK;
}

Add this handler to your configuration file and restart Apache as usual:

Per | Modul e Exanpl es: : Creat eUser
<Location /create>

Set Handl er perl -script

Per | Handl er Exanpl es: : Creat eUser
</ Locati on>

Note that the handler is assigned to /create, the URL which was given in the previous
login example.

Although the creation example is meant to tie in to the login example, it could also
be used by sites with HTTP authentication. The Apache::DBI module includes an
authentication hook that validates users in a database using DBI. The creation form
could be used to create the necessary record, and regular HTTP authentication takes
over from there.

Application designers should bear in mind that users come to a site for content, not
user management. If a user requests protected pages without logging in, give them the
login page, then go directly to the requested content after the user is validated. HTTP
authentication appears to do this automatically (though actually it is the browser’s
authentication cache that quietly identifies the user for each page); techniques for
doing it yourself follow in the next section.

USER MANAGEMENT 155

6.6

156

LOGIN SESSIONS

Users expect web applications to behave as desktop programs: they log in once, and
that validation is good until they exit the system. Unfortunately, the nature of web
browsing doesn't mesh well with this, particularly in that “exit the system” part.

The typical web approximation is to keep a login session: the user is asked for val-
idation the first time he makes a request, and that validation is good as long as the user
remains active. If the user doesn’t send a request for a certain time period—say, one
hour—the session expires and the user is “logged out” (even though in reality he was
never logged in).

This kind of validation checking should be unobtrusive, as described at the end
of the previous section. We won’t require the user to start at a particular page, but
will detect when the user needs to log in; having done so, we’ll serve up the
requested content.

The following example, Di r ect ory. pm offers web access to a regular file direc-
tory. While this is a very poor way to serve static content, it does demonstrate login
sessions and also how a mod_perl application can simulate a file directory (as described
in the previous chapter). The program is divided into two functions: handl er
receives the requests and either calls ser veDocumnent or displays the login form.

First let’s look at handl er :

sub handl er {
Get the request object and parse it.
ny $r = shift;
ny (%ession, @ds, $usernane);
Connect to the database.
ny $dbh = DBl ->connect (' DBl : nysql : I nfo: | ocal host',
‘web', ' nouser');
return error ($r, "Can't connect to database")
unl ess $dbh;

This is typical opening code. Most paths through the function will use the database,
so we open it here for simplicity. Remember that Apache::DBI will be secretly cach-
ing database connections, so in most cases this code will simply return a waiting
database handle.

Next we check for a session ID:

Check for a cookie with the ID.
if (my $cookies = Apache:: Cooki e->fetch) {
ny $cooki el D = $cookies->{' 1D }->val ue
if $cookies->{'I1D};
push @ds, $cookielD if $cookielD
}

This is the same sort of test we saw in other session examples. As in the previous
chapter, we’ll check for the session ID both in a cookie and in the URL to support

CHAPTER 6 SECURITY AND USERS

browsers that don't manage cookies for us. The URL is checked for the session ID
when we look for the document name:

Examine the URI; it may have a session id,

and al so probably has the requested file.

ny $path = $r->uri;

if ($path =~ n{/protected/sessions/ (\w+)(/.*)?}) {
Session IDis in the URL.
push @ds, $1;

$path = $2;
}
elsif ($path =~ n{/protected/ (.+)}) {
Session ID (if any) will be in a cookie.
$path = $1;
}
el se {
Display the directory.
$path = '';
}

If there was a session ID in either, we check that it is a valid session and hasn't expired.
Note that this example uses Apache::Session::MySQL to store session info; see the
documentation on that module for how to create the required table in your database.

Did we get a session | D sonewhere?
if (@ds) {
nmy $inSession;
foreach ny $try (@ds) {
eval {
tie Y%ession, 'Apache:: Session:: MWSQ', $try,
{Handl e => $dbh, LockHandl e => $dbh};
s
next if $@

If eval noted an error then the session ID isn't valid. Some periodic task should run
through the Sessions table and remove data that is too old to be useful. The following
shows how this example uses expired sessions:

Check the expiration.

if (tine() - $session{'tinme'} < 3600) {

Less than one hour, so we're good.
$i nSessi on++;

| ast;

}

el se {
Cet the username, then delete it.
$username = $session{' usernane'};
ti ed(%session)->del ete;
undef (%session);

}

LOGIN SESSIONS 157

158

If less than an hour has passed, the session is still good (and as you'll see later, we reset
the timer for another hour). If the session is too old, we extract the username from
the session so that we can supply it as a default on the login form. Thus we shouldn't
delete old sessions from the database too aggressively, since the information is valu-
able at least in providing this default.

|f we have a session ID, go on to the docunent.
if ($inSession) {

Di splay the docunent.

return serveDocunent ($r, $path, \%ession);

}

If a valid, unexpired session is waiting, the application calls the function that
serves up the requested content. The ser veDocunent function is discussed later
in this section.

A more complex application might have a dispatch section here, where the appro-
priate function is called for the URL or other parameters.

The rest of the handler takes care of the login process:

If we don't have a session ID (or it expired), the
user nust log in. Check for paranmeters.

ny $g = Apache: : Request - >new($r);

$usernanme = $g->paran(' usernane') || $usernane || '';
ny $password = $q- >paran(' password');

if ($username && $password) {

If the handler receives CGI input parameters, then it has already been invoked from
the login form; validate those values and proceed.

The initialization of $user name may look a bit odd here. If it was passed in as a
parameter, we want to use that value—that’s what the user typed in. If, however,
$g- >par an(' user nane') doesn’t return a value, then use the value extracted
from an expired session (discussed earlier in this section) if there was one, otherwise
just set it to an empty string to avoid the “unitialized value” error message when we
print $user nane.

The next section validates the username and password as previous examples did:

Validate the paraneters.
ny ($try) = $dbh->sel ectrow array
(" SELECT password FROM Users WHERE usernane = ?',
undef, $usernane);
if ($try & $try eq crypt($password, $try)) {
Everything is valid, so create a session
(and set the cookie too).
eval {
tie Y%ession, 'Apache:: Session:: MSQ', undef,
{Handl e => $dbh, LockHandl e => $dbh};
h

Log errors if trying to create a new session failed.

CHAPTER 6 SECURITY AND USERS

if ($@ {
return error($r, $@;

}

This example creates sessions explicitly by passing undef to the ti e call. It reuses
the opened database handle (as the section that validated an open session did) for
writing the session data to the database.

The final step is to add the username to the session data before displaying the
requested content:

Store the usernane.
$sessi on{' usernane'} = $usernang;

Serve the docunent.
return serveDocunent ($r, $path, \%ession);

}

If we get this far, the user hasn't seen the login form yet, or has supplied invalid infor-
mation. This section displays the form as shown before:

No usernane or invalid usernane/ password.
$r->send_http_header('text/htm");
print '<!DOCTYPE HTM. PUBLIC "-//|ETF//DTD HTM.// EN'>" |
' <HTML><HEAD><TI| TLE>P| ease | og i n</ Tl TLE></ HEAD><BODY>' ;
if ($password) {
print '<H2>The password you have entered is invalid.',
' Pl ease verify your username and continue</H2>."';

}
el se {

print '<H2>Pl ease log in.</H2>";
}

Print the form
print <<ENDHTM.;
<FORM METHOD=" POST" >
<TABLE>
<TR>
<TD>User nane: </ TD>
<TD><I| NPUT TYPE="text" NAME="user nanme"
VALUE=" $user nane" S| ZE=10></TD>
</ TR>
<TR>
<TD>Passwor d: </ TD>
<TD><I NPUT TYPE="password" NAME="password" S| ZE=20></TD>
</ TR>
</ TABLE>
<I NPUT TYPE="submit" VALUE="Log in">
</ FORW>
ENDHTML

That's it.
return CK;

LOGIN SESSIONS 159

160

Note that the handler will use the previous value for the username as a default, but
will clear the password each time.

The default action is to request the current URL again when the user clicks the Sub-
mit button. We take advantage of that fact here. If the user requests a file but isn’t
logged in, or his session has expired, he will see this form. After submitting a valid user-
name and password, the maintained URL will be used to look up the requested file.

Note that our session data here is pretty trivial; we could store this much data in
a cookie. However, we keep the time stamp data in the session database, where the user
can’t fake it. Also by expiring sessions quickly we limit the possibility of a snooper
stealing an open session. After the session expires, the most a malicious user can learn
from an old session ID is the username which created it.

Now let’s take a look at the second function, ser veDocunent ;

sub serveDocunent {
ny ($r, $path, $session) = @;

The function receives the request object ($r) , the document name ($pat h) , and
the session data as arguments. Note that the caller passed a reference to the session
hash: \ %sessi on in the caller turns into $sessi on here.

The function starts by sending a cookie to the browser with a revised expiration:

Set or refresh the session ID cookie.

ny $cooki e = Apache: : Cooki e- >new($r,
-name => '|D,
-val ue => $session->{'_session_id'},
-path => '/protected,

-expires => '+1h',

)

$cooki e- >bake;

Here the cookie’s expiration time is the same as the session expiration time used in
the handler function. That makes sense, but it would actually be better to set a longer
expiration on the cookie—days or months. There is no sensitive data in the cookie
itself; the session ID is carried along to set the default username in the login form.

Alternatively, the application could use two cookies: one for the session ID, set to
expire in the right amount of time, and one for the username, with a long lifespan,
thus supplying the desired default information.

Depending on the path, the function takes one of two paths:

Send other headers and start the docunent.
$r->send_http_header (' text/htm");
print '<!DOCTYPE HTML PUBLIC "-//1ETF/ /DTD HTM.// EN'>";
if ($path) {
print "<HTM.><HEAD><TI TLE>$pat h</ Tl TLE></ HEAD><BODY>" ;
if (open(DCC, '<', "$docRoot/$path")) {
print <DOC>;
cl ose DOC;

CHAPTER 6 SECURITY AND USERS

el se {
print "No such docunent: $path";

}
}

If the document root directory (stored in a global variable, $docRoot , which is ini-
tialized outside these functions) and path together form a valid file name, the func-
tion opens the file and prints its contents. If not, it displays an error message. That’s
mostly to catch cases where a user types in a bad URL; the next section shows that the
user can get a list of valid files if they don't supply a path:

el se {
Show the directory.
print ' <HTML><HEAD><TI TLE>Di r ect or y</ Tl TLE></ HEAD>' ,
' <BODY><H2>Docunent s: </ H2>' ;

opendir DIR $docRoot;

while (my $entry = readdir DIR) {
next unless -f "$docRoot/$entry";
print ' <A HREF="/protected/sessions/',
$session->{' _session_id'}, "/$entry",
YUt $entry, ' >
';

}
closedir DR

}

This section shows the list of documents (all regular files in the document root direc-
tory). Note the way the function constructs links to the document, each of the form:

where sessionID is the value also sent in the cookie and filename is the actual file name.
This supports users whose browsers don't handle cookies, and preserves the file name
in the URL. The code in the handler which analyzes the URL will pick up both values
and pass them back to this function.

The function refreshes the time stamp in the session and exits:

Refresh the session tineout.
$session->{"time'} = tinme();

End the docunent.
print '</BODY></HTM.>';
return O

}

This example didn't require SSL. If the data being served is sensitive data, it would be
simple to modify the handler to check the HTTPS environment variable and refuse to
serve users on unsecured channels. It could also set the security attribute of the ses-
sion ID cookie to send the ID only when the user connects with SSL.

To run this example, configure the handler in mod_per | . conf , then modify the
code for an appropriate document root. Don’t forget to add the session table to your

LOGIN SESSIONS 161

database if you are going to use Apache::Session::MySQL, which also documents the
required table layout. Here is the configuration section:
Per | Modul e Exanpl es::Directory
<Location /protected>
Set Handl er perl -script

Per | Handl er Exanpl es::Directory
</ Locati on>

That takes care of security and user administration. The next chapter deals with ways
to merge Perl and HTML more cleanly than shown by the long clumsy pri nt state-
ments in these examples.

162 CHAPTER 6 SECURITY AND USERS

71

v

7.1 HTML design 163 7.4 HTML:Mason 174

7.2 Server-side includes 164 7.5 The Template Toolkit 190
7.3 Scriptingin HTML 167 7.6 XML alternatives 202
HTML DESIGN

Chapter 3 focused briefly on using Perl to generate HTML. The intervening chapters
have shown more complex scripts that created ever more HTML, sometimes printing
long lists of strings or here-docs. If you think about this trend while contemplating a
large web application, you can see that we are headed for trouble: large sections of the
Perl code would actually be HTML, clumsily handled within the text of the scripts.
And where do those HTML sections come from? If you create complex HTML lay-
outs (or work with a designer), chances are your HTML editor is different from your
Perl editor. While HTML can be composed with any text editor, many web page
designers prefer a specialized HTML editor that helps create error-free layouts more

163

1.2

164

effectively.1 Similarly, Perl programmers want an editor that helps with Perl coding.
Although there are people with both skills, it is far more common for a development
group to include programmers and page designers on the same team.

You may be thinking, “ah, but Perl is very clever about file handling; | can have
my Perl script load an HTML file and print sections as needed!” That’s a terrific idea,
but program-centric. HTML is display-oriented, and there are advantages to laying out
the HTML first and having it refer to Perl code (or any of the many other web pro-
gramming languages). A web page designer can lay out a page and mentally fill in the
blanks where a program will add the dynamic content.

This leads naturally to the next clever idea: “since Perl is even more clever about
text handling, I can write a script that reads an HTML file, finds special tags, and
replaces them with program output.” This very clever idea has sparked several com-
mercial products and a surprising number of Perl implementations, not to mention
whole new languages like PHP. Before you start on your own embedded Perl system
please take a look at the rest of this chapter; the tool you need may be waiting for you
on CPAN.

SERVER-SIDE INCLUDES

Since the early days of web publishing, designers have been frustrated by the “flat”
nature of HTML. It seems very natural to have an HTML file refer to other files to
display common elements of sites. For example, a web site could have a header, navi-
gation bar, and footer that each of its pages use to maintain consistency and preserve
a common look and feel.

It’s not surprising that one of the first extensions to HTML provided this mech-
anism, called SSI. The web server performs the necessary file merging, then sends a
single document to the requesting browser.? In Apache, SSlIs are performed by
mod_include, which is normally configured as a handler for files ending in . sht mi .

When triggered by a request, mod_include scans through the requested document
looking for comments of this form:

<l--#element attribute=value ... -->

The comment is replaced by the value of the element, depending on the type. The
range of elements handled by mod_include goes far beyond file merging. The ele-
ments can also reference variables or the output of a command, depending on the ele-
ment, aswell asi f, el se,and el i f elements for conditional document sections. A

LI tend to use Emacs for both, but then, I’'m the sort of person who tends to use Emacs.

2 Client-side includes would presumably involve the browser fetching multiple documents and dis-
playing them together. This is how frames work, and graphics are handled via separate fetches, but |
can’t think of anything which does this with merged HTML inside the browser (apart from doing so
via JavaScript).

CHAPTER 7 COMBINING PERL AND HTML

web page for a business that takes orders over the phone could use conditional ele-
ments to display different text during business hours and off-times.
Here is a simple example of Apache’s SSI used to display a clock, in

cl ock. shtni:
<! DOCTYPE HTML PUBLIC "-//I| ETF// DTD HTM./ / EN' >
<HTM_>
<HEAD><TI TLE>Anot her cl ock</ Tl TLE></ HEAD>
<BODY>
<H2>Current time on <!--#exec cnd="host name" --></H2>

<H1><!--#echo var="DATE_LOCAL" --></Hl>
<H6><! - - #echo var ="DOCUMENT_NAME" --> | ast nodified
on <!--#echo var="LAST_MODI FlI ED" --></H6>
</ BODY>
</ HTM.>

The example uses two different include elements. The exec element runsacommand:

<! --#exec cnd="host nane" -->

Here it runs the host name command to find out the name of the web server. Any
shell command should work here, with its output substituted back into the original
document. The exec element can also be used to run CGI scripts and include their
HTML output, via the cgi = attribute, but the preferred way to do this is via the
i ncl ude element, which will be described shortly.

The echo element displays the value of a variable. mod_include predefines a hand-
ful of variables (most of which are shown in the example), and the document can cre-
ate more via the set element. The example uses echo to show the current time, the
name of the file, and the date and time the file was last modified.

To run the example, place cl ock. sht ml in your server’s document directory
(/ usr/1ocal / apache/ ht docs in my configuration), then check to be certain
that htt pd. conf allows includes. You can do that by adding a handler for the
chosen file type (usually . sht mi) or by using the XBi t Hack directive and making
the files executable. Here’s the first method:

AddType text/htm .shtnl
AddHandl er server-parsed .shtm

The second method sets XBi t Hack for the directory:

XBi t Hack On
Then mark the files that should be parsed for includes as executable:
$ chnod a+x *.shtmn

XBi t Hack can also be set to Ful |, which tells Apache to set a Last-Modified header
in the parsed results before sending them to the client. This enables client caching of
dynamic pages—of course, you may not want the client to do that if the content
changes from moment to moment.

SERVER-SIDE INCLUDES 165

166

Further, the directory containing the example has to enable includes in its options;
that is, Opt i ons I ncl udes must be in effect for the Di r ect ory or Locat i on
that controls the file.

Of course, the primary reason for using SSI is to merge HTML files viai ncl ude.
This element can pull in a file directly via the f i | e= attribute or fetch a document
by its URL with the vi r t ual = attribute. The latter is preferred for all usage, and
works for any document or application on the same server. Virtual includes allow a
document to use the output of a CGI script or any other program that the web server
itself can handle.

Here is hel | 0. sht m , another small example using actual includes:

<! DOCTYPE HTML PUBLIC "-//| ETF/ / DTD HTM./ / EN' >

<HTM_>
<HEAD><TI TLE>Hel | o</ Tl TLE></ HEAD>
<BCODY>
<H2>The out put from hell o-web. pl is:</H2>
<!--#include virtual ="/cgi-bin/hello-web.pl" -->

<H2>The to-do list:</H2>
<PRE><! - -#include file="todo.txt" --></PRE>
</ BODY>
</ HTM.>

This document merges the output from one of our first examples with the contents
of a simple text file. Note that a virtual include accepts an absolute or relative URL,
but not a site specifier; the server must handle the document itself. The URL can
map to a document, application, or even another file handled by SSI, resulting in
nested includes.

The second include in the example loads a text file inside of <PRE> tags to preserve
its line breaks and white space. You can include regular HTML files also, or anything
else for that matter. The fi | e= attribute is limited to relative file paths, and the
including document is responsible for surrounding the file content with appropriate
tags to format it correctly.

One of mod_perl’s strengths is the way it integrates Perl with other Apache modules.
When built with support for mod_include it provides a new element type, perl ,
which runs Perl handlers directly. Here is an example, from f ast er . sht m :

<I DOCTYPE HTML PUBLIC "-//I| ETF//DTD HTM.// EN' >
<HTM>
<HEAD><TI TLE>Hel | o</ Tl TLE></ HEAD>
<BODY>
<H2>The out put from hello-nod_perl.pl is:</H2>
<!--#perl sub="Apache::|nclude" arg="/perl/hello-nod_perl.pl" -->
</ BODY>
</ HTML>

CHAPTER 7 COMBINING PERL AND HTML

The sub= attribute specifies the handler, and the ar g= attribute passes information
the handler needs. In this case the handler is Apache::Include, which runs the
Apache::Registry script specified by the ar g= attribute.

Without Apache::Include we could have included the same application this way:

<I--#include virtual ="/perl/hello-nmod_perl.pl" -->

When the vi rtual = attribute refers to a URL handled by mod_perl, Apache
invokes it via the appropriate handler (Apache::Registry or the handler specified by
Per | Handl er) and returns the results. While this works fine, it involves some extra
server overhead.

The per| element’s sub= attribute can refer to any Perl function or module,
including the ones created as examples in previous chapters. For instance, to display
the login form from chapter 6 in any SSI document, use this tag:

<!--#perl sub="Exanples::Login" -->

When sub= is given a module name, it automatically calls the handl er function in
that module. If you want to call a function defined inside one of your custom mod-
ules, give the full name of the function, i.e., Examples::Login::password.

Any arguments given in the ar g= attribute are passed after the request object.
Here is an example that chooses randomly from one of its arguments and prints it:

<l --#perl sub="sub {shift; print $_[int(rand(scalar(@)))]}"
arg="0One" arg="Two" arg="Three" -->

For even more enhancements to mod_include, look for the Apache::SSI module,
which lets you create your own new element types.

Server-side includes give page designers a good tool for consistent layout and sim-
ple access to scripts and Perl functions. They don’t really merge scripting with HTML,
however. For more complex pages we want the HTML and Perl code to work together
as a unit. For that we need more tools, as described in the following section.

7.3 SCRIPTING IN HTML

To go beyond SSI we need a tool which allows HTML and scripting to flow naturally
together, in the same way that an HTML document or a Perl procedure have a natural
flow. It should allow conditions, loops, and other simple program blocks. It should
make it easy to interpolate variables and function results into normal HTML. In-line
scripts and called functions should be allowed to generate arbitrary HTML, and inte-
gration with other Apache and CGI modules is a big plus.

Merging Perl with HTML is not a new idea. A quick search through CPAN shows
several modules with names that suggest this capability (HTML::Template,
HTML::EmbPerl), and a closer look will turn up several more. Since the task plays to
Perl’s strengths of text handling, pattern recognition and dynamic code generation, a
number of talented programmers have written modules to do this. Untold similar
modules run specialized variants on many web sites.

SCRIPTING IN HTML 167

168

Though each of these many modules is distinct, they more or less break down
into two approaches. Some allow Perl code to be embedded directly in HTML and
interpreted as the enclosing document is requested, and others define templates with
their own minilanguages that use data supplied by an accompanying script. All of
them to some degree add new HTML tags or other mark-up language to denote the
scripting sections.

Both approaches have their merits, and both have strong entries. The following
sections show examples of each approach using an assortment of modules. This area
is changing rapidly, so as always you should look around and see which modules have
features and style that match your application best.

The approach that appeals most strongly to Perl coders is to have Perl and HTML
intermixed. This can be as simple as having specially tagged Perl statements that are
interpreted in order, or can involve more complex schemes that mix Perl and HTML
sections in a document. These modules include an interpreter that reads the docu-
ment and processes the Perl sections, merging their output with the static text and
printing the result. Example modules include Apache::ASP, HTML::EmbPerl and
HTML::Mason.

Apache::ASP began as a port of Microsoft’s Active Server Pages (ASP) to
Apache and Perl. The HTML tag syntax will be familiar to those who have devel-
oped ASP pages, with <%% marking Perl code sections and <%=% marking vari-
able interpolation.

Suppose we have a hash called %renber s which stores a list of organization mem-
bers and their email addresses. To simplify the example we’ll assume some other part of
the document loads the hash. Using Apache::ASP, we might display the list as follows:

<H2>Qur nenbers and their addresses: </ H2>
<TABLE>
<% foreach (sort keys %enbers) { %
<TR>
<TD><%$_%</ TD><TD><%$nenber s{$_} %</ TD>
</ TR>
<%} %
</ TABLE>

Here we have Perl code embedded in a table. For each element of the %enber s

hash, the code generates a table row with one cell for the name and one for the email

address. Note how the key and hash value for each row are interpolated into the cells.
The same task in straight Perl code would look something like:

print '<H2>Qur nenbers and their addresses: </ H2><TABLE>';

foreach (sort keys %menbers) {

print "<TR><TD>$_</ TD><TD>$nenber s{$_} </ TD></ TR>";

}
print '<TABLE>';

CHAPTER 7 COMBINING PERL AND HTML

The code could be tighter, and CGI.pm’s helper functions could also be used to sim-
plify things, but you get the idea.

The Perl code for looping through the %renber s hash and printing the key and
value is the same in both approaches. The difference is that the Apache::ASP example
could easily have been created by an HTML designer and then filled in by a program-
mer. Tell the designer to create a one-line table with some sample data, for example,
and then edit the Perl code into the result. The designer could also modify the layout
after the code has been added—many HTML editors are aware of the ASP tag syntax
and will leave it alone, making it safe for designers to work in their editor of choice.

This is a trivial example of course; the advantages of using embedded scripts
increase for more complex pages, where a specialized editor helps to keep the HTML
standard and correct.

HTML::EmbPerl is even more editor-friendly. It is specifically designed to allow
Perl and HTML to be written from an HTML editor. Perl sections are tagged with a
variety of brackets: [- -] for Perl code, [+ +] for interpolation, and so on.
EmbPerl accounts for the kinds of translations an HTML editor will inflict on Perl
code, removing
 from the ends of lines and changing &l t ; back to < in code
sections before sending it to the Perl interpreter.

EmbPerl also crosses over into the minilanguage school by adding its own form of
common Perl constructs such as loop control, bracketed by [$ $] . The example
appears slightly different in EmbPerl:

<H2>Qur nenbers and their addresses: </ H2>
<TABLE>
[$ foreach (sort keys %renbers) 9]
<TR>
<TD>[+ $_ +] </ TD><TD>[+ $nmenbers{$_} +] </ TD>
</ TR>
[$ endforeach $]
</ TABLE>

HTML::Mason takes a building-block approach to creating pages that stresses creat-
ing reusable pieces. It provides the same kind of tools for mixing Perl into HTML.:
<% 9% tags Perl expressions for interpolation, and any lines beginning with %are
interpreted as Perl. Longer sections of Perl code can be blocked off with the
<Yper | >and </ %per | > tags, which execute code and discard its output.

Here’s the example again using Mason’s tags:

<H2>Qur nenbers and their addresses: </ H2>
<TABLE>
% foreach (sort keys %enbers) {
<TR>
<TD><% $_ %</ TD><TD><% $nmenbers{$_} %</ TD>
</ TR>
%}
</ TABLE>

SCRIPTING IN HTML 169

170

Just from this example and discussion, it is hard to tell these modules apart. All of
them work well in Apache as mod_perl handlers or can be configured to run as CGl
scripts. If your site needs only some simple Perl code mixed into HTML, any of them
will serve you well; I'd recommend EmbPerl for its editor-friendly nature. | prefer
Mason’s architecture for more complex applications, which I'll discuss in detail after a
quick tour of template modules.

While mixing Perl and HTML appeals to programmers, templates seem to appeal
more to architects and designers. The idea behind templates is simple: a template
document contains text and directives. A template processor reads the document and
runs an associated script (or the processor is run by the script). The script then sup-
plies data to the directives. The processor prints text from the template until it
encounters a directive; then it takes data from the script and substitutes it for the
directive in the output, continuing on until the end of the template.

Template modules separate code clearly from documents. The document designer
and programmer create independent files that work together to produce the final out-
put. Template systems are in many ways the natural follow-on to SSls.

Template modules are also known as minilanguage modules when their directives
start to take on elements of programming. This speaks to the fact that creating a com-
plex document requires more than simple one-for-one substitution; they need loops,
conditionals, and nested elements. As these minilanguages build in more features, they
get closer to the embedded scripting school (and their creators lose more arguments
about the need to separate documents and code).

There are a number of template modules to choose from with varying styles. Some,
such as Text: Template allow Perl variables in directives, while others like
HTML:: Template, and the Template Toolkit keep the Perl code at arm’s length, using
named parameters to mark data that is supplied by the corresponding script.

The templates processed by Text:: Template look a lot like embedded scripts. I clas-
sify it as a template module mostly because it requires a separate program. Here is an
example that once again displays the member list, after a header showing the date:

<H2>Menbers as of {$date} </ H2>

<TABLE>
{ foreach (sort keys %renbers) {
$OUT . = "<TR><TD>$_</ TD><TD>$nenber s{$_} </ TD></ TR>\ n";
}
}
</ TABLE>

The loop looks remarkably like the pure Perl example from the previous section. Note
how the header interpolates the date: Text::Template interprets any section marked
off by {} as Perl code, and substitutes its results into the output. The loop itself has
no output, but uses the special variable $OUT to accumulate the rows of the table.

CHAPTER 7 COMBINING PERL AND HTML

To use this template, we need a Perl script to supply values for $dat e and
%renber s, and then call Text:: Template. A minimal version might look like this:

#!/usr/local/bin/perl -w

use strict;
use Text:: Tenpl ate;

nmy Y%aranms = (
"date' => scalar(localtine),
"menbers' => {
' Theo Petersen' => 'theopetersen@ahoo. cont,
"Ima User' => 'user@xanple.site',
h
)i
ny $tenpl ate = Text:: Tenpl at e- >new(
TYPE => ' FILE,
SOURCE => 'nenbers.tnmpl"',
pri 21t "Content-type: text/htm\n\n";
print $tenplate->fill _in(
HASH => \ %par ans,
)i
Text::Template allows the script to pass the data to the template in a number of ways,
including local variables. This example builds all of the template’s data into a hash,
%par ars, which has elements for each variable named in the template. Note that
the menber s element is itself a hash.
After building the hash it loads the template from the file menber s. t npl into
a processor object, $t enpl at e. It then runs the template viathe fi I | _i n method,
passing in the %par ans hash. The output of fi I | _i n is the completed template:
<H2>Menbers as of Wed Jun 28 14:47:23 2000</ H2>
<TABLE>

<TR><TD>l ma User </ TD><TD>user @xanpl e. si t e</ TD></ TR>
<TR><TD>Theo Pet er sen</ TD><TD>t heopet er sen@ahoo. conx/ TD></ TR>

</ TABLE>

Text::Template is not at all puritanical about separating documents and code, as you
can see; it uses Perl code for directives in nearly all cases. The script that uses the tem-
plate generally does whatever database work is needed to load the data, then calls
Text::Template to run the logic embedded in the document.

By comparison, HTML::Template enforces the separation quite strongly—the
template and code communicate only through named parameters. A template for our
example would be:
<H2>Menbers as of <TMPL_VAR NAME=DATE></ H2>
<TABLE>

<TMPL_LOOP NAME=MEMBER LI ST>
<TR><TD><TMPL_VAR NAME=NAME></ TD>

SCRIPTING IN HTML 171

172

<TD><TMPL_VAR NAME=EMAI L></ TD></ TR>
</ TMPL_LCOOP>
</ TABLE>

The new tag <TMPL_VAR> tells HTML:: Template to substitute the named variable
into the document. The <TMPL_LOOP> </ TMPL_LOOP> block provides looping as
the name suggests. The template processor expects an array of the given name, whose
rows contain the variables to be substituted within the enclosed block. Any literal text
in the block is repeated for each row in the array.

Here is the corresponding script:

#!/usr/local/bin/perl -w

use strict;
use HTM.:: Tenpl at g;

ny $tenplate = HTM.:: Tenpl at e- >new
(filename => 'nmenbers. htnp');
$t enpl at e- >par anq
' DATE' => scal ar(localtine),
' MEMBER_LI ST' => [
{" NAME' => 'Theo Petersen',
"EMAI L' => 'theopetersen@ahoo. com},
{"NAME' => 'Inma User',
"EMAI L' => 'user @xanple.site'},
I
)i
print "Content-type: text/htm\n\n";
print $tenpl at e->out put;

The script loads the template document into a processor object, then feeds it data via
the par ammethod. Note that DATE and MEMBER_LI ST correspond to the names
given in the first <TMPL_VAR> tag and the <TMPL_LOOP> tag. Each row of
MEMBER_LI ST is a hash containing more variables—rather as if each were another
call to par am just for that row.

HTML:: Template is also editor-friendly, in that all of the tags can be written in a
comment style:

<l-- TMPL_VAR NAME=DATE -->

In real-world usage, most of the logic of an HTML:: Template script is involved in
building up the arguments to par am Since the arguments to par amform a hash,
the order of the elements isn't important, so the logic of the script doesn't have to
match the flow of the document. If there were several tables involved, the script
would need to build a corresponding number of arrays, each loaded with hash values.
The order of rows in arrays is important of course, since the document will display
the data in the same order for that array. After doing all that, invoking the template
and getting its output are trivial.

CHAPTER 7 COMBINING PERL AND HTML

The document can also contain some logic—there are <TMPL_I F> and
<TMPL_EL SE> tags—but in general the code and template are completely separate.
One can imagine having a script supply data for multiple templates, either in different
languages or displaying different sets of data. Documents (and further templates) can
be pulled in via <TMPL_I NCLUDE>, though a common method among developers is
to process a template and pass its output to another template via <TMPL_ VAR>.

The Template Toolkit has perhaps the most impressive pedigree of any of the mod-
ules discussed in this chapter. It had previous incarnations as Text::MetaText and
other tools, and sports a long list of contributors and add-on modules. Version 2 was
a major overhaul to improve performance, which made this module the target to beat
in speed comparisons with the other tools I've mentioned. One of the major success
stories of the Toolkit is Slashdot (http://slashdot.org/), the popular news site. The
Slash engine is Open Source also, and many community site builders are learning
about Template Toolkit as they learn Slash. See chapter 8 for more information on
Slash and community sites.

The Toolkit is also the ultimate minilanguage module, defining so many directives
that one questions the mini part. Besides the usual tags for interpolating variables, it
has two styles of loops, four conditionals, function calls, includes, macros, filters,
directives for loading its own plug-ins, and even an optional directive to embed Perl
code. This leaves the Text:: Template fans asking “why not just use Perl,” but the Tool-
kit's power is worth a closer look.

As always, here is the member list template:
<H2>Menbers as of [% date % </ H2>
<TABLE>

[% FOREACH nenber = menber_list %
<TR><TD>[% nenber . nane % </ TD>
<TD>[% nmenber . emai | % </ TD></ TR>

[% END %
</ TABLE>

And the corresponding script:
#!/usr/local/bin/perl -w

use strict;
use Tenpl at e;

ny $tenplate = Tenpl ate->new() ;
my Y%paranms = (
'date' => scal ar(localtine),
"menber _list' => |
{'name' => 'Theo Petersen',

"enmi | => 'theopetersen@ahoo. com},
{'name’ => 'Inma User',
"email' => 'user @xanple.site'},

SCRIPTING IN HTML 173

1.4

174

print "Content-type: text/htm\n\n";
print $tenpl ate->process(' nenbers.t2k', \%arans)
|| die $tenplate->error;

Variable interpolation is handled by putting the name of a parameter into a [% %
tag, as shown in printing the date. More interesting is the FOREACH directive; this
takes a list parameter and iterates the enclosed block for each row in the list. In this
case, the list contains hashes, and the Toolkit has a distinctive syntax for getting the
hash members—they are interpolated as [% menber. nane %4 and [% nmem
ber. emai | % respectively.

Apart from those differences, it is hard to tell the Toolkit from HTML:: Template
just by this example. The real power comes in the use of its plug-ins, such as its DBI
interface. To see more of what the Template Toolkit can do, look at its extended
example in the section titled the Template Toolkit.

HTML::MASON

Having taken a quick tour of available modules, let’s settle on one and look more closely.

My personal choice among the tools I've mentioned is HTML::Mason (or just
Mason to its fans). | like the component-based architecture and the depth of its tools.
It also comes with adequate documentation, a statement which I can rarely make.

I'd like to offer a point-by-point proof why my own choice is better than the rest,
but I don’t think there is a simple answer. After reviewing the other modules again,
trying out examples and asking other developers for their recommendations, I can say
for sure only that they’re all good. Like many choices in software, | prefer Mason
because | like the way it works, and others will pick different modules for the same
good reason.

Now that I've gotten that off my chest, I'll show you why I like Mason. You'll
also see more of it in chapter 10, which has an extended e-commerce example built
from components.

Like most embedded Perl tools, Mason started out life as a site’s private Perl module.
It has been in active development as a CPAN module for over two years, and has a
wide user base, including a number of large commercial sites. Mason has its own web
site (http://www.masonhg.com) which features example components sent in by users,
and separate mailing lists for users and developers.

Mason scores well on most buyer’s guide points. I've mentioned its extensive doc-
umentation; the users’ mailing list is very active and supportive, especially the prod-
uct’s chief programmers (Jonathan Swartz and Dave Rolsky). The list often features
examples and pointers to new working sites. Mason integrates well with other Apache
and CGl tools, so prior development isn’t lost, and it doesn’t introduce any ongoing
support costs.

CHAPTER 7 COMBINING PERL AND HTML

One of the things that | like about Mason is its learning curve: | was able to create
working documents very quickly when | first tried it, and whenever | probe deeper |
learn more about what it can do. | feel the same way about Perl itself, that it is kind
to beginners and rewards those who spend time learning its intricacies.

Since reaching its 1.0 release milestone in 2001, both Mason’s popularity and
development pace seem to have increased. New features are coming out regularly, so
take a look at the web site for the latest information.

Mason can be installed via CPAN (remember that the module is called
HTML::Mason), but requires some manual steps to run.

1 After unpacking the distribution (or installing it via CPAN), look for
Conf i g. pmunder Mason’s directory. This module defines some global config-
uration information which tells Mason how to store cache information. The
default is to use GDBM_File, but if your system doesn’t have that module or
you prefer otherwise you can switch it to DB_File or another hash file database.

2 You will need to choose a component root and a data root, explained in more
detail in this chapter. The component root is the top-level directory for Mason
files, much like Apache’s document root. The data root is for Mason’s tempo-
rary files and cache data. | put my Mason components under Apache’s root in
/usr /1 ocal / apache/ mason, and set the data root to the same directory |
use for other application files, / usr/ 1 ocal / apache/ dat a. Remember to
set permissions on the directories so that Apache’s user can read and write files.

3 For a simple Mason configuration you can set up everything you need in your
mod_perl configuration, but for most applications you will probably want a
custom handler script for Mason requests. The distribution ships with exam-
ples such as handl er. pl which do the minimal work needed. I use an
enhanced version of sessi on_handl er. pl which sets up sessions the way
my other examples do. Copy your handler of choice to another directory (I put
minein/ usr /1 ocal / apache/ | i b/ perl/ mason_handl er. pl)andedit
it to pass Mason the component and data roots, or set those values in the config-
uration file as shown in step 4.

4 Add Mason to your mod_perl configuration. If you aren't using a custom han-
dler, then set the values for the component and data roots:

Per| Set Var MasonConpRoot /usr/ | ocal / apache/ mason
Per| Set Var MasonDat aDi r /usr/|ocal / apache/ data
Per | Modul e HTM.: : Mason: : ApacheHandl er

If you are using a custom handler, then load it via Per | Requi r e:

Per| Require /usr/local /apache/lib/perl/mason_handl er. pl

HTML::MASON 175

176

Note the use of Perl| Require rather than Per| Modul e to load nmason_
handl er. pl . The handler script is actually part of HTML::Mason, but lives out-
side of it for ease of modification. By either method, you'll also need to tell Apache
which files are Mason components:

Al'ias /mason/ "/usr/local /apache/ mason/"
<Locati on /nmason>

Set Handl er perl -script

Per | Handl er HTM.: : Mason

Def aul t Type text/htm
</ Locati on>

The Alias directive maps Mason’s component root onto URLS beginning with /mason.
The DefaultType shouldn't be necessary if your Mason files end in .html, but I prefer
distinctive file types as you'll see in my examples.

You should be ready to try out the examples in the distribution. If you want to run
my examples without change, you’ll probably need my handler script (which you'll
find on the book’s web site along with the examples).

While Mason can be used to simply embed Perl into HTML, its real usefulness is
for creating more complex documents. Mason builds documents out of pieces
called components.

A component contains HTML (probably interspersed with Mason tags) and Perl
sections. The component that corresponds to a requested URL is called the top-level
component; it also controls the general page layout. A component can contain all of the
content for a page, or can refer to other components for pieces. These subcomponents
can refer to additional components and so on.

Suppose our company’s web site offers various reports that exist as text files. Our
Mason example is a page that offers a list of reports and lets the user display selected
reports on his browser. The top-level componentisr eports. mht m 3

<& /header.ncnp, title => 'Reports' &>
<H2>Reports for
<% $session{' usernanme'} || 'Anonynous' % </H2>
<TABLE>

<TR><TH>Nane</ TH><TH>Si ze</ TH><TH>Dat e</ TH></ TR>
% if (my @iles = $m >conp('reportlist.nmnp')) {
% foreach ny $file (@iles) {

<& reportEntry.ntnp, file => $file &

% }
%}
% else {

3 In my examples, top-level components end in . mht m and subcomponents end in . menp. This
choice is arbitrary, and Mason is perfectly happy with any names, although it is best to use some con-
vention that allows your handler to prevent users from accessing subcomponents by URL.

CHAPTER 7 COMBINING PERL AND HTML

No reports avail abl e.
%}
</ TABLE>
<& /footer.nmcnmp &

This example is very different from the earlier Mason demonstration of embedded
Perl. There is relatively little HTML; most of the content is contained in <& &> tags,
so let’s start there.

In Mason, the <& &> tag is used to invoke a component. The tag contains the
component path followed by arguments specified as key-value pairs (as with hash ele-
ments). A component path can be absolute or relative, like a URL. /header.mcmp is
an absolute reference, so the corresponding file should be under the component root.
The component receives ati t | e argument whose value is* Reports' .

Here is header . ncnp:
<! DOCTYPE HTM. PUBLIC "-//| ETF//DTD HTM.// EN'>
<HTM.>

<HEAD><TI TLE><% $ti tl e %</ TlI TLE></ HEAD>
<BODY BGOOLOR="#FFFFCC' >
<H3>Wel come to Not Your Actual Site.comnl </ H3>
<%ar gs>
$title => 'ww. exanpl e.site'
</ Y%ar gs>

This component contains considerably more HTML. It has the usual document
opening, a <HEAD> block and the opening <BODY> tag. Inside the <TI TLE> is an
example of Perl variable interpolation, which we saw in the previous example:
<%$t it | e % is replaced with the value of the $ti t | e variable. This variable is in
turn passed as an argument from the calling component.

Arguments are specified inside the <%ar gs> tag block. Each line specifies one
argument, giving the name followed by a default value if any. If an argument doesn’t
have a default value, the component’s caller must supply a value or Mason will indicate
an error.

The header . ntnp component was invoked by the top-level component like so:

<& /header.ncnp, title => 'Reports' &>

Thus inside of header. ncnp we expect <% $title % to be translated to
' Reports' . The component also includes the standard HTML header tags and sets
a background color for the document, then displays a simple banner. The color and
banner line could have been arguments as well.
Looking back at the top-level component, let’s skip down to the end to look at
f oot er. ncnp:
<p><H6>Copyri ght 2001 by exanpl e. site</H6>

</ BODY>
</ HTM.>

HTML::MASON 177

178

This component contains the matching </ BODY> and </ HTM_> tags for the blocks
that were opened in the header component. It also puts a copyright notice in fine
print at the bottom of the page. It doesn't have any Perl code or arguments—compo-
nents can be simple text.

By using components for document headers and footers, Mason makes it easy to
standardize a site. Other common elements such as navigation bars or notices can be
incorporated into all of your pages without having to change each page when a link
or the text of a message changes.

Back to the top-level component—after the header, it displays a title that includes
an interpolated Perl expression:

<% $sessi on{' usernane'} || 'Anonynmous' %

For the moment, let’s not worry about where %sessi on comes from—you'll see it
initialized later in the discussion of the session handler. Note that we can have any
simple Perl expression in a <%% tag, including function calls or computed values. In
this case, if the username is set in the session, then that value is displayed; if not, it
displays ' Anonynous' .

The top-level component then sets up a table and prints the column headers. The
rows of the table are displayed by a f or each loop:
% if (my @iles = $m>conp('reportList.mcnp')) {
% foreach ny $file (@iles) {

<& reportEntry.ncnp, file => $file &

% }
% }
% else {

No reports avail abl e.
%}

The list of reports and the rows of the table are both supplied by yet more compo-
nents. Lines beginning with %are straight Perl, used here to more easily intersperse
code, HTML, and component tags. Code can invoke components too as seen here:
$m >conp(' reportList.ncnp') calls the named component as if it were in
<& &> tags, even allowing us to pass arguments if desired. $mis the Mason request
object; it is passed to all components, as is the Apache request in $r. The conp
method is used to invoke a component and pass its output (if any) to the calling
Perl code.

Hereisreport Li st. ncnp:
<Yper| >

if (opendir REPORTDIR, $reportDir) {
nmy @eports = grep /\.txt$/, readdir REPORTD R
cl osedir REPORTDI R,

return @eports if @eports;
}

return ();
</ Yper| >

CHAPTER 7 COMBINING PERL AND HTML

<%ar gs>
$reportDir => '/home/reports’
</ %ar gs>

This component makes the list of reports, and consists entirely of Perl code. Rather
than marking each line with % it uses the <%per | > tag to set off the section that
looks for report files. It receives one argument, $r epor t Di r, which is defaulted to
/ home/ r epor t s if the caller doesn't supply a value. It scans through the directory
looking for files that end in .t xt, and returns a list of them. In a component,
r et ur n works the same as it does in a Perl function, ending further execution.
There is reason for debate over the value of a component that contains just Perl
code. On the one hand, keeping all the code together in components is convenient for
developers, and has the advantages of automatic recompilation when code changes.
On the other hand, a regular function in a module makes more sense for anything
beyond the scope of short scripts of the kind seen here.
The return value in this example is supplied to the caller’s f or each | oop. Inside

that loop, each file name is passed to r epor t Ent ry. ncnp:
<TR>

<TD><A HREF="reports/ <% $file %" ><% $| i nk %</ A></ TD>

<TD><% $si ze %</ TD>

<TD><% scal ar (| ocal ti ne($date)) %</ TD>
</ TR>
<%ar gs>

$reportDir => '/hone/reports’

sfile
</ Y%ar gs>
<% nit>

ny $link = $file;

ny ($size, $date) = (stat("$reportDir/$file"))[7,9];

$file .= " .htnl";
</%nit>

This component demonstrates good structure for a nontrivial Mason component: the
output HTML is all at the top, followed by argument processing and then code in the
<% ni t > section. The HTML section makes use of values passed in directly or set by
the Perl code section. Having things in this order makes for a clean break between
display and code, and doesn't bother Mason’s interpreter in the least: it handles the
<%ar gs> section first, then the <% ni t > section, then executes the rest of the Perl
code in order of appearance.4 Use of <% ni t > for readability is strongly encouraged
among Mason developers.

4 The <% | eanup> and <%ence> tags also have special execution times, and there are other tags that
set up variables or create components. See the HTML::Mason documentation for details.

HTML::MASON 179

180

Note how each line of the report contains a relative URL. Each file becomes a link
under /mason/reports, although that’s not where the files are. We’ll look at Mason’s
tool for handling missing files in the section on dhandlers.

Now that we have a substantive example, let’s see what Mason does when a user
requests reports.mhtml.
First the browser sends Apache a request for:

http://www.example.site/mason/reports.mhtml.

That URL matches the pattern we assigned to Mason in nod_per| . conf, so
Apache passes the request along to the handler you created (mason_handl er . pl

in my example setup). The handler does any setup work you've given it,° then passes
the request to Mason via the call to:

HTM.: : Mason: : ApacheHandl er: : handl e_r equest .

Mason finds the requested component (or not—see the next section on what happens
when a component is missing) and compiles it into Perl function. If there is a
<%ar gs> section, each line is changed into a nmy variable (and initialized if there is a
default value). Literal text in the component is replaced with calls to Mason’s output
routine, passing the text as an argument. The compiler converts <& &> tags into calls
to $m >conp; these will in turn load and compile their respective components.
<%% tags and other Perl sections are added to the function more or less as-is
(though the <% ni t > section is moved to the beginning of the function). If any-
thing goes wrong during this phase it logs the errors and sends an error page back to
the requester.

Assuming everything is compiled, Mason then calls $m >conp for the top-level
component. If the original request to Apache included parameters (either in the URL
or via the POST method) Mason turns them into arguments for the top-level compo-
nent. That means a top-level component can have a <%ar gs> section and receive
named arguments just as a subcomponent can.

The component’s function runs, generates output, and sends the results (via
Mason, and via Apache in turn) back to the browser. If the URL and the components
don’t contain any clues, the browser will have no way of knowing that the document
was generated on the fly.

On subsequent requests for the same top-level component, Mason skips the com-
pilation step after checking its cache and verifying that its code is up to date. After you
set up some components, take a look in the directory you gave Mason as the data root.

5 Your customized handler is a good place to do any added security checking. A session-oriented handler
loads or creates a user session in this phase also.

CHAPTER 7 COMBINING PERL AND HTML

There will be a subdirectory of files named the same as your components, containing
the Perl code that Mason generated.

To see Mason’s cache checking in action, make a visible change to one of your
components and then request it again. You may need to tell your browser to ignore
its own cache and really send the request to the server. The change is reflected
immediately. Behind the scenes, Mason checked the modification times of the com-
ponent files against the times stored in its cache, noticed the change and recompiled
anything that is new.

Checking every component file for every request can add up to a lot of work on a
busy system. See the Mason resources section later in this chapter and look in
Mason’s administration documentation for ways to make Mason’s cache checking
more efficient.

In the report list example, report files are represented by URLS such as http://
www.example.site/mason/reports/file.txt.ntml. I mentioned previously that we would
not create components for each file; instead we’ll use another Mason technique.

Since the URL matches the pattern assigned to Mason, Apache passes the request
along to Mason’s handler. Mason looks in the reports directory of its component root
(which you’ll remember is not the directory where the files are actually located) but
doesn’t find thefile. Before returninganerror, Mason checks the directory foradhandler.

A dhandler is a piece of catch-all code that can take the place of a missing compo-
nent. If you have installed my Mason examples on your system, you'll find this dhan-
dlerin/ usr/ | ocal / apache/ mason/ r eport s/ dhandl er:

<& /header.ntnp, title => $file &
<H2><% $file % as of <% $date %</ H2>
<PRE><% $body %</ PRE>

<& /footer.ncnp &

<% nit>
ny $file = $m >dhandl er _arg;
$file =~ s/\.htnl $//;
$file = "/hone/reports/ $file";
ny ($date, $body);
$date = -M $file;
if ($date) {
$date = | ocal ti me($date);
if (open(REPORT, '<', $file)) {
local ($/) = undef;
$body = <REPORT>;
cl ose(REPORT) ;
}
el se {
$body = ' Cannot open file';
}
}

HTML::MASON 181

182

el se {
return NOT_FOUND;

<3 % ni t>

As you can see, a dhandler looks more or less like a regular Mason component. The
main difference is that it uses a special function, $m >dhandl er _ar g, to find out
the path of the component that it was called to replace. In this example the name of
the report file is part of the path, so the dhandler takes off the . ht m extension and
uses the remainder to look for the text file in the real reports directory. The <% ni t >
section gets the modification date of the file and loads the text into $body, both of
which are then interpolated in the text of the component. A <PRE> block is used
around the text to preserve the file's formatting.

Notice that the dhandler component reuses the header and footer components we
saw previously. It invokes them via absolute paths, since this component lives in a sub-
directory of the component root.

dhandlers could be used in any circumstance in which you want to create the illu-
sion of a directory or can generate a component based on path information. For exam-
ple, an image database could use dhandlers to serve up both images and thumbnails.
One dhandler would retrieve the image and send it as-is, while another could use a Perl
module to reduce the image size and send the result.

When Mason goes looking for a dhandler, it starts in the directory where it expected
to find the missing component, then looks at each parent directory in turn until it finds
a dhandler. In general, only one dhandler is called for a component, but Mason’s doc-
umentation explains how and why you can have a dhandler defer processing.

Mason has another kind of handler, the autohandler, which is called before pro-
cessing a top-level component. That technique is used in the next section.

Let’s tie this chapter’s examples into the previous discussion of security and pro-
tected pages.

Suppose our report server has documents that are not meant for the general public.
Web sites commonly gather usage statistics® and make them available to administra-
tors. We could protect such reports via HTTP authentication, but in this case we’ll use
more features of Mason to do the job.

We'll set aside a subdirectory of Mason files which will contain protected docu-
ments and applications, and call it pr ot ect ed as we did in previous examples. When
a user requests a URL under http://www.example.site/mason/protected we want to

6 There are a number of free tools that will analyze Apache’s access log and generate statistics on usage
of your site. Many of these tools are written in Perl; there is even one written in Mason, available from
the component archive.

CHAPTER 7 COMBINING PERL AND HTML

automatically present him with a login form if he isn’t already authenticated. We'll
track authentication via the session mechanism.

In order to check every request to the protected directory for authentication we’ll
use an autohandler, a component which runs before the top-level component. Auto-
handlers are like dhandlers in that they apply to a directory and its children. However,
autohandlers apply only to components that exist, while dhandlers take the place of
components that don’t exist. Also, if a component’s parent directories contain auto-
handlers, all of them are run from the top down. The autohandler is then responsible
for running the requested component.

The simplest kind of autohandler is one which enforces document standards such
as headers and footers. For example, we could have an autohandler in our component
root which looks like this:

<& /[header.ncnp &
% $m >cal | _next;
<& /footer.nmcnmp &

Remember that the autohandler will be called for each top-level component in its
directory or a child directory, so if this code were in the component root (in a file
called aut ohandl er) it would be invoked for every Mason request. It invokes the
header and footer components that we've seen before; in between it calls
$m >cal | _next, a function that is peculiar to autohandlers. cal | _next invokes
the requested top-level component along with its arguments, or the next autohandler
in the chain of execution.

While the example autohandler is convenient for enforcing standards, we should
note that we've lost the capability for each top-level component to pass a title to
header . ncnp. Mason’s developer documentation explains how to use component
attributes and methods to work around this. The autohandler could request the title
and other attributes from the component.

An autohandler isn’t restricted to just invoking the requested component. It can
present a different page entirely, as this example does in / usr/ | ocal / apache/
mason/ pr ot ect ed/ aut ohandl er:

<& /header.ncnp, title => 'Protected pages' &>
<Y%per| >
if ($session{'authenticated }) {
$m >cal | _next ;
}
el se {
$m >conmp(' | ogin. mhtni ',
'goto' => $m >fetch_next->path,
@%$m >cal l er_args(-1)}
)
}
</ Yper| >
<& /footer.ncnmp &

HTML::MASON 183

This autohandler is mostly a Perl section, although it also enforces the header and
footer components as the previous example did. (Of course, if the previous example
were in the component root, then this autohandler wouldnt need to enforce the
standards—the higher level autohandler would already have run.) It checks for an
authentication flag in the session hash. If present, it invokes the requested compo-
nentviacal | _next.

If the authentication flag is not set, the autohandler instead uses $m >conp to
display a login component. It passes the requested component’s path via
$m >f et ch_next , along with any arguments for the top-level. f et ch_next and
cal I er_args are more Mason helper functions that are meant specifically for
autohandler use (although other components can use cal | er _ar gs too).

Let’s take a look at the login component, pr ot ect ed/ | ogi n. nht m :

%if ($session{'authenticated }) {
<& $goto &>
%} else {
% if ($password) {
<H2>User nane or password is invalid.</H2><P>
%}
<H2>Pl ease enter your usernane and password</ H2>
<FORM METHOD=" PCST" >
<TABLE>
<TR>
<TD>User nane: </ TD>
<TD><| NPUT TYPE="text" NAME="user nanme"
VALUE=" <% $user nane %" S| ZE=10></TD>
</ TR>
<TR>
<TD>Passwor d: </ TD>
<TD><| NPUT TYPE="password" NAME="password" S| ZE=20></TD>
</ TR>
</ TABLE>
<I NPUT TYPE="subnmit" VALUE="Log in">
</ FORM>
%}

<%r gs>
$user name => $session{' usernane'} ||
$password => "'
$goto => "'

</ %ar gs>

<% ni t>
if ($username && $password) {
ny ($try) = $dbh->sel ectrow array
(' SELECT password FROM Users WHERE usernanme = ?',
undef, $usernane);
if ($try & S$try eq crypt ($password, $try)) {
$sessi on{' aut henticated"'}++;
$sessi on{' usernanme'} = $usernaneg;

184 CHAPTER 7 COMBINING PERL AND HTML

}
}

</ %nit>
Thisis the biggest component we've seen yet, so let’s break it down in order of execution.

The <%ar gs> section shows that the login component is expecting a username,
a password, and the component to go to after successful authentication. None of the
arguments are required, since the username and password won’t be present when the
form is first displayed and the user may have requested the login form directly.

The <% ni t > section does the authentication check, using code that we’ve seen
in our previous examples. Don’t worry about where $dbh came from. It is initial-
ized in the same place as the session hash, as will be shown in the next section. If the
given username and password are valid, the section also sets the authenticated flag in
the session hash and stores the username there too. You may recall that previous
example components displayed the username in a banner if it was set—that value
comes from here.

Now for the actual page contents. If the authenticated flag is set, the component
simply evaluates to <& $got o &> which invokes the component whose path is in
$got 0. That component is the one that originally triggered the autohandler. We’ll
come back to this in a moment.

If the authenticated flag isn’t set, the component displays a form and defaults in
the username if one was passed in or was set in the session. This is a convenience for
anyone who is logging in again after a timeout or had a typo in his password. Since
the form doesn’t set an ACTI ON attribute, the default action will be to return to this
same URL (and thus this component) when the user clicks the Submit button.

The order of actions for authentication is:

1 The user requestsa URL under /mason/protected, thus triggering the autohandler.

2 Theautohandlerseesthatthe userisnotauthenticated,andsocallsl ogi n. nht mi
instead, passing the requested component as an argument.

3 1 ogi n. mht m doesn'tsee avalid username and password, so it displays the form.

4 The user fills in the form (correctly, let’s say) and clicks Submit, which sends a
request for the same URL he'd requested in step 1.

5 The autohandler once again invokes | ogi n. mht m, and again passes the
requested component.

6 | ogi n. mht M checks the username and password, and sets the authenticated
flag. It then displays the requested component.

Here is an example component, secur eReports. nmht mi , that can reside in the
pr ot ect ed directory:

<H2>Secure reports for <% $session{' usernane'} % </ H2>
<TABLE>
<TR><TH>Nane</ TH><TH>Si ze</ TH><TH>Dat e</ TH></ TR>

HTML::MASON 185

186

% foreach ny $file ($m >conmp('/reportlList.ncnp',
% ‘reportDir' =>"'/home/secure')) {
<& /reportEntry.ntnp, file => $file,
reportDir => '/hone/secure' &>
%}
</ TABLE>

This version closely resembles r eports. mht i, except that it passes a different
directory to the reportLi st and report Entry components, and its banner
assumes the username is set in the session hash (and it will be before this component
is shown). The header and footer are also absent—the autohandler took care of them
for us.

Now that we have secured pages, let’s see where that session hash comes from.

Mason includes an example of a session managing handler, session_
handl er. pl . | used it as the basis for my own, changing the session store to
MySQL and adding in the initialization of a global database handle. This makes the
Mason examples compatible with the scripts and handlers from the previous chapters.

This is the short version of my modified sessi on_handl er . pl ; the longer ver-
sion integrates URL-based sessions, but that adds considerable complexity, since the
URL has to be remapped onto components after the session 1D is removed.

package HTM.:: Mason;
use strict;

use HTM.:: Mason: : ApacheHandl er (
‘args_nethod' => 'nod_perl",
)

use HTM.:: Mason;

use Apache: : Session: : MySQL;

use Apache: : Cooki e;

use Apache:: Constants gqw(: common);

Note (as | mentioned previously) that the handler puts itself in the HTML::Mason
package. If you'll recall the Apache configuration section for Mason you'll realize
why this is—HTML::Mason is registered as the Per| Handl er, so naturally the
handl er function needs to be in that package.

The extra arguments passed to HTML::Mason::ApacheHandler tell that module to
use Apache::Request to parse CGI input arguments. It also upgrades the request object
($r in each component) to an Apache::Request instance. The default is to parse inputs
with CGIl.pm.

{ package HTM.:: Mason: : Conmmands;
Mobdul es and variabl es that conponents will use.

Include Constants again here to give conponents
its exported val ues.

CHAPTER 7 COMBINING PERL AND HTML

use vars gqw $dbh %ession);
use Apache:: Constants gw(: conmon);

}

The package command at the beginning of this section places the variables and
use statements in HTML::Mason::Commands, the package where components run.
Thus anything we put here will be available to components, which is why they didn't
have to declare the session hash or database handle. Note the use of use vars,
which makes the indicated variables available anywhere in the HTML::Mason::Com-
mands package.

Components that need particular modules can also invoke them via use state-
ments, in their <% ni t > sections, a <%per | > block, or wherever it is logical and
convenient.

Set up Mason interpreter and Apache handl er.
ny $interp = HTM.:: Mason: : | nterp->new
(' parser' => HTM.:: Mason:: Parser->new,
‘conp_root' => '/usr/l|ocal/apache/ mason',
"data_dir' => '/usr/local/apache/data',

)
ny $ah = HTM.:: Mason: : ApacheHandl er - >new

("interp' => $interp,
"top_level _predicate' => sub {$_[0] =~ /\.nhtm $/},
)

This section initializes the required Mason objects. Notice the component and data
root directoriess—Mason gets those values here, not from the configuration module.
Multiple handler instances can have different roots.

The Apache handler object ($ah) takes an incoming Apache request and turns it
into a call to the interpreter. As a convenience it allows us to specify which compo-
nents are allowed to be invoked by users—that’s what the t op_I evel _predi cate
attribute does. When | introduced top-level and subcomponents | suggested that all
have distinctive file names. If you can tell one from the other via a simple pattern
match as shown here then you can have Mason refuse to serve anything which doesn’t
look like a top-level component.

Make Apache's user the owner of files Mason creates.
chown(

[get pwnant(' nobody')]->[2],

[get grnanm(' nobody')]->[2],
$interp->files_witten
)
This section resets the ownership of Mason’s temporary files. Pass chown the user
and group that you configured in ht t pd. conf . If Apache isn't running as root, this
section will silently fail, but that’s okay—if Apache is running as the target user then
the file ownership will be correct anyway.

The handler function finally gets under way:

HTML::MASON 187

Cet session info and dispatch the request.
sub handl er {

my ($r) = @;

Connect to the session database.
unl ess ($HTM.: : Mason: : Conmands: : dbh) {
$HTM.: : Mason: : Commands: : dbh =
DBl - >connect (' DBl : nysql : I nfo: | ocal host',"'web',' nouser')
or return SERVER_ERROR;
}

The database handle is initialized once in each server child process, then reused by
each request. Then we look for a session ID as other examples have:

Look for a session IDin a cookie.

ny @ds;

ny $cooki es = Apache: : Cooki e- >f et ch;

push @ds, $cookies->{'ID }->value if $cookies->{'ID};
push @ds, undef;

The code uses the | D array technique from previous examples, making it easier to
add URL-based session I1Ds. As with previous examples, it loops through the possible
IDs although in this case there is only the 1D from the cookie, if any, and undef :

Load or create the session.
foreach ny $try (@ds) {
eval {
tie %TM.:: Mason: : Conmands: : sessi on,
' Apache: : Session:: MySQ', $try,
{' Handl e’ => $HTM.: : Mason: : Conmands: : dbh,
' LockHandl e' => $HTM.: : Mason: : Conmands: : dbh};
b
| ast unless $@
}
unl ess ($HTM.: : Mason: : Conmands: : session{' _session_id"'}) {
warn "Unable to create or load a session: $@;
return SERVER ERRCR,

}

Note that Mason’s handler can return Apache error codes while processing a request,
if there is a problem in Apache::Session as there is in this case. Also note the fully
qualified variable name for the session hash and database handle—the handler func-
tion and those variables are in different packages.

Assuming things went well, send back a cookie with a reasonable lifespan:

Send back (or refresh) a cookie.
ny $cooki e = Apache: : Cooki e- >new
($r,
-name => '|ID,
-val ue => $HTM.: : Mason: : Conmands: : sessi on{' _session_id'},
-expires =>"'+1h',
-path => '/ mason',

188 CHAPTER 7 COMBINING PERL AND HTML

):
$cooki e- >bake;
This handler doesn't automatically expire sessions since they are used for secure and
public pages. If tighter security is an issue, the autohandler for the protected pages
could handle expiration of the authenticated flag separately from the session.
The final section finally hands the request off to Mason, then cleans up:

Pass the real work off to HTM.:: Mason:: ApacheHandl er.
ny $status = $ah->handl e_request ($r);

Clean up.
unti e 9%dTM.: : Mason: : Conmands: : sessi on;
return $stat us;

}

ApacheHandler's handl e_r equest function handles the mapping of Apache
request ($r) to the corresponding Mason component, and calls the interpreter. It also
handles input parameters, turning them into arguments for the top-level component,
and provides ways of controlling output, error messages, debugging, and other
options. See the Mason documentation for more details.

That wraps up the Mason examples. Let’s look briefly at other tools Mason offers
to site managers.

One of the things I like about Mason is its active community. Examples, problem
solutions, and neat tricks are often posted to the mailing list, and the developers
respond quickly to suggestions.

An example of the community nature of Mason users is the component archive
on the Mason headquarters web site, http://www.masonhg.com/. While the archive
isn’t huge, you may find something you need there, or at least a few good examples
to follow.

Components on the archive range widely in size from date menu widgets to a com-
plete frequently asked questions manager. There is also a log analyzer for creating sta-
tistics from Apache’s access log and a CGI-to-email bridge.

The headquarters site also has links to other sites developed with Mason. If you
see something you like and ask nicely, you can probably get tips from those develop-
ers as well.

The most extensive Mason tool available on the site is not in the archive. The
Mason Content Manager (CM) is a suite of site management tools controlled through
CGl. It includes site browsing, file search, uploads via FTP, and editing of pages in-
place. CM optionally includes version control support via RCS and staging of a com-
plete site revision from development to production. See chapter 11 for examples of
CM in action.

CM’s editor includes some nice features for component developers. You can set up
a boilerplate document to be used as a starting point for new components, and CM’s

HTML::MASON 189

7.5

190

spelling checker can validate component text while ignoring HTML and Mason tags.
Saving or transferring a component automatically triggers compilation, so errors are
discovered early.

Earlier, when discussing how Mason’s cache worked, | mentioned that there was
a way to make the cache checking more efficient. CM has built-in support for Mason’s
reload file feature, explained in Mason’s administration documentation. The reload
file takes the place of the individual component file tests. Only the modification time
of the reload file is checked, and when Mason notices a change it recompiles compo-
nents indicated in the file.

As with any web tool, Mason and its tools and modules are always changing, so take
a look around the headquarters to see what’s new.

THE TEMPLATE TOOLKIT

Having taken a close look at an embedded Perl module, let’s also give templates a
longer look. I'll use a shorter example here than in the Mason section, since the
basic application techniques of embedded Perl apply here also; we'll focus just on
what is different.

The Template Toolkit is my favorite module of this camp, for its rich set of tools
and add-ons that provide for very smart templates. Besides the basics of variable inter-
polation, loops and conditionals, Template Toolkit implements real display logic in the
template side, making the template and associated script equal partners in building
pages. The script’s job is to supply the needed data and environment. The template
builds the page based on that environment, but is free to request more than the script
provides via its own tools.

Some of its critics say that Template Toolkit goes too far, preferring the strictness
of HTML:: Template in limiting the template to very simple logic and interpolation.
Having worked with both, I can see their point when the templates are written by
designers with a very strong HTML focus and not much database or programming
experience; the script handles all those details and the templates aren’t much more
complicated than normal web documents.

The problem | found with the HTML:: Template approach was that the program-
mers had to supply every nit-picking detail required by the templates, when it made
more sense to me for the templates to be able to do simple formatting and other data
manipulation on their own. Using Template Toolkit, the template can, for example,
set the case of text information, the format of numbers and dates and other basic kinds
of display rules.

Also, my own work group includes web designers with programming and database
experience, who readily took up Template Toolkit’s minilanguage to build very smart
templates. The result of both the display rule advantages and the wider set of logical
elements made for a better division of labor in that group.

CHAPTER 7 COMBINING PERL AND HTML

Once again, the choice of modules depends mostly on finding a tool that works the
way you want to, so your experience with the same situation may lead to the opposite
choice. But give Template Toolkit a close look—there is a lot to like here.

Those who prefer embedded Perl tools will find that they haven’t lost anything in
going to the Template Toolkit; it optionally allows full Perl code sections right in the
template code. You can use these to aid your migration (and in fact you can move
Mason components or other embedded Perl pages rather easily to Template Toolkit,
showing how cross-pollinated this whole suite is), but don’t make it a long-term plan.
You will do far better in the long run by dividing the labor as the Toolkit intends, with
scripting and display cooperating in their separate roles.

Installing Template Toolkit is a simple matter of telling CPAN that you want it (the
name of the module is just Template for installation purposes), and it doesn’t require
the kind of configuration that Mason does so | won’t bother with the details here. The
Toolkit provides similar compilation and caching of templates, and is an excellent
overall performer for modules of this type.

I'll build yet another document manager as an example here, since that will con-
trast nicely with the previous work. We’ll start with an application for uploading doc-
uments into the system, then go on to a display page that shows some of Template
Toolkit’s add-on modules.

A template-based application consists of a calling script and a template file (which
may include more template files). It's reasonable to start with the script then, and see
how it sets up the environment that our templates will use.

Recall that in the Mason world, a request went to a handler first, which called the
Mason interpreter. The equivalent in template-based applications is to have a com-
mon script which receives all requests and chooses a template based on a parameter
or other information. This common script sets up global variables, initializes the tem-
plate engine, connects to the database, and does anything else that the actual applica-
tion logic needs to do its job. We could also set up a script for each page (or top-level
template, to borrow again from Mason terms) and call a common initialization mod-
ule, but the script approach seems typical.

Moving to the mod_perl world, the script naturally becomes a handler. We can
assign the handler to a location that is designated for templates (or the document root,
if we're doing everything with one package as a logical site would”) and let every URL
under that location correspond to a top-level template. The handler can then dispatch
to a function for each of those top-levels, or group them in whatever way suits the logic
of the site.

Here is t enpl at e_handl er. pm my template dispatcher:

7 I had a professor in a programming class who responded to criticism of his code by saying that he wrote
good examples, not good programs. | hope my example sites and code work in the same way.

THE TEMPLATE TOOLKIT 191

package Tenpl at eApp;

use strict;

use Tenpl at e;

use Apache;

use Apache:: Constants gw(OK NOT_FOUND SERVER ERROCR);
use Apache: : Request;

ny Y%andlers = (

ocngr' => \&Joc_nanager,

)i
sub handl er {
ny ($r) = @;
ny $file = '/usr/local/apache' . $r->uri . '.tnpl’

return NOT_FOUND unl ess -s $file;
$file =~ s{r.*/tt2/}{};

Each directory/top tenplate has its own handler.
ny ($handler) = $file =~ m~(\w+)/;
return NOT_FOUND unl ess $handl er &&

($handl er = $handl ers{$handl er});

d obal tenplate handling code.
my %l obals = (
user => $r->user,
)
ny $tenpl ate = Tenpl at e- >new({
I NCLUDE_PATH => '/usr/local / apache/tt2',
VARl ABLES => \ %gl obal s,
PROCESS => 'standard.tnpl',

1)

Call the handler for this tenplate/path.
eval { &$handl er($template, $file, $r); };
if (3@ {

warn $@

return SERVER ERROR;
}
return OK;

}

The handler starts by loading the modules it will need; by requiring this module in
mod_per | . conf, we don't need to load those modules via separate Per | Mod-
ul e directives:

Perl Require /usr/local/apache/tt2/tenpl ate_handl er. pm
Alias /tt2/ "/usr/local/apache/tt2/"
<Location /tt2>

Set Handl er perl -script

Per | Handl er Tenpl at eApp: : handl er

Def aul t Type text/htm

Aut hUser Fi | e dat a/ docngr _users

Aut hNane "Docunent nanager"

192 CHAPTER 7 COMBINING PERL AND HTML

Aut hType basic
require valid-user
</ Locati on>

The need for authentication will be apparent shortly—we don't want just anyone
uploading documents to or deleting documents from the server.

Before the handler code, | load a hash of functions that correspond to the legal
URLs; anything else is rejected. That’s fine for a small number of pages, where the
functions will all be in this one module. A more complex and robust site might map
the URL onto a module and function, and verify the legality of the URL by checking
that the function exists. There will be only one top-level URL in this example, but we’ll
see later how the corresponding code handles multiple pages.

The handler verifies that the URL it was given maps to a template (standardizing
on the use of .tmpl for Template Toolkit files here, but any extension you prefer will
work) and also that there is a handler function for the first part of the URL. This is
akin to Mason’s problem where we needed some way of ensuring that a URL mapped
to a top-level component. In this case, the existence of a function in the %handl er s
hash means that it is legal to proceed.

The next task is to set up any global data given to all templates and initialize the
template processor. The example loads only one value into the %gl obal s hash, the
authorized user as given by $r - >user . This function would return nul | if we were
on pages that weren’t under HTTP Authentication control (which would happen if,
for instance, this handler controlled both public and private pages).

The template processor is next, with these options passed to the Template object:

ny $tenpl ate = Tenpl at e- >new({
I NCLUDE_PATH => '/usr/local / apache/tt2',
VARI ABLES => \ %gl obal s,
PROCESS => 'standard.tnpl',

IOF

The I NCLUDE_PATH option tells Template where to look for both the top-level tem-
plate files and any component templates they include. Relative paths to template files
will be considered relative to this path. By default, Template Toolkit doesn't allow
absolute paths (a good security precaution), but you can override that by specifying
ABSOLUTE => 1 in the options.

VARI ABLES specifies data given to every template, the %gl obal s hash in this
case. If we were processing multiple templates with one processor, this would be useful
for common data items. In our case, it sets up the data given to any of the templates
processed by the subhandler functions.

PROCESS provides the name of a template to process instead of the one given to
the actual pr ocess function in the subhandler. That sounds odd until you look more
closely at the documentation. The template specified by the PROCESS option receives
the name of the template that pr ocess was told to handle, and thus serves as a wrap-
per for the “real” page. We'll see how shortly.

THE TEMPLATE TOOLKIT 193

194

The Template object is quite complex and can take a large number of configura-
tion options; see the documentation for details. If you want your templates to be able
to process Perl code directly, you'll need to set the EVAL_PERL option to t r ue.
There are also options for determining what Template does with the white space
before and after a directive; you can have it trim the leading space, trailing space, or
both. White space isn’t normally important in HTML, but trimming it is convenient
inside of text area inputs, preformatted blocks, and other places where blank lines and
spaces are displayed.

Having set up the environment, the handler now calls the appropriate subhandler
function, inside of an eval block. If something goes wrong inside the subhandler,
eval traps the error and lets the handler do something with it. In this case, the error
is displayed to the browser, which is fine for development and not very helpful in a
production program.

Now let’s look at that wrapper template, which works similarly to an autohandler
in Mason. Here is st andar d. t npl :
<! DOCTYPE HTM. PUBLI C "-//| ETF//DTD HTM.// EN'>
<HTM.>

<HEAD><TI TLE>[% $title % </ Tl TLE></ HEAD>
<BODY BGCOLOR="whi te">
[% PROCESS $tenplate %

</ BODY>
</ HTM.>

This is pretty standard stuff for wrapping around the guts of a web page. The pieces
of interest are the interpolation of the title ([%$t i t | e %4) and the handling of the
requested template ([%PROCESS $t enpl at e %). The title is interesting mostly
because the wrapper template received only global data; we’ll see how $ti t 1 e is set
when we look at the upload template page.

Handling the requested template is a little more interesting. As explained in the
documentation, the wrapper receives the target template as a file name in
$t enpl at e. The PROCESS directive then tells Template Toolkit to handle the
template in place, with all current data. Thus the target template will receive the
%l obal hash and the data passed to the pr ocess function; if the wrapper defined
any data of its own the target would receive that too. PROCESS is a little more effi-
cient than | NCLUDE, which would also pass along all data to the requested template,
but in localized environment that would encompass the target and leave the wrap-
per’s data unchanged.

Now let’s look at one of the target pages and see how it works with the wrapper.

None of the previous document manager examples had an upload page, so we’ll start
with one here to make things more interesting. The template is upl oad. t npl ,
under the docnygr directory. Remember how the URL has to both match a template

CHAPTER 7 COMBINING PERL AND HTML

and an entry in the %andl ers hash. The URL to run this template is http://
www.site.com/tt2/docmgr/upload.

[% META
title = "Upload files'
A
<H2>Weél conme, [% user %! Upload files here. </ H2><P>
<FORM METHOD="POST" ENCTYPE="nul ti part/form data"
ACTI ON="/tt 2/ docngr/ upl oad" >
Local file: <INPUT TYPE="file" NAME="incom ng">

Public <INPUT TYPE="radi 0" NAME="fil edest" VALUE="public"

[%IF filedest == 'public' 9% CHECKED] % END % >
Private <INPUT TYPE="radi 0" NAME="fil edest"” VALUE="private"
[%IF filedest == 'private' 9% CHECKED % END % >

Documrent nane:
<I NPUT TYPE="text" NAME="fil ename" VALUE="[%fil ename % ">
<P><| NPUT TYPE="submi t" VALUE="Upl oad">

</ FORW>

[% | F upload_error %

<P><H3>Error uploading [%file % </ H3>
[% END %
<P>[% nmessage %

This template starts off with a block enclosed by the META directive. This allows a
template to specify some data about itself; Template doesn't define or require any par-
ticular metadata. The interesting thing is that data in a META block is defined and
available at an early point in the compilation of a template, so the wrapper template
can use values set in the target. This is how the title defined in the META block here
winds up inside the wrapper’s title tags.

Other uses for the META block include version control information and file-level
switches. For example, you could define at est i ng variable in this block and use it
to turn debugging features on and off, or provide some test data for the template
before the script is fully developed.

The template doesn’'t need HTML header or body tags since the wrapper is pro-
viding those. It jumps right to the meat of the matter. The welcome line shows a typ-
ical variable interpolation—[%user % is transformed into the user name set in the
%l obal s hash, the user name provided via HTTP authentication. Then the tem-
plate builds a form that includes a file input—this is the upload widget, which the
browser will use to invoke a file dialog that lets the users find and send the file they
want to upload.

The radio button set allows the user to specify that this is a public or private doc-
ument. Note the use of conditionals to check one value or the other:

[%IF filedest == 'public' 9% CHECKED] % END % >

This will check the radio button which contains the current value of the f i | edest
parameter, which we’ll see in the template’s handler code. Template won't implement

THE TEMPLATE TOOLKIT 195

sticky parameter values for you as CGIl.pm does, but it is easy enough to work them
out yourself.

The form also has an input for the document’s name on the receiving server, and
a submit button. After that it checks to see if the handler caught an error in uploading,
and if it does, it displays an error and the contents of the f i | e parameter. It also prints
message, which could be more error text, a success message, or anything else the
code wants to be displayed to the user.

Now for the code, in doc_manager (also int enpl at e_handl er . pn):

sub doc_nanager {
ny ($tenplate, $file, $r) = @;
ny $apr = Apache:: Request - >new($r);
my %ata = ('docdir' => '/home/reports');
$data{' private'} = $data{'docdir'} . '/private';
$data{' public'} = $data{'docdir'} . '/public';

The first section receives parameters from the main handler, then gets an
Apache::Request object for parsing parameters from the request. $t enpl at e is the
Template processor object, and $f i | e is the template file that matches the requested
URL. The %dat a hash will be passed to the template, and the code sets up some file
paths for that purpose.

Then we get to the section that handles the upload page:

if ($file =~ /upload/) {
my $upl oad = $apr->paran('inconming') ? $apr->upload : O;
This code checks for the presence of the upl oad parameter; if it exists it gets an
Apache::Upload object that has the uploaded file’s name and other attributes, as well
as an open file handler.

Then we work out a path for the incoming file based on the radio button set-
tings for public or private, and untaint the filename if it doesn’t contain any danger-
ous characters:

$data{' filedest'} $apr->paran(' filedest') || 'public';
$data{' filenanme'} $apr->paran(' filenane');

if ($data{'filenanme'} =~ /"(\w+)$/) {
$data{' filename'} = $1;

}
el sif ($upload) {
$dat a{' message'} = "Illegal document name "
delete $data{' filenane'};

}
If a file was uploaded and a legal name was given, then it will save the file:

if ($upload && $data{'filenane'}) {
ny $size = $upl oad- >si ze;
if ($size < 1024 * 1024) {
nmy $fh = $upl oad- >f h;
ny @ile = <$f h>;

196 CHAPTER 7 COMBINING PERL AND HTML

$dat a{ ' message'} =
"Incomng $data{'filedest'} file is $size bytes, "
scalar(@ile) . " lines.";
nmy $path = join('/', $data{' docdir'},
$data{' filedest'},
$data{'filename'} . ".txt"
)
if (open QUT, ">$path") {
print OUT @il e;

cl ose QUT;
}
el se {
$dat a{' message'} = "Error witing to $path";
}
}
el se {
$dat af{' upl oad_error'} = 1;
$data{' message'} = "File is too large";
}

}

If one of those conditions wasn't true, it will tell the user what’s missing via the nmes-
sage parameter:

el sif ($upload) {
$dat a{' message'} || = "Enter the destination nane";
}
elsif ($dataf{'filename'}) {
$dat a{' message'} || =
"Pl ease choose a file fromyour systemfor uploading”;

}

el se {
$dat a{' message'} || = "Ready for upl oads";
}
}

The next section of the code deals with the display page. We'll skip past that and get
to the end of the function, where the Template processor is called at last:
$r->send_http_header (' text/htm");
$tenpl ate->process($file, \%lata, $r) or die $tenplate->error;

}

This code prints the standard header specifying the content type, then calls the pr o-
cess method which will do the actual work of interpreting the template. Ordinarily,
pr ocess would spew the resulting output to standard out, but we can tell it to print
via the Apache object instead by passing that as the third parameter.

The first parameter is the template to process (although the wrapper will be han-
dled first, remember) and the second is the data hash the template will use, plus the
%l obal values. The template can't tell the global and data values apart—for all it
knows, we merged the two hashes and called it with the results.

THE TEMPLATE TOOLKIT 197

198

The upload page is simple and to the point. It has the nice feature of remembering
previous inputs between runs, and welcomes the user (a good application is a friendly
application). The page is shown in figure 7.1.

Eis Eod Yiew Ssech o Booemaiis Tesks pelp Debuag @5

Welcome, theo! Upload files here.

Local file Bromge
Publiz * Felwadin
Diocumsrt nama

L pload

Fopady for LEloadls

Figure 7.1 The upload page

Now let’s go on to the more complex template used to manage uploaded documents.

In the directory page, we want to see what documents are in the public and private
areas, and also let the user delete files from either. I've shown other examples of direc-
tory listings, showing the file name, modification date, and size. In this version, we'll
take advantage of Template Toolkit’s plug-in modules to make things simpler.

The plug-in library is Template’s equivalent of Mason’s component archive,
except that most of the available plug-ins are shipped with Template Toolkit’s distri-
bution. The library is broad and useful, providing filters for data formatting and con-
version, HTML construction Kits (for those who like CGI.pm’s helper functions for
making correct tags and attributes), and more complex tasks such as database and file
system queries.

I particularly like the DBI plug-in which lets a template do its own database look-
ups (or even updates, if you are so inclined). | alluded to that capability in the intro-
duction of this section when | said the template wasn’t constrained by the calling script
when gathering data. For example, if a script passes a template a list of customer 1Ds
to display, the template can do its own queries to get customer contact information

CHAPTER 7 COMBINING PERL AND HTML

and sales history from the database. The programmer writing the script doesn’t need
to know (or more importantly, provide) all the data used by the script, leading to bet-
ter scripting and more modular design.

The simplified example I'll show here uses Template’s File and Directory plug-ins
to get information from the file system. I've shown other examples of how to do this
in Perl, but with Template we can let the libraries do the work.

The directory page will display the files in given directories and let the user delete
them. To get the contents of a directory we use the Directory plug-in, and for each
file, the File plug-in provides detailed information. We can combine the two like this
to show all the public documents:

[% USE pubdir = Directory('/hone/reports/docs/public') %
[% FOREACH file = pubdir.files %4

[%file.name B: [wfile.size WY [%file.ntine %G [%file. path %

[% END %

The USE directive loads the named plug-in and passes it parameters. In this case, the
Directory plug-in receives the directory path of interest. The plug-in interface is cre-
ated as pubdi r, and is treated by the Template minilanguage in a fashion similar to
a Perl object, particularly when we use the fi | es method to retrieve a set of direc-
tory entries.

The set of files is returned as a Template Iterator object, which the FOREACH direc-
tive uses to control a loop. Each file is displayed with its name, size, modification date,
and full path; those are all attributes of the File plug-in object. Compare that approach
to calling st at or the Perl file test operators in a hand-coded loop.

Of course, we want to do this on multiple directories, so the code above should go
into a component template that is called by the directory page. And we want to let the
user delete documents too, so there should be a form for each file. Here is the actual
directory template from my example, di rect ory. t npl :

[% META
title = 'Manage files'
%
<H2>Publ i ¢ docunent s</ H2><P>
[% I NCLUDE " i ncl udes/ showdi r.tnpl' showdir=public %

<H2>Privat e docunent s</ H2><P>
[% I NCLUDE " i ncl udes/ showdi r.tnpl' showdir=private %

<HR>

[% nmessage %

<FORM METHOD="POST" ACTI ON="/tt 2/ docngr/directory">
<I NPUT TYPE="submit" VALUE="Refresh">

</ FORW>

Note the same sort of META block as in the previous section to set the title and any-
thing else the wrapper needs to know. Then the template uses the | NCLUDE directive
to load i ncl udes/ showdi r. t npl, calling it once for each path of interest and

THE TEMPLATE TOOLKIT 199

200

passing that path via the showdi r parameter. (Yes, | could have made a loop of
paths. It’s a good example but not a good template.)

After displaying the directory contents, the template provides space for a message
from the script, such as notification of a successful deletion or an error and a form to
refresh the page. That’s all simple enough, so let’s take a look at showdi r. t npl to
see how the plug-ins are used:

[%USE dir = Directory(showdir) %
[% USE date %
<TABLE>
<TR>
<TD>Nane</ B></ TD>
<TD>Si ze</ B></ TD>
<TD>Dat e</ B></ TD>
</ TR>
[% FOREACH file = dir.files %
<TR>
<TD>[% file.name % </ TD>
<TD>[%file.size B </ TD>
<TD>[% date.format (file.ntinme) 9 </ TD>
<TD>
<FORM METHOD="CGET" ACTI ON="/tt 2/ docngr/directory">
<I NPUT TYPE="hi dden" NAME="pat h"
VALUE="[% file.path 94">
<I NPUT TYPE="subnit" VALUE="Del ete">
</ FORW>
</ TD>
</ TR>
[% END %
</ TABLE>

The Directory plug-in is loaded first, along with the Date plug-in which will let us
print a more readable form of the file modification time. The template creates a table
with headers for the file name, size, and date, then uses the same kind of loop we saw
before, iterating over the files in the directory.

When the template displays the file date, note that it passes it through the Date
plug-in to format the value. The plug-in uses Date::Calc in turn to transform the
st at value into a calendar date and time.

The template also creates a form for each line, containing the value of the file path
in a hidden field. This will get passed back to the handler if the user clicks a Delete
button, telling the code which file to delete. It’s not generally a good idea to trust hid-
den fields this way—a malicious user could alter the value in a form and tell the script
to delete more valuable files—but since this application is on a protected page, we’ll
trust it for purposes of an example.

Here is the subhandler code for this page (figure 7.2), which you'll recall is part of
the doc_manager function:

CHAPTER 7 COMBINING PERL AND HTML

elsif ($file =~ /directory/) {
if (my $path = $apr->paran('path')) {
if ($path =~ n{~($data{' docdir'}/ (public|private)/\w\ . \w)$}) {
$path = $1;
if (unlink $path) {
$dat a{' message'} = "Del eted $path";

}
el se {
$dat a{' nessage'} = "Error deleting $path: $!";
}
}
el se {
$dat a{' message'} = "Illegal path $path";
}

}

. Eip Ede View Jewch o Booimais Tasks Help Desug Gs

Public documents

Mume Siee Dale
questioradre trt 16380 21:5534 18-Aug- 3001 | Dalute

Private documents

Mame Ske Dafe

hltxt 95232 205405 16-Aug-2001 Delets |
chiftet 1725628 215407 18- Aug-2001 | Delete |
el 1 tat 1750 2154007 18- Aug-J007 | Delei |
i 2t TSN 215408 18- Aug=-201 | Eeleie |

chfat (02400 21:54:08 18- Aug-2001 Delets |
chabut 131554 215408 18- Aug- 2001 I3'-=l=h=|

Figure 7.2 The directory page

This section is considerably shorter than the upload handler, since it doesn't have
many conditions to check. It looks for an incoming pat h parameter, and if the path
matches the document directory configured into the function it attempts to delete
the file via Perl’s built-in unl i nk. Checking the path not only provides better

security, it also gives us a chance to untaint the value, which would have caused
unl i nk to complain otherwise.

THE TEMPLATE TOOLKIT 201

1.6

202

The code stores messages to the user based on the various results, and then proceeds
to the pr ocess call discussed in the previous section.

I hope this brief example has given you a glimpse of how much a template can do.
Documenting the Toolkit properly would be a book-sized project on its own, so I'll
direct you to better resources instead.

The Toolkit’s home page is http://www.tt2.org/, where you will find the current
code, documentation, and pointers to mailing lists for developers, users, and enthu-
siasts of all kinds. It also describes a number of tools built with the Toolkit, such as a
pair of programs for transforming static files into HTML, Postscript, and other for-
mats. If you maintain paper documentation as well as web pages, these tools will build
greatly on your investment in learning the Toolkit.

The Splash plug-in library is also described there, along with examples of the doc-
umentation filtered through it. Splash provides stylishly themed form elements and
other HTML building blocks that fill gaps in the basic CGI widget set. For instance,
it provides a tab box for notebook-like pages that switch content sections while main-
taining headers or other information.

If you are considering a project with Template Toolkit or just wondering what oth-
ers are doing with it, join their mailing lists and tune in. You'll find a helpful crowd
of people who are building some amazing pages.

XML ALTERNATIVES

If you are evaluating web tools, it’s very likely that you've encountered XML, another
child of the same language family as HTML. The Extended Markup Language offers
much that appeals to web developers, most importantly a cleaner separation of data,
processing, and presentation.

Many articles on XML describe a future in which XML will be sent directly to
browsers, along with style sheets and other display processing information, so that web
servers will get out of the presentation business and concentrate on applications and
data handling. That’s an exciting future indeed, but I can’t help wondering why those
articles’ authors think that XML browser developers will do a better job of adhering
to standards than their HTML ancestors have.

XML on the server side is a different issue entirely, and there are already a number
of good tools for working with XML data and style sheets in Perl, which shouldn’t be
a surprise given Perl’s web-friendly nature.

Merging Perl and XML is in some ways easier than with HTML; an XML docu-
ment with properly tagged Perl code is still a valid XML document, while all of the
HTML modules discussed in this chapter used nonstandard tags. Developers who
want to embed Perl in XML have almost as many choices for tools as those working in
straight HTML. The modules discussed in this chapter can be used with XML, either
directly (in the case of the template modules) or with some modification to handler

CHAPTER 7 COMBINING PERL AND HTML

scripts. There are also new modules that have followed on from embedded Perl tools,
such as XML::EP.

One module that covers a range of XML tools is AxKit, which offers style sheet pro-
cessing, translation to HTML and other formats, and component-based documents.
The developer has taken a very pragmatic look at web applications, and uses the tools
to emphasize that servers have to offer browsers what browsers can view, rather than
depending on any particular language standard. AxKit feels the same way about style
sheet tools, apparently, since the developer has a choice of Perl and C modules, and
this same flexibility is exhibited through the rest of the module.

Since XML is viewed as the wave of the future, this area will undoubtedly develop
rapidly, but more information at this stage is beyond the scope of this book.

That brings us to the end of Part I1. Your web site now has an excellent suite of
tools for building your applications. The next part will show examples of sites and how
these tools and other modules bring them to your browser.

XML ALTERNATIVES 203

PART

Example sites

I he server is ready and the tools are in place; it’s time to build the web site. The
following three chapters will show and discuss sample site designs:

« Chapter 8 talks about sites for news, message forums, chats, and other services
to a community of interested users.

« Chapter 9 is about intranet sites which provide applications and other services
to a fast, protected network.

» Chapter 10 covers e-commerce sites, reviewing security precautions and explor-
ing tools available for download.

8

8.1 Serving the community 208
8.2 Implementing features 211
8.3 Building asite 224
8.4 Slash, the Slashdot code 234
8.5 Online resources 235

One of the most fascinating aspects of the Internet is the way in which an impersonal,
digital medium brings people together. A quick search can locate Web sites, news
groups, chat channels, and mailing lists for most any hobby, sport, profession, or pas-
sion. Virtual communities form on the Web in ways that are impossible in the physi-
cal realm, seemingly out of nothing.

This chapter discusses community sites—desirable features, tools that provide
them, what you’ll need to build, and how to build it. The online resources section also
has a few tips for getting your site listed in the above-mentioned searches.

207

8.1

208

SERVING THE COMMUNITY

Chances are you are already a member of a virtual community—you joined by sub-
scribing to a mailing list or frequenting a web site devoted to your favorite band, TV
show, or team. Since this is such a diverse area, it is hard to pin down exactly what a
community site is, but we can list some common characteristics:

e The community is defined by a common interest, goal, or job—maybe even a
physical location.

« The site offers a mix of “official” postings and user-contributed messages. They
commonly consist of a main news page connected to forums that let users post
messages and chat rooms that allow real-time communication.

e Membership is not required. Community sites generally offer public pages.
Some sites require a user to join before posting messages, others remain com-
pletely open.

e Membership is open. Users might be able to register themselves or may be
required to go through an administrator, but generally speaking, the public at
large can join.

e The site offers links to related sites in the same or similar communities—they
are friends, not competitors.

Community sites do not have a commercial focus. Of course, hosting a site involves
initial and ongoing costs, so no one should begrudge a community site selling mer-
chandise or reasonable levels of advertising, but that should not be the main point of
the site.

Community sites are interactive. Virtual communities need meeting places and
communication. A site which offers information but doesn’t allow the readers to com-
ment and discuss that information does not build a community (though in the act of
publishing it can offer a valuable service). A successful community site takes on a life
of its own, helped and perhaps guided by its administrators but not tightly controlled
by them.

Depending on the size of the community, these sites might run on a single work-
station connected via modem or on several servers with huge bandwidth. In order to
pay their bills, high-traffic sites are naturally more commercial. One can envision a
kind of site evolution chart that shows the progression from a page on a free web host
to a local ISP to a major service provider, along with the addition of advertising and
the increasing probability of the site being bought outright.

Now, we'll discuss a few sites that show the features of a good community builder.
The sites listed here are all definitely high end and commercially funded, but they
also provide good success stories for the tools I've described in this book.

CHAPTER 8 VIRTUAL COMMUNITIES

slashdot.org

“News for Nerds. Stuff that Matters.” Slashdot provides Open Source enthusiasts,
Linux hackers, and other technophiles with links to interesting news gathered from
sites around the world, plus editorials, reviews, and the occasional feature story.
Although the site is run by an editorial staff, most of the links are supplied by eager
community members, as is the commentary accompanying each link.

Each story posted on Slashdot is accompanied by a message forum where regis-
tered users and “Anonymous Cowards” discuss the content and each others’ opin-
ions. Slashdot innovated a score system for user posts in which moderators give posts
a plus or a minus; comments with more points become more visible. Even more inno-
vative is their method for choosing moderators on the basis of the ratings their own
posts have received, and in rotating the moderator pool through transient access.
Moderators are in turn metamoderated by registered users on a volunteer, random
basis, so that good moderators are more likely to get access in the future (and bad ones
get banned).

Slashdot also offers configurable channels, small summaries of other sites. When
registered users request the main page, they see the current news links plus their chosen
channels. By consolidating many user interests on one page they make it more likely
that users will start their browsing sessions at Slashdot, thus increasing the value of
their advertising.

For users who want real-time interaction, Slashdot spawned off slashNET, a set of
chat channels which has since taken on a life of its own.

Slashdot runs on Apache, MysSQL, and mod_perl. Its developers publish the code
used to generate their pages and also their hardware specifications and usage statistics,
making this an attractive site for those looking to publish information on how popular
portals work.

It is normal for popular sites to be cloned by others when setting up their own ser-
vices. (The owner of some sites being copied without permission may use stronger ter-
minology.) Slashdot, however, openly encourages this by publishing its code and
hosting a community site just for its users, http://slashcode.com/. This has created a
common look and feel among the sites based on Slash, forming a metacommunity
helped by the fact that the sites often link back to Slashdot and Slashcode, and some-
times to one another.

We'll discuss Slash in more detail in section 8.4.

imdb.com

The evolution of the Internet Movie Database is a microcosm of the changes in vir-
tual community growth over the last dozen years. It began life in the rec.arts.movies
newsgroup, where frequent posters developed a database of movie facts—release
date, director, cast, writer, and other credits, along with plot synopses and trivia. The
rapid growth of the database met nicely with the rise of the Web, allowing it to move

SERVING THE COMMUNITY 209

210

to replicated servers in different countries. It is one of the most frequently cited
examples when people talk about large database search problems and Internet infor-
mation publishing.

The IMDb grew (and survives) on the contributions of users, initially to the data-
base of information on past films, then into reviews of current films and TV shows as
it became more focused on modern releases. The database contains hundreds of thou-
sands of titles, each of which has its own message board (although only a small fraction
of those are utilized) and fact sheets. Users can expand or correct information about
a film and provide links to related sites, and vote on the many polls for favorite this
and that.

IMDb features message forums for movie genres, industry news, and film tech-
niques, as well as favorite actors and directors. In that way it has gone back to its news-
group roots, serving its community of film buffs with the trivia and gossip they love.
It supplies its own editorially controlled news pages also, along with pages for games
and contests. Readers in the U.S. can also see what is currently playing and even find
show times for nearby theaters.

Registration is not required to view the site or search the database, but is necessary
to post information or messages. Users can configure the display of movie fact sheets
and message boards, and can build a list of “My Movies” for which IMDb will send
notification of TV show times and video releases.

As IMDb’s popularity grew it became a natural target for acquisition, and (at the
time of my writing) is owned by Amazon.com, with movie pages linked to Amazon’s
video store so that the curious searcher can order finds directly from the information
pages. After getting past the current offers on the main page, this presence isn’t overly
intrusive, keeping the site focused on its users.

IMDDb’s site is built with Apache and mod_perl, using the Berkeley DB package.
Messages boards use a commercial package, WWWThreads, which will be mentioned
again later. They do not publish details about their code or search mechanisms, but
they do offer the database itself in various forms for noncommercial use.

investorama.com

Investorama started out as an Internet publishing site and developed into a commu-
nity. The original site featured investor news, links, and stock reviews. In 1999 it
expanded greatly and offered message boards and other community-building services.

Investorama often straddles the line between community and commercial Internet
service, mostly in good ways. The site features question-and-answer forums with noted
financial advisers alongside member forums and chats. Members get a free email
account on the site (which must be accessed through the site, of course), a personal-
ized start page, and configurable content displays. There is an optional newsletter and
other mail-out services for those who don’t want to check the site daily. Users can
choose to be available for instant messaging with other members, giving the site a

CHAPTER 8 VIRTUAL COMMUNITIES

8.2

real-time feel that appeals to those who like to discuss breaking news or just see who's
up forachat.

Investorama gets into the portal business by maintaining a database of links sug-
gested by members and offering searches and directories. They also offer a shopping
directory for consumer e-commerce sites.

In some ways, Investorama serves as an example of why a commercial service needs
to become a community to survive. The site needs a powerful draw to compete with
pages blessed by big-name investment firms and widely published advisors and it gets
it through its members. Investors love information, and the site builds on their desire
to ask questions and offer answers.

Investorama runs on Apache, mod_perl, and MySQL. Dynamic pages are gener-
ated by HTML::Mason, and feature a hierarchical navigation bar for quick jumps
back to previously viewed sections. The site does not publish its code or details about
its hardware.

IMPLEMENTING FEATURES

Now that we've seen example sites that implement desirable features, let's consider
how to build them.

There is always the option to code everything yourself, but this is seldom necessary
or even desirable. Many freely available packages on the Web will serve the needs of
a community site perfectly. Some (like Slash) make a complete site while others serve
as components for developers to plug in as they see fit.

If you are planning a site that requires user registration for some or all features, it
is natural to think that you need to decide on user administration first. Instead, delay
any thoughts about the user model until after you have chosen packages for your site.
You may discover that the package you need has its own ideas about users, or if using
packages that didn’t grow up together you might have to do some work to get different
user models to cooperate.

A community site’s front page generally shows community news—announcements,
hosted stories, links to news on other sites, or all three. This is what your regular users
want to see first when they return to your site.

This may seem like a simple matter of editing a static page now and then to add
new announcements and links. While that certainly works, it isn’'t the best choice for
a busy site—mistakes happen when editing text manually, and your browser might
handle a broken tag differently than your users’ browsers, causing mysterious results.
It would be better to let static pages be static.

A news page is a natural choice for one of the dynamic content tools we've dis-
cussed previously. The report page example using Mason from the previous chapter
could easily be adapted to a news page that offers all the stories available in a directory.

IMPLEMENTING FEATURES 211

If each news story had its own component, Mason’s object methods could be used to
extract a title and category from the component and offer a link to the full text page.

Newslog

If your news items will be only a sentence or paragraph (possibly containing a link to
a full story), consider using Newslog, a script by R. Steven Rainwater posted at
http://www.ncc.com/freeware/.

This simple utility doesn’t require a database; it uses one HTML file to hold the
current stories, and moves additional stories off to archive pages which are also HTML.
It works well with an existing front page; the news section can be included into a col-
umn or frame as desired. News items are posted via a CGI script which inserts the new
entry at the top of the list and scrolls older items into the archive automatically. (It
can run under mod_perl via Apache::Registry if you prefer, but unless you post news
moment by moment | don’t see a need for it.) Configuring it took a bit of hacking,
but I had a working example page in about 15 minutes.

Newslog provides news entries that look like:

2000 Jul 8 (Sat), 15:26 New version of SAMBA loaded.
Samba has been upgraded to version 2.06. This should take care of anything that ever
went wrong. Nothing will break again, we're certain.

2000 Jul 8 (Sat), 14:14 The NT server will go down at 16:00 for no apparent reason.
If this is inconvenient, please try our Linux Cluster.

The date is in bold face and the first line of text continues from the same line. News-
log doesn't add any HTML to the posted entries, so line breaks and paragraphs must
be entered manually by the person adding the story.

Newslog keeps the current set of news items in a file which is meant to be inserted
into your front page via SSI or the tool of your choice. Here is a simple example page,
news. sht m , that uses mod_include:

<! DOCTYPE HTM. PUBLIC "-//| ETF// DTD HTM.// EN' >
<HTML>
<HEAD>
<TI TLE>Here is the news</TI TLE>
</ HEAD>
<BODY>
<I--#config timefn="% 9B %, %" -->
<H2>The news as of
<!--#flastnod virtual ="/ newsl og/ t odays. news" --></H2>
<I--#include virtual ="/ newsl og/t odays. news" -->
<H3>O der news is in the
ar chi ve</ A></ H3>
</ BODY>
</ HTM_>

212 CHAPTER 8 VIRTUAL COMMUNITIES

Since | was running the page through mod_include anyway, | dressed this up a little
to display the date of the last news item added via the f | ast nod element. Note the
inclusion of t odays. news, the file generated by Newslog, and the link to / news-
| og/ ol dnews where Newslog maintains an archive of stories.

Newslog’s code consists of a configuration file (news| og- cf g. pl) and the news

posting script (news!| og. cgi). Configuration is done through setting Perl variables
directly; the comments in the file will tell you what you need to change for your site
(although I've removed them from the following example for purposes of brevity). The
values | used were:
$scriptURL = ' http://ww. exanpl e. site/cgi-bin/newslog.cgi';
$newsFile = '/usr/local / apache/ ht docs/ newsl og/ t odays. news' ;
$archivePath = '/usr/| ocal / apache/ ht docs/ newsl og/ ol dnews' ;
$arcURL = ' http://ww. exanpl e. site/ newsl og/ ol dnews/" ;
$arcSuffix = '-news.htm';
$redirect = '/news.shtm';
$tnpDir = "/tmp';
$Maxltems = 4;
Under Apache’s document root | created the newsl og and newsl| og/ ol dnews
directories (as shown in $newsFi | e and $ar chi vePat h in this example) and put
news. sht m in the document root directly. The URL for the archive ($ar chURL)
corresponds to the archive directory, where Newslog will create an i ndex. ht i file
that offers the archive pages. The URL in $redirect should refer back to your
front page, and $Max| t ens is the number of news items to display.

After editing news| og- cf g. pl , copy both scripts to the cgi - bi n directory or
the directory handled by Apache::Registry if you want to run Newslog via mod_perl.
In that case, be sure to remove any __END__ tokens from both files. Make sure
Apache’s user can create the current news file and can write new files to the archive
directory. Then have your browser request the posting script. Figure 8.1 shows the
news posting page.

Enter the text of the item into the box. Add any HTML tags you need for line
breaks, emphasis, or links; Newslog won’t add any for you. After you have the item
ready, click the Preview News Item button to submit it. Newslog will show you how
the item will look on the page, giving you a chance to fix the text or tags as necessary.
When the item is ready, click Post item to add it to the current news.

Newslog isn’t very fancy, but it’s not very complicated either. The script is less than
300 lines, much of it blocks of HTML, and is easily customized for taste. For example,
to modify the time stamp printed with stories, just edit the spri nt f call that loads
$mai n: : dat e at the beginning of the script.

If you choose to put Newslog into production, you'll want to add some security
to keep unwelcome parties from adding news. The simplest way to do this is to add

IMPLEMENTING FEATURES 213

8.2.2

214

. Bl El Wess Seach Goo Brokmmis Tabs Hele [eaug 04

g Version 1.3.0

Figure 8.1 The news posting page

HTTP authentication to newsl og. cgi , and keep a password file for those who are
allowed to add stories. Here is a quick addition to ht t pd. conf :
<Location "/cgi-bin/newsl og. cgi ">
Aut hUser Fi | e dat a/ newsl og_post _users
Aut hNanme "Newsl og story posters”
Aut hType basic

require valid-user
</ Locati on>

Then create the password file:

cd /usr/local /apache
bi n/ ht passwd -c dat a/ newsl og_post _users a-user-nane

Add additional users as required (just drop the - ¢ switch) and you're securely off and
running.

Forums

A community site builds community through member interaction. The usual mecha-
nism is the message board or forum where users can start topics of interest, add mes-
sage postings, reply to one another, rant and flame, or exchange whatever other sorts
of communication they desire. This is where virtual communities began, on UUCP-
based networks and pre-Web Internets. As a result, forums are well-established in the
minds of mature users, who will recognize and possibly even appreciate a feature-rich
message system.

CHAPTER 8 VIRTUAL COMMUNITIES

Forums are more dynamic than news pages, and generally call for user registration
and a database of some sort to store and search for messages. As such, rolling your own
is a much larger project and shouldn’t be undertaken lightly. Fortunately there are
plenty of free alternatives to consider. Here are a few:

WWWThreads

This product is well-established in the web board field, and includes impressive cus-
tomers such as the IMDb. The product is commercial, and to get the current version
you must purchase a license. However there is a free limited version for download
from http://www.wwwthreads.com/. If you need the most features and options for
your forums, try the free version and determine if you can afford the license.
WWWThreads works with mod_perl and both MySQL and PostgreSQL, with sup-
port for other databases in the works at this writing. It has the advantages and features
list of a product with a long development history: moderation, multiple languages,
themes, user and group registration with permission management, and even support
for turning message posts into a news page like the previous section’s example. This
is the product which sets the standard for comparison, at least in Perl-based boards.

BAZAAR

BAZAAR started out life in an earlier version of WwWWThreads, but remains Open
Source and noncommercial (although its claim to be the only GPLed forum product
for Perl and MySQL is incorrect). It shares much of the richness of the earlier prod-
uct, and adds even more theme support, more filters, and a restructured code base
that promises better extendibility. The polling system is a nice add-on that users seem
to expect more and more often. BAZAAR crosses over into the news and chat lines,
providing a Java-based IRC client and a link library manager.

BAZAAR attempts to help out the new site builder with a script that installs all the
required modules via CPAN. Itisn’t tough to do this by hand though, and the product
isn’t as complicated as it initially looks. Learning how to make effective use of it is a
challenge still.

BAZAAR is at an early adopter’s stage, but is worth checking out if you are looking
for forums with loads of features. Look for it at http://nl.linux.org/bazaar/, or via
http://sourceforge.net/ or http://freshmeat.net/.

mwForum

After two feature-rich offerings, mwForum comes across as a lightweight entry, but
don't be put off. This comparatively small product works with mod_perl and MySQL
and provides threaded message boards, multiple boards per site, score moderation, file
attachments, limited HTML mark-up in messages, and more. Boards can be public,
private to a group of users, or read-only (thus providing a news page). Users can be
given administrative access to some boards and not others; and accounts can be banned

IMPLEMENTING FEATURES 215

216

temporarily or permanently by any administrator. Users can read boards from the Web
or by email (if the site chooses to permit it) and the search interface is adequate.

mwForum stays lean in browser requirements also, shying away from anything
that requires more than a lowest common denominator of HTML, but site builders
can dress up their forums if they desire. The threaded message display gives good
visual cues about how messages relate, and the designers can choose fonts and colors
as they like.

mwForum is also lean on documentation, but I found it easy enough to set up. The
product’s page at http://www.mawic.de/mwforum/ has a pointer to a demonstration
forum that also serves as a support board, and many common installation difficulties
are discussed there.

mwForum requires MySQL as mentioned. It also requires outgoing mail service of
some sort, although this doesn’t have to be on your web server itself—any open SMTP
mail server will do. In order to register, a user must supply a valid email address, which
will be used to mail the new user’s password and send notices and email subscriptions.

CGl setup works fine for a board with low activity, and is a good way to test the
product to see if you like it. mod_perl installation cures mwForum’s CGl sluggishness
and requires only a few more steps.

To set up the CGI version, create three directories under Apache’s root: ht docs/
mnf for graphics, ht docs/ maf / at t ach for file attachments (if you’ll allow attach-
ments to messages), and cgi - bi n/ mnf for the code itself. Then unload mwForum’s
distribution and copy everything in the i ng subdirectory to ht docs/ maf . These
graphics supply navigation buttons for mwForum’s screens and also a logo (which you
will probably want to replace for your site).

Now for the code: copy the files from mwForum’s cgi subdirectory to cgi - bi n/
mwf . This will include the Perl modules used by mwForum. If you haven't altered
Perl’s default setup then the scripts will find their modules in that directory. Next, cus-
tomize Maf Conf i g. pm(which you just copied to cgi - bi n/ maf) to set things up
the way you want. Here are the settings I used (with comments and unchanged
defaults left out for brevity):
$cfg{' dbUser'} = "web";
$cfg{' dbPassword'} = "nouser";
$cfg{' admi nEmai |l '} = "root\ @ocal host";
$cfg{'url'} = "http://1ocal host/cgi-bin/mM/forumpl";
$cfg{" attachnents'} = 1;
$cfg{' timeFormat'} = "% %/ % % %V
Most of the defaults are fine; | changed the database user to be the same as the other
examples, altered the default fake domain name and enabled file attachments, then
changed the time format to the one I’'m used to.

Make all the scripts executable, and set Apache’s user to own the new directories
and files under the document root. Then it is time to create the database.

CHAPTER 8 VIRTUAL COMMUNITIES

mwForum comes with scripts to configure its database, waiting in the distribu-
tion’s sql directory. Edit gr ant - access. sql to use the username and password
you selected earlier, and if you aren’t going to call the forum database mwforum
then edit cr eat e- t abl es. sql also to supply the correct name. Then just run
the commands:

nysql admin -p create maM orum
mysql -p < ~/ mM/sql/grant-access. sql
mysql -p < ~/ mM/sql/create-tables. sql

If you run the commands from an account other than root, specify the designated
mwForum database user with MySQLSs - u switch.

If all the commands have worked and the scripts are all executable, you should be
ready to create the chief administrator account. Have your browser connect to
mwForum at the URL given earlier, and you should see the first screen. Figure 8.2
shows the successful installation of mwForum.

- Elm Eil Wiessa Saarch Qb Qeokmmis Tebs Help Dot S8

mwjforum R —

Hameless Foram D]

Figure 8.2 Successful installation of mwForum

Since the database is empty, the only option that will do anything useful is * Regi s-
ter', which allows you to create a user account. The first account created is auto-
matically made the master administrator, so enter the username you want to use for
administration and your local email address, then click the Submit button.
mwForum will generate a password for you, and send the browser to the login screen
where you can try it out. Passwords are also stored in the database in clear text, so if
for some reason the mailing didn't work you can go to MySQL and retrieve your pass-
word there.

IMPLEMENTING FEATURES 217

218

Having successfully logged in, you can now create categories and message boards.
Categories organize boards, and boards contain messages. The options are reasonably
self-explanatory, and if you find you’ve set up something that you don’t like, you can
easily change things or just delete the board and start again.

mwkForum’s administration tools become more interesting when you have multiple
users and boards. You might want to create a handful of each and try out the different
options for posting, setting administration access, and moderating messages.

If you find that mwForum meets your needs, you’ll want to get mod_perl involved
for significantly better performance. Just move cgi - bi n/ mM to per |/ mwf under
Apache’s root (assuming that is the directory managed by Apache::Registry), then
move the Perl modules (*. pnm) in per |/ mnf toli b/ per | . Change the configura-
tion module to reflect the change in URL (change cgi - bi n to per | if you've used
the same setup I've shown) and you should be set to go—the database and static files
should work as before.

When | tested mwForum under Apache::Registry, it didn’t work; Apache kept
sending the wrong MIME type, Perl script instead of text/html. The aforementioned
support forum already had a topic about the problem, but no resolution. I added more
information about my setup, and the developer (Markus Wichitill) posted his own
mod_perl configuration, which made clear that | needed to tell mod_perl to handle
headers for mwForum scripts—my other Apache::Registry scripts had all taken care
of this manually. So | added this to nod_per| . conf:
<Directory "/usr/local/apache/perl/mf">

Per| SendHeader On
</Directory>

That got mwForum working perfectly (and much faster) under mod_perl as adver-
tised. If you experience anything similar with the latest version of mwForum, try that
configuration change.

While it was disappointing that the product didn’t make the change transparently,
the incident reminded me of what | like best about the Open Source world, namely
responsive developers. The whole exchange took place over an afternoon; Markus
replied quickly with the information | needed.

As a result, 1 can recommend mwForum in spite of the light documentation,
since I'm confident that the developer or another user can help out with anything
that goes wrong.

While the virtual community was born in mailing lists and message boards, it gained
a great deal of life in real-time forums. These grew from early programs like Unix’s
talk into Internet Relay Chat (IRC) and text-based games. One could argue that the
commercial online services of the '80s made most of their money from chat rooms;
certainly real-time talking absorbs a good deal of Internet bandwidth today.

CHAPTER 8 VIRTUAL COMMUNITIES

While I've been a fan of real-time chats for years (I met my wife on one), | haven’t
been as thrilled with web-based chat clients, which have tended to use Java and other
browser technologies to try to make up for the basic mismatch of static HTML display
and real-time conversation, resulting in typical browser wars incompatibilities and
semisuccesses. If your site will have an associated IRC channel, | suggest you provide
users with IRC clients. There are a number of good ones, even some written in Perl.

Short of a full-time channel, many sites want to host occasional gatherings—meet-
ings with the staff, interviews with a luminary of the field, and so on. For short con-
versations and group discussion, an HTML-based chat may suffice. These are simple
chats that take input from a Java- or CGI-based interface and write it to an HTML file,
then use the autorefresh feature of supporting browsers to load the file and display new
text. They have the added advantage that the HTML automatically becomes a log and
archive of the meeting.

Like a news page, an HTML-based chat isn’t hard to write, but why not start with
one that is already written? Here is information on some freely available HTML chats.

EveryChat and derivatives

This amazingly small script is made freely available by EverySoft (http://www.every-
soft.com) and has since been cloned into new versions by others. It consists of a CGI
script (everycht. cgi) and a few HTML files. chat f rames. ht ml provides a
frame-based interface with autorefresh, and chat f orm ht M makes a simpler
interface with manual refreshing and without frames. chat t op. ht 1 is displayed
at the top of the frame version, so customize this as you desire for your site.

Installation is quite simple: drop the script in your cgi - bi n directory, then create
a subdirectory of Apache’s document root for chat files, such as ht docs/ chat s. Put
the HTML files mentioned earlier and the starter chat file, messages. ht i, into
this directory. Then open the interface files and the script in your favorite editor and
fix the URLs to match the paths you've created.

My changes from the defaults were:

e chat franes. ht M —I changed the path to the chat file from messages/
nmessages. ht ml to messages. ht nl to keep everything in one directory,
and changed the URL for the chat script. You'll also want to change the login
message (look for “Hi everybody!”).

e chat f or m ht ml —Change the path to the chat script and the login message
as earlier.

* everycht. cgi —I changed the path to the chat directory to my example
setup:
$fil epath="/usr/local / apache/ htdocs/chats/";

Give the installation a try by having your browser load either the form or frame page
(not the script itself). You should get a login screen—EveryChat doesn't reserve or

IMPLEMENTING FEATURES 219

220

register names, so you can call yourself anything you like. Figure 8.3 shows the Every-
Chat start page.

. Eie Edl Wesa Seach o Beokmuis Tetks Help [odug 28

Figure 8.3 The EveryChat start page

If youd rather run EveryChat under mod_perl, move the script over to your
Apache::Registry directory. The version | tested also required Per | Set Header On
as mwForum had, but otherwise ran without problem.

Apart from autorefresh, EveryChat avoids any modern browser features. The script
has an option to push messages down from the top rather than add them to the bottom
for browsers that reposition the page on a refresh. By default it removes HTML tags
from input, but you can disable this feature if you like with a few quick strokes of your
text editor.

EveryChat provides for multiple chat rooms by duplicating the interface and mes-
sage files. To create a room, copy the interface files, create a new message file, fix the
URLSs to refer to the changed paths, and have your browser load the new form or frame
page. While this isn’t terribly efficient, the files are not large. If the duplication bothers
you, turn the files into Mason components.

The thing | like best about EveryChat is the size, not just because it makes the
script quick, but because it makes it easy to read and understand the code and to use
it for other projects. Apparently I’'m not the only one, since EverySoft’s page for Every-
Chat includes pointers to other chat systems that started from this code base, ranging
from those that provide prettier interfaces using JavaScript to specialized chess- and
checkers-playing systems. Also there are several add-on modules contributed by users
that extend EveryChat to provide user pictures, text filtering, link tags, and more.

CHAPTER 8 VIRTUAL COMMUNITIES

Chat servers in Perl

Site developers that want more in a Perl-based chat system should take a look at two
interesting projects which take Apache out of the loop.

EveryChat’s Server Edition takes the basic chat script and turns it into a persistent
server which can have its own site, port, or both. Start the server and have your browser
connect to the site and port number, and the server will send back the current page
of the chat. After that, it uses the same auto- or manual refresh to keep the browser
up to date, but since the requests are going to the EveryChat server instead of Apache,
response is even faster than running under mod_perl. The script is still tiny, and run-
ning several chats on one machine would be no problem.

At the time I’'m writing, the Server Edition is in beta and is not clearly released with
an Open Source license, but that may have changed.

Another server which is in an early stage is Entropy Chat, produced by John N.
Koston and Virtual Development Inc. This script is about five times the size of Every-
Chat, but adds considerable features: multiple rooms, a listing of active users, private
messages, image posting, limited HTML posts, and more. The server setup is as trivial
as EveryChat’s—just give it a port and run the script, and it will stay in the back-
ground listening for connections and messages.

Entropy Chat uses JavaScript for a much nicer interface, and has many features that
will be familiar to IRC users. The script isn’t too large to learn and customize, making
it a good choice for the intrepid developer. Look for it via a search service such as fresh-
meat.net to see how it has matured since my brief look.

Any of these products can be added to your site to provide real-time interaction for
your community, bringing your users closer and building a sense of commonality that
gives the Web life.

It's no surprise that search engines are a common and expected feature of web sites. If
your site has a large amount of static content, it needs a search engine. No matter
how cleverly you lay out the subject matter of your site, users who know what they
are looking for will want to go straight to the material they need.

Searching also plays to Perl’s strengths, so it’s no wonder that there are many exam-
ples of search engines written for Perl and CGI. Modest sites can use direct search
methods, applying a Perl regular expression to the text of files and building URLS for
those that match.

Sites with more content need a faster approach. The usual method is to create a
keyword index, where every word in every file is entered into a database with a list of
pointers back to the files where it was found. Once this database is built, it is very
simple to display a list of files matching a keyword; if multiple words are specified,
the engine can show either the union or intersection of the file lists for each word.
More advanced features such as phrase and pattern matching can be implemented on

IMPLEMENTING FEATURES 221

222

top of a keyword index by applying complex searches to candidate files found from
word matching.

Keyword indexes are a natural fit for hash file databases. The word is the index, and
the associated record has a list of short unique strings that identify matching files.
Another hash file turns the identifier string back into a file path or URL. To display
more information with search results, add more data to the file hash (or just use more
hash files)—document title, description, and so on.

Before you start to code your own search script, take a look around the Perl
archives—I have examples following this approach that date back to the first articles
and books I read on CGl. If your site content is in static HTML or text files you should
be able to use the engine demonstrated next without change. If you store articles in a
database or some other format that doesn’t map files to URLS directly then you're
probably going to have to write the indexing script yourself, but you can still use a
working example.

PerlfectSearch

PerlfectSearch from http://www.perlfect.com/ is a good Open Source package that is
actively maintained and adds some nice features to the basic search. The code is com-
pact and the search script runs quickly as a CGI, and even more quickly via
Apache::PerIRun (see the next example). It even comes with a setup script that will
take care of the few configuration details for you.

Like most search packages, PerlfectSearch is split into two parts, the indexer and
the searcher. The indexer examines static content and builds the database. It must
be run every time content is added, perhaps via a cron job or some other automatic
mechanism. The searcher reads the database and builds an HTML page that dis-
plays matches.

PerlfectSearch’s index scans a configured list of directories for indexable files
(matching the types you tell it to seek), and drops any that match names or patterns
given in the exclusion list you provide. It then checks to see if the file contains HTML
title and description tags, and if so it records those in individual databases. Then it
removes common words from the file (also using a configured list), adds the remaining
words to another database keyed by a unique 1D for each word, and records the file
and word 1D pairings in a fourth hash file. The script has some nice optimizations to
speed up the process, such as building a single regular expression to match all the
excluded common words, and compressing repeated character strings.

The search script takes a given list of keywords and locates the matching files, then
generates a list of matches. When given multiple keywords it ranks the files matching
all words first, then the files matching any words. It also implements forced matches
(+keyword) and exclusions (-keyword).

The results page is built from a template which you can configure to match the
look of your site. Each matching file displays a title (linked to the URL), description
(if any), and the full URL. If there are more matches than the configured limit, the first

CHAPTER 8 VIRTUAL COMMUNITIES

set of matches is displayed along with links to URLS that will generate the succeeding
pages. Like most search engines, PerlfectSearch gives the illusion of maintaining state
via these links but actually generates the matches each time it runs.

Installing PerlfectSearch is simple; unpack the distribution, then run the setup
script which handles the basic tasks of copying files and receiving some configuration
information from the user. Select the running mode by choosing to install in either
cgi - bi n or per| . In the latter case some additional directives will be required.

After copying the files, the installation script will prompt you for directories and
file types to search. | included Mason (.mhtml) files out of curiosity, although that
would index only keywords found in top-level components directly because dynamic
content is not generated by the indexing process. You can run the indexer directly
from the installation script if you wish, or manually afterwards.

PerlfectSearch can run via mod_perl, but not via Apache::Registry; the script uses
global values in ways that mess up subsequent searches. Instead | ran it via
Apache::PerlRun, which executes a CGlI script in the context of the Apache process but
doesn’t save the compilation or global values. This is faster than CGl, since the Perl
interpreter is already running and the process isn’t forked. Here is the addition to
nod_perl . conf:
<Directory "/usr/local /apache/perl/perlfect/search">

Per | Handl er Apache: : Perl Run
</Directory>

Note that this Di rectory block inherits some settings from /usr/ 1 ocal /
apache/ perl, since PerlfectSearch’s installation directory (per!/perlfect/
sear ch) is a subdirectory. | didn't have to tell Apache to let mod_perl handle the
requests or that the directory contains executable scripts. | only reassigned the
Per | Handl er to Apache::PerlRun.

After you’ve completed the installation you’ll want to try some searches. Go to your
main or search page and add the following small form (changing the action path to
match your URL if you haven't installed things according to my example):
<FORM ACTI ON="/ per | / perl fect/ search/search. pl ">

<INPUT TYPE="text" NAME="Q">

<I NPUT TYPE="submit" VALUE="Search">
</ FORW>

Then give it a try. Figure 8.4 shows my search page with a sample result:

My test installation indexed the online documentation for Apache, mod_ssl,
mod_perl, and a few other products, totaling 175 files and about 15,000 indexable
words. The indexer handled this load in less than a minute, making me confident that
I could use PerlfectSearch on a larger site without a problem. If you upload files to
your site via some automatic process, the indexer could be incorporated at the end or
run via a nightly cron job. Users can continue to search the site while the indexer is

IMPLEMENTING FEATURES 223

Eie Eal ‘wiess Sarch Goo Beokmanis Tebe Help Dedug S8

Your search Tor «otoal resulted in 14 matehes:

1 2 (315 and Arach
.l'r: ln 'I"'l_"ﬁr'\-'l- Y ermmn 1 :-hu-r.l =‘|r4 :q CHE anid Apmahe This pags ooddd b rammareed walh e
grareEaar dusyr bty Sk i pds T Wf

HL: hr:

A iLile o

depucta M TP Serear Varess 1.5 hulryglh | sp Ml v o row paankh = rpetly medep i S pbies, ssch weh 5 hlly
vwigpazehle lareni Thir @ coosgpahsle

ol ATRL: i

1K = e d-naris 1
1L

oAb -I_I"Sn.-'.l ThEE I: e &l b Fesrmied i fpaike | 3 Mew Pesrere s srh s sl eaph, &

[3- i TiT] I‘H.ﬁp_‘u. 'L-:u:..u.n Hucsran cha oo

LU T Sowre:

siting which sldrees s ports Apache (e
Seprchn T Hereer Wetrmn 1 F Sattaeg whock soqeerer aad pee dpachs spee Wnn Apecse riesa, f rezsicts
o piaek part and addiess on (e bao sl we b
AIAL: S

LT g I
Apcha HTTE Sarvar Varess 1.3 Upgrateg oo 1.0 b 12 Inondar oo sene {als opgradag o o G0 fodsg i
mepine § dsrorned desnhny oermdim

TRL: Soave I=]

Figure 8.4 A simple results page

running, as it builds new indexes in temporary files and then moves them over to the
main data location.

8.3 BUILDING A SITE

We now have all the tools needed to build a working community site. Assuming you
have the machine ready and a worthy Internet connection, all you need are time,
patience, and of course, content.

As an example, let’s build a sample site, http://www.ourcommunity.org/, using the
tools listed in the previous section. If you are experiencing “blank page” syndrome in
designing your own site then following through these steps may help you get started
in putting things together.

The first step is to decide what content our site will host. In this example we’ll have:

Articles of community interest stored in HTML files, with topic pages that
group the articles

* A news page that has site announcements and links to new articles on this site
and related sites

« A search engine for the articles and news
» A message board for discussing the content
« A web chat service for community meetings

Next we need to decide on tools for handling the content, and to determine how
much traffic our site will handle.

224 CHAPTER 8 VIRTUAL COMMUNITIES

If this is a low- to medium-traffic site, handling a peak load of as much as one
request per second, then a decent modern computer running most any OS that sup-
ports Apache and Perl will do. If the average load is more than one request per second,
or the peak is much higher, the hardware and OS will have to be chosen more care-
fully, and will probably involve multiple high-end servers. In that case the choice has
likely been made already. Since discussion of current hardware is beyond the scope of
this book, readers looking for recommendations should check platform evaluations on
sites dedicated to their desired OS.

Let’s assume for our example that the site will run on a single server running a

Unix variant, and the hardware is adequate for the peak load (meaning that we don’t
have to do a great deal of tuning). We could choose to serve the static content with a
small dedicated web server such as thttpd, but to start with we’ll run everything from
one Apache installation, with Perl scripts and mod_perl to handle dynamic content.
We'll create the topic pages for the content files and link in the content manually,
and products discussed in the previous section will provide the other features. Since
we won't capture sensitive user data, we won't need encrypted channels, so mod_ssl
and OpenSSL are optional. The message forums will store their messages in a
MySQL database.
R A high level site design document will serve as
a road map in laying out the elements. If you
are an experienced HTML designer you may
prefer to do this by creating the site’s front
NS CEE e Search engine Page and a few sample feature pages; those with
database or system design backgrounds might
like some kind of entity-relationship diagram
instead, or a simple work flow.! Figure 8.5
shows a diagram that is sufficiently vague to get
anyone started.

That's enough information to get to
work—Iet’s build the site. You can work
through the next section yourself, or download the site configuration and sample
pages from the book’s web site. You'll still need to install the required products and
databases, however.

" Entry page

Web chat | Static pages |

Message board

Figure 8.5 General site functions

There’s quite a bit of code to get in place even for a small site, so plan on plenty of
downloading and setup time. Doing everything listed here can take half a day or sev-
eral, depending on your familiarity with your system and your ability to deal with
oddities as they occur.

LMy own background is in programming and system administration, so my first move would be to in-
stall things and write scripts, but that doesn’t set a very good example.

BUILDING A SITE 225

Apache, Perl, and the feature products will be set up according to my previous
examples. This site doesn’t call for any special Apache modules that aren’t linked in
by default, other than mod_perl. We could get fancy with the builds and slim down
Apache and mod_perl to the minimum features necessary, but that can be done after
the site is working—first we want to get the basics in place.

1

2

Create the user that Apache will use, such as ‘web’.
If Perl is not installed, download it from http://www.perl.com/ and install it.

Download the current Apache distribution from http://www.apache.org/, and
mod_perl from http://perl.apache.org/, then install them both as shown in chapter 5.

1

Apache is now installed in / usr/| ocal / apache, which we'll refer to as

Apache’s root directory as before. Manually create the per!l,li b, i b/ perl,
and dat a subdirectories from the root.

2

9

10

Edit ht t pd. conf as shown in the next section, then start Apache and test it
locally. If you have your own static content ready, you can install it in the
ht docs subdirectory now; if not, use Apache’s manual as a sample. Make
sure Apache’s user can read the files.

Copy an example script into the cgi - bi n subdirectory and test it. Make sure
Apache’s user can read and execute the script.

Edit nod_per| . conf, then restart Apache. Put an example script in the
per | subdirectory and test it to ensure that mod_perl is working correctly.

Create the front page (or copy the example page from the book’s web site)
with links to the search engine, forums, and chat. Put an empty file in
ht docs/ newsl og/ t odays. news so that the i ncl ude directive will
work, then test the front page.

Install Newslog, and secure the posting script, then post a news item and test
your front page again.

Install MySQL as per chapter 4. The next step will test it, but you can use the
examples as a confirmation test also.

Install mwForum, then test the front page link. Create the chief administra-
tion user.

Install EveryChat and test the front page link again.
Install PerlfectSearch, index whatever content you have, and then test the

search box on the front page.

Sounds easy enough, doesn't it? Now for the details.

Apache’s main configuration file will serve largely as-is. Rather than include the
whole file, I'll list my changed sections here.

226

CHAPTER 8 VIRTUAL COMMUNITIES

Ifthe ApacheinstallationsetaPor t orLi st enonaportotherthan80,changethem
to the defaults. Comment out any Por t or Li st en directives referring to port 443,
sincethisinstallationwon’tuse SSL.

Port 80
Li sten 80
#Li sten 443

Set the Ser ver Admi n and Ser ver Narre to refer to the site. The traditional mail-
ing address of ‘webmaster’ should be aliased to your administrator’s account.

Server Adm n webrast er @ur conmuni ty. org
Ser ver Nane www. our conmuni ty. org

In the Directory block for /usr/| ocal / apache/ ht docs (the document
root), enable | ncl udes, but turn off the other features. Enable Fol | owSynii nks
if you will be controlling the contents of the directory and want to use symbolic links.
Disable the use of . ht access files via Al | owOverri de.

<Directory "/usr/local/apache/ htdocs">
Options Includes Foll owSyniLi nks
Al l owOverride None
O der all ow, deny
Allow fromall
Di rectoryl ndex index.htm index.shtm
</Directory>

The last directive in this section, Di r ect or yl ndex, is new to our discussion. It
tells Apache what files to look for when a user requests a directory, that is, a URL
that doesn't end in a file name. The most obvious example of a directory request is
the site’s front page, which we want to display when a user requests http://
WwWw.ourcommunity.org/.

In our example we want to use an SSI in the front page, but in subdirectories we
will use plain HTML. Rather than setting each one individually, we set a list of files
for Apache to look for here.

Configure Newslog now (or make all the changes at once, if you prefer):
<Location "/cgi-bin/newsl og. cgi ">

Aut hUser Fi | e dat a/ newsl og_post _users
Aut hNanme "Newsl og story posters”
Aut hType basic

require valid-user
</ Locati on>

Also for Newslog, uncomment the directives that enable SSI:

AddType text/htm .shtnl
AddHandl er server-parsed .shtn

Finally, include the mod_perl configuration file:

<I f Mbdul e nod_perl.c>

BUILDING A SITE 227

228

I ncl ude conf/nod_perl . conf
</ | f Modul e>

Then create an empty nod_per | . conf before restarting Apache. You should now
be able to view any static content you have loaded on your web site. If you don't get
the files you expect, check file permissions and the errors in | ogs/ error _| og.

The mod_perl configuration file for this server assigns the per| subdirectory to
Apache::Registry and Apache::PerlRun. If we were using any of the example handlers
from other chapters, they'd go here too.

Load these nodul es on start-up.

Per | Modul e Apache: : DBI

Per | Modul e Apache: : Regi stry
Per | Modul e Apache: : Perl Run

Scripts run via nod_perl instead of Cd
Alias /perl/ "lusr/local/apache/perl/"
<Directory "/usr/local/apache/ perl">
Set Handl er perl -script
Per | Handl er Apache:: Registry
Options ExecCd
Per| SendHeader On
</Directory>
<Directory "/usr/local /apache/perl/perlfect/search">
Per | Handl er Apache: : Per| Run
</Directory>

We load Apache::DBI so that database connections will be cached, which will help
speed up mwForum. Then we load the two modules for running CGI scripts. Any-
thing in the per| directory or its children will run via Apache::Registry with
Per| SendHeader On. The scripts in perl/perlfect/search run via
Apache::PerlRun.

After setting up this file, restart Apache and verify that it loads the new configu-
ration without complaint. Don’t worry about the fact that the scripts mentioned ear-
lier aren’t in place yet. We need only to test that mod_perl reads its configuration
correctly. If Apache says that Per | Mbdul e is an unknown directive, then mod_perl
is not built into Apache correctly; review the installation steps.

The first page of the site has a few tasks to accomplish in a short space:

It identifies the community as concisely as possible
It has news of interest to returning users, and categories for the static content

Links with brief descriptions lead to the features of the site, all within view of
the page as it loads

It should balance attractiveness with quick loading time

CHAPTER 8 VIRTUAL COMMUNITIES

The typical way to accomplish this is with a newspaper-like layout consisting of a
banner identifying the site over columns of information. In my example, the left col-
umn has links for static content, the middle column contains news and the right col-
umn links in the other dynamic features.

Since the file will include the news items via SSI, it needs to be a . sht ni file. |
called it i ndex. sht m but you can use any name you wish, and change the
Di r ect or yl ndex directive either to look for it or link it into place:

<! DOCTYPE HTM. PUBLIC "-//| ETF// DTD HTM./ / EN' >
<HTML>
<HEAD><TI| TLE>Qur Conmruni ty News and | nformati on</ Tl TLE></ HEAD>
<BODY BGCOLOR="#FFCC66" >
<CENTER><H1>Qur Conmruni ty News and | nfor mati on</ Hl></ CENTER>
<TABLE CELLSPACI NG="20" COLS="2">
<TR VALI| G\="TOP" >
<TD>
Qur Communi ty has served the nmenbers of this community since
the beginning of the mllennium
</ TD>
<TD>
<I >Peopl e who like this sort of thing will find herein the
sort of thing they |ike.</I|>
-Abraham Li ncol n
</ TD>
</ TR>
</ TABLE><P>
<TABLE CELLSPACI NG="6" COLS="3">
<TR>
<TD ALI G\N="LEFT" W DTH="20% >
<H3>Articles of interest to QurComrunity</H3>
</ TD>
<TD ALI G\=" CENTER' W DTH="60% >
<H2>Conmuni ty News</ H2>
</ TD>
<TD ALI G\N="LEFT" W DTH="20% >
<H3>Menber Servi ces</ H3>
</ TD>
</ TR>
<TR VALI GN="TOP" >
<TD>
CQur goal s</ A>

Ongoi ng proj ect s</ A>

Proposal s for the future<P>
<FORM ACTI ON="/ per | / perl fect/ search/ search. pl ">
Search the articl es: </ B>

<I NPUT TYPE="text" NAME="(Q">

<I NPUT TYPE="submit" VALUE="Search">
</ FORW>
</ TD>
<TD VALI| G\="TOP" >
<I--#include virtual ="/ newsl og/t odays. news" --><P>
<H3>0 d news</H3> For previous itens see the
ar chi ve</ A>.

BUILDING A SITE 229

230

</ TD>
<TD VALI GN="TOP" >
<H3>For uns</ H3>
Di scuss comunity news and interests on our
Message Boar ds</ A><P>
<H3>Chat s: </ H3>
Join in schedul ed di scussions or just neet other
nenbers on-line, either
wi th frames
or w t hout frames.
</ TD>
</ TR>
</ TABLE>
<HR>
<H5>
Copyright 2001 by QurConmmunity.Org | nc.

Pl ease send comments and bug reports about this site to
Theo Pet er sen</ A>
</ H5>
</ BODY>
</ HTML>

Like my other HTML examples, this one stresses brevity over beauty. Elements of the
page are organized by space, but might get run together on browsers that don't support
the CELLSPACI NGattribute. In that case, using BORDER might be more appropriate.

The page will look a bit odd if you view it as-is, due to the empty News column.
Here it is after adding a few items from the next section. Figure 8.6 shows the front
page with some news items.

= Elm Eol ¥ Seach o Qeosmais Twike Help Dooug S8

Figure 8.6 The front page

CHAPTER 8 VIRTUAL COMMUNITIES

The main idea of the design is to draw new users into the community description
(the block of text under the banner and to the left) and returning visitors to the news
and member sections. A user who has seen the site before will skip the static elements
and drop down into the center section, but that section shouldn't be so large that a
new viewer is distracted from reading the overall page.

The static content section on the left has links to a document (goal . ht nl) and
two directories which correspond to article categories. Those directories will need their
owni ndex. ht ml ori ndex. sht m pages to organize the content they carry. Test
the links by copying some sample documents into place.

The middle section is mostly a placeholder for news| og/ t odays. news, which
will be generated automatically by Newslog. After displaying the current stories it
offers a link to the archive; the index.html file in news| og/ ol dnews is also created
by Newslog.

The right section has member features, the forum, and chat links. Those will be
made operational in later sections.

Now we can liven up the site with current information. Install Newslog as described
earlier in this chapter, with these values in news| og-cf g. pl :

$scriptURL = " http://wmv. ourcommuni ty. or g/ cgi - bi n/ newsl og. cgi '
$newsFile = '/usr/local / apache/ ht docs/ newsl og/ t odays. news' ;
$archivePath = '/usr/local / apache/ ht docs/ newsl og/ ol dnews' ;
$arcURL = ' http://ww. ourconmuni ty. org/ newsl og/ ol dnews/" ;
$arcSuffix = '-news. htm'

$redirect = 'http://ww. ourcommunity.org/"'

$tnpDir =" /tnp'

$Mvaxltems = 4,

Create ht docs/ newsl og/ ol dnews, then make Apache’s user the owner of every-
thing from ht docs/ news| og on down—remember that it must create and modify
the files in these directories.

Copy newsl og. cgi and the modified newsl og- cf g. pl to cgi - bi n, then
test a posting. If things are configured correctly you should be able to enter a news item
via http://www.ourcommunity.org/cgi-bin/newslog.cgi. Note that there is no link on
the main page to this URL; the news administrator can bookmark it separately. After
entering and previewing the item, post it and verify that your browser displays the
main page again.

If you haven’t secured Newslog yet, do that now by adding the authentication
directives to ht t pd. conf :
<Location "/cgi-bin/newsl og. cgi">

Aut hUser Fi | e dat a/ newsl og_post _users
Aut hNanme "Newsl og story posters”
Aut hType basic

require valid-user
</ Locati on>

BUILDING A SITE 231

232

Then create the password file, using htpasswd:

/usr /| ocal / apache/ bi n/ ht passwd -c dat a/ newsl og_post _users newsgod

Restart Apache after making these changes and test a posting again. If Apache can't
authenticate you, verify that the password file and directory are readable and that the
paths are correct.

Installing mwForum is similarly easy. Create ht docs/ mnf and ht docs/ maf /
at t ach directories, resetting ownership to Apache’s user, then create per |/ maf .
Copy everything from mwForum’s i ng directory to ht docs/ mwf , then everything
from cgi into per | / mwf . Customize Mnvf Conf i g. pmwith these settings:

$cfg{' dbUser'} "web";
$cf g{' dbPassword' } "nouser";
$cf g{' snt pServer'} "l ocal host";

$cf g{' admi nEnmi | ' }
$cfg{' forunEnmil '}
$cfg{' cgi Path'}
$cfg{ url'}

$cfg{" attachnents'}
$cf g{' forunmNane' }

"webnmast er\ @ur communi ty. org";

"forum @urcomunity.org";

"/ perl/mf";

"http://ww. ourcommunity. org/ mM/forumpl";
1;
"Qur Community Foruni;

The default database username and password are fine if you won't be running any of
the other example scripts on this site. If you change them as shown here, also change
the gr ant - access. sql script in mwForum’s sgl directory.

The mail settings will need to be customized for your site in order to make the
example work. If you use mail services on a different server, put its address in place
of localhost. Also, ‘webmaster’ and ‘forum’ should be aliases to a real account.

Now create the database:

nysqgl admin -p create nmaforum
nysql -p < sql/create-tables. sql
nysql -p < sql/grant-access. sql
This is enough to test the forum. Remember that the first user who registers will be
made chief administrator, so do that now.

For a real site we would want to customize the images in ht docs/ mwf and set
the colors in Maf Conf i g. pmto match the site scheme.

Install EveryChat as shown previously in the chapter. Create ht docs/ chat and put
all of EveryChat’s HTML files there, change ownership, then copy ever ycht . cgi
to per | . Customize the following files:

CHAPTER 8 VIRTUAL COMMUNITIES

e chatfranes. ht M —Change nessages/ nessages. html to nes-
sages. ht M and the URL for the chat script to / perl/everycht. cgi .
Change the login message to something you prefer.

e chat f or m ht ml —Change the path to the chat script and the login message
as in the example, then match the background color to the site.

e chat t op. ht ml —Set the color scheme to match the site.

e everycht . cgi —Change the path to the chat directory:
$fil epath="/usr/local / apache/ ht docs/ chats/";

Verify that Apache can run ever ycht . cgi and can modify the message file, then
test it out.

We'll use the PerlfectSearch engine to provide searches of static content; the forums
have their own search system. The two can be merged with some effort, but I'll leave
that as an exercise for the reader.

Installation follows the procedure given earlier in the chapter: run the setup pro-
cedure and tell it to install the scripts in the per | directory, then let it run the indexer
on whatever sample content you are using. By directing it to Apache’s document root,
PerlfectSearch’s indexer will index the articles and the news archive.

After the setup procedure is finished, go to per|/perl fect/search/tem
pl at es and customize sear ch. ht i to match the site’s color scheme. Add a link
back to the main page, and to the content index if you have one.

PerlfectSearch’s configuration additions to nod_per | . conf were given earlier.
Add them now if you haven't already, and restart Apache. Then you're ready to test
the searches on your sample files.

Congratulations, your site is ready!

While this site design will work fine for a small amount of static content, problems
are bound to arise as the number of articles increases. The list of categories on the
main page has to be kept up-to-date, as do the index pages for each category. The
articles have to be edited to match the site’s colors and fonts, and navigational links
must be correct for each.

Mason would be a good solution for this problem. A component on the main page
would look through the article subdirectories and create an entry for each category,
and the category indexes could similarly be generated automatically from the list of
files. An autohandler could provide standard colors, fonts, and navigation links.

Making search engines work with Mason (or any dynamic content tool) is a chal-
lenge. We do not want to generate dynamic pages for indexing, and we don’t want to
fix up the search database afterward.

BUILDING A SITE 233

8.4

234

One solution is to make each indexable document a top-level component, using
an autohandler to wrap the component in standard header and style elements, and use
subcomponents for navigational elements. The search engine’s links will point to top-
level components, so all URLs will be correct, and as each file is requested it will be
generated in a standard way.

Another missing element is a section of links to related sites. These might be chosen
by the site editors, or via a suggestion system such as used by Investorama. Get your
users to discuss their surfing habits in your forums, and build your community and
your links at the same time.

SLASH, THE SLASHDOT CODE

Having now built a site of our own, let’s revisit an option briefly mentioned before.

In a nice example of the ways in which Open Source benefits those who give away
their code, the developers of Slashdot have packaged the scripts and database schema
that power their site and made them into a separate product. Users of Slash can take
advantage of the forum on http://slashcode.org/ to discuss installation problems as
well as tips and strategies for deploying a site. The developers in turn get informed
feedback, performance improvements, and the occasional bug fix for their code.

Slash has an amazing array of features of interest to a community site. It can publish
news, original content, and member forums with a search engine that covers them all.
Its user registration and management package is very complete, and ties in to the score
moderation system innovated by Slashdot. It also offers Slashdot’s channel mechanism
for packaging its own content and news from other sites into user-configurable slash-
boxes that allow each user to build a custom portal.

Slash is not just a collection of scripts, it is a packaged product—and as such it
expects to run your whole site. That’s not a problem if you are building a fresh site
and you like Slash’s features. If you have an existing site that you want to integrate with
Slash, 1 suggest that you rebuild the site using Slash first, then hook your scripts and
content back in after you have Slash working.

Slash is very good quality code with very light documentation. Unless the devel-
opers have had considerable time to invest in manuals between my writing and your
reading, expect to spend time reading slashcode.org and asking questions before you
get everything right. But if you do pursue it, you will be rewarded with an excellent
set of tools and a feature-rich site.

The requirements for Slash read almost as a Who's Who of Open Source: Apache,
mod_perl, MySQL or PostgreSQL, and the Template Toolkit for building pages from
templates. The required Perl modules are in a CPAN bundle (Bundle::Slash), so you
can try installing that first to fill in any major pieces.

After installing all the components, download and install the Slash code. This will
include building the Slash server (slashd) and its various utilities. It will even create
startup scripts for slashd and put them in the appropriate system directory. The

CHAPTER 8 VIRTUAL COMMUNITIES

installation procedure builds an Apache configuration file (slash.conf) which you can
include in your main ht t pd. conf .

One of the great advantages of Slash for large sites is its scalability. The Slash
server, database server, and web server (or servers) can reside on separate machines as
desired. See the documentation at the Slash site for how to build a web farm for
your community.

8.5 ONLINE RESOURCES

After your site is ready, you will need to take steps to promote it to your community.
Here are a few ways to bring the users to your pages.

First, get other related sites in your community to link to yours (and return the
favor). If there is a community web directory or news page, try to have them review
your site before you go public—get your positive press lined up and link to any com-
mentary about your debut.

Similarly, join any web rings that pertain to your site. If you aren’t certain, try the
directories at http://webring.org/ and look for ring links on the sites you asked for
pointers. Web rings are one of those nice ideas that haven't worked out so well, due
to the high turnover rate of web sites, but they do serve as community directories.

Mailing lists, news groups, and other forums provide a transient way to let people
know your site is open. It is best to subscribe to and read a forum for some time before
posting an invitation, even a well-meant one. If the posting goes against the forum’s
charter, members may view such announcements as spam advertising.

I regularly receive email from companies that claim they can get my sites listed on
thousands of search engines for a small fee. Getting your site listed on major search
engines is an important step, but it is easier than some people would have you believe.

The major public search engines all have submission forms where you can directly
enter your site. Choose the search engines you use yourself—chances are your users
like them also. Search sites generally post their requirements for getting a listing, such
as META tags for keywords and description. Make sure your site is in compliance
before submitting it, and then be patient. Robot-based sites should add your entry
soon after you meet their requirements, but search engines that employ human editors
can take months to add a listing.

If you want to get broader entry, go to one of many sites that offers free submission
to multiple engines. http://www.submitit.org/ is one example, presenting a form for
entering information on your site and sending it on to the search engines. Another is
http://www.scrubtheweb.com/, which also offers analysis of META tags and offers
feedback on whether your site is likely to be accepted.

Be aware that such utilities don’t guarantee that your site will meet the listing
requirements of the particular search engines, or will be accepted even if they do. If

ONLINE RESOURCES 235

236

your listing doesn’t appear in a reasonable time, go to the search engine’s submission
form and try adding your site directly.

Before your site gets busy, you’ll want to establish good maintenance and perfor-
mance management procedures. The last two chapters of the book offer guidelines on
coping with popularity and recovering from disasters. Start managing your success
early—when your site is swamped, it is already too late.

CHAPTER 8 VIRTUAL COMMUNITIES

CHAPTER 9

9.1 Documentation and file server 238 9.4 System administration 256
9.2 Office applications 242 9.5 Build your own portal 259

9.3 Interfaces to nonweb 9.6 Joining multiple intranets 269
applications 251

When the Internet boom of the '90s struck, businesses suddenly needed public sites
for product information, sales contacts, feedback, and so on. An equally important
though less noticeable change happened inside companies, bringing with it a new
buzzword for the business lexicon: intranet applications, those which run on an inter-
nal company network.

While it is simple to set up an internal web server, the real challenge is to build a
set of internal applications that uses an intranet’s advantages, combining the speed and
locality of an internal network with Perl and Apache tools. This chapter will discuss
a number of common scenarios and tools that will help out both users and adminis-
trators of local area networks (LANS).

237

9.1

238

DOCUMENTATION AND FILE SERVER

Many internal web servers start out as quiet, unassuming documentation libraries and
file servers. This is a natural outgrowth of the fact that many free and commercial
products ship documentation as HTML files (or as PDF files, which are also easily
managed by a web server). Gathering it all into one place gives developers and users
one-stop shopping for information. Once a group has a repository for one kind of
file, it naturally extends it to others.

The simplest kind of documentation server is just a tree of directories under Apache’s
document root. You don't even need to create a page for your documentation direc-
tory. Apache’s index feature will create a simple but effective index page if Opt i ons
| ndexes is enabled.

Automatic index generation requires the mod_autoindex module be built into
Apache, as it is by default. The | ndexQpt i ons directive gives you several options
for controlling how the page is generated:

* Fancyl ndexes can be used to enable a view somewhat like the typical GUI
file manager, showing the file name, icon, size, modification date, and an
optional description.

 To extract the titles of HTML files into the description field for the index page,
use the ScanHTMLTi t | es option.? You'll probably also want to expand the
description field by setting Descri pti onW dt h to a reasonable value, 80
characters or so. For non-HTML files, the AddDescr i pt i on directive lets you
specify the description field.

e Fol der sFi r st will make subdirectories appear at the top of the list, as they
do in many GUI file managers.

You can further customize the appearance of the page by including a header and
readme file, which are displayed at the top and bottom of the index page respectively.
By default these are called HEADER. ht ni and README. ht m , although HEADER
and READVE will also work, and in a pinch you can use the Header Nane and
ReadmeNane directives to point to other files.

Product documentation likely comes with an i ndex. ht m file that will be dis-
played automatically when a browser requests the directory. If not, you can either con-
tinue the index generation scheme into the directory or tell Apache which file you
want displayed by default, using the Di r ect or yI ndex directive. For a large docu-
mentation tree, you may find it more manageable to localize the configuration using

1 Note that ScanHTMLTitles requires Apache to look through all the HTML files in a directory and
extract their title tags; this is fine for occasional use on a machine without other duties, but is not effi-
cient for large, frequently accessed directories.

CHAPTER 9 INTRANET APPLICATIONS

. ht access files instead of one monolithic htt pd. conf. Remember to set
Al | owOverri de appropriately on the directory to enable their use.

Of course, if you spend a lot of effort on a header and readme, adding descriptions
and tinkering with the index format, you might be better off just creating an index
page in the first place. Generated indexes are best for pages whose content changes reg-
ularly, such as file download pages. Documentation is less likely to fluctuate.

On the other hand, autoindexing is great for general file servers, as we’ll see next.

Most organizations have other kinds of files to share between workstations: updates,
nonweb documents, graphics, work-in-progress, or completed projects. These may be
lumped together on a system which shares with directories client machines via NFS or
SMB file services;? a web server can act as a generic file server as well, providing cross-
platform services available for any browser. Some browsers even allow drag-and-drop
from web pages to the local file manager.

Once again, the simplest way is to gather all the needed files into a directory or
directories under Apache’s document root. Using the mod_autoindex directives
described in the previous section, Apache can create a simple page that guides the user
to what they need. Group files together into directories and use headers and readmes
to instruct the users.

In addition to those directives, make the page more visually interesting with appro-
priate file icons. Apache ships with a wide selection of icon graphics in its /i cons
directory, and you can add more as needed. mod_autoindex allows you to assign icons
by file extension (Addlcon) or by MIME encoding (Addl conByEncodi ng) or type
(Addl conByType). The Apache online documentation recommends using Add-
| conByType for any file with a defined MIME type, but violates its own recom-
mendation in the sample configuration file. In practice, if you have to add a MIME
type to identify a file, you’ll also need to add an icon directive for it one way or
another, so use whichever approach makes sense to you. Here are some sample direc-
tives from the default ht t pd. conf:

Addl con /icons/binary.gif .bin .exe

Addl conByEncodi ng (CWP, /i cons/ conpressed. gi f) Xx-conpress x-gzip
Addl conByType (TXT,/icons/text.gif) text/*

The directive options follow one of two formats. The first is to provide a path to the
icon graphic, relative to Apache’s home directory (not the document root as you
might expect for a graphic). The other is a pair of options enclosed in parenthesis,
giving the ALT text followed by the icon path. The ALT text will be displayed by

2 \While a web server which is exposed to the Internet should not have either of these services, an intranet
server is assumed to be on a protected network. There’s nothing wrong, apart from the administrative
hassle, with having an internal web server also share files via other services.

DOCUMENTATION AND FILE SERVER 239

240

browsers that don't display graphics, as per the ALT attribute of an | MGtag. You can
also specify text tags for icons using the AddAl t , AddAl t ByEncodi ng, and Add-
Al t By Type directives.

One more important consideration for file servers is what not to serve. By default,
if a file in an autoindexed directory is readable to Apache, it is readable to users. The
I ndex! gnor e directive lists file extensions, names, or patterns to be left out of gen-
erated pages. For instance, to keep your header and readme files out of the list, use
this directive:

I ndexI| gnore HEADER. ht M README. ht m

Without an | ndex| gnor e directive to the contrary, Apache will show the full con-
tents of a directory, including files that Unix systems consider “hidden” (beginning
with a .) and backups (ending with a ~). This notably includes . ht access and the
Unix directory entries for the current (.) and parent (. .) directories, so a more com-
plete | ndex| gnor e should remove those files from the list;

| ndex| gnor e HEADER* README* .* *~

This will also catch other variations of the header and readme file names. You will
also need to tell Apache not to serve such files if the user types in the file name after
the directory URL. The default ht t pd. conf handles this for . ht access:
<Files ~ "™\ .ht">

Order al |l ow, deny

Deny from all
</Fil es>

You may want to take over the index generation process completely. For example, if
you are serving files that have description information Apache doesn't know how to
extract, you can write a Perl script to examine the files and send back a properly built
index. A more complex script might cache a generated page, see if anything has
changed, and send the cached text back if not.

The Di r ect or yl ndex directive allows scripts as well as static files to serve as a
directory index. The script still has to follow the usual rules for executables: it has to
reside in a directory marked by Scri pt Al i as or have a type Apache knows to be
CGl. This directive would tell Apache to run i ndex. pl for the text/reports subdi-
rectory of Apache’s documentation root:

<Location /text/reports/>

Di rectoryl ndex /cgi-bin/index. pl
</ Locati on>

Here’s a trivial example in which i ndex. pl creates the page:
#!/usr/local/bin/perl -w

use strict;

CHAPTER 9 INTRANET APPLICATIONS

use C3;
nmy $q = new C3;

Print the opening HTM.

print $q->header,
$g->start_htnl (' Text reports'),
$g->h1(' Text reports:');

Open the directory and make a list of contents.
ny $dir = '/usr/local/apache/htdocs/text/reports';
opendir REPORTS, $dir or die "Can't open report directory $dir.";
ny @iles = grep /~".].*[*~]$/, readdir REPORTS;
cl osedi r REPORTS;
foreach ny $file (@iles) {
print $qg->p($qg->a({href => $file}, $file));
}
Close and exit.
print $g->end_htnl ;

Note that the file list is built using gr ep to remove the same files mentioned ear-
lier—hidden files and backup copies. It also requires files to have names at least two
characters long. The script then builds a very simple page with a link for each file. If
the files all matched a format that Perl could understand, the script could open the
files and extract summary information or other useful text to display on the page
along with the links.

Using a generated index doesn’t work around the fact that Apache will serve up any
files it can read, barring configuration directives to the contrary. Since a directory with
a generated index has to be under the document root to be browsed at all, any file in
that directory is still available to a user who knows its name, regardless of whether or
not it appears in the index page. To work around this problem, you must either keep
sensitive files out of the document root or apply an HTTP authentication scheme to
the directory.

Even though this script is set up as a simple CGI, there’s no reason mod_perl couldn't
be involved. The URL given in Di r ect or yl ndex is resolved via the normal rules,
so all we need to do is to specify a script or location that is handled by mod_perl. Of
course, at that level of complexity, there isn't much difference between using Di r ec-
toryl ndex to specify an index page generator and just configuring a location in
ht t pd. conf to run a mod_perl application, as was shown in the report page exam-
ple of chapter 7.

There is an intermediate step between letting Apache do all the work and taking
on the entire matter. The Apache::Autolndex module (on CPAN as usual) provides a
Perl handler which implements the functions of mod_directory and mod_autoindex.
As a direct replacement, it reads and honors directives intended to describe index pages

DOCUMENTATION AND FILE SERVER 241

9.2

242

as shown previously. It also adds some nice features of its own, such as generating
thumbnail graphics for image directories via Image::Magick.

If you have a strong need to code your own index handling, Apache::Autolndex
also serves as a valuable starting point by showing how to read and implement stan-
dard directives and also add your own (as the module does with thumbnail descrip-
tions). The documentation provides examples of installing a Perl handler for
directory requests.

Once you have your documentation organized, you'll want tools to make it easier to
use. Chapter 8 has a section on search engines that are freely available, so start there if
you haven't looked already.

Since documentation can be in many formats besides HTML, you may need tools
that handle other file types. SWISH-E has filter modules that work with PDF and other
formats. It is available at http://sunsite.berkeley.edu/SWISH-E. The SWISH-E index-
ing and search engines are written in C, but interaction is through front-end scripts
written in Perl and other languages. The related SWISH++ is a rewrite of SWISH-E
into C++.

The Harvest project (available on SourceForge) includes tools for indexing both
local files and other web sites, or even FTP sites and news groups. Harvest-NG is a Perl
implementation of the indexing tools. It supports various document formats using a
filter module architecture familiar to Perl developers, and stores results in a database
that is easily accessible to other scripts. It comes with its own minidatabase engine
which can be replaced with a DBI interface for those who want to use SQL. Mailing
lists and archives are advertised on the Harvest web pages.

Namazu (http://www.namazu.org/) is another Perl/C hybrid, although in this case
the indexing is done by Perl and the search engine is written in C. Besides supporting
a wide variety of file formats (including TeX), it uses Perl and GNU library tools for
internationalization and Japanese character sets.

OFFICE APPLICATIONS

Having spent the time to set up an internal web server, it is natural to want more
from your efforts. Going beyond documentation and file services, a quick search will
discover a large number of office applications available free: email, calendars, schedul-
ing, and other typical business tools.

Because desktop applications in this genre have been around for years, we might
take a moment to ask: why move them to the Web? Commercial intranet application
vendors have been selling the idea of browser-as-desktop since the beginning of the
Internet boom. Each application run via a browser instead of a program installed on
the client workstation reduces administration overhead and per-seat expense (by the
cost of disk space and workstation maintenance, if not licensing).

CHAPTER 9 INTRANET APPLICATIONS

That said, the payoff doesn’t really happen until all or nearly all applications have
moved off the workstation and onto the browser, requiring a reversal of the trend
toward more local computing. And it conflicts with desktop economics: a computer
that is capable of running one of today’s hefty browsers is also capable of running hefty
desktop applications, while stripped-down versions have only marginal success in the
business market.

Some applications migrate more easily than others; if the service in question
requires some form of central monitor or database to be useful, it is a natural fit for a
web application. Groupware, mail, and personal scheduling applications all have
incarnations that run in a browser, some in Perl, others in PHP and other popular lan-
guages. I'll mention some Perl examples here, but if you are serious about running a
web-based office, don’t be afraid to consider the alternatives.

Before the Web claimed headlines, email and news were the Killer applications of the
Internet, and the number of available email clients reflects the history and popularity
of text messages. Users take their choice of mail reader almost as personally as their
messages, and getting entrenched users to change clients can be difficult. There are
advantages for administrators and users in moving to a one-client, web-based mail
system, but if the users won't change, a mixed solution is still feasible.

Before considering a web mail reader, we first have to look at the protocols used
for reading mail. The early Unix mail systems wrote incoming mail to a spool direc-
tory,3 and the mail client read (and deleted) it directly from there. More feature-rich
clients such as Pine and EIm pick up spooled messages and maintain multiple mail
folders housed under the user’s own directory. All messages were read directly from
disk, so the client had to be on the same machine as the mail server.

The POP protocol, and later IMAP, relieved the locality restriction by connecting
client programs to like-minded servers; the client sends a query to the server asking
what messages are available and the server sends a synopsis, which can then be used
to request actual messages. The client may again store messages in local folder direc-
tories (typical of POP systems) or may keep messages and folders on the server
(IMAP’s focus).

The POP protocol gained popularity with home Internet accounts, allowing users
to read their mail via a graphical client with a point-and-click interface. POP’s major
deficiency for business users is tied to its folder management, which requires keeping
a local copy of messages and deleting them from the server; while POP clients can leave
messages on the server, they can’t organize them there, and the local message folders

3 Another leftover piece of terminology: spooling is a generic term for writing files to a temporary direc-
tory so that they can be picked up and processed by another program. In practice, most mail clients
leave the spooled mail in place, making the temporary storage permanent.

OFFICE APPLICATIONS 243

244

are available only to the local client. This results in either a cluttered collection of old
messages on the server or isolated messages on one or more client machines.

IMAP addresses this by providing server-based folder management as part of its
protocol. Users can create and delete folders and move messages among them. Any
IMAP client for a given user on any system sees the same folder hierarchy. Of course,
this requires the client to be connected to the server in order to read stored messages;
IMAP clients can copy messages to local files also, but this results in the same scattering
and redundancy as in POP clients.

Web-based clients can use either or both of these protocols. The browser displays
folders and messages, but the real client in this case is the application running on the
web server; it will talk to the POP or IMAP server or read the local mail folders, and
send the contents back to the browser as HTML.

At first | thought that web-based email was a strange idea, since there are so many
good, free email clients. A CGI application would almost have to be less friendly and
easy, so why would anyone use it? Besides, the popular browsers have email clients
built in, so another client seemed redundant. But reading email via a web application
does have some distinct advantages for both users and administrators:

e If all mail is read through the browser (i.e., there are no other email clients),
administrators can shut off POP and IMAP services. On a protected server this
is a convenience. If a company provides access to internal mail over the Inter-
net, removing open services and their inevitable security holes is of much
greater importance.

 Users (or their admin helpers) have one less thing to configure when setting up
a desktop machine. Those who read mail from more than one location will see a
consistent interface.

* If security is paramount, web-based mail can be run through SSL, protecting
passwords and contents of messages. While many POP and IMAP clients and
servers allow secure messaging, in practice the security features are seldom used.

In order to do away with POP and IMAP services, the web server must also be the
mail server. Incoming mail has to be stored in the mail spool directory for the web
application to read. If that’s not convenient, or the other client protocols are still
required, then mixed services are still possible.

One other significant point for administrators to consider is that installing any web
mail system is a chore. Those that use POP or IMAP require a great many Perl modules
to run. Those that don’t have to be integrated into your mail system. Examining each
of the example systems described next took considerable effort, so plan on spending
a day or so installing and configuring your system of choice.

CHAPTER 9 INTRANET APPLICATIONS

NeoMail

This is a strong entry in the stand-alone category. NeoMail is a very configurable,
full-featured web mail client, easily customized to a company’s graphic standards. It
supports multiple languages, user-defined folders, importing address books from
other clients and many other desirable features. See the project’s page on SourceForge
(http://neomail.sourceforge.net/) for a more detailed list.

NeoMail comes with a setup script that tries to make installation easier, creating
the software’s installation directories and editing paths into scripts. My own system
required considerable tinkering before | was able to logon and read mail. On the pos-
itive side, nearly every problem | encountered had already appeared and been
addressed in NeoMail’s mail archive.

NeoMiail reads mail directly from the mail spools, so it needs to be able to get at
files that are normally protected from web server CGI applications. On Unix systems
it uses sui dper | , a program which is optionally built when Perl is configured and
installed. As the name implies, sui dper | allows a Perl script to honor the sui d and
sgi d bits in a file’s mode, which in turn let the script run as the user or group which
owns the file, instead of the user or group of the process. Thus we can make NeoMail’s
scripts owned by r oot or nmi | and give them access to files that Apache couldn’t
(and shouldn’t) normally touch.

NeoMail’s installation documentation explains the needed settings, but doesn’t
provide any information on sui dper | itself. Since I'd never needed it before, | had
to go back to my Perl distribution, run the configuration script again to enable set-
uid scripts, and build and install sui dper|. Then I modified each of NeoMail’s
scripts with the path to sui dper | instead of the usual Perl interpreter.

NeoMiail also requires access to the password file to verify user identities. Since it
is reading the password file directly (/ et c/ shadow in my case, or / et ¢/ passwd
if you don’t use shadow passwords), | had to modify the group ownership of the file
to permit NeoMail’s scripts. A better solution would be to create a user for NeoMail
and add it to both the mai | group and a group permitted to read the password file.

After all that was done, NeoMail still didn’t run due to a number of permission
problems, even on directories its setup script had created. If you have the same trou-
bles, go through each new directory and verify that NeoMail can read and write in
appropriate places. Figure 9.1 shows the NeoMail configuration screen.

While all of that was frustrating, | was pleased with the result. NeoMail ran with-
out further difficulties and had no trouble reading and sending messages. | tried out
some of the styles that shipped with the software and had no trouble adding my own
background graphics.

While NeoMail is a good fit for an organization’s mail interface, there’s no reason
it can’t be used for home systems too. One intriguing possibility is to use fetchmail
to gather messages from remote mail servers and store them locally, then use NeoMail
as the client. fetchmail cleverly fixes up headers in downloaded messages to route

OFFICE APPLICATIONS 245

246

. Eim Edl Wiesa Seach Qo Beokmmis Tk Heip [eieg O

=
L i wari | B ,
From: L '|p. verputEcom =
Fingeby - i1 |
! Styset | L s dreen =
Detunt sen: | oi= (boemes Eirmt =
| hossages [~ |
e
|mr-.| Lt le Feaders]
Sigreriurs (HM charc b of leem)
-
'r--rnul - Webiwn}]l that dessn't sack uE much
LEg wewiigal l soaiposlorpe ek -
1
|
|
Ziew | Caneel | =

Figure 9.1 NeoMail configuration screen

replies correctly, and works with most email client protocols. (It doesn’'t work with
web-based mail services such as Yahoo! and Excite mail, yet.)

NeoMail is a sizable script and uses CGl.pm for various helper functions, so it can
be slow on an older or busy system. Unfortunately the use of set - ui d scripts pre-
cludes running NeoMail in mod_perl. We can’t change the Perl interpreter’s user 1D
without changing the Apache process, which would be a security risk. We might think
to configure Apache to run as root, which would give it all the necessary privileges, but
Apache objects to this unless compiled with a special switch, Bl G_SECURI TY_HOLE,
which more or less tells you what the Apache Group thinks of the idea.

If you like NeoMail but need better performance, consider running the script via
FastCGl, which has no trouble with set - ui d programs. The script will get compiled
once and stay resident in its own process, saving considerable resources.

Other stand-alone mail packages

As more sites grow concerned with Internet security, some of the network’s venerable
packages are being replaced with variants that are built with those concerns in mind.
One such is gmail, which handles SMTP traffic usually delegated to sendmail, and
which advertised a $1,000 prize to anyone who could find flaws in its security.

gmail replaces sendmail completely, so utilities that relied on sendmail’s quirks
often don’t work with it. oMail (also available via SourceForge) provides a web inter-
face to gmail. The developer started with NeoMail and modified it to provide support
for gmail and other administration packages.

CHAPTER 9 INTRANET APPLICATIONS

SqWebMiail is a mail client written in C and Perl that is part of the Courier mail
package (http://courier.sourceforge.net/). Courier provides a variety of mail protocols
including stand-alone mail, POP, and IMAP.

POP and IMAP

If your organization needs to support other clients in addition to web mail, there are
a number of good applications that can help. The simply titled Perl Webmail at http:/
/opensource.jaos.org/ and Spmail (on SourceForge) both work with POP servers. I've
mentioned the limitations of POP though, and since most IMAP servers also provide
POP services, there are good reasons to consider IMAP instead.

WING (available on CPAN) and acmemail (http://www.astray.com/acmemail) are
the most discussed IMAP-web mail gateways available in Perl. Installing either is a big
job, involving a large number of Perl modules and considerable configuration work.
Both get their IMAP connectivity via the Mail::Cclient module, which in turn requires
the c-client library from Pine (a popular text-based email client) or the University of
Washington’s IMAP server. WING requires PostgreSQL, while acmemail makes data-
base support optional and provides sample scripts to use MySQL or PostgreSQL.
WING runs only via mod_perl, while it is optional (but recommended) with acmemail.

acmemail has a very attractive interface and excellent MIME support, including
HTML mail and inline image display. Oddly enough though, when a discussion of the
merits of acmemail versus WING ran through the mod_perl mailing list, acmemail’s
developer recommended WING. The latter is heavily tested at its home at Oxford Uni-
versity and has been proven to handle huge numbers of users. Meanwhile, acmemail
is facing reincarnation as Project Sparkle at the hands of a new developer, promising
a more modular architecture for easier installation as well as support for a number of
address books and imports.

Perl modules

If you aren't satisfied with any of the available implementations, or just have to have
things your way, CPAN provides the tools for building your own web mail gateway.
Browse through CPAN to find the large number of Mail:: and Net:: modules that
offer message retrieval, formatting, and connections to the server of your choice.

Personal calendar applications for PDAs and desktops are terrific for people organized
enough to use them. Shared calendars are even better for groups that have project
deadlines, meetings, and other important dates to track among members. Hosting
group calendars on an intranet web site is a natural fit. Like internal email, it may also
be worth providing access outside the protected network.

Calendar applications require a place to store dates and events, so look for the data-
base requirements of your application of interest when shopping around. Good can-
didates provide levels of user access with appropriate password protections, so that you

OFFICE APPLICATIONS 247

248

can specify who can see a given calendar and who can add events (and those should
be separate privileges).

The Perl community has produced two notable web calendars, with other projects
in beginning stages.

The mod_perl calendar system

This application (http://www.gallanttech.com/) provides a very complete system
built on (you guessed it) mod_perl, MySQL (but the author claims it migrates well to
other DBI drivers), and the cal program found on most flavors of Unix. It has a strong
feature set: customizable appearance (based on a mix of style sheet and database
entries), user privileges as described above, and filtered HTML in event descriptions
to prevent the event writers from taking over the calendar pages. Calendars can refer
to one another, so that administrators can build a hierarchical set of calendars (with
different privileges) and display them all on one master page.

The developer has kept a large number of calendar usage and security issues in
mind, as you can see from reading through the configuration and management doc-
umentation. The application does its own session management for loggedin users
(based partly on the mod_unique_id Apache module, which is not built in by default).
Sessions are expired via a script which must be run separately via cron or a similar
mechanism. Each calendar occupies a set of tables in the database, plus one more table
that identifies the calendars. The table layouts are provided without documentation,
but it wouldn’t be hard to integrate the data into another application if desired.

Each calendar may also have its own set of HTML templates used to generate the
pages. There are template tokens for all of the elements of a calendar page, allowing
the interested designer to rearrange things as he desires. The developer has his own sys-
tem for converting these templates into HTML.

While rich in features, the system is very light on documentation. It comes with a
short installation and configuration page and another page of information on the tem-
plate tokens and some database layouts. Setting all of this up is a good bit of work.
The product’s page doesn’t mention any free support forums, but does offer commer-
cial support via the developer.

WebCal

Michael Arndt offers this application (http://bulldog.tzo.org/webcal/webcal.html). It
is also rich in features, including tools to sync a WebCal calendar to a Palm computer
via the pilot-link package (link software and PDA not included). The distribution
supplies modules to store event data in flat file, MySQL, or PostgreSQL databases. The
flat file version worked fine for my testing, but I recommend one of the others for
anything more serious. The supplied db_ner ge script allows administrators to com-
bine databases, so there is no harm in experimenting with one and switching later.

CHAPTER 9 INTRANET APPLICATIONS

WebCal doesn’t go much further than the mod_perl Calendar System referred to
earlier in this chapter, but does include an installation script that does most of the
work. To my surprise it ran perfectly on my Mandrake Linux system (although none
of the defaults applied). The only manual step was to add the configuration directives
to htt pd. conf:
<Directory /usr/local/apache/ cgi-bi n/webcal >

Al'l owOverride AuthConfig

Opti ons ExecCd
</Directory>

To run WebCal via Apache::Registry, add a few more lines inside the Di r ect ory
block:
Set Handl er perl -script

Per | Handl er Apache: : Regi stry
Per| SendHeader On

After restarting Apache | was able to log in as the admin user (which has a default
password set by the installation script—remember to modify it immediately) and
bring up the site settings page, shown in figure 9.2.

. Eie Edl Wesa Seach o Brosmuis Tetks Hele [eoug 04

|~ |
) §
Web Calendar v3.03
« Crele a pew cubendar
w Do 1o adimls MuSstlond o
o
» Calendar Hame | e
| Exvar parr o all o o relesder asns
P ¥ fa w Bt ol il -l pnldias
(6 1o open cibendar (20 Do philbe ealemilal (o bo prly
S beT G = = --|| Salpet T - - - B b
| i | "
33l 'T-f\-'l 8
TXaaiti<a -
=
=1 I Tel

Figure 9.2 WebCal options

WebCal’s privilege system is not quite so obvious (to my way of thinking) as that of
the mod_perl Calendar System. Each calendar is either private, public, or open. Pri-
vate calendars require a password to write events, and have a list of users who are per-
mitted to read them (so a user must log in before reading). Public calendars also
require a password to write events but allow anyone to read, and open calendars need

OFFICE APPLICATIONS 249

250

no passwords at all. This requires sharing passwords among all those privileged to add
events to a calendar.

Preferences are set by calendar, not user. From a given calendar’s preferences page
you can “subscribe” to other calendars to display their events, allowing a rich hierarchy.
WebCal’s distribution includes a U.S. holidays calendar which | added to my own. The
preferences page also lets the owner set colors, background images, time zone, date for-
mats, and other basic options. Modifying the actual layout of a page would require
altering code, but I couldn’t see anything I would actually want changed.

WebCal offers year, month, week, and day views, and navigation between them is
obvious and painless. Adding events or displaying their details requires JavaScript to
be enabled, so take client-side security into account.

WebCal can send out event notifications via email or pager services (although the
latter isn’t explained anywhere in the scant documentation). Email notification
requires a cron job, which the installation script will add for you if you like.

The few administrative tasks are handled from a small set of pages. Administra-
tors can set sitewide preferences, delete calendars, and add or delete users. The site-
wide options determine if users can create their own calendars and what options they
can set.

Free support is offered via mailing lists and the product’s web site. | haven’t found
an archive of the lists themselves, but other mailing list archives have plenty of refer-
ences to WebCal, speaking well of its user base. I’'m confident that the application can
be used by a larger group than my own with no trouble.

Other calendars

eXtropia.com offers a calendar package as part of its Open Source script library, also
called WebCal (http://www.extropia.com/scripts/calendar.html). eXtropia.com lists
an impressive installed base, and offers message forum support at its site to registered
users. It has a unique license for its products, but don't be frightened—it is a merger
of two other respectable licenses.

Scheduling, tracking, and charging resources are common needs for groups of soft-
ware developers and other creative people. Involving the trackees in this process
makes life much easier for the trackers, so project management applications are
another natural fit.

While there are a number of good Open Source project management packages
available, the pickings from the Perl camp are rather limited. Web Projects by
Emmanuel Pierre (http://www.e-nef.com/perl/) offers a strong feature list, but the
project is in French, needs more documentation, and the developer is hoping to find
a new maintainer. There are other projects in a beginning stage on SourceForge.

CHAPTER 9 INTRANET APPLICATIONS

9.3

If you mostly need to account for how time is spent, onShore offers a very
complete time sheet application (http://www.onshore-timesheet.org/) that has
impressive reporting capabilities and can be configured to email alerts to project
managers. The application is built on PostgreSQL, and can be run as regular CGI
or via Apache::Registry.

If a desktop application fits your needs as well as a web app, there are a number
of time-tracking and project management tools available for the GNOME and KDE
desktops. If a web application is required, consider some of the alternatives available
from PHP developers (such as Achievo at http://www.achievo.com/), or (if you are
working on an Open Source project) move your project to SourceForge and take
advantage of its groupware tools.

INTERFACES TO NONWEB APPLICATIONS

No matter how quickly office applications move to the Web, we'll still have
command-line utilities for some things. Common user maintenance tasks such as
changing passwords and managing files already have web wrappers, as we’ll see. For
other needs, Perl provides tools for putting a web face on shell commands.

Perl executes simple commands via one of three interfaces: exec, syst em or the
backtick operator. The first of these may be familiar to Unix programmers who have
worked with “fork and exec” servers, which respond to a request by creating a child
process (forking) and then use the exec system call to start another program in the
child. On Unix systems (as well as on Windows systems with Perl 5.6 and above),
Perl’'s exec and f or k work the same way, allowing you to write this sort of server
in Perl if you wish. exec replaces the running Perl interpreter with the requested com-
mand. Your script never returns from an exec. To use it in a web interface, your
script needs to output required headers and any initial page contents before calling
exec. The command’s output will complete the page.

Here is a quick example (showser ver s. pl) of a CGI script that calls exec to
show what ht t pd processes are running.

#!/usr/local/bin/perl -w
use strict;

print "Content-Type: text/htm s\n\n";

print "</head><body><hl>Server processes: </ hl><p><pre>";
exec('ps -C httpd -1");

print "</ pre></body></head>";

If you drop this script in your cgi - bi n directory and run it, you can confirm the
behavior of exec: the final line to print closing tags isn't called. Most browsers are
quite forgiving about this, however; the page will still be displayed.

To call a command from your script and then return for further processing, use
either syst emor the backtick operator. syst eminternally does a f or k and exec,
just as described earlier, packaging them in an easy-to-use function. The result

INTERFACES TO NONWEB APPLICATIONS 251

252

returned by syst emis the exit status of the called command. This often confuses
first-time programmers who more often want the command’s output.

You would expect Perl to make that easy, and you’d be right. The backtick operator
treats the string surrounded by backticks as a command, and yields the command’s
output. Here is the same script using this mechanism:

#!/usr/local/bin/perl -w
use strict;

print "Content-Type: text/htm\n\n";
print "</head><body><hl>Server processes:</hl><p><pre>\n";
print “ps -C httpd -1, "</pre></body></head>\n";

In this version, the command output is merged into the stream sent back to the
browser, including the closing tags. If you try the example, you may need to use your
browser’s source viewing function to see the difference (or alter the example to print
something else after the backticks).

exec and its relatives are fine for simple command-line programs, but what if the
interface is more complicated?

Don Libes’ Expect has been very popular with system administrators for years. It
enables a script to run a program that has a scrolling prompt or curses-based interface
(the curses side is always more challenging), by providing a set of expected outputs
(thus the name) and programmed responses.

Expect uses Tcl for scripting the interactions with target programs. Perl program-
mers long admired Expect’s utility, but of course wanted to stay in their own language.
There have been various Perl-based implementations of Expect, but the most current
and easy to use variant is Expect.pm, available from your CPAN repository.

A typical Expect (or Expect.pm) script works like this: the script starts a command
(by forking a child process as usual) and waits for it to produce a given string. When
the script spots the string it sends its first input to the command, and waits for another
output. Both utilities have tools for matching outputs based on regular expressions or
waiting for one of a series of patterns to match and branching through logic based on
the response.

As an example, let’s consider GNU Privacy Guard, (gpg). This encryption suite
manages public and private keys and uses them to encode or decode files, mail mes-
sages, or what have you. It is a free implementation that started as an emulation of
Pretty Good Privacy (pgp) and has since expanded its scope.

To generate a new public and secret key pair, run gpg with its - - gen- key option.
gpg won't ordinarily do this from the command line, however. To create key pairs
from a script, we need to use another tool, preferably the Crypt::GPG module, avail-
able from CPAN, which has a function for creating key pairs.

CHAPTER 9 INTRANET APPLICATIONS

Here is an example script, genkey. pl , that runs gpg to create keys (the example
is contrived to show Expect.pm):

#!/usr/local/bin/perl -w

use strict;

use Expect;

ny $user = 'theo';

ny $password = 'not nypassword';

ny $real name = ' Theo Petersen';

ny $emmil = 'theopetersen@ahoo. coni;

ny $comment = ' Apache Wangler';

ny $passphrase = 'this is not very secure';
ny $exp;

$exp = Expect->spawn('telnet localhost') or die "Couldn't telnet";
$exp- >expect (30,'login:"') or die "Didn't get login pronpt";

print $exp "$user\n";

$exp->expect (30, ' Password') or die "Didn't get password pronpt";
print $exp "$password\n";

$exp->expect (30,'$ ') or die "Didn't get shell pronpt";

print $exp "gpg --gen-key\n";

$exp->expect (30, ' selection?') or die "Didn't get selection";

print $exp "\n";

$exp- >expect (30, 'want?') or die "Didn't get keysize";

print $exp "\n";

$exp->expect (30, ' for?') or die "Didn't get expiration";

print $exp "\n";

$exp->expect (30,'?') or die "Didn't get confirmation";

print $exp "y\n";

$exp->expect (30, ' nane:') or die "Didn't get nane pronpt";

print $exp "$real name\n";

$exp- >expect (30, ' address:') or die "Didn't get address pronpt";

print $exp "$enmil\n";

$exp->expect (30, Conment:') or die "Didn't get corment pronpt";

print $exp "$comrent\n";

$exp->expect (30,'?') or die "Didn't get confirmation";

print $exp "On";

$exp->expect (30, ' passphrase:') or die "Didn't get passphrase pronpt";
print $exp "$passphrase\n”;

$exp- >expect (30, ' passphrase:') or die "Didn't get passphrase pronpt";
print $exp "$passphrase\n”;

$exp- >expect (360, 'created and signed') or die "Didn't generate keys";
exit(0);

This script has all of its inputs hard-coded and doesn't show any Expect logic other
than matching one given response, but it shows a few good points. It connects to the
target machine via telnet, which requires passing a valid username and password

through the script, thus ensuring that the user should be allowed to override the keys.
After getting a prompt back from the shell, it runs gpg, taking the defaults for all key

INTERFACES TO NONWEB APPLICATIONS 253

254

generation options, and then passes the hard-coded inputs in for the user informa-
tion. After verifying that gpg sent back the expected success message, it exits normally.
The Expect object is created via the spawn method, as shown here:

$exp = Expect->spawn('telnet localhost') or die "Couldn't telnet";

Expect either returns an object handle or a false result, in which case the script dies
with the given message. The spawned command runs in its own process. We tell
Expect to wait for it to produce output via the expect method:

$exp- >expect (30, ' login:') or die "Didn't get login pronpt";

The Expect object can be used as a file handle for printing, and this is, in fact, how
user input is sent to the spawned command, as shown:

print $exp "$user\n";

The script moves along through pairs of these statements, waiting for an expected
output and responding with the next input.

To make this script into a web front-end for gpg, we would need to turn the hard-
coded values into CGI inputs. We’'d also need to take into account the behavior of
gpg the first time a user runs it, which is to create required subdirectories and then
exit with a warning. Of course it should be run via an SSL session to protect the sen-
sitive information.

Net::Telnet and Net::FTP

Most Expect example programs involve using rsh, ssh, telnet, or an FTP client to con-
nect to another machine and then do the command of interest. Perl has modules that
make those tasks easier without resorting to Expect.pm. Net::Telnet handles the login
exchange as a simple function, and includes a wai t f or method that has most of the
Expect functionality. Net::FTP implements a standard FTP client and has methods
for all of the usual commands. And for many common tasks, a quick search on CPAN
may turn up a module that does what you want already.

If your goal is to have a server with user facilities but no shell access (or none
required, at least), you'll have to find some way to deal with basic user management
issues. The most common of these is password maintenance.

On Unix systems, a user can change his own password, and the superuser can
change it for any account. That's as it should be for desktop applications which run
with the user’s ID and permissions, but makes a web application more challenging, as
was the case with email products mentioned in the Email section. The obvious solu-
tion is to have a web application front-end another application that runs asr oot via
a set uid mechanism.

BRINK is a ready-made password application built to use sui dper | as NeoMail
did. It is named for its author (Andrew Brink), but also claims that its name stands

CHAPTER 9 INTRANET APPLICATIONS

for Bad Risky Insanely Noodleriffic Kludge, which somewhat exaggerates the risk fac-
tors associated with sui dper | scripts. It is available at http://www.brink.cx/.

BRINK can work with regular or shadow password file systems, even though the
code implies that it works only with a shadow file. Edit the script to change / et ¢/
shadow to / et ¢/ passwd if you don’t use a shadow file. BRINK edits the file
directly, which must have been pretty exciting during development. It does make a
backup copy before changing things in case the script bombs.

The installation instructions that come with BRINK are easy to follow. There are
no provisions for customizing the script other than editing it directly, but there’s not
that much code and it is easy to read as well. If it fits your needs and you already have
sui dper | in place you can have BRINK in operation quickly.

If you need more than simple password file maintenance, look into WebPass,
available at links you can find via Freshmeat. At this writing it is at an early stage,
but it looks promising. It can handle POP3 and IMAP user authentication among
other features, and uses pw or user nod to make changes instead of editing impor-
tant files directly.

For sites that use LDAP-based services, another Freshmeat search will lead to
changepass. cgi, an application which uses the Net::LDAP module to maintain
user information. It is also at an early stage, but is in active development with an infor-
mative site (http://www.cloudmaster.com/~sauer/projects/fom-files/cache/90.html).

If your intranet server is also a file server, chances are you already have NFS, SMB,
or other distributed file services in place for their use. Adding a web interface to
such gives your users another way to view their files, with direct browsing of HTML
and graphics.

It’s possible also that the server is available only through the Web and FTP or ssh,
in which case a web front end for basic file management is needed. If the server is only
for web use, then a content management system may be more appropriate than a gen-
eral file manager. See chapter 11 for suggestions on WebDAV and other systems for
managing web site files and directories.

Simple file managers are not hard to write, and a number of them are available on
the Web. The PHP community offers a few that look promising, while most of the
Perl entries are either too new or suspiciously inactive. One explanation for the lack
of more robust file managers might be that writing one is a first step toward building
a complete content management system, or going on to a system management suite,
or both.

One of the Perl offerings is WebRFM, an offshoot of WebRSH. It doesn’t seem to
be actively developed, but the version available via Freshmeat seems to work fine for
an internal site. It requires a set ui d mechanism to run with target users’ permissions,
as you would expect. Once configured, WebRFM offers a reasonable interface for basic
file tasks. It can also handle publishing requests from HTML editors that send files
directly to the target server.

INTERFACES TO NONWEB APPLICATIONS 255

9.4

256

Another approach to file management is to use a web-based FTP client; after all,
FTP allows files to be renamed and deleted as well as uploaded or downloaded. Web-
FTP is available at its home page (http://www.web-ftp.org/). It offers a reasonable
interface and can also be used as a gateway client to FTP sites on the other side of a
firewall. In general, however, it still looks like FTP.

While WebRFM does a reasonable job, chances are you’ll want more than just file
management for your server. Look into the content management applications in chap-
ter 11 for better user tools. In the next section I'll discuss some system management
tools that also offer file handling.

SYSTEM ADMINISTRATION

Perl has long been a favorite tool of system administrators, and earned its nickname
of “Swiss Army chainsaw” for its integration into (or outright replacement of) various
utilities. Given its similar popularity with web developers (and the fact that many
web programmers are their own system administrators or vice-versa) it’s not surpris-
ing to see system administration tools migrating to the Web via Perl or other means.

Many administrative information tools have web interfaces built in—routers, net-
work monitors, and so-on built in. SAMBA has a web-based configuration manager,
and there are a number of such tools for managing Apache and other web servers as
well as mail and news services.

If your particular need doesn’t already have a web interface, take a look on CPAN
to see if there is a Perl module that will make it easy to write your own. When | wanted
a network status script, | found Net::DNS and Net::Ping modules waiting, and tossed
one together quickly from the examples in their documentation:

#!/usr/bin/perl -w

use Net::DNS
use Net:: Ping;

ny $res = new Net::DNS:: Resol ver
nmy $check = Net::Ping->new('icnp');

for (ny $i = 1; $i < 255; $i++) {
ny $address = "192.168.1.%i ";
if (my $query = $res->query($address)) {
ny ($ptr) = $query->answer;
ny $nane = $ptr->ptrdnane;
i f ($check->pi ng($address)) {
print "$name ($address) is alive\n";
}
el se {
print "No answer from $name ($address)\n"

}

CHAPTER 9 INTRANET APPLICATIONS

This script spins through the addresses | use on my internal LAN and pings each one
that resolves to a real host. While it doesn't do anything that can't be accomplished
with a ping to a broadcast address, the output is easy to read (especially by, say, some-
one trying to help a remote administrator over the phone).

Note that if we wanted to add a web interface to this script, we need to do a little
more than just output the appropriate headers. Like most administrative tools, this
needs to be run as r oot , so sui dper | is required.

Speaking of Swiss Army cutlery, there is already a package of interfaces that has many
common problems solved. WebMIN started out as an openly developed product
intended to go commercial one day, but along the way the development company was
acquired by Caldera. Now it is offered under a BSD-like license at http://www.web-
min.com/webmin/.

WebMIN runs as its own server, listening to a designated port (usually 10000).
When a browser connects it presents an authentication screen, requiring each permit-
ted account to logon. After entering a correct username and password the browser
receives a menu screen showing the user’s configured modules.

Most anything that can have a web front end could be a WebMIN module. The
server ships with dozens of standard modules that cover everything from Apache con-
figuration to MySQL, PostgreSQL, various mail and FTP servers, and WebMIN itself.
The module architecture makes it comparatively easy for a developer to add capabil-
ities to the server, and in fact WebMIN’s site has pointers to many add-ons.

Each module presents a CGI-based interface and shares certain core elements,
including the 1D and permissions of the user. The look and feel of most modules is
intentionally bland to avoid browser issues, although some (such as the file manager)
employ Java for a more interactive interface.

Figures 9.3 and 9.4 show a few example screens showing how WebMIN can make
the tasks shown in this book easier:

SYSTEM ADMINISTRATION 257

258

Figure 9.3 WebMIN’s user administration

- Eim Eol s Searh Ge Brosmmis Tsis Hele Dedug 04

W

3 Edit Table

Table pddrasses In database 1nfo

Figure 9.4 MySQL administration

One interesting feature of the product is that different users can be configured with
access to different modules, and since the underlying processes run with the user’s ID
and permissions, the result is reasonably secure. This opens the possibility of using

CHAPTER 9 INTRANET APPLICATIONS

9.5

WebMIN's file manager for general user access. The module uses Java to create a typi-
cal GUI file manager in a browser. The file manager is shown in figure 9.5.

Fil Bl Wiew 30 Cpewwenices Heig |
: il
R Ol BN e B) K <
¥iew | L lais | Fief Imipm | e Hew | New (=¥ 3
I; F_I]
s [RULE L -
St in | e |u-|u-|5=|n.ur_|
[FE et]
i dew T LY TEA TEX MHanT?
il =t = B ks ikl nm T 13430
Bl rm - B e LN T il 1% Pia
L ETR Mkl 1] 1&ng
— 1 ext+icand B EE nn THE 1Ay
m 11 E T C T imadl {difiag
i |- 40 mn Tase =%bap
il . L ikF n o Funrid
Hl a1 B e 1668 o il a3
e Bl mar 410 mn B B
=== N o T it Feati
i ain B i HIB A i L TT]
TR B et 4 k1 e e 1diAng
Hll s B o 1B i1 iwok 110 g
— v aT | W 18 (L e 1&1T
E B o 4kl mn TR HdiFng
dm i
a
(ot FRRIN (et Fasenarages e S % (D R

Figure 9.5 WebMIN'’s file manager

For light duty, this interface will serve your users fine. I find it too slow and clumsy to
use more than that (but then, I hate graphical file managers).

A few buyer’s guide points for WebMIN: it is actively developed and is supported
by mailing lists with archives on their site. The site also includes documentation from
the developers and a new manual created and maintained by Caldera.

BUILD YOUR OWN PORTAL

You have your office applications, documentation, and other services running on an
internal network. Chances are this has involved multiple servers, either because all the
necessary applications didn't run comfortably on one machine or the required services
were spread over different systems. Even if you built it all on one box to start with,
you'll probably spread to additional machines as you add applications or users, or try
new things on test systems.

This being the Web, all these things can be joined naturally via links—create a
main page on your intranet web server with links to the applications and pages on their
various systems. As users become familiar with the applications, however, they will

BUILD YOUR OWN PORTAL 259

260

tend to bypass your link page and go directly to the applications and services they use,
either through bookmarks or through links of their own. This is the natural tendency
of the web-savvy, much to the annoyance of portal developers everywhere.

That wouldn’t be an issue if things on the Web (intranet or Internet) stayed put,
but over time you may need to relocate applications and pages, or servers may come
and go. This will break user bookmarks and links, leading to frustration all around,
especially for the person who has correctly maintained the unused portal page.

Fortunately, the tools to solve this problem are readily at hand. Apache’s alias and
rewrite modules give web administrators plenty of ways to redirect traffic.

Suppose you have a documentation server as described at the beginning of the chap-
ter. After adding enough documents you rearrange things into a logical structure, but
then you get user complaints about broken bookmarks.

One solution is to maintain both structures through soft links in the file system.
You can keep the actual documents in their new directories but let Apache find them
in old locations too, on request. By displaying only the new structure on your index
page you enforce the new arrangement. However, this scheme doesn’t work well for
generated indexes, which will show all the entries.

Another way of managing this kind of change is through the Al i as directive,
which allows us to tell Apache how to map URLS onto the file system. Al i as takes two
arguments: a URL fragment and its corresponding directory (which doesn’t have to be
under the document root—very convenient for managing documents across file sys-
tems). Al i as directives are read by mod_alias, which is built into Apache by default.

Suppose that we had a directory of product documentation, and each product has
its own subdirectory. After a time the directory becomes cluttered and we decide to
divide products into categories. In the old scheme, there were directories for Emacs
and vi like so:

/usr/ | ocal / apache/ ht docs/ pr oduct s/ emacs
/usr /1 ocal / apache/ ht docs/ products/v

In the new scheme we want those files to reside in a subdirectory for editors, but we
don't want to break bookmarks. The new directories will be:

/usr /1 ocal / apache/ ht docs/ product s/ edi t or s/ emacs
/usr /| ocal / apache/ ht docs/ product s/ editors/v

These Al i as directives will map the old URLs onto the new locations:

Alias /products/emacs /usr/local /apache/ htdocs/ products/editors/emacs/
Al'i as /products/vi /usr /1 ocal / apache/ ht docs/ product s/ edi tors/vi/

Notice that the first argument of the Al i as directive matches a URL path, while the
second matches a full directory specification. The directory is not relative to the doc-
ument root, which is why we can use Ali as to map in directories outside of
Apache’s normal view.

CHAPTER 9 INTRANET APPLICATIONS

The related Al i asMat ch uses a regular expression to match a URL and a substi-
tution to map it to a new location, which allows us to change directory or file names
in simple ways. For example, suppose we have converted all the GIF files on our site
to PNG. Rather than going back through all the documents and changing all their
image tags, we can use Al i asMat ch to make the switch:

AliasMatch ~(.*)\.gif$ /usr/local/apache/ htdocs/ $1. png

Al i asvat ch is also convenient when we've moved some files from a directory but
not others, as long as we can use a regular expression to spot the moved files. For
example, suppose we've moved all the .shtml files in the document root to a new SSI
subdirectory. This Al i asMat ch takes care of any requests for the old locations:

AliasMatch 2/ (.*)\.shtm $ /usr/local /apache/ ht docs/ssi/$1.shtm

The Al i as family works very quickly, so even a large set of directives wont slow
Apache noticeably. They work only for straightforward changes in file arrangements,
however. If we move files to another server, we need to use Redi r ect to maintain
the links.

Redi r ect is also part of mod_alias, but its operation is quite different. The sec-
ond argument to the directive is a URL instead of a file path. When an incoming
request matches a Redi r ect , Apache sends the browser a redirect status code and the
new URL. The browser will then try the new URL (which could get another redirec-
tion, but we hope not).

Suppose we've accumulated so much documentation on Perl modules that we need
a whole server just for that. On our old documentation site, /perl-modules contained
the files, so we want to redirect any requests for that path to the new server, called
perldoc; it has all the files in its rodul es directory. Here's a Redi r ect that accom-
plishes that:

Redirect /perl-nodules http://perldoc/nodul es

Any incoming URL that begins with /perl-modules will be sent to the new server.

Similarly, Redi r ect Mat ch uses a regular expression and substitution to trans-
form the URL on the fly.

Redirection is obviously slower than aliasing. The browser sends a request to one
server, gets a message back, then sends a changed URL to a different server which has
the requested document. On an internal network that shouldn’t be too slow, but the
processing delay can still be noticeable. While this may be the effect you want if you
are trying to get users to change their bookmarks, you can help speed the process by
telling their browsers whether or not the change is permanent.

By default, Redi r ect directives send browsers a temporary redirection, indicating
that the browser should check the original URL again if the user requests it. By chang-
ing the status to permanent, a clever browser can avoid delays when requesting the
same URL later on. It caches the redirection and uses the new location directly. The

BUILD YOUR OWN PORTAL 261

262

status argument is optional and comes before the URL path, so a permanent version
of our above server switch would be:

Redi rect permanent /perl-nodul es http://perldoc/nodul es

If your site changes in ways that are beyond the scope of simple aliases and redirec-
tion, you can still maintain links and bookmarks through the much richer capabilities
of Apache’s rewrite engine. mod_rewrite provides a powerful toolkit for transforming
URLSs, but it has a certain reputation for incomprehensible complexity which is only
somewhat deserved. My own experience in getting things to work with mod_rewrite
is similar to the way in which | learned Perl, by finding an example that was similar to
what | wanted and poking at it until it fit.

Apache ships with two sets of documentation for mod_rewrite: the modules page
has an explanation of how the engine works, and the URL Rewriting Guide has a num-
ber of examples and fixes for common problems.

And of course, we can use mod_perl to intercept requests and translate links as well.
The next section shows mod_rewrite, and the section after that has equivalent
mod_perl examples.

In chapter 2 we briefly discussed ways of arranging user directories, from simple uses
of the User Di r directive to suggestions of larger schemes. A typical User Di r
scheme is:

UserDir public_html
<Directory /home/*/public_html>
AllowOverride All
Options Indexes SymLinkslIfOwnerMatch
</Directory>

This User Di r directive tells Apache to map URLs beginning with a tilde (~) onto
the home directory of the user, followed by public_htm ; that is, http://
www.example.site/~theo maps to / hone/ t heo/ publ i c_ht nl . (You can have any
number of other arrangements, as mentioned in chapter 2 and in the User Di r doc-
umentation.) The Di r ect or y block afterward sets open permissions for those user
directories. In particular, Al | owOverride Al | lets users set any directives they
want in local .htaccess files, even if they override the options given here. The options
in this block will still serve as defaults, however.

Suppose that after setting up the internal portal, users begin migrating private pages
and applications to other machines—a development system or their own worksta-
tions. If all users move to one machine, it is easy to map them using User Di r again.
Suppose we’'ve moved all the users from www.example.site to users.example.site:

CHAPTER 9 INTRANET APPLICATIONS

UserDir http://users.exanple.site/*/public_htm

If User Di r’s argument is a URL instead of a directory, Apache sends a redirect to the
browser to the new site. This use of User Di r is equivalent to:

Redirect Match A/ ~(.*)$ http://users. exanple.site/~$1

If you are happier working with regular expressions directly, this may suit you better.

If users are migrating individually, you can handle them with individual redirects.
Suppose Fred has moved his pages to his own workstation, fred.example.site. This
redirect will take care of things:

Redirect /~fred http://fred. exanple.site/

If you have a large number of users, maintaining the redirect lists could get onerous.
mod_rewrite, however, has a solution: given a URL that matches an expression it will
look for a user in a database and redirect the request, or send it to a default server if
the user wasnt found. Rewr i t eMap supports text file databases, DBM files, and
even external programs that do the lookups elsewhere.

For example, suppose some of our web developers have moved their pages but most
of the users are still on users.example.site. Set up a list of the exceptions in a file that
Apache can read; my example uses / usr/ | ocal / apache/ webbi es. map:

bob bobsbox. exanpl e.site
carole carole.exanple.site
ted frodo. exanple.site

Now tell Apache to check user requests against that database using Rewr i t eMap:

<IfModul e nod_rewite.c>

Rewr i t eEngi ne on

RewritelLog /usr/local/apache/logs/rewite

Rewri t eLogLevel 0

RewriteMap webbies txt:/usr/local/apache/ webbies. map

RewriteRule A ~([~]1+)/?(.*)$ http://${webbies: $1| users. exanpl e. site}/
~$1/ $2
</ | f Modul e>

These directives first configure mod_rewrite by turning it on and telling it where to
log rewrite debugging information. By setting Rewr i t eLogLevel to O we arent
actually writing any debugging output, but if you do much work with mod_rewrite
you'll want its help eventually.

The Rewr i t eMap directive tells mod_rewrite about the text database, giving it a
map name and the path to the file. The map name can then be used in the following
Rewr i t eRul e directive (or anywhere else in the file, for that matter).

Let’s take a closer look at the regular expression used here. It matches username
URLs of the familiar form ~user/path (or just ~user); the parts of the expression in
parentheses turn into variables $1 and $2. Thus a request for http://www.exam-
ple.site/~bob/page.html matches with $1 set to bob and $2 set to page.html. If no
path is given after the username, then $2 is empty.

BUILD YOUR OWN PORTAL 263

264

The substitution portion of the rule makes reference to ${webbi es
: $1| users. exanpl e. si t e}. This uses the map database in much the same way
as a Perl hash, where webbi es identifies the map and $1 is the key to look for in the
table. If found, the corresponding value is substituted; if not, the default value
users.example.site will be used. Thus the example above will be translated to http://
bobsbox.example.site/~bob/page.html, while a request for http://www.example.site/
~alice will still go to http://users.example.site/~alice as desired.

Some Perl developers complain about the “voodoo” nature of mod_rewrite; having
learned one language with a bad rep, why learn another? Never fear, with mod_perl
we can take on all URL translation and redirection tasks using familiar Perl tools.

Previous mod_perl examples have been application-oriented, in that the Perl code
was taking the place of an HTML page or a script (or both). As I've mentioned previ-
ously, however, mod_perl can get involved in any step of Apache’s process for trans-
lating a request to response and content. This is one of the best reasons for learning
mod_perl, as you gain advantages far beyond speedy CGI applications.

As an example, let’s toss out mod_rewrite and implement the user translation
shown earlier as a Perl module. It will run as a handler (as all our previous mod_perl
examples have) invoked when Apache receives a request for a user directory, and will
look up the user in a simple database. The code is in Fi ndUser . pm

package Exanpl es:: Fi ndUser;

use strict;
use Apache:: Constants gw :response);

my %ewnHosts = (
bob => ' bobsbox. exanple.site',
carole => 'carol e.exanple.site',
ted => 'frodo.exanple.site',

)

sub handl er {
ny $r = shift;
my $uri = $r->uri;

Check for ~user (though a LocationMatch should handle that).
if ($uri =~ m(~([*]+)/1?(.%))) {
if (my $host = $ownHosts{$1}) {
This user has his own server.

$uri = "http://$host/~$1/ $2";

}

el se {
Normal user. Redirect to users.exanple.site.
$uri = "http://users. exanple.site/ ~$1/$2";

}

Send the redirect to the browser.
$r - >header _out (Location => $uri);

CHAPTER 9 INTRANET APPLICATIONS

return REDI RECT,;
}

return OK;

}
1

We'd hope that such a simple task can be performed in a short bit of perl code, and it is.
Most are declarations, including the database of users from the previous section. While
for simplicity’s sake this code has the database in a regular hash, in practice it could be
stored in a hash file, a relational database, or anything else which makes sense.*

Some new things to note in this code: it imports a larger set of constants from
Apache::Constant than other examples. The r esponse set includes the REDI RECT
status, which we use to tell the browser to look elsewhere. After loading the constants
it has the typical opening for a handler, and verifies that the request it is handling is
in fact for a user directory. The regular expression match which checks that also puts
the user name in $1 and the rest of the request in $2.

The user name is checked in our database of users who have their own hosts. If
found, the URL is rebuilt with the new host in place, and if not, the default users.exam-
ple.site is used as we had in the previous section.

When sending a redirection to a browser, Apache has to send both the redirection
status and the new location for the requested document. The code handles this by set-
ting the Location header to the new URL, then returning REDI RECT, the status value
that Apache will pass along to the requester.

As always, we need to tell Apache to load this code and when to invoke it. Add the
following to nod_per | . conf (or where ever you keep your mod_perl directives):
Per | Modul e Exanpl es: : Fi ndUser
<Locati onMatch "~/ ~">

Set Handl er perl -script

Per | Handl er Exanpl es: : Fi ndUser
</ Locat i onMat ch>

This example uses Locat i onMat ch instead of the usual Locat i on, because we
want to match a regular expression instead of a partial URL path. As with previous
examples, Set Handl er tells Apache to pass the requests through mod_perl, and
Per | Handl er in turn tells mod_perl which module to use. It's worth mentioning
that we've told Apache that we're handling all user directory requests. This handler
redirects all such requests to other sites, but if we also have to serve local users on this
machine, we'd have to take a different approach.

4 The code to read the map file used in the previous section and load it into a hash is left as an exercise
for the reader. It should be no longer than a handful of lines and should make use of map and spli t.
For extra credit, add a check to reload the hash when the modification time of the map file changes.

BUILD YOUR OWN PORTAL 265

266

If you like the do-it-yourself approach to translating URLS, why not replace all of
the redirections and aliases used in the prior section with Perl code? mod_perl allows
this as promised, but via a different mechanism than we’ve seen previously.

In this case, we don’t want to take over serving up HTML entirely just so that
we can fix URLS. Instead we want our code to intervene in the mapping process
while allowing Apache to do the bulk of the work. To that end, we’ll register a
translation handler.

When Apache is translating URLs and mapping them to files, it calls one or more
translation handlers. Each handler receives the request in its current state and can
modify the URI, set the file name, send back a redirection, or take other actions. When
a translation handler makes a final decision about what file corresponds to the
requested URL it returns OK to tell Apache that this phase of the request is over.

By registering our own translation handler, we can get first crack at incoming
requests, and apply our own rules to them. Here is a sample handler (from Fi xup-
URL. pn) that performs all the manipulations discussed in the first part of this section:

package Exanpl es:: Fi xupURL;

use strict;
use Apache:: Constants gw :response);

sub handl er {
ny $r = shift;
ny $uri = $r->uri;
ny $status = OK;
ny $file;

Look for products that have mgrated. Equivalent to:
#Al i as / products/emacs docroot/ products/editors/emacs/

#Al i as /products/vi docr oot/ product s/ editors/vi/
if ($uri =~ n{"/ products/(enmacs|vi)}) {
remap the filename to the new directories.
$uri =~ s{/products/}{/products/editors/};

$r->internal _redirect($uri);

}

elsif ($uri =~ nm{\.gif$}) {
Translate gif file requests to PNGs. Equivalent to:
AliasMatch ~(.*)\.gif$ docroot/$1. png
$uri =~ s/\.gif$/.png/;
$file = $r->docunent _root . $uri;

}

elsif ($uri =~ n{/([M]+)\.shtrd$}) {
Moved .shtml files to docroot/ssi. Equivalent to:
AliasMatch A/ (.*)\.shtm $ docroot/ssi/$1.shtnl
$file = "/usr/local/htdocs/ssi/$1.shtm";

}

elsif ($uri =~ m{~ perl-modules(.*)}) {
Send any requests for /perl-mpdules to a new server:
Redirect /perl-nmpdules http://perldoc/nodul es
$uri = "http://perldoc/ nodul es/ $1";
$r - >header _out (Location => $uri);

CHAPTER 9 INTRANET APPLICATIONS

$st at us = REDI RECT;

}

el se {
Pass the buck to another handler.
$st at us = DECLI NED;

}

$r->filename($file) if $file;
return $stat us;

}
1
The code replaces each Al i as, Al i asMat ch, or Redi rect directive with appro-

priate chunks of Perl. The first one handles the migration of the / pr oduct / emacs
and/ product/vi directoriesto/product/editors:

if ($uri =~ nm{"/ products/(enmacs|vi)}) {
remap the filename to the new directories.
$uri =~ s{/products/}{/products/editors/};

$r->internal _redirect($uri);

}

It alters the URI to insert the new directory, then calls $r - >i nt er nal _r edi r ect
to tell Apache to start the process over again. The altered request will go through the
translation process, even calling this handler again. That seems inefficient, but it
keeps things simple. On the next pass other translations can occur, such as the GIF to
PNG step shown next. We could structure the code to take care of that, of course, but
for a complex handler that may add unnecessary difficulty.
The next steps perform straightforward fixes:
elsif ($uri =~ nm{\.gif$}) {

Translate gif file requests to PNGs. Equivalent to:

AliasMatch ~(.*)\.gif$ docroot/$1. png

$uri =~ s/\.gif$/.png/;

$file = $r->docunment _root . $uri;

}

elsif ($uri =~ n{/([M]1+)\.shtmd$}) {
Moved .shtml files to docroot/ssi. Equivalent to:
AliasMatch A/ (.*)\.shtnm $ docroot/ssi/$1. shtni
$file = "/usr/local/htdocs/ssi/$1l.shtm";

}

In the first case, we want just to map one file type to another. A simple substitution of
GIF to PNG takes care of that, then the code appends the fixed URI to the document
root to form the file name. In the second case, we've moved all files ending in .shtml
to another directory, so the code fixes the file name directly.

Skipping over the other cases for a moment, the section in the earlier example will
drop down to this code:

$r->filename($file) if $file;
return $stat us;

BUILD YOUR OWN PORTAL 267

268

Since we set $f i | e in both of these sections, the code will call $r->fi | enane to
set the file name in the request. Returning OK for the status tells Apache that transla-
tion is finished. (But look ahead a few sections to see the limitations of this approach.)
Handling Redi r ect directives in Perl code is similarly straightforward:
elsif ($uri =~ m{~ perl-nodules(.*)}) {
Send any requests for /perl-nodules to a new server:
Redirect /perl-nmodules http://perldoc/modul es
$uri = "http://perldoc/ nodul es/ $1";
$r - >header _out (Location => $uri);
$st at us = REDI RECT;
}

In this case we're sending requests for /perl-modules to another server. We set the new
URL in the Locat i on header and return the REDI RECT status so that Apache will
send the new location back to the browser.

I'll explain the default case (that sets the DECLI NEDstatus) in a moment. To install
our handler we need to add the configuration to nod_per| . conf (or where you
keep your mod_perl directives):

Per | Modul e Exanpl es: : Fi xupURL
Per| TransHandl er Exanpl es: : Fi xupURL

Note the use of Per | Tr ansHandl er instead of Per | Handl er in this case.

Try out the example and you should see Perl handling the URL translations quite
handily. Now what is that DECLI NED status about?

As an experiment, change the el se case in the handler like so:

el se {
Map the file.
$file = $r->docunment _root . $uri;

}

That’s the normal mapping for Apache, appending the URL path to the document
root to form a file name, so it seems perfectly reasonable. The handler will set the
resulting file name and return OK, telling Apache that translation is done. Restart
Apache and it will serve up normal files and graphics with no trouble.

If you test the server more heavily, though, you might get a surprise—no Al i as
or Script Al'i as directives in htt pd. conf work! That includes CGI scripts
(requiring Scri pt Al i as to tell Apache how to handle cgi-bin), icons, and anything
else involving mod_alias.

The reason is that the changed handler returns the OK status to Apache, telling it
that the translation phase is over. That means Apache won't call any other translation
handlers. In particular, it won’t call the code in mod_alias that handles other impor-
tant directives.

We could work around this by adding code to handle everything mod_alias does,
fixing up CGI requests and all. It’s not terribly difficult, following the examples for

CHAPTER 9 INTRANET APPLICATIONS

each case. However there isn’t a great need for that when instead we can just play by
the rules of chained handlers.

The Per | Tr ansHandl er directive installs our code at the top of the list of han-
dlers Apache will call for this phase, keeping its list of other handlers—most impor-
tantly the handler used by mod_alias. To call the next handler in the chain, our code
should return DECLI NED instead of OK. While that sounds odd, it tells Apache that
the phase is not over and the file name hasn’t been set. Restore the el se clause as
given in the example and restart the server, and the DECLI NED status will allow
mod_alias to do its job.

A handler can also take another approach: instead of calling $r - >f i | enane to
set the file, the code can change the URI via $r - >ur i . The next handler in the chain
is going to look at the URI (just as our code does) and apply its rules to map the request
to a file, and any current value in the file name will likely be ignored. Thus we could
apply our translations like so:

elsif ($uri =~ n{\.gif$}) {
Translate gif file requests to PNGs. Equivalent to:
AliasMatch ~(.*)\.gif$ docroot/$1. png
$uri =~ s/\.gif$/ .png/;
$r->uri ($uri);
}

In this case we can apply translations via Perl code and mod_alias directives to the
same URL. By restricting itself to URI manipulations and returning the right status,
the code can do its job while letting mod_alias to the rest of the work.

9.6 JOINING MULTIPLE INTRANETS

At the beginning of this chapter, | listed a number of advantages that intranet appli-
cations have, chiefly the speed and security of a local network. If you've built a suc-
cessful intranet site, you may find others asking for admission to it from outside—
users who telecommute and need access to mail and calendar info, or perhaps another
office that hosts its own network and wants to share applications.

With the advent of broadband access for both home and business users, it is pos-
sible to provide external users with speed comparable to that which they enjoy at the
office. We wouldn’t want to do this without giving them equal security, however.

One solution is to build all web applications with the security tools discussed in
chapter 6. This adds complexity and development time, however, and voids the whole
advantage of being inside a secured network. We might also have to discard an oth-
erwise good product if it doesn’t work with secure channels.

The better choice is to apply security to the link between the internal and external
networks. In network industry buzzwords, we want a virtual private network (VPN).

JOINING MULTIPLE INTRANETS 269

270

With the rise of networked computers, many large corporations built private net-
works to link their various offices into an electronic community.® These wide area
networks (WANSs) consisted of leased phone lines or more exotic connections and
were the products of considerable investments. When such networks joined the Inter-
net, they did so first through gateway systems that converted internal mail and other
messages into their TCP/IP-based counterparts. Messaging within the enterprise
stayed within the private network.

As more users began to take advantage of the Internet, corporate gateway systems
became overloaded, and each LAN got its own connection. Soon, WAN managers
started to wonder if the company couldn’t do without the private network and instead
use the Internet for business transactions. (These days you hardly hear people talk
about WANs any more. Perhaps all those network managers got jobs in the rapidly
growing broadband and firewall industries.)

At the same time, new businesses were starting up without the assumption of hav-
ing private networks at all. What both groups wanted was to use the Internet for the
same secure, internal traffic they would have from building their own private com-
munity. That’s where the V in VPN comes from: using public Internet connections
to build a virtual private network.

The principle behind a VPN is simple: intercept LAN packets that are headed out
to a VPN member network, and use hardware or software to encrypt them. At the
receiving member site, decrypt the packets and deliver them as if nothing had hap-
pened in between. Commercial VPN hardware usually takes the place of (or adds to)
network routers in the member sites.

By encrypting traffic between member sites, VPNs provide the security of a private
network, but without the cost of leased lines, et cetera. Administration is simplified
since the managers of the member sites can assume that internal traffic stays private,
and can focus on screening the outside world from internal news.

With the advent of telecommuting, VPNSs are even more important, since more
users want to connect their home and office systems. This leaves many companies
looking for cheap ways to implement secure private connections. And of course |
wouldn’t be leading the discussion this way if there weren’t an Open Source solution.
Actually there are a few choices here—IP Sec and CIPE both offer ways of sending
secure IP traffic through the Internet, and both have Open Source implementations.
If you are integrating with a Microsoft PPTP network you can find Linux implemen-
tations of that protocol as well. The solution | discuss in the next sections has the
advantage of using simple and well-established tools available on most OSs.

5 When I worked for Digital Equipment Corporation in the 1980s, the company’s “e-net” network of
news and mail services was considered a major job benefit for those who enjoyed virtual community.
DEC'’s gateway to Usenet gave me my first exposure to the Internet at large.

CHAPTER 9 INTRANET APPLICATIONS

As TCP/IP networking became dominant, users with dial-in connections became
familiar with tools for connecting networks over regular phone lines. Most probably
encountered SLIP (Serial Line IP) first for connecting individual machines to a host
network, but PPP (Point-to-Point Protocol) rapidly came to be the tool of choice for
its routing capabilities and other reasons. To connect two networks via a phone line
all we need is a computer with a modem and PPP on each side. One machine initiates
a call to the other, and then each tells its PPP service to use the resulting serial connec-
tion. The PPP services then shake hands with each other and route appropriately-
addressed network traffic through the phone line to the other side.

An important feature of modern implementations of PPP is ARP proxying. ARP on
Unix systems is the Address Resolution Protocol, which is used to map the addresses
used by Ethernet networking onto TCP/IP addresses. PPP uses ARP proxying to make
the partners in the serial connections appear to be local machines on each others’ net-
works, which makes it possible to route traffic through them.

After establishing PPP connections, the systems on either side publish routes to
their network that tell how to route traffic through the bridge. TCP/IP routing does
the rest, without requiring any special knowledge of the PPP gateway itself.

SSH is already familiar to you as the tool for encrypting a shell session or performing
simple file copies and remote command invocations between known hosts. SSH does
more than it appears at a casual glance—for instance, it can be configured to create
encrypted X-windows sessions and handle other transports as well. In this discussion
it is SSH’s simple capability to create an encrypted channel that is of interest.

The first implementation | encountered of this style of VPN used SSH from the
local machine to invoke PPP on the remote target and send PPP traffic back through
the SSH encrypted channel. The more current implementation is different, however,
in that SSH is used in conjunction with pty-redir to create an encrypted serial device;
it then tells PPP to use that device to connect to the remote side. The mechanism is
quite elegant and is described in detail for Linux systems in the VPN_HOWTO written
by Matthew D. Wilson (and available on any number of Linux documentation sites
as well). The same tools can be used on other operating systems, although you’ll have
to work out far more of the details yourself.

Once you have the pieces in place (as described by Wilson’s document), you create the
VPN by first creating the encrypted channel device using SSH and pty-redir. This
takes place over the network connection you have between the local and remote net-
works, which may in fact be a serial line running another layer of PPP. After both sides
have established the channel and the device is ready, invoke PPP on the local machine
with the device, and give it the IP addresses to use on either side of the bridge.

JOINING MULTIPLE INTRANETS 271

272

Assuming PPP connected to the remote machine, you now have an encrypted chan-
nel sending TCP/IP traffic between the two systems. Publish routes to each network
telling it to route traffic through the connected machines, and your VPN is complete.

While this implementation is far from trivial, it makes use of free software and
hardware components you are likely to have already. The two ends of the VPN bridge
can be older Intel Pentium machines that wouldn’t make it as modern desktop systems
(the HOWTO author recommends Pentium 90s), and can also take on firewall and
DNS tasks in the bargain, making a very economical package.

CHAPTER 9 INTRANET APPLICATIONS

CHAPTER 1 0

10.1 E-commerce requirements 274

10.2 Components of an e-commerce site 276
10.3 Feedback 299

10.4 Open Source e-commerce tools 303
10.5 Credit card processing 311

The big story of the Internet boom is of course e-commerce, e-business, and the rise
and fall of the dot-coms. The eager spending of venture capitalists led to lavish site-
opening parties and Superbowl ads, then to panic as profits failed to materialize.
While I've been writing this, a second wave of investment has begun and new web
stores are opening.

If you are lucky enough to be starting a web business, or you are keeping an existing
Internet storefront running, then you are surely looking for tools to help with your
job. But before we dive in to catalogs and payments, we’ll need to review the require-
ments for a well-run e-commerce site. This chapter will then work through an example
of a partial e-commerce site, using tools we’ve discussed previously to build a catalog,
shopping cart, and checkout system. After that we’ll discuss ways to make your site
more interactive, building in features from the chapter on community sites. Site-
building tools and credit card processing wrap up the chapter.

273

10.1

274

E-COMMERCE REQUIREMENTS

In chapter 2 we discussed the hardware and environmental requirements for a few
sample scenarios. An e-commerce site calls for high quality hardware and bandwidth
if it is to have enough traffic to pay for itself. Patrons of a volunteer-run community
site may put up with slow machines, but paying customers expect responsive applica-
tions and quick feedback.

This site is the least likely to be running on leftover hardware, and in fact if you
are building such a site for a serious business, chances are good the hardware decisions
(and probably many software choices) have already been made. Once again, that’s not
necessarily a problem, as the tools discussed in this book run practically anywhere one
can expect to find a web site, but if someone else is making (or has made) the hardware
decisions, review them as soon as you can for anything that will pose a problem.

Bandwidth is of crucial importance here also. Far too many developers are caught
off guard when they encounter the load placed on their network by the number of
users required to make a business site succeed. If the bandwidth is sufficient, you may
find yourself in a memory crunch or running out of other resources as Apache gener-
ates processes to meet demand. Chapter 12 discusses these and related problems.

Performance is not just about starting with good hardware, and when business sur-
vival is at stake, it is even more important to make every decision with an eye toward
delivering. The web server should have a machine to itself, possibly even hosting data-
bases and order processing applications on separate hardware. Any change which
involves running new processes on critical machines should be evaluated by all respon-
sible parties.

As this implies, an e-commerce site is very likely to be a cluster of machines, also
known as a web farm. Chapter 12 also discusses how to build such a configuration
with Apache and other Open Source tools.

In most other contexts, securing a site means preventing break-ins and other cracker
activities. A business site must do far more. Customers expect that their financial
transactions will be made over secured channels (even if they don't ask for them) and
that the private data required will be kept private.

Industry news channels seem to thrive on stories of credit card databases being
cracked, Social Security numbers and financial history information being exposed,
and other foibles of web businesses. | certainly don’t need to warn a future e-business
to guard its data. In the last few years other privacy concerns have started to make
almost as many headlines, as various consumer groups began to call for web businesses
to publish their policies for use of customer information. Sites that keep data on their
users are now expected to have a clearly displayed link to their privacy policy, and leg-
islation is in progress in many countries that will further limit what businesses may do
with databases.

CHAPTER 10 THE WEB STOREFRONT

When building an e-commerce site, it is of great importance to start with security
in mind. Resist the temptation to begin with a development system and a plan to
secure the site later. Create the minimum accounts necessary and use randomly gen-
erated passwords for them. Disable all services that won't be used when the site is
opened to the public. Make sure the site has all security precautions in place before it
is connected to the public network.

Security and performance both tend to slip after a site is opened. The daily and
emergency needs of running the site make it easy to take shortcuts or put off needed
fixes. That makes it even more crucial for security maintenance to be part of the reg-
ular administration activities for the site. Review what accounts are open and what ser-
vices are available, manually and with a network-scanning tool. Keep up with security
patches for your OS, web server, and other software. Evaluate performance regularly,
and if something is amiss, plan and implement improvements before the problem
becomes critical.

One much-touted advantage of e-commerce is how it lets businesses meet the global
market and 24 hour business days. In fact, however, most business web sites still have
comparatively local markets (constrained to a nation or continent), and thus have
peak traffic hours. This certainly isn't just a problem for e-business; the advent of
home broadband access in the United States created the Internet Rush Hour effect,
when numbers of users who'd just gotten off work tried to get to their favorite music
sites. Regardless of the service you provide, your site is likely to be busier some time
of the day than others.

With a business site, however, peak traffic hours can reveal weaknesses in site
design that aren’t as critical to others. If the network bandwidth for the site handles
the peak, the high number of incoming requests will also cause Apache to spawn its
maximum number of servers. Some of those servers will be making simultaneous con-
nections to your database, and if you use tools such as Apache::DBI to cache connec-
tions, all of the application servers will holding database resources.

The result can surprise developers and database administrators who haven’t
planned and tested for maximum load. Applications that don’t handle connection fail-
ures will die mysteriously; naive locking schemes will cause hangs and crashes. Data-
base servers that never crashed during development may suddenly dump cores or
worse, slow to a crawl without triggering restart mechanisms. Any of the above results
in frustrated and bewildered customers and loss of business.

The first step to preventing these cases is to use a database that can handle the high-
est load expected of your site. Database vendors (Open Source or otherwise) use such
information to market their products, but of course a real-world test is best. Early on
in your design phase, try some kind of load test on your database of choice, even if
you have only the vaguest notion of what your final designs will look like. If a database
has been chosen for you, this gives you a chance to either make a case for another

E-COMMERCE REQUIREMENTS 275

10.2

276

product or find out what problems you’ll need to work around. If the choice is yours,
evaluate more than one product, even if you're prejudiced. Having done a compari-
son, you'll have ammunition at hand should someone question your choice later.

Having chosen a product that can handle the load, you need to make a habit of
testing it again as development progresses. When you have a working server and an
application of some sort, put it under stress right away. This gives you another early
warning of difficulties to follow. An amazing number of applications fail when loaded
beyond the single developer working with a system of his own.

Tools for monitoring the database’s load and resource usage are just as important
as the ones you used to develop your system in the first place. When mysterious fail-
ures begin, you want both the tools for finding out what’s wrong and familiarity with
how to handle problems. While your stress tests are running, get up to speed with your
database’s analysis tools and with other monitoring and debugging aids.

Even with the best products and planning, mysteries will likely occur. This is where
the support mechanism of your chosen database will become crucial to your long-term
success. Can you go to someone and describe the problem? Is there a mailing list or
forum for administrators where you can post your symptoms or search for similar
cases? Good support is as important to your survival as good tools.

Developers of surprisingly few sites test their support during development. Before
it becomes critical, become familiar with the resources available to you and try out
reporting a problem or asking a question, based on some mystery of configuration or
early programming. At the very least you'll learn what to expect, and you may make
valuable contacts in the process.

As discussed at length in the next chapter, mission-critical systems require com-
prehensive and proven backup plans and recovery procedures for both hardware and
software. While you should make regular backups of your applications and system
files, many relational databases have special requirements for backing up data in a con-
sistent state. Become familiar with the needs of your database early in the site’s life and
establish appropriate backups, then give your recovery plan a test once you have some
applications working. By verifying that you can repair the system when it’s broken,
you’ll address important business concerns and give yourself confidence and assurance
when a real emergency comes.

COMPONENTS OF AN E-COMMERCE SITE

Business web sites have common elements, just as different sorts of businesses do.
While you'll strive to give your site a unique appeal, you'll want to do so in a way that
gives your customers a familiar sense of what they are doing.

The first e-commerce web sites were essentially online catalogs. Some allowed
orders to be filled in from the browser and emailed to a service representative, but a
good number directed the customers to phone in or fax their orders after making a

CHAPTER 10 THE WEB STOREFRONT

decision. These days customers expect credit card processing as a matter of course,
although web-savvy users may also use and prefer other online payment methods.

While we've made great strides in order processing, many e-commerce sites are still
“brochure-ware,” catalog sites with nothing interactive other than the taking of
orders. Various high-profile sites have attempted to create something called an “online
shopping experience,” which seems mostly to involve burdening pages with so many
graphics that nonbroadband users return to offline alternatives. In later sections we’ll
discuss better ways to make your site more than a catalog, but the core components
of a site will still be there: a catalog of products, a database of customer information,
a shopping cart that joins the two, and customer services applications that manage
orders and shipments.

Rather than staying with abstract ideas, let’s consider those components in context
by building an example site: a T-shirt store called QuipShirts, which sells shirts with
various quippy slogans. The (so far) mythical example site is http://www.quip-
shirts.com/, and is built to handle a few dozen shirt designs with alternatives for color,
style and size.

An online catalog is very similar to its paper predecessor, presenting the basic prod-
ucts you sell, their add-ons and variations, and as much sales literature as you can rea-
sonably expect the reader to read. Small sites that sell only a few products may build
their catalogs entirely in static pages, but larger operations quickly turn to dynamic
content built from a product database. Even those storefronts that use handmade
pages may have a file or table of product codes and prices.

For QuipShirts, the product is shirts that have these characteristics:

« Quip, which is the text displayed on the shirt, or some sort of distinguishing title.
Graphic, the actual layout of the shirt including text and picture(s).
Styles, which may include T-shirt, polo, tank top, and others.
Colors (not necessarily available in all styles).
Sizes (again, possibly an incomplete selection for colors and styles).
e Price in U.S. dollars.

In most cases a catalog represents a full product line, including current stock and
planned production. To reduce the number of tables in the example the QuipShirts
catalog represents only the store’s inventory.l The catalog pages are generated from
records in the Inventory table:

L we'll assume for the moment that Quipshirts is making T-shirts in bulk and selling what they have,
rather than taking orders and printing them on demand. Of course, an online shop that mastered print-
to-order T-shirt making would be far more revolutionary than what we’re going to show here, espe-
cially if it made a profit.

COMPONENTS OF AN E-COMMERCE SITE 277

278

CREATE TABLE | nventory (

Bi n VARCHAR(10) NOT NULL,

Qui p VARCHAR(80) ,

G aphi ¢ VARCHAR(20),

Styl e VARCHAR(10),

Col or VARCHAR(10),

Si ze VARCHAR(5),

Quantity | NTEGER,

Price REAL,

PRI MARY KEY (Bin)

)
This inventory layout merges what might be two or three tables in a more full-
featured application. The first column, Bin, tells us where to find the physical stock
in the warehouse. We'll assume that bins have some kind of labeling mechanism that
makes sense to the stock workers, and that the labels don't exceed ten characters. The
next group of columns describes the contents of a bin: the quip, graphic, style, color,
and size of the shirt. The Quip column contains either the whole slogan or a brief
version that is suitable for the catalog, while the Graphic column contains the name
of a JPEG file which shows the printed shirt.2 Style, Color, and Size are all in text
that will appear on the catalog as-is and make sense to a casual reader, such as “polo,
green, XXL.”

Now that we have the first table, we’ll create web pages that will show the current
inventory to customers and allow them to see more details on shirts of interest. I'll use
Mason in these examples to simplify the mix of HTML and Perl code; the QuipShirts
site is configured the same as the Mason report example in chapter 7. Code and sample
data for the site are available on this book’s web page.

Here is st ockshi rts. mht m , a front page component that shows what shirts
are currently in stock:
<& gphead. ncnp, title => 'Inventory' &>
<H2>Qui pShirts Current |nventory</Hz2>
%if ($session{'realname'}) {

<H3>Weél cone back, <% $session{'real nane'} %</ H3>
%}
<TABLE>

<TR><TH>Shi rt </ TH><TH>Si ze</ TH><TH>St yl e</ TH><TH>Col or </ TH></ TR>
% foreach nmy $bin (@bins) {

<& shirtrow. ncnp, bin => $bin &

%}
</ TABLE>
<pP>
Vi ew your shoppi ng cart </ A>

Check order status
<& qpfoot.ncnmp &

2 Storing the image in the database itself would be far cooler of course, and is left as an exercise for the
reader.

CHAPTER 10 THE WEB STOREFRONT

<% nit>
ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts: | ocal host',
"web', ' nouser')
or return SERVER_ERROR;
ny $sth = $dbh->prepare_cached
("select Bin fromlnventory where Quantity > 0 ".
"order by Qip, Style, Color, Size")
or return SERVER_ERROR;
ny $bins = $dbh->sel ectcol _arrayref($sth) || [];
</%nit>

I won't go into the header or footer components here, since they are more or less the
same as the examples in chapter 7 with a few name and color changes. As usual with
Mason, most of the code happens in the <% ni t > section. The component connects
with the database, selects all the shirts from bins with a positive quantity, then makes
an array of bins sorted by the shirt title and characteristics. The error handling is very
simple (return an error page if anything goes wrong) to keep the example short.

If the database interaction is puzzling you, review chapter 4 for information on the
DBI module. Since my mod_perl configuration loads Apache::DBI, the component
will connect to the database only if it is the first application to request a connection.
Apache::DBI overrides the connect method to cache connections and return a free
handle if one is available, speeding up things considerably. The pr epar e_cached
method further saves prepared statement handles (caching them in the reused database
handle), and passes the handle to sel ect col _arrayr ef to receive an array hold-
ing the column values of interest—the bins with shirts.

The top part of the component has the Mason code, mixing HTML and compo-
nents to build the page. Note that the session hash is used as described in chapter 7—
we’ll see how the value of $sessi on{" r eal name' } gets loaded in the next section.
The component creates a table, then invokes a subcomponent (shi rt r ow. mcnp)
for each bin. If we accepted CGI parameters on this page we could refine the display to
matching strings or other characteristics, but again this example is meant to be simple.

Here is the table row component:
<TR>

<TD><A HREF="shirts/ <% $bi n %" ><% $qui p %</ A></ TD>

<TD><% $si ze %</ TD><TD><% $styl e %</ TD><TD><% $col or %</ TD>
</ TR>

<%ar gs>
$bi n
</ %ar gs>

<% nit>

3 Since QuipShirts has its own database, the components need their own database connection, rather
than using the one opened by mason_handl er . pl . The handler’s database connection is still used
for session data. A real site could get by with one connection if desired.

COMPONENTS OF AN E-COMMERCE SITE 279

280

ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts: | ocal host',
"web', ' nouser');

ny $sth = $dbh->prepare_cached

("select Qip, Size, Style, Color fromlnventory " .
"where Bin = ?");

ny ($quip, $size, $style, $color)
= $dbh- >sel ectrow_array($sth, undef, $bin);

ny $maxlen = 30;

if (length($quip) > $maxlen) {

ny $at = rindex($quip, ' ', $maxlen) || $nmaxlen;
$quip = substr($quip, 0, $at) . '...';
}
</%nit>

This component is laid out in the same structure, apart from the fact that it does
accept an argument: the bin whose shirt is to be displayed in the table. It retrieves the
row from the database, extracts the title, size, style, and color fields, then makes a
table row out of them. The title is shortened to a displayable size if necessary.

A more ambitious version of this page could contain thumbnails (Perl’s
Image::Magick module is terrific for this) of the shirt graphics and limit the number
of lines in the table so as to display quickly in the customer’s browser. Figure 10.1
shows the output, after the addition of sample data.
Clicking a shirt title takes us to the product detail page for that shirt. The row
component creates a URL for the shirt based on the unique bin value. We use
Mason’s dhandler feature to convert that into a page, as shown in Qui pShirt s/
shi rt s/ dhandl er:

_ B Eal Wiess Semch o Beokmmis Teks Help [edug O

Welcome to QuipShins com!
Quip5hirts Current Inventory

Shiri Sz Siyle Color

All Your Base Are Belong Tolfa 30 t-ebiirt pellow
WEmate ikl el ke 15 D, Largepalo red

Figure 10.1 The inventory page

CHAPTER 10 THE WEB STOREFRONT

<& ../ gphead. mcnp, title => $quiptitlie &
<H2><% $qui p %</ H2>
<TABLE>
<TR><TD>
%if ($path) {
<I MAGE src="<% $path %">
%} else {
No i nmage avail abl e.
%}
</ TD><TD>
<TABLE BORDER="2" CELLPADDI NG="5">
<TR><TD>St yl e</ TD><TD><% $styl e %</ TD></ TR>
<TR><TD>Col or </ TD><TD><% $col or %</ TD></ TR>
<TR><TD>Si ze</ TD> <TD><% $si ze %</ TD></ TR>
<TR><TD>Pri ce</ TD><TD><% $pri ce %</ TD></ TR>
</ TABLE>
</ TD></ TR>
</ TABLE>
<H3><A HREF="../cart/ <% $bin %">Add this shirt
to your shopping cart.</H3>
<& ../ gpfoot.ncnp &

<% nit>
ny $bin = (split('/',$m >dhandl er_arg))[-1];
ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts:|ocal host',
‘web', ' nouser')
or return SERVER _ERROR
ny $sth = $dbh->prepare_cached
("select Qip, Gaphic, Size, Style, Color, Price "
"fromlnventory where Bin = ?")
or return SERVER _ERROR
ny ($quip, $graphic, $size, $style, $color, $price)
= $dbh- >sel ectrow_array($sth, undef, $bin);
return NOT_FOUND unl ess $qui p;
ny $quiptitle = $quip;
my $nmaxl en = 40;
if (length($quip) > $nmaxlen) {

ny $at = rindex($quip, ' ', $nmaxlen) || $naxlen;
$quiptitle = substr($quip, O, $at) . '...";
}
ny $path = "/images/ $graphic”;
$path = '' unless -s "/usr/local/apache/ production/ htdocs$pat h";
$price = sprintf('$%.2f', $price);
</%nit>

Recall that a Mason dhandler is called when Mason is asked to process a top-level
component that doesn't exist. The dhandler is invoked with the full URL. Since in
this case the URL contains the bin of interest, we extract that information via the
dhandl er _ar g method. It then goes on to connect to the database (although it
almost certainly is using a cached handle instead), prepare a query (cached likewise),

COMPONENTS OF AN E-COMMERCE SITE 281

282

and retrieve the shirt data. If the query fails, it returns a “404 Not Found” status to
the browser—the user could contrive a URL with a bad bin.

After getting the values from the row, the component checks to see if the graphic
exists, using Perl’s - s function which returns a file’s size. If the file is there (stashed
under the static document root) the component makes an <I MAGE> tag to display it
on the page, and prints an apology if not. The rest of the shirt’s attributes go to another
table, and the component makes a link to the shopping cart page at the end.
Figure 10.2 shows the result.

. Eim Bl ‘wiss SEarch O Brokmanis Taks Help Dol O

Weleome to QulpShins coimn!
All Your Base Are Belong To Us

Eryle |t-shirt
Colar | wellow
Mo imsge avatlsbi=
| Sz | Ml

Priee |E13895

Sl wiv shiirn o your shopplng coarr,

Foprragts T3 ey Wbt v

Figure 10.2 The shirt page

So now that we have a catalog, we need user data. We'll recycle some more examples
to get that, and then place orders.

The controversy of data gathered by web sites about users has provoked several well-
deserved reviews about the intersection of privacy and e-commerce. QuipShirts wants
to gather just enough data about customers to facilitate repeat business, by filling in
address information automatically when a returning user places an order.

Here is a simple Accounts table:

CREATE TABLE Accounts (
User nane VARCHAR(10) NOT NULL,
Password VARCHAR(20) NOT NULL,
Real Nane VARCHAR(20),
Addr 1 VARCHAR(50),
Addr 2 VARCHAR(50) ,

CHAPTER 10 THE WEB STOREFRONT

City VARCHAR(30),

St at e VARCHAR(10),
Postal VARCHAR(10),
Country VARCHAR(15),
PRI MARY KEY (User nane)
)

The primary key is the username, but the customer isn't required to enter one—we’ll
see why shortly. The rest of the data is self-explanatory. We could add columns for a
phone number or email address to notify the customer about shipments and so on.

To make customer data unobtrusive, we don’t require the customer to enter any
information until time to place an order. We’ll handle that trick via a dhandler in the
next section. When account information is required, the customer will come to
account . mht ni . It's a complex piece, so we'll look at it in chunks:

<& gphead. ntnp, title => 'Shipping information' &>
%if ($password && ! $session{' authenticated }) {
<H2>Account name or password is invalid.</H2><P>
%} else {
<H2>Cust onmer i nformati on</ H2>
%}

The opening section prints the usual header, then checks to see if the user has authen-
ticated himself. The invalid message is displayed if the user entered a password which
didn't match the database.

<FORM METHOD=" PCST" >
<TABLE>
<TR>
<TD COLSPAN="8">
Pl ease enter your shipping information here.
If you
have given us this data before, skip to the account
name bel ow. </ TD>
</ TR>
<TR>
<TD>Nane: </ TD>
<TD><| NPUT TYPE="text" NAME="real nane"
VALUE=" <% $r eal nane %" Sl ZE=30></ TD>
</ TR>

This opening shippet shows the HTML form and how we use variables defined later
to load default values into the entry boxes. Note that the action of the form is left out,
so the default will be to return to this page.
I'll skip the bulk of the form definition for the sake of brevity. Here is where the

component receives the form values as arguments:
<%ar gs>

$user name => $session{' usernane'} ||

$password => "'

$goto => 'stockshirts. mhtni'
$real name => "'

COMPONENTS OF AN E-COMMERCE SITE 283

$addr1 => "'

$addr2 => "'

$city => "'

$state => "'

$postal => '’

$country => ' USA
</ %ar gs>

Since all of the arguments have default values, Mason won't object if any are left out.
The user nane defaults to the value in the session hash if any, and the got o argu-
ment defaults to the front page of the site. We'll see how those are used in the follow-
ing Perl code.

<% nit>
ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts: | ocal host',
"web', ' nouser')
or return SERVER_ERROR;
nmy ($account Exi sts);
if ($usernane && $password) {
ny $sth = $dbh->prepare_cached
(' sel ect Password, Real Nane, Addr 1, Addr2,City, State,"'
' Postal , Country from Accounts where Usernane = ?')
or return SERVER _ERROR
ny @ry = $dbh->sel ectrow array($sth, undef, $usernane);
$account Exi sts = @ry;
i f ($account Exi sts &&
$try[0] eq crypt($password, $try[0])) {
$sessi on{' aut henticated'}++;
$sessi on{' usernane'} = $usernane;

$real name || = $try[1];
$addr 1 [|= $try[2];
$addr 2 1= $try[3];
$city | |= $try[4];
$state ||= $try[5];
$post al ||= $try[6];
$country || = $try[6];
}
el se {
del ete $session{'authenticated'};
}

}

This section connects to the database (probably cached by Apache::DBI) and validates
the user if he entered an account name and password. It retrieves the account record
from the database, then encrypts the password to see if it matches the stored value. If
so, the rest of the address variables are loaded from the record.
Next we check to see if we have a complete address:
if ($realnane && $addrl && $city && $state & $postal

&& $country) {
$session{' real nane'} = $real nane;

284 CHAPTER 10 THE WEB STOREFRONT

$session{' address'} = [$addrl, $addr2, $city, $state,
$postal, $country];
if ($account Exists) {
ny $sth = $dbh->prepare_cached
("update Accounts set Real Nane = ?, Addrl = ?,
"Addr2 = ?, Cty = ?, State = ?, Postal =2, '
"Country = ? where Username = ?')
or return SERVER_ERROR
$st h- >execut e($real name, @ $session{' address'}},
$usernane) or return SERVER ERROR;
}
el sif ($usernane && $password) {
ny $sth = $dbh- >prepare_cached
("insert into Accounts (Real Name, Addr1, Addr2,City,"
' St ate, Postal, Country, User nane, Password) '
‘values (?,?,?2,2,2,2,2,2,?7)")
or return SERVER _ERROR
$password = crypt ($password, $real nane) ;
$st h- >execut e($real name, @ $sessi on{' address'}},
$user nanme, $password)
or return SERVER _ERROR;
$sessi on{' aut henticated'}++;
$sessi on{' usernane'} = $usernang;

}

If all the address fields have been filled in (note that the optional second address line
isn't checked) then we store the name and address in the session hash and also update
the database. This makes it easy for users to update their information without going
to some sort of edit account page. A real site would probably check to see if the user
actually changed something before updating the database.

If the account information hasn’t been entered before, the component adds a new
record automatically. This again avoids a second page, but might be presumptuous for
real-world use—offer the users a button to explicitly add their accounts instead.

When we have all the address information we need we want to go directly to
the page of interest without requiring more user action. This code takes care of
the redirection:

Re-direct to the requested conponent.
$m >cl ear _buffer;
$r->nmet hod(' GET');
$r- >header s_i n->unset (' Content-length');
$r->content _type('text/htm");
$r - >header _out (' Location' => "/mason/ Qui pShirts/ $goto");
return REDI RECT,;
}

</%nit>

Thanks to Denis Shaposhnikov and the Mason FAQ for having the trick on hand
when | needed it. Recall that redirection is handled via sending a special header to the
browser, so we dont want to send any regular HTML at all. The call to $m >

COMPONENTS OF AN E-COMMERCE SITE 285

286

cl ear _buf f er resets the buffer where Mason builds its response, making way for
the header. $r - >met hod(' GET') clears the POST data from the Apache request.
Then we set the location to go to in the redirection header, and return the response
code that we want.*

If you invoke this component directly and fill in the form, it will take you back
to the main QuipShirts inventory page. What we really want is to have the form
appear automatically when needed as the user places an order. We'll see how in the
next section.

The user has viewed the catalog and a product detail page. Now he wants to add the
product to his shopping cart.

A shopping cart is simply an order that is in progress. As the customer clicks on
products they are added to the cart, building up a list. The customer (we hope) even-
tually clicks the link to check out and place the order.

To handle this list building we need another table:

CREATE TABLE Carts (
User nane VARCHAR(10) NOT NULL,
Bi n VARCHAR(10) NOT NULL,
Quantity | NTEGER,

PRI MARY KEY (Usernane, Bin)

)

This table simply serves to associate the user with a product and a quantity. We’ll add
an entry to it when the customer clicks the Add to cart link in a product detail page.

I mentioned previously that we would handle orders via a dhandler, similarly to the
way the detail pages are done. That component lives in Qui pShi rt s/ cart/ dhan-
dl er . Aswith the previous large component, we’ll examine it in chunks, starting with
the HTML portion:

<& ../ gphead. ntnp, title =>"'Your shopping cart' &>
<H2>Or der for <% $session{'real name'} %</ H2>
<FORM METHOD=" PCST" >
<TABLE>
<TR><TH>Shi rt </ TH><TH>Si ze</ TH><TH>St yl e</ TH>
<TH>Col or </ TH><TH>Pri ce</ TH><TH>Quant i t y</ TH></ TR>
% foreach ny $shirt (@hirts) {
<& orderline.mcnp, %shirt &
%}
</ TABLE>
<I NPUT TYPE="submi t" VALUE="Make changes">
</ FORM>

4 REDI RECT is a constant defined by Apache::Constants, but you have to request it explicitly in the Ma-
son handler script:
use Apache:: Constants gw(:response);

CHAPTER 10 THE WEB STOREFRONT

Keep shoppi ng</ A><p>
Proceed to checkout </ A>
<& ../ gpfoot.nmcnmp &

This simple page displays the order in progress. It uses an array of entries (created
later in this section) to build a table. Each line is built by a subcomponent, or der -
I'i ne. ncnp, which displays the details about the shirt and allows the user to change
the guantity ordered.

The Perl section of the component starts by checking to see if the user has filled
in his address information, and if not, redirects him to do so:

<% nit>

ny $bin = (split('/',$m>dhandl er_arg))[-1];

unl ess ($session{'real nane'} && $session{' address'}) {
$m >cl ear _buffer;
$r->nmet hod(' GET');
$r- >header s_i n->unset (' Content-length');
$r->content _type('text/htm");
$r->header _out (' Location' =>

"/ mason/ Qui pShi rts/account. mht m ?got o=cart/ $bin");

return REDI RECT;

}

The URL includes a value for account . mht ml ’s got o parameter that will take the
customer back to this page when he has entered his information. Remember that we
don't require the user to login and create an account, but the Carts table has user -
name as a component. If the user isn't authenticated we will add a temporary entry to
the Accounts table, using the session ID for the name:

ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts: | ocal host',
"web', ' nouser')
or return SERVER _ERROR
ny $usernane = $session{' usernane'};
unl ess ($usernane) {
$username = substr($session{' _session_id}, 0, 10);
ny $sth = $dbh->prepare_cached
('sel ect Password from Accounts where Usernane = ?')
or return SERVER_ERROR;
ny @ry = $dbh->sel ectrow array($sth, undef, $usernane);
unless (@ry && $try[0] eq '"tenp') {
$sth = $dbh->prepare_cached
("insert into Accounts (Real Nane, Addr1, Addr2,City,"
' St at e, Postal, Country, User nane, Passwor d)
‘values (?,?2,?2,2,2,2,2,2,?)")
or return SERVER ERROR
$st h- >execut e($sessi on{' real nane' },
@ $sessi on{"' address'}},
$usernanme, ‘tenp')
or return SERVER ERROR

COMPONENTS OF AN E-COMMERCE SITE 287

Ten characters of the session ID aren't really enough to provide a unique value, but
collisions aren't likely in the expected lifespan of the session data. The code tries to
select an Accounts record by that name, and if not found, adds one with the current
address information. By setting the password field to ‘temp’ we can easily remove
these temporary entries from the table later. The rest of the components in the appli-
cation will use the ten character ID abbreviation if the user isn't authenticated.

Now we verify that the customer is adding a valid item by fetching the price from
the Inventory table. This is always a good thing to check, since the user could fake a
URL by adding any string to the dhandler path:

ny $sth = $dbh->prepare_cached
("select Price fromlnventory where Bin = ?")
or return SERVER _ERROR;
ny ($price) = $dbh->sel ectrow array($sth, undef, $bin);
return NOT_FOUND unl ess defined($price);

We'll display the contents of the cart by retrieving any records added thus far and
then appending a record for the new shirt. Along the way we'll check to see if the user
has changed any quantities, and update those records if so:

ny (@hirts, $found);
$sth = $dbh->prepare_cached
("select c.Bin, c.Qantity, i.Price fromCarts c,
Inventory i where Username = ? and c.Bin = i.Bin")
or return SERVER _ERROR
$st h- >execut e($user nane) or return SERVER ERROR;
while (my ($inbin, $quantity, $inprice)
= $sth->fetchrow array) {
if ($inbin eq $bin) {
$f ound++;
$ARGS{$inbin} |[|=1if $quantity < 1;
}
if (exists($ARGS{S$i nbin})
&& $ARGS{ $i nbi n} != $quantity
&& $ARGS{ $i nbin} >= 0
) A
ny $u = $dbh- >prepare_cached
("update Carts set Quantity = ? '
'where Username = ? and Bin = ?')
or return SERVER _ERROR
$u- >execut e(SARGS{ $i nbi n}, $usernane, $bin)
or return SERVER _ERROR,
$quantity = $ARGS{S$i nbin};
}
push @hirts, {bin => $inbin,
quantity => $quantity,
price => $inprice} if $quantity;

288 CHAPTER 10 THE WEB STOREFRONT

This code takes advantage of Mason’s %ARGS hash, which contains the component’s
arguments as name/value pairs. We use this method instead of the usual <%ar gs>
section because the code doesnt know in advance what the arguments will be. The
form inputs are created by or der | i ne. ncnp with an entry field for each shirt
where the user can change the order quantity. As Mason parses the form inputs it
converts them into the %ARGS hash, using the input name for the key and storing its
value there (the shirt quantity, in our case). We check for the user’s changes by match-
ing up bins with arguments.

The user got to this dhandler component by clicking on a shirt in the inventory.
If that shirt wasn’t in the cart before, we add it to the list now:

unl ess ($found) {
$sth = $dbh- >prepare_cached
("insert into Carts (Username, Bin, Quantity) '
‘values (?,?,1)")
or return SERVER ERROR
$st h- >execut e($user name, $bi n)
or return SERVER_ERROR
push @hirts, {bin => $bin,
quantity => 1,
price => $price};
}

</%nit>

Note that the @hi rt s array contains a hash for each shirt in the cart. When the
dhandler invokes or der | i ne. ntnp it uses the hash as the argument list:

% foreach ny $shirt (@hirts) {
<& orderline.ncnp, %shirt &
%}

That’s the same as invoking the subcomponent with explicit arguments like these:

% foreach ny $shirt (@hirts) {
<& orderline.ncnp, bin => $shirt->{bin},
quantity => $shirt->{quantity},
price => $shirt->{price} &
%}

But the short form is far more convenient, and requires fewer changes if we change
the arguments for the subcomponent.
Speaking of which, here is or der | i ne. mcnp:

<TR>
<TD><A HREF="../shirts/ <% $bin %" ><% $qui p %</ A></ TD>
<TD><% $si ze %</ TD><TD><% $styl e %</ TD><TD><% $col or %</ TD>
<TD><% $price %</ TD>
<TD>
%if ($fixed) {
<% $quantity %
%} else {

COMPONENTS OF AN E-COMMERCE SITE 289

<I NPUT TYPE="text" NAME="<% $bin %"
VALUE="<% $quantity %" SIZE=3>
% }
</ TD>
</ TR>

The component is very similar to the inventory line component, but notice the use of
a conditional section depending on the $f i xed parameter; if set, the price is dis-
played as text, but if not, a form input is created with the current price as its value.
This allows us to use the same component in the shopping cart form and the order
confirmation page, as we'll see later.

The Perl section fills in the variables from the database as usual. Note the default
setting for $f i xed:

<%ar gs>
$bin
$quantity
$price
$fixed => 0
</ %ar gs>

<% nit>
ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts: | ocal host',
"web', ' nouser');

ny $sth = $dbh->prepare_cached
("select Quip, Size, Style, Color fromlnventory "
"where Bin = ?");

nmy ($quip, $size, $style, $color)
= $dbh- >sel ectrow_array($sth, undef, $bin);

ny $maxlen = 30;

if (length($quip) > $maxlen) {

ny $at = rindex($quip, ' ', $nmaxlen) || $naxlen;
$qui p = substr($quip, 0, $at) . '...';
}
$price = sprintf (' $%.2f', $price);
</%nit>

After ordering a few shirts we build up a shopping cart that looks like figure 10.3.
The links at the bottom let the users return to the catalog or place their order,
which leads us to the next task in building the application.

290 CHAPTER 10 THE WEB STOREFRONT

. Eie Edl wiesa Search G Brokmanis Tebks Help oo 8

Weleome to QulpShinscam!
Order lor Theo
Shiri S Style Oslor Price {uamiity
All Your Baee Are Helong To Ba 30 t-shint peflow §12336 [
o bete in iyl ke o he Lergepola red !.I!-':l'.-|l-

1 [ke chhanges

ol Loes sy g

L L

Figure 10.3 The shopping cart

Turning a shopping cart into an order involves a few steps:

1 Accept and verify a credit card number or other payment method received from

the customer.

2 Move the entries from the shopping cart to another table to track orders.

3 Process the order.

So far there has been no mention of credit cards or other payment options. We don't
bother customers with such details until they decide they want to buy their items.

When the user clicks the link to check out, we start the next process.

As usual this requires more tables in the database. First we need a table to contain
the credit card number, expiration, and other information needed to process the order.
We'll also need a table for the items in the cart—we’re going to clear the cart as soon
as the order is accepted, so that the customer can start another order immediately.

Here are the two tables for this task:

CREATE TABLE Orders (
Order N | NTEGER NOT NULL,
User nane VARCHAR(10) NOT NULL,
Card VARCHAR(20) NOT NULL,
Expi rati on VARCHAR(10) NOT NULL,
Noti fy VARCHAR(50),
St at us VARCHAR(80) ,
PRI MARY KEY (OrderN, Usernane)

COMPONENTS OF AN E-COMMERCE SITE

291

292

)

CREATE TABLE Lineltem (

Order N | NTEGER NOT NULL,

User nane VARCHAR(10) NOT NULL,

Bi n VARCHAR(10) NOT NULL,

Quantity | NTEGER,
PRI MARY KEY (OrderN, Usernane, Bin)
)

Both tables are keyed on a new column, OrderN. This is the order number, a unique
value to identify the order.® This simplified example uses a timestamp for the order
number, and combines it with the user name for uniqueness. We might receive two
orders in the same second, but probably not from the same user. The Orders table
contains the credit card and expiration date, as well as the Notify field where the user
can optionally enter a phone number or email address for notification that the order
is shipped, and the Status field that will contain text describing the progress of the
order. The Lineltem table is the same as the Carts table with the addition of the order
number field.

When the customers click the link to check out, they go to checkout . mht ni .
We'll skip most of the HTML portion of the component for brevity. It displays the
shipping address, the ordered shirts, and the totals including shipping. Here is the
form section that has new inputs:

<H3>Bi | | i ng: </ H3>
<FORM METHOD="PCST" ACTI ON="confirm nmhtm ">
<TABLE>
<TR>
<TD>Credit card: </ TD>
<TD><I NPUT TYPE="text" NAME="creditcard"
VALUE="<% $credi tcard %" S|l ZE=20></ TD>
<TD>Expi rati on: </ TD>
<TD><I| NPUT TYPE="text" NAME="expiration"
VALUE=" <% $expi ration %" S| ZE=10></TD>
</ TR>
</ TABLE>
If you would like notification when your order is
processed, please enter an e-mail address or phone
nunber below. This information will be renpved
from our database when your order is conplete.

<I NPUT TYPE="text" NAME="notify"
VALUE="<% $noti fy %" SIZE=50>
<p>
<I NPUT TYPE="subm t" VALUE="Process order">
</ FORM>
<& ../ gpfoot.ncnmp &

5 We can't call the column “order” because that is a reserved word in SQL syntax.

CHAPTER 10 THE WEB STOREFRONT

When the customer clicks the Submit button he’ll go to the component that writes
the order, confi rm mht m . That component will send the customer back here if
there are any problems in confirmation, so we see all the inputs in the <%ar gs> sec-
tion also:
<%ar gs>

$creditcard => "'

$expiration => "'

$notify => "'
</ %ar gs>
The <%ar gs> values provide defaults for the inputs in the case where an order is
rejected.

The Perl section is mostly code we’ve discussed before. This section builds the

order display portion and calculates the totals:

my (@hirts);

ny $sth = $dbh->prepare_cached

('select c.Bin, c.Qantity, i.Price fromCarts c, '
"Inventory i where Usernane = ? and c.Bin =i.Bin"

"and c. Quantity > 0") or return SERVER ERROR;
$st h- >execut e($user nane) or return SERVER ERROR;
ny $itenms = 0;
ny $shipping = 0;
while (my ($bin, $quantity, $price)

= $sth->fetchrow array) {
push @hirts, {bin => $bin,
quantity => $quantity,
price => $price,
fixed => 1};
$itens += $price * $quantity;
$shi ppi ng += $quantity * 0.5;
}
ny $total = sprintf('$%d.2f', $itens + $shi pping);
$items = sprintf (' $9%.2f", S$itens);
$shipping = sprintf (' $%.2f', $shipping);
ny ($addrl, $addr2, $city, $state, $postal, $country)
= @$%$session{' address'}};
</%nit>

Note that it uses the same technique of building an array of hashes, so that the HTML
section can pass them as arguments to or der | i ne. ncnp:
% foreach nmy $shirt (@hirts) {
<& orderline.mcnp, %shirt &

%}
In this case the hashes include f i xed => 1 so that the resulting table contains text,
not inputs.

Shipping is handled as a simple multiplier of the number of items; each adds $0.50
shipping cost. The totals are formatted and displayed in the order section.

The resulting page looks like figure 10.4.

COMPONENTS OF AN E-COMMERCE SITE 293

. Eie Edl ‘wiesa Search G Brokmanis Tmbks Help Dooug S8

Order lor Theo Petersen
Shi ppi ng ekl ressss

¥ Sample 31
Examplon CO A0 12 USA

-0

y Shirt Size Style Color Price (uamdity
Al Your e Are Balong To 30— meilow F12351

Were wold you Lke o be Lergepals red 83551

Teem bobed B3] 55

Zhippirg: 1100

Wi iofel T32.50

Fisp svpping

Billig:

Figure 10.4 Checkout page

When the user clicks the “Process order” button he goes to conf i r m mht mi . This
is where a real application would verify the credit card and billing information, dou-

ble-check inventory, and so on. Our simple example has a stub for that logic but
ignores it:

<& ../ gphead.ncnp, title => 'Oder confirmation' &>
%if ($confirmed) {
<H2>Order confirmed for <% $session{'real nane'} %</ H2>
Your order <% $order . '-' . $usernane % was received. <P>
Shop sonme nore<P>
Vi ew st at us</ A><pP>
%} else {
<H2>There was a probl em processi ng your order. </ H2>
<% $error %
<FORM METHOD="PCST" ACTI ON="checkout . mhtm ">
<I NPUT TYPE="hi dden" NAME="creditcard"
VALUE="<% $creditcard %" SIZE=20>
<I NPUT TYPE="hi dden" NAME="expiration"
VALUE=" <% $expi ration %" S| ZE=10>
<I NPUT TYPE="hi dden" NAME="notify"
VALUE="<% $notify %" SIZE=50>
<I NPUT TYPE="submi t" VALUE="Back to checkout">
</ FORM>
%
<& ../ gpfoot.nmcnmp &

294 CHAPTER 10 THE WEB STOREFRONT

If $confi r med is true, the page displays a confirmation message and offers links to
the order status page and the catalog. If not, it expects $er r or to contain a message
explaining what is wrong. The hidden inputs on the form contain the values
<%ar gs>, which will get packaged and sent along when the user clicks the Submit
button to return to the checkout page.

The Perl section performs the task of moving the order from the shopping cart to
the Orders table. We'll skip to that part:

if ($confirmed) {
$order = time();
$usernane = $session{' usernane'} ||
substr($session{' _session_id}, 0, 10);
ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts:|ocal host',
"web', ' nouser')
or return SERVER ERROR;
ny $sth = $dbh->prepare_cached
("insert into Orders (OderN, Usernanme, Card,
"Expiration, Notify, Status) values (?,?,?2,?2,2,?)")
or return SERVER ERROR;
$st h- >execut e($order, S$usernane, $creditcard, $expiration,
$notify, 'Unprocessed') or return SERVER ERROR;

Now the credit card information needed to process the order is stored, then waits for
automatic or manual action. The status of ' Unprocessed' indicates that no
action has yet been taken. The details of the order move out of the shopping cart and
into Lineltem:

$sth = $dbh->prepare_cached
("select Bin, Quantity fromCarts '

‘where Usernanme = ?') or return SERVER ERROR
$st h- >execut e($usernane) or return SERVER ERROR;
ny $u = $dbh- >prepare_cached

("insert into Lineltem'

'(OrderN, Usernane, Bin, Quantity) '

‘values (?,?,?,?)") or return SERVER ERROR;
ny $d = $dbh- >prepare_cached

("delete fromCarts where Usernane = ? '

‘and Bin = ?') or return SERVER ERROR
while (my ($bin, $quantity) = $sth->fetchrow array) {

$u- >execut e($order, S$Susernanme, $bin, $quantity)

or return SERVER ERROR;

$d- >execut e($user nane, $bin)

or return SERVER _ERROR
}
}

Note the use of three statement handles here: $st h is the handle for the sel ect
statement which the whi | e loop uses to retrieve records, $u is the handle for the
i nsert statement for moving records to the Lineltem table and $d is the handle for

COMPONENTS OF AN E-COMMERCE SITE 295

296

deleting records from the Carts table. We could also delete the Carts records en masse
with one statement like this:

delete from Carts where Usernane = ?

By either road the cart is now empty, and the order is ready for someone in the store
to process and ship. Figure 10.5 shows a sample confirmation:

Fim il Wvess Search Go o Brosmmis Teebs Hele Dedug 5A
Welcome to QulpShintsonm!
Order confirmed for Theo Petersen

our order B S La0- 50707 5T win reoaad

Figure 10.5 Confirmation page

The anxious user is left to await the arrival of his prized T-shirts. What can they do in
the meantime?

E-commerce customers like online status information about their orders, both for the
way it keeps them informed and for the high-tech, connected feeling it gives them
about conducting business on the Web. Business sites like it for the savings on calls to
customer service personnel. More importantly, a customer who returns to the site for
status information may look at other pages there as well. This is a terrific example of
how giving your visitors more services facilitates repeat business.

For QuipShirts we'll have a simple status page that shows the users what orders
they have in progress. There are links to this page on the order confirmation screen
and the site’s main catalog page. The code is in or der s/ st at us. mht m :
<& ../ gphead. ncnp, title => 'Order status' &>
%if ($usernanme) {

<H2>Order status for <% $session{'real nane'} %</ H2>
<TABLE>

CHAPTER 10 THE WEB STOREFRONT

<TR><TH>Or der </ TH><TH>St at us</ TH></ TR>
% foreach ny $order (@rders) {
<TR>
<TD><A HREF="det ai | . mht nl ?or der =<% $$order[0]."'-'. $user name %">
<% $$order[0] %</ A></ TD>
<TD><% $$order[1] %</ TD></ TR>
%}
</ TABLE>
%} else {
<FORM METHOD="POST" ACTI ON="detail.nhtm ">
Order nunber:
<I NPUT TYPE="text" NAME="order" Sl|ZE=25>

<I NPUT TYPE="subm t" VALUE="Show st atus">
</ FORW>
%}
Shop some nore<P>
<& ../ gpfoot.ncnp &

The HTML section is simple enough that | didn't bother with a subcomponent for
the table. If the user is logged in, we know his username and can thus retrieve all his
records from the Orders table. Each line has a link to another component which will
display the details for the order.

If the user isn’t authenticated (or didn’t create an account in the first place), the
page provides a form to enter the order number shown on the confirmation page. The
value he enters will be passed as an argument to the detail page. It works the same way
via either section.

The Perl section merely builds up the array used for the table as usual:

<% ni t >
ny $usernane = $session{' usernane'};
nmy @rders;
if ($usernanme) {
ny $dbh = DBl ->connect (' DBl : nysql : Qui pShirts:|ocal host',
"web', ' nouser')
or return SERVER_ERROR
ny $sth = $dbh->prepare_cached
("select OrderN, Status from Orders '
‘where Usernane = ?') or return SERVER ERROR
$st h- >execut e($user nane) or return SERVER ERROR;
while (my ($order, $status) = $sth->fetchrow array) {
push @rders, [$order, $status];
}
}

</%nit>

If the customer clicks on an order for more details, he gets the detail page:

<& ../gphead. ncnp, title => 'Order status detail' &>
%if (defined($status)) {
<H2>Or der <% $order % for

COMPONENTS OF AN E-COMMERCE SITE 297

298

<% $session{'realname'} || 'you' %</ H2>
Status as of <%scalar(localtinme()) %:<P>
<% $st at us %<P>
<FORM METHOD="POST" ACTI ON="shi ptrack">
Enter the ShipExpress ID here to track it:

<I NPUT TYPE="text" NAME="id" SIZE=50>

<I NPUT TYPE="submit" VALUE="Track shi pnment">
</ FORW>
%} else {
<H2>Unknown or der </ H2>
There is no <% $order % in our database. <P>
Pl ease verify the order nunber and enter it again.
%}
<P>Shop sone nore</ A>
<& ../ qgpfoot.ncnp &

This page features a (bogus) link to ShipExpress, QuipShirt’s package shipping com-
pany of choice. As the order is processed and shipped, the store worker will enter the
shipment ID into the status field along with other updated information. The cus-
tomer can then proceed to track his T-shirts via the shipping company’s site.
The Perl section implements that logic:

<%ar gs>

$or der
</ %ar gs>

<% nit>
ny ($ordern, $usernane) = split('-', $order);
ny $dbh = DBI - >connect (' DBl : nysql : Qui pShirts:|ocal host',
"web', ' nouser')
or return SERVER_ERROR;
ny $sth = $dbh->prepare_cached
('select Status from O ders where OderN = ? and '
‘Username = ?') or return SERVER _ERROR;
ny ($status) = $dbh->sel ectrow array
($sth, undef, $ordern, S$usernane);
</%nit>

This breaks up the $or der argument into an order number and username, and then
retrieves that record from the table. If no such record exists, $st at us is left unde-
fined. That causes the error message in the HTML section to be displayed instead of
the order details.

QuipShirts now has a bare-bones site that shows products, takes orders, and pro-
vides some simple user services. Missing from all this is the employee side—the appli-
cations to let workers add or move inventory, fill orders, contact customers, and so on.
Remember that employees have to be happy with the site too, so follow the same
guidelines of easy navigation and helpful defaults in creating their pages.

We wish the good folks at QuipShirts the best of luck with their clothing line, but
what can they do to get more business?

CHAPTER 10 THE WEB STOREFRONT

10.3

FEEDBACK

FEEDBACK

While many companies caught on to the possibilities of online catalogs, few made
their sites into great successes. Some early entrepreneurs realized that they could com-
bine the catalog’s ease of presentation with the features of a community site: open
feedback sections for product reviews and discussion of service and future needs. The
community aspect keeps customers returning, even if they arent buying directly.
With those repeat page views, the site can also advertise its own specials or other fea-
tures, or display links to sell products from other sites.

In chapter 8 | mentioned the Internet Movie Database, http://www.imdb.com/.
This is an example of customer feedback selling products, although it grew in reverse
(it started as a community site and was acquired by Amazon to add e-commerce fea-
tures). Movie fans log in to post reviews about films, exchange stories, and vote for
their old favorites. New users arrive to search out information on a movie they saw,
then get hooked on following links about actors and titles. Finding an old film you
love in the database gives a nice moment of nostalgia, and you can buy it right there
before the warm glow fades.

Amazon and other book sites capitalize on the volunteer efforts of customers in a
number of ways. Let users review books and you’ll make each one a salesman. Negative
feedback isn’t really a problem—if I find myself agreeing with a reviewer’s low opinion
of a work, I'll seek out the books they praised.

Allowing customers to openly rate (or rant about) your service adds to the com-
munity feeling of a site, as does a proper response to criticism when it occurs. Remem-
ber too that people who come back to your site with complaints came back—proving
that they are people who want to buy from your site.

How you provide for customer feedback depends on the scope of your site. Given
a small product line, a simple web forum like those suggested in chapter 8 can supply
all you need. Each product can have its own board or topic, and the built-in search
features take care of the rest. A larger site would do well to have a feedback section on
each product page. The IMDB site presents the opposite organization, leading with the
feedback and tying in the products. That’s a great approach where the scope of the site
is (potentially) the whole range of merchandise in its field.

For the next sections I'll assume the middle approach, and we’ll see how to add
feedback to the previous section’s QuipShirts site.

User comments can include ratings, free-form text, links to other products, or all of
the above. For this example we’ll handle text comments by adding another table to
the QuipShirts database and another Mason component to the site.

The table is called Reviews:

CREATE TABLE Revi ews (
User nane VARCHAR(10) NOT NULL,

299

300

Bi n VARCHAR(10) NOT NULL,
RevTi ne | NTEGER,

Comment s TEXT,

PRI MARY KEY (User nane, Bin)

)

I’'m using MySQL, and have taken advantage of the database TEXT type to store text
of any length (up to 64 kilobytes). Perl’s DBI interface handles TEXT columns as sim-
ple scalars, making this trivially easy to work with. The table records the user, time,
and product identifier.5 Requiring a user to identify himself isn't an unreasonable
requirement here (and the form will make it easy, as we'll see) and adds to the com-

munity nature.

The table’s key is the username and bin, limiting a customer to one review per item.
If the user brings up the same shirt for review again, he will be able to update his com-
ments. The way we construct the form makes that easy.

Here is the new component, r evi ews/ dhandl er:

<& ../gphead. ncnp, title => $quiptitlie &

%if ($path) {
<| MAGE src="<% $path %" ><P>
%}
%if (@oments) {
<H2>Comment's on <% $qui p %</ H2>
% foreach ny $c (@onments) {
<% $$c[0] % on <% 3c[2] %:

<% $$c[1] %<P>
%}
Pl ease <% $found ? "update" :
%} else {

"add" % your comments!

No comments to date, please enter your own bel ow

%}
%if ($username) {
<FORM METHOD=" POST" >

<TEXTAREA NAME="newconmments" ROWS="6" COLS="40"

><% $newconment s %</ TEXTAREA>
<pP>

<I NPUT TYPE="submit" VALUE="Save comments">

</ FORW>
%} else {

<P><A HREF="../account. nmhtm ?got o=r evi ews/ <% $bi n %" >
Pl ease log in to enter your comments.<P>

% }

<A HREF="../cart/ <% $bin %">Add this shirt

to your shopping cart.<P>

Return to the catal og</ A>

<& ../ gpfoot.nmcnmp &

6 Using the inventory bin is showing itself as a bad plan here. If a product moves between bins, we need
to move the comments in the database as well. Lucky for me it’s only an example.

CHAPTER 10 THE WEB STOREFRONT

FEEDBACK

The HTML section displays the graphic if there is one, then the existing comments if
there are any in the database. If the user has reviewed the product before, we offer to
let him change or add to his views.

Note the section that checks $user nane. If the user isn’t logged in, it presents a
link to the accounts page with a parameter that will bring the user back to this page
after he has been authenticated. For a validated user, the form presents a text area input
for writing comments. Remember that any white space between the opening and clos-
ing tag of the text area will be present in the form!

The Perl section borrows from the shirt detail component, so I'll skip to the part
which handles comments:

$sth = $dbh->prepare_cached
("sel ect Usernane, Conments, RevTinme "
"from Revi ews where Bin = ? "
"order by RevTime desc")
or return SERVER ERROR
$st h- >execut e($bin) or return SERVER ERROR;
ny (@omments, $found, $usernane);
$username = $session{' authenticated } ?
$session{' usernane'} : '';
while (my ($name, $comment, $tine) = $sth->fetchrow array) {
if ($nane eq $usernane) {
if ($newcomments) {
$coment = $newcomment s;

}

el se {
$newconmment s = $conment ;

}

$f ound++

}

push @onments, [$nane, $comment, scal ar(localtine($tine))];

}

This portion reads the Reviews table, sorted to present the most recent reviews first. It
builds an array of comment entries and checks along the way to see if the current user
entered comments previously.

Note that this code will show all the comments. It would be a better idea to limit
the records retrieved and offer a navigation link to move between pages of comments
in a larger database. More importantly, the code doesn’t screen the text being dis-
played for HTML or JavaScript code. While it is a good idea to let savvy users format
their comments via highlighting and other tags, such text needs to be filtered before
sending it to browsers. Malicious users could try JavaScript exploits or other tech-
niques to get data from other customers’ browsers, or just make the site look awful
with bad or buggy HTML.

We also need to check whether the user added a comment:

$newcoments =~ s/~A[\s\n]+//;
$newcomments =~ s/[\s\n]+$//;

301

302

if ($username && $newcomments) {
if ($found) {
$sth = $dbh- >prepare_cached
("update Reviews set Comments = ?, RevTine = ? "
"where Username = ? and Bin = ?")
or return SERVER ERROR

}

el se {
$sth = $dbh->prepare_cached
("insert into Reviews "
"(Comment s, RevTi me, User nane, Bin)" .
"values (?,?2,2,?2)")
or return SERVER _ERROR
unshift @omments, [$usernane, $newcomments,
scal ar(localtime)];
$f ound++;

}

$st h- >execut e($newcomment's, tine(), $usernane, $bin);

}
</ % nit>
If a previous entry was found, the current text replaces it. Otherwise we add a record
to the table with the current timestamp. The latter branch adds the text to the begin-
ning of the array of comments, as if it were retrieved in the first place. That might
seem odd, but remember that this code is running after the array is built, while the
user sees the net effect of all the records.

This page is a stand-alone component for purposes of the example. A better
solution would be to make it a subcomponent and incorporate it into the product
detail page, so that prospective buyers can see both store and customer information.
Let your users sell the good products for you, and weed the unpopular ones from
your inventory.

There is ongoing debate over whether any site should edit or delete product
reviews. Certainly a store proprietor has a right to verify that discussions are germane
and conducted in reasonable language. Beyond that, in my opinion it hurts the com-
munity aspect of a site to strip out negative reviews or other feedback. Customers will
discuss your products and your business somewhere—Ietting them do so freely in your
store gives you credit for honesty and keeps you aware of what is being said.

If a product gets more bad reviews than good, do you want your store to be asso-
ciated with it? If reactions are mixed, find out why, and try to arrange your store so
that people can find merchandise they like without wading through things they don’t.
When an otherwise successful product gets a strong bad reaction from a buyer, ask pri-
vately what went wrong and satisfy them with something else.

It would be a simple matter to implement a customer comments page in the same
way as the product reviews in the previous section. But this kind of feedback is

CHAPTER 10 THE WEB STOREFRONT

different from rating and reviewing catalog items. You want your users to discuss your
business more than your product line.

A threaded forum serves this need better than a flat text system like we had in the
last section. Building one is more complex too, but there’s no reason to do it ourselves.
Chapter 8 covered products like mwForum that are perfectly suited to the job. You
can install and customize one in far less time than it would take to implement some-
thing new.

Threaded messages allow users to easily respond to others’ comments and follow
a discussion. Set up message boards for each aspect of customer service, as well as new
product lines and other directions. Give your employees strong guidelines on how and
when to respond to customer comments. No one who runs a business believes that
“the customer is always right,” but successful businesses keep in mind that the cus-
tomer is always the one paying the bills. Reasonable complaints should be addressed
apologetically in public. Angry customers should get private responses if possible,
along with a public statement that the matter is being handled.

If you want to build the community aspect of your site, allow the customers to
run some of your message boards. Promote some regular visitors to administrate
forums on topics of interest, and don’t worry too much about keeping things on
topic. Everyone coming to your site is a potential buyer, even if they mostly drop in
to browse gossip.

Let customers add pages to your site. If you sell collectibles, let them write about
their collections, or talk about their pets if you sell pet food. Even a limited form of
this can really make your site take off, as your hosted pages become a kind of directory
and search engine for your community.

Should your community areas become more popular than your store, you could
consider switching the site around. Host the forum as the main site, offering discreet
links to the storefront on each page. Promote other sites in your virtual community
and offer them hosting or hire the site builders and get their help in drawing more cus-
tomers to your store.

Following any of these directions will take your site out of the realm of “brochure-
ware” and into the ideal interactive world of the Web. Letting your customers add
content to your site involves a loss of control and an investment in monitoring and
responding to forums. In exchange you can get a good community name and loyal user
base that sets you apart from competing sites.

10.4 OPEN SOURCE E-COMMERCE TOOLS

Building your own web storefront from scratch is a mighty task, and full of pitfalls.
Buggy or short-sighted code can lead to lost customers or worse, security breaches
that can expose sensitive data. The grind of the project may wear you out just as your
energy is needed for the newly opened business.

OPEN SOURCE E-COMMERCE TOOLS 303

304

Fortunately, this is an area that is well-trafficked by generous programmers, and
searching a few sites will turn up a number of packages that can meet your needs.
Restricting the search terms to “Perl” and a catch phrase such as “shopping cart” will
locate most of the contenders, from CGI scripts that implement an order-taking appli-
cation similar to my example to full-fledged site builders.

In looking for free e-commerce tools, expect to encounter a good deal of
“promotion-ware,” software that exists in part to build sales of a related service. Mer-
chant accounts and credit card processing are the most typical of these services, where
a free application is built to use a particular company’s order handling. This may be
ideal for those who have a small operation and don’t want to be bothered with the
details of credit card processing. If your needs are greater or you already have the finan-
cial issues handled, look for a more complete solution.

If you have partially implemented a site (or inherited one that was half-built by
someone else) you may be looking for a solution to complete the site and get into busi-
ness. Many tools exist (in Perl and other languages) for various e-commerce tasks—
user management, order fulfillment, and so on. You may also be able to take the pieces
you need from one of the site builders discussed in the next two sections.

The missing pieces you need are quite likely in credit card processing and other
payment systems. This special area gets its own section later in the chapter. Be warned
that there are no free solutions here. The companies that handle credit card transac-
tions have good reasons to be picky in accepting requests.

In this section I'll cover complete site-building tools (and discuss how complete
they are), rather than trying to put together sites from different products. By creating
a site from scratch (or rebuilding it from the data and documents you already have)
you will know at least that the resulting site doesn’t have any gaps resulting from trying
to glue together different pieces. | recommend that you consider a fresh start with any
of these tools, and let the applications work as the developers intended rather than try-
ing to fit them into another model.

The two products I'll discuss here are Interchange and AllCommerce. Both have
long histories of Open Source development with good choices for underlying data-
bases and Perl tools. Either one can get your site operational with a good effort, so let’s
get on with it to see how they differ.

In 2000 two of the more popular Open Source e-commerce packages, MiniVend and
Tallyman, were merged, as Akopia (the owner of Tallyman) acquired MiniVend and
hired its lead developer. MiniVend had a long history (long for the Web—it debuted
in 1995) among e-commerce builders and brought a loyal user base to the relatively
new Akopia products. This proved attractive to RedHat, which acquired the com-
pany and product line at the end of the year and made Akopia its e-commerce divi-
sion. That company has kept Interchange under the protection of the GPL license
while integrating it into its suite of business products and consulting opportunities.

CHAPTER 10 THE WEB STOREFRONT

Interchange is available from its web site, http://www.akopia.com/, or as part of a
bundled package from RedHat. The company sells training, consulting, site hosting,
and other service packages for the product.

Interchange requires Linux or a Unix-variant OS to run. It can use its own data
manager or a selection of DBI-compliant databases, and works with a number of pay-
ment systems. The product has its own HTML template processing system but
employs a number of Perl modules along the way, easily installed via a CPAN bundle.

Web server requirements are minimal: Interchange can work with any server that
handles CGI, so Apache isn’t strictly required and mod_perl never becomes an issue.
The reason is that all dynamic data comes from a separate server. The web host runs
a small CGI application which forwards requests to the Interchange server and
hands the results back to the browser. That provides considerable flexibility. You
could have multiple web front-ends talk to a single secured machine running the
store, for instance.

Akopia brags that Interchange runs on any hardware that will run the OS and web
server. That may be true, but for good performance you’ll need a respectable machine.
Interchange consumes a hefty 14 MB of memory on my Linux machine, more than
twice the size of an Apache/mod_perl process, so think twice about running Inter-
change and your web applications together. The main Perl script has some comments
about how to reduce memory usage.

Installation and first catalog

The configuration script that comes with the installation handled my setup without a
problem. Interchange wants to run as its own user, although any nonroot account
will do. I told it to use a MySQL database instead of its own data manager, and |
defaulted the rest.

The installation compiles a few C programs such as the CGI interface mentioned
earlier, but supplies Perl implementations also should that be a problem. I installed the
software in / usr/ | ocal / i nt er change and proceeded to the site-building step.

By Interchange terminology, a site is a catalog, and creating one is most easily
accomplished by running the makecat script. This is quite a lengthy procedure, and
if you aren’t paying attention it will appear that you are answering the same questions
over and over.

In the course of creating the catalog, Interchange will offer to scan your
ht t pd. conf file to determine the answers to some of these questions. This confused
me since it then went on to offer defaults that ignored my Apache setup. Be warned
also that the configuration file scanner doesn’t use Apache’s parser at all, and so it
doesn’t understand conditional sections such as <I f Def i ne>, resulting in error
reports about directives being found twice.

Interchange can build a new catalog from an existing template, which is terrific if
you are planning to do this kind of thing a lot. It ships with one such template, its
demonstration catalog called construct, and mentions that others are available

OPEN SOURCE E-COMMERCE TOOLS 305

306

elsewhere (although I never found them). The makecat script confusingly refers to
the template as a demo (which it is, but I found it odd that it wanted to know what
demo | wanted to use).

The script also asks for URLS for the new catalog and its static files. This is where
you decide if Interchange will be the whole site (the top URL, or perhaps top of a vir-
tual host) or just a path on your existing site. makecat will deposit an appropriate
i ndex. ht m file in the directory corresponding to the chosen URL.

You'll also be prompted to give an administration user name—this is a user within
the Interchange system, not a shell account nor a database user. You will use that
account to start customizing the site. Customers can create their own accounts
through a simple form interface.

Following my previous example, | created a QuipShirts catalog and gave it the URL
http://localhost/QuipShirts/. This added a new directory (/usr/ 1 ocal /i nter-
change/ cat al ogs/ Qui pShi rt s) that received all the template files for the site,
another directory (/ usr/ | ocal / apache/ ht docs/ Qui pShi rt s) for static files,
a new MySQL database, and a copy of the CGI interface program in Apache’s cgi -
bi n directory.

After creating the first catalog, you must start the Interchange server before trying
to browse the site. The script prompts you to do this (and gives you the command line
for a convenient cut and paste), but you’ll need to add it to your boot scripts yourself
if you want to start Interchange automatically.

Customization

One of the selling points of Interchange is its full web interface. Administration and
site building are all performed via the browser. Log in as the admin user for your cat-
alog and you'll receive a menu of configuration and editing pages: create items for
your catalog, set up specials and discounts, edit the page templates, and so on. You
can view orders and other user activity from this page as well.

Interchange uses its own templating system to build pages from templates and
database entries. You can modify the templates from the administration page men-
tioned earlier or locate them under the catalog directory and edit them in your favorite
text editor. The Interchange server checks for template modifications as it generates
pages, so your changes will be reflected immediately.

Reworking the construct something demo catalog into a new store is quite a lot of
work, most of it deleting categories and items that don’t apply (unless you happen to
have a hardware store). Fortunately, newer versions of Interchange will feature a new
foundation store that will have less to remove. In the meantime, expect a few wrenches
and hammers to turn up in your store until you've tracked them all down.

Adding items and categories to a store is a snap: bring up the Items menu and click
the link to add an item, then fill in the page. Upload new graphics for the item, type
in a description and its shipping characteristics, and you are done. Reload the cus-
tomer interface and you can search for your item or browse to it immediately.

CHAPTER 10 THE WEB STOREFRONT

Features

Interchange has a very rich library of tags for building pages. The documentation lists
more than 90, from simple database substitutions to display logic to embedded Perl
code. Once you've learned your way around the template system you'll find yourself
building nonstore pages with Interchange too. If you have existing pages for your
store, you can link in Interchange pages for checkout—and more—without rebuild-
ing everything; add new pages via Interchange and replace the old ones as you have
time. Internationalization is available at multiple levels, via separate pages, separate
sections within a page, currency symbols, and so on.

I hate sites that require cookies, so | appreciate that Interchange’s session handling
leaves them optional. Users can navigate the site via unique URLS instead, and Inter-
change will fix up internal links along the way.

Interchange also makes customer accounts optional, as | discussed in my example.
Confidential information in orders can be encrypted via PGP if desired, and SSL mode
works fine. Secure the whole site or just the order pages as you wish.

Interchange offers extensive handling for shipping services and costs. The shipping
cost database can handle any number of different services, and cost calculation can be
anything from a constant, UPS rules, or a Perl subroutine.

There are a number of great features for store builders: Interchange will scan the
order database to build a list of products that tend to get ordered together, then add
them to product pages with the usual “people who bought this also bought...” display.
Cross-selling adds links to an item to the pages for related items, while up-selling offers
the viewer a choice of superior items. You can also create promotion pages for special
prices, items newly added to the catalog, and so on.

The affiliate manager allows you to maintain links from other sites to your catalog,
and track the number of referrals and purchases you get from those sites. When a cus-
tomer arrives from an affiliate site you can display alternate pages or sections created
for that affiliate.

Interchange includes two different search engines and five search methods for help-
ing users find pages of interest. It uses yet more template pages that let you customize
the look of the results and tie in other information about specials and so on. Searches
can operate on the text of pages or the rows of database tables with quite a few options
for limiting and refining results.

Rather than tying to any specific payment handler, the order routing system is used
to program how an order is handled. The default method is to mail the order to a spec-
ified address. Interchange will encrypt the order (or just the credit card data) before
transmission if you wish (certainly recommended if the mail is delivered somewhere
other than the server machine itself). The current product includes routing to resolve
payment via CyberCash, and the developer promises the next version will handle a
number of credit card gateways including a verification system and popular commer-
cial services.

OPEN SOURCE E-COMMERCE TOOLS 307

308

Nonfeatures

Interchange is not a product for a small store or a casual maintainer. The documenta-
tion recommends against using it for catalogs with fewer than 100 items. If half the
entries in the earlier feature list made you shrug, then you will be taking on a great
deal of complexity that is more than your site requires.

The product doesn’t implement any form of user feedback. Adding this to pages
isn’t difficult, but you will be doing the programming yourself. Given the richness of
other features I kept thinking I must have missed the feedback options.

The documentation is there, but it can be very hard to find something you are
looking for. Admittedly, it would be amazing to find adequate documentation for a
product this size. If you are looking for a tag, database table, or administrative feature
you'll find what you need quickly, but for the rest, expect to do a lot of digging—you’ll
want to quickly locate the mailing list archive.

Support

Interchange has free support via its mailing list. This is a very active group with a lot
of helpful members and regular appearances by representatives of the product owner.
Most of what is missing from the documentation can be found by searching through
old messages.

RedHat offers consulting based on the product, and it offers a number of other
support packages. Check the product web page for more details.

Zelerate's AllCommerce system has been available since 1998. It doesn't have the
bumpy history of Interchange, having stayed with one company (and presumably one
set of developers) since its inception.

The product is available from SourceForge. (Zelerate’s development site, http://
www.zelerate.org/, is now a pointer to http://allcommerce.sourceforge.net/, so pick
whichever is easier to remember.) It consists of Perl tool scripts and CGI applications;
there is no separate server to start. The documentation claims that AllCommerce is
optimized for Apache (although | found no indication that is uses anything other than
plain CGI scripts) and runs on Linux, Unix, and Windows. Some Linux distributions
have AllCommerce preloaded.

AllCommerce can work with a range of DBI databases, although it warns that only
MySQL is tested by the developers. You'll need to have DBI and the required DBD
modules installed already. The installation script will set up databases for you.

No hardware suggestions were given in the documentation. If | were running a
busy site with AllCommerce I'd want a fast machine with generous memory limits,
where | could get everything working in Apache::Registry to avoid the CGI compila-
tion overhead.

AllCommerce generates pages through (you guessed it) its own template processing
system. The documentation discusses where and how the various templates are used,

CHAPTER 10 THE WEB STOREFRONT

but there doesn’t seem to be a reference guide to building your own. Expect to do a
lot of digging to take advantage of this product.

Installation

The distribution comes as a tar file that has everything already laid out. Just unpack it
under your Apache root directory. There are no compiled programs, and so no con-
figuration or make steps for creating them.

AllCommerce comes with an installation script that will automatically set up a site
running a default Apache installation with MySQL. | happen to have one of those
handy, but I found the script a challenge to use. It failed mysteriously until | faked the
directory to be / hone/ htt pd/ os_al | conmer ce (instead of the default Apache
compiles with) and manually ran another script, sepndi r . pl , to create missing files.

It did create the MySQL database correctly, although before that it scanned
through all installed DBD modules to build a list of possible databases to use. If you
have nonfunctional DBD modules this will cause the script to again fail mysteriously.

AllCommerce prefers to run as a virtual host for each store. The script offers to add
a virtual host entry to htt pd. conf for you, but after my previous experiences |
decided to do this manually.

The next step is to load shipping data into the database. The script can’t possibly
handle this step unless you’ve loaded the required files already as explained in the man-
ual installation instructions. At this point I started to wonder if the automatic script
weren’t meant for updates rather than a new installation. Loading the shipping data
manually isn’t hard, however, and the instructions were all correct.

Customization

When all this is done, you can log in as the administrator and start building the site.
My frustrations didn't end there, however, as | found a large number of wrong links
and bad assumptions, and had to do a lot of finding and fixing before getting an
example to work.

AllCommerce doesn’t come with a standard set of files for building a new site as
Interchange does (although you can create your own site template once you know
what you are doing). I liked the fact that | had something working immediately with
Interchange even though it looked nothing like the site | wanted to build, but when
| started working with AllCommerce | found that | liked it more, despite the fact that
I was starting from scratch.

The documentation suggests creating a product line and then adding to it. | fol-
lowed the links on the admin page and re-created the QuipShirts product line in a few
minutes. Each item has a few attributes to set (title, short description, long description,
weight, and so on). Generate the pages for them (using buttons available as you go)
and you can start viewing your store immediately.

AllCommerce doesn’t have an online template editor, so you'll need to track down
the template files and edit them yourself. In my case | found the easiest method was

OPEN SOURCE E-COMMERCE TOOLS 309

310

first to create a few products and examine the generated HTML files to figure out what
templates are used.

Features

AllCommerce allows articles to coexist with products and categories. These are text
pages that can be massaged through the template system to keep the look and feel of
your site while educating customers. | liked the fact that the product helps to orga-
nize those pages at the same level as the product information.

Inventory management is more explicit and flexible in AllCommerce than with
Interchange. Before trying out your store you must define a warehouse (future versions
may handle multiple warehouses, although the current product allows only one), and
then associate products with it. Pricing is controlled by inventory entries instead of at
the product level, and prices in different currencies can be maintained separately.

Although I complained about the shipping data step in the automatic installation
script, it was easy to load the relevant tables manually. Once | did, shopping carts all
showed the available shipping options and prices correctly as pull-down menus. The
interface is very clean and easy for the customer.

Order processing is very simple, with email as the default method of handling
credit card information. One option is to configure AllCommerce to send part of the
credit card number via mail and store another part in the database. The product has
experimental support for CCVS credit card processing, but | didn’t try it.

The user management features in AllCommerce are again simple and easy. Users
can set up any number of addresses in their address books and use them automatically
when filling out an order. Cookies are optional for users, but required for administra-
tor access.

The promotion management features in AllCommerce aren’t as rich as those in
Interchange, but it is easy to set up gift offers, shipping specials, and so on. Products
can be linked, but there is no automatic creation of the “also purchased ...” data nor
any up-sell feature.

My overall impression of AllCommerce is good for a small store, in spite of my
complaints. Itis easy to create and maintain a small catalog and inventory, and the cus-
tomer interface is clean and clear.

Nonfeatures

AllCommerce expects you to create your own front page for your store, or use the
page for a product line. | kept looking for some tool to generate this from one of the
many templates but there doesn't seem to be one.

The documentation is in PDF files rather than HTML or POD. That would be fine
if there weren’t so many broken links in the documents, making internal navigation
rather iffy. I never did find a reference for the template processing system. The devel-
oper seems to consider the tutorials sufficient for making a store.

CHAPTER 10 THE WEB STOREFRONT

Like Interchange, AllCommerce doesn’t have direct support for any kind of cus-
tomer feedback. Without a good reference for the template system it isn’t as clear to
me how | would add one myself.

Support

Zelerate offers commercial support (its own and from certified installers) for AllCom-
merce, as well as free support on the development-site message boards and mailing
lists. The mailing list archives (linked on the development site) may offer answers to
some of the questions and problems | had in getting started. Unfortunately, they
reside on a slow site, and | was unable to reach them while working with the product.

Would | build a store with either of these products? Certainly. Interchange is a
good choice for a large operation (or a consultancy that is creating a number of stores)
while AllCommerce would work fine for a casual shop. If you haven’t made a strong
commitment to other tools then you won’t mind learning a new template processor
and fitting into their way of doing things.

If you would rather do it yourself, using one of these site builders is still a good way
to get started. Create a prototype of your store, and use it to explore what you like and
what you need that is different than the products provide. You may end up convinc-
ing yourself to take advantage of the considerable development effort that goes into
these tools.

10.5 CREDIT CARD PROCESSING

E-commerce has spawned a number of new ways to move money over the Internet—
micropayments, debit accounts, and so on. Exciting as those new prospects are, you
will need credit card processing if you are building a web site for consumer purchases.
Credit card transactions are the norm for e-commerce, and no other method is as per-
vasive. Requiring your customers to register for another online payment mechanism
will certainly cost you business.

The first requirements for accepting credit card payments are the same for web
stores as for brick-and-mortar establishments: you will need a merchant account and
a regular business bank account. The two are not the same, which confuses some peo-
ple who are doing this for the first time. Credit card transactions are processed via the
merchant account, which then transfers money to the business bank account. You may
be able to open both accounts with one bank, but there is nothing wrong with setting
up a merchant account with a card processing service and a business account with a
convenient local bank.”

T you have no idea how to open a merchant account, don’t worry—any number of card process-
ing services will be happy to do this for you. Ask your banker first to find out whether he has any
recommendations.

CREDIT CARD PROCESSING 311

312

Plenty of stores (and web store fronts) process credit card orders entirely on paper.
This requires very little start-up cost and is simple to handle. Your store’s bank may
handle all of the transactions for you, just by dropping off the paper receipts, or you
may need to get a merchant account and handle some of the steps yourself. Paper pro-
cessing is more prone to fraud and error, however, and usually has a higher cost per
transaction, limits on the amount, or both.

Paper processing transactions for your web site requires only that you collect and
store the credit card number, expiration date, name, and (possibly) billing address as
part of your acceptance process. As shown in the site building products of the previous
section, e-commerce applications typically email this information along with an order
number (or all the order details) to whomever is responsible for processing orders, and
that person does so manually through the paper system.

To get lower transaction fees and better security you'll need to process credit card
transactions online. In a regular store, online card processing is handled either via a
swipe box or a cash register tied to a computer which has the same functionality built
in. Most of us are familiar with the small terminals that consist of a phone line jack,
a card swipe slot, and a numeric key pad. The cashier enters the amount on the pad,
runs the card down the slot, waits half a minute or so, and gets an approval or denial
for the transaction (or not). The swipe box includes a modem which has been con-
figured to dial the number of a transaction clearinghouse which handles the merchant
account. The clearinghouse performs the transaction and credits the account. After a
few more accounting steps the credited amount is transferred to the store’s business
bank account.

As stores opened for business on the Internet, so did many transaction clearing-
houses, offering software for web merchants to process their orders over the net-
work. The store application sends a transaction over a secure channel to the card
processor of choice, which then performs the same steps—some of these services
actually use a modem to dial another clearinghouse and process the card exactly as
before. The approval is sent back to the store over the same channel, and the cus-
tomer gets a confirmation.

Like much of the rest of the e-commerce world, these services have undergone a
shakeup and consolidation phase during the time of my writing. You can find an
online processor in a number of ways. The company that hosts your web site may have
a deal with one, or you could ask the same person who is setting up your merchant
account. The documentation for the site-building products discussed in section 10.4
has pointers to the services each program handles.

Working with such a service generally involves installing a program on your server,
so be clear about your hardware and OS when talking to a provider. Some sites run
the card processing service on a dedicated machine, allowing maximum security both
from the network and internal users.

CHAPTER 10 THE WEB STOREFRONT

CCVS turns up in discussions of many Open Source e-commerce packages. The let-
ters stand for Credit Card Verification System, a software tool for interacting with
card processing services.

CCVS was developed by Hell's Kitchen Systems in 1997, then acquired by
RedHat (notice a trend here?) in 2000 to add to Interchange as part of its e-commerce
suite. Despite its frequent presence in Open Source discussions, CCVS is not Open
Source or free in any other sense. This is a commercial product with substantial
licensing costs.

The product’s popularity is owed in part to the developer’s generous array of plat-
forms and language interfaces. CCVS runs on most brands of Unix and most popular
Linux distributions, with libraries and support modules for C, Java, Perl, PHP,
Python, and TCL. Compared to the Windows focus of so many card processing ser-
vices, this makes CCVS an automatic choice for many web builders.

I think the architecture of CCVS appeals to technical types too. The product emu-
lates a credit card swipe box, using a modem on the host machine to dial a transaction
processing service. The web application creates a transaction with CCVS, fills in the
required details (an invoice number or other identifier, card number, expiration date,
and amount) and optional billing address. It then tells CCVS to run the transaction
and waits for the return authorization (or goes about other business and checks in now
and then).

CCVS meanwhile uses the modem to dial the card processing service, and then per-
forms the same protocols as a swipe box over that link. The documentation lists
modems that will work with the service (older is better—these companies don’t con-
nect at faster than 1,200 baud anyway), and RedHat’s support group will help you set
up another modem if you don’t have a supported one.

While CCVS is costly to license, you can download it free and try it in a demo
mode. The support libraries and CCVS server will work as normal, but it won't dial
the modem or attempt a real approval. Evaluate the system at your leisure.

Most CCVS users recommend setting up the modem and server on a protected
machine, just as you would with other card processing software. This allows security
measures as mentioned before. It doesn’t take much machine to do this, and chances
are you have an old PC with a modem anyway.

I hope that these guidelines and tools help you build a successful web store. And
if you are successful, you'll need help maintaining the system and managing increased
burdens on your server, which leads us to the final chapters.

CREDIT CARD PROCESSING 313

PART

Site management

Once your site is operational you face the exciting challenge of keeping it that
way. Here are two chapters on tools and techniques for managing an active web site.
Chapter 11 covers content management: adding new documents and applications
and keeping your site in sync with a development system. It covers tools for managing
the site content and recovering from an accident.
Chapter 12 discusses performance issues, especially how to start your site on the
right foot and how to monitor it for signs of slippage.

11.1 Development life cycle 318

11.2 Tools for content management 326
11.3 Managing a production site 345
11.4 Backup and recovery 352

When you start your first web site project, the process of setting up the server and
providing content may seem daunting and mysterious. Once you have served up a
few documents and have an application or two working, the mystery fades and the
next steps look easy—just add more content, more apps, and more features.

Those who have watched other projects grow know what can happen next: as you
add interdependent files and change documents and applications, errors almost inev-
itably creep in. Initially a simple manual check can verify that your site is still working
properly. As you (or perhaps a group of others) add more content, you need a link-
checking program to get through the site, or you simply fix problems as regular users
report broken links and other failures.

While automated tools and manual tests are always a good idea, a developing site
often needs more help than just that to keep working. Software developers know the
need for code-management tools in any nontrivial project, and writers and artists have
other methods for managing groups of files. In the web world we have content
management to describe the tools and methodologies used to control the publishing
and presentation of sites under development.

317

11.1

318

Content management can be as simple as a script that copies an entire site from a
development system to the running version (and that’s what most of us did first).
Some commercial web server products have content-management tools built in, while
other products integrate with Apache, including many Open Source options. Inte-
grated packages like Slash have their own tools, which may make them more attractive
for many sites.

The temptation is great for Perl programmers to write their own content managers,
and many have. Before you announce your own new and improved wheel, consider
some of the tools and packages discussed here. You'll find many pieces you need, and
you might decide on a full solution.

DEVELOPMENT LIFE CYCLE

But before getting excited about solutions, let’s discuss the problem.

It's common when first creating a site to work directly on the server (which may
or may not be public) and one copy of the configuration and content files. If you are
a programmer who is used to code-management systems such as CVS then you may
have a repository for these files to preserve history and provide a backup copy. I will
hazard a guess that most of us created our first sites on the bare network, edited files
in place, and left the niceties for later—possibly when a screw-up signaled it was time
for something better.

When that server starts generating value (in terms of money or reputation), the
usual move is to a dual system. This might be two separate directory trees on one server
or on different machines. The idea is the same, however, to have a place for testing
code and configuration changes before moving them to the public system. When
things look good, a simple batch upload or copy script moves the new files into pro-
duction use.

If you are part of a development group you’ll want even more diversity—Ietting
each developer have his own copy of the system perhaps, or dividing the system up so
that a developer’s code can work in a stand-alone fashion. (Chapter 2 has some sug-
gestions on how to configure this.) Now the uploading gets more complicated. It’s
likely that developers will need to change files in tandem, especially configuration files
that tell Apache how to run their code. Letting developers upload directly to the pro-
duction server will almost certainly result in a public failure somewhere along the line.
Instead we need a safeguard system, a place where changes from different sources can
be placed together and verified before going public.

Even if you work alone, multiple phases and systems are a good idea. If your
server handles more than a moderate level of traffic you’ll want to separate your CPU
and bandwidth usage from public consumption. When your site becomes a big suc-
cess you'll want to move the server to a better operational environment, or your
development system to a comfortable spot for working long hours. And you’ll want
to check out the whole site in a test area before moving things to production, so

CHAPTER 11 CONTENT MANAGEMENT

you'll still need the safeguard phase, whether it resides on a development machine or
the production system.

The most commonly discussed regimen for developing and publishing a web site is
the three phase system of development, staging, and production.

Software, documents, and configuration changes start out in the development
phase, on a developer’s workstation or a shared machine or both. When development
is complete and tested in place, accepted files are carried over to the staging area.

The staging phase is used to test changes in an environment configured as close to
the production system as possible—the same OS and web server versions, bandwidth,
and so on. Any databases used in testing the staging phase should be copies of pro-
duction data.® In many cases the staging area is a virtual host on the production system
itself, or just a different document tree, and uses the production databases directly.
Changes are tested here again, where the new code can encounter a complete system.
Preferably the person making the changes tests them first, then someone unrelated to
the work tries out both the changes and other portions of the system. If the site passes
its tests in the staging phase, it can be moved fully into production.

The production phase should always reflect a complete copy of the staging area.
Not all tools enforce this, but if the production phase receives partial updates, it is pos-
sible to miss dependencies (especially as the staging area gets updated multiple times)
and leave behind a crucial change. One simple technique for handling this is to use a
symbolic link to point to the production phase root directory and switch that link
from the old software to the staging area, making it the production version. The prior
directory remains available as-is, and can be switched back if something goes wrong.
Meanwhile, a new directory becomes the next staging area.

Regardless of how you decide to move staging to production, there are a number of
ways to set up a staging area on the server you use for production traffic. By sharing
the production server, you don't have to worry about problems caused by different
versions of Apache, Perl, and the OS on different machines. It also makes cutting over
to production quick and simple.

There are a few different approaches you can take to setting up a staging area.
The simplest is to create a mirrored directory tree and tell Apache about it. For
example, | created / usr/ | ocal / apache/ st agi ng and loaded it with a backup
of my examples. To have Apache serve files from this directory | added these sections
to htt pd. conf:

Lt your system acquires sensitive data from customers, this may not be appropriate. In that case you'll
need to build a large enough test database yourself, or use a procedure to copy production data and
remove the sensitive information along the way.

DEVELOPMENT LIFE CYCLE 319

320

Staging area (directory/alias nethod)
<Directory "/usr/local/apache/stagi ng">
Only allow |l ocal folks
Order deny, al | ow
Deny from all
Al l ow from 192. 168.
Aut hUser Fi | e dat a/ st agi ng
Aut hNane " Stagi ng area"
Aut hType basic
require valid-user
</Directory>

Al'i as /staging/ "/usr/local/apache/staging/"

ScriptAlias /staging/cgi-bin/ "/usr/local/apache/staging/cgi-bin/"

This uses the familiar Di r ect or y block to set up a protected zone. You can allow
access by network address or a file of authorized users (or both as shown, if you are
sufficiently paranoid). After telling Apache about the directory tree, an Al i as and
Scri pt Al i as pair tell Apache how to map URLS onto the files.

The unfortunate side effect of this approach is that all URLS have to start with
“staging/” to work. While you should be using relative URLSs in every place possible,
applications and other code will likely break or (worse) send a browser to the produc-
tion site instead of the staging area.

Virtual hosts

To keep uniform URLs while still using one server, use a virtual host instead of a direc-
tory alias. The whole idea behind virtual hosts is to allow one Apache server to handle
multiple sites, differentiating between them either by name or by IP address. We can
set up the staging area to use a different name, such as staging.example.site, and have
all the URLS remain the same.

Obviously this scheme will require a little more setup, since we have to add a new
name to the routing service that tells browsers how to find hosts. If you do all your
work on one machine, you can just add an entry in your / et ¢/ host s file or equiv-
alent. If your staging area is to be accessible only to local machines, you can add a new
name and IP address to your local DNS database. A publicly accessible staging area
needs a publicly accessible name, so in that case you’ll have to get a new DNS entry
from your service provider.

The original virtual host mechanism in Apache required a unique IP address for
each named site. Since version 1.1 of the HTTP protocol, servers can distinguish
between hosts just by name. This allows a machine with one IP address to host any
number of sites directed to it by DNS aliases.? Apache supports either mechanism.

2 CNAME aliases can provide any number of alternate names for a given IP address. See your DNS pro-
vider for more information.

CHAPTER 11 CONTENT MANAGEMENT

If you need only one extra site and have a spare 1P address (no problem at all if your
staging area serves only a protected network) then I suggest using IP-based virtual host-
ing, as it doesn’t require many changes to your configuration. It’s also the mechanism
recommended by the Apache Group due to various concerns they express in the server
documentation.

| added staging.example.site to my machine with address 192.168.6.66, then told
Apache to virtual host it via this block in ht t pd. conf :

Staging area (IP virtual host method)
<Virtual Host stagi ng. exanple.site>

Document Root /usr/ | ocal / apache/ st agi ng/ ht docs/

Server Nanme st agi ng. exanple.site

ErrorLog staging/logs/error_|og

CustonlLog stagi ng/l ogs/ access_| og conmon

ScriptAlias /cgi-bin/ /usr/local/apachel/staging/cgi-bin/
</ Vi rtual Host >

After creating the log directory (/ usr/ | ocal / apache/ st agi ng/ | ogs) and
making it writable for Apache, | restarted the server and browsed to http://stag-
ing.example.site/ to see the main index page as expected.

If you can’t add IP addresses to your server, you’ll need to use name-based virtual
hosts. This requires more changes, since you’ll have to make your production server
a virtual host too, so that Apache can distinguish between the different traffic sent to
the single IP address. Here is a simple configuration:

|P to use for named virtual hosts
NameVi rt ual Host 192. 168. 6. 66

Main site's virtual host
<Virtual Host 192.168. 6. 66>

Docurent Root /usr/ | ocal / apache/ ht docs/

Server Name www. exanpl e.site

ErrorLog | ogs/error_Ilog

CustonmLog | ogs/ access_| og common

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/
</ Vi rtual Host >

Staging area's virtual host
<Virtual Host 192.168. 6. 66>

Document Root /usr/ | ocal / apache/ st agi ng/ ht docs

Server Nanme st agi ng. exanple.site

ErrorLog staging/logs/error_|og

CustonmLog stagi ng/ |l ogs/ access_|l og common

ScriptAlias /cgi-bin/ /usr/local/apache/staging/cgi-bin/
</ Vi rtual Host >

The NaneVi r t ual Host directive tells Apache that any IP traffic sent to this address
should be interpreted via the virtual host protocol. That is, it will check the request
headers for the server name and use that to determine which virtual host receives the
information. Then we have two virtual host blocks, one for www.example.site and one

DEVELOPMENT LIFE CYCLE 321

322

for staging.example.site, each with the same basic declarations of server name, log file
locations, and aliases for the script directory.

I said this was a simple configuration. If you’ve created any more complex appli-
cations, alias schemes, etcetera, they’ll all need to be replicated between the two virtual
hosts, distinguishing between directories as appropriate. The same applies to any
mod_perl applications you have, which leads us to the next section.

Staging mod_perl applications

If you have mod_perl applications (including scripts that run under Apache::Registry
and its relatives) you need to take a few more factors into consideration.

The first matter to address is the security concern of handling production and stag-
ing data in one server. Remember that each Apache process has a single Perl inter-
preter. Any information kept globally in the server would be available to applications
in any virtual host. Perl doesn’t protect one package’s variables and code from others,
and generally assumes good behavior on the part of all scripts and modules.

If your applications cache data through a database or file mechanism, make sure
each virtual host has its own cache. For example, suppose you maintain a list of users
who have active sessions and display that on a status page. Store the user’s virtual host
in the list so that you can separate staging activity from production use.

Code has to be kept separate too. Apache::Registry takes care of this for you, so long
as you configure different directories for your staging and production areas. For
instance, if we add this configuration to the virtual host sections, Apache::Registry will
compile different versions of scripts in different phases:

Main site's virtual host
<Virtual Host 192.168. 6. 66>
Docunent Root /usr/ | ocal / apache/ ht docs/
Server Name www. exanpl e.site
ErrorLog | ogs/error_|og
CustonlLog | ogs/ access_| og common
ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/
Alias /perl/ "/usr/local/apache/perl/"
<Directory "/usr/local/apache/perl">
Set Handl er perl-script
Per | Handl er Apache: : Registry
Options ExecCd
Per | SendHeader On
</Directory>
</ Vi rt ual Host >

Staging area's virtual host
<Virtual Host 192.168. 6. 66>
Docunent Root /usr/ | ocal / apache/ st agi ng/ ht docs

3 Different versions of code for different phases, that is. If you have multiple production virtual hosts,
you'd probably want to share production code among them.

CHAPTER 11 CONTENT MANAGEMENT

Server Nane stagi ng. exanple.site
ErrorLog staging/logs/error_|og
Cust ormLog stagi ng/l ogs/access_| og conmon
ScriptAlias /cgi-bin/ /usr/local/apache/staging/cgi-bin/
Alias /perl/ "/usr/local/apache/staging/perl/"
<Directory "/usr/local/apache/stagi ng/ perl">
Set Handl er perl -script
Per | Handl er Apache: : Registry
Opti ons ExecCd
Per| SendHeader On
</Directory>
</ Vi rtual Host >

Since Apache::Registry caches compiled scripts based on path name, having different
paths to the scripts takes care of the problem.

It's more complicated for mod_perl applications loaded as modules however. Once
the embedded Perl interpreter has loaded a module, it won’t load it again for a differ-
ent virtual host. We can’t have a User::Login module in both a staging directory and
in a production directory and have mod_perl load both. The Apache::PerlVINC mod-
ule can handle unloading and reloading modules for different virtual hosts, but that
behavior isn’t desirable in a production server. We don’t want Perl recompiling a mod-
ule each time it is loaded.

One unsatisfying solution is to preface modules in the staging area with a prefix
such as Staging:: so that Perl will load both sets correctly. This is just as balky and
error-prone as changing URLs however, and will almost certainly result in a public
failure. The only real solution for this problem is to have different servers for staging
and production.

Separate servers
While keeping everything running in one set of Apache processes has its appeal, there
are good reasons for making the staging and production servers separate:
« If testing the staging area is a part-time operation, the staging server can be shut
down when not in use or when the system becomes too busy.

e The production server processes are never weighed down by nonproduction
code.

« Resource use of the staging server can be monitored more easily. If you see a
memory bloat or an infinite CPU loop, you know it’s the new code.

« Persistent code such as mod_perl applications is easier to manage.
« If the server configuration is being tested, starting and stopping a staging server
is likely preferred to shutting down the production server.

How do we run two different Apache process trees on one machine? If you have (or
can add) multiple 1P addresses for your system, it’s a simple matter to have your pro-
duction server listening to one address and your staging server on another.

DEVELOPMENT LIFE CYCLE 323

324

For example, suppose our system has addresses 192.168.1.1 and 192.168.1.2.
We'll use the first address for the production server and the second for the staging
server. In the production server’s httpd.conf we tell Apache to listen to
192.168.1.1:

Listen 191.168.1.1

Then in the staging server’s configuration we give it the second address:
Listen 191.168.1.2

In both configurations we need to remove any Bi ndAddr ess directives. If a
server needs to respond to requests on more than one address, add Li st en direc-
tives as necessary.

By assigning www.example.site to the first address and staging.example.site to the
second (in DNS for a network, or the hosts file for a single machine setup) we now
have essentially the same situation created with virtual hosts in the previous section.
URL paths and other internal details will be the same, so application code doesn’t have
to be changed to work in one or the other.

If for some reason you can’t assign multiple addresses to one machine, you can sep-
arate the servers by telling them to listen on different ports. The configuration is
almost identical. We’ll assume the production server should listen on port 80, the
default. We'll assign the staging server to port 8080 like so:

Port 8080

We can also use Li st en to assign a port, or even an address and a port together:

Li sten 8080
Li sten 192.168. 1. 1: 8080

If you use ports to separate your servers, you'll need to specify the port number in the
site part of the URL. For example, if both these servers are running on www.exam-
ple.site, then the staging server on port 8080 would be http://www.exam-
ple.site:8080/.

I've assumed the two servers would use two separate configuration files, and that’s
the simple method | prefer. Call one st agi ng. conf and the other pr oduc-
tion. conf (or let it keep the default name if you prefer). When starting Apache,
you'll need to tell it which configuration file to use. Do so by running ht t pd directly
and using the - f switch rather than going through apachect| .

$ cd /usr/local /apache && bin/httpd -f conf/production. conf
or
$ cd /usr/local /apache && bin/httpd -f conf/staging. conf

Take the sections which are common to both files (which should be most of the text)
and move it to a common file, then use the | ncl ude directive to use it in each. That

CHAPTER 11 CONTENT MANAGEMENT

way you can keep the bulk of your configuration in a file which is kept in whatever
source control system you use and is moved out to production with other changes.

If having two configuration files doesn’t appeal to you, there’s another method:
Apache’s | f Defi ne directive lets you specify conditional sections and choose
between them when starting the server. For example, we could have both the Li st en
directives in one ht t pd. conf file like so:
<IfDefine !stagi ng>

Listen 191.168.1.1
</ | fDefine>
<| fDefi ne stagi ng>

Listen 191.168.1.2
</|fDefine>

Similarly to the C compiler’s #i f def , <I f Def i ne st agi ng> applies its direc-
tives if we tell Apache that we are starting the staging version, and <I f Def i ne
I st agi ng> applies otherwise. That leads us to the - Dcommand line switch:

$ cd /usr/local /apache && bin/httpd -Dstaging

This command will start the server with the staging definitions active. Omitting the
switch (or just running apachect |) will start it normally.

If you have only a few of these sections in the global area of your configuration file,
you might consider taking all of the site-specific directives and moving them to sep-
arate files, then including those files via I f Def i ne:
<|f Define !stagi ng>

I ncl ude conf/production. conf
</ | f Define>
<| f Define stagi ng>

I ncl ude conf/stagi ng. conf
</|fDefine>

That will reduce the probability of errors from typos in the parameter name (such as
<I f Defi ne stagi n>). If compartmentalizing by files results in bad structure for
your configuration file, don't do it, and keep an eye out for duplication of sections
that are common to both servers.

Regardless of which method you use, remind everyone that configuration changes
need to be tested promptly for both servers. At a minimum, check the syntax using
Apache’s - t switch:

$ cd /usr/local /apache && bin/httpd -Dstaging -t && bin/httpd -t

This performs the same check on the configuration file as apachect!l con-
fi gt est, and allows you to pass along other command line switches.

DEVELOPMENT LIFE CYCLE 325

11.2

326

TOOLS FOR CONTENT MANAGEMENT

With those deployment scenarios in mind, let’s consider some actual content-
manager tools.

The Open Source project repositories and search sites have quite a large selection
of choices in this area, ranging from simple batch upload scripts to graphical remote
file managers. Many of these are built on FTP, and thus on its inherent insecurities.
If this is a concern for you (as it should be for any site you don’t want cracked), the
field narrows considerably, but the quality of choices remains high.

Before we get to the Open Source options I'll mention support for the most
asked about commercial tool, Microsoft FrontPage. The two tools I'll focus on in
this section, rsync and Mason CM, represent opposite ends of the interface spectrum,
but both are full-featured tools and in fact can be used together to form a more com-
plete content-management kit. Then in the following section we’ll go on to even
more possibilities.

If you work with content developers and mention tools for uploading files to your
web site, chances are good someone will bring up FrontPage. This popular page-
creation and editing tool works with server-side extensions that allow the developer to
publish pages, that is, send them to the web server from within the application.

This kind of integration is very convenient. Updating the server isn’t much more
complicated than saving the file locally. It is actually a little too convenient in that
there is no enforcement of rules and no interdependency checking, making it too easy
for a content developer to upload one file without sending other required updates. But
assuming you can get everyone to agree to good development policies, it’s not difficult
to add support for FrontPage uploads to your site.

Whether it is advisable is another matter. Both the products I'll mention here come
with security warnings, either in their own documentation or reports at other sites.
Both require setuid execution or an equivalent wrapper program to give the uploader
permission to write to the file system. | haven’t been able to investigate either for other
vulnerabilities, so as always you should ask around among other developers and check
recommendations from current sites.

Ready-to-Run (RTR) software publishes a solution blessed by Microsoft at, http://
www.rtr.com/fpsupport/. It's not Open Source at all—you’ll need to agree to
Microsoft’s license to even download a free trial. RTR does offer commercial support,
however, with versions for Apache and other servers on many platforms. They also stay
current with new releases of FrontPage. The software comes with an installation script
and instructions, and the web site’s FAQ covers many common installations and issues.

For an Open Source solution, mrs.brisby provides a Perl CGI version at http://
www.nimh.org/fpse.shtml. In spite of incomplete code and documentation when it
was first published, the script got so many downloads that he set up a mailing list and

CHAPTER 11 CONTENT MANAGEMENT

FAQ for it. The script also implements the WebDAV protocol, which we’ll discuss
more in the next section.

There was some discussion of implementing a mod_perl version of the Perl script
on the mod_perl mailing list to provide more complete support. Check the list
archives at http://perl.apache.org/ for information on whether that went anywhere
after this book was published.

rsync is a remote file comparison and upload tool, available at http://rsync.samba.org
by its authors, Andrew Tridgell and Paul Mackerras. It can be used to upload files or
whole directory trees to a web site using an efficient, bandwidth-conserving algo-
rithm that is good news to those of us whose development systems are on different
networks than their production sites.

rsync is written in C and published under the GPL. It can move files via rcp, scp
or its own transfer layer—more on that later in this section. If you have trouble with
rsync or simply prefer to tinker with Perl code, fsync is an alternative. It is written
entirely in Perl and shares many of rsync’s features, although it requires either rcp or
scp to transfer files.

I had no trouble installing rsync on three test systems. It's available in source form
and in binaries for a variety of platforms; I installed it via RPM on RedHat and Man-
drake Linux, and built it on a Windows system via the CygWIN package.

rsync’s syntax is familiar to those who have used rcp or scp. If you haven’t, get
familiar with them now, as it will take only a moment. rcp is a simple file-copying tool
that uses the authentication rules of rsh to establish permissions to copy files between
systems. As I've preached in previous chapters, rsh (and rcp) are security risks and
should be disabled on systems that are exposed to the Internet. That’s why you’re
using ssh instead, and thus scp here.

Suppose we have updated HTML files on a development site, dev.example.site, that
we want to copy to a production system, top.example.site, into / t np/ updat es.
After settling down in the directory with the files to move, the command using scp
would be:

$ scp *.htm user @op. exanpl e. site:/tnp/updates/

where user is the name of the user ID to own the files on the receiving side. If the
username is the same on both sites, it isn't required here. ssh will do its usual authen-
tication checks and prompt for a password if needed, and then move the files.

The syntax for specifying the remote site looks like an email address. Any file spec-
ification containing a colon is assumed to be remote, with the user and host indicated
on the left side of the colon and the file path on the right.

Copying works in either direction. To pull the files back, just switch the order:

$ scp user@op. exanple.site:/tnp/updates/*. htm .

TOOLS FOR CONTENT MANAGEMENT 327

328

For that matter, you can move files between two different machines from a third:

$ scp user @lev. exanpl e. site:cgi-bin/*. pl ww@ op. exanpl e.site:/usr/local/
apache/ cgi - bi n/
Note that this example copies files using a relative path. That path will be relative to
the home directory of user@dev.example.site, wherever that may be, and has nothing
to do with the directory where the command was typed on the controlling machine.
rsync uses the same syntax, and in fact can use rcp or scp to copy files. To enforce
use of scp, set the environment variable RSYNC_RSHto ssh or use the-e or--rsh
switch to specify this behavior when needed (if you have a mixed installation, say).
rsync adds a great many other switches to control its behavior, but we’ll need only a
few for these examples.

Rather than operating blindly on files as rcp and scp do, rsync uses its own algo-
rithm to examine files and determine what is out of sync. Ordinarily it ignores files
that have the same size and date on the sending and remote system, although that can
be turned off. If files appear different by size or date, rsync uses a system of checksums
to compare the files without sending the full contents either way, and updates the
remote file by section, thus (possibly) sending only a portion of the total file size across
the network. rsync’s - z switch can be used to compress the transferred bytes and save
even more bandwidth.

New files (those present on the sending system but not the remote site) have to be
sent in their entirety, of course. You can exclude files from consideration via options
that specify pattern matches or through the same mechanism as CVS (the CVS-
| GNORE environment variable and any . cvsi gnor e files present in the sending
directories). You can also have rsync delete remote files that aren’t present on the
sending system.

That bandwidth-conserving algorithm makes rsync faster than FTP or other batch
file copies when updating sites between networks or over slow links. While a human
can do smart transfers too, rsync isn’t forgetful or error-prone. After the transfers have
finished, you can be completely confident that all the changes are in place. rsync will
also set file permissions if you like, so that scripts which are executable on the sending
side will be executable on the receiving side and so on. The - a switch tells rsync to
match all file attributes and ownership as well, although it can only set the ownership
if running as the superuser on the remote side. (That’s not a problem if you send the
files via the remote account which will own them anyway, as you should.)

Returning to our scenario, suppose we want to move a development system’s doc-
ument tree and CGI directories to a testing phase on the production server. From
Apache’s root directory, we want to send the ht docs and cgi - bi n directories. On
the receiving side we want to put the files in / usr /| ocal / apache/test/. The
command to do that (assuming we're in the root directory already) is:

$ rsync -azC htdocs cgi-bin ww@ op. exanpl e. site:/usr/local/apache/test/

CHAPTER 11 CONTENT MANAGEMENT

The switches (- azC) tell rsync to copy directories recursively and match file modes
on the receiving side (- a), compress files in transit (- z), and ignore files that CVS
would ignore (- C). rsync will compare the dates and sizes of files in the receiving
directory at top.example.site, and will update each file that doesn't match, sending as
small of an update as possible. It will also transfer any new files from the development
site, unless we exclude them via the - - exi st i ng switch, but will not delete files
from the receiving side. To have rsync do that, we have to add the - - del et e switch.

If you are running rsync interactively and want to track its progress, add the - v
switch to have it output a line for each file transferred. If you are updating one site
from multiple sources, you might want to use the - u switch, which tells rsync not to
transfer a file if the receiving side has a newer copy. You can also have it create backup
copies of each file replaced on the receiving site. The - b switch moves existing files
away by adding a ~ suffix (although you can control that too), or to another directory
specified via - - backup- di r . By specifying backup directories by date, you can use
rsync to perform incremental backups of a site, with changes for each day in their
own area.

If your system clocks don’t match closely, you can help rsync in comparing dates.
The --nodi f y-w ndowswitch takes a number of seconds and tells rsync that files
are the same if their sizes match and their times are less than that many seconds apart.
Or you can have it ignore dates and check only sizes via the - - si ze- onl y switch,
or compare every file regardless with - c.

Ordinarily, if the rsync process on the receiving site loses its connection to the
sender during a transfer, it deletes the partially sent file in progress. When sending
large updates over a dial-up link, you may want to use the - - parti al switch to tell
rsync not to lose the portion you’ve sent. You can then resume a transfer in place after
restoring a broken connection. You can improve rsync’s behavior in such cases with
two more switches: - - t enp- di r tells rsync where to store partial files until they’ve
been assembled completely, leaving the existing file in place until the transfer is com-
plete, and - - conpar e- dest indicates a directory to check for files besides the des-
tination directory. By transferring files to a separate directory, you’ll avoid errors on
the remote system caused by partial files in transit, and you can save the progress in
those files using the second switch.

When sending whole directory trees of files, there will inevitably be things you
don’t need or want to transfer to the remote site. I've mentioned the - Cswitch in this
context, which ignores files as CVS does. See the rsync main page for a list of files
ignored by default. The CVS mechanism is highly configurable. rsync will check each
directory for a .cvsignore file, and if found, rsync will read it for a list of file patterns
and suffixes to ignore in that directory and in its children (unless a child directory has
its own file).

If the CVS behavior is overkill or you don’t want to mess with extra files, the
- - excl ude switch can be used to provide patterns of files that shouldn’t be trans-
ferred. Specify it multiple times, once for each pattern. If a file that matches the

TOOLS FOR CONTENT MANAGEMENT 329

330

pattern should be sent anyway, then use - - i ncl ude to specify file names or match-
ing patterns that avoid the exclusion rules. If your inclusion and exclusion patterns are
complex, you can store them in files and use the --exclude-from and
- -i ncl ude- f r omswitches to tell rsync where to find them. But in that case, con-
sider using the CVS rules instead.

Running an rsync server

rsync uses other programs (rsh or ssh) to run itself on a remote system and copy files.
If that isn't convenient for your systems, you can set up rsync in a server mode that
allows you to connect without them. rsync in this mode can also work through a web
proxy—important for systems protected by firewalls which will almost certainly cut
off remote shell execution.

In this mode, rsync can either run all the time (as a web server does) or can start
as needed via inetd. The latter mode is more convenient, but of course if you've dis-
abled inetd for other reasons then full-time service is the only option.

For either mode, you'll need to tell rsync (and/or inetd) what port to listen on. The
default is port 873; check your / et c/ ser vi ces file, and add a line for rsync’s port
if it isn't already there:

rsync 873/tcp # rsync

To run rsync as a full-time server, start it up in your system’s boot script (r c. | ocal
or one of its relatives) with the - - daenon switch:

/usr/bin/rsync --daenon

rsync’s path may be different on your system. You can specify any default options you
want to set on the command, as well as the path to rsync’s configuration file via the
- - confi g switch. The default location is/ et ¢/ r syncd. conf.

Starting via inetd is just as simple. Add a line to your configuration (usually / et ¢/
i net d. conf) like this:

rsync streamtcp nowait root /usr/bin/rsync rsyncd --daenon

And here again you can specify other default options and a different path to the
configuration file. Remember to send the HUP signal to inetd after changing its
configuration.

After setting up either mode, you’ll need to tell rsync what directories are available
for transfer via module definitions in its configuration file. When running as a daemon,
rsync honors only paths that begin with a module name, and the module controls how
the path is interpreted.

A typical r syncd. conf file might read like so:

PID file for shutting down servers
pid file = /var/log/rsyncd. pid

d obal password file

CHAPTER 11 CONTENT MANAGEMENT

secrets file = /etc/rsyncd. secrets

[apache]
path = /usr/|ocal / apache
comment = Apache root directory
auth users = theo, wwv

[theo]
path = /hone/theo
comment = Theo's directory
auth users = theo

The syntax of the configuration file will be familiar to SAMBA administrators, which
isn't surprising considering rsync’s origins among SAMBA developers. The top section
contains global options that apply to all modules. Each line containing bracketed text
starts a module definition which continues to the beginning of the next module.

In this case, the global options specify the location for the PID and secrets files. The
PID file simply holds the process ID of rsync. It is convenient if you want to stop rsync
in a controlled manner in a system shutdown script or monitor daemon processes
through other means such as WebMIN. The secrets file contains username and pass-
word pairs to control access to the modules. Each module can have its own secrets file
if you prefer.

The first module definition creates the apache module, used to transfer files to and
from Apache’s root directory. The definition has these parameters:

 pat h sets the root path for the module. All file paths sent to rsync with this
module name are interpreted relative to this path. Thus rsync will translate a
path such as apache/ ht docs/ pr oduct s. ht m from the client to / usr/
| ocal / apache/ ht docs/ product s. ht ml on the server.

e comment sets a one-line description sent back when an rsync client browses the
server (by specifying the server name but no module).

e aut h users limits what users are allowed to browse the module or transfer
files. Each user must have a corresponding line in the secrets file.

The second module is similar, allowing access to a developer’s home directory, with a
stricter limit on users.

Before trying a transfer, make sure that rsync can read the configuration file (which
shouldn’t be a problem, as rsync will run as root unless you set it up otherwise). You
don’t need to HUP or restart rsync after changing the configuration file; the daemon
process rereads the file each time a client connects. You'll also need to create the PID
file if you’re using one, and make it writeable. Then create the secrets file with the users
specified in each module.

The format of the secrets file is very simple. Each line is a user and password, sep-
arated by a colon:

wwv. webwor k

TOOLS FOR CONTENT MANAGEMENT 331

332

You can add comments if you wish. Set the secrets file so that root can read and write
it, and no other user has access. If the file is readable by anyone else, rsync will refuse
to process it.

Once the files are ready and rsync is running (or inetd is listening on its behalf),
you can try browsing your server from other machines. To connect via rsync’s daemon
service instead of the usual rsh or ssh, specify the host name with a double colon
instead of a single one as shown in previous examples. This command will browse the
modules on the production site:

$ rsync top.exanple.site::

rsync will print a list of module names and the comments associated with them. To
browse the files and directories in a module, specify the module name with no receiv-
ing path on the client:

$ rsync top. exanple.site::apache

This time you'll be prompted for a password, matched against the secrets file. rsync
will assume the username is the same as the user running the client, unless you specify
it in the site name. That is, use wwi@ op. exanpl e. si t e instead to force connec-
tion as www. Assuming the user and password check out, rsync will send back a direc-
tory listing for the root directory given in the module’s path. Use the - r switch to see
a recursive listing.

Transferring files works as in previous examples, with appropriate changes to paths.
Suppose once again we want to send the document and script directories from a devel-
opment site to the production machine in a test subdirectory. The new command
would be:

$ rsync -azC htdocs cgi-bin w@ op. exanpl e. site:: apache/test/

Note the double colon in the site name and the new path relative to the module.

If you are going to use rsync in a script, you need a way to specify a password with-
out being prompted each time. You can set the password in the RSYNC_PASSWORD
environment variable, or store your password in a file and tell rsync to use that via the
- -password-fil e switch.

If the sending system is behind a firewall that cuts off general Internet access, you
can still use rsync’s server mode by connecting via a web proxy. You’ll need to add
rsync’s port to the proxy’s rules so that it will connect to the remote site properly. Then
set the RSYNC_PROXY environment variable on the sending side to the hostname and
listening port of the proxy.

There are quite a few more options for servers and modules when running an rsync
service. See the documentation on the r syncd. conf config file that comes with the
rsync distribution for more information.

We'll discuss more uses for rsync in other sections. Meanwhile, now that we can
safely and easily transfer files, we need a way to manage them on our servers.

CHAPTER 11 CONTENT MANAGEMENT

While rsync makes it easy to move files across the network, it provides only the clum-
siest sort of remote file management. That’s okay, however, as there are a number of
reasonable web-based file managers available to take over the job.

Chapter 9 presented some file managers you can use for the job, but it’s nice to
have a tool that does more. Mason-CM is such a tool: its file management is tied into
a staging mechanism that allows files to be moved easily from a test area to production,
and it also provides extra services to sites that use HTML::Mason components. In addi-
tion, it has a CGl-based editor for fixing files on the remote site, Perl test compiling,
and spell-checking.

The Mason-CM project was started by Mark Schmick. Michael Alan Dorman and
Jaron Rubenstein are continuing the work as of this writing. It is available on Source-
Forge at http://mason-cm.sourceforge.net/, or you can follow the link from Mason
Headquarters (http://masonhg.com/). It requires mod_perl and HTML::Mason to be
installed. You might consider setting up a server just for Mason-CM requests, for rea-
sons we’'ll get into shortly.

Mason concepts

Let’s review how HTML::Mason works before getting into the content manager.
Chapter 7 has much more discussion, as well as an example installation.

Mason is a tool for building web pages from components, individual files that can
contain Perl code, HTML content, or (generally) both. A Mason top-level component
sets up the general structure of a page, with references to subcomponents that yield
headers, footers, articles, and the like. When Apache routes a request through Mason,
a handler maps the request to a top-level component and the Mason Interpreter pro-
cesses the special tags that indicate Mason sections and Perl code. Along the way it
also invokes and interprets subcomponents and merges the output of each into a fin-
ished page.

While Mason provides the tools for all these steps, the actual handler that
mod_perl invokes is custom written at each site.* The handler loads Perl modules used
by itself and components, and initializes the Parser, Interpreter, and Handler objects
that will do the bulk of the work. Part of that initialization tells Mason where the com-
ponent root and data root are, and how to spot a top-level component.

The component root is the path to the directory that holds Mason component files,
and is treated by Mason in much the same manner as Apache treats its document root.
Absolute paths to components are rooted there, as the name suggests. Relative paths
are relative to the current component, and can’t reach outside the component root.

4 The handler’s author probably starts with one of the examples shipped with the product, as I did for
my own session-handling variant.

TOOLS FOR CONTENT MANAGEMENT 333

334

The data root is the directory where Mason stores its cache of compiled compo-
nents and other files. Mason gains considerable performance by translating compo-
nents into Perl functions which are in turn compiled into live code by mod_perl in
the Apache server processes. When Mason detects that a component is newer than its
cache it recompiles the cache automatically. Mason-CM can help with that, as we'll
see shortly.

Setting up Mason-CM

Installing Mason-CM is a simple, but manual, process. Download the distribution and
unpack it into your Mason component directory (not the server’s document root, as at
least one version of the instructions suggests, unless your server serves only Mason
documents). Using the example installation from chapter 7, that would be / usr/
| ocal / apache/ mason; | unpacked the tar file there and renamed the resulting
directory mason-cm

Mason-CM requires HT TP authentication on the application’s URL to identify the
user and limit access. Here are the directives | added to mod_per | . conf toenable it:

Per| Requi re /usr/local /apache/lib/perl/mason_handl er. pl
Al'i as /mason/ "/usr/local /apache/ mason/"
<Locati on / mason>
Set Handl er perl -script
Per | Handl er HTM.: : Mason
Def aul t Type text/htm
</ Locati on>

Mason CM aut henti cation
<Locati on / mason/ mason-cne
order deny, al | ow
deny from all
al | ow from 192. 168.
Aut hUser Fi | e dat a/ masoncm users
Aut hNarme " Cont ent Manager"
Aut hType basic
require valid-user
</ Locati on>

If you have only a few users for Mason-CM, a regular text password file will be fine.
Higher intensity sites will want something faster, as discussed in chapter 6.
After adding the new section you’ll need to create the password file with htpasswd:

/usr /| ocal / apache/ bi n/ ht passwd -c /usr/| ocal / apache/ dat a/ masoncm users user
password

where user and password are the 1D and password of your first developer.

Configuring Mason-CM’s configuration file is the next step. cnConf i g is in the
top directory of the distribution (mason- cmhere in the example). The configuration
file is a subcomponent used by the Mason-CM top-level to load in the site specific
information. You'll need to set the following variables in the initialization section:

CHAPTER 11 CONTENT MANAGEMENT

ny $CM HOME = '/usr/| ocal / apache/ mason/ mason-cni ;
ny $CM DATA = '/usr/| ocal / apache/ mason/ mason-cni dat a';

These identify the directory where Mason-CM resides and where it should store its
data respectively. The data directory should be owned by Apache’s user. Create and
change the ownership if the data directory is not there.

Below those variables the component creates a hash, %em conf i g, which con-
tains the bulk of the configuration data. Browse through this and change the obvi-
ous items:

e adm n—This should be a mail address where errors can reach you or a respon-
sible party, not necessarily on this machine.

e use_cooki es—Can be set to zero if you don't want Mason-CM to store state
information in cookies.

e prod_dat a_di r—Change this to the path of the Mason object directory for
your production server’s components, not Mason-CM. For the example installa-
tion the path is/ usr/ | ocal / apache/ dat a.

e use_rel oad_fil e—Set this to 1 to speed up Mason in your production
server, but we’ll discuss that more shortly.

e ft p_ar ea—If users are restricted to uploading files to a particular directory,
set this item to that path. It doesn't matter if they are or not using FTP.

« Titles and error messages, if you prefer other text.

Then go to the section that begins with br anches. This is where you tell Mason-
CM what directories it manages. Each branch is really a section of files, unlike the
usual meaning of the term in revision management. You could have a branch for your
static documents, one for your Mason components, one for image files, and so on.
Within a branch you can specify a staging and production directory and other
attributes. Each section is managed separately.

The example configuration file calls the sample branches Content and Compo-
nents which | found a little confusing at first. I named mine HTML and Mason to
make it clear that the first section was for plain HTML files and the second was for
Mason components.

If you have your branches in mind you can enter them now. The pat h for each
branch is the top level directory for those files. Within that directory it expects two
more directories which | suggest calling st agi ng and pr oduct i on. As you would
guess, those subdirectories are for the staging mechanism. The files in the first should
be visible only to your developers, while the second directory contains the public files
for your site.

Branches don’t have to be separate. You can have a branch for the top of your direc-
tory tree and also have subdirectories listed as branches of their own. Use the config-
uration that lets you and your developers work most easily.

TOOLS FOR CONTENT MANAGEMENT 335

336

We'll get back to the branches so don’t worry about getting everything right just
now. To finish the other configuration tasks, look to the section that begins with
get _privs. This is the user security configuration and it bears some explaining.

The get _privs element is a function that receives a branch and path, and
returns a hash of privileges for the current user in that directory. The example function
is rather simple, and can be used as-is to set the privileges of all users that are in the
ht passwd file used to control access to Mason-CM. You can add lines for specific
users to allow some to read files but not write them, or you can discard the example
function altogether and implement as complex a scheme as you like. If you want to
write your own, just invoke it via a shorter function in cnConf i g, like so:

get _privs => sub { return MyModul e::get_privs($user, @) },

where MyModul e is a module containing your function, which is loaded by your
Mason handler.

The final configuration step is to add the modules Mason-CM needs to your han-
dler. The I NSTALL file included in the distribution will give you the current list of
requirements. Add them to the block of modules that your handler loads for compo-
nents to use. The section in my handler ended up like this:

{ package HTM.:: Mason: : Comrands;
Mobdul es and variabl es that conponents will use.
Include Constants again here to give conponents
its exported val ues.
use vars gw $dbh %ession);
use Apache:: Constants gw(:conmon);

Modul es used by Mason-CM
use Fcntl;
use 1G:File;
use M.DBM
use | mage: : Si ze;
use URI:: Escape;
use File:: PathConvert;
use File:: Copy;
use File::Find,;
use | G : Handl e;
use | PC:: Open2;
}

Now that you've configured things, you should be able to restart Apache (if you
haven't since adding the Locat i on directive for Mason-CM) and test the interface.
Let’s get into the meat of Mason-CM by exploring what we can do with branches.

Managing files with Mason-CM

If the configuration steps have gone well, after restarting your server you can start a
Mason-CM session. You'll have the usual dialog box for HTTP authentication, then
the top-level page. My example installation and setup is shown in figure 11.1.

CHAPTER 11 CONTENT MANAGEMENT

. Eim Edl 'Wiesa Seach Qo Beokmmis Teibs Help [edug O

Content Management 8/18/2001

i [‘!-I:IF_"-
| (rape |
¥ - - -
[inges ahim — ed Wednegday, 791 212000 7.50 PMinobody |
 Cneckal Action on checked Nea: | TR | Rayeris T |ggar
Dishete |

Figure 11.1 The first screen

In the upper-left corner there is a link (via the juggler image, or what ever logo you
care to supply for your site) to return to this page from any other Mason-CM page.
On the right side there are links for the customization page (my.CM) and the Help.
The date is also supplied, for those developers who have been struggling with their
site for so long they can't remember what day it is.

Under the standard links in the upper corner there is a list of branches that you
configured in the earlier steps. By default the first branch in the list is also displayed
on the main page. Mine isn’t terribly interesting since | keep everything in the staging
and production directories. To see more of what Mason-CM does, browse to a direc-
tory by clicking its name. | loaded a set of files from Apache’s online documentation
into my HTML staging directory (figure 11.2) to play with it.

This is the basic working screen for Mason-CM. The directory’s file list is displayed
(under a list of links for subdirectories, if any) in a table with data and links for each
file. The column headings are themselves links which sort the page by the respective
column. To see files by modification date click the header over that column.

The file name is a link that leads to a listing of the file. Next to it is an edit link
(if the user’s privileges allow writing to the directory) and a version link for displaying
revision data (if you’ve configured RCS to store that data). Try those links in your own
site to see how they work. I wouldn’t want to use Mason-CM as my primary text edi-
tor, but it does the job fine for quick fixes. Figure 11.3 shows a file in the edit page.

The status section at the end of each file line and the check box at the beginning
are tied to Mason-CM’s method of moving files from staging to production. If a file
has been uploaded to the staging area but isn’t in the branch production directory, its

TOOLS FOR CONTENT MANAGEMENT 337

o Eim Edl ‘Wess Zearch Goo Beokmaris Taba Help Dedug S8

is0 0] Gal i -ﬂ‘
T T= 001 p— = .

® fe rames T condent C lgnore cage

hdason | singing
craghe |
m : st mod | nioed b .'! 1alis
[|osde |
u r fociermomg = adf Thursday, S'20{00 1 746 Fi|motoot iskaging)| E
| ™ beadarmomp = edit Thursday, 580 E00 1 746 Pi|notrant |skagng| r
[loanmbtiml = edi Thursday, 53/2001 746 Fii|notred |slagng)
r mp=xiEnty. memp = adt Thursday, 5202001 746 Pi|notract (slaging)|
r pepotl el Thursday, &24/200 1 746 Fhi|natract |slagng)
I repot Thursdiy, 5342001 746 PM|notract |Elaging|

M Ched al Action on chedoad Mes: TTREST | Flaverss Trigger | I
Delete | o

Figure 11.2 Staging directory

status is staging. If the file exists in both directories and is the same, the status is prod;
otherwise the modified status indicates a change from staging to production. Sort the
listing by the status column to see quickly what files might need to move.

= B Bl Wies Teanh G Brobmais Tk Hele Deoug S8

o =
gnamaenn Content Man lageme 1t
g Meson i sTegng | login.mitin
| Bave & Renderpage | |
— [_igncre compils errces (8
+ \DICTTFE TN FUBLIE - - /¢ ZETY. /I00 MO/ /ER
ETHL
u (AT - TTELE ;M lamss lag wne STTTLE o STEERD
RO
dHYiPlease enled :nrn Sdfiimd Bl padsword o HD
¥ L IFIFH EETHEID= “FET™
1TRELE
£TH S
TRl asrreme (ST
I INPET TIFEs "Lael ™ MM~ i rcome™
VALIE =" % Bossrnass %57 SIXEall fm
TR
“Thi
Wolasswvord. (/T8
| T SNPRT '.I'I'.l'll EI:HI: 4" NRHE~“pasvenid”
© /TR
FTHELE +
CRST TE="sulihi L™ WALEE="Lag £h"]

Figure 11.3 Afile in the edit page

338 CHAPTER 11 CONTENT MANAGEMENT

And how do we move those files? That’s where the check boxes in the left column
come in. Check off each file that should be transferred from staging to production,
then scroll to the end of the page. Click Trigger and the selected files will be copied
over, then the directory view page will refresh with updated status values.

While that’s very neat, I still think it is safer to transfer all of the files in staging to
production at once. For that task there is yet another check box at the bottom of the
page for selecting all of the files on the page without browsing through them individ-
ually. To perform a mass transfer, check that check box then click the Trigger button.

If you configured an FTP upload directory in cnConf i g, there will be a link for
it also at the bottom of the page. Follow that link to a browser of files and directories
in your upload area. Once you've selected a directory, a dual selection box, shown in
figure 11.4, allows you to choose files to copy from the upload to your previously
selected branch and directory.

. Eim El Wess Seach o Brosmais Tetks Help Dodug 28

Content Management 81902001

Copying files from
{homeltheo'db

to
Masonistaging

FTP Area Elaging &rea
SOAST. BCmp ﬂ
chifiedy header meTmp
ahl Lt Lo, e ml
ch sdvw rpeTIE Ty, memp
ch3 adw repnriL B e
el mb |

Figure 11.4 Upload area selection box

Remember that you don't have to use FTP to get files to this directory; scp or rsync
will work just fine. Also, with a bit of trickery in cnConf i g you could have Mason-
CM display a different upload directory for each user:

ftp_area => "/hone/ $user/ upl oad",

That quick walk-through shows the features Mason-CM brings as a visual file man-
ager for a web site, but there is a lot more to see. Return to the listing of your staging
area and choose the edit link for a file. Mason-CM displays the file in a text box along
with buttons for changing the file’s name or copying it to another file. (You can delete

TOOLS FOR CONTENT MANAGEMENT 339

340

and create files from the directory listing.) If you've configured in spell checking you
can have Mason-CM verify the file—it will automatically strip out the HTML tags
before sending the buffer to your program of choice (as long as your program of
choice works as i spel | does), then use a JavaScript program to display words that
aren't in the dictionary.

Make a change to your file and click the Save & Exit button to return to the direc-
tory listing. The file will be highlighted and selected automatically, so if you haven’t
copied it to production yet you can do so just by clicking the Trigger button at the
bottom of the page.

Things are little more interesting if you change a file whose status is prod, that is,
already exists in the production directory. Trigger a few files if you haven't already,
then edit one of those (from the staging index page, remember) and save a change. The
status is now modified, and you’ll notice also that the status value is a link—it will take
you to a page listing the differences between the staging and production versions. Fig-
ure 11.5 shows the differences between a staging file and a production file.

. Eim Eol Wess Seach o Brosmuis Tatbs Hele [oaug 04

Content Managament

arMa2aon

Difference Heporl: kason ' sthging | legin mbtm|
The following differences were found
batween the staging and produchion versions
of “Masonistaginglogin.mhtm|”,

Exeerpis from the staging file are shown in
@reEn,

Sl | Change wk lerm 5
¥ E:Flanss sabwr geor Ussrosss =rd pesyesed]

CHIE paas el poiir lisereer ael posssses] TrHD

Figure 11.5 Staging and production file differences

When you start to edit a file, Mason-CM reserves that file for you to prevent simulta-
neous edits by other users. If you cancel or save your changes the reservation is
released. Otherwise the reservation is held and noted in the list of reserved files at the
top of the directory listing. You can release your locks via the links on that page. A
user configured with admin privileges for the directory can release any locks.

CHAPTER 11 CONTENT MANAGEMENT

If you need to copy a file back from production, that’s a “Reverse Trigger” in
Mason-CM terms. Deleted files can also be retrieved from the trash if you configured
one in cnmConfi g.

Mason-CM provides a pair of entry fields at the top of each directory listing. The
top field is for quick navigation if you know the path to the directory or file you wish
to see. It’s very convenient for cutting and pasting your way to files. The second entry
box is the search field, which allows you to look for files by matching name or content.
Enter aword and click the search button to see a list of matching files. While it doesn’t
advertise it much, you can enter a regular expression pattern as well; enter
[Aa] pache to find instances of “Apache” and “apache”.

Managing Mason components

While you can use Mason-CM on a site that doesn't otherwise use Mason, there are
some special features to consider in managing a site with Mason components.

Looking back at the branch definitions in cnmConf i g, there is a branch attribute
that activates these features, helpfully called conponent s. Here’s the definition of
my Mason branch:

Mason => { path => '/usr/| ocal / apache/ mason',
trg_from=> 'staging', trg_to => 'production',
components => 1,
obj _dir => '/usr/local/apache/data/obj' 1},

I copied the Mason examples from chapter 7 into the staging directory of this branch
to serve as tests for the special component features.

When working with a component branch, Mason-CM precompiles each file as you
save or trigger it. If you are changing the file via the editor, Mason-CM will show you
syntax errors immediately when you save a file with problems. For example, | edited
| ogi n. mht M and put in a bad argument in the <%ar gs> section. When | saved
it, Mason-CM brought up the error page that is shown in figure 11.6:

You can force Mason-CM to accept the file as-is by clicking the Check button to
ignore errors. This allows one developer to pass the duty of fixing an error to another,
for instance.

The same error checks apply when you trigger files to production. If any triggered
files fail the test, Mason-CM brings up a list of problem components with links that
will allow you to edit each one and fix the problems. If the file isn’t a component (or
has problems that you know won't affect production use) you can force the triggering
operation to complete with the current state.

In chapter 7 1 mentioned a performance enhancement for Mason’s component
cache. As Mason processes components it compiles them into Perl functions and
caches the code in the configured object directory. Since Mason can be running in a
number of Apache child processes, each one needs to check the cache for each

TOOLS FOR CONTENT MANAGEMENT 341

342

. Eim Edl 'Wiesa Seach Qo Beokmaris Tebs Help [odug 08

=
- Content Management 8/19/2001
Editing: Mason | stegng | login.mitmd T changes
Copy | Femme | ‘.:"ml Sae & Exit |
| Sae & Render page
I KFiche ooingsals erced
o
b Tape Bar arguesaristtoibens g rrose Fipst ehapmgter st bes £ B, oy &
M | show numbered source e Bl
DICTEFE HINL FELIS =« LETFS T HOLS E
ETHL
MEAD HTITAE *Flasss Lag wni STETLE w0 STEED
BT
HsFLleage enCed Wkl wesinies bl pedswoid 02
CFIFH BETHID= "FOST"
TRLE
T™H
THlsarrase o /10
T I TIPE="East™ HANE="usrreame™
VALLE="7h Posscnoss &i" SIX=1d004 710 d
L &

Figure 11.6 Compilation errors in login.mthml

component to know if its internal code is up to date. This results in a directory lookup
and st at call for each component of a request.

The fix is to enable the reload file feature in your Mason handler: a flag that tells
the interpreter not to check the individual component files for changes, but rather to
look in a single file that contains a line for each component that needs to be reloaded.
Thus only the reload file is checked for each request.

Mason-CM takes over the chore of maintaining that file for you. Enable it in
cnConfi g like so:

prod_data_dir => '/usr/local /apache/data',
use_reload_file => 1,

where prod_data_dir points to the same data directory as given to the interpreter
object in your handler:

Set up Mason interpreter.
ny $interp = HTM.:: Mason: : | nterp->new
(' parser' => HTM.:: Mason:: Parser->new,
‘conp_root' => '/usr/local/apache/ mason',
‘data_dir' => '/usr/local/apache/data',
‘use_reload _file' => 1,

);

With those changes in place, Mason-CM will inform the Mason interpreters of
changed files automatically.

CHAPTER 11 CONTENT MANAGEMENT

Content management is ultimately about shipping files to web servers and managing
them in place. During all this discussion it may have occurred to you to ask if the web
server couldnt do this itself.

We view the Web in terms of serving documents to browsers, but according to
many sources, the original vision of the Web was a distributed authoring system in
which a server’s business included accepting and managing files from (appropriately
identified and privileged) users as well. That vision has been restored in WebDAV. The
following is from the project’s home page at http://webdav.org/:

What is WebDAV?
Briefly: WebDAV stands for “Web-based Distributed Authoring
and Versioning”. Itisasetof extensions to the HTTP protocol
which allows users to collaboratively edit and manage files on
remote web servers.

A brief look at the site shows that WebDAV goes far beyond simple file transfer issues.
This is the basis of considerably more, a distributed file system that includes locking
facilities and extensive document attributes. Locks are long-term entities that allow
an author to reserve access to given files, preventing overlapping updates as a basic
function and maintaining privileges in the longer run. Document attributes are
stored and retrieved as XML, allowing arbitrary information to be associated with
files—lists of authors, history information, and so on. The WebDAV protocol suite
includes methods to search for files via matching metadata and other criteria.

In the present time frame, however, WebDAYV is mostly about file management via
HTTP, replacing FTP, scp, rsync, and other file-transfer systems. There are advantages
to building this kind of thing into the web server:

« WebDAV uses SSL for secure transfers if you have one of the Apache SSL mod-
ules built in.

e Users and passwords are defined via htpasswd (or a compatible authentication
scheme) and validated via HTTP authentication. That means they don't require
shell accounts on the server machine, and thus can't be used to crack the system
via telnet, FTP, or ssh exploits.

By replacing other services, the system has fewer open ports and thus fewer
security holes.

The main disadvantage is that WebDAV is built into the web server. Any security
holes mean the server itself is breached. It also adds its weight to the memory foot-
print of each Apache child process. The simple answer to both those objections is to
run a separate Apache just for WebDAV use, thus allowing stricter configuration con-
trols on the management server and keeping its code out of the busy production

TOOLS FOR CONTENT MANAGEMENT 343

344

server. That spoils the simplicity offered by the initial view of WebDAV somewhat,
but it is a perfectly reasonable solution. Configuring an extra Apache server isn't nec-
essarily any more trouble than configuring other content management tools, and if
access can be limited to a protected network (nodes behind your firewall or in your
VPN) then SSL isn't necessary and other security concerns largely vanish.

Building WebDAYV into Apache is as simple as any other add-on module: mod_dav
has been available from the WebDAV site since mid-2000, and configures and builds
similarly to mod_ssl. There are source distributions at the site as well as binary add-
ons for Windows versions. The Apache Group has also announced that WebDAV pro-
tocols will be incorporated into the core distribution of Apache 2.0, which will make
this even easier.

WebDAV has spawned some new tools and is being built into many existing prod-
ucts, both commercial and Open Source. The strong momentum shown here indi-
cates that WebDAV is very likely to be in your content-management future, and
possibly your present as well.

If your site developers use a commercial product with WebDAV support, you
should consider adopting it now. Nothing beats a familiar tool that integrates into the
server you already have. The Open Source products | looked at were all at early stages
when | took my first look at WebDAV, and they haven’t matured enough as of the
time of writing for me to recommend them. Things are moving quickly though, so
check the web site for more news as these products get up to speed.

I think the final decision on using WebDAV or a separate transfer/management
mechanism depends on criteria we discussed earlier in the chapter. If you have a large
content-development group which includes people who need to send updates regu-
larly to the server but who should not have access to a shell, then WebDAV ought to
appeal strongly to you. WebDAV can be configured to limit users to exactly what you
want them to be able to do, and it offers a variety of features that will help your users
manage content on their own (as those features are incorporated into their tools).

On the other hand, a smaller group will probably find WebDAV to overlap other
services they need. If your developers also have administrative duties (that is, they have
to have a shell account anyway) then giving them an extra password encourages bad
practices (or bad passwords). They’ll still need other file-copying services to handle
their tasks. Chances are the whole group will need access to all the files, so there won't
be any advantage to WebDAV’s additional privilege layers. If that sounds like you,
then keep using the tools you prefer. But keep an eye on newer tools anyway. It seems
likely that as WebDAV client services are built into more software, it will also get con-
figured into more sites.

So what are those new WebDAV tools? Here are a few that work closely with the
new services.

sitecopy and cadaver are two programs that could replace rsync in my list of rec-
ommended content management products. sitecopy can use WebDAV or FTP to
transfer files, so you can consider it for use on protected networks even if you aren’t

CHAPTER 11 CONTENT MANAGEMENT

11.3

a fan of WebDAV. Both have good comparison features for deciding what needs to be
uploaded to the remote site, and use the move and copy capabilities of WebDAV to
manage files on the remote site. cadaver also lets you read files on the remote site with-
out going to a browser.® sitecopy has a twin product, xsitecopy, which adds a graphical
front-end that makes it easier to configure the local and remote directories of a site.

The PerlDAV project is part of WebDAV, and provides administrators with the
HTTP::DAV module to handle file transfer and remote management from scripts. This
project is at an early stage, but the close relationship of the product to the main Web-
DAV effort makes it promising. WebDAV functionality will find its way into other
Perl tools quickly as the module matures. Compiled programs can use the neon
library, which offers a high-level API.

Rumors and tidbits of WebDAV abound in other projects. One of the most
interesting is the fact that the GNOME project’s file system abstraction, gnome-vfs,
does or will include a handler for WebDAV so that a remote site can be managed
through the Nautilus file manager (among others). Keep an eye on WebDAV’s home
page for developments.

MANAGING A PRODUCTION SITE

Now that we've seen some good tools, let’s put them to work in a sample configuration.

We'll cover the directory layout for a machine that hosts the staging and produc-
tion phases. Development lives elsewhere, possibly on individual workstations. The
configuration of a pair of Apache servers comes next, followed by the role of content-
management tools.

As you work through this section, remember that content management has to be
flexible in order to meet users’ needs—and in this case, the users are your developers,
creative people who are possibly under a lot of pressure to make the site work. I've
talked about enforcing rules and laying out guidelines, but in reality, people will do
what works, and different things work for different people. Where there are multiple
tools and methods, consider implementing and offering them all. Find out what your
users like and then make the rules work the way they do.

Draw the line at security holes and system sanity; protect sensitive data and cus-
tomer privacy. For anything else, let the users have their way if at all possible, so that
content management is a tool for them instead of a restriction to get around.

It's time to put together that production system. If you already have a system in place,
perhaps this section will give you ideas on how to migrate to an environment that is
better for content management.

5 1t might be worth it just so you can drop lines like “we use cadaver for remote viewing.”

MANAGING A PRODUCTION SITE 345

346

Our system will run two instances of Apache: one for staging and one for produc-
tion. The development stage exists virtually on various workstations as described else-
where. The staging and production web servers will share Apache binaries and static
files. Each has its own subdirectory of the Apache root, like so:

/usr /1 ocal / apache
conf
| ogs
dat a
I'i b/ perl
st agi ng
production

The conf directory has both shared and phase-specific configuration files (if any);
since we have to arbitrate ports and addresses here, we can't move the staging configu-
ration to production. Within the server directories (staging and production) we have
the files that are maintained by content management:
st agi ng

cgi-bin

dat a

ht docs

I'i b/ perl

mason

per|

The ht docs directory contains static documents, while cgi - bi n, perl,and i b
contain applications. These files should represent the whole site content, so that we
can update the site by copying the entire contents of the staging directory tree to pro-
duction. The mason and dat a directories are for Mason components and cache
files. If you use only Mason-CM, then only staging will need them.

The configuration in ht t pd. conf is largely standard, with a few phase-specific
sections. At the beginning of the global environment setup | added these directives:
<IfDefine !stagi ng>

Set Env PhaseRoot /usr/ Il ocal /apache/ production
</ | fDefine>
<| fDefine stagi ng>

Set Env PhaseRoot /usr/| ocal / apache/ st agi ng
</ | fDefine>

The PhaseRoot environment variable can be read by CGl scripts and other applica-
tions that need to keep different data by phases. The other sections manage the direc-
tories and files that need to be different for separate servers:
<IfDefine !stagi ng>

PidFile /usr/local/apache/l ogs/ httpd. pid
</|fDefine>
<| fDefine stagi ng>

PidFile /usr/local/apache/l ogs/staging. pid

CHAPTER 11 CONTENT MANAGEMENT

</|fDefine>

<IfDefine !stagi ng>
Port 80

</ | fDefine>

<I| f Define stagi ng>
Port 8080

</ | f Define>

Note the use of ports to separate the servers. Insert Li st en directives here to sort
them out by address if you prefer. If you do use the port method, you should block
access to the port from outside your network.

<| f Define !stagi ng>

Docurent Root "/ usr/| ocal / apache/ producti on/ ht docs"
</|fDefine>
<| f Define stagi ng>

Docurent Root "/ usr/ | ocal / apache/ st agi ng/ ht docs"
</|fDefine>

<|fDefine !stagi ng>

ErrorLog /usr/local /apache/l ogs/ production_error_| og
</|fDefine>
<| f Defi ne stagi ng>

ErrorLog /usr/local /apache/l ogs/ stagi ng_error_I| og
</|fDefine>

<IfDefine !stagi ng>
CustomLog /usr/local /apache/ | ogs/ producti on_access_| og conmobn
</ | f Define>
<| fDefi ne stagi ng>
CustomLog /usr/ | ocal / apache/ | ogs/ st agi ng_access_|l og common
</ | f Define>

<IfDefine !stagi ng>
ScriptAlias /cgi-bin/ "/usr/local/apache/production/cgi-bin/"
</ | fDefine>
<| f Define stagi ng>
ScriptAlias /cgi-bin/ "/usr/local/apache/staging/cgi-bin/"
</ | f Define>

Most of the configuration remains global. We can handle permissions in both serv-
ers’ document roots with one <Di r ect or y> block, with the help of a wildcard in
the path:

<Directory "/usr/local/apache/*/htdocs">
Options Includes |Indexes Fol | owSynLi nks Mul ti Vi ews

MANAGING A PRODUCTION SITE 347

Al |l owQverri de None

O der all ow, deny

Allow fromall
</Directory>

And the same treatment takes care of the CGI directory:

<Directory "/usr/local/apache/*/cgi-bin">
Al l owOverride None
Options Fol | owSynli nks
Order all ow, deny
Allow fromall
</Directory>

That’s enough to get both servers running and to test with static documents and
scripts. Apache::Registry scripts need a similar treatment in nod_per | . conf :

<IfDefine !stagi ng>
Alias /perl/ "lusr/local/apache/production/perl/"
</ | f Define>
<| fDefine stagi ng>
Alias /perl/ "/lusr/local/apachel/staging/perl/"
</ | f Define>
<Directory "/usr/local/apache/*/perl">
Set Handl er perl -script
Per | Handl er Apache:: Registry
Options ExecCd
Per | SendHeader On
</Directory>

Handlers and other applications are a little more complicated. We want mod_perl to
load modules from the phase-specific | i b/ per | directory in preference to any other
location, so our staged code can move cleanly from one phase to the next. A short
<Per | > section accomplishes that:
<|f Define !stagi ng>
<Perl >
use lib '"/usr/local/apache/production/lib/perl"’
</ Perl >
</ | f Defi ne>
<| f Defi ne stagi ng>
<Perl >
use lib '"/usr/local/apache/staging/lib/perl'’
</ Perl >
</ | f Defi ne>

Now Per | Modul e and other directives will behave as we like, finding the module
in the phase library directory. Just as importantly, any Perl use statements in those
modules will look in the right place first. Third-party mod_perl code can still live in
{usr/ 1 ocal /apache/li b/ perl ; that directory remains in the search path for
modules. Our configuration change affects only items that should be under con-
tent management.

348 CHAPTER 11 CONTENT MANAGEMENT

Any handlers we load by path have to be managed for each phase, such as this sec-

tion for loading the Mason handler:
<IfDefine !stagi ng>

Per| Requi re /usr/local /apache/ production/lib/perl/mason_handl er. pl

Al'i as /mason/ "/usr/local/apache/ production/ mason/"
</ | f Define>
<| fDefi ne stagi ng>

Per| Requi re /usr/local /apache/ stagi ng/li b/ perl/mason_handl er. pl

Al'i as /mason/ "/usr/local/apache/stagi ng/ mason/"
</|fDefine>

And the directory paths inside the handler need to be changed too, of course, so that
Mason caches components independently by phase. Since the handler is under con-
tent management control, we don't want to hard code a path there. Here’s a trick that
figures out the directory using Perl’s special __FI LE__ constant:
ny $dir = $1 if __FILE _ =~ /~(.*)\/lib\/perl\/mason_handl er\.pl/;
die "Can't initialize Mason directory path" unless $dir;
ny $interp = HTM.:: Mason: : | nterp->new

(' parser' => HTM.:: Mason:: Parser->new,

'conp_root' => "$dir/mson",
‘data_dir' => "$dir/data",
)
Perl translates __FI LE__ to the path of the currently parsing file during compila-
tion. The pattern match extracts the leading directory from the part that will remain
constant to determine what phase it is in, and passes that path along to the initializa-
tion of the Mason interpreter.

The server is configured, and the structure is in place for content management.
Now to deploy the tools discussed earlier.

We haven't discussed the development phase much in the configuration discussion. A
typical scenario has each developer on his own workstation, with an Apache server set
up more or less like the original single-server machine the rest of the book has used.
Alternatively, each could have his own subdirectory of a shared server although that
makes mod_perl much harder to use.

Developers can use rsync to load files to the staging area. Remember that we want
Apache’s user (www in this case) to own the files on the receiving server. To send over
the directories with CGI applications and associated documents, the developer would
move to his Apache root directory and fire up the transfer:

$ rsync -azC cgi-bin htdocs ww@ op. exanpl e. site:/usr/local /apache/ st agi ng/

This works fine if there is only one developer. With multiple people working on the
site, chances are good that someone will overwrite a file uploaded by another devel-
oper. It's wise to first find out what rsync thinks needs transferring:

MANAGING A PRODUCTION SITE 349

350

$ rsync --dry-run cgi-bin htdocs www@ op. exanpl e. site:/usr/l ocal / apache/

st agi ng/

Alternatively the - u switch will tell rsync to skip files that are newer on the receiving
side than the sender. That might work if your clocks are all in sync, but I'd probably
throw in the - b switch to make backup copies also.

CVS check-in

When you have multiple developers, you should also have a code repository.6 CVsS
dominates the scene, but plenty of sites still use RCS directly or other packages. CVS
is available for most development platforms, including clients for proprietary desk-
tops. Learn more about CVS at the product home page, http://www.cvshome.org/.

If your group uses CVS, then uploads should always be from the repository. Devel-
opers check in their code, then use cvs export to extract the files to a directory (or
tree). The exported files are then transferred to the staging area.

More adventurous project administrators can use CVS check-in hooks to transfer
files to the staging area as developers return them to the repository.

Once the staging area is set up, thorough testing can begin. If everything passes,
we can move to the next phase (literally).

When the files in the staging area have been approved, the whole set moves to pro-
duction. Resist all temptation to move individual files or directories—things that
were tested together move together.

The fastest way to do this is to rename directories. Move the old production direc-
tory to another name, rename staging to production, and everything will be in place.
I recommend giving Apache a fresh start if you have mod_perl applications. If you use
Mason, the running servers will pick up the changes as they process requests, so you
can leave them alone if restarting is unwise.”

If moving the directories is problematic, you can use rsync to copy all the changed
files between phases. You don’t even need to be on the server to do this, as | showed
in a previous example with scp:

$ rsync w@ op. exanpl e. site:/usr/| ocal / apache/ st agi ng/* \
www@ op. exanpl e. site:/usr/local / apache/ producti on

This is also a good role for Mason-CM. The example configuration earlier in the
chapter was set up for this task. You can make each subdirectory of staging and pro-
duction a branch (and thus take advantage of the special features for your Mason
components, if any) or treat each phase as a branch for simpler triggering.

6 f you are a solo developer, you should also have a code repository. | used one for examples while writ-
ing this book.

" 1f you use a reload file, you'll have to trigger the changes there of course.

CHAPTER 11 CONTENT MANAGEMENT

If you are using Mason-CM, remember that you don’t have to configure it for both
servers; setting it up just in the staging server is sufficient. Modify your mod_perl con-
figuration like so:

<| fDefi ne stagi ng>
Al'i as /mason-cm "/usr/ | ocal / apache/ st agi ng/ mason/ mason-cm "
<Locati on / mason/ mason- cn
order deny, al | ow
deny from all
al l ow from 192. 168.
Aut hUser Fi | e dat a/ masoncm users
Aut hNanme " Content Manager"
Aut hType basic
require valid-user
</ Locati on>
</ | f Define>

Since | use Mason for other files in the staging phase, I've placed Mason-CM there too.

If you are using Mason only for content management then it should live separately

from the phase directories. We won't copy Mason-CM files to production however.
Now we set up cnmConf i g in st agi ng/ mason/ mason- cm

ny $CM HOME = '/usr/| ocal / apache/ st agi ng/ mason/ nason-cni ;
ny $CM DATA = '/usr/ | ocal / apache/ st agi ng/ mason/ data' ;

Al =>{ path => '/usr/local / apache/",
trg_from=> 'staging',
trg_to => 'production',
conponents => 0 },
cad => { path => '/usr/l ocal / apache/ st agi ng/ cgi -bin',
trg_from=>"'/",
trg_to =>"'../../production/cgi-bin',
conponents => 0 },
HTML => { path => '/usr/local / apache/ st agi ng/ ht docs',
trg_from=>"'/",
trg_to =>"'../../production/htdocs',
conponents => 0 },

Mason => { path => '/usr/| ocal / apache/ st agi ng/ nason/ ',
trg_from=>"'/",
trg_to =>"'../../production/mason',

components => 1,
obj _dir => '"/usr/local/apache/data/obj' 1},
Mod_perl => { path => "/usr/local / apache/ staging/lib/perl",
trg_from=>"'/",
trg_to =>"../../production/lib/perl",
components => 0 },
Perl => { path => '/usr/| ocal / apache/ st agi ng/ perl ",
trg_from=>"'/",
trg_to =>"'../../production/perl"',
conponents => 0 },

MANAGING A PRODUCTION SITE 351

11.4

352

This is more complicated than it seems because of the structure of a Mason-CM
branch. If we had separate production and staging directories for each subdirectory
(instead of the other way around) then it would match Mason-CM’s expectations. As
it is, our sample configuration is good for mass copies via rsync, not so simple for
Mason-CM.

If you are using Mason in production, you can enable the reload file features for
greater performance. Be sure to tell Mason-CM about it too:

prod_data_dir => '/usr/local /apache/ production/data',
use_reload_file => 1,

You should now be able to browse and trigger files from your staging server.

BACKUP AND RECOVERY

Systems need to be built with maintenance in mind. If you are a hardware failure
survivor, you know this lesson already, and perhaps you've already taken steps indi-
cated in this section. If you haven't formulated a recovery plan, start on it now, even
if your site is in early development stages. You'd hate to waste your time with a messy
system cleanup (or worse, recreating lost configurations and code) at any point in
your development.

While this section is mostly concerned about the production system, you need
backups and recovery plans for all of your machines. In the case of development work-
stations, a daily backup of the code repository is a good first step. The techniques dis-
cussed next for remote backup of a server can also be used for development systems.
Perhaps you need only to archive developer’s home directories (or wherever daily work
is performed) on a regular basis.

Here’s an inexpensive recovery plan for developer workstations, where each devel-
oper has his own web server and other resources:

1 Replace failed hardware, if any.
2 Reinstall the operating system.
3 Create the user account and apply user-level backups.

4 Copy a working version of development resources (database, web server, appli-
cations) from another development system.

5 Let the users perform other configuration tasks personally (just as they did
when they first started to work at the machine).

While this plan may get you grumbled at by people who want the computer equiva-
lent of a magic resurrection spell, it is easy on the administrator and doesn't tie up a
lot of media (tapes, duplicate disks, or what have you) in perfect copies. It works fine
for my own business.

If your production site is busy enough, chances are you will move it to a hosting
service which provides backup and recovery, unless you already have. That’s a great

CHAPTER 11 CONTENT MANAGEMENT

idea, but review the plans carefully, with an eye toward issues I raise in the follow-
ing sections. Physical copies may not be sufficient, and data security may call for
other measures.

Somewhere in your collection of machines and hardware, you need devices and
media for archiving files. This can be a tape drive on the production machine, dupli-
cate disks elsewhere in the network, or combinations and multiples of these.

If you are buying a hefty server system from a vendor, chances are you're getting
backup capabilities built-in. When building your own system, don’t leave out a cheap
way of archiving files. In either case, consider the points in this section for both price
and manageability.

Media

While backups bring tapes (or other removable media) to mind, that’s not the only
way, nor is it advisable to depend solely on tapes as we’ll discuss.

Tape backups should be used for long-term storage (where long-term may mean
a month or so) and for data that is not critical to your recovery plan such as user direc-
tories. It's good to have a complete backup in a separate location, but that can be
accomplished via remote backups instead of the old method of carting tapes around.

Critical backups should stay on duplicate disks if at all possible. Use a remote
backup technique to copy archives to a separate system. When disaster strikes, you'll
appreciate the fast access and quick searching this method affords. If a business partner
or other party demands backup to removable media, then make those physical copies
at the remote site.

Automation

A backup plan has to be automated to work. If your system requires many manual
steps, then someone will skip a step the night before a key component catches fire.
Any backup to removable media requires an operator to change that media regu-
larly. That’s an acceptable level of manual intervention. Just make sure that the oper-
ator has a backup too, so someone handles the task on sick days. If possible, have your
procedure detect if the media has changed and report an error when it doesn’t.
Backing up to duplicate disks has the advantage here as it can run unattended. Your
procedure needs to know when to delete old archives as new ones demand room.

Remote or local

Proximity generally means faster recovery, but of course a backup that is close to
the server is vulnerable to site catastrophes. Removable media for local backups can
be moved to another site for safekeeping, introducing more management hassles in
the process.

BACKUP AND RECOVERY 353

354

Remote backup involves using rsync, scp, or other tools to send an archive over a
network link to another system. This is the method | prefer in almost all cases, if recov-
ery time is acceptable. Once you've sent the archive to the remote machine, you can
perform an additional backup to removable media if necessary.

A favorite trick among ssh fans is to use ssh to run tar on a remote machine and
pipe the output back through the secure channel to a local file. Your ssh man pages
should have documentation (or at least similar examples). rsync does this for you in
a recursive directory copy.

Capacity

Capacity planning for your server must also include backup capacity. If you are using
removable media, buy a system that allows a full recovery from one tape if at all possi-
ble, and make that backup every day, recycling tapes after a month or so. You don't
want to have to cycle through several tapes in an emergency recovery.

Remote systems need the same capacity, but not all of it has to be online at once.
Spool older backups to removable media. Bandwidth is a more important concern
here: you don’t want backup traffic to interfere with a high-volume site. Once you
have a procedure in place, check that the network usage plus the user traffic are within
acceptable levels. rsync has an option (- - bwl i mi t) for limiting bandwidth usage,
making it more useful on busy links.

Recovery time

How long will it take to restore a full backup after a system failure? Compare the cost
of downtime to the cost of a better backup system. You may be saving money in the
wrong place.

Local media recovers faster than remote backups, assuming the disaster didn’t also
take out the local media. One good solution is to have the same hardware for remov-
able media at a local and remote site. Perform remote backups and spool them to tape,
then carry the tape to the production system for faster recovery when needed.

Is a copy enough?

Copying files is fine for program binaries and configuration files, but that may not
work reliably for relational databases, DBM files, and other high-level storage systems.
Some products require the database to be at a safe point before copying files. In other
cases you might need the base files plus a transaction log or other journal system to
recover the data.

As you evaluate tools for use in your system, check into their backup requirements.
Make sure your procedure for a full backup handles all of these (or you won’t have a
full backup).

CHAPTER 11 CONTENT MANAGEMENT

Security

This is one point that is often overlooked in backup planning. If your site hosts sensi-
tive data, you know you have to protect it from general public snooping, but what
about your backups?

If you are using a remote backup system, it needs to run over a secure channel.
Once received, the files need the same protection on the remote site as they had on
the production system.

Backups to physical media need physical security. This can be very hard to imple-
ment at a site with a large operations staff. One option is to encrypt files en route to
the media, so that a pass phrase or other key is required to restore the backup.

Recovery planning is (in my experience) more difficult than backup planning, as it
involves more high-level business decisions. If your site is an e-commerce business,
you may have the funding for a full site backup. News and community sites are more
likely to make server-swapping deals or other accommodations.

A recovery plan should consider the worst (total site loss) and proceed from there,
marking clear stages along the way. In the far more likely event of a disk, memory, or
network failure, you need only to start the plan from the failure point and follow along
to a working system.

Hardware recovery

Sites that absolutely depend on up-time for survival will need solutions (live fail-over
and other technologies that keep a system running when individual pieces aren't)
beyond the scope of this chapter. See the next chapter on web farms and load-
balancing services to learn how to accomplish this.

For purposes of discussion, we’ll assume a single server is running the site. Budget
allowing, have a duplicate (or at least comparable) machine available to stand in the
place of a failed server. A ready system in working order is far better than an array of
spare parts. | value the working system at ten times the cost of parts during an emer-
gency recovery.

Whether you have a system standing by or just a set of replacements for key com-
ponents, make sure that everything is compatible—same manufacturer, model, drivers
and so on—so that you aren’t taken by surprise at a bad moment.

Backup sites

If your budget doesn't allow for duplicate hardware, perhaps you can move your site
to another location when trouble strikes, then come home again when you are ready.
This is a good option for community and news sites. Chances are you can make a
deal with someone else in your community to share servers during failures. Exchange
backups with each other regularly, thus achieving two goals in one.

BACKUP AND RECOVERY 355

356

Commercial sites that host their own systems should have an option to move to a
network-provider site when necessary. You can use remote backup procedures to
maintain a panic-ready system, to establish a procedure in advance for borrowing
hardware and connections.

Rebuilding the system

Once you have hardware to work with, you need to know how to recreate your work-
ing server.

Again, if budget allows, the best way to do this is to keep a working version of the
system elsewhere. As you install software, upgrade the operating system and so on,
keeping your backup machine in sync.

The next step down from there is a working machine with the correct OS and
products already installed. Take your backup and apply it to the system. If your
backup really is comprehensive then you are back in business.

If that isn’t viable, then you need either a good upgrade log or a very good mem-
ory, along with OS media and backup copies of the product distributions. The prob-
lem here is that it is far too easy to miss a step, forget something crucial, and end up
wasting hour or days in frustration over software that you know worked on another
system. The potential cost of this time should have you rethinking your budget for a
backup server.

Returning to work

The final steps of the process are the same as getting the server online in the first
place. Your recovery plan should document what those steps were so you can recreate
them quickly. Once the system is secured, connect it to your network. Tell your
router about it, adjusting DNS accordingly if necessary. Start the web server and other
network services, then monitor closely.

Don’t be shocked if you've forgotten something. Your recovery plan should
include the phrase “Don’t Panic” at regular intervals.

The best way to avoid panic in an emergency recovery is to have a plan and practice
it. That takes us to the final section.

You test your software, your network, your database. But, do you test your opera-
tional procedures?

If your answer is not a firm yes then chances are very good that your next emer-
gency will be a major one. No matter how proud you are of your backup proce-
dures and your stand-by systems, you don’t really know that things will work until
you try them.

Test your recovery plan at least once during development, and then again before
your site goes live. Verify the following points:

CHAPTER 11 CONTENT MANAGEMENT

* You have (or can quickly get) a machine with the right OS, sufficient disk space,
and correct product versions handy.

 You can load your backup onto that system. Do you have duplicate drives for
removable media?

» Once you've loaded the backup, the products work correctly. Carefully verify
your database here, as well as any user authentication systems.

« The resulting system boots correctly and is accessible to the network. Applica-
tions run correctly.

 The system reboots without manual intervention. If disaster strikes once, it may
come by again soon.

You have your system running, with good tools for managing growth and a plan to han-
dle any mishaps that come your way. Congratulations, your system is under control!

Or is it? This discussion has completely ignored performance issues that are likely
to come up as your site grows—because that is next chapter’s topic.

BACKUP AND RECOVERY 357

CHAPTER 1 2

12.1 Victims of success 359
12.2 Tuning your server 368
12.3 Web farming 382

Whether your site is a community information source or a store front, chances are
good your traffic will rise dramatically in the first year or so in business, then at a
slower but steady rate after that. You'll be adding features as you determine what your
users want, and those users will be sending more viewers your way. Search engines
will publish your location, getting you more hits. Simple web demographics come
into play also as the number of potential visitors increases with each month.

While no one can guarantee the success of a web site, anecdotal evidence among
developers indicates a one year rule; if your site survives its first year of business it will
outgrow bandwidth, hardware, or both. That’s not a bad plan—why pay for expensive
resources until your business is proven? But it does mean you need to budget for the
fruits of your success.

A large part of performance management is monitoring and analyzing—knowing
when you are approaching a problem point, and what that problem is. You should
begin this analysis before your site starts accepting public traffic, and make perfor-
mance reviews part of your maintenance regimen.

358

When you see a problem developing, the traditional solution is to buy hardware.
This is often the right solution, but always bear in mind that it doesn’t scale well. Add-
ing memory is fine until you reach the capacity of your system, and getting a faster
CPU becomes expensive when you cross the price/performance boundary.

Knowing your software and how it consumes resources helps you to put off the
limits of hardware solutions. Web applications can eat up memory at a fierce rate,
especially when Perl is involved. You may find a cheap solution in reducing the num-
ber of processes while increasing the number of requests they handle, a seeming par-
adox that we’ll explore in a few different ways.

If your software is well behaved and hardware upgrades are no longer affordable,
you have little choice but to move from a simple configuration to a web farm of several
specialized machines. This step is a complicated one, requiring more analysis and plan-
ning than a CPU or memory upgrade, making it particularly important that you know
when the time is approaching.

12.1 VICTIMS OF SUCCESS

Performance management is all about properly assigning system resources, but just
what resources does a system have? In chapter 2 I mentioned the basics: CPU, mem-
ory, network bandwidth, and storage bandwidth.

When most of us think of monitoring a system, CPU utilization is what first comes
to mind, possibly with visions of graphical system monitors pegged out when a favorite
application is running. If your CPU is saturated, starting a shell or a new command
may be sluggish. Web applications and background processes will take longer to com-
plete, and thus will hold on to other resources.

CPU saturation is easy to spot. top1 or almost any other monitoring program
examine CPU resources by default. The obvious cure is to upgrade the processor, but
a little analysis may save you an expensive chip:

* Is asingle process always hogging the machine? If the system is otherwise satis-
factory, consider a move to multiple processors instead of multiple machines.
You can effectively give the culprit its own CPU and save on other resources
and administration.

* Are there application issues—sections of code that swamp the CPU for long
enough to peg your monitor? Perhaps those can be rewritten to use another
mechanism (or another language). If those applications are generating dynamic
content, consider caching the results. That might be less dynamic, but possibly
more affordable and better for viewers who are waiting patiently for a page.

L Top is a program that will give continual reports about the state of the system, including a list of the
top CPU using processes. To avoid confusion, the term is set in fixed-width font

VICTIMS OF SUCCESS 359

360

« If groups of unrelated processes are in contention for the CPU, it’s time to move
to separate machines. Upgrading a single resource is likely to just delay this
move and add expense in the long run.

When you get rid of CPU contention, you may also free other resources, especially
memory. Temporary processes will come and go faster, releasing what they've used to
the general pool. If you use mod_perl applications or other means to make Perl per-
sistent, memory saturation can become your chief problem. Systems that are out of
physical memory may be slow to start new processes, as the OS is busy swapping
pages to and from disk. If out of swap space, the system may grind to a halt.

Diagnosing a memory shortage isn’t hard, as long as you haven’t reached the “crawl
off and die” point. The same tools that monitor CPU usually have a memory display
as well. Learn the difference between the total size of a process and its use of shared
and private pages. A group of httpd processes with mostly shared pages is a good thing,
even if the total size is large. We'll discuss sharing more memory later in this chapter.

If memory contention comes from processes that run different applications (and
thus are unlikely to be able to share more pages), you may be facing a migration to a
web farm. If Apache’s children are the culprits, however, tune your configuration first
by reducing the number of server processes. Fewer processes may be able to get more
work done, at least in part because they won’t wait around for memory.

Even if you don’t have memory contention, make sure your system has ample swap
space. This is a hard lesson most of us learn after a frustrating incident involving the
aforementioned death crawl. There isn’t a whole lot the OS can do about this other
than to let processes die and hope things get better. In the meantime you’ll be in the
dark about what is causing the problem. Head it off by having an ample swap partition
and you'll at least be able to diagnose what is wrong.

It seems odd to say, but network bandwidth is seldom a problem for web sites.
Broadband access at home provides casual sites with more than enough pipe, while
commercial sites have plenty of other incentives to locate their servers close to a back-
bone. Overloading the network connection is mostly a problem for sites that primarily
serve binaries—software, graphics, or sound files—not application hosts.

Temporary network overloads do occur at many sites, however. If your router or
other hardware monitor reports a problem, first find out if the problem is you. Remote
backups, content uploads, and other internal usage can swamp a network for extended
periods. If that is the cause of your problem, consider tools such as rsync (discussed
in the previous chapter) that will limit bandwidth used by transfer. Perhaps your
router can also restrict bandwidth usage from particular networks or hosts.

When no other culprit turns up, you still have some software options available. If
your web site serves up large HTML pages, chances are you can reduce the size of each
transfer by optimizing and/or compressing them. Apache supports various filter mod-
ules to handle this. In mod_perl, you can run the output through HTML::Clean,
Apache::GzipChain, or both. The first module removes extra white space and

CHAPTER 12 PERFORMANCE MANAGEMENT

performs other optimizations on HTML, while the second checks to see if the client
browser accepts compressed output and uses the gzip compression scheme if so. Either
of these modules will add CPU overhead to your system, and uncompressing on the
client side will delay the rendering of your pages somewhat, but together these two
modules can save considerable bandwidth on large pages. You can save CPU expense
for the server by precleaning HTML pages and caching compressed results.

You can trade some bandwidth for the maximum number of connections, allowing
those who connect to your system a chance to get what they came for while possibly
turning away viewers at peak times. No one wants to lose customers, but users who
get a “try again later” message may in fact try again later, while some, fed up with pages
that never finish loading, might not come back.

I didn’t list disk space as a resource problem because it so seldom is any more.
Capacity per unit cost increases every year, making storage a problem only for sites that
have vast databases. Storage bandwidth can catch site builders by surprise, however.
This is your hardware’s ability to get bits to and from the disk at a pace that keeps up
with application demand. If you have ample memory and CPU capacity available but
your applications are still sluggish, it could be that there is too much contention for
storage hardware. You can resolve this by trading memory for disk space, either by
caching more pages or putting high demand data on a RAM disk. You can also reduce
contention by reducing the number of application processes. Beyond that, you're fac-
ing a migration of one sort or another, to faster disk drives or more servers.

As I've said before, you don't want to wait until you have a problem to start learning
what to do about it. Once your basic system is functional you should find out what
monitoring tools you have available and learn to use them (and get more if they aren't
sufficient to give you confidence in finding a problem). Your development schedule
should include testing for performance problems.

The most common system resource monitor in the Unix world ist op (and its end-
less relatives and variations). This simple utility displays the vital statistics of a system
in a banner at the top of the screen (number of processes, CPU states, memory, and
swap consumption) followed by a list of processes and their statistics. The default is
to sort the process list so that the top CPU consumers appear first, but you can have
t op sort by memory usage, total CPU time used, or other attributes.

t op shows a lot of information at once, and it can be confusing initially. Keep a
copy of the man page handy so you have a legend to decipher the display. Once you
are familiar with it you can see at a glance if your system is healthy, and if not what
the likely contenders are.

Since various failure modes make it difficult to start new processes, | like to keep
t op running all the time on a problem system. That of course helps only if someone is
there to see it when trouble strikes. Fortunately, t op can also be used noninteractively

VICTIMS OF SUCCESS 361

362

to catch a snapshot of resource usage and save it to a file. Build a profile of your system
by running t op during peak periods, perhaps catching a culprit in the act.

Many implementations of t op are built on libgtop, a library of functions for gath-
ering system resource information. Doug MacEachern (the same Doug who is prima-
rily responsible for mod_perl) has provided a Perl interface in the GTop module,
which makes it possible to write your own script for recording resource utilization in
a database, displaying it on a web page or what have you. The module includes some
examples that will get you started. If libgtop isn’t ported to your operating system yet,
perhaps you can get resource consumption information via BSD::Resource.

Apache::VMonitor

Of course, running t op or its relatives requires a shell account and a logged in ses-
sion. You may be thinking that a web interface would be preferable. Others have
thought so too, as can be seen in the selection of tools to choose from. One that | like
is Apache::VMonitor, Stas Bekman's implementation of t op as mod_perl applica-
tion. Not only does it implement the usual t op displays, but it adds one specifically
for Apache children that can help you quickly spot problems in your applications (or
your clients). It can also display mount status and file system information with color-
coded alerts about overfull disks.

Install Apache::VMonitor from CPAN, along with GTop and Time::HiRes. To get
the Apache-specific status info you’ll also need Apache::Scoreboard and the
mod_status module for Apache (it’s compiled by default in a static build). Turn on
mod_status in your ht t pd. conf file:

Ext endedSt at us On

Status reporting does impact Apache’s performance by adding system calls to get
the beginning and ending processing time for a request. That shouldn't be enough
to notice, but if you are squeezing every drop out of your server, squeeze here.
(You'll also want to use something other than Apache::VVMonitor, which is not a
lightweight either.)

Choose a URL for the status display and configure it as a <Locat i on> block in
your mod_perl configuration (mod_per | . conf for me):

Per | Modul e Apache: : V\Vbni t or
<Location /sys-nonitor>
Set Handl er perl -script
Per | Handl er Apache: : VMoni t or
order deny, al | ow
deny from all
all ow from 192. 168.
Aut hUser Fi | e dat a/ admi n_users
Aut hNare " Admi ni strator functions”
Aut hType basic
require valid-user
</ Locati on>

CHAPTER 12 PERFORMANCE MANAGEMENT

<Per| >
$Apache: : VMoni tor:: Confi g{ PROCS} = 1;
$Apache: : VMoni tor:: PROC REGEX = ".";

</ Perl| >

This block loads the module and tells Apache that it will handle requests to /sys-
monitor. It protects the page in the same way that we showed protecting status infor-
mation in previous chapters, by restricting access to the local network and requiring a
user and password from an htpasswd database. That's rather paranoid, and either
mechanism could be used by itself.

The <Per | > section sets package variables used to configure Apache::VMonitor.
The Conf i g hash tells which sections to display when the page first comes up. The
system summary and Apache child sections are on by default, so they don’t need to
appear here. | added the PROCS section which shows a list of processes by CPU con-
sumption. PROC_REGEX further tells which processes to display, via a regular expres-
sion match; | want to see all processes, since a problem could come from a cron job
or a logged-in user. See the documentation for further configuration options.

Restart Apache and visit the page for a quick status update. Figure 12.1 shows the
VMonitor display:

. Filr EdR Wweswr Samch G0 Boobmarks Tasks Help Debug Q8

\pache:VMonitor Refresh rate: [0 (1] L5] [10] [20] [30] |

F.II|

a1/ ema] 0k 130 B34, ledd avermgs O 4% 0 K0 0 17, B pressiisad tyvade I o
cF !hu:: l1-|. nise, L BN 84 68 Lillls sy
e ﬂhn_il.lﬂl Ih?r:l-_-ﬂ-m_ 124k Euff

femp; B2 M v, 38 5 umsd, J1 36 fres 1S papsis SR payeauk

L4] FIp @ plapned Laabmeg mieed sias whiss TEize [LE Eliaat mpmsat (Firat 64 skairad
F“: I8 4 Fiwm T im0 dn 5 im
10 J3218 _ 9. 80de B SMa 28 11. 0w 3.5 1.0 3 2 192 148, 3.2 FidT e e o d LK
& jagld _ 0.8 P.EF1k 15 I0.7 3.0 12.%d0 B B 132 148 1.2 FOST Sessonmeren-omd oli bl
F: R W 0.93a p. Oy B2 I0.BW 9.58 12.36 E. M 12F.0.0.1 &ET frypi-ucaltoc EFTRS1.1
. d: J904% _ a.a0d b 0M0s @ 10,50 4 %m 1l aW E.En 133 146, 1. 2 GET Nitp- //bobbles. palslen
Tulal: SESHEE (5L MHY Rise, IRITH (B W) appren real side §-dleareds
L1 FIN uWI@ mize share TREZS EaE TTv v ol
I iFlEl rost (I | fid 5. 3w 3IEEE & H
I 1R3a] theo L8 I.4n 1inm 1 B & Iwmc
1 %83 cert 41iE 0w 1. Ta I%EE 5 amd
I T &iE] 1] = apad
I SEC dpEman 15E Ter 1 im aleE] e
§ hagk

Figure 12.1 VMonitor

VICTIMS OF SUCCESS 363

364

You can tell the page to refresh automatically at any of the intervals (in seconds) dis-
played by clicking the appropriate link. Be warned, however, that Apache::VMonitor
has considerably more impact on the system than top does, so you probably don't
want to leave it running once per second on a busy server.

Other links allow you to add or remove sections from the display. In the process list
or Apache child section you can click a process 1D to get detailed information on that
process. The latter is very helpful in identifying problem clients or application code.

Now that you have monitoring tools ready, you'll want to load up your system and
see what happens. Most of us try the usual have-everybody-click-on-a-bunch-of-links
method first, and while that’s fun, it'’s not much of a methodology.

To automate loading a server with requests, we need to automate web clients.
There are a number of tools for this, including a good many in Perl, and with good
reason: Perl’s LWP library and HTML handling modules make it easy to script web cli-
ents. Simulating page hits is trivially easy with programs such as ab (short for Apache
Bench), which comes with Apache and is probably sitting in the same directory as your
httpd binary. Automating sessions for more complex applications requires a little cod-
ing, but is still easy with these tools.

Suppose you want to simulate a user browsing through the static pages of your site.
Here is a quick script using the LWP::UserAgent module which requests a series of
pages (using documents from the Apache manual as an example):

#! /usr/bin/perl -w

use strict;
use LWP:: User Agent ;
ny $ua = LWP:: User Agent - >new,
my @ocs = qw
bi nd. ht M cgi _path. htm content-negotiation. htn
customerror. htm dns-caveats. htm dso. htni
ebcdic. htm env.htm footer.htm handler. htm
header. htm index.htm install-tpf.htm
install.htm invoking.htm keepalive.htm
| ocation.htm nman-tenplate. htm nultilogs. htm
)
foreach (@ocs) {
print;
ny $req = HITP:: Request - >new
(GET => "http://local host/manual /$_");
ny $res = $ua->request ($req);
if ($res->is_success) {
print " succeeded\n";
}
el se {
print ' failed, ', $res->status_line, "\n";
}

sl eep 1;

CHAPTER 12 PERFORMANCE MANAGEMENT

We could make the script smaller by using LWP::Simple instead, but that wouldn't
give us any error information if a request failed. The example creates the list of docu-
ments to fetch, then loops through that list and requests each one. Doing so consists
of creating a request object (typically called $r eq in the documentation and exam-
ples) and supplying it with a URL and an action—GET in this case, although you
could fill in forms via POST, among other things. The request is sent to the web
server via the r equest method, which yields a response object ($r es by similar
convention). If we were interested in the contents of the page, we could get that from
$r es- >cont ent here, although we need to know only if the request succeeded or
failed, along with the error code for the latter case.

Run this script with your favorite monitoring program working in another win-
dow, and you’ll see Apache handling the document requests. You can add URLs and/
or wrap the document handling in an outer loop to provide more of a load. It should
take quite a lot to make Apache busy with static document requests.

Once you start loading up your system, you’ll want to tune your configuration and
make other changes to improve performance, but how do you measure the improve-
ment? My simple example doesn’t record how long a theoretical user waited to receive
a document, and it doesn’t simulate a client very well anyway (unless your clients are
usually located on the fast local network). Before you start adding statistics to the
script, look for better tools. There’s one as close as your CPAN mirror site.

HTTPD::Bench::ApacheBench

I've already mentioned ab, the program for sending rapid-fire requests to a web server.
It comes with Apache and is compiled automatically when you build from sources.

Ling Wu decided to take the core ab code and implement it as a Perl module, allow-
ing more complex benchmarks while retaining most of the efficiency of the original.
Adi Fairbank took over the project later, yielding the current HTTP::Bench::Apache-
Bench module. I'll refer to it as ApacheBench from here on.

ApacheBench is a toolkit for creating benchmark scripts. As a sample and verifi-
cation tool, the authors reimplemented ab using ApacheBench; you'll find it in the
distribution, although it doesn't get installed by default. The documentation con-
tains examples of more complex benchmarks, including cookies, filling in forms, and
other options.

Install ApacheBench via CPAN. It contains its own copy of the required ab code,
so you don’t need the other sources handy. ApacheBench is a tool for sending Apache
traffic, but isn’t an Apache module itself, so you don’t need to reconfigure or restart.

Here isbench. pl , an example script | set up to try out three areas of service, pre-
sented in sections:

#! /usr/bin/perl -w

use strict;
use HTTPD: : Bench: : ApacheBench;
ny $b = HTTPD: : Bench: : ApacheBench- >new;,

VICTIMS OF SUCCESS 365

366

$b- >concurrency(7);
$b->priority("equal _opportunity");

The code sets up the required benchmark object ($b) and sets global configuration
options. The concur rency method establishes how many simultaneous requests
the benchmark will try to run, seven in this case. The priority setting
equal _oppor t uni t y means that those concurrent requests will be taken from all
scheduled runs, the batches of requests that we’ll configure next:

Exercise nod_perl apps...
ny $rmod_perl _apps =
HTTPD: : Bench: : ApacheBench: : Run- >new
({urls = [
"http://1ocal host/create",
“http://1ocal host/todo",
"http://1ocal host/ mason/reports. mhtm ",
1.
order => "depth_first",
repeat => 400,
}) or die "initializing nod_perl_apps";
di e "addi ng nod_perl _apps"
unl ess defined $b->add_run($nod_perl| _apps);

This section creates a run that stresses mod_perl applications (two handlers and one
Mason component). Each request will be made 400 times in the order given. If we
change the or der parameter to br eadt h_f i r st then the run would perform the
first request 400 times, then the second, then the third.

The script sets up two more runs, one for CGI requests and the other for static
documents:

And sone CA requests...
ny $cgi _apps =
HTTPD: : Bench: : ApacheBench: : Run- >new
({urls = [
"“http://1ocal host/cgi-bin/addrbook. pl ",
"http://1ocal host/cgi-bin/tabl eformd. pl",
"http://1ocal host/cgi-bin/hello-web.pl",
"http://1ocal host/cgi-bin/checkdata.pl",
1.
order => "depth_first",
repeat => 20,
}) or die "initializing cgi_apps";
di e "addi ng cgi _apps"
unl ess defined $b->add_run($cgi _apps);

And static docunents.
ny $static_docs =
HTTPD: : Bench: : ApacheBench: : Run- >new
({urls = [
"http://1ocal host/ manual /i ndex. htm ",
"http://1ocal host/ manual / sections. htm ",

CHAPTER 12 PERFORMANCE MANAGEMENT

"“http://1ocal host/ manual / wi ndows. htm ",
1.
order => "depth_first",
repeat => 1000,
}) or die "initializing static_docs";
die "adding static_docs"
unl ess defined $b->add_run($static_docs);

Now that the benchmark has plenty to do, we tell it to run via the execut e method.
When the requests are all complete, the script gets some statistics and prints results:
$b- >execute or die "executing";

ny $seconds = $b->total _time/1000;

print $b->total _requests, " requests sent\n",

$seconds, " seconds el apsed\n",
$b- >t ot al _request s/ $seconds, " requests per second\n";

There are a couple of reasons for splitting requests into different runs, besides a com-
pulsive need for pigeonholing things. The repeat count of requests is set in each run,
so if we want (say) a balance of static documents with some applications thrown in
we have to create different runs for each. ApacheBench can also give detailed statistics
about each run after the whole batch executes, so you might group your requests by
the way you want to analyze performance.

ApacheBench allows you to vary some information within a run. For example, you
can supply an array of cookie values to go with a run, such that ApacheBench will cycle
through the cookies and send one along with each request. Suppose your site’s main
page displays user-configured information depending on a user 1D cookie. You could
set up a run with the URL of the page and an array of 1,000 cookie values to simulate
1,000 different user views. You can similarly supply an array of data to go along with
POST requests to simulate users filling in forms.

Of course you wouldn’t ordinarily run this code on the same machine as the
Apache server if you were trying to determine the maximum throughput of your sys-
tem—the client script will take up considerable resources. Modify the URLs and run
the script from a fast workstation, or more than one to get enough CPU power to
swamp the web server.

If you are looking for a list of URLs to feed to your benchmark, you can extract
typical usage from Apache’s access_| og file. Save a copy after a busy day, then run
through it with your favorite text editor and extract the visited URLs. If you wanted
to be fancy you could even get the access times and feed both into an LWP script to
simulate the day’s business.

Scripting or log-mining both make it possible to simulate users, but we’d like it to
be easier. A promising product along this line is Deluge (http://deluge.source-
forge.net/), which has (among other tools) a web proxy that records your requests in
full to a server, so that it can play back your traffic multiple times to put the server
under load. Deluge is at an early stage as I'm writing this, without enough documen-
tation to be used easily, but | hope the project improves.

VICTIMS OF SUCCESS 367

12.2

368

Another scriptable stress tester is Hammerhead (http://hammerhead.source-
forge.net/), which offers a few more nice features to the mix, including the ability to
use different IP aliases for its simulated users. It is also useful for regression testing as
you can specify expected responses to any request and report errors when you don’t
get them.

Autobench (available via FreshMeat) is a Perl front-end to another popular load
generator, httperf. This tool’s forte is to generate requests at a starting rate, and then
gradually increase that rate until a specified maximum is achieved. The data it stores
are easily imported to graphing packages so that you can spot trends and saturation
points. Another useful feature is Autobench’s ability to work with two servers at once,
so that you can compare hardware or software changes more easily.

Now you can load and monitor your system—Iet’s find out what to do inside it
to improve performance.

TUNING YOUR SERVER

Calling the incremental process of change and analysis tuning brings up images of
stringed instruments and their aficionados to some, grease-covered overalls to others.
Like piano or engine tuning, performance tuning seems like a mix of art and science
to those who havent done it themselves. The artistry comes from familiarity with
how networks and software function, so that one sees a problem and has a good guess
as to what is causing it. But this is an artistry you can (and should) develop from sci-
ence, by spending the time it takes to get to know your system.

Tuning a system without understanding calls to mind various old engineering sto-
ries, in which an apprentice hits a stuck machine with a wrench in an attempt to get
it working. The master sees the apprentice and upbraids him for trying something
without knowing why it works. He then picks up the wrench and hits the machine
with it himself, which of course sets everything in motion.

That said, most of us learn system tuning through a combination of research and
experimentation. Following a tip sheet or list of guidelines is a good way to start, as
is searching mail archives and documentation. Some good places to look for help with
Apache and mod_perl are Dean Gausdet’s tuning notes (part of the manual that is dis-
tributed with the source) and mod_perl’s home page (http://perl.apache.org/) where
you'll find Stas Bekman’s extensive mod_perl guide, Vivek Khera's performance
guide, and pointers to other good resources.

Once you have some guidelines, it’s time for the experimentation part. This is
always a little scary at first, and shouldn’t be tried on a production server if you can
help it, although in a pinch it’s better to try something than do nothing. When you
try something that works but you don’t know why, make sure you learn what has hap-
pened before making other changes to your system.

CHAPTER 12 PERFORMANCE MANAGEMENT

The directives in the ht t pd. conf file allow you to largely control the responsive-
ness of your system and cost of a request. By far the most important issue is the num-
ber of server processes you have available for handling users. After that, the issue
becomes one of how much extra work Apache has to do per request. We'll discuss
some of these issues again in the section 12.2.3.

Recall that when the Apache parent process starts up, it spawns a number of chil-
dren set by the St ar t Ser ver s directive. As the children handle requests, the parent
process checks to see how many are free to receive incoming traffic. If there are fewer
than M nSpar eSer ver s children available, the parent process spawns more until
that many servers are free, unless it reaches the limit set by Maxdl i ent s. If more
than Max Spar eSer ver s are loitering with nothing to do, Apache Kills some for the
good of the cause.

This flexibility is nice, but one school of thought is to discard it completely. Why
waste time starting and stopping processes when you want your system to be ready for
peak throughput at all times? To those in this school, all four parameters should be
set to the same large value, representing the approximate memory limits of the
machine. Apache will start up and create a systemful of children, ready for something
to do.

The reason why this isn’t the standard practice lies in implementation details of the
current Apache code and the way child processes wait for a request. Suppose there are
several dozen idle servers when a request arrives. Each of those servers is in a wait state,
listening for a message on one or more sockets. The incoming request ends the wait
state, and several dozen idle children try to read the socket. Only one actually gets the
message; the others find the cupboard is bare, and return to their wait state.

The actual implementation on most OS is better than the simple scheme | describe
here, but it always includes a group of processes waking up and (mostly) going back
to sleep. Depending on your version and OS, the attempt to grab the incoming mes-
sage may be visible as process activity (you’ll see all the idle processes become com-
putable on top or Apache::VMonitor), or may be hidden in system calls that show up
as kernel activity (shown in the system CPU state with top). In network application
parlance this phenomenon is called starvation, but some articles use the more descrip-
tive idle thrash which certainly characterizes the problem.

Apache’s architecture is shifting (on some operating systems) to handle this better
in future versions by using threads instead of (or in addition to) multiple processes.
In a threaded server, one thread? listens on sockets while other threads process

2 Athread is a sort of miniprocess within a process. Programs built with threads can have multiple lines
of execution, so that, for example, one thread updates a GUI interface while another searches a data-
base. Writing threaded code is tricky, however, and adding threads to an existing program is a great
way to discover hidden assumptions that make threading a challenge.

TUNING YOUR SERVER 369

370

requests. This kind of minischeduler will reduce idle-thrashing considerably, as only
the listening threads will awaken when a request arrives.

Should you care about idle thrash? Some say that if you can measure it, either
your system isn’t very busy in the first place, or is woefully underpowered. Tuning
can help in the latter case, but ultimately you need better hardware. In the first case,
though, why not give the off-hours user the best response you can by reducing unnec-
essary overhead?

To reduce idle thrash and configure the right number of servers, you first need a
reasonable estimate of the number of server processes your system can handle. Observe
the system under load and see how much total memory your Apache processes use—
shared size plus the private usage of each child.2 Also determine how much physical
memory your machine has left. If you are swapping at all, then you are already over-
loaded. Divide the remaining memory by the average private usage, subtract a reason-
able margin of error (a process or two, depending on how much memory you have to
start with), and add that many more children to Maxd i ent s. Restart, load up the
system, and monitor it again to see how close your margin is.

If that results in too few processes to handle your expected peak traffic, you need
to either get more memory or reduce the load on the machine. Does this server also
run your database or other services? Time to start migrating to a multiserver config-
uration. Are you measuring it while there is unusual user activity?* If there isn’t any-
thing to remove (or this isn’t the time to do so) then you need some way to lighten
Apache. The following sections offer several ideas.

While you can set Maxd i ent s empirically, you have to choose St ar t Ser v-
er s from experience with your site. The value should represent the number of servers
you typically need to handle business. There is no advantage in starting fewer if you
are going to reach that number soon anyway. | think the same value is reasonable for
M nSpar eSer ver s (again, why have less than what you’ll soon need?) but some
argue for half that value to reduce process retention overhead (explained shortly).

You can arrive at the value for MaxSpar eSer ver s empirically also: start Apache
on a system with little or no load, so that the usual St ar t Ser ver s are running, then
send a single request to the server while observing with your monitor (top would be a
better choice than Apache::VMonitor in this case). See any evidence of idle thrash? If
not, set a larger value for St ar t Ser ver s, restart, and measure again, increasing until
you can either measure the overhead or you are convinced that it isn't a problem for
your configuration. MaxSpar eSer ver s should be less than the number of servers

3 Unsure on how to calculate memory usage? Not to worry, Apache::VMonitor will do this for you. Fire
it up and look at the last line of the Apache section.

4 Possibly defined as “someone running Emacs,” but during development periods you might expect
more user logins and activity than normal. If you built your system with a graphical user environment,
you should get rid of it before going to production (or at least disable X-windows and such from the
system startup).

CHAPTER 12 PERFORMANCE MANAGEMENT

that cause overhead, Maxd i ent s if you can’t measure any, or halfway between
Start Servers and Maxd i ent s if process retention is a problem (or you just like
the symmetry of it all).

What is process retention overhead? This is the cost to your system for having pro-
cesses sitting round doing nothing. It is usually a cost in memory, though it could also
be figured in database connections if your servers use Apache::DBI or other methods
to save on initialization time. For the moment we’ll worry only about memory cost,
the real memory used by processes.

Having configured Maxd i ent s to be the maximum number of Apache children
your system can handle without swapping, you may be wondering what the issue is
with having them sit around. The answer is that those processes may have a tendency
to grow with time (as many developers do) in spite of the fact that they don’t seem
to be doing anything more than usual. Memory leaks exist in many OS libraries and
sometimes in Apache itself (although it is thoroughly analyzed for this), causing each
process to grab a little more memory with each request. If you have mod_perl or other
persistent applications, your chances of having problems increase enormously as appli-
cation programmers may not be aware of the conditions that cause a leak.

Should you have memory leaks for any reason, you will eventually start swapping
when you are running the maximum number of servers and each is bloating up—
that’s process retention overhead. To cure it you need server suicide, where processes
give their all for the cause and then die (secure in the knowledge of a job well done)
to release their memory and other resources back into the pool. The simplest way to
invoke server suicide is to set MaxRequest sPer Chi | d to a positive value; when a
child process has handled that many requests, it will die after finishing its business with
the last client. The main Apache process will notice the child shutdown and start a new
one if required to maintain M nSpar eSer ver s. You should configure a lower min-
imum and maximum spare set if you are seeing overhead here.

If you are using an operating system known to have leakage problems, Apache will
configure a default value for MaxRequest sPer Chi | d automatically. If not, this
value defaults to zero, meaning that server suicide is disabled (at least by this means).
The analysis to determine the correct value here is tricky unless your leak is obvious
and dependable (in which case you are probably fixing the leak now instead of reading
this). Fortunately it isn’t critical to get an exact value. If a child can process a few hun-
dred requests without exceeding a reasonable size then go ahead and set the limit there.
Conwversely, if your child can’t process that many requests, you have a serious problem
on your hands, but you can still set a lower value for MaxRequest sPer Chi | d to
handle the situation. Creating child processes isn’t that expensive on most of Apache’s
OS, and it is certainly cheaper than pushing other needed memory out to the swap file.

The downside of using MaxRequest sPer Chi | d is that it is completely arbi-
trary—a child process may still be well within its memory limits when it expires. If you
have mod_perl built into your system for application or monitoring purposes you can

TUNING YOUR SERVER 371

372

configure server suicide based on real analysis as we’ll see in the next section. Process
retention overhead also comes up again a little later when we discuss Keep-Alive.

Per-request costs

Some Apache directives add to the overhead of processing a request. These usually
identify themselves in the configuration file, but it’s often the case that a developer
will change one of them for debugging purposes and then not set it back. If you are
looking to squeeze maximum performance out of a production server that handles
static documents, then check the items in this list.

Most applications are expensive enough on their own to push this kind of savings
into the noise level, so | wouldn’t worry about these directives for a server that pri-
marily handles mod_perl or other dynamic pages. If you have very lean code that is
otherwise well-behaved, you might get some savings here.

The following are in the order you’ll see them in the default config file:

e Ext endedSt at us—As mentioned previously, this adds system calls to each
request. If Apache::VMonitor is your system monitor of choice, then you could
consider turning Ext endedSt at us on and sending Apache a USR1 signal to
reload the configuration file while you monitor. Beware however, that if you
forget to make the switch and run Apache::VMonitor with Ext endedSt at us
off you may see stale information displayed.

e Al | owOver ri de—Use of .htaccess files (or whatever the name you've config-
ured happens to be) makes it easy to divide configuration information up into
logical sections by directory. Unfortunately, it also adds a good bit of overhead
when processing requests, as Apache has to check each permitted directory
along the way to the document for an override file. Thus if overrides are enabled
on /userfiles and a request comes in for /userfiles/bob/hobbies/cds.html, Apache
has to check three directories for .htaccess files (and then parse them if they
exist). You should either turn off overrides entirely, or restrict their use to low-
traffic areas of your site.

« Symbolic links—Oddly enough, request overhead increases if you don't set the
Fol I owSynii nks option, since Apache has to check each component of a
file path to see if it is a link. The cheapest option thus is to set Opt i on Fol -
| owSynii nks and just control your document directories properly. If you add
Synii nksl f Oaner Mat ch, then Apache still has to check for links and verify
ownership, so no savings result.

* Host naneLookups—If set, this requires Apache to perform DNS lookups for
each client connection so that it can log the hostname with the request instead
of the IP address. Should you require that information, you are better off doing
the lookups later in a log analyzer script rather than slowing down your produc-
tion server. Specifying a domain instead of an IP address in al | ow or deny
also causes DNS traffic and delays.

CHAPTER 12 PERFORMANCE MANAGEMENT

 Old links—If you are rearranging your site and need to maintain old URLS, do
so via Al i as directives, symbolic links in the file system, or rewrite rules so
that Apache handles the request in one shot. Redirection doubles your pain as
the client sends you one request for the old URL and one for the new version.

So much for the Apache basics. If mod_perl is present it brings its own list of issues,
so we'll cover that next.

Perl and Apache go great together, and mod_perl is an excellent tool for developing
Web applications. That doesnt mean every Apache server should have Perl built in,
however, even if a site uses Perl applications extensively.

The most obvious issue with mod_perl is the large memory footprint of the Perl
interpreter. Start up a stock Apache build and one linked with mod_perl and you'll
immediately see what 1 mean. You will have to drastically cut back on Maxd i ent s
if your main server uses mod_perl. Other potential problems arise too, as Apache
mixes its static document work load with Perl applications. Servers that mostly send
files to clients will also hold on to database connections and other resources.

The solution for this is to separate the work load into two servers, one built with
mod_perl and one kept as lean as possible to handle static documents (and perhaps
lightly used CGI scripts and other occasional tasks). The default server should listen
to your site’s main address and port—probably the static server, unless your main page
is a mod_perl application. The mod_perl server gets a separate port if both processes
run on the same machine. If they don't, they get a separate address;> modify your doc-
uments and applications to use full URLS for all links, specifying the static server for
simple files and images and the mod_perl server for applications.

The best thing about this configuration is that it frees you from many hard choices
in setting Apache configuration directives and other parameters. You can set different
values for MaxdCl i ent s and the other process constraints, then you should monitor
the system to see if either the static or application servers are topping out and trade
off servers between them. It also leaves you ready for a migration to a web farm as soon
as that’s required.

Running multiple Apache servers isn’t very difficult. The previous chapter has
some examples that share most of their configurations, but those were using the same
httpd binary. In this case we want different servers, but they can share the bulk of the
configuration files if desired. You can use <I f Modul e nod_per | . ¢c> sections to
provide separate Por t or Li st en addresses (or | f Def i ne if you prefer), and guard
the mod_perl configuration similarly.

5 Using a port instead of an IP alias will save your clients a DNS lookup for the second server. If using
a separate address and your IP numbers are unlikely to change, use IP addresses instead of host names
in your links for the same reason.

TUNING YOUR SERVER 373

374

If running on one machine, the two servers can share access_| og and
error _| og files if desired. In that case, you might want to modify the log format
to include the port number so that you can tell which server processed what request.
You'll need to assign a PID file to each and use ki | | to shut them down directly.

Suppose we have two Apache binaries, bi n/ ht t pd and bi n/ ht t pdnp, the lat-
ter built with mod_perl. We can set them up with one configuration file arranged sim-
ilarly to the staging and production servers of the previous chapter:
<I f Modul e nod_perl.c>

Port 8080

PidFil e /usr/local/apache/l ogs/ httpdnp. pid
</ | f Modul e>
<| f Modul e ! mod_perl.c>

Port 80

PidFil e /usr/local/apache/l ogs/ httpd. pid
</ | f Modul e>

The settings for MaxCl i ent s and other process constraints would be separated out
in the same way.

To modify the log messages so that the port number is included we modify the
LogFor mat directive:

LogFormat "% % % % % \"%\" %s %" conmon

The % will be replaced with the port number in access_| og messages. If you are
using one of the other formats (as indicated by your Cust onlLog directive, which
generally follows the LogFor mat sections) then change that format instead.

Start both servers:

cd /usr/local /apache && bin/httpd & bin/httpdnmp

To shut down either server individually, use ki | I with the contents of the appropri-
ate PID file:

kill “cat logs/httpd.pid
kill “cat |ogs/httpdnp.pid

Or take out both at once with
kill “cat logs/*.pid

This configuration is common for a number of different sites: one stripped-down
Apache binary for static content and a fully loaded application server for dynamic
work. The usual term for the static server is thin Apache; we'll see more uses of it in
later sections.

The server for static content doesn’t have to be Apache, of course. In chapter 2 we
discussed alternatives such as thttpd, which can outperform Apache for static content
in the right circumstances. | like the convenience of the single configuration file men-
tioned earlier, but don’t reduce your options for the sake of convenience.

CHAPTER 12 PERFORMANCE MANAGEMENT

After setting up the two servers, you’ll have to monitor both to set reasonable values
for Maxd i ent s and other parameters. Before you go dividing your system memory,
however, consider how to get more out of each mod_perl process.

Sharing (more) memory

There isn't much we can do about the size of Perl. Those mod_perl processes are
going to be large. But if you check your system monitor right after starting Apache,
you'll notice that a good portion of the size of each process is shared. All of the inter-
preter’s code is in shared memory (as is Apache itself, of course), used equally among
the servers. If we can keep the ratio of shared pages to private memory high then we
can run more processes and increase throughput.

On Linux and Unix systems, Apache processes share memory through a mecha-
nism called copy-on-write. As the parent process forks off children to handle requests,
each child shares the pages of the parent—for that brief moment, everything is shared.
As soon as either process modifies a page, the page clones itself so that each process
has its own copy. It remains private from then on.b

Now consider a single mod_perl process: it loads modules, does any other initial-
ization, and then waits for business to arrive. Loading a Perl module involves reading
the file, compiling the code (into bytecode, the readily executable form), and running
any global initialization as well. At the end of this process, the Perl interpreter is
unchanged (perl doesn’t modify itself at run-time, although Perl code can). However,
various internal data has been set (the namespace structures and the %4 NC hash, for
instance), and the bytecode is sitting in memory.

As soon as the Perl code executes, we start losing shared pages. Perl mixes code and
data freely, so setting a variable can cause a page copy even if the page is mostly byte-
code. But we still get a higher number of shared pages by initializing modules and glo-
bal data in the parent, then copying those pages to children. For a given module’s
code, a child process might never trigger a page copy.

To get more sharing out of mod_perl then, we want to do as much as we can in
the parent process before forking any children. In chapter 5 | mentioned that it is a
good idea to load all the modules we're likely to use at initialization time (via Per | -
Modul e, <Per | > sections, or a handler setup script). Modules such as CGIl.pm and
DBI (or Apache::DBI if it isn’t causing your scripts trouble) should be loaded in your
mod_perl configuration file if they are used by any of your applications.

Recalling the discussion of CGl.pm in chapter 5, remember that Apache has its
own modules for parsing parameters and handling cookies (Apache::Request and
Apache::Cookie). If you are using the CGI modules for just those functions, consider

6 There are utilities for resharing pages that are identical among processes. On Linux you can try
mer gemem(http://mergemem.ist.org/), which will sweep through the system and collect pages in just
this fashion. It's considered experimental at this time, so use with caution.

TUNING YOUR SERVER 375

376

switching to save size. CGl.pm also has its large library of helper functions for writing
correct HTML, but recall that many of those functions are generated on demand—
that’s great for CGI scripts, since it puts off compiling what would be a large number
of subroutines until they are actually needed, but bad for mod_perl. Tell CGl.pm to
precompile the HTML tag functions when you load it:

use CA gw -conpile :standard);

This compiles the HTML tag functions, CGI helper functions, and form tags; use
:al | if there are any features you need that aren't on the list (such as CGI.pm’s sup-
port for browser-specific tags). If your code uses the CGI object interface instead of
the functions, you'll need to do this in two lines:

use CQ3;

Cd ->conpil e(':standard');

If you are using DBI, check to see if your driver allows shared database connections
(none that I'm aware of do at this writing). If not, then don't bother connecting to the
database at initialization time. However, do preload your DBD modules. DBI will
take care of this and perform other useful setup work when you call the DBI - >
i nstal | _driver method, so use that instead of loading the module directly:

DBl ->i nstal | _driver('nysql');

DBI’s pr epar e_cached method saves a copy of the statement handle in the data-
base handle’s data. Use that in your code to save on request compilation time. But
unfortunately, you can't copy these prepared statements between processes (just as
you can't share a database connection), so you can't prepare in advance in the par-
ent process. You can have Apache::DBI establish the child’s database connections
when it is created via the connect _on_i ni t method. If you wish, you can also
call prepare_cached in an initialization section for the child, but I prefer just
to call that method in the code and thus ensure that the child builds only state-
ments it is using.

If you use Apache::Registry to speed up CGI scripts, you can have it preload them
in the parent process. Apache::Registry ordinarily compiles a script when it first
encounters it, via its internal Apache::RegistryLoader module. You can have this mod-
ule do the loading in advance in a <Per | > section or required script instead:
use Apache: : Regi strylLoader;
ny $l oad = Apache: : Regi strylLoader - >new,
my @cripts = g hell o-nod_perl.pl addrbook.pl);
foreach ny $s (@cripts) {

$l oad- >handl er ("/ perl/$s");
}

Call the handler method for each URL that corresponds to a preloaded script. The
example shown here assumes that all the scripts are in one directory, and that

CHAPTER 12 PERFORMANCE MANAGEMENT

directory has an alias of the same name in Apache’s configuration file. That is, it
assumes the configuration | gave for Apache::Registry in chapter 5:
Alias /perl/ "/lusr/local/apache/perl/"
<Directory "/usr/local/apache/perl">
Set Handl er perl -script
Per | Handl er Apache:: Registry

Options ExecCd
</Directory>

Assuming that Server Root is /usr/| ocal / apache, Apache::RegistryLoader
will find the scripts and map them to the appropriate URLs. If your file-mapping
scheme is more complicated, you can supply your own mapping function to
Apache::RegistryLoader, or just supply the file name that goes with each URL as you
call the handl er method.

Initialize everything else you can: add a script with Per | Requi r e (or a <Per | >
section) to set up any global state, and preload common Mason components, template
files, and other such embedded Perl tools. Since I'm a Mason fan I'll show how it’s
done for that case:
ny $interp = HTM.:: Mason: : | nterp->new

(' parser' => HTM.:: Mason:: Parser->new,

‘conp_root' => '/usr/local/apache/ mason',

"data_dir' => '/usr/local/apache/data',

"preloads' => [gw(/header.ncnp /footer.ncnp)],

)i
The new pr el oads parameter to the Mason interpreter can be a list of components
(by absolute path) or file-matching patterns (using shell-style globs, not Perl regular
expressions). You can thus preload all the components in a directory with a simple
"*. mhtnd ' or what ever extension you use. Remember to preload only regularly-
used components that are unlikely to change.

We maximize shared memory by doing everything we can in the parent process,
but as mentioned, those shared pages become private as soon as a Perl variable scribbles
on them. Long-running mod_perl applications will have fewer and fewer shared pages,
so the next question is how to get the most out of those processes without configuring
for the worst case of maximal private memory.

Server suicide, mod_perl style

Assuming mod_perl has a server to itself, you need to configure MaxCl i ent s and
the other process constraints correctly. The same methods discussed previously work,
but remember to keep your server under load for a while before measuring memory
use (or just add a much larger margin for error).

Given that a mod_perl process is eventually going to become a memory hog, we
need to decide when children should return their pages to the pool and give a new
player a start. One option is to use MaxRequest sPer Chi | d as before, setting it to

TUNING YOUR SERVER 377

378

the number of requests where we think the child will become too large. But that’s an
arbitrary limit, and we could shut down some processes that aren’t a problem and keep
others that are oversized.

You'd think a versatile combination like Apache and Perl could do better, right?
The tools are right at hand, as usual—a pair of them, Apache::SizeLimit and
Apache::GTopLimit. They conveniently implement the same interface, differing only
in their underlying implementation (the first requires BSD::Resource, while the sec-
ond uses GTop as implied). Apache::SizeLimit comes with mod_perl, while
Apache::GTopLimit is available on CPAN.

Suppose we've decided that 12 MB is enough for anyone. In a required startup
script add these lines:
use Apache::SizeLimt;
$Apache: : Si zelLimit:: MAX_PROCESS Sl ZE = 12 * 1024;
$Apache: : Si zeLi mi t:: CHECK_EVERY_N_REQUESTS = 10;

This tells Apache::SizeLimit to check resource usage every tenth request, and kill the
process after the request if the process size has reached or exceeded 12 MB (the process
size limit is in kilobyte units).

Individual processes can change their limits programmatically via Apache::Size-
Limit’s set max method, which is a reasonable move if you have one process that is
managing some large resource on behalf of the others.

Note that Apache::SizeLimit doesn’t care about shared and private pages, just total
process size. With Apache::GTopLimit, you can tell a process to die if its shared page
count drops, or if its total size is too large.
use Apache: : GTopLinmt;
$Apache: : GTopLi mi t:: MAX_PROCESS_SI ZE = 12 * 1024;
$Apache: : GTopLi mi t:: M N_PROCESS_SHARED SIZE = 5 * 1024;
$Apache: : GTopLi nmi t: : CHECK_EVERY_N_REQUESTS = 10;

Those settings will shut down the server if it isn't sharing at least 5 MB. You'll want to
monitor your system carefully after setting M N_PROCESS _SHARED S| ZE. Too
low a value will cause quite a high suicide rate, which is counterproductive.

Should you still use MaxRequest sPer Chi | d? Some authors think so, with a
value in the neighborhood of several hundred requests. Personally | set the value to
zero, unless I'm also using other limits, as we’ll see next.

With application code running inside of Apache, we need to guard against bugs
that can tie up valuable server resources. Testing is certainly the best way to do that,
but safeguards will help us rest more easily at night. An infinite loop will consume a
large proportion of available CPU time until someone notices it. Worse still, if such
a loop leaks memory, it will swell the server process and possibly induce system swap-
ping before the OS shuts it down.

The memory-limiting modules mentioned previously can’t help us here, since
they check a process only after it has completed a request, and in the case of a bug the

CHAPTER 12 PERFORMANCE MANAGEMENT

request won’'t complete. We need to be able to shut down a server midrequest when
it starts behaving in a way that threatens the rest of the system. That means the
request that invoked the bug isn’t going to get a response, but drastic measures are
called for here.

The solution is already waiting in your mod_perl distribution: Apache::Resource,
which uses the BSD::Resource module mentioned in an earlier section. The module
uses a Perl interface to the setrlim t routines (which your OS will need before
you can use BSD::Resource) to enforce resource consumption limits on processes.

Suppose we want to cover the two primary bug issues, severe memory leakage, and
infinite loops. We want to shut down a process if it reaches 20 MB in size, or runs up
a 10 minute CPU time charge. To set those limits we add the following to our
nod_perl . conf:

Per | Modul e Apache: : Resour ce
Per| Set Env PERL_RLIM T_CPU 600

Per| Set Env PERL_RLIM T_AS 20
Per | Chi I dl ni t Handl er Apache: : Resource

The two environment variable settings establish the limits we want, in CPU seconds for
the first and megabytes for the second. Memory would usually be limited by PERL _
RLI M T_DATA, but Linux doesn't honor that setting, while PERL_RLI M T_AS
(limiting the size of the address space) works on Linux and other platforms.
BSD::Resource allows us to work with other restrictions handled by setrli ni t too,
such as the maximum file size a process can create.

We probably don’t want the same memory limit here as used with Apache::Size-
Limit or Apache::GTopLimit. Remember that those modules check a process after it
has finished a request, while set r 1 i mi t will cause a process to shut down when it
tries to exceed a resource limit. If a server process goes a little bit over the memory limit
but does complete the request, we want the response sent back to the client before ter-
minating the process to reclaim memory.

That same issue makes setting the CPU limit a difficult problem. Since setr -
['i mit can’t tell the difference between an infinite loop and a process that is just very
devoted to its job, setting any CPU boundary will almost certainly kill off some pro-
cesses that are otherwise well behaved. If a server handles a large number of requests
but never exceeds the memory boundary, it may rack up a lot of CPU time, and will
eventually hit the infinite loop guard. When that happens it will die in midrequest,
which is very undesirable for our clients.

The solution takes us back to the issue of MaxRequest sPer Chi | d. If we set a
value for that limit which is well within the CPU time check, then processes will get
shut down cleanly after processing a final request. Should the arbitrariness of that
mechanism still bother you, consider coding your own cleanup handler and using
BSD::Resource to check whether a process is approaching the point where it needs to
shut down voluntarily.

TUNING YOUR SERVER 379

Congratulations on getting mod_perl up to speed, but keep reading—you still
need to protect yourself from network oddities.

When your server is under load, you may notice some strange behavior in the way
Apache assigns work to processes. With a thin server handling static documents it
may be unnoticeable, but in a mod_perl server we want to get a lot of work out of a
few processes, and when the system is busy your processes could be sitting around
doing nothing (other than holding on to memory and other resources).

Two of the causes of this slacker behavior are built into the network: Keep-Alive is
part of the HTTP 1.1 protocol, and lingering close is an option for any TCP/IP
communication.

Keep-Alive

The original HTTP protocol was written mostly with text in mind, and in that sce-
nario it made sense that a socket would be used for a single request: the client opened
a socket to the server, asked for a document, received it and closed it. As soon as text
mixed with graphics became the norm, this protocol was seen to be extremely ineffi-
cient, and the Keep-Alive option was added in version 1.1 to allow a client to make
more than one request on a socket. This conserves the overhead and delay involved in
opening sockets and makes transfers of complex documents far more efficient.

Apache enables Keep-Alive via the directive of (almost) the same name,
KeepAl i ve. Set to on by default, this directive works with two others to tell
Apache how to handle the wait for additional requests: KeepAl i veTi meout sets
the number of seconds a server process should wait for requests (after completing the
current one) before closing the socket, and MaxKeepAl i veRequest s limits the
number of requests that Apache will accept on a connection. The defaults are 15 sec-
onds and 100 requests respectively; setting MaxKeepAl i veRequest s to 0 allows
unlimited requests.

All this is fine and sensible so far, and wouldn’t cause a problem were it not for two
issues:

« Have you ever noticed how your browser loads multiple images simultaneously?
That’s because browsers tend to run separate requests in parallel on different
sockets; if a browser used only one socket plus Keep-Alive to request a complex
document, you'd see each graphic arrive individually.

A server which is waiting for extra requests on a socket is not serving anything
else. The browser keeps its sockets open until it has satisfied all requests. We can
hope it will close its connections quickly when it has all the requests it needs,
but this isn't necessarily the case.

Putting those two together means that a client can tie up multiple server processes
and leave them idle for the time limit in KeepAl i veTi neout . In practice it should

380 CHAPTER 12 PERFORMANCE MANAGEMENT

be shorter than that, but a bunch of clients on slow network links can really gum
things up for you.

Apache isn’t completely naive about Keep-Alive. It uses the protocol only for fixed-
length documents (those which supply a Content-Length header), which excludes
most dynamic content systems, and of course offers it only to browsers that support
the protocol. However if you have a single Apache server which handles both static
content and mod_perl apps, or your mod_perl server takes care of fixed-length doc-
uments, then you could have valuable server processes waiting for extra requests.

If you have a separate mod_perl server, | suggest you set KeepAl i ve O f to dis-
able the protocol entirely. If sharing a server for static and dynamic content, set a short
expiration time and limit the number of requests to the maximum used by your high-
traffic documents.

There are other solutions to Keep-Alive slacking, including the one in the next sec-
tion. This issue will come up again when we look at reverse proxies.

Lingering close

To correctly handle communications with the client and verify that all sent data has
been received, Apache implements a lingering socket close (sometimes called malin-
gering close for reasons that are about to become clear). This means that Apache closes
both “directions” of a socket before releasing related buffers and going on with useful
work, a process that takes a second or so if all network connections are well behaved.

This malingering time creates the same kind of problem for a high-traffic server
that Keep-Alive timeouts generate, as large application processes sit idle while cleaning
up the network. Roger Espel Llima of iAgora Software resolved the problem by cre-
ating lingerd, a separate server that takes over sockets from Apache processes when
they finish their work. Thus lingerd does the lingering close and suffers any delays
while Apache goes back to useful tasks. This server (and its required patches for
Apache) is available at the company’s web site, http://www.iagora.com/.

There are some compelling advantages to using lingerd to unburden Apache. It is
far easier to set up and run than a proxy front end, it takes very few system resources
itself, and it doesn’t slow down communication as a proxy can when handling large
documents. However, it also performs none of the tasks a reverse proxy can, so read
the upcoming “Reverse proxies” section before forming a strong opinion as to which
approach makes the best sense.

Always remember that the price of well-tuned servers is eternal vigilance. Well, per-
haps not that much, but still, the more closely you tune your system the more closely
you need to monitor it and verify that it is performing well. A system that is optimized
for one scenario may perform very badly should the situation change.

TUNING YOUR SERVER 381

12.3

382

WEB FARMING

I've mentioned a number of times that your site may need to grow beyond a simple,
single machine. Moving to a group of systems is not trivial, but it doesn't have to be
all that tough either. Good tools are at hand, as always.

The basic web farm is a group of specialized machines that maximize the benefits
of division of labor:

 Front-end server—The site’s domain address is assigned to a fast web server that
handles static content, a thin Apache server, thttpd, or other speedy system. It
has enough memory to keep all the needed processes running without any swap
activity, disk space to cover the content, and room to grow, and utilities to ana-
lyze traffic and manage the log files and other overhead.

 Application server(s)—Applications run on one or more application servers,
which handle all of the site’s dynamic content. Each server has its own URL and
links in static content from the front page or a database. If there are more than
one, the servers could be homogenous for ease of maintenance and administra-
tion. The best performance would come from further specialization however, so
that each app loads and compiles only the code it needs. Specializing along
applications further benefits traffic analysis and resource management—you
know where to put your next hardware acquisition.

 Database server(s)—The databases live on their own machine (or machines,
again to take advantage of division of labor) which has a fast 1/0 subsystem and
reflects emergency planning—redundant disk arrays, removable media that
matches your backup system, and so on. If the applications use flat-files or a
database system that reads the disks directly from the application7 then this
entry would be replaced by a fast network storage mechanism.

e Other—Add any other specialized servers as required—ad servers, media
streamers, and so on.

This configuration is very manageable, in that problems are localized and if, for
example, an application bug causes a process to swamp the CPU or memory resources
it takes out only that machine, not the database and static content too. A hardware
failure won't shut down the whole site at once. Good emergency planning will allow
you to move the affected services to one of the other machines while you get a solu-
tion or a backup into place.

The two complaints about it that come up first in most discussions are the use of
multiple public URLs and the related problem of securing multiple machines. Each of
the application servers (and any other service that has to talk to a browser) has to be

7 Most relational and object databases have a separate server (or servers), providing their own tuning is-
sues and, we hope, guidelines for good performance.

CHAPTER 12 PERFORMANCE MANAGEMENT

on a machine with a direct route to the Internet at large, and so each is vulnerable to
attack and needs the same kind of protection and monitoring the front page machine
has. Since your application servers have unique URLS, users can, and will tend to,
bookmark them instead of your front page, leaving either broken links or rewriting
headaches when you move things around. Users who type in or modify URLS to their
browser will get the wrong machine if they change the path to cross over service lines.
You can fix that with a set of redirection rules for each service, which means more
administration hassles.

Working around these issues adequately requires another layer between the
browser and the web farm, forming both a unified virtual server to the user and a single
public contact point for security management. The security issues for the machine are
the same as those discussed in chapter 2 for a single server, so | won’t cover them again
here. | will instead concentrate on the unifying layer.

Here’s the new web farm with an intermediate layer added:

browser
incoming A
request
Y
reverse
proxy response document
static files applications —— databases Figure 12.2
Web farm with a proxy

The intermediary accepts the incoming request (and any POST data) from the
browser, then forwards it to the responsible party for processing. That server (again)
receives the request and data, processes it and generates a response, which it sends to
the intermediary. The middle layer then moves the response back through the user’s
connection to his browser.

As you can see, there is a loss of performance here as the intermediary introduces
latency: the time taken to forward the request, plus the time taken to buffer the
response before sending it on to the user. The actual implementations mitigate this as
we’ll see in the next sections.

The generic name for the kind of intermediary described in the previous section is a
reverse proxy, so-called because it behaves in the opposite fashion to the kind of web
proxy used by firewalls and 1SPs to buffer content and shield internal network sys-
tems. A regular proxy accepts outgoing requests and stands in place of the user to the
server, receiving the content response and handing it back to the browser (and

WEB FARMING 383

384

perhaps caching it to save on network traffic also). A reverse proxy stands before the
actual server and performs the same buffering role at the far end of the network con-
nection from the user’s system.

The proxy acts as a unifying front-end, taking the output of the various back-end
servers and feeding it to the client while the back-end processes move on quickly to
other work. The buffering induces latency, but it shields the application processes
from slow client links and other network delays. All interaction with the application
servers happens on a high-speed internal network. Since the proxy is kept thin we
don’t mind having a large number of its processes waiting on malingering and Keep-
Alive waits, and overall throughput of the system is improved.

A proxy can also act as a cache for some of a site’s dynamic content, where such
content is not unique to the requesting user or exact time of day. For example, suppose
a news site stores articles in a database. When a request for an article comes in, it
retrieves the article and builds a page around it, then ships that back to the user. A
caching proxy could hold onto that page for its expected lifetime and shield the appli-
cation server from additional requests.

In order for caching to be useful, the dynamic content server needs to tell the proxy
how long to keep documents around by setting an Expires header in each one. In the
case of our news server, we could set the expiration to the time when the article data-
base is updated, or to an interval representing when we want to refresh the headlines
and other faster-changing elements of the generated page. Also set a Last-Modified
header representing how old the article is, which the cache will use in turn should a
browser send it an If-Modified-Since request. Some proxies consider only documents
that arrive with Content-Length headers, which means you'll need to generate the
document before sending the headers back. This induces more latency for that request,
but hopefully with better overall performance via the cache.

Given the place Apache has in the heart of the Open Source community and its
diverse group of developers, it’s not surprising that it has the needed capabilities to
serve as our reverse proxy (or a regular proxy for that matter). Apache can serve as the
front-end server for static content, be the intermediary for application servers, and also
cache documents from the back-end if desired (although you can still split those func-
tions among other servers if you prefer). We'll discuss implementations of Apache
proxies using mod_proxy, mod_rewrite and mod_perl. There are undoubtedly many
other combinations and possibilities, so as always it is a good idea to keep an eye on
new developments.

After covering those implementations we’ll bring in one example from outside the
Apache world with the Squid cache, which for years has been unobtrusively speeding
up browsing sessions from both the front and back ends of connections.

Apache with mod_proxy

The core functions to implement an Apache proxy are in the aptly named
mod_proxy, which has been in the set of add-ons since version 1.1 (reverse proxying

CHAPTER 12 PERFORMANCE MANAGEMENT

capabilities arrived with version 1.3). mod_proxy is not compiled in by default, so
chances are good you'll need to rebuild your server for this role.

Once you've enabled proxying you can configure Apache to dispatch traffic to
background servers based on URLSs. For example, suppose we have three application
servers: news.example.site handles dynamic news content and searches, store.exam-
ple.site handles a catalog, and perl.example.site for miscellaneous scripts that run
under Apache::Registry. Here’s how we tell the front-end server (www.example.site)
to divide the traffic:

ProxyPass /news/ http://news. exanple.site/
ProxyPassReverse /news/ http://news.exanple.site/
ProxyPass /store/ http://store.exanple.site/
ProxyPassReverse /store/ http://store.exanple.site/
ProxyPass /perl/ http://perl.exanple.site/
ProxyPassReverse /perl/ http://perl.exanple.site/

When our main server gets a request for http://www.example.site/news/headlines it
will convert the URL to http://news.example.site/headlines and forward it along to
the news server. It also proxies the request, so that news.example.site sends the
response back to www.example.site, which then rewrites the Location headers to
show the document as http://www.example.site/news/headlines again.

Note that the URL paths on www.example.site don’t match those on the applica-
tion servers—the path in the example becomes /headlines on the back-end server,
instead of /news/headlines. If that is confusing, just add the missing part of the path
to the target URLs in the proxying directives.

Why two sets of directives? The Pr oxyPassRever se set handles the Location
change on the return trip from the application server to the proxy. Without that set,
the user will see the application server’s site and URL in his browser. If you want fur-
ther requests to go directly to the application server (or you have a clever redirection
scheme in place for traffic from outside your local network) that may be fine with you.
It’s also useful if you want your front-end server to look like several different machines,
or if you are temporarily hosting another site’s services.

That kind of one-to-one mapping is fine if each back-end server handles a single
function, but what about the homogenous case, where all (or some) of the servers can
handle any of the applications? Put another way, what if a single server can’t handle
the load for store.example.site?

To map URLS onto multiple servers we need a scheme that tells Apache which
server to pick. By invoking the powerful mod_rewrite engine we can use a random
choice or write our own function to perform the mapping. Other solutions appear in
the load balancing discussion to follow.

The random solution may seem puzzling at first, since it’s, well, random; some
heuristic-based method which takes load and capability into account would be better,
right? But actually, random selection is a good method for handing out requests to a
list of busy servers. Consider the simplicity: the server needs no information about the

WEB FARMING 385

386

network, traffic level, or resources of the target servers. If the traffic load is high
enough, random choice will apportion requests about equally to all servers, and all
should stay busy. To make a better choice than random selection requires considerably
more information, as we’ll see later.

mod_rewrite’s random selection method works like so: make a list of servers which
can all handle a given request. It is important that the servers in the list all have roughly
equal capabilities, or at least that no one of them will be swamped by its proportion
of the requests. Put the list into a text file like so:

news newsl. exanpl e. site, news2. exanpl e. site, super.exanple.site
catal og storel.exanple.site,store2. exanple.site,store3. exanple.site

We'll call the file maps. t xt . Each line has a map name and the list of servers that
can handle a particular set of requests. There are three in each list here, but there isn't
any need for different maps to have the same number of entries. Now we tell the
main server (which must have mod_rewrite compiled in) to use those maps to handle
the news and catalog URLS:

Rewri t eEngi ne On
Rewri teMap backend rnd: maps.t xt

The first directive activates mod_rewrite (and can appear anywhere before your first
Rewr i t e directive), and the second loads the map file. Now we can use the maps in
substitution rules:

RewriteRule " news/(.*)$ http://${backend: news}/$1 [P, L]

ProxyPassReverse /news/ http://news. exanple.site/

RewriteRule ~/ catalog/(.*)$ http://${backend: catal og}/$1 [P, L]
ProxyPassReverse /store/ http://store.exanple.site/

The Rewri t eRul e directive takes a regular expression which is used to match
against the URL of an incoming request. When a match comes in, the substitution is
made according to the second pattern. That is the place where the selection of an
application server happens, as mod_rewrite looks up the back-end map, sees that it is
a random selection mapping (specified by r nd: in the Rewr i t eMap directive), and
picks a member of the indicated group (news or cat al og). The substitution is
made, and then mod_rewrite applies the postprocessing directives (the characters in
brackets at the end, [P, L]), which tell it to run the request through mod_proxy (P)
and stop rewriting it (L).

The Pr oxyPassRever se directives do the same thing they did previously, fix-
ing up the response on its way back to the client.

After you've convinced yourself that this works, you'll probably want to turn off
rewrite logging:

Rewr i t eLogLevel 0

If we want some scheme other than random selection, we can still use mod_rewrite in
more or less the same way. The engine allows an external program to do the mapping

CHAPTER 12 PERFORMANCE MANAGEMENT

and return a choice to Apache. This isn't as slow in practice as it sounds, since Apache
starts the program when the server starts and keeps it running until its own shut-
down. The mapper can be a Perl script or almost anything else that can read its input
and write a selection to output.

Tell mod_rewrite to use an external mapping program via the pr g: map type, and
pass the full path to the executable (not relative to Apache’s root):

Rewri t eEngi ne On
Rewri t eMap backend prg:/usr/local/bin/weekday. p

Here's weekday. pl , a script that directs traffic based on the day of the week:
#! [usr/bin/perl -w

use strict;
$ = 1
ny @ews = gqw(
sunday. exanpl e.site
nmonday. exanpl e. site
tuesday. exanple.site
wednesday. exanpl e.site
thursday. exanple.site
friday.exanple.site
sat urday. exanple.site
)i
nmy @tore = gqw
grocery.exanple.site
shoe. exanpl e.site
book. exanpl e.site
)
ny %l asses = (news => \ @ews, store => \@tore);
ny $day = (localtine)[6];
while (<>) {
chonp;
if ($classes{$_}) {
print $classes{$_}->[$day]
|| $classes{$_}->[0], "\n";

}
el se {

print "NULL\n";
}

}

The script reads from input and verifies that it has a matching class; if so it returns
the array element corresponding to the day of the week for that class, or the first ele-
ment if the array is short. When the input doesn't match a class it returns NULL so
that Apache will know there is an error and return an appropriate page.

Of course, if we're going to use Perl for this, why not do it inside of Apache?

WEB FARMING 387

388

Apache with mod_perl

In chapter 8's discussion of mod_rewrite | mentioned that some Perl programmers
dont like learning another regular expression engine when they have such a powerful
one at hand. That’s the case here too, where mod_perl can take the place of
mod_proxy and mod_rewrite to handle proxying.

This brings up the question of whether the thin front-end server can stay lean
and fast enough if it has a Perl interpreter built into each Apache process. My
answer is a lukewarm “maybe” depending on the circumstances. If your front-end
needs mod_perl tools for other purposes, there’s no reason you can’t use it for proxy
handling also, but it probably wouldn’t be my first move if the server is otherwise
bare Apache.

The fact that many Perl developers use a mod_perl proxy is shown in the number
of modules already written for this task:

« If you want to use mod_proxy and mod_perl together, Apache::Proxy provides
a Perl interface to the proxy module’s functions.

* Apache::ProxyPass will take care of the functions of the Pr oxyPass directive
in Perl if you don't want mod_proxy (or you are looking for a good place to start
on your own version).

« Either Apache::ProxyRewrite or Apache::RewritingProxy can take care of the
ProxyPassRever se tasks, modifying the returned document so that it
appears to have come from the front-end machine. Apache::ProxyRewrite has
interesting options for whether HTTP authentication is handled by the back-
end or front-end machine.

And of course you can just write it yourself. Chapter 8’s examples of URL rewriting in
Perl can be extended to handle any kind of mapping scheme you like, from heuristic-
based balancing systems to link of the day, hour, or minute. After you've munged the
URL to your satisfaction, use Apache::Proxy to hand off the rest of the work to
mod_proxy and let it take care of the actual proxying part, or write your own with
Perl’s LWP library.

By whatever implementation you choose, Apache remains a good choice for this
task, especially if the front-end machine is also handling static content. You can turn
on Apache’s caching functions as well to save documents from the back-end servers
(and save processing time on busy systems) for a complete solution in one box.

But it’s not the only solution, as we’ll see next.

The Squid cache split off from the Harvest project, a much larger Internet document
search and cross-linking system. Duane Wessels started development of Squid as a
cache server which could cooperate with peer- and parent-servers in localizing fre-
quently requested documents. Currently the Squid Team maintains the server,

CHAPTER 12 PERFORMANCE MANAGEMENT

although Duane is still the lead developer. The product is available on its home page,
http://www.squid-cache.org/.

Most sites use Squid as a web proxy, either to forward requests through a firewall,
cache documents, or both. It also has a reverse-proxy mode that it calls an HTTPD
accelerator, in which it performs all of the proxying functions mentioned previously.
Enabling this mode will turn off the regular proxying features by default. You can still
enable both, although the Squid documentation recommends running two separate
servers for this.

Unlike Apache, Squid runs as a single process which manages all requests. As such
it is somewhat easier to configure and tune, since there is only one server to monitor.
The impressive volume of documentation that comes with it can be daunting to a first
time user, but as with Apache, you can ignore most of the options at first and learn
what you need as you go. If Squid has the front-end machine to itself, you can assign
the bulk of the system’s memory and disk space to the cache. If not, consider your
memory allocations carefully, as Squid uses more cache memory than you get from
just looking at the configuration file. Squid’s documentation and configuration file
both advise you of this in the proper places.

The accelerator mode runs in one of two configurations: the single server mode
proxies requests to one back-end server as you would guess from the name, and the
virtual mode proxies any number of systems. Single server mode is unlikely to be use-
ful to a web farm, although there is the possibility of putting Squid in front of what
had been a front-end Apache server and proceeding with the implementations given
in the previous chapter.

It is more likely, that you’ll want Squid to handle the whole back-end mapping
itself. This requires a redirector which looks at a URL and tells Squid where to send a
request. It is in fact the same kind of script (or program) that mod_rewrite can use,
with the same behavior and interface. Any Perl script will do, reading URLS on its stan-
dard input and writing the new location back out. Squid will start the redirector pro-
gram at startup (or more than one, according to configuration) and keep it around for
its own lifetime.

When Squid is running as an accelerator you have to configure it to listen on port
80 (and any other ports where you expect web traffic). If you are going to run an
Apache server on the same machine, you can tell it to use a different port, or bind the
Apache server to the localhost loopback address (usually 127.0.0.1) via a Li st en
directive. Then tell Squid (or the redirector) to use localhost for the Apache server on
the same machine.

For smaller web farms, specialization is the way to go. Each machine has its role, and
each is tuned to capacity. As the farm grows however, you'll need to build pools of
machines, perhaps for each role or within roles.

WEB FARMING 389

390

Such a pool of machines requires maintenance and monitoring, and we want to
ensure that our customers are getting the most out of the investment. Random server
assignment can produce the occasional anomaly that spikes one server while others sit
waiting. Luck of the draw might also assign several hard-hitting searches to one server
while the others get status reports. After some such incidents, chances are you will go
looking for better algorithms for balancing the work load across servers.

DNS round-robin

In any load-balancing discussion, round-robin assignment comes up as the simple
case against which other methods are measured. In case it isnt obvious from the
name, this method passes out requests to servers in turn. It thus avoids the random
assignment problem of luckily handing three or four requests in a row to one server.
If the entity which passes out the requests uses no other information, however, there
is still just as much chance of one server getting swamped with difficult tasks while
others get lightweight jobs, so round-robin doesn’t solve much more, it’s just cheap.

The usual way to implement a round-robin in a web farm is to set up the reverse
proxy using the simple Pr oxyPass + Pr oxyPassRever se style shown earlier for
Apache, as if the server were handling one machine for each role. However, that
“machine” is really a special DNS address that corresponds to two or more names.
When BIND encounters a request for the round-robin address it returns the first
address in the list, then moves that address to the end of its list so that it won’t be used
again until the list is exhausted.

Thus suppose we had these records in the DNS database for our web farm:

newsl IN A 192.168.10.1
news?2 IN A 192. 168. 10. 2
news IN CNAME 192.168.1
news IN CNAME 192.168.2

You might prefer using CNAME records for the virtual address and address records
only for the individual machines. Dont forget reverse-lookup records for the
192.168 namespace:

10.1 IN PTR newsl.exanple.site
10.2 IN PTR news2.exanple.site

Now when the reverse proxy sends requests to http://news.example.site/, they will be
parceled out alternately between the two servers.

One advantage in doing this at the DNS level is that a proxy isn’t required at all.
We could make news.example.site a public address and clients will get distributed
more or less evenly among the machines. The problem with this approach is that client
OS and browsers may cache DNS requests and thus send all their requests to one mem-
ber of the round-robin. With enough clients that’s not likely to be a problem, but it
may cause anomalous spikes now and then.

CHAPTER 12 PERFORMANCE MANAGEMENT

DNS round-robins are also used to implement backup and fail-over. When a sys-
tem is taken down for maintenance, just remove it from the round-robin (preferably
beforehand). You can also have a script check for the presence of each server and
remove it automatically if an emergency shutdown occurs.

As a balancing mechanism, round-robins are cheap and simple, but they don’t give
us the real balancing that a smarter method does. If you need more, keep reading.

mod_backhand

The Backhand project began in 1998 at the Johns Hopkins University, as a study of
ways to balance server loads. The project progressed from academic interest to
deployed program as the creators (Yair Amir and Theo Schlossnagle) progressed simi-
larly through their studies. The deployed form is the Apache module of the same
name, mod_backhand, which handles communication among servers to choose
which is best suited to handle a request. The Backhand project has a page at http://
www.backhand.org/.

Backhand-enabled servers send each other status messages on a regular basis to
indicate how heavily loaded they are. This adds some overhead and internal traffic to
the network, but it doesn’t have to be much. You could configure the status updates
to happen every several seconds and not notice the load at all. Of course, the more fre-
quent your status updates happen the better the system will function.

After building mod_backhand into the relevant servers (both front- and back-end),
you need to enable it for handling URLS in a fashion similar to the Pr oxyPass meth-
ods above, choosing groups of servers to receive requests for given URL matches. The
difference lies in the way the dispatching to the back-end works: in the Locat i on
directive for the matching URL you enter a series of candidacy functions, each of which
applies a heuristic to the list of available servers and decides whether or not to reduce
the list based on that heuristic.

The first candidacy function for a URL receives a list of all the mod_backhand serv-
ers available. Thus a good heuristic for the first test is to eliminate all the servers that
don’t implement the required service (assuming your back-end servers are grouped by
role—if they are all homogenous, this step is unnecessary). The suggested method is
to name your servers such that a regular expression match can find the ones which han-
dle the request (i.e., the news and stores groups given previously), though you can
write any method you prefer.

mod_backhand provides functions for eliminating servers from the list by:

e Age—Eliminate servers that havent responded to Backhand status requests
within a certain time.

e Load—The method you would expect from a load balancing discussion. This
method doesn't eliminate servers. It just sorts the list so that the least busy serv-
ers appear first.

WEB FARMING 391

392

e Busy (as in Apache children)—Almost the same as load. A server moves to the
head of the list if it has no busy Apache processes, or if it has fewer than the
other servers.

e Cost —You can assign costs to requests and servers, and sort the list by lowest
cost.

¢ LogW ndow—A function that cuts the list down by the log base 2 of the size of
the list. After sorting the list by one of the load methods mentioned earlier, this
function cuts all but the few least loaded servers out of the running.

After cutting the list down, you can either have Backhand send the request to the first
entry, or choose one from the list at random.

Backhand understands some forms of session handling, which is terrific if you need
to have a particular user’s requests always return to one server. The request must have
a recognizable session ID in the form of a cookie or a part of the URL. mod_backhand
provides a candidacy function which will find the server indicated by the session 1D
and make it the only candidate left in the list.

You can write your own candidacy functions (and indeed you must if you don’t
have a homogenous back-end) in Perl if you like (or C if you don’t), with the help of
the Apache::Backend module, which also provides a Perl interface to the internal
information on servers that mod_backhand collects.

Backhand has clear advantages for real load balancing needs within Apache. If you
need load balancing outside of Apache (because you use other servers or other ser-
vices), read on.

Linux Virtual Server

Load balancing at the TCP/IP level has advantages over any mechanism built into a
web server, most obviously because it will work for FTP and other Internet services,
but also because it separates the administration and maintenance of the balancing
functions from the web functions.

A number of TCP/IP balancing mechanisms exist, but one of the most complete
and usable is the Linux Virtual Server (LVS) Project, described at its home page
(http://www.linuxvirtualserver.org/). As the name implies, this project is a modifica-
tion of the Linux OS to create a balanced, high-availability virtual server out of a
number of physical machines. The load balancing server (the director in LVS termi-
nology) must run Linux. Depending on the balancing mechanism, the back-end serv-
ers might need Linux, but this is not required.

The simplest implementation of LVS is via network address translation (NAT). The
director acts as a reverse proxy for all services, accepting and redirecting incoming
requests and rewriting the responses so that they appear to come from itself. This
method adds the usual latency to the system, but allows any OS to run in the back-
end. The director can become a bottleneck for a large back-end if its network interfaces
can’t handle the merged load.

CHAPTER 12 PERFORMANCE MANAGEMENT

In the IP Tunneling implementation, the directory accepts incoming requests on
behalf of the back-end and redirects them as usual, but the back-end servers reply
directly to the client. This gets rid of the bottleneck problem of the first implemen-
tation, but of course it brings back all the problems that prompted the need for a
reverse proxy—Ilingering closes, slow network interfaces, and so on. Also, the machines
in the back-end all need to implement the IP Tunneling protocol which (so far as |
know) is unique to Linux.

If the director and the back-end servers are all on a single physical network, the
director can act as a router for the back-end services and thus skip the IP Tunneling
mechanism. This relieves the requirement for Linux everywhere, but has the same
problems on the back-end as the previous implementation.

For very large web farms, LVS or some other form of virtual server becomes almost
a given. Virtual servers provide scalability and high availability that is difficult or
impossible to achieve otherwise, being able to remove and replace hardware without
shutting down the system at large. Check the site above for further reading and links
to other projects.

I hope these guidelines and pointers will help you keep your system running
smoothly, and that this chapter and this book leave you with confidence and ideas for
perfecting your web server.

WEB FARMING 393

references

I couldn't possibly list all the books I've read to learn what | know, even in an area as (compara-
bly) focused as web development. However, | take advantage of two facts to list the most influen-
tial books I have in this area:

1 My bookshelves are right next to my desk.

2 | organize my books in a way that | tell people is “conceptual,” but which is actually the
simple method of putting any book I take down in the place that is closest at hand.

That means the books | use the most tend to be right next to me. Not all of these were used in
writing this book, but I recommend them heartily to anyone who wants to master Perl and
Apache. Glancing over at them, | can see that (in “conceptual” order) they are:

Apache: The Definitive Guide, by Ben Laurie and Peter Laurie (O’Reilly and Associates, 1997)
and Writing Apache Modules with Perl and C, by Lincoln Stein and Dough MacEachern (O’Reilly
and Associates, 1999)—these two represent the best printed material | know of on Apache and
mod_perl. | tend to use online information for reference, but turn to these books when I need
to put the details into larger context.

Obiject Oriented Perl, by Damian Conway (Manning Publications, 1999)—my Perl reference
of choice whenever | have a question about objects or methods. It has lots of good things to say
about coding in general.

Dynamic HTML, The Definitive Reference, by Danny Goodman (O’Reilly and Associates,
1998)—even in a book that does as little HTML as this one, it’s helpful to have a strong reference
when you are trying to remember how tables work.

Programming Perl, (also known as the “Camel Book”) by Larry Wall, Tom Christiansen, and
Jon Orwant (O’Reilly and Associates, 2000), Perl: The Programmer’s Companion by Nigel Chap-
man (John Wiley and Sons, 1997) and Advanced Perl Programming by Sriram Srinivasan
(O'Reilly and Associates, 1997)—don’t venture too far in the Perl world without the Camel
Book, along with one or more of the many other good Perl programming aids.

395

Official Guide to Programming with CGIl.pm, by Lincoln Stein (John Wiley and Sons, 1998)—
an essential starting point for those learning CGI and the premiere Perl module. After getting
started you’ll want to switch to online sources however, unless a more up-to-date version is now
available.

The Perl Journal, Jon Orwant’s quarterly magazine, is always a pleasure to read and the breadth
of articles will help broaden your horizons and see new approaches and solutions to your Perl
problems.

Many of the most commonly used sources on my “bookshelf” are online. | consider these sites as
important as the books in learning and growing with Apache and Perl:

perlmonks.org
Simply the best place to go for Perl support and community. Questions and discussions there
range from basic script and CGI problems to profound questions of programming. Look me
up when you get there.

http://www.perl.com/ and http://www.perl.org/
The primary news sites of the Perl developers.

http://www.apacheweek.com/, http://apachetoday.com/
News and updates for the Apache world.

http://www.apache.org/
Apache development and module news.

http://perl.apache.org/ and http://take23.org/
mod_perl news and discussions of new modules and tools.

http://search.cpan.org/
The online CPAN search engine. Find great Perl modules here.

http://slashdot.org/
My favorite news site, with sections for my favorite language and web server.

http://freshmeat.net/ and http://sourceforge.net/
Great places to look for Open Source software.

396

Index

Symbols
$_74

A

ab. See ApacheBench

access.conf. See Apache, configuration file

access_log 27, 367, 374

account.mhtml 283

acmemail 247

ACTION 63, 105

Active Server Pages. See ASP

AddAlt 240

AddAltByEncoding 240

AddAItByType 240

AddDescription 238

AddHandler 32, 34

Addlcon 239

AddlconByEncoding 239

AddlconByType 239

addrbook.pl 77

addrdb.pl 90-91

Address Resolution Protocol 271

Alias 36, 267-268

Alias directive 260

AliasMatch 261, 267

AllCommerce 308

AllowOverride 30-31, 33-34, 239
disabling use of .htaccess 227
performance impacts 372

ALT text 239

anchor 73
AnyDBM_File 76
Apache 22

allow, configuration directive 145

configuration 28-29

configuration directive 28

configuration file 28

documentation 28

ExecCGil, configuration option 32, 46,
113, 115

home directory 27

Include, configuration directive 114, 324

Indexes, configuration directive 32, 37, 238

installation 26-27

mindshare 26

mod_fastcgi 108

modules 26

Options, configuration directive 30, 33

Port, configuration tag 227, 373

production server 30

reason for 25-27

run-time configuration 28, 112-114

VirtualHost, configuration directive 36, 142

See also httpd.conf

Apache Group 26, 136-137, 344
Apache Toolbox 27
Apache::ASP 168-169
Apache::Autolndex 241
Apache::Backend 392
Apache::Constant 265
Apache::Constants 120, 126

397

Apache::Cookie 122, 130-131, 160, 375
Apache::DBI 117, 279, 375
authentication hooks via, 155
connect_on_init 376
cost of open connections 371
Apache::GTopLimit 378
Apache::GzipChain 360
Apache::Include 122, 166-167
Apache::PerlRun 118, 222-223, 228
Apache::PerlVINC 323
Apache::Proxy 388
Apache::ProxyPass 388
Apache::ProxyRewrite 388
Apache::Registry 118-119, 167, 228, 308, 385
moving CGI scripts 218, 220
multiple versions of scripts 322, 348
preloading scripts 376
Apache::RegistryLoader 376-377
Apache::Request 122, 126, 196
memory issues 375
using with HTML::Mason 186
Apache::Resource 379
Apache::RewritingProxy 388
Apache::Scoreboard 362
Apache::Session 122, 124, 132, 188
Apache::Session::DB_File 126-127, 131
Apache::Session::MySQL 157
Apache::SizeLimit 378
Apache::SSI 167
Apache::Status 123, 145
Apache::Upload 196
Apache::VMonitor 362, 369-370
APACHE_SRC 111
ApacheBench 365
apachectl 27, 35, 142
configtest 325
startssl 142
Apache-SSL 137, 141
APACI 111
application server 382
%ARGS 289
Artistic License 19, 44
ASP 168
tag 169
asymmetric encryption 140

398

authentication

caching 144

modules 144, 146
AuthName 145
AuthType 145, 152
AuthUserFile 145
Autobench 368
autohandler 183
automate web clients 364
AxKit 203

B

Backhand project 391
backtick operator 251
backup 352

plans 276

sites 355
bake (Cookie function) 132
bandwidth 274
BAZAAR 215
bench.pl 365
benchmark scripts 365
Berkeley DB 75-76

IMDb 210
BGCOLOR 62
BIG_SECURITY_HOLE 246
binary distributions 26, 87, 111
bind parameter 94
BindAddress 324
bottleneck 38
branch 335
BRINK 254
broadband 269, 275
brochure-ware 277
BSD 4, 23, 25

license 18
BSD::Resource 362, 378-379
Bundle::CPAN 45
buyer’s guide 14

active user community 15

investments 15

ongoing costs 16

support 15

TCO 16
bytecode 375

INDEX

C

C 40

CA. See certifying authority

cache 67, 359, 361, 384

cadaver 344

calendar 242, 247

call_next 183

caller_args 184

candidacy functions 391

capacity planning 354

card processor 312

catalogs 276

c-client 247

CCVSs 310, 313

certificate 139

certifying authority 139, 141

CGI 33-36, 39
dynamic content 51
headers 47
persistent 107
scripts 30

CGl.pm 49, 127

Apache->request function 121

CGl::Cookie 130
CGl::Pretty 51
cookies 124
end_form function 55
memory issues 375

migrating to mod_perl 116-117
start_form function 55, 65

sticky parameters 65-66, 153, 196
td function 59, 61-63, 74, 96

text function 54

Tr function 59, 61-62, 80, 96

cgi-bin 46
channel 209, 234
chat 215, 218, 232
servers 221
checkdata.pl 63
checkout.mhtml 292
chronological order 72
CIPE 270
clear_buffer 286
client/server model 83
clock.shtml 165

INDEX

cluster 274

CM. See Mason-CM

code repository 350
COLSPAN 61
Comanche 27

commercial development 9

Common Gateway Interface. See CGlI

community news 211
community site 21
compiled languages 40
component, Mason 176

root 175, 181-182, 333

top-level 176
compression 360
configtest 35

configuration management 24

confirm.mhtml 294
connect_on_init 376
content management 317
Content-Length 381, 384
content-manager 326
Content-Type 47
cookie 107, 146, 307
ApacheBench 367
CGl.pm 123
lifespan 124, 130
mod_backhand 392
sessions 129
copy-on-write 375
Courier mail package 247

CPAN 43, 191, 234, 241, 305, 362, 365, 378

add-on installation 111
BAZAAR 215
DBI 89
finding tools 256
installing Mason 175
mail 247
Perl 45
CPAN, updating with 45
CPU saturation 359
cracking 10, 25
CREATE TABLE 83
CreateUser 151
credit card 152, 291
database security 274
email default 310

399

credit card (continued)
processing 311
verification 294, 307
Credit Card Verification System. See CCVS
Cross Site Scripting 54
cross-selling 307
Crypt::GPG 252
cryptography 11
public key 140
customer
information 277
services 277, 296
data 283
CustomLog 374
CVS 318, 328, 350
CVSIGNORE 328
CygWin 26

D

database
address book 72
hash files 75
maintenance via CGI 97, 103
MySQL 84, 87
PostgreSQL 85
relational 82-87
database driver. See DBD
database handle 90
database interface. See DBI
database server 21, 382
Date Template Toolkit plug-in 200
Date::Calc 200
DB _File 76, 80-81
DBD 90, 97
DBI 84,89, 117, 375-376
connect function 90, 117, 279
disconnect function 96, 117
do function 95, 155
errstr function 95
selectall_arrayref 96
Template Toolkit plug-in 198
DBI::Proxy 118
DBI->connect 149
DBI_FAQ 89
DBM_File 75-76

400

DECLINED handler status 120, 268-269
default button 54
Deluge 367
deny 145
DescriptionWidth 238
desktop 23
development life cycle 318
CVS 318
production phase 319
staging 319
development phase 349
development process 9
development server 33-35
dhandler 181-182, 280-281, 283, 300
shopping cart 286
dhandler_arg 182, 281
digest authentication 152
digital signature 139, 141
Directory plug-in 200
Directory.pm 156
directory.tmpl 199
Directorylndex 227, 238, 240-241
disk
controllers 23
space 361
distributed file system 343
DNS round-robin 390
documentation server 238-239
DocumentRoot 36
drag-and-drop 239
dynamic content 51
dynamic link libraries 26, 111
dynamic.pl 51

E

echo (SSI) element 165
e-commerce 273
and privacy 282
catalog 277
credit card processing 311
customer feedback 302
feedback 299
interchange 304
requirements 274
security 274

INDEX

e-commerce (continued)
shopping cart 286
stress testing 275
tools 303
tracking shipments 296
email 242-243
encrypted channel 140, 271
device 271
encryption 134, 152
patent issues 136
symmetric 140
Entropy Chat 221
environment variables 46, 108, 116
error checking 66
error document 37
error log 27,73, 121, 228
sharing between servers 374
using warn and SERVER_ERROR 131
escapeHTML 53
escaping 53, 94
EveryChat 219, 226, 232
exec element 165
Expect 252
Expect.pm 252-254
Expires header 384
export restrictions 136
Extended Markup Language. See XML
ExtendedStatus 372

F

Fancylndexes 238
FAQ 6
FastCGI 108, 118, 246
faster.shtml 166
feedback 302
fetch_next 184
fetchmail 245
__FILE__ 349
file
dialog 195
input 195
file 1/0 72
file icons 239
file manager 259
File plug-in 199

INDEX

file server 238-239
file systems 22, 24
filename 268-269

FindUser.pm 264

firewall 108, 152, 330

and VPNs 272

reverse proxies 383

with WebDAV 344
FixupURL.pm 266
flat file database 16

FoldersFirst 238

FollowSymLinks 31, 34, 227, 372
FORBIDDEN 120
force install (CPAN) 45
FOREACH directive 199
form definition files (FDF) 98
form generation 67
forms-capable browser 54
forums 210, 214, 232
customer feedback 299, 303
member forums 234
message forums 209-210

free beer 14
free software 4

Free Software Foundation 18

Freshmeat 255

front-end server 382

FrontPage 326
fsync 327
ftp 24, 256

G

gdbm 75
genkey.pl 253
GET 56, 105

glue language 43, 89

GNU Lesser General Public License. See LGPL

GNU Privacy Guard 252
GNU Public License. See GPL

GPL 18, 44, 85
graceful restart 35
GRANT 88

group calendars 247

GTop 362, 378
guest books 72

401

GUI 23 HTTP

gzip compression 361 authentication 152, 193, 214, 241, 334
protocol 106
H stateless protocol 106

user authentication 144
http.conf 46
HTTP::Bench::ApacheBench 365
HTTP::DAV 345
httpd.conf 28, 30, 214, 226, 231, 235, 249, 268
.htaccess 239-240
mod_perl configuration 112-114

hacking 4

Hammerhead 368

handler function 115-116, 120, 126, 187
handler.pl 175

hard restart 35

hardware 23, 274

;:B s Zaie 29 mod_ssl configuration 139-141
P multiple servers 319, 324-325, 346
memory 21

server-side includes 165
virtual hosts 321
HTTPS 142, 147

Harvest project 242
hash files 75-82

algorithm 75 environment variable 143
key 75
Perl 76 |
header.mcmp 177
HeaderName 238 idle thrash 369
headers 47, 49 IfDefine 114, 325, 373
hello.shtml 166 If-Modified-Since 384
hello-mod_perl.pl 115-116 IfModule 113-114, 139, 373
here-doc 147-149 Image::Magick 242, 280
hidden field 65-66, 80, 93, 107 IMAP 136, 243
hidden files 32 servers 247
holidays calendar 250 IMDb 210, 299
HostnameLookups 372 imdb.com 209
.htaccess 30, 33, 239-240, 372 immediate restart 35
htdocs 36 INCLUDE (Template Toolkit) 194
HTML include directive 199
editor 169 INCLUDE_PATH 193
forms 54 Includes (SSI) 166, 227
helper functions 96 index
layout 58 generation 240
template modules 170 page 238
HTML::Clean 360 index.html 37
HTML::EmbPerl 168-169 index.pl 240
HTML::Mason 168-169, 333 IndexIgnore 240
See also Mason IndexOptions 238
HTML::Mason::ApacheHandler 180, 186 inetd 24, 330
HTML::Mason::Commands 187 infinite loop 378-379
HTML:: Template 170-172, 190 input elements 54
HTMLView 97 INSERT (SQL) 95
htpasswd 146, 214, 232 inserting records 102

402 INDEX

install_driver 376
internal_redirect 267
internationalization 307
Internet 3
Internet Movie Database. See IMDb
Internet Protocol (IP) 270
Internet Relay Chat. See IRC
Internet Rush Hour 275
intranets

applications 237

multiple 269

server 25

site 21
inventory 277, 310
investorama 211
investorama.com 210
IP Tunneling 393
IP-based virtual hosting 321
IRC 218

client 215

J

JavaScript 40, 54
journaled file systems 23

K

KeepAlive 380-381
KeepAliveTimeout 380
kernels 22

keyword index 221

kill (shell command) 35

L

Last-Modified 165, 384
LDAP-based services 255
learning curve 41
lexical value 75
LGPL 18,85
libgtop 362
lifespan 130
lingering 381
close 380
Linus Torvalds 4, 18
Linux 4, 18, 23, 87, 308

INDEX

Linux Virtual Server (LVS) 392
Listen 142, 227, 324, 347, 373
load

balancing 389

test 275
local area networks (LANS) 237
localtime 51
Location 36

headers 385
LocationMatch 265
LogFormat 374
login

page 146

session 156
Login.pm 147
logs 72
Long-term development 13
LWP library 364, 388
LWP::Simple 365
LWP::UserAgent 364

M

magic 28
mail server 244
Mail::Cclient 247
maintenance 40
make install 45
makecat 305
Mason 174
Apache handler object 187
comp function 178, 180, 184
components 176
data root 175, 180, 334
e-commerce 278
FAQ 285
headquarters 189, 333
installation 175
ocmponent root 175
request object 178
resources 189
session management 186
subcomponents 176, 333
See also HTML::Mason
Mason Content Manager. See Mason-CM
mason_handler.pl 175-176, 279

403

Mason-CM 189, 333, 346, 350 translation and redirection 264

MaxClients 369-371, 373, 375, 377 website 110
MaxKeepAliveRequests 380 mod_perl.conf 114,117,119, 123,129, 145, 161,
MaxRequestsPerChild 371, 377-379 192, 218, 223, 228, 265, 268, 334, 362, 379
MaxSpareServers 369-370 mod_php 38
members.tmpl 171 mod_proxy 384, 386, 388
memory 110, 274 mod_rewrite 262, 384-386, 388
memory leakage 371, 379 mod_ssl 137-138, 141
memory saturation 360 installation 138
merchant account 311 mod_status 362
mergemem 375 mod_unique_id 248
message boards 214, 303 mod_userdir 31, 36

See also forums moderators 209, 215, 234
Microsoft 11 monitoring system loads 361
Microsoft 1IS 26 motherboard 23
MIME mount status 362

encoding 239 moving files 337

headers 110 multiple IP addresses 323

type 47 multiple processors 359
mime.types 28, 37, 47 multiple values 66
mindshare 12 mwForum 215, 218, 226, 232
MiniVend 304 MySQL 82, 84, 209, 226, 234, 248, 305, 308
MinSpareServers 369-371 acmemail 247
MM shared memory library 138 add users 87
mod_alias 114, 260261, 268 and WDBI 97
mod_autoindex 238-239, 241 calendar 248
mod backhand 391-392 controlling with WebMIN 257
mod dav 344 create tables 88
mod_directory 241 database creation 87
mod_fastcgi 108 Investorama 211
mod_include 122, 164-165, 212 mwForum 215

SSI 166-167 root password 87
MOD_PERL 116 TEXT type 300
mod_perl 109, 138, 209, 220, 223, 234, 333 WWWThreads 215

MySQL AB 84

calendar system 248
configuration 114

configuration file 227 N

division of labor 384, 388 Namazu 242

finding modules 348 name-based virtual hosts 321
guide 368 NameVirtualHost 321
installation 111 NCSA server 26

issues 373 ndbm 75

SSI 166 NeoMail 245-246

staging 322 nessus 25

404 INDEX

nested tables 58 P

Net::DNS 256

Net::FTP 254 page source 66
Net::LDAP 255 Palm 248
Net::Ping 256 param

Apache::Request 122, 127
CGl.pm 56, 63, 65-66, 78
sticky parameters 65-66, 153, 196
password 25, 32, 275
file 24,245
input 147-148
maintenance 254
patent issues 136
pattern matching 41-42
PDAs 247-248
peak traffic 275
peer review 9
performance 23, 121, 274

Net::Telnet 254
Netcraft 26
network
bandwidth 360
overloads 360
network address translation 392
news 215, 231, 234
news.shtml 212
Newslog 212, 226-227, 231
NFS 239
nonbreaking spaces 58
NOT_FOUND 120

nulls 154 management 358
o tuning 368
<Perl> 363

object-relational 82, 86 Perl 22, 40-41

odbm 75 AnyDBM_file 76

office applications 242 Apache::ASP 168

oMail 246 bind parameter 94

one year rule 358 crypt function 147, 149-150

ongoing development 14 die function 73

Open Source 3 exec function 251
buyer’s guide 14 fork function 251
commercial support 8 installation 44
community 7 pattern matching 42
development process 9 reason for, 42-46
innovation 11 strict pragma 48
licensing 17-19 support 43
quality 8 terms 19
security 10 text handling 42

Open Source Initiative (OSI) 4, 19 tie function 76-77, 82, 124

OpenSSL 136-138 unlink function 201

operating system 23 untie function 77
hardware 23 warn function 73, 131
performance 22 warnings pragma 48, 66
support costs 23 Perl Mongers 43

optimizing 360 Perl Monks 43

order number 292 Perl Webmail 247

orderline.mcmp 287, 289 PERL_RLIMIT_AS 379

OS. See operating system PERL_RLIMIT_DATA 379

INDEX 405

PerIDAV 345

perldoc 47

PerlfectSearch 222, 226, 233
PerlFreshRestart 118

PerlHandler 120-121, 223, 265, 268
PerlHandler Apache::Registry 113, 115

PerIModule 117, 120, 228, 348

PerlRequire 120, 377

perlrun 67

perlsec 67

PerlSendHeader 218, 228

PerlSetHeader 220

PerlTaintCheck 114

perltie 76

PerlTransHandler 268-269

PerlWarn 114

permanent (redirect type) 261

per-request costs 372

persistent CGI 107

PHP 38, 40-41, 164, 243
file managers 255
project managers 251

PID file 374

pilot-link 248

Pine (email client) 247

polling 215

POP 136
protocol 243
servers 247

port 27, 29, 106, 141, 324

portal 259

POST 56, 105

PostgreSQL 82, 234, 248
and WDBI 97
controlliing with WebMIN 257
Documentation Project 86
Global Development Team 85
WING 247
WWWThreads 215

PPP 271

PPTP 270

prepare_cached 279, 376

pressnow.pl 55

pressnow2.pl 56

prg 387

printself.pl 52

406

printself2.pl 53
printself3.pl 54
privacy 282

private key 140

PROCESS (Template Toolkit directive) 193-194

process method 197

process retention overhead 370-371

product reviews 299, 302
production 319, 335, 345
Project Sparkle 247
promotion-ware 304
ProxyPass 388, 390

ProxyPassReverse 385-386, 388, 390

pty-redir 271
public key 139-140
encryption 140
public_html 31
Python 40-41

Q

gmail 246

query
attributes 94
object 49

QuipShirts 277

R

random selection 385-386
rapid development 41
rcp 327
ReadmeName 238
realm 144
recovery
planning 352, 355-356
procedures 276
RedHat Linux 11
REDIRECT 265, 268
Redirect 34, 261, 267-268
Redirect permanent 262
redirection 285
header 286
RedirectMatch 261, 263
redirector 389
Redirects 36
reference implementation 12, 25

INDEX

regular expressions 34, 252, 261
relational databases 16, 71, 82
relational model 82
reload file 190, 342, 352
remote backup 352, 354, 360
remote execution 108
reportEntry.mcmp 179
reportList. mcmp 178
reports.mhtml 176
request object 120, 160
require valid-user 145
reset button 54
resource usage 276
reverse proxy 381, 383-384, 392
SQUID 390
with mod_perl 389
RewriteLogLevel 263, 386
RewriteMap 263, 386
rnd function 386
RewriteRule 263, 386
root 24
root password 25, 87
RSA 136
algorithm 140
RSAREF 136
rsync 24, 327, 344, 350
for remoter backup 354
limiting bandwidth use 360
server 330
RSYNC_PASSWORD 332
RSYNC_PROXY 332
RSYNC _RSH 328
rsyncd.conf 330, 332

S

salt value 150
SAMBA 256, 331
savedata.pl 72
ScanHTMLTitles 238
scheduling 242, 250
scp 24, 327, 354
script web clients 364
ScriptAlias 32, 34, 36
affect of translation handler on, 268
compared to ExecCGI 46
for dynamic index scripts 240

INDEX

ScriptAliasMatch 34
sdbm 75
search 100, 341
engines 221
search engine 234, 303
submission 235
search interface 216
searching 233
secrets file 331
secure 23
secure IP traffic 270
secure shell 24
secure system 24
password file 24
secure shell 24
secured channels 274
secureReports.mhtml 185
security 26, 111, 343, 355
Apache-SSL 137
by obscurity 10
encryption 134
user authentication 143-152
user management 152-155
Security Portal 11
SELECT 93, 96
selectall_arrayref 96
selectcol_arrayref 279
selectrow_array 94
sendmail 246
sensitive data 133
server suicide 371-372
mod_perl 377
server.key 143
SERVER_ERROR 131
ServerAdmin 29
ServerName 29
ServerRoot 29
Server-Side Includes 38, 122
Apache::Include 166-167
Apache::Registry 167
Apache::SSI 167
clock.shtml 165
mod_include 164, 166-167
mod_perl 166
session key 140

407

session_handler.pl 175, 186
session-oriented 107
sessions
cookie 124
data 124, 129, 132
handling 307, 392
hash 279
ID 157, 287
key 140
management 132
management, Mason 186
SetHandler 120, 265
perl-script 113
setrlimit 379
shadow password file 255
shared pages 360, 375
shebang 44
shell access 24
shirtrow.mcmp 279
shopping carts 123, 277
showaddr.pl 73
showdir.tmpl 199-200
showservers.pl 251
shtml 164
site builders 304, 306
tools 304
sitecopy 344
Slash engine 173, 209, 211, 318
as a site builder 234
Slashdot 85, 173, 234
channels 209
message forum 209
slashNET 209
slashNET 209
SLIP 271
SMB 239
sockets 135, 380
tricks 380
SourceForge 242, 245, 247, 250, 308, 333
split 73-74
Spmail 247
spool directory 243-244
SQL 71,82, 89
INSERT 95
SELECT 93, 96

408

UPDATE 96
WHERE 94, 96
SQL92 82, 86
Squid cache 384, 388
SqWebMail 247
srm.conf 28
SSH 271
ssh 24-25, 354
SSI 164
SSI. See Server-Side Includes
SSL 38, 135, 244
directives 139
SSLeay 136
SSLEngine 142
stable release 10, 14
staging 335, 345
mod_perl 322
phase 319
setting up 319
to production 337
Stallman, Richard 18
standard.tmpl 194
StartServers 369-370
starvation 369
stateless protocol 106
statement handles 90, 295
static documents 36-38
static pages 145, 277
statically linked 111
status.mhtml 296
sticky parameters 65, 153, 196
stockshirts.mhtml 278
storage bandwidth 361
store front 21
stress-testing 364
submit button 54-55, 105
suidperl 245, 254
Sun Microsystems 11
support 5, 84, 276
MySQL 85
PostgreSQL 86
swap space 360
SWISH-E 242
Swiss Army chainsaw 256
symbolic links 31, 372

INDEX

SymLinkslfOwnerMatch 31, 372
symmetric encryption 140
system 251

system administration 256
system resources 110, 359

T

-T (perl command line switch) 66, 114
tableform.pl 59
tableform2.pl 59
tableform3.pl 61
tableformd4.pl 62
tables 58-59, 96
taint checking 48, 66-67
Tallyman 304
Tape backups 353
tar 354
Tcl 40-41, 252
TCO 16, 23
deployment 16
flat file database 16
maintenance 16
relational database 16
TCP/IP 135
routing 271
telecommute 269-270
telnet 24, 253
Template Iterator object 199
template modules
HTML:: Template 170
Text:: Template 170
template processing 306, 308
Template Toolkit 170, 173, 190, 234
display logic 190
INCLUDE_PATH 193
plug-in modules 198
PROCESS 193
VARIABLES 193
Template Toolkit home page 202
template_handler.pm 191, 196
temporary certificate 141
temporary redirection 261
textarea input 301
text handling 41-42
TEXT type 300

INDEX

text/plain 47
Text::MetaText 173
Text::Template 170-171
text/ html 47
textfield 57, 60-61, 65
textform.pl 57
The Perl Journal 43
thin Apache 374, 380, 382
threaded messages 303
threads 87
three phase system 319
throttle 38
thttpd 37, 225, 374, 382
tie

interface 127

untie 77
time sheet application 251
timestamp 128, 161, 292
<TMPL_ELSE> 173
<TMPL_IF> 173
<TMPL_INCLUDE> 173
<TMPL_LOOP> 172
<TMPL_VAR> 172
ToDo.url.pm 125
top (shell command) 359, 361, 369-370
top-level component 234, 333
total cost of ownership. See TCO
transaction clearinghouses 312
translation handler 266

U

uid scripts 245
UNINST 45

unique key 75

Unix 3, 23, 87
untaint 196, 201
UPDATE (SQL) 96
upload widget 195
up-selling 307

uri function 126, 269
URL mapping 36
URL Rewriting Guide 262
USE directive 199
use strict 66

use warnings 66, 114

409

use_reload_file 335, 342, 352
user 193
authentication, HTTP 144
data 133
user management 132
Apache::DBI 155
CGl.pm 153
CreateUser.pm 152
UserDir 31-34, 36, 262

\Y

validation
headers 144
tools 67
values 80
VARIABLES 193
version 123
virtual host 29, 36, 309
configuration 142
for staging and production phases 319-320
virtual private network (VPN) 269-270
virtual server 383
VMonitor 363
VPN 271
VPN_HOWTO 271
vulnerabilities 25

w

-w (Perl command line switch) 66, 114
WDBI 97
Delete 102
Delete function 102
FDF 98-99
installation 98
Update 102
Update function 102
using 100
web farm 274, 359, 382-383
web mail reader 243
Web Projects 250
web proxy 383
web rings 235

410

web server
Apache 25
Apache configuration 28
apachectl 35
bandwidth requirements 21
database 21
development server 33
disk space 22
graphics files 21
hardware 21, 23
operating system 22
performance analysis 22
production server 30
securing the site 24
static pages 21
thttpd 37
Web-based Distributed Authoring and Versioning.
See WebDAV
WebCal 248
WebClock.pm 119
WebDAV 327, 343
Web-FTP 256
WebMIN 257, 331
WebPass 255
WebRFM 255
WebRSH 255
weekday.pl 387
WHERE (SQL) 94, 96
wide area networks (WAN) 270
Windows 26, 43
WING 247
WITH_APXS 111
World Wide Web Consortium 63
WWWThreads 210, 215

X

XBitHack 165

XML 28, 202, 343
AxKit 203

xsitecopy 345

Z

Zope 41

INDEX

	Web Development with Apache and Perl
	contents
	preface
	Who should read this book?
	What’s in the book?
	Source code

	acknowledgments
	author online
	about the cover illustration
	Part 1 Web site basics
	Open Source
	1.1 What is Open Source?
	1.1.1 And it’s free!

	1.2 Why choose Open Source
	1.2.1 Support
	Commercial support for Open Source products

	1.2.2 Quality
	1.2.3 Security
	1.2.4 Innovation
	Bearing the standard
	Long-term development
	The add-on market
	Feature competition

	1.3 A buyer’s guide to Open Source
	1.3.1 Stable version and ongoing development
	1.3.2 Support
	1.3.3 Leveraging other investments
	1.3.4 Ongoing costs

	1.4 Open Source licensing
	1.4.1 The GPL and LGPL
	1.4.2 The BSD/MIT license
	1.4.3 The Artistic License/”Perl terms”
	1.4.4 The right license?

	The web server
	2.1 What makes a good web server
	2.1.1 Hardware
	2.1.2 Operating system
	Server and application software
	Performance
	Hardware requirements
	Support costs

	2.1.3 Re-evaluation and installation

	2.2 Securing the site
	2.3 The case for Apache
	2.3.1 Installation
	2.3.2 First tests

	2.4 Apache configuration
	2.4.1 The httpd.conf configuration file
	2.4.2 Things you need to change

	2.5 Production server
	AllowOverride
	Options
	UserDir
	ScriptAlias

	2.6 Development server
	2.6.1 Allow everything
	2.6.2 Allow documents and scripts
	2.6.3 Allow approved documents

	2.7 Using apachectl
	2.8 Serving documents
	2.9 thttpd

	CGI scripts
	3.1 Why scripting
	3.1.1 Scripting language choices

	3.2 The case for Perl
	3.2.1 Installing Perl
	3.2.2 Testing a sample script
	3.2.3 Updating Perl modules with CPAN

	3.3 Inside CGI
	3.3.1 Hello, Web!
	3.3.2 Dynamic content
	3.3.3 Interacting
	3.3.4 HTML forms with CGI.pm
	3.3.5 Taking action

	3.4 Strictness, warnings, and taint checking
	3.5 CGI modules

	Part 2 Tools for web applications
	Databases
	4.1 Files
	4.2 Address book
	4.3 Hash files
	4.3.1 Perl’s tie and hash files
	4.3.2 Hash file address book

	4.4 Relational databases
	4.4.1 What’s relational?
	4.4.2 Choosing a relational database
	4.4.3 MySQL
	4.4.4 PostgreSQL
	4.4.5 Which to choose

	4.5 Installing MySQL
	4.5.1 Set the root password
	4.5.2 Create a database
	4.5.3 Add users and permissions
	4.5.4 Create tables
	4.5.5 Testing the server
	4.5.6 Learning more

	4.6 DBI, Perl’s database interface
	4.6.1 Installing the Perl modules
	4.6.2 Making a connection
	4.6.3 CGI scripts with DBI

	4.7 Data maintenance via CGI
	4.7.1 WDBI
	4.7.2 HTMLView, an alternative to WDBI
	4.7.3 Installing WDBI
	4.7.4 Creating a definition file
	4.7.5 Using WDBI
	4.7.6 Enhancing forms

	Better scripting
	5.1 Why CGI is slow
	5.1.1 Stateless protocol
	5.1.2 Session-oriented persistent CGI

	5.2 FastCGI
	5.3 The case for mod_perl
	5.3.1 Buyer’s guide

	5.4 Installing mod_perl
	5.4.1 Building and rebuilding
	5.4.2 Apache run-time configuration

	5.5 Scripting with mod_perl
	5.5.1 Apache::Registry
	5.5.2 Apache::DBI
	5.5.3 When CGI attacks

	5.6 Beyond CGI
	5.6.1 Beyond CGI.pm?

	5.7 mod_perl goodies
	5.7.1 Apache::Status

	5.8 Maintaining user state
	5.8.1 Apache::Session
	5.8.2 A to-do list
	5.8.3 Cookie sessions
	5.8.4 Session management and user management

	Security and users
	6.1 Listening in on the Web
	6.2 Secure Sockets Layer (SSL)
	6.2.1 Legal issues

	6.3 OpenSSL and Apache
	6.3.1 Apache-SSL
	6.3.2 mod_ssl
	6.3.3 Installing mod_ssl
	6.3.4 Certificates
	6.3.5 Configure and test

	6.4 User authentication
	6.4.1 Using HTTP authentication
	6.4.2 Doing your own authentication
	6.4.3 Do I need SSL for this?

	6.5 User management
	6.6 Login sessions

	Combining Perl and HTML
	7.1 HTML design
	7.2 Server-side includes
	7.2.1 SSI with mod_perl and Apache::Include

	7.3 Scripting in HTML
	7.3.1 Perl and HTML
	7.3.2 Templates

	7.4 HTML::Mason
	7.4.1 The case for Mason
	7.4.2 Installation
	7.4.3 Making pages from components
	7.4.4 How Mason interprets components
	7.4.5 Faking missing components with dhandlers
	7.4.6 Autohandlers
	7.4.7 Session management
	7.4.8 Mason resources

	7.5 The Template Toolkit
	7.5.1 Template environment
	7.5.2 Uploading a document
	7.5.3 Viewing the upload directories
	7.5.4 Template Toolkit resources

	7.6 XML alternatives

	Part 3 Example sites
	Virtual communities
	8.1 Serving the community
	8.1.1 Community site examples
	slashdot.org
	imdb.com
	investorama.com

	8.2 Implementing features
	8.2.1 News
	Newslog

	8.2.2 Forums
	WWWThreads
	BAZAAR
	mwForum

	8.2.3 Chats
	EveryChat and derivatives
	Chat servers in Perl

	8.2.4 Search engines
	PerlfectSearch

	8.3 Building a site
	8.3.1 Installation
	8.3.2 httpd.conf
	8.3.3 mod_perl.conf
	8.3.4 The front page
	8.3.5 News
	8.3.6 Forums
	8.3.7 Chat
	8.3.8 Searching
	8.3.9 Improvements

	8.4 Slash, the Slashdot code
	8.5 Online resources
	8.5.1 Search engine submission

	Intranet applications
	9.1 Documentation and file server
	9.1.1 Documentation directory tree
	9.1.2 File server
	9.1.3 Generating index pages
	9.1.4 mod_perl for indexing
	9.1.5 Searching

	9.2 Office applications
	9.2.1 Email
	NeoMail
	Other stand-alone mail packages
	POP and IMAP
	Perl modules

	9.2.2 Calendar
	The mod_perl calendar system
	WebCal
	Other calendars

	9.2.3 Project management

	9.3 Interfaces to nonweb applications
	9.3.1 Other Perl interface tools
	Net::Telnet and Net::FTP

	9.3.2 Passwords
	9.3.3 File management

	9.4 System administration
	9.4.1 WebMIN

	9.5 Build your own portal
	9.5.1 Maintaining links
	9.5.2 UserDir, Redirect, and mod_rewrite for user maintenance
	9.5.3 mod_perl for translation and redirection

	9.6 Joining multiple intranets
	9.6.1 VPNs
	9.6.2 PPP
	9.6.3 SSH
	9.6.4 Put it all together, it spells...

	The web storefront
	10.1 E-commerce requirements
	10.1.1 Security and privacy
	10.1.2 Stress testing

	10.2 Components of an e-commerce site
	10.2.1 Catalog
	10.2.2 Account data
	10.2.3 Shopping cart
	10.2.4 Taking the order
	10.2.5 Tracking shipments

	10.3 Feedback
	10.3.1 Product reviews
	10.3.2 Customer feedback and other services

	10.4 Open Source e-commerce tools
	10.4.1 Interchange
	Installation and first catalog
	Customization
	Features
	Nonfeatures
	Support

	10.4.2 AllCommerce
	Installation
	Customization
	Features
	Nonfeatures
	Support

	10.5 Credit card processing
	10.5.1 CCVS

	Part 4 Site management
	Content management
	11.1 Development life cycle
	11.1.1 Development, staging, production
	11.1.2 A staging area on your production server
	Virtual hosts
	Staging mod_perl applications
	Separate servers

	11.2 Tools for content management
	11.2.1 FrontPage
	11.2.2 rsync
	Running an rsync server

	11.2.3 Mason-CM
	Mason concepts
	Setting up Mason-CM
	Managing files with Mason-CM
	Managing Mason components

	11.2.4 WebDAV

	11.3 Managing a production site
	11.3.1 Configuration
	11.3.2 Development to staging
	CVS check-in

	11.3.3 Staging to production

	11.4 Backup and recovery
	11.4.1 Backup
	Media
	Automation
	Remote or local
	Capacity
	Recovery time
	Is a copy enough?
	Security

	11.4.2 Recovery
	Hardware recovery
	Backup sites
	Rebuilding the system
	Returning to work

	11.4.3 Test and verify!

	Performance Management
	12.1 Victims of success
	12.1.1 Monitoring system loads
	Apache::VMonitor

	12.1.2 Stress-testing your server
	HTTPD::Bench::ApacheBench

	12.2 Tuning your server
	12.2.1 Apache configuration
	Per-request costs

	12.2.2 mod_perl issues
	Sharing (more) memory
	Server suicide, mod_perl style

	12.2.3 Socket tricks
	Keep-Alive
	Lingering close

	12.3 Web farming
	12.3.1 Reverse proxies
	Apache with mod_proxy
	Apache with mod_perl

	12.3.2 Squid accelerator
	12.3.3 Load balancing
	DNS round-robin
	mod_backhand
	Linux Virtual Server

	references
	Bibliography
	Online resources

	index

