The

Praosmatic
ogrammers

Web Design
for Developers

A Programmer’s Guide to
Design Tools and Techniques

>

Brian P. Hogﬁh

-
o~

A Programmer’s Guide
to Design Tools and Techniques

Brian P. Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pragmatic
ookshelf

——

“H. Hn

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Brian P. Hogan.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in Canada.

ISBN-10: 1-934356-13-1
ISBN-13: 978-1-9343561-3-5
Printed on acid-free paper.
P1.0 printing, December 2009
Version: 2009-12-15

_ Contents

1 Introduction 13
1.1 Before We Get Started... 13
1.2 The Design Process in Action 14
1.3 YourFoodbox.com 16
1.4 ReadytoGo?. 17
1.5 Acknowledgments 17
I The Basics of Design 19
2 The Basics of Site (Re)design: Redesigning Foodbox 20
2.1 The Existing Site 20
2.2 Gathering Requirements 23
2.3 KnowYourPurpose, 24
2.4 WheretoGofromHere. 26
2.5 Sketching YourlIdeas 27
2.6 Sketch Selection. 31
2.7 SUMMMATIY v v vt bt e e e e e e e e e e e e e e 31
3 Choosing Colors 33
3.1 TheBasicsofColor 33
3.2 ColorContext, 36
3.3 Evoking Emotionwith Color 37
3.4 ColorSchemes. 41
3.5 The Web-Safe Color Palette 46
3.6 Building Color Schemes 47
3.7 Choosing Your Scheme 58

3.8 Summary.ot e e e e e e e 61

CONTENTS «d 8

4 Fonts and Typography 62
4.1 FontAnatomy, 62
4.2 FontTypes e 63
4.3 Dealing with Font Limitations 65
4.4 SelectingOurFonts. 69
4.5 Using the Baseline Grid 71
4.6 SUMMNATY« v v v v b e e e e e e e e e e e e 76
II Adding Graphics 77
5 Designing the Foodbox Logo 78
5.1 Setting Up a Working Folder 78
5.2 The FoodboxlLogo 79
5.3 What If We Need to Create Our Own Logo? 84
5.4 Summary. e e e e e e e e e e e 85
6 Design Mock-up: The Structure 86
6.1 ABitAboutLlayers 86
6.2 The Basic Structure 87
6.3 PlacingthelLogo 93
6.4 Organizing Our Composition with Layer Groups 94
6.5 Adding a Reflectionto QurLogo 94
6.6 TheFooter 96
6.7 WrappingUp 96
7 Design Mock-up: The Content 97
7.1 Creating the SearchBox 97
7.2 The Browse Recipes Tag Cloud 99
7.3 Scope Creep v v v ittt 100
7.4 Mocking Up a Tasty Masthead 100
7.5 MainContent 103
7.6 Simulating the Browser 104

7.7 Summary oL e e e e e e e e e e e 106

CONTENTS «d 9

8 Putting the Finishing Touches on the Mock-Up 107
8.1 Creating the SearchIcon. 107
8.2 Creating the Sign-up and Login Buttons 112
83 YouveGotContent! 115
84 Summary.ot e e e e e e e e 117

IIT Building the Site 118

9 Building the Home Page with HTML 119
9.1 Working with Web Standards 120
9.2 The Home-Page Structure 121
9.3 SemanticMarkup, 122
9.4 The Home-Page Skeleton 124
95 TheHeader. 134
9.6 TheSidebar 135
9.7 TheMainContent 141
9.8 TheFooter 145
9.9 Validating Your Markup 149
9.10 HTMLS ettt e e 151
9.11 Summary. i 154

10 Creating Assets from Our Mock-Up 155
10.1 Graphics Optimization 155
10.2 Dealing with Different Graphics Formats 157
10.3 Slicing Up Our Document 161
10.4 Creating Slices 0. 161
10.5 Extracting the Banner as a Transparent PNG 164
10.6 Exporting the Rest of the Elements 166
10.7 Summary e e e e 167

11 Defining Your Layout with CSS 168
11.1 Browsers Are Awful 168
11.2 The Basicsof CSS. 169
11.3 How Browsers Use CSS 175
11.4 Creating and Linking a New CSS Style Sheet 178
11.5 Defining the Basic Structure, Header, and Footer . .. 179
11.6 Turning One Column intoTwo 184
11.7 Applying Margins to Content 189
11.8 MainContent 190
11.9 Revisiting the Footer 193

11.10 Summary e 193

CONTENTS <« 10

12 Replacing the Section Headings Using the Cover-up Method 194

12.1 The Cover-up Method Explained 194
12.2 Preparing the HTML to Be Replaced 194
12.3 CoveringtheText 195
12.4 Replacing the Other Headings 195
12.5 ReplacingLinks 197
12.6 Downsides of This Method 198
12,7 Summaryo e e 198
13 Adding Styles 199
13.1 Setting Up the Colors and Fonts 199
13.2 TheTagClouds 202
13.3 The Search Form 203
13.4 TheFooter, 204
13.5 Cleaning Up Some Loose Ends 204
13.6 Summary. 206
14 Making a Printer-Friendly Page 207
14.1 Preparing for Print 207
14.2 Linking a Print Style Sheet 208
14.3 Removing Unnecessary Elements 208
14.4 Setting Margins, Widths, and Fonts 209
145 FixingLinks, 210
14.6 Dealing with Surprised Users 212
14.7 Summary.0 e e 213
IV Preparing for Launch 214
15 Working with Internet Explorer and Other Browsers 215
15.1 Deciding What to Support 215
15.2 Browser Statistics o000 217
15.3 Internet Explorer: The Evil You Can’t Ignore 217
15.4 Internet Explorer 7 219
15.5 Internet Explorer6 220
15.6 InternetExplorer8 226
15.7 Other Browsers 227

15,8 Summary. e e e 228

CONTENTS « 11

16 Accessibility and Usability 229
16.1 What Does Accessibility Mean to You? 229
16.2 Basic Accessibility Issues L. 230
16.3 Being All-Inclusive! 0oL, 239
16.4 Critical BusinessIssues 242
16.5 Improving Our Site’s Accessibility 243
16,6 Tabbing. 247
16.7 Accessibility Testing Checklist 249
16.8 Summary. i it e e e e e e e e 251

17 Building a Favicon 252
17.1 Creating a Simplelcon 252
17.2 Creating the Favicon 252
17.3 Summary. vttt e e e e e e e e 254

18 Search Engine Optimization 255
18.1 ContentIsKing 255
18.2 Choosing Keywords 257
18.3 Reconciling OurContent 259
18.4 Don’t Optimize Your Users Away! 260
185 LinksandYou 260
18.6 It All Comes Down to Common Sense 261
187 Summary. oo 261

19 Designing for Mobile Devices 262
19.1 MobileUsers o 262
19.2 Thinking About the (Very) Small Screen 264
19.3 JavaScript e e 265
19.4 Serving Mobile Content. 265
19.5 Deciding What to Support 266
19.6 Restructuring for Mobile Users 273
19.7 Summary 000 e e e 273

20 Testing and Improving Performance 274
20.1 Strategies for Improving Performance 274
20.2 Determining Performance Issues 275
20.3 Addressing Performance 277
20.4 Image Optimization 284

20.5 Summary00 e e e e e e e e e e e e e e e 286

CONTENTS <« 12

21 Where to Go Next 287
21.1 Additional Pages and Templates 287
21.2 Advanced Templating 290
21.3 Grid Systems and CSS Frameworks 291
21.4 CSSAlternatives, 296
21.5 Don’t Forget to Buy the Stock Images! 298
21.6 VisualEffects 298
21.7 Experiment and Practice!, 304

22 Recommended Reading 305
22.1 ColorResources 305
22.2 Books on Fonts and Typography 305
22.3 Technical Books 306
22.4 Websites e 306

A Bibliography 308

Index 310

1.1

Chapter 1

_ Infroduction

If you've ever written an application and wished it looked a little better,
then this book is for you. If you've ever looked at your favorite website
and tried to pull apart the CSS to figure out how it works, you're reading
the right book. If you've ever wondered how many licks it takes to get to
the center of a Tootsie Pop, then you should consult Wikipedia because
this book doesn’t cover that.

This book covers the web-design process for programmers who have
little to no design background. Underneath all the pretty colors and
nice layouts, websites require an awful lot of programming to get just
right. You must follow rules and best practices when working with Java,
Ruby, or C#; the same is true of designing websites if you want to
achieve the desired result.

Before We Get Started...

Good web design is about much more than creating pretty pages. Basic
concepts such as color theory, typography, layout, and usability are
all part of a good design. These things work together to make the site
succeed for users. You could pick all the right colors and use smooth
gradients, but if you don’t use a readable font, your site isn’t designed
well. You could whip up something awesome in Photoshop or GIMP, but
you’ll never be able to make it look good in a browser if you don’t know
how HTML and CSS work. If you have sloppy markup, your JavaScript
won’t work as you expect it to work. If you don’t optimize your content,
search engines will hate your site. And if you take accessibility and
usability for granted, your users will hate your site even more.

THE DESIGN PROCESS IN AcTIoN < 14

1.2

()

There Is No One True Way

This book is aimed at the programmer who wanfts to learn about
web design. The method this book uses is an effective entry-
level web-design process, and although it’s certainly not the
only way to build websites, the techniques described in this
ook will make you well prepared to explore other technigques
so that you can develop your own workflow.

As you work through our example, you will find many places
in which you might have made a different decision than | did
or used a different technique. That’s great! I've made these
choices to help you get started as a designer. Over tfime, you'll
change, and so will popular tastes. | look forward to seeing the
sites you create.

Another key aspect to good web design is creativity. I want you to focus
on your own creativity when you work through the exercises in this
book. I will show you how to build a site in this book to illustrate the
design process, but my hope is that you won’t completely follow every
example exactly as shown. I want you to pick your own colors and fonts,
using this book as a guide to make your own design. As you implement
your own design, you'll learn a lot about the theory behind web design.
It is my hope that the site you design will look completely different from
the example shown at the end of the book.

Your programming experience will help you build an attractive web
page. For the first half of this book, you will live in the world of the
designer. You will learn about colors and fonts because they are impor-
tant parts of creating a good design. You'll also learn how to use the
tools and techniques that designers prefer. Once we cover the appro-
priate theory, you’ll have some code to write. After all, that's what you
expect from a book for programmers, right?

The Design Process in Action

A good way to understand the typical web-design process is to follow
Ron, a busy web developer, as he works with a client to create a small
web page.

THE DESIGN PROCESS IN AcTiIoN <« 15

()

1// Joe Asks. ..

~—

Y Do Pecle Sl Do Mock-uos In Photashon?
Designers do. If you're not seeing it where you work, you prob-
ably spend a lot of your time around skilled CSS coders, not
designers. | know tons of programmers who routinely receive a
Photoshop file (PSD) from a graphic artist. Part of a developer’s
job is to incorporate that design info a web application, and
learning how to handle PSDs is part of the design process.

We will use Photoshop mock-ups in this book for two reasons.
They are good vehicles for describing many parts of the design
process, and it’'s easier to learn CSS concepts when you have
working color mock-ups to follow.

Gathering Requirements

Ron has a new client, a real-estate agent. The agent needs a simple
content system to manage her property listings. After an initial meeting
with Kim, the realtor, Ron grabs a pen and sheet of paper, and he starts
sketching the home page. He draws many different designs and then
picks the three designs that he thinks will work best, given Kim’s needs.

He meets again with Kim to discuss the three designs. Kim selects one
of the sketches and makes some suggestions. When Ron brings up col-
ors, Kim decides on a color scheme of blue, gray, and white because
these colors are similar to the ones on her business card.

Photoshop Time

Later that day, Ron sits down at his computer, opens Photoshop, and
quickly mocks up the home page using the finished sketch and Kim'’s
preferred colors as his guide. He grabs a few royalty-free stock images
and places them on the mock-up. He spends a little time looking at
various shades of blues and grays until he gets something he likes.
Once he’s done, he exports the document and sends it off to Kim to get
some feedback.

After waiting a week, Ron calls up Kim to get her opinion on what he’s
done so far. She tells him she’ll take a look at it when she gets back
from her vacation in a week.

YourRFoopBox.com <« 16

Time to Get Coding

Another week goes by, and Ron finally gets a call from Kim. She says
she likes how it looks, and she wants to move forward. Relieved, Ron
fires up his trusty text editor and begins the transition from mock-up
to web page.

Ron begins by creating a simple HTML document that defines the struc-
ture and content for the page. Next, he uses Photoshop to slice up
his mock-up so he can extract the banner graphics and other images,
which he then inserts into the HTML document.

Next, he carefully codes some CSS to pull the whole thing together. The
style sheets transform the linear-page skeleton into a brightly colored,
two-column layout.

Ron opens up the new web page in Firefox, and everything looks great,
just like his mock-up. He then fires up Internet Explorer 6 and winces
at the ugly page staring back at him.

Fortunately, Ron has seen this kind of thing before, so he quickly
throws in a few extra style definitions in an IE-only style sheet. Presto!
He’s ready to show Kim the finished page.

Good to Go

Kim loves the site, and Ron is ready to start building the rest of the
pages for the site. Now that Ron has worked out the colors, the images,
and the style sheets, it will be easy to produce the rest of the site. Ron
can take pride in the fact that he’s made his new client happy.

It’'s Not Always That Easy

Ron got lucky this time. He got an easy-to-please client. Unfortunately,
clients are not always so easy to please, as you’ll see when dealing with
the stakeholders of the Foodbox website that we’ll use as a running
example in this book.

1.3 YourFoodbox.com

You just finished a website for a company that has obtained financial
backing to build the ultimate recipe-sharing website. The site will allow
users to search thousands of recipes, contribute their own recipes, and
offer variations on existing ones. You're supposed to launch the site

READY TO GO? d 17

next week, but you've just shown the finished product to the stakehold-
ers, and although they think the functionality is intact, they can’t stand
how it looks. They don’t think it “feels right,” and they would like some-
thing more eye-catching. Of course, they can’t give you any concrete
ideas, and you will need to use your experience at gathering require-
ments to figure out what they want so you can make them happier.

The chapters in this book will guide you through this all-too-common
scenario. You'll learn about the process of picking colors, choosing
fonts, creating buttons, optimizing images, and using a grid to build
the template for the site. You'll learn how to make web forms look a
little nicer, and you’ll learn assorted tips and tricks to make your site
work across multiple browsers and platforms. After you finish building
the site, you’ll learn how to make it friendlier to search engines, as well
as how to squeeze a few more drops of performance out of your pages.

You'll also find that it’s important to me that your website be accessible
to the widest possible audience. We'll try to make sure that people with
disabilities can easily work with the site. This is a good business deci-
sion for you and personally important to me because I, along with my
father and daughter, was born with congenital cataracts that affect my
vision. We won’t tackle accessibility issues in depth until later in the
book, but I will make references to various accessibility and usability
topics as we work through the examples.

1.4 Ready to Go?

We know where we're going, and we have a long way ahead of us. Let’s
start by looking at the original site and finding out what the sharehold-
ers want us to fix.

1.5 Acknowledgments

No one writes a book alone. In fact, it turns out that writing is only a
small part of what brings a book like this to completion. The feedback,
criticism, friendship, and moral support from colleagues, friends, and
family made this book possible.

First, to Dave Thomas and Andy Hunt, thank you for signing this book,
for believing in this project from the beginning, and for seeing it through
to completion. I have learned from you and the books you've supported

ACKNOWLEDGMENTS <« 18

through the Pragmatic Bookshelf, and I am honored to have had the
opportunity to work for you.

Next, I want to thank my patient, wise, and incredibly supportive editor,
Daniel Steinberg. 'm a much better writer than I ever thought I could
be thanks to you and your excellent feedback and well-placed criticism.

Thanks to my awesome technical reviewers Jeremy Sydik, Jon Kinney,
Chris Johnson, Ben Kimball, Josh Peot, Mike Mangino, Lyle Johnson,
James Wylder, Jeff Cohen, and Mike Weber. Thank you all for taking
the time to provide excellent feedback and for challenging me to explain
myself and my ideas better.

A special thank you to the folks at iStockphoto.com for letting me use
their stock images in the examples in this book.

Thank you, Bruce Tate, for single-handedly changing my career.

Thank you to Lillian Hillis, Erich Tesky, and Marian Ritland at the
University of Wisconsin-Eau Claire, for their friendship, support, ques-
tions, and answers. Special thanks goes to Marian for fostering an envi-
ronment where we can all learn, grow, and be challenged.

Thanks to Bobby Pitts for teaching me how to really use design tools.
When I reach for the Pen tool, I remember the classes.

Thank you Chris Warren, Kevin Gisi, Gary Crabtree, Carl Hoover, Josh
Anderson, and Adam Ludwig for allowing me the opportunity to mentor
you and help you grow. Your successes always make me proud.

Thank you, Dad and Claudia, for your advice and support, and thank
you, Mom, for making me who I am. I'm sorry you missed this book.

Finally, there’s no way I could have done this without the love and
support of my wonderful wife, Carissa, and my daughters, Ana and
Lisa. I am blessed to have such a wonderful family cheering me on even
when it meant a weekend of writing instead of a weekend of family time.
Thank you all for being so wonderful and supportive. I do it all for you.

Part 1

The Basics of Design

2.1

Chapter 2

The Basics of Site (Re)design:
Redesigning F

Foodbox, our example site, is an online community where users can
post recipes and share them with the world. It’s intended to be one of
those trendy social-networking sites where users can tag recipes, leave
comments, and build their own cookbooks.

The site has financial backing and a talented group of application devel-
opers. Steve, your fellow developer, has just finished presenting the
demo to the stakeholders. He tosses a notepad on your desk filled with
bullet points from the meeting.

“They hate the home page,” Steve says. “They hate the banner. They
hate the colors. They think it’'s too bland, and they want to see the
things on this list addressed before they’ll even look at the rest of the
site.”

The Existing Site

Begin by looking at the current web page (see Figure 2.1, on page 22).
Next, read the list of suggestions from your stakeholders:

* “Can we get some nicer-looking buttons, maybe something shiny
or glossy?”

* “Let’s make our logo look like it’'s reflecting on something, you
know, like those other Web 2.0 sites do.”

THE EXISTING SITE d 21

()

1// Joe Asks. ..

~—

Y Hiow Dol Lok ot This Foodbax Sie?
Take a look at http://www.yourfoodbox.com. You'll notice we're
aiming for a simple, straightforward design that is perfect for
demonstrating the fechniques in this book. This design might not
please every reader, but it’s simple enough for a beginner to
implement.

It’s also important to realize that in the world of design, one
person’s masterpiece is another person’s terrible design. Your
challenge is to take what’s in this book and put your own spin
on it. Pick your own fonts, colors, and design, using this book as
a guide.

Finally, you should reserve your domain names as soon as you
think of them. You'll notice that our Foodbox site has the hitp://
www.yourfoodbox.com URL and that http://www.foodbox.com is a
different site. A domain name is cheap if you're the initial buyer,
but it can be expensive if you have to buy it from someone who
already owns it! In our case, someone else already owns the
http://www.foodbox.com site,

“We need some colors that will attract people. We don’t want the
site to be bland.”

* “I want to see the forms look nicer. Everything looks too much like
an application.”

* “I'm not really sure what I'm looking for, but I want it to look
more...fun.”

* “We need pictures of food throughout the site—that will make peo-
ple hungry.”

* “I really like what Amazon does—can’t you just do that? Except
lose the tabbed navigation, use more colors, and maybe not have
so much clutter. That should be easy, right?”

This list has a lot of strange requests from the people who sign the
checks. Your job is to come up with something that will make them

happy.

THE EXISTING SITE d 22

Foodbox
Search Rei it
i pes o | Get Cookin'....
ubmit l
Foodbox is the best way to collect and share recipes with others. Create an account and start
building your online Foodbox today.
Log In
Username | Recently-added recipes Recipe Categories
P ordl « Smuffed Chicken Breast » Desserts
AW » Almond Chicken » Poultry
» Baked Cod « Seafood
Log In Iochl Password + Chocolate Mint Brownies » Pasta
Seasonal
Don't have an account? + Appetizers
Click here to get one now! + More...

Copyright 2007 Foodbox LLC

Terms of Service | Privacy Policy

Figure 2.1: Our stakeholders deemed this design too boring. We'll
improve on this design over the course of this book.

Where do you start? First, try to understand what your clients think
they want from the site you are designing. The feedback you got is
a good starting point, but often a list like this means you did not do
enough discovery the first time around. Gathering requirements is as
important to design as it is to development. You need to use your expe-
rience as a developer to get the answers you need to solve your cus-
tomers’ problems.

Second, make sure you understand the real purpose of the site and that
you have a feel for the intended audience. Different audiences will have
different expectations and interact with sites differently. So, find out
who your client’s target audience is, and then research the competition
to learn its strengths and weaknesses. This research will help you ask
your clients all-important questions such as, “Have you thought about
this?”

Finally, once you get a list of requirements together, start sketching
while you process all this information. Yes, I said sketch, as in pen and
paper. We'll get into why in a bit, but first let’s talk about how to extract
the information we need from the clients.

GATHERING REQUIREMENTS < 23

2.2

()

Clients Are Difficult, but Don't Be Too Hard on Them

It’s can be tfough to deal with the odd requests you get from
your clients. The thing you have to rememiber is that they hired
you for your expertise. [t’s your job to figure out what they truly
want. They don’t know how to tell you what’s wrong with the
site, so they do the best they can. You have to use your experi-
ence to listen beyond what they are able to express 1o you so
you can understand what's really bothering them.

Many developers say that clients don’t know what they want.
I'd say that they just don’t know how to tell you, and what they
want becomes clear to them only after they see something that
doesn’t work for them. You can get the best results by con-
stantly communicating and showing things to your clients so
that they can fell you whether or not you're on the right frack.
This constant communication works as well in design as it does
when building an application.

Gathering Requirements

If you were to redesign an existing application, you'd need to know
exactly what it is that the app is supposed to do. You'd interview the
stakeholders and users. You'd also dig into the source code and play
around with the current system. You might also investigate what the
competition is doing. You need to follow the same process that you use
when redesigning a website.

Start by gathering requirements, as you would for any other project. In
this case, you can look back at the list of notes that Steve has dumped
on your desk from Section 2.1, The Existing Site, on page 20. You should
start to see some basic requirements for your design.

You can see that you'll need to learn how to make buttons and other
graphics. You will use some of the buttons as links; you might need to
use others to replace form buttons.

You want to be careful not to follow all the latest fads, but you also
want to balance that against the desires of your clients. Reflective text
and images are popular, and your client wants them. You need to learn
how to reflect things, something we can do easily in Photoshop. You'll
also need to draw a digital copy of the logo for the site, which will give
you a chance to learn how to create scalable vector graphics.

KNOW YOUR PURPOSE d 24

2.3

The color requirements mean that you'll need to learn some basic color
theory and learn how to select appropriate colors. Also, you can soften
the look of a website or web application by using images, color, and
some CSS tricks. This will address the concerns the client has with the
look of the forms.

This is a food site, so you’'ll need to get your hands on pictures of food.
Competing recipe websites are adorned with imagery that makes people
hungry. When you do manage to find some pictures, you might have to
modify them to work with your site. This will involve doing some photo
retouching, lightening, darkening, and resampling.

Some requests might not seem clear or reasonable. Don’t feel over-
whelmed when clients say they want the site to look more fun. Having
heard this one myself many times, I can say only that you’ll accomplish
this one by brute force, trial and error, and a little luck. If you accom-
plish the rest of these requirements, then you’ll be in good shape.

Even worse is when the client asks you to create something exactly
like an established site, except different. At least that request conveys
useful information; look back to Steve’s list, and you’ll see that the last
stakeholder in his list basically leaves you sitting there without a clue
about how to respond. So don’t. It might seem like a bad idea at first,
but a comment like this is one that you should quietly ignore. Follow
good design principles and solicit constant feedback from your clients,
and these kinds of requests should work themselves out.

Know Your Purpose

As you design this site, keep your focus on serving your target audience.
One useful approach is to get the clients to list a few websites they
would like you to use as a reference. You don’t want to use these as a
model, but knowing about them can help you gauge what elements your
clients like. Usually, clients will look at what their direct competition
is doing, but others will try to design their site based on sites in an
unrelated field. It's common for people to say things like, “Do it just
like eBay does it.” Your clients want these features because they are
familiar to them.

As you work on the design for Foodbox, be sure you make the site for
your client and her users, not for yourself so that you can show off
to your colleagues. Don’t throw in some flashy new technique you just
learned so that you can impress your co-workers. The client and her
users come first.

KNOW YOUR PURPOSE «d 25

()

K Your F Y Audi
| had a client a few years ago who hired me to redesign a site
of about 100 pages. He wanted something that would help him
sell his services more effectively. The original site was something
a family friend had developed for him, and it consisted of a
few stolen images from other sites, a couple of animated icons,
neon colors on a black background, and a bit of JavaScript
that placed the company’s phone number on the end of the
MOouse cursor, so it waved around as you moved the mouse.

This client ran a respectable business, but he had a welbsite
that did nothing to project that image. When | presented my
first design, it was immediately rejected because it wasn’t fun
enough. The client kept asking me to look at a few radio-station
sites that he liked, and | had to explain to him that he was in a
completely different market. After many hours of negotiating,
gentle prodding, and careful compromise, we ended up with
a great site that kicked his company into high gear. Within @
couple of years, his sales multiplied several times, and he con-
finues to thank me for steering him in the right direction.

The point here is fo remember that, above dll else, you need to
design your sites with the infended audience and the goals of
the site firmly in mind. You'll probably need to give in on a few
things, but the end result will be a better site.

Make sure everyone understands the site’s purpose. Is the site meant
to present information, encourage consumers to purchase products,
entertain users, or collect data? For example, you would design and
present a website for an upcoming summer blockbuster differently than
you would for an online retailer.

You'll also need to learn as much as you can about the site’s audience.
You will need to ask all sorts of questions. Will these be casual visitors
who will occasionally use the site, or will they be experts in the field
who will use this site on a daily basis to get their work done? Knowing
your audience will help you plan the scope of your design. For example,
you would design a site for younger children much differently than you
would a site for real-estate agents.

WHERE TO GO FROM HERE <« 26

5 have | Login

JORY Terprs \ ‘
N O]

New 'ooaf:
Nok « I

[Buaitd .
A C L‘O\"q)ﬁk | \ 6 nco ~ UP

\ abdak Cowled

mego‘ C.-cmr., PﬂW(‘a

Figure 2.2: Our first sketch: a site with few graphics other than the logo

2.4 Where to Go from Here

You've gathered the requirements, and you have a good understanding
of the site that you're trying to build. Now it’s time to come up with an
implementation plan. If you break the requirements into logical steps,
they might look like this:

1. Sketch some basic designs and get one approved.
Select colors.

Select fonts.

Implement the basic design in Photoshop.

Create images for the banner, buttons, and other elements.

2B

Create an HTML and CSS template.
7. Test your designs for compatibility and accessibility.

The rest of this book will walk you through this process, teaching you
various techniques and the theory behind them along the way.

SKETCHING YOUR IDEAS <« 27

()

Vf Joe Asks...

f
~ Why Can’t | Just Start with Photoshop or Building HTML
Mock-Ups?

Pencil and paper are important to the creative process, and
you can draw much more quickly with these tools than you can
with a computer. Also, it's easier for you to throw away early
designs because you have so litfle invested in them.

If you've been a programmer for a while, you probably have
access to a whiteboard, and I'd be willing to bet that you draw
simple diagrams on that to communicate with the rest of your
team. Apply this same approach to your meetings with your
clients. A nontechnical client might be put off if you pull out
your laptop and start typing and clicking away on a design, but
pencil and paper can be a great interpersonal communication
tool. Sketch your ideas in front of your client, and then hand
your client the pencil fo see what ideas he has for the site.

The point of this is to facilitate communicatfion with your team
and your clients. Your initial designs might end up looking noth-
ing like your final product, but any designer will tell you that’s
normal. You could spend hours on digital versions, or you could
spend minutes with a pencil and some paper.

The pencil and paper are part of your design team; use them
to help get the ideas flowing.

2.5 Sketching Your Ideas

You should draw your designs on paper to capture your ideas quickly.
Doing so makes it easy to share your ideas with others or to make
adjustments to them. You can even get your client to help.

Now go grab a piece of paper and a pencil. I'll wait.
Ready? Good.

To sketch a design, you need to know what the site’s layout should
contain. What links need to be present from the home page? What ele-
ments should the home page contain? You can see the current home
page in Figure 2.1, on page 22; it contains the following items:

¢ The site name
e A search field

SKETCHING YOUR IDEAS <« 28

123000 box |G (oot and Sore

Onlive epee Shac
rnﬂ&é 'j\(ﬂP‘f

Figure 2.3: A sketch of a more graphical version. This example modifies
the first by providing a space for a large, attractive image on the left.
|

A login form
A brief introductory paragraph about what the site does

A list of the most recently submitted recipes

A list of categories

In addition to these elements, the home page also contains links to
various informational pages, including the following:

* Terms and conditions
* Sign-up text

* The privacy policy

¢ Contact information

Let’s throw together a few sketches.

Layout Conventions

You've probably noticed that websites tend to have many things in com-
mon. Most have a header region that displays the site’s name or logo.
Many sites also have their main content region divided into columns,
and at least one of those columns is often used as a sidebar region that

SKETCHING YOUR IDEAS < 29

might contain navigation elements or additional information. It’s also
likely that the site has a navigation bar either across the top of the page
or along the left side. Finally, you can usually find a footer region that
contains copyright information and maybe some additional links.

The most obvious reason for this similarity between sites is that design-
ers and developers imitate what works. It's no coincidence that many
news sites look the same. In fact, most newspapers follow the same
layout.

Over time, users have come to expect these similarities. To design a
functional website, you have to make sure that your users can find
what they want immediately, without having to hunt around or dig too
deeply. Your site should be easy to navigate, and following conventions
goes a long way toward achieving that goal. You start confusing users
when you do things unconventionally.

Before you start sketching your designs, browse the Web for ideas. Look
at sites that are in the same market as your intended site. Look at
some examples in unrelated fields to see whether your competition is
missing something you could use to your advantage. Most of all, work
toward developing a layout that conveys information but is immediately
familiar to your audience.

Three Sketches

Come up with at least three designs for your clients on every project.
Provide a simple, conservative design; a complex design; and a design
that aims for the middle, something mostly conservative that also has
some splashes of flair.

Don’t worry if you're not a great artist. A sketch of a site layout doesn’t
have to be pretty. The main purpose is to get your ideas on paper so
you can share them easily with other people.

Let's walk through three sketches I whipped up based on the require-
ments we have so far. The first sketch features a minimalist design,
and it isn’t meant to look pretty (see Figure 2.2, on page 26). This page
doesn’t have much functionality other than the sign-up button and the
login box. It’'s a text-heavy version of the site that will most likely rely
on color, gradients, and shading to draw attention to the various sec-
tions. An advantage to this design is that more text content can help
with your search engine rankings. Of course, it can also be boring to
look at.

SKETCHING YOUR IDEAS < 30

Figure 2.4: Our third sketch: a much more functional version of the
site. It uses elements from the current home page and adds some new
concepts.

The second sketch shows a more graphical design, with a large space
for a photograph on the left and the login and sign-up boxes on the right
(see Figure 2.3, on page 28). This page should be a bit more attractive
than the first design, but it won’t have as much information to tell the
users why they should proceed any further than the home page.

The final sketch shows a more functional design that incorporates ele-
ments of the current home page but turns the original site’s categories
list into a tag cloud (see Figure 2.4). This design keeps the search box
and the rest of the links but leaves the login and sign-up boxes off the
home page, replacing the boxes with buttons. It’s similar to the original
design, but it incorporates some graphical elements, and it leaves space
for us to explain to users what we're about and why they should use
what we offer.

When presenting designs, I like to show a design that's conservative,
another that’s pretty artistic, and a third that contains elements of both
the simple and complex designs. Generally, the client tends to pick the

SKETCH SELECTION <« 31

()

Setting Your Clients fo Hel
When your clients comes to you asking for a new site design,
get them to do some of the legwork for you. Ask them to iden-
tify a few websites they like. Get them to tell you what they like
about them. You want to hear things such as, "l like the col-
ors that Blinksale* uses.” Or, "Amazon’s tfabbed navigation bar
works well for me.” You won't rip off these ideas, but you will
to get a feel for what your clients want. You can then use this
feedback, along with your judgment and experience, to come
up with something that works well.

*, http://blinksale.com

design that falls in the middle but then mixes in a few elements from
the other two designs, resulting in a bit of a hybrid. When you show
up with design sketches or mock-ups, you're not presenting the final
version of the site; instead, you're presenting ideas to get the discussion
going. Don’t be disappointed if the client wants to change your design
around. You have to remember that it's the client’s site, not yours.

You should almost never come to the table with only one design. Clients
like to make choices and feel involved. A few clients want you to tell
them what to do, but you need to let them tell you that. You don’t want
to make that assumption yourself because that borders on arrogance,
and it can hurt your relationship with your clients.

Your sketches are done; it’s time to share them with the stakeholders.

2.6 Sketch Selection

Steve came back from his meeting with the stakeholders with a big
grin on his face, holding up one of the sketches. It turns out that they
have selected the third sketch (see Figure 2.4, on the preceding page);
however, they would like to see it mocked up as a color image as soon
as possible.

2.7 Summary

The redesign process boils down to communication with your clients.
Some clients know what they want, but most need you to guide them

SUMMARY <« 32

()

it lterative P

| once heard a great presentation from Robert Martin about
how writing software was like writing a book. You'll do a first
draft and then a few revisions, refactoring until you get it just
right, and that’s your final draft. Design is kind of like that,
except that after you go through all those stages, your client
will see it and tell you that he hates it. You'll make conces-
sions in your design. You’ll change the colors fo something you
don’t like because that’s what the client wants. One thing that
frustrates designers is having their creative vision destroyed by
client requirements. As a developer, you're already all too famil-
iar with how requirements drive projects. Think of the design
phase as another set of requirements for your app, and keep
refining, rewriting, and refactoring.

through it. Follow conventions, ask the right questions, and listen.
You'll end up with a successful redesign plan.

The stakeholders want to see a color mock-up. To do that, you need
to learn about picking colors and choosing fonts so you can build a
nice-looking digital mock-up for the next meeting.

3.1

Chapter 3

We have our sketch in hand and our marching orders to mock up
a design; the next step is to pick out some colors and build a color
scheme.

Colors can make or break your application depending on how you use
them and blend them together. They evoke emotions and draw attention
to important details. This is one of the most important chapters in this
book because it helps you build the foundation of a great-looking site.

Great designers seem to have an eye for color. Their experience and
intuition often guide them when it comes to creating a color scheme
for a website. Certain color schemes, or combinations of colors, are
based on tried-and-true strategies similar to the design patterns that
developers use. If you know how colors relate to each other, you can
pick colors that go together just as easily as you can pick the right
design pattern for a web-based application.

The Basics of Color

In our everyday, three-dimensional world, objects absorb some wave-
lengths of light and reflect others, and our eyes perceive the reflected
light from objects as color. A color is described by its name, its level of
saturation, and its brightness.

You have a lot of things to think about when working with colors. You
have to think about the shade of the color, the amount of color, and how
the color looks alongside other colors. You also need to think about how
the color might be interpreted by your audience. In this section, you'll
learn how this all works together.

THE BAsIcS OF COLOR «d 34

Hue, Saturation, and Brightness

When people talk about an object’s color, they're referring to the hue.
You've been trained to use hue all the time, whether you're shopping
for bananas (the green ones aren’t ripe yet!) or trying to beat that yellow
traffic light.

Saturation is the amount of color in the image. A saturated color is
vibrant, whereas a desaturated color looks dull and gray. If you reduce
the saturation, you make the colors look more washed out. In some
cases, this is a good thing because it takes the edge off some otherwise
harsh or shocking colors.

Altering the brightness of a color can make the overall appearance of
the colors darker or lighter. As you add cream to your coffee, you alter
the brightness of the brown coffee, making it change from dark brown
to light brown.

Changing the brightness and saturation lets you alter the color’s ap-
pearance (see Figure 3.1, on the next page, for some examples).

Additive and Subtractive Color Mixing

Colors you see on your screen might not be the same as those that you
print. There is a fundamental difference between the way color works
on paper or in nature, where the light is reflected, and the way color
works on a screen, where it is projected. On your screen, the color
mixing is additive; in print, it is subtractive. You can see this difference
best by comparing colors in paints and colors on a computer screen.

When you’re working with paints, crayons, and markers, you deal with
the primary colors of yellow, blue, and red. You start with all the col-
ors of light mixed together (white) and filter out what you don’t want
to get the color you're looking for. When you color with a red crayon,
you're actually causing all the other colors to be absorbed or sub-
tracted, except for red, which is reflected back to your eyes.

You see the subtractive method in action when you mix paints. You
know that if you mix yellow and blue, you get green. If you mix blue
and red, you get purple. If you mix all the colors together, you get black
because the object absorbs the entire visible spectrum; you no longer
have any light left to hit your eyes. A banana doesn’t actually have
any color. It doesn’t have any light energy to produce color. Instead, a
banana appears to be yellow because it reflects all the light waves that
cause us to see yellow, while absorbing all the other waves.

THE Basics oF COLOR < 35

An image with full brightness and full saturation

An image with half brightness and full saturation

An image with full brightness and half saturation

An image with full brightness and very low saturation

Figure 3.1: Brightness and saturation

Computer screens display colors using the additive color system. The
primary colors you've grown up with are replaced by red, green, and
blue. These colors are mixed together and projected, creating the light.
Unlike the banana, the image on a computer screen is generating light
waves rather than reflecting them. You start with nothing (the black of
your monitor) and start adding colors. When you mix red, green, and
blue together, you end up with white. When you don’t mix any colors
together, you get black. This process is additive color mixing. Your eyes
are absorbing the colors coming from the screen. Here, you get yellow
by mixing green and red.!

So, what does all this have to do with web design? It’s important for
you to know that there are different color modes out there. When you

1. The terms additive and subtractive can sometimes confuse people. In this setting,
I'm talking about color reflection—pigment-based subtractive color mixing. When I mix
yellow and blue to make green, I am adding the colors. But this process is not called
additive because I'm subtracting a different set of wavelengths.

CoLOR CONTEXT <« 36

Figure 3.2: Which blue box is darker?

work with color on the computer, you have a choice between RGB, the
additive color method; and CMYK, which stands for Cyan, Magenta,
Yellow, and Key (usually black), the subtractive method. You usually
want RGB if you're working on the Web. However, if you plan to print
something, you want to use CMYK, the color mode used by many four-
color printing systems.

3.2 Color Context

Look closely at the images in Figure 3.2. The blue rectangle on the left
probably appears to be darker, even though both rectangles are exactly
the same color. This trick your eyes played on you is called color context,
and it can be extremely frustrating.

I was working for a client on an update for his company’s home page.
The client wanted to put some red lettering over a light blue background
in the banner, and he wanted to make sure I used the same red that
we used throughout the rest of the site.

As a developer, you can see the problem. The customer was suggesting
the implementation. The client wanted the red to look like the red used
throughout the site. It was up to me to know that to achieve that goal
we needed to use a brighter red.

When I used the same red—just as the client had specified—he didn’t
like the result. The red didn’t look right. When I changed the red color
to something a little brighter, it appeared to be the same color as the
rest of the reds in the site, and the client was happy.

The context of a color can greatly influence how it appears in your
application. Even if you technically pick the correct colors, you might
have to make additional adjustments to make them look right.

EVOKING EMOTION WITH COLOR <« 37

Adjacent colors with fewer steps make the transition more obvious.

If we increase the number of steps, our brain starts to blend the colors.

Thousands of steps make the transition appear seamless.

Figure 3.3: Examples of color fluting

This effect is caused by fluting, which is the technical term for the way
your eyes blend adjacent colors together. You can use color fluting to
your advantage (see Figure 3.3). As the example illustrates, fluting is
what makes gradients possible. If you don’t do the transitions gradu-
ally enough, you get the banding effect. However, if you do the tran-
sitions with lots of slight variations, your eyes ignore them and blend
everything together.

3.3 Evoking Emotion with Color

We are taught from birth to associate colors with emotions, moods, or
feelings. When choosing colors for your application, it's important to
think about the various responses your choices might trigger. Using
red or blue improperly could trigger an undesired response or could
even create confusion.

Your choice of color influences your users’ perspectives, and simply
applying a different color scheme to a website completely changes the
user experience.

EVORING EMOTION WITH COLOR <«d 38

Warm Colors

As the name suggests, warm colors make you think of warmth, sun-
light, and heat. Some people believe that you feel warmer if you look at
these colors.

Red

Red is a strong color that can stand for love, joy, happiness, and ro-
mance. It can also represent lust, anger, war, an emergency, or danger.
Its use in applications is almost always to show a warning or an error
message. Red attracts a user’s eyes immediately.

Yellow

It's hard for a user to focus on yellow, but the color can evoke feelings
of intelligence and happiness when used correctly. Many applications
use some sort of yellow fade effect to let you know that the action you
just took was successful.

Orange

Orange can be cheerful like yellow, but it can also be arrogant and
superior, depending on the amount of red. Some experts claim that the
red contained within orange can stimulate the brain.

Cool Colors

Cool colors have a cooling or calming effect on people. They're comfort-
ing, and you can use them to tone down a site. Cool colors include blue,
green, and purple.

Blue

Blue can be calming, soothing, and cool. It has a tendency to make
users relax when it’'s desaturated. However, as the shades of blue get
darker, they can cause feelings of sadness and depression.

Green

People tend to associate green with nature, hope, health, and respon-
siveness. However, if used incorrectly, green can also trigger feelings
of envy (most likely because of the expression “green with envy”). In
addition to envy, green can evoke feelings of greed, guilt, and disorder.
Certain shades of green allow the eyes to rest, which can have a sooth-
ing effect on your users. The wrong mixture of colors can make your
users feel sick or disgusted.

EVORING EMOTION WITH COLOR <«d 39

()

Black and white are not technically colors. When you're talk-
ing about images on a computer screen, black is the absence
of color, while white is a mixture of all color in the spectrum.
Remember from the discussion of additive vs. subtractive color
mixing that the inverse is tfrue when you’re working with paints,
so be careful!

Though not technically colors, black and white still evoke emo-
fion and should be considered as colors when building a color
scheme.

Purple

Purple is one of those odd colors that doesn’t appear in nature very
often. You might see it on the petals of flowers, but you see it mostly
in things that people create. Purple is often associated with royalty
and mysticism, mainly because it was extremely difficult to produce
in ancient times. Purple is a mixture of red and blue, which means you
get some of the attributes of each color. Light purple is often associated
with nature, peace, tranquility, and spirituality. Dark purple can evoke
feelings of depression. Large amounts of purple can be difficult on the
eyes.

Neutral Colors

Black, white, silver, gray, beige, and brown are unifying colors. They
help bridge the gap between cool and warm colors. When used as back-
ground colors, they help other colors stand out.

Black

Black can represent prestige and elegance, and it can be really pow-
erful if used in the right context. However, black is also associated
with mourning, death, despair, and brooding. When you use black in a
design, you must make sure you target your audience carefully.

White

White evokes feelings of purity and perfection. It's a perfect color for a
clean website. Too much white can be boring and sterile, but it makes
every other color stand out that much more.

EVORING EMOTION WITH COLOR < 40

Brown

Brown can stimulate hunger, health, and simplicity. On the flip side,
some people perceive brown to be a dirty color, and it can evoke feelings
of uncleanliness, which is definitely not something you want for your
site.

Beige
Beige makes people relax. It is a conservative color that borrows from

brown and white. It’s a great choice for a background because it can be
calming, and it will allow other colors to stand out well.

Gray

This color seldom evokes an emotion, but when it does, it’s usually
associated with feelings of gloom, mourning, and moodiness, much like
a cloudy day. It leans toward the cool side of the color spectrum.

Gray is a funny color; if you make it dark, you get to borrow some of
the elegance of black. If you make it light, you get to borrow some of
white’s traits.

Colors and Your Users

Remember that a person’s personal biases will have some effect on
how your color choices affect his or her emotions. This bias might be
because of an association created by an experience or memory, but
more often, it’s cultural.

For example, although we might find that red is a lustful, angry, or pas-
sionate color, it’s a color of good luck and celebration in China. In parts
of India, red can mean triumph or success. Red can also symbolize
socialism and communism; in South Africa, it’s the color of mourning.
Black is a color of mourning in the Western world, but the Chinese use
black to symbolize high quality.

Brandcurve has an excellent article? outlining color meanings in differ-
ent cultures. If your site is going to be used by an international audi-
ence, then don’t forget to localize your colors, just as you localize your
text.

2. http://www.brandcurve.com/color-meanings-around-the-world/

COLOR SCHEMES «d 41

3.4

Figure 3.4: In the mixing color wheel, the primary colors are red, yellow,
and blue. This is often referred to as the RYB color wheel.

Color Schemes

Some colors just don’t look good next to each other, and some do. Color
schemes are groups of colors that work together to create a visually
appealing result. Let’s take a brief tour of the different types of color
schemes and how we can apply them.

You need to understand a little bit about color theory before you pick
a color scheme, and the best way to do that is by taking a look at the
color wheel. A color wheel helps show relationships between various
colors. I've drawn a simple RYB wheel, or mixing color wheel, that uses
red, yellow, and blue as the primary colors (see Figure 3.4). I'll use the
mixing wheel throughout this chapter to show examples of various color
schemes.

Monochromatic Scheme

The monochromatic scheme is made up of just one hue (see Figure 3.5,
on the next page). You create the scheme by altering the brightness and
saturation of the hue and adding that variation to the scheme.

This scheme adds form and depth to a design. When you use it in your
site, your other elements, such as photographs or icons, really stand
out. This scheme is ridiculously easy to create, but it works best for
sites where the content is the most important element.

COLOR SCHEMES <« 42

Website

Lorum Ipsum

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Quisque molestie risus vitae
ipsum. Quisque egestas. Phasellus vitae
nibh ac augue bibendum condimentum.
Praesent risus. Nunc eleifend. Nullam erat
massa, feugiat ac, porttitor sed, ullamcorper
at, dui. Phasellus lobortis arcu ac magna.
Nam dictum bibendum arcu. Pellentesque
lobortis, felis nec dapibus laoreet, ligula
mauris iaculis enim, quis lobortis massa
pede nonummy tortor. Fusce justo ligula,

Figure 3.5: Monochromatic color scheme

Analogous Scheme

The two colors on either side of a color on the color wheel are referred
to as analogous colors. Take all three colors—the base color and its
two neighbors—and use them to build a scheme (see Figure 3.6, on the
following page). The scheme is subdued, but the adjacent colors accent
the scheme a bit.

This color scheme involves picking colors that appear directly adjacent
to each other on the color wheel. One color dominates this scheme, and
other, similar colors are used for impact.

This scheme is as easy to create as the monochromatic scheme, but you
get richer results because you use different colors instead of just differ-
ent shades of the same color. These additional colors can help accent
the main color, drawing your users’ eyes toward important content.

COLOR SCHEMES <« 43

AN

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Quisque molestie risus vitae
ipsum. Quisque egestas. Phasellus vitae
nibh ac augue bibendum condimentum.
Praesent risus. Nunc eleifend. Nullam erat
massa, feugiat ac, porttitor sed, ullamcorper
at, dui. Phasellus lobortis arcu ac magna.
Nam dictum bibendum arcu. Pellentesque
lobortis, felis nec dapibus laoreet, ligula
mauris iaculis enim, quis lobortis massa
pede nonummy tortor. Fusce justo ligula,

Figure 3.6: Analogous color scheme

One major problem you might run into is that this scheme lacks any
real color contrast, so you don’t get as much contrast as you would with
a complementary scheme. It does tend to be the best-looking scheme
for beginners, though, because it’s not hard to create, and it gives you
a nice, safe range of colors to choose from that won’t clash.

Complementary Scheme

A complementary color scheme uses two colors that appear on oppo-
site sides of the color wheel as the base colors. These colors are said
to complement each other directly. Purple and yellow are great colors
for this scheme, as are red and green. You can see an example of a
complementary scheme in Figure 3.7, on the next page.

Complementary color schemes are often difficult to balance because the
colors can be extremely bright, and you need to do a lot of tweaking to
tone things down. Some combinations, such as orange and indigo, can

COLOR SCHEMES <« 44

Lorum Ipsum

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Quisque molestie risus vitae
ipsum. Quisque egestas. Phasellus vitae
nibh ac augue bibendum condimentum.
Praesent risus. Nunc eleifend. Nullam erat
massa, feugiat ac, porttitor sed, ullamcorper
at, dui. Phasellus lobortis arcu ac magna.
Nam dictum bibendum arcu. Pellentesque
lobortis, felis nec dapibus laoreet, ligula
mauris iaculis enim, quis lobortis massa
pede nonummy tortor. Fusce justo ligula,

Figure 3.7: Complementary color scheme

be extremely difficult to balance. When used improperly, those colors
can be very shocking and intense; however, you can get a nice effect if
you desaturate the cool colors and saturate the warm ones. One of the
best ways to make the most of this scheme is to use your base color as
the main color and use its complement as an accent color.

Be careful when placing your text. Using a color for your text and its
complement for your background can make things difficult to read if
you don’t make the proper saturation adjustments.

Split-Complementary Scheme

The split-complementary color scheme is interesting because it’s a little
more difficult to use, but like the complementary scheme, it can be
quite attractive if you make the proper adjustments to saturation and
brightness. I encourage you to experiment with this scheme the most

COLOR SCHEMES <« 45

Lorum Ipsum

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Quisque molestie risus vitae
ipsum. Quisque egestas. Phasellus vitae
nibh ac augue bibendum condimentum.
Praesent risus. Nunc eleifend. Nullam erat
massa, feugiat ac, porttitor sed, ullamcorper
at, dui. Phasellus lobortis arcu ac magna.
Nam dictum bibendum arcu. Pellentesque
lobortis, felis nec dapibus laoreet, ligula
mauris iaculis enim, quis lobortis massa
pede nonummy tortor. Fusce justo ligula,

Figure 3.8: Split-complementary color scheme

because it’s not used very often, which means it can give you a chance
to make certain features of a design stand out.

This scheme involves picking a color on the color wheel and then pick-
ing the two colors adjacent to the first color's complementary color,
rather than its direct complement.

This approach allows for strong contrast while adding some different
color variations. You'll end up with a scheme that is less extreme or
shocking than a complementary scheme.

Be especially careful not to use a lot of dull colors because that will
subtract from the overall effect.

You should try working with all these color schemes to get a feel for
how they work. I tend to use monochromatic in a lot of my design work
because I like how much photographs pop out. You might discover you

THE WEB-SAFE COLOR PALETTE < 46

Color Picker x|

Select foreground color: | OK |

Cancel |

Color Libraries |

{'FH:IIII_“ FL:ID_
s l0 % f"a:li:l_
Ccefo % Chbifo
Cr@ cl7s %
Cefo m:[68 %
Co:fo | v:[67 %

. #|nnnnnn Ki|90 | %

L

W Only Web Colors

Figure 3.9: Photoshop’s Color Picker provides an option to show only
web-safe colors.

favor a different one. The important thing is to understand the advan-
tages and disadvantages of each scheme.

3.5 The Web-Safe Color Palette

The web-safe color palette consists of only 216 colors that are sup-
posed to look exactly the same across all operating systems. It was
designed at a time when video cards were limited. Designers working
on a Mac wanted to be sure that PC users could see the images as the
designers intended. Unfortunately, this color palette was quite bland
and extremely limiting. It consisted of six shades of blue, six shades of
green, and six shades of red mixed together in various amounts.

Designers are abandoning the web-safe palette now that the majority
of users have computer displays that can render millions of colors. You
still might see slight variations from machine to machine, but these
variations are minor in most cases.

A few experienced web designers, as well as some organizations, still
insist on working in this palette, and many graphics packages provide
options that will help you stay within the web-safe palette. You can see

BUILDING COLOR SCHEMES <« 47

()

The Three-Color Rule

My grandfather sold men’s clothing for many years. When | was
little, | rememlber him talking about the three-color rule. His idea
was that a man should dress using three colors: the first two col-
ors should complement each other, and the third color should
e completely different. For example, a man might wear a
white shirt, black pants, and a tie with some black, a littfle white,
and maybe some yellow to liven things up.

When I'm working on a welbsite, | always come back to that
rule. I'll pick a background color and a foreground color, but
then I'll find another color that | can use as an accent, some-
thing that really pops. For example, you could choose blue and
gray for your main colors, and then use yellow as your accent
color. Throughout the site, you could use varying shades of blue
and gray to define objects and make them stand out.

Note that I'm not advocating that you stick to exactly three
colors in your application.

the Color Picker from Photoshop in Figure 3.9, on the preceding page
(notice the Only Web Colors checkbox in the bottom-left corner). If you
decide (or are forced) to use a color that’s not web safe, you need to be
aware that it might not look the same everywhere.

3.6 Building Color Schemes

Now that you have some background on how colors work, you can start
thinking about various color choices for Foodbox. You already know
how to use the color wheel to find color combinations, but I'm going to
show you a couple of techniques I use when picking out colors.

As we did in the site designs, we want to come to the table with sev-
eral color options for our stakeholders to review. We’ll use two different
methods to select colors: the technical method and the natural method.

Selecting Colors Using the Technical Method

The technical method uses color theory to build a color scheme. You
pick a base color and then combine it with one of the color schemes we
discussed in Section 3.4, Color Schemes, on page 41, to get additional

BUILDING COLOR SCHEMES <« 48

()

HTML Color Codes

HTML color codes are hexadecimal friplets. The first number rep-
resents red, the second represents green, and the third repre-
sents blue.

For example, #FFO000 will be red because all the bits are on for
the first number and off for the other fwo numbers. Each group-
ing contains a value from O to 255, so red would be FF (full red),
00 (no green), and 00 (no blue).

colors that work well with the base color. You then adjust brightness,
saturation, and contrast to create the right mix of colors. That might
sound hard, but it’'s much simpler than you’d think thanks to the exis-
tence of some great software tools.

We're using color theory to build our color palette when we use this
method. We're not relying on intuition as much as algorithms and rules.
This is a good method to start with if you don’t think you're artistically
inclined. It’s also the method I use when I don’t have any photos for
inspiration and I just need a quick color scheme.

When we write programs, we tend to use things like IDEs to make our
jobs as programmers much easier. You could write code by hand using
Notepad, but that’s just crazy when you're working on large projects.
Along the same lines, you could get out a color wheel and develop a
scheme manually, or you could use some color tools to help you define
a scheme.

You can find a lot of tools on the Web that will help you build color
schemes, but in my opinion none of them even comes close to Col-
orSchemeDesigner.com.® It provides an interface for you to build a
scheme quickly and save the output to various formats, including a
Photoshop color palette. Pull that site up in your browser now.

Choosing a Color Wheel

Take a look at Figure 3.10, on page 50, which shows the traditional
RYB color wheel on the left and the additive, or RGB color wheel, on

3. http://www.colorschemedesigner.com/

BUILDING COLOR SCHEMES <« 49

()

Macs and Color

PC monitors tend to default to a 2.2 gamma, while Mac mon-
itors have traditionally used a gamma of 1.8. This difference in
gamma can cause colors to look more washed out on a Mac.
However, beginning with Snow Leopard, Mac monitors are set
to use the same default gamma setting as a PC monitor. If you
are using an earlier release of Mac OS X, you should consider
altering your gamma settings to the 2.2 default using the Display
properties in System Preferences.

Even with this change, you should definitely test your colors on
both types of systems to make sure that your colors aren’t too
washed out or too saturated.

the right. When designing a scheme, you need to choose which wheel
you want to use. Can you see the difference?

The complementary colors on these wheels are different! If you devel-
oped a complementary scheme using the RYB wheel with a base color
of yellow, the complement would be purple. If you used the RGB wheel,
yellow’s complement would be blue. This difference can be a big source
of frustration to developers and designers, especially if they fail to real-
ize the difference between the two wheels or, worse, use them inter-
changeably.

Designers argue quite a bit about which one you should use when
developing your own color scheme. Some believe that the color schemes
created with the RYB wheel are more pleasing to the eye because this is
the color wheel used by painters and traditional designers, so it’'s more
familiar. Others believe that you should use the RGB wheel to display
web pages because the colors on this wheel display more accurately on
a computer screen.

So, which wheel do you use? The simple answer is that it doesn’t matter
too much for web design if you choose your colors using a color wheel
that’s on your screen. The schemes you saw earlier in this chapter were
all developed using the RYB color wheel, but you’d still get great results
using the RGB wheel. Even web-based color tools differ on which color
wheel to use. The color picker from ColorSchemeDesigner.com, which
we’ll use to create our site, uses the RYB color wheel; Adobe Kuler uses

BUILDING COLOR SCHEMES <« 50

O

Figure 3.10: RYB and RGB color wheels

the RGB wheel. Feel free to experiment, but when you pick one, use it
consistently across the site!

Building a Scheme

If you're new to building color schemes, you might wonder what color
you should use as your starting point. You can begin by using the asso-
ciations you learned about in Section 3.3, Evoking Emotion with Color,
on page 37. When you think about food, consider what colors naturally
come to mind: oranges, greens, reds, and yellows. Let’s start by using
a variant of yellow for the base color.

You can control the base color for the scheme by selecting a point on
the color wheel on the left side of the interface. As you select a color,
you’ll notice that the color squares on the right side change, giving you
a rough idea of how colors within the scheme work together.

If you already know the hex code of the color you want to use, you can
set it manually by clicking the RGB color code on the lower-right corner
of the wheel and entering the code into the dialog box that appears. This
is useful if you've selected a base color from another source, such as
a photograph or a web page, and you want to build a scheme quickly
from that.* We'll use a base color of #FFE500 for this scheme, which is

4. There’s a little bit of color conversion that happens here because you can’t convert
RGB color codes to RYB colors with absolute accuracy; however, these “RYB” colors are
rendered on the screen and not on paper, so you’ll hardly notice the color conversion.

BUILDING COLOR SCHEMES <« 51

an orange-yellow color. Feel free to build your own scheme or to follow
along with my colors by entering that hex code into the wheel.

Green, yellow, and orange are adjacent to each other on the color wheel.
As you learned earlier, you can use the analogous color scheme to build
a theme around adjacent colors. One of the nicer benefits of using the
analogous color scheme is that it helps you build a scheme that adheres
to the aforementioned three-color rule. Change the scheme from Mono
to Analogic, which gives a color scheme composed of various shades of
yellow, orange, and green.

The adjacent colors are, by default, 30 degrees away from the base color
on the wheel; however, you can adjust this angle by dragging one of the
adjacent colors closer or farther away. The larger the angle, the more
contrast you’ll see between your colors. Experiment with the angles if
you're having a difficult time finding just the right color to grab the
attention of your users.

You should also adjust the saturation and brightness here, so you can
see how it affects the entire scheme. By default, this color picker selects
various levels of brightness and saturation. You can modify this by
selecting the Adjust Scheme tab. Move the sliders around, or play with
any of the default color options. Remember that reducing saturation
washes out your colors, and reducing brightness makes them darker.
Any variation of saturation or brightness for a given hue is fair game
for use in your scheme from a technical standpoint.

You can see an example of this in Figure 3.11, on the following page.

You might want to adjust a color scheme a bit if something doesn’t look
right to you. You don’t want to rely entirely on the computer to pick your
colors, just as you wouldn’'t want to rely completely on autogenerated
code in one of your applications.

Once you finish playing around with the various color options, you
should save the scheme so you can refer to it later when it comes time
to decide how you want to use these colors in your design.

Select the Export tab of the color picker, and choose one of the export
options. I recommend selecting ACO (Photoshop Palette) so you can use
these colors as swatches when you do your mock-ups.®

5. The Photoshop ACO file I wused is also available for download at
http://www.webdesignfordevelopers.com/colors/.

BUILDING COLOR SCHEMES <« 52

FFES00

Figure 3.11: The ColorSchemeDesigner.com color picker, using an anal-
ogous color scheme

Each scheme has a URL associated with it so you can return to the
scheme later. If you want to use the colors I chose for the book’s exam-
ple, you can grab them from the ColorSchemeDesigner.com website.®
Of course, you can also just refer to Figure 3.18, on page 61.

Further Exploration with Adobe Kuler

If you want to use a color picker that relies on the RGB color wheel
to build schemes, you should give Adobe Kuler a look.” Using Kuler,
you can select a base color, choose a color scheme, and then have
Kuler generate a five-color palette for your site. You can then adjust
the brightness and saturation for each color in the palette. Finally, you
can save your palette for later use, or you can share it with others.

Note that you can find other tools online for building color palettes for
your site. Before proceeding to the next step, let’s look at the other
approach to choosing a color scheme: the natural method.

6. http://colorschemedesigner.com/#1C51Tyi----- y
7. http://kuler.adobe.com

BUILDING COLOR SCHEMES <« 53

. kuler

Create Select a Rule

From a Color

Figure 3.12: Using Adobe Kuler to pick colors

Selecting Colors Using the Natural Method

Color theory is great, but sometimes you end up with colors that look
too dull or too technical. The natural method of color selection, or
matching, is a popular alternative in which you develop a color scheme
by selecting colors from various sections of some reference material,
usually a photograph. You can get some great results from this method,
but it relies on having the right photograph or inspiration. It also helps
to be familiar with color theory so you can comfortably make adjust-
ments to your scheme. It does take more time and planning to make
it look just right because it’s really easy to select bad or inappropriate
colors from the source image.

The biggest strength of the natural method is that you're working with
nature itself. If you're working with a photograph of food, the colors in
that picture already work together. People’s minds don’t have a hard
time interpreting the colors of nature. Green grass and blue skies go
together. The next time you go outside, take a careful look at the colors
that make up your front yard.

BUILDING COLOR SCHEMES <« 54

w Joe Asks...

J

= What About Color-Blind Users?
It’s important to consider color-blind users when you pick your
colors, especially if you infend to use your colors to capture your
viewers’ aftention. | cover colorblindness in Section 16.2, Color-
Blind Users, on page 235. You can use the techniques outlined
there o test your color schemes. Also, the color picker we used
can simulate various types of colorblindness.

Finding Col
Grab a digital camera and go on a bit of a field trip. These

places offer a great opportunity to explore how colors work
tfogether:

e Flower gardens

Visit university campuses, public parks, and even public
botanical gardens. The abundance and variety of flowers
in these places give you the best way to explore nature’s
colors,.

e The zoo

Take some pictures of animals at the zoo. Tigers, leopards,
peacocks, and other animals are often a lot more colorful
than you think.

e A busy street

Take pictures of cars, signs, and buildings. A gray city street
often has a lot more color than you might notice on your
walk to work,

This exercise has two goails: to force yourself to look at the world
around you and to let the colors you find in nature inspire you.

BUILDING COLOR SCHEMES <« 55

Figure 3.13: Colors sampled from an image. The original image is cour-
tesy of MorgueFile (http://www.morguefile.com), and it is used in accor-
dance with that site’s terms and conditions.

Let’s go through this method so you can see how you’d apply it in a
design. I snagged an image® from MorgueFile.com, a great place to get
some free reference photographs for your compositions.®

Look at the various colors you can use in this image. You can see the
bright green and red of the strawberry, the darker colors of the blue-
berries, the light color of the crust, and even some grays you can pull
from the background of the image.

You can pull colors manually, or you can cheat and use software to
do it for you. You can see the colors I manually selected using the
Eyedropper tool in Adobe Illustrator (see Figure 3.13). Selecting colors
manually can be a frustrating process because it can be slow. First,
you first need to select the region with the Eyedropper tool, and then
you need to find out what color it selected by looking at the value of the
color in the color selection palette. Fortunately, there’s an easier way.

8. http://www.morguefile.com/archive/?display=111353

9. If you want to use an image from MorgueFile in your finished product, you need to
look at the MorgueFile licenses. Although it doesn’t explicitly say you need the photogra-
pher’s permission, it’s always a good idea contact the author of the photograph.

BUILDING COLOR SCHEMES <« 56

Figure 3.14: The picture I took for this project

Using ColorSchemer Studio to Grab a Color Palette Easily

ColorSchemer Studio has a feature called the PhotoSchemer that will
automatically build a color scheme based on a photograph you provide.
A closer examination of the colors available in the picture of strawber-
ries reveals that the picture contains too much red. It might be better
to try to find something with more yellows and oranges because those
colors are less harsh. This time, I went out and took my own photo-
graph of some grapes, cheese, and carrots. The green grapes and the
yellow and cream colors of the cheese might help us create a very nice
color scheme for our site.

Visit this site!© to bring up the image shown in Figure 3.14. Right-click
the image, choose the Save Image As option, and then save the image
to your desktop so it’s easy to find.

Now you’re ready to try the PhotoSchemer feature in ColorSchemer
Studio:

1. Launch ColorSchemer Studio, and then click the QuickPreview

button in the toolbar (or press +®).

10. http://www.webdesignfordevelopers.com/files/color/grapes_cheese_carrots.jog

BUILDING COLOR SCHEMES <« 57

2. Click the PhotoSchemer icon in the toolbar (or press +@) to
bring up the PhotoSchemer.

3. Click the Open button, and load the photo you downloaded. Photo-
Schemer displays the image and shows you a color scheme made
up of four colors.

4. You can drag each of the color squares to a region in the Quick-
Preview window to see how it would look as a color scheme. You
can also increase the number of color points on the image to as
many as nine.

You can manually adjust the selected colors as well. Move around
each of the selection points that each color box points to, and the
color in the color box will change.

5. Play around with the color scheme a bit until you find a combina-
tion that works well for you. Remember to use what you learned
about color contrast to select the color scheme. You can see mine
by looking at Figure 3.15, on the next page.

6. When you have colors that you like, click the Add to Favorites
button. This adds your colors to the ColorSchemer Studio main
window (see Figure 3.16, on page 59).

7. Select View > Color Wheel Mode, and make sure that you see a
check mark next to the Computer Color Wheel (RGB) option. This
will ensure that the appropriate color codes are created for you.

At this point, you should have all the colors and their HTML color codes
on the screen. You can copy these to your clipboard, or you can use
ColorSchemer Studio to help you build additional schemes based on
that color. For now, save the color scheme by selecting File > Save so
you can use it later.

Combining the Natural and Technical Methods

You can combine both of these methods to build a nice color scheme.
Use ColorSchemer Studio to snag a color off an image, and use that
color as the base color for your color scheme either in ColorSchemer
Studio or in one of the online tools. It so happens that Adobe Kuler
can extract colors from any image you upload; you can then tweak
those colors to build a scheme. You can see this feature in action in
Figure 3.17, on page 60.

CHOOSING YOUR SCHEME <« 58

‘wg Color Schemier Studie - [untitled]

File Edit Adiust Tools Miew Helo

) Cpen... | [2] Mossic Made | Raridornize! B Add to Favs | # Colors: |ﬁ Vl

I_ e : ol—
H BE B
- - [. ke Body Header

) ‘ This is the rmain text of
» nlc 3 the body of your page.

m|E

L

| Drag 2 Drop colors to QuickPreview (right-click colars for options)

Figure 3.15: Using ColorSchemer Studio’s PhotoSchemer to snag colors
from a photograph

This is a more experimental way of developing a color scheme because
the end result could be many times removed from the original color you
chose. The more you practice, the better youll get. Eventually, you’ll
start to rely less on your tools and more on your intuition.

3.7 Choosing Your Scheme

You've seen that you can easily and successfully follow two paths to
create a color scheme for a site. Now you have to choose one of these
approaches before you can start working on the digital mock-up. In this
case, I think the brighter scheme created by the technical method works
best, so that's the one we’ll use in the rest of this book’s examples.
Before you can move on, you need to make some decisions about how
you will use these colors on your site.

Foreground and Background Colors

You must choose the color of your links and text carefully for them to
be readable. Foreground and background colors should contrast with
each other. If you have a dark background, you need to pick a light
foreground. If you have a light background color, choose dark colors
for your text. The more contrast you have between your foreground

CHOOSING YOUR SCHEME <« 59

Mg Color Schemer Studio - [untitled] o] s
File Edit Adjust Tools: YWiew Help
= TN A = : e
OB Rh-0 | /[FuwEl% atory: €8 o [#eooor 3]
| | Baze Color T2 | Matching Colors = | 8 | Favoribe Colors - 14 -
F
[1 . H7FES3F »
Web Page Header
R 1§ FER Link 1 Use the style changer #DBDCES r
- Link 2 belowto change the
5 L" I231 Link 3 suggested scheme style! =
i
B I —1 fos m | #A09F33 b
acjustazolor
S] |44 L,
= HIBT AdE k
L _—‘l |3;-' | .‘
Increrment: C‘.l @ 'ﬁ' -i}
. HEDEVD1 F
Zelect Suggested Color Scherme Shyle:
HEX Yalue: # iEDE?Dl i %
|E; Analogous-based j @
. Hiydgah] k
£ Base color is not websafe, W ozl g ous-based ol G
% Monochramatic [light] ponrs
T3 Manochromatic [dark] | BEERACE b ;"
% Monochromatic [ruted] =
T3 Wibrant L]ﬂ"'ﬁ'l
HA
RiGB: 237.231.208 | HE: #EDE] - Muted
e Complex i —
"2 Minimalistic - h

Figure 3.16: ColorSchemer Studio lets you build on top of the colors
you picked. Experiment with the various options—you can create new
schemes using any of the colors you picked as the new base color.

and background colors, the easier your users will find it to read your
content.

Remember that your ultimate goal is to make a website that's useful.
If you choose a foreground color that’s too similar to your background
color, your users are going to hit that Back button. You've spent a con-
siderable amount of time looking at color, so don’t forget to think about
this last step.

Links

You should make your links a different color than the rest of your text
to help them stand out. You need to think about the color of your links,
as well as the colors of the various types of link states: visited links,

CHOOSING YOUR SCHEME <« 60

. kuler

Create

From an Image

Selecta Mood

Figure 3.17: Using Adobe Kuler with images

active links, and maybe even hovered links, where the color of the link
changes when the user places the mouse pointer on the link.

Your choices for link colors are somewhat constrained when you use an
analogous or monochromatic color scheme. A very effective approach to
choosing link colors is to use brightness and contrast to differentiate
between links your users have seen and links they have yet to see.
For example, you can make the links they've visited look more faded
out. This helps make new links stand out better—just be sure that
you make the contrast obvious enough that your users can tell the
difference.

You can see the colors that I'll be using throughout the rest of the tuto-
rial in Figure 3.18, on the following page. If you're feeling adventurous,
you could create your own chart like this and use your own colors. Ulti-
mately, you want to have some way to keep track of the colors you plan
to use for each section. You will need to look those colors up when you
do your mock-up and then repeat that step when you create your style
sheets.

SUMMARY < 61

3.8

Header #FFE500

Sidebar #FFDD7F

Main #FFF8E4

Heading #414D00 |}
Text #000000 |

Links #4D3900 i
Visited Links #806F40 [

Hover Links #807940 [

Figure 3.18: I'll be using these colors for this book’s examples. You
should experiment and make your own choices.

Summary

In this chapter, you learned about how color works, how you can use
it to evoke emotion, and how to design color schemes for websites. You
now have colors you can use for your project, and you could start devel-
oping the mock-up now. Before you do that, however, you should learn
a bit about typography and fonts. You want to make sure this mock-up
looks as nice as reasonably possible before you show it to the stake-
holders.

4.1

Chapter 4

You can find tons of huge books devoted to the subject of typography.
It's complicated and deep, and people spend their entire lives studying
it. Not us, though: we have websites to build and programs to write! So,
let’s go over the basics of typography and how we can use those basic
concepts not only to choose fonts for Foodbox but to improve the flow
and readability of our sites.

Typography is much more than the art of picking fonts; it's about mak-
ing your content readable. Your text is a central part of your appli-
cation’s user interface, so the needs of your Ul should influence your
decisions about font face, size, and spacing. The role of a traditional
typographer is to make the text as easy to read as possible, applying
the various rules of typography to the design. If you’ve made your text
unreadable, you've failed as a designer, no matter how nice the rest of
the page looks.

Font Anatomy

It’s easier to pick a good, readable font if you understand the basic ele-
ments of a font. You can find thousands of fonts out there to choose
from, but not all of them are good choices. Some fonts work well for
headlines or poster work, while others work better for long text
passages.

All characters of a font rest on a baseline (see Figure 4.1, on the next
page). The height of the lowercase x is traditionally used to define a
mean line for the font. The distance between the mean line and the
baseline is referred to as the x-height of the font.

FonT TYPES <«d 63

4.2

Ascender

Mean line /
/// - -
A
A

Base line
\ Descender

Figure 4.1: The parts of a font

A font has a large x-height if the lowercase x is relatively tall when
compared to its uppercase X. Many designers believe that fonts with
large x-heights are easier to read because some letters are easier to
distinguish. However, you have to be careful. If you choose a font with
an extremely large x-height, the words themselves can become harder
to read because such a font can resemble text written in all capital let-
ters. It’'s much easier to read a sentence composed of mixed-case letters
THAN A SENTENCE COMPOSED ENTIRELY OF CAPITAL LETTERS.

Lowercase letters of a font, such as q and p, have descenders that
drop below the baseline. Some lowercase letters, such as f and d, have
ascenders that cross the x-height of the font. Descenders and ascen-
ders can affect the readability of your text because they can interfere
or overlap with text on other lines.

Font Types

We can focus on three types of fonts as web developers: serif fonts,
sans-serif fonts, and fixed-width (monospaced) fonts. Each type has
advantages and disadvantages that you need to consider as part of your
website design. Like everything else in programming and design, these
fonts are tools in your toolbox, to be used at the right time for the
right job.

Serif Fonts

Serif fonts are easily identified by the tails, or serifs, on the letters
(see Figure 4.2, on the following page). Serif characters can have wide
strokes at the ends or bottoms but have thinner strokes in the middle
or edges.

FoNT TYPES < 64

hello

Figure 4.2: Example of a serif font

Times New Roman, the default font used in Microsoft Internet Explorer
and Microsoft Word, is a good example of a serif font. However, that font
was designed for print, and it is a poor choice for use on a computer
screen.

One of the chief problems with serif fonts is that the thin strokes in their
letters can make them difficult to read on a computer screen, especially
if you use a smaller font size. Keep in mind that this runs counter to
the rules for printed typography, where a serif font is considered much
easier to read.

Serif fonts look great for headings, logos, and other large-print portions
of sites. Serif fonts are often associated with elegance and prestige.

Dyslexic users might find it easier to read printed content in serif fonts
because of the uniqueness of the characters in the font.

Sans-Serif Fonts

Sans-serif fonts are fonts in which the stroke of the font is constant
throughout each character. Literally, they are fonts “without serifs.”
Arial and Helvetica are well-known examples of this type of font, as is
Verdana (see Figure 4.3, on the next page).

Sans-serif fonts are easy to read on the screen, so they make a great
choice for your website’s main content. You can read sans-serif fonts
even at very small sizes.

DEALING WITH FONT LIMITATIONS <« 65

hello

ho

Figure 4.3: Example of a sans-serif font

Fixed-Width or Monospaced Fonts

Fixed-width fonts, such as Courier, are fonts in which each charac-
ter has the same amount of spacing, regardless of how wide the letter
typically is. For example, i and w differ significantly in width in a sans-
serif font, but these characters take up the same amount of horizontal
space in a fixed-width font. These types of fonts are great when display-
ing things such as source code or text-based invoices that will be sent
in a text-only email.

For example, take a look at the pair of invoices displayed using Myriad
Pro, a serif font, and the same invoice using Courier New, a fixed-width
font (see Figure 4.4, on the following page). Notice how the fixed-width
font makes the invoice easier to read because each character (including
the spaces) has the same spacing and width, so everything lines up
properly. Specifically, look at how neatly the columns in the fixed-width
invoice line up.

4.3 Deadling with Font Limitations

Standard fonts such as Arial and Times New Roman are used every-
where, so many designers like to use unique fonts in their web designs.
The biggest problem with fonts on the Web is that they are not always
available on every computer. A lot of programs such as Adobe Illus-
trator, Adobe Photoshop, and even Microsoft Word come with a ton of

DEALING WITH FONT LIMITATIONS <d 66

Thank you for your order! Thank you for your order!
Item Qty Price Item oty Price
Novelty Flying Disc 1 $5.00 Novelty Flying Disc 1 $5.00
Adhesive Bandages 2 $3.00 Adhesive Bandages 2 $3.00
Subtotal: $8.00 Subtotal: $8.00
Tax: $0.00 Tax: $0.00
Shipping: $5.00 Shipping: $5.00
Total: $13.00 Total: $13.00

Figure 4.4: An emalil invoice formatted with Myriad Pro (left) and
Courier New (right)

fonts. You could use any of these fonts in your web design, only to find
out that your users don’t have those fonts installed.

Web-Safe Fonts

It turns out that web-safe fonts don’t truly exist. Microsoft has outlined
five fonts—the Microsoft Web Fonts—that are available on the widest
range of computers (see Figure 4.5, on the next page). If you stick with
one of these, you have tighter control over how you present your con-
tent, but even then you have no guarantee that your users will have
them.

The five Microsoft Web Fonts aren’t terrible, but they're not original,
and they can be quite boring. They're overused. Many websites use
Verdana and Arial as their “standard” fonts because they work almost
everywhere.

What it all comes down to is this: you have a basic guarantee that every
system will have a serif font, a sans-serif font, and a monospaced font,
and the operating system will define which system font is associated
with those families by default. However, you have a couple of strategies
you can employ to get around these limitations and gain some more
control.

Image Replacement

Designers often create an image that contains the text rendered in the
font. You see this most often with a company logo or section headings.
A lot of designers do their mock-ups in Photoshop or Illustrator, so this
is something you're likely to encounter.

DEALING WITH FONT LIMITATIONS <« 67

Arial

Courler New
Georgla

Times New Roman
Verdana

Figure 4.5: Web-safe fonts

It's perfectly acceptable to use images of fonts for headings, but it's
also important not to abuse this technique just because you want to
ensure that your fonts look the same on all browsers. If you just take
a Photoshop document and slice it up for use on the Web, you’re going
to create a whole bunch of additional problems. First, your page will
take significantly longer to download because of the size of the images.
Second, and more important, your page might no longer be accessible
by blind users, who rely on screen readers to speak the on-screen text.!
These screen readers aren’t capable of reading text embedded in an
image. For more information on this topic, consult Section 16.1, What
Does Accessibility Mean to You?, on page 229.

For Foodbox, we'll use a technique known as the cover-up method,
a type of image replacement where we overlay text on the page with
images using CSS. This allows us to create something with style that
will still be accessible and will retain the same look across different
platforms.

1. Using the alt attribute can help some, but it’s not useful for large blocks of text. You're
better off avoiding images for large blocks of text.

DEALING WITH FONT LIMITATIONS < 68

Defining Fallback Fonts with Font Stacks

Another approach that allows you to control the fonts your users see
is to define your special font and then define fonts that should be sub-
stituted in case your user doesn’t have your preferred font installed. A
typical CSS style for selecting a font looks like this:

body{
font-family: Helvetica

}

This snippet defines the font as Helvetica, a sans-serif font that's com-
mon on Mac OS X. The problem is that Microsoft Windows systems
don’t have this font by default. When a browser reads this style defini-
tion on a Windows machine, it will attempt to load up the Helvetica font,
which doesn’t exist. It will then give up and use the browser’s default
font, Times New Roman—a serif font.

The difference between these two fonts is huge, not only because of
the serif vs. sans-serif issue but also because their basic font sizes
are slightly different. Letter widths and heights are slightly larger in
Helvetica, so the text on the page might not wrap the same way.

To solve this, you define fallback fonts that the browser can use if the
first font isn’t found. You can define multiple fallback fonts, so it’s not
uncommon to see a style definition like this one:

body{
font-family: Helvetica, Arial, sans-serif

}

This definition instructs the browser to first try Helvetica, then Arial,
and then to use the default system sans-serif font if it doesn’t find
either Helvetica or Arial. This isn’t a perfect solution, but it works great
for most cases. Many people refer to these as font stacks.

Choosing Fallback Fonts

Knowing how to structure your font stack is more important than
knowing how to use the font stack itself. Your fallback fonts should
be similar to your preferred font. For example, Arial and Verdana are
both sans-serif fonts, but Verdana is a bit wider. Geneva would be a
better fallback choice.

When building a stack, go from most specific to least specific. Choose
your desired font first, then find a suitable replacement that is close
enough to make you comfortable. The fonts should be similar in height,
width, x-height, descender height, and ascender height—this ensures

SELECTING OUR FonTs <« 69

4.4

that your layout isn’t thrown off too much when a substitution must
be made. Next, specify one of the web-safe fonts that’s close in width
to your preferred font. Finally, specify one of the default font families
provided by CSS (serif, sans-serif, monospaced, cursive, and fantasy). The
CSS families defer to the browser, which renders the font like this:
p{font-family: Trebuchet, Lucida Sans, Arial, sans-serif;}

hl{font-family:Verdana,Geneva,sans-serif;}
h2{font-family: Baskerville, Times New Roman, Times, serif }

The Unit Interactive blog has a great post? on font stacks and provides
some nice examples.

Selecting Our Fonts

Selecting effective fonts for our site requires that we first think about
our site’s content. Our site will contain recipes, so we want to make
sure that we provide a font that’s easy to read and won’t be confusing
to our readers. It might not make sense for the entire site to use the
same font. We might use a different font for things like the navigation
menu, the section and page headings, and other areas. We definitely
don’t want to create a “font soup,” so the best idea would be to keep
the maximum number of fonts on a page to two, not counting the site’s
logo. We will use one font for content and a second font for headings.

Content Font

Most designers find that sans-serif fonts are good choices for content.
Although some letters can be more difficult to distinguish individually,
the complete words will stand out better on most monitors.

The majority of websites use Arial as the font, with a fallback to Hel-
vetica. Some designers love to use Verdana. It's a wider font, so it tends
to fill out space a little better than Arial. However, you should avoid
using it for situations where you will need an extremely small font.
Verdana gets hard to read if you go below 10px.3

Heading Fonts

When it comes to headings, you want to use something that grabs the
user’s attention. Typically you'll use a larger font size for your headings.

2. http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/
3. Please, please, please don’t go below 10px for any font. There’s just no reason to go
that small. It’s awful to read.

SELECTING OUR FonTs <« 70

@font-face
In the not-so-distant future, you’ll be able to link fonts to your
pages using @font-face. Unfortunately, support is weak in older
browsers. Firefox 3.5 and Safari 4 support @font-face, but previ-
ous versions do not. Internet Explorer has supported @font-face

for along time, even on |E 6, but IE requires you to convert fonts
to its own proprietary format.

But very soon, you'll be defining your fonts like this:

@font-face {

font-family: "YourFont";

src: url(/fonts/yourfont.ttf) format("truetype");
}

hl { font-family: "YourFont", sans-serif }

This approach is extremely flexible and easy to implement,
except for one catch: most fonts, like photographs, need to be
licensed for use like this. They have a copyright, and you have
fo respectit. Unlike using a font in an image or embedding itin a
Flash movie, you're actually distributing the font here, because
the client’s browser needs to download it.

Thankfully, services like Typekit* are working with font creators
and publishers to provide a solution to the licensing issue. Type-
kit, for example, hosts fonts for you and serves them from its
servers, and you simply include a snippet of JavaScript on your
page tied to your Typekit account. So, although we‘re not quite
ready to push ahead with this fechnique, it’s something you
should keep your eye on, because it will greatly simplify the
process.

*, http://typekit.com

USING THE BASELINE GRID < 71

4.5

The quick brown fox

Figure 4.6: Monotype Corsiva, an elegant font for headlines

Some designers prefer to use a bolder variant of the font for headings,
while some designers use a different font altogether, which can spice
up a content-heavy site.

When choosing a heading font, you should be careful to ensure that
your users can read the font easily. It's easy to choose a font that’s
fancy and elegant, but you should ask yourself if it's going to be easy
for your users to identify different sections on your site.

Heading fonts are typically larger than fonts used for the site’s content,
so you can get away with using a serif font for your headings. You could
exploit this to add a touch of elegance to your page.

I'm going to use the Monotype Corsiva font,* which you can see in Fig-
ure 4.6. It's a good-looking script font for our headings. This is a non-
standard font, but it’s used only for headings, so we’ll create images of
our headings and use image replacement to display them on the page.
I'll provide more detail on how to do this later.

Using the Baseline Grid

Creating a fluid body of text is incredibly important to effective content
delivery. Text should flow around images and other elements, columns
should line up, and lines shouldn’t break in weird places. Most novice
web developers let the browser’s default settings dictate the way the
text flows, but you can get a much cleaner look if you take some time
to figure out a few things before you start.

4. If you have a Microsoft Office product installed, there’s a good chance you
have this font. If you don’t have it on your system, you can purchase it at
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1009 or, even better, choose a dif-
ferent font.

Welcome

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse

USING THE BASELINE GRID d 72

News

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do einsmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullameo laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore en
fugiat nulla pariatur. Exceptenr sint occaccat cupidatat non proident, sunt in culpa
qui officia deserunt mallit anim id est laborum.

Events

Onee upon a time there was a small town.

cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. sed do cinsmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip cx ea commodo consequat.
Dhuis aute irure dolor in reprehendernit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaccat cupidatat non proident. sunt in culpa
qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet,

r consectetur adipisicing elit, sed do
efusmod tempor incididunt ut
labore et dolore magna aliqua. Ut
enim ad minim veniam, quis

nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

Figure 4.7: Notice how the columns don’t line up when you don’t
account for line spacing.

The baseline grid is a vertical grid, or several horizontal lines on top of
each other, that supports the font characters in a composition. The dis-
tance between the horizontal gridlines becomes your unit of measure,
and each line on the grid becomes the baseline for your fonts.

The horizontal lines on the baseline grid function like the ruled lines
of paper in a notebook. The lines keep the text constrained and evenly
spaced throughout the page. To keep the text flowing correctly across
columns and around images, you want to make all your images and
other assets line up on the horizontal gridlines. The height of each
image you use should be evenly divisible by the amount of space be-
tween each line on the grid. When everything adheres to the grid, text
automatically flows around images, columns of text line up evenly, and
everything ends up being much easier to read.

You can see how much elegance the baseline grid can add by compar-
ing a layout that doesn’t use it (see Figure 4.7) to one that does (see
Figure 4.8, on the next page).

Leading

Leading refers to the amount of vertical space between the lines. It's
often called line spacing or line-height in CSS. White space between
lines makes it easier for a reader’s eyes to follow the line. This is also
the key ingredient to building our grid. The value we choose for our
leading is the value we’ll use for our vertical spacing. Everything we

Welcome

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in

USING THE

News

Lorem ipsum dolor sit amet. consectetur adipisicing elit, sed do ciusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi vt aliquip ex ea commodo consequat.
[Mis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore en
fugiat nulla pariatur. Excepteur sint occaccat cupidatat non proident, sunt in culpa

qui officia deserunt mollit anim id est laboram.
Events
Once upon a time there was a small town .

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullameco laboris nisi ut aliquip ex ea commeodo consequat.
Dhuis avte irure dolor in reprehenderit in voluptate velit esse cillum dolore en
fugiat nulla pariatur. Excepteur sint occaccat cupidatat non proident, sunt in culpa

qui officia deserunt mollit anim id est laborum.

BASELINE GRID <d 73

voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

Figure 4.8: You can use the baseline grid to make your text line up
across columns.

add to our page will need to be evenly divisible by this number so that
everything falls on a gridline.

Units of Measure

The grid is based on the line-height of your text, which is the distance
between baselines of each line of text. If you choose a line-height of
18px, your text should align to a grid that has lines every 18px.

When we define our base font size for the baseline grid, we’ll use pixels.
This means we’ll be using an exact measurement. Some web developers
argue that when you use pixel-based font sizes, users can’t resize the
text. This is only partly true: older browsers don’t support resizing text
defined as pixels, but most modern browsers allow you to resize the
text, as well as the line-height.

We could spend time figuring out the appropriate base font and doing
all the math to compute line-heights, margins, and other elements—
and we’d still be at the mercy of the browsers because they’re going to
round values differently anyway. A simple online search will return lots
of information about how to do relative font sizing, but even if you find
a solution that seems perfect, your image heights and widths are still
measured in pixels, so you have to come up with hacks to resize those
as well.

USING THE BASELINE GRID <« 74

()

Vf Joe Asks...

2 f
_—__Every Aricle | Read Says That You Should Let People Scale

Fonts. Are You Sure You’re Giving Good Advice?

| mentioned briefly in the introduction to this book that | was
born with congenital cataracts, and | have extremely low vision
because of if. I've dealt with small fonts on the Web for a long
fime, and |I've had fo use lots of sites created by well-meaning
developers who cargo-culted best practices from “accessibil-
ity experts” without actually testing them. Low-vision users use
assistive devices such as full-screen zoom tools like ZoomText or
the ones found in Windows 7 and Mac OS X. When they open
a Word document, they use the zoom tools there—they don’t
resize the fonfs on the page. A browser should be no different,
especially now that all the major browsers allow full-page
zooming.

In 2001, it made sense for developers to jump through hoops
to make things work for low-vision users. Hacking images to
expand via CSS and JavaScript while providing scalable fonts is
pointless now that the browsers have caught up.

Relative fonts used to be hailed as an accessibility feature for the visu-
ally impaired because the user could increase the font size using the
web browser. However, it made things worse because images didn’t
resize with the fonts, causing strange page flows and readability prob-
lems. Thankfully, there’s a better solution now.

Microsoft Word and Adobe Acrobat both let readers zoom in to read the
text while preserving the layout, regardless of what unit of measure the
author used to render the fonts. This approach is now supported by the
major browsers. We’ll talk more about accessibility for low-vision users
in Section 16.2, People with Visual Impairments, on page 236.

Choosing Fonts for Foodbox

You have to start with a base font size to build your grid. For this design,
we’ll use a 12px font for our body text. It’s a good font size, and it’s easy

USING THE BASELINE GRID <« 75

to read on the average monitor.> You want to provide enough space
above and below the line to make it readable and not look cramped. You
also want to ensure that you don’t take up too much space between
lines of text. When choosing a line-height, choose a number that’s
evenly divisible. Let’s use a line-height of 18px because that will give
us a nice wide buffer. A good rule of thumb to follow is to take the base
font size you define and multiply it by 1.25 or 1.5. If you have a 12px
font and a line-height of 18px, you can express that as 12/18 for your
font size. This notation is popular among typographers who want to
state the font size and the line-height.

So far, we've decided on a body-text size of 12px with a line-height of
18px. To make the grid work, you must adhere to the 18px grid size for
everything you do. That means that all top and bottom margins must
be in multiples of 18px (or add up to 18px, such as 9px and 9px). Any
time you add vertical space, you must make sure that you add it in
multiples of 18px so that your page elements will line up with the grid.
When you crop a photograph, you’ll need to make your image height
some multiple of 18 or add padding using CSS to make it line up.

For subheadings, we can increase our font size to 18px, the height of
the line itself. That would look pretty nice, but we’'d also need to make
sure that we leave another 18px space below each subheading.

For our headings, we’ll double the base font, making them 24px in size.
At this point, we've exceeded the line-height of 18px, so we will need to
double the line-height for our headings to 36px to ensure that things
stay aligned.

We'll revisit the baseline grid when we start thinking about our item
placement. Our margins, borders, padding, image heights, and other
elements need to adhere to the baseline grid, or our design falls apart.

Here’s a summary of the fonts we've chosen:

Section Font Size Line Height
Headings Monotype Corsiva 24px 36px
Sidebar headings Monotype Corsiva 18px 18px
Subheading Arial 14px 18px
Body Arial 12px 18px

5. If you find that the majority of your audience is on 24-inch iMacs with the resolution
cranked all the way up, that measurement might be a tad too small for them to read. This
comes back to knowing your audience.

SUMMARY d 76

You should feel free to experiment with these settings I chose. Don'’t
just follow what I used—be creative! For example, you might try making
some adjustments to the font sizes to see how that affects the look and
feel of the layout.

4.6 Summary

Typography is an important part of good web design. Failing to think
about the fonts you’ll use and how they impact readability will make
things more difficult for people to get anything out of your content.
Defining a grid system to base your layout on will improve both the
readability and the aesthetic appeal of your site.

With our font sizes and styles in place, we can move on to building the
digital mock-up of the site. Our next task is to work on the logo for
Foodbox.

Part 11

Adding Graphics

5.1

Chapter 5

Your original sketches included a logo for Foodbox. You will often have
an existing logo that you need to re-create or tweak. Your client might
also have contracted with a third party to create a logo that you will
need to incorporate into the site. In the case of Foodbox, it is up to you
to create the logo from existing artwork because the original site doesn’t
use the logo, and there’s just no suitable digital version available. As a
guide, you can use the sketch in Figure 2.4, on page 30.

Setting Up a Working Folder

It pays to be organized in your projects. If you've ever used Ruby on
Rails, you know that a major advantage of that framework is its stan-
dard directory structure. Unfortunately, there’s no such standard avail-
able to us, but most web designers have their own way of keeping track
of things. For this project, we’ll use a simple directory structure with
places for our style sheets and our images.

Create a new folder called Foodbox. Within that folder, create three addi-
tional folders: images, stylesheets, and originals.

The originals folder will hold all your work files, such as your lllustrator
and Photoshop documents, as well as any stock or other photography
given to you by a client. The images folder will hold the images that
you’ll use directly in the web page you create. The stylesheets folder will
hold the CSS styles you will create once you build the site.

THE FoopBOX Loco <« 79

()

1/, Joe Asks...

J
_—~__Must | Have Adobe lllustrator?
Of course not. On the other hand, lllustrator is a great tool to
learn if you're looking at doing design work. It's used by print
and web designers all over the world, so learning a little about
it can only help you. Adobe makes 30-day trial versions avail-
able on ifs website, which should be more than enough to get
you through this chapter. If you want an alternative to lllustrator,
| recommend Inkscape.* The exercises in this chapter use lllus-
frator; if you use a different vector-graphics fool, you’ll have to
franslate the steps described to that environment.

%, http://www.inkscape.org/

5.2 The Foodbox Logo

When you’re doing logo work, it’s important to use a tool that supports
vector-based graphics. That way, you can scale your logo to any size
and use it not only on a website but in print media as well. The industry
standard for this is Adobe Illustrator, and we’ll use that program to re-
create this logo.

The Foodbox logo consists of four squares and the word Foodbox. The
finished logo should look like Figure 5.1, on the following page. You can
re-create this logo in only a few steps.

Open Illustrator, and create a new document. Dimensions don’t really
matter here because we'll scale it later, when we integrate it with our
Photoshop document. We’ll use Illustrator only to create a logo here, so
I won’t go into great detail about how everything works. However, I urge
you to investigate Illustrator further if you plan on doing more graphics
work, because it’'s a wonderful tool.

Let’s start with the four boxes. We need to draw a two-by-two array of
boxes with rounded corners. We can do this in a handful of steps by
drawing one box using specific dimensions and then using Illustrator
to replicate that box for us:

1. Select the Rounded Rectangle tool from Illustrator’s tool palette by
clicking and holding the Rectangle tool. This will make the other

THE FoopBOoX Loco <« 80

- foodbox

Figure 5.1: Our finished logo

shape choices fly out from the menu. Then choose the rounded
rectangle.

. On the Options toolbar, change the fill to #FCEEZ21, a yellow color,
and choose black for the stroke.

. Now, double-click the canvas. A dialog box appears, asking you
to enter the dimensions of the square. Enter 100pt for both the
height and the width. Use 12pt for the corner radius, and click OK.
You've just drawn a single square by defining its exact dimensions.

. Now, double-click the Selection tool on the tool palette. This opens
the Move or Copy dialog box.

. We want to copy the box, and we want to ensure that we have a
nice, even space between the two boxes after the copy. The box we
just made is 100 points wide. Enter 110 in the horizontal box, and
click Copy. This creates a copy of the box 110 points away from

THE FoopBOoX Loco <« 81

()

1y

~—

Joe Asks...
 f
= __Whoal! Where Did These Colors Come From?

| used variations of the colors in our Color palette. | adjusted
the saturation slightly to make the colors in the squares show
up better, and | did some test prints fo make sure that the logo
looked similar when printed.

the start of the first box, which means we now have two boxes
placed 10 points apart.

6. We'll use that same Copy command to create the other two boxes,
this time adjusting vertically rather than horizontally. Select both
boxes by drawing a box around them with the Selection tool, and
then double-click the Selection tool to open the Move or Copy dia-
log box again. This time, set the horizontal value to O and the
vertical value to 110. Click Copy, and you have your four squares,
evenly spaced.

Next, we need to apply a colored fill to each box:
1. Press to display the Color palette.

2. Select each square with the Direct Selection tool, and then double-
click the color-fill square on the Color palette to choose the color.

3. Clockwise from the top left, the box colors should be yellow
(#FCEE21), green (#C2EE21), orange (#FCBA21), and beige
(#FCEEBDY).

Now it’'s time to add some text. To make the logo look balanced, we
want to make sure that the word Foodbox is as tall as our boxes. To do
this, we’ll use guides.

Most drawing tools provide guides that you can place on your com-
position to help you align items or help you define where items in your
composition should be placed. The concept of guidelines is nothing new
to anyone who’s done design work before. We’ll use guides to align our
text quickly and easily:

1. Ensure that the rulers are showing by pressing +®.

THE FooDBOX Loco <« 82

1
F Ty '“..
o A A
Ii' !

1

o8 T - a

1

Figure 5.2: Scaling the font

2. Create a guide that touches the top of the boxes. Place the mouse
pointer anywhere on the horizontal ruler at the top of the image.
To create a new guide, press and hold the mouse button, and then
and drag it down toward the boxes. Position the guide so it touches
the top of the boxes, and then release the mouse button to place
the guide.

3. Place another guide along the bottom of the boxes. You can now
use these guides to place the text.

You should have two guides placed like the horizontal lines above and
below the boxes, as shown in Figure 5.2.

Now we need to add the text to our logo:
* Select the Text tool.

* Use the Options panel to choose Arial Black for the font style and
72pt for the font size.

* Click the canvas, and type _foodbox. Don’t worry if you didn’t place
it between the guides—we're going to move it now.

* Choose the Selection tool from the tool palette. The section you
just typed will now have resizing handles that you’ll use to scale up
text so it’'s the same size as the boxes. Hold down the key,

THE FoopBOX Loco <« 83

r

N\

Creating Out
Designers often use lllustrator’s Create Outlines command to

modify a font once it’'s been applied, but the command pro-
vides an additional advantage, as well.

When | am doing a design for a client, | ask if the client has a
logo already. If a logo exists, | fry to get a copy of it in lllustrator
or EPS format so | can scale it and manipulate it for the welb-
site. Occasionally, I'll get a logo from a designer that requires a
specific font that | must either find online for free or (more often)
pay a lot of money to use.

The solutfion to this is fo ask the original designer to create a
copy of the logo. | take that logo, use Create Outlines on any
fext in the image, and then use that. This preserves the way
the font looks, and it’s portable across platforms and operating
systems.

and drag the upper-right resizing handle on the text area until
the top of the f in foodbox touches the guide you placed. Check
to make sure that the bottom of the f also touches the guide. If
it doesn’t touch, keep resizing and repositioning until you get it.
Don’t worry about any other letters that drop below the guide; we’ll
get those next.

If you look carefully, you'll notice that a few of the letters drop below
the guide. Let’s fix that by slightly modifying the text shapes:

1. Select the text layer with the Selection tool.

2. Select Text > Create Outlines. This command turns the text object

into vector shapes. You can’t change the text anymore, but you
can use any of lllustrator’s drawing or manipulation tools on these
shapes.

. Choose the Direct Selection tool from the palette, and draw a box

around the lower half of the o. Now press the up arrow key four or
five times, until the bottom of the o touches the guide.

4. Do this with the rest of the letters that cross the bottom guide.

Finally, click the Select tool, and press + to select everything.
Hold down the key, and use the resize handles to resize the logo

5.3

WHAT IF WE NEED TO CREATE OUR OWN LoGco? <«d 84

so it is constrained within the bounding box, which is the solid black
rectangle on the background of the canvas.

Save this document as foodbox_logo.ai, and put it in the originals folder in
your project folder. We’ll need to import this into our Photoshop project
later, so when you save, make sure you select the option to create a
PDF-compatible file. If you miss this step, Photoshop won’t be able to
import the file.

Keep in mind that we used a vector-based drawing tool, so we can
use this logo for anything from coffee mugs to huge billboards. We can
resize the logo as required, without impacting its image quality.

What If We Need to Create Our Own Logo?

In this example, we had a drawing we could follow, and we were essen-
tially learning to use Illustrator to re-create that drawing. But what
kinds of things would you need to think about if you were developing a
logo for your product or business?

Think about the most successful logos today. People all over the world
recognize Coca-Cola’s logo. The Nike swoosh is pretty noticeable, too.
However, these two logos are completely different in the way they adver-
tise the products they represent.

It turns out that you can approach designing a logo much as you
approach designing a website.

People process images faster than they process sentences or tag lines,
and you want your logo to take advantage of that where you can. People
look at the Coca-Cola logo, and they don’t need to read the words;
they immediately recognize the logo and associate it with the company’s
product. This is your ultimate goal with your logo—you want your logo
to represent you and only you.

Instant recognition is achieved only through the logo’s constant and
consistent use. If you're always changing your logo, it’'s harder to gain
that brand recognition you're looking for. A logo represents you. Peo-
ple remember a logo, and having an inappropriate one will sink things
pretty quickly. The logo of a law office will be very different from the
logo of a waterslide park.

If your logo will contain words, be sure the words are readable. Use
clear typefaces that are readable at very large and very small sizes.

SUMMARY <« 85

Keep the color choices simple and safe. Use what you learned about
evoking emotion to your advantage with your logo.!

Unlike a web page, your logo might appear often in print, so test colors
on a printer from time to time to make sure that they look acceptable.
When you work on the Web, use the RBG color mode. When you're
designing anything that might end up being printed, you need to work
in the CMYK color mode. You can save your CMYK-based images to
RGB mode for use on the Web, but going the other way is extremely
difficult when it comes to matching colors.

Finally, be sure to test your logo without color. For example, does it
work when printed in black and white?

5.4 Summary

Vector-based tools such as [llustrator make it easy to build scalable and
versatile logos. The next time you need to design a logo, try some of the
techniques we explored in this chapter, such as duplication and font
manipulation. Remember to be creative. In fact, feel free to play with
the logo we created here. Make some variations. Use different shapes,
different fonts, different sizes, or different placement, or try to apply
some of the advice on logo design and create your own completely dif-
ferent logo for Foodbox.

Now it's time to tackle the next step of the process: building a color
mock-up.

1. Also, be aware of any cultural problems with your color choices. Certain colors are
offensive to certain people, so be sure you do some research.

6.1

Chapter 6

Jesion Mock-up: 1ne Structure

With our sketch and color choices in hand, we’ll use Adobe Photoshop
to mock up the front page of the Foodbox site. In this chapter, we’ll
rough out the structure of the page and set up the header and footer.
Along the way, you’ll become familiar with some of the layout options
available in Photoshop, which will help you keep your design aligned to
the grid we defined previously.

A Bit About Layers

Layers are awesome. No other word I might use can describe how great
they are. Layers allow you to create and manage a composition by let-
ting you develop your graphics in pieces. Each layer acts like a separate
document. You can cut and paste, copy, select, delete, and even apply
effects to individual layers. Layers are also transparent, so you can
use them to build up your composition in pieces. You can see how you
might combine layers in a site mock-up in Figure 6.1, on page 88.

It's common for a designer to take a photograph and then place some
text on top of that photograph in a separate layer. This way, the text
isn’t combined with the photograph, and the designer can even change
it later, provided that the original Photoshop document is still available.

When you export an image from Illustrator or Photoshop to a JPEG,
GIF, PNG, or other document, Photoshop combines, or flattens, your
layers. If you lose or delete the original document, you must start over
from scratch because you won’t be able to recover the individual lay-
ers. Many logos, buttons, and other graphical elements have to be re-
created all the time for this reason.

THE BASIC STRUCTURE <« 87

()

1y

~—

Joe Asks...
J ?
= __Must | Use Photoshop?

No, you don’t have to, but you should, for the same reasons |
outlined in the Joe Asks... on page /9. Photoshop is the indus-
fry standard for working with photographs and raster graphics.
Although it is fechnically possible to use less expensive or open
source alternatives to complete this task, | will use Photoshop in
this book’s examples.

Of course, | don’t recommend that you rush out and buy the
Adobe Creative Suite just to work with this book. Adobe pro-
vides 30-day trials that should give you enough time to follow
the examples in this book and decide if this is really something
you want to do. Once you’ve gone through the exercises with
Photoshop, it should be easy for you to do something similar in
another program.

It’s also worth noting that you don’t necessarily need the most
recent version of Photoshop to complete this book. The exam-
ples in this book should work with any recent version.

If you're sfill not convinced, grab a copy of GIMP* or Gimp-
Shop,! a modified version of GIMP that has been altered to
work more like Photoshop, and tfry to follow along with the
examples in this book.

*, hftp://www.gimp.org/downloads/
1. http://www.gimpshop.com/download.shtml

We'll be using layers extensively in both Illustrator and Photoshop;
you’ll need to save your original files for each element as you go.

6.2 The Basic Structure

Start by dividing your basic sketch for the home page into four rect-
angular regions: a block for the heading, another for the footer, and
then two more for the content columns (see Figure 6.2, on the follow-
ing page). The key here is thinking in rectangles when it comes to a
website’s structure. In fact, you should look for the rectangles in the
websites you visit every day.

THE BASIC STRUCTURE

NSRS

|\ SRR RN SRS SSSENSSSSNSW
AR R RS S R R R RIS TOREROERE,
A NSRS AN NS S SIS N SSANASSS NN
85) AR RSEI RS SE NSSSRNNSSANNN W
NSNERN S RGN NN
OPTIEIIRRETIR TR, SRR TRR I ERE SRR RN
RN NN SS NCSSRN SRR NN
R\ NSNS S S SE SR NN I SSE NS SSSSRSN
AR S S E N RS N R I N SR SN SN S S
RN ANEEENSS S SIS SN SN IS S RSN
8) S ISSNSUESS N W SN SSSSRN
ORI SR SRR TR SRtes, S

Figure 6.1: A composition made up of layers

S8 00)0oc rresno

Browse [#FFFS

#FFDD7F\

s G Imwe Poiwey By

A, ?FFE50(H

e —

Figure 6.2: Sections highlighted with a color overlay

<«

THE BASIC STRUCTURE <« 89

Screen Size

When you build a web page, you have no idea what screen size to use in
your website. The best approach you can take is to target the average
screen size first. At the time of writing, the majority of users on the Web
use a resolution of 1024 by 768, and a significant percentage use even
higher screen resolutions.?

These statistics can be misleading, though. Even if a user has a wide-
screen monitor set to a high resolution, the user might not have the
browser maximized; it could be sitting side-by-side with some other
applications. People can also use cell phones, PDAs, iPods, and even
the Nintendo Wii to browse the Web. Your site must be at least readable
on almost any display size.

Create a new document in Photoshop called foodbox_mockup that is
900px wide and 756px high, with a resolution of 72 dpi. Set the color
mode to RGB, and set the background to white. I have chosen these
dimensions because we're shooting for a target screen size of 1024 by
768, and we need to make our page narrower than that to account for
the browser’s scroll bars and to give ourselves a little breathing room
on the edges. We're going to build a fixed-width layout.

Once you create your new document, save it as foodbox_mockup.psd in
the originals folder in your project folder.

Fixed-Width Layouts

In fixed-width layouts, the page size stays the same, regardless of the
size of the browser window. Such layouts are easier to design and
implement than flexible, or liquid, layouts. Liquid layouts require a lot
more testing and often a lot more code to ensure that content is read-
able in every instance. If you neglect to take proper care with a liquid
layout, rows of text could end up being extremely long as they stretch
across the page or too narrow—in either case, your site would be hard
to read. A fixed-width layout is easy to implement in a short amount of
time.

However, different types of sites demand different types of layouts. Sites
that deal with lots of information might require a fluid site. A web-based
application that runs a business and displays a lot of data might not

1. According to http://www.w3schools.com/browsers/browsers_display.asp at the time of writ-
ing, 54% of users have monitors with the resolution set to 1024 by 768, and 26% of
users have their monitors set to even higher resolutions.

THE BASIC STRUCTURE <« 90

()

The Fold

The page dimensions | used will cause some of the page to be
displayed below fthe fold, which means that some users with
smaller monitors will have to scroll down to see the page. The
term fold comes from the print world and refers to the area
of a newspaper that you would see on the newsstand before
you had a chance to unfold the paper. In theory, you want to
display as much of your site’s important information above the
fold as possible. However, that theory doesn’t hold completely
frue anymore. Although people don’t enjoy having to scroll hor-
izontally to see more content, most users are used to scrolling
downward. If you can structure your page so that it’s evident
to your users that they need to scroll down for more content,
they certainly will.

work well on a constrained layout. You need to evaluate your situation
and design a layout to fit your specific needs, rather than following a
trend or reusing the same template for every site you build.

Setting Up the Grid

We covered some details of working on a grid when we discussed basic
typography in Section 4.5, Using the Baseline Grid, on page 71. It so
happens that we can make Photoshop show us a grid on top of our
canvas, and we can use that grid to line up our elements, including
text. The default grid settings won’t work for what we want to do, so
we’ll need to make a couple of minor adjustments.

Begin by changing the units for the rulers topx using Edit > Preferences
> Units and Rulers. Next, set the value for Gridlines Every to 18px
with one subdivision using Edit > Preferences > Guides, Slices, and
Count. This displays a grid that will serve as your guide throughout the
upcoming chapters. The distance between the gridlines is 18px, which
is the same size as your line-height for your fonts. While you're in the
grid settings, set the color of the gridlines to something obnoxious, such
as a bright lime green or another color that is completely different from
any color you plan to use in your composition. This will make the grid
stand out more once you start adding more elements.

THE BASIC STRUCTURE <« 91

In a default Photoshop workspace, the grid and rulers are not enabled.
Toggle the rulers on by pressing +®, and toggle the grid on with

CertH().

Defining Regions with Guides

When you designed the logo, you learned how to use guides to help you
line up the text of the logo with the four boxes. You'll find it helpful to
divide this composition into its various sections using guides so that
you can easily draw and line up elements.

We’ll use the Rectangle Shape tool to draw the various sections of our
page, as outlined by our sketch. We'll start with the header and footer.
In this exercise, you will make the header and footer the same color,
but you should feel free to experiment.

We'll define our header and footer heights first. Our header should be
tall enough to show our logo clearly. The footer doesn’t need to be as
high because it will show a copyright statement and the terms of service
for the site. When we define the vertical heights for these regions, we
should think about the baseline grid again. We decided on a unit of
18px for our grid, so the height of our header and footer should divide
evenly by 18. Let’s try values of 108px high for the header and 54px for
the footer.

To place the guide for the header, place the mouse pointer anywhere
along the horizontal ruler at the top of your composition. Click and
drag downward to the 108px mark of the ruler on the side. Release the
mouse button to place the guide. Place another guide at 702px for the
footer.

The sidebar should be wide enough to include the recipe search form
and the tag cloud. Try making the sidebar 306px wide. You can always
adjust it later. Place the mouse pointer anywhere along the vertical ruler
on the left side of the composition. Click and drag to the right until you
reach the 306px mark on the ruler along the top. Release the mouse
button to place that guide.

We now have all four regions defined by guides, as shown in Figure 6.3,
on the following page. We can now fill them in with rectangular shapes.
Notice that the borders of all four sections fall on gridlines. We’'ve now
defined all four regions; we’ll spruce up this layout soon.

THE BASIC STRUCTURE <« 92

stepl.psd @ 66.7% (Layout, RGB/8) * X —
STYLES:

—{ coLor [SHETELES]

l_i'_"iRg__lU_-
17 1) 5315 10 1) 5 1) 5 05 1) 5 150 0 5 5 100 5 1 G 10 1 G 1 [0 B —

Figure 6.3: Our four regions

Drawing the Boxes

Now we’ll follow the guides and draw rectangles over each region. First,
select the Rectangle tool by pressing . While you're at it, make sure
that the Shape Layers option is selected.

In the Options panel, click the color square, and enter {ffe500 for the
color. Click OK. Draw a rectangle across the top of the screen so it
touches the guide you placed at the 108px mark. To do this, place your
mouse pointer at the upper-left edge of the canvas. Next, click and hold
the mouse button down while dragging right and downward until you
reach the right edge of the screen.

Now create the footer. Press [Shi ft]+[Ct r1]+@ to create a new layer; it's
always a good idea to create each item on your composition in its own
layer because you can move it around more easily later. When you cre-
ate the layer, Photoshop asks you to name it. This will make it easy for
you to find that layer again. Draw another rectangle at the bottom of
the screen. This time, start at the guide you placed at the 702px mark.

Next, draw the sidebar. Again, create a new layer for the sidebar, and
label it appropriately. Change the color to FFD67F, and draw the box

PLACING THE Loco < 93

6.3

on the left side of the screen. The sidebar rectangle should fit nicely in
the guides you drew. Start at O across, 108 down, and go to 300 across,
702 down.

Finally, fill in the remaining whitespace with another shape layer, and
then change the color to FFF7DF.

We have defined our four regions defined; now we can start thinking
about the other things that reside on our home page. Our sketch shows
the Foodbox logo in the top of the screen, and we already have that
ready to go. We need to make a few other elements, so let’s keep going—
right after we save our work, of course.

Placing the Logo

One reason Photoshop works so well for creating web page mockups is
its ability to work together with other programs. We have a logo we drew
in [llustrator, and we can now take that image and import it directly into
our mockup as a vector object. When we import the vector logo into our
composition, we’ll need to resize it to make it fit where we want it. We
can use guides to define where the logo should go.

Make sure the rulers and grid are still showing, and create two horizon-
tal guides. The first guide will cross the left ruler at 18px and should
overlap the first horizontal gridline. The second guide should be placed
at the 90px mark, right on that horizontal gridline. This will give us
18px above and below the logo. Create a vertical guide by clicking and
dragging from the left ruler and stopping at 18px on the horizontal
ruler. That will give us a nice box in which to place the logo.

Select File > Place, locate your logo file, and click OK. Drag the logo
to the top-left corner of the screen so that its top-left corner comes
to the intersection of the two guides. You'll use the resize handles to
adjust the image. Hold down the key, and grab the lower-right
resize handle. Drag diagonally up and left until the bottom-right corner
touches the guide defined at 90px. Now press to place the file.

When you place an Illustrator document into a Photoshop document,
the object is placed as a smart object. Editing this smart object opens
[lustrator, and changes you make there are automatically reflected in
your Photoshop document when you save them.

ORGANIZING OUR COMPOSITION WITH LAYER GROUPS <« 94

6.4

6.5

0 [0 [0 50 [0 |too, |20, [A6 [i€e |18 |20 [220, [240, [%60 [0 [300 [320 [340, |30 [38e [s00 [s20 [s40 [60 [480; [s00 20 [540
L L L L L L L L L L \ \ \ \ \ \ I L L L L \ \ \

Figure 6.4: Our logo in our document

Organizing Our Composition with Layer Groups

We have tons of layers in our project at this point. It can get tricky to
find everything we need, but we can use of a feature in Photoshop called
layer groups to simplify managing things. A layer group is a folder on
the Layers palette that you can use to organize your layers.

Create a new layer group called Layout by clicking the Layer Group
button on the Layers palette. Rename the group by right-clicking and
choosing Rename.

Now, within the Layers palette, drag the header, sidebar, main, and
footer layers into this group.

You can collapse layer groups to help you focus on the layers you want
to work on. You can also turn them on and off or even duplicate the
entire group. You can also use this feature to isolate things easily. We’ll
use layer groups throughout the next few chapters to keep our compo-
sition organized.

Adding a Reflection to Our Logo

Steve remembers that one of the stakeholders wanted to have a reflec-
tion under the logo. Many sites use this technique, commonly referred
to as the wet-floor effect, where text appears to be resting on a surface
that reflects the text or logo. We can apply that effect quickly using
layer groups and masks:

1. First, create a new layer group called Logo. Drag the Foodbox logo
layer into this layer group. The reflection of the Foodbox logo is
going to be a separate layer, so we want to keep these two layers
together.

ADDING A REFLECTION TO OUR Loco <« 95

2. In the Layers palette, right-click the layer containing the Food-
box logo, and choose the Duplicate Layer option. Name the layer
Foodbox Logo Reflection.

3. Ensure that the reflection layer is selected in the Layers palette.
Select the Marquee tool, right-click the image, and choose the Free
Transform option to bring up the resizing handles. Click and drag
the handle in the middle at the top of the image, and drag it down-
ward, past the bottom. This inverts the selected area and creates
the reflection. You should be careful to bring the reflection straight
down and make it exactly as high as the original layer; use the
gridlines to guide you. You can hold down the key to help
you make a straight transformation.?

Press the key to accept the changes in the transformation.
You can press the key to cancel the transformation and start
over again if you need to do so.

4. We can make the reflection fade out in a few different ways, but
the simplest method is to use Photoshop’s layer masks feature.
Select the layer you just transformed, and choose the Add Layer
Mask button at the bottom of the Layers palette. Masks let you
hide parts of an image or composition. The contents of any layer
covered by a layer mask will be hidden.

5. If we use a gradient instead of a solid color, we can quickly make
a mask that will fade out the area beneath the mask. Select the
Gradient tool from the tool palette. The Gradient tool might not
be visible; remember that it shares the same tool palette location
as the Paint Bucket tool. If the Paint Bucket tool is visible, simply
click and hold while hovering over the Paint Bucket tool to make
its menu fly out and expose the Gradient tool.

The Gradient tool's options will change at the top of the Photo-
shop window. Select a gradient that goes from white to black; you
should see a preset for this listed when you select the gradient.

6. With the Gradient tool configured and the layer with the mask
selected, hold down the key while drawing a line straight
down, starting at 72px on the left ruler and ending at 108px.

2. You can use the Flip Vertical transformation option if you don’t want to do this man-
ually and then just move the flipped version directly below the original.

THE FOOTER < 96

=
o

Figure 6.5: Reflecting the logo

The black part of the gradient will act as the mask, giving you the
desired fade effect. You might have to try this a few times to get it
to look exactly the way you want.

6.6 The Footer

The footer also needs some text. Like the original site, the footer needs
to contain the copyright notice and links to the terms of service and
privacy policy.

Select the Text tool, and choose a 10px black Arial font to place this
information in the footer. If you want to create the appearance of a
hyperlink, use separate text layers for the terms of service and privacy
policy pieces so you can give them a separate color. You should use the
color you chose for hyperlinks when you built your color scheme.

Don’t spend too much time mocking up the text here. It doesn’t need
to be perfectly centered. You're going to replace this with actual text
markup in the content document. The goal here is to create the desired
effect so that you can get feedback on it.

6.7 Wrapping Up

In this chapter, you learned how to do quite a bit with Photoshop. You
learned how to import other images, work with layers, and use guides
to align elements. Now it’s time to fill the structure with our content.

7.1

Chapter 7

Jesign Mock-up: 1he Conter

In the previous chapter, you accomplished two important goals: you
divided your document up into the four regions, and you set up the
header and the footer. Now we’ll fill out the content in the sidebar and
main content areas. You'll also mock up a search box and a tag cloud
for the sidebar. In the main content area, you’ll mock up a banner
image, create a text blurb, and place the elements you’ve created.

Creating the Search Box

Our sketch put the search area at the top of the sidebar with a large
heading and the search box directly underneath it (see Figure 7.1, on
the next page). Let’'s use what we know about the baseline grid again
and position everything along the gridlines here. Before you go any fur-
ther, create a new layer group called search area to contain all the
objects we create in this section.

As before, we’ll use guides to help us position elements. Create a new
horizontal guide that crosses 126px on the left ruler. This will help
us position the heading. If you're getting tired of counting gridlines,
you can add a guide by specifying its position and orientation. Select
View > New Guide, and enter the appropriate information. You could
create a second guide across 162px to define the heading region, but
it's not essential to do this because the heading’s ascenders will touch
the guide at 126px. Because the font will be 24px high, we need to
account for the extra line-height. Instead of a line-height of 18px for
our headings, we need to up that value to 36px.

Press |T| to select the Font tool, and choose 24-point Monotype Corsiva
for the font (or substitute any serif font you like if you don’t have this

CREATING THE SEARCH Box <« 98

|4I}

[R O [

|E|}

R O L O L R (5 P T S (R

l:ml
L

S |

L=1pm

[

0 L==la g T

Lo L L)

Figure 7.1: The completed search area

font). Set the font color to 4B541C, the dark-green color we selected
for our headings in our color scheme. Click the canvas right below the
guide you defined and enter this text: Search Recipes. Use the Move tool
to reposition the text so that it fits in the guides.

Now you’ll draw the search box using a combination of the shape tool
and some layer effects. To prepare, place a few guides to define the
region for the search box. Our existing horizontal guide that crosses
162px will mark the top of the search box. Place two vertical guides
that cross the top ruler at 270px and 288px, respectively. This will
define the space for the search box and the search button. Each of
these guides lands on a vertical gridline.

Create a new layer, and name it search box. Now select the Rectangle
Shape tool, set the fill color to ffffff, and then draw a rectangle within
the guides you defined for the search box. Right-click the search box
layer’s thumbnail, and choose Blending Options. Select Stroke from the
left menu, and ensure that the Stroke option is selected. Make sure the
size is set to 1 and the fill color is set to 000000.

THE BROWSE RECIPES TAG CLouD < 99

Browse Recipe.
desserts appetizers s DeEf

[L] 8

(==l gl L

[B N

l:m'm.ll
L

Soard

emes Mexican seafood drinks pasta
tallan chicken | poo:

[L RS
-

L=l LR RE

[E-AER]

Figure 7.2: Our completed tag cloud

7.2 The Browse Recipes Tag Cloud

Our application uses tags to categorize the recipes. Users can tag reci-
pes to make it easier to find things in a large collection. A lot of popular
sites use a feature called a tag cloud to display the most popular tags
in the system. The tag cloud uses several different font sizes to display
which tags have the most items associated with them. For example, if
we had three times as many recipes associated with the dessert tag than
any other category, it might be several times larger in the tag cloud than
any other tags. We’ll build something that looks like Figure 7.2. Tag
clouds usually have five to six different font sizes, but we can imple-
ment our mock-up with only three sizes: a large font, a medium font,
and a small font.

Start with the header, using the same font and color you used for the
search box header. Fit the header between horizontal guides you place
at 216px and 252px. Create a new layer, select the Type tool (press),
and be sure your color is set to 4B541C, which is the same greenish
color we used for the search box header. Enter the text Browse Recipes,
and then use the Move tool to drag the text block between the guides.
Finally, make sure this text is even with the search heading. Be sure to
use the guides and rulers! If you're having trouble getting things to line
up just right, try using the arrow keys on your keyboard to nudge the
text a tiny bit.

ScopPE CREEP <« 100

Now you can place the tags on the page using the Text tool. For exam-
ple, choose a font size of 18pt, choose Arial for the font type, and select
Bold as the style. Set the color to 54431C, and place Desserts on the
canvas between the guides you placed. Next, place several other words
in this area using a separate text block for each word. When you place
these words, be sure to choose various font sizes and use multiple lines
to simulate a working tag cloud, as shown in Figure 7.2, on the previous

page.

7.3 Scope Creep

You know what really stinks about projects? Scope creep. It seems that
every project I've ever worked on has been affected by scope creep in
one way or another. Sometimes it's an unhappy customer, and other
times it’s an overzealous sales manager who wants to wow the client.

Sadly, it’s a fact of life. No project has requirements written in stone.
As a developer, you learn to embrace changes. So, to make you feel
completely comfortable as a developer, I'm going to add an element not
shown in the sketch: a second tag cloud.

The Popular Ingredients Tag Cloud

Each recipe in Foodbox has ingredients, so let’'s make another tag cloud
that lists the most popular ingredients. This time I'd like you to give it
a try on your own.

When you make the tag cloud, you should follow the same techniques
you used to make the previous tag cloud. Use the grid and guides to
place the header and the various items. Some examples of ingredients
might include Oregano, garlic, black beans, apples, bananas, cheese,
and lettuce.

Three lines of tags for the ingredients should be enough to fill out the
sidebar. With that out of the way, let’s finish up by filling in the middle
region of the layout.

7.4 Mocking Up a Tasty Masthead

Photographs can help a website come alive. You can do a lot with colors,
fonts, and gradients, but nothing beats a good high-quality photograph
for adding that extra punch. The reason I stress the quality is because
a poor-quality photo on a website will stick out like a sore thumb.

MOCKING UP A TASTY MASTHEAD <« 101

Photographers Are Your Friends
If you are considering doing some welbsite work for money,
you should consider hiring a photographer to take pictures for
you. There are a lot of benefits to this. For one, you can get

exactly what you want without having to take the time to learn
it yourself.

Professional photographers might be expensive, but they're
offen worth it. They do this for a living, so they know all the tricks
of the trade.

If you can’t afford a professional, you might consider contact-
ing a local photography club to see whether there’s any inter-
est there. People in a photography club are hobbyists, but they
are offen quite good, as well. Be sure to offer compensation,
though. If you're gefting paid, they should, too.

Whether you decide to hire a professional or a hobbyist, you
should keep in mind that expertise is important. Would you hire
a professional programmer or someone sfill in college looking
to build a portfolio? You might get amazing results from either,
but the professional is far more likely to deliver the quality you
need and expect.

Photography is tricky business. It takes lots of practice to take good
pictures. I know, because I've tried for a long time to get pictures to
come out just right, and I'm nowhere close. I've had some clients hand
me pictures taken with a digital point-and-shoot camera and ask me to
use them on their website. The pictures are often crooked, too dark, or
have awful lighting. You can use Photoshop to fix some of these issues,
but a better approach is to start with a good picture.

So, where do we get good photographs for a website? If your budget
doesn’t allow for a photographer, visit iStockphoto! or another photo-
sharing website. You can even find public domain or liberally licensed
photographs at Flickr.?

For example, I found a nice image of pasta® at iStockphoto. I like the
picture because it’s clear and has even lighting. The image is too big

1. http://www.istockphoto.com
2. http://www.flickr.com
3. http://www.istockphoto.com/stock-photo-3762141-italian-meatballs.php

MOCKING UP A TASTY MASTHEAD < 102

0 S0 100 150 200 250 300 350 400 450 SO 550 GO0 650 700 750 200 B350

Search Recipes

Browse Recipes

desserts appefizers indien beef
wees Mexican seafood dinks pasta
italian chicken s

Popular Ingredients
chicken oregano =m Deef
= Cheddar bacon beans pasta

ONiON hamburger mai=

Figure 7.3: Our progress so far

for our page, but we can crop a nice, tight, rectangular area from the
image after we get it into Photoshop.

You don’t have to pay to use an image in your mock-ups. All the images
from iStockphoto are visibly watermarked, unless you've purchased
them.* Navigate to the image’s URL and then right-click the image to
bring up your browser’s context menu. Select Copy Image to place the
image on your clipboard.

When we place this image into Photoshop, we will resize it to make it
taller and wider. This is fine for a mock-up, but you should never, ever
do this for a real application. If you had your own photograph, you’'d use
a high-quality version that would be much larger; however, we won’t
pay for this image until our stakeholders approve the selection.

Let’s place the banner on the page so it looks like Figure 7.3.

Create a new layer group called Main Content. Within that group, create
a new layer (Ctr1}Shift+N) called Pasta Photo. Paste your image and
use the Move tool to place the upper-left corner of the image at 306px
across and 108px down. This is right where the middle region starts.

4. If you decide to use the image later, you can purchase it and replace the image in
your Photoshop mock-up because it’s on its own layer.

MAIN CONTENT < 103

()

It’s Not Free Just Because It's There!

Many people believe that if an image is on the Web or if it’s
available on Google Images, then they can use it on their
own website. Nothing could be further from the fruth. The fact
is, unless you see it explicitly spelled out otherwise, the image
is copyrighted by the photographer or the organization that
posted the image.

Obtain permission for any photographs you want to use. If possi-
ble, get written permission or buy your photos through a service
that specializes in stock photography.

Your previous guides for the banner and sidebar touch at this point.
With the Marquee tool selected (), right-click the newly pasted image,
and choose the Free Transform option. While holding down , drag
the bottom-right corner of the image diagonally downward and left until
the right edge of the image touches the edge of your composition. Press

to apply the transformation.

Now, use the Marquee tool to select the rectangular region where your
image will eventually reside. Start from the upper-left corner where
your guides meet. Your selection area will snap to the guidelines you
created. With the Move tool (), use the arrow keys to move the selec-
tion down until you're somewhere in the middle of the pasta image.
Make sure the region of the image you want to keep is within the
selection area, and choose Select > Inverse (Ctr1]+Shi ft}+). Press the
key to remove everything except for the area you wanted to
keep.

Finally, switch to the Move tool again (), and use the arrow keys to
move the image back up between the guides for the banner.

7.5 Main Content

We have no idea what we want to say on our home page, other than
Get Cookin’, but we know we want to say something. We could just
make something up, but then someone would probably pick apart our
attempt at writing content. Instead, we’ll borrow a page from traditional
print mock-ups and use Lorem Ipsum. Lorem Ipsum is just dummy
text that has been a print-industry standard for more than 500 years.

SIMULATING THE BROWSER < 104

At first glance, it looks like real text, so it's great for filling in space
when you don’t have real content. Visit http://lipsum.org and generate a
paragraph of text. This is standard dummy text, so it’s also useful for
making people concentrate on the design of the site, rather than the
content. This works because everyone will know right away that the
text on the page is meaningless.

Let’'s get some text on this page! Grab the Text tool, change the text
color to 4B541C, and set the font to 36px Monotype Corsiva. Now place
the Get Cookin’ text on the page. Move the newly created headline into
position at 324px on the top ruler and 288px on the left ruler. This is
the same gridline that rests atop your second row of tags in the first tag
cloud.

Body Text

Create a new layer called Body Text, and select the Text tool. Use guides
at 324px and 486px on the left ruler to define the top and bottom
boundaries of the text block we're going to use. Place a vertical guide at
612px to define the width of the text block. Using the Text tool, draw a
rectangle to fill in the box created by your guides. Next, place the Lorem
Ipsum dummy text into the text area, select the text you just pasted,
and change the leading® to 18px, the font size to 12pt, the font color to
000000 (black), and the font face to Arial. The text now lines up with
the gridlines.

7.6 Simulating the Browser

So far, we've built a decent mock-up of the page, but it isn’t a good
approximation of what it will look like in the web browser. We have
designed a mock-up with fixed dimensions, but the Web is fluid. We
should see what our site will look like on a monitor that has a wider
width.®

Select Image > Resize Canvas, then change the width from 900px to
1200px. With the default settings, Photoshop will add the extra pixels
evenly to the left and right of your image.

5. You might recall that leading is the vertical space between lines (see Chapter 4, Fonts
and Typography, on page 62).

6. This is a huge problem for people accustomed to working with paper. Paper has
boundaries, but the Web does not. You should always think about how to design without
edges.

SIMULATING THE BROWSER < 105

__________________ o a! |Arm| 'm:IERegu!ar |1r]
i)
I
I
-1
I
1
)

I
I
I

|[4T {120t o] ﬁ|M
: 1&5&" [I'-'I»atr.!n:s. —‘ -‘l_’ﬂ;l

I

Ellt svetl [lu ausmm t&l'ﬂpnlr madw!unt ut ialmre Et
dnlnre m&gna aﬁqusl LI’E enim ad mll'ETI g‘enmm quiﬁ

ushuqi exemtalim ullamm Izﬂmns ru5| ut :arn:]qu 'EEH: [T — =
ga commacdo cﬂnsequas Dlsis aute inwre dolor in | | IT jroox | 7 |100%
' ﬁep‘&hﬂnd&n’[in '?'ﬂiuptﬁe .i-rﬁrt esﬁe iﬁHum dﬂlﬂl;‘& &iu T | -"tfi.r 0 pt | color -
fugiat nu!la panaiur Emeplew smk &EﬂﬂEcat cu;]rdatai
' pur* pmldﬁnl, surai in mip:a III.II uﬂi..la ﬂeaermt mnlﬁl (
' ,‘anlm |||:! es! Iabwum | L

- -:--i—-.—--'—-:--i—-.——Ij--'—-i—-.——-—-:--i——.—-l:l'

T|T| rT™{TT,

[English: LS4 .,p-] aa[Eharp .—;!

L
I
)
I
I
1
I

Figure 7.4: Setting the text leading to line up with gridlines

When we started this design, we decided to use a fixed-width design
that makes the implementation a lot simpler. However, this mock-up
does show a lot of whitespace on the left and right of the page. One
technique we can use to give the appearance of a fuller page is to cen-
ter the logo and the rest of the site in the browser window, as we had
originally planned, and then stretch the background color of the header
to fit the entire width of the window. This will help give us the appear-
ance of a full-screen site, but we won'’t have to spend a lot of time doing
the more advanced coding required to build a liquid design.

Choose the Move tool (), and right-click the header. Next, choose the
header layer from the pop-up menu. This is a great way to select a
layer without having to search through all the layers in the Layers
palette. Choose the Marquee tool, right-click the header, and choose
Free Transform to activate the resize handles for the layer. Drag the
left- and right-resize handles to the edges of the canvas, and then press

to commit the transformation.

By expanding the canvas, you can get an idea of how the page will
eventually float in the middle of the screen. You used Photoshop’s shape
tools to define the site’s regions, so it’s easy to reshape them without
diminishing their quality.

SUMMARY < 106

4 N\
Hybrid Layouts
In recent years, especially as wide-screen monitors have
become popular, designers have been looking at ways to
make designs that take these new dimensions into account,
The hybrid layouf—a layout that is mostly fixed-width but has

regions that expand the entire width of the screen—is a popu-
lar choice.

Often, the header will expand to fill the full width of the screen,
but the main content stays centered, as in our design. Other
fimes the footer expands as well, creating an effect that fills out
the screen while constraining the content so it’s organized and
readable.

7.7 Summary

We created quite a few elements in this chapter, and we learned how to
simulate content in our document. We still have a few elements that we
must create before we can move on to transforming this mock-up into
code. Let’'s get that wrapped up next.

8.1

Chapter 8

Putting the Finishing Touches
11 the Mock-

We have a few elements that we need to create for Foodbox. We need a
search icon that will act as the button for the search form, and we need
to make the sign-up button that will reside in the main part of the site.

Now, you could certainly go out and find a magnifying glass icon for
your search, and you could use a button generator. However—as when
coding—you get better results if you roll your own solution that’s cus-
tomized to what you're building. Mismatched icons can ruin a design,
and the time you spend searching for an icon could have been used to
make your own in just a few minutes.

These graphical elements could be created on the same canvas that
contains the rest of the mock-up, but to keep that file organized, we’ll
use new files for each of these elements.

Creating the Search Icon

You can create a search icon using either Photoshop or Illustrator. If
you need to create icons of various sizes that need to be scalable, you
should use Illustrator. As you learned when you created your logo, a
vector graphic scales nicely without distortion. However, in this case,
you need a simple search icon for your search button. It has to be
a fixed size, which means you can accomplish that quickly by using
Photoshop.

CREATING THE SEARCH IcoN <« 108

Create a new Photoshop document called Search Icon. Give it a height
and width of 18 pixels. Set the background contents to transparent,
and set the resolution to 72 dpi.

Creating the Icon’s Background

Hold down [Ct rﬂ+[Spaceba r], and click the mouse to zoom in. Each time
you click, you’ll go in another zoom level. Keep zooming until you reach
1200%. At this point, you can see the checkerboard pattern on the
canvas that indicates that you're working on a transparent background.

Rename the current Layer 1 to Background. Then, select the Rounded
Rectangle tool from the tool palette. Set the radius of the tool to 2px.
The px is important. If you leave that off, it will pick a default unit of
measure, like inches. Ensure that the mode for this tool is set to Fill
Pixels and that the Anti-Alias option is selected. The rectangle’s color
doesn’t matter because we’ll change it in the next step.

Snapping to Pixels

We've used Snap to Grid to help us constrain our shapes, but now we’ll
make more complicated shapes with rounded corners. Snap to Grid can
help us ensure that each edge of the rounded corner will look exactly
the same. To make the shapes you draw snap to pixels, click the drop-
down arrow to the right of the shape selector buttons on the options
toolbar, and select the Snap to Pixels checkbox. When developing mock-
ups or creating buttons, I recommend always using this option.

Now, place the cursor on the top-left corner of the canvas. Click and
drag diagonally down and right, filling the canvas with the rounded
rectangle. Line up the cursor with the bottom-right of the canvas, and
then release the mouse button to create the shape.

Right-click the layer thumbnail, and choose Blending Options. Select
the Gradient Fill option, and double-click the Gradient style to edit the
gradient. Choose the same green you used for your headings as the
color for the right side of the gradient. Set the left side of the gradient
to 000000 (black). When you apply the gradient, you should have a
gradient that transitions from green to black, as shown in Figure 8.1,
on the following page.

Creating the Magnifying Glass

Now it’s time to draw the magnifying glass. Photoshop has some nice
shape tools, but we're going to draw the magnifying glass itself using

CREATING THE SEARCH IcoN < 109

Figure 8.1: A circular selection with the Marquee tool

an old Photoshop technique: we're going to create it using the Marquee
selection tool.

Create a new layer called Magnifying Glass. Select the Elliptical Mar-
quee tool from the tool palette. Hold down the key, and create a
circle that fits neatly inside the icon area. You should have something
that resembles Figure 8.1. Select Edit > Stroke, and then set the width
to 2px give a white color.

Select the line-drawing tool, and set the weight to 2px. Draw a diagonal
line at the lower left of the magnifying glass to create the handle, as
shown in Figure 8.2, on the following page.

We now want to create a “glassy” effect. We could use the Marquee tool
to select the area within the circle, but that's too much work. We can
use the Magic Wand tool instead. Select the Magic Wand tool from the
tool palette, and click anywhere inside the circle. The area within the
circle is now selected.

Create a new layer called Glass. Set the foreground color to FFFFFF
(white), and select the Gradient Fill tool. On the Options toolbar,
double-click the gradient, and select Foreground to Transparent from

CREATING THE SEARCH IcoN <« 110

Figure 8.2: The magnifying glass with a handle

the gradient presets. With the new settings applied, use the tool to draw
a straight line from the top of the magnifying glass to the bottom. As
with many other transformation and selection tools, you can hold down
the key while dragging to force a straight line.

Your finished icon should resemble the one in Figure 8.3, on the next
page. Save the Photoshop file as search_butfton.psd in the originals folder
with your other Photoshop documents.

Placing the Search Icon

Switch back to your mock-up document, and choose File > Place. Select
the search_button.psd file you just created, and position it right next to
the search form. Save your document when you have things the way
you like them. You can see the finished search area in Figure 8.4, on
the following page.

CREATING THE SEARCH IcoN <111

Figure 8.3: The completed icon

Search Recipes

Figure 8.4: The completed search region

CREATING THE SIGN-UP AND LOGIN BUTTONS <« 112

8.2 Creating the Sign-up and Login Buttons

Our sketch shows two large buttons on the right side of the page. To
create these buttons in the space we've left for them in our mock-up,
we’ll use some of the same techniques we used in Section 8.1, Creating
the Search Icon, on page 107. Begin by creating a new document with
a transparent background called button. Set the width and height to be
216px wide by 72px high; this will fit nicely into the space we have left.

Select the Rounded Rectangle tool from the tool palette, and then set
the corner radius to 10px, which will give you nice rounded corner to
the button.

Create a new layer from the Layers palette or via [Shift[#Ctr1}#N}, and
label it as button background. We'll draw the button on the new layer.

Draw the button using the rounded rectangle that you configured. Do
this by clicking and dragging from the top-left corner of the canvas to
the bottom-right corner. If you set a foreground to a color other than
white, you can see what you're drawing more clearly. It won’t matter
what color you choose because it’s going to be changed in the next step.

Next, right-click the layer containing your button, and choose Blend-
ing Options. This will bring up the Layer Style dialog box. Select the
Gradient Overlay tool to bring up the options for the gradient. Double-
click the gradient image in the editor to display the Gradient Editor.
I've labeled the color bucket as 1 and the transition point as 2 (see
Figure 8.5, on the following page).

You need to design a gradient that gives the button some definition. The
key to getting this gradient right is to make sure you control how sharp
the color changes are in the gradient. The Gradient Editor displays a
long band of colors that represents the current gradient.

You specify the colors that make up the gradient by selecting one of the
color buckets beneath the gradient bar. When you first bring up the
gradient bar, the default gradient contains only two colors, but you can
add colors by clicking the space between the color buckets.

Our button’s gradient will contain only two colors, but we’ll need three
color buckets to make the transition. Set both the left and right color
buckets to FFEABF, and then click between the color buckets in the
space below the bar to add a third color bucket. Set the color of this
bucket to FFAEOO. If you're wondering, these colors are variations of
the orange used in the sidebar.

CREATING THE SIGN-UP AND LOGIN BUTTONS <« 113

x
Stylas — Gradient Overlay 0K I
— Gradient
Blending Options: Default Blerd Mode: INormaI j Cancel J
L Brop Shacians Opacityt e A [0 % New Style. .
I” Inner Shadow Gradient: I:E [Reversz ¥ Preview
Liater Hav Shyley m [align with Lavar [
i il
™ Bewel and Emboss Hnge: @ X = Brasats ¥ l—-—l
™ Contour o —— T L ur -. =
i | Bd | | i/F cacs |
I~ Satin ! 4’) '/ ' # e
I Color Sverlay
I Pattern Owerlay -
™ Stroke
Name: | Custom &l
Gradient Type, |Smlld '
Smoothness: %o
@1 8 2 B

— Stops

Ciparity [TI Oy Lot ation: Delate
calor: | |[» Location: | T8 %% Delete

Figure 8.5: Gradient options

Notice the round dots that exist along the gradient band in the edi-
tor. By moving these points closer toward a color, you can increase
or decrease the blend. For this button, we’ll create a hard transition
between the colors by dragging the right dot to the left as close to the
middle color as we can. This creates a nice horizontal line through the
button, giving it a bit of dimension. You can see the specific settings
I used in Figure 8.5. Click OK in the Gradient Editor once you design
your gradient. Feel free to experiment with the Gradient Editor; you can
see other examples of its effects in Figure 8.6, on the following page.

You can help the button stand out a little more by adding a stroke,
which is an outline around the button. Select Stroke from the list of
layer effects, and then choose a stroke width of 1px. Use a dark color
such as black to make the button stand out more, or use a lighter color
to make the stroke less noticeable. You can lower the opacity to around
45% to soften the stroke. Be sure to add the stroke to the inside the
button so the stroke doesn’t add to the width and height of the button.

CREATING THE SIGN-UP AND LOGIN BUTTONS <« 114

Figure 8.6: Using gradients to create the illusion of depth

Figure 8.7: The finished button

Save your button as button.psd in the originals folder of your project.
You'll need it later to create the login button.

Adding Text

Choose the Text tool, and add this text to the button: Sign Up. Exper-
iment with the colors using what you now know about color theory. I
recommend a dark color for the text on this button. Regardless, be sure
to choose text that sharply contrasts the background of the button. You
might also want to change the layer effects for the text to give it a bit of
a bevel.

Save the file as signup_button.psd.

YOU'VE GOT CONTENT! <« 115

8.3

or st amet, consectetur adipisicing | | S::gn. ‘Up N | |
nod tempor incididunt ut labore et ‘ ' " ' ' '

qua. Ut enim ad minim veniam, quis =~ | T ——— =
jon ullameo laboris nisi ut aliquip ex I |
wsequat. Duis aute iure dolorin -~~~ | [
voluptate velit esse cillum dolore eu

tur. Excepteur sint occaecat cupidatat | l |

1t in culpa qui officia deserunt mollit

Figure 8.8: Both buttons in place

Adding the Sign Up Button

Switch back to the mock-up file, and place the Sign Up button on the
page using the same technique you used to place the logo. Position it
into the spot you left for the Sign Up button.

Now save the mock-up again.

Creating the Log In button

Reopen signup_button.psd, and change the text to Log In. Select the Move
tool, and nudge the text to make sure it’s centered. After you add and
position the text layer, save the file as login_button.psd and place it in
the mock-up below the Sign Up button.

You can see both buttons in place in Figure 8.8.

You'’ve Got Contentl!

You've just been informed by Steve that the stakeholders have finally
decided on what they want to say on the main page. Everyone loves
how the site is shaping up, but the stakeholders noticed that you have
a whole bunch of blank space on the page. They've decided that they
like the idea of featuring the most recently added recipes on the home

YOU'VE GOT CONTENT! «d 116

page, as the original site had. They have also have decided on what they
want the main paragraph to say:

Foodbox is the best way to collect and share recipes with the rest of
the world. You can build your own recipe book from thousands of great
recipes from renowned chefs or users just like you. You can also share
your own secret recipes with a_few of your friends or make them available
to the rest of the world!

Create an account today and get cookin’!

Replacing the Dummy Text

We can take care of the text replacement fairly easily. Place that in the
main text region, replacing the dummy text. You’ll notice that it's a bit
shorter than the previous block of text you had there, so you need to
adjust things a bit. Select the text you just pasted, and increase the
font size to 14px. You still have a little more room than you had before,
but now you need a little more room to add the recipes the stakeholders
asked you for!

Adding the Latest Recipes Section

We don’t necessarily have to fill up the whole area at the bottom of the
page, but we can certainly add a heading and a couple text blocks
for recipes. Create a new 16px heading called Latest Recipes using
the Monotype Corsiva font you used for the other headings. Place this
heading beneath the introductory text, but be sure to leave some space
between the new header and the existing content. Don’t forget that you
could duplicate the Get Cookin’ layer and then change the position and
text to quickly create this new heading. Then you could skip setting the
color, font, and size. It’s all about working smarter.

Beneath the headline you just added, create a few fake recipes. Use
14px Arial for your font this time. Nudge the recipes over a bit, as you
did with the entries in the tag clouds; 18 pixels, or one block on the
grid, should be just enough to make it look nice. Put each recipe title
on its own line, and be sure to leave a line space between each one,
using the gridlines as a guide.

Underneath the recipe, put a simple description of the recipe using a
12px Arial font. Indent the text over another 18px. You can see the
results in Figure 8.9, on the following page.

SUMMARY d 117

Latest Recipes

Stuffed Chicken Breast

Alightly-breaded breasi of chicken stuffed with mushrooms and Swiss chease.
Easy to make even for beginnersl

Figure 8.9: The Latest Recipes section

- foodbox

Search Recipes
[B &
: \
Browse Recipes * F "
desserts appetzers wa DeEf ' e
o Get Cookin
«ees Mexican seafood dnks pasta)
Foodhox is the best way to collect and share recipes \S’ n U
italian chicken s with the rest of the world. You can build your own 1g p
recipe book from thousands of great recipes from
renowned chefs or users just like you. You can also
Q’opuﬁlrfngmﬁems share your own secret recipes with a few of your]
friends or make them avalable to the rest of the Log In
chicken oegano =m beef world!

s Cheddar bacon beans pasta Create an account foday and get cookin!

onion hamburger .
R Latest Recipes

Stuffed Chicken Breast

Alightly-breaded breast of chicken stuffed with mushrooms and Swiss cheese.
Easy to make even for beginners!

Figure 8.10: Our finished mock-up
|

8.4 Summary

You're now at a point where you can comfortably start building the site.
In this chapter, you learned how to work with layer groups, how to
work with text, and how to apply some layer effects and masks. The
techniques you learned in this chapter will become extremely valuable
to you as you develop more sites, because you’ll be able to provide your
clients with vibrant, attractive mock-ups. Best of all, you’ll have assets
you can eventually extract from these mock-ups when it comes time to
produce the final page.

Part 111

Building the Site

Chapter 9

Building the
Home Page with HTML

You've spent a lot of time working on the design of this site, but now
you have to transform your mock-up into a functional web page. You’ll
do this in several stages. You’'ll begin by deciding how to structure the
document that will contain your content. Next, you build the HTML
document’s skeleton, defining the various regions on the page using
simple, well-structured markup. Then you will apply some basic styling
to create a layout for the content using Cascading Style Sheets (CSS).
You'll also apply colors, font styles, and images.

We’ll build the HTML document in this chapter, and then we’ll spend
the next three chapters working with CSS to apply the design elements
to the document.

A web page isn’t a fixed canvas like your Photoshop document, so you
might not be able to translate it exactly. Unlike a printed brochure or
a poster, a web page doesn’t have a fixed size. A web browser’s viewing
area will change depending on the screen size or the window size set by
your user. For example, your user might view the site through a small
window or through one that fills the entire width and height of the
screen. You will almost always need to make some adjustments along
the way. When you’re done, the real page won't look exactly the same
as the mock-up, but it'll look so close that most people won't even be
able to tell the difference. It’s important not to get hung up on making
sure that every single pixel is exactly in the right spot.

WORKING WITH WEB STANDARDS < 120

w Joe Asks...
T .
1 Already Know HTML. Why Do | Have to Read This?

You might be familiar with HTML and the basic concepfts of how
fo get a page to render in a browser, but that’s not enough
fo build a web page. Think about how long it fook you fo get
good at writing code. You had to learn more than just synfax;
you also had fo learn why things work the way they do. If you
don’t understand how HTML works, it will be difficult for you to
get style sheefts to work properly, and it will be even harder for
you fo implement a solid design that renders well in mulfiple
browsers. This chapter starts you on the path fo understanding
HTML instead of merely knowing if. You want fo progress from
being able to write it by hand to knowing how to generate it
properly using server-side tools.

9.1 Working with Web Standards

Separation of concerns is something that experienced developers think
about all the time. When you're developing a web application that has
models, controllers, and views, it’s considered good practice to separate
your display logic from your business logic. Web designers understand
this concept pretty well, too. A website designed with web standards in
mind will have its content separated from the design and the behavior.

When you hear someone talking about designing with web standards,
that person is referring to using standardized best practices and philo-
sophies. Standards bodies such as the World Wide Web Consortium
(W3C) set many of these standards. Others standards are simply best
practices set by pioneers of the web-design community.

A website or web page that is in compliance with web standards has
the following attributes:

* The content and structure is marked up using valid HTML or
XHTML. This includes using a proper doctype and character set.

* The presentation is rendered using valid CSS. This means that
CSS governs the site’s layout, font colors, font styles, page colors,
and other non-content-related presentation aspects.

THE HOME-PAGE STRUCTURE < 121

* The web page should be accessible to everyone, regardless of web
browser, platform, or disability.

* The site meets basic usability guidelines for navigation, links, and
structure.

* Behavior is separated from the content and its presentation. Java-
Script that works on all platforms is used, and it degrades grace-
fully for platforms, devices, and users who can’t use it.

This list sounds reasonable, but how do you implement something like
this? You start by building a valid HTML document that contains your
content and defines your structure. If you've ever composed simple
HTML, this will be a piece of cake for you. But don’t worry: even if
you've never dabbled in HTML before, you’ll pick up the lessons in this
chapter quickly.

9.2 The Home-Page Structure

Try to visualize your pages as regions of content, as opposed to rows
and columns, and you’ll find it much easier to develop pages that not
only conform to standards but are also much more flexible—you want
to be able to switch out your style sheets and completely change the
layout of the page.

For Foodbox, we want all the content for our sidebar to be in its own
region, and we want all the content for our main area to be in its own
region. We're going to do the same thing we did when we created our
mock-up—divide the page up into sections.

You can divide your mock-up into four basic regions:

* header
® sidebar
®* main

* footer

These four regions are easy to identify. However, you can build a flexible
structure that you can manipulate easily if you further divide the page
into subsections. The key to accomplishing this is to look for logical
groupings of content.

SEMANTIC MARKUP <« 122

For example, let’s express the mock-up’s regions in outline form:

® Page
- Header
- Middle
+ Sidebar
- Search Recipes
- Browse Recipes
- Popular Ingredients
* Main
- Footer

In this example, we have an overall region called page. We divide this
region up into a header region, a middle region, and a footer region. The
outer, or parent, region, acts as a point of reference that we can use for
positioning, and we can also control the overall page width by changing
the width of the outer region.

The sidebar and main regions are wrapped in another region called mid-
dle. Like the outer page region, this middle region acts as a reference
point, but it also serves another important purpose: it provides flexibil-
ity. We might not want a sidebar region for some of our pages; for exam-
ple, we might want a full-width main region for displaying the content
instead. On those pages, we could omit the sidebar and middle regions
and place the content right in the main region, using CSS to resize it.

This structure is fairly common. It’s the structure for your standard
two-column layout with a header and a footer, one of the most common
website types. The neat thing about standards-based design is that you
can reuse this skeleton for another project if you want to, because your
style sheets will define your column widths, colors, and other visual
elements.!

9.3 Semantic Markup

Semantic markup makes sure your document is structured so that
it can be interpreted by machines, devices, or people. For example,
Google’s web crawler uses tags such as h1 and href attributes on links
to determine the importance of web pages and their content.

1. This approach works great for skinning a website; you could use this technique to
let your users have their own themes. Visit hftp://www.csszengarden.com to see a great
example of a single document rendered in multiple ways.

SEMANTIC MARKUP <« 123

~—

J
- Can’t We Just Slice and Dice Our Mock-Up?

In the old days of web development—and by “old” | mean
those medieval times of 2004—it was common practice for
developers to take a Photoshop document and use tools like
Fireworks or ImageReady to slice the image up and generate
HTML. This approach gives you a quick-and-dirty way to make
a web page, but it also has some serious problems.

1// Joe Asks...

For example, it almost always involves using HTML tables for lay-
out. This was the way that every welb designer built web pages
before CSS became a viable alternative. Among the many
problems with this approach was that it made life more difficult
for users who browse with screen readers.

Also, this approach doesn’t separate the content from the
design, so you can’t easily make multiple presentations of your
content available, such as a version of your site for printing and
another version customized for display on mobile devices.

Finally, and most important, using tables for layout means that
you will duplicate all the table HTML code on every page of
your site. Every time someone requests a page, that data must
be transferred to the end user. On a small-scale site, this just
means your pages might take longer to get to the end user. If
you run a site that gets lots of hits, you might start to see it in
your monthly bills from your ISR When you host a welbsite, you
have to pay for all the fraffic that you serve, so if you have a
lot of traffic, it’s in your best inferest to reduce file sizes wherever
you can.

Designing with CSS and welb standards allows you to define the
look and feel of a website using files that end users download
only once but share across all the pages you serve them. This
improves performance and saves you money.

THE HOME-PAGE SKELETON <« 124

9.4

You need to use HTML tags for their intended purpose so that they
describe the content they contain properly. Your page will have head-
ings, paragraphs, lists, and other elements. HTML has lots of tags that
are designed to mark up content. Headings, for example, should use
syntax something like <h1>About Us</h1>. An HTML parser will see this
tag and know it’s the most important headline on the page.

It would be completely inappropriate then to do something like About Us. Unfortunately, many developers do precisely
this because they don’t like the fact that, by default, the h1 tag places
a margin above and a line break below this tag’s content when it is
rendered.?

You can use CSS to solve the visual issues quite easily once you under-
stand how everything works. For example, you might use CSS to change
the way all headings look, or you might use it to modify the appear-
ance of a single heading on a single page. Best of all, one CSS file can
be applied to many pages, so instead of setting every heading on 100
pages, you can add a couple of lines to your style sheet.

The Home-Page Skeleton

Open your favorite text editor,® and create a new file. Immediately save
this new blank file as index.html. The index.html page will be the home
page for the site. Web servers will serve up the index page whenever a
request comes in for a path and a page is not specified.

The Doctype

Each HTML page must have a doctype to help a validation tool ensure
you're serving properly coded markup. It's extremely important to make
sure you have a valid page before you apply style sheets or JavaScript.
Invalid markup can cause styles to be applied incorrectly or cause
JavaScript code to fail horribly. Your web browser relies on a well-
formed document to apply styles and behaviors properly, so failing to
close a tag might trip up a user’s browser.

More important, doctypes force certain browsers to interpret a page
differently. For example, Internet Explorer 6 has a quirks mode that is
extremely forgiving to invalid markup, but you can spend a lot of time

2. Some WYSIWYG HTML editors write code like this too, so it’s not just novices.
3. Irecommend Notepad++ for Windows and TextMate for Mac.

THE HOME-PAGE SKELETON <« 125

Default Page Names

Web servers have a concept called defaulf pages. A default
page is rendered whenever a page is not specified for a direc-
fory. Web servers serve files from a directory structure. You
have pages within folders, and the universal resource locator
(URL) contains the path to the folder and file the user requests.
For example, if you requested the http://www.foo.com/products/
superwidget/about.html URL, the web server at http://www.foo.
com would look in the products/superwidget folder for a file called
about.html.

If you requested the http://www.foo.com/products/superwidget
URL, then you’'ve requested an incomplete resource, so the
web server tries to figure out what you meant. First, it looks to
see what actually exists at that location on the server. If it finds
a folder there, it looks at a list of default flenames and then
checks to see whether any of those filenames exist within that
folder. Common default filenames include index.html, index.htm,
and default.htm.

If the server can’t find a default file, it might return a directory
listing, or it might return an error message if an administrator
configured the server fo not allow directory listings. Many welb-
masters believe that disabling directory browsing adds a level
of security to their sites; however, | don’t think you gain much
security by doing that. If you don’t want people o see some-
thing, don’t publish it fo the Web.

When you link to aresource that has a default page, you should
either include the filename in the URL or use a frailing slash
after the directory name. This courfesy URL tells the server that
you are in fact requesting a directory from the server, and you
expect the server to return the default file. Courtesy URLs work
best on the home page of a site.

For maximum performmance and to avoid confusion, you should
always link directly to the complete resource. Links to the Food-
box home, for example, should always end with index.html. This
way, the server can just serve that file and then get on with
handling the next request.

THE HOME-PAGE SKELETON < 126

scratching your head trying to make your page work in other browsers
that are more strict about what they will render. However, you can use
a doctype declaration that forces IE 6 into standards mode, which isn’t
perfect, but it’ll get us by.

You can choose from a few different doctypes. The doctype you use dic-
tates what tags you can use in your document, as well as the validation
rules that will be used to check your markup. The two most frequently
used doctypes are XHTML 1.0 Transitional and HTML 4.01 Strict.

XHTML 1.0 Transitional

For a long time, XHTML Transitional was considered the way to build
pages for the Web. A primary reason for its use was that it forced web
browsers into standards mode. That's not much of an issue today, but
XHTML continues to have some advantages over regular HTML. XHTML
markup is more strict, which forces developers to think more about a
page’s structure. It also requires that you use lowercase letters when
defining tags and attributes, which can be helpful when parsing docu-
ments. Finally, it requires every tag to have a closing tag.

Unfortunately several browser support issues undercut the benefits of
using XHTML, including its extensibility. Internet Explorer does not
understand how to handle XHTML unless it's served as HTML using
the fext/html content type instead of the more appropriate application/
xhtml+xml. Serving XHTML as HTML forces browsers to deal with tag
soup; the browser expects HTML tags, but it gets XHTML instead, so
it spends time reworking the document.* You lose a lot of the benefits
of XHTML that your users see, and these browser issues can in fact
introduce some new problems into your page. For example, self-closing
div and span tags, which are perfectly valid in XHTML, get their trailing
slash removed by browsers when served as text/html, which leaves them
unclosed, affecting all elements that follow.®

These issues have prompted some designers and developers to switch
back to using regular HTML again, in the form of HTML 4.01 Strict® or
the HTML 5 specification.

4. http://xhtml.com/en/xhtml/serving-xhtml-as-html/

5. http://www.webdevout.net/articles/beware-of-xhtml#myths has some great examples of how
the content type affects the output of a page written in XHTML.

6. http://mezzoblue.com/archives/2009/04/20/switched/

THE HOME-PAGE SKELETON <« 127

HTML 4.01 Strict

We're using HTML 4.01 Strict in this book’s examples. With HTML 4.01
Strict, elements must still adhere to a hierarchy, but case doesn’t mat-
ter, some tags don’t need to be closed, and self-closing tags don’t exist.
It's important to remember that these are only language issues, and
they don’'t make HTML's syntax any worse or better than XHTML’s syn-
tax. As long as you make sure you validate your documents, you’ll have
no trouble with browser compatibility, user experience, accessibility,
CSS, or JavaScript.

We’ll use HTML 4.01 Strict in these examples, but I'll make sure to
stress well-formed, valid, semantic markup. This will keep a future
transition to XHTML 1.0 Strict or HTML 5 simple. Whichever doctype
you choose to use in your work, you should realize that you almost
always serve both doctypes to browsers as HTML, so the only real dif-
ference between the two doctypes is syntactical. Don’t let yourself get
caught up in a holy war.

Adding the Doctype

Place this doctype declaration in your document. Everything else in
your document goes after the doctype.

Download homepage_html/index.htmi

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

Don’t bother typing it in yourself, though. Most web page editors have
a template you can use, or you can go to your favorite search engine
and search for HTML 4.01 Strict doctype to find an example.

The HTML Tag

A web page is a hierarchy of elements, much like an XML document.
The html element is the root element of the document. All other elements
in the document will reside within that element. Almost all elements in
a web page have an opening tag and a closing tag. You can think of the
opening and closing tags as scope markers, similar to curly braces in
Java.

Add the html tag to your document immediately after the doctype, and
be sure to add the closing tag. This is a good habit to get into when
you do web-page development. Add the element’s tag, immediately add
the closing tag, and then reposition the cursor between the opening
and closing tags. Forgetting an element’s closing tag results in invalid

THE HOME-PAGE SKELETON <« 128

()

1// Joe Asks. ..

~—

_|s XHIML Dead?
The W3C's recent decision to stop work on the next version of
XHTML to focus more resources on HIML 5* has not killed off
XHTML 1.0. but it does show that HTML 5 is the way to go when
it comes to web markup.

The main reason many programmers and standards advocates
prefer XHTML over HIML is its strict syntax. All fags must have
closing tags, all fags and attributes must be in lowercase,
attribute values must be quoted, and stand-alone elements like
br, img, meta, and hr need a trailing slash. With the exception of
the self-closing elements, all these are perfectly legal with HTML
4.01 Strict, and you can use every one of these coding prac-
fices with HTML 5.

XHTML isn’t going to be worked on anymore, so it's dead in
the same way that COBOL is dead—it works, and it’s not going
away any time soon. You shouldn’t rush out and convert all your
sites to HTML 4.01 Strict or HTML 5, but you should consider all
your options when you start work on a new site.

*. http://www.w3.org/News/2009#item119

markup, which in turn causes browsers to apply your styles in strange
ways. Invalid markup also causes other web developers to break out
in a rash of expletives or, worse, punches. You should do your best to
avoid this.

Download homepage_html/index.html

<html Tang="en">

</html>

Attributes

Each tag supports various attributes that you can specify within the
tag’s declaration. Attributes help describe the tag in more detail. The
html tag we used has an attribute that describes the language we use in
this document.

THE HOME-PAGE SKELETON << 129

()

Self-closing Tags
If you're used to XML, you might be familiar with the idea of
self-closing tags, or tags that have a trailing slash when there’s
no closing tag. The HTML 4.01 Strict doctype doesn’t support

these, but the XHTML 1.0 Strict and Transitional doctypes do,
and so does the HTML 5 doctype.

The Head and Body

You can always find two elements within the scope of the html| element:
head and body. The head element contains all the metadata about the
page, including the page’s title that appears in the bookmark link and
in the browser’s title bar, as well as links to load JavaScript files, style
sheet files, and other assets. The body element contains the visible con-
tents of the web page.

Add the head tag and its associated closing tag to your document,
immediately below the html tag you just defined:

Download homepage_html/index.htmi

<head>

</head>

It's a good idea to indent your tags, just as you would indent code within
an if..else statement. Doing this will help you later, when your document
gets bigger.

Add these two lines to the head element:

Download homepage_html/index.html

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Foodbox</title>

Tags Without Closing Tags

Some tags in HTML don’t have any scope because they don’t wrap any
content or perform any transformation on content. Many of these tags
can be considered content themselves.

Examples of this include the img tag, which inserts an image into the
document; the br tag, which adds a soft line break; and the hr tag, which
creates a horizontal rule.

THE HOME-PAGE SKELETON << 130

()

Vf Joe Asks...

2 f
the HTTP Headers?

You are absolutely supposed to set the headers correctly, but
some browsers use the value of the meta tag anyway, as do the
validators. Using the meta tag in the page’s source can only
help you describe your content better. Other developers can
use the value in the meta fag to see your infenfions when they
follow your work.

Finally, and most important, using the meta tag lets you develop
and validate HTML that’s not served by a server. You can open
an HTML file on your hard drive, and it will render with the cor-
rect encoding.

When you do serve the file from a server, make certain that the
value for the Content-Type header matches what you specified
with the meta tag.

The meta tag is an example of a content element. This tag lets us
describe our document with metadata. In this case, we use a meta tag
to tell the browser or interpreter what character set our content will
use. Sometimes you might paste in content from another source, and
this content might contain symbols, curly quotes, or other characters
that can’t be viewed in all browsers or on all computers. Specifying a
certain character set causes HTML validators to alert us when we use
content like this.

We can use meta tags to provide more information to browsers, search
engines, and other consumers of our page. We'll do a lot more with
these tags in Chapter 18, Search Engine Optimization, on page 255.

The Page Title

The ftitle tag is important. The text you place within that element will
be displayed in the title bar of the web browser. It's also used as the
default text when a person bookmarks the page, and it shows up in
the search results for most search engines. In this case, the name of
the site is good enough, but subsequent pages should have additional
text in that element, such as About This Site | Foodbox or Top Recipes |

THE HOME-PAGE SKELETON <« 131

()

Block and Inline Elements
Almost all elements that reside within the body tags of your
page are either block or inline elements. Understanding the dif-

ference between these types of elements can save you a lot of
fime when you're ready to style your pages with CSS.

By default, block elements begin on a new line. Examples of
block elements include div, h1, h2, h3, p, ul, li, table, and form.

Inline elements, on the other hand, are rendered on the same
line as other elements by default. Examples of inline elements
include a, b, i, span, em, strong, label, select, input, textarea, u,
and br.

You want to remember this point: block elements can contain
other block elements or inline elements. Inline elements can
contain only text and other inline elements; they cannot con-
tain block elements.*

x. They might render in a browser, but your page won’t be valid, and you will
have a lot of trouble applying styles or working with JavaScript later.

Foodbox. The title displays in a site’s bookmark and in the title bar, so
we want to place the site name in all the headings. However, it might get
truncated, so we also want a specific part of the title to show up first.
For example, Latest Recipes | Food... looks better to users and search
engines than Foodbox | Latest Rec... does.

The head section of the page will contain more elements as you move
closer to the finished product, but you can begin building the visible
part of the page right now. It makes no sense to do much search engine
optimization or scripting at this stage.

The Body: The Main Event
All of the visible content of your page resides within the body tag.

Add the body and closing tags to our document, leaving some space
between the tags so we have some room to work. At this point, we've
built a standard HTML 4.0 Strict template (see Figure 9.1, on the fol-
lowing page).

You learned how to break down the elements of the page into sections
in Section 9.2, The Home-Page Structure, on page 121. Now you have

THE HOME-PAGE SKELETON <<« 132

Download homepage_html/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

<html Tang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Foodbox</title>
</head>

<body>

</body>
</html>

homepage_html/index.html

Figure 9.1: An example of a default HTML template

to mark those sections up with code. To do that, use the div tag to
divide the page into sections. div tags are invisible elements, so they
don’t take up any visible space on the page when it's rendered. They
do have some special properties, though. For one thing, they are block
elements, which means they begin on a new line. You can find a more
detailed explanation of block elements in the sidebar on the preceding

page.

The Page Wrapper

We can constrain all the content in the page we're creating to our
desired width of 900px by creating a top-level region. We will place
all the other regions of the page, such as sidebar, header, and footer,
in this new region. Later, you can use this outer region as a point of
reference for all other elements. Good coders document their code, and
HTML permits comments, so add this code immediately after the open-
ing body tag:

Download homepage_html/index.html
<div id="page'> <!-- start of the page wrapper -->
</div> <!-- end of the page wrapper -->

You must give the browser some way to identify the regions of your page
so it can apply styles and behaviors. Note that the id attribute is unique

THE HOME-PAGE SKELETON < 133

to the document. This means you can’t have more than one page id on
a single page. If you do, your page won’t validate, and it will likely start
doing strange things when you apply styles.

The HTML comments in that code might prove a big help later, when
the document gets longer and harder to read.

The Four Content Regions

You can use div elements to stub out the header, footer, sidebar, and
main regions of the page:

Download homepage_html/index.html

<div 1id="header'> <!-- start of header -->

</div> <!-- end of header -->

<div id="middle"> <!-- container for the sidebar and main region -->
<div 1id="sidebar"> <!-- the sidebar -->
</div> <!-- end of the sidebar -->
<div id="main"> <!-- start of main content -->
</div> <!-- end of main content -->

</div> <!-- end of middle container -->

<div id="footer'"> <!-- start of the footer -->

</div> <!-- end of the footer -->

</div> <!-- end of the page wrapper -->
</body>
</html>

This example includes an extra div called middle. Whenever you have
two regions that you’ll eventually want to display side-by-side, you
should wrap those two regions with another region. It doesn’t add that
much extra markup to the document, and it makes your design more
flexible. For example, if you need to eliminate the sidebar on another
page of the site, you could omit the two inner regions and style the
outer region. Here we wrap the sidebar and main regions the same way
we wrapped the entire page.

We’ve put the structure in place, so let’s add the content.

THE HEADER < 134

()

Alternative Text

The alt attribute for images gives you an easy way to improve
the usability and accessibility of your site. Alternative text is dis-
played when images can’t be displayed. Users who are blind
rely on alternative text to describe the images to them, so it’s a
good idea to make your descriptions descriptive rather than
vague! “A blue car” isn’t as strong as “A vintage 1957 blue
Chevrolet in front of the downtown mall.”

Alternative fext also comes in handy for text-based browsers
and mobile-phone users with low-bandwidth connections.
Another reason to make sure you always include good alter-
native text descriptions for your images is that search engines
use them. Search engines can’t read your images either, and
your alternative text descriptions become extremely important
at that point. I'll cover this issue further in Section 16.2, Alterna-
five Text Aftributes, on page 231.

9.5 The Header

The content for the header region consists of only the Foodbox logo,
which we’ll include with the img tag. This tag has a src attribute that
specifies the path to the image. This path works like the href attribute
of the a tag; it can be a URL or a relative path to a file. We’ll discuss
URLs in detail in Section 9.6, The Recipes Tag Cloud, on page 137.

When placing an image on a web page, it’s always a good idea to specify
the height and width of the image. We don’t have the image right now,
so we'll let that go for the moment; however, we definitely want to come
back later and add this. For now, specify the image source and an alt
attribute for the text. This alternate text gets displayed if the image can’t
be loaded; it’'s also extremely helpful for your users who use screen-
reading software.

Place your cursor within the region defined by divid="header', and insert
the following code:

Download homepage_html/index.htmi

THE SIDEBAR <« 135

9.6

Now save your work. You're done with the header region for now, and
you can move on to the next region.

The Sidebar

The sidebar region contains quite a bit of content. It has a search area,
a tag cloud for recipes, and a tag cloud for ingredients. We will wrap
the various sections in their own containers to make positioning easier
when we get to that stage. Let’s start by mocking up the HTML form.

The Search Form

HTML forms are simple. The hardest part about working with them
is tying them into your back-end system. The Foodbox site’s simple
search form has only two elements: the keyword field and the submit
button. A harder problem to solve is that HTML forms need to submit
their results to a URL. To create the form, we need to know the URL
that the form needs to send its data to, as well as what the server-side
code expects the form field to be called, so it can pull out the data.

Fortunately, this is as simple as glancing at the code for the existing
Foodbox site because it has the information you need:
<form method="get" action="/recipes/">

<input type="text" name="keywords">

<input type="submit" value="search'>
</form>

This code tells us that the form uses a GET request to send data to the
recipes URL. It also tells us that we need to call the form keywords. That
gets us moving, but we need to clean up some problems with this code.

First, the input tags don’t have closing tags. This could be because they
were forgotten, or it could be because the version of HTML used orig-
inally did not require these tags to have closers. Our doctype does,
though, so we need to take care of that. The input tag is self-closing, so
that’s an easy fix.

Second, the form and the two input tags all should have an id attribute.
This will help with the eventual styling we want to do. Finally, we plan
to have an image of a magnifying glass instead of a button.

Aside from the form itself, the search section needs a heading called
Search Results.

THE SIDEBAR < 136

()

Headings
Placing text content on the page is as simple as typing the

text info the appropriate region. However, you want to consider
how that text should be rendered.

HTML provides several tags designed for marking up text. In fact,
HTML includes six different fags for marking up headlines: hi,
h2, h3, h4, h5, and hé. The lower a headline’s number, the more
important it is.

Every web page should have at least one main headline that
uses the h1 tag. Search engines use that and other headlines
as part of their method for determining how important content
is. We'll reserve our main headline for the main content region
and use the h2 tag for the section headings.

Add this code to the sidebar region to build the search section:

Download homepage_html/index.html

<div id="search'>
<h2 1id="search_header'">Search Recipes</h2>
<form id="search_form" method='"get" action="/recipes/">
<div>
<input type="text" 1id="search_keywords" name="keywords">
<input type="image" alt="Search" src="images/search.png'>
</div>
</form>
</div>

Let’s walk through this code. The search section of the sidebar region is
wrapped in its own region with its own ID; this gives you extra flexibility
when you add your styles to your document. The search form somewhat
resembles the original version of the form from the old site, and it gets
an ID that will be useful for styling elements and adding JavaScript
behavior.

We have placed a div tag around the input fields of the form to make
validation happy. When using HTML 4.01 Strict, input tags have to be
placed within a div or within a block-level element such as a headline
or paragraph.

The most significant change you’ll notice is that the form no longer has
a submit button; we’ve replaced it with an image button.

THE SIDEBAR < 137

1’{ Joe Asks...

J

< canlU Link Inst | of a Submit Buft to Submit
Form?

You can, but it’s a bad idea. Links are meant to retrieve infor-
mation, while buttons are meant to send information. Going
against this standard is difficult and creates some unnecessary
usability issues.

You must use JavaScript to use a link fo submit a form. You make
the link call a JavaScript function that submits the form. | won’t
show you how to do this because | don’t want to encourage
this practice. It's a bad idea. For one, it leaves users without
JavaScript out in the cold.

People claim fo have reasons for doing this all the time, buft it
boils down fo the developer trying fo achieve a certain visual
effect. Animage bufton goes a long way tfoward making a form
look much more appealing. Another appropriate alternative
would be to use CSS to transform the button into something
that looks like a link.

An image button works like a regular submit button. When the user
clicks the image button, the form’s data is sent to the URL specified by
the form. The difference is that, with an image button, you get to sub-
stitute the normal, boring, OS-specific submit button with any image
you choose.”

The Recipes Tag Cloud

You typically implement tag clouds on the server, where you have some
mechanism that queries your database for the most popular tags
ranked by their frequency of use. You then take those results and ren-
der the HTML code to display the tags. A common approach is to use
CSS styles to control the appearance of the tags and link them to the
frequency. This is a book about design, so I will leave the server-side

7. Many form fields, such as checkboxes, radio buttons, drop-down select boxes, text
areas, and buttons inherit their style from your users’ graphical interface. There’s no way
around this, so when you're designing a website, be sure to test it with different operating
systems to see how it will look.

THE SIDEBAR <« 138

implementation up to you. Instead, we’ll concentrate on mocking up
the tag cloud so you can see how to apply the styles.

As I already mentioned, tags in the cloud get styled differently based on
how popular they are. If a tag has many associated recipes, we want to
make it appear quite a bit larger than the others. Less-important tags
should appear smaller. To keep this simple, let’'s keep the number of
levels in the tag cloud to five. We’ll use level one for the most-used tags
and level five for the least-used tags.

Each of the entries in the tag cloud is a link to a page displaying recipes
for that tag, but how do you apply the style? We need to reuse the styles
that will be associated with the cloud; this is a good indication that we
want to use the closs attribute. Like an id attribute, a class attribute can
be applied to every element in an HTML document.

You define a link by using the a, or anchor tag. You can links to other
documents on the same server, other servers, or even spots on the
same page. To make a link, you define an anchor tag and use the href
attribute to specify the URL you want the link to point to. The text
between the opening and closing tags becomes the hyperlink. Let’s drill
down on some of the various types of hyperlinks.

Absolute Links

An absolute link contains the full path to the resource, including the
protocol, the server name, and the location of the resource on the
Server:

Google

Relative Links

A relative link relates to the current path. To create links to documents
within your own site, you can use relative paths to reference a resource
in a folder within the same directory as the current file:

About Us

You can also reference a resource in a directory above the current file:

Back to the home page

Relative links can also be relative to the site’s root:

Back to the home page

If you think that this resembles file traversal on a Linux-based filesys-
tem, you are correct.

THE SIDEBAR <« 139

Anchors

You can also create links to parts of the page. You can define a named
anchor using the a tag like this:

<h1l>Ingredients</hl>

11>
You can then create a link on the same page that “jumps” to that part
of the page when clicked:

Ingredients

11>

You can append the anchor to any absolute or relative URL, directing
your users to a particular part of the page:

Ingredients

Anchors are extremely useful on long pages with lots of content. You
can use them to build a table of contents (TOC) for your page, enabling
users to jump down the page to the topic they want to see. You can also
place a Return to the Table of Contents link at the end of each section
so the reader can return to your TOC without scrolling.

You could mock up this tag cloud by putting the URLs on each link you
make, but that’s time-consuming, and you will eventually replace these
links with code that will generate these links for you. For now, you can
create links that don’t do anything when you click them. You can use
the pound (#) character instead of a string that points to a file or a web
address. This is a great way to see how links will look without having
to make the links work if someone clicks them. Think of it as stubbing
out your links.

The next step is to create a section in the sidebar region for the first tag
cloud:

Download homepage_html/index.htmi

<div id="browse_recipes'>
<h2 1id="browse_recipes_header">Browse Recipes</h2>
desserts
appetizers
indian
beef
entrees
mexican
seafood
drinks

THE SIDEBAR < 140

pasta

italian

chicken

pork
</div> <!-- end browse_recipes -->

Each hyperlink has a class assigned to it, and we’ll assign a different
font size to those classes when we build the style sheet. We will also
wrap this section with a div tag and render its heading with the h2 tag,
as we did in the search section.

The Ingredients Tag Cloud

The structure of the second tag cloud will be identical to the one in
Section 9.6, The Recipes Tag Cloud, on page 137. You need to change
the ID, the heading, and the tag contents. Don’t feel bad about copying
the same block of HTML from the previous tag cloud and altering its
contents. You're not writing code here, you're marking up content. The
normal rules about not repeating yourself don’t apply. Get it done as
fast as you can. Marking up content with semantically correct structure
isn’t glamorous work. People care how it looks, not how it works.

When you finish with the new section, it will probably look something
like this:

Download homepage_html/index.html

<div id="popular_ingredients'>
<h2 1id="popular_ingredients_header'>Popular Ingredients</h2>
oregano
garlic
black beans
apples
bananas
cheese
lettuce
chicken
</div> <!-- end popular_ingredients -->

As with the recipes cloud, you have your heading and links inside their
own region.

This wraps up the sidebar region. At this point, you should save your
work and take a look at your page in a web browser to see how it looks
so far.

THE MAIN CONTENT <« 141

()

1// Joe Asks. ..

~—

< What Does the Pound Sign Do?
The pound sign (#) refers to a location within an HTML docu-
ment. It makes it possible for you to create links that point to a
specific section within a document. For example, a link to News loads up the index page and
jumps directly to the section of the page that has the anchor
defined with News.

In the case of our tag clouds, we used only a single pound sign
for the URL, which the browser will interpret as “jump to the top
of the page.” Basically, nothing will happen.

On aside note, you might occasionally see the pound sign used
as a placeholder when JavaScript code is attached to the link
using the onclick aftribute:

Add New User

This is a popular solutfion, but you should avoid doing this at
all costs. Users without JavaScript enabled will be unable to
use the link because it will jump them to the top of the page.
Instead, you should use a true link that accomplishes the same
functionality. In the case of an “"add user” form, the link could
point to a separate page that allows the user fo add the
user. Then you could use unobtrusive JavaScript to attach the
behavior for the click event.

\ S

9.7 The Main Content

Our main region consists of a large horizontal image, a column of text,
the Sign Up and Log In buttons, and the Latest Recipes section. Three
of these elements are images that we’ll have to extract from our mock-
up. We haven’t extracted those yet, so we can stub those out, as we did
with the image button for the search form.

Pasta Image

Let’s add a reference to the pasta image using the img tag, as we did for
the banner. Place this code within the <main>...</main> tags:

Download homepage_html/index.htmi

<img id="main_image" src="images/pasta.jpg"
alt="Pasta and marinara sauce'>

THE MAIN CONTENT < 142

Again, we assume here that you’ll eventually have an images folder
within the folder that contains this page, as well as a pasta.jog file inside
that folder. Until you do that, the browser will display the text specified
by the alt attribute.

Alternate Text

All image elements in your site need to have some alternate text that
displays if the image can’t be loaded for some reason, such as the user
is using a screen reader or a text-based browser. The alt attribute lets
you specify that text. When using this attribute, it’s important to be
descriptive. You’ll pass validation if you put only image in each tag,
but that isn’t helpful to your users. Be sure to describe the content
contained in the picture.

Text Content

The text-content area has the Get Cookin’ text heading and the para-
graphs of placeholder text beneath it. We will use CSS to replace the
header with an image (as we do for other headers), and we will wrap
the text content inside <p> tags. As we do with sidebar elements such
as the search and tag clouds, we place the header and paragraphs in
their own regions:

Download homepage_html/index.html

<div id="main_text'>

<hl 1id="get_cooking'">Get Cookin...</hl>

<p>Foodbox is the best way to collect and share recipes
with the rest of the world. You can build your own
recipe book from thousands of great recipes from
renowned chefs or users just 1like you. You can also
share your own secret recipes with a few of your friends
or make them available to the rest of the world!</p>

<p>Create an account today and get cookin!</p>
</div><!-- end main_text -->

Note that two separate paragraphs exist here. In the mock-up, the Cre-
ate an account... section is separate from the rest of the body copy.
You might be tempted to use a
 tag to force a line break, but you
need to think about what the content represents. You have two sep-
arate paragraphs here, so you should mark them up as such in your
document.

THE MAIN CONTENT < 143

()

1’{ Joe Asks...
f

—__Why Are We Embedding Images for the Buttons Instead of
Styling Them with CSS, As We Plan to Do with Section Headings?

We're reserving image replacement to preserve how our type
looks. The Log In and Sign Up buftons we made do more than
replace text—they behave more like controls on the interface.
That said, feel free to use CSS. If you prefer that approach, you
can replace the headings using the same method we'll use in
Chapter 12, Replacing the Section Headings Using the Cover-
up Method, on page 194.

The Sign Up and Log In Buttons

You use the img tag to place the buttons the user will use to sign up
or log in with. You should treat this area as another region of your
document, creating a new div with an appropriate ID and adding an
image for the button.

You want this button to be clickable, but it won’t submit any data, so
you don’t need to use a form. Instead, you will make an image out of
a hyperlink. Do you remember how the a tag works? Anything between
the opening and closing tags becomes the hyperlink. It so happens that
if you wrap an img tag with an a tag, you get a clickable image. Add two
img tags and wrap them with links, one for the Sign Up button and one
for the Log In button:

Download homepage_html/index.html

<div 1id="signup_login">

</div><!-- end signup_login -->

Note that each of these image tags has its alt attribute specified to
match the text on the buttons. This will help blind and screen-reader
users locate the buttons more easily. These images also have a border
around them to denote that they are clickable. This border doesn’t look
good, so we'll eventually use CSS to remove it.

THE MAIN CONTENT < 144

The Latest Recipes Section

Now you need to mock up a couple recipes for the Latest Recipes sec-
tion, as you did for the tag clouds. Eventually, you will write some
code to grab the latest n recipes from the database and then to loop
through and display them. You don’t need to go through that pro-
cess now because you're building this document to get feedback on
the design.

The styling for this section is slightly more complex than for the other
sections. The recipe title is a normal heading, but the paragraph that
contains the description has a slight indentation. To make this easy,
we can give the description paragraph tags a class attribute. The class
attribute makes it easy to apply a style to a group of elements or its chil-
dren. When we eventually apply the style, we’ll specify that only para-
graphs that are children of the div element with the ID of lafest_recipes
will be indented:

Download homepage_html/index.html

<div id="latest_recipes'>
<h2 1id=""latest_recipes_header'">Latest Recipes</h2>

<div id="latest_recipe_1" class="latest_recipe">
<h3>Stuffed Chicken Breast</h3>
<p>A Tightly breaded breast of chicken stuffed with mushrooms
and Swiss cheese. Easy to make even for beginners.</p>
</div>

<div id="Tatest_recipe_2" class="latest_recipe">
<h3>Chocolate Pancakes</h3>
<p>This complete-from-scratch classic pancakes recipe is sure
to please even the pickiest eater, especially chocolate
Tovers.</p>
</div>

</div>

Each one of these recipes has the class attribute set to latest_recipe.
Unlike id attributes, a class attribute can be repeated as many times
as you want. You have to think ahead about the design and how you
plan to apply the style sheets to your document when you code up your
content.

THE FOOTER < 145

Having the digital mock-up available to you makes it a bit easier to do
this, because you can see how some areas might share style elements.

9.8 The Footer

The footer region of the page contains the copyright notice and hyper-
links to the privacy policy and the terms of service. On the original site,
the copyright notice was rendered with a special character that doesn’t
show up correctly in some web browsers. It’s possible for these special
characters to sneak into web pages, especially if the developer uses a
visual editor such as Dreamweaver or FrontPage and pastes in content
from Microsoft Word.

Special characters such as the copyright symbol, left and right curly
quotes, and many others must be specified using entity codes.

Within the footer region, enter the following text:

Download homepage_html/index.html

<div id="footer'"> <!-- start of the footer -->

<p id="copyright">Copyright © 2010 Foodbox,
LLC, all rights reserved.</p>
<p id="privacy_and_terms">
Terms of Service |
Privacy Policy
</p>
</div> <!-- end of the footer -->

© is an example of an entity code. When the browser encounters
the entity code, it renders the appropriate character. This ensures that

the copyright symbol is rendered accurately in the various browsers
and fonts that a user might have.

In this example, I gave the paragraph tags a unique ID instead of defin-
ing new div tags. The paragraph tags are already block elements; these
elements take only one line of text apiece, so it doesn’t make sense to
add the extra markup for the div tags.

In your quest to create a flexible content document, you should try to
avoid adding any superfluous elements.

THE FOOTER <« 146

Entity Codes
You’'ve seen how you can use entity codes to render the copy-
right symbol, but you can use them for other things, as well.

The browser ignores spaces greater than one character, but
sometfimes you might need to have an extra space in the
middle of a paragraph. Use the entity code or a non-
breaking blank space to force the browser to display a blank
character.

People you work with who are familiar with print, such as a com-
pany’s PR department, might not like the normal quotes pro-
vided in HTML. They might ask you to use curly quotes instead.
You can achieve this using * and “.

You can do a web search for HTML entity codes to see many
examples of these codes. Every special character has an
entity code, including those pesky accented letfters in foreign
languages.

At this point, you have a completed page that should look a lot like this:

Download homepage_html/index.htmi

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

<html Tang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Foodbox</title>

</head>
<body>
<div id="page'> <!-- start of the page wrapper -->
<div 1id="header"> <!-- start of header -->

</div> <!-- end of header -->

<div id="middle"> <!-- container for the sidebar and main region -->
<div 1id="sidebar'"> <!-- the sidebar -->

THE FOOTER

<div 1id="search'>
<h2 1id="search_header">Search Recipes</h2>
<form id="search_form" method="get" action="/recipes/">
<div>
<input type="text" id="search_keywords" name="keywords'>
<input type="1image" alt="Search" src='"images/search.png'>
</div>
</form>
</div>

<div id="browse_recipes'>
<h2 1id="browse_recipes_header'">Browse Recipes</h2>
desserts
appetizers
indian
beef
entrees
mexican
seafood
drinks
pasta
1italian
chicken
pork
</div> <!-- end browse_recipes -->

<div id="popular_ingredients">
<h2 +id="popular_ingredients_header'">Popular Ingredients</h2>
oregano
garlic
black beans
apples
bananas
cheese
lettuce
chicken

</div> <!-- end popular_ingredients -->
</div> <!-- end of the sidebar -->
<div id="main"> <!-- start of main content -->

<img id="main_image" src="images/pasta.jpg"
alt="Pasta and marinara sauce">

<div id="main_text'">

<hl 1id="get_cooking">Get Cookin...</hl>

<p>Foodbox is the best way to collect and share recipes
with the rest of the world. You can build your own
recipe book from thousands of great recipes from
renowned chefs or users just like you. You can also

THE FOOTER

share your own secret recipes with a few of your friends
or make them available to the rest of the world!</p>

<p>Create an account today and get cookin!</p>
</div><!-- end main_text -->
<div 1id="signup_login">

</div><!-- end signup_login -->
<div id="latest_recipes'>

<h2 id="latest_recipes_header'>Latest Recipes</h2>

<div id="Tatest_recipe_1" class="latest_recipe'>
<h3>Stuffed Chicken Breast</h3>
<p>A Tightly breaded breast of chicken stuffed with mushrooms
and Swiss cheese. Easy to make even for beginners.</p>
</div>

<div id="Tatest_recipe_2" class="latest_recipe">
<h3>Chocolate Pancakes</h3>
<p>This complete-from-scratch classic pancakes recipe is sure
to please even the pickiest eater, especially chocolate
Tovers.</p>
</div>

</div>

</div> <!-- end of main content -->
</div> <!-- end of middle container -->
<div id="footer'"> <!-- start of the footer -->

<p id="copyright'">Copyright © 2010 Foodbox,
LLC, all rights reserved.</p>
<p id="privacy_and_terms'>
Terms of Service |
Privacy Policy

</p>
</div> <!-- end of the footer -->
</div> <!-- end of the page wrapper -->
</body>

</html>

< 148

VALIDATING YOUR MARKUP <« 149

9.9 Validating Your Markup

One of the reasons you're doing all this hand-rolled HTML is so that you
can have a valid document. The W3C, the standards body that defines
the specifications for HTML, XHTML, and CSS, provides an online val-
idation tool that you can use to check any page by either providing a
URL or by pasting in your source code.

Some text editors that support HTML editing make the process of val-
idating your local file quite easy, but I prefer using the Firefox web
browser and the Web Developer Toolbar. This combination runs on all
platforms, so it’s always available to me.

Setting Up Firefox for Web-Page Development

Firefox is a popular web browser, but it’'s also a great tool for website
development. You can extend Firefox with plug-ins or extensions that
add new features to the browser. We can use Firefox and a couple of
extensions to help us develop and test websites and web applications.

If you don’t already have the latest version of Firefox installed, visit
the Firefox website® and download the installation program. Install the
browser and launch it.

The Web Developer Toolbar

The Web Developer Toolbar transforms the Firefox browser into a pow-
erful development environment for web-application developers and web
designers. The tool makes it easy to validate your pages against the
W3C page validation service, and it also features a live CSS editor that
we'll use in the next chapter.®

Install the Web Developer Toolbar by pointing Firefox to htfps://addons.
mozilla.org/firefox/60/, selecting the Add to Firefox link on the page, and
then clicking the Install button in the security dialog box that appears.

You need to restart the Firefox browser after you install all the exten-
sions. When Firefox restarts, you can find your new Web Developer
Toolbar immediately beneath the bookmark’s toolbar.

8. http://www.getfirefox.com/
9. Application developers might be interested in the ability for the Web Developer Toolbar
to clear session cookies and inspect headers.

VALIDATING YOUR MARKUP <« 150

Vf Joe Asks...

“f
Explorer?

If you design and develop with Firefox, you'll find that you spend
much less time in the development process than you would if
you used Internet Explorer. This is because Firefox is a bit pickier
about how it renders pages, whereas I|E lets you break some
rules that will eventually cause you nightmares when it comes
fime to build your style sheets. You still need to test your stuff
against Internet Explorer, but the idea is to build for Firefox and
then tweak for IE using some special IE features such as condi-
fional comments to include IE-specific styles. You'll spend much
less time making the site work across platforms if you follow this
approach.

Internet Explorer gets more standards-compatible with every
release, and it’'s always important to fest on as many browsers
and platforms as you can. However, Firefox remains the best
way to develop pages because it features good support for
web standards, and it includes powerful plug-ins designed to
help you work better.

Fiietox forlnt
Linux users should consult their distribution’s documentation.
You could build Firefox from source, but there’s a good chance
that you have a Firefox package available via your distribu-

fion’s package management system. For example, Ubuntu
users can install Firefox with this instruction:

sudo apt-get install mozilla-firefox

()
Firebug
The Firebug* extension makes debugging and inspecting HTML,
CSS, and JavasScript much easier. We won’t be using it in
this book, but you will find it an invaluable tool. Firebug will
show you all the CSS style definitions, widths and heights, and

other attributes of elements. [t’s essentially a debugger for web
developers.

Firebug Lite' is a cross-browser version that can help you get
out of trouble when you’'re working with Internet Explorer.

x. http://getfirebug.com/
1. http://getfirebug.com/lite.html

Validating Your Document

Validation doesn’t take too long, and if you've made no coding errors,
you’'ll get a friendly message telling you that your page is valid. If you
get a message that says you have errors, the validation report will show
you the problem spots in your code. In the event that this happens to
you, you should work on the errors one at a time, starting from the top.
A single error at the top of your document can trigger ten more. Fix the
first problem and revalidate.

The validator will even catch situations where you've used some sym-
bols inappropriately, such as the ampersand character. Many appli-
cation developers use the querystring to pass parameters back to the
server, as shown here:

http://www.example.com/search?first_name=homer&last_name=simpson

Although that URL will work, it won’t be considered valid if the val-
idator sees it in your code. To pass validation, you must encode all
ampersands within the source as &omp;. This isn’t usually a problem if
you use a modern web framework, but you'll still see this issue pop up
occasionally.

9.10 HTMLS

HTML 5 is still in draft form at the time of writing. Of course, that hasn’t
stopped people from adopting it already. It’s not widely supported on
every browser yet, but it’s fully backward-compatible. In fact, the HTML

HTML 5 <152

5 doctype even forces Internet Explorer 6 into standards mode. This
compatibility makes it easy to use CSS to build presentable websites.
The HTML5 Gallery!© lists websites that have already made the move.

What makes HTML 5 so interesting is that it places even more emphasis
on marking up content. In this chapter, we use div elements to mark up
our heading, sidebar, main content, and footer. If we were using HTML
5, our markup might look like this:

Download homepage_html/index_html5.html

<!DOCTYPE html>

<htm1l Tang="en-US">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<title>Foodbox</title>
</head>

<body>
<section 1id="page'>

<header 1id="header">

</header>
<section id="middle">

<aside id="sidebar">

<section 1id="search'>
<h2 1id="search_header'">Search Recipes</h2>
<form id="search_form" method="get" action="/recipes/">
<div>
<input type="text" 1id="search_keywords" name="keywords">
<input type="1image" alt="Search" src="images/search.png">
</div>
</form>
</section>

<section 1id="browse_recipes''>
<h2 +id="browse_recipes_header">Browse Recipes</h2>
desserts
appetizers
indian
beef
entrees
mexican
seafood
drinks

10. http://htmlibgallery.com/

HTML 5 <« 153

pasta

italian

chicken

pork
</section>

<section 1id="popular_ingredients'>
<h2 1id="popular_ingredients_header'>Popular Ingredients</h2>
oregano
garlic
black beans
apples
bananas
cheese
lettuce
chicken
</section>
</aside>

<section id="main">
<img id="main_image" src="images/pasta.jpg"
alt="Pasta and marinara sauce'>

<article 1id="main_text'>

<hl 1id="get_cooking'">Get Cookin...</hl>

<p>Foodbox is the best way to collect and share recipes
with the rest of the world. You can build your own
recipe book from thousands of great recipes from
renowned chefs or users just 1like you. You can also
share your own secret recipes with a few of your friends
or make them available to the rest of the world!</p>

<p>Create an account today and get cookin!</p>
</article>

<section 1id="signup_login">

</section>

<section 1id="latest_recipes''>
<h2 +id="latest_recipes_header">Latest Recipes</h2>
<article id="latest_recipe_l" class="latest_recipe'>
<h3>Stuffed Chicken Breast</h3>
<p>A 1lightly breaded breast of chicken stuffed with mushrooms
and Swiss cheese. Easy to make even for beginners.</p>
</article>

SUMMARY <« 154

<article id="latest_recipe_2" class="latest_recipe'>
<h3>Chocolate Pancakes</h3>
<p>This complete-from-scratch classic pancakes recipe is sure
to please even the pickiest eater, especially chocolate
Tovers.</p>
</article>
</section>
</section>
</section>

<footer 1id="footer">
<p id="copyright'">Copyright © 2010 Foodbox,
LLC, all rights reserved.</p>
<p id="privacy_and_terms'>
Terms of Service |
Privacy Policy
</p>
</footer>
</section>

</body>
</html>

This code is much more descriptive than what you see in HTML 4.01
Strict. However, HTML 5 remains a moving target, which is why I chose
to focus on HTML 4.01 Strict in this book. If you feel adventurous, you
might try implementing the rest of the exercises in this book using the
HTML 5 template.!!

9.11 Summary

In this chapter, you learned how to build a structured content docu-
ment that’s valid and ready to be styled. You can use the structure
you used here in future projects because it contains only content and
structural elements. The main thing you should take away from this
chapter is that your document should be structured in a way that is
flexible but also semantically marked up and valid. We separated each
logical element group with markup, and then we allowed the available
markup tags in HTML to handle the rest of the content. Now it’'s time
to transform this document using CSS.

11. Older browsers won’t recognize the new elements like aside yet, so they can’t be styled,
but you can use Javascript’s document.createElement(); method to make browsers recog-
nize the new elements. Just remember that this requires that your users have Javascript
enabled.

10.1

Chapter 10

Creating Assets

We have our skeleton for the home page in place; next, we need to
get the logo and other images ready for use on the Web. We can use
pieces from our mock-up in our final web page. In this chapter, you'll
learn about the various graphic file formats you can use in a website.
You'll also learn how to slice up your Photoshop document and export
sections to individual files that you can then reference in your HTML
document or your style sheets.

Graphics Optimization

Before you start exporting images, you should familiarize yourself with
some of the important issues relevant to using graphics on the Web,
such as file size, file types, and image optimization. Many of the avail-
able graphics tools will do this optimization for you, but to make good
choices that best suit your situation, you should understand the how
and why of optimization.

Graphics optimization is the process of reducing the file size of images
used on web pages, while preserving the quality and clarity of those
images. This process provides a few key benefits:

Smaller images are friendlier to your end users.
People will be able to download the web page faster if you've opti-
mized your images. Your website will appear faster to them, and

GRAPHICS OPTIMIZATION <<« 156

they will be less frustrated than if they had to wait thirty seconds
for all your huge, unoptimized images to appear.

Smaller images are more bandwidth-friendly. Web hosts usually limit
how much data your website can serve per month. If your images
are smaller, you won't hit your quota as fast. Some providers will
even charge fees when you exceed your limit. Commercial organi-
zations that host their own websites also pay a bandwidth fee. It
might seem trivial, but the savings will add up if you get a signifi-
cant amount of unique visitors to your site.

Smaller images take up less space. Sure, we've all heard the argument
that disk space is cheap, but disk space is even cheaper if you
don’t have to buy as many disks to store all your huge images.
Amazon’s S3 service charges for both the space used by your files
and your bandwidth. It’s in your best interests to keep the image
sizes small so you pay less for storage and data transfer.

Download Times

Even though many people have fast Internet connections, you still need
to think about download times for your assets. A 100KB JPEG might
appear small, but add in five of them, the 122KB Prototype JavaScript
library, several CSS files, and several other assets, and it can take a
few seconds or more for those images to download. Users tend to be
incredibly impatient, and you want to do everything you can to make
your pages load as quickly as possible.

You can use various methods to calculate the total size of a page.
Adding up the file size of your page, scripts, style sheets, and images
using a calculator is one way. Another, more accurate way is to let
an outside service do it for you. Visit hftp://www.websiteoptimization.com/
services/analyze/, and enter the address of your site to see a detailed
report.!

1. This method requires that you have your page or application available to the outside
world. If this isn’t an option, then you’ll need to do a manual calculation of the sizes or
use an editor such as Dreamweaver, which can give you a report of the page size and
estimated download times.

DEALING WITH DIFFERENT GRAPHICS FORMATS <« 157

10.2 Dealing with Different Graphics Formats

Optimizing images can be difficult because you need to consider the
type of image you’re working on. For example, photographs need to be
optimized differently than charts or logos.

When you work in a web browser, you work primarily with three graph-
ics formats: GIFs, PNGs, and JPEGs. We'll be using each of these for-
mats in our site.

GIFs

GIF, short for Graphics Interchange Format, is a graphics format that
uses a palette of up to 256 distinct colors from the 24-bit RGB color
space. You don’t use it for photographs because of this limited-color
space, but it’s great for logos. The GIF format also supports animations.

Historically, GIFs have often been used for logos and buttons because
they support transparency, which means you can place a GIF on the
page and see the background through parts of the logo. However, devel-
opers are increasingly adopting PNGs because of that format’s superior
transparency support.

Optimizing GlFs

GIF images allow a maximum of only 256 colors in the image. You opti-
mize GIFs by reducing the number of colors that will be stored in the
file. If you have only 16 colors total in your logo, you tell your graphics
software to limit the output to 16 colors. Reducing the colors reduces
the file size, but you might end up making the image look terrible. The
more complex the image, the more colors you’ll need to store. Photo-
shop lets you preview the image as you optimize it, so you’ll have an
idea of how it will look under each setting.

When you reduce the number of colors in a GIF, you need to do it
by a factor of two; 16, 32, 64, 128, and 256 are acceptable values for
the number of colors. You won'’t notice any real size savings if you use
other values, and going below 16 colors can cause some problems for
you. The image might not render at all in some rare situations, so don’t
bother going that lower than that.

Photoshop’s Save for Web & Devices feature allows us to control the
colors used in a GIF, as shown in Figure 10.1, on the next page.

DEALING WITH DIFFERENT GRAPHICS FORMATS <« 158

[oave for Web & Devices (100%) .

\-riginal | Optimized | 2-Up (4-Up | [— Preset: |[Unnamed] j =
¥ e o
@ ISeIective LI Colors: {256 |
i o Difher x| othen [0]
@ [Transparency matte: [V]
I j Amount: r
[~ Interlaced Wb Sniap:
Lossy:

¥ Convert to sRGE

Preyiew! I Monitar Colar

1l

Metadata: |C0pyright and Contact Infa

E)gr'isg;nal: “sigriup. buttonpsd” — Color Table -
.

4
[
|

HE FEEE =

m HEN
Hl EEEEEN 4]
256 [l @ @ al @

— Image Size

w216 pix]@ Percent; IIDD %
H: |72 pix Cuality; IBicubic "I
aIF 095 dither
2877 Selective palette — &nimation
2zec @ GE6kbps = 26 col)
= = chi Looping Options! IOnce j
=l 3 Ri-- G - B - | Alphar - Hew: —- Index: -~ | | Laf1 | 4 | -l | s | 1 | el I
Device Central... | Presviens, ., | Save I Zancel | Dione. I

Vil

Figure 10.1: The Save for Web & Devices option in Photoshop has sev-
eral presets for GIFs that automatically pick the colors necessary in
your image.

PNGs

PNG, short for Portable Network Graphics, is a bitmap image format that
uses lossless compression and was designed to replace the GIF format.
It supports only RGB colors, and it’s designed for use on the Web. It also
supports transparency quite well. Unfortunately, this transparency is
supported only in newer browsers, but don’t be afraid to use it because
the image quality can be amazing.

PNG Optimization

When you optimize a PNG, you select a bit depth of the image. The
more complicated the image, the larger the file size. However, unlike
JPEGs, PNG files use a lossless compression, so PNG is a nice format
for logos and other nonphotographic artwork, especially logos, icons,
and buttons with shading, shadows, or glossy detailing.

DEALING WITH DIFFERENT GRAPHICS FORMATS <« 159

()

Don’t Recompress a JPEG!
You should avoid recompressing a JPEG whenever possible. If
you've compressed the original image by 20% and still haven’t
goften the file size you wanted, don’t compress the new image
further; instfead, compress the original file again. It's important

to keep your original files uncompressed, sO you can go back
and re-create them.

Be sure to watch your file sizes when using PNGs; a 24-bit PNG with
transparency can be quite large.

JPEGs

JPEG is a compression format for photographic images. It’s widely sup-
ported, but it uses a lossy compression, so artifacts can be created if
you compress too much or recompress multiple times.

JPEGs do not support transparency at all, and you should use them
only for photographs. Logos, screenshots, and gradients are definitely
not appropriate uses for JPEGs.

Optimizing JPEGs

To optimize a JPEG, you simply compress the image to make it smaller.
Compression can reduce the file size dramatically, but can also reduce
the image quality. You need to strike a balance between file size and
quality when optimizing JPEG images.

JPEGs are compressed when you save the file. For example, in Pho-
toshop you save the file as a JPEG and choose the compression level,
as shown in Figure 10.2, on the following page. All graphics programs
work the same way when compressing JPEGs; they ask you to specify
the compression level in terms of the quality of the image. More com-
pression means less quality.

If your image is still too big after you've optimized it, your only other
option is to reduce the height and width of the image to make the file
size smaller.

DEALING WITH DIFFERENT GRAPHICS FORMATS <« 160

x
Matte: |N.3ﬂe j | Ok |

— Image Options ancel |
Quiality: IE IMedium | ¥ Previeww
srnall fle) large Fle L

— Format Options
{* Baseline (*Standard™)

{” Baseline Optimized
" Progressive

Scans: | E =

Figure 10.2: Compressing a JPEG

Digital C
Some consumer-oriented digital cameras store their photos as
JPEGs. If your camera saves images in this format, you will def-
initely want to check with your manufacturer to find out how
much these images are compressed. If possible, your origi-
nal images should be uncompressed. Some cameras have an
option fo change how the image is stored. | recommend storing
your images in the RAW format and using Photoshop to convert
them to JPEGs. Consult your manual for more information.

If you get your photos from photographers, ask them to provide
you with RAW or digital negative (DNG) files—and be sure to ask
for this before the photographer takes the pictures!

SLICING UP OUR DOCUMENT < 161

10.3 Slicing Up Our Document

Open your mock-up file. We're going to grab some images from this file
using the Slice and Slice Select tools, and Photoshop will do all the
graphics optimization for us, as long as we give it a little direction. We
don’t want to transform the entire mock-up into a web page automat-
ically; rather, we want a few images that we can use from our style
sheets.

Double-Checking the Mock-Up

We need to make sure that all our elements are within the gridlines.
We'll use the gridlines as guides to create slices, and we don’t want to
accidentally slice off part of a word or image. Zoom in to about 300%,
and then hold down the to activate the Hand tool. Click and
drag with the mouse pointer to pan around the canvas and make sure
that your logo, headings, and images are all contained within gridlines.
You don’t want the edges of your fonts or images to overlap any grid-
lines. You can see an example of what you want to avoid in Figure 10.3,
on the next page.

If you do find something that crosses a gridline, select the Move tool and
right-click (Windows) or Command-click (Mac) the section of the canvas
that overlaps the line. This brings up a context menu that shows the
layers underneath the cursor. Select the layer for the offending element,
and then use the arrow keys to nudge it in small increments until the
image is where it needs to be.

10.4 Creating Slices

We're going to create several slices from this document. We will even-
tually save the slices as different file formats, but the slicing process is
the same. Let’s start by turning the Foodbox logo into a slice.

Select the Slice tool from the tool palette,? and then use the Slice tool to
draw a box around the Foodbox logo using the gridlines that surround
the logo. The upper left should be at 72px across and 18px down, and it
should end at 558px across and 108px down. Make sure that the Snap
to Grid option is enabled to make this process go more quickly.

2. In previous versions of Photoshop, the Slice tool had its own menu item; however, in
Photoshop CS4, it’s located beneath the Crop tool.

CREATING SLICES < 162

Figure 10.3: An element not quite within the gridlines

Slices f Suid

You can skip all this slicing by hand if you remain diligent about
placing guides when you do your mock-up. When you select
the Slice tool, you have the option to press the Slices from
Guides button. If you do this, you will create additional slices
that you’ll have to ignore later, and you'll also have to make
sure that you’ve placed your guides appropriately. You could
end up splitting images in half unintentionally.

Depending on the number of slices you need to make, this
method might save you fime, even if you have fo make some
manual adjustments afterward.

This is the approach many of the plug-ins for GIMP use to slice
images.

CREATING SLICES < 163

Now select the Slice Select tool, which you find underneath the Slice
tool on the palette (click and hold to expand the section of the palette
to reveal it) and double-click the logo slice. Set its name to banner. The
name you set here is used as the filename for the slice when you export
the file. You should name each slice you plan to export. If you don't,
Photoshop will name the slice for you, and you’ll find it much harder to
keep things organized later.®

Slicing Up the Rest of the Image

Create slices for the rest of the elements using the same technique you
used for the banner; don’t forget to name each slice as you create it.
When you finish, you should have slices for the following elements:

* The Search Recipes header (search_recipes)

* The search button (search)

* The Browse Recipes header (browse_recipes)

* The Popular Ingredients header (popular_ingredients)
* The pasta image (pasta)

* The Get Cookin’ header (get_cookin)

* The Latest Recipes header (latest_recipes)

* The Log In button (btn_login)

* The Sign Up button (btn_signup)

When slicing, make sure you always slice to the gridlines. If any part
of the image crosses a gridline, go to the next gridline. The slices we
create should be evenly divisible by our line-height of 18px so that they
don’t throw off our baseline grid.* You can see how the slices should
work out in Figure 10.4, on the following page.

To make things easier when we do the CSS image replacement for
the sidebar headings, make the slices all the same height and width,
approximately 180 by 36. Make both the Get Cookin’ and Latest Recipes
images 198px by 54px.

3. Naming the slice as you create it also helps you identify slices you create vs. ones
that Photoshop creates for you. In the event you have a slice that overlaps or you select
a slice you didn’t mean to export, you can tell from the filenames which slices are good

and which ones you can discard.
4. You can make your slices any size you want, but be prepared to add the right amount

of margin and padding to the image element using CSS so that you still adhere to the
grid.

EXTRACTING THE BANNER AS A TRANSPARENT PNG <« 164

REE
e v

o

"iEl vse Recipes &
F@SSSHS appelizers ot beef

e Mexican seafood drinks pasta o ey 2] | 2le
: : 22 is the best way to collect and share recipes :
- italian chicken ok the rest of the world. You can build your own
H H book from thousands of great recipes from
nowned chefs or users just like you, You can also
your own secret recipes with a few of your

o : Iso: make them available to the rest of the - Log In

ate an account today and get cookin!

;;atest Recipes
2 d Chicken Breast

Alightty-breaded breast of chicken stuffed with mushmoms and Swiss cheese.
Easy to make even for beginners! :

Bular Ingredients

s choddar bacon beans Pasta
ONION hamburger tanss

Figure 10.4: Your document with all slices created

You can verify the dimensions of a slice by looking at the slice info
displayed when you set the slice name. For example, select the Slice
Select tool and double-click the Get Cookin’ slice. The X and Y coordi-
nates denote the starting point of the slice. The height and width are
relative to that starting coordinate. The Get Cookin’ slice should be at
378 X and 252 Y. The width should be 162px, and the height should be
54px.

Save your document. The slice settings you made are saved along with
the document, so you don’t have to create the slices the next time you
want to work with the document.

10.5 Extracting the Banner as a Transparent PNG

You can export the logo as any file format you want, but we’ll use a PNG
for this site. The PNG is lossless and can support many colors. Our logo
has the faded reflection, which introduces a little more complexity than
a standard GIF, while a JPEG might compress the logo too much and
cause it to look distorted.

EXTRACTING THE BANNER AS A TRANSPARENT PNG <« 165

‘foodbe

g
HEE

Figure 10.5: Transparent layers behind the Foodbox logo

We don’t need to make this image transparent—it could just sit on top
of the yellow background, and nobody would know the difference when
they look at the page. But we need an excuse for you to learn how
to make transparent PNGs, so you can use them when you do need
one.® When you created this file, you set the background to white. For
Photoshop to export a transparent PNG, you must get rid of all the
layers below it. This means you have to convert the background layer
to an actual layer. Find the background layer in your Layers palette,
and double-click it to bring up the Layer Properties box. Name it back-
ground_layer, and click the OK button.

Hiding Layers

To export the banner as a transparent PNG, you need to hide any other
layers below the banner. Hide the background layer, and the yellow
header layer by clicking the eye symbol next to each layer. Photoshop
displays a checkered pattern to indicate a transparent area. Your ban-
ner should look something like Figure 10.5.

Saving the Slice

Photoshop uses the Save for Web & Devices menu item rather than the
normal Save as command to create web-optimized images. Select that
command, and you’ll be presented with a preview of your document,
sliced up nicely.

5. You can read that as “when the client wants one.”

EXPORTING THE REST OF THE ELEMENTS <« 166

10.6

& [Conginal

o
Optimized [2-Up |4-Up Preset: | PRG-24
=T ===
| E’| I W Transparency
‘:. = I: - =] I~ Interlaced
=
; 06 | -
= Recines £
skl ﬂ
I L1 |

Figure 10.6: Exporting the Foodbox logo

Select the slice for the logo. Whenever you select a slice, the properties
pane on the right side updates to display the properties for that par-
ticular slice. Each slice can have different output settings, so you can
export PNGs, JPEGs, and GIF's, each with their own settings.

Set the type to PNG-24, and make sure that the Transparency option
is selected. When you select the Transparency option, the background
behind the logo changes from white into the same checkerboard pattern
you saw in the canvas, as shown in Figure 10.6.

Click the Save button to bring up the Save Optimized As dialog box.
Set the Save In location to your Foodbox project folder. Photoshop will
automatically create an images folder for you. Leave the filename alone,
but change the type to Images only, and change the Slices option to
Selected Slices. The filename will be generated automatically from the
slice name you specify.

Verify that the bannerpng file exists in the images folder within your
working folder, and get ready to export everything else.

Exporting the Rest of the Elements

Unhide the background layer and the heading layer, and then choose
the Save for Web & Devices option again. Select the pasta image slice,
and set its file type to JPEG. Move the quality slider to 80. The higher
the quality, the larger the file size, so you have to strike a good balance
here to make it look good.

Select the Log In Button slice, and choose PNG 8. This time, don’t
select the transparency option. Do the same with the Sign Up Button
slice and the search icon. We don’t need the extra information a 24-bit
PNG would provide because these icons have few colors and will work
perfectly.

SUMMARY < 167

10.7

The header images should work fine as GIFs.® Select the Get Cookin’
slice, hold down the key, and click the other headings. With all
the slices selected, you can simply change the type to GIF, and the
setting will apply to all the slices.

Hold down the Shift key, and click the pasta image, the search button,
Log In button, and Sign Up button slices. Click the Save button to save
all the selected slices to your images folder. Use the same settings in the
Save Optimized As dialog box, and the images will export to the right
location.

Once you export the images, save your Photoshop document. Photo-
shop persists the slice and settings information in this document, so
you can tweak and export graphics with ease.

Summary

In this chapter, you learned how various types of images work in a web
page, as well as how to make those graphics by slicing up the mock-up
you used to plan your design. Using slices in Photoshop to manage your
image optimization makes it ridiculously easy to change the appearance
of your site at a later date. Simply change the underlying mock-up and
reexport the slices to create another site.

Now it’s time to beautify our website with visual styles.

6. We use GIFs here instead of PNGs only for the purpose of illustrating this exercise;
you could also use 8-bit PNGs for these.

11.1

Chapter 11

Jelning Your Lavout with Gy

We've come a long way with our redesign implementation, and we're
nearing the finish line. It's now time to tackle one of the more con-
ceptually difficult parts of web design: positioning elements with CSS.
The implementation itself isn’t complicated, but understanding how it
works is often much more difficult than understanding what colors go
together. This chapter aims to guide you through the various twists
and turns of CSS so that you can learn how to take your flat content
document and transform it into something that closely resembles the
mock-up you did.

Browsers Are Awful

If it weren’t for web browsers, or rather their competing manufacturers,
CSS-based web design would be easy. Unfortunately, we live in a world
in which open source and commercial-software developers constantly
fight about how standards should be implemented. We've touched on
this concept a few times before, but Internet Explorer and Firefox don’t
render things the same way. Supporting a web design that works on
two browsers is bad enough, but you can’t forget about Apple’s Safari
browser, the various Opera-based browsers, or Google’s Chrome. Each
browser has its own advantages and flaws, and it’s your job as a web
programmer to understand those strengths and weaknesses, so you
can present a useful and attractive site to your audience.

You can hack around the problems by using various CSS rules that trip
up a given browser’s CSS interpreters so that certain rules are ignored
by certain browsers, but that’s a dangerous approach. Many of these
hacks rely on bugs in the browsers, and bugs eventually get fixed, even

THE BAsIicS oF CSS <« 169

()

Don’t Just Copy Code!
Please don’t just copy code you find on the Web! You can
find many neat CSS tricks out there, but many of them rely on
browser hacks or make other assumptions you might not be
familiar with. | believe you shouldn’t use anything in your soft-
ware that you don’t understand. Before you use some CSS in
your site, know what it does and how it works, as you would
with any other code in your application.

Selector
Property

/ / Value
P /
» color; #333333;

)

Declarations——>» margin-bottom: 0;
—» font-family: Arial, Helvetica, sans-serif;

}

Figure 11.1: The components of a CSS rule

by Microsoft. Developers got used to Internet Explorer 6 and its quirks.
They built pages relying on various CSS hacks to force their page to dis-
play the way they wanted. That browser hadn’t been updated in about
five years; however, many developers found themselves scrambling to
fix their pages when Microsoft released Internet Explorer 7. You don’t
want to end up like those developers; you want to write code that will
continue to render into the future.

11.2 The Basics of CSS

Cascading Style Sheets (CSS) is a language used to describe the pre-
sentation of an HTML document. Most people who dabble in the Web
start by using CSS to change the appearance of text on a page.

THE BAsics oF CSS <« 170

They quickly discover that they can set a style rule for all paragraphs
in a site, instead of specifying a rule for each paragraph in hundreds of

pages.

That’s just the tip of the iceberg. You can use CSS to add color and
images to your document, or even to change the entire structure and
layout. In this chapter, you’ll learn how to define the layout of Foodbox
by applying style rules to the various regions you defined previously.

A CSS rule is composed of selectors and declarations, as shown in Fig-
ure 11.1, on the previous page. Let’s explore a CSS rule in more detail.

Selectors

The selector is the part of the rule that specifies what element or ele-
ments the rule should apply to. A selector can be a reference to an
HTML tag, an ID, or a class.

Types of Selectors

A selector that refers to an HTML tag consists of the tag itself without
the angle brackets. In this example, all the h1 tags will be blue:
h1{

color:#009;
}

p, h1, and body are all examples of selectors that refer to HTML tags.

Selectors that reference an ID in the HTML document always start with
a hash mark. This code defines the width of the element on the page
with the ID of page:
#page{

width:900px;
}

#page, #header, and #footer all refer to IDs.

Finally, selectors that reference a class start with a period:

.box{
border:1px solid #000;
}

box, .important, and .newsitem all apply the rule to elements with the
specified class.

THE BASICS OF CSS «d 171

Declarations: Properties and Values

A declaration defines the style you apply to the selector. Each declara-
tion sets a value to a CSS property, so if you want to set the text color of
all h1 elements to red, you set the color property to #F00, the shorthand
hex notation for red. You can see the rule in action in this snippet:

h1{
color:#F00;

}

In a declaration, the property and value are separated by a colon, and
each property-value pair is separated by a semicolon.! If you have mul-
tiple declarations in a single rule, you can place them all on their own
lines, like this:
h1{

font-size:24px;

font-weight:bolder;

color:#f00;
}

Or, you can cram the entire thing on one line, like this:

hl1{font-size:24px;font-weight:bolder;color:#f00;}

The one-line version of the rule might be hard on the eyes, but remov-
ing the line breaks and extra spaces is one way to reduce bandwidth,
which can help reduce load times. You probably want to keep a nicely
formatted version of the style sheet while you develop, but you could
easily set up something in your site-deployment process to strip out all
the spaces and breaks before you upload it to the server. You could also
apply this strategy to HTML because it’s not sensitive to spaces and line
breaks, either.

That Cascading Part

You don’t have to declare all the rules that apply to an element in a
single rule. You can spread out declarations over various files or con-
tinuously add to a CSS rule using inline styles or page-level styles:

/% Set the 1line height =/
p{line-height:18px;}

/% set the color */
p{color:#003;}

1. You can omit the last semicolon in a CSS rule, but you shouldn’t because you might
forget about it later if you add more declarations to the rule.

THE BASICS OF CSS €172

Products

Clearance Items

Hot Deals!

Figure 11.2: We used an ID selector to override other rules to make the
heading red.

This feature allows you to separate your styles functionally. You can
have one CSS file control the layout of the page and another that spec-
ifies fonts and colors.

However, CSS styles applied to elements can sometimes conflict with
each other. CSS has its own method for determining the order of prece-
dence, called the cascade. Style sheets can come from three differ-
ent sources: the author (that's you), the user (users can apply their
own styles to override yours), and the browser’s defaults. The cascade
assigns a weight to each style rule, depending on the rule’s origin. To
keep it simple, we’ll cover only conflicts within style sheets you create,
and we won’'t worry too much about what users do to customize their
browser.

Rules in the author style sheets have more weight than browser or user
style sheets, but rules within author style sheets can collide as well.
Understanding how the cascade works can help you avoid collisions in
your styles and override styles safely in appropriate situations.

ID Selectors

Selectors with IDs are more specific than other selectors. For example,
if you define all h2 tags to be blue but you want a specific one to be red,
you might consider applying an ID to that heading using the ID in the
selector:

Download css_layout/examples/01_selectors.html

<h2>Products</h2>
<h2>Clearance Items</h2>
<h2 1id="special_promotion'>Hot Deals!</h2>

THE BAsIicS oF CSS <« 173

Products

Hot Deals!

Figure 11.3: The CSS class selector changed the second item green but
could not override the third item, because class selectors don’t override
ID selectors.

Download css_layout/examples/01_selectors.html

h2{color:#00F;}
#special_promotion{color:#F00;}

In this example, the Products and Clearance Items headings will be
blue, and the Hot Deals! heading will be red, as shown in Figure 11.2,
on the preceding page. Under normal circumstances, IDs always take
precedence over other style definitions.?

Class Selectors

Class selectors are more specific than regular HTML selectors, but not
as specific as an ID. We can use the promo class on our headings, as in
the following example:

Download css_layout/examples/02_selectors.html

<h2>Products</h2>
<h2 class="promo">Clearance Items</h2>
<h2 class="promo" -+id="special_promotion'>Hot Deals!</h2>

And we can define the styles for these headings:

Download css_layout/examples/02_selectors.html

h2{color:#00F;}
#special_promotion{color:#F00;}
.promo{color:#0F0;}

2. A better approach would be to use a class instead because IDs must be unique to a
page.

THE BASICS OF CSS <« 174

This time we have a blue Products heading, a green Clearance Items
heading, and the Hot Deals! heading remains red, as shown in Fig-
ure 11.3, on the previous page. The class overrides the rules for the h2
tag, but the rule attached to the ID selector still wins out.

Order Matters

When no precedence can be determined, the cascade picks the most
recently defined style. This is the part that lets you override styles on
a per-page or per-element basis, and it’s one of the most useful fea-
tures of CSS. A style sheet can be split across multiple files, and the
browser will apply the rules to elements as it finds them. As long as
you're careful and you understand how the cascade works, you can
take advantage of the flexibility.

For example, let’s say that the styles for our headings look like this:

Download css_layout/examples/03_selectors_page_style.html

h2{color:#00F;}
#special_promotion{color:#F00;}
.promo{color:#0F0;}

Then, you add a new style at the page level:

Download css_layout/examples/03_selectors_page_style.html

#special_promotion{color:#FF0;}

The rule at the page level takes precedence over the rule in the style
sheet because it’s defined again. The Hot Deals! heading is yellow in-
stead of red (see Figure 11.4, on the following page).

It's important to understand that an entire CSS rule is not overridden
when there’s a collision. Only the individual declarations that conflict
are affected.

We will redefine rules many times in this chapter, but we’ll do it mostly
to combine rules together; the goal will be to separate layout from
design, rather than to override rules.

The Importance of limportant

Sometimes you need to change how the cascade works so that you can
get a rule to apply as you see fit. CSS provides the limportant keyword to
force the cascade to apply the rule regardless of precedence. For exam-
ple, take a look at Section 11.2, Class Selectors, on the previous page.
Our rule tied to the promo class couldn’t override the rule attached to
the special_promotions ID because ID selectors always win. However, we

How BROWSERS USE CSS <« 175

11.3

Products

Figure 11.4: We declared the color for the Hot Deals heading twice. The
declaration that occurs last is used by the browser.

can force the promo rule to apply by appending !important to each dec-
laration we want to force to the top of the precedence order:

DownTload css_layout/examples/04_selectors_important.himi

h2{color:#00F;}
#special_promotion{color:#F00;}
.promo{color:#0F0 !important;}

This time, the Hot Deals! heading is green, as shown in Figure 11.5, on
the following page.

How Browsers Use CSS

Now that you know how to define styles, you should know how this
whole styling process works from the point of view of the web browser.
When you request a web page, the browser parses the HTML and begins
rendering the output. If it encounters a style or a style sheet refer-
ence, the browser applies those rules during the rendering process.
Style sheets can be referenced in three ways.

Inline Styles

HTML elements all have a style attribute that allows you to define CSS
properties as part of an element’s declaration:

<hl style="color:#f00;font-size:18px;">Welcome</hl>

This method is often used by application developers when they design
helper functions and tag libraries. Although this is a nice feature, it’s

How BROWSERS USE CSS <« 176

Products

Figure 11.5: Using the !important keyword can override previously
defined rules.

one of the worst ways to apply styles to a document. Imagine seeing
this in a document:
<h3>Services</h3>

<1i style="color:#300;">Computer repair</1i>
<11 style="color:#300;">Small business networking support</1i>
<1i style="color:#300;">Computer hardware sales</1i>

<11 style="color:#300;">Web development</11i>

You use the same style declaration repeatedly, increasing the amount
of code in the HTML document. By doing it this way, you lose the ability
to reuse this style information. If you had to make this list available on
multiple pages, you’d have to repeat these definitions even more. If the
client decided she wanted to use blue instead of red, you’d have a lot of
changes to implement. It also mixes content with design, which we’re
trying to avoid.

This technique is not all bad, though. Sometimes you might have a
specific element on a specific page that requires just a bit of tweaking,
and you don’'t want to bother with putting it in the global style sheet.
You know how this method works, so you should reserve it for those
special cases. That said, it’s too easy to abuse this technique. Server-
side programmers like to do things like this:

<?php

I n I

echo '<p style="font-size:18px;color="' . $color . ';">' . $description + '</p>';

?>

How BROWSERS USE CSS « 177

This might seem like a great approach at first, but this makes it ridicu-
lously hard to change colors and fonts later because it's easier to
change style sheets than it is to change server-side code. Please, for
the love of all that is good and right, avoid abusing CSS like this. It’s
bad. In fact, it's Comic Sans bad. It has such a lure, too, because
it's easy to code. Instead, you should use a class, as in the following
snippet:

<?php

echo '<p class="description">"' . $description + '</p>';
?>

You can then define the description class elsewhere and decide how it
should look without having to change your server-side code.

The Style Tag

HTML also has a style tag that you can use to define an entire style
sheet within the header of your document:
<style>
body{
font-family: Arial, Helvetica, sans-serif;
font-size:12px;
Tine-height: 18px;
}

hl1{font-size:18px; line-height:36px;}
h2{font-size:16px;}
h3{font-size:14px;}

#page{
width:900px;
}

</style>

This method is extremely useful in those cases where you want to have
a page with its own style elements that don’t belong in the sidebar style
sheet. The problem here is the same one you encountered with inline
styles: you are mixing content with presentation, and you lose the abil-
ity to share these styles with another page in your site.

This is also an excellent method to use when first implementing some
CSS rules on a template, because you don’'t have to create any addi-
tional files. The CSS code you use in the style element can be cut and

CREATING AND LINKING A NEW CSS STYLE SHEET <« 178

11.4

()

Vf Joe Asks...

f
A y . _Dici ?
Hex Codes Were Six Digits

CSS provides a shorthand syntax for color codes if the dig-
its in each pair are the same. For example, the color red is
represented as #ff0000. This code franslates to "red all on, no
greens, and no blues." Because F, 0, and 0 are repeated, you
can shorten this to #F00. Simply put, this is another way to help
reduce the character count in a document.

pasted into a separate CSS file when you are ready to build additional
pages.

External CSS Files

Using the link tag, you can attach a style sheet to your HTML document
just as you'd attach an external JavaScript file. Your user’s browser
will download the external file and apply it to your page. Subsequent
requests to the same file should be cached by the user’s browser. If you
use the same file across multiple pages, you can improve your user’s
experience significantly because you have to send only the content of
your page and not the extra CSS code.

This is generally the best method for working with style sheets, and it’s
the method we’ll use throughout the rest of the exercises in this book.
The other methods are perfect solutions for those one-off style changes
you have to make occasionally.

Creating and Linking a New CSS Style Sheet

Open your text editor, and create a new blank document. Save the doc-
ument into the stylesheets folder as layout.css. You’ll use this file to define
all the CSS rules that define the layout and alignment of the site. Later
we’ll place fonts and color rules in another file.

Close that text file. We're not going to use the text file to edit the styles
at this time. Instead, we’ll use the Web Developer Toolbar in Firefox.

11.5

DEFINING THE BASIC STRUCTURE, HEADER, AND FOOTER <« 179

Open your home page’s HTML document, and add the following code
within the <head>...</head> section:

<link rel="stylesheet" href="stylesheets/layout.css"
type="text/css" media="screen" charset="utf-8" />

This is an example of a link to an external style sheet. Here, we use
a relative link to the layout.css file in the stylesheets folder. Like the img
tag, the link to the style sheet can be relative to the document, relative
to the site root (/), or an absolute link to a style sheet somewhere on
another server.

Style sheets can be locked to a specific type of display. For example, you
can specify that a style sheet should be used only when the document
is displayed on a screen or that it should be used only when the page is
printed. This makes it easier for you to design presentations for printers
or mobile devices. That said, you shouldn’t trust the media type alone.
Web browsers are responsible for interpreting this, and some browsers
don’t, especially screen readers and some mobile devices. You should
always test your site.

Defining the Basic Structure, Header, and Footer

Open the index.html file in Firefox. At this point, the page is plain, but
it's also readable and usable. This is what your page would look like
in a text-based browser or another device that doesn’t support style
sheets. Let’s make some changes to this document using the Edit CSS
feature of the Web Developer Toolbar, so we can see the changes in real
time.

Open the CSS Editor in Firefox by pressing [Ct r1]+[5h1' ft]+ or by choos-
ing CSS > Edit CSS on the Web Developer Toolbar. The Edit CSS pane
appears, usually at the bottom of the window. Change the position of
the window so that it sits to the left of your document by clicking the
Position button to the right of the Edit CSS tab on the editor window.

If this document had any styles defined either within the head tags or
defined in separate style sheets, they’d show up in the editor, and you
could modify them. However, we're starting with a blank canvas.

Browser Defaults

Each browser has its own way of displaying pages. Some browsers use
different margins, line spacing, font sizes, and even colors when dis-
playing pages. This can complicate things when we start defining line-
heights and other elements. but we can get around that bv defining a

DEFINING THE BASIC STRUCTURE, HEADER, AND FOOTER <« 180

()

Save Often!

You know that you should save often, but when working in the
CSS editor in Firefox, you need to be especially diligent about
saving your work. Navigating to another page or reloading the
page you're on can reset the styles in the editor to the original
versions, whereupon you lose all your work. Although it’s nice
to be able to see your CSS changes in real time, you might be
more comfortable switching to your favorite text editor.

CSS rule that zeroes out the defaults for all the major elements. Place
this rule into the CSS Editor, and watch as all the spacing between
lines disappears:

Download css_layout/layout.css

body, p, hl, h2, h3, h4, h5, h6, ul, 1i, form{
margin:0;
padding:0;
Tine-height:18px;

}

p, h2, h3, h4, h5, h6{
margin-bottom:18px;

}

The first rule removes the margins (the space around elements) and the
padding (the space within elements) from the elements listed. It also
applies a default line-height of 18px, which overrides whatever default
line-height the browsers might use by default.

The second rule resets the bottom margins on paragraphs and headings
to 18px. This helps everything line up on our grid exactly as we want it.

Sharing Rules

Selectors can be grouped so that you can share rules. Though not
always necessary, this is a great way to reduce the amount of code
you write in the CSS document. Consider these three rules:

pi

Tine-height:18px;
}

h2{
Tine-height:18px;
}

DEFINING THE BASIC STRUCTURE, HEADER, AND FOOTER <« 181

, %2 Joe Asks...

T canlUse O { the Existing CSS R t Style Sheet i
Web?

Sure you could, but | don’t recommend using one without mod-
ifying it first. Remember the sidebbar on page 1697 Take a look
at Eric Meyer’s popular reset style sheet.* This is handy, but you
have to remember that it’s intended o be general, and it resets
a fon of elements that you might never use on your page. It’s
often easier to reset the elements yourself if you write the styles.

*. http://meyerweb.com/eric/tools/css/reset/

h3{
Tine-height:18px;
}

You can separate selectors in a rule by commas, which enables you to
apply one rule to multiple elements:
p, h2, h3{

Tine-height:18px;
}

Less code means fewer characters that you need to transmit over the
wire. Although this looks like a great way to keep your code small, keep
in mind that this approach might make it more difficult to keep your
document organized.

The Box Model

Every block element in HTML is basically a box, and the width and
height of the box consist of the dimensions of the element itself, plus
any padding, borders, and margins. If you declare a box with a width
of 50px, but you add 2px of padding on each side, a 1 pixel border on
each side, and then define left and right margins of 5px each, the width
of the element would be (50 + 2 + 2 + 1 + 1 + 5 + 5), or 66px. That
calculation becomes important if you have to put this new box into an
existing space that’s only 50px wide.

DEFINING THE BASIC STRUCTURE, HEADER, AND FOOTER <« 182

Different Box Models

Once again, browser inconsistency causes problems for the web devel-
oper. For many years, Internet Explorer used a different algorithm to
interpret the width of a box. It considered the border and padding to be
part of the content width. That means the content area that we declared
as 50px gets reduced to 44px (50 - 2 - 2 -1 -1). You can imagine the
problems this can create.

Internet Explorer 6 and 7 both use the standard algorithm to compute
the box widths, but only if the browser renders pages in standards
mode. Unfortunately, the default rendering mode is quirks mode, which
uses the older algorithm. You can consider quirks mode to be a sort of
backward-compatibility mode. I will continue to consider it a complete
pain in the neck.

Fortunately for us, making IE work in standards mode is a matter of
choosing the right doctype and character encoding, and we’ve already
taken care of that in our HTML template, so we should not see any
issues with our element widths.

Centering the Content

When we defined the layout in Photoshop, we originally said that the
width of the page itself would be 900px wide. Now we know that the
width of a web page is the width of the web browser, but we won't
develop a liquid layout here that expands and contracts with the width
of the window. We'll use CSS to define the width of the page itself.

Our index.html page has a div tag with an ID of page that encapsulates
the header, footer, and middle regions. We’ll apply the width to this tag,
along with a few other properties:

DownTload css_layout/layout.css

#page{
display:block;
width:900px;
margin: Opx auto;

}

This rule defines the width of the element to be 900px, and it defines
margins on the element as Opx on the top and bottom and figures out
the left and right margins automatically.

DEFINING THE BASIC STRUCTURE, HEADER, AND FOOTER <« 183

The verbose definition for margins would look something like this:

margin-top:0;
margin-right:auto;
margin-bottom:0;
margin-left: auto;

However, we can use a shorthand syntax for margins that looks like
this:

margin:0px 5px 5px Opx

This line defines margins for the top, right, bottom, and left sides of the
element. That might look tricky at first, but you could compare it to the
arrangement of hours on a clock. You have 12 at the top, 3 on the right,
6 on the bottom, and 9 on the left.

You can compress this code even more if you use the same syntax we
used in our example, and you can define margins on all four sides to
be the same using margin:0. You’ll see this shorthand a lot because it
helps reduce the number of characters, which in turn reduces a page’s
download time.

You see the results as soon as you place the code in the editor. The
page is now constrained and centered within the browser window. This
is a good time to save the document. Click the Save button in the CSS
Editor, and save the style sheet to the stylesheets/layout.css file in your
project folder.

Defining the Header and Footer

The header and footer both stretch across the page, but they have dif-
ferent heights and text alignment. Look at your mock-up of the site to
determine the height for the header, and you’ll find that it’s 108px high.
Add this code to the CSS Editor:

DownTload css_layout/layout.css

#header{
height:108px;
width:100%;

}

This declaration sets the height of the element to the height we need. It
also sets the width to 100%. At first glance, you might think that means
setting the width to 100% of the screen, but in fact it sets the width of
this element to 100% of the width of the parent element, or the width
of page, which you've already defined as 900px.

TURNING ONE COLUMN INTO Two <« 184

The definition for the footer is almost the same, but we need to change
the height to 36px:

DownTload css_layout/layout.css

#footer{
width:100%;
height:36px;

11.6 Turning One Column into Two

There’s nothing spectacular about our page at this point, but that’s
about to change. One of the most useful features of CSS is its ability
to pull elements out of the normal flow and reposition them. Our page
has a sidebar and a sidebar part that need to be displayed side-by-side;
we’ll accomplish that using a simple technique called floating.

Document Flow

You learned about the various ways elements are displayed, whether
block, inline, or invisible, in the sidebar on page 131. Understanding
this difference is the key to using CSS effectively for layout. Using CSS,
you can change the default behavior of an element. For example, the div
tag is a block element by default. Browsers tend to render this element
on a new line with a width that spans the entire available width of the
page. However, we can change that by using the display property of CSS:
#page{

display:inline;

}

The display property can have several possible values, but we care about
only three for now: block, which renders the element as if it were a block
element; inline, which renders it as an inline element; and none, which
removes the element from the document completely.

Floats

If you've ever read a magazine, a newspaper, or a textbook, you've seen
pages where text flows neatly around an image. We can use the float
property of CSS to achieve the same result. And we can use the same
principle to make two elements sit side-by-side, as if they were columns
of text.

When you float an element, you take it out of the normal document
flow; the content that remains then wraps around it. If you make two

TURNING ONE COLUMN INTO TWO

Lorem ipsum dolor sit amet, consectetur
Lorem ipsum adipisicing elit, sed do eiusmod tempor
dolor sit amet, incididunt ut labore et dolore magna aliqua.
consectetur Ut enim ad minim veniam, quis nostrud
adipisicing elit. exercitation ullamco laboris nisi ut aliquip ex

ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.

Figure 11.6: A single float causes content to wrap around.

elements float next to each other, you can get the two-column effect
you're looking for, as long as you assign widths to each floated element.

Take a look at this simple structure. We have two divs of content: a
small callout box and some additional content:

Download css_layout/float_wrap.html

<div class="callout">
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.</p>
</div>
<div class="content'>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
Taboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est Taborum.</p>
</div>

We can make the main text wrap around the callout box by floating the
callout box:

Download css_layout/float_wrap.html

.callout{float:left; width:108px;}

The result looks something like Figure 11.6. However, if we float both
adjacent regions, they line up as columns, as shown in Figure 11.7, on
the following page:

Download css_layout/float_columns.html

.callout{float:left; width:108px;}
.content{float:left; width:400px;}

TURNING ONE COLUMN INTO Two <« 186

Lorem ipsum Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

dolor sit amet, eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut

consectetur enim ad minim veniam, quis nostrud exercitation ullamco

adipisicing elit. laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

Figure 11.7: Two adjacent floats create columns.

To build the sidebar and sidebar section, you need to float the main and
sidebar regions. In our HTML code, those two regions are both wrapped
by a region called middle, which constrains these two regions.

Define the middle region so it has a width of 100%. If you don’t define
the width this way, things might not expand as you’d expect:

Download css_layout/layout.css

#middle{
width:100%;
float:left;

}

Next, define the sidebar. According to your mock-up, the width of the
sidebar is to be 306px (use the gridlines!). The float:left directive causes
the element to sit to the left of any other elements, which will float
around this element. As soon as you place the code in the CSS Editor,
you’ll notice the sidebar content immediately floats around the sidebar:

DownTload css_layout/layout.css

#middle #sidebar{
width:306px;
float:left;

}

You don’t want the main region to wrap around the sidebar; you want
to make these two elements look like columns. The simplest approach
is to float the main region left as well and then give it a width that’s
not more than the overall width, minus any other elements, margins,
borders, or padding. Stop calculating! The answer is 594px—the same

TURNING ONE COLUMN INTO Two <« 187

width as the pasta image you extracted from Photoshop. That image
should fill the entire width of the main region:

DownTload css_layout/layout.css

#middle #main{
width:594px;
float:left;

}
All that time we spent with the grid in Photoshop is paying off!

Both of these CSS rules have scoped selectors. Any time we have a
selector that contains a space, we denote some level of scoping. In the
case of #middle #sidebar, the rule is basically saying “the element with
the ID of sidebar that is a descendant of the element with the ID of mid-
dle." IDs must be unique, so you don’t gain too much from scoping here,
other than more organized and easier-to-read code. However, scoping
becomes more powerful as you go on because you can have rules like
this:

a{color:#339;}
#sidebar a{color: #fff;}

With those rules, links in the sidebar will be a different color than links
anywhere else on the page. This is definitely the route you want to take
if the sidebar has a background color that is much darker than the main
region’s color.

Backgrounds and Floats Gotcha

Firefox and other standards-compliant browsers do not apply back-
ground colors or borders to any div where all the children have been
removed from the normal document flow. Instead, the heights of these
containers are collapsed, which means you see no background images,
borders, or background colors. For example, take a look at this code:

<div id="container'">
<div id="coll">

<p>foo</p>
</div>
<div id="col2">
<p>bar</p>
</div>
</div>

#container{
background-color: #ffe;
}

TURNING ONE COLUMN INTO Two <« 188

Indent Your Nested Selectors

CSS code is a lot more readable if you group your nested selec-
tors together and indent the elements. For example, this code
is fairly easy to read:

#navbar {
height: 36px;
margin-bottom: 24px;
}
#navbar ul {

margin: O;

padding: O;

Tist-style: none;

}

#navbar ul 11 {
float: Teft;
margin-right: 20px;

ks

#middle{
width:100%;
}

The following code is bit harder to read than the preceding
example:

#navbar {
height: 36px;
margin-bottom: 24px;

}

#navbar ul {
margin: O;
padding: O;
Tist-style: none;

}

#navbar ul T1i {
float: Teft;
margin-right: 20px;

}

#middle{
width:100%;

}

The difference is subtle, but the visual guide that indenting gives
you can help make it much easier to find something you're
looking for.

APPLYING MARGINS TO CONTENT <« 189

11.7

#coll{
float:left;
width:400px;

}
#coll{

float:left;
width:400px;
background-color: #eee;

}

In this example, you have two columns enclosed in a container. Both
columns are floated, which causes the container to collapse—the back-
ground color defined in the container is never shown. The solution is
simple but not obvious: you need to float the container, as well. Once
you do that, the background will appear.?

Another well-known solution is to clear the floats before closing the
container div by inserting an additional element, such as a break, with
a style definition that clears the floats:

<div id="container'">

<br class="clear" />
</div>

.clear{
clear:both

}

Both approaches are effective, but the latter approach requires you to
place additional markup in your code to fix the problem. I'll leave it up
to you to decide which approach you want to take when you run into
this problem on your own sites.

Applying Margins to Content

The basic structure is in place, but things don’t look quite readable
yet. We've removed all the margins from most of our elements; now we
need to put them back. We will define all our new margins in 18 pixel
increments, starting with the groups of elements in the sidebar.

3. You do have to watch out for Internet Explorer’s infamous double-margin bug, in
which two adjacent floats can end up adding an additional margin. We’ll cover the solu-
tion to this problem in Chapter 15, Working with Internet Explorer and Other Browsers,
on page 215.

MAIN CONTENT <« 190

11.8

Format the Sidebar Elements Quickly

All our sidebar elements have the same structure: subelements wrapped
within a parent element. We have a heading and something immediately
beneath that heading. We defined our default heading margins in Sec-
tion 11.5, Browser Defaults, on page 179. Now we need to define the
margins for the regions themselves:

Download css_layout/layout.css

#browse_recipes, #popular_ingredients, #search{
margin-left: 18px;
margin-right:18px;
margin-top: 18px;

}

That should do it for the sidebar. Adding 18px on the left, right, and top
should easily clean up the sidebar elements without adding too much
additional code. The most important part here is that you were able to
share this declaration across three elements. You should strive to do
that whenever you can, as long as it makes sense.*

Main Content

The main region consists of the pasta image, followed by two columns,
followed by a single column. The pasta image doesn’t need any special
CSS styling, and the rest of the elements are styled using the same
patterns you've already learned. The only thing you need to watch out
for is the 18px left margin on all the content in the main region, except
for the pasta image. Rather than apply the 18px margin to the main
region, we’ll make sure to add it to the Get Cookin’ and Latest Recipes
areas.

The Main Text

The main text needs to float to the left of the Sign Up and Log In but-
tons, and you already know how to do that because the sidebar works
the same way. However, you do need to determine the width of the mid-
dle region. The Get Cookin’ region and the Sign Up and Log In regions
are equal in width, and you know that the width of the main region is
594px. At first glance, you might be tempted to divide 594 in half to get

4. Of course, you could end up making more work for yourself. You have to strike a
balance between cleverness and readability.

MAIN CONTENT <« 191

the widths of each section. You would also be wrong to do this because
it neglects to take into account the 18px left margin. Remember that
margins count as part of the actual width (at least they do in any nor-
mal web browser!). The correct formula would look like this: (694 - 18) /
2 = 288.

The Get Cookin’ text region gets styled like this:

Download css_layout/layout.css

#main_text{
float:left;
width:288px;
margin-left:18px;

The Signup Region

The signup region is so close to the main region you could almost group
them together. You need to make a few subtle changes to this, though.
First, the Sign Up button starts 36px below the pasta image according
to your mock-up. You can make this happen by adding a top margin
of 36px. Also, the buttons are centered in this column. You can use
the text-align:center style to accomplish that. Any elements within this
region will be centered, including paragraphs and even div regions:

Download css_layout/layout.css

#signup_Tlogin{
margin-top:36px;
float:left;
width:288px;
text-align:center;

}

The Buttons

The buttons need a bit of minor styling, too. By default, anchors and
images are inline elements, which means they’ll sit side-by-side. In this
case, we want the buttons to sit on top of each other with an 18px mar-
gin between them. Achieving this is as simple as changing the display
type of the anchor tags from inline to block and adding a bottom margin:

Download css_layout/layout.css

#signup_Tlogin af{
width:100%;
display:block;
margin-bottom:18px;
float:left;

MAIN CONTENT <d 192

In this situation, you definitely want to scope the style sheet rule to the
region. If you don’t, every link on the page will be affected by the rule,
and you don’t want that!

Remember to save your work here so you don’t lose anything!

Latest Recipes

At this point, formatting the last section in the main region should
be easy because all you need to do is leverage the techniques you
have already learned. Each recipe header gets indented 18px, and each
recipe description gets indented another 18px. Each recipe has a head-
ing denoted by the h3 tag, and the description is nothing more than a
paragraph.

Clearing Floats

Once you float an element, everything after that will wrap around that
element until you force an element back into the normal document flow.
This is known as clearing floats, and this technique is most necessary
when you have two columns followed by a single column. To clear float-
ing, you use cleariboth within the CSS rule attached to the region that
should fall into the normal flow.

You can use scoping to define this region with a tiny amount of code:

Download css_layout/layout.css

#latest_recipes{
clear:both;
margin-left:18px;
margin-right:18px;
margin-top:18px;

}

#latest_recipes h3{
margin-left:18px;
}

#latest_recipes p{
margin-left:36px;
}

This code sets up the indenting and also forces the region into the
document flow.

REVISITING THE FOOTER <« 193

11.9

11.10

Revisiting the Footer

Although you might not notice anything wrong with the way the footer
looks, you’ll definitely want to add a tiny bit of code to the CSS decla-
ration of the footer region to future-proof your design. The footer region
comes after a middle region that is floated left. You learned that you
should clear floats when you want to force a region back into the nor-
mal flow in Section 11.8, Clearing Floats, on the previous page. In this
particular case, the floating is turned off by the Latest Recipes section,
but you might have other pages in the site that don’t have a setup like
this. I always recommend clearing floats in the footer.

Summary

We covered a lot of ground in this chapter. At this point, you should
have a good understanding of how to do some simple, two-column lay-
outs using CSS. Our home page is starting to shape up. It now has two
columns, and it needs only a coat of paint.

Chapter 12

Replacing the Section Headings

12.1 The Cover-up Method Explained

The cover-up method doesn’t replace the text with an image. As its
name implies, it covers the text with a new image by placing the image
on a new layer above the text. We haven’t covered layers in CSS yet, but
CSS basically allows you to place elements wherever you want, as long
as you understand how that affects the rest of your site.

Other, simpler replacement methods, such as the Fahrner Image Re-
placement method, use the display:none CSS property to remove the text
from the page and then apply the CSS image to the tag that enclosed
the text. Unfortunately, newer versions of screen readers have begun to
respect CSS properties and now hide the text from the end user.

This method gets around that issue. The screen reader won'’t load the
image, and the text can still be read. It also looks decent when the style
sheets are turned off.

12.2 Preparing the HTML to Be Replaced

To make the cover-up method work, we need to add a span tag within
any element we want to obscure. Open your index.html file, and find the
Search Recipes header. Next, modify the content so it includes a span
tag right before the closing h2 tag:

<h2 +id="search_header'">Search Recipes</h2>

COVERING THE TExT <« 195

We’ll use CSS to load the image into that span tag and then pull it out of
the normal flow so it sits on top of the text. Save your file, and validate
your code again to make sure you still have solid markup.

12.3 Covering the Text

The first thing we need to do is turn the h2 tag into a container with a
width and height that matches the image we will place:
#search_header{

margin:0; padding:0;

position:relative;

width:180px; height:36px;

overflow:hidden;

}

Next, we turn the span element, which is an inline element, into a block
element, so that it can have a width and height applied. Now we use
position: absolute to position the element using coordinates that are rel-
ative to the h2 element (this element’s parent), which we just specified
to use relative positioning.

Finally, we turn off any margins and padding on this span, just to be
safe, and then we load the image into the span as a background image:
#search_header span {

display:block;

position:absolute; left:0; top:0; z-index:1;

width:180px; height:36px;

margin:0; padding:0;

background:url1("../images/search_header.gif") top left no-repeat;

12.4 Replacing the Other Headings

Now repeat this process for the other headings in the sidebar. Be sure
to add the span tag to the HTML document. You can try to reduce
the amount of repetition in your style sheets by grouping the common
styles using selector groups, which enables you to reduce the amount
of code:

DownTload coverup/style.css

#search_header,

#browse_recipes_header,

#popular_ingredients_header{
margin:0; padding:0;
position:relative;
width:180px; height:36px;

REPLACING THE OTHER HEADINGS

overflow:hidden;

}

#search_header span,
#browse_recipes_header span,
#popular_ingredients_header span {
display:block;
position:absolute; left:0; top:0; z-index:1;
width:180px; height:36px;
margin:0; padding:0;
}

#search_header span{
background:url("../images/search_recipes.gif") top left no-repeat;

}

#browse_recipes_header span{
background:url("../images/browse_recipes.gif") top left no-repeat;

}

#popular_ingredients_header span{
background:url("../images/popular_ingredients.gif") top left no-repeat;
}

Once you replace the headings in the sidebar, follow the same practice
to replace the two headings in the main region. You’'ll need to make
minor adjustments to the height and width (198px wide by 54px high),
but by now you should have the hang of doing this replacement:

DownTload coverup/style.css

#get_cooking, #latest_recipes_header{
margin:0; padding:0;
position:relative;
width:198px; height:54px;
overflow:hidden;

}

#get_cooking span, #latest_recipes_header span {
display:block;
position:absolute; left:0; top:0; z-index:1;
width:198px; height:54px;
margin:0; padding:0;

ks

#get_cooking span{
background:url("../images/get_cookin.gif") top left no-repeat;
}

#latest_recipes_header span{
background:url("../images/latest_recipes.gif") top left no-repeat;

}

<196

REPLACING LINKS <« 197

12.5 Replacing Links

You can use the same approach with hyperlinks. Rather than wrap an
empty span, you wrap the linked text with the span. For example, let’s
say we want to use image replacement on our Foodbox header. The
markup would look like this:

Download coverup/replacedheader.htmil

<hl><a 1id="foodbox_header" href="/">Foodbox</hl>

The CSS code is the same as in the previous example, except that you’ll
want to make sure that you use display:block on the a and span tags so
that the entire image becomes clickable. By default, anchors and spans
are inline elements that can’t have defined widths and heights.

The corresponding styles look like this:

DownTload coverup/stylesheets/replacedheader.css

#foodbox_header{
margin:O0;
padding:0;
position:relative;
width:486px;
height:90px;
overflow:hidden;
display:block;

}

#foodbox_header span {
position:absolute; left:0; top:0; z-index:1;
width:486px;
height:90px;
margin:0; padding:0;
background:url("../images/banner.png") top left no-repeat;

Transparency

If you tried this on your page, you might have noticed that the cover-
up method doesn’t actually cover anything up. The transparent parts
of the image let the words show through. We can fix that by stealing
a page from another CSS image replacement technique known as Lan-
gridge/Leahy Image Replacement (LIR).! We can change the height of
the span to O and then set the top padding of the span to the height of

1. http://www.kryogenix.org/code/browser/lir/

DOWNSIDES OF THIS METHOD < 198

12.6

12.7

the image. A box’s height is defined by its height plus its top and bottom
padding, so we’ll get the desired result, but the text will be hidden:

DownTload coverup/stylesheets/replacedheaderiransparency.css

#foodbox_header{
margin:O0;
padding:0;
position:relative;
overflow:hidden;
display:block;
width:486px;

/% height:90px; =/
height:0;
padding-top:90px;
font-size:10px;

}

This code also decreases the font size to make sure that the ascenders
don’t peek out.

Downsides of This Method

First, as you might have noticed, we've added markup to our HTML
document to get this to work, and we’ve introduced a large amount of
additional CSS code, all so we can have prettier fonts that meet basic
accessibility guidelines. It’s up to you to decide whether this approach
is worth it on your next project.

Also, screen-reading software has rendered other image replacement
techniques useless in the past, so you will want to keep an eye on your
sites. In other words, this approach might not be as viable down the
road. An alternative approach would be to embed the images, use alt
attributes, and move on. The only thing you'd lose is the use of the
headings, which is important for search engines. You can learn more
about that in Chapter 18, Search Engine Optimization, on page 255.

Summary

The methods you used in this chapter provide an accessible and search-
engine-friendly way of preserving your type for section headings. You
also learned that you could use it for other elements.

13.1

Chapter 13

You've learned how to position elements and define a layout using CSS,
and you've replaced a few images. Now we’ll talk about how to make
things look pretty. By the time we’re done with this chapter, you’ll know
enough basic CSS to do your next project without assistance.

Some of the things we’ll talk about in this chapter might be somewhat
familiar to you. For example, you might have used CSS previously to set
fonts and colors and perform some basic visual manipulations. We're
going to start with fonts and colors but then combine them with some
of the things you learned in Chapter 11, Defining Your Layout with CSS,
on page 168.

Setting Up the Colors and Fonts

One of the things that annoys programmers when they first use CSS is
the complete lack of variables in CSS. CSS provides no way to define
variables for reuse later. If we want the header and footer both to use
the hex code #FFE500, then we have to put the same hex code in two
separate CSS rules or do our best to share that rule using comma-
separated selectors. The approach I find most useful is to keep all the
color declarations together at the top of the style sheet so I can find
them easily later.

The Importance of a Style Guide

Many organizations will have a style guide available that might have
been developed by someone involved in the branding of the organiza-
tion. The style guide traditionally dictates what colors and fonts an
organization uses in its publications, and it’s always a good idea to try

SETTING UP THE COLORS AND FONTS <« 200

()

1y

~—

Joe Asks...
S
_—=__Can’t | Generate Style Sheets Dynamically?

Absolutely. You can generate CSS style sheets the same way
you generate HTML. You just need to make your web appli-
cation respond correctly to the request for your style sheets.
Although this is a clever approach, it behooves you to imple-
ment some sort of caching mechanism so that the styles aren’t
generated for every request.

It might be tempting to generate style sheets dynamically, but
you should look at how much of an impact the lack of vari-
ables has. How often will you change your colors? How often
do you repeat them? Most of the time, it's not worth the effort
to generate this information on the server. Like everything else,
it depends on your situation.

to adhere to the established style guide as closely as you technically can
if one exists. Foodbox doesn’t have one, and a good majority of small
companies never think to do one either. Throughout this book, you've
done all the groundwork to create a style guide, and this could prove to
be useful in your future projects.

A style guide often details how layout, fonts, and colors should look,
but it can also dictate how the content should be written. For example,
one of my pet peeves occurs when someone uses the words click here
on a web page. It drives me crazy, and I go out of my way to make
sure that some sort of convention exists in the style guide to prevent
someone from sneaking it into some copy. Style guides can also prohibit
the use of ampersands in favor of spelling out the word and, or they can
indicate whether to underline your links.

The whole point of a style guide is to create a consistent presentation
throughout all of an origination’s publications and communications.

The style sheet we’ll build in this chapter is the code that implements
the style guide.

We've already done a lot of font replacement with images, so we don’t
have too much to do for our font declarations.

SETTING UP THE COLORS AND FONTS <« 201

A Word About Class Names

It might be tempting, but you shouldn’t include implementation
in your class names. |'ve seen far too many pieces of HTIML code
that looked like this:

<p class="red">An error has occurred</p>

When you’re looking at the code, it looks nice at first glance.
You can tell that the designer intended the error text to be red.

However, when you look at this result in a browser, it might be
green instead because someone came along and decided
that error messages shouldn’t be red, because red is a bad
color, and we don’t want to scare people. A better approach
might go something like this:

<p class="critical_warning">An error has occurred</p>

You can then document what a critical warning should look like
in your style guide. You want to capture infent in your names.

Add this code to your style.css file:

Download css_style/stylesheets/style.css

body{
font-family:Arial, Helvetica, sans-serif;
font-size:12px;

}

Colors, on the other hand, require more work. We need to define not
only the colors for our regions but also our links.

Pseudo-classes
Add this code to your style sheet:

Download css_style/stylesheets/style.css

#header, #footer{background-color:#FFE500}
#middle{background-color: #ffdd7f}
#main{background-color:#fff8e4}

a{color:#4d3900; text-decoration:none;}
a:visited{color:#806140;}
a:hover{color:#807940; text-decoration:underline;}

THE TAG CLoUDS <« 202

The CSS declarations for our colors contain declarations for a:hover and
awvisited. These are known as pseudo-classes. Up to this point, you've
seen how style is applied based on the element’s location in the docu-
ment tree, but the CSS specification allows elements to be styled based
on information that’s outside the document tree, such as information
provided by the browser. By default, web browsers display visited links
in a different color than links you haven’t clicked yet. This has become
a cornerstone of usability over the years because it helps users identify
information they've already seen. The visited link color was traditionally
set as an attribute on the body tag; as a result, it had to be specified on
each page. CSS pseudo-classes let you specify this information in your
style sheet instead.

The :hover pseudo-class catches mouse events, and it can be extremely
powerful. You can use it to change the color of a link when you hover
over it, as our example does, but you can also use it to trigger a drop-
down menu or even the display of another region on the page.

Unfortunately, browser issues affect this area of functionality, as well.
The :hover pseudo-class works only on links in Internet Explorer 6,
although we can attach this functionality to many other elements in
other browsers and create some eye-catching effects such as image
rollovers or form-field highlighting.

This definition also removes underlines from links unless the user hov-
ers over them. Notice how we remove the underline from the links but
add it back using the pseudo-class.

13.2 The Tag Clouds

We can style the tag clouds with a minimal amount of CSS now that
we have our well-structured document in place. In the HTML file, we
wrapped each tag with a span tag that had a class that ranged from
level_1 to level_ 5. Popular tags got a lower number, and less popular
tags got a higher number. To style this, we can make fonts bigger and
heavier for the more important tags and made them smaller and lighter
for the least important ones:

Download css_style/stylesheets/style.css

.level_1, .level_ 2, .level_3, .level_4, .level_5{
margin-bottom:18px;
margin-left:18px;
Tine-height:36px;}

THE SEARCH FOrRM <203

()

Vf Joe Asks...

f
—__Why Are You Removing the Underlines? Isn’t That Bad
Usability?

It sure can be. Users look for underlines to figure out whether
they should click things. That said, times are changing., and
people’s habifs are evolving; users are learning to look for other
cues, such as text with a different color. However, you run the
risk of confusing your users. If your headings are different colors
than the rest of your text, you start coloring individual words, or
you use a color that’s not different enough—well, you get the
point. It comes down to your audience and what your client
wants. The point here is that you now know how to do it. It's up
to you to decide when it’s appropriate to use this technique.

.level_1{font-weight:bolder; font-size:20px;}
.level_2{font-weight:bold; font-size:18px;}
.level_3{font-size:16px;}
.level_4{font-size:14px;}
.level_5{font-size:12px;}

13.3 The Search Form

The only thing left is the search form, which at this point looks a little
funny next to our nice image button. We need to give the search box a
width, height, and border; we also want to control the font we use. We
could have defined some of these things, such as the width and height,
in the layout style sheet. Rather than split this definition apart, let’s
put the whole thing in style.css so it’s all together:

Download css_style/stylesheets/style.css

#search_form #search_keywords{
width:200px;
float:left;
border:1px solid #000;
height:16px;
padding:0;}

THE FOOTER < 204

13.4

13.5

Pay close attention to the math here. The height of the line is 18px, but
the height of the search box is set to only 16px because you have to
account for the 1px border on the top and the bottom.

The Footer

We need to center the text in our footer, and we have to fit two lines
within the 36px height we defined in our layout style sheet. Centering
the text is easy; it requires only that we apply text-align:center to the
footer element.

We can take a few approaches to make the text fit. The first reaction of
many developers is to remove the paragraph tags in the HTML docu-
ment and use a line break,
, between the lines, but that makes the
page less semantic. It's much easier to change how the browser ren-
ders the paragraphs. We can remove the margins from the paragraphs
within the footer so that there’s no space between the paragraphs. This
approach gives us the most flexibility.

Add this to your style sheet:

Download css_style/stylesheets/style.css

#footer{text-align:center;}
#footer p{margin:0;}

Cleaning Up Some Loose Ends

The home page is mostly done, but we must address a couple outstand-
ing issues. First, our Sign Up and Log In buttons have borders around
them that we need to remove. Second, the yellow color doesn’t stretch
across the screen as we had originally intended. We need to fix these
things before anyone else notices!

Removing Image Borders

Images wrapped by a link automatically get a border around them to
let users know they can click the image. In the old days of HTML, a
developer would just use the border="0" property in the HTML document;
however, that approach mixes design and content, and we don’t want
to do that. It’s also not valid according to our doctype. Fortunately, the
solution is easy: we can turn off borders for our images in the style
sheet.

CLEANING UP SOME LOOSE ENDS <« 205

Add the following code to your style sheet to turn off borders for all
images:

DownTload css_style/stylesheets/style.css

img{border:none;}

When you refresh the page, the green borders will be gone.

Stretching the Banner Color

You could use any of several techniques to make the color repeat. For
example, you could move the header outside the page wrapper and
wrap it with another div, making the wrapping div 100% wide and con-
straining the header to the same width as your page wrapper. That code
would look something like this:

<body>

<div id="header_wrap'">
<div id="header">

</div>
</div>
<div 1id="page'>

</div>
</code>

<p>Some CSS associated with this code would look Tike this:</p>

<code Tanguage="'css">
#headerwrap{width:100%;
float:left;
height:108px;
background-color:#FFE500;
}

#header, #page{
margin:0 auto;
width:900px;

}

That is a common approach, and it works for simple situations where
all you need is a solid color. However, what if you already have a bunch
of pages created, and you can’t justify changing the HTML of the page?
Or, what if you think adding any more wrappers just to alter the pre-
sentation is silly? You can achieve the same results with a repeating
background image attached to the body.

Open your mock-up in Photoshop, and select the Slice tool.

SUMMARY <« 206

Search Recipes
\ 9]
¥ = S
Browse Recipes \ A
desserts appetizers indian » .
v)
et Cookin
beef enrees mexican seafood g C
. . Foodbox Is the best way to collect and share recipes | z n U
dinks pasta italian with the rest of the worid. You can build your own ‘ S g P
recipe book from thousands of great recipes from
chicken pork renowned chefs or users just like you. You can also
share your own secret recipes with a few of your
5, friends or make them available to the rest of the
Popular Ingredients o } L 0q In
oregano garlic black beans Create an account today and get cookin!

apples bananas cheese

Latest Recipes

Stuffed Chicken Breast

lettuce chicken

A lightly breaded breast of chicken stuffed with mushrooms and Swiss cheese. Easy to make even
for beginners.

Chocolate Pancakes

This complete-from-scratch ciassic pancakes recipe is sure fo please even the pickiest eater,
especially chocolate lovers,

Copyright © 2008 Foodbox, LLC, all rights reserved.
Terms of Service | Privacy Policy

Figure 13.1: Foodbox in Firefox

Begin by grabbing a small sliver of the background that includes the
full yellow banner, as well as a small bit of the white part. Create a
new slice in the upper-left corner that is 1px wide by 128px high. You
can do this by zooming in, or you can just wing it and adjust the slice
properties when you set the slice’s name. Speaking of the slice’s name,
call this slice background. Once you set the properties, export the slice
to your images folder as a GIF.

In your style sheet, add a rule for the body tag that pulls in the back-
ground image and repeats it horizontally:

Download css_style/stylesheets/style.css

body{
background: #fff url('../images/background.gif') repeat-x;
}

When you preview your finished page in Firefox, it should look some-
thing like Figure 13.1.

13.6 Summary

You've come a long way in this process, having developed by hand a
standards-based page that validates and works in Firefox (and Safari,
too; go check!). However, your work isn’t done until you've tested it in a
few other places, especially that widely used browser from Microsoft.

14.1

Chapter 14

Uu': 2 rinter-rriendly Page

Foodbox will be a recipe site, and we expect that the users will want to
print the recipes that they find on the site. We can implement this func-
tionality several ways with server-side programming, but this chapter
will show you how to use nothing but CSS to change how the page looks
when the user prints it.

Preparing for Print

When a user prints a web page, she is usually concerned only about
the information on the page.! The sidebar, navigation bars, images,
backgrounds, colors, and even the graphical header are largely useless
to someone printing the page. Printing these page elements only wastes
ink and paper, so the first thing you need to think about when creating
a printer-friendly version is how to turn those elements off.

When we attached the layout.css and style.css files, we defined the link to
attach only the style sheets when displayed on the screen. As it stands
now, our page has no styles applied when we print. This means we
can start from the ground up and create a new style sheet designed
specifically for printing; we don’t have to worry about conflicting with
or overriding any existing styles, other than those default styles applied
by the user’s browser.

1. Your clients, however, might be interested in printing pages so they can write on them
and hand you back their changes. Ultimately, your clients aren’t your primary audience
for the site.

LINKING A PRINT STYLE SHEET < 208

14.2

14.3

Linking a Print Style Sheet

Create a new file called print.css and place it in your stylesheets directory.
Open your index.ntml file, and add the following code after the existing
style tags to attach the style sheet:

Download css_print/index.html

<1link rel="stylesheet" href="stylesheets/print.css"
type="text/css" media="print" charset="utf-8">

This time, we set the media type to print instead of screen. Modern
browsers will use that style sheet when the user does a print preview
or sends the page to the printer. As you work, you’ll be able to test
your style by using your browser’s print preview function; however, you
should still run a few tests through a printer if you can.

Removing Unnecessary Elements

Let’s look at the home page and identify certain things that make no
sense to print. Printing the sidebar with the search box and tag clouds
will only waste ink, so we can safely lose that. The image of pasta isn’t
that useful to us, either, and the Log In and Sign Up buttons can prob-
ably go away, too.

We don’t have to worry about the colors we added to the home page
because we don'’t load that style sheet.

The links to the terms of service and privacy policy aren’t relevant,
either, so we can also take those out.

When marking up the HTML, we designated these regions with unique
ID attributes so we could reference these sections easily. All we need to
do now is set the display property to none for each of these regions. Add
this code to stylesheets/print.css:

Download css_print/stylesheets/print.css

#sidebar, #main_image, #signup_login,
#privacy_and_terms, .noprint{
display:none;

}

The noprint Class

I added a selector to the rule called .noprint. You can use this throughout
your content to mark regions that you want to hide when the document
is printed. For example, you can hide the logo by adding class="noprint'

SETTING MARGINS, WIDTHS, AND FONTS < 209

to the element in your HTML document. This blurs the line between
content and presentation slightly more than a purist might like, but it’s
an effective way to turn off elements dynamically if you use server-side
scripting to build your pages.

When you specify display:none for any element, it’s not just hidden from
view; it’s effectively removed from the document.

14.4 Setting Margins, Widths, and Fonts

When we designed our screen layout, we turned off the browser styles
and defined our own margins, line-heights, and font sizes. We can do
the same thing here, but instead of using pixels, we will define our fonts
in terms of points because that’s what printers understand.

Add this code to your style sheet:
DownTload css_print/stylesheets/print.css

body, p, hl,h2,h3,h4,h5{margin:0; padding:0;}
p, hl,h2,h3,h4{Tine-height:18pt;}
p{font-size:12pt; margin-bottom:18pt;}
hl{font-size:18pt;}

h2{font-size:16pt;}

h3{font-size:14pt;}

Here we defined font sizes, margins, and line-heights for paragraphs
and headings.

Page Margins

One thing you might notice is that we've set the page’s margins to O.
We do this because the print margins depend largely on the operating
system’s printer driver. In many cases, defining a margin in CSS could
add more margin space to the edges of a document than you might
want.

Choosing a Font Family

Many browsers default to serif fonts, which are easier to read in print,
as we discussed in Section 4.2, Serif Fonts, on page 63.

Add this code to your print style sheet:

Download css_print/stylesheets/print.css

body {
font-family: Baskerville, Times New Roman, Times, serif

}

FixXING LINKS <« 210

()

Dealing with Images in Print

Your images are still measured in pixels. You have two options
if you don’t hide your images in the print style. The first option
is fo use CSS to change the height and width of the images to
proportionate measurements; the second option is fo change

the positioning of your text and images so that you don’t wrap
tfext around them.

Resizing the images in your print style sheet can be a little
dangerous. Increasing the dimensions will make the pixelation
much more noticeable when you print the images. But this
works only if you give each image its own |ID so you can ref-
erence it easily.

The second option is better: you use the print style sheet to reor-
ganize your page a bit so the images aren’t floated.

Keep in mind that the images you have on your page might not
even be suitable for print because they’re only 72 dpi. If you
need to make high-resolution images available for your con-
tfent, you might want to consider some server-side PDF genera-
fion and use higher-quality, print-ready images.

This rule declares the body style will use the Baskerville font and a cou-
ple fallback options. This rule will filter down to any elements within the
body of the page, unless those elements have been defined differently.

Adding a Separator

We have no colored separators between our regions. We can separate
the header and the content with a thin black line by adding a bottom
border to the header:

DownTload css_print/stylesheets/print.css

#header{border-bottom:1px solid #000;}

You can use this style rule to add horizontal rules between other sec-
tions of your document, rather than adding them to the content.

14.5 Fixing Links

People who read a page printed from a website don’t get to see where
any of the links go. We can use a little advanced CSS to make this work.

FIXING LINKS <« 211

foodboXx

Get Cookin...

Foodbox is the best way to collect and share recipes with the rest of the world. You can build your own

recipe book from thousands of great recipes from renowned chefs or users just like you. You can also

share your own secret recipes with a few of your friends or make them available to the rest of the world!
Create an account today and get cookin!

Latest Recipes

Stuffed Chicken Breast (#)

A lightly breaded breast of chicken stuffed with mushrooms and Swiss cheese. Easy to make even for
beginners.

Chocolate Pancakes (#)

This complete-from-scratch classic pancakes recipe is sure to please even the pickiest eater, especially

chocolate lovers.

Copyright © 2008 Foodbox, LLC, all rights reserved.

Figure 14.1: Our home page as rendered with our print style sheet

Add this code to your style sheet:
Download css_print/stylesheets/print.css

#main a:link:after, #main a:visited:after {

content: " (" attrChref) ") ";

font-size: 90%;
}
In this case, we use CSS to pull out the href attribute and place it into
the content. This little trick works everywhere, except for versions of
Internet Explorer prior to IE 8. Those browsers ignore the rule.

That’s it for the style sheet. When you print your page, it should look a
lot like Figure 14.1.

DEALING WITH SURPRISED USERS W 212

()

Forcing Page Breaks
You can force page breaks in your print style sheets. Let’s
assume you want to print a set of recipes with markup like this:

<div class="recipe'>

<h2>Bacon Explosion</h2>

<1i>2 pounds thick cut bacon</11i>
<1i>2 pounds Italian sausage</1i>
<1i>1 jar of your favorite barbeque sauce</1i>
<1i>1 jar of your favorite barbeque rub</Ti>

</div>
<div class="recipe'>
<h2>Amazin' Bacon Burger</h2>

</div>
You can make each recipe print on its own page by adding
this code 1o your print style sheet:

.recipe {page-break-after: always;}

Oh, and if that Bacon Explosion recipe sounds good, you can
tfry making it yourself!*

*. http://www.bbgaddicts.com/bacon-explosion.html

14.6 Deadling with Surprised Users

Some users might expect the printed version of your site to look exactly
like the original version. In fact, I've had some clients get upset at the
fact that their site doesn’t print the same way it does on the screen.

You can mitigate that slightly by placing a visible Print Contents Only
link somewhere on the page. That link might look something like this:

Print Contents Only

This link uses JavaScript and mixes behavior with content, so you
might consider adding the link in using some unobtrusive scripting
instead.

You could specify that the layout.css and style.css style sheets be used
for the print media type in lieu of a print style, but some browsers have
trouble with long, floated elements, so you would need to make your
print style override some of your existing styles. However, I don’t rec-

SUMMARY <213

ommend this approach. Instead, I find that educating users and clients
is a lot easier than getting caught in the ugly world of overriding styles.
Once your users know the reasons why you serve a different layout
for print—to reduce ink, save paper, and focus on content—they might
even warm up to the idea.

14.7 Summary

Print styles are easy to implement and can improve the user’s experi-
ence, as long as you keep them simple. You can use them to present
your site’s content in an uncluttered, legible way. You can also use the
same method to target other devices, such as mobile phones, projectors
(when supported), and even assistive technology like screen readers. Of
course, this is all possible because we marked up our content properly,
and we kept the presentation separate from the content.

Part IV

Preparing for Launch

15.1

Chapter 15

Working with Internet Explorer
nd Other Browser

Part of developing on the Web, especially for large audiences, is dealing
with browser compatibility. You don’t get to pick what browser your
customers will use to visit your pages, so you need to make your site
usable for the widest-possible audience. Your site looks good on the
Firefox browsers; now you will learn how to make your site look good
across other browsers, including Internet Explorer. The work you did
validating your code and adhering to web standards will pay off here,
because most browsers will display your page correctly.

Deciding What to Support

For about six years, web developers had to contend only with IE 6.
That browser had a quirky rendering engine, but six years is a long
time in the IT world, so most people discovered the quirks and came
up with solutions to get around them. The release of IE 7 caused a
whole new bunch of rendering problems for sites, because Microsoft
fixed some things and changed others. At the time of writing, IE 8 is
nearing completion, and it looks as though it will present some of the
same kinds of issues.

In that same time span, Firefox and Safari each went through three
versions. Browsers will improve, just as your software improves, and
it’s not possible for you to make your site look and work the same way
in every single version of every single browser; you just won’t have the

DECIDING WHAT TO SUPPORT w216

8 Yahoo! - Microsoft Internet Explorer

File. Edit ‘Miew Fawvorites Tools Help
(PBack = o) - (%] (2] o sesrch ¢ Favorites @ Meda £ | (- L B
Address @j hittpe | e, vahioo, com/

w Yahoo! recommends upgrading to the NEW, safer, faster Firefox 3 - FREE

YaHoO!

Webh | Imadges | Wideo | Local | Shopping | maot

Search: ||

by N ahoal

Figure 15.1: Yahoo recommends Firefox 3.

time and resources to do that. Eventually, you have to decide what
browsers and features you will support.

Supporting Browsers

If you're bold, you could just pick a browser and support it exclusively.
This might be a great solution if you think your business can support
that. For example, assume need to build an intranet site for your busi-
ness; you will save yourself a ton of time if you can dictate that your
users must use Firefox. CHAMP Software, located in Mankato, Min-
nesota, develops applications for the health-care industry and designs
exclusively for Firefox.

You could also do what Yahoo does and recommend a browser to your
users. This approach used to be laughed at by professional developers.
In the 1990s, tons of amateur websites had “Best Viewed with Internet
Explorer” tags on their sites. Yahoo is taking similar steps now, which
you can see in Figure 15.1.

Don’t think that this is a lazy way out. It's often not difficult to make
your site work on all platforms, but it might not be the most efficient
use of your time, talent, or money. The bottom line is that you should
be sure that you take into account any potential customers you might
lose because of your decision. Internal business applications can get
away with this much more easily than a commercial website can.

BROWSER STATISTICS w217

15.2

15.3

Supporting Features

You could decide that certain features of your website won’'t work in
certain browsers. Microsoft serves two versions of Outlook Web Access,
a rich version that works only in IE, and a light version that works
everywhere else. The rich version has tree controls for your inbox, as
well as some other features that require specific IE controls. The light
version lacks a lot of advanced features, but it still allows people to
check email.

The ultimate goal is to make the site functional enough for anyone who
wants to use it.

Browser Statistics

We can find out what browsers people use by looking at browser statis-
tics. Hitslink.com maintains reports! on browser market share, and
it seems to provide a decent market snapshot. W3Counter.com? and
StatOwl3 also provide statistics that appear to be somewhat accurate,
as well. It helps to check multiple sources when making these types
of decisions, especially when starting up a new site. Of course, when
you've been established for a while, you should have your own logs that
you can use to make future decisions.

At the time of writing, Firefox has anywhere from 17% to 26% of the
market share. Most users rely on Internet Explorer 7, which comes in
at about 42% and climbing, while a surprising 15% to 27% of users
still use IE 6. We need to make sure our site works with IE 6 because it
would be unwise to ignore 20% of our potential audience.

It's a safe bet that many of your customers—and your customers’ cus-
tomers—use Internet Explorer. The websites you make must be func-
tional, and you must try to make them look equally good in all the
browsers you support. It's just good business.

Internet Explorer: The Evil You Can’t Ignore

I don’t think there’s a standards-focused web developer out there who
enjoys dealing with Internet Explorer. Over the course of this book, I've

1. http://marketshare.hitslink.com/report.aspx?gprid=0
2. http://www.w3counter.com/globalstats.php
3. http://www.statowl.com/web_browser_market_share.php

INTERNET EXPLORER: THE EVIL YOU CAN'T IGNORE <218

Watch Where You Get Your Statfisti

W3Schools has a highly referenced browser-statistics page*
that details market share for individual browsers. If you looked
at that site today, you might see that Firefox has a market share
close to that of IE 6 and IE 7 combined; however, you have to
remember that this is a site for fechnical users. That page con-
tains this disclaimer:

"W3Schools is a website for people with an interest for web
tfechnologies. These people are more inferested in using alter-
native browsers than the average user. The average user tends
to use Infernet Explorer, since it comes preinstalled with Win-
dows. Most do not seek out other browsers.”

Firefox is a great web browser, and its market share is climb-
ing thanks to support from its users and sponsors. When frying
to gather browser statistics, however, you need to make sure
you fact-check your sources, especially if you plan to use those
statistics in the decision-making process.

*, hittp://www.w3schools.com/browsers/browsers_stats.asp

mentioned several of the issues that we face every day, including differ-
ences in rendering elements or modes. IE does many things wrong, but
it's extremely popular, so you can’t ignore it, and your customers don’t
care about your personal biases.

Every computer that ships with Microsoft Windows has Internet Ex-
plorer on it. Users are always free to use a different browser, but the
likelihood of the average user installing Firefox, Safari, Opera, or even
Google Chrome is low. I make it a point to install Firefox everywhere I
can. All my friends and relatives use it because they like the security
features. That’s not the norm, though, because I'm a techie and so are
most of my friends and family. As developers, we have to be mindful
that the average computer user doesn’t use the same tools we use.

A Little Perspective

Microsoft’s browser issues aren’t entirely malicious, even though it can
feel good to say that they are. Microsoft has its own agenda when it
comes to the web browser. It puts more emphasis on its own things
working, such as .NET Framework components, ActiveX controls, Out-

INTERNET EXPLORER 7 <219

()

1// Joe Asks. ..

~—

J

_—~__When Can You Drop Support for a Browser?
That’s a decision you and your organization or clients have
tfo make based on usage data you gather from your current
or potential customers. Look at the browser stafistics for other
websites that we talked about in Section 15.2, Browser Statis-
fics, on page 21/. At the time of writing, IE 6 has more active
users than Firefox. If you want to farget only Firefox users, then
the stafistics might not maftter; however, if you want to farget
everyone, you need to make sure you don’t shut out a large
percentage of potential users.

| use this general rule when deciding which browsers to support:
| support the last two major versions of a browser, and then |
make sure that the site works and is readable in the others. It
doesn’t have to look the same, but at least my users can use
the site.

What browsers and features you choose to support all comes
down to how it willimpact your income and the income of your
Clients.

look Web Access, and SharePoint. IE is the delivery vehicle for Micro-
soft’s web-based products.

These products make Microsoft a lot of money, and it has to support
those products for the duration of the promised period. This means it
can’t fix the IE rendering issues we’ve all come to know and love without
completely breaking its own applications.

15.4 Internet Explorer 7

Internet Explorer 7 seems to like our website. Our content is centered,
our PNG transparency works as expected, and things line up as they
should. This is because we made sure to code a completely standards-
compliant page, and we avoided accidentally sending Internet Explorer
into quirks mode.

INTERNET EXPLORER 6 <220

()

Def ine’ihe RenderingiMod
Sometimes you just can’t tell what rendering mode you're in,
but you can use JavasScript to tell you. Insert this snippet into

the head of your page, and you’ll see whether you're running
in standards mode:

<script type="text/javascript" charset="utf-8">
if(document.compatMode == 'CSS1Compat'){
alert("Standards mode");
}else{
alert("Quirks mode'");

}

</script>

Quirks Mode in IE

We discussed quirks mode briefly when we talked about box models in
Section 11.5, Different Box Models, on page 182; however, it takes more
than setting the right doctype to make Internet Explorer use standards
mode.

XML Prologs

Some web-page editors (and some templates) place the XML prolog at
the top of the document, before the doctype. The presence of the prolog
forces IE 6 to render pages in quirks mode. If you see the following in
your web documents, you need to remove it:

<?xml version="1.0" encoding="1is0-8859-1"?7>

Comments Above the Doctype

Developers often add comments to pages to explain to others what the
page does or to place other relevant information that others might need
later. Unfortunately, IE 6 and IE 7 both turn on quirks mode if you
place comments before the doctype.

In summary, to make IE happy, just don’t put anything above the doc-
type, and things should start working in standards mode.

15.5 Internet Explorer 6

Open the site in IE 6. You’ll notice immediately that the banner image
doesn’t have transparency, the two-column layout is broken, and it

INTERNET EXPLORER 6 <« 221

()

Testing Websit
Cross-browser tesfing is such an important part of developing

sites these days that there are more options than ever for you
to try. Here are a few that |'ve used:

e The welbsite crossbrowsertesting.com* provides online
images of various operafing system and browser config-
urations, including Linux and Mac OS, as well as several
flavors of Windows.

e Microsoft provides virtual machines’ of its browsers
and operating systems specifically for developers. These
images expire quarterly, so you’'ll need to grab new ones
occasionally.

e |[ETester! allows you to run multiple versions of Internet
Explorer side-by-side. It runs only on Windows.

It’s easier than ever to check your sites in mulfiple browsers
on multiple platforms. However, if you're looking for the easiest
option, | strongly recommend a Mac. With my Macbook Pro, |
can run Safari and Firefox during development and easily test
other browsers and platforms locally using virtual machines for
Windows and Linux.

*, http://crossbrowsertesting.com/
1. hitp://www.microsoft.com/downloads/details.aspx?Familyld=21EABB?0-958F-4B64-B5F 1-73[B0A4 13C8EF\ &displaylang=en
. http://www.my-debugbar.com/wiki/IETester/HomePage

looks terrible. You can get a sense of the kinds of things that IE can’t
handle, even though you made sure to work in standards mode, in
Figure 15.2, on page 223.

Fixing the Broken Stuff

There are lots of CSS hacks and exploits you can use to get IE to play
nice, but using hacks is a bad development approach because hacks get
fixed. You need a better way to target the user’s browser, and Microsoft
provides us with a near-perfect solution: conditional comments.

You can use conditional comments to target the use of Internet Explorer
in general or to target specific versions of IE. The comments are read
only by Internet Explorer; other browsers think they're regular HTML
comments and pass them over.

INTERNET EXPLORER 6 <« 222

Download working_with_ie/index.html

<!--[if IE 6]>
<link rel="stylesheet" href="stylesheets/ie6.css"
type="text/css" media="screen'>
<![endif]-->

<!--[if IE 6]>

<style>

#header img{behavior: url(stylesheets/iepngfix.htc)}
</style>
<!I[endif]-->

In this example, we're instructing the browser to load an additional
style sheet. We'll use this approach to correct the rendering issues we've
encountered. Add this to your HTML document after the rest of the style
sheets, and then create a new file in the stylesheets folder called ieé.css.

Fixing the Columns

The main part of the page appears to be too wide to fit next to our
sidebar as it does in the other browsers, so it drops below the sidebar. It
just happens that we've encountered an IE 6 bug known as the double-
margin bug. When an element is floated to the left and then has a left
margin, IE doubles the margin. This also happens with the right margin
on right-floated elements.

The simplest way to fix the double-margin bug is to add display:inline
to the element that is affected by the issue. The problem is actually
locating the element that’s breaking things.

On close inspection, the culprit behind the double-margin issue is the
main_text region. You can fix this by redefining the style in your IE 6
style sheet:

Download working_with_ie/stylesheets/ie6.css

#main_text{display:inline;}

Fixing the Transparency

IE 6 doesn’t support alpha transparency on a PNG, but there are tons
of solutions on the Web. Of course, not all of them are easy to use,
but the one I've been the most happy with is the TwinHelix solution.*

4. http://www.twinhelix.com/css/iepngfix/

INTERNET EXPLORER 6 <« 223

- foodbox

-

Search Recipes

Qa

Browse Recipes

desserts appetizers Indian
beef entrees mexican seafood
ainks pasta italian

chicken pork

Popular Ingredients

oregano garic black beans
apples bananas chesse

lettice chicken

>
\ s Ol
. e
O ‘
, \ o
Get Cookin]
Foodhax is the bestway to collect and share recipes Szgn Up
with the rest of the world. You can build your own | |
recipe hook from thousands of great recipes from /

renowned chefs or users just like you. You can also .
share your own secret recipes with a few of your
ftiends or make them available to the rest ofthe | Log I’n

wearld!

Create an account today and get cookin!

Latest Recipes
Stuffed Chicken Breast

Alightly breaded breast of chicken stuffed with mushrooms and Swiss cheese. Easyio make
even for beginners.

Chocolate Pancakes

This complete-fr ratch classic recipe is sure to please even the pickiest eater,
especially chocolate [overs.

Copyright @ 2008 Foodbox, LLC, all rights reserved.

Terms of Senice | Privacy Policy

Figure 15.2: IE 6 has significant problems with our site.
|

Download the fix from the company’s website, unzip it, and copy the
iepngfix.ntc and blank.gif files into your stylesheets folder.

Open the iepngdfix.htc file, and locate this code:

if (typeof blankImg == 'undefined') var blankImg = 'blank.gif';

Next, change it to the following:

if (typeof blankImg == 'undefined') var blankImg 'stylesheets/blank.gif';

To work properly, the HTC file needs to use a blank .gif file to complete
the transparency, and it needs you to provide a link that’s relative to
the HTML file it’s being applied to, not the style sheet.

INTERNET EXPLORER 6 224

()

Vf Joe Asks...

“f
—__Why Are We Fixing This by Hand? Can’t We Use a Well-
Established Fix Like IE7-js?

Many developers see projects like IE7-js* as an easy fix. How-
ever, as a developer, you're responsible for the code you place
in your site. If you understand everything that a project like IE7-js
does to make your site compatible, then you should feel com-
fortable putting it in your site. However, you need to remember
that solutions like IE7-js are generic solufions. They’re intended
tfo handle all possible cases. | don’t like infroducing more code
into my projects than is necessary to get the job done. I'd rather
fix the issues | know | have than use a “fix everything” library that
might be incompatible with some ofher things I've done.

Libraries and frameworks are great, but it’s important that you
understand anything you use in any of your projects. When
things break, you are ultimately responsible, whether you wrote
the code or not. More important, you need to be able to fix it.

*, http://code.google.com/p/ie’-js/

Add this line to your IE 6 conditional comment rule in the index.html file:
Download working_with_ie/index.html

<!--[if IE 6]>

<style>

#header img{behavior: url(stylesheets/iepngfix.htc)}
</style>
<!I[endif]-->

This loads a special CSS behavior, supported only by IE.

Fixing the Space Below the Header Image

The header image has a tiny bit of padding showing up that pushes
the rest of the page down, so it doesn’t line up with the background
we assigned. In standards mode, images are inline content, and they
tend to rest on the baseline, leaving some room for descenders. It so
happens that IE 6 follows the specification correctly here. The problem
is that other browser manufacturers have introduced an exclusion to

INTERNET EXPLORER 6 225

()

1y

~—

Joe Asks...
J L] - 7
=~ How Does This Work for Multiple Pages?

When you put more pages on your site or in your application,
the relative paths to the HTC file are going to change depend-
ing on the location of your HTML file in the site’s structure. You'll
need to provide a root-relative link or an absolute link in the HTC
file. This might not work on your local compufter, buft it will work
when you deploy your site to a server.,

In our case, we'd deploy everything to the server and change
the HTC file’s reference to blank.gif to this instead:

if (typeof blankImg == 'undefined')
var blankImg = '/stylesheets/blank.gif';

You could then move the call for the HIC file from your HTML
page info the ieé.css file. Just be sure to edit the path there, too.

You could also not use transparent PNGs, but that’s no fun!

this one rule, which is sometimes called almost-strict mode. The quick
fix is to float the image or to change the image’s display type to block:

Download working_with_ie/stylesheets/ie6.css

#header img{
display:block;
}

It's a simple fix, and it causes everything to line up correctly. We could
add this fix to the main layout style, rather than the IE 6 style, but we
see the problem only in IE 6, so that’s not necessary.

That about does it for the required IE 6 fixes. Everything now works as
expected, but now you have the chance to reflect on the work you just
did and decide whether supporting IE 6 is really worth all this effort.
Your next site might be a lot more complex and require more fixes,
but you also may have a different target market. If your next project
requires IE 6 support, you'll be familiar with the more common issues
and solutions.

INTERNET EXPLORER 8 <« 226

15.6

Internet Explorer 8

Microsoft is becoming increasingly friendly toward developers who want
to work within the realm of web standards. Internet Explorer 8 (IE
8) lets developers specify the rendering mode they want to use. IE 8
includes several modes to choose from, including modes that cause the
browser to emulate IE 5 and IE 7. According to Microsoft, the IE 8 mode
“provides the highest support available for industry standards, includ-
ing the W3C Cascading Style Sheets Level 2.1 Specification, and the
W3C Selectors API, with limited support for the W3C Cascading Style
Sheets Level 3 Specification (Working Draft).”

That sounds amazing, but there’s one significant downside: this ren-
dering mode doesn’t respect the doctype, and the doctype is the method
that the rest of the browsers use to determine how to render pages. For-
tunately, Microsoft has included another mode called IE 8 emulation®
that respects the doctype and uses IE 8 rendering mode for standards-
compliance and IE 5 mode when it encounters quirks mode. You should
review this list of the possible compatibility values for IE 8.6

Value Description

The web page supports IE 8 mode, which is also called IE 8

IE=8 standards mode.

The web page supports IE 7 mode, which is also called IE 7

IE=7 standards mode.

If the web page specifies a standards-based DOCTYPE
IE=EmulatelE8 directive, the page supports IE 8 mode; otherwise, it
supports |IE 5 mode (quirks mode).

If the web page specifies a standards-based DOCTYPE
IE=EmulatelE7 directive, the page supports IE 7 mode; otherwise, it
supports IE 5 mode (quirks mode).

The web page supports the highest mode available to the
IE=Edge version of Internet Explorer used to display the page. This
option is generally intended for testing purposes.

We can make IE 8 implement things correctly for us by adding this code
snippet to the header of the HTML document, right after the head tag:

Download working_with_ie/index.html

<!--[if IE 8]>
<meta http-equiv=""X-UA-Compatible" content="IE=EmulateIE8" >
<![endif]-->

5. http://msdn.microsoft.com/en-us/library/cc288325(VS.85).aspx#
6. Source: http://msdn.microsoft.com/en-us/library/ms533876(VS.85).aspx

OTHER BROWSERS 227

15.7

Search Recipes

Browse Recipes \ Aoy
desserts appetizers indian ‘ = ,
et Cookin
beef cnrees mexican sesfood g C
“ i Foodbox is the bestway to collect and share recipes Sl;qn "(}p
drinks pasta italian with the rest ofthe world. You can build your own =
recipe book fram thousands of great recipes from
chicken pork rengwned chefs or users just like vou, You can also
share your own secrel recipes with a few of your
< friends or make them available to the rest ofthe
Popular Ingredients e LOH In

oregano garlic blackbseans Create an account taday and get conkin!

apples bananas cheese

Latest Rectpes ||

Stuffed Chicken Breast

lettuce chicken

Alightly breaded breast of chicken stuffed with mushrooms and Swiss cheese, Easy to make
even for heginners

Figure 15.3: Our site looks great in Google Chrome!

Notice that we place this tag at the top of our document, right after the
opening of the head element. You need to set the compatibility mode as
soon as possible, before any style sheet links or JavaScript includes, so
that your CSS and scripts will be interpreted correctly. Once you apply
this fix, IE 8 behaves quite nicely. In fact, it even supports the advanced
CSS features we used in our print style.

Problems with This Approach

With IE 8, Microsoft finally supports many of the same standards that
other browsers have had for a few years; however, it still doesn’t do this
by default, and you have to add this content to every page in your site
to make it behave nicely. Fortunately, you'’re adding a meta tag, so this
approach is less kludgy than implementing some CSS or JavaScript
workaround. That said, it’s still an extra step, and purists will scoff at
the additional markup. I'm not a fan of this implementation, but I'll
take this simple, one-line fix over hours of hacking my scripts to make
them work any day.

Other Browsers

It doesn’t hurt to take a look at how your site appears in other browsers.
Fortunately, Foodbox looks great in Safari on the Mac, which you can

15.8

Foodbox

- foodbox

Search Recipes

\ 9]

Browse Recipes i oo b
1 B
Get Cookin’

desserts appetizers indian

beef enrees mexican seafood

. R Foodbox is the best way to collect and share recipes S 1 n U
drinks pasta italian with the rest of the world. You can build your own g 47
recipe book from thousands of great recipes from
chicken pork renowned chefs or users just like you. You can also
share your own secrel recipes with a few of your
3 friends or make them available to the rest of the
Popular Ingredients o LOg In

oregano garlic black beans Create an account today and get cookin!

apples bananas cheese

Latest Recipes

Stuffed Chicken Breast

lettuce chicken

Alightly breaded breast of chicken stuffed with mushrooms and Swiss cheese. Easy to make
even for beginners,

Chocolate Pancakes

‘ This complete-from-scraich classic pancakes recipe is sure to please even the pickiest eater,

Figure 15.4: Our site looks just fine in Safari, too!

see in Figure 15.4. And it appears as though Google implemented a
standards-compliant rendering engine in Chrome because we don’t
have to fix anything in that browser, either (see Figure 15.3, on the
preceding page).

I want to point out that it’s not like we got lucky. This is the way things
work when you follow web standards and work with valid documents.
For this reason, I'll reiterate that you shouldn’t waste time develop-
ing in Internet Explorer; instead, you should develop in a standards-
compliant browser and fix things in the oddball browsers later.

Summary

Developing sites for multiple browsers is important for reaching a wide
audience, and I'm pleased to say this is getting easier. If you embrace
standards, things just work. As IE 6 fades away and IE 7 gets replaced
by IE 8, the differences between various browsers become less and less.
That’s good news for developers and great news for users.

SUMMARY <228

16.1

Chapter 16

You need to consider all segments of your audience. Can a color-blind
user make good use of your site? How about someone who’s blind?
What about someone who can’t physically use a mouse? Are your links
in your tag cloud too close together, making it hard for someone with
impaired motor skills to navigate?

And what about people on slow Internet connections? Do your pages
still load quickly for them? How does your site work on a mobile device,
such as a cell phone?

The terms accessibility and usability are often foreign to application
developers. It's a topic that, until recently, hasn’t been popular. This
chapter will make you aware of the various types of issues that you
might encounter with different types of users, as well as show you ways
to improve your site for everyone.

What Does Accessibility Mean to You?

Whenever I talk to web developers, I like to ask them what they think
of when they hear the term accessibility. 1 find the different responses
to this question quite interesting. Some people have no idea what this
means at all, and others think it applies only to access for the disabled.
Accessibility is so much more than that—it's about access in general.

You should consider an application or website to be accessible if it
can be viewed and used by any user using any possible means of
interaction. This includes assistive technologies but also users who
access your site via older computers, slow Internet connections, cel-
lular phones, PDAs, and game systems. Your site doesn’t have to work

BASIC ACCESSIBILITY ISSUEsS < 230

the same on all these platforms, but it should be usable enough that
users can achieve their goals, whether it’s finding information, reading
documents, or buying products.

If your site works only when JavaScript is enabled, it’s not accessible.
Not every device supports JavaScript, not every user enables it, and not
every browser handles JavaScript the same way.

If your site requires your users to have Flash installed to work, it’'s
not accessible, no matter how awesome the animations on the menu
might look. If users can’t click those menu items because their iPhones
doesn’t come with Flash, you've lost potential customers.

If your site has so many graphics that it's unusable to someone on a
slow Internet connection (yes, those still exist), then your site is not
accessible.

If you're like many programmers, your first reaction is probably that
you need to be able to use things like Flash and JavaScript to make
your sites appealing, usable, and competitive. That is a valid argument;
Gmail without Ajax is a lot more difficult to use than its robust counter-
part. But Gmail works without Ajax; it’s just not as functional. Rather
than make its service unavailable, Google has implemented something
that works well enough to be functional and useful, even if it's more
cumbersome than the normal version.

Your site should be readable and functional to everyone. It doesn’t have
to look as awesome or work as slickly, but it does have to let people
complete their tasks.

16.2 Basic Accessibility Issues

This section covers basic accessibility issues.

People Who Are Blind

Users who are completely blind most often rely on software called
screen readers, special software that uses a computerized voice to read
the text on the page to a user. There are several screen-reading soft-
ware packages available, including the popular JAWS, but all have their
strengths and weaknesses when it comes to what they support.

BASIC ACCESSIBILITY ISSUES <231

Screencasts, Videos, and Tours

It seems as though every new site has some sort of tour, whether it’'s
a bunch of application screenshots or a video walk-through. When
designing a tour or a screencast, you need to think about how use-
ful that screen cast would be for a blind user. When you're doing the
voiceover track for a screencast, treat it as sports announcers treat
televised games: describe what's happening to the viewer. Don’t just
say “click here”; say “select the New Recipe link.” A little description
goes a long way, even for your sighted users.

The same rule applies to your tour images. Be descriptive in your cap-
tions, and you’ll make many users quite happy.

Color

If your users can’t see, then they obviously won’t notice any of the color
you used in your website. We spent a chapter on color in this book,
and we talked about the ways that you can use color to evoke emo-
tion in your users. Unfortunately, none of that applies when dealing
with blind users, so you should make sure that you find other ways
than to convey important information to them. For example, if you use
color to denote an error on a form submission, you might also consider
listing and describing the problems at the top of the form. Addition-
ally, you might want to wrap these elements with the strong or em ele-
ments. Many screen-reading tools will audibly draw attention to content
marked up with those elements.

Alternative Text Attributes

We talked about alt attributes a bit in the sidebar on page 134. It’s one
of the best-known ways to make a site accessible; however, it can also
be extremely annoying to users of screen readers if used incorrectly.

The purpose of the alt attribute is to provide descriptive content infor-
mation about an image. Unfortunately, many web developers treat alt
attributes as just another thing they need to do, so they put in some
arbitrary content or, worse, the filename again.

Most people who use screen readers aren’t interested in hearing “bul-
let,” “check mark,” or “lady with a red sweater.”

If you have an image that’s on the page simply for decoration, consider
using a blank alt attribute:

BASIC ACCESSIBILITY ISSUES < 232

A better solution is to move these purely aesthetic items into your style
sheets, keeping only images that are truly content in your HTML docu-
ment. For example, you can use CSS to apply images to lists:

ul{

list-style-image: url("/images/circle.gif");

}

But your users do want to hear words you’ve placed inside an image or
inside your graph that shows usage of your products by country. Make
sure your alternate text describes the content of your image—or leave
it blank. Don’t leave the alt attribute off, though! Many screen readers
know to ignore blank alt attributes.

One last thing: please don’t start your alternative text with “An image
of...” The user will already know the content is an image because the
screen reader will announce that fact when it reads the alf attribute.

Graphs and Charts

Charts and graphs displayed as images are basically worthless to blind
users unless you provide some description of them. In addition to the
aforementioned alt attribute, the img tag also supports an attribute
called longdesc. You can use this attribute to describe a graph or chart.
Describing a figure helps every one of your users, especially if it’s very
complex.

Spelling and Grammar

The screen reader works best when the text on the page is readable.
When writing your content, you should take special care to ensure it is
well-defined, spell-checked, and grammatically correct. Screen readers
have to pronounce the words they see, and this makes grammar and
structure important. Think about words that you write the same way,
but pronounce differently, such as the word read. Read the previous
sentence aloud and then laugh at what you read. Which version of read
did you think I referred to? The one that sounds like reed or the one
that rhymes with red? You’ll never know. If you're not careful with your
sentence structure, a screen reader won't either. It will do its best to
figure it out based on the tense and context of the sentence, but it’s on
you to use correct grammar and spelling!

Spelling individual words correctly is also important. Imagine how
much trouble a screen reader would have if you left a letter out of a
word by accident.

BASIC ACCESSIBILITY ISSUES <« 233

()

Brian’s Rules for Proofreqd

| write a lot, whether it's for infernal documentation, for my
blogs., or for books like this one. | also make tons of mistakes
while doing so. To account for this, | have developed a proof-
reading strategy that, if used continuously, can be extremely
effective.

First, read what you write out loud. If you can get through it
without laughing. you're a third of the way there.

Second, read the sentence backward. Reading your text out of
context can help you spot misspelled words or duplicate words.

Finally, get someone else o read your content aloud. This is
important. You’ll get to hear your content, and you’ll get feed-
back from that person on how to make it better.

Finally, punctuation is important. Pay attention to how you use peri-
ods, commas, and other punctuation marks! Some screen readers use
different vocal inflections when they encounter different kinds of punc-
tuation. For example, a comma might cause a screen reader to pause
for a second, which makes comprehension much easier.

My solution to a lot of this is to spell-check content with a computer
first and then get someone else to proofread my content for me. It’s
even better if you can get someone else to write the content, but you
still have to look it over yourself for spelling errors. If your clients write
the content, they’ll still blame you for typos, grammatical errors, and
spelling mistakes.

JavaScript and Ajax

JavaScript and Ajax enable developers to create much richer user inter-
faces. For example, we can use this combination to allow our users to
edit things in-place instead of jumping to a different form. You can use
this combination to show and hide regions of a page based on data
entered by the user. Or you can use it to implement fake pop-up win-
dows like Lightbox! to load pages and content instead of using regular
browser windows as pop-ups.

1. http://www.huddletogether.com/projects/lightbox2/

BASIC ACCESSIBILITY ISSUEsS < 234

The problem is that, although many screen readers claim to support
some JavaScript and Ajax functionality, few screen readers support
this functionality well. It’'s often hard for a screen reader to tell exactly
what changed on the page. You should develop your site so that all its
features work without JavaScript, but then go back and add the fancy
JavaScript-based features you desire. This way you can build in grace-
ful degradation through progressive enhancement, rather than leaving
it as an afterthought.

For example, consider forms that post via Ajax. It'd be easy for you to
make those forms perform a regular post, after which you could go back
and use JavaScript to modify the form unobtrusively so it performs an
Ajax request. You'd then use server-side code to determine whether
you had received a regular request or an Ajax request. The regular
request might display a new page, while the Ajax request would return
a JavaScript response that modifies the existing page’s contents. This
implementation wouldn’t take long to implement, but it would make
your site usable to a lot more people.

You should keep testing different versions of screen-reading software
to see how they handle your site. The companies behind the screen
readers are working to make the Web friendlier to their users.

If you keep these types of things in mind as you build a site, you will
make things better for all your users. Images with long descriptions
might provide users with a better understanding of the graph. Checking
your grammar and spelling is something you should be doing anyway.
Graceful degradation of your user interface also makes it possible for
your app to be used by less sophisticated browsers. I can surf the Web
with my cell phone, but some of my favorite Web 2.0 websites don’t
work on it, yet.

Google Is Blind, Too!

It's easy to forget this fact, but Google and other search engines inter-
pret your web page the same way a blind user’s screen-reading software
would. Certain content, such as videos, images, graphs, and Flash,
might not be interpreted. Your site’s structure might also cause prob-
lems for your users.

One way I recommend testing your site for accessibility is to use a
text-based browser like Lynx (see Figure 16.1, on the following page).
You might also try turning off all CSS, JavaScript, and images in your
browser. Navigate around your site, and you’ll get a quick idea of how

BASIC ACCESSIBILITY ISSUEsS < 235

‘opular Ingredients

An imoge of poszta and morinora souce

Create an
Sign up Log in

A& lightly breoded breost of chicken stuffed with mushrooms and @ eze. Eosy to maoke even for beginners.

Thiz complete—from-scratch o : recipe iz sure to please even the pickiest eater, especially chocolote lovers.
Copyright @ Foodboe, LLC, all rights

(Text entry field) Enter text. Use UP or DOWN arrows or tab to mowve off.
Enter text into the field by typing on the k rd

Figure 16.1: Foodbox on Lynx, a text-based browser

good or bad your site is in terms of accessibility; you'll also get a feel
for how search engines will interpret your site.

Color-Blind Users

Color-blind users might encounter difficulty on your site if you've used
color to convey important information. Color-blind users have difficulty
distinguishing between certain types of color. For example, many color-
blind users cannot distinguish red from green or red from black.

You should take care that you choose colors with enough contrast to
make charts, graphs, and other areas of your site readable. For exam-
ple, red text on a black background could be almost invisible to a color-
blind user.

Protanopia and Deutanopia

Protanopia and deutanopia are two of the most common types of col-
orblindness. People with these forms of colorblindness have difficulties
distinguishing between red and green.

BASIC ACCESSIBILITY ISSUEsS < 236

Search Recipes

\ 9] -
P o E :
Browse Recipes 1 LR
desserts appetizers indian ,
Get Cookin o
beef entess mexican seafood
. . Foodbox is the best way to collect and share recipes | i n "U |
drinks pasta italian with the rest of the world. You can bulld your own ‘ S g p |
recipe book from thousands of great recipes from —— —
chicken pork renowned chefs or users just like you. You can also
share your own secret recipes with a few of your
< friends or make them available to the rest of the
Popular Ingredients i L(’g In i

oregano gardic black beans Create an account today and get cookin!

apples bananas cheese

Latest Recipes

Stuffed Chicken Breast

lettuce chicken

Alightly breaded breast of chicken stuffed with mushrooms and Swiss cheese. Easy 1o make even
for beginners.

Chocolate Pancakes

This complete-from-scratch classic pancakes recipe Is sure to please even the pickiest eater,
senarially rharniata Inuars

Figure 16.2: Foodbox as seen through the eyes of someone with
protanopia

You can see how the Foodbox site looks to users with protanopia in Fig-
ure 16.2. Notice how the red sauce on the meatballs shows up as almost
dark gray, while how the rest of the site looks extremely brown. Red
actually appears quite dark to people with protanopia, so it’s important
to think carefully about how you use this color in your designs.

Deutanopia is similar to protanopia, except that reds and greens often
appear to be the same color. The Foodbox site also looks quite different
to people afflicted with deutanopia, as shown in Figure 16.3, on the
following page.

Tritanopia

Tritanopia is a rare form of colorblindness in which yellow and blue are
virtually indistinguishable. Our site looks quite pink to people with this
disability, as shown in see Figure 16.4, on the next page.

People with Visual Impairments

People with visual impairments have their own unique issues that
might not be immediately apparent. Visually impaired users often use

BASIC ACCESSIBILITY ISSUES

=S N

Search Recipes

‘ o]

Browse Recipes |
2 f R -

Get Cookin’

desserts appetizers indian

beef enrees mexican seafood

Foodbox is the best way to collect and share recipes | l n ‘l} |

drinks pasla italian with the rest of the world. You can build your own | S g P i
recipe book from thousands of great recipes from

chicken pork rencwned chefs or users just like you. You can also o
share your own secret recipes with a few of your |
friends or make them avallable to the rest of the |

Popular Ingredients worid] L 0g In I
oregano gariic black beans Create an account today and get cookin!

apples bananas ch o . .
fis Latest Recipes

Stuffed Chicken Breast

lettuce chicken

Alightly breaded breast of chicken stuffed with mushrooms and Swiss cheese. Easy tc make even
for beginners.

Chocolate Pancakes

This complete-from-scratch classic pancakes recipe is sure to please even the pickiest eater,

Figure 16.3: Foodbox as seen through the eyes of someone with deu-
tanopia

- foodbox
gg H A o5 Sl S o %
Search Recipes 4
‘ 19|
Browse Recipes \

y 6N
Get Cookin’
Foodbox is the best way to collect and share recipes

! Sign Up

desserts appetizers indian

beef enrees mexican seafood

drinks pasla italian with the rest of the world. You can bulld your own ‘
recipe book from thousands of great recipes from
chicken pori renowned chefs or users just like you. You can also -

share your own secret recipes with a few of your
friends or make them available 1o the rest of the |

Popular Ingredients world!
oregano garic black beans Create an account today and get cookin!

apples bananas cheese

Latest Recipes

Stuffed Chicken Breast

lettuce chicken

A lightly breaded breast of chicken stuffed with mushrooms and Swiss cheess. Easy to make even
for beginners.

Chocolate Pancakes

This complete-from-scratch classic pancakes recipe is sure to please even the pickiest eater,

Figure 16.4: Foodbox as seen through the eyes of someone with tri-
tanopia
|

<237

BASIC ACCESSIBILITY ISSUEsS < 238

magnification software such as ZoomText or the built-in zooming fea-
ture of OS X, so it’s not especially important that you worry about the
size of your fonts. However, you should avoid using extremely small
fonts.

Magnification tools have a drawback, though. Visually impaired users
focus on the region they’ve zoomed in on and will miss content outside
the zoomed window. Imagine looking at your computer screen through
a paper towel tube. You have to move the tube around to see every-
thing, so you might not see everything the site designer intended. As
the developer, you have no control over how people use their accessi-
bility tools, so how do you combat this problem? You should construct
your site so your users don’t have to use magnification.

Visually impaired users, especially older users, do not want a separate
site. Like other people with disabilities, they want to be treated equally,
and a big fear with a separate site is that you, the developer, won't keep
it updated. I've run into that a few times, and it’s extremely frustrating.

As a daily user of assistive technologies like screen magnification, my
advice to you would be to let the user worry about zooming in. What
you should worry about is keeping important pieces of content together.
Anyone who needs them probably has the magnification tools already.
When it comes to the Web, IE 7, Firefox, and Opera all allow scaling
of the entire page, and full-screen magnification software on Macs and
PCs make it possible to increase the size of the entire workspace, not
just the browser.

People with Hearing Impairments

The Web is primarily a visual medium, but an increasing number of
websites use videos to show off site features or to share information.
Your hearing-impaired users can certainly watch the video, but if you
don’t provide a transcript, some captioning, or subtitles for your video
or screencast, you could be leaving such users out in the cold. If you
run a podcast, consider providing transcripts of your program with
clickable links so that hearing-impaired users can follow along with
your broadcast.

Senior citizens, veterans, Baby Boomers, and a shockingly growing per-
centage of younger people have hearing difficulties,? so it's important

2. MiracleEar, the hearing-aid company, reports that “15% of recent college graduates
have as much or more hearing loss than their parents.”

BEING ALL-INCLUSIVE! <239

16.3

that you don’t leave these users out of your plans. If you post video
clips with audio, ensure that the audio is loud enough and of sufficient
quality to be heard at low volumes. Doing so will ensure that your users
can increase the volume to meet their needs.

Motor Impairments and Mouseless Users

As everyday users of computers, it's easy for us to forget that users
of our services and products don’t have the same setups we do. For
example, some users must use alternative input devices in lieu of a
mouse because they don’t have hands or lack the muscle control to
operate a mouse. Of course, your blind users won’'t be working with a
mouse, either.

How do these people navigate? Some use special tubes that can manip-
ulate a pointer when the user blows or sips. Other users rely strictly on
a keyboard. And let’s not forget that many developers prefer keyboard
shortcuts to using a mouse.

Your keyboard users will rely on keyboard shortcuts and tabs, so try to
act like them. Navigate your site only using a keyboard, and take note
of any problems you encounter. Do you use slider controls? Make sure
that users can type in a value instead. Do you use in-place editors that
make the user click a region to activate the text area? The bottom line is
simple: don’t make your application dependent on the use of a mouse.

Finally, please, please avoid the use of the word click, as in click here.
This text implies that your user has a mouse, and it’s unnecessary, any-
way. For example, a Click here for more information link would work bet-
ter if you changed it to a More information link. If you’ve followed rules
for good usability, it should be obvious how the user should access the
additional information you provide. Personally, I think the only reason
people use the phrase click here is because they see others do so; I call
upon you to break that cycle.

Being All-Inclusivel

An accessible site should work for everyone who wants to use it. If you
use lots of JavaScript and Flash or Silverlight on your site, you should
think about how people might interact with the site if they were unable
to use any of those technologies. You shouldn’t feel as though you have
to be held back by the lowest common denominator when you build your

BEING ALL-INCLUSIVE! <240

new application—it’s important to be competitive. However, you should
strive to provide access to every user you possibly can.

At the time of writing, one of my favorite sites, Hulu,® uses Flash to play
videos of my favorite shows. Unfortunately, I can’t watch those shows
on my iPod because the iPod doesn’t support Flash yet. On the other
hand, YouTube, which also uses Flash to play videos, has been making
its videos available on the iPod and iPhone since the iPhone’s launch,
as do other video sites. Hulu made a good choice in using Flash; it’s
available in many more places and on more platforms than QuickTime
or Windows Media. However, if YouTube can make its videos work on
non-Flash devices, so can Hulu.*

Admittedly, Hulu doesn’t have any say in how the iPod plays its videos,
but its example does illustrate how your technology choices can acci-
dentally leave out a segment of your audience. Whenever you imple-
ment some flashy new technology, you should consider how it impacts
the various segments of your audience.

Navigation

One of the easiest ways for you to kill your website or web application
is to make unintentional choices that limit the ability of your users to
navigate around your site. Navigation is critically important. If you plan
to use pull-down menus for your navigation, make sure that the entries
within the pull-down menus are available through another method.
Users with older browsers or screen readers might not be able to pull
the menus down and will see only the top-level menu items. To get
around this, you can create landing pages for those top-level menu
items. These landing pages should contain the links that appear in the
pull-down menu. The idea of an extra set of pages might not appeal
to you at first, but aside from the accessibility benefits, this approach
gives you or your marketing people another chance to plug some quality
keywords and content into the site.

I've seen tons of sites that use Flash movies as menu systems. Although
many people have Flash on their home computers, this approach can
cause issues for the occasional user with a screen reader, mobile phone,
or PDA browser. Users shouldn’t have to download or install anything
to move around your website. I'm not saying you shouldn’t use Flash

3. http://www.hulu.com/
4. Of course, there might be legal issues that might prevent this.

BEING ALL-INCLUSIVE! <241

()

1// Joe Asks. ..

~—

J

_—__But Flash Is Accessible, Isn’t It?

If you ask Adobe, it is. That company has been conscious
about accessibility since it merged with Macromedia, which
has always worked hard to incorporate accessible features into
its tools. However, even though Flash movies can be acces-
sible, it’s up to the person building the Flash movie to make
sure that it is accessible. Even then, screen-reading software
doesn’t always work well with it, and some platforms don’t sup-
port Flash. If you plan to use Flash, get some people to test it.
Get a trial copy of JAWS or Window-Eyes, install it, and see how
well it works with your site. There’s nothing new here: test, fest,
and fest again.

for navigation; rather, I'm saying you should make sure that people can
get around your site without it.

Handling Errors

How do you display error messages in your applications? If you use
pop-up boxes, you should be aware that users with motor impairments
might have more difficulty clicking them away. If you use a different
colored font such as red to indicate an error, color-blind users might
not notice the message. If you use Ajax to handle validation, some
screen-reading software won't notice the changes. So, what options do
you have, after all?

You can see one of the better examples of how to handle form validation
properly in the built-in scaffolding from Ruby on Rails. When your user
enters invalid data, the form is redisplayed, and a new region is placed
on the page that lists each field that contained an error. The message
also gives a brief description of the problem. The scaffolding also out-
lines each form field with an error in red. Color-blind users might not
see the red text, but they will notice the new error-message region on
the page, and they will also see the thicker border that surrounds the
affected form fields.

CRITICAL BUSINESS ISSUES < 242

This approach could be greatly improved if the error messages were
displayed next to the form fields containing the erroneous data; how-
ever, it’s still a good approach because it doesn’t rely solely on color to
denote that a problem occurred.

Cross-browser Testing

We covered testing your site on multiple browsers in Chapter 15, Work-
ing with Internet Explorer and Other Browsers, on page 215. In a similar
vein, we’ll cover how to work with mobile devices in Chapter 19, Design-
ing for Mobile Devices, on page 262. There isn’t much to add about
cross-browser compatibility at this point, other than to say that it's a
big part of accessibility in general. Your ultimate goal should always be
to include as many people as you can.

16.4 Critical Business Issues

Building sites in a competitive market can often impact your ability
to make web pages and applications accessible to your users. If you
want to develop an application that is compelling, state-of-the-art, inno-
vative, and commercially appealing, then you will likely find yourself
embracing a technology that is not highly accessible. You need to com-
pete with others, but you also need to reach the 90% of the market that
could use your application right away.

Regardless, you need to keep accessibility in mind from the start. I
understand that releasing your site and getting users is important to
your clients, but you're in for a big surprise if you think you can build a
site first and add in accessibility later. Once your site has tons of users,
you’ll have new features to roll out and new trouble tickets to address.
Accessibility is like test-driven development: if you don’t do it from the
start, it will never get done because you’ll hate doing it. If you can’t
get accessibility into the plan because it's the right thing to do, then
you need to frame it in terms the stakeholders understand: money.
Talk to the stakeholders about how much of their target market they
will exclude if they don’t embrace the importance of accessibility. The
number of people excluded could be far higher than your stakeholders
have imagined.

If you work on a project for a government agency, university, or public
school, you need to be aware of the laws that govern how technology
can be purchased. Some government agencies cannot purchase appli-

IMPROVING OUR SITE’S ACCESSIBILITY < 243

()

Vf Joe Asks...

f

Now to Implement 11?

That’s a fair question. | left off covering this topic until now
because | had so much material fo cover, and fthis is not a
ook on accessibility. However, if you look back, you’ll notice
that | brought up accessibility topics all along, including alter-
native text, validation, semantic markup, dyslexia, and some
color issues. Implementing accessibility features for the Food-
box site will be easier for us because the site’s design has taken
such issues into account from the outset. When building your
next site, you'll want to fake all the things mentioned in this
chapter info consideration when you begin development.

cations that don’t comply with the Section 508 guidelines. If your target
market includes those types of agencies, you need to make sure they
can use your product.

Visit http://www.section508.gov/ for more information about those guide-
lines and how they affect you. Following these guidelines can help you
create highly accessible websites and applications; personally, I find
these guidelines more helpful than the guidelines put forth by the W3C
when it comes to working with disabled users.

16.5 Improving Our Site’s Accessibility

When we look at Foodbox with a text-based browser, we can see that,
because of the way we structured the site, a blind user with a screen
reader (or even a mobile user who doesn’t have the ability to load style
sheets) will have to scroll down quite a bit to read the site’s content or
to sign in. The search box and tag clouds are both in the way.

We'll get past this slight irritation by creating some links to skip over
the navigation, hiding these links with our main and print style sheets
so regular users won't see them but screen-reading software will still
announce them.

IMPROVING OUR SITE’S ACCESSIBILITY < 244

Adding the Skip Links

Open your index.html file, and add the code in bold immediately beneath
the banner image:

DownTload accessibility/index.html

<div id="header'"> <!-- start of header -->

> <ul 1id="skiplinks" class="noprint'>
> Skip to Content
>

</div> <!-- end of header -->

The Skip to Contents link references our page’s main text region. Adding
id attributes to our sections makes it extremely easy to provide acces-
sible navigation.

Access Keys

You might have noticed another attribute on our Skip to content link—
the accesskey attribute.

This attribute allows you to specify a keyboard shortcut that users can
use to activate links, buttons, or form fields. This is particularly helpful
for users with screen readers, but it’s also helpful for people who can’t
or don’t want to use a mouse. Of course, you'll need to provide some
way to inform your users that these keys exist because few of them will
inspect your code to figure this out.

At first glance, my choice of O (zero) for a value here might not make
sense. I assigned this value to the Skip to Content link for the same
reason the developers of Twitter did: it works great for mobile-phone
users. See? Accessibility is about more than assisting disabled users.

Screen Readers and display:none

You learned that we can use display:none in a corresponding CSS rule
to remove regions and elements from the page in Chapter 14, Making
a Printer-Friendly Page, on page 207. However, many screen-reading
software packages have started respecting this property. Many articles
on accessibility advocate using display:none to hide the skip links, but
this is no longer a valid solution. Instead, we can use some positioning
tricks to push the links well outside the page.

IMPROVING OUR SITE’S ACCESSIBILITY < 245

()

How Access Keys Work

When a user presses the access key, how the browser responds
is determined by the element aftached to that access key.
When you assign an access key to a link, the link is activated
when the user presses the key.* If you assign an access key to a
label tfag that’s bound to a form field, the user’s cursor is placed
within that form field.

An access key basically replaces a mouse click, and it can
speed up a user’s workflow significantly.

x. Internet Explorer focuses the link rather than activating it.

Hiding Skip Links with Negative Positioning

The CSS to hide our content contains only a few lines. First, we need to
use absolute positioning, where we specify the X and Y coordinates of
the element using CSS. Once we enable absolute positioning, we specify
that we want to position the item at -9999px. This means that we want
to position the item 9999px to the left of the browser’s left edge.”

Add this CSS rule to your stylesheets/layout.css file:
Download accessibility/stylesheets/layout.css

#skiplinks{
position:absolute;
Teft:-9999px;

}

We applied the class="noprint" attribute to the skip links list so our print
style sheet will hide it automatically.

Labels for Forms

We can improve the usability for mobile users, blind users, and users
with motor impairments even further if we use access keys to help users
navigate our pages. We can even attach an access key to a form field.
To do that, we need to modify our form just a bit and add a label field to
the form. A label field gives us a way to bind a text label to a form field

5. If you specify a containing element as position:relative, then any absolutely positioned
elements within the containing element are positioned using the containing element’s
top-left corner.

IMPROVING OUR SITE’S ACCESSIBILITY 246

()

The Power of Labels

The label tag enables you to enhance the usability of your site’s
forms for all your users. For example, if you associate a label tag
with a radio button or checkbox, a user can select the text of a
label to "check” a checkbox or “click” a button. This approach
benefits those users who aren’t as accurate with a mouse or
frackpad.

You associate a label by referencing an element’s ID like this:

<input type="checkbox" value="yes" id="user_active"
name="user[active]" />
<label for="user_active'">Activate User</label>

Taking advantage of label tags when you build your forms can
make things much easier on the users who interact with your
forms.

and is often used by screen readers to help associate form field names
with values.

Labels can help associate text labels with form fields, but you can also
use them to link keyboard shortcuts to form elements. If we add a label
to our form and set the for attribute of the label to match the ID of the
search box, then the user’s cursor will be placed inside the search field
when the access key is pressed:

Download accessibility/index.html

<form id="search_form" method="get" action="/recipes/">
<div>
> <label for="search_keywords" accesskey="s">Keywords</label>
<input type="text" id="search_keywords" name="keywords">

<input type="1image" alt="Search" src="images/search.png'>
</div>

We use |S| as the access key in this snippet, but the actual key combi-
nation will differ, depending on the user’s browser and the OS. Safari
and Firefox on the Mac require you to press +. On Windows, that
combination calls up the Save dialog box. Instead, use Shift[+Alt[+S]
in Firefox and + in Internet Explorer.

TABBING <247

()

Vf Joe Asks...

f

How Do Users Know What to Use?

Screen readers for the blind like JAWS will actually announce
the access keys o the user when it encounters them. [t's incred-
ibly useful for those users. However, the access keys you defined
won’t just automatically appear in most web browsers.

You should consider some sort of accessibility statement on your
page. Within your skip links navigation, you could link to the
accessibility statement and show a list of your access keys, as
well as provide other useful informnation to help disabled users
navigate your site. You could also provide a simple accessible
form on that page where users could give you feedback so you
can find out whether things are working in a useful way.

The label tag we incorporated adds the text keywords to our search
form. We don’t want that, but we can use CSS to hide it, just as we hid
the navigation skip links:

DownTload accessibility/stylesheets/layout.css

#search_form label{
position:absolute;
Teft:-9999px;}

For extra credit, you can try combining both rules into one.

So far we've made a couple changes to the page that have improved its
accessibility significantly. You could expand upon these improvements
further by adding some additional jump links to your navigation. In
fact, you might want to do that for your mobile audience anyway.

16.6 Tabbing

The site doesn’t have any complex forms yet, but it’s only a matter
of time until you’ll create one. When you do, it’'s important to think
about how a keyboard user might navigate your form. When a user
presses the Tab key, the cursor jumps from element to element; how-
ever, the tab order might behave unexpectedly if you’'ve done a poor job
of designing your form. In the event that you find yourself with a form

TABBING < 248

that doesn’t tab properly, you can use the tabindex attribute to gain
tighter control over the form fields.

The tabindex attribute lets you control the tab order on an interface.
Simply increment the tabindex attribute for each field on a form. You
can specify the tabindex on any interactive element, including links,
drop-down lists, text areas, checkboxes, and radio buttons.

Let’s mock up the Foodbox sign-up form using a proper, accessible
form:

<form id="signup" action="/signup"” method="get">
<p>
<label for="account_Tlogin">Login</Tabel>

<input 1id="account_Tlogin"
name="account[login]"
size="30" type="text" tabindex="1">
</p>

<p>
<label for="email">Email</Tabel>

<input id="account_email"
name="account[email]"
size="30" type="text" tabindex="2"></p>

<p>
<label for="password">Password</label>

<input 1id="account_password"
name="account[password]"
size="30" type="password" tabindex="3">
</p>

<p>
<label for="password _confirmation">
Confirm Password
</label>

<input id="account_password_confirmation"
name="account[password_confirmation]"
size="30" type="password" tabindex="4">
</p>

<p>
<label
<input class="button" name="commit"
type="submit" value="Sign up"
tabindex="5">
</label>
or Cancel
</p>

</form>

ACCESSIBILITY TESTING CHECKLIST < 249

16.7

()

The Vertical Bar (and Other S ial CI ters)
If you use the pipe character in your site to separate items, as
we did in our footer, you might e in for a shock when you fest it

on a screen reader. Here's our footer, as inferpreted by a screen
reader:

"Copyright copyright two thousand eight Foodbox, LLC, all
rights reserved. Link Terms of Service vertical bar Link Privacy
Policy.”

The screen reader read the copyright symbol as a word, so
copyright is read aloud twice. Notice that it also interpreted
the pipe character as verfical bar.

This is fine in small doses, but imagine if we had six things in
our footer, separated by these bars. When you develop sites,
please be mindful of how you use special characters for things
that aren’t directly content related. Can you think of a better
way for us to do the footer?

Avoiding tabindex

You might be thinking this is a colossal hassle. Don’t worry; that’s per-
fectly normal. Specifying tabindexes can be painful, especially when you
have complex forms with lots of fields and you have to insert new fields
in the middle. You can avoid using tabindexes if you're careful about
how you design your forms. If you allow your web forms to flow nat-
urally in a linear fashion, you won’t need to worry about this much.
However, you will want to test your forms by trying to fill them out with
only a keyboard on every browser you can get your hands on.

Accessibility Testing Checklist

Before you launch your site, you should do a quick audit of all your
pages. Things that should be in your list of acceptance criteria include
the following:

* Check that all pages in the site have valid markup.
* Verify that all style sheets are valid.

¢ Ensure that all image tags have useful and descriptive alternative
text.

ACCESSIBILITY TESTING CHECKLIST < 250

Test that all pages are legible and usable in a text-based browser
such as Lynx.

Check to see whether your pages are legible in older browsers.
Turn off JavaScript and see whether your pages are usable.

Throttle your connection and see how fast your pages load, or use
a speed-testing tool to catch large, unoptimized images.

Turn off images and test every page to ensure that no important
text is rendered solely as an image.

Install the Fangs Firefox extension to see how a screen reader
might interpret your page.

Get a demo of JAWS® or Window-Eyes,” turn off your monitor, and
try to navigate your site.

Have a third party review your site’s content for spelling, grammar,
and other issues.

Search and remove any references to click here because not every
user has a mouse. Also, people know what to do with hyperlinks
these days, and if you haven’t made your links obvious enough,
then you need to review how you implemented them.

Use a service such as the Colorblind Web Page Filter® or the won-
derful cross-platform desktop application to Color Oracle? to test
your site for various forms of colorblindness.

Ensure that you don’t have any rapidly flashing elements on your
pages that might cause trouble for users with epilepsy.

Ensure you've implemented a skip navigation option on your site
so that users with screen readers can skip over your repetitive
navigation.

Ensure that users can tab easily between form fields.

Make sure you have transcripts or captioning for any videos on
your site, so hearing-impaired users can follow along.

© XN

http://www.freedomscientific.com/
http://www.gwmicro.com/
http://colorfilter.wickline.org/
http://colororacle.cartography.ch/

SUMMARY <251

16.8 Summary

Accessibility and usability are too important to ignore. Even if you don’t
deal with disabled users, the techniques you use to ensure that your
site is accessible for the disabled can make your site more usable for
everyone. Always remember that accessibility doesn’t mean accessible
Jor the blind; rather, it means that your site can be used by anyone
from any device. You should strive to achieve that goal whenever you
develop.

17.1

17.2

Chapter 17

A favicon is a little icon that shows up next to the address bar of most
browsers and is often displayed alongside the bookmark for the site.
In browsers that support multiple tabs, the favicon appears in the tab
containing your site. This constant exposure helps you reinforce your
site’s brand. Most popular sites use favicons, and Foodbox should be
no exception.

Creating a Simple Icon

To create an effective favicon, we need something that will reflect our
branding. Let's create a simple icon for Foodbox by taking the four
squares from the Foodbox logo. Open Photoshop, and create a new
document, setting the dimensions to 64px wide by 64px high. Use 72px
for the resolution, and be sure to choose the RGB color space. Set the
background color to white.

Import the foodbox.ai logo file you built by using File > Place. After you
import the image, use the resize handles to size the image so that only
the squares fit on the canvas, as shown in Figure 17.1, on the next
page. Hold down the key while resizing to constrain the trans-
formation so you don’t distort the logo.

Creating the Favicon

A favicon is a 16px-by-16px Windows .ico file, and Photoshop doesn’t
have a built-in filter to export that type of file. However, you can get a

CREATING THE FAavicON <« 253

Figure 17.1: Resize the Foodbox logo so that only the squares are within
the canvas.

free filter from Telegraphics that works for almost all versions of Photo-
shop.! We will also use a command-line program called png2ico,? which
converts PNG files to ICO files. Windows users can download a binary
version, while Linux and Mac users might want to check their package
manager for the program instead.

Resize the image in Photoshop to 16px by 16px using Photoshop’s
Image Size command, which you can access at Image > Image Size.
Choose the Bicubic Sharper option to get the best results when reduc-
ing an image.

Now save the file as favico.png. Favicons support transparency, so you
could save this as a transparent PNG.

Open a terminal or command prompt, navigate to the folder containing
the PNG you just saved, and run this command:

png2ico favicon.ico favicon.png

Place the favicon.ico file in the root of your website, not in the images
folder, and most browsers will automatically find the file. You won'’t see
the favicon on your local file system, so you must upload your files to
your server. You might also have to restart your web server to make
the favicon show up in the address bar. You can see the final result in
Figure 17.2, on the following page.

Safari, Firefox, and Internet Explorer 7 support favicons natively, but
Internet Explorer 6 might need a little help from you to display the icon.

1. hiftp://www.telegraphics.com.au/sw/
2. http://www.winterdrache.de/freeware/png2ico/index.html

SUMMARY <« 254

17.3

L http: / /www.yocurfoodbox.com/

Figure 17.2: Our favicon

Add this code to your home page in the head section if you can’t get the
favicon to show up:

<1link rel="shortcut 1icon" href="favicon.ico">
<1link rel="1icon" type="1image/ico" href="favicon.1ico">

Summary

A favicon is an important part of your site’s branding, and it can go a
long way toward helping users remember your brand, because they’ll
see it in their browser while they visit your site and in their bookmarks
bar when they're somewhere else. A favicon is especially effective when
you incorporate existing logos or imagery into your icon.

18.1

Chapter 18

0] 0
JL (A ; ‘
W,

Foodbox is ready for launch, and everyone thinks it looks great. Nothing
feels better than finishing up a project that you've put a lot of effort
into. However, getting the site up doesn’t mean you're done. The site’s
not worth much if nobody can find it, so we need to talk about the
necessary steps you can take to improve your visibility but also keep
your site user-friendly.

Content Is King

I've mentioned this a few times already, but I want to drive this point
home: no matter how good your site looks, your users will not stick
around long if you don’t have content. Look at Flickr.! That site has
a plain, conservative, and clean design with minimal color because its
developers know that people come there to look at user-uploaded pho-
tos. Those photos are Flickr’s content.

Search engines think your content is important, too. They want you to
have content that is relevant to the keywords you've selected.

Scamming the Search Engines

First, a disclaimer: if you're looking at this section and thinking that
you can use any of these techniques to improve your ranking, you're
mistaken. The search engines already know all these dirty tricks, but
I'm listing them here so you can identify them and stay away from them.
It's easy to do some of these things accidentally, while other techniques

1. http://www.flickr.com/

CONTENT Is KING < 256

are implemented by unscrupulous SEO companies or by developers
responding to the demands of their clients. These techniques some-
times work in the short term, but they will almost certainly result in
your website getting whacked with the ban stick.

Keyword Overloading

Keyword overloading basically means that you throw in a ton of key-
words for your site. Sometimes people do this accidentally because
they don’t count the number of keywords they enter; other times peo-
ple enter an abundance of keywords because they want to get noticed.
Generally, you want to avoid repeating the same keyword more than
a couple of times, and you want to keep the number of keywords to
around thirty to forty-five per page.

Irrelevant Keywords

Using keywords that have absolutely nothing to do with your site’s sub-
ject or content can get you into trouble. Some sites pick popular key-
words ripped out of the headlines or use some of the top search terms
from Google to attempt to trick users into visiting them.

Some good keywords for Foodbox might be chicken, turkey, recipes,
dinner, and pasta. Some less than appropriate words might include
Free mp3s, videos, free iPod, and Paris Hilton.

Don’t laugh. It happens a lot, often because stakeholders make devel-
opers do it. When that happens, you have to decide whether that’s
something you are willing to do. I won’'t because I don’t want to be
responsible when Google blacklists the website a few months after it
goes online.

Alternate Content

This technique relies on some (usually server-side) technology to detect
a search engine and serve different content than what the users see.
The search engines crawl your site and grab the content, indexing it
for keywords, content, and links that get thrown into their databases.
If you serve them different information, you're being dishonest, and
eventually the search engines will detect that, usually because someone
complains. Remember that the search engines are a business, too, so
it’s in their best interests to make sure that their search results return
relevant information.

CHOOSING KEYWORDS 257

18.2

Hiding Content

This is one of the older cheats, but I remain amazed at how popular this
one is, especially among novice web developers. This method involves
taking a ton of nonrelevant keywords and phrases, placing them in the
content of the site, but then using some technique to hide the content
from the site’s users. In the past, developers would just set the text
color so it matched the background color. Once the search engines got
wise to this technique, developers started to use CSS to position content
off the page by using negative margins and other types of positioning
tricks.

What Is Content?

Content is anything that your users come to see. Your text is obviously
content, but so are your images, videos, music, and downloadable files.
Generally speaking, search engines are interested in all these items, so
you want to make sure you do what you can to help them find it.

You already know that you should provide alternative text for all images
using the alt attribute for your img tags. What you might not know
is that, because a search engine can’t see your images, it relies on
this alternative text for descriptive information, just as a screen reader
would. It’s important that you make your alternate text relevant and
descriptive.

Choosing Keywords

Foodbox definitely needs some keywords, but it’s so hard to figure out
what people will use to find your site. Here are a few ways that you and
your team can use to build a list of keywords.

Guess How They Will Find You

Write down a few obvious words that you think people might use to
search for your site. When I think of this site, I could see people search-
ing for food, baking, cooking, recipes, quick dinners, snacks, desserts,
and cookbooks.

Decide How You Want to Be Found

Next, write down a few keywords that you want people to use to find
your site. The keywords in the previous section are a good start, but
you can always think of a few more. A local client might want you to

CHOOSING KEYWORDS < 258

()

f
_=__What About Flash?
Google and Adobe have partnered together* to make index-
ing of Flash movies possible, but the effectiveness of this
depends largely on how the original author constructed the
Flash movie. For example, if the Flash movie contains text and
links, Google will likely be able to see those. Flash is served within

an HTML page, so you can always use the meta tag to define
keywords and a brief description.

1/ Joe Asks. ..

Flash might be searchable by more search engines in the
future—it has already come a long way in terms of its acces-
sibility. These things change all the time; as a web developer,
you're expected to keep yourself up-to-date on this stuff.

*.http://searchengineland.com/google-now-crawling-and-indexing-flash-content- 14299

use the city, state, or region in the keywords so that a user could find
them when searching for wrecking yards in Secaucus, New Jersey.

Spy on the Competition

Find out what your friends or enemies are doing for their keywords. You
can view the source of any of web page as easily as you can view your
own, so find out what others use. Don’t steal their keywords, though,
and don'’t try to hijack their phrases. I once had a client who kept asking
me to use a competitor’s name in his keyword list, which is completely
unethical. As you do more web development, especially as you become
more comfortable with the design and content aspects, you’'ll learn to
be a great diplomat as you talk your clients down from strange and
sometimes dangerous positions.

Adding Keywords
Open your index.html file, and add a new meta tag to the head section:

<meta name="keywords" content="foodbox, recipes, cookbook, desserts,
entrees, dinner, share, browse, ingredients, mexican, italian, community">

The name attribute defines the type of the meta tag, and the contfent
attribute specifies the content or value. You enter your keywords or
keyword phrases by separating them with commas.

RECONCILING OUR CONTENT < 259

1’{ Joe Asks...
3 . |
_~__Are Keywords Even Important Anymore? My Competitors

Don’t Seem to Have Any, and They’re Doing Great!

Keywords matter if you use them correctly. You just have to rec-
oncile them with the content of your site. A lot of search engines
have dramatically lowered the weight they give keywords in
search position because people would try to cheat by placing
irrelevant keywords in their lists.

Your sites of your competitors might have high search-engine
rankings without keywords because of many other factors.
CodingHorror* doesn’t have any keyword tags, but the site
constantly publishes new articles and get lots of hits via tfrack-
backs. Links to your content far outweigh keywords when it
comes to attaining a high search-engine ranking.

You're not CodingHorror, and you don’t have their fraffic or
inbound links tfo rely on yet. If you want to optimize your site,
you can’t go wrong with keywords. You're definitely not going
tfo be penalized for using them, as long as you make sure you
match them to your content.,

*. http://www.codinghorror.com/

18.3 Reconciling Our Content

Now that you have a few keywords selected, you need to think about
how you can revise your main content so that you can sprinkle those
keywords throughout. A good copyeditor comes in handy here, but
often you must do this work yourself. Take a few stabs at working some
keywords into the Foodbox main content. When you think you'’re done,
try these two surefire proofreading tricks:

* Read your text backward, from the end of the paragraph to the
beginning. This often helps you catch spelling and punctuation
mistakes because you're not reading the words in context.

* Read your text aloud. If you can get through it without laughing,
you're off to a good start. You should also read it aloud to a couple
of other people and get their feedback.

18.4

18.5

DON'T OPTIMIZE YOUR USERS AWAY!

To strengthen your position within search engines, you need to make
sure that you have been consistent with not only your content but also
with your keywords and your page elements.

Each page of your site should have a specific title. The title should
contain the current page’s title, followed by the name of the website.
This way, the most important information, the page title, will show up
in the search results. The page title is almost always displayed in the
search results.

Second, each page of your site should have at least one h1 tag that
matches the page title you specified in the fitle tag. This consistency
helps search engines determine the strength of the content; you could
have forgotten to change the fitle tag.

Third, your keywords should contain words used within the title of the
page or at least in some of the links on the page, as well as in the
paragraphs of your content.

Don’t Optimize Your Users Away!

All this reconciliation of your content can lead to something undesir-
able: lost users. Remember that your content is king here, and you
should be careful not to sacrifice your content for the sake of throwing
in a few extra keywords. You should write your content for people first
and robots second.

Links and You

The number of links on your site can help or hurt your search-engine
ranking. If you have a lot of links on a page, especially links that point
away to other sites, the search engines might think the page doesn’t
have any relevant content. The search engines might give the page a
lower score because you're linking away to everyone else.

Also, keep an eye on how other places link to you. Generally, you want
to get other people linking to you because search engines will see other
sites sending traffic to you and assume this is because you have more
relevant content. Some sites, including link farms, link exchanges, and,
as Google puts it, bad neighborhoods, can reduce your search ranking
because the engines might think your site is a spam destination.

< 260

IT ALL COMES DOWN TO COMMON SENSE <« 261

You can’t do too much to prevent people from linking to you, but some
less-than-reputable people will try to get you to exchange links with
them. Before you exchange links with anyone, you should make sure
that doing so will benefit you as much as it benefits them.

18.6 It All Comes Down to Common Sense

If you've read this chapter and thought “There’s nothing new here that
I couldn’t have already figured out on my own,” then you're on the right
track. There’s no real magic to SEO. There’s no way to instantly get to
the top of Google’s search listings and stay there. You might find some
people who can game the system for a short while, but really, we're
talking about search engine optimization, not search engine scamming.

Good, well-written, regularly updated content that’s relevant to your
audience gets people to link to your site. Those links improve your
search engine ranking. So, the next time your boss or client wants
to hire an “SEO expert,” suggest that he or she investigate hiring a
good copy editor to improve the writing on the site instead. The rest of
the optimization stuff should fall into place for you, especially if you've
developed something that people really care about and want to link to.

18.7 Summary

In this chapter, we briefly touched on a few things you can do to improve
your site’s visibility to the search engines without sacrificing usability.
Search engine optimization is something you’ll need to do frequently,
because the rules change constantly.

19.1

Chapter 19

Jesioning for Mobile Device

The Foodbox stakeholders call you back in. Everywhere they go, they
see people using BlackBerry devices, iPhones, Windows Mobile devices,
and other handheld devices to access websites. Your stakeholders
would like you to provide a mobile version of the Foodbox site so that
people can access recipes from the grocery store while they're shopping.

To implement a design that will work for mobile devices, you need to
understand the mobile audience. Once you think you have a bead on
this audience, you need to familiarize yourself with some mobile plat-
forms so you can determine which platforms make the most sense for
you to support. Completing this pair of steps will help you implement a
mobile strategy that will work.

Mobile Users

Mobile users have different needs than desktop or laptop users.

First, mobile user often have different reasons for using a site. They
probably won'’t use their tiny keypad to enter a recipe into the site, but
they are likely to look up what ingredients they need to make tonight’s
dinner when visiting the grocery store. Therefore, you might choose to
focus on making only a subset of your site’s features available to your
mobile users.

Second, the connection is often slow, so mobile users need pages to
load quickly. At the time of writing, 3G service isn’t available in many
parts of the United States, and most of the other mobile data plans
remain quite slow.

MOBILE USERS < 263

-l ATET = 6:31 PM —

foodbox

v
a g

$runar Engx 1

i
EaHE T e
mm s W
i STy - mam
= . 14w "

Figure 19.1: Foodbox on the iPhone’s Mobile Safari

Third, users looking to use the site from a mobile device need to be
able to read your content easily on a small screen. The Foodbox site’s
design is preserved on the iPhone, but it can be hard to read without
zooming in, as shown in Figure 19.1. On the other hand, the Opera
mobile browser maintains some of the design, but you can’t read much
of anything (see Figure 19.2, on the following page).

Finally, users need to be able to find the information they're looking for
easily. The navigation structure you designed for your regular audience
might be too cumbersome to navigate using a cell phone’s keypad.

We’ll need to address all these issues to create a version of the Foodbox
site for mobile users.

THINKING ABOUT THE (VERY) SMALL SCREEN < 264

hdie iU

oK

Figure 19.2: Foodbox on the Opera Mobile browser

19.2 Thinking About the (Very) Small Screen

If everyone had an iPhone, web developers wouldn’t have to do too much
to make their sites work. The iPhone comes bundled with a browser that
does a great job of rendering pages, and it even supports JavaScript.
However, most people don’t have iPhones. Instead, most people who
use their phones to browse the Web do it on a 2- to 3-inch screen using
a proprietary browser that has no scripting support. The small screen
doesn’t give you much of a canvas to present information, which means
we’ll have to jettison some portions of the existing site.

For example, it's common practice to reproduce your navigation menu
on every page of your site when targeting a full-sized browser. But this
menu will have to go because it takes up too much room. Of course,
users need to get around your site, but you can replace the naviga-
tion menu with a link to a simple, unstyled list of pages. Keeping the

JAVASCRIPT < 265

page plain will reduce its download and load times, and you’ll free up
important real estate on the rest of the site.

While considering how to free up space on the smaller screen, don’t
forget how much space your branding uses. You should definitely con-
sider using a smaller header graphic. You can either use a text banner
instead of this graphic or leverage the resizing technique you learned
earlier to shrink the size of the banner (see Chapter 17, Building a Fav-
icon, on page 252).

Some mobile devices hide the navigation controls to get more content
on their small screens, so you might consider adding your own Back
button on the page to simplify how your users navigate the mobile ver-
sion of your site.

Finally, remember to keep font sizes readable. Most users would rather
scroll than squint, and most devices can’t zoom yet.

19.3 JavaScript

Many mobile devices don’t support JavaScript. The iPhone does, and it
relies on it heavily, but most of the current BlackBerry models don’t
support it at all. However, I don’t consider this to be a huge issue
because I don’t advocate using JavaScript for critical parts of a site
unless you provide an alternative method anyway—remember that
screen-reading software often has trouble with JavaScript as well.

19.4 Serving Mobile Content

You can use a few methods to provide mobile-friendly content to your
users. For example, you might use a style sheet designed for mobile
devices, you might take advantage of user agent detection to serve dif-
ferent content to different audiences, or you might host your mobile
content at a different URL.

Mobile Style Sheets

The CSS specifications provide the handheld media type, which was
designed to be used by handheld devices. You designed a style sheet
specifically for printing in Section 14.2, Linking a Print Style Sheet, on
page 208; you could take a similar tack here and design a style sheet
specifically for mobile devices. At first, this might seem to be the best

DECIDING WHAT TO SUPPORT < 266

and easiest way to deliver content, but it has one big disadvantage:
they’re hardly used.

The iPhone, iPod touch, and Windows Mobile devices try to provide a
“real” Internet experience to their users, so they load up the style sheets
intended for use on a typical computer screen.

User Agent Detection

Many developers use user agent detection in conjunction with a server-
side technology or web-server configuration to serve different designs
based on what device a person uses. This might seem like a great idea,
but some of your users might disagree.

For example, Apple’s developer guidelines encourage iPhone developers
not to serve different pages to iPhone users. This way, users won't be
surprised by seeing a different page than they expected to see. Instead,
Apple recommends that a website should detect the use of an iPhone
and then provide a link to an optimized site. This way, users can decide
for themselves if they want to use the optimized or regular version of
the site. Twitter and Amazon both provide a mobile version of their sites
with a link to visit the regular site. When users visit the Foodbox site
using a mobile device, you could set a cookie that you could use to
redirect users to the site’s mobile version automatically the next time
they visit your site.

Using a Different Subdomain

You could also host your mobile pages on a different subdomain. This
approach requires that users know the address of your mobile site,
which means you have to do a good job of advertising it on your main
site.

To pull this off without duplicating files, you would point your mobile
address at your main site and then detect the subdomain using a
server-side script. If you detect that a user requested the mobile
domain, you would serve the appropriate style sheets or possibly a com-
pletely different layout that you optimized specifically for mobile users.
I recommend this approach.

19.5 Deciding What to Support

Many different mobile browsers exist, and they all seem display pages
differently. You have to decide which ones you will focus on and which

DECIDING WHAT TO SUPPORT < 267

()

Testing Mobile Desi

You might have a real mobile phone or device handy to test
your site, but you can also find emulators for many of the pop-
ular platforms.

e BlackBerry

http://www.blackberry.com/developers/downloads/simulators/
index.shtml*

e Google Android
http://code.google.com/android/reference/emulator.html
e iPhone
http://marketcircle.com/iphoney/t
e Opera Mini
http://www.opera.com/mini/demo/
o Windows Mobile

http://www.nsbasic.com/ce/info/technotes/TN23.nhtm

x. BlackBerry provides simulators for many of its phones, but it doesn’t label
which simulator goes with each phone.
1. At the time of writing, iPhoney works only on a Mac. Windows users with
Safari installed can use http://www.testiphone.com/ to get a decent simulation,
but user agent detection doesn’t work.

ones you will ignore. I recommend going about this the same way you
might choose what regular web browsers to support: choose the pop-
ular ones. You should also find out what your boss or client uses and
include support for that one, too!

AdMob provides some great statistics! you can use to determine the
most popular mobile platforms. AdMob lets developers embed ads with-
in mobile software and on mobile sites. AdMob isn’t the only company
that provides this type of service, but it’s one of the biggest. As is always
the case when relying on third-party statistics, you should use these
statistics as a guide until you can gather your own usage stats.

1. http://www.admob.com/s/solutions/metrics

DECIDING WHAT TO SUPPORT < 268

The largest chunk of the audience is made up of iPhone users, accord-
ing to the stats from AdMob. However, let’s implement something that
has a chance to work across most devices in our first pass.

We know that most devices can’t support JavaScript, and they have a
small screen. We also know they need to download content quickly.

Mirroring Your Site Without Duplicating Content

One of the surest ways to lose customers is to make a mobile site that
doesn’t stay up-to-date with the latest information. Throughout this
book, we’'ve built a design in straight HTML without any considera-
tion for any server-side technologies; however, I am working under the
assumption that you’re a developer, and you probably have some idea
of how to go about building dynamic websites.

With that in mind, let’s set up a new domain for our site, point it at our
main domain, and then use some server-side logic to detect which URL
the user requested. In this book, I'll walk you through how to use PHP
to transform our static pages for use on mobile devices. Depending on
your site design, you might be able to swap out templates based on the
host name.

This book doesn’t really cover system administration, so how you set
up your site to respond to multiple domains depends largely on your
web host. You could create a new record in your DNS that points the
domain to the same IP address as your primary address:

www.yourfoodbox.com A 12.34.56.78
m.yourfoodbox.com A 12.34.56.78

Some web hosts, including Dreamhost,? provide an easy way to mirror
domains. Consult your web host, your sysadmin, or your web server’s
documentation on how you might mirror your domain name. Essen-
tially, all you need to do is make two domains point to the same server.

If all you're doing is testing on your local machine, you could modify
your local hosts file like this:

127.0.0.1 Tocalhost www.yourfoodbox.dev m.yourfoodbox.dev
You can find this file at c:\windows\system32\drivers\etc\hosts on Win-

dows; on most Linux and OS X systems, you can find it at /etc/hosts.
You need to have administrative privileges to make changes to this file.

2. http://www.dreamhost.com

DECIDING WHAT TO SUPPORT < 269

Transforming Content

We can choose from a few approaches to reformat our content for
mobile devices, but these approaches start to fall apart when we look at
them closely. We can’t just use a handheld style sheet because most of
the browsers out there will try to read the screen style sheets anyway,
which eliminates that option. We already discussed the facts that the
mobile users are much more focused on content, and they often have
slow connections (at least in the United States), so we need to minimize
the amount of data we send to them, which in turn will enable them to
load our site more quickly. We need a way to strip out all the cruft and
show a basic page.

If we disable style sheets altogether, our site is surprisingly usable on a
mobile phone. We could also disable the images and replace any images
that have links with regular links. It turns out that all the way back in
2005 a developer named Mike Davidson came up with an extremely
clever solution that will meet our needs perfectly.3

Mike’s solution relies on a mechanism that uses PHP to preprocess all
HTML pages and strip out content, but only when the mobile domain
is used. With some slight modifications, his technique gives us exactly
what we need to make a quick mobile version of our site. To do this, you
need to use Apache and have it configured to serve PHP pages. From
this point on, I'll assume you have that working.*

To use this method, we have to ensure that the web server is using the
Apache PHP module to process PHP pages; we also have to ensure that
PHP is properly enabled. This method won’t work if PHP is running as
a regular CGI program. You can test your setup if you create a file in
your web space called info.php and place this content in the file:

Download mobile/info.php

<?php phpinfo(); ?>

You should see something similar to Figure 19.3, on the next page. The
Server API value should be Apache 2.0 Module.?

3. http://www.mikeindustries.com/blog/archive/2005/07 /make-your-site-mobile-friendly

4. Dreamhost (http://www.dreamhost.com/) offers cheap hosting plans that support the
concepts in this book if you don’t feel like setting this up yourself. I've even set up a
coupon code. Use WDFD to get a discount.

5. If you don’t know PHP, you should learn it. It’s far from my favorite language, but I
think anyone who develops web applications should at least be familiar with it because
it’s quite versatile, very powerful, and widely supported.

DECIDING WHAT TO SUPPORT <270

Figure 19.3: PHP configured to use the Apache module

We need to add a special directive to tell Apache to send all HTML files
through the PHP interpreter so that the filter will work. We can do that
by modifying the .htaccess file in the root directory of our website. Add
this line to that file:

Download mobile/.htaccess

AddType application/x-httpd-php .html .htm

From this point on, the PHP interpreter will read all your HTML files.

Writing the Handlers

We will use an extremely useful feature called autoprepend and autoap-
pend. This feature lets you trigger scripts to run before and after each
page request. You could use this technique to do some logging or set
up some variables for later use; you could also use this technique to
capture the buffered response from the server and parse it.

Let’s begin by writing the prepend script, basing it on the example code
that Mike Davidson provided in his initial example.

DECIDING WHAT TO SUPPORT w271

Line 1

20

25

30

35

Create a file called global_prepend.php, and add this code:
Download mobile/global_prepend.php

<?php
function callback($b) {

$mobile_domain = "m.yourfoodbox.com";

$web_domain = "www.yourfoodbox.com";
if ($_SERVER['SERVER_NAME'] == $mobile_domain) {

// replace www.yourfoodbox.com with m.yourfoodb.com
$b = str_replace($web_domain, $mobile_domain, $b);

// replace all hyperlinked images with regular 1links, using the alt text
$b = preg_replace('/(<a[A>]*>) (<img[A>]+alt=") ([A"]*) ("[A>]*>) (<\/a>)/1",
'<p class="1ink">$1$3%5</p>"', $b);

// replace images with paragraph tags
$b = preg_replace('/(<img[A>]+alt=") ([A"]=)("[A>]*>)/",
'<p class="image">[$2]</p>"', $b);

// strip out stylesheet calls
$b = preg_replace('/(<link[A>]+rel="[A"]=stylesheet"[A>]=>[style="[A"]=")/1",
"', $b);

//remove scripts
$b = preg_replace('/<script[A>]#*>.%?<\/script>/i', '', $b);

// remove style tags and comments
$b = preg_replace('/<style[A>]#>.%?<\/style>|<!--.%?-->/i", "', $b);

// add robots nofollow directive to keep the search engines out!
$b = preg_replace('/<\/head>/i",
'<meta name="robots" content="noindex, nofollow"></head>"', $b);

}

return $b;
}
ob_start("callback");
7>

Line 2 defines a function that takes in the contents of the HTML page as
a string. The next two lines define variables for our regular domain and
our mobile domain. Line 7 compares the domain requested by the user
with the mobile domain. If they match, we’ll start filtering out content.

On line 10, we replace all occurrences of the regular domain with the
mobile domain. Doing this means any hard-coded links will always use
the mobile domain, eliminating any chance of accidentally sending the

DECIDING WHAT TO SUPPORT 272

user to the wrong domain. Next, line 12 replaces all linked images, such
as our sign-up and login images, with regular links that use the images’
alt text. On line 16, we handle the rest of the images by replacing them
with the alt text in square brackets.

Starting at line 20, we strip out style sheet links, calls to scripts, inline
styles, and comments. This will significantly improve performance on
mobile devices by reducing the amount of data kicked down to a device;
this should especially please users who have plans where they pay by
the amount of data they transfer to and from their device.

The final transformation occurs on line 30. It adds a directive to the
page’s header that stops search engines from indexing this page or any
of its links. We don’t want to be penalized by having two versions of our
site listed in the search engines.

When we finish transforming the page, we return the string. The call to
ob_start on line 38 turns on the output buffer, and we pass the callback
function to the buffer so it can be executed at the end of the response.
To write out the content, we need to create the global_append.php file,
which we append to the end of the response:
Download mobile/global_append.php
<?php

ob_end_flush(Q);
7>
This file flushes our transformation from the content buffer, rendering
the page. If we miss this step, our users won’t see anything at all. All
we need to do now is activate the filters. We can do this by adding these
two lines to the .htaccess file:

Download mobile/.htaccess

php_value auto_prepend_file /home/yourfoodbox/yourfoodbox.com/global_prepend.php
php_value auto_append_file /home/yourfoodbox/yourfoodbox.com/global_append.php

The paths for each of these scripts need to be a full path on the server
to the scripts. Once you upload these files to the server, you're ready
for the mobile traffic!

Further Improvements

The mobile version of the site looks good at this point, but we can
improve the usability a little. Right now, the skip link at the top lets
us jump right down to the content, but we could make it easier for
members if we also put the Log In and Sign Up links in the skip links
section. In fact, it would be a good idea to implement this functionality
for screen-reader users, too.

RESTRUCTURING FOR MOBILE USERS <« 273

()

PHP Under FastCGl

You can still use the techniques outlined here if your server is
not using the Apache module to serve PHP pages. However,
you can’t use the .htaccess file to define the auto_prepend lines.
Instead, those directives need to be in your server’s php.ini file.

auto_prepend_file =
/home/yourfoodbox/yourfoodbox.com/global_prepend.php

auto_append_file =
/home/yourfoodbox/yourfoodbox.com/global_append.php

Finally, ensure that your HTIML pages are being served via
FastCGl. In your .htaccess file, do this:

AddType php5-cgi .html .htm

The specific AddType depends entirely on how your web server
is configured, so check your documentation, ask your system
administrator, or contact your web host for specific details if you
run into trouble.

19.6 Restructuring for Mobile Users

The solution in this chapter is a quick fix, but it might not go far enough
for complex sites. We discussed how mobile audiences are different and
how you just don’t need some things in a mobile version of a website.
We might want to use a server-side technology to serve different views
to the end user based on the user agent. That’'s beyond the scope of
this book, but it would not be difficult to do, especially if your site uses
a content management system or is at least backed by a database.

19.7 Summary

Mobile users have completely different needs than desktop users, and
this audience segment continues to expand rapidly. As mobile technolo-
gies such as the phones from Google and Apple become more common,
we’ll be able to provide even richer, more interactive solutions for these
users. In the meantime, you now have the tools and knowledge required
to craft a usable mobile site that most mobile users can use, regardless
of the mobile device they use.

20.1

Chapter 20

Testing and

A great design won’t overcome a poor implementation. We spent a lot of
time working to build a solid site, and it would be a shame if our end
users had to wait while our site loads. We can improve our performance
if we can identify potential problem areas.

Strategies for Improving Performance

When we talk about improving performance, we're talking about mak-
ing the page load faster for our readers. On the server side, you might
use techniques such as caching dynamically built pages. However, once
you've squeezed out all the performance you can from your web server,
you can investigate a few things related to site’s design that can affect
its performance on the client. Fortunately, it's easy to identify and fix
these things.

First, look at the file sizes of your HTML, CSS, and JavaScript files.
The number of characters these documents contain impacts how long
they’ll take to transfer to the end user. You want to keep their sizes to
a minimum. You might not think it matters that much, but every little
bit adds up when you serve thousands of requests per day.

Next, look at the sizes of all the images you load on your page. We talked
about image optimization earlier, but sometimes it's easy to forget to
resize and compress a photograph before adding it to the website. Also,

DETERMINING PERFORMANCE ISSUES < 275

20.2

some types of images can be compressed beyond the compression that
Photoshop provides.

You need to investigate the number of files a user’s browser will request.
If you have one page that has links to three style sheets, two JavaScript
scripts, and five images, you're looking at a total of eleven hits to your
server. The user’s browser will download the HTML file and then start
making additional requests to your site to grab the other files it needs.

Your users probably won't be doing that constantly, because many of
your images and scripts will be cached on their machines. However,
they could be faced with at least the appearance of a slow site if you
have too many assets, especially because some browsers limit simulta-
neous connections to two hits at a time, as recommended by the HTTP
1.1 specification.!

Finally, you need to identify files that won’t change often so you can
employ strategies to keep the user’s browser from constantly checking
to see whether a new version exists. If you just finished a redesign,
you could safely instruct the clients to cache the logo, style sheets, and
scripts for an extended period of time.

Let’s take a look at Foodbox and see how we stack up.

Determining Performance Issues

It's never a good idea to optimize prematurely, but it’s also foolish to
not at least be aware of potential performance problems you might
encounter. You can use a couple methods to look at your page for poten-
tial issues from an external perspective.

Note that both these methods assume that you've placed your pages on
a server that’s accessible to the Internet.

Speed Test

WebSiteOptimization.com runs a service that can scan any URL and
determine the size and download times of a page and its individual
assets, which gives you a great starting point. You can perform this
speed test by visiting your site with Firefox and selecting Tools > Speed
Test on the Web Developer toolbar.

1. http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.htmli#sec8.1.4

DETERMINING PERFORMANCE ISSUEsS - 276

Running this speed test shows that we have about 59KB of images on
our site. For comparison, a speed test run against Microsoft’s home
page shows that it has about 61KB of images; running the test against
Adobe’s home page reveals that it has about 156KB of images. We stack
up well against those sites on this front.

The speed test also shows us that we can save some space by com-
pressing our CSS and JavaScript files. It also shows us that we forgot to
identify the heights and widths of some of our images. That's something
we should fix in our content document. It’s not incredibly important to
fix those issues (because we have included many images in the style
sheets as well), but it’s something that can make a site appear to load
faster because the browser doesn’t have to determine the dimensions
of the images on its own. Defining heights and widths for all images in
the HTML document can also allow browsers to display the text while
the images load. Use the height and width attributes for the img tag to
specify the dimensions of your images.

The real eye opener is seeing how long the speed test says dial-up users
will have to wait for our full page to load. According to the report, some-
one using a 56Kbps dialup connection might have to wait up to 15.59
seconds for all the images, styles, and content for the home page to
load. That seems like a long time, but compare that to Microsoft’s home
page, where a dial-up user with a slow connection might have to wait
more than 56 seconds!?

YSlow

The speed test gives us a lot of good information, but it doesn’t provide
too many suggestions for fixing the problems it finds. Yahoo provides
YSlow, an extension for the Firebug extension (yes, an extension for an
extension), which grades your page and provides you tips on why it’s
slow.

The YSlow extension grades your page and gives you suggestions for
improving its performance. You might not have the ability to address
all the items that YSlow points out, but you can address some common
issues that can have a huge payoff.

An initial report of the Foodbox site shows that we should investigate
implementing ETags, look into using compression, minify scripts, and

2. Don’t fool yourself into thinking those people aren’t out there. High-speed internet
isn’t prevalent in poor and rural areas yet.

ADDRESSING PERFORMANCE 277

Wl Console HTML CS5 Script DOM Net YSlow ¥

| Grade | Components | Statistics | Tools Rutesets [¥Slow(va) '-3-_] Edit 151 Printable View | (7) Help ¥

ALL (22) FILTERBY; CONTENT (6) | COOKIE (2) | €SS (6) | IMAGES (2) | JAVASCRIPT (4) | SERVER (5)

A Make fewer HTTP requests

F uUse a Content Delivery Network (CON) Geade A onMake fewenlETTE tequiests

Add Expires headers

Compress components with gzip

Put CS5 at top

})IU'H

Put JavaScript at bottom

A Avoid CSS expressions »Read More

IN /A Make JavaScript and CSS external

I A Reduce DNS lookups Copyright © 2008 Yahoo! Inc. All rights reserved.
A Minify JavaScript and CSS

- A Avoid URL redirects

A Remove duplicate JavaScript and CSS

F Configure entity tags (ETags)

Figure 20.1: YSlow found several problems we might want to address.

look into cache expiry (see Figure 20.1). We'll cover these suggestions
in the next few sections.

20.3 Addressing Performance

You have some measurements, but now you need to make some deci-
sions about how you want to approach potential problems. As is always
the case, you must balance costs against the benefits here; each of the
solutions in this chapter has its pros and cons.

Set Expires Headers

If your content rarely changes, you can set the content to expire well
into the future or even several hours from the present.

If you using Apache with mod_expires, you can use this code to cache
all JPEG, GIF, and PNG files for one hour from the last-modified date:

ExpiresActive On
ExpiresDefault AO

<FilesMatch "\. (jpg|png[gif)$">
ExpiresDefault A3600
</FilesMatch>

The ExpiresDefault directive sets the default caching expiry to 0. The A
means from first access.

ADDRESSING PERFORMANCE <278

The ExpiresDefault value is set in seconds. This example sets the expiry
to 3600 seconds from the last-modified date of the file. As you can
probably guess, this rule is useless unless these images are changing
on the server every hour.

You could be more verbose and do something like this instead:

ExpiresActive On

ExpiresByType text/html "access plus 30 seconds"”
ExpiresByType text/css "access plus 1 hour"
ExpiresByType text/javascript "access plus 1 hour"
ExpiresByType image/png "access plus 1 day"
ExpiresByType image/jpg "access plus 2 months"
ExpiresByType image/gif "access plus 1 year"

This method lets you specify a header based on the MIME type rather
than the extension; this could be beneficial if you use a server-side
scripting language to send files.

It makes more sense to set a _far-future Expires header, which sets the
Expires header to some point in the distant future:
<FilesMatch "\.(jpg/png|gif|css|js)$">

Expires A31536000
</FilesMatch>

This rule sets the expiry to be one year from the browser’s first access
of images, style sheets, and JavaScripts on our site. This rule will go a
long way toward reducing hits on our server from browsers.

One drawback to a far-future expiration date is that you have to change
the name of the file or reference the file with a querystring when you
want to change it because you can’t force users to clear their cache. If
you create a static website, I don’t recommend setting far-future head-
ers for things that might change frequently. Fortunately, many web-
application frameworks handle the creation of far-future headers for
you by altering the filename during deployment or rendering. If your
framework doesn’t handle this expiry for you, you need to change the
names of your files when you create new versions. It’s impossible to
invalidate your users’ cache.

Investigate ETags to Improve Caching

Modern web servers support a request header called an Entity Tag, com-
monly referred to as an ETag. When a browser makes a request, it
records the ETag for a URL. When the user requests the same URL a
second time, the ETag’s hash for the new request is compared to the one

ADDRESSING PERFORMANCE < 279

the browser already knows about. If the ETags match, the page content
isn’'t downloaded, and the browser is instructed to use the cached copy.
This saves bandwidth and improves the user experience.

You can compute ETags using the file size and last-modified date, a
checksum, or pretty much anything you want. The implementation of
an ETag is completely up to the web server that generates it. If you
use a server-side framework, you can generate your own ETags, which
is especially valuable for things like RSS feeds and dynamic CSS and
JavaScript that don’t have last-modified dates.

Improperly generated ETags can end up causing users to request the
full page each time a user visits; in extreme cases, using them improp-
erly can accidentally prevent users from seeing new content. If you have
load-balanced servers serving up your pages, it’s possible for each of the
back-end servers to generate different ETags. Apache and IIS generate
completely different ETags for the same page, so you want to avoid bal-
ancing requests between those two servers unless you've set up your
ETags correctly.

If you serve your pages with Apache, you can set the ETag header by
adding this line to your website’s .htaccess file:

FileETag MTime Size

This creates the ETag by using the file’s last-modified time and file’s
size.

When to Use ETags

Sometimes—as in the case of an RSS feed, a web service, or a blog—you
might not be saving files to disk, so you won’t have a modified date to
use. In these cases, you'd set the ETag header in your scripts. If you
use clustering to serve your files, it’'s possible that your last-modified
times can be different, causing clients to think that files aren’t cached
when they are because both servers won't be generating identical ETags
for identical content.

If you can’t trust that the last-modified time is accurate or if you simply
don’t have a last-modified time, you’ll want to create your own ETags
by creating a hash of the content or another unique mechanism.

ETags are useful if you have a caching mechanism in front of your
website. The front-end server can use the ETags to determine whether
it needs to fetch content from the back end or it should serve its own
cached content.

ADDRESSING PERFORMANCE < 280

Disabling ETags

For static sites, especially those that make use of expires headers, ETags
might not be necessary and might actually decrease load times. When
ETags are used, the client still makes a request to the server. Although

the server might not send back the entire response body, it still creates
traffic.

For now, we're going to disable ETags completely for our site, and we
will rely entirely on the Expires headers we have set. Add this to your
.htaccess file:

FileETag None

YSlow will give you a good score for your ETags if you've properly config-
ured them for your site instead of ignoring them. Eventually, the home
page and other pages will probably be built from a database, but you
won’'t want the servers to rebuild the page on every request. At that
point, you’ll generate your own ETags or set your own Expires headers
from your server-side code, and you’ll have your code use the ETag to
decide whether new content needs to be sent out.

Use Asset Servers to Distribute Requests

Relative links for images, style sheets, and scripts might not always
be the best approach for a larger website. Many browsers limit the
number of concurrent connections to any given web server, and if you
have 20 external assets linked on your page, Internet Explorer 7 will
make 20 connections to your server, two connections at a time. That
will make your site appear slow. Some browsers use a higher number,
which means more concurrent requests to your server and increased
server loads. You want to serve your content as fast as possible, and
one of the best ways to do that is to split your assets onto different
servers. For example, consider this approach:

<script src="scripts/prototype.js'></script>

A better approach might look something like this:

<script src="http://scripts.foodbox.com/js/prototype.js''></script>

The latter approach does have some downsides. First, it requires you
to find or maintain more servers. It also creates external dependencies.
Finally, you have to remember that absolute links include the protocol,
which is either HTTP or HTTPS. If you do e-commerce on the site, then

ADDRESSING PERFORMANCE <« 281

pages you serve to the user with SSL need to be coded so that any
external assets are also requested via SSL. This means that your asset
servers need SSL enabled, and you have to change your absolute links
from http:// to https://. If you forget to do this, your end users will receive
security warnings, and some things might not display properly.

You also need to decide if it’'s worth it. Aside from the extra servers (not
to mention the extra work involved in deploying your assets to multi-
ple machines), assets are usually cached by the end user’s browser, so
the end user won’t be downloading the same style sheets and images
with every request. This approach is a great option for high-traffic sites
because it will make a noticeable difference in how first-time users
experience their first visit to your site. It’'s also a good approach for
relieving the strain on your application servers, because you can dele-
gate the serving of static images and scripts to a dedicated web server.

Pushing your assets to cloud services like Amazon S3 is popular now,
and it’s something I recommend you investigate if you need that level
of distribution.

Compress Files

Modern web servers can serve compressed content, reducing download

times. If you use Apache, you can enable mod_deflate and use a few

rules in your .htaccess file to enable compression:

AddOutputFilterByType DEFLATE text/html text/css \
application/x-javascript

BrowserMatch AMozilla/4 gzip-only-text/html

BrowserMatch AMozilla/4\.0[678] no-gzip
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

The first two Browsermatch rules in this particular example disable serv-
ing compressed files to old versions of Netscape, and the last rule
turns compression back on in case Internet Explorer identifies itself
as Netscape.

Minifying Scripts

If you have JavaScript and CSS libraries that tend to be quite large,
you should minify them, or reduce the file size by stripping out com-
ments, line breaks, and whitespace. You can also obfuscate JavaScript

by shortening variable and function names to reduce the number of
characters.

ADDRESSING PERFORMANCE <« 282

You might think that minification is an unnecessary step if you already
use the web server to compress your files. However, minification allows
you as a developer to ignore how many comments or extra spaces you
put in your files; the minification process removes them, and you will
reduce your file sizes because the compressor won’t be compressing as
many characters.

Yahoo provides the YUI Compressor,® a command-line utility that can
minify CSS and JavaScript files. Using the tool is as simple as this:

java -jar yuicompressor-2.4.2.jar \
--type js prototype.js > prototype.min.js

You can keep your nicely formatted styles and scripts in your working
directory and still deploy minified ones to your site. Just make copies
of your CSS and JS files and then use the YUI compressor to shrink
them. Upload the minified copies to your site instead of the originals.

Minification and Automated Deployment

Professional web developers automate the deployment of websites. It's
tedious to do manual uploads, especially if you do them all the time.
Automating deployment lets you define the workflow once and let the
computer handle things from there. Automating the process ensures
that you won't forget a step or file.

If you already have an automated deployment system in place, you can
easily make minification part of that process. You don’t even have to use
a complicated deployment framework. For example, the following Ruby
script lets us minify our CSS and JavaScript files and then upload the
whole site to a web host. Note that this script requires the net-scp gem.*
All you need to do is configure the remote server settings and give the
script the location of the YUI compressor. I recommend placing all the
YUI Compressor’s JAR files within a bin folder of your project folder:

Download performance/deploy.rb

Scans your project for CSS and 1S files and
runs them through the Yahoo Compression utility
and then uploads the entire site to your web server via SCP.

Configure your settings below and be sure to supply the proper path

to the Yahoo compressor. Set the COMPRESS flag to false to skip compression

3. http://developeryahoo.com/yui/compressor/
Install the gem with this line: sudo gem install net-scp.

-

ADDRESSING PERFORMANCE < 283

COMPRESS = true
WORKING_DIR = "working"

REMOTE_USER = "homer"
REMOTE_HOST = "yourfoodbox.com"
REMOTE_PORT = 22

REMOTE_DIR = "/home/#{REMOTE_USER}/yourfoodbox.com/"

FILES = ["index.html",
". htaccess",
"global_append.php",
"global_prepend.php",
"favicon.ico",
"stylesheets",
"images"

]

COMPRESSOR_CMD = 'java -jar bin/yuicompressor-2.4.2.jar'
DONE CONFIGURING

require 'rubygems'
require 'net/scp’
require 'fileutils'

@errors = []

FileUtils.rm_rf WORKING_DIR
FileUtils.mkdir WORKING_DIR
FILES.each do |f]|
if File.directory?(f)
FileUtils.cp_r f, WORKING_DIR
else
FiTleUtils.cp f, WORKING_DIR
end
end

Upload files in our working directory to the server
def upload(files)
Net::SCP.start(REMOTE_HOST, REMOTE_USER, :port => REMOTE_PORT) do |scp|
files.each do |file]|
puts "uploading #{file}"
if File.directory?(file)
scp.upload! "working/#{file}", REMOTE_DIR, :recursive => true
else
scp.upload! "working/#{file}", REMOTE_DIR
end
end
end
end

IMAGE OPTIMIZATION < 284

20.4

Minify all CSS and]S files found within the working
directory
def minify(working_dir)

files = Dir.glob("#{working_ dir}/=x*/=.{css, js}'")

files.each do |file]|
type = File.extname(file) == ".css" ? "css" : "js
newfile = file.gsub(".#{type}", ".new.#{type}'")
puts "minifying #{file}"
"#{COMPRESSOR_CMD} --type #{type} #{file} > #{newfile}"

if File.size(newfile) > O

FileUtils.cp newfile, file
else

@errors << "Unable to process #{file}."
end

end
end

minify (WORKING_DIR) if COMPRESS

if @errors.length ==
puts "Deploying"
upload(FILES)
else
puts "Unable to deploy."
@errors.each{|e| puts e}
end

You can take this a step further and use a script like this to combine
all your CSS scripts together into a new file. You can then replace the
calls to the style sheets in all the HTML documents with a single call to
the newly created style sheet. This results in a single compressed file
and reduces the number of requests the user will make to your site.

Image Optimization

You learned how to use Photoshop to optimize your images in Chap-
ter 10, Creating Assets from Our Mock-Up, on page 155. But you can
optimize your images further in some cases. For example, Yahoo’s
Smush-It! service can optimize images using several open source tools,
and the YSlow extension can automatically send all your images to this
service to be optimized. I ran the Foodbox site through Smush-It!; you
can see the results in Figure 20.2, on the following page.

IMAGE OPTIMIZATION << 285

Yahoo! YSIow

Smush.it™
Smushed or from the size of

your image(s). How did we do it? See the table below
for more details.

Smushed images

Image Result size Savings % Savings
background.gif Mo savings
browse_recipes.gif.png 830 bytes 56 bytes 6.32%
get_cookin.gif.png 1.05 KB 42 bytes 3.75%
banner.png 6.96 KB 1.55 KB 18.18%
btn_signup.png 2.33KB 40 bytes 1.65%
search.png 486 bytes 113 bytes 19.52%

Home Feedback

Figure 20.2: Smush-It! was able to reduce our images by an additional
13%, or a little under 2KB.

According to the report, Smush-It! was able to reduce the size of all our
images by 13%. At first glance, that sounds like a big deal. On closer
inspection, it looks as though it managed to save us a little less than
2KB. Worse, it requests that we change some of our files from GIFs to
PNGs, which means we’d have to change our style sheets and markup
if we were to use the images it provided. In this case, I'm happy to leave
things as they are.

Doing It Yourself

Smush-It uses Pngcrush® to optimize PNG files, ImageMagick® to detect
image types and convert GIFs to PNGs, and JPEGTran’ to remove meta-
data from JPEGs.

As a simple experiment, I'll take our get_cookin.gif and convert it to a
PNG file that I'll optimize with Pngcrush:

convert get_cookin.gif tmp.png
pngcrush -rem alla -reduce --brute tmp.png get_cookin.png

5. http://pmt.sourceforge.net/pngcrush/
6. http://www.imagemagick.org/script/index.php
7. http://sylvana.net/jpegcrop/jpegtran/

SUMMARY <« 286

al of 14 HTTP reguests and a total weight of 61.0K bytes with empty cach
WEIGHT GRAPHS

HTTP Requests - 14 e HTTP Requests - 1

o ’ ' Total Weight - 61.0K Total Weight - 1.7K
_f.‘-f s, | | I HTML/Text] [ext

Copyright & 20:00 Yahoo! Inc. All rights resarved.

Figure 20.3: With our optimizations, people who visit our page repeat-
edly will never hit our servers.

When I compare the two files, the file size ends up being identical. In
this case, the extra step wasn’t worth the effort. Photoshop’s filters were
adequate.

However, I get a different result if I optimize the Sign Up button:

pngcrush -rem alla -reduce --brute btn_signup.png btn_signup2.png

The original file is 2.4KB, and the new file is 2.3KB. So, the sizes aren’t
identical, but the difference isn’t much.

Further image optimization isn’t necessary to improve performance in
this case, but it's something you should be aware of when working on
your own sites. If it turns this technique would benefit you, be sure
to script the conversion so it's a transparent part of your deployment
process.

20.5 Summary

Our users will experience much faster load times after their first visit
once we implement the techniques discussed in this chapter (see Fig-
ure 20.3. We've only scratched the surface of performance optimization,
but now you should have a better understanding of what you can do to
improve the responsiveness of the site if you run into trouble. Proper
use of ETags, compression, minification, and Expires headers can go a
long way toward reducing requests and, consequently, the amount of
bandwidth your site uses.

Chapter 21

_ WheretoGoNext

You've finished creating the Foodbox site. Now you might be looking at
the finished product and wondering what you should do next or what
you might do differently next time. This chapter will explore a few ideas
you can investigate to improve the development process in the future.

21.1 Additional Pages and Templates

We spent an entire book designing a site, but we built only one page.
Your typical site will have more than one page, and its interior pages
probably won’t look exactly like the home page for the site.

Second-Level Pages

It's common practice for sites to have more than one design. The home
page is usually unique, and all subsequent pages have a design that’s
similar in style to the home page but with a smaller banner, modi-
fied navigation, and often changes to the content of the sidebar. This
second-level template is usually designed to frame the content. Let’s
quickly create a simple second-level template and use it.

Creating a Second-Level Template

Create a new file called level2.html by copying your index.html file. Next,
locate and remove this file, including all its contents:

<div id="middle">

</div>

ADDITIONAL PAGES AND TEMPLATES < 288

Now replace that file with this one:

Download final/level2.html

<div id="middle">
<div id="1eftcol">
</div>

<div id="rightcol">
</div>

</div> <!-- end of middle container -->

Next, we need to apply class="level2" to the body tag. We can use the
new class to scope CSS selectors that are specific to our second-level
template.

For the layout, we’ll shrink the heading so that it’s only 54px high.
We'll then use the floating technique we used earlier to define our two
columns:

Download final/stylesheets/layout.css

.level2 #header{height:54px;}
#middle {width:100%;}
#leftcol, #rightcol{
margin:18px;
float:left;
display:inline;
}
#leftcol{width:558px;}

#rightcol{width:270px;}

We've shrunk the header, so we have to create new graphics for our
background and our logo. We could open Photoshop, but we can quickly
create the images we need using ImageMagick,! open a Terminal win-
dow or command prompt, and navigate to our images directory.

Make the new banner 36px high:

convert -geometry x36 banner.png banner_small.png

Now change the name of the image in your level2.html template to use
banner_small.png instead of banner.pomg.

The header is 54px, so we want our background to be the same height.
We can use ImageMagick’s crop command to take care of that.

1. Get ImageMagick at http://www.imagemagick.org/script/index.php. If you're a Mac user,
you can grab it via MacPorts; if you're a Linux user, your distribution’s package manager
probably has it available.

ADDITIONAL PAGES AND TEMPLATES < 289

convert -crop 1x54+0+0 background.gif background_level2.gif

The arguments for crop include the width and height of the new image
we want to create, followed by the starting X and Y coordinates of the
offset, or the top-left corner with respect to the original image.

To style the page, we change the background color of the middle region
and the filename for the background image:

DownTload final/stylesheets/style.css

.level2 #middle{background-color:#fff8e4}
body.level2 {background: #fff url('../images/background_Tlevel2.gif') repeat-x;

}

It takes only a few small steps to create a simple template that we can
use to build additional pages.

Creating a Login Page with the Template

You can make the login page using the level2.html template. Create
login.html by copying the level2.html page you just made. Add this code
to login.html:

Download final/login.html

<div 1id="leftcol">
<h2>Log in</h2>

<form id="1ogin" method="post" action='"/user_sessions'>
<table>
<tr>
<th><label for="username'>Username</label></th>
<td>
<input type="text" name="username"
id="username" class="text">
</td>
</tr>
<tr>
<th><label for="password'">Password</l1abel></th>
<td>
<input type="password" name="password"
id="password" class="password">
</td>
</tr>
<tr>
<th> </th>
<td>
<input type="checkbox" name="remember" 1id='"'remember" class="checkbox">
<label for="remember'">Remember me</label></td>
</th>
</tr>

ADVANCED TEMPLATING <290

21.2

foodbox

Login Already have an account?

Username

Sign Up

Password

) Remember me

(Login)

Caopyright @ 2009 Foodbox, LLC, all rights reserved.
Terms of Servica | Privacy Policy

Figure 21.1: A simple login page using our second-level template

<tr>
<th> </th>
<td><input type="submit" value="Log in"></td>
</tr>
</table>
</form>
</div>
<div 1id="rightcol">

<h2>Already have an account?</h2>

</div>

You'll also need to add this code to layout.css:
Download final/stylesheets/layout.css

form {margin-Tleft:36px;}
form table{border:0px;}
form table tr{height:36px;}

When you finish, you end up with something like Figure 21.1.

That worked out pretty well, but you can probably see that this work-
flow won’t scale if the site has hundreds of pages.

Advanced Templating

If you keep copying this template and creating pages from it, you will
quickly create a maintenance nightmare for yourself. Color and font
changes are all handled in the CSS, but what do you do if links in the

GRID SYSTEMS AND CSS FRAMEWORKS <« 291

footer need to change? If you've created twenty pages by copying and
pasting, you will have to manage all those links and content. Also, links
to other documents get more difficult to manage, especially as you start
building a hierarchy of links.

If you are developing a static website, you can use Adobe Dreamweaver
to track templates. You associate pages to your template, and Dream-
weaver will automatically change any associated pages when you
change your template. Dreamweaver can be a terrific asset if you work
with ColdFusion or PHP, because it can track your links to pages and
images automatically. For example, if you move a page to a new folder,
Dreamweaver can update all the relative links to style sheets, images,
and other files. However, the product can also be pricey, and it might
be overkill for what you need to do. Of course, Dreamweaver isn’t the
only solution for static-page creation.

StaticMatic? and Nanoc® are two flexible and simple website manage-

ment tool for static sites. Both are written in Ruby, are extremely easy
to use, and feature excellent documentation. Best of all, they're free.

Of course, most sites today aren’t static. But you should have no prob-
lem transforming the templates you develop into something you can
use with your framework or language, whether you use PHP, ColdFu-
sion, Ruby on Rails, Django, Perl, .NET, or any other type of web-based
framework.

Most modern web frameworks have a built-in templating mechanism.
Building the design is the hard part; turning it into a usable template
usually takes no time at all.

21.3 Grid Systems and CSS Frameworks

In this book, I deliberately steered you away from using some of the
popular CSS frameworks out there because I wanted you to build your
own grid. Now that you understand how grid systems work, you might
want to investigate a few of the open source layout frameworks.

2. http://staticmatic.rubyforge.org
3. http://nanoc.stoneship.org/

GRID SYSTEMS AND CSS FRAMEWORKS <« 292

YUl Grid

The Yahoo! User Interface Library (YUI) has a grid builder? called YUI
Grid that makes it almost too easy to set up your grid. The code for

a simple Foodbox template generated with the grid builder might look
like this:

Download final/yui_foodbox.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<title>YUI Base Page</title>
<link rel="stylesheet"
href="http://yui.yahooapis.com/2.7.0/build/reset-fonts-grids/reset-fonts-grids.css"
type="text/css">
</head>
<body>
<div id="doc2" class="yui-t3">
<div id="hd" role="banner'"><hl>Foodbox</hl></div>
<div 1id="bd" role="main">
<div id="yui-main">
<div class="yui-b'"><div role="main" class="yui-g">
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut Tabore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor 1in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur.
</p>
</div>
</div>
</div>
<div role="search" class="yui-b">
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur.
</p>
<p>
Excepteur sint occaecat cupidatat non proident,
sunt 1in culpa qui officia deserunt mollit anim id est laborum.
</p>
</div>

</div>

4. http://developeryahoo.com/yui/grids/builder/

GRID SYSTEMS AND CSS FRAMEWORKS <« 293

Foodbox
Lorem ipsum dolor sit amet, consectetur adipisicing Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore

elit, sed do eiusmod tempor incididunt ut labore et magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laberis nisi ut aliguip ex ea
dolore magna aligua. Ut enim ad minim veniam, commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
quis nostrud exercitation ullamcoe laboris nisi ut pariatur,

aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mellit anim id est
laborum.

Copyright 2008 Foodbox

Figure 21.2: Our unstyled Foodbox YUI grid layout

<div 1id="ft" role="contentinfo"><p>Copyright 2010 Foodbox</p></div>
</div>
</body>
</html>

The grid builder will style this appropriately. With this framework, you
essentially program to YUTI's interface. Use the right IDs and classes,
and everything just works. In this example, the doc2 ID on the outer-
most div specifies that the width should be 960px wide, and the yui-
13 class states that the left column should be 300px wide. The tool
includes lots of configurable options; you can read more about them in
the documentation.®

This particular version also resets all the elements, as shown in Fig-
ure 21.2. For example, notice how small the Foodbox heading is. You
will need to add your own style sheet after the YUI styles to size your
headings.

960 Grid System

The popular 960 Grid System® is a simpler alternative to YUI Grid. The
960 Grid System uses a predefined width of 960px for the page and
divides it into either 12 or 16 columns. When you build a layout on this
grid, you use classes to determine how many columns each region will
contain.

If you choose the 12-column grid, then you define the header and
footer to be 12 columns wide, the sidebar to be four columns wide,
and the main content to be eight columns wide. The spacing between

5. http://developer.yahoo.com/yui/grids/
6. http://960.gs/

GRID SYSTEMS AND CSS FRAMEWORKS

the columns is automatically handled for you, so you don’t even have
to think about it.

Take a look at the markup:
Download final/9260_foodbox.html

<!DOCTYPE html>

<html Tang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>960 Grid System — Demo</title>

<link rel="stylesheet" href="http://960.gs/css/reset.css" />

<link rel="stylesheet" href="http://960.gs/css/text.css" />

<1link rel="stylesheet" href="http://960.9gs/css/960.css" />

</head>

<body>

<div class="container 12">

<div id="header" class="grid_12">
<h1l>Foodbox</h1>
</div>

<div 1id="sidebar" class="'grid_4">
<p>Lorem 1ipsum dolor sit amet, consectetur adipisicing elit
sed do eiusmod tempor incididunt ut Tabore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
Taboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur.
</p>
<p>Excepteur sint occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est laborum.
</p>

</div>

<div id="main" class="'grid_8">
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
Taboris nisi ut aliquip ex ea commodo consequat. Duis aute 1irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur.
</p>
<p>Excepteur sint occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est Taborum.
</p>
</div>

GRID SYSTEMS AND CSS FRAMEWORKS <« 295

Foodbox

Lorem ipsum dolor sit amet, consectetur Lorem ipsum dolor sit amet, consectetur adipisicing elit sed do eiusmod tempor incididunt ut labore et
adipisicing elit sed do eiusmod tempor incididunt dolors magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ut labore et dolore magna aligua. Ut enim ad minim ea commodo consequat. Duis aute irure dolor in reprenenderit in voluptate velit esse cillum dolore eu
veniam, quis nostrud exercitation ullameco laboris fugiat nulla pariatur.

nisi ut aliquip ex ea commodo consequat, Duis

aute irure dolor in reprehenderit in voluptate velit Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est

esse cillum dolore eu fugiat nulla pariatur. laborum.

Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est
laborum,

Copyright © 2008 Foodbox

Figure 21.3: Our unstyled Foodbox 960 Grid System layout

<div 1id="footer" class='"grid_12">
<p>Copyright © 2010 Foodbox</p>
</div>

</div>

</body>

This grid enables you to build simple layout with only a few lines of
code, as shown in Figure 21.3. The 960 Grid System uses a base font
size of 13px and a line-height of 1.5, which is a relative measure that
means 1.5 times the font size. In this case, the line-height would be
19.5px, which would be difficult to work with when cropping images.
So, modify the line-heights and font sizes of the elements by adding
your own style sheet.

If you want to integrate the 960 Grid System into your workflow, you
can get printable sketching paper from the 960 Grid System website,
along with Photoshop templates to help you design your site.

Frameworks Don’t Solve Everything!

Although these frameworks make it extremely easy to get a grid-based
layout working, you still have to use your knowledge of the baseline grid
when you choose fonts and spacing and when you place your images.
You'll also notice that these systems bring in a lot of additional CSS
that you might not even need. Also, the 960 Grid System requires you
to include multiple files, which can decrease performance, so be sure

CSS ALTERNATIVES <« 296

to make good use of minification techniques and caching if you use this
framework.

If you use them only when you understand how the code works, you
can get enormous benefit from CSS frameworks.

21.4 CSS Alternatives

As a programmer, working with CSS probably feels a little unstructured
and redundant. CSS lacks inheritance and variables, so you end up
typing the same code over and over.

Code like this gets awfully difficult to manage:

#latest_recipes{

clear:both;

margin: 18px 18px 0 18px;
}

#latest_recipes h3{
margin-left:18px;
}

#latest_recipes p{
margin-left:36px;
}

Repeating the latest_recipes selector just for scoping seems wrong.

Several open source projects have created CSS generators that trans-
form their special markup into static CSS files that you can push out
to your applications. I'll cover Less, a simple but powerful CSS prepro-
cessor implemented using the Ruby language.”

Less CSS

You can use Less® to leverage Ruby and your existing knowledge of CSS
syntax to build CSS style sheets easily.

7. You might also be interested in Sass, which is similar to Less but has slightly different
syntax. You can learn more about it at http://sass-lang.com/.
8. http://lesscss.org/

CSS ALTERNATIVES <« 297

You can nest declarations in a logical fashion, so the previous example
would look like this:

Download final/less_examples.less

#latest_recipes{
clear:both;
margin: 18px 18px 0 18px;

h3{
margin-left:18px;
}

p{
margin-left:36px;
}
}

When the Less file is converted into a CSS file, the h3 and p selectors
will be properly scoped.

The real benefit of using Less comes from its support for variables and
expressions. This support makes it possible to do something like this:

Download final/less_examples.less

@text_color: #fff;

@width: 900px;

@font_size: 12px;

@line_height: @font_size * 1.5;
@margin: @line_height;

@sidebar: @width / 3;

@main: @width - @sidebar - @margin;

body {color: @text_color; }

#page { width: @width; margin: 0 auto; }
#middle { width: @width; }

#main { width: @main; }

#sidebar { width: @sidebar; }

Of course, browsers won’t understand the style sheets in this form. You
need to run your files through the Less preprocessor to convert the files
into standard CSS files:

Tess source/style.less stylesheets/style.css --watch
The --watch switch monitors the source file for changes. When you save,

it regenerates your CSS files. This makes testing a breeze, and it can
simplify style sheet management tremendously. You can also integrate

DON'T FORGET TO BUY THE STOCK IMAGES! <« 298

this approach into your automated deployment workflow without much
effort.

21.5 Don’t Forget to Buy the Stock Images!

The pasta logo we used in this book is a stock image available at iStock-
photo.? We're using the watermarked version in the examples, but when
we go to production, we need to pay for the final version.!© This might
seem like common sense, but you can take a look at the Photoshop Dis-
asters blog!! to see lots of examples of people releasing watermarked
stock images in production, even in print publications! So, don’t for-
get to secure the rights to any stock images or other assets you use in
your application. Remember, you don’t get to use an image for free just
because it shows up in a Google Image search!

21.6 Visual Effects

Visual effects such as fading and animations used to require Flash. But
now you can implement a lot of effects using JavaScript libraries such
as jQuery, Prototype, and Scriptaculous. These tools are open source
JavaScript frameworks aimed at simplifying element manipulation, ani-
mation, effects, and Ajax. Let’s use jQuery to make the pasta image on
our page transition to other images with a crossfade.

First, we need to collect and resize some images for the crossfading.
The images need to be 594px wide by 144px high to fit into that area of
our page. I'll use three images from Flickr that are licensed under the
Creative Commons Attribution license. That means we need to be sure
to credit the image to its creator when we display it. I've chosen three
images:!2

* hitp://www:.flickr.com/photos/pencapchew/3108612635/
* http://www.flickr.com/photos/stevendepolo/3523644703/

* http://www.flickr.com/photos/denniswong/3486409564/

9. http://www.istockphoto.com

10. I had to purchase the rights to reproduce this image in this book so you could use it
in the examples.

11. http://www.photoshopdisasters.com/

12. If you can’t access these URLs, you can find the images in the book’s companion
source code.

VIsUAL EFFEcTs <« 299

Resizing the Images

We need to resize the images so they all have a width of 594px; this will
enable them to fit in the same space as the pasta image. We can use
ImageMagick’s Geometry option to pass only the width parameter. This
code constrains the proportions of the width and height so our images
don’t get distorted:

$ convert -geometry 594x originals/tacosalad.jpg tacosalad.jpg

$ convert -geometry 594x originals/phadthai.jpg phadthai.jpg
$ convert -geometry 594x originals/chickenmac.jpg chickenmac.jpg

Next, we need to perform a crop, grabbing whatever is in the middle of
the image. Let’s begin by finding the image’s height:

$ identify tacosalad.jpg
tacosalad.jpg JPEG 594x394 594x394+0+0 8-bit DirectClass 146kb

According to this, the height is 394px. We can take that number and
subtract 144, the height we need for our images. Next, we take that
result and divide by two. In this case, we need to start cropping at 9px
across and 125px down:

$ convert -crop 594x144+0+125 tacosalad.jpg tacosalad.jpg

$ convert -crop 594x144+0+125 phadthai.jpg phadthai.jpg
$ convert -crop 594x144+0+125 chickenmac.jpg chickenmac. jpg

Building the Script

To crossfade images, we need to make one image disappear as we bring
in the next image. Programs like Flash use a timeline to control the
effects. Each image is on its own layer, and you overlap the layers on
the timeline for the duration of the crossfade. JavaScript doesn’t have
the concept of a timeline, but it does give us the ability to fade things
in and out.

We'll start with our array of images. For this example, we’ll keep things
simple and not modify the alternate text on the crossfade:

Download final/javascripts/crossfade.js

images = [
"images/pasta.jpg",
"images/tacosalad. jpg",
"images/phadthai. jpg",
"images/chickenmac. jpg"

]

The order of the items in the array is important here because it deter-
mines the order in which the images will crossfade.

VisuAaL EFFecTts <« 300

Next, we need to put all the images on the page and stack them on top
of one another. The crossfade script will start with the top image and
fade it out to reveal the second image. After five seconds, it’ll repeat this
process with the next image, and so on. When it gets to the end, it will
reset the process.

We will use a combination of CSS and JavaScript to stack the images
on the page within the banner:

Download final/javascripts/crossfade.js

Line var image_box = $("#main_image");

image_box.css({'position' : 'relative', 'height': '144px'});

mnmirr

1
2
3
4 var image_html = ;

5 for(var i = 0; i < images.length; i++) {
6 image_html += '<img style="position:absolute;top:0; z-index:' +
7
8
9

rn mni I

(images.length - 1) + src= + images[i] + "" 1id="image_' + 1 + ""/>';

}s
10 image_box.html(image_html);

We begin by grabbing the container that will hold the images. Next,
we use JavaScript to set the positioning of the element to relative and
enforce a specific height so that it won’t collapse. Next, we create a new
string that will hold the HTML for the images we want to stack. We loop
over the array of images, creating each image’s markup. We set each
image to be absolutely positioned on top of the one beneath it using
the top, left, and z-index CSS properties that we attach using an inline
style.!® The top and left attributes are both set to 0, and the z-index, or
stacking order, is set so that each image in the array is stacked below
the previous image.

We also give each element in this stack of images its own ID using the
image_i format, where i is the position of the image in the array. We’ll
need this later, when we need to identify the element to fade out.

Once we build up the HTML for the images, we can pass the HTML
string to the html() method of the container, as shown on line 10.

We need to initialize a counter variable so we can keep track of the
image in the stack. We need the images to transition every five seconds,

13. Previously, I said that inline styles are bad. However, they're somewhat necessary
here. Although the position, tfop, and left attributes could be set in the CSS file and attached
to these images by class name, the z-index needs to be unique for each image. So, here I
defined all the definitions using the style attribute.

VisuAL EFFEcTs <« 301

()

Absolufe Positioning in a Reldtive A

Normally, you use the top-left corner of the browser window as
the reference point when you want to position things by coor-
dinate position. Thus you would define something you need to
place 100px from the top and 18px from the left like this:

.box{
position:absolute;
top:100px;
Teft:18px;

}

When we define an element with relative positioning, we can
use it as a reference point for any absolutely positioned ele-
ments contained within the relatively positioned element. This
makes it easier for us o stack our bannerimages on top of each
other because we can specify their top and left positions as O,
relative to the container.

so we’ll use the setfinterval() method, which invokes a method at a given
interval:

Download final/javascripts/crossfade.js

tnel var i = 0;
2 var delay_in_miliseconds = 5000;
3
4 setInterval (function(){
5 $("#image_" + 1i).animate({ opacity: 0}, 3000);
6 1++;
7 if(i == images.length) i = 0;
8 $("#image_" + i).animate({ opacity: 1}, 3000);
9 },delay_in_miliseconds);

On line 4, we pass an anonymous function to setinterval(), which uses
our counter variable to grab the image to fade. After we fade the image,
we increment our counter variable so that we can make the next image
appear. However, before we activate the next image, we check to see
whether we are out of images; if so, we reset the counter variable back
to 0. Essentially, we shuffle the images around like a deck of cards,
fading one into the next.

Getting It on Our Home Page

Our crossfading script won’t do much unless we call it from our home
page. To do that, we need to load both the jQuery library and our script.

VisuAL EFFEcTs <« 302

Open the index page, and add the following code immediately before the
closing body tag:

Download final/index.himl

<script type="text/javascript"
charset="utf-8"
src="http://ajax.googleapis.com/ajax/1ibs/jquery/1.3.2/jquery.min.js">
</script>

<script type="text/javascript" charset="utf-8"
src="javascripts/crossfade. js">
</script>

Here we load the jQuery library and our own custom crossfader. I've
often thought that if browsers were to cache files based on the orig-
inating URL, then we could increase the performance of our sites if
everyone included common libraries like jQuery from the same source.
Visitors who come to my site from another site could already have the
library loaded. It turns out that Google provides exactly this service via
its Ajax Libraries API.!* We can load jQuery from there, and there’'s a
good chance our visitors will already have jQuery in their local cache.

Finally, we need to make a small change to our main image’s markup.
Our script injects several stacked images into a container with the ID of
main_image. In our index page, however, the main_image ID is attached
to the pasta image. Remove the ID from the pasta image, and wrap it
with a div, placing the main_image ID on the new div:

Download final/index.himl

<div id="main_image'>

</div>

That’s it! We now have an extremely simple image crossfader, and it’s
completely unobtrusive. When JavaScript is turned off, people will see
only the original pasta image. When you use JavaScript, always make
sure you keep your JavaScript code out of your content document. Use
event observers or other techniques to apply behavior to your pages.
Also, never use an onclick or onmouseover because this mixes interaction
with presentation, is completely unnecessary, and can end up being an
accessibility problem if you didn’t provide an alternative path.

14. http://code.google.com/apis/ajaxlibs/documentation/

VisuAL EFFEcTs <« 303

Ve oL, Script
Unobtrusive JavaScript describes JavaScript that is completely
separated from the confent progressively. This approach pro-

vides an easy method to enhance your site, while sfill providing
functionality for people who can’t use JavaScript.

Traditionally, you might do this if you wanted to make a link
open in a new window:

Help

However, that approach prevents people from getting to your
links if they don’t have JavaScript enabled. A better way would
e 1o use the link as intended, lefting the href attribute hold the
URL for the link and then using JavaScript to observe the link.,
When someone clicks the link, the script will take the value of
the href and open it in a new window.

Unobtrusive JavaScript has another advantage: you can easily
reuse it. Let’s say we wanted every link on our page with the
class of popup to open in a new window. This finy bit of jQuery
code will do exactly that:

(document) .ready(function(){
var links = $("a.popup");

Tinks.cTick(function(event){
event.preventDefault();
window.open($(this).attr('href'));
s

});

For more on unobtrusive JavaScript, visit http://onlinetools.org/
articles/unobtrusivejavascript/.

21.7

EXPERIMENT AND PRACTICE!

JavaScript can make your pages come alive, and you can improve
everyone’s user experience if you use it correctly. Make your code unob-
trusive, make sure things work without it, and don’t forget to minify
your scripts!

Experiment and Practice!

In this book, we used a conservative color scheme and design, but now
that you have gone through the process, you should go back to the
beginning and try to reimplement this site using your own ideas. Make
your own sketch, create your own logo, choose your own colors and
fonts, and use a grid system to build your site. Look at other sites
for inspiration, and use Firebug to inspect how the designers built the
pieces. Learn from others, and practice, practice, practice some more.
Like programming, web design is something you can spend a lifetime
mastering.

So, keep learning, exploring, and experimenting. And be sure to have
fun throughout the process.

< 304

22.1

22.2

Chapter 22

It's no secret that programmers read a lot of books and websites to
keep their skills sharp. This chapter lists some resources that I think
will help you further explore the elements of design that I've gone over
in this book.

Color Resources

Color is a complex topic, and a good understanding of color will help
you convey your message and capture your audience’s attention. I've
found these resources valuable, although you may need to scour your
local library for a few of these titles.

* Albers, Josef. The Interaction of Color |]
¢ [tten, Johannes. The Elements of Color []

¢ [tten, Johannes. The Art of Colour: The Subjective Experience and
Objective Rationale of Color - Revised Edition |]

* Morton, Jill. A Guide to Color Symbolism |], Colorcom, 1998.

Books on Fonts and Typography

A good understanding of fonts and typography is crucial to your suc-
cess as a web developer, so I encourage you to investigate further these
resources. These two books do an excellent job of showing you how to
effectively use type and grid systems in your designs.

* Ruder, Emil, Typography []
* Muller-Brockmann, Josef, Grid Systems in Graphic Design |]

TECHNICAL Books <« 306

22.3 Technical Books

This book gets you started on the path towards mastering web devel-
opment, but if you're looking for the next step, you will find these
resources quite useful.

* Ash, Tim. Landing Page Optimization The Definitive Guide to Test-
ing and Tuning for Conversions |]

¢ Clifton, Brian. Advanced Web Metrics with Google Analytics |]

* Goto, Kelly and Cotler, Emily. Web ReDesign 2.0: Workflow that
Works |]

* Krug, Steve. Don’t Make Me Think! A Common Sense Approach to
Web Usability []

* Meyer, Eric. A. Cascading Style Sheets: The Definitive Guide, Third
Edition |]

¢ Sydik, Jeremy. Design Accessible Web Sites |]
* Veen, Jeffrey. The Art & Science of Web Design |]
* Zeldman, Jeffrey, Designing With Web Standards |]

22.4 Web sites

The Internet is full of guides and tutorials to help you build web sites,
but here are some of the best resources I've found related to the topics
we covered in this book.

About Hearing Loss http://www.miracle-ear.com/abouthearingloss.aspx
The Miracle-Ear web site contains good information about hearing loss, includ-
ing types and causes.

A List Apart: CSS @ Ten: The Next Big Thing. ..
. .. http://www.alistapart.com/arficles/cssatten
Hakon Wium Lie discusses using @font-face in your stylesheets.

A List Apart: Going to Print http://alistapart.com/articles/goingtoprint
An article from Eric Meyer on using CSS to provide printer-friendly stylesheets
for your site.

Brandcurve: “Color Meanings Around the World”. ..
. . . >http://www.brandcurve.com/color-meanings-around-the-world/
A list of colors and their international meanings.

WEB SITES < 307

Lighthouse International - “ Making Text Legible Designing for Peo-
ple with Partial Sight”. ..

. . . http://www.lighthouse.org/accessibility/legible/
Basic guidelines for making effective legibility choices that work for nearly
everyone.

Safalra: “The Myth of Web-Safe Fonts”. ..
. . . http://safalra.com/web-design/typography/web-safe-fonts-myth/
Provides a good background in fonts and CSS.

Unit Interactive: “Better CSS Font Stacks”. ..
. . . http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/
Discussion of font stacks, with some excellent examples.

WebAim: “CSS in Action: Invisible Content Just for Screen Reader
Users”. ..

. . . http://www.webaim.org/techniques/css/invisiblecontent/
Explanation and examples on how to provide additional content to screen read-
ers, such as navigation skip links.

Appendix A

[Alb75] Josef Albers. Interaction of Color. Yale University Press, New
Haven CT, 1975.

[Ash08] Tim Ash. Landing Page Optimization: The Definitive Guide to
Testing and Tuning for Conversions. Sybex, New York, 2008.

[CliO8] Brian Clifton. Advanced Web Metrics with Google Analytics.
Sybex, New York, 2008.

[GCO04] Kelly Goto and Emily Cotler. Web ReDesign 2.0: Workflow
that Works. Peachpit Press, Berkeley, 2004.

[[tt97a] Johannes Itten. The Art of Color: The Subjective Experience
and Objective Rationale of Color - Revised Edition. Wiley, New
York, 1997.

[1tt97Db] Johannes Itten. The Elements of Color. Wiley, New York,
1997.

[Kru04] Steve Krug. Don't Make Me Think! A Common Sense
Approach to Web Usability. Peachpit Press, New York, 2004.

[MB96] Josef Miller-Brockmann. Grid Systems in Graphic Design.
Niggli, Sulgen, Switzerland, 1996.

[MeyO6] Eric Meyer. CSS: The Definitive Guide. O’Reilly Media, Inc.,
Sebastopol, CA, third edition, 2006.

[Mor97] Jill Morton. A Guide to Color Symbolism. Colorcom, Broom-
field CO, 1997.

[Rud81] Emil Ruder. Typography. Niggli, Sulgen, Switzerland, 1981.

APPENDIX A. BIBLIOGRAPHY < 309

[SydO8] Jeremy Sydik. Design Accessible Web Sites: 36 Keys to Cre-
ating Content for All Audiences and Platforms. The Pragmatic
Programmers, LLC, Raleigh, NC, and Dallas, TX, 2008.

[VeeOO] Jeffrey Veen. The Art and Science of Web Design. New Riders
Press, Upper Saddle River NJ, 2000.

[ZelO6] Jeffrey Zeldman. Designing Web Standards. Peachpit Press,
New York, second edition, 2006.

A a tag, 138, 139

Absolute links, 138 Audience
Absolute positioning, 245, 301 target audience, serving, 24
Accent colors, three-color rule, 47 target audience, understanding, 25
Access keys, 244, 247 see also Accessibility; Clients
Accessibility, 229-251 Auditory impairment, 238
auditory impairment, 238 Autoappend feature, 270
business issues, 242 Autoprepend feature, 270
characters, 249
checklist, 249 B
colorblindness, 235 Background color, 58, 206, 289
importance of, 243 Bacon Explosion recipe, 212
inclusiveness, 240-242 Bad neighborhoods, 260
issues with, 230-239 Banding effect, 37
meaning of, 229-230 Banner color, 205
motor impairment, 239 Banner size, 265
tabbing, 247 banner.png, 166
visual impairment, 230 Base color, choosing, 50
web design and, 17 Baseline, 62
see also Mobile devices; Screen Baseline grid
readers definition of, 72
ACO (Photoshop Palette), 51 using in layouts, 72
Additive color mixing, 34 BlackBerry, 267
Adjust Scheme tab, 51 Blind users and fonts, 67
AdMob, 267 Blindness
Adobe Acrobat, zooming in, 74 see also Visual impairment
Advanced templating, 290 Block elements, 131
Ajax, 233 body tag, 129, 131
Almost-strict mode, 225 Borders, removing, 204
Alpha transparency, 222 Box models, block elements and, 181
alt attribute, 67, 134, 142, 231, 232
 tag, 142
Alternate content, 256 Branding
Alternative text attributes, 231 see also Foodbox logo
Analogous scheme, 42, 51 Branding, with favicons, 252
Apache, PHP configured for, 270f Brightness, 34
Arial, 64 Browse Recipes tag cloud, creating, 99
Arrays, 299 Browsermatch rules, 281
Ascenders, 63 Browsers

Asset servers, 280 avoiding browser hacks, 169

BUILDING A COLOR SCHEME

COLOR SCHEMES

coding a web design that renders
well on all browsers, 168

concurrent connection limits, 280

dropping support for, 219

how browsers reference style sheets,
175

Internet Explorer issues, 217

Less CSS and, 297

making Internet Explorer work in
standards mode, 182

recommending, 216f

rendering mode, 220

statistics, 217

support for, 215-217

supporting features, 217

testing, 221

website in, 227

see also specific names of browsers

Building a color scheme, 50

C

Caching, 278, 279
callback, 272
Cascade, overriding styles, 171
CHAMP software, 216
Characters, accessibility and, 249
Charts, 232
Choosing a color wheel, 48
Class names, 201
class attribute, 144
Classes, pseudo, 201
Clients
facilitating communication with, 23,
27
incorporating their suggestions,
20-22
presenting designs to, 30
putting their needs first, 24
refining, rewriting, and refactoring a
design, 32
soliciting their design ideas and
preferences, 31
see also Accessibility
CMYK color mode, 36
CodingHorror, 259
Color
background, 206
banner, 205
visual impairment, 231
visually impaired users and, 235
see also RGB color mode

Color Oracle, 250
Color schemes

accent colors, using, 47

additive color mixing, 34

analogous scheme, 42, 51

banding effect, 37

base color, choosing, 50

black and white as noncolors, 39

brightness, 34

building a color scheme, 50

choosing a color scheme, 58

CMYK color mode, 36

color components, 33

color context, 36

color contrast, 43

color wheel, choosing, 49

color-blind users, 54

combining the natural and technical
methods, 57

complementary scheme, 43

cool colors, 38

cultural symbolism of colors, 40

definition of, 41

evoking emotional responses with
color, 37

finding colors using digital
photography, 54

fluting, 37

foreground and background colors,
58

four-color printing, 36

gradients, 37

how computer screens display
colors, 35

HTML color codes, 48, 50

hue, 34

keeping track of a website’s colors,
60

link colors, choosing, 59

localizing a site’s color scheme, 40

Macintosh computers and color
displays, 49

mixing color wheel, 41

monochromatic scheme, 41

MorgueFile.com, 55

natural method of color selection, 53

neutral colors, 39

Photoshop’s Color Picker, 47

primary colors, 34

RGB color mode, 36

COLORBLIND WEB PAGE FILTER

CSS

RYB and RGB color wheels
compared, 49
saturation, 34
split-complementary scheme, 44
subtractive color mixing, 34
technical method, 47
text color, choosing, 44
three-color rule, 47
three-digit color codes, 178
warm colors, 38
web-safe color palette, 46
yellow fade effect, 38
Colorblind Web Page Filter, 250
Colorblindness, 54, 235
Colored separators, 210
Colors and fonts, 199-203
ColorSchemeDesigner.com
ACO (Photoshop Palette), 51
Adjust Scheme tab, 51
Analogic color scheme, 51
color wheel, experimenting with, 51
Export tab, 51
features of, 48
ColorSchemer Studio

Computer Color Wheel (RGB) option,

57
PhotoSchemer feature, 56
QuickPreview window, 57
Comments, doctype and, 220
Competition, keywords and, 258
Complementary scheme, 43
Compressing files, 281

Computer Color Wheel (RGB) option, 57

Content, 260
currency of, 268
defined, 257
hiding, 257
importance of, 255
proofreading, 233
spelling and grammar, 232

transforming for mobile devices, 269,

270f
Content elements, 130
Content fonts, 69
Content, alternate, 256
Cool colors, 38
Copyright statement, 249
Copyright symbol, 249
counter variable, 300
Courier, 65
Courtesy URLs, 125

Cover-up method, 67
adding a span tag to obscure an
element, 194
applying to the main headings, 196
applying to the sidebar headings, 195
definition of, 194
disadvantages of, 198
Fahrner Image Replacement, 194
handling image transparency, 197
Langridge/Leahy Image Replacement
(LIR), 197
loading an image into a span as a
background image, 195
preparing the HTML for replacement,
194
turning the heading text into a
container, 195
using with hyperlinks, 197
Creativity, web design and, 14
crop, 289
Cross-browser testing, 221, 242
Crossfade images, 299
CSS
alternatives to, 296
applying styling to the footer region,
193
applying styling to the main region,
190-192
avoiding browser hacks, 169
backgrounds and floats, common
gotchas, 187
basics of, 169-175
benefits of, 124
box models and block elements, 181
class selectors, 173
coding a web design that renders
well on all browsers, 168
colors and fonts, 199-203
components of a CSS rule, 170
declarations, 171
defining the header and footer, 183
defining the width of a page, 182
document flow and the display
property, 184
dynamic style sheets, 200
external CSS files, 178
floating the main and sidebar regions,
186
float property, 184
grid systems and, 291

DAVIDSON

FIREFOX

grouping selectors to share rules,
180

hash marks, 170

hiding skip links, 245

how browsers reference style sheets,
175

ID selectors, 172

limportant keyword, 174

improving website performance with,
123

indenting nested selectors, 188

inline styles, 175

layout.css, 178

Less CSS and, 297

link tag, 178

locking style sheets to a specific type
of display, 179

margins, applying, 189

margins, defining, 183

order of precedence, determining
and setting, 174

properties, 171

removing line breaks and extra
spaces, 171

repositioning elements out of the
normal flow, 184

scoped selectors, 187

search forms, 203

selectors, 170

separating styles functionally, 172

setting the sidebar margins, 190

spreading out declarations over
multiple files, 171

style attribute, 175, 177

tag clouds, 202

understanding the cascade, 171

using relative links to external style
sheets, 179

values, 171

zeroing out the defaults for major
elements, 180

D

Davidson, Mike, 269, 270

Declarations, 171

Default page names, 125

Descenders, 63

Design, see Web design

Designing a business or product logo,
84

Deutanopia, 235, 237f

Digital negative (DNG) files, 160
Disabled users, see Accessibility
display:none, 244
display property, 184, 197
div tag, 132
Doctype
comments and, 220
HTML 4.01 Strict, 127
placing a doctype declaration in a
document, 127
quirks mode in Internet Explorer 6,
126
standards mode, 126
XHTML 1.0 Transitional, 126
Domain names, reserving, 21
Double-margin bug, 222
Dreamweaver, 291
Dyslexic users and fonts, 64

E

Emulators, 267

Entity codes, 145
Entity tags, 278

Error handling, 241
ETags, 277-280
Expires headers, 277
ExpiresDefault, 277
Export tab, 51
External CSS files, 178

0

Fahrner Image Replacement, 194
Fallback fonts, 68
Far-future expiration, headers, 278
FastCGlI, 273
Favicons, 252-254
creating, 252, 253, 254f
defined, 252
overview of, 252
File size, 282
Files, compressing, 281
Filters, activating, 272
Finding photographs for a website, 101
Firebug, 276
Firefox, 16, 215, 218
adding features with extensions, 149
Linux users and, 150
recommending browsers, 216f
using for website development, 150
Web Developer Toolbar, 149, 179
see also Browsers

FIXED-WIDTH (MONOSPACED) FONTS

FOODBOX WEBSITE

Fixed-width (monospaced) fonts, 65
Fixed-width layouts, 89
Flash, 230, 240, 241, 258
Flickr, 101, 255
float property
clearing floats, 192
making two elements sit
side-by-side, 184
Fluting, 37
Fold, 90
Font stacks, 68
Fonts
Adobe Acrobat, 74
Arial, 64
ascenders, 63
availability of, on users’ computers,
65
baseline, 62
baseline grid, using, 72
blind users and, 67
choosing a font for content, 69
choosing a font for headings, 69
choosing for print, 209
Courier, 65
cover-up method, 67
in CSS, 199-203
CSS default font families, 69
defining fallback fonts with font
stacks, 68
descenders, 63
dyslexic users and, 64
Fahrner Image Replacement, 194
fixed-width (monospaced) fonts, 65
Helvetica, 64
leading (line spacing or line-height),
72
mean line, 62
Microsoft Web Fonts, 66
Microsoft Word, 74
Monotype Corsiva, 71
Myriad Pro, 65
sans-serif fonts, 64
screen readers, 67
selecting effective fonts, 69
serif fonts, 63
Times New Roman, 64
using images of fonts for headings,
67

Verdana, 64

web-safe fonts, 66

x-height, 62

zoom tools and font resizing, 74

see also Web design

Foodbox logo

adding a layer mask to, 95

adding a reflection to, 94

adding text to the logo, 82-84

applying a colored fill to each box, 81

creating a PDF-compatible file, 84

creating the logo’s four boxes, 79-81

designing a business or product
logo, 84

foodbox_logo.ai, saving, 84

[lustrator, learning and using, 79

setting up a directory structure, 78

slicing the logo using Photoshop, 161

using guides for alignment, 81

using vector-based graphics for logo
work, 79

wet-floor effect, 94

Foodbox website

adding a photograph to the
masthead, 100-103

adding a reflection to the logo, 94

adding text to the footer, 96

adding the final text to the home
page, 115-116

adding the Latest Recipes section,
116

adding the pasta image and
alternate text, 141

adjusting the coded page to the
mock-up, 119

appearance in browsers, 227

Browse Recipes tag cloud, creating,
99

calculating the total size of a page,
156

choosing fonts, font sizes, and
line-heights, 74

cover-up method, 67

defining the header and footer, 91

defining the sidebar, 91

designing the home page as four
rectangular regions, 87

dividing the home-page mock-up

using pixels for measuring font sizes,
73
using the alt attribute, 67

into regions and subsections, 121
drawing rectangles over each content
region, 92

FOOTER REGION

HTML

expanding Photoshop’s canvas to
resize the mock-up, 104
fixed-width layout, building, 89
foodbox_mockup.psd, 89
gathering requirements for, 23
hybrid layouts, 106
importing and placing the logo, 93
incorporating client suggestions,
20-22
liquid (flexible) layouts, 89
Log In button, creating and placing,
115
login_button.psd, 115
Lorem Ipsum (dummy text) in the
main content area, 103
on Lynx browser, 235f
placing content above or below the
fold, 90
placing the Get Cookin’ text on the
home page, 104
Popular Ingredients tag cloud, 100
purpose of, 16
screen size and readability, 89
search area layer group, 97
search box, creating, 97-98
search form, creating, 135-137
search icon, creating and placing,
107-110
search_button.psd, 110
Sign Up button, creating and
placing, 112-115
sign-up form, 248
signup_button.psd, 115
styling recipes for the Latest Recipes
section, 144
submit button, 136
tag cloud, definition of, 99
using guides to define content areas,
91
visual impairment and, 236, 237f
wrapping the text inside p tags, 142
see also Accessibility; Content;
Forms; Home page; Layouts;
Search engine optimization; Web
design
Footer region, 29, 122, 183
Footers, 204
Forcing page breaks, 212
Foreground colors, choosing, 58
Form fields, 245
Forms

form tag, 135

input tag, 135

not using a link for submitting a
form, 137

search form, creating, 135-137

submit button, 136

G

GIFs, using and optimizing, 157

GIMP, 87

GimpShop, 87

Gmail, 230

Google, 122, 234

Google Android, 267

Google Chrome, 227f

Gradients, 37

Grammar, 232

Graphics optimization, advantages of,
155

Graphs, 232

Grid systems, 291

H

Handlers, for mobile devices, 270
Handling errors, 241
Hash marks, 170
Header image, 224, 288
Header region, 28, 122, 134, 183
Headers, 288
Headers, set to expire, 277
Heading fonts, 69
Heading tags, 136, 265
head tag, 129
Hearing impairments, 238
Helvetica, 64
Hiding content, 257
Hitslink.com, 217
Home page

adjusting the coded page to the

mock-up, 119

index.html, 124

structure of, 121-122

see also Foodbox website; Layouts
HTML

absolute links, 138

alt attribute, 134, 142

atag, 138, 139

block elements, 131

body tag, 129, 131

 tag, 142

class attribute, 144

HUE IMAGES

color codes, definition of, 48 Hue, 34
color codes, setting, 50 Hulu, 240
content elements, 130 Hybrid layouts, 106
disadvantages of using tables for
layout, 123 I

div tag, 132 Icons, 254f, 252-254
doctype, 124 o creating, 252, 253f
document validation and browser favicon, creating, 252

compatibility, 127 d attribute, 133, 244
entity codes and special characters, IE7-js, 224

145 IETester, 221
form tag, 135 [lustrator

header region, 134

heading tags, 136

head tag, 129

HTML 4.01 Strict, 127

HTML 5, 126, 128, 151-154

html tag, 127

id attribute, 133

img tag, 134, 141

indenting tags, 129

inline elements, 131

input tag, 135

matching the Content-Type header
and the meta tag, 130

meta tag, 130

not using a link for submitting a
form, 137

page wrapper, 132

PHP interpreter for, 270

pound sign, 141

problems caused by invalid markup,
124

relative links, 138

remembering to include an element’s
closing tag, 127

self-closing tags, support for, 129

semantic markup, definition of, 122

sidebar region, 135

src attribute, 134

style tag, 177

tag attributes, 128

tag soup, 126

tags without closing tags, 129

title tag, 130

understanding HTML vs. merely
knowing it, 120

using div elements to establish the
four content regions, 133

valid HTML document, building, 121

validating your page markup, 151

bounding box, 84

Color palette, 81

Create Outlines command, 83

creating a PDF-compatible file, 84

creating the Foodbox logo, 79

Direct Selection tool, 83

Eyedropper tool, sampling colors
with, 55

foodbox_logo.ai, saving, 84

Options toolbar, 80

Rectangle tool, 79

Selection tool, 80

smart objects, 93

Text tool, 82

using guides for alignment, 81

Image borders, removing, 204
ImageMagick, 285, 288
Images

banner.png, 166

checking the images and fonts in the
mock-up, 161

creating slices from the mock-up,
161

crossfading, 299

digital negative (DNG) files, 160

download times and, 156

exporting the other Foodbox images,
166

extracting the banner as a
transparent PNG, 164

GIFs, using and optimizing, 157

graphics optimization, advantages of,
155

headers, 224

JPEGs, using and optimizing, 159

optimizing for performance, 284,
2851

optimizing for websites, 155

permissions to use, 298

IMG TAG

LAvouTs

pixels and, 210
PNGs, using and optimizing, 158
RAW format, 160
resizing, 299
saving the sliced banner, 165
slicing the Foodbox logo using
Photoshop, 161
slicing to the gridlines, 163
understanding the major image
formats, 157-159
visual impairment and, 231
see also Color; Photoshop
img tag, 134, 141
Implementation plan, 26
limportant keyword, 174
index.html, as home page, 124
Inkscape, 79
Inline elements, 131
Inline styles, 175
input tag, 135
Internet Explorer, 16, 215-228
browser statistics, 217
concurrent connections, 280
fixing columns, 222
issues with, 217
making IE work in standards mode,
182
quirks mode, 220
quirks mode in IE6, 126
serving XHTML as HTML, 126
supporting and support for, 215-217
supporting browser features, 217
version 6, 223f, 220-225
version 7, 219-220
version 8, 226-227
see also Browsers
Invalid markup, 124
iPhone, 263f, 266, 267
iPod, 240
iStockphoto, 102, 298

J

JavaScript, 121, 220, 233, 265, 303
JAWS, 247, 250
JPEGs
specifying the compression level, 159
using and optimizing, 159
jQuery library, 301

K

Keyboard shortcuts, 246

Keys, access, 244
Keyword overloading, 256
Keywords, 257-260
adding, 258
importance of, 259
relevance of, 256
search terms, 257
see also Search engine optimization
keywords, 247
Kuler
extracting colors from an uploaded
image, 57
generating a five-color palette, 52
RGB color wheel, 50, 52

L

label, 246, 247
Labels, importance of, 246
Landing pages, 240
Langridge/Leahy Image Replacement
(LIR), 197
Laws, technology and, 242
Layer groups, Photoshop, 94
Layers
benefits of using, 86
flattening, 86
see also Photoshop
layout.css, 178
Layouts
conventions used, 28
disadvantages of using HTML tables,
123
fixed-width layout, building, 89
foodbox_mockup.psd, 89
footer region, 29, 122
header region, 28, 122
hybrid layouts, 106
liquid (flexible) layouts, 89
main region, 29, 122
main content region, 141
middle region, 122
navigation bar, 29
page region, 122
parent region, 122
placing content above or below the
fold, 90
refining, rewriting, and refactoring a
design, 32
search engine rankings and, 29
sidebar region, 29, 122
sketching design ideas quickly, 27

LEADING

PERMISSIONS

Leading, 72

Less CSS, 297

Library size, 282

Links
choosing colors for, 59
fixing for printing, 210, 211f
managing, 291
replacing, 197
search-engine ranking, 260
skipping, 244

link tag, 178

Linux, Firefox and, 150

Liquid layouts, 89

Localizing color schemes, 40

Log In button, 143

Login page, 289, 290f

login.html file, 289

Logo, see Foodbox logo

Lorem Ipsum (dummy text), 103

Lost users, 260

Lynx, 234, 235f

M

Macintosh computers
monitors and gamma settings, 49
Snow Leopard (Mac OS X), updating
to, 49
main content region, 29, 259
main content region, 122, 141
Maintenance, templates and, 290
Margins
applying, 189
defining, 183
printing, 209
Mean line, 62
meta tag, 130, 258
Meyer, Eric, 181
Microsoft, 218
Microsoft Web Fonts, 66
Microsoft Word, zooming in to read
text, 74
Middle region, 122
Minification, 282
Mirror domains, 268
Mirrorhost, 268
Mixing color wheel, 41
Mobile devices, 262-273
content for, 265
current content, 268
FastCGI and, 273
functionality, 272

handlers, writing, 270
JavaScript support, 265
restructuring for users, 273
screen size, 264
support decisions, 266
testing, 267
transforming content for, 269, 270f
users of, 263f, 262-263, 264f
see also Accessibility
Mobile style sheets, 265
Mobile users, 263f, 262-263, 264f
Mocking up a website design, 15
Monochromatic scheme, 41
Monotype Corsiva, 71
MorgueFile.com, 55
Motor impairments, 239
Mouseless users, 239
Myriad Pro, 65

N

Nanoc, 291

Natural method, 53, 57
Navigation, 240

Navigation bar, 29

Negative positioning, 245
Neutral colors, 39

960 Grid System, 293, 295f
.noprint, 208

O

Opera Mini, 267
Opera Mobile browser, 264f
see also Browsers

P

p tag, 142

Page breaks, forcing, 212

Page margins, printing, 209

Page wrapper, 132

Page region, 122

Parent region, 122

Performance, 286f, 274-286
asset servers, 280
compressing files and, 281
ETags, 278, 279
file size (minifying), 282
image optimization, 284, 285f
issues with, 2771, 275-277
strategies for, 274-275
see also Search engine optimization

Permissions, for images, 298

PHOTOGRAPHERS

PROOFREADING

Photographers, hiring, 101
PhotoSchemer feature, 56
Photoshop
ACO (Photoshop Palette), 51
Add Layer Mask option, 95
Background Contents, 108
banner.png, 166
Blending Options, 98, 108
Color Picker, 47
displaying a grid on top of the
canvas, 90
drawing rectangles over content
regions, 92
Duplicate Layer option, 95
Elliptical Marquee tool, 109
expanding the canvas to resize the
mock-up, 104
exporting a transparent PNG, 165
exporting the other Foodbox images,
166
Flip Vertical transformation option,
95
foodlbox_mockup.psd, 89
Free Transform option, 95
Gradient Editor, 112
Gradient Fill tool, 109
Gradient Overlay tool, 112
Gradient tool, 95
grids and rulers, enabling, 91
Hand tool, 161
hiding layers below the banner, 165
Image Size command, 253
importing an Illustrator file, 84
importing and placing the logo, 93
layer groups, creating and using, 94
Layer Properties box, 165
Layer Style dialog, 112
Layers palette, 95
layers, benefits of, 86
layers, flattening, 86
learning image-manipulation skills,
24
login_button.psd, 115
Magic Wand tool, 109
Marquee tool, 103
mocking up a website in, 15
Move tool, 98, 103
New Guide command, 97
Options panel, 92
Place command, 93
PSDs, 15

raster graphics, 87
Rectangle Shape tool, 98
Rectangle tool, 92
Rounded Rectangle tool, 108
Save for Web & Devices option, 157,
165
Save Optimized As dialog, 166
saving the sliced banner, 165
search_button.psd, 110
Shape Layers, 92
signup_button.psd, 115
Slice Select tool, 163
Slice tool, 161
Slices from Guides button, 162
slicing to the gridlines, 163
smart objects, 93
Snap to Grid, 108, 161
Text tool, 96
use of, by designers and coders, 15
see also Color; Illustrator; Layers
PHP interpreter, 270
PHP, FastCGI and, 273
Pipe character, 249
Pixels
heading, resizing, 288
measuring font sizes in, 73
printing and, 210
png2ico, 253
PNG files, 222, 253
Pngcrush, 285
PNGs, using and optimizing, 158
Popular Ingredients tag cloud, 100
popup, 303
position:relative, 245
Positioning, absolute, 301
Pound sign, 141
Primary colors, 34
Printing, 207-213
contents only link, 212
fixing links, 210, 211f
font family, 209
four-color, 36
image resizing, 210
layout and, 209
.noprint class, 208
page margins and, 209
preparing for, 207
removing unnecessary elements, 208
separators for, 210
style sheets, linking, 208
Proofreading, 233, 259

PROPERTIES

STYLE SHEET

Properties, 171
Protanopia, 235, 236f
Pseudo-classes, 201
Purchasing, images, 298

Q

QuickPreview window, 57
Quirks mode, Internet Explorer, 126,
220

R

Raster graphics, 87
RAW format, 160
Relative links, 138
Rendering mode, 220
RGB color mode
definition of, 36
Kuler, 50, 52
mixing color wheel, 41
RYB and RGB color wheels
compared, 49

N

Safari, 215, 228f
Sans-serif fonts, 64
Saturation, 34
Scope creep, 100
Screen readers, 67, 194, 230, 244, 247,
249
see also Accessibility
Screen size
creating a readable site for any
display size, 89
mobile users, 264
Screencasts, 231
Search engine optimization, 255-261
alternate content, 256
content and, 255
Flash, 258
hiding content, 257
keyword overloading, 256
keywords, 257-259
links and, 260
lost users from, 260
main content and, 259
see also Accessibility; Keywords;
Performance
Search forms, 203
Search terms, 257
Second-level pages, 287

Second-level templates, 287
Section 508 guidelines, 243
Section headings, replacing, 198
Selecting effective fonts, 69
Selectors
class selectors, 173
definition of, 170
grouping selectors to share rules,
180
hash marks, 170
ID selectors, 172
indenting nested selectors, 188
referencing a class, 170
referencing an ID, 170
scoped selectors, 187
types of, 170
Self-closing tags, 129
Semantic markup, 122
Separators, 210
Serif fonts, 63
Set expires headers, 277
Shortcuts, keyboard, 246
Sidebar region, 29, 122, 135
Sign Up button, 143
Sketching design ideas, 27
Skip links, 244
Skip to Contents link, 244
Smart objects, 93
Smush-It!, 284, 285f
Spam, 260
span tag
loading an image into, 195
obscuring an element with, 194
Special characters, rendering with
entity codes, 145
Speed, see Performance
Speed test, 275
Spelling, 232
Split-complementary scheme, 44
src attribute, 134
SSL enabled, 281
Standards mode, doctype declaration
and, 126
Static pages, 291
StaticMatic, 291
Statistics, browser, 217
StatOwl, 217
Stock images, permissions, 298
style attribute, 175
Style guide, 199, 201
Style sheet, 200

STYLE TAG

WEB DEVELOPER TOOLBAR

forcing page breaks, 212
Less CSS and, 297
mobile devices, 265
printing and, 207, 208
style tag, 177
Subdomain, hosting mobile pages on,
266
Submit button, 136
Subtractive color mixing, 34

T

Tabbing, 247
tabindex attribute, 248
Tables, disadvantages of, 123
Tag attributes, 128
Tag clouds, 202
Browse Recipes tag cloud, 99,
137-140
definition of, 99
Popular Ingredients tag cloud, 100,
140
Tag soup, 126
Technical method, 47
combining the natural and technical
methods, 57
Templates, 287
advanced, 290
built-ins, 291
login page, 289, 290f
960 Grid System, 293, 295f
YUI grid builder, 292, 293f
Testing
accessibility, 249
browsers, 221, 242
for colorblindness, 250
iPhone, 267
Text, choosing a color for, 44
Three-color rule, 47
Times New Roman, 64
title tag, 130
Tours, 231
Trackbacks, 259
Transparency, 197, 222, 253
Tritanopia, 236, 237f
TwinHelix, 222
Typography, making content readable,
62

U

Underlines, 203
Unobtrusive JavaScript, 303

URLs, courtesy, 125
Usability
hearing impaired, 238
motor impairments, 239
visual impairment, 235, 2361, 236,
2371
see also Accessibility
User agent detection, 266
Users, see Accessibility; Audience;
Clients

Y

Values, 171
Vector graphics, 23
Verdana, 64
Vertical bar, 249
Videos, 231
Visual effects, 298
Visual impairment, 231, 232, 235,
236f, 236, 2371, 247
see also Accessibility

W

W3Counter.com, 217
W3Schools, 218
Warm colors, 38
Web design
absolute positioning, 301
accessibility and, 17
basic implementation plan, 26
creativity in, 14
elements of good design, 13
evaluating three design examples, 29
gathering requirements for a
website, 23
putting clients and their users first,
24
search engine rankings and, 29
serving the target audience, 24
sketching design ideas quickly, 27
templates, 287
understanding the real purpose of a
website, 22
visual effects, 298
see also Color; Cover-up method;
CSS; Fonts; Foodbox website
Web Developer Toolbar
Edit CSS, 179
installing, 149
opening the CSS Editor in Firefox,
179

WEB STANDARDS

ZOOMTEXT

validating pages against the W3C
page validation service, 149

Web standards

attributes of, when applied to
websites, 120

separating behavior from content
and presentation, 120

Web-safe color palette, 46f, 46
Web-safe fonts, 66
Website-management tools, 291
WebSiteOptimization.com, 275
Wet-floor effect, 94
Window-Eyes, 250

Windows Mobile, 267

World Wide Web Consortium (W3C),
120

X

X-height, 62
XHTML
HTML 5 and, 128
self-closing tags, support for, 129
tag soup, 126
why it’s preferred over HTML, 128
XHTML 1.0 Transitional, 126
XML Prologs, 220

Y

Yahoo! User Interface Library (YUI)
grid, 292, 293f

Yellow fade effect, 38

YSlow, 276, 277f, 280

Z

ZoomText, 236

Available in paperback and DRM-free PDF, our titles are here to help you stay on top of
your game. The following are in print as of December 2009; be sure to check our website at
pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build 2008 9780978739225 464
Stunning Rails Apps

Agile Coaching 2009 9781934356432 250
Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200
Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328
Behind Closed Doors: Secrets of Great 2005 9780976694021 192
Management

Best of Ruby Quiz 2006 9780976694076 304
Core Animation for Mac OS X and the iPhone: 2008 9781934356104 200
Creating Compelling Dynamic User Interfaces

Core Data: Apple’s API for Persisting Data on 2009 9781934356326 256
Mac OS X

Data Crunching: Solve Everyday Problems 2005 9780974514079 208

using Java, Python, and More

Debug It! Find, Repair, and Prevent Bugs in Your 2009 9781934356289 232
Code

Deploying Rails Applications: A Step-by-Step 2008 9780978739201 280
Guide

Design Accessible Web Sites: 36 Keys to 2007 9781934356029 336
Creating Content for All Audiences and

Platforms

Desktop GIS: Mapping the Planet with Open 2008 9781934356067 368

Source Tools

Developing Facebook Platform Applications with 2008 9781934356128 200
Rails

Enterprise Integration with Ruby 2006 9780976694069 360
Enterprise Recipes with Ruby and Rails 2008 9781934356234 416
Everyday Scripting with Ruby: for Teams, 2007 9780977616619 320

Testers, and You
FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager 2006 9780976694090 160
Should Know

GIS for Web Developers: Adding Where to Your 2007 9780974514093 275
Web Applications

Google Maps API, V2: Adding Where to Your 2006 PDF-Only 83
Applications
Grails: A Quick-Start Guide 2009 9781934356463 200

Continued on next page

Title Year ISBN Pages
Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264
Hello, Android: Introducing Google’s Mobile 2009 9781934356494 272
Development Platform

Interface Oriented Design 2006 9780976694052 240
Land the Tech Job You Love 2009 9781934356265 280
Learn to Program, 2nd Edition 2009 9781934356364 230
Manage It! Your Guide to Modern Pragmatic 2007 9780978739249 360
Project Management

Manage Your Project Portfolio: Increase Your 2009 9781934356296 200
Capacity and Finish More Projects

Mastering Dojo: JavaScript and Ajax Tools for 2008 9781934356111 568
Great Web Experiences

Modular Java: Creating Flexible Applications 2009 9781934356401 260
with OSGi and Spring

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240
No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320
Pomodoro Technique Illustrated: The Easy Way 2009 9781934356500 144
to Do More in Less Time

Practical Programming: An Introduction to 2009 9781934356272 350
Computer Science Using Python

Practices of an Agile Developer 2006 9780974514086 208
Pragmatic Project Automation: How to Build, 2004 9780974514031 176
Deploy, and Monitor Java Applications

Pragmatic Thinking and Learning: Refactor Your 2008 9781934356050 288
Wetware

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176
Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160
Pragmatic Version Control Using Git 2008 9781934356159 200
Pragmatic Version Control using CVS 2003 9780974514000 176
Pragmatic Version Control using Subversion 2006 9780977616657 248
Programming Clojure 2009 9781934356333 304
Programming Cocoa with Ruby: Create 2009 9781934356197 300
Compelling Mac Apps Using RubyCocoa

Programming Erlang: Software for a Concurrent 2007 9781934356005 536
World

Programming Groovy: Dynamic Productivity for 2008 9781934356098 320
the Java Developer

Programming Ruby: The Pragmatic 2004 9780974514055 864
Programmers’ Guide, Second Edition

Programming Ruby 1.9: The Pragmatic 2009 9781934356081 960
Programmers’ Guide

Programming Scala: Tackle Multi-Core 2009 9781934356319 250

Complexity on the Java Virtual Machine

Continued on next page

Title Year ISBN Pages
Prototype and script.aculo.us: You Never Knew 2007 9781934356012 448
JavaScript Could Do This!

Rails Recipes 2006 9780977616602 350
Rails for .NET Developers 2008 9781934356203 300
Rails for Java Developers 2007 9780977616695 336
Rails for PHP Developers 2008 9781934356043 432
Rapid GUI Development with QtRuby 2005 PDF-Only 83
Release It! Design and Deploy Production-Ready 2007 9780978739218 368
Software

Scripted GUI Testing with Ruby 2008 9781934356180 192
Ship it! A Practical Guide to Successful Software 2005 9780974514048 224
Projects

Stripes ...and Java Web Development Is Fun 2008 9781934356210 375
Again

TextMate: Power Editing for the Mac 2007 9780978739232 208
The Definitive ANTLR Reference: Building 2007 9780978739256 384
Domain-Specific Languages

The Passionate Programmer: Creating a 2009 9781934356340 200
Remarkable Career in Software Development

ThoughtWorks Anthology 2008 9781934356142 240
Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400
iPhone SDK Development 2009 9781934356258 576

|

Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with
confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from Debu g It!

constructing software that makes debugging easy;
through bug detection, reproduction, and
diagnosis; to rolling out your eventual fix. Learn
better debugging whether you're writing Java or
assembly language, targeting servers or embedded
micro- controllers, or using agile or traditional

Find, Repair,
approaches. & Prevent Bugs in
A Your Code

Debug It! Find, Repair, and Prevent Bugs in Your i i
Paul Butcher
COde & mumagmr;mﬂ

Paul Butcher
(232 pages) ISBN: 9781934356289. $34.95
http://pragprog.com/titles/pbdp

Do you ever look at the clock and wonder where the
day went? You spent all this time at work and
didn’t come close to getting everything done.

PRAGMATIC LIFE

Tomorrow, try something new. In Pomodoro POMODORO
Technique Illustrated, Staffan Noteberg shows you TECHNIQUE
how to organize your work to accomplish more in TLLUSTRATED
less time. There’s no need for expensive software or THE EASY WAY TO DO

MORE IN LESS TIME

fancy planners. You can get started with nothing
more than a piece of paper, a pencil, and a kitchen
timer.

Pomodoro Technique Illustrated: The Easy Way
to Do More in Less Time : = y
Staffan Noteberg SWFAN N B

(144 pages) ISBN: 9781934356500. $24.95 —
http://pragprog.com/titles/snfocus

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Web Design for Developers’ Home Page
http://pragprog.com/titles/bhgwad
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragprog.com/titles/bhgwad.

ComtactlUs

Online Orders: www.pragprog.com/catalog
Customer Service: support@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com
Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

