SECOND EDITION

el IMb
PLAYGROUND

HTML + CSS
THE INTERACTIVE WAY

PAUL MCFEDRIES

/I/I MANNING

Creating the main section of a photo gallery on the Web Design Playground

¢ Creating a Photo Gallery: The | X + v
& S @ * 0@ :

“+~ WEB DESIGN PLAYGROUND

& webdesignplayground.io/2/projects/photo-gallery/6/

B
X
.

bl

MENU =

1 <header> 1[E
2 <img src="/images/ampersand- 2 margin: 0;
photography.png" alt="Ampersand Photography padding: 0;

logo"> box-sizing: border-box;
<h1>Ampersand Photography</h1> 5 line-height: 1.3;
Project 4 </header> s
5 <nav> 7 body {
6 8 display: flex;

Creating a Photo Gallery
The Main Section

This example sets up the main element as a
Flexbox container. The flex items are the
photo thumbnails, each of which links to its
original photo.

<span cla

page">Gallery 1</s
<a hr >Gallery 2
>Gallery 3</1i>

>Gallery 4

<a href

<a href:

</n1s

flex-direction: column;
justify-content: flex-start;
align-items: center;
min-height: 100v

font-family: Opt

calibri, sans-serif;

harkarannd-rnlar: #21000+

Q{mpersand’ Photo r@ﬁy

GALLERY 1

GALLERY 2

GALLERY 3

GALLERY 4

New Sandbox

PRAISE FOR THE FIRST EDITION

Outstanding resource, not only for learning HTML and CSS, but also for
setting you on the path to being a true web designer.

—Shawn Eion Smith, director of software engineering,

The Pennsylvania State University

Web Design Playground is a wonderful guided tour of modern web design

and an excellent resource for those just getting started or looking to upgrade
their skills. The book is replete with relevant real-world examples.

—Conor Redmond, manager of software infrastructure,

InComm Product Control

My frustration with CSS is now gone after finding some answers | didn't find
anywhere else.
—Jose San Leandro, software developer, OSOCO

Greatresource. Covers all the aspects of a web page from design to development
to publishing.
—Prabhuti Prakash, solution architect, Atos India Pvt Ltd

A rare book at the juncture of web design and development that keeps in
mind the interest of novice designer/developers.
—Sachin Kumar, programmer/developer lead, Capgemini America

WEB DESIGN
PLAYGROUND

SECOND EDITION

PAUL MCFEDRIES

MANNING
SSSSSSSSSSSSS

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of
the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

€ Recognizing the importance of preserving what has been written, it is Manning's policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing
also our responsibility to conserve the resources of our planet, Manning books are printed on paper
that is at least 15 percent recycled and processed without the use of elemental chlorine.

/l/l Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical editor: Brian Daley
PO Box 761 Review editor: Aleksandar Dragosavljevic¢
Shelter Island, NY 11964 Production editor: Keri Hales

Copyeditor: Julie McNamee

Proofreader: Katie Tennant

Typesetter: Bojan Stojanovic
Cover designer: Monica Kamsvaag

ISBN 9781633438323
Printed in the United States of America

To Karen and Chase

Contents

Preface xi
Acknowledgments xiii
AboUt TRiISBOORot xv
Aboutthe AUthOr xix

PART1 GETTING STARTED WITH HTML AND CSS

Chapter 1 Gettingto Know HTMLandCSS 3
Whatis HTML?o e e 4
WRALTS CSS?. . oot 7
What Can’t You Dowith HTMLand CSS?. 10
How HTML and CSS Createthe Web 10
Introducing the Web Design Playground 1

Chapter 2 Building Your FirstWebPage 17
Adding HTML Tag Attributesooui i 19
Getting Your Web Page Off the Ground. 23
Learning the Most Common Text Elements 27

Chapter 3 Adding StructuretoYourPage...................... 39
HTML Elements for Structuring Page Text. 40
Organizing Text iNtO LiStS. 46

Chapter 4 FormattingYourWebPage......................... 53
StYINGTEXt ..ot 54
Working with Text Styles. 59
Styling Paragraphiso 62
Working with Colors 66
Formatting Your Web Pagecouii i 70

Chapter 5 Project: Creating a PersonalHomePage............. 71
What Youll Be Buildingoooi 72
Sketching the Layout.ooi 72
ChoosiNg TYPEfaCESot 73
Choosinga Color Scheme. i 73
Builldingthe Pageo T4
FromHe e . .. 83

vii

PART 2 WORKING WITH IMAGES AND STYLES

Chapter 6 Adding Imagesand OtherMedia.................... 87
Understanding Image File FOrmats.ooouiiiiaiiaie .. 89
Getting GraphiCs . ..o 90
Inserting an HTMLS FiQUTe.o iv i e 91
SettingUpanImageas aLink. 92
UsinganImage asa CustomBullet 93
AligningImages AN TeXt.ot 94
Controlling the Background Repeatoooiiiiioii .. 97
Setting the Background POSIHOMN. oot 98
AddingaHeroIMage oot 99
The Background Shorthand Property.c.oouiiiiiaeano .. 101
Optimizing Images. i 101
Adding Video and Audiotothe Page.c..cccoiiiiiiiai .. 102

Chapter 7 Learning More AboutStyles 111
Adding Styles to A PAZe. oot 112
Units of Measurementin CSS, 121

Chapter 8 Floating and Positioning Elements................. 123
Understanding the Default Page Flow. 124
Clearing Floated Elements.ouuui i 126
Preventing Container Collapse., 127
Floating aDrop COD . ..« o e e e e e 130
Floatinga Pull QUOte. oo 131
Relative POSTHIONING. . ..ottt e e e e 134
Absolute POSIEIONINGot ot ettt 136
Fixed POSILIONITIG © . . oo e e e e e e e 138
StICRY POSTHIONING. . . oottt 139

Chapter 9 Styling Sizes, Borders, and Margins. 143
The Anatomy of an Element BOXooouii i 144
Watch Out for Collapsing Margins!. 156

Chapter 10 Project: Creatinga LandingPage 159
What Youll Be BULldINgo 160
Sketching the LaYOUL.ottt 160
ChoosiNg TYPEACESo oottt 161
Choosinga ColorScheme. i, 162
Bulldingthe Paget 163
FromHere 182

PART 3 LAYING OUTAWEB PAGE

Chapter 11 Learning Page LayoutBasics 187
The Holy Grail LAQyOULot 188
Understanding Web Page Layout Methods. 189
Learning the HTML5 Semantic Page Elements 190

Chapter 12 Creating Page Layouts with Flexbox............... 203
Understanding Flexbox 204
Working with Flexbox CONtainerscooouiuiiiiiaaiiio... 205
Working with Flexbox Ttems. 213

Chapter 13 Creating Page Layouts with Grid. 227
Understanding CSS Grid Layoutovu i 228

Chapter 14 Designing Responsive Web Pages. 247
Creating a Responsive LOaVOUL. vvui it 251
Making Images ReSpOnSIVe oot 263
Making Typography ReSpOnSiVeo.uuiie i 268

Chapter 15 Project: Creatinga Photo Gallery 275
What Youll Be BUIldiNgo 276
Getting Your Photos Readycooio i 276
Sketching the LAYOUL.\ o et 276
Choosing TYPefaces oo 277
Choosingthe Colors. 278
Building the Pageo 278
AddingaFew TTiCRSo 287
FromHere 292

PART 4 MAKINGYOUR WEB PAGES SHINE

Chapter 16 More HTML Elements for Web Designers 295
More aboUt LinkS.o 304
Inserting Special Characters. 308
Using the HTML5 ENtity BrOWSETot 309
More HTML Elements for Web Designers.cooooooo... 310
Adding COMMENES.ottt 310

Chapter 17 Adding a Splash of Color to Your Web Designs.. 311
Understanding Colors.t 312
Adding Colors with CSS 315

Choosing Harmonious Colors. 323

Using the Color Scheme Calculator 324
Applyinga Color Gradient.ouiiiii i, 326
Chapter 18 Enhancing Page Text with Typography 333
Specifyingthe Typeface. 334
Working with Text Styles. 342
Enhancing Page Text with Typography. 348
Chapter 19 Learning Advanced CSS Selectors. 349
Working with ID SeleCtorsui i 350
Web Page Genealogy: Parents, Descendants, and Siblings. 352
Working with Contextual Selectorsccoiiiioii i, 353
Taking Things Up a Notch by Combining Selectors 359
Resetting CSS with the Universal Selector. 362
Styles: What a Tangled Web Page They Weave 363
Chapter 20 Project: Creating a PortfolioPage 371
What Youll Be BUllding 372
Sketching the LAYOUL.ot 372
ChoOoSING TYPEFACES . . . vttt 373
Choosinga ColorScheme.c i, 375
Building the Pageo 376
FromHere. 392

Appendix From Playground to Web:

Getting Your PagesOnline 395
From There to Here: Saving Your Playground Work 396
Selecting a Text EAItOT.o ov ittt e 398
Setting Up Your Folderso .. 399
Validating Your Code . ..o 400
Getting A Wb HOSEo vt 402
Uploading Your Files. 404
Index.o 405

Preface

In today’s world, lots of people crave the experience of expressing themselves
online. They can do that through fixed-format media such as Facebook,
X (formerly Twitter), and Instagram, but for many people, these sites are too
restrictive. Instead, they prefer to build their own presence on the web, and
the way to do that with the maximum amount of freedom and creativity is to
learn HTML and CSS.

In programming circles, many people believe that the best way to learn
how to code is by coding. Reading about the language is fine and necessary,
but if you really want to learn the language, you must use it. My own belief
is that the best way to learn to code is to play with code. For HTML and CSS,
this means two things:

« In standard HTML/CSS teaching, you're given some code—a tag,
say, or a template—and are told how it works. In playful HTML/
CSS teaching, you're given some code and encouraged to play
with it: change the font size, expand the padding, apply colors,
and so on.

« In standard HTML/CSS teaching, you're given simple or trivial
examples, such as the classic Hello World! demonstration. In
playful HTML/CSS teaching, you're given substantive, useful
projects to build from scratch and customize to suit your needs.

This spirit of playfulness and experimentation pervades Web Design
Playground, and | encourage you to view HTML and CSS as tools for creativity
and expression.

xi

Acknowledgments

The English essayist Joseph Addison once described an editor as someone
who “rides in the whirlwind and directs the storm.” | don't know if that's true for
editors in some of the more sedate publishing nooks (novels, cookbooks, and
such), but | think it applies perfectly to the rigors of computer-book editing.
Why? Well, the computer industry (and the web in particular) is so exacting
that even the teensiest authorial (or editorial) lapse could result in a book that
sows confusion and consternation rather than certainty and delight.

The good folks at Manning Publications minimize book blunders by
subjecting each manuscript to a barrage of reviews, not only by editorial
specialists but also by a team of dedicated outsiders (in a process | call “gang
reviewing”). Instead of a process in which single-digit numbers of eyeballs
look at the manuscript, a Manning book is scrutinized by dozens, so you get
a book that contains accurate and relevant information and a book that has
passed muster with some of the sharpest eyes and ears in the business. My
name may be the only one on the cover, but tons of people had a big role in
creating what appears between the covers (be they physical or virtual). Those
reviewers are Adam Wan, Andres Sacco, Boris Egorov, Eder Andres Avila Nifio,
Jean-Baptiste Bang Nteme, Matteo Battista, Mitchell Fox, Srikar Vedantam,
Steve Prior, and Tony Holdroyd. In addition, I'd like to extend warm thanks
to publisher Marjan Bace, development editor Karen Miller, technical editor
Brian Daley, and all the rest of the production staff at Manning who helped
bring this book to fruition.

The members of the editorial team aren’t the only people who had
their fingers in this publishing pie. There's a surprisingly long list of other
professionals who worked hard to produce this book. | tip my authorial hat
to all of them. I'd also like to thank all the people who took the time to review
the early manuscripts of the book and to offer comments and suggestions.
Your couple of cents’ worth was very much appreciated.

I'd be remiss if | didn't extend a hearty and heartfelt thanks to my agent,
Carole Jelen, whose hard work made this project possible and whose
breathtaking knowledge of the technical-publishing industry fills me with
awe and makes me grateful every day to have Carole working on my behalf.

xiii

About This Boolk

In this book, | teach you how to create beautiful web pages in no time flat. |
understand that the very idea of trying to create something that looks as good
as what you see on the web seems like an intimidating challenge. However,
it's my goal in this book to show you that it's quite straightforward and that
anyone can build an attractive and sophisticated web page with their bare
hands. | even try to have—gasp!—a little irreverent fun as | go along.

You'll also be happy to know that this book doesn’t assume that you have
any experience in web design, HTML, or CSS. You start from scratch and
slowly build your knowledge until, before you know it, you have your very
own tract of web real estate. All the information is presented in short, easy-to-
digest chunks that you can skim to find the information you want. The online
Web Design Playground (https://webdesignplayground.io/2) also offers instruction
and exercises that you can work through to hone your knowledge.

I'm assuming that you have a life away from your computer screen, so
Web Design Playground is set up so that you don't have to read it from cover
to cover. If you want to know how to add an image to your web page, for
example, turn to the chapter that covers working with images (chapter 6).
Beginners, however, will want to read at least chapters 1 through 4 before
moving on to more esoteric topics. To make things easier to find, the following
section gives you a summary of the book’s 20 chapters (and one appendix).

How this book is organized: A road map

Chapter 1 introduces you to HTML and CSS. You learn about the benefits
and limitations of these essential web design technologies, and you learn
how HTML tags and CSS properties work. You also get a brief introduction to
the book’s companion website, the Web Design Playground.

Chapter 2 takes you on a journey to build your first web page. You learn
how to set up the basic structure of a page and then add a title and some
text. From there, you learn how to mark up important and emphasized text,
quote text, add headings, and create links.

Chapter 3 shows you how to add some structure to a web page by giving you
the HTML tags that divide page text into paragraphs, add line breaks, organize
page text into separate chunks, and create inline containers for styling words
and phrases. You also get the lowdown on building numbered and bulleted lists.

Chapter 4 shifts back to CSS and shows you how to format text by applying
atypeface, atype size, and bold and italic styling. You also learn how to align and
indent paragraphs and how to apply colors to the page text and background.

Chapter 5 covers the first project of the book. In this case, you gather the
HTML and CSS knowledge from chapters 1 through 4 and use it to build a
personal home page for yourself.

XV

https://webdesignplayground.io/2

XVi ABOUT THIS BOOK

Chapter 6 shows you how to augment your web pages with nontext
elements. Most of the chapter coversimages, such as photos and illustrations,
but you also learn how to add video and audio files.

Chapter 7 furthers your CSS education by showing you the three ways you
can add styles to a page. You also learn how to wield class selectors, which
are among the most useful and powerful CSS techniques. | also introduce
you to the various measurement units you can use in your CSS rules.

Chapter 8 gives you the tools you need to take charge of your page
elements by taking them out of the default page flow used by the web
browser. You learn how to float elements on the page and how to position
elements relative to other elements or to the browser window itself.

Chapter 9 introduces you to one of the most powerful concepts in all of
CSS: the box model. You learn what the box model is all about, and you use
it to set an element’s width and height, add padding around an element’s
content, and augment an element with a border and a margin.

Chapter 10 takes you through the book’s second project, which is a
landing page for a product or service. You run through the full page-building
process, from sketching the design to choosing the typefaces and colors to
building the page structure and content.

Chapter 11 gets you started on the all-important topic of web page
layout. | introduce you to HTML5's semantic page layout tags—including
<headers, <article>, and <footer>—and show you how to use them to
create modern page layouts.

Chapter 12 gives you a complete tutorial on using the powerful, popular
Flexbox layout technology. You discover what Flexbox is and what it can do;
you learn the fundamentals of the technology; and then you put Flexbox to
work creating a standard web page layout.

Chapter 13 takes your page layout prowess to the next level by showing
you how to use CSS Grid, which is state of the art when it comes to page
layout. You learn what CSS Grid can do, and then | take you slowly and
carefully through the basics of setting up a grid and using it to perform page
layout magic.

Chapter 14 introduces responsive web pages, one of the hottest topics
in modern web design. You learn techniques that enable you to structure
your web pages so that they adapt to changing device screens, from giant
desktop monitors to tiny smartphone screens.

Chapter 15 covers the book’'s third project, which is an attractive,
sophisticated photo gallery. You sketch the layout, choose fonts and colors,
and then build the page step by step.

Chapter 16 takes you on a tour of many more HTML tags that will come
in handy during your web design career. You also learn how to use more
sophisticated linking techniques, add special characters (ones that aren't

readily accessible via the keyboard), and make your page source code easier
to understand with comments.

Chapter 17 is all about color, and you learn some color theory, along with
how colors work in CSS and the various techniques for applying a color. This
chapter gives you some pointers on choosing a harmonious color scheme for
your pages. Finally, you learn how to apply a color gradient to a page element.

Chapter 18 focuses on web page typography. You learn more about how
to apply a typeface, including using third-party fonts (such as those from the
Google Fonts collection) and how to host your own fonts. You also learn
how to apply small caps and set the line height for easier reading.

Chapter 19 presents several advanced but vitally important CSS concepts.
You learn lots more about CSS selectors, and you get some background on
three crucial CSS ideas: inheritance, cascading, and specificity.

Chapter 20 presents the book’s fourth and final project: a website for
showing off your personal portfolio. After building the basic structure, you
learn how to add site navigation, portfolio images, contact info, and more.

The appendix is devoted to getting your web code online. You learn
the various ways you can get your code from the Web Design Playground
to your computer. From there, | talk about how to choose a web hosting
provider and how to obtain a domain name. | close by showing you how to
upload and validate your files.

About the code

To encourage play and experimentation, the book has a companion website
called the Web Design Playground (located at https://webdesignplayground.io/2).
The site lets you type your HTML and CSS code in the editors provided, and
the browser’s rendering of that code appears with the click of a button in
the Results window.

The Web Design Playground also gives you access to all the book’s
example files, which you can customize and play with as your creativity
moves you. To facilitate experimentation and to reinforce the overall
sense of play, the book’s tutorial chapters also offer numerous hands-on
exercises that direct you to use the Playground to modify the provided
code in various ways. This helps you not only learn the material but also
see the range of what's possible. If you want to download all the book’s
example files, go to the book’s GitHub repository at https://github.com/
paulmcfe/wdpg2-example-files, click the green Code button, and then click
Download ZIP.

The Playground has an extensive help system to show you how everything
works, but you can find the basics in chapter 1. Instructions for getting the
code from the Playground to your computer are provided for you in the
appendix.

ABOUT THIS BOOK XxVii

https://webdesignplayground.io/2
https://github.com/paulmcfe/wdpg2-example-files
https://github.com/paulmcfe/wdpg2-example-files

xviii ABOUT THIS BOOK

You can get executable snippets of code from the liveBook (online)
version of this book at https:/livebook.manning.com/book/web-design-playground-
second-edition. The complete code for the examples in the book is available
for download from the Manning website at https://www.manning.com/books/web-
design-playground-second-edition, and from GitHub at https://github.com/paulmcfe/
wdpg2-example-files.

liveBook discussion forum

Purchase of Web Design Playground, Second Edition, includes free access
to liveBook, Manning’s online reading platform. Using liveBook's exclusive
discussion features, you can attach comments to the book globally or to
specific sections or paragraphs. It's a snap to make notes for yourself, ask
and answer technical questions, and receive help from the author and other
users. To access the forum, go to https://livebook.manning.com/book/web-design-
playground-second-edition/discussion. You can also learn more about Manning's
forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers and
the author can take place. It is not a commitment to any specific amount
of participation on the part of the author, whose contribution to the forum
remains voluntary (and unpaid). We suggest you try asking the author some
challenging questions lest his interest stray! The forum and the archives of
previous discussions will be accessible from the publisher's website as long
as the book is in print.

https://livebook.manning.com/book/web-design-playground-second-edition
https://livebook.manning.com/book/web-design-playground-second-edition
https://www.manning.com/books/web-design-playground-second-edition
https://www.manning.com/books/web-design-playground-second-edition
https://github.com/paulmcfe/wdpg2-example-files
https://github.com/paulmcfe/wdpg2-example-files

About the Author

PAUL McFEDRIES has been a professional technical writer for more than 30
years. He has more than 100 books to his credit, which collectively have
sold more than 4 million copies worldwide. When he’s not writing books,
Paul is building web pages, which he's been doing since 1996. Paul has
hand-coded many sites, including his web home (https://paulmcfedries.com);
Word Spy (https://wordspy.com); WebDev Workshop (https://webdevworkshop.io); and
this book’s companion site, Web Design Playground (https://webdesignplayground.io/2).

Xix

https://paulmcfedries.com
https://wordspy.com
https://webdevworkshop.io
https://webdesignplayground.io/2

Part1l

Getting Started with
HTML and CSS

This book begins at the beginning by defining HTML and CSS,
Introducing you to tags and properties, and showing you what
you can (and can't) do with these web-design technologies.
With Chapter 1's brief but necessary introduction out of
the way, in Chapter 2, you dive in and create your first web
page, complete with formatted text, headings, and links.
The rest of Part 1 builds on this foundation by showing you
how to add structure to your page (Chapter 3) and how to
style typefaces, paragraphs, and colors (Chapter 4). Chapter
5 brings everything together with a project that shows you
how to build a personal home page to show off to the world.

Chapter 1

Getting to Know
HTML and CSS

1] This chapter covers

* Exploring the fundamentals of HTML
* Learning the basics of CSS

* Understanding how HTML and CSS combine
to make web pages

* Introducing the Web Design Playground

When a jazz musician creates an improvisation, no matter how intricate, she
plays by using combinations of 12 musical notes (A through G plus the five
flats/sharps in between). When an artist creates a picture, no matter how
detailed, he paints by using combinations of three primary colors (red, yellow,
and blue). When poets create verse, no matter how inventive, they write by
using words that are combinations of the 26 letters of the alphabet. These
examples show that creativity and play don't require elaborate resources
or complex raw materials. Imagination and curiosity combined with a few
building blocks are all you need to express yourself in almost any art, including
the art of web page design. As you learn in this chapter and throughout this
book, HTML and CSS provide those building blocks. And although there are
more of those blocks than there are musical notes, primary colors, or even
letters of the alphabet, there aren't too many, but more than enough to let
you express yourself on an exciting modern canvas: the web.

WEB DESIGN PLAYGROUND 3

T Getting to Know HTML and CSS

4 WEB DESIGN PLAYGROUND

What is HTML?

The hardest thing about HTML by far is its name. HTML stands for Hypertext
Markup Language, which sounds about as inviting as a tax audit. But it
becomes a lot less intimidating when you break down its terms.

I'll begin with hypertext. A link, as I'm sure you know, is a special word or
phrase (or even an image) in a web page that “points” to another web page.
When you click one of these links, your browser transports you to the other
page immediately. The folks who invented the web used the geeky term
hypertext link for this special text. (The prefix hyper means beyond.) Because
these hypertext links are the distinguishing features of the web, pages are
often known as hypertext documents. So, HTML has hypertext in it because
you use it to create these hypertext documents. (It would be just as accurate
to call this language WPML, or Web Page Markup Language.)

My dictionary defines markup as “detailed stylistic instructions written on
a manuscript that is to be typeset” (among other things). For the purposes
of this chapter, | can rephrase this definition as follows: "detailed stylistic
instructions typed in a text document that is to be published on the World
Wide Web.” That's HTML in a nutshell. It has a few simple alphabetic codes—
called tags—for detailing things such as herding text into paragraphs,
creating bulleted lists, inserting images, and (of course) defining links. You
type these tags in the appropriate places in an ordinary text document, and
the web browser handles the dirty work of translating—or rendering—the
tags into paragraphs, lists, links, and so on. What happens when you use
a web browser to load your text document? Instead of showing the tags,
the browser automatically renders the tags so that your page is laid out
according to what the tags suggest.

The word language may be the most intimidating because it seems to
imply that HTML is a programming language. Fortunately, HTML has nothing
to do with computer programming. Rather, HTML is a “language” in the sense
that it has a small collection of “words” that you use to specify how you want
your text to appear—as a heading or as a numbered list, for example.

In short, playing with HTML means inserting a few codes strategically
between stretches of regular text in such a way that you end up with an
honest-to-goodness web page. As far-fetched as this may sound to you
now, by the end of this book, you'll have created several impressive HTML
projects.

What Can You Do with HTML?

When you add HTML to a document, you're essentially giving the web
browser a series of instructions that specify how you want the page to
be structured within the browser window. You use HTML to specify, in
its succinct way, the overall structure of the page and to let the browser
know what you want each part of the page to be. You use HTML to supply
instructions like the following:

What is HTML?

¢ Use this line of text as the main heading of the page.

* Treat these lines of text as subheadings.

¢ Make this chunk of text a separate paragraph.

¢ Turn these five consecutive items into a bulleted list.

* Convert these six consecutive steps to a numbered list.

¢ Make this phrase a link.

These instructions likely seem a bit abstract to you now, so I'll show you
a concrete example of HTML in action.

From Plain Text to HTML: An Example

Figure 1.1 shows a plain-text document displayed in a web browser. As you
can see, except for the occasional line break, the browser displays a wall of
unformatted, unwrapped text. This text is extremely difficult to read, and
it's exceptionally hard to extract meaning from the text because it's almost
entirely undifferentiated.

& - C @& webdesignplayground.io/2/neclogisms.txt h o &R 0O@P

How New Words Are Created

Where do new words come from? Sometimes we're lucky enough to know the answer. For example, the word scofflaw
originated as a contest winner and Frankenfood came from a letter to the editor of a newspaper. But for every
word with a definite origin, there are hundreds, nay thousands whose beginnings are unknown and probably
unknowable. That's because, according to the linguist Victoria Neufeldt, most word invention goes on as a
matter of course:

Heology, far from being a separable linguistic phenomenon that manifests itself periodically or sporadically in
response to social stimuli, in fact rises out of ordinary linguistic competence, what might be called the
linguistic collective unconscious of the speech community.--Victoria Neufeldt, linguist

This "ordinary linguistic competence"” manifests as various mechanisms that pecple use to forge new words:
Combining, Shortening, Shifting, Borrowing, Onomatopoeia, Mistakes, Retronyms

Let's lock at these in a bit more detail:

Combining

This process marries a word either with one or more affixes (a prefix, infix, or suffix) or with another word.
Bolting on a prefix or suffix (or both) to an existing word is probably the easiest and most common method for
making new words. English has d of affi ti-, pre-, un-, -able, -ing, -ness, and so on--and most of
us know how to wield these to give an existing word a makeover. Getting two existing words to shack up together
to create a compound is also a prolific source of new terms. For example, handshake, is a 1D d of the words
hand and shake. Finally there's the process called blending, which usually combines the first part of one word
with the last part of another word. For example, brunch is a blend of breakfast and lunch.

Shortening

This process is based mostly on a kind of linguistic laziness called clipping that causes us to lop off great
chunks of words. Usually the victims are unstressed syllables or non-primary stress syllables. For example, we
end up with fridge from refrigerator and flu from influenza. More commonly, we clip everything after the first
syllable: abs, dis, rad, exam, gym, lab, prof, condo, and so on. A relatively new form of shortening is to clip
stressed syllables. For example, phone from telephone, za from pizza, rents from parents, and burger from
hamburger.

A related process is the creation of acronyms, which create a pronocunceable word using the first one (or
sometimes two) letters of each word in a phrase. For example, UNICEF from United Nations International
Children's Emergency Fund, and NATO from North Atlantic Treaty Organization.

If the first letters of the phrase can't be pronounced as a word, then the result is an initialism, such as NHL
from National Hockey League and NYPD from New York Police Department.

Shifting

One of the things that most vexes language purists and other professional tsk-tskers is when the meaning of a
word changes over time. For example, it appears that the traditional sense of the word nonplussed, "bewildered
and at a loss as to what to think," is slowly giving way to a new (and opposite) sense: "unfazed." Even
experienced writers are using the new sense. For example, here's a snippet from the February 20, 2000 edition

»-Figure 1.1 The browser can display plain-text files, but they’re awfully hard to read.

WEB DESIGN PLAYGROUND 5

T Getting to Know HTML and CSS

HTML rides to the rescue, providing the means to make plain text more
readable and allowing you to display the text in a way that your readers will find
meaningful. Figure 1.2 shows the text from Figure 1.1 with some HTML applied.

& = G (‘o“ https://webdesignplayground.io/2/neologisms01.html)4‘5 » 0O a :

How New Words Are Created «— -

L RENICE W SRS (T T, Ol TS, 5i0F A7 T 4Yeo,
.(1730016:;:10:‘;? 2t ‘901';;, ’3951"?2’»2“, ALy i
L o v 5 Sy, flej
: S -f-)- Sce pR (najpg @y, .\ 92 Tpeoren {,
Ahe "€ Ngo, 1PI5q,; 5 (1, ~¢ agq,,
< Worgs 1S use [OLogy o 3iz'ny Y Chstay
Werd | 800 1) Ihnoy, 04 or | 304 gt fad. g
VS [soareidaplavion sion iy jthe p]
: 5 Comp? A7, i Clica
1] Syvlutio, ‘,Q'-'Mcé';"“"io,fz?,f"%"g"-
¢

NTs, Y ~
MDpeaetUne %, imey g Sl X 31 A

Link
Link Where do new words come from? Sometimes we’re lucky enough to know the answer. For example, the word scofflaw 4/
Mrmkenfm came from a letter to the editor of a newspaper. But for every word with a

Italic definite origin, there are hundreds, nay ghousands, whose beginnings are unknown and probably unknowable. That’s
because, according to the Tinguist Victoria Neufeldt (writing in her book A Civil But Untrammeled Tongue), most word

text invention goes on as a matter of course:

Quotation

Neology, far from being a separable linguistic phenomenon that manifests itself periodically or sporadically in 4_—/
response to social stimuli, in fact rises out of ordinary linguistic competence, what might be called the

1

ive ious of the speech community.
This “ordinary linguistic competence” manifests as various mechanisms that people use to forge new words:

* Combining
* Shortening
o Shifting

* Borrowing N
+ Onomatopocia /~ Bulleted list

¢ Mistakes
* Retronyms
« Ex Nihilo

Let’s look at these in a bit more detail:

Headi
_Combining «— cading

P> Figure 1.2 With some HTML applied, the text from Figure 1.1 becomes easier to read,
navigate, and understand.

Here, I've used headings to display both the article title at the top and
a section title near the bottom. Notice that the section title is rendered
in a type size that's slightly smaller than the main title, making the article
hierarchy immediately clear. | also used HTML to add an image for visual
interest. To help put the H in this page's HTML, | set up two of the words as
links to (in this case) other sites. Although you see a bit later in this chapter
that text formatting usually is the domain of CSS, you can also use HTML
to add a bit of formatting flourish to your pages, such as the italics | added
here. | also set up a quotation, which the browser renders indented from the
regular text, and | added italics to that quotation for added differentiation.
Finally, | used HTML to set up a bulleted list. Now that you know what HTML
can do, it's time to take a closer look at how you tell the browser what you
want your page to look like.

6 WEB DESIGN PLAYGROUND

What is CSS?

When you build a house, one of the early jobs is framing, which involves
putting up the basic structure for the floors, walls, and roof. That foundational
framing is what you're doing when you add HTML to your page: you specify
what you want to appear on the page, what you want the page’s various
items to be (such as a heading, paragraph, or list), and the order in which you
want these items to appear.

But as a house isn't a home without finishing touches such as molding,
paint, and flooring, your document isn't a modern example of a web page
until you've used CSS to add some finishing work. CSS stands for Cascading
Style Sheets, and, as is the case with HTML, its name is more complicated
than what it does. I'll break down the words, although in this case, I'll address
them slightly out of order for simplicity’s sake.

First, a style is an instruction to the browser to modify how it displays
something on the page, such as a word, a paragraph, or every instance of a
particular HTML element. These are usually formatting-related modifications,
such as changing the typeface or the text color, but you can also use styles
to control page layout and even to create animated effects. If you've ever
used styles in a word processing program, you already have a good idea of
what web page styles can do.

Okay, so what's a sheet? In the early days of publishing, firms maintained
manuals that defined their preferred formatting for typefaces, headings,
pulled quotes, and so on. This formatting was known as the house style, and
the manual was called a style sheet. In web design, a style sheet performs
essentially the same duties—it's a collection of styles that get applied to a
particular web page.

To understand the cascading part of CSS, you need to know that in
the same way that water running down a hill can take different routes to
the bottom, styles can take different routes before they get applied to an
element. Some styles come from the web browser; some styles come from
the user (if the user configures her browser to use a different default type
size, for example); and some styles come from your style sheets. When these
styles overlap, the web browser uses a complex algorithm to decide which
style gets applied, and that algorithm is called the cascade.

You use CSS, in other words, to define how your page looks. It may seem
that you use CSS only to add “eye candy” to a page, and it's certainly true
that CSS offers you the tools to make only trivial or frivolous modifications.
How your page looks, however, is every bit as important as what your page
contains because few people will bother to read text that's formatted poorly
or incoherently.

What is CSS?

BEWARE

The idea of the cascade
is by far the most
complex and convoluted
aspect of CSS. I get into
it later in the book (see
Chapter 19), but for now,
I highly recommend

that you transfer it to a
mental back burner until
you get that far.

WEB DESIGN PLAYGROUND 7

T Getting to Know HTML and CSS

8 WEB DESIGN PLAYGROUND

The Separation of Structure and Presentation
While you're trying to wrap your head around the differences between HTML
and CSS, let me offer a key distinction. Although I'm generalizing somewhat,
here’s the basic difference between the two:

o HTML defines the overall structure of the web page.

e CSS defines the visual presentation of the web page.

Some overlap exists here (HTML can affect the presentation of the page,
for example, and CSS can affect the layout), but for the most part, HTML
and CSS enable you to separate structure and presentation, respectively.
This distinction is important because when you keep these two aspects of a
web page separate, your page will be easier to build, easier to maintain, and
easier to customize.

What Can You Do with CSS?

When you add CSS to a document, you're telling the web browser how you
want specific elements to look. Each style is a kind of formatting instruction
to the browser. You can use these instructions in a wide variety of ways that
are similar to the following examples:

¢ Display all the links in red text.

* Use a specific font for all the headings.

¢ Create a bit of extra space around this paragraph.

¢ Add a shadow to this photo.

¢ Use lowercase Roman numerals for all numbered lists.

« Always display this section of text on the far-right side of the
window.

* Rotate this drawing by 45 degrees.
I'll make this list more concrete by showing you an example.

From Structure to Presentation: A CSS Example

Earlier in this chapter, | took a plain-text document (Figure 1.1) and applied a
bit of HTML to give it some structure and improve its readability (Figure 1.2).
In Figure 1.3, I've applied a few styles to make the page look a bit nicer.

What is CSS?

« - C (v:'- https://webdesignplayground.io/2/neclogisms02.html|) Pl S | a : PFigure 13
The example web page with
a few styles applied
How New Worps ARe CREATED yies app
B el g M“"d et S Strjne? Tsaay J"G ""‘Gnu
‘oz,, (e, . 137, ”‘Gmo tﬁ‘"w"h,f"fz:"‘ r,,;'?:n.
l&eN‘: m,p-_;dd?)“[?;"Védfé’ / Eﬁ:o.. !
- "y
1 Fneraticn o the pong R r)] e
u.‘:,;';,hn,‘”'ww“’""g ‘ o

Where do new words come from? Sometimes we're lucky enough to know the answer. For example, the word
scofflaw originated as a contest winner and Frankenfood came from a letter to the editor of a newspaper. But
for every word with a definite origin, there are hundreds, nay thousands, whose beginnings are unknown and
probably unknowable. That's because, according to the linguist Victoria Neufeldt, most word invention goes on
as a matter of course:

Neology, far from being a separable linguistic phenomenon that manifests itself periodically or
sporadically in response to social stimuli, in fact rises out of ordinary linguistic competence, what
might be called the linguistic collective unconscious of the speech community.

This "ordinary linguistic competence” manifests as various mechanisms that people use to forge new words:

= Combining = Onomatopoeia
= Shortening = Mistakes

= Shifting = Retronyms

= Borrowing = Ex Nihilo

Let's look at these in a bit more detail:
Combining

This process marries a word either with one or more affixes (a prefix, infix, or suffix) or with another word.
Bolting on a prefix or suffix (or both) to an existing word is probably the easiest and most common method for
making new words. English has dozens of affixes — anti-, pre-, un-, -able, -ing, -ness, and so on — and most of
L us know how to wield these to give an existing word a makeover. Getting two existing words to shack up d

Here's a summary of the major styles changes | made:

¢ Displayed the title in a larger text size, in small caps, and
centered

¢ Added a shadow to the photo

¢ Made all the text slightly smaller

¢ Removed the underline from the links

¢ Displayed the quotation in lighter-color text
¢ Converted the bullets to a two-column list

¢ Increased the side margins

WEB DESIGN PLAYGROUND 9

\

Getting to

10 WEB DESIGN PLAYGROUND

Know HTML and CSS

What Can’t You Do with HTML and CSS?

Earlier, | mentioned that HTML isn't a programming language, so it's fairly
straightforward to learn and deploy it in your web pages, which is good
news. The bad news is that HTML can’t handle many higher-level operations
because it's not a programming language. The list of what you can’t do with
HTML alone is quite long, but I'll mention the following because one or
more of them may be on your to-do list:

= Get data from a server database or other remote address
= Process data submitted through a form
= Handle user accounts, logins, and passwords

= Add, hide, or remove web page elements on the fly

Performing tasks like these requires a programming language such as
JavaScript or PHP, which are well beyond the scope of this book.

How HTML and CSS Create the Web

One of the most extraordinary facts about the web is that, except for extra
features such as images, videos, and sounds, its pages are composed of
nothing but text. That's right—almost everything you see as you surf the web
was created by stringing together the letters, numbers, and symbols that
you can tap on your keyboard.

That idea is a mysterious one, to say the least, so I'll give you a quick look
at how it works. Figure 1.4 shows the process.

The following steps explain the process in detail:

1 You use a text editor or similar software to create your HTML and CSS
files.

2 You upload your HTML and CSS files to an online service called a web
hosting provider, which runs a web server.
When you sign up for an account, the hosting provider issues you a
unique address, such as www.yourdomain.com. So, if you upload a file
named index.html, the address of that page is www.yourdomain.com/
index.html.

3 Asite visitor uses her web browser to type the address of your page.

4 The web browser uses that address to request your page from the
web server.

5 After making sure that the address is correct, the web server sends the
page to the user’'s web browser.

6 The web browser interprets the page’'s HTML tags and CSS properties
through a process called rendering, and the rendered code appears
on the user’s device.

http://www.yourdomain.com
http://www.yourdomain.com/index.html
http://www.yourdomain.com/index.html

Introducing the Web Design Playground

» Figure 1.4
> To go from HTML and CSS
v to a web page, you send
Server your code to a web server,
and visitors use their web
4. The browser requests browsers to retrieve and
your page from the server. render your code into
5. The server apage.
sends the page
files to the
HTML | 2. Upload the browser. Br\g\’v?:er
Css files to the web.
6. The browser
renders the page 3. Someone visits
1. Create your HTML for the visitor. your page.
and CSS files.

S
§ Site Visitor

As you can see, just because the web is made of simple stuff doesn't mean
that getting that stuff on the web is a simple matter. In fact, the procedure
is a bit convoluted, especially when you're starting. That's why | devote the
entire appendix to the process.

Introducing the Web Design Playground

Right now, though, you're probably itching to start playing around with
HTML and CSS to see what these fascinating technologies can do. | don't
blame you. One of this book’s core ideas is that the best way to learn HTML
and CSS is to have fun playing with your new knowledge, trying out different
tags and properties, and experimenting with different values. To help you do
all that with the least amount of fuss, I've built an online tool called the Web
Design Playground, shown in Figure 1.5, which you can access at https://
webdesignplayground.io/2.

WEB DESIGN PLAYGROUND 11

https://webdesignplayground.io/2
https://webdesignplayground.io/2

T Getting to Know HTML and CSS

“+~ WEB DESIGN PLAYGROUND T
Welcome g = HTML = css
1 <hi> 1 JEE
) 2 lelcome! 2 font-size: 5@px;
The Web Design Playground offers 3 SR = color: blue;
you an easy-to-use tool to play =

around with HTML tags and CSS
properties. The Web Design

Playground also offers all the \/\ .Ir'lll'lﬁLY::; /\/
code examples from the CSS here...

companion book, Web Design
Playground, as well as tutorials to
help you learn HTML and CSS,
“construction kits” that enable
you to easily work with complex
elements such as CSS gradients, '
and features that enable you to Welcome'
save your work and download
your own files.

Take a tour
...and what your code looks like in

Learn how the Playground works the web browser appears here.

Hide Editors New Sandbox

»>Figure 1.5 The Web Design Playground lets you play with HTML and CSS online.

You can use this site to try out HTML tags and CSS properties, load the
book’s example files, run through lessons that help you learn a topic, access
various “construction kits” for experimenting with features, save your work,
and even download the resulting HTML and CSS files to your computer. The
next few sections provide the details.

Playing with HTML and CSS

The main purpose of the Web Design Playground is to provide an easy-to-
use tool for playing around with HTML tags and CSS properties. Here's how
it works:

1 Inthe Web Design Playground, use the HTML editor to type the
HTML tags you want to try.

If a tag requires one or more attributes, be sure to add them as well.
2 Use the CSS editor to type the CSS property definitions you want to use.

3 Examine the Results box, which displays what your HTML and CSS will
look like in a web browser.

4 Repeat steps 1-3 to fix any problems or perform further experiments.

12 WEB DESIGN PLAYGROUND

Introducing the Web Design Playground

Loading the Lesson Files

This book contains a ton of HTML and CSS code. As a rule, you'll learn these
subjects in a deeper way if you type the examples by hand (which gives you
what | call a “fingertip feel” for the code). | understand, however, that you're
a busy person who may not have the time to type each example. To help
you, the Web Design Playground includes a menu that links to every lesson
from the book. When you select a lesson, you see an introduction followed
by one or more examples and then by one or more activities that help you
learn the lesson material. In each case, the code appears automatically, and
you can play around with it as you see fit.
Here are the steps to follow to load a lesson:

1 Inthe Web Design Playground, click Menu at the right end of the
toolbar. A menu of the site's links appears.

The Book Lessons section contains an item for each chapter in the
book.

2 Click the chapter that contains the lesson you're looking for.
3 In the submenu that appears, click the lesson you want to play with.

The lesson introduction appears.
PP REMEMBER

4 Click the Next Page button. You can also download

The lesson example’'s HTML tags and text appear in the HTML editor, the bhook’s lesson files

and the example’s CSS code appears in the CSS editor. individually or all at
once by using the book’s

GitHub repository:
6 To jump to another lesson in the same chapter, click the drop-down .1,c. /cithub.com/

menu above the Previous Page and Next Page buttons, and then click paulmcfe/wdpg2-
the lesson you want to see. example-files.

5 Click Next Page to work through the activities for the lesson.

Preserving Your Work

You'll spend most of your time in the Web Design Playground performing
experiments and trying out this book’s exercises. Occasionally, however,
you'll create some code that you want to save. The Web Design Playground
gives you two ways to do that:

e Copy some code. To copy code for use elsewhere, use the
HTML editor or the CSS editor to select the code you want to
copy, click the editor’'s Menu icon (the three horizontal lines
in the top-left corner of the editor), and then click Copy to
Clipboard.

¢ Download your work. In the Web Design Playground toolbar,
click Menu, and below the Playground heading, click Download
Code. This command saves the HTML and CSS as separate files,
which are stored in a zip archive and downloaded to your web
browser's default downloads folder.

WEB DESIGN PLAYGROUND 13

https://github.com/paulmcfe/wdpg2-example-files
https://github.com/paulmcfe/wdpg2-example-files
https://github.com/paulmcfe/wdpg2-example-files

T Getting to Know HTML and CSS

Now that you know what you can do with HTML and CSS and how to
use the Web Design Playground, you're ready to use the Playground to
understand how to work with HTML tags and CSS properties.

Some Helpful Features of the Playground

Now that you know what HTML tags and CSS properties look like, you can
return to the Web Design Playground and run through a few features that
are designed to help you enter your tags and properties correctly:

e The HTML tags and CSS property names and values appear in
colors that are different from the regular text. These colors help
you differentiate between code and noncode.

¢ In the HTML editor, when the text cursor is inside a tag, the
editor automatically highlights both that tag and its companion
tag. In Figure 1.6, you see that when | have the cursor in the
opening <p> tag, which is the tag for creating a paragraph (see
Chapter 2), the editor highlights that tag as well as its closing
</p> tag. This highlighting gives you a visual indicator that
you've closed your tags.

» Figure 1.6

The Web Design Meu— | = HTML

Playground’s HTML editor -

highlights both the opening 1 <p>

and closing tags when 2 Welcome to the Web Design Playground
the cursor is inside one of 3 </p>

them.

¢ The CSS editor has a similar feature: When the cursor is to the
immediate left or right of a brace, the editor highlights the
companion brace. This highlighting helps you make sure to
enter both the opening and closing braces when you define a
style.

¢ You can adjust the relative sizes of the editors by dragging the
vertical border that separates them.

¢ The Web Design Playground can do a limited amount of error
checking if you click an editor’s Menu icon (pointed out earlier
in Figure 1.6) and then click Display Errors. If the editor detects
something wrong, you see a red error indicator in the margin
to the left of the line that has the problem. Hovering the mouse
pointer over that icon displays the error message. If you forget
the forward slash in a closing tag, for example, you see the error
Tag must be paired, as shown in Figure 1.7.

14 WEB DESIGN PLAYGROUND

Summary

= HTML =
1 <p>
2 Welcome to the Web Design Playground
3 <p>
A

@ Tag must be paired, missing: [</p></p> |,
open/ tag match failed [<p>] on line 1.

/

The closing tag’s forward slash is missing.

Summary

e HTML stands for Hypertext Markup Language.
« HTML defines the structure of your web page.

¢ CSS stands for Cascading Style Sheets.

¢ CSS defines the presentation of your web page.

¢ To see this book’s lessons and to play around with HTML and
CSS code, use this book’s companion website, the Web Design
Playground: https://webdesignplayground.io/2.

» Figure 1.7

If the Web Design Playground
detects a problem, an error
icon appears in the margin
to the left of the code, and
hovering the mouse over

the icon displays the error
message.

WEB DESIGN PLAYGROUND 15

https://webdesignplayground.io/2

Chapter 2

Building Your First
Web Page

This chapter covers
21] . Lerain

= Learning the basic page structure and elements

* Learning the most common text elements
and styles

= Making a page easier to read with headings

= Creating links to other web pages

Many of the modern technologies that we have to learn—whether it's
building spreadsheets with Microsoft Excel, enhancing images with Adobe
Photoshop, or maintaining a music collection with Apple Music—require us
to master complex features bristling with settings and plagued by unintuitive
interfaces. So, it's with great pleasure that we come across technologies such
as HTML and CSS that have no complicated tools, settings, or interfaces to
figure out. In fact, they have no interfaces at all. They're mere text—a blissfully
simple symphony of letters and numbers and symbols. They're simple, yes,
but not unsophisticated. With HTML tags and CSS properties, you can build a
web page that reflects who you are, shows off your creativity, and announces
to the world, "Yes, | built this!”

WEB DESIGN PLAYGROUND 17

\

Building Your First Web Page

That's why, after the brief introduction in Chapter 1, you get your HTML and
CSS education off to a proper start here in Chapter 2 by building your first web
page. You learn the underlying structure that's common to all pages, as well as
all the standard text elements, and you learn how to add headings and links. If
you've got something to say, you learn how to say it with HTML and CSS.

Lesson 2.1: Introducing HTML Tags
Covers: HTML tags

= Online: wdpg.io/2/2-1-0

The addresses that
appear here and
elsewhere in this chapter
refer to locations

in the Web Design
Playground, this book’s
companion online site.
See “Introducing the Web
Design Playground” in
Chapter 1.

MASTER

Throughout this book, I
use the word element to
refer to a specific item
of HTML, such as p or
em, and the word tag to
refer to the element and
its surrounding angle
brackets, such as <p>
or .

HTML works its magic through short codes called tags. Each tag consists of

three parts:

¢ An opening left angle bracket (<), also known as the less-than sign.

¢ The name of the element you want to use. Element names are
short alphanumeric codes such as p for a paragraph, em for
emphasis, and h1 for a first-level heading.

¢ A closing right angle bracket (), also known as the greater-than sign.

Figure 2.1 shows the tag for an hl element.

Angle brackets

<hl>

/

Element name
» Figure 2.1

The structure of a
typical HTML tag

Angle brackets

A

</hl>

/

Forward slash

» Figure 2.2

The structure of the
closing tag for the h1
element

18 WEB DESIGN PLAYGROUND

In most cases, the tag tells the browser to start laying
out the page according to the element you specified. If
you add the tag (em = emphasis) as the opening
tag, for example, you're telling the browser to display
the text that follows in italics. You also must tell the
browser when you want it to stop displaying the text
with that element, so you need to add a companion to
the opening tag called the closing tag. The closing tag
is the same as the opening tag except that it requires a
forward slash before the element name. A closing tag
consists of the following four parts:

¢ An opening left angle bracket (<)
o A forward slash (/)

¢ The name of the element

¢ A closing right angle bracket (>)

Figure 2.2 shows the closing tag for an hl element.
Together, the opening and closing tags create a kind of
container to which you add some text (or even other
elements); the browser displays the text according to
the element that you specify in the tags. In Figure 1.1 of
Chapter 1, the text How New Words Are Created appears
at the top of the file. To turn that text into the article’s
main heading (as shown in Figure 1.2 of Chapter 1), |
applied the <h1> tag, which displays the text as a first-
level heading. The following example shows how | did it.

http://wdpg.io/2/2-1-0

Adding HTML Tag Attributes

» Example = Online: wdpg.io/2/2-1-1

This example uses the h1 element to turn the text How New Words Are Created into a

first-level heading.

w

O

= How New Words Are Created — __,
@ an h1 heading
=

E‘ <hl>How New Words Are Created</hl> The closing tag

'_

[=

The opening +ag The affected text

By adding a few characters, you're telling the browser to do a whole
bunch of things to the text:

¢ Display the text visibly separated from the rest of the content.
* Add a bit of vertical space above and below the text.
¢ Format the text as bold.

¢ Format the text larger than the regular-page text to make it
clear that the text is a heading.

You learn more about headings later in this chapter, but you can see that
this deceptively simple code lets you do many things without much work.
That's the magic of HTML.

Adding HTML Tag Attributes

Many HTML elements require no embellishment: you add the tag to the
page, and the browser does the rest. A few tags, however, do require extra
information before the web browser can process them correctly. You use
the tag, for example, to insert a picture into a web page, but you need
to tell the web browser where your image is located. Similarly, to create a
link, you use the <a> tag, but again, the web browser needs more info. In
this case, it needs to know what you want to link to (such as the address of
another website).

You supply these and similar extra bits of data to the browser by adding
one or more attributes to the tag. An attribute is a name-value pair in which
the name tells the browser the specific attribute, and the value assigns the
setting you want to use.

MASTER

Although most HTML
elements have both an
opening and a closing
tag, not all of them do.
The element that you use
to insert an image, for
example (see Chapter 6),
doesn’t require a closing
tag. These tags are known
as self-closing tags, and
these elements are known
as void elements because,
in a sense, they don’t
“contain” anything.

The text in Figure 1.1 of
Chapter 1 has several
single-word paragraphs
that are intended to

be headings. Line 7,

for example, consists

of the text Combining.
Given what you've
learned about applying
a first-level heading to
the article title, apply

a second-level heading
to the Combining text.
= Online: wdpg.io/2/2-1-4

WEB DESIGN PLAYGROUND 19

http://wdpg.io/2/2-1-1
http://wdpg.io/2/2-1-4

\

REMEMBER

Although technically
you're allowed to

mix lowercase and
uppercase letters in
HTML element names
and attribute names, I
highly recommend using
only lowercase letters.
Alllowercase is the norm
in web design because
it’s easier to type and
read. You should also use
lowercase for attribute
values except when a
specific value requires
some uppercase, such as in
a filename or an address.

Building Your First Web Page

When you're writing a link, for example, you specify the link address by
adding the href attribute and setting its value to the address you want to
use. Figure 2.3 shows an example.

» Figure 2.3

You can use attributes to
specify extra data for some
HTML elements, such as the
link address for an <a > tag.

— /

e

Attribute value

Attribute name

Here, the href (short for hypertext reference) attribute is assigned the
value https://webdesignplayground.io/, which is the address the
user will be taken to if she clicks this link. Notice that the attribute value is
surrounded by double quotation marks. These quotation marks are optional,
but using them makes your code easier to read and maintain.

When combined with attributes, HTML can do some useful, powerful
things. But HTML isn't the only web page tool you get to play with. In many
ways, CSS is far more powerful and fun than HTML, and you begin learning
how it works in the next section.

Lesson 2.2: Introducing CSS Properties

» Figure 2.4
The syntax to use for
defining CSS properties

Covers: CSS properties

= Online: wdpg.io.com/2/2-2-0/

CSS consists of a large collection of items called properties that control
aspects of your page such as the text color, the font size, and the margins
that surround an object. For each property you want to use, you assign
a value, and that property-value pair (also known as a declaration) is the
instruction that the browser carries out.

You have multiple ways to define a style, as you'll see in Chapter 7. For
now, I'll go through the two most common methods. Figure 2.4 shows the
general form of the first method.

The web page
element
to be styled

The property-value pairs are
surrounded by opening and
closing braces.

propertyl: valuel;
property2: value2; One or more X
o property-value pairs

From Figure 24, you see that defining a style consists of the following
five parts:

20 WEB DESIGN PLAYGROUND

http://wdpg.io.com/2/2-2-0/
https://webdesignplayground.io/

Adding HTML Tag Attributes

* Areference to the web page element or elements to which you
want the style applied. This reference is known as a selector
because you use it to choose which page elements you want
the browser to style.

« An opening left brace ({).

e The name of the property you want to apply. Property names
are short alphabetic codes such as color for the text color,
font-size for the text size, and margin for the margin size.
The property name is always followed by a colon (:) and then a
space for readability.

¢ The value you want to assign to the property, as well as the unit
you want to use, if necessary. To specify a text size in pixels, for
example, you add px to the value. The value is always followed
by a semicolon (;), except for the last value, where you can skip
the semicolon.

« A closing right brace (}).

Taken together, these five parts comprise a style rule. If you ever need to
refer to just the set of declarations inside the curly braces, you can call them
the declaration block. The following example shows the style rule | used to
tell the browser to set the font size for the main (h1) heading in Figure 1.2
(Chapter 1).

» Example 2> 0nline: wdpg.io/2/2-2-1
This example uses CSS to apply the font - size property to the h1 element.

Text rendered with

HOW New Words Are Created / a 36-pixel type size

WEB PAGE

’/*The item you want to s+yle and

the opening brace
hi {

font-size: 36px;

The style propert
The c|osin9 brace and i+syvaILPJe Py

<hl>How New Words Are Created</hl>

HTML

WEB DESIGN PLAYGROUND 21

http://wdpg.io/2/2-2-1

Building Your First Web Page

PLAY The style rule begins by referencing the h1 HTML element, which tells
How would you format a the browser to apply what follows to every <hls tag in the current web
web page's second-level page. After the opening brace ({), the next line specifies the declaration:
headings with a font size font-size: 36px;. This line instructs the web browser to display every
of 30 pixels? & Online: instance of hl text at a font size of 36 pixels. Finally, the closing brace (})

wdpg.io/2/2-2-2 completes the style rule.

Here, you see one of the great advantages of using styles. If your page
has a dozen hl headings, this rule applies to them all, which gives the page
a consistent look. Even better, if you decided that a size of 48px would look
nicer for your headings, you'd have to change the value only once in the
style rule, and that change would get reflected automatically in all your hl
headings.

Note that you're not restricted to a single declaration in your style rules.
As you can see in the following example, you can add multiple declarations
as needed.

» Example =) online: wdpg.io/2/2-2-3
This example uses multiple declarations in a single CSS rule..

Text rendered at 36 pixels,

|
9: centered, and small caps
a /
m
s INTRODUCING CSS PROPERTIES
a hi { Thi ty centers the headi
8 I — is property centers the heading.
text-align: center;
font-variant: small-caps;
} This property displays the heading
The closing SEs in small capital letters.
E‘ <hl>How New Words Are Created</hl>
|_
T

Here, I've added the declarations text-align: center; to center the
heading and font-variant: small-caps; to display the heading in small
capital letters.

22 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-2-2
http://wdpg.io/2/2-2-3

Getting Your Web Page Off the Ground

I mentioned earlier that you have another way to specify a style. You can
insert the declaration directly into an HTML element by using the style
attribute:

<element style="propertyl: valuel; property2: value2; etc.">

Here's an example:
<hl style="font-size: 36px; text-align: center">

When you use this method, your styles apply only to the HTML element
in which they're declared. | talk more about this method in Chapter 7.

CSS is slightly more complicated than HTML, but with that complication
comes immense power and expressiveness. As you see throughout the rest
of this book, CSS is your royal road to creating fantastic, fun web pages.
When your HTML structure is festooned with CSS formatting, you can create
beautiful web pages that are a pleasure to read and navigate.

Getting Your Web Page Off the Ground

This book's goal is to help you create your own web pages and thus lay claim
to a little chunk of personal cyberspace real estate—a home page away from
home, if you will. Before you can live in this humble abode, however, you
must pour the concrete that serves as the foundation for the rest of your
digital domicile. In this section, | show you a few HTML basics that constitute
the underlying structure of all web pages.

Lesson 2.3: Laying Down the Basic Page Structure

Covers: Page-structure elements

= Online: wdpg.io/2/2-3-0

All your web page projects, from the simplest page to the most sophisticated
business site, begin with the same basic structure, as follows:

<IDOCTYPE html> #1
<html lang="en"> #2
<head> #3
<meta charset="utf-8"> #4
<title></title> #5
<style></style> #6
</head> #3
<body> #7
</body> #7
</html> #2

No doubt this code looks a little intimidating to you. | apologize for that
complication, but it's a necessary one that's baked into the way web pages
are built. Fortunately, | can soften the blow somewhat by offering you two
bits of good news:

MASTER

In this section’s
examples, I use four
spaces to indent the
declarations. This
indentation isn’t
required, but it makes
CSS much easier to
read, so it’s a good
idea to get into the
habit of indenting your
declarations.

How would you format
a web page's second-
level headings with a
font size of 30 pixels
and right alignment?

= Online: wdpg.io/2/2-2-4

MASTER

Here, I use four spaces
to indent the tags when
they fall inside other
tags. This indentation
isn’t strictly necessary,
but it’s a good idea;
indentation makes your
code easier to read and
troubleshoot because
you can more readily see
each pair of opening and
closing tags.

WEB DESIGN PLAYGROUND 23

http://wdpg.io/2/2-2-4
http://wdpg.io/2/2-3-0

Building Your First Web Page

You can copy and paste
the basic web page
structure from the Web
Design Playground.

=) Online: wdpg.io/2/2-3-0

REMEMBER

In the Web Design
Playground, I've
deliberately hidden
elements such as
<!DOCTYPE>, <html>,
<head>, <style>, and
<body> because (at
least in the Playground)
you don’t work with
these elements directly.
When you type tags in
the HTML editor, the
Playground adds them
between the <body > and
</body> tags behind
the scenes. Similarly,
when you type styles

in the CSS editor, the
Playground adds them
between the <style>
and </style> tagsin
the background.

24 WEB DESIGN PLAYGROUND

* This code is by far the most complex you'll see in this chapter,
so if you can muddle through the next few paragraphs, sailing
the rest of the way will be much easier.

¢ When you work in the Web Design Playground, you don't
see the basic structure code shown previously because the
Playground hides it behind the scenes. (You're welcome.)

The structure begins with <!DOCTYPE html> right at the top (#1), and
this line has a technical meaning that you can ignore. Suffice it to say that
you must include this line to ensure that your web page renders correctly.
The next part of the structure consists of the <html> tag and its closing </
html> tag (#2), which together define the overall container for the rest of
the page’'s HTML and CSS. The <html > tag includes the lang="en" attribute,
which tells the web browser that the primary language of the page is English.

The rest of the structure is divided into two sections: the header and the
body.

The header section is defined by the <head> tag and its closing </head>
tag (#3). The header section acts as an introduction to the page because
web browsers use the header to glean various types of information about
the page. One important bit of data is the character set used by the page,
which is what the <meta> tag is doing (#4). You also use the header section
to define the page title (#5), which | talk about in the next section. Most
important for this book, the <style> tag and its closing </style> tag (#6)
are where you enter your style definitions.

The body section is defined by the <body> tag and its closing </body>
tag (#7), and this section is where you'll enter most of your HTML tags. The
text and tags that you type in the body section are what appear in the web
browser.

Lesson 2.4: Adding a Title

Covers: The <title> tag

= Online: wdpg.io/2/2-4-0

You may be tempted to think of the page title as the text that appears at the
top of the page. In HTML, however, the page title is what appears on the web
browser's tab for that page, as shown in the following example.

http://wdpg.io/2/2-3-0
http://wdpg.io/2/2-4-0

Getting Your Web Page Off the Ground

» Example 2> 0nline: wdpg.io/2/2-4-0
The text that you add between the header section's <title>and </title> tags
appears either on the page's browser tab, as shown in this example, or on the browser’s title bar.

L The web page title

2

g 3

om I

Ll ¢ Neologisms X L

=
&< — C % https://webdesignplayground.io/2/neologisms01.html
How New Words Are Created
B s BAG,[pCE RS g A b st
urocople] | ¢ NeoTomeota gy T 4L Fou®

E‘ <!DOCTYPE html>

= <html lang="en">

T

<head>
<meta charset="utf-8">
<title>Neologisms</title> 4 > pl. o 1o page title

<style></style> between the <title>
</head> and </title> +ags.
<body>
</body>
</html>

Here are a few things to keep in mind when thinking of a title for your page:

e Your HTML code must include a title to be considered a valid web
page (see the appendix to learn how to validate your HTML code).

* Make sure that your title reflects what the page is about.
¢ Make the title unique with respect to your other pages.

¢ Because a longish title often gets truncated when it's displayed
in the narrow confines of a browser tab, put a truly descriptive
word or two at the beginning of the title.

¢ Use a title that makes sense when someone views it out of
context. A person who really likes your page may bookmark it,
and the browser displays the page title in the bookmarks list, so
it's important that the title makes sense when that person looks
at the bookmarks later.

WEB DESIGN PLAYGROUND 25

http://wdpg.io/2/2-4-0

Building Your First Web Page

Lesson 2.5: Adding Some Text
Covers: Adding web page text

= Online: wdpg.io/2/2-5-0

If you tried to load a page containing only the basic structure code shown
earlier in Lesson 2.3, you wouldn't see anything in the browser. Although the
browser uses the tags in the header section internally, including displaying
the title in the browser’s current tab, the browser’s content area displays only
the tags and text that you place between the <body> and </body> tags.

c c Ultimately, users visit your website for its content.
Everything else is just the backdrop. —Jakob Nielsen

In the following example, | added the text Hello HTML World! to the
body section.

» Example =) online: wdpg.io/2/2-5-1
The text that you add between the <body> and </body> tags appears in the browser
window.

r
00 %" Lesson 2.5: Adding Some Text: X +

<« > C @& webdesignplayground.io/2/lessons/2-5-1/

5~ WEB DESIGN PLAYGROUND

Hello HTML World!
|

WEB PAGE

The text between the <body> and </body>
tags appears in the browser’s content area.

< !DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>The Web Design Playground</titles>

HTML

<style></style>
</head>
<body>
Hello HTML World! Place the Paﬁe text
</body> between the “<body>
</html> and </body> +ag9

26 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-5-0
http://wdpg.io/2/2-5-1

Learning the Most Common Text Elements

Here are a few things you should know about adding text to a web page:

¢ If you're working in the Web Design Playground, remember that
the HTML editor assumes that what you type in that box will be
inserted between the <body> and </body> tags, so you don't
need to enter them.

¢ You may think that you can line things up and create some
interesting effects by stringing together two or more spaces.
Alas, no, that effect won't work. Web browsers chew up all
those extra spaces and spit them out into the nether regions of
cyberspace. Why? Well, the philosophy of the web is that you
can use only HTML tags to structure a document and CSS to
style it. So, a run of multiple spaces—whitespace, as it's called—
is ignored (with some exceptions; for example, see the pre
element in Chapter 16).

¢ Tabs also fall under the rubric of whitespace. You can enter tabs
all day long, but the browser ignores them.

¢ Other things that browsers like to ignore are carriage returns.
It may sound reasonable that pressing Enter or Return starts a
new paragraph, but that's not so in the HTML world. | talk more
about this topic in the next section.

¢ Earlier, | mentioned that web pages consist only of the
characters that you can peck out on your keyboard. Does that
mean you're out of luck if you need to use characters that don't
appear on the keyboard, such as the copyright symbol or an
em dash? Luckily, you're not. HTML has special codes for these
kinds of characters, and | talk about them in Chapter 16.

Learning the Most Common Text Elements

Having great content is essential for any web page, and as you've seen so far
in this chapter, you can get started on a web page by typing some text. But
content is only the beginning. Figure 2.5 shows an example of a text-only
web page.

How New Words Are Created Where do new words come from? Sometimes we're lucky enough to know the answer. For example, the word scofflaw
originated as a contest winner and Frankenfood came from a letter to the editor of a newspaper. But for every word with a definite origin, there are
hundreds, nay thousands whose beginnings are unknown and probably unknowable. That's because, according to the linguist Victoria Neufeldt (writing in
her book A Civil But Untrammelled Tongue), most word invention goes on as a matter of course: Neology, far from being a separable linguistic
phenomenon that manifests itself periodically or sporadically in response to social stimuli, in fact rises out of ordinary linguistic competence, what might
be called the linguistic collective unconscious of the speech community. This "ordinary linguistic competence" manifests as various mechanisms that
people use to forge new words.

»Figure 2.5 Aweb page with nothing but text

WEB DESIGN PLAYGROUND 27

Building Your First Web Page

Content precedes design. Design in the absence of
content is not design, it’s decoration. —Jeflrey Zeldman

What you're seeing in Figure 2.5 is a page in which the text isn't adorned
with any HTML elements. Yes, you can read the page, but would you really
want to? | didn't think so. The page as it stands is fundamentally unappealing
because it's a bunch of undifferentiated text, which makes it both difficult
to read and dull to look at. By contrast, check out the revised version of the
page shown in Figure 2.6.

How New Words Are Created

Where do new words come from? Sometimes we’re lucky enough to know the answer. For example, the word scofflaw originated as a contest winner and
Frankenfood came from a letter to the editor of a newspaper. But for every word with a definite origin, there are hundreds, nay rhousands, whose
beginnings are unknown and probably unknowable. That’s because, according to the linguist Victoria Neufeldt (writing in her book A Civil Bur
Untrammelled Tongue), most word invention goes on as a matter of course:

Neology, far from being a separable linguistic phenomenon that manifests itself periodically or sporadically in response to social stimuli, in
fact rises out of ordinary linguistic competence, what might be called the linguistic collective unconscious of the speech community.

This "ordinary linguistic competence” manifests as various mechanisms that people use to forge new words.

P> Figure 2.6 The web page from Figure 2.5 with some basic HTML text elements added

Ah, that's better! Now the page is easy to read and reasonably nice to
look at. The difference is that in this version, | used some basic HTML text
elements to redisplay the text in a form that's readable and understandable.
You'll learn how | did that as you read this chapter. In the next section, you
learn how to use the HTML required to mark text as important.

Lesson 2.6: Marking Important Text
Covers: The strong element

MASTER s
All web browsers define e
a default style for every On your web page, you may have a word, phrase, or sentence that you want

text element, such as %"’ld to be sure the reader sees because it's important. This text may be a vital

for text marked up with instruction, a crucial condition, or a similarly significant passage that needs

the strong element. , .
to stand out from the regular text because you don't want the reader to miss

You don’t have to stick) . .
with the browser styling, it. In HTML, you mark text as important by using the strong element:

however, because, in all important text goes here
cases, you can augment

or override the defaults All browsers render the text between the and tags

in a bold font. The following example shows some web page text with an

by using your own styles.
You get into this topic important passage displayed in bold and the HTML markup used with the
big-time in Chapter 4. text.

28 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-6-0

Learning the Most Common Text Elements

b Example = Online: wdpg.io/2/2-6-1

This example uses the tag to mark an important passage of the text as bold.

WEB PAGE

in her book A Civil But Untrammelled Tongue) ,

HTML

That's because, according to the linguist Victoria Neufeldt (writing in her book A Civil
But Untrammeled Tongue), most word invention goes on as a matter of course

\x__Text marked with

the tag

That's because, according to the linguist Victoria Neufeldt (writing

most word invention goes on as a matter of course</strongs

Text marked as impor+an+
with the <s+rong> +ag

Lesson 2.7: Formatting Keywords

Covers: The b element

= Online: wdpg.io/2/2-7-0

In some cases, you want to draw attention to a word or phrase not because
it's important per se, but because the text in question plays a role that makes
it different from regular text. That text could be a product name, a company
name, or an interface element such as the text associated with a check box or
command button. Again, the text you're working with isn't crucial—it's different
in some way—so you want it to look different from the regular page text.

Each of these items indicates a keyword (or key phrase) that has meaning
beyond the regular page text. In HTMLS, this type of semantic item is marked
up with the b element:

keyword

Web browsers render the text between the and tags in a bold
font. At this point, | imagine you scratching your head and wondering what
the difference is between the strong element and the b element because
both render as bold text. That's a fair point, and I'll admit that the difference
is a subtle one. | should say that it's a semantic one because HTML5 uses
these two separate elements to differentiate between important text
and keywords. In the future, | hope, screen readers and similar assistive
technologies for disabled readers will use this semantic difference to alert
the visitor in some way that this text is important and that text is a keyword.

To learn more about

the strong element,

try the exercises on the
Web Design Playground.
= Online: wdpg.io/2/2-6-2

Other candidates for web
page keywords include
the name of a person
(such as the infamous
“boldface names” that
appear in celebrity gossip
columns) and the first
few words or the opening
sentence of an article.

How would you mark
up an article so that its
lede sentence appears

in bold? = Online:
wdpg.io/2/2-7-2

WEB DESIGN PLAYGROUND 29

http://wdpg.io/2/2-6-1
http://wdpg.io/2/2-7-0
http://wdpg.io/2/2-6-2
http://wdpg.io/2/2-7-2

Building Your First Web Page

The following example shows some web page text with a keyword
displayed in bold and the HTML markup used with the text.

» Example = online: wdpg.io/2/2-7-1
This example shows some web page text with several keywords displayed in bold thanks

to the b element

lLJDJ Text marked with the tag
5 \
o
g The combining process martries a word either with one or more affixes
(a prefix, infix, or suffix) or with another word.
§ The combining process marries a word either with one or
[more affixes (a prefix, infix, or suffix) or with another word.
T
Text marked as keywords
with the tag
Lesson 2.8: Emphasizing Text
Covers: The en element
= Online: wdpg.io/2/2-8-0
FAQ It's often important to add emphasis to certain words or phrases on a page.
-------------- This emphasis tells the reader to read or say this text with added stress.
What's the difference

Consider the following sentence:
between the strong

element and the em
element? You use strong
when the text in question
is inherently crucial for
the reader; you use em
when the text in question
requires an enhanced

stress to get a point across.

Verdana is a sans-serif typeface.

Now read the same sentence with emphasis (expressed in italics) added to
the word sans:

Verdana is a sans-serif typeface.

The meaning of the sentence and how you read the sentence change with
the addition of the emphasis (in this case, to stress the fact that Verdana isn't
a serif typeface).

In HTML5, this type of semantic item is marked up with the em (for
emphasis) element:

text

Web browsers render the text between the and tags in italics.

The following example shows a web page with emphasized text displayed in
italics, as well as the HTML markup that creates the effect.

30 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-7-1
http://wdpg.io/2/2-8-0

Learning the Most Common Text Elements

» Example 2> Online: wdpg.io/2/2-8-1

This example shows some web page text with several words emphasized via the em element.

ILJDJ But for every word with a definite origin, there are hundreds, nay
< thousands, whose beginnings are unknown and probably unknowable.
g\
w
= :
Text marked with the tag
= But for every word with a definite origin, there are hundreds,
= L.
|:E nay thousands, whose beginnings are unknown and probably

k: ble. i
TELSRETEISIE Text marked as emphasized

with the +ag

Lesson 2.9: Formatting Alternative Text

Covers: The i element

= Online: wdpg.io/2/2-9-0

It's common in prose to need markup for a word or phrase to indicate that
it has a voice, mood, or role that's different from that of the regular text.
Common examples of alternative text are book and movie titles. In HTMLS5,
this type of semantic text is marked up with the i (for italics) element:

<i>text</i>

Web browsers render such text in italics. The i element may seem to
be precisely the same as the em element, but there's a significant semantic
difference: emadds stress to enhance the emphatic nature of the affected text,
whereas 1 tells the reader that the text is to be interpreted in an alternative
way to the regular text. Again, this subtle difference is potentially useful in
terms of accessibility; a screen reader would (at least in theory) emphasize
em text and let the user know about alternative text marked up with the
i element. The following example shows a web page with alternative text
displayed in italics, as well as the HTML markup that does the job.

You can nest text-level
elements within other
text-level elements for
extra effect. You can
mark up a sentence as
important by using the
strong element, and
within that sentence,
you canmark up a
word with emphasis by
using the em element.

= Online: wdpg.io/2/2-8-3

Other examples of
alternative text include
publication names,
technical terms, foreign
words and phrases, and
a person’s thoughts.

WEB DESIGN PLAYGROUND 31

http://wdpg.io/2/2-8-1
http://wdpg.io/2/2-9-0
http://wdpg.io/2/2-8-3

\

Building Your First Web Page

» Example = Online: wdpg.io/2/2-9-1
This example shows some web page text with several words emphasized via the
i element.

o) That’s because, according to the linguist Victoria Neufeldt
& (writing in her book A Civil But Untrammeled Tongue),
g most word invention goes on as a matter of course)
Text marked with the <i> tag
i’ That's because, according to the linguist Victoria Neufeldt
[(writing in her book <i>A Civil But Untrammeled Tongue</i>), most
T word invention goes on as a matter of course: Tl maAed @8
alternative with
the <i> tag
Lesson 2.10: Quoting Text
Covers: The g and blockquote elements
= Online: wdpg.io/2/2-10-0
PLAY Many web pages include quotes from other works, which could be web
To get familiar with the 1 pages, people, books, magazines, or any written source. To help your readers
element, try the exercises know that some text is quoted material and not your own words, you could
on the Web Design] just place the text between double quotation marks. An alternative is to mark
Playground. = Online: up the text as a quotation. How you add this markup depends on the length

wdpg.iof2/2-9-2 of the quotation.

A short quotation should appear inline with your regular page text. You
mark up this text as a quotation by using the g element:

<q cite="url">quotation</q>

Most web browsers display text marked up with the g element the same
way as the regular page text but surrounded by double quotation marks. If
your quotation comes from another web page, you can include the optional
cite attribute and set its value to the URL of the web page.

A longer quotation should appear on its own for readability. You mark up
a longer quotation by using the blockquote element:

<blockquote>
Long quotation
</blockquote>

32 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-9-1
http://wdpg.io/2/2-10-0
http://wdpg.io/2/2-9-2

Learning the Most Common Text Elements

The web browser displays text marked up with the blockquote element PLAY
in a separate paragraph that's indented slightly from the left and right To get familiar with the
margins of the containing element. The following example shows some g and blockquote
web page text that includes a short quotation inline with the regular text elements, try the

and a longer quotation separated from the regular text, as well as the HTML exercises on the Web
markup Design Playground.

=) Online: wdpg.io/2/2-10-2

» Example = online: wdpg.io/2/2-10-1
This example shows some web page text with both a short quotation inline with the
regular text and a longer quotation separated from the regular text.

That’s because, according to the linguist Victoria Neufeldt
Text marked with (Writing in her book A Civil But Untrammelled Tongue),
the tag most word invention goes on as a matter of course:

WEB PAGE

(Neology, far from being a separable linguistic

Longer, separated phenon_nenon.that manifests itse-:lf pe:riod-ica_ally or

quotation marked J sporadically in response to social stimuli, in fact

‘Z';'I‘ot'l‘(z sote> tag rises out of ordinary linguistic competence, what
might be called the linguistic collective unconscious

_ of the speech community.

This “ordinary linguistic competence” manifests as various
mechanisms that peo?ﬂe use to forge new words:

Shorter, inline quotation marked with the <q> tag

That's because, according to the linguist Victoria Neufeldt
(writing in her book <i>A Civil But Untrammelled Tongue</i>),
most word invention goes on as a matter of coursec</
strong>:

<blockquotes

Neology, far from being a separable linguistic phenomenon that
manifests itself periodically or sporadically in response

to social stimuli, in fact rises out of ordinary linguistic
competence, what might be called the linguistic collective
unconscious of the speech community.

</blockquote>

This <g>ordinary linguistic competence</g> manifests as various
mechanisms that people use to forge new words:

HTML

Text marked

as a short
Text marked as a Ionger quotation quotation with
with the <blockquote> tag the <g> tag

WEB DESIGN PLAYGROUND 33

http://wdpg.io/2/2-10-1
http://wdpg.io/2/2-10-2

\

Building Your First Web Page

Lesson 2.11: Working with Headings
Covers: The h1 through he elements

= Online: wdpg.io/2/2-11-0

A heading is a word or phrase that appears immediately before a section
of text and is used to name or briefly describe the contents of that text.
Almost all web pages have a main heading at or near the top of the page that
serves as the title of the content. (Don't confuse this heading with the text
between the <title> and </title> tags in the page's <head> section. The
main heading appears on the page itself, whereas the text within the title
element appears only on the browser tab.)

Besides the main heading, many web page contents are divided into
several sections, each of which has its own heading. These sections may
be further divided into subsections with, again, each subsection having a
heading, and so on. Taken together, the main heading, section headings, and
subsection headings form an outline that neatly summarizes the structure
and hierarchy of the web page.

QcWell—written, thoughtful headings interspersed
in the text act as an informal outline or table
of contents for a page. —Steve Krug

In HTML, you mark up your page's heading text by using the various
heading elements, which run from hl for the highest level of your page
hierarchy (usually, the page’s main heading) to h2 for the section headings,
h3 for the subsection headings, and all the way down to hé for the lowest-
level headings. The web browser displays each heading in its own block,
formats the text as bold, and (as you see in the example that follows) adjusts
the text size depending on the element used: hl is the largest, and hé is the
smallest.

34 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-11-0

Learning the Most Common Text Elements

b Example = Online: wdpg.io/2/2-11-1
This example shows how the web browser renders the six HTML heading elements.

.
w Level 1 Heading
& .
@ Level 2 Heading
= .
Level 3 Heading
Level 4 Heading
Level 5 Heading
Level 6 Heading
i‘ <hls>Level 1 Heading</hl>
= <h2>Level 2 Heading</h2>
T <h3>Level 3 Heading</h3>
<h4>Level 4 Heading</h4>
<h5>Level 5 Heading</h5>
<hé6>Level 6 Heading</hé>

Although HTMLS5 offers other ways to create semantic page divisions
(see Chapter 11), using heading elements is an easy, common way to tell the
browser and the reader how your web page text is organized, as shown in
the following example, which includes the heading from the web page you
saw earlier.

b Example =) Online: wdpg.io/2/2-11-2
This example shows how the web browser renders the h1 heading element.

<h1> heading

How New Words Are Created

WEB PAGE

‘s .
<hl>How New Words Are Created</hl> <hl> headlng

HTML

WEB DESIGN PLAYGROUND 35

http://wdpg.io/2/2-11-1
http://wdpg.io/2/2-11-2

\

You're given a document
with a title, main
sections (Section 1,
Section 2, and so on),
subsections (Section 1.1,
Section 1.2, and so on),
and sub-subsections
(Section 1.1a, Section 1.1b,
and so on). Work up a
heading scheme for this
structure. = Online:
wdpg.io/2/2-11-3

BEWARE

Using uppercase versus
lowercase letters can
be crucial in entering a
URL. On most (but not
all) websites, if you enter
even a single letter of a
directory or filename
in the wrong case, you
likely won’t get where
you want to go (that

is, you'll get a 404 Not
Found error).

Does the a in the <a>
tag stand for anything?
The a is short for
anchor, which comes
from the fact that you
can create special links
called anchors that send
your readers to other
parts of the same page
instead of sending them
to a different page. You
learn how this feature
works in Chapter 16.

Building Your First Web Page

Lesson 2.12: Crafting Links
Covers: The a element

= Online: wdpg.io/2/2-12-0

I mentioned in Chapter 1 that one of the defining characteristics of HTML (in
fact, the H in HTML) is hypertext: links to pages on your own site or to sites
anywhere on the web. In fact, it's a rare page that doesn't include at least a
few links, so you need to know how to craft hypertext by using HTML.

The HTML tags that you use to create a link are <a> and its corresponding
 closing tag. The a element is a little different from most of the other
elements you've seen in this chapter because you don't use it by itself.
Instead, you insert the address—often called the URL (short for Uniform
Resource Locator)—of your link into it. Figure 2.7 shows how this element

works.

The <a> tag takes the href attribute,
which stands for hypertext reference.
Set this attribute equal to the URL of
the web page you want to use for the
link, enclosed in double (or single)
quotation marks. Most link addresses
are one of the following:

e Local—A link to another page
on your website. To keep things
simple, I'm going to assume that
all of your website's page files
reside in the same directory. (For

The href The text
attribute the user clicks

VA

<a href="url"slink text

/ /

The link The closing tag
address

P Figure 2.7 The syntax to use for
the <a> tag

the slightly more complex case of having page files in multiple
directories, see Chapter 16.) In that case, the <a> tag's href
attribute value is the name of the page file you're linking to.

Here's an example:

* Remote—A link to a page on another website. In that case, the
<a> tag's href attribute value is the full URL of the page on the

other site. Here's an example:

Next, you replace 1ink text with the descriptive link text that you want
the user to click and then finish everything with the closing tag. By
default, most web browsers display the link in blue underlined text, as shown

in the following example.

36 WEB DESIGN PLAYGROUND

http://wdpg.io/2/2-12-0
https://webdesignplayground.io/2/index.php
http://wdpg.io/2/2-11-3

Summary

b Example = 0nline: wdpg.io/2/2-12-1
This example shows some web page text with two links created using the a element.

Where do new words come from? Sometimes we’re lucky enough to know

[
2 the answer. For example, the word scofflaw originated as a contest winner
o .
» and Frankenfood came from a letter to/the editor of a newspaper.
[
; k
Links appear as blue, underlined text.
E‘ Where do new words come from? Sometimes we're lucky enough to know
= the answer. For example, the word
T
The <a> tag includes
the link address
scofflaw
originated as a contest winner and The text that the The
browser displays closing
as a link tag
Frankenfood
came from a letter to the editor of a newspaper.
Summary

e An HTML tag is a short code surrounded by angle brackets—
such as <h1l> or <p>—that applies an effect or inserts an object.
Most tags also require a closing tag, such as </hl> or </p>.

e In CSS, a declaration is a property-value pair; a declaration block
is a collection of declarations surrounded by curly braces; and
a style rule is a declaration block applied to one or more web
page elements (such as a tag name).

¢ In the basic HTML page structure, the header is defined by
the <head> and </head> tags, and it includes the page title
(between the <title>and </title> tags) and the page CSS
(between the <style> and </style> tags).

¢ In the basic page structure, you type your HTML tags and text
between the <body> and </body> tags.

WEB DESIGN PLAYGROUND 37

http://wdpg.io/2/2-12-1
http://www.etymonline.com/index.php?term=scofflaw
https://wordspy.com/index.php?word=frankenfood

\

38 WEB DESIGN PLAYGROUND

Building Your First Web Page

Use for important text and for keywords.
Use to emphasize text and <i> to format alternative text.

You can create a strong visual hierarchy on your page by taking
advantage of the heading tags: <hl> through <h6>.

You set up a link by surrounding text with the <a> and
tags. In the <a> tag, use the href attribute to specify the name
of a local file or the URL of a remote file.

Chapter 3

Adding Structure
to Your Page

3] This chapter covers

= Dividing page text into paragraphs and sections
* Adding numbered lists
* Building bulleted lists

You learned in Chapter 2 that you can create an effective web page by typing
some text and then using headings and elements such as strong and em to
make the text more readable and easier to understand. Headings are crucial
page devices, not only because they help the reader see where one part of
the page ends and another begins, but also because they give the reader a
general sense of the page hierarchy. All this falls under the general rubric of
page structure, and that's the focus of this chapter.

WEB DESIGN PLAYGROUND 39

\

Adding Structureto Your Page

Thinking about the structure of your web page is important because a
wall of unstructured text is difficult to scan and read, as well as difficult to
style. When you add structure (such as the headings from Chapter 2 and
the paragraphs, sections, containers, and lists that you learn about in this
chapter), each of those substructures is seen by the browser as a separate
entity to which you can apply many style properties. As a rule, the more
structured your page, the greater the control you have over how it looks.
Fortunately, as you'll see in this chapter, HTML comes with several useful
and straightforward tools for adding structure to a page.

HTML Elements for Structuring Page Text

If you work with a word processor, you know that almost all documents
have a structure: a title, possibly a subtitle, one or more topic headings, and
one or more paragraphs within each topic. This makes the document easy
to browse and comfortable to read because the structure guides readers
and enables them to focus on the text. You can get those same advantages
in your web pages by taking advantage of the various structural elements
offered by HTML. I'll begin with one of the most common structures: the
paragraph.

Lesson 3.1: Working with Paragraphs
Covers: The p element

PLAY = Online: wdpg.io/2/3-1-0

Using the Web Design | mentioned in Chapter 2 that web browsers generally ignore whitespace,
Playground, modify including carriage returns created by pressing Enter or Return, which is
the first five lines in this

normally how you'd separate text into paragraphs in a text editor or word

example so that the) :
text snippets Line 1, processor. The most common way to create a paragraph in HTML is to place

Line 2 Line 3. and a <p> (for paragraph) tag at the beginning of the text and a closing </p> tag
Line 4 eachappearin at the end of the text. (Technically, the closing </p> tag is optional, but it's
a separate paragraph. always good practice to include it.) The following example shows you both

= Online: wdpg.io/2/3-1-2 ~ the wrong and right ways to create paragraphs.

40 WEB DESIGN PLAYGROUND

http://wdpg.io/2/3-1-1
http://wdpg.io/2/3-1-2
http://wdpg.io/2/3-1-0

HTML Elements for Structuring Page Text

» Example = online: wdpg.io/2/3-1-1
In this example, you can see that the web browser ignores the whitespace created by the
carriage returns but happily renders text into paragraphs when you use the p element.

(u; Line 1 Line 2 Line 3 Line 4 <—_ The web browser ignores
5 the carriage returns.
m
Y Paragraph 1)
Paragraph 2
The browser uses the <p> tags to render
the text into separate paragraphs.
Paragraph 3
Paragraph 4)
= Line 1
E Line 2
I Line 3 Wrong: Separate lines created
by pressing only Enter/Return
Line 4

<p>Paragraph 1</p>

<p>Paragraph 2</p> Kigh+: Paragmphs created
<p>Paragraph 3</p> by using the p element
<p>Paragraph 4</p>

WEB DESIGN PLAYGROUND 41

http://wdpg.io/2/3-1-1
http://wdpg.io/2/3-1-2

\

Use a line break for
poems, lyrics, addresses,
contact information, or
programming statements,
or to show a sample of
HTML or CSS code.

Render the poem “Break,
Break, Break,” by Alfred
Lord Tennyson, correctly
by adding line breaks to
each line that isn’t the end
of a stanza. S Online:
wdpg.io/2/3-2-2

Adding Structureto Your Page

Lesson 3.2: Inserting Line Breaks

Covers: The br element

= Online: wdpg.io/2/3-2-0

When you separate page text into paragraphs, the web browser renders this
text by (among other things) creating a bit of space between paragraphs.
This space is normally what you want because that vertical gap gives the
reader a visual clue as to where one paragraph ends and the next one begins,
as well as a chance to take a quick breather between sections of text. This
space isn't always what you want, however. If your page text is a poem,
for example, you almost certainly don't want paragraphs between lines. The
same is true if your text is programming code or song lyrics.

When you want to start a new line but don't want to have any space
between the two lines, you need the br (short for line break) element. (If you
do want some vertical space between one line and the next, use the p element
to create a new paragraph; see Lesson 3.1.) As you can see in the following
example, the web browser renders the br element by inserting a carriage

return and beginning the next line immediately below the previous one.

» Example = Oonline: wdpg.io/2/3-2-1
In this example, you can see that the web browser renders the br element by inserting a
carriage return and beginning the next line immediately below the previous one..
. Contact Info
X Manning Publications Co.
a PO Box 761
= Shelter Island, NY 11964
support@manning.com
203-626-1510
E‘ <h3>Contact Info</h3>
= Manning Publications Co.

T 1233 Heartwood Drive

The
 +ag tells
the browser to

start the followin
text on a new line

Cherry Hill, NJ 08003

support@manning.com

203-626-1510

42 WEB DESIGN PLAYGROUND

http://wdpg.io/2/3-2-0
http://wdpg.io/2/3-2-1
mailto:support@manning.com
http://wdpg.io/2/3-2-2

HTML Elements for Structuring Page Text

Lesson 3.3: Dividing Web Page Text
Covers: The div element

= Online: wdpg.io/2/3-3-0
In Chapter 11, | show you the HTML5 sectioning elements, including ~PLAY

<section> and <articles. These elements enable you to structure your The br element is
page semantically by designating containers as sections and articles within often a poor choice for
those sections, as well as headers, footers, navigation, and more. Not all text structuring page text
falls neatly into any of the HTML5 semantic categories, however. For text that because it doesn't provide
. a container for the text,
requires a container but for which none of the semantic elements (including ,
the p element) is appropriate, HTML offers the div (short for division) soyou can' style the
p) pprop N) } text. On the Web Design
element. The <div> tag and its corresponding </div> end tag create a Playground, replace the
simple container for text. The web browser applies no inherent formatting br elements with div
to the text, including not rendering any space between consecutive div elements.) Online:

elements, as you see in the following example. wdpg.io/2/3-3-2

» Example = 0nline: wdpg.io/2/3-3-1
This example uses the div element to divide a web page into two text blocks.

Shortening

The shortening process is based mostly on a kind of linguistic laziness called clipping that causes us to

lop off great chunks of words. For example, we end up with fridge from refrigeraror and flu from

. influenza. Often we clip everything after the first syllable: dis (from disrespect) and gym (from

The <div> cymnasium).

blocks A related process is the creation of acronyms, which form a pronounceable word using the first letters
of each word in a phrase. For example, UNICEF from United Nations International Children’s
Emergency Fund, and NATO from North Atlantic Treaty Organization.

WEB PAGE

<h2>Shortening</h2>

<div>

The shortening process is based mostly on a kind of
linguistic laziness called clipping that causes us to lop
off great chunks of words. For example, we end up with <i>fridge</
i> from <isrefrigerator</i> and flu from <i>influenza</
i>. Often we clip everything after the first syllable: <i>dis</i>
(from <i>disrespect</i>) and <i>gym</i> (from <i>gymnasium</i>) .
</div>

<div>

A related process is the creation of acronyms, which

form a pronounceable word using the first letters of each word

in a phrase. For example, <i>UNICEF</i> from United Nations
International Children's Emergency Fund, and <i>NATO</i> from
North Atlantic Treaty Organization.

</div>

HTML

The <divs> and </div> tags divide your
web page text into blocks:

WEB DESIGN PLAYGROUND 43

http://wdpg.io/2/3-3-0
http://wdpg.io/2/3-3-1
http://wdpg.io/2/3-3-2

\

Adding Structureto Your Page

REMEMBER . : .

Eloments such s diy — L€SSOM 3.4: Creating Inline Containers

and p are block-level Covers: The span element

elements because

they create a boxlike = Online: wdpg.io/2/3-4-0

container that begins on

a new line and within Elements such as div and p are important because they provide containers
which the content flows. in which you add and style text. Sometimes, however, you want to style just
Elements such as span a subset of the text within such a container. You may want to apply a font
are inline elements effect or color to a few words or to a sentence, for example. In that case,

because each creates o . .)
. . you can create an inline container by surrounding the text with the
a contatner that exists

within a larger element tag and its end tag. The following example creates several inline
and flows with the rest of containers, and a CSS property is defined for the span element to apply a
that element’s content.. yellow background to each container.

b Example = Online: wdpg.io/2/3-4-1
This example creates several inline containers, and a CSS property is defined for the
span element to apply a yellow background to each container.

5 Throughout this document, screen items that you click and text that you type appear with a
< yellow background. Here are some examples:
o = Click the File menu and then click Save.
= « Set the number of copies and then click Print.
« Click Search, type blockquote, and then press Enter.
w span {
0 Tells the browser to appl
O background-color: yellow; ellow as the back rogﬁd
1 color to all span elements.

44 WEB DESIGN PLAYGROUND

http://wdpg.io/2/3-4-0
http://wdpg.io/2/3-4-1

HTML Elements for Structuring Page Text

<p>

Throughout this document, screen items that you click and text
that you type appear with a yellow background</spans>. Here
are some examples:

</p>

HTML

Click the File menu and then click
Save.

Set the number of copies and then click Print</spans>.</

1is

Click Search, type blockquote</spans,
and then press Enter.

The and tags
create inline containers.

Lesson 3.5: Adding a Visual Break Between Blocks
Covers: The hr element

= Online: wdpg.io/2/3-5-0 PLAY

To get some practice

As | mentioned earlier, the p element automatically adds whitespace between)
with the span element,

paragraphs, and for other block-level elements such as div, you can use CSS try the exercises on the

to create your own vertical spacing between blocks. Sometimes, however, Web Design Playground.
you want a more direct or more emphatic visual indicator of a break = Online: wdpg.io/2/3-4-2
between blocks. In such a case, you can insert the hr (short for horizontal

rule) element. As you can see in the following example, the web browser

displays a horizontal line across the page. If you don't want the line to extend

to the width of its container, you can use the width CSS property and set it

to the width (measured in, say, pixels or a percentage) you prefer.

WEB DESIGN PLAYGROUND 45

http://wdpg.io/2/3-4-2
http://wdpg.io/2/3-5-0

\

Adding Structureto Your Page

b Example = 0nline: wdpg.io/2/3-5-1
This example shows that when you add the hr element, the web browser displays a
horizontal line across the page.

Word Origins: Introduction

In a cynical world where attention spans are 140-characters long and where much of the
populace is obsessed with the low-brow goings-on of Kim or Miley or Kylie, one amazing
fact rises above the muck: it's rare to meet someone who isn't in some way interested in
words and language. From slang-slinging youngsters to crossword-solving oldsters, from
inveterate punsters to intrepid neologists, some aspect of language appeals to everyone.

WEB PAGE

Kﬂ’ Is there one slice of the language pie that everyone likes? Probably not. People are just too
The <hr> tag complex to like any one thing universally. However, in my own admittedly limited
creates a line. experience (T haven't met every person in the world), I have yet to come across a person who
doesn't appreciate a good story about the origins of a word or phrase.

<h2>Word Origins: Introduction</h2>

<div>In a cynical world where attention spans are 140-characters
long and where much of the populace is obsessed with the low-

brow goings-on of Kim or Miley or Kylie, one amazing fact rises
above the muck: it's rare to meet someone who isn't in some way
interested in words and language. From slang-slinging youngsters to
crossword-solving oldsters, from inveterate punsters to intrepid
neologists, some aspect of language appeals to everyone.</divs>
<hr>

<div>Is there one slice of the language pie that everyone likes?
Probably not. People are just too complex to like any one thing
universally. However, in my own admittedly limited experience (I
haven't met every person in the world), I have yet to come across
a person who doesn't appreciate a good story about the origins of
a word or phrase.</divs>

HTML

The <hr> +a9 inserts a horizontal
line between ™two text blocks.

Many web design gurus recommend that instead of using the hr element
to get a horizontal line between two blocks, you should add a bottom border
to the top block or a top border to the bottom block. See Chapter 9 for more
info on styling borders.

Organizing Text into Lists

It's tough to surf the web these days and not come across a list or three in
your travels—a top-10 list, a best-of list, a point-form summary of an event,
or any of a thousand other variations on the list theme. A list is often the
perfect way to display certain types of information, such as a series of steps
or an unordered collection of items.

46 WEB DESIGN PLAYGROUND

http://wdpg.io/2/3-5-1

Organizing Text into Lists

HTML offers these two list types:

e A numbered list (sometimes called an ordered list) presents its
items in numeric order, with each item’s number on the left and
the item text indented to the right.

o A bulleted list (sometimes called an unordered list) presents its
items in the order you specify, with each item having a bullet
(usually, a small dot) on the left and the item text indented to
the right.

Lesson 3.6: Adding a Numbered List

Covers: The o1 element

= Online: wdpg.io/2/3-6-0

If the things you want to display have an inherent numeric order, such as
you might find in the steps of a procedure or the elements in a series, a
numbered list is the way to go. The good news is that you don't have to
enter the numbers yourself because the browser takes care of them for you
automatically. The first item in the list is given the number 1, the second is
given 2, and so on. If you insert or delete items, the browser adjusts all the
list numbers as needed to keep everything in numeric order.

You start to construct a numbered list by creating a container that consists
of the tag (short for ordered list) and its closing tag. Between
those tags, you add one or more <1i> (short for list item) tags followed by
the item text and the (optional, but recommended) closing </11i> tag:

Item text

The browser displays the item with a number on the left (the value of
which is determined by the item'’s position in the list), followed by item text,
which is indented from the number, and the entire item is indented from the
left margin of whatever element contains it. The following example shows a
basic numbered list and the HTML tags and text used to create it.

REMEMBER

Although this type of
list is used far less than
numbered and bulleted
lists, you should also be
aware of the description
list, which is a list of
terms and descriptions.
The entire list uses

the <d1>and </dl>
tags as a container;
you specify each term
within the <dt> and
</dt > tags and each
description within the
<dd> and </dd> tags.

Use a numbered list for
any collection that must
appear in sequential,
numeric order. Examples
are the steps the reader
must follow in a how-to
procedure, the tasks
involved in a recipe, the
sections in a document
(particularly a contract
or other legal document),
or the items in a ranking
such as a top-10 list.

WEB DESIGN PLAYGROUND 47

http://wdpg.io/2/3-6-0

\

Adding Structureto Your Page

p Example = Online: wdpg.io/2/3-6-1
This example shows how to use a numbered list to set up a top-10 list.

§ Top 10 Modern Words of Unknown Origin
aQ
m .
u;J 1. jazz (1909)
2. jive (1928)
3. bozo (1920)
4. dork (1964)
5. pizzazz (1937)
6. humongous (1970)
7. gismo (1943)
8. zit (1966)
9. reggae (1968)
10. mosh (1987)
i‘ <h3>Top 10 Modern Words of Unknown Origin</h3>
=
T jazz (1909)
<lis>jive (1928)</1li>
bozo (1920)</1li>
<lis>dork (1964)</1i> ™ Within the container,
<lis>pizzazz (1937)</1li> enter each item’s
humongous (1970)</1li> text between the
gismo (1943) and </1i> +095
<lis><ems>zit (1966)</1i>
reggae (1968)</1li>
mosh (1987)</1li>

Use the and tags as
the container £or the numbered list.
PLAY By default, the numbers used in the list are standard decimal values (1, 2, 3,
To get some practice with and so on). You can change the number type by specifying the 1ist-style-
the ol and 11 elements, type CSS property. Table 3.1 lists the most common numbered-list values for
try the exercises on the this property.
Web Design Playground.

=) Online: wdpg.io/2/3-6-2

48 WEB DESIGN PLAYGROUND

http://wdpg.io/2/3-6-1
http://wdpg.io/2/3-6-2

Organizing Text into Lists

P> Table 3.1 Common numbered-list values forthe 1ist -style-type CSS property

Value Description Example Numbers

decimal Decimal numbers 1,2,3,4,..

decimal-leading-zero DeC|.mals USRS 01,02,03,04, ..
leading 0

lower-alpha Lowercase letters a,b,cd,..

upper-alpha Uppercase letters AB.CD,..
Lowercase Roman S

lower-roman 1,01, 0, v,
numerals

_ Uppercase Roman

upper-roman numbers ALY, ..

lower-greek Lowercase Greek letters a,B.v.9o,..

upper-greek Uppercase Greek letters A BT A,..

Lesson 3.7: Adding a Bulleted List

Covers: The ul element

= Online: wdpg.io/2/3-7-0

If the items you want to display have no inherent numeric order, such as you
might find in a to-do list or a set of characteristics, a bulleted list is the way to
go. Each item appears in its own paragraph, preceded by a bullet (usually, a
black dot). You don't have to enter the bullets manually because the browser
adds them automatically.

You start building a bulleted list by creating a container that consists of
the <uls> (short for unordered list) tag and its closing tag. Between
these tags, as with a numbered list, you add one or more <11i> tags, followed
by the item text and the (optional, but recommended) closing </11> tag:

Item text

The browser displays the item with a bullet on the left, followed by item
text, which is indented from the bullet, and the entire item is indented from
the left margin of the element that contains it. The following example shows
a basic bulleted list and its underlying HTML tags and text.

Quite a few values for
list-style-typeare
associated with various
other languages, such
as Chinese, Hebrew,
and Japanese. See the
following page for the
complete list: https://
developer.mozilla.org
/en-US/docs/Web/CSS
Jlist-style-type.

any collection of items
that are related in some
way but don’t have to
appear in numeric order.
Examples include a to-do
list or grocery list, a set
of traits or properties
associated with an
object, or a collection

of prerequisites for a
course.

WEB DESIGN PLAYGROUND 49

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
http://wdpg.io/2/3-7-0

\

» Example

Adding Structureto Your Page

= Online: wdpg.io/2/3-7-1
This example shows you how to build a bulleted list.

| This “ordinary linguistic competence” manifests as various mechanisms
g that people use to forge new words:
o « Combining
= ¢ Shortening
« Borrowing
¢ Onomatopoeia
= Mistakes
¢ Retronyms
« Ex Nihilo
E‘ <p>This <g>ordinary linguistic competence</qg> manifests as
— various mechanisms that people use to forge new words:</p>
T <uls>
Combining</1i>
Shortening</1li>
< > < >
i;i:ﬁgﬁiggib T Within the container,
Onomatopoeia</1li> fn’rer each item’s
T - ext between the
Mistakes</1i> and </1i> +ags,
Retronyms
Ex Nihilo

Use the and tags as the
container for the bulleted fist.
PLAY By default, the bullets used in the list are filled circles (s). You can change

To get some practice
with theul and 11
elements, try the
exercises on the Web
Design Playground.

=) Online: wdpg.io/2/3-7-2

50 WEB DESIGN PLAYGROUND

the number type by specifying the 1ist-style-type CSS property. Table 3.2
lists the available bulleted-list values for this property.

p>Table 3.2 The bulleted-list values forthe 1ist -style-type CSS property

Value Description Example Bullet
disc Filled circle ([]
circle Unfilled circle @)
square Filled square |

http://wdpg.io/2/3-7-2
http://wdpg.io/2/3-7-1

Summary

To structure your page text into paragraphs, use the p element.

To separate one line from the next, insert the br element to add
a line break.

Use the div element to divide the page into text blocks.

To create an inline container for text, surround the text with the
 and tags.

Use the hr element to separate text blocks with a horizontal rule.

Use the tag to create a numbered list and the tag
to create a bulleted list. In both cases, you use the <1i> tag to
designate each item in the list.

Summary

WEB DESIGN PLAYGROUND 51

Chapter 4

Formatting
Your Web Page

4] This chapter covers

= Styling the text font, size, and style
= Aligning and indenting paragraphs
= Adding text and background colors

You now know how to display important and emphasized text, create links
and headings, and show items in bulleted or numbered lists, but although
these important techniques give your web page a bit of visual interest, they
won't win you any design awards. To get people to sit up and take notice of
your page, you need to concentrate on the CSS side of things for a bit, and
that's what you'll do in this chapter.

WEB DESIGN PLAYGROUND 53

\

54 WEB DESIGN PLAYGROUND

Formatting Your Web Page

First, you'll learn a few ways to style your web page text, including
specifying the typeface you want to use and setting the size of the text.
You'll also learn how to apply bold to any text (not only important terms or
keywords) and how to add italic to any text (not only emphasized words or
alternative terms). From words and phrases, you jump to paragraphs, learning
how to align text horizontally and indent paragraph text. The chapter closes
on a colorful note as you learn how to apply CSS colors to text and to the
page background.

As you'll see, these basic CSS techniques are straightforward to learn
and implement, but don't let their inherent simplicity fool you. These are
powerful tools that you'll use over and over to make your pages look great
and to give them your personal touch. Those design awards are right around
the corner.

Styling Text
Each browser uses default styles to render text such as headings and
paragraphs. Although some differences exist among browsers, for the most
part, these styles are rendered similarly in Google Chrome, Mozilla Firefox,
Apple Safari, and so on. These styles are perfectly good design choices, but
if you use these default styles, you run the risk of having your web page end
up with a default look. That's the last thing you want as a web page designer,
so one of your most important tasks is to override those defaults and specify
your own text formatting.

Web typography is a huge, fascinating topic that | cover in depth in
Chapter 18. For now, I'll keep things simple by focusing on four of the most
important text-formatting features: typeface, type size, bolding, and italics.

Styling the Typeface
A typeface is a distinctive design that's common to any related set of letters,
numbers, and symbols. What's the difference between a typeface and a
font? For all practical purposes, the two terms are interchangeable. For all
impractical purposes, however, a font is a particular implementation of a
typeface, meaning the typeface as rendered with a specific size, weight, and
style. Helvetica is a typeface; Helvetica 16-point bold is a font.

The typeface design gives each character a shape and thickness that's
unique to the typeface and difficult to classify. Five main categories serve to
distinguish most typefaces that you'll come across in your web design career:

Serif—A serif (rhymes with sheriff) typeface contains fine
cross strokes (called feet) at the extremities of each char-

acter. These subtle appendages give the typeface a tradi- Play ground

tional, classy look, but they can get lost when displayed on
ascreen at small sizes.

Sans serif—A sans-serif typeface doesn't contain cross

strokes on the extremities of characters. These typefaces P I a y g roun d

usually have a clean, modern look that's well suited to
screen text, particularly at small sizes.

Monospace—A monospace typeface (also called a fixed-

width typeface) uses the same amount of space for each P 1 a y g r\ O u n d

character, so skinny letters such as/and { take up as much
space as wider letters suchasmand w.

Cursive—The cursive typefaces are designed to resemble P l d
handwritten pen or brush writing. ayg r' O u n

Fantasy—Fantasy typefaces usually are fanciful designs

that have some extreme elements (such as being extra Plavg round

thick).

In CSS, you tell the web browser which typeface you want to apply to
an element by using the font-family property. You have several ways to
set the font-family value, but let's begin by looking at the method that
requires the least amount of work.

Lesson 4.1: Specifying a Generic Font
Covers: The font - family property and generic fonts

= Online: wdpg.io/2/4-1-0

The simplest way to use font-family is to specify a generic font, which is a
standard font implemented by all modern web browsers. There are five generic
font families, and their names correspond to the five typeface categories
discussed in the preceding section: serif, sans-serif, monospace, cursive,
and fantasy. The following example puts the font-family property
through its paces.

Styling Text

On a screen, serif
usually works best for
headings and other text
set at large sizes; sans
serif makes good body
text; monospace works
well for code listings;
cursive is best for short
bits of text that require
elegance or playfulness;
and fantasy should be
used only when a special
effect is required.

WEB DESIGN PLAYGROUND 55

http://wdpg.io/2/4-1-0

\

Formatting Your Web Page

p Example = 0nline: wdpg.io/2/4-1-1
This example shows you how to use the font - fami 1y property to apply the sans -
serif generic font to the h3 element and the sexrif generic font to the p element.

3 The h3 element
E The Web Design Playground /
The p element
E Why work towards web design proficiency when you can play your way there? /
=
A h3 {
] font-family: sans-serif; The h3 element gets the
} { sans-serif genéric font.
p
font-family: serif; }/\ The p element gets the
} serif generic font.
i’ <h3>The Web Design Playground</h3>
|_
T <p>Why work towards web design proficiency when you can play your
way there?</p>
Generic fonts are useful because they're supported by all web browsers;
however, with only five font families, they lack variety. If you'd like a bit more
choice for your web page text, you need to access a broader collection of fonts.
Lesson 4.2: Specifying a System Font
Covers: The font - family property and system fonts
REMEMBER = Online: wdpg.io/2/4-2-0

Using quotation marks
and capitalizing the
first letter of each word
in a system font name

Besides the built-in generic fonts, each web browser can access the fonts
that site visitors have installed on their computers. Most computers have the
serif typeface Times New Roman installed, for example, so your web page

are optional, but they’re could use that typeface instead of the generic serif font. These installed
good habits to get into typefaces are known as system fonts.
because they make your When you specify a system font, here are two things to keep in mind:

code more readable. .
¢ If the font name includes one or more spaces, numbers, or

punctuation characters other than a hyphen (-), surround the
name with quotation marks:

font-family: "Times New Roman";

56 WEB DESIGN PLAYGROUND

http://wdpg.io/2/4-1-1
http://wdpg.io/2/4-2-0

¢ To increase readability of your code, capitalize the first letter (or,
for multiword names, capitalize the first letter of each word):

font-family: Georgia;

Note that it's perfectly acceptable—and always recommended—to
specify more than one font name as long as you separate the names with
commas. In that case, the browser checks the fonts in the order in which
they appear and uses the first one that's installed on the user's computer.
This arrangement is useful because you can't be sure which system fonts
each user has installed. In particular, it's good practice to include a similar
generic font family after the system font. If you specify a serif system font
such as Times New Roman or Georgia (or both), for example, include the
serif generic font as the last item in the font-family value:

font-family: "Times New Roman", Georgia, serif;
The following example applies the Verdana system font to the div

element, which (as you might recall from Chapter 2) is the element you use
to divide the web page content into separate sections.

» Example = online: wdpg.io/2/4-2-1

Styling Text

To get the installation
percentages for many
popular system fonts,
see www.cssfontstack
.com.

REMEMBER

Some system fonts are
installed on at least
90% of both Macs and
Windows PCs. For
sans-serif, these fonts
are Arial, Arial Black,
Tahoma, Trebuchet MS,
and Verdana. For serif,
these fonts are Georgia
and Times New Roman.
For monospace, this font
is Courier New.

This example applies the Verdana system font to the div element and adds the

sans-serif generic font as a backup.

(u_'; The clean, modern look of a sans serif typeface makes it ideal for web page text.
5
a The div element
=
A div { }/\
O font-family: Verdana, sans-serif; The @i clemam
} ets the Verdana
system font.
E‘ <divs>
|:I_: The clean, modern look of a sans serif typeface makes it ideal for

web page text.
</div>

WEB DESIGN PLAYGROUND 57

http://wdpg.io/2/4-2-1

\

Formatting Your Web Page

Lesson 4.3: Setting the Type Size
Covers: The font-size property

REMEMBER = Online: wdpg.io/2/4-3-0

You can specify font In the same way that the web browser defines a default typeface for each
sizes in units other than element, it defines default type sizes, particularly for the heading elements h1
all the available CSS (largest) th'rough hé (smallest). Again, these defaults are usually reasonable,
units of measurement in but I'm going to urge you to forget about the defaults and set up your own
Chapter 7. type sizes. Why? One of the secrets of good web design is assuming control
of every aspect of the design, which is the only way to be sure that the web
page looks the way you or your client wants it to look. One of your main jobs
as a web page designer is to set your own type sizes not only for headings
but also for all your page elements, including body text, captions, sidebars,
and navigation.
You specify the type size of an element by setting the font-size property
equal to a value in pixels, which you indicate with the unit px. The example
that follows tells the web browser to render all text that appears within a div
element at a text size of 24 pixels. By comparison, the example also shows
some text within a p element displayed in the default size, which is 16 pixels
in all modern browsers.

pixels. I take you through

» Example =) Online: wdpg.io/2/4-3-1
This example formats the div element with a text size of 24 pixels.

w / The h1 element
2 From Milan to Markup
a
a The strange-but-true story of one woman’s epic
= journey from fashion designer to web geek.
\ The div element
Hyperia Marcupala always loved design, but one day she discovered
she’d rather work with pixels than pleats.
\ The p element

0
0
O

div {
EETE L s DA The div element is given
} a font size of 24px

58 WEB DESIGN PLAYGROUND

http://wdpg.io/2/4-3-0
http://wdpg.io/2/4-3-1

Working with Text Styles

<hl>From Milan to Markup</hl>

HTML

<div>

The strange-but-true story of one woman’s epic journey from

fashion designer to web geek.
</divs>

<p>

Hyperia Marcupala always loved design, but one day she discovered

she’d rather work with pixels than pleats.
</p>

Working with Text Styles

When you have your typeface picked out and your page elements set up
with different type sizes, you're well on your way to making typographically
pleasing web pages. But to make your pages stand out from the herd, you
need to know two more CSS properties related to styling text. The next
couple of sections take you through these styles.

Lesson 4.4: Making Text Bold

Covers: The font-weight property

= Online: wdpg.io/2/4-4-0

In Chapter 2, you learned that you can display text as bold by using the
 tag or the tag. You use these tags when the affected text has
semantic significance: the strong element is for important text, whereas
the b element is for keywords. But what if you have text that doesn't fit into
either of these semantic categories, but you want it to appear bold anyway
for the sake of appearance? In that case, you can turn to the CSS property
font-weight. Table 4.1 lists the weights and keywords you can assign to
this property.

Nonsemantic uses for
bold text include a title
used at the beginning of
each item in a bulleted
list, the lead words or
the lead sentence in a
paragraph, and contact
information.

BEWARE

Not all the values in
table 4.1 work in all
systems. If whatever
typeface you’re using
doesn’t support one or
more of the weights,
specifying that weight
won’t have any effect.

WEB DESIGN PLAYGROUND 59

http://wdpg.io/2/4-4-0

Formatting Your Web Page

FAQ P Table 4.1 Possible values for the font -weight property
When would I ever use
the normal (or 400 . PR
R é}ou‘*l g Jse Weight Keyword Description
this when you’re working 100 Thin text
with an element that
defaults to bold styling, 200 Extra light text
such as a heading. To 300 i
prevent such an element
from appearing with 400 normal Regular text
bold text, assign its 500 Medium text
font-weight property
avalue of normal (or 600 Semibold text
400). 700 bold Bold text
800 Extra-bold text
900 Black text

The following example gives you a taste of what bold text looks like by
applying the weights 100, 400, and 700 to several span elements. (Recall
from Chapter 2 that you use span to create an inline container that applies
to a word or three.)

b Example = Online: wdpg.io/2/4-4-1
This example demonstrates the weights 100, 400, and 700 of the Calibri typeface by
applying each weight to a separate span element.

AAA

Vo

100 400 700

WEB PAGE

span {
font-family: Calibri, sans-serif;
font-size: 5em;

CSS

HTML

The span elements
apply the various
wPePiJﬁs to the
letter A.

A
A

A

60 WEB DESIGN PLAYGROUND

http://wdpg.io/2/4-4-1

Working with Text Styles

Lesson 4.5: Making Text Italic
Covers: The font-style property

= Online: wdpg.io/2/4-5-0 USE IT

. : o : Nonsemantic uses for italic
As you learned in Chapter 2, you can display text in italics semantically by text include pull quotes

using the tag when you want to emphasize text or the <i> tag when 0 lead words or the lead
you want to format alternative text. If you have text that isn't semantic, but sentence in a paragraph,
you want it to appear italic anyway, use the CSS property font-style, and and article metadata (such

set it to the value italic. An example follows. as the author’s name and
the date).

» Example = online: wdpg.io/2/4-5-1
This example applies the italic font style to the span element. There are two instances:
the span that's nested within the h1 element and the span that's nested at the
beginning of the div element.

w Tralic Text: A History
(@)
5
P The first use of italics came in 1500 when Aldus Manutius of the Aldine Press
g wanted a typeface that resembled the handwritten humanise seripe chat was chen
in common use. He asked his typecutcer Francesco Griffo to make the tvpeface,
which Manurius first used in the frontispiece of a book of the letters of Catherine
of Siena. He produced the first book set entirely in iralics the next year.
A body {
O font-family: Georgia, serif;
}
span {
font-style: italic; The span element is
1 formatted as italic.
div {
font-size: 1.25em;
}
= <hl>Italic Text: A History</hl> The Firet
|:|_: <hws The second span instance spaniinstance

The first use of italics came in 1500 when Aldus
Manutius of the Aldine Press wanted a typeface that resembled

the handwritten humanist script that was then in common use. He
asked his typecutter Francesco Griffo to make the typeface, which
Manutius first used in the frontispiece of a book of the letters
of Catherine of Siena. He produced the first book set entirely in
italics the next year.

</divs>

WEB DESIGN PLAYGROUND 61

http://wdpg.io/2/4-5-0
http://wdpg.io/2/4-5-1

\

REMEMBER

When you're working
with an element that
defaults to italic styling,
suchas citeorvar
(see Chapter 16), you can
prevent that element
from appearing with
italic text by assigning
the keyword normal
toits font-style
property.

For most web page text
blocks, left-aligned

text is easiest to read.
Centered text is useful
for page titles and
subtitles. Use justified
alignment when you
want your text to have a
more elegant look.

BEWARE

The web browser justifies
text by adding spaces
between words in a

line. If your text block is
narrow or includes one
or more long words, you
can end up with large,
unsightly gaps in the text.

Formatting Your Web Page

Styling Paragraphs

When (or perhaps | should say if) people think of typography, they tend to
look at individual letters or letter combinations. That's important, for sure,
but it's only the "trees” view of typography. If you want your web pages to
look their best, you also need to take in the "forest” view, which encompasses
the larger text blocks on the page, including titles, subtitles, headings, and
especially paragraphs. As you'll see in the next couple of sections, paying
attention to important styling touches such as alignment and indents can go
a long way toward changing your pages from drab to fab.

Lesson 4.6: Aligning Paragraphs Horizontally

Covers: The text-align property

= Online: wdpg.io/2/4-6-0

To control how a paragraph or block of text is aligned horizontally—that is,
with respect to the left and right page margins—use the CSS text-align
property, which takes any of the keywords shown in table 4.2.

b Table 4.2 Possible values forthe text -align property

Keyword Description

Aligns the left edge of the text block with the left margin; the right edge of the
left text block is not aligned (and so is said to be ragged). This is the default in lan-
guages that read left to right.

Aligns the right edge of the text block with the right margin; the left edge of the

right text block is not aligned (ragged). This is the default in languages that read right
to left.
Centers each line of the text block between the left and right margins; both the
center -
leftand right edges of the text block are ragged.
. . Aligns the left edge of the text block with the left margin and the right edge of the
justify

text block with the right margin.

c c The four modes of alignment (centered, justified,
flush left, and flush right) form the basic grammar
of typographic composition. —Ellen Lupton

The following example tries out each of the four text-align values.

62 WEB DESIGN PLAYGROUND

http://wdpg.io/2/4-6-0

Styling Paragraphs

» Example = online: wdpg.io/2/4-6-1
This example shows the four alignment styles at work: centered for the title and subtitle,
and left, right, and fully justified text blocks.

Aligning Web Page Text

Centered
Notes From the Field

WEB PAGE

We read text (in English. anyway) from left to night. This means that when we get to the end
of each lme. to contmue we must jump down one line and then scan to the begmming of that
lme. That leap-and-scan is most easily made when we "know" where the next line begins.
That's why left-justified text is the easiest alignment to read.

Compare the lefi-justified text block above with this right-justified paragraph. In this case.
when you reach the end of each line. jumping down to the next 1sn't a problem. but because . .
the left side of the text block 1s set ragged. the begining of each e 1sn't m a predictable nght-allgned
place. which makes nght-justified text a tad more difficult to read.

Left-aligned

Many books are set with justified paragraphs because it looks more elegant without the right-
ragged edges. However. pro book designers use sophusticated layout software to manage
thmgs lIike hyphenation (particularly if the text mecludes a long word such as
honerificabilitudinitatibus). These aren't available for the web. so 1t's often best not to justify.

Justified

hl, h2 {

text-align: center; Centers the hl and
h2 elements

CSs

}

<hl>Aligning Web Page Text</hl>
<h2>Notes From the Field</h2>
<div style="text-align: left;">
We read text (in English, anyway) from left to right. This means
that when we get to the end of each line, to continue we must
jump down one line and then scan to the beginning of that line.
That leap-and-scan is most easily made when we "know" where the
next line begins. That's why left-justified text is the easiest
alignment to read. </divs>

<div style="text-align: right;">
Compare the left-justified text block above with this right-
justified paragraph. In this case, when you reach the end of each
line, jumping down to the next isn't a problem, but because the

left side of the text block is set ragged, the beginning of each

line isn't in a predictable place, which makes right-justified

text a tad more difficult to read. </div>

<div style="text-align: justify;"> & Justifies the third Paragraph
Many books are set with justified paragraphs because it looks

more elegant without the right-ragged edges. However, pro book
designers use sophisticated layout software to manage things like
hyphenation (particularly if the text includes a long word such as
<i>honorificabilitudinitatibus</i>). These aren't available for

the web, so it's often best not to justify. </divs>

HTML

-~ LeH—a!igns the first Pamgmph

A& Right-aligns the second paragraph

WEB DESIGN PLAYGROUND 63

http://wdpg.io/2/4-6-1

\

Some browsers support
the text-align-last
property, which sets the
alignment of the last line
in a text block when the
text-align property
is set to justify.
Possible values include
left, right, center,
and justify. See https:/
caniuse.com/#feat=css-
text-align-last to follow

the support for this

property.

REMEMBER

A commonly used value
for a paragraph indent
is 16px.

BEWARE

If you want to create

an outdent for a text
block, make sure that
the block has a left
margin that’s wide
enough to accommodate
the outdented text. See
Chapter g to learn how
to set the left margin for
a text block.

Formatting Your Web Page

Lesson 4.7: Indenting Paragraph Text

Covers: The text-indent property

= Online: wdpg.io/2/4-7-0

You can indent paragraph text by using the CSS text-indent property,
which takes either of the values shown in table 4.3. Note that the indent
applies only to the beginning of the first line of the text block.

P> Table 4.3 Valuesyou canapply to the text -indent property

Value Description

length Anumeric value entered with a unit, such as px.
A percentage value. The computed indent is the width of the text

percentage block multiplied by the percentage.

As with most things typographical, much debate exists about whether
text blocks should be indented. Some typographers eschew indents because
they believe that nonindented text is more aesthetically pleasing; others
embrace indents because they believe that indented text is more readable.
Whichever side you end up on, keep the following points in mind:

¢ Never indent the first paragraph of the page or the first
paragraph after a heading. The purpose of an indent is to
separate the paragraph from the one above it, but that doesn't
apply to the first paragraph.

« If you indent your paragraphs, you don't need to add space
between paragraphs.

¢ If you don't indent your paragraphs, you should add some
margin or padding between the paragraphs for readability.
See Chapter 9 to find out how to set the margins and padding.

cc Using paragraph spacing and indents together
squanders space and gives the text block a
flabby, indefinite shape. —Ellen Lupton

64 WEB DESIGN PLAYGROUND

http://wdpg.io/2/4-7-0
https://caniuse.com/#feat=css-text-align-last
https://caniuse.com/#feat=css-text-align-last
https://caniuse.com/#feat=css-text-align-last

Styling Paragraphs

» Example = online: wdpg.io/2/4-7-1
This example displays the three possible indent styles: flush (the first paragraph), a
positive indent (second paragraph); and a negative indent (third paragraph), which is
usually called an outdent or a hanging indent.

/-> The first word of the first line is the critical word
Flush of that particular body of text. Let it start flush, at
least. —William Addison Dwiggins
/ Typographers generally take pleasure in the
Indented unpredictable length of the paragraph while
accepting the simple and reassuring consistency
of the paragraph indent. —Robert Bringhurst
i OutpenTs work well when dramatic effect is desired. They
sometimes have a second emphasis factor, such
as a style or case change, that contrasts with the
body text. —Kristin Cullen

WEB PAGE

Outdente

/— The text-indent property isn't set, so the first
<div> line is flush with the rest of the paragraph.

The first word of the first line is the critical word of that
particular body of text. Let it start flush, at least. —William
Addison Dwiggins

</div> o Indents the first line

<div style="text-indent: 16px;”> of the paragraph
Typographers generally take pleasure in the unpredictable length
of the paragraph while accepting the simple and reassuring
consistency of the paragraph indent. —Robert Bringhurst

</div> Outdents the first line
<div style="text-indent: -64px;”> el of the paragraph

Outdents work
well when dramatic effect is desired. They sometimes have a second
emphasis factor, such as a style or case change, that

contrasts with the body text. —Kristin Cullen

</div>

HTML

WEB DESIGN PLAYGROUND 65

http://wdpg.io/2/4-7-1

\

REMEMBER

In each grayscale
keyword, you can
replace the word gray
with the word grey,
and the result will be
the same color for all
browsers. The keywords
darkgray and
darkgrey produce the

same shade, for example.

Formatting Your Web Page

Working with Colors

By default, most web browsers display the page by using black text on a white
background. That combination is certainly readable but not interesting. Our
marvelous eyes are capable of distinguishing millions of colors, so a palette
of only black and white seems wrong somehow. Fortunately, CSS enables
you to put your designer eyes to good use by offering several methods for
accessing any of the 16 or so million colors that are available in the digital
realm. Alas, most of those methods are a bit complicated, so I'm going to put
them off until later (see Chapter 17).

For now, you get access to colors using the keywords that CSS defines.
Table 4.4 lists the keywords for a few common colors.

P> Table 4.4 The CSS keywords for nine common colors

Keyword Color

red

lime

blue

vellow

magenta

cyan

black

gray

white

There are more than 140 defined keywords in all, so you shouldn't have
any trouble finding the right shade (or shades) for your next web project. I've
put the complete list of color keywords on the Web Design Playground at
wdpg.io/2/colorkeywords. Figure 4.1 shows a partial list.

66 WEB DESIGN PLAYGROUND

http://wdpg.io/2/colorkeywords

Working with Colors

Keyword RGB Value lightpink #££bécl pink #£fclcb
crimson #dcl43c lavenderblush #£E££0£5 palevioletred #db7093
hotpink #££69b4 deeppink #££1493 mediumvioletred #c71585
orchid #da70d6 thistle #dabfds plum #dda0dd
violet #eellee magenta #££00££F fuchsia #£f£00££
darkmagenta #8b008b purple $800080 rebeccapurple $663399
mediumorchid #ba55d3 darkviclet #9400d3 darkorchid #9932cc
indigo #4b0082 blueviclet #Bazbe2 mediumpurple #9370do
mediumslateblue #7béBee slateblue #6aSacd darkslateblue #483d8b
lavender #e6ebfa ghostwhite #£8fBEL blue #0000££
mediumblue #0000cd midnightblue #191970 darkblue #00008b
navy #000080 royalblue #416%el cornflowerblue #6495ed
lightsteelblue #b0c4de lightslategray #778899 slategray #708090
dodgerblue #1e90£f aliceblue #£0fBEE steelblue #4682b4
lightskyblue #87cefa skyblue #87ceeb deepskyblue #00bEfff
lightblue #addBeé powderblue #b0eleb cadetblue #5£%eal
azure #E0L£EE lighteyan #e0f££f paleturquoise #afeeece

pFigure 4.1 To see a complete list of the CSS color keywords on the Web Design Playground, surf to wdpg.io/2/colorkeywords.

Lesson 4.8: Applying Color to Text
Covers: The color property

= Online: wdpg.io/2/4-8-0

Several CSS properties have a color component, including borders,
backgrounds, and shadows. You learn about all those properties and more
in this book (including backgrounds in the next section), but so far you know
about text, so I'll start there. Here's the general CSS syntax for applying color

to a text element:

The text item to which you
selector { want the color applied

color: keyword; 44— The color property

and its value

The selector can be an HTML element, such as an hl heading or a p
element, or it can be any of the CSS selectors that you'll see in Chapter 7. The
real work is done by the color property and its associated value, which can
be any of the CSS color keywords (or any of the other color values supported
by CSS, which you learn about in Chapter 17). The following example shows
the color definition for purple hl text.

WEB DESIGN PLAYGROUND 67

http://wdpg.io/2/colorkeywords
http://wdpg.io/2/4-8-0

\

Formatting Your Web Page

» Example = online: wdpg.io/2/4-8-1
This example uses a keyword to assign the color purple to the h1 element.

1}
) <h1>
< 2 L /
[a B
: Royalty: A History
=
a hi{ & Specify the hl element to style.
O color: purple;
} Use the keyword purple to set
the color property value.
EI <hl>Royalty: A History</hl>
|_
I
Lesson 4.9: Applying Color to a Background
Covers: The background-color property
PLAY = Online: wdpg.io/2/4-9-0
SFyle the & el,ement to So far, I've looked only at setting the color of the foreground—the web page
display the link text

text—but you can use CSS to apply a color to a background. This color could

as yellow. Then add
be the background of the entire page (that is, the body element), a heading, a

a second rule that

displays the link text red paragraph, a link, or part of a page such as a <div> or tag.

and underlined when Here's the general CSS syntax for applying a background color to a web
you hover the mouse page item:

over the link. E>Online: The item to which you want the

. a0 background color applied
wdpg.io/2/4-8-4 selector {

background-color: keyword; 44— The background-color

ProPerer and its value

The selector can be an HTML element or any of the CSS selectors that
you learn about in Chapter 7. The key is the background-color property
and its associated value, which can be any of the color keywords you learned
about earlier.

The following example shows a web page with a Table of Contents
sidebar that has a black background and white text. The example also gives
you a partial look at the HTML and CSS used to set it up.

68 WEB DESIGN PLAYGROUND

http://wdpg.io/2/4-8-1
http://wdpg.io/2/4-8-4
http://wdpg.io/2/4-9-0

Working with Colors

» Example = online: wdpg.io/2/4-9-1
This example shows a web page with a Table of Contents sidebar that has a black
background and white text.

w <div>
2 - -
= Using Colors Effectively
om
L
; “There are only 3 colors, 10 digits, and 7 notes; its what we do with them
that's important.” —Jim Rohn Table of Contents
“Some colors reconcile themselves to one another, others just clash.” Color Ps
ychology
—Edvard Munch Color Schemes
“All colors are the friends of their neighbors and the lovers of their Color Caveats
sites.” —Marc Chagall A Few Examples
PE : Best Practices
CSS and Color
Color Psychology
‘When selecting colors, think about the psychological impact that your scheme will have on your
users. Studies have shown that “cool” colors such as blue and gray evoke a sense of dependability
and trust. Use these colors for a more business-like appearance. For pages that require a little more
excitement, “warm” colors such as red, yellow, and orange can evoke a festive, fun atmosphere. For
a safe, comfortable ambiance, try using brown and yellow. For an environmental touch, use green
and brown.
Color Schemes
wn S | The background-color Proper+Y
n '/\ sets the <div> background to black.
O background-color: black;
color: white;
float: right;
font-size: 16px;
font-weight: bold;
margin-left: 0.5em; These pro er+ies_ apply various
padding: 0 10px 5px 10px; s’ryles o the <div>.
text-align: left;
}
The color fropeﬁy sets
the <divs> text to white.
EI <div>
= <h3>Table of Contents</h3>
I Color Psychology

Color Schemes

Color Caveats
 > The <divs> tag and
A Few Examples
 its associated HTML
Best Practices<brs> and text
CSS and Color
</div>

WEB DESIGN PLAYGROUND 69

http://wdpg.io/2/4-9-1

Formatting Your Web Page

How would you modify
the CSS in this example
to display the Table of
Contents sidebar with
light gray text ona
purple background?

= Online: wdpg.io/2/4-9-2

Write a CSS rule
that styles links
with blue text and a

yellow background.
= Online: wdpg.io/2/4-9-4

70 WEB DESIGN PLAYGROUND

Summary

You can use the font-family property to assign a typeface to
a page element. This typeface can be one of the five generic
fonts—serif, sans-serif, monospace, cursive, or fantasy—
or a system font that's already installed on the user’'s computer.

Use the font-size property to control the size of your text
elements.

Use the font-weight property to apply bolding
nonsemantically.

Use the font-style property to apply italics nonsemantically.

Use text-align to set the horizontal alignment, such as
centering headings and left-aligning text.

Use text-indent to indent or outdent the first line of a text
block.

To color an element'’s text, use the color property.

To color an element’s background, use the background-color
property.

http://wdpg.io/2/4-9-2
http://wdpg.io/2/4-9-4

Chapter 5

proJECT: | Creating a
Personal Home Page

This chapter covers

5

* Planning and sketching your personal home page
* Choosing typefaces for your page

* Adding the header and navigation links

= Adding the body text

With four chapters under your belt, it's time to put your newfound HTML and
CSS knowledge to work by building something substantial. Specifically, this
chapter takes you through the process of putting together a simple personal
home page. Simple is the operative word here because you don't yet know
enough HTML tags and CSS properties to construct anything complex.
Fortunately, you know more than enough to create a great-looking home
page for yourself. You know about headings and paragraphs; you know how
to create sections by using the <divs and tags; you know how to
create bulleted and numbered lists; you know how to create links; you know
how to add typographic touches such as bold and italics; and you know how
to apply colors to the background and to the text. As you'll see in this chapter,
all that is more than enough to create a home page to be proud of.

WEB DESIGN PLAYGROUND 71

\

Project. Creating a Personal Home Page

What You'll Be Building

This project is a basic “Look, Ma, I'm on the web!” home page that enables
you to take the tools and techniques you learned in this book'’s first four
chapters and apply them in the virtual world of the web. The result is a
simple but beautiful page that enables you to stake out a bit of online turf. To
what end? That depends on you, but most personal home pages serve as an
introduction to anyone who comes surfing by: who you are, what you like
(and even what you dislike), what you've done in the past, what you're doing
now, and what you'd like to do in the future. As | go along, I'll show you an
example based on my information, but naturally, you'll want to replace my
text with your own. Your web page is your house, and you can fill it with
whatever you want.

Sketching the Layout
All your web projects should begin with a pen or pencil and a cocktail napkin or
other handy writing surface. Creating a web page is first and foremost a design
process, so before you start slinging code, you need to have a decent idea of
what you're building. Sure, you can construct a mental image of the page, but
it's better to begin with the more tactile approach afforded by pen and paper.
As you can see in Figure 5.1, this sketch doesn't have to be detailed. Lay
out the main sections of the page with a phrase or sentence that describes
the content of each section.

» Figure 5.1
Before starting to code your P A E T I T L E
HTML and CSS, use a pen or

pencil to work up a quick
sketch of the page layout

and content. Ve ry Short page
Introduction

SOCIAL MEDIA LINKS

A sentence or three about what | do for a living
and why | do it.

A bulleted list of the things and activities that
interest me:

Copyright and contact info

72 WEB DESIGN PLAYGROUND

Choosing a Color Scheme

Figure 5.1 shows the layout of a page with the following six sections:
o Title of the page

¢ Short introduction to the page

¢ Links to social media sites such as Facebook and Twitter

¢ Text about what | do for a living

o Text and a bulleted list of things that interest me

* Page footer with a copyright notice and contact info

Your next page-planning task is deciding which typefaces you want to
use for your page.

Choosing Typefaces

Because | haven't discussed images yet in this book, this first version of your
personal home page is dominated by text, particularly what's known as body
text—the large blocks of nonheading text that comprise the bulk of your
page. Because a good chunk of your audience will be reading your page on
devices such as laptops, tablets, and smartphones, it's important to take a
bit of time up front to choose typefaces that will be legible and readable on
these smaller screens.

You could build your page with a single typeface, but mixing two
typefaces—one for headings and the other for body text—adds dynamism
and contrast to the page. My preferred use is a sans-serif typeface for
headings and a serif typeface for body text, but feel free to reverse them or
to use two serifs or sans serifs. The only criterion to look for is two typefaces
that work in harmony.

For this project, I'm going to use two perennial web favorites: the sans-
serif typeface Verdana for the headings and the serif typeface Georgia for
the body text. In my CSS, I'll use the following rules to specify these families:

font-family: Georgia, serif;

font-family: Verdana, sans-serif;

With the page layout in place and your typefaces chosen, the next step is
to pick out a color scheme.

Choosing a Color Scheme

In this simple page, colors won't play a huge role, but you'll want to inject
some color to avoid the monotony of all black text on a white background.
You can add a background color or even a gradient by using the Web Design
Playground's Gradient Construction Kit (see wdpg.io/2/kits/gradient). | prefer a
simple white background for this project, so my own colors focus on the text.
Using the Web Design Playground’s RGB Color Scheme Calculator (see wdpg.io/2/
colorcalc), | chose a color scheme based on the color value #££c200, as shown
in Figure 5.2. You, of course, should choose a color scheme that suits your style.

WEB DESIGN PLAYGROUND 73

http://wdpg.io/2/kits/gradient
http://wdpg.io/2/colorcalc
http://wdpg.io/2/colorcalc

\

Project. Creating a Personal Home Page

RGB Color Scheme
Calculator

Use the controls below to calculate the
RGB colors you need for a given color
scheme. Select the radio button for the
type of scheme you want, then use the
color chooser to select your initial color.
The color scheme’s swatches as well as
their corresponding RGB hex codes
appear in the Results box.

Color Scheme Type

) Complementary
) Analogous
~) Triadic

© Split Complementary #££c200

#0092£f£

»Figure 5.2 A split complementary color scheme based on the hex color value #££c200

#1800££

With the page layout in place and your colors chosen, it's time to translate
this rough sketch into precise HTML and CSS code.

Building the Page

To build your personal home page, you'll start with the skeleton code that
| introduced you to in Chapter 2. From there, you'll go section by section,
adding text, HTML tags, and CSS properties.

The Initial Structure

To start, take the basic page structure from Chapter 2 and add the tags and
some placeholder text for each of the page'’s six sections. Here's a summary
of those tags:

¢ The page title is an h1l heading element.

e The page introduction is an h2 heading element.

¢ The social media links are within an h3 heading element.
e The first text block is a div element.

¢ The second text block is another div element, which is
followed by a ul element for the bulleted list.

e The page footer is another div element.

74 WEB DESIGN PLAYGROUND

Building the Page

b Try This = Online: wdpg.io/2/projects/home-page/1
Here are the elements that make up the personal home page’s initial structure.

<h1> <h2> <h3>
(Page Title —

Header <div> —< Very short page introduction
Social media links /

First text block

WEB PAGE

Second text block <hr>

Content <div> —<

» First item

* Second item
« Et. ‘\
\

Footer <div> { Copyright and contact info <\

<p> <p> <p>

body {
width: 550px;
color: #444;
font-size: 16px;
text-align: left;

CSS

Initial CSS for the body element

continued

WEB DESIGN PLAYGROUND 75

http://wdpg.io/2/projects/home-page/1

\

Project. Creating a Personal Home Page

-
=
=
I

/—\ Comments denote the beginning
<! --START OF HEADER-->

and end of each section.
<divs>

<hl>Page Title</hl>

<h2>Very short page introduction</h2>
<hrs>

<h3>Social media links</h3>

<hr>

The header section

</div>
<!--END OF HEADER-->
<! --START OF CONTENT-->
<divs>
<p>
First text block
</p>
<p>
Second text block The content section

/ (two paragraphs and
o 7 Ll e

—

First item</lis>
Second item</1li>
Etc.</1i>
</uls>
</divs>
<!--END OF CONTENT-->
<! --START OF FOOTER-->
<div>
<hr>
<p>
Copyright and contact info
</p>
</divs>
<!--END OF FOOTER-->

The footer section

I've left-aligned
everything in the page
to get a nice clean

line down the left side
of the page. There’s

no reason why you
couldn’t mess with the
alignment, however. Try
centering the three page
header elements (title,
introduction, and social

media links). = Online:

wdpg.io/2/projects/
home-page/2

76 WEB DESIGN PLAYGROUND

Notice that the initial structure also includes a few CSS properties applied
to the body element. These global properties set the width of the page and
the default values for the text color, font size, and alignment. The most
surprising might be the width value of 550px. Why restrict the width at all,
and why use such a relatively small value? One key element in good web
typography is line length. If your lines are too long, they become hard to
scan, and if they're too short, the text becomes choppy. In both cases, the
resulting text is difficult to read. For screen text, the optimum line length is
between 65 and 75 characters, so you need to set the width so that all or
most of the lines in your body text fit within that range.

http://wdpg.io/2/projects/home-page/2
http://wdpg.io/2/projects/home-page/2

Building the Page

Here are a few other things to note about the HTML tags used in the
initial structure:

¢ The page is divided into three sections: a header, the content,
and a footer.

e Each section is embedded within a <div></div> block. This
block organizes the structure and enables you to apply a style
(such as a font family) to everything within a particular section.

¢ Each section of the page is surrounded by special tags called
comments that mark the beginning (for example, <! --START
OF HEADER-->) and the end (for example, <! --END OF
HEADER- - >) of the section. | use all-uppercase characters to
help the comments stand out from the regular code, but that
practice is optional. See Chapter 16 to learn more about using
comments in your code.

The Page Title

Not surprisingly, you want your page title to be more prominent than the
rest of the page text. Setting the text within an hl element is a good start,
but you'll likely need to style the text even more to get the effect you want.
Here are some ideas:

¢ Apply a different color. If you make the color unique, the title
will stand out from the rest of the text.

e Apply a larger font size. Because your page title may be
something as simple as your name, a larger size makes it pop.

In the following example, | used my name as the title, but feel free to use
whatever text you prefer. | applied the sans-serif system font Verdana to the
header section’s div element (which means that this font is also applied to
the rest of the headings). | also styled the page title (the hl element) with
one of the colors from my color scheme (#1800£f) and a 52px font size.

Why didn’t you use #000
or black as the default
text color? With a white
page background,

pure black text can be
difficult to read because
of the extreme contrast
between the two colors.
Backing off the text color
to #444 or #333 makes
it easier to read.

To help you get a feel for
the ideal line lengths for
onscreen reading, I've set
up an exercise on the Web
Design Playground. Given
a paragraph of text,
adjust the body element’s
width property to bring
the line lengths into the
ideal range of 65-75
characters. Try changing
the font -size property
to see what effect that
change has on line length.
=) Online: wdpg.io/2/
projects/home-page/3

REMEMBER

Don'’t be shy about
adding comments to
your code. Comments
help you keep track

of the page structure,
and they’re often
indispensable when
someone else needs to
read your code or when
you haven't looked at
your page code for a few
months.

WEB DESIGN PLAYGROUND 77

http://wdpg.io/2/projects/home-page/3
http://wdpg.io/2/projects/home-page/3
http://wdpg.io/2/projects/home-page/2
http://wdpg.io/2/projects/home-page/2

\

» Try This

Project. Creating a Personal Home Page

= Online: wdpg.io/2/projects/home-page/4
This example styles the personal home page title with a color, font, and larger font size.

w
: PAUL MCFEDRIES
o
o T~ <h1>
=
hi {
color: #1800ff;
font-size: 52px; The CSS code for
} the hl element
i‘ <div style="font-family: Verdana, sans-serif;"> 4 The header
|:E <h1>PAUL MCFEDRIES</hl> section's div
element with
The hl element with text added the font applied
PLAY The Page Introduction

If your page title is long,
it will likely wrap to a
second line. That’s fine,
but you’ll want to reduce
the line height to bring
the two lines closer
together. For the hl
element, try setting the
line-height property
to a value below 1
(suchas 0.8 0r0.9).
= Online: wdpg.io/2/
projects/home-page/5

78 WEB DESIGN PLAYGROUND

The page introduction acts as a kind of subtitle. It should be a brief snippet of
text that introduces you to the reader. Because the text is a subtitle, the font
size should be smaller than the title text but larger than the body text. Again,
setting the text within an h2 element should do the job, but you'll want to set
the size yourself, depending on what you used for the title.

In the following example, | styled my page introduction with gray text
(#666) and a 22px font size. | also used an inline tag to style a
key phrase—technical writer—with another color from my color scheme
(#££c200). Note as well that this h2 element inherits the font that | applied
to the header’s <divs> tag in the preceding section.

http://wdpg.io/2/projects/home-page/4
http://wdpg.io/2/projects/home-page/5
http://wdpg.io/2/projects/home-page/5

Building the Page

» Try This

= Online: wdpg.io/2/projects/home-page/6
This example styles the personal home page introduction with a color and a larger font
size. Within the text, a tag applies a different color to the key phrase technical
writer.

I'mat
CSS, web demgn, and web typography

WEB PAGE

h2 {
color: #666;
font-size: 22px;

CSs

The CSS code for
the h2 element

color to the enclosed phrase

HTML

r specializing in HTML, \

<h2>

An inline span element applies a different

<h2>I'm a technical writer

specializing in HTML, CSS, web design, and web typography</h2>

The Social Media Links

The final element of the page header is the collection of links to your social
media sites, such as Facebook, Twitter, and Pinterest. This collection is a key
element of the page, so you should make it stand out from regular body text
by using a larger font size or a unique color (or both).

For my own page, as shown in the following example, | styled the social
media text with a sans-serif font and a 16px font size, and | typed the names
in uppercase letters. For the links, | applied the third color from my color
scheme (#0092£ff) and removed the underline. Hovering over each link
changes the text to the #££c200 color and adds underlining. Note, too, the
use of a vertical-bar symbol (|) to separate items.

The page introduction
should be short—ideally,
no more than two lines.
At the same time, it
should be balanced
visually on the screen,
with each line extending
as close to the right
edge of the text block

as possible. I've set up
an exercise on the Web
Design Playground

to help give you some
practice doing this.

= Online: wdpg.io/2/
projects/home-page/7

WEB DESIGN PLAYGROUND 79

http://wdpg.io/2/projects/home-page/6
http://wdpg.io/2/projects/home-page/7
http://wdpg.io/2/projects/home-page/7

\

Project:

Creating a Personal Home Page

» Try This =) Online: wdpg.io/2/projects/home-page/8
This example styles the personal home page’s social media text with a font, font size, uppercase
letters, and link colors, it also underlines that change when each link is hovered over.
G
<h3>
<C
g FACEBOOK | | PINTEREST | CODEPEN | LINKEDIN /
[N}
=
“ h3 {
8 font-size: 16px; The CSS code for
} the h3 element
a {
color: #0092ff;
text-decoration: none; The CSS code For
} the regular link text
a:hover {
St 00 erline, The CSS code for the link text
ext-decoration: unaerling; when the reader hovers over it
} using the mouse pointer
. <h3> FACEBOOK</
s a> | TWITTER | <a
= href="https://www.pinterest.com/mcfedries/">PINTEREST | <a
ac href="http://codepen.io/paulmcf/">CODEPEN | <a href="https://
www.linkedin.com/in/paulmcfedries" >LINKEDIN</h3>
FAQ In the CSS code, note the following rule:
What happened to the azhover {

<hr> tags? In the initial
page structure, I used
horizontal rules above
and below the social
media links to separate
them from the other
page text. With the styles
I've applied to the links,
however, they already
appear fully separate
from the rest of the text,
so the horizontal rules
became redundant.

color: #ffc200;
text-decoration:

underline;

The :hover code is called a pseudo-class and tells the web browser to
apply the rule’s style declarations when the user hovers the mouse over the
specified element. In this example, whenever the user hovers the mouse
pointer over an a element, the browser temporarily changes the link color and
adds an underline. When the user moves the mouse pointer off the element,
the browser returns the link to its original color and removes the underline.

The Body Text

The bulk of the personal home page is taken up by text that describes who
you are, what you do for a living, what you do for fun, and so on. This text is
the page’s body text, and its content is entirely up to you.

You've already set the default text color, font size, and text alignment for
the body element, and those values are inherited by the div element that
contains the content section of the page. All that remains is to apply the
body text typeface, which in my example is the serif font Georgia. To ensure
that this typeface gets applied to the entire content section, | add the font to
the div element’s font-family property.

80 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/home-page/8
http://www.facebook.com/PaulMcFedries
https://twitter.com/paulmcf
https://www.pinterest.com/mcfedries/
http://codepen.io/paulmcf/
https://www.linkedin.com/in/paulmcfedries
https://www.linkedin.com/in/paulmcfedries

Building the Page

» Try This > Online: wdpg.io/2/projects/home-page/10
This example styles the personal home page text with the Georgia typeface. It also changes
the bulleted list's bullets to circles.

T've been a professional technical writer for more than 30 years. I have over

]
©) 100 books to my credit, which have sold more than four million copies
E worldwide. I've been building websites since 1996, so I have intimate <p>
omn knowledge of HTML, CSS, and web design. My passion is to write books and P
L articles to pass along that knowledge and to create tools that help people
= build awesome web pages.
That’s my work side, so what about my personal side? That is, what do I do in
my spare time? I'm glad you asked! Here’s a partial (and alphabetical) list of <p>
things and activities that interest me:
o Chariot racing
o Dog polishing
o Duck herding
o Extreme ironing
o Navel fluff sculpture
o Staycationing
g ul {
i = = B i . A . .
laeEoEEyla-tye: elnele; The list-style-type pro er+y is
} set to circle to change he bullet.
— A <p></p> block is used The content section’s div
= for each paragraph. element with the Georgia
'f system font applied

<div style="font-family: Georgia, serif;">

<p>
I've been a professional technical writer for more than 25 years.
I have over 90 books to my credit, which have sold more than four
million copies worldwide. I’ve been building websites since 1996, so
have intimate knowledge of HTML, CSS, and web design. My passion
is to write books and articles to pass along that knowledge and to
create tools that help people build awesome web pages.
</p>
<p>
That’s my work side, so what about my personal side? That is, what
do I do in my spare time? I'm glad you asked! Here'’s a partial (and
alphabetical) list of things and activities that interest me:
</p>

Chariot racing

Dog polishing</1li>

Duck herding

Extreme ironing

Navel fluff sculpture</lis

Staycationing</1li>

</div>

WEB DESIGN PLAYGROUND 81

http://wdpg.io/2/projects/home-page/10

\

Project:

MASTER

Your body text also
helps you determine

the optimum width for
the page. When you set
text left-aligned, the
right side of each text
block is ragged, meaning
that each line ends at a
different point. Ideally,
you should adjust the
width so that your text
blocks aren’t too ragged
(that is, one or more
lines have too much
whitespace at the end).

» Try This

CSS WEB PAGE

HTML

</div>

Creating a Personal Home Page

In this example, note two things:

* | embedded each of the two paragraphs inside a <p></p> block
to honor the semantic role of the text.

e To give the bulleted list a bit of pizzazz, | set the ul element’s
list-style-type property to circle to change the default
bullets.

The Page Footer

The final element of the personal home page is the page footer. As you
can see in the following example, | used the footer to display a copyright
notice and my contact information (which, in this case, consists of my email
address). Feel free to use the footer to add any other information you see fit,
such as a "thank you for reading” message, a slogan or favorite epigram, or
extra contact details.

= Online: wdpg.io/2/projects/home-page/12
This example separates the footer text from the body text by adding a horizontal rule and
by styling the footer text with a lighter gray color, a smaller font size, and italics.

© 2023 Paul McFedries
Contact: mail at my-last-name dot com

The hr element is
given a Iigh’rer color.

hr {
color: #666;
1

<div style="font-family:Georgia, serif; color: #666; font-size:
l4px; font-style: italic;">

“
The div element is s+yled

with a font, Iigh+er color,
smaller font size, and italics.

‘\

<hr>
© 2023 Paul McFedries<brs>
Contact: mail at my-last-name dot com

The email address
is obfuscated.

82 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/home-page/11
http://wdpg.io/2/projects/home-page/11
http://wdpg.io/2/projects/home-page/12

From Here

The final version of the personal home page (mine is shown in Figure 5.3)
is pretty much what you'd expect: a simple, straightforward page that
establishes your first home on the web. (If you're itching to get your code
out there for all to see, check out the appendix to get the details.)

PAUL MCFEDRIES

I'm a technical writer specializing in HTML,
CSS, web design, and web typography

FACEBOOK | TWITTER | PINTEREST | CODEPEN | LINKEDIN

T've been a professional technical writer for more than 30 years. I have over
100 books to my credit, which have sold more than four million copies
worldwide. I've been building websites since 1996, so I have intimate
knowledge of HTML, CSS, and web design. My passion is to write books and
articles to pass along that knowledge and to create tools that help people
build awesome web pages.

That’s my work side, so what about my personal side? That is, what do I do in
my spare time? I'm glad you asked! Here’s a partial (and alphabetical) list of
things and activities that interest me:

Chariot racing

Dog polishing

Duck herding
Extreme ironing
Navel fluff sculpture
Staycationing

o o o o o o

© 2023 Paul McFedries
Contact: mail at my-last-name dot com

»Figure 5.3 A personal home page, ready for the web

Even though you're only getting started with HTML and CSS, you still
have plenty of ways to add personal touches to your humble home page.
You can always add more text, of course, including a numbered list (such
as a top-10 list of your favorite books or bands). You can also play with the
colors, try different typefaces, mess with typographical details such as the
font size and alignment, and add some links.

If you find yourself slightly disappointed with your page, that's to be
expected. After all, at this early stage in your web design education, you
have only limited control of the elements on the page, and you're missing
key design ingredients such as images, margins, and page layout. Not to
worry—you'll be learning all that and more in Part 2.

Although dark gray
(#333 or #444) text is
most often used with a
white background, other
text colors can achieve
subtle effects. A dark
brown text color exudes
warmth, for example.
On the Web Design
Playground, I've set up
an example. = Online
wdpg.io/2/projects/home-
page/11

Why does your email
address look so weird?
Ifyou're going to include
your email address in
your contact info, never
display the address in
plain text; you run the
risk of the address being
harvested by spammers.
Instead, obfuscate the
address in a way that
foils the spammers’ bots
but is still easy for a
human to figure out.

BEWARE

When adding a
copyright notice,

you may be tempted
to include both the
word Copyright and
the copyright symbol
(©), but this format is
redundant. Use one or
the other, but not both.

WEB DESIGN PLAYGROUND 83

http://wdpg.io/2/projects/home-page/11
http://wdpg.io/2/projects/home-page/11

\

84 WEB DESIGN PLAYGROUND

Project. Creating a Personal Home Page

Summary

Sketch out the page you want to build.
Choose the typefaces for the headings and body text.
Choose a color scheme.

Build the initial page structure: the barebones HTML tags and
the global CSS properties applied to the body element.

Fill in and style each section one by one: the title, the
introduction, the social media links, the body text, and the
footer.

Part 2

Working with
Images and Styles

HTML tags are vital parts of every web designer’s toolbox.
You must familiarize yourself with all the basic HTML tags—
from <a> to <var>—to build a decent page. But even if you
memorized all the 100 or so tags in the HTMLS specification,
any page you make that consisted only of tags and text would
look, well, boring. It would also look utterly generic because
the default renderings for things such as text, headings, and
lists are more or less the same in all modern browsers.

| know you're not reading this book because you want to
be boring and generic! So here in Part 2, you expand your
web design horizons with tools and techniques that go well
beyond the basics. You learn about images, video, and audio
in Chapter 6, and you gain advanced-but-practical style
sheet know-how in Chapter 7. In Chapter 8, you learn how
to position web page elements like a pro, and Chapter 9

introduces you to the all-important CSS box model, which
lets you size elements and add borders and margins around
elements.

Finally, in Chapter 10, you summon all your newfound HTML
and CSS knowledge and use it to build a slick landing page
for a product.

Chapter 6

Adding Images
and Other Media

6] This chapter covers

* Embedding an image on a web page
= Working with background images
= Optimizing images for the web

= Adding videos, music, and other media

When you come across a page that's nothing but text, how does it make you
feel? It probably makes you feel disappointed or perhaps even sad. Unless
the text is absorbing and the typography exceptionally good, it also probably
makes you want to click the Back button and look for some place where your
sore eyes can catch a break. You don't want people feeling disappointed, sad,
or eager to leave your site, so throw them a visual bone or two by sprucing
up your pages with images and perhaps even a video once in a while. In this
chapter, I show you how it's done.

WEB DESIGN PLAYGROUND 87

\

Do I have to include
the alt attribute? Yes.
Your web page won'’t
validate unless every
one of your tags
has an alt attribute
present. If your page
uses decorative or other
nonessential images, set
the alt attribute equal
to the empty string ("").
That way, your page is
still valid, but you’re not
annoying people using
assistive technology,
such as screen readers,
who don’t want to hear
descriptions of purely
decorative images.

REMEMBER

Ifyou don't yet have the
image you want to use but
you know the image’s final
dimensions, you can insert
a placeholder image to
occupy the same space on
the page until the image

is ready to use. You have
several ways to do this,
but the easiest is to use a
placeholder server, such
as https://placeholder.
com. In the tag,
add src="https://
via.placeholder.
com/wxh", where

w and h are the width

and height, respectively.
=) Online: wdpg.io/2/6-1-2

Adding Images and Other Media

Lesson 6.1: Adding an Image to the Page

Covers: The img element

= Online: wdpg.io/2/6-1-0

So far in this book, you've seen that the innards of a web page are text with
a few HTML tags and CSS rules sprinkled strategically here and there. So,
you may be wondering how images fit into this text-only landscape. The
short answer is that they don't! Unlike with a word processing document
or a presentation, you don't insert images directly into a web page. Instead,
you upload the image as a separate file to your website and then insert into
your page text a special HTML tag that tells the browser where to locate the
image. Then the browser retrieves the file from the server and displays the
image on the page in the location you specified.

The special tag that gets the browser to add an image to a web page is
the img element, which uses the partial syntax shown in Figure 6.1.

The location A description
of the image of the image

/'&/—M

w_/

Tooltip text for
the image

P> Figure 6.1 You insert an image into a web page by using the tag.

You have three attributes to consider here:

e src—This attribute (short for source) specifies where the image
file is located. If the file is on a remote server, use the full URL
of the file; if the file is in the same directory as the HTML file,
use the name of the file; otherwise, use the image’s path and
filename. If you've created in your site’s main folder a subfolder
named images, and your image file is 1ogo . png, your src value
would be /images/logo.png.

e alt—This attribute (short for alternative) is a word or short phrase
that describes the image and that could be used in place of the
image if the image file can't be displayed. A company logo, for
example, might use the alternative text logo, preceded by the
company name. Alt text is also used by screen readers and Braille
apps to give the user some idea of what the image is.

+ title—This optional attribute is used to specify tooltip text
that appears when the user hovers the mouse pointer over the
image, as shown in the example that follows.

88 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-1-0
http://wdpg.io/2/6-1-1
https://placeholder.com
https://placeholder.com
https://via.placeholder.com/wxh
https://via.placeholder.com/wxh
https://via.placeholder.com/wxh
http://wdpg.io/2/6-1-2

Understanding Image File Formats

The following example shows an img element in action.

» Example =) Online: wdpg.io/2/6-1-1
This example shows you how to use the tag to add an image to a web page.

Image
Ll
O —
<
o
g i b Desi
= Atomic Web Design
Logo for Atomic Web Design
\Tooltip
A span {
O font-family: Optima, Verdana, sans-serif;
font-size: 3em;
}

Location of
E‘ <img / the image File
= src="/images/atomic-logo.png"
T alt="Atomic Web Design logo" <4

i - . Alternative text
title="Logo for Atomic Web Design'">

Atomic Web Design
Tooltip text

chour website needs a proper balance between
textual and visual content. Awesome images or
videos without text will give your visitor little to no
useful data, but you might find it hard to engage
users with large slabs of plain text. —Helen Stark

Understanding Image File Formats

In the preceding example, you may have noticed that the image file was
named atomic-logo.png, meaning that it uses the PNG image file format.
That format is common on the web, but it's not the only one you can use.
In fact, the web has standardized on four formats that account for almost all
web imagery, as summarized in table 6.1.

WEB DESIGN PLAYGROUND 89

http://wdpg.io/2/6-1-1
https://placeholder.com
https://placeholder.com
https://via.placeholder.com/wxh
https://via.placeholder.com/wxh
https://via.placeholder.com/wxh
http://wdpg.io/2/6-1-2

\

P> Table 6.1 Image file formats

Adding Images and Other Media

Name Extension Description Uses
Thisis the original web graphics format Use GlIFs if you want to combine multiple
(the name is short for Graphics Interchange images into a single animated image.

GIF .gif Forn}at‘, which is pronounced giff or jiff). GIFs
are limited to 256 colors, can have transpar-
ent backgrounds, and can be combined into
short animations.
This format (which gets its name from Joint Ifyou have a photo or similarly complex
Photographic Experts Group and is pro- image, JPEG is almost always the best choice
nounced ay-peg) supports complex images because it gives the smallest file size. How
that have many millions of colors. The smallis small enough for the web? You learn
main advantage of JPEG files is that they're about that topic in the “Optimizing Images”
compressed, so even digitized photographs section later in this chapter.

. and other high-quality images can be a
i3 ’].pg reasonably small size for faster downloading.
-Jpeg Note, however, that JPEG compression is

lossy, which means that it makes the image
smaller by discarding redundant pixels. The
higher the compression, the more pixels
are discarded and the less sharp the image
appears.
This format (short for Portable Network Ifyou have anillustration or icon that
Graphics and pronounced p-n-g or ping) uses solid colors, or a photo that contains
supports millions of colors. It'sa compressed large areas of near-solid color, PNG is best

PNG -png format, but unlike JPEGs, PNGs use lossless because it gives you a reasonably small file
compression. Images retain sharpness, but size while retaining excellentimage quality.
the file sizes can get quite big. PNG also You can also use PNG if you need transpar-
supports transparency. ency effects.
This format (short for Scalable Vector Graph- Ifyou have a logo oricon and have a graph-
ics) uses vectors rather than pixels to gener- ics program that can save files as SVG (such
ate animage. These vectors are encoded as as Adobe lllustrator or Inkscape), this format

SVG 0 BV a setof instructions in XML format, meaning isa good choice because it produces small
that the image can be altered in a text files that can be scaled to any size without
editor and can be manipulated to produce distortion.
animations.

LEARN Getting Graphics
If you want to join the The text part of a web page is, at least from a production standpoint, a

animated-GIF fun, lots
of sites on the web can
help. The easiest route is
to use an online service
such as GIPHY (http://
giphy.com/create/gifmake)
or Canva (Www.canva
.com/create).

piece of cake for most folks. Graphics, on the other hand, are another kettle
of digital fish entirely. Creating a snazzy logo or eye-catching illustration
requires a modicum of artistic talent, which is a bit harder to come by than
basic typing skills.

90 WEB DESIGN PLAYGROUND

http://giphy.com/create/gifmake
http://giphy.com/create/gifmake

Inserting an HTMLS Figure

If you have such talent, however, you're laughing: create the image in your
favorite graphics program and save it in JPEG or PNG format. The nonartists in
the crowd have to obtain their graphics goodies from other sources. Besides
uploading your own photos or scanning your own images, you can find no

shortage of other images floating around. Here are some ideas: BEWARE
e Many programs (including Microsoft Office and most paint and Dontforgetthat
illustration programs) come with clip art libraries. Clip art is many images are the
professional-quality artwork that you can incorporate into your property of the people or
own designs. In almost all cases, you're free to use the clip art in companies that created
your own designs without worrying about copyright. them in the first place.

Unless you're absolutely

* Take advantage of the many graphics archives online. Sites all sure that a picture is in

over the web store hundreds, and even thousands, of images: the public domain (for
stock photos, illustrations, icons, and more. Many of these example, it comes with
images are free, but check each site’s terms of use. a Creative Commons

license that lets you
reuse the image), you
need to get permission
from the owner before

e Grab an image from a web page. When your browser displays
a web page with an image, the corresponding graphics file
is stored temporarily on your computer’s hard disk. In most

browsers, you can right-click the image to save that file using it. Either way,
permanently. As | elaborate in the note off to the side, however, be sure to give credit
there are copyright concerns because you shouldn’t use images to the image owner on
that you don’t own without permission and/or credit. your site.

Inserting an HTMLS5 Figure

Although many of your images are purely decorative or designed to catch
a site visitor's eye, you may also use plenty of graphics that tie in with your
page text. When you reference an image directly in the text, that image is
known as a figure. In HTMLS5, a figure is a semantic page element that you
designate with the figure element. If the figure has a caption, that caption
is also a semantic element that you designate with the figcaption element.
Here's the basic structure to use:

<figure>

<figcaption>Caption text</figcaption>

</figure>

Following is an example.

WEB DESIGN PLAYGROUND 91

\

Adding Images and Other Media

» Example = Online: wdpg.io/2/6-1-4
This example shows you how to use the figure and figcaption elements to
designate an image as a figure.

During our recent rebranding, we came up with a snazzy new logo, shown in Figure 8.3.

WEB PAGE

Figure 8.3: The new Atomic Web Design logo

E‘ <p>
= During our recent rebranding, we came up with a
T snazzy new logo, shown in Figure 8.3.
</p>
<figure>
<img

src="/images/atomic-logo.png"
alt="Atomic Web Design logo"
title="Logo for Atomic Web Design">

<figcaption> - Encloses the
Figure 8.3: The new Atomic Web Design logo caption in the
</figcaption> figcaption

</figure> \/ element.

Encloses the image in
the figure elemént.

Setting Up an Image as a Link

You already know that you can set up a word or phrase as a link, but you can
do the same with images. You arrange things in the same way, surrounding
the tag with the <a> and tags, like so:

Here's an example.

92 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-1-4

Using an Image as a Custom Bullet

» Example = Online: wdpg.io/2/6-1-6
This example shows you how to use the a element and the 1mg element to turn an
image into a link.

%/}JAtomic Web Design

WEB PAGE

alomlcwebdeslgﬁ:

-

<img src="/images/atomic-logo.png" alt="Atomic Web Design logo"
title="Logo for Atomic Web Design">

Atomic Web Design</sparlj/
Encloses the image in the a element.

HTML

Using an Image as a Custom Bullet BEWARE

As you learned in Chapter 2, CSS offers the list-style-type property I"’esjhown t.he C°d_ef°r
that enables you to specify another type of bullet character to use with an tu;n;ng an lml‘.lge}nto

. . . a link on one tine jor a
unordered list. You can kick that property up a notch by using the list-

. . . purpose. If you place
style-image property to specify an image to use as a custom bullet: these tags on separate

ul { lines—particularly the
list-style-image: url(file); closing tag—you
¥ end up with weird
As with the tag, the file value specifies the location of the image artifacts in the text
file. Note, however, that you don't have to surround the value with quotation (essef‘tlalh" underlined
marks. Following is an example. carriage returns).

WEB DESIGN PLAYGROUND 93

http://wdpg.io/2/6-1-6
http://atomicwebdesign.io/

\

Adding Images and Other Media

» Example =) online: wdpg.io/2/6-1-7
This example shows you how to use the 1ist -style-image property to specify an
image as a custom bullet.

Prepare Images for the Web:

9 ;

% Remove unnecessary images

@ .

@ Choose the correct image format

WEB PAGE

@ Size the images appropriately
@ Compress JPEGs as needed
© Optimize PNGs

ul {

list-style-image: url (/images/checkmark.png) ;
1
Sets the list-style-image

proper+y to the ima@e File
location

@SS

<h3>
Prepare Images for the Web:

</h3>

Remove unnecessary images
Choose the correct image format
Size the images appropriately
Compress JPEGs as needed
Optimize PNGs</1li>

HTML

Aligning Images and Text

The tagis an inline element, so you can insert it into, say, a paragraph
or similar block element, and it will flow along with the rest of the content.
By default, the bottom edge of the image aligns with the baseline of the
current line, but you can control that vertical alignment by using the
vertical-align property:

element {
vertical-align: baseline | bottom | middle | top;
}

¢ baseline—The bottom of the image is aligned with the
baseline of the current line (the default).

94 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-1-7

Aligning Images and Text

¢ bottom—The bottom of the image is aligned with the bottom of MASTER
the current line (that is, the bottommost extent of descending If you need even finer
letters such as y and g). control of the vertical
placement of an image,

¢ middle—The middle of the image is aligned with the baseline

ify a length
of the current line, plus one half of the x-height of the current youean Sp.eafy & tengt
value, in pixels (px), for
font. the vertical-align
o top—The top of the image is aligned with the top of the current property. To move the
line. image up, specify a

negative value.

The following example shows the vertical-align property at work.

» Example = Online: wdpg.io/2/6-1-10
This example shows you how to use the vertical -align property to align an image
vertically with surrounding content.

w Middle Top
(©) / /
< - %
a
&
= Animal path Bridleway - Coffin trail “Dcsire line
Baseline Bottom
g <div>
[<img src="/images/animalpath.jpg"
T style="vertical-align: baseline"> Animal path
</div> Applies the
<divs> baseline alignment

<img src="/images/bridleway.jpg"
style="vertical-align: bottom"> Bridleway
</div> Applies the bottom
<div> alignment
<img src="/images/coffintrail.jpg"
style="vertical-align: middle"> Coffin trail
</div> Applies the middle
<divs> alignment
<img src="/images/desireline.jpg"
style="vertical-align: top"> Desire line
</div> Applies the
top alignment

WEB DESIGN PLAYGROUND 95

http://wdpg.io/2/6-1-10

\

Adding Images and Other Media

Lesson 6.2: Working with Background Images
Covers: background-image and related properties

= Online: wdpg.io/2/6-2-0

To add some visual interest to an element, you can use the background-
image property to specify an image file to use as the background:

element {
background-image: url(file);

The file value specifies where the image file is located. If the file is on
a remote server, use the full URL of the file; if the file is in the same directory
as the HTML file, use the name of the file; otherwise, use the image’s path
and filename.

The following example shows this property in action.

b Example =) online: wdpg.io/2/6-2-1
This example shows you how to use the background-1image property to apply an
image as the background of an element.

w Original image Tiled background images

2

o / /\

m

Ll

=

] div {

[®) bégkil:'ound—lr.nage: url (/images/bg.png); 4 The div element
width: 500px; gets a background
height: 200px; image.

96 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-2-0
http://wdpg.io/2/6-2-1

Controlling the Background Repeat

E‘
= <div>
I <h1>Tiling</hl>

A The image is

displaye on
its own for
comparison

<p>When you add a background image, the browser doesn’t just
add the image once and move on to the next task. Instead, it takes
the image and repeats it until it fills the entire parent block

element, a process known as <i>tiling</i>.
</p>
</divs>

When working with background images, you should assume that the
image may not load properly for some reason. Therefore, it's always a good
idea to specify the background-color property with a value that matches
the main color of the image. Here's an example:

div {

background-color: #fec72f;
background-image: url(/images/bg.png);

Controlling the Background Repeat

You saw in the preceding example that the browser’s default behavior for
a background image that's smaller than the element is to repeat the image
horizontally and vertically until the element is filled. This behavior is called
tiling the background, and it's usually the behavior you want. However, you
can control whether the background repeats horizontally, repeats vertically,
or doesn't repeat at all by using the background-repeat property:

element {

background-image: url(file);

background-repeat: repeat|repeat-x|repeat-y|round]|space|no-
repeat;

h

o repeat—Tiles the image horizontally and vertically (the default)

e repeat-x—Tiles the image only horizontally, as shown in
Figure 6.2

e repeat-y—Tiles the image only vertically, as shown in
Figure 6.3

+ round—Stretches each repeated image as needed to fill the
container

* space—Tiles the image as much as possible without clipping the
image

e no-repeat—NDisplays the image once

BEWARE

A background image

can add a nice bit of eye
candy to a page, but

it leaves a bitter taste

if it interferes with the
legibility of your page
text. Always ensure

that you've got lots of
contrast between the text
and the background.

You can try out all the
background-repeat
values interactively

in the Web Design
Playground. = Online:
wdpg.io/2/6-2-2

REMEMBER

The repeat value is

the default, so declaring
background-repeat:
repeat is optional.

WEB DESIGN PLAYGROUND 97

http://wdpg.io/2/6-2-2

\

» Figure 6.2

With background-
repeat: repeat-x,
the background image
repeats horizontally.

» Figure 6.3

With background-
repeat: repeat-y,
the background image
repeats vertically.

You can try out all

the background-
position keywords
interactively in the Web
Design Playground.

=) Online: wdpg.io/2/6-2-3

REMEMBER

The left topvalueis
the default, so declaring
background-
position: left

top is optional.

Note, too, that this
value is equivalent

to background-
position: 0% 0%

or background-
position: Opx Opx.

Adding Images and Other Media

J g
the next task. Instead, it takes the image and
repeats it until it fills the entire parent block
element, a process known as tiling.

og e
Tiling
ou add a background image, the browser
n’t just add the image once and move on to
ext task. Instead, it takes the image and
ts it until it fills the entire parent block
element, a process known as tiling.

Setting the Background Position

By default, the background image tiling starts in the top-left corner of the
parent element. You can change that setting by applying the background-
position property:
element {
background-image: url(file);
background-position: horizontal vertical;

}

e horizontal—Specifies the starting horizontal position of the
background image tiling. You can use the keywords left,
center, or right; a percentage; or a pixel value (or any of the
CSS length units you'll learn about in Chapter 7).

e vertical—Specifies the starting vertical position of the
background image tiling. You can use the keywords top,
center, or bottom; a percentage; or a pixel value (or any of the
CSS length units you'll learn about in Chapter 7).

Figure 6.4 is a composite that shows the nine possible positions when
you use the three horizontal keywords (left, center, and right) and three
vertical keywords (top, center, and bottom). Note that in each case, | set
the background-repeat property to no-repeat.

98 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-2-3

Adding a Hero Image

Center top
Left top — S £ “_Right top

;l 1y,
u
;l L
"y
%3‘ 1,

_

Left center ~ Right center

=

Left bottom — :“",g:)i:: :\“’gi:: \ "ﬁé D Right bottom

Center center

Center bottom

p>Figure 6.4 The nine possible keyword-based positions for the
background-position property

Adding a Hero Image PLAY

One of the most popular web design trends of the past few years is the hero Another way to use
image: an eye-catching photo or illustration that takes up the entire width animage as a custom
(and usually the entire height) of the browser window when you first land on ~ Pulletis to set the image

;) X S) . h k
a page. Using a hero image is a great way to grab a visitor's attention right ?;rttheebfic 52:::;
off the bat. ’

which enables you to

To set up a hero image, you need to do the following: use background-
position to control
the alignment of the
bullet and the item text.
= Online: wdpg.io/2/6-2-4

1 Begin the page with a block element (such as a div) that's styled to
take up the entire browser window:

width: 100vw;
height: 100vh;

REMEMBER

2 For that same block element, add a background image and set its The vw and vh units

position to background-position: center center. represent one one-

3 Add the declaration background-size: cover, which tells the hundredth of the
browser to size the image so that it covers the entire background of ~ browser window’s widih

the block element. and height, respectively.
For more on these units,
Following is an example. see Chapter 7.

WEB DESIGN PLAYGROUND 99

http://wdpg.io/2/6-2-4

— Adding Images and Other Media

b Example 2> 0nline: wdpg.io/2/6-2-5
This example shows you how to add a hero image to a page.

w
g % Hero Image X+ ”
o «>c a i i image/ O % & RO
[aa]
[
=
(%) =4)
%) .hero. image { Element sized to the
©) width: 100vw; browser window
height: 100vh;
background-image: url (/images/toronto.jpg) ;
background-position: center center; The image is
background-size: cover; <4~ The | dlsplayed and
e image centered.
} covers fhe
entire element.
= <div class="hero-image"> 4 Container element
E <hls>Welcome!</hl> et e e image
T

<h2>Are you ready to see Toronto in an entirely new way?</h2>
</div>
<div class="main">

The main page content goes here.
</div>

100 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-2-5

Optimizing Images

The Background Shorthand Property

CSS has five main background-related components: color, image, repeat,
attachment, and position. These components are represented, respectively, by the
CSSpropertiesbackground-color, background-image, background-repeat,
background-attachment, and background-position. (CSS has three other
background-related properties—background-size, background-origin, and
background-clip—that | don't cover in this book.) Handily, you can apply any or
all of these properties with a single statement by using the background shorthand
property, which takes the simplified syntax shown in Figure 6.5.

Color

Image file Repeat

You can make the
background stay in

place while you scroll

the rest of the page by
adding the declaration
background-
attachment: fixed.
= Online: wdpg.io/2/6-2-6

Attachment

PN A A

A
s aVa N Ve

~

background: background-color background-image background-repeat background-attachment

background-position;

ﬂ_/

Starting position

p>Figure 6.5 You can apply up to five background properties at the same time by using the background property.

This syntax is a straightforward repetition of everything you've learned so
far, and you're free to enter the properties in any order you prefer.

Optimizing Images

“Color is free on the web" is a common saying in web design circles that means
you can add colors to text, backgrounds, borders, and other elements without
paying a performance price. This is decidedly not the case with images, which,
thanks to their potential to be huge (particularly those hero images | talked
about earlier), can come with high performance costs indeed. To help ensure
that your pages aren't bandwidth hogs that take ages to load, here are a few
tips to bear in mind for optimizing the images you use:

* Don't use unnecessary images. Before adding an image to a page,
ask yourself whether the image is needed to convey your message.
If so, go for it. If not, leave it behind. Your users will thank you.

e Watch your image sizes. Web browsers can resize images as
needed, but they shouldn’t have to. If you want a 100 x 100
logo in the top-left corner, don't upload a 2,048 x 2,048 version
of that image and force the browser to resize (by, say, specifying
the smaller width and height in your CSS). That bigger file will
take a long time to download, which is a waste of bandwidth.

e Choose your file format wisely. As a general rule, you should use
the image file format that produces the smallest file size while
still retaining a satisfactory level of image quality for the job
at hand. A hero image should look good, but a tiny thumbnail
doesn’t have to be a high-resolution image.

One of the most
surprising aspects of
background images

is that you can use
multiple backgrounds
on the same element.
You can repeat the same
background image in
two or more places

or use two or more
background images (or
both!). = Online:
wdpg.io/2/6-2-7

BEWARE

Ifyou plan to overlay
text on your hero image,
make sure that the
image includes an area
that’s not too busy so
that your text will be
readable. In addition,
ensure that you have
sufficient contrast
between the colors

of your image and
your text.

WEB DESIGN PLAYGROUND 101

http://wdpg.io/2/6-2-6
http://wdpg.io/2/6-2-7

Adding Images and Other Media

If you need to use 24-bit
PNGs, software tools
are available that can
help reduce the size of
those files. If you use a
Mac, try ImageAlpha
(https://pngmini.com);

if you run Windows,
check out PNGoo

(https://pngquant.org).

¢ Take advantage of JPEG compression. If you're saving your
image in the JPEG format, your imaging software allows
you to choose a compression level for the file. You'll need to
experiment a bit to get the right level, but for most uses, a
compression level in the range of 60% to 75% is a good place to
start. More compression usually leads to poor image quality, and
less compression usually results in large file sizes.

e Optimize PNG images. When you're working with a PNG image,
decide whether you can get away with 8-bit color, which is a
mere 256 colors. For a simple logo or icon, 8-bit color may be
more than enough, and you'll end up with quite a small file.

For more complex images, you'll probably need the full 24-bit
palette.

Adding Video and Audio to the Page

You know that people love their cat videos and podcasts, so you want a
piece of the action by adding video or audio content to your own web pages.
Great idea! I'll begin with the good news: HTML5 comes with the <video>
and <audio> tags, which offer a somewhat straightforward way to embed
media content in a page. Notice that | said somewhat. Why the hedge? Ah,
that's where the bad news rears its complexifying head. Right now, web
media is a crazy quilt of standards, compression algorithms, and file formats.
It's borderline absurd, but if you want to serve your visitors sights or sounds,
you need to wade into the deep end. I'll begin by defining two aspects of
web media formats:

e Container—The file format, called a container because it acts
like the media equivalent of a zip file—that is, it's an archive
that contains multiple items, particularly the media codecs
(discussed next) and the media metadata.

e Codec—The algorithm used to encode and compress the video
or audio in a digital format and to decode and decompress the
media for playback. (The word codec is a blend of code/decode
and compress/decompress.)

So, a web media file that you'd embed in a page comes in a specific
media format that uses a particular container, and within that container are
all the codecs that the format supports. Sounds simple enough, right? The
absurdity comes into play when you understand that there's no such thing
as a standard or universal media format.

102 WEB DESIGN PLAYGROUND

https://pngmini.com
https://pngquant.org

Adding Video and Audio to the Page

Web Video Formats
For video, in fact, you have three main formats to worry about:

¢ WebM—This format uses the WebM container, inside which is
either the VP8 or VP9 video codec, as well as the Vorbis or Opus
audio codec. This format is open source and royalty free. File
extension: .webm.

¢ Ogg—This format uses the Ogg container, inside which is the
Theora video codec, as well as the Vorbis or Opus audio codec.
This format is open source and royalty free. File extension: .ogg
or .ogv.

o MPEG-4—This format uses the MPEG-4 container, inside which
is the H.264 video codec, as well as the AAC audio codec. This
format is patented but free for end users. File extension: .mp4.

Which one should you use? Most of the time, you can get away with
using the MPEG-4 format, which is supported by all major browsers. That
support is a bit problematic, however. First, Firefox doesn’t support MPEG-4
natively; instead, it relies on the operating system’s built-in support for
MPEG-4. Second, Google has hinted that it may not support MPEG-4 in
future releases of Chrome. It's a good idea to serve your visitors both an
MPEG-4 version and a WebM version (which is newer and better supported
than Oggq).

Web Audio Formats
For audio, there are even more formats:

e MP3—This format is both the container and the audio codec.
This format is patented but free for end users. File extension:
.mp3.

o WAV—This format is both the container and the audio codec.
File extension: .wav.

¢ WebM—This format uses the WebM container, inside which is
the Vorbis or Opus audio codec. This format is open source and
royalty free. File extension: .webm.

¢ Ogg—This format uses the Ogg container, inside which is the
Vorbis or Opus audio codec. This format is open source and
royalty free. File extension: .ogg. or .oga.

o MPEG-4—This format uses the MPEG-4 container, inside which
is the AAC audio codec. This format is patented but free for end
users. File extension: .m4a.

Things are a bit saner in the audio world, where every browser now
supports the MP3 format, so you can get away with using the one file type.

Many tools are
available to convert
videos to formats
supported by HTML5.
Two online tools that
are worth checking

out are Zamzar (WWW.
zamzar.com) and Online-
Convert (www.online-
convert.com/).

The two online tools I
mentioned earlier also
support the HTML5
web audio formats. You
may also want to have a
look at Media.io (https:/
media.io).

WEB DESIGN PLAYGROUND 103

http://www.zamzar.com
http://www.zamzar.com
http://www.online-convert.com/
http://www.online-convert.com/
http://Media.io
https://media.io
https://media.io

\

Adding Images and Other Media

Lesson 6.3: Embedding Video in a Web Page
Covers: The video element

= Online: wdpg.io/2/6-3-0

HTML5's video element offers a no-nonsense way of embedding video
content in your web page. Well, no-nonsense may be wishful thinking. You
can use two syntaxes, depending on the number of video file formats you
want to serve.
First, here's the syntax to use if you're offering a single video format:
<video src="file"
poster="file"
width="value"
height="value"
controls
autoplay
loop>
</video>

* src—Specifies the location of the video file, so it's much the
same as the src attribute for the tag

e poster—Specifies the location of an image, such as a title frame
or still frame from the video, to display before video playback
begins

e width and height—Specify the dimensions of the video
playback window

e controls—When included, tells the browser to display the
playback controls in the video window

e autoplay—When included, tells the browser to automatically
start playing the video as soon as it has downloaded enough of
the video file to play it back smoothly

e loop—When included, tells the browser to begin playback from
the beginning each time the video ends

Following is an example.

104 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-3-0

= Online: wdpg.io/2/6-3-1
This example shows you how to embed a single video-file format in a web page.

WEB PAGE

Feature Attraction

11 0:15/5:00 —@— {H —o

&

<video src="/videos/movie.mp4"
poster="/images/movie-poster.jpg"
width="625"
height="480"
controls
autoplay
loop>

</video>

HTML

To offer two or more video formats, you need to remove the src attribute
from the <video> tag and add multiple source elements, one for each
format you want to offer:

<video poster="file"

width="value"

height="value"

controls

autoplay

loop>

<source src="file"
type="'type; codecs="codecs

niy

</video>

e src—As before, the src attribute for each <sources> tag
specifies the name and/or location of the video file.

WEB DESIGN PLAYGROUND 105

http://wdpg.io/2/6-3-1

<> {1}
O

WEB PAGE

1l 058/500 ———@—— H ——o ¥

106 WEB DESIGN PLAYGROUND

o type—This string (surrounded by single quotation marks)
specifies the video format type (as shown earlier in this chapter
in the “Web Video Formats” section), a comma-separated and
double-quotation-mark-surrounded list of the format’s video
and audio codecs.

e MPEG-4—Use the following:

type='video/mp4; codecs="avcl.4D401E, mp4a.40.2"'
¢ WebM—Use one of the following:

type='video/webm; codecs="vp8, vorbis"'
type='video/webm; codecs="vp9, vorbig"'
type='video/webm; codecs="vp9, opus"'

e Ogg—Use one of the following:

type='video/ogg; codecs="theora, vorbig"'
type='video/ogg; codecs="theora, opus"'

Here's an example.

= Online: wdpg.io/2/6-3-2
This example shows you how to embed multiple video file formats in a web page.

http://wdpg.io/2/6-3-2

Adding Video and Audio to the Page

<video poster="/images/movie-poster.jpg"
width="625"
height="480"
controls
autoplay
loop>
<source src="/videos/movie.mp4"
type='video/mp4; codecs="avcl.4D401E, mp4a.40.2"'>
<source src="/videos/movie.webm"
type='video/webm; codecs="vp8, vorbis"'>
<source src="/videos/movie.ogv"
type='video/ogg; codecs="theora, vorbis"'>

HTML

</video>

Lesson 6.4: Embedding Audio in a Web Page
Covers: The audio element

= Online: wdpg.io/2/6-4-0

You'll be delighted to hear that embedding audio in a web page is nearly
identical to embedding video because the <audio> and <video> tags have
many of the same attributes. First, here's the syntax to use if you're offering
a single audio format:

<audio src="file"
controls
autoplay
loop>

</video>

e src—Specifies the location of the audio file

e controls—When included, tells the browser to display the
playback controls in the audio window

¢ autoplay—When included, tells the browser to automatically
start playing the audio as soon as it has downloaded enough of
the audio file to play it back smoothly

e loop—When included, tells the browser to begin playback from
the beginning each time the audio ends

Following is an example.

WEB DESIGN PLAYGROUND 107

http://wdpg.io/2/6-4-0

\

Adding Images and Other Media

WEB PAGE

HTML

» Example = online: wdpg.io/2/6-4-1

This example shows you how to embed a single audio file format in a web page.

<audio src="/audio/music.mp3"
controls
autoplay
loop>

</audio>

To offer two or more audio formats, remove the src attribute from the
<audio> tag and add multiple <source> tags, one for each format you want

to offer:
<audio controls
autoplay
loop>
<source src="file"
type="type">
</audio>

e src—As before, the src attribute for each <source> tag
specifies the name and/or location of the audio file.

* type—This specifies the audio format type (as shown earlier in
the "Web Audio Formats” section.)

Here's an example.

108 WEB DESIGN PLAYGROUND

http://wdpg.io/2/6-4-1

Summary

» Example = online: wdpg.io/2/6-4-2
This example shows you how to embed multiple audio file formats in a web page.

" ® LD 4

WEB PAGE

<audio controls
autoplay
loop>
<source src="/audio/music.mp3"
type="audio/mp3" >
<source src="/audio/music.wav"
type="audio/wav">
<source src="/audio/music.webm"
type="audio/webm" >
<source src="/audio/music.ogg"
type="audio/ogg" >
<source src="/audio/music.m4a"
type="audio/mp4" >

HTML

</audio>

Summary

¢ There are four main image-format types—GiIF, JPEG, PNG, and
SVG—although most of your pages will use JPEG for photos and
complex images, and PNG for illustrations, logos, and icons that
use mostly solid colors and/or transparency.

* To add an image to the page, use the tag:

¢ To infuse your images with HTML5 semantic flavor, surround
the img element with the figure element, and, optionally, add a
figcaption element.

e To make an image do double duty as a link, surround the img
element with the a element.

WEB DESIGN PLAYGROUND 109

http://wdpg.io/2/6-4-2

\

110 WEB DESIGN PLAYGROUND

Adding Images and Other Media

You can set up an image as an element background by adding
the following property to the element’s CSS:

background-image: url(file);

You can control the background image’s display by adding
one or more of the following properties: background-repeat,
background-position, and background-attachment.

You can set all three of these properties, as well as the
background-color and background-image properties, by
using the background shorthand property.

You embed a video in a web page by using the <video> tag, and
you embed sound in a web page by using the <audio> tag.

With both the <video> tag and the <audio> tag, you can specify
multiple formats by adding a separate <source> tag for each.

Chapter 7

Learning More
About Styles

This chapter covers
'—] = Learning the three methods for adding styles to a
web page
* Adding power and flexibility with classes

* Understanding the units of measurement you can
use in your CSS

How do you craft pages that rise above the humdrum? How do you design
pages that go beyond the same old, same old? One word: styles. If you've
seen a well-designed web page, know that the page uses styles to achieve
that look. If there's a web designer whose work you admire, know that the
designer mastered styles that make her work stand out. You saw several
useful styles in Part 1 of the book, but those styles are only a taste of what's
out there. To help you get started down the road to becoming truly style
savvy, this chapter takes your style knowledge to the next level.

WEB DESIGN PLAYGROUND 111

\

REMEMBER

A style is an instruction
to the browser to
modify how it displays
something on the page,
and a style sheet (the
SS part of CSS) is a
collection of styles. So,
throughout this book, I
use the terms CSS and
styles interchangeably.

» Figure 7.1
The syntax of a property-
value pair

Do I have to add a space
after the colon? Strictly
speaking, no, as the
space isn't required. I do
recommend adding the
space, however, because
it makes your styles
more readable.

A good use for inline
styles is to perform

a quick test of a CSS
property or two. If
you're getting started
with a page and haven't
yet set up an external
style sheet (see Lesson
7.3), inline styles are a
quick way to test-drive
some CSS.

Learning More About Styles

Adding Styles to a Page

| mentioned in Chapter 1 that a web page is a text file filled with words,
numbers, and a few strategically placed HTML tags that provide structure
for the text. You'll be happy to hear that CSS is also a text-based business,
so you don't need anything grander than a simple text editor (or this book's
handy Web Design Playground) to get started with styles.

That said, although what styles consist of is simple enough, how you add
styles to a web page is a bit more complex. First, recall from Chapter 1 that a
single style declaration consists of a property-value pair that uses the syntax
shown in Figure 7.1.

Name of the Value of the
CSS property property

The property name is almost always
written in lowercase letters (although it doesn't
/.& / have to be). If the value includes one or more
property: value; spaces, numbers, or punctuation characters

other than a hyphen (-), surround the value
/ with quotation marks.

The added complexity of CSS comes from
the fact that you have not one, not two, but
three ways to tell the web browser what style
declarations you want to use:

The property and value are
separated by a colon (:) and
a space.

¢ Inline styles
¢ Internal styles

o External styles

The next three lessons introduce you to these methods.

Lesson 7.1: Inserting Inline Styles

Covers: The style attribute

= Online: wdpg.io/2/7-1-0

Probably the most straightforward way to add styles to your web page is to
insert them directly into the element you want to modify. This technique is
called an inline style, and you insert a style by including the style attribute
within the HTML element you want to change. Figure 7.2 shows the general
syntax to use.

112 WEB DESIGN PLAYGROUND

http://wdpg.io/2/7-1-1
http://wdpg.io/2/7-1-0

Adding Styles to a Page

The web page One or more BEWARE
element to be styled property-value pairs Because the style
/-& ~ A ~ attribute's value is itself
<element style="propertyl: valuel; property2: value2; ..."> surrounded by double
quotation marks, be
/ careful if one of your
The style attribute property-value pairs
requires quotation
P> Figure 7.2 The syntax to use for inline styles marks of its own. In that
case, surround the value
Here are a few points to keep in mind when you use inline styles: with single quotation
. . marks (for example,
¢ If you want to include two or more property-value pairs style="font-
in a single inline style, be sure to separate each pair with a family: 'PT
semicolon (;). Sans';").

« If a value needs to be quoted, use single quotation marks ().

¢ Aninline style affects only the element in which you place the
style attribute.

Following are a couple of examples of inline styles.

» Example =) online: wdpg.io/2/7-1-1
This example shows an inline style applied to a <p> tag, as well as an inline style with
multiple property-value pairs applied to a tag.

The snowclone is a kind of phrasal template since it
comes with one or more empty "slots" that get filled The <p> text
with words to create a new phrase. Some examples:

WEB PAGE

« I'mnot an X, but | play one on TV

» In X, no one can hear you Y The text
» Xand Y and Z, oh my! f

continued

WEB DESIGN PLAYGROUND 113

http://wdpg.io/2/7-1-1

\

Learning More About Styles

E‘ The p element’s inline style sets the font size.
|_
== <p style="font-size: 1.5em"> The <i>snowclone</i> is a kind of
<i>phrasal template</i> since it comes with one or more empty
"slots" that get filled with words to create a new phrase. Some
examples:</p>
<ul style="color: darkgreen; font-family: 'Trebuchet MS',
sans-serif; font-size: 1.25em;">
<1li>I'm not an X, but I play one on TV</lix>
<1li>In X, no one can hear you Y The ul element's
X and Y and Z, oh my!</1li> inline styles set
</uls> the text color,
typeface, and size.
PLAY

Although inline styles are the easiest way to add CSS code to your page,
they're not the most convenient method for anything other than the simplest
of pages because they require you to add the style attribute directly to
every element you want styled. If your page consists of, say, a dozen h2
elements, and you want to apply the same style to them all, you must add a
dozen style attributes. Even worse, if you later decide to change how your
h2 elements appear, you have to change every instance of the style value.

Canyou spot the style
attribute error in the
following <a> tag? <a
href="https://
www.w3.org/TR/
css-style-attr/"
style="color:

indianred; font-
weight: bold,
text-decoration:
none; "> E>0nline:
wdpg.io/2/7-1-3

That's a lot of work, so most web designers eschew inline styles or use them
only for specific instances.

What do these designers do instead? Ah, that's where internal styles
come in.

Lesson 7.2: Adding an Internal Style Sheet

Covers: The style element

= Online: wdpg.io/2/7-2-0

The second method for getting styles into a web page involves adding a
<style></style> tag pair in the page's head section (that is, between
the page's <head> and </head> tags) and then defining the styles within
those tags. This method is called an internal style sheet (or sometimes an
embedded style sheet), and it uses the following general syntax:

114 WEB DESIGN PLAYGROUND

https://www.w3.org/TR/css-style-attr/
https://www.w3.org/TR/css-style-attr/
https://www.w3.org/TR/css-style-attr/
http://wdpg.io/2/7-1-3
http://wdpg.io/2/7-2-0

Adding Styles to a Page

The web Ea e elements
e

to be s+y
\ eclarations are
<style> surrounded by opening
selectora { and closing braces.

propertyAl: valueAl;
propertyA2: valueA2;

One or more
declarations

}e—
selectorB {
propertyBl: valueBl;
propertyB2: valueB2;

5+yle rule

}
</style>
From this syntax, you can see that an internal style sheet consists of
one or more style rules, each of which defines one or more property-value

pairs to be applied to the specified web page elements. Each rule has the
following characteristics:

* A selector that specifies the web page elements to which you
want the style applied. This selector is often a tag name, but
it can also specify any other type of CSS selector (such as the
class selector, described in Lesson 7.4).

* An opening left brace: {.

* One or more property-value pairs, separated by semicolons.

¢ A closing right brace: }.

In CSS lingo, a property-value pair is called a declaration, and the
collection of declarations applied to a selector—that is, the braces and
the property-value pairs between them—is called a declaration block. The

combination of a selector and its declaration block is called a style rule. The
following example uses an internal style sheet to format the dt element.

WEB DESIGN PLAYGROUND 115

\

Learning More About Styles

» Example = online: wdpg.io/2/7-2-1
This example uses an internal style sheet to apply a font size and bolding to each of the
<dt> tags.

Some movie jobs to commit to memory:

Gaffer
The head electrician.
Best Boy
The <dt> text The gaffer's assistant.
Grip
A person who moves equipment.

WEB PAGE

<style>
at {
font-size: 18px;
font-weight: bold; The CSS rule for
} the dt element

</style>

CSs

<p>Some movie jobs to commit to memory:</p>

<dl>
<dt>Gaffer</dt>
<dd>The head electrician.</dd>
<dt>Best Boy</dt>
<dd>The gaffer's assistant.</dd>
<dt>Grip</dt>
<dd>A person who moves equipment.</dd>

</dl>

HTML

The <dt> +a99 and text

MASTER Here, you see one of the great advantages of using internal styles. If your
Declaration blocks can page has a dozen dt elements, this one style applies to them all, which gives
get quite long, with some the page a consistent look. Even better, if you decided that a size of 20px
containing a dozen would look better for your dt text, you'd have to change the value only once
or more property- in the style declaration; that change would be reflected automatically in all
value pairs. One way
. your dt elements.

to make reading and

. . . Internal styles work beautifully if your site consists of a single web page.
working with these big i))) ?
blocks easier is to add Such sites aren't rare, but it's far more likely that your or your client’s site
the declarations in will consist of several pages, perhaps even several dozen. If you want your
alphabetical order by pages to have a consistent look—and you should, because consistency
property name.

116 WEB DESIGN PLAYGROUND

http://wdpg.io/2/7-2-1

Adding Styles to a Page

across pages is one of the hallmarks of good web design—using internal
style sheets means copying the same <style> tag to each and every page.
In addition, if you change even one aspect of any style rule, you must make
the same change to the same rule in every page. The bigger your site is, the
less appealing all that maintenance sounds and the more likely you'll be to
switch to external style sheets.

Lesson 7.3: Referencing an External Style Sheet
Covers: The 1ink element

= Online: wdpg.io/2/7-3-0
The third and final method for adding styles to a page involves creatinga ~REMEMBER

second text file that you use to define your style rules. This method is called Traditionally, you save
an external style sheet, and by tradition, its filename uses the .css extension anexternal style sheet
(as in styles.css). Within that file, you use the same syntax that you saw (extfile withthe .css

earlier for an internal style sheet, but you do without the style element: extension feg, styles

.css).
Web page elements to
be styled
/ Y Declarations are
surrounded by opening
selectorA { and closing braces.
tyAl: lueAl;
property: va-ue One or more
propertyA2: valueA2; declarations
} -—
selectorB {
propertyBl: valueBl;
B2: lueB2;
property. value S+yle rule
1
To let the web browser know that you have an external style sheet, you
add a <link> tag to your web page’s head section. Figure 7.3 shows the
syntax.
Where the external style Tells the web browser that » Figure 7.3

sheet file is located the linked file is a style sheet The <11ink> tag syntax for

/.& /_M attaching an external style

<link href="location/filename.css" rel="stylesheet"s> sheetto a web page

W_/

The name of the external
style sheet file

WEB DESIGN PLAYGROUND 117

http://wdpg.io/2/7-3-0

\

Learning More About Styles

In this syntax, the Iocation value is perhaps the trickiest. There are four
possibilities:
* Reference a CSS file in the same directory. Leave out the
location and reference only the filename, like so:

<link href="styles.css" rel="stylesheet">

e Reference a CSS file in a subdirectory of the web page directory.
The location is the name of the subdirectory. If the subdirectory
is named css, for example, you'd use the following:

<link href="css/styles.css" rel="stylesheet">

* Reference a CSS file in a subdirectory of the website’s main
subdirectory. The location is the root directory (/) followed by
the name of the subdirectory. If the subdirectory is named css,
for example, you'd use the following:

<link href="/css/styles.css" rel="stylesheet">

o Reference a CSS file on a remote server. The location is the full
URL of the CSS file. Here's an example:

<link href="https://fonts.googleapis.com/css?family=Lato"

REMEMBER rel="stylesheet">
Asw1ththe<style> Using an external style sheet brings three major advantages to your web
tag, you may see pages:

some CSS external

file <1ink> tags e Makes applying a consistent look across multiple pages much

that include the easier—If you attach the same external style sheet to several
type="text/css" pages, and that CSS styles, say, your hl elements, those tags will
attribute. That attribute look exactly the same on all the pages.

was required to validate o Makes updating and maintaining your pages much easier—|f
W’tth,ML 4;;?’ b'fth you make a change to the CSS in an external style sheet, that
you don't need tt wit change is automatically propagated to every web page that links
HTMLs5. .

to the CSSfile.

e Enhances the separation between structure and presentation—
By using an external style sheet, you separate your project into
two distinct layers: a structural layer of files that contain only
HTML tags and a presentation layer of files that contain only CSS
rules. Nice.

118 WEB DESIGN PLAYGROUND

https://fonts.googleapis.com/css?family=Lato

Adding Styles to a Page

This isn't to say that you should use only external style sheets rather than
inline styles or internal style sheets. You have plenty of good reasons to use
the style element, and you'll find that some web page design problems
are most easily solved by using a style attribute in an HTML tag. There's no
need for taking a dogmatic approach to CSS; do what works.

Lesson 7.4: Using Class Selectors
Covers: The class selector

= Online: wdpg.io/2/7-4-0

Earlier, you learned that when you're defining a style rule, the first thing you
specify is the web page object you want styled, followed by the declaration
block:

selector {

propertyl: valuel;
property2: value2;

}

The specified object is called a selector, and so far in this book, you've seen
it used only with element names, such as hl and div. This selector is known
as the type selector because it targets a specific type of HTML element.
Type selectors are handy, and you'll use them frequently in your web design
career, but it doesn't take long before you come across a conundrum: What are
you supposed to do when you have multiple instances of the same type of element
that need different styling? A web page can easily have a few dozen <divs> tags,
so what's a coder to do if some of those divs require, say, right-aligned, italic,
light-gray text set at 20 px, and others require centered, bold, dark-gray text set
at 24 px? You could insert all these styles as inline styles, sure, but that task quickly
gets unwieldy when you're working with more than a half dozen elements.
You work around this and similar problems by taking advantage of
the many other types of CSS selectors available. CSS derives most of its
tremendous flexibility and power through these selectors. | don't think
I'm exaggerating in the least when | say that if you want to become a CSS
wizard—or (which is sort of the same thing) if you want to make yourself REMEMBER
irresistibly hirable as a web designer—mastering selectors is the royal road Although exceptions occur,
to that goal. To get started down that road, check out perhaps the most for purposes of this book,
powerful CSS selector: the class selector. Your class names must
One of the most common web design scenarios is having multiple page begin with a lene.r; e rest
))) of the name can include
objects that require the same styling. Whenever you have a set of elements any combination of letters,
that require the same styling, you can group those elements under a single numbers, hyphens (-), and
HTML and CSS umbrella. In HTML, that umbrella takes the form of the class underscores (_). = Online:
attribute, and the syntax appears in Figure 7.4. wdpg.io/2/7-4-3/.

WEB DESIGN PLAYGROUND 119

http://wdpg.io/2/7-4-0
http://wdpg.io/2/7-4-3/

\

Learning More About Styles

» Figure 7.4 The web page The name The following code assigns the class
Use the class attribute to element of the class name custom-bullet-text to a tag:
ils'?ﬁf:lec:szsn:ame toan \ /‘&

<element class="class-name">

The key point here—and the source of

/ the power inherent in using classes—is that
The class attribute you can assign the same class to multiple
elements. When that's done, you can use an
BEWARE internal or external style sheet to define the styles for that class by using the
Class names are case- class name, preceded by a dot (.) as the selector in your CSS:
sensitive, meaning that .class-name {
the browser treats, say, propertyl: valuel;
myClassName and property2: value2;
myclassname as two
separate classes. }

The following example shows you how to use a class selector.

b Example = Online: wdpg.io/2/7-4-1
This example assigns a class name to each tag and then uses a CSS class
selector to apply a rule to those span elements.

Cube, Dice, or Mince? What's the Diff?

Chop: To cut into small pieces.

« Cube: To cut into cube-shaped pieces.

» Dice: To cut into small, cube-shaped pieces. class="custom-bullet-text"
» Mince: To cut into very small pieces.

s Shred: To cut or tear into long, thin irregular strips.

WEB PAGE

The styles aren’t applied to the bullets.

.custom-bullet-text {
color: brown;
font-size: 18px; Rule £or the custom-bullet-text class
line-height: 1.5;

CSS

120 WEB DESIGN PLAYGROUND

http://wdpg.io/2/7-4-1

Units of Measurement in CSS

<h3>Cube, Dice, or Mince? What's the Diff?</h3>

HTML

pieces.</1li>

Chop: To cut into small

Cube: To cut into cube-

shaped pieces.</1li>

Dice: To cut into small,

cube-shaped pieces.</1li>

Mince: To cut into very

small pieces.

Shred: To cut or tear

into long, thin irregular strips.
</uls>

The custom-bullet-text class is
assigned to each span element.

Units of Measurement in CSS

Many web page styles require measurement values, including font sizes,
border widths, and margin sizes. So far in this book, I've used pixels (px) to
specify measurements, but you can use several other units, which I've laid
out in Table 7.1.

p>Table 7.1 Units of measurement for CSS properties

Unit Name Description

Pixel An absolute measurement equal to 1/96 of aninch
pt Point An absolute measurement equal to 1/72 of aninch
Arelative measurement equal to the element’s default, inherited, or
em Em) .
defined font size
Arelative measurement equal to the font size of the root element of
rem Rootem
the web page
) . Arelative measurement equal to 1/100 of the current width of the
vw Viewport width .
browser window
vh Viewport height Arelative measurement equalto 1/100 of the current height of the
browser window

MASTER

Why not apply the CSS
to the 11 element in

this example? Such a

rule would also style the
bullet. By wrapping each
list item in a , you
can style only the text.

WEB DESIGN PLAYGROUND 121

\

BEWARE

Don't confuse the em unit
of measurement with

the em element used to
emphasize text in HTML.

REMEMBER

The root element of a
web page is the html
element. This element is
automatically assigned
either the browser's
default type size (usually
16 px) or the type size
set by the user in the
browser's preferences.

Classes are even more
powerful than I've
shown here because
you can apply multiple
classes to a single
element by separating
class names with a space
in the class attribute
value. The code <span
class="red-text
big-text"s, for
example, applies both
the red-text class
and the big-text
class to a span element.

=) Online: wdpg.io/2/7-4-2

Learning More About Styles

Table 7.1 lists two types of units: absolute and relative. Absolute measures
have a fixed size—a pixel is a pixel, for example—so you can be sure that an
element sized with an absolute measure always appears consistently. As a
designer, you may think this factis a good thing, but it isn't always—especially
on the web, where users sometimes change the default size of text in their
browser settings. As a designer, your job should be to honor that change,
not override it. Absolute values are frowned upon because they overrule
type size changes set by the user, which is a design no-no. In addition, as
you'll see in Chapter 14, absolute values make your page design too rigid, so
it doesn't show up well on both large and small screens.

Therefore, modern web design best practices eschew absolute units
in favor of relative units, usually rems or percentages. Relative measures
don't have a fixed size. Instead, they're based on whatever size is supplied
to the element. This size could be inherited from the parent element, or it
could be the default specified by the user. If the browser’s default type size
is 16 px, and you set your <p> type to 1.5rem, your paragraph text will be
rendered at 24 px. If the user bumped up the default text size to 20 px your
paragraphs will render at 30 px, thus preserving the relative size of the text.
In addition, relative measures scale well on devices of different sizes, so a
design that looks good on a desktop screen can be made to look as good
on a smartphone screen. (Again, Chapter 14 is the place to get the details.)

Summary

¢ Inline styles are added directly to a tag using the style
attribute.

¢ You create an internal style sheet by adding your definitions to
the <styles> tag.

¢ An external style sheet exists as a separate .css file and is
referenced through a <1ink> tag.

o Aclass selector applies CSS rules to any element that uses the
specified class name.

o For CSS properties that require measurement values, use one of
the following units: px, pt, em, rem, vw, or vh.

122 WEB DESIGN PLAYGROUND

http://wdpg.io/2/7-4-2

Chapter 8

Floating and
Positioning Elements

Q] This chapter covers

= Learning how elements flow down the page
= Interrupting the normal flow by floating elements
= Using floats to create drop caps and pull quotes

= Interrupting the normal flow by positioning
elements

Left to its own devices, the web browser imposes an inflexible structure on
your web pages, and your site is in danger of becoming boring (at least from
a design perspective). To avoid that fate, you need to take control of your
page elements and free them from the web browser's fixed ideas about how
things should be laid out. You do that by wielding two of the most powerful
CSS tools in the web designer's arsenal: floating and positioning. With these
tools, you can break out of the browser's default element flow and build
interesting, creative pages that people will be itching to visit. This chapter tells
you everything you need to know.

WEB DESIGN PLAYGROUND 123

Floating and Positioning Elements

Understanding the Default Page Flow
When you add elements to a web page, the
browser lays out those elements in the order in |
which they appear in the HTML file according to
the following rules:

<hl> ‘

| <div class="toc"> ‘

o Block-level elements are stacked vertically, <p class-"quotation">

with the first element on top, the second
element below it, and so on.

<p class="quotation">

e Each inline element is rendered from left
to right (in English and other left-to-right

<p class="quotation">

languages) within its parent block element. | <h2> ‘

Figure 8.1 shows a schematic diagram of a few | <p> ‘

block-levelelements, stacked as the browserwould | ‘
<h2>

render them. Figure 8.2 shows the corresponding
web page with inline elements added. » Figure 8.1
The browser stacks block-
level elements one on top
of another.

<n1> " Using Colors Effectively

Table of Contents
Color Psychology

Color Schemes
<div class="toc"> — G

A Few Examples

Best Practices

CSS and Color

“There are only 3 colors, 10 digits, and 7 notes; it's what we do with them that's important.”
—Jim Rohn

—n 0 n
<p class= quotat'on > “Some colors reconcile themselves to one another, others just clash.” —Edvard Munch

“All colors are the friends of their neighbors and the lovers of their opposites.” —Marc
Chagall

~_— Color Psychology

‘When selecting colors, think about the psychological impact that your scheme will have on your
users. Studies have shown that “cool” colors such as blue and gray evoke a sense of dependability
and trust. Use these colors for a more business-like appearance. For pages that require a little
more excitement, “warm” colors such as red, yellow, and orange can evoke a festive, fun
atmosphere. For a safe, comfortable ambiance, try using brown and yellow. For an environmental
touch, use green and brown.

<h2>

<p>

<ty Color Schemes

P Figure 8.2 The block-level elements from Figure 8.1, filled with inline elements

124 WEB DESIGN PLAYGROUND

Understanding the Default Page Flow

Lesson 8.1: Floating Elements

Covers: The float property

= Online: wdpg.io/2/8-1-0

You can interrupt the top-to-bottom flow of elements by floating one or
more elements to the left or right. Floating means that the browser takes
the element out of the usual flow and places it as far as possible to the left
or to the right (depending on the value you provide) and as high as possible
(depending on other content) in its parent element. Then the rest of the
page content flows around the floated element. You float an element by
setting its float property:

element {
float: left|right|none;
H

In Figure 8.2, for example, the page would look nicer and make better
use of space if the table of contents could be pushed to the right with the
quotations flowing around it. That's readily done with the float property, as
shown in the following example.

» Example =) Online: wdpg.io/2/8-1-1

MASTER

Because the nearby
nonfloated page
elements wrap around
the floated element,

you should ensure that
adequate whitespace
exists between them by
adding a margin around
the floated element.

REMEMBER

Unlike with a nonfloated
element, the top and
bottom margins of a
floated element do not
collapse. See Chapter

9 to learn more about
collapsing margins.

This example uses the £1oat property to float the table of contents to the right.

Using Colors Effectively

“There are only 3 colors, 10 digits, and 7 notes; it's what we
do with them that's important.” —Jim Rohn Table of Contents
Color Psychology
Color Schemes

Color Caveats

WEB PAGE

“Some colors reconcile themselves to one another, others
just clash.” —Edvard Munch

A Few Examples
Best Practices
CSS and Color
Color Resources

“All colors are the friends of their neighbors and the lovers
of their opposites.” —Marc Chagall

Color Psychology

‘When selecting colors, think about the psychological impact that

your scheme will have on your users. Studies have shown that “cool” colors such as blue and
gray evoke a sense of dependability and trust. Use these colors for a more business-like
appearance. For pages that require a little more excitement, “warm” colors such as red, yellow,
and orange can evoke a festive, fun atmosphere. For a safe, comfortable ambiance, try using
brown and yellow. For an environmental touch, use green and brown.

Color Schemes

continued

WEB DESIGN PLAYGROUND 125

http://wdpg.io/2/8-1-0
http://wdpg.io/2/8-1-1

\

Floating and Positioning Elements

(%)
%)
O

.toc {
float: right;
margin-left: 2em;
margin-bottom: 2em;
etc.

The float property applied
to the toc PcIasPs Y PP

<h1>Using Colors Effectively</hl>

<div class="toc">
<h3>Table of Contents</h3>
<div>Color Psychology</divs>
<div>Color Schemes</div>
<divs>Color Caveats</divs>
<div>A Few Examples</divs>
<div>Best Practices</div>
<div>CSS and Color</divs>
<divs>Color Resources</divs>

</div>

<p class="quotation">

“There are only 3 colors, 10 digits, and 7 notes; it's what we do

with them that's important.” —Jim Rohn

</p>

etc.

HTML

This <div> +ag uses
the toc class.

BEWARE

Ifyou float an inline
element, be sure to give
it a width so that the
browser knows how
much space to give the
element.

Can I float only block-
level elements? No,
you can also apply the
float property to an
inline element, such as
a span. When you do,
however, the browser
takes the element out
of the normal flow,
turns it into a block-
level element, and then
floats it.

Clearing Floated Elements

In the preceding example, notice that not only do the three quotations wrap
around the floated table of contents but so does the first h2 element ("Color
Psychology”) and part of the paragraph that follows it. That behavior normally
is what you want. But what if, for aesthetic or other reasons, you prefer that
the h2 element and its text do not wrap around the table of contents?

You can do that by telling the browser that you want the h2 element to
clear the floated element. Clearing an element from a floated item means
that the browser renders the element after the end of the floated item. You
clear an element by setting its clear property:

element {
clear: left|right|both|none;
}

You use left to clear element of any elements that have been floated
left, right to clear element of any elements that have been floated right, or
both to clear element of both left- and right-floated elements. To clear the
h2 element in the example, I'd use the following code:

h2 {
clear: right;
}

126 WEB DESIGN PLAYGROUND

http://wdpg.io/2/8-1-3

Preventing Container Collapse

Figure 8.3 shows the page with the h2 (Color Psychology) now clearing
the floated table of contents.

. . » Figure 8.3
Using Colors Effectively The Color Psychology h2
“There are only 3 colors, 10 digits, and 7 notes; it's what we Table of Content element now clears the
do with them that's important.” —Jim Rohn ShACS - I CIES floated table of contents
. Color Psychology ’
“Some colors reconcile themselves to one another, others Color Schemes
justclash.” —Edvard Munch Color Caveats
AFewE)|
“All colors are the friends of their neighbors and the lovers B este ;'m:;;:s o

of their opposites.” —Marc Chagall CSS and Color
Color Resources

Color Psychology

‘When selecting colors, think about the psychological impact that your scheme will have on your
users. Studies have shown that “cool” colors such as blue and gray evoke a sense of dependability
and trust. Use these colors for a more business-like appearance. For pages that require a little
more excitement, “warm” colors such as red, yellow, and orange can evoke a festive, fun
atmosphere. For a safe, comfortable ambiance, try using brown and yellow. For an environmental
touch, use green and brown.

Preventing Container Collapse PLAY

Floated elements have a few gotchas that you need to watch for. The biggest Yo can float multiple
elements. = Online:

one is that under certain circumstances, a floated element will overflow wdpg.io/2/8-1-3
or drop right out of its parent container. To see what | mean, look at the

following code (see Figure 8.4), which has two <p> tags in a <div> container

that has been styled with a light-blue background and a red border:

CSS:

div {
border: 1px solid red;
background-color: lightcyan;

HTML:

<div>
<p>
If you float two consecutive elements, the second floated
element will always appear either beside the first floated element
or below it.
</p>
<p>
For example, if you float the elements left, the second
will appear to the right of the first. If there isn’t enough room
to the right, it will appear below the first element.
</p>
</div>

WEB DESIGN PLAYGROUND 127

http://wdpg.io/2/8-1-3

\

» Figure 8.4
Two <p> elements inside a
<divs container

» Figure 8.5

When | float the <p>
elements, the <div>
container collapses on
itself.

Floating and Positioning Elements

If you float two consecutive elements, the second floated element will
always appear either beside the first floated element or below it.

For example, if you float the elements left, the second will appear to
the right of the first. If there isn‘t enough room to the right, it will
appear below the first element.

Figure 8.5 shows the result when | style the <p> tags with a width and
float them to the left:

CSS:
.col {
float: left;
width: 300px;
}
HTML:

<p class="col">

The <div> has collapsed.

If you float two consecutive For example, if you float the

elements, the second floated elements left, the second will

element will always appear either appear to the right of the first. If

beside the first floated element or there isn’t enough room to the

below it. right, it will appear below the first
element.

Bizarrely, the <div> container nearly disappears! That red line across the
topis all that's left of it. What happened? When | floated the <p> elements, the
browser took them out of the normal flow of the page. The <div> container
saw that it no longer contained anything, so it collapsed on itself. This always
occurs when a parent element contains only floated child elements.

To fix this problem, you can tell the parent element to clear its own child
elements, thus preventing it from collapsing. Figure 8.6 shows a class that
does this.

128 WEB DESIGN PLAYGROUND

Preventing Container Collapse

After the parent... » Figure 8.6
/.& A class that enables a parent
.self-clear::after { ...insert an empty string... ele_ment to clearits own
content: " child elements

display: block; <« ...make it a block...

clear: both;

T ...and clear both left and right.

REMEMBER

This class tells the browser to insert an empty string, rendered as a block- This solution is
level element, and have it clear both left- and right-floated elements. The sometimes called a
following example shows the fix in action and the full code. clearfix hack.

» Example = online: wdpg.io/2/8-1-5
This example fixes the collapsing parent problem by telling the parent to self-clear its
own floated child elements.

L'-'; If you float two consecutive For example, if you float the
< elements, the second floated elements left, the second will
g element will always appear either appear to the right of the first. If
Ll beside the first floated element or there isn’t enough room to the
= below it. right, it will appear below the first
element.
2 div {
(@) border: 1px solid red;
background-color: lightcyan; s Fulle s+y|es Mo
width: 675px; div element.
}
.col {
f}oat: left; This class adds a width and
} width: 300px; floats the element.
.self-clear::after {
comcEmizs TWg
display: block; This class prevents the
clear: both; parent £rom collapsing.
}

continued

WEB DESIGN PLAYGROUND 129

http://wdpg.io/2/8-1-5

\

Floating and Positioning Elements

=]
=
=
ac

<div class="self-clear">
<p class="col">
If you float two consecutive elements, the second floated
element will always appear either beside the first floated element
or below it.
</p>
<p class="col">
For example, if you float the elements left, the second will
appear to the right of the first. If there isn’t enough room to the
right, it will appear below the first element.
</p>
</divs>

Container collapse is a weird artifact of floating elements, but don't let
that weirdness dissuade you from using floats. There are many good uses
for floated elements, including the ever-popular drop cap, which you'll learn
about next.

Floating a Drop Cap

Floats have many uses, but one of my favorites is creating a drop cap, which
is a paragraph'’s large first letter that sits below the baseline and "drops” a
few lines into the paragraph. The trick is to select the opening letter by using
the ::first-letter pseudo-element and float that letter to the left of the
paragraph. Then you mess around with font size, line height, and padding to
get the effect you want, as shown in the following example.

» Example =>Online: wdpg.io/2/8-1-6
This example uses £1oat and the : : first-letter pseudo-element to create a
drop cap.

f Drop cap

tarting an article doesn’t have to be boring! Get your

text off to a great beginning by rocking the opening

paragraph with a giant first letter. You can use either
a raised cap (also called a stick-up cap or simply an initial)
that sits on the baseline, or you can use a drop cap that sits
below the baseline and nestles into the text.

WEB PAGE

130 WEB DESIGN PLAYGROUND

http://wdpg.io/2/8-1-6

Floating a Pull Quote

(%] g _ .. f4 - P N .
N .first-paragraph::first-letter { | Select the first letter.
(@] float: left;

padding-top: .lem; 2. Float it to the lef+

padding-right: .lem;

color: darkred; 3. Style to taste.

font-size: S5em;

line-height: .6em;

}

E‘ <p class="first-paragraph">
= Starting an article doesn’t have to be boring! Get your text off
T

to a great beginning by rocking the opening paragraph with a giant
first letter. You can use either a <i>raised cap</i> (also called
a <i>stick-up cap</i> or simply an <i>initial</i>) that sits on
the baseline, or you can use a <i>drop cap</i> that sits below the
baseline and nestles into the text.

</p>

Drop caps add a professional flair to your web pages and are just a small
sample of what floated elements can do. In the next section, you also learn
how to create one of the most common features in big-time websites: the
pull quote.

Floating a Pull Quote
Another great use for floats is to add a pull quote to an article. A pull quoteis MASTER

a short but important or evocative excerpt from the article that's set off from Ifyoupreferaralsed
the regular text. A well-selected and well-designed pull quote can draw in a cap to a drop cap, you
site visitor who might not otherwise read the article. can modify the example

You create a pull quote by surrounding the excerpted text in an element code to accommodate
such as a span and then floating that element, usually to the right. Now, style this preference. You
the element as needed to ensure that it stands apart from the regular text need to remove the

. . .) float declaration
with top and/or bottom margins; a different font size, style, or color; and so and the padding-top

on. Following is an example. and padding-right
declarations.

WEB DESIGN PLAYGROUND 131

\

Floating and Positioning Elements

» Example > online: wdpg.io/2/8-1-7
This example uses £1oat to create a pull quote.

A pull quote is a short excerpt or an important phrase or
quotation that has been copied (“pulled”) from a piece of text
and displayed as a separate element between or, more often,
to one side of the regular text.

It's important that the pull €€ 1 the job of the pull
quote be styled in a way that quote to entice the Pull quote

not only makes it stand apart :
from the regular text (with, would-be reader.

for example, a different font

size, style, or color), but also makes it stand out for the
reader. After all, it’s the job of the pull quote to entice the
would-be reader and create a desire to read the article.

WEB PAGE

.pullquote {
float: right;
width: 50%;
margin: 1.25em 0 lem .25em;
padding-top: .5em;
border-top: 1lpx solid black; [I—— .
border-bottom: 1lpx solid black; tmf 32?: s+ybs the
font-size: 1.05em; put 4
font-style: italic;
color: #666;

CSS

- This code floats the element.

}
.pullguote: :before {
content: "\0201lc";
float: left;
padding: .lem .2em .4em O; Creates an optiona
font-size: Sem; large quotation mark

line-height: .45em;

132 WEB DESIGN PLAYGROUND

http://wdpg.io/2/8-1-7

Floating a Pull Quote

<p>

A <i>pull quote</i> is a short excerpt or an important phrase or
quotation that has been copied (“pulled”) from a piece of text and
displayed as a separate element between or, more often, to one
side of the regular text.

It’s the job of the pull quote to entice the would-be reader.

It’s important that the pull quote be styled in a way that not only
makes it stand apart from the regular text (with, for example, a
different font size, style, or color), but also makes it stand out
for the reader. After all, it’s the job of the pull quote to entice
the would-be reader and create a desire to read the article.

</p>

HTML

The Pull quo+c element

Despite head-scratching behaviors such as parent collapse, floats are
useful for breaking elements out of the default flow to achieve interesting
layouts and effects. Floats get the browser to do most of the work, but if you
want even more control of the look of your pages, you need to get more
involved by specifying the positions of your elements.

Lesson 8.2: Positioning Elements
Covers: The position property

= Online: wdpg.io/2/8-2-0

| mentioned earlier in this chapter that the default layout the browser uses
for page elements renders the elements in the order in which they appear in
the HTML file, stacking block-level elements and allowing inline elements to
fill their parent blocks left to right. This system rarely produces a compelling
layout, so another technique you can use (besides floating elements) to
break out of the default flow is positioning one or more elements yourself,
using the CSS position property combined with one or more of the CSS
offset properties:

element {
position: static|relative|absolute|fixed|sticky;
top: measurement|percentage|auto;
right: measurement|percentage|auto;
bottom: measurement|percentage|auto;
left: measurement|percentage|auto;
z-index: integer|auto;

WEB DESIGN PLAYGROUND 133

http://wdpg.io/2/8-2-0

\

REMEMBER

These shifts assume
that you supply positive
values to each property.
Negative values are
allowed (and are used
often in web design
circles) and result in
shifts in the opposite
direction. A negative
top value shifts the

element up, for example.

Floating and Positioning Elements

For the first four offset properties—top, right, bottom, and left—you
can use any of the CSS measurement units you learned about in Chapter 7,
including px, em, rem, vw, and vh. You can also use a percentage or auto (the
default). The z-index property sets the element's position in the stacking
context, which defines how elements are layered “on top of” and “under”
one another when they overlap. An element with a higher z-index value
appears layered over one with a lower value.

Forthe position property, here's a quick summary of the five possibilities:

e static—Ignores the offset properties (the default positioning
used by the browser)

o relative—Positions the element offset from its default position
while keeping the element’s default position within the page flow

¢ absolute—Positions the element at a specific place within the
nearest ancestor that has a nonstatic position while removing
the element from the page flow

o fixed—Positions the element at a specific place within the
browser viewport while removing the element from the page flow

¢ sticky—Starts the element off as relatively positioned until its
containing block crosses (because the user is scrolling the page,
for example) a specified threshold, at which point, the element
remains “stuck” in place

The next few sections give you a closer look at relative, absolute, fixed
and sticky positioning.

Relative Positioning

When you position an element relatively, the element’s default position
remains in the normal page flow, but the element is shifted by whatever
value or values you specify as the offset:

¢ If you supply a top value, the element is shifted down.

¢ If you supply a right value, the element is shifted from the right.
¢ If you supply a bottom value, the element is shifted up.

¢ If you supply a 1left value, the element is shifted from the left.

Having the element's default page flow position maintained by the browser
can lead to some unusual rendering, as shown in the following example.

134 WEB DESIGN PLAYGROUND

Relative Positioning

» Example = online: wdpg.io/2/8-2-1
This example sets the span element to relative positioning with a t op offset.

Relative positioning shifts an element out of its

L
©)
& default position while preserving the element’s
[an]
< original space in the page flow. This can cause
page weirdness. For example, if you set the top
property, the element . This leaves
a gap where the element would have been,
which can look odd. shifts down
& The shifted
Gap where the span span element
element would have been
A span {
©) position: relative;
top: 3em; Applies relative positioning
border: 2px solid blue; and a top offset to the
} span element
g <divs>
= Relative positioning shifts an element out of its default position
T

while preserving the element’s original space in the page flow.
This can cause page weirdness. For example, if you set the top
property, the element shifts down. This leaves a gap
where the element would have been,@fh can look odd.

</div>
The span element

You probably won't use relative positioning much for laying out page ~ PLAY
elements directly, but as you'll see in the next section, it comes in handy Use relative positioning
when you want to prepare elements to use absolute positioning. to add watermark text to
a paragraph. E>0nline:
wdpg.io/2/8-2-2

WEB DESIGN PLAYGROUND 135

http://wdpg.io/2/8-2-1
http://wdpg.io/2/8-2-2

Floating and Positioning Elements

You can use absolute
positioning to add
tooltips (pop-up
descriptions) to your
links. = Online:
wdpg.io/2/8-2-4

REMEMBER

As with relative
positioning, negative
values are allowed and
position the element in
the opposite direction.
A negative left value
moves the element left
with respect to the
ancestor's left edge, for
example.

Absolute Positioning

When you position an element absolutely, the browser does two things: it
takes the element out of the default page flow, and it positions the element
with respect to its nearest nonstatic (that is, positioned) ancestor. Figuring
out this ancestor is crucial if you want to get absolute positioning right:

¢ Move up the hierarchy to the element'’s parent, grandparent,
and so on. The first element you come to that has had its
position property set to something other than static is the
ancestor you seek.

¢ If no such ancestor is found, the browser uses the viewport,
meaning that the element’s absolute position is set with respect
to the browser's content area.

With the ancestor found, the browser sets the element’s absolute position
with respect to that ancestor as follows:

¢ If you supply a top value, the element is moved down from the
ancestor's top edge.

o If you supply a right value, the element is moved left from the
ancestor's right edge.

¢ If you supply a bottom value, the element is moved up from the
ancestor's bottom edge.

¢ If you supply a 1eft value, the element is moved right from the
ancestor's left edge.

136 WEB DESIGN PLAYGROUND

http://wdpg.io/2/8-2-4

WEB PAGE

CSS

Absolute Positioning

» Example = online: wdpg.io/2/8-2-3
This example sets the span element to relative positioning with a top offset..

Browser window <div>

v \

Lesson 8.2
“P"”7 Absolute Positioni
v
 ing moves an element from
n, but doesn’t preserve its
original space in the page flow. The element’s
new position is set with respect to the nearest
ancestor in the hierarchy that has a nonstatic
position, or the browser window if no such
ancestor exists.
hl, div {
pO?lthl’l: relatlve; P e S e le Elemens
) z-index: 2; is nonstatic.
span {
position: absolute;
top: 0; The span and strong
left: 0; elements are Posi+ioned
z-index: 1; absolutely.
padding: 0.25em 6em 3em 0.25em;
background-color: yellow;
color: blue;
}
strong {
position: absolute;
top: O;
left: 0;

z-index: -1;

padding: 0.25em 5em 2.5em 0;
background-color: orange;
color: purple;

continued

WEB DESIGN PLAYGROUND 137

http://wdpg.io/2/8-2-3

\

To see an animation

of how the browser
positions the elements

in this example, open

the example in the Web
Design Playground, and
click the See It button.
=) Online: wdpg.io/2/8-2-3

MASTER

This example also
demonstrates the
z-1index property. The
hl and div elements
have been given a
z-1index value of 2. The
span element is given a
z-1index of 1; therefore,
it appears "behind" the
hl. The strong element
is given a z-1ndex of
-1; therefore, it appears
"behind" the div.

Floating and Positioning Elements

-
>
=
I

<hl>

Absolute Positioning

</hl>

<div>

Absolute positioning moves an element from its default position,
but doesn’t preserve its original space in the page flow. The
element’s new position is set with respect to the nearest ancestor
in the hierarchy that has a nonstatic position, or the browser
window if no such ancestor exists. Intro

</divs>

Lesson 8.2 “ The span element The strong
element

In this example, two elements are positioned absolutely:

* span—This element has no nonstatically positioned ancestor, so
it's positioned with respect to the browser window. When you
set both top and left to 0, the span element moves to the
top-left corner of the window.

e strong—This element is nested inside a div element that's
positioned relatively. Therefore, the strong element's absolute
position is with respect to the div. In this case, when you set
both top and left to 0, the strong element moves to the top-
left corner of the div.

You'll use absolute positioning frequently to get certain elements placed
just so on the page, but there are still two more positioning tools to consider,
including fixed positioning, next.

Fixed Positioning

The next position property value that I'll cover is £ixed. This value works
just like absolute, except for two things:

e The browser always computes the position with respect to the
browser window.

e The element doesn't move after it has been positioned by the
browser, even when you scroll the rest of the page content.

As you might imagine, this value would be useful for adding a navigation
bar that's fixed to the top of the screen or a footer that's fixed to the bottom.
You see an example of the latter in Chapter 15.

138 WEB DESIGN PLAYGROUND

http://wdpg.io/2/8-2-3

Sticky Positioning

Sticky Positioning

The final position property value that I'll discuss is sticky. This value is a
kind of combination of relative and fixed. That s, the element starts with
relative positioning until the element’s position crosses a specified threshold
(usually because the user is scrolling the page), at which point, the element
switches to fixed positioning. If the boundary of the element’s parent block
then scrolls to where the element is stuck, the element reverts to relative
positioning and scrolls with the parent.

For example, suppose your page has a div element, and inside that div
is an h2 element that you've styled as sticky. If the user starts scrolling up,
the div and h2 elements scroll up together until the h2 crosses whatever
threshold you specified, at which point, the h2 stops scrolling and “sticks”
in place. The div keeps scrolling up, however, so what happens when the
bottom of the div reaches the stuck h2 element? At that point, the h2
becomes “unstuck” (that is, it reverts to relative positioning) and resumes
scrolling up with the div.

What is the threshold that tells the element to become stuck in place? It's
one or more of the CSS offset properties: top, right, bottom, and left. For
example, consider the following CSS rule:

.nav-links {
position: sticky;
top: 5px;

In this example, an element with the nav-1inks class will scroll up with
the rest of the page until the element’s top comes to within 5 px of the top
of the viewport. At that point, the element stops scrolling and remains stuck
5 px from the top of the viewport.

One common use for sticky positioning is when you have a page that has
a header with the page title and an image at the top, followed by a row of
site navigation links. As the user scrolls down the page, it's fine if the header
elements scroll past the top of the page, but it would be a nice touch if the
row of navigation links “stuck” when it hit the top. You see an example of this
in Chapter 15.

It's important to note that a stickily positioned element isn't necessarily
stuck forever. If the element has a parent container, then once the boundary
of the parent reaches the stuck element, the element loses its stickiness and
scrolls off with its parent. You can take advantage of this to stick headings
at the top of the page while the content scrolls, then have the next heading
become the stuck element, and so on, as demonstrated in the following
example.

WEB DESIGN PLAYGROUND 139

\

Floating and Positioning Elements

» Example = online: wdpg.io/2/8-2-7
This example sets the h2 elements to sticky positioning

Stuck h2 element
o . . 5 = ¥

Your internet service provider (ISP)

features such as bandwidth and disk space at the lower end of the

scale.

WEB PAGE

A free web hosting provider

Many services will host your web pages without charge. The catch is
that you usually have fairly severe restrictions on most hosting
features, particularly bandwidth and disk space, and you almost
always get only a single website. Some free web hosts also display
ads, although that’s becoming rare these days.

A commercial web hosting provider

If you want to get a reasonable set of features for your web
presence, you need to shell out money to rent space with a

The h2 elements are

h2 { / positioned stickily.
position: sticky;

top: O;
background-color: lightblue;

CSs

}

Each h2 element sticks
when it reaches the
+op of the viewpor+.

140 WEB DESIGN PLAYGROUND

http://wdpg.io/2/8-2-7

Sticky Positioning

<hls>
Getting a Web Host
</hl>
<p>
When you’re looking for a web host, you have three main
choices:
</p>
<divs>
<h2>
Your internet service provider (ISP)
</h2>
The company or institution you use to access the internet may
also offer a web hosting service. Many ISPs offer free web hosting
for simple personal websites, and some organization networks
include a web server that you can use.
</div>
<divs>
<h2>
A free web hosting provider
</h2>
Many services will host your web pages without charge. The
catch is that you usually have fairly severe restrictions on most
hosting features, particularly bandwidth and disk space, and you
almost always get only a single website.
</divs>
<div>
<h2>
A commercial web hosting provider
</h2>
If you want to get a reasonable set of features for your
web presence, you need to shell out money to rent space with a
commercial web hosting provider. Popular hosts such as Bluehost
and HostGator offer feature-packed hosting usually for less than
$5 per month.
</div>

HTML

The h2 elements

WEB DESIGN PLAYGROUND 141

Floating and Positioning Elements

FAQ Summary

Why did you use -1 for
the strong element's

z-1index? The strong
element is a descendant

¢ In the default page flow, block-level elements are stacked
vertically, and inline elements are rendered from left to right
within their parent blocks.

of the div element, and, ¢ To pull an element out of the default page flow, set its float

in CSS, the only way property to left or right.

to make a descendant

appear lower in the ¢ To position an element, set its position property to relative,
stacking context than absolute, or fixed; then specify the new position with top,
its ancestor is to give the right, bottom, and left.

descendant a negative

. ¢ Set an element'’s position within the stacking context by using
z-1index value.

the z-index property, which layers higher-value elements over
smaller-value elements.

142 WEB DESIGN PLAYGROUND

Chapter 9

Styling Sizes, Borders,
and Margins

This chapter covers
‘—] = Understanding the CSS box model
= Setting the width and height of an element
* Adding padding around an element’s content

= Applying a border to an element

= Surrounding an element with a margin

When you learn about design, one of the first concepts that comes up is the
principle of proximity: related items should appear near one another, and
unrelated items should be separated. This practice gives the design clear
visual organization, which makes it easier for the reader to understand and
navigate the design. The principle of proximity applies to your web page
designs as well, but there's a problem. If you stick with the browser's default
styling, your web page elements have no proximity structure; no elements
are grouped or separated, so there’s no organization. Fortunately, CSS offers
a robust set of properties that enable you to apply the principle of proximity
by sizing, spacing, and separating elements on the page. You learn about web
page layout in earnest in Part 3, but this chapter introduces you to some vital
foundations.

WEB DESIGN PLAYGROUND 143

\

Styling Sizes, Borders, and Margins

» Figure 9.1
The main parts of an
element box

» Figure 9.2

The element box parts as
they appear with actual
page content

Content — |

The Anatomy of an Element Box
The key to getting your web page content to bend to your will is

to

understand that every element you add to a page—every <divs, every <p>,

every <spans, even every <strongs> and every —is surrounded by

an

invisible box. Why is that such a big deal? Because you can use CSS to control
many aspects of that box, including its height, width, spacing, borders, and
position on the page. To get there, you need to become acquainted with the

various parts of the box.

Figure 9.1 gives you an abstract look at the basic box parts, and Figure 9.2

shows how these same parts affect some actual page content.

Margin

Border

Padding

Did you know that the rragus (TRAY-gus, noun) is the little flap of cartilage that extends
just above the earlobe and partially covers the entrance to the inner ear? This entrance,
by the way, is an example of a meatus (mee-AY'tus, noun), an opening into the body.

Y

Note: Tragus comes from the Greek word fragos, “a male goat,” which
|, is a bit of a brow-furrower. The explanation is that the tragus area is also
= where ear hairs sprout, so this combination must have reminded the
Greeks of a billy goat and the “beard” of hair that hangs under his chin. 4{

The nasal columella (NAY zul kol-um-EL-uh, noun) is the ridge of cartilage that lies at
the bottom of the nose and that separates the two nostrils. (Columella is Latin for “little
column.”) Right below is the philtrum (FIL:trum, noun), the central part of the upper lip.

= Margin

— Border

— Padding

144 WEB DESIGN PLAYGROUND

The Anatomy of an Element Box

QcAt the risk of over-repeating myself: every element
in web design is a rectangular box. This was my
ah-ha moment that helped me really start to
understand CSS-based web design and accomplish
the layouts I wanted to accomplish. —Chris Coyier

There are four parts to each element box:

e Content—This area is the inner rectangle of the box, consisting
of the content—such as some text or an image—that's
contained within the box.

e Padding—This area between the content and the border
represents extra whitespace added outside the top, right,
bottom, and left edges of the content area.

e Border—This part runs along the outer edges of the padding
area and surrounds the content and padding with lines.

e Margin—This area is the outer rectangle of the box, representing
extra whitespace added outside of the top, right, bottom, and
left borders.

The combination of the content area, padding, border, and margin is
known in CSS circles as the box model. Surprisingly, this box model applies
not only to the usual block-level suspects (such as <divs>, <hls, and <p>)
but also to all inline elements (such as <spans, , and <a>). Why is the
box model so important? There are two main reasons: appearance and
positioning.

Appearance is crucial because the box model enables you to control the
whitespace—the padding and margins—that surround the content. As any
designer will tell you, making good use of whitespace is a key part of any
successful layout.

Positioning is vital because CSS also gives you quite a bit of control over
where the element boxes appear on the page. Rather than the default—and
boring—layout of one element stacked on the next all the way down the
page, CSS offers box model-related properties that let you shift each box to
the position that gives you the layout you prefer.

Keeping all this in mind the best you can, it's time to turn your attention
to the useful and powerful CSS properties that enable you to manipulate any
element box. First up is changing the box dimensions.

WEB DESIGN PLAYGROUND 145

\

REMEMBER

I should clarify here

that these calculations
apply only to block-level
elements such as <div>
and <p>. Inline elements
such as and
<a> flow with the text, so
width and height are
ignored.

MASTER

If you want to work
with an inline element’s
width, height, and
other block-related
properties but keep
the element inline, add
display: inline-
block to the element’s
CSS. To make the
element a true block-
level element, add
display: block,
instead.

BEWARE

You should rarely, if
ever, set an element’s
height property.
Setting the height is
useful for images, but
with text, there are
too many variables to
know for sure whether
everything will fit into
the height you specify.
Let the content create
the element’s height
naturally.

Styling Sizes, Borders, and Margins

Lesson 9.1: Setting the Width and Height

Covers: The width and height properties

= Online: wdpg.io/2/9-1-0

Web browsers perform a great many automatic calculations when they
load a page. Two of those automatic values are the width and the height
of each element box on the page, which are set according to the following
guidelines:

¢ The width of each element box is set to the width of the
element’s container, which by default is the width of the
browser window.

¢ The height of each element box is set to a value that's tall
enough to contain all the element’s content.

One of the main tenets of good web design is that you should override
these and similar browser defaults so that you have maximal control of
the look and layout of your page. To do that with the dimensions of any
block-level element box, use the CSS width and height properties. These
properties take any of the CSS measurement units you learned about in
Chapter 7, including px, em, rem, vw, and vh. You can also set width or
height to a percentage or to auto (the default, which allows the browser to
set the dimensions automatically).

At this point, you may be asking yourself an important question: When
you set the width or height, which of the element box's four rectangular
areas—content, padding, border, or margin—are you sizing? Intuitively,
you might guess the border, because that area contains the content and
padding, or what feels like the “inside” of the element box. Surprisingly, that's
not the case. By default, the width and height properties apply only to the
content area. That's most unfortunate because to get an element’s true size
as rendered on the page you must add the values of its padding and border.
If that sounds like an unnecessarily complicated way to go about things,
you're right. Instead, you can set the box-sizing property to border-box
for the element:

element {
box-sizing: border-box;
1

This code tells the web browser to apply the width and height values all
the way out to (and including) the border of the element box. Note that the
margin is not included in the width and height.

146 WEB DESIGN PLAYGROUND

http://wdpg.io/2/9-1-0

The Anatomy of an Element Box

The width property is useful for setting the text line length for optimum
reading. For ideal screen reading, your body text blocks should contain
between 50 and 80 characters per line (including spaces and punctuation).
In most cases, a line length of around 65 characters is optimum, but it's okay
to set a longer line if you're using a larger font size or a shorter line if you're
using a smaller font size. You set the line length by adjusting the text block’s
width property. Consider the text shown in Figure 9.3.

On March 19, 1988, a man named Robert Muller Jr. was a passenger in a car driving along US Route 441 in Florida. At some point in the journey, the
car was cut off (or, at least, it appeared that way), enraging the car’s occupants. Unfortunately, Mr. Muller had access to a gun, which he subsequently
used to shoot out the back window of the other car, wounding 20-year-old Cassandra Stewart in the neck. Police described the shooting as an incident
of “road rage,” and a name for an all-too-common form of motorist madness was born.

P Figure 9.3 In the default width on a large screen, the line lengths of this text are too long
for comfortable reading.

With line lengths of well over 150 characters, this text is hard to scan. You
can fix that problem by adjusting the width of the text's containing element,
as shown in the following example.

» Example = online: wdpg.io/2/9-1-1

MASTER

Rather than apply
box-sizingto
individual elements,
assign it once by using the
universal selector (*), and
it will be applied to every
element. In addition, if
you ever want to return
to the default sizing
behavior for an element,
use the declaration
box-sizing:
content-box.

If you set the height of
an element, you may
find that its content
overflows its element
box. To control this
behavior, you can use
the overflow property.
=) Online: wdpg.io/2/9-1-4

This example reduces the width of the containing div element to make the line lengths

easier to read.

cut off (or, at least, it appeared that way), enraging the car's occupants.

WEB PAGE

On March 19, 1988, a man named Robert Muller Jr. was a passenger in a car
driving along US Route 441 in Florida. At some point in the journey, the car was

Unfortunately, Mr. Muller had access to a gun, which he subsequently used to
shoot out the back window of the other car, wounding 20-year-old Cassandra
Stewart in the neck. Police described the shooting as an incident of "road rage,"

and a name for an all-too-common form of motorist madness was born.

J

—
hd
630px

continued

WEB DESIGN PLAYGROUND 147

http://wdpg.io/2/9-1-0
http://wdpg.io/2/9-1-4
http://wdpg.io/2/9-1-1

\

CSs

HTML

You can specify a
maximum width for an
element by using the
max-width property;
similarly, you can set
the minimum width by
using the min-width
property. 5 Online:
wdpg.io/2/9-1-3

Styling Sizes, Borders, and Margins

iy | /—\ border-box is applied.

box-sizing: border-box;
width: 630px;
) Y The width is set for the ideal line length

<div>

On March 19, 1988, a man named Robert Muller Jr. was a passenger
in a car driving along US Route 441 in Florida. At some point in
the journey, the car was cut off (or, at least, it appeared that
way) , enraging the car's occupants. Unfortunately, Mr. Muller had
access to a gun, which he subsequently used to shoot out the back
window of the other car, wounding 20-year-old Cassandra Stewart
in the neck. Police described the shooting as an incident of "road
rage," and a name for an all-too-common form of motorist madness
was born.

</divs>

With the width (and occasionally the height) of the box set, it's time to
focus on the various components of the box model, starting with the padding.

Lesson 9.2: Adding Padding
Covers: The padding-* properties

= Online: wdpg.io/2/9-2-0

In the element box, the padding is the whitespace added above, below, to
the left, and to the right of the content. If you add a border to your element,
as described in Lesson 9.3, the padding is the space between your content
and the border. The padding gives the element a bit of room to breathe
within its box, ensuring that the content isn’t crowded by its own border or
by nearby elements. You set the padding by applying a value to one or more
of the four sides:
element {

padding-top: top-value;

padding-right: right-value;

padding-bottom: bottom-value;

padding-left: left-value;

}

Each value can take any of the standard CSS measurement units,
including px, em, rem, vw, and vh, or you can set the value to a percentage.
Here's an example:

.pullquote ({
padding-top: lem;
padding-right: 1.5em;
padding-bottom: .75em;
padding-left: 1.25em;

148 WEB DESIGN PLAYGROUND

http://wdpg.io/2/9-2-0
http://wdpg.io/2/9-1-3

UW 638 1098

The Anatomy of an Element Box

You can also use a padding shorthand property to set all the padding
values with a single declaration. You can use four syntaxes with this property,
as shown in Figure 9.4.

Applies value to all four sides
Applies valuel to the top and \
bottom and value2 to the right \ padding: value;

and left padding: valuel value2;
padding: valuel value2 value3;

Applies valuel to the top, / padding: valuel value2 value3 valued4;
value2 to the right and left,

and value3 to the bottom

Applies valuel to the top,

value2 to the right, value3
to the bottom, and value4 to
the left

You can duplicate the rule in the preceding example by using the
shorthand syntax as follows:

.pullquote
padding: lem 1.5em .75em 1.25em;
}

To see how you can use padding to make your web page more readable,
consider the simple navigation bar shown in Figure 9.5.

HOME RESEARCH PAPERS BLOG CONTACT INFO

The big problem is that it's impossible to tell by looking how many
navigation items there are. You could have as many as six (Home, Research,
Papers, Blog, Contact, and Info) or as few as three (Home, Research Papers
Blog, and Contact Info). To fix this problem, you can use padding to add
some horizontal breathing room between the items, as shown in the
following example.

ccHorizontal navigation with tight spacing
between nav items is a common issue I often
encounter on otherwise well-designed sites.
Without adequate padding, navigation
items begin to run together and become more
difficult to quickly scan. —Jeremiah Shoaf

» Figure 9.4

The syntaxes of the
padding shorthand
property

» Figure 9.5
A navigation bar without
any horizontal padding

MASTER

This example transforms
an unordered list into

a navigation menu

by doing two things:
setting the ul element’s
list-style-type
property to none to
hide the bullets, and
setting the 11 element’s
display property to
inline-block, which
tells the browser to treat
the items as blocks but
display them inline.

WEB DESIGN PLAYGROUND 149

\

Styling Sizes, Borders, and Margins

b Example =) Online: wdpg.io/2/9-2-1

WEB PAGE

CSS

HTML

To see an animation

of how the browser

adds the padding in the
preceding example, open
the example in the Web
Design Playground and
click the See It button.
= Online: wdpg.io/2/9-2-1

This example uses the padding-right property to create space between elements in
a navigation menu.

HOME RESEARCH PAPERS BLOG CONTACT INFO

1em

ul {
list-style-type: none;
text-transform: uppercase;

1

1i {
display: inline-block; padding-right is aPP“ed
padding-right: lem; < to the 1i elements.

1

Home
Research Papers
<1i>Blog The 1i elements
Contact Info

Okay, you've got your content nicely padded. Your next stop in the box
model is the border that surrounds the padding.

Lesson 9.3: Applying a Border
Covers: The border-* properties

= Online: wdpg.io/2/9-3-0

In the element box, the border is the line that defines the outer edge of the
padding on four sides: top, right, bottom, and left. In this way, the border
comes between the element’s padding and its margin. The border is optional,
but it's often useful for providing the reader with a visual indicator that the
enclosed content is separate from any nearby content.

150 WEB DESIGN PLAYGROUND

http://wdpg.io/2/9-2-1
http://wdpg.io/2/9-3-0
http://wdpg.io/2/9-2-1

The Anatomy of an Element Box

To create a basic border around an element, use the border property, as
shown in Figure 9.6.

The element to style Add a border to an
/-& The border width element to provide a
element { ' The border color visual m.dlcatlon tha.t the
border: width style color; « content is self-contained
} / or separate from the
The border style surrounding page
P> Figure 9.6 The syntax of the border property content.
The width value can take any standard CSS measurement unit, including
px, em, rem, vw, and vh. You can also set the value to any of the following
keywords: thin, medium, or thick. For the style value, you can use any
of the following keywords: dotted, dashed, solid, double, groove, ridge,
inset, outset, hidden, or none. For the color parameter, you can use any
of the color names that you learned about in Chapter 4.
Here's an example:
.pullguote ({
border: 1px solid black;
}
This rule defines the pullquote class with a one-pixel-wide, solid, black
border. The following example takes the navigation list from Lesson 9.2 and
adds a border around it.
» Example > online: wdpg.io/2/9-3-1
This example adds a border around the navigation menu.
51}
g Border
o
- N
51}
= HOME RESEARCH PAPERS BLOG CONTACT INFO
continued

WEB DESIGN PLAYGROUND 151

http://wdpg.io/2/9-3-1
http://wdpg.io/2/9-3-0

--.-

Styling Sizes, Borders, and Margins

wn ul { The border
(%)
O border: 1px solid black;
padding-top: .75em; }/—\ Padding added to
padding-bottom: .75em; the top and bottom
list-style-type: none;
—eil deims . 4
text-align: center; The items are centered.
text-transform: uppercase;
}
1i {
display: inline-block;
padding-right: lem;
1
li:first-child {
padding-left: lem; }/—\ Extra Padding on the lef+
}
i’
= Home</1li>
= Research Papers
Blog</1li>
<lisContact Info

PLAY O0 tc c borer henyouneed
The CSS box model Se a border wnenyou nee to separate content
can be confusing at into logical sections if your design requires
first because it’s hard . . .
to visualize the box content to be separate, and without it the design
that surrounds each would appear cluttered. —Andrew Stoker
element. To help, use
the outline property,
which adds a line One odd detail may have you furrowing your brow: The 1i:first-
around the outside child element gets a padding-left value of 1em. What's going on? Recall
edge of the box border. from Lesson 9.2's example that you needed to add lem of padding between

The outline property the menu items to separate them. You did that by using the padding-right
uses the same Syntax as

the border property. property, but doing so also meant adding 1em of padding to the right of the
= Online: wdpg.io/2/9-3-3 Contact Info item. To compensate for that extra padding on the right, you
need to add an equal amount on the left so the menu centers properly. The
1li:first-child rule adds the required padding to the first 11 element.
Your box is filling in quite nicely with its content, padding, and border.
Now you have to worry about keeping other elements at bay, and you do
that by adding some margin space around your box.

152 WEB DESIGN PLAYGROUND

http://wdpg.io/2/9-3-3

The Anatomy of an Element Box

Lesson 9.4: Controlling the Margins

Covers: The margin-* properties

= Online: wdpg.io/2/9-4-0

In the element box, the margin is the whitespace added above, below, to
the left, and to the right of the border. The margin lets you control the space
between elements. Positive margin values, for example, keep the page
elements from bumping into one another or overlapping, and also keep the
elements from brushing up against the edges of the browser viewport. On
the other hand, if your design requires elements to overlap, you can achieve
this effect by using negative margin values.

You apply the margin by setting a value to one or more of an element'’s
four sides:

element {

margin-top: top-value;
margin-right: right-value;
margin-bottom: bottom-value;
margin-left: Ieft-value;

}

Each margin value can use any of the standard CSS measurement units,
such as px, em, rem, vw, and vh. You can also use a percentage or the auto
keyword (to have the browser set the margin automatically to fit the available
space). Here's an example:

.pullquote

margin-top: 1.5em;
margin-right: 2.5em;
margin-bottom: 2em;
margin-left: 3em;

}

As with padding, a margin shorthand property lets you apply the margins
by using a single declaration. Figure 9.7 shows the four syntaxes you can use
with this property.

Applies value to all four sides

Applies valuel to the top and
bottom and value2 to the right

)

margin: value;
and left margin: valuel value2;
margin: valuel value2 value3;
Applies valuel to the top, margin: valuel value2 value3 value4;

value2 to the right and left,
and value3 to the bottom

Applies valuel to the top,
value2 to the right, value3
to the bottom, and value4 to
the left

N

MASTER

Positive margin values
serve to push the element
away from surrounding
elements (or the edges of
the browser viewport).
Sometimes, however,
youll want to bring
elements closer, and you
can do that by setting a
negative margin value.

= Online: wdpg.io/2/9-4-5

Margins are especially
useful for establishing
the spacing between
your page’s text

blocks, particularly its
paragraphs. A good
general rule for spacing
each paragraph is to set
the bottom margin to
lem.

» Figure 9.7

The syntax possibilities
of the margin shorthand
property

WEB DESIGN PLAYGROUND 153

http://wdpg.io/2/9-4-0
http://wdpg.io/2/9-4-5

\

MASTER

If you get serious
about web design, then
you should include a
professional CSS reset,
such as Normalize.css
(download here: https://
github.com/necolas/
normalize.css/) in all your
projects. This type of
reset gets your projects
off to the best possible
start.

Styling Sizes, Borders, and Margins

You can rewrite the rule in the preceding example by using the shorthand
syntax like so:

.pullquote
margin: 1.5em 2.5em 2em 3em;

}

It's important to remember that the web browser sets a default margin
for all the elements by using its internal style sheet. That sounds handy, but
one of the key principles of web design is to gain maximum control of the
look of the page by styling everything yourself. A big step in that direction is
adding the following code to the top of your style sheet:

html, body, abbr, article, aside, audio, blockquote, button,

canvas, code, div, dl, dt, embed, fieldset, figcaption,

figure, footer, form, hl, h2, h3, h4, h5, h6, header, iframe,

img, input, label, legend, 1i, nav, object, ol, option, p,

pre, g, section, select, table, tbody, td, tfoot, th, thead,

tr, ul, video {

margin: 0;
padding: 0;
box-sizing: border-box;

}

This code gets rid of the browser's default margins and padding on all
these elements, enabling you to adjust these settings yourself as needed on
your page. If your page is small, you can use the following simplified version:

* |

margin: 0;
padding: 0;
box-sizing: border-box;

1

Note, however, that you do need to set your margins. To see why,
Figure 9.8 shows the simple navigation bar when the margins have been
reset to 0.

QcWe think of our CSS as modifying the default look
of a document—but with a “reset” style sheet,
we can make that default look more consistent
across browsers, and thus spend less time
fighting with browser defaults. —Eric Meyer

154 WEB DESIGN PLAYGROUND

https://github.com/necolas/normalize.css/
https://github.com/necolas/normalize.css/
https://github.com/necolas/normalize.css/

The Anatomy of an Element Box

[N &~ Lesson 9.4: Controlling the Mo X + ;]Zlal;:/ngat?on bar without

&« - (C @& webdesignplayground.io/2/lessons/9-4-1/ any margins

- WEB DESIGN PLAYGROUND

HOME RESEARCH PAPERS BLOG CONTACT INFO

Welcome! You've landed at the web home of Monday
Morning Ideas, the inventors of the Helium Paperweight,
the Water-Resistant Sponge, the Teflon Bath Mat, and the
world-famous Inflatable Dartboard.

As you can see, the navigation bar is rendered tight to the top, right, and
8 L You can also use a
left edges of the browser window, with little room between the bottom of o
S o o margin trick to center a
the navigation bar and the text. To fix this problem, you can set the navigation child element vertically
bar's margins to add some welcome whitespace around it, as shown in the within its parent.
following example. =) Online: wdpg.io/2/9-4-4.

» Example = Online: wdpg.io/2/9-4-1
This example uses the maxrgin properties to create space around the navigation menu.

.75em 2em

2em \\v T« X

HOME RESEARCH PAPERS BLOG CONTACT INFO =—

WEB PAGE

1em —]
Welcome! You've landed at the web home of Monday

Morning Ideas, the inventors of the Helium Paperweight,
the Water-Resistant Sponge, the Teflon Bath Mat, and the
world-famous Inflatable Dartboard.

continued

WEB DESIGN PLAYGROUND 155

http://wdpg.io/2/9-4-4
http://wdpg.io/2/9-4-1

\

CSS

HTML

Ifyou've set an element’s
width, you can quickly
center the element
horizontally by using the
declaration margin:
top/bottom auto,
where top/bottom is the
value for both the top
and bottom margins.

= Online: wdpg.io/2/9-4-3.

Styling Sizes, Borders, and Margins

ul {
border: 1lpx solid black;
margin-top: .75em;
margin-right: 2em;
margin-bottom: lem;
margin-left: 2em;
padding-top: .75em;
padding-bottom: .75em;
list-style-type: none;
text-align: center;
text-transform: uppercase;

Margin properties applied
to +?16 1P11 Elemerﬁ PP

}
div {
margin-right: 2em;

T Margin Pljoperhes applied

to the div element

Home

Research Papers

Blog</1li>

Contact Info

<div>
Welcome! You’ve landed at the web home of Monday Morning Ideas,
the inventors of the Helium Paperweight, the Water-Resistant
Sponge, the Teflon Bath Mat, and the world-famous Inflatable
Dartboard.
</div>

Margins are a crucial box model concept, and the whitespace they create
is an essential part of web design. But margins can be tricky to master and
can have some surprising—even maddening!—effects, such as the collapsing
margins that | discuss next.

Watch Out for Collapsing Margins!

In the preceding example, | added margin-bottom: lemto the ul element
to separate it from the div text. Suppose that | decide | want 2em of space
between these elements, so | adjust the div rule as follows (Figure 9.9 shows
the result):

div {

margin-top: lem; TbP margm
margin-right: 2em; added 16 the
margin-left: 2em; div element

156 WEB DESIGN PLAYGROUND

http://wdpg.io/2/9-4-3

HOME RESEARCH PAPERS BLOG CONTACT INFO

Welcome! You've landed at the web home of Monday
Morning Ideas, the inventors of the Helium Paperweight,
the Water-Resistant Sponge, the Teflon Bath Mat, and the
world-famous Inflatable Dartboard.

P Figure 9.9 The div text with a 1em top margin added

No, your eyes aren't deceiving you: the space between the navigation
bar and the div text is exactly the same as it was before! What's going
on here is a tricky CSS phenomenon known as collapsing margins. When
one element’s bottom margin meets another element’'s top margin, the
web browser doesn’t add the two values, as you might expect. Instead, it
determines which of the two margin values is larger, and it uses that value
as the vertical margin between the two elements. It throws out the smaller
margin value, thus collapsing the two margins into a single value.

If you ever find that the top or bottom margins of one or more page
elements are behaving strangely—that is, are bigger or smaller than you
think they should be—there’s an excellent chance that collapsing margins
are the culprit.

Summary

e The four main parts of a CSS element box are the content, the
padding around the content, the border around the padding,
and the margin around the border.

¢ You specify an element’s dimensions by setting its width and
height properties.

¢ You add padding around an element’s content by using the four
padding properties: padding-top, padding-right, padding-
bottom, and padding-1left. Alternatively, use a padding shortcut
property, such as padding: top right bottom left.

e The simplified border syntax is border: width style color.

¢ You add a margin around an element by using the four margin
properties: margin-top, margin-right, margin-bottom, and
margin-left. Alternatively, use a margin shortcut property,
such asmargin: top right bottom left.

Summary

«— —1em

MASTER

Ifyou do want extra
vertical space between
two elements, you can
increase the larger of
the two margin values
(setting margin-
bottom: 2emon the
ul element, for example).
Alternatively, change
the collapsing margin
to padding (such as by
replacing the margin-
top property with
padding-top: lem
on the div element).

REMEMBER

The left and right
margins never collapse.
In addition, margin
collapse doesn’t occur for
elements that are floated
or positioned absolutely
(see Chapter 8).

WEB DESIGN PLAYGROUND 157

Chapter 10

proJECT: | Creating
a Landing Page

] This chapter covers

= Planning and sketching your landing page

* Choosing fonts and colors for the page

* Understanding and implementing banded content
= Adding the images and text

Okay, you're nine chapters into this adventure, and you've come a long
way. Here in Part 2 alone, you've mastered using images and media; making
style sheets; using classes; floating elements; using absolute and relative
positioning; and manipulating sizes, borders, and margins. That's a lot, and
(most importantly) it's enough know-how to start building some amazing
pages. As proof, in this project, you'll be putting all those HTML and CSS skills
to good use to create a professional-looking page for a marketing campaign
fora product or service. If that project sounds out of your depth, not to worry:
you know more than enough to ace this assignment, and I'll be building my
own (rather silly, as you'll see) landing page right alongside you. If you get
stuck, I (or, at least, my code) will be right there with you to help or give you a
nudge in the right direction. Let's get started!

WEB DESIGN PLAYGROUND 159

— -~ PROJECT: Creating a Landing Page

What You'll Be Building

In its most general sense, a landing page is the page visitors first see when
they navigate to (land on) your website. That's often your home page, but it
could also be any page that the person comes across via a Google search or
a link that someone else posts to social media.

But a more specific sense of the term is relevant to this project. In this
sense, a landing page is the first page that people see when they click a
link in an ad, blog post, or social media update that's part of a marketing or
awareness campaign for a specific product or service. The landing page's
job is to explain the product or service and to induce the user to perform
some action, such as buy the item, subscribe to the service, or sign up for a
newsletter.

This project takes the HTML and CSS skills you learned in the preceding
nine chapters and shows you how to use them to build a basic landing page
for a product or service. It includes images, descriptive text, and "call-to-
action” buttons that ask the reader to perform some action (such as buy or
subscribe). The general structure of the page uses a popular modern layout
called banded content, in which the text and images appear in horizontal
strips that run the full width of the browser window. As you go along, I'll
build an example landing page based on a fictitious book that I'm "selling,”
but, of course, you'll want to build your own page with your own text and
images.

Sketching the Layout
Because you've likely seen a landing page or two in your day, you may have a
reasonable idea of what you want your landing page to look like. If so, great!
You're way ahead of most people at this stage of the project. But believe me,
a design that exists only in your head is hard to translate into HTML and CSS
code. To make the transition from design to code much easier, you need
to get that design out of your head and into concrete form. You can use a
graphics program such as Adobe Photoshop or Illustrator for this purpose,
but | prefer to sketch the basic components of the page with pencil and
paper.

As Figure 10.1 shows, your sketch doesn't have to be a work of art or even
all that detailed. Draw the main sections of the page, and include some text
that describes the content of each section.

160 WEB DESIGN PLAYGROUND

Choosing Typefaces

3\ » Figure 10.1

Product Subtitle Before you begin coding,
grab a pencil and paper,

1 d ick sketch
Product Title o crete ksl

Product Product Subtitle content.
Image }Header

Very short product
introduction

Buy Button

J
Longer product description
A few testimonials
Pricing table \
Option A Option B Option C .
$9.99 $14.99 $19.99 }"”"“g table
J
Some social media links
Site links and copyright }Footer

Your next page-planning task is deciding which typefaces you want to
use for your landing page.

Choosing Typefaces

As a rule, landing pages shouldn't burden the user with tons of text. You
want to highlight the key features of your product or service, give the users
reasons why they should want it, and then give them the opportunity to get
it. So, if you're building a page without lots of body text, your typeface needs
to be clean and legible, and it shouldn't call attention to itself (and thus take
attention away from the product).

WEB DESIGN PLAYGROUND 161

REMEMBER

When you specify
multiple typefaces in

the font-family
property, the web
browser checks to see
whether they're installed
on each user’s computer
in the order in which
they appear and uses the
first typeface it finds.

If you’re not comfortable
choosing colors, a great
online tool called the
Color Wheel (Www.canva
.com/colors/color-wheel/)
can help. Select your
initial color, and the
Color Wheel suggests a
compatible color.

— -~ PROJECT: Creating a Landing Page

In such cases, a sans-serif typeface is often the best choice because the
lack of serifs gives these fonts a clean appearance. Sans serifs also have
a more modern feel than serifs, which gives you the added advantage of
making your product look new and fresh.

One of my favorite system fonts is Optima, a gorgeous sans-serif
designed by Hermann Zapf (whom you may know from the famous Zapf
Dingbats typeface available on most PCs). Alas, although Optima is installed
on all Mac computers, it's available on few Windows PCs. So as a backup
font for Windows, I'll also specify the Calibri typeface, which has similar
characteristics. In my CSS, I'll use the following rule to apply these families
to all the page text:

body {
font-family: Optima, Calibri, sans-serif;
}

With your page layout sketched and your typeface chosen, the next step
is picking out a color scheme.

Choosing a Color Scheme

Because the landing page uses a single typeface, you need to turn to other
page elements to add some dynamism and contrast. A good place to do that
is the color scheme:

e Accent color—This color is used as the background for page
elements such as the call-to-action buttons and text that you
want to make sure the reader doesn't miss. As such, it should be
a bold, unmistakable hue that stands out.

e Secondary color—This color is mostly used as the background
for some of the content bands. It should be similar to the
accent color: bold enough to tell the reader that the content is
important but not so bold that it clashes with or overshadows
the accent color.

o Tertiary color—This color is used as the background for content
that's less important.

Figure 10.2 shows the colors | chose for my landing page. You, of course,
should choose a color scheme that suits your style. With the page layout
in place and your fonts and colors chosen, it's time to bring everything
together by slinging some HTML and CSS code.

162 WEB DESIGN PLAYGROUND

Building the Page

Secondary color

x » Figure 10.2

darkorchid The color scheme for my
landing page

A A

Accent color Tertiary color

Building the Page
To construct your landing page, start with the skeleton code that |

introduced in Chapter 1. From there, go section by section, adding text,
HTML tags, and CSS properties.

The Initial Structure

To get started, take the basic page structure from Chapter 1, and add the
tags, a placeholder image, and some placeholder text for each of the page's
main sections.

P Try This = Online: wdpg.io/2/projects/landing-page/1
Here are the elements that make up the landing page's initial structure.

100150

WEB PAGE

Header content band -<

\. Product title, subtitle, intro, etc.
Product description
Product testimonials
Other content bands Pricing table for the different versions of the product
Social media links
Site links and copyright notice

continued

WEB DESIGN PLAYGROUND 163

http://wdpg.io/2/projects/landing-page/1

— -~ PROJECT: Creating a Landing Page

— <div class="header">
E <div class="header-image">
T
</divs>
<div class="header-info"> Header
Product title, subtitle, intro, etc. ;;:;em
</divs>
</div>

<div class="description">
Product description Descrip+ion
</div> content band
<div class="testimonials">
Product testimonials
</div>
<div class="product-versions">
Pricing table for the different versions of the product
</div>

<div class="social"> o
Social media links Social media Pricing

Testimonials
content band

</divs content band co:f:'l\?r

<div class="footer"> band
Site links and copyright notice }/\ Footer content

</div> band

Here are a few things to note about the HTML tags used in the initial
structure:

e The page is divided into six sections: header, description,
testimonials, pricing table, social media, and footer.

¢ Each section is embedded within a <div></div> block.

e Each div element is assigned a class, which enables you to
apply CSS properties to everything within that section.

The Header

The header is probably the most important section of the landing page because
it's the first section that visitors see when they arrive. You want the header not
only to have an effect, but also to start the job of selling your product. The
project's header accomplishes these goals by including the following features:

e Hero background image—This image should be visually striking
or should tell a story that's relevant to your product. Either way,
be sure that the image doesn't interfere with the readability of
the header text.

e Product image—This image should be a simple illustration or
photo that enables the would-be buyer to see what the product
looks like.

164 WEB DESIGN PLAYGROUND

http://placehold.it/100x150

Building the Page

e Product info—At a minimum, this info should include the
product name or title, a short (two or three sentences)
introduction, and the price. I've also chosen to include a surtitle
(a descriptive word or phrase above the title, which could be
something like Available Now! or Special Offer!) and a subititle.

¢ Call-to-action button—The user clicks this button to perform
the action you want, such as buying, subscribing to, or
downloading the product.

Because the header is so crucial to the success of a landing page, take
it slow and build the header one feature at a time, beginning with the hero
background.

The Hero Background Image

You may recall from Chapter 6 that a hero image is an eye-catching photo or
illustration that takes up the entire width, and often the entire height, of the
browser window when you first land on a page. The following example shows
the header for my fictitious product with a hero background image applied.

» Try This = Online: wdpg.io/2/projects/landing-page/2
This example shows a landing-page header's hero background.

WEB PAGE

continued

WEB DESIGN PLAYGROUND 165

http://wdpg.io/2/projects/landing-page/2

— -~ PROJECT: Creating a Landing Page

wn
w0
O

HTML

.header {

background: url (/images/landing-page-header-bg.jpg) ;

background-attachment: fixed; “

L . Prevents the hero
background-position: right center; imaae £rom 9crollin9
background-size: cover; with the content

padding-bottom: lem;
width: 100vw;
height: 100vh;

<div class="header">
</divs>

REMEMBER

I added the height :
100vh definition to

give the header some
height, because it has

no content. Later,

after I add the header
content, I'll take out that

definition.

WEB PAGE

» Try This

This photo (which you'll barely recognize as a blurred image of a nighttime
city scene) uses the standard code for a hero image that you learned in
Chapter 6. | added the property background-attachment: fixed to prevent
the image from scrolling with the rest of the page, which is a nice effect.

The Product Image

Next, add the photo or illustration that shows the user the product. This
image should be a decent size, big enough to give the reader a good idea
of what the product looks like but not so big that it overwhelms your hero
background. Following is an example.

= Online: wdpg.io/2/projects/landing-page/3
This example adds the product image to the landing-page header.

DAUL MCFEDRIES.

THE I DEIEN

166 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/landing-page/3

Building the Page

A .header-image {
O float: left;
width: 33%;
margin-top: 3em; The CSS code
padding-right: 3em; For the Iz
text-align: right;
}
= <div class="header">
E <div class="header-image">
I <img src="/images/landing-page-book-cover.png" }/K)
alt="Front cover"> _The Tiag)s
. is added as
</c-.llv> a standard
</div> HTML img
element.

The image is floated to the left and given some margins and padding to
provide some separation from the rest of the content.

The Product Info

Now it's time to add the product info to the header. Again, this info needs to
include at least the product title and a brief introduction, but feel free to add
elements such as a surtitle and subtitle, as shown in the following example.

> Try This = Online: wdpg.io/2/projects/landing-page/4
This example adds the product info to the landing-page header.

PAUL MCFEDRIES COMING SOONISH! »

LBV The Web Designer

WEB PAGE

A story of HTML, CSS, and the big city

She knew HTML. She'knew CSS. But did she know love? Read this destined-to-]
be-remaindered novel'that The New York Times'Book Review described as
“reasonably grammatical” and the Times Literary Supplement called
“bathroom-worthy.“ Pre-orderyourp copy now forjust $14.99.

continued

WEB DESIGN PLAYGROUND 167

http://wdpg.io/2/projects/landing-page/4

— -~ PROJECT: Creating a Landing Page

A .header-info {
(O] float: right;
width: 67%; The CSS code for the
margin-top: 4em; product info div
padding-left: lem;
color: white;
}
The info is added
- 3 _n " 2 g .
s <le’FlaSS— header"> ' within a div element.
= <div class="header-image">
T <img src="/images/landing-page-book-cover.png" alt="Front
cover">
</div>

<div class="header-info">
<div class="surtitle">Coming Soonish!</div>
<hl class="title">The Web Designer</hl>
<h3 class="subtitle">
A story of HTML, CSS, and the big city</h3>
<p class="intro">
She knew HTML. She knew CSS. But did she know love? Read
this destined-to-be-remaindered novel that The New York Times
Book Review described as “reasonably grammatical” and the
Times Literary Supplement called “bathroom-worthy.”
Pre-order your paperback copy now for just $14.99.
</p>
</divs>
</divs>

The div element that holds all the product info is floated to the right
and given some margins. The various bits of product info—the surtitle, title,
subtitle, and intro—appear in their own block-level elements. To save space,
| haven't shown the CSS properties applied to these block-level elements,
but they include styles such as margins and font sizes. (See the online version
of the example for the complete code.)

The Call-to-Action Button

The final piece of the header puzzle is the call-to-action button that
the reader can click to order, subscribe, download, or do whatever your
preferred action is for the landing page. This button should be easy to find,
so make it visible and bold, as shown in the following example.

168 WEB DESIGN PLAYGROUND

Building the Page

» Try This = Online: wdpg.io/2/projects/landing-page/5
This example adds the call-to-action button to the landing-page header.

“bathroom-worthy.” Pré-order your papefack copy now for just $14.99.

1 Want 1t!

WEB PAGE

.btn {
border: none;
padding: .75em 1.25em;
font-family: inherit;
onisSER e B T The CSS code for
font-weight: bold; +he button
color: white;
background-color: darkorchid;

CSs

<button class="btn" type="button">I Want It!</buttons>

HTML

The button element

| use the <button> tag to create the button, and then | apply various
styles to make the button stand out, including my accent color (darkorchid)
as the background and bold white text as the foreground.

The Product Description

The next element of the landing page is a brief description of the product,
which is your first chance to try to sell the user on your product or service.
How you go about that depends on the product and on your comfort level
when it comes to playing the huckster, but here are a few ideas:

¢ Asimple paragraph that explains the product

¢ A bulleted list of the product's main features

¢ A paragraph or list that tells the user why the product is right for her
* A paragraph or list that briefly outlines a series of problems and

explains how the product solves them

For my landing page, | went with a short recap of the book's plot, as
shown in the following example.

WEB DESIGN PLAYGROUND 169

http://wdpg.io/2/projects/landing-page/5

— -~ PROJECT: Creating a Landing Page

» Try This = Online: wdpg.io/2/projects/landing-page/6
This example shows the product description added to the landing page.

A story of HTML, CSS;and'the big city

She knew HTML. She knews@SS. But did she know love? Read this destined-to-
be-remaindered novel that The New York Times Book Review described as
“reasonably grammatical” and the Times Literary Supplement called
“bathroom-worthy.” Pre-order your paperback copy now.for just $14.99.

WEB PAGE

1 Want It!

At High Falutin High, the arts high school in her hometown, Daisy Fontana fell in love. Not with a boy, or even
with a girl, for that matter, but with something altogether more interesting: web design. Instead of a BFF, she had
CSS. Instead of singing and dancing with the other kids, she spent her time coding alone. But when she graduated
and moved to the city to find a job, she knew everything about HTML, but nothing about life. Will the town eat
her alive, or will she survive and rise to the top of the cutthroat world of coding websites? Daisy Fontana is a nerd
heroine for our times, and The Web Designer tells her gripping tale.

.description {
width: 100%;
padding: lem 0; The CSS code for the
font-size: 1.25em; description class
background-color: white;

CSS

<div class="description">

At High Falutin High, the arts high school in her home town, Daisy
Fontana fell in love. Not with a boy, or even with a girl, for
that matter, but with something altogether more interesting: web
design. Instead of a BFF, she had CSS. Instead of singing and...
</divs>

HTML

With your product description in place, you now need to pause adding
content for a bit to set up the content bands that you'll use.

Setting Up the Content Bands

At this point in the construction of your landing page, you've run into a
problem. In the preceding example, the text in the description extends
across the entire width of the browser window, which makes the line lengths
too long for comfortable reading. The solution is to structure the landing
page by using horizontal bands of content that have two characteristics:

¢ A background color or image that extends across the entire
browser window.

170 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/landing-page/6

Building the Page

¢ Foreground content that's given a maximum width to retain
readability and that usually appears in the center of the browser
window

Depending on the width of the browser window and the maximum width
you assign to the content block, however, that block takes up only part of
the window width. The problem, then, is how to get the background to
extend across the entire width of the window while restricting the content
to some subset of that width. The answer is to structure each content band
with two div elements:

¢ An outer div element that spans the width of the browser
window and is styled with the background color or image you
want to use with the band

¢ A nested div element that contains the content, is given
a maximum width, and is centered horizontally within the
browser window

In the following example, I've applied the nested div (using a class named
container) to both the header and the product description.

> Try This = Online: wdpg.io/2/projects/landing-page/7
This example shows the nested div element that will hold the content
within each content band.

She knew HTML. She knew €S82But did she know love?
Read this destined-to-besrémaindered novel that The New
Bl York Times Book Reviewsdescribed as “reasonably
8 grammatical” and the Times Literary Supplement called
“bathroom-worthy.” Pre-order your paperback copy now for
just $14.99.

WEB PAGE

1 Want It!

At High Falutin High, the arts high school in her hometown, Daisy Fontana fell in love. Not
with a boy, or even with a girl, for that matter, but with something altogether more
interesting: web design. Instead of a BFF, she had CSS. Instead of singing and dancing with
the other kids, she spent her time coding alone. But when she graduated and moved to the
city to find a job, she knew everything about HTML, but nothing about life. Will the town eat
her alive, or will she survive and rise to the top of the cutthroat world of coding websites?
Daisy Fontana is a nerd heroine for our times, and The Web Designer tells her gripping tale.

continued

WEB DESIGN PLAYGROUND 171

http://wdpg.io/2/projects/landing-page/7

— -~ PROJECT: Creating a Landing Page

(%]
%]
O

.container {
max-width: 800px;
margin: 0 auto;
clear: both;

The CSS code for the
content container

}

.container::after {
content: "";
display: block;
clear: both;

This CSS enables the container
to clear its own floats.

<div class="header">

<div class="container">
.)é' The nested div elements
A that hold the band content

</div>

HTML

<div class="description">
<div class="container">

</div>
</div>

The container class does three things:

e Uses max-width to set a maximum width of 800 pixels for the
content.

e Usesthemargin: 0 auto shorthand to center the element
horizontally. This declaration sets the top and bottom margins
to 0 and the left and right margins to auto. The latter tells the
web browser to set the margins automatically based on the
element width. Because both left and right margins are set
together, the browser parcels out the same margin size to each,
thus centering the element.

e Uses clear: both to place the element after any floated
elements that come before it in the document flow.

The container::after pseudo-element uses the clearfix trick that
you learned about in Chapter 8, enabling the element to clear any floated
elements that it contains and preventing the container from collapsing.

172 WEB DESIGN PLAYGROUND

Building the Page

The Product Testimonials

It's always a good idea to add some third-party positivity to your landing
page, such as glowing reviews from the media, favorable user ratings from
another site, or positive feedback you've received directly from product
testers or users. The following example shows my landing page with a few
reviews added, as well as a related illustration.

P Try This = Online: wdpg.io/2/projects/landing-page/8
This example adds the testimonials section to the landing page.

Daisy Fontana is a nerd heroine for our times, and The Web Designer tells her gripping tale.

I
(G
<
o
m
[
=
A .testimonials {
(@) width: 100%;
padding: lem 0; The CSS code for the
font-size: 1.25em; testimonials content band
background-color: plum;
1
.testimonials-text {
float: left; The CSS code for the
width: 75%; testimonials text container
1
.testimonial {
margin-bottom: .75em; The CSS code for an
} individual testimonial
.testimonials-image {
ler o] i e The CSS code for the
} . ' testimonials image

continued

WEB DESIGN PLAYGROUND 173

http://wdpg.io/2/projects/landing-page/8

HTML

— -~ PROJECT: Creating a Landing Page

<div class—"testimonials"s & The testimonials content

<div class="container"s> pand element
<div class"testimonials-text"s A The testimonials text container
<p class="testimonial">"I've never seen a novel with so much HTML
and CSS code. I mean there is a lot of code in this book!
So much code. Code, code, code." —T. J. Murphy, Nowhere, OK</p>
<p class="testimonial">"I particularly loved the scenes where
Daisy is by herself in her room writing HTML and CSS. It’s hard
to make writing tags and properties interesting, and the author
almost does it." —M. Dash, Tightwad, MO</p>
<p class="testimonial">"I couldn’t put it down. No, really, I
could not physically put this book down. Thanks to the
cheap cover stock, the book was literally glued to my hands. I
had to go to the emergency room to get the thing off me." —A.
Pendergast, Walla Walla, WA</p>
</divs>
<div class="testimonials-image">
<img src="/images/testimonials.png"
alt="Illustration of people talking">
</div>
</divs>
</divs>

The testimonials
image

An individual
testimonial

On most landing pages,
the preferred option is
the one that returns the
seller the highest net
profit. You can use other
criteria to determine
which option you want
to feature, such as
most popular, most
cost-effective, and best
overall value.

In this example, the content band is a div element with a class named
testimonials, which is styled with the plum background color. Within
the content container, a testimonials-text element is floated left and a
testimonial-image elementis floated right.

The Pricing Table

In your ideal world, someone visiting your landing page will be so enamored
of your product or service that he'll click the call-to-action button that
you've placed in the page header. Failing that, you need to give the person
a second chance to purchase or subscribe. One of the best ways to do that
is to create a pricing table, which outlines the versions of your product that
are available and the pricing for each version. If your product doesn’t have
versions (or even if it does), you can create packages that include other
items, such as a companion e-book, a newsletter subscription, a discount
coupon for future purchases, and so on.

174 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/landing-page/9

Building the Page

The pricing table should have at least two versions or packages but
generally not more than four. One of those versions should be your preferred
version—the one you ideally want each person to choose. That version may
be the one that nets you the most money, offers the best value to the user, or
has some other advantage over the others. This preferred version should stand
out from the others in some way. You could add a Best Value! heading over
it, for example, or use one of the bold accent colors in your color scheme.

On my own landing page, | precede the pricing table with a content band
that acts as a kind of title but is in fact an exhortation to the user to choose
a package, as you can see in the following example.

» Try This = Online: wdpg.io/2/projects/landing-page/9
This example adds a content band before the pricing table.

[
©)
g : .
P Select the version that’s right for you!
[
=
.product-versions-title {
padding: lem O;
font-size: 2em; The CSS code for
] the content band
text-align: center;
}
g <div class="container"s>
= <h2 class="product-versions-title">Select the version that's
T

right for you!</h2>
</divs>

The HTML code for
the content band

For the pricing table itself, the standard format is to place each version
or package in a vertical column that tells the reader everything she needs
to know: the title, price (if any), and features. Then, you add a call-to-action
button at the bottom of the column. The following example shows one
column from the pricing table on my fictitious landing page.

WEB DESIGN PLAYGROUND 175

http://wdpg.io/2/projects/landing-page/9

— - PROJECT: Creating a Landing Page

P Try This = Online: wdpg.io/2/projects/landing-page/10
This example adds the first column of the pricing table.

Select the version that's right for you!

WEB PAGE

eBook Version

$9.99

300-page PDF

Free ebook

Free newsletter subscription

10% off your next purchase

Order Now!

.product-versions {

padding: lem O;

background-color: plum; }
.product-version {

float: left;

width: 33.33%;

border: 1lpx solid gray;

text-align: center;

background-color: white;}
.version-title {

padding: .75em 0;

font-size: 1.5em;}
.version-price {

padding: .75em 0;

font-size: 2em;

background-color: lightgray;}
.version-item {

border-bottom: 1lpx solid gray;

width: 100%;

padding: .75em 0;

font-size: 1.25em;}
.version-item:last-child {

border-bottom: 0;}
.btn-plain {

font-weight: normal;

color: black;

background-color: lightgray;}

CSsS

176 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/landing-page/10

Building the Page

The Produc+ version container The content band

HTML

1 =n - 1 n R
<div cllass_ product xlfersz.ons > / The conten comyainer
<div class="container">

<div class="product-version">

Tihel Version <h3 class="version-title">eBook Version</h3>

title <h4 class="version-price">$9.99</h4> “ The version
<div class="version-item"> Pﬂce
300-page PDF
</div>

<div class="version-item">
Free ebook
</div>
<div class="version-item">
Free newsletter subscription
</div>
<div class="version-item">
10% off your next purchase
</div>
<div class="version-item">
<button class="btn btn-plain" type="button">Order
Now! </button>
</divs>
</divs>
</div>
</divs>

The version items

Seven classes are used here, and this is what they do:

e product-versions—This outer div creates the content band.
It's given a plum background.

e container—This class is the content div.

e product-version—This div creates the column for a single
version or package. It's floated left and, because there are three
columns, is given a 33.33% width.

e version-title—This div holds the title of the version or
package.

e version-price—This div holds the price of the version or
package. For most of the versions, the price is given a plain gray
background.

WEB DESIGN PLAYGROUND 177

— -~ PROJECT: Creating a Landing Page

e version-item—This class holds the rest of the items in the
REMEMBER version or package, with one div for each feature plus another

B at the bottom for the call-to-action button.
When you specify two

classes on an element— e btn-plain—This class is used for call-to-action buttons that

as I do in the following you don't want to highlight. The text is given a normal weight;
example in the second h4 the text color reverts to black; and the background is set to
element—the web browser light gray.

applies the properties

O{bOthtdasseS to the To complete the pricing table, you add the versions or packages, using
element.

the same styles as before, but styling your optimum version in a way that
highlights it for the reader, as shown in the next example.

P Try This = Online: wdpg.io/2/projects/landing-page/11
This example completes the pricing table, including one column that
highlights a version for the reader.

N T
g eBook Version Print Version eBook+Print Bundle
[a
i
= $9.99 $14.99 $19.99
300-page PDF 300-page paperback PDF and paperback versions
Free ebook Free ebook Free ebook
Free newsletter subscription | Free newsletter subscription | Free newsletter subscription
10% off your next purchase | 10% off your next purchase | 15% off your next purchase
Order Now! Order Now!
(%]
(%2}
O

.version-price-featured {
color: white; The CSS code
background-color: darkorchid; for highlighting

} an item price

178 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/landing-page/11

Building the Page

<div class="product-version">
<h3 class="version-title">Print Version</h3>
<h4 class="version-price">$14.99</h4>
<div class="version-item">
300-page paperback
</divs>
<div class="version-item">
Free ebook
</divs>
<div class="version-item">
Free newsletter subscription
</divs>
<div class="version-item">
10% off your next purchase
</divs>
<div class="version-item">
<button class="btn btn-plain" type="button">Order Now!</
buttons>
</divs>
</div>
<div class="product-version">
<h3 class="version-title"s>eBook+Print Bundle</h3>
<h4 class="version-price version-price-featured">$19.99</h4>
<div class="version-item">
PDF and paperback versions

HTML

</div> The HTML code
<div class="version-item"> for the Nghhghfcd

Free ebook price
</div>

<div class="version-item">
Free newsletter subscription
</div>
<div class="version-item">
15% off your next purchase
</div>
<div class="version-item">
<button class="btn" type="button">Order Now!</buttons>
</div>
</divs>

Almost done! With your full pricing table laid out, it's time to add your MASTER

social media links. If your CSS specifies two
classes on an element,
and those classes have
one or more properties in
common, the properties
in the second class (that
is, the class that appears
later in the CSS file) take
precedence.

WEB DESIGN PLAYGROUND 179

PROJECT: Creating a Landing Page

The Social Media Links

The next content band on the landing page is a collection of social media
links, which appears centered on the page, with each social network'’s icon

used as the link. The following example shows the links |
landing page.

» Try This = Online: wdpg.io/2/projects/landing-page/12

set up for my

This example adds the social media links content band to the landing

page.
t,; Order Now! Order Now!
5
m g . .
'%J Follow Logophilia Books on social media:
[v RO Nin]
A .social {
O padding: lem 0;
font-size: 1.5em;
text-align: center;
} #A
.social-links { > The CSS code
margin-top: .75em; for the social
} media links
.social-link {
margin: 0 .25em;
}
= <div class="social">
> :
= <div>
I Follow Logophilia Books on social media:
</div>

<div class="social-1links">
<img src="/images/
facebook.png" alt="Facebook icon">
<img src="/images/
twitter.png" alt="Twitter icon">
<img src="/images/
instagram.png" alt="Instagram icon">
<img src="/images/
linkedin.png" alt="LinkedIn icon">
</div> L

</div>

180 WEB DESIGN PLAYGROUND

The HTML
code for
the social
media links

http://wdpg.io/2/projects/landing-page/12

Building the Page

Three classes are used here:

e social—This outer div creates the content band. It's given a
white background, and the text-align property is set to center.

e social-links—This div creates the container for all the links.

e social-link—This class is used to style the individual links.

Note that you don't need a container element in this content band
because the text and links are centered on the page.

The Page Footer

The final element of the landing page is the footer. As you can see in the
following example, | used the footer to display a copyright notice and my
contact information (which consists of my email address). Feel free to use
the footer to add any other information you see fit, such as a "thank you for
reading” message, a slogan or favorite epigram, or extra contact details.

P Try This = Online: wdpg.io/projects/2/landing-page/13
This example separates the footer text from the body text by styling the
footer with a light-gray background color, a smaller font size, and italics.

HOED

Asour CoNTtacT SITE MAP PRIVACY

WEB PAGE

COPYRIGHT 2023 LOGOPHILIA BOOKS

.footer {
padding: lem 0;
font-variant: small-caps;
text-align: center;
background-color: lightgray;

The CSS code
for the footer

}

.footer-links {
margin-bottom: .75em;
font-size: 1.5em;

LT

}

.foote r-link {
margin: 0 .5em;
1

.copyright {
font-style: italic;
font-size: lem;

u

continued

WEB DESIGN PLAYGROUND 181

http://wdpg.io/projects/2/landing-page/13

— -~ PROJECT: Creating a Landing Page

—
=
=
I

<div class="footer">
<div class="footer-1links">
About
Contact
Site Map

Privacy —\‘Thj HEWAL
Qi code for
</ : the footer

<div class="copyright">
Copyright 2023 Logophilia Books
</divs>
</div>

Four classes are used here:

o footer—This outer div creates the content band. It's given a
lightgray background, and the text-align property is set to
center.

e footer-links—This div creates the container for all the footer
links. Note that each link URL points to #, which is a placeholder
that, when clicked, takes the user to the top of the page. In a
production landing page, you'd replace each # with the URL of
a file on your site.

e footer-1link—This class styles the individual footer links.

e copyright—This class styles the copyright notice.

Again, you don't need a container element in this band because the
content is already centered on the page.

From Here

Considering that you're only halfway through the book, | have to say that
the final version of the landing page (mine is shown in Figure 10.3) is a fine-
looking web page. It's easy to read, easy to understand, and isn't boring. (If
you're as pleased with your landing page as | think you ought to be and are
looking forward to getting your code online, check out the appendix to get
the details.)

182 WEB DESIGN PLAYGROUND

PAUL MOFEDDIES

IHENED DEsone

At High Falutin High, the arts high school in her hometown, Daisy Fontana fell in love. Not

(COMING SOONIsH!

The Web Designer

A story of HTML, CSS, and the big city

She knew HTML. She knew CSS. But did she know love?
Read this destined-to-be-remaindered novel that The New
York Times Book Review described'@s “reasonably
grammatical” and the Times LiterarySupplement called

“bathroom-worthy.” Pre-order yourpaperback copy now for
1 just $14.99.

1 Want It! -

with a boy, or even with a girl, for that matter, but with something altogether more
interesting: web design. Instead of a BFF, she had CSS. Instead of singing and dancing with
the other kids, she spent her time coding alone. But when she graduated and moved to the

city to find a job, she knew everything about HTML, but nothing about life. Will the town eat

her alive, or will she survive and rise to the top of the cutthroat world of coding websites?

Daisy Fontana is a nerd heroine for our times, and The Web Designer tells her gripping tale.

eBook Version

$9.99

300-page PDF

Print Version

$14.99

300-page paperback

p
ad,

eBook+Print Bundle

$19.99

PDF and paperback versions

Free ebook

Free ebook

Free ebook

Free newsletter subscription

Free newsletter subscription

Free newsletter subscription

10% off your next purchase

10% off your next purchase

15% off your next purchase

Order Now!

Order Now!

Follow Logophilia Books on social media:

HOEMN

ABouT CONTACT SITE MAP

PRIVACY

COPYRIGHT 2023 LOGOPHILIA BOOKS

» Figure 10.3
The landing page for
my book

WEB DESIGN PLAYGROUND 183

— -~ PROJECT: Creating a Landing Page

If there's a problem with the landing page, it's that we had to use lots
of padding and margin fiddling (among other CSS hacks) to get things to
line up somewhat neatly. That fussing happened because we're not using a
true page layout. With our elements floated here and there, we're almost in
layout land, but not quite. But that's no problem because page layouts are
the topic of Part 3, so you'll soon learn all you need to know to create rock-
solid layouts for your landing pages and all your other pages.

Summary

e Sketch out the page you want to build.
¢ Choose the typeface for the text.
¢ Choose a color scheme.

¢ Build the initial page structure: the barebones HTML tags and
the global CSS properties.

¢ Fill in and style each section one by one: header, description,
testimonials, pricing table, social media links, and footer.

184 WEB DESIGN PLAYGROUND

Part 3

Laying Out
a Web Page

A big part of designing web pages is the ability to lay out the
page elements in a way that's not only pleasing to the eye,
but also easy to understand and navigate. That sounds like
a tall order, I'm sure, but the chapters in Part 3 will help you
do that. You start with a look at some page layout basics
in Chapter 11, including learning the important HTMLS5
semantic page tags such as <header> and <article>. From
there, Chapter 12 takes you on a tour of one of the hottest
and most powerful modern page layout technologies:
Flexbox. Chapter 13 covers CSS Grid, which is the page
layout technology that web designers have been waiting for.

Modern web design is all about responsiveness, which
enables pages to look good and work well on any size screen,
and that's the subject of Chapter 14. Finally, you put all this
newfound page layout know-how to work in Chapter 15 as
you build a sophisticated photo gallery page.

Chapter 11

Learning Page
Layout Basics

11] This chapter covers

= Understanding web page layout types,
technologies, and strategies

* Getting to know the HTML5 semantic page layout
elements

* Examining modern, real-world page layouts

The first half of this book served to lay down a solid foundation for creating
web pages. When you got past the basics of HTMLand CSS, you learned about
text tags, fonts, colors, CSS classes, the box model, floating and positioning
elements, and images and other media. So, congratulations are in order:
you've graduated from being able merely to build web pages to being able
to design them.

WEB DESIGN PLAYGROUND 187

\

is useful for blog posts,
articles, essays, how-tos,
and similar content-
focused pages.

Learning Page Layout Basics

Alas, you'll have little time to bask in your newfound glory because this
chapter dives right into the next stage of web design. Here, you take a step
back from the "trees” of HTML tags and CSS properties to examine the "forest”
of page layout. This refers to the overall structure and organization of a web
page, and if that sounds trivial or unimportant, consider this: every single
person who visits your page will, consciously or not, be asking a bunch of
questions. What is the page about? Am | interested? Does this page have the
information I'm looking for? If so, where can | find it?

All those questions are—or, at least, should be—answerable by glancing
at your layout. If your structure is wonky or your organization is haphazard, |
guarantee you that most people will move on after a few seconds. Avoiding
that fate means taking a bit of time to plan and code a layout that shows
your content in its best, visitor-friendliest light.

The Holy Grail Layout

To help you learn the various web page layout techniques, I'm going to use a
version of the so-called holy grail layout that consists of the following parts:

¢ A header at the top of the page
¢ A navigation bar below the header

¢ Two full-height columns consisting of the main page content in
the left column and a sidebar of related content in the right (or
sometimes the left) column

* A footer at the bottom of the page

There are several variations on this theme, depending on how strictly
you want to define the layout. You may want three columns between the
navigation bar and the footer instead of two, for example. Another common
variation is to have the footer appear at the bottom of the browser window
if the content doesn't extend that far. Figure 11.1 shows a schematic of the
layout you're going to build.

188 WEB DESIGN PLAYGROUND

Understanding Web Page Layout Methods

» Figure 11.1
Aversion of the holy grail
web page layout

Main Content

Footer

To build this layout, you need to understand the available page layout
methods.

Understanding Web Page Layout Methods

As | mentioned in Chapter 7, by default, the web browser lays out HTML
content with the blocks stacked in the order in which they appear in the
source document. Within each block, the text runs left to right (for languages
that read that way). For the simplest web pages (such as the personal home
page you built in chapter 5), that default layout is fine, but at this point in
your web design career, you're already way beyond that. At this level, you
need to know how to break out of that default layout to gain some control
of how web content appears on the page. Fortunately, you have no shortage
of ways to do that, but you need to know about two main methods:

e Flexbox—This CSS module enables you to organize page content
in containers that can wrap, grow, and shrink in flexible ways.
See Chapter 12 to learn how it works.

e CSS Grid—This powerful CSS module enables you to organize
page content as though you were positioning and aligning
elements according to an invisible grid. See Chapter 13 for all
the details.

Which one should you use? The key point to remember is that Flexbox
is one-dimensional in the sense that you use it to lay out page items either

WEB DESIGN PLAYGROUND 189

\

REMEMBER

An older and now
largely abandoned
page layout system uses
floated elements (see
Chapter 8) to organize
page content. If you
want to know how this
works, see my tutorial
on the Web Design
Playground:
wdpg.io/2/11-2-0.

REMEMBER

Another deprecated
page layout technology
is inline blocks, although
you might still see this
used on the web. To
understand how it
works, see my tutorial
on the Web Design
Playground:
wdpg.io/2/11-3-0.

Learning Page Layout Basics

horizontally or vertically, while Grid is two-dimensional in the sense that you
use it to lay out page items both horizontally and vertically. Therefore, in
every project where you need your page elements to break out of the default
browser flow, you should use Grid to set up the overall layout of the page, and
then augment that system with Flexbox whenever you need to lay out multiple
items either horizontally or vertically.

cc Grid is designed to be used with Flexbox,
not instead of it. —Ollie Williams

The last piece of the page layout puzzle you need to know before getting
started is the collection of HTML5 elements that enable you to create
semantic layouts.

Learning the HTML5 Semantic Page Elements

It's important for your web page layouts to be semantic because every page
you upload to the web will be read and parsed in some way by automated
processes, such as search engine crawlers and screen readers for the
disabled. If your page is nothing but a collection of anonymous <divs> and
 tags, that software will be less likely to analyze the page to find the
most important content.

To help you solve that problem, HTMLS5 offers a collection of semantic
elements that you can use to specify the type of content contained in each
area of your page. There are quite a few of these tags, but the following
seven are the most important:

<header>

<nav>

<mains>

<article>

<section>

<aside>

<footer>

The next few sections explain each of these elements.

QcProper semantics . . . increase accessibility,
as assistive technologies such as screen
readers can better interpret the meaning
of our content. —Anna Monus

190 WEB DESIGN PLAYGROUND

http://wdpg.io/2/11-2-0
http://wdpg.io/2/11-3-0

Learning the HTMLS Semantic Page Elements

Lesson 11.1: Adding a Semantic Header Element
Covers: The header element

= Online: wdpg.io/2/11-1-1

You use the header element to define a page area that contains introductory
content. This content is most often the site title (which should be marked up
with a heading element, such as h1), but it can also include things such as a
site logo. Following is an example.

b Example = 0nline: wdpg.io/2/11-1-1
This example shows the headexr semantic page element in action.

L
©)
<
o
m
[
=
A header {
O background-color: #6fasdc; <4 Background color
} applied to the header
element
E‘ <header>
=
T <hl>Semantics Depot</hl>
</headers>
The header

element

After adding a header to your page, the most common semantic element to
add next is a navigation section.

WEB DESIGN PLAYGROUND 191

http://wdpg.io/2/11-1-1
http://wdpg.io/2/11-1-1

Learning Page Layout Basics

Lesson 11.2: Adding a Semantic Navigation Element
Covers: The nav element

= Online: wdpg.io/2/11-1-2

You use the nav element to define a page area that contains navigation
content, such as links to other sections of the site or a search box. This
element can appear anywhere on the page but typically appears right after
the page’s main header element, as shown in the following example.

b Example = Online: wdpg.io/2/11-1-2
This example adds a nav semantic element to the page.

w

©)

&

m

[

=

A nav {

) background-color: #ebofof; 4 ~ Background color
text-transform: uppercase; applied to the nav
padding: .25em; element

1

= <header>

E

I <hl>Semantics Depot</hl>

</headers>
<navs>

Home

Blog

Contact

About Us
</navs

The nav
element

192 WEB DESIGN PLAYGROUND

http://wdpg.io/2/11-1-2
http://wdpg.io/2/11-1-2

Learning the HTMLS Semantic Page Elements

With your header and navigation elements in place, you're ready to lay out
your page’s content, which usually begins with the semantic main element.

Lesson 11.3: Adding a Semantic Main Element
Covers: The main element

= Online: wdpg.io/2/11-1-3

The main element is used as a container for the content that's unique to the
current page. Whereas the header, nav, aside, and footer elements are
often common to all or most of the pages on the site, the main element is
meant to mark up the content that's unique. You can only have one main
element per page. The main element typically appears after the header and
nav elements, as shown in the following example.

b Example = Online: wdpg.io/2/11-1-3
This example adds a ma in semantic element to the page.

WEB PAGE

Unique content goes here.

<header>

<hl>Semantics Depot</hl>
</header>
<navs
Home
Blog
Contact
About Us

HTML

</navs
<main>
Unique content goes here
</main>
The main
element

WEB DESIGN PLAYGROUND 193

http://wdpg.io/2/11-1-3
http://wdpg.io/2/11-1-3

Learning Page Layout Basics

Now that you have your page’s main element in place, you can start adding
content to it, usually beginning with the semantic article element.

Lesson 11.4: Adding a Semantic Article Element
Covers: The article element

= Online: wdpg.io/2/11-1-4

The article element is used to mark up a complete, self-contained
composition. The model here is the newspaper or magazine article, but this
element can also apply to a blog entry, a forum post, or an essay. Most pages
have a single article element nested within the main element, as shown in
the following example.

b Example = Online: wdpg.io/2/11-1-4
This example adds an art icle semantic element to the page.

WEB PAGE

Article content goes here.

<header>

<hl>Semantics Depot</hl>
</header>
<navs
Home
Blog
Contact
About Us
</navs
<main>
<article>
Article content goes here
</article>
</mains>

HTML

The article
element

194 WEB DESIGN PLAYGROUND

http://wdpg.io/2/11-1-4
http://wdpg.io/2/11-1-4

Learning the HTMLS Semantic Page Elements

It's perfectly acceptable to have multiple article elements within a single
main element. Note, too, that it's okay to nest a header element inside an
article element if doing so is semantically appropriate:

<article>
<header>
<h2>Isn’t It Semantic?</h2>
<p>By Paul McFedries</p>
</header>
Article content goes here.
</article>
If your article contains multiple sections, your next semantic chore is to

mark up those parts of the page with section elements.

Lesson 11.5: Adding a Semantic Section Element
Covers: The section element

= Online: wdpg.io/2/11-1-5

You use the section element to surround any part of a page that you'd want
to see in an outline of the page. That is, if some part of the page consists of
a heading element (hl through hé) followed by some text, you'd surround
the heading and its text with <section> tags. This typically happens within
an article element, as shown in the following example.

» Example =>Online: wdpg.io/2/11-1-5
This example adds several section semantic elements to the page.

WEB PAGE

Introduction
Introduction text
Argument
Argument text
Summary
Summary text

continued

WEB DESIGN PLAYGROUND 195

http://wdpg.io/2/11-1-5
http://wdpg.io/2/11-1-5

\

Learning Page Layout Basics

= <header>
E
I <hl>Semantics Depot</hl>

</header>

<navs

Home
Blog
Contact
About Us
</navs
<main>
<articles>
<section>
<h3>Introduction</h3>
Introduction text
</section>
<section>
<h3>Argument</h3>
Argument text
</section>
<section>
<h3>Summary</h3>
Summary text
</section>
</articles>
</main>

The section
elements

If your web page includes content that's separate from the main content,
then next on your semantic to-do list is to place that content within an
aside element.

196 WEB DESIGN PLAYGROUND

Learning the HTMLS Semantic Page Elements

Lesson 11.6: Adding a Semantic Aside Element
Covers: The aside element

= Online: wdpg.io/2/11-1-6

You use the aside element to mark up a page area that isn't directly related
to the page’s unique content. A typical example is a sidebar that contains the
latest site news, a Twitter feed, and so on. The aside element can appear
anywhere within the main element (and, indeed, can appear multiple times
on the page), but it's a best practice to have the aside appear after the
page’s article element, as shown in the following example.

b Example = 0nline: wdpg.io/2/11-1-6
This example adds an aside semantic element to the page.

WEB PAGE

Introduction
Introduction text
Argument
Argument text
Summary
Summary text

aside {
background-color: #b4a7de; 4 ~ Background color

} applied to the aside
element

CSs

continued

WEB DESIGN PLAYGROUND 197

http://wdpg.io/2/11-1-6
http://wdpg.io/2/11-1-6

\

Learning Page Layout Basics

= <header>
E
I <hl>Semantics Depot</hl>

</header>

<navs

Home
Blog
Contact
About Us
</navs
<main>
<articles>
<section>
<h3>Introduction</h3>
Introduction text
</section>
<section>
<h3>Argument</h3>
Argument text
</section>
<section>
<h3>Summary</h3>
Summary text
</section>
</articles>
<aside>
<h3>Sidebar Title</h3>
<p>
Sidebar paragraph
</p>
</aside>
</main>

The aside
element

With your page’s header, navigation, and main elements all in place, your
next and final semantic task is to add a footer element.

198 WEB DESIGN PLAYGROUND

Learning the HTMLS Semantic Page Elements

Lesson 11.7: Adding a Semantic Footer Element
Covers: The footer element

= Online: wdpg.io/2/11-1-7

You use the footer element to define a page area that contains closing
content, such as a copyright notice, address, and contact information. Here's
an example that demonstrates the semantic layout of an HTMLS5 page.

b Example = 0nline: wdpg.io/2/11-1-6
This example adds an aside semantic element to the page.

WEB PAGE

Introduction
Introduction text
Argument
Argument text
Summary
Summary text

footer {
background-color: #bed7as; 4 Background color
} applied to the footer
element

CSS

continued

WEB DESIGN PLAYGROUND 199

http://wdpg.io/2/11-1-7
http://wdpg.io/2/11-1-6

\

Learning Page Layout Basics

= <header>
E
I <hl>Semantics Depot</hl>

</header>

<navs

Home
Blog
Contact
About Us

</navs
<main>
<articles>
<section>
<h3>Introduction</h3>
Introduction text
</section>
<section>
<h3>Argument</h3>
Argument text
</section>
<section>
<h3>Summary</h3>
Summary text
</section>
</articles>
<aside>
<h3>Sidebar Title</h3>
<p>
Sidebar paragraph
</p>
</aside>
</main>
<footer>
<p>Copyright Semantic Depot</p>
</footer>
The footer

element

Now that you've built a complete page with all the semantic elements, it's

time to return to the holy grail layout to see how these semantic elements
fit into that picture.

200 WEB DESIGN PLAYGROUND

Learning the HTMLS Semantic Page Elements

The Holy Grail Layout, Revisited

Earlier, you learned about the holy grail layout, which | can reintroduce
within the context of the HTML5 semantic page elements. Figure 11.2 shows
the same schematic that you saw in Figure 11.1 but with HTML5 semantic
layout tags identifying each part.

» Figure 11.2
The holy grail web page
layout with HTML5
semantic tags
<main>
<article>

Here's the bare-bones HTML code for the layout:

<header>

<h1>Site Title</hl>
</header>
<nav>

Item 1
etc.

</nav>
<main>
<article>
<section>
<h2>Article Title</h2>
<p>Article paragraph</p>
etc.
</section>
<aside>
<p>Sidebar paragraph</p>
etc.
</aside>
</article>
</main>

WEB DESIGN PLAYGROUND 201

\

Learning Page Layout Basics

<footer>

<p>Footer paragraph</p>
etc.

</footer>

You'll notice that the example page | built in this chapter’s lessons doesn't
look much like the holy grail layout in Figure 11.2. That's because | let the
browser use its default flow with each semantic element. Breaking out of
that flow is the subject of the next two chapters.

Summary

202 WEB DESIGN PLAYGROUND

You can make your pages more semantic by using the HTML5
page layout tags: <header>, <nav>, <main>, <article>,
<section>, <aside>, and <footers.

The header element is where you define a page area that
contains introductory content.

Use the nav element to define a page area that contains
navigation content.

Your page can only have one main element, which you use as a
container for the content that's unique to the current page.

The article element is where you mark up a complete, self-
contained composition.

Use the section element to surround any part of a page that
you'd want to see in an outline of the page.

If you have text that isn't directly related to the page’s unique
content, place the text inside an aside element.

The footer element is where you define a page area that
contains closing content.

Chapter 12

Creating Page
Layouts with Flexbox

12] This chapter covers

= Understanding how Flexbox works

= Learning the techniques for working with Flexbox
containers and items

= Putting Flexbox to good use with real-world ideas

* Building the holy grail layout with Flexbox

In Chapter 11, you saw that HTML5 offers a long list of page elements, from
header tO footer, and from article t0 aside. These elements have only
semantic value, however, meaning that they don't perform any actual layout
duties. To get your web pages laid out the way you want, you need to break
out of the web browser’s default page flow using the modern and powerful
layout technologies of Flexbox and Grid.

You learn all about Grid in Chapter 13, but in this chapter, the focus is squarely
on Flexbox. Here you learn what Flexbox is, what it can do, and how it works.
It's true that Flexbox has a reputation for being difficult to learn, but here
you'll see that you can quickly get up to speed with Flexbox just by asking a
few simple questions.

WEB DESIGN PLAYGROUND 203

<> {1}
O

Flexbox is the welcome shorthand for this method's cumbersome official
moniker: Flexible Box Layout Module. The underlying principle behind
Flexbox is to provide a way around the rigid, cumbersome way that the
browser handles blocks of content. The default is to stack them. Consider
the following collection of div elements:

<div class="container">
<div class="item itemA">A</div>
<div class="item itemB">B</div>
<div class="item itemC">C</div>
<div class="item itemD">D</div>
<div class="item itemE">E</div>
<div class="item itemF">F</div>

</div>

Not shown here are the classes I've applied to give each item element a
unique background color. Figure 12.1 shows the results, and, as you can see,
the div elements are stacked and extend to the width of the browser window.

< (64 @& webdesignplayground.io/2/examples/no-flexbox/ h % S » 0O 3 :

The default browser layout
of the div elements

204 WEB DESIGN PLAYGROUND

Working with Flexbox Containers

Sure, you can break out of this default flow with floats or inline blocks
(as | describe in Chapter 8), but the uncomfortable sense remains that the
browser is still in charge and is fitting your blocks where it thinks they should
go. Yes, you can tame the browser somewhat by styling your floats and
inline blocks just so, but there's a brittleness to these tweaks.

Flexbox rides to the rescue by offering simple but extremely powerful
methods for laying out, distributing, aligning, sizing, and even ordering the
child elements in a parent container. The flex part of the name comes from
one of this technology's main tenets: the child items in a container should
be able to change dimensions (width and height) by growing to fill in empty
space if there's too much of it or by shrinking to allow for a reduction in
space. This happens whether the number of content changes or the size
of the screen changes (such as by maximizing a window or by changing a
device's screen orientation).

So, Flexbox is perfect, then? No, it's not. It has two main drawbacks:

¢ Due to its inherent flexibility, it sometimes behaves in ways
that appear nonsensical. It can be maddening at first, but
when you've used it a few times, you begin to see why Flexbox
behaves the way it does.

¢ It's not suitable for large-scale layouts. Flexbox works
wonderfully for one-dimensional components of a page—such
as a header or a sidebar—and is fine for small-scale layouts (such
as the holy grail practice layout). But big, complex projects are
almost always too much for Flexbox to handle. That's okay,
though, because larger-scale layouts are the province of CSS
Grid Layout, which you'll learn about in Chapter 13.

When you work with Flexbox, you work with two kinds of page objects:
containers and items. A flex container is any type of parent block element—
div, p, any of the HTML semantic page elements you learned in Chapter 11,
even the body element—that surrounds one or more elements. These child
elements are called flex items.

Okay, that's enough theory. It's time to start learning how Flexbox works.

Working with Flexbox Containers

Before you can do anything with Flexbox, you need to decide which block-
level element will be the flex container. When you've done that, you convert
that element to a container with a single CSS declaration: display: flex.
The following rule turns the header element into a flex container:

header {
display: flex;

WEB DESIGN PLAYGROUND 205

\

You can try out all the
flex-direction
values interactively

on the Playground.

= Online: wdpg.io/2/12-1-2

REMEMBER

The row value is the
default, so declaring
flex-direction:
row is optional.

REMEMBER

If you applied flex-
direction: column
to this example, you'd
get the layout shown in
Figure 12.1 earlier in this
chapter; the main axis
would run from top to
bottom, and the cross
axis would run from left
to right. If you applied
flex-direction:
column-reverse,
you'd get the same
layout with the div
elements in reverse
order; the main axis
would run bottom to top,
and the cross axis would
remain left to right.

Creating Page Layouts with Flexbox

The container's child elements automatically become flex items; no
extra rules, declarations, or code are required. From there, you can start
customizing your flex container and its items to suit the task at hand.

| find that the best way to learn about and use Flexbox is to ask yourself
a series of questions—one set for containers and another for items. Here are
the container questions:

¢ In which direction do you want the container to run?

¢ How do you want the items arranged along the main axis?
¢ How do you want the items arranged along the cross axis?
¢ Do you want the items to wrap?

¢ How do you want multiple lines arranged along the cross axis?

(Don't worry if you're not sure what | mean by main axis and cross axis.
All will be revealed in the next section.) The next few sections ask and show
you the possible answers to each of these questions.

In Which Direction Do You Want the Container to Run?

The first thing that's flexible about Flexbox is that it doesn't dictate one and only
one direction for the container's items. Although the browser's default layout
rigidly enforces a vertical direction, and although floats and inline blocks only
work horizontally, Flexbox is happy to go either way. With Flexbox, you decide.

Perhaps the most important Flexbox concept to grasp right from the get-
go is the notion that Flexbox containers always have two axes:

e Main—The axis that runs in the same direction as the container's items

e Cross—The axis that runs perpendicular to the main axis (the
cross axis is also called the secondary axis)

You determine the main-axis direction whenyou setthe flex-direction
property on a container:

container {
display: flex;
flex-direction: row|row-reverse|column]|column-reverse;

e row—Sets the main axis to horizontal, with items running from
left to right (the default)

¢ row-reverse—Sets the main axis to horizontal, with items
running from right to left

e column—Sets the main axis to vertical, with items running from
top to bottom

e column-reverse—Sets the main axis to vertical, with items
running from bottom to top

206 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-1-2

Working with Flexbox Containers

| should mention that the row value only runs items left to right if that's
the text direction of the language you're using. If you're using a language
that reads right to left (such as Arabic), then the row value runs items from
right to left (and so row-reverse would run items from left to right).

Using the div elements shown in Figure 12.1 earlier in this chapter,
here’s how you'd turn the parent div into a flex container that uses the row
direction value:

.container {
display: flex;
flex—-direction: row;

b

Figure 12.2 shows the results, and Figure 12.3 shows what happens when
you use flex-direction: row-reverse.

& > C @& webdesignplayground.io/2/examples/flexbox-direction-row/ h % S o0» 0O 8

A B C D E F | gu——
\

Main axis

P> Figure 12.2 The div elements with a flex container and the row direction applied

& > C @& webdesignplayground.io/2/examples/flexbox-direction-row-reverse/ M Yr % # O 3 :

I ED CBA
\

Main axis

p>Figure 12.3 The div elements with a flex container and the row-reverse direction applied

Figure 12.2 shows the same result as using float: left or display: PLAY
inline-block, and Figure 12.3 shows the same result as using float: ;};;,';’,’;;[,dyou use
right (and isn't possible with inline blocks). With Flexbox, however, you get Flexbox to display a
the result by adding a couple of declarations to the container rather than numbered list in reverse
styling each child element, as you do with floats and inline blocks. Right off ~ order? = Online: wdpg

the bat, you can see that Flexbox is easier and more efficient. i0/2/12-1-4

WEB DESIGN PLAYGROUND 207

http://wdpg.io/2/12-1-2

\

Creating Page Layouts with Flexbox

How Do You Want the Items Arranged Along the Main Axis?

When you've used flex-direction to set the main axis for the container,
your next decision is how you want the items to be arranged along that axis.

REMEMBER Use the justify-content property on a container:

The flex-start container {

display: flex;

justify—-content: flex—start|flex-end|center|space-between|space-
around |space-evenly;

value is the default, so
declaring justify-
content: flex-
start is optional.
e flex-start—Places the items at the beginning of the container
(the default)

o flex-end—Places the items at the end of the container
e center—Places the items in the middle of the container

e gspace-between—Places the items with the first item at the
beginning of the container, the last item at the end, and the rest
of the items evenly distributed in between

¢ space-around—Distributes the items within the container by
supplying most items with the same amount of space on either
side, but the first item gets half that space to the left and the last
item gets half that space to the right

e gpace-evenly— Distributes the items evenly within the container
by supplying each item the same amount of space on either side

Figure 12.4 shows the effect that each value has on the arrangement of the
items within the container when the main axis is horizontal. (Note that I've
added an outline around each container so you can visualize its boundaries.)

PLAY How Do You Want the Items Arranged Along the Cross Axis?
You can play around With the items arranged along the main axis, your next task is choosing
with the justify- an arrangement along the cross axis. You set this by using the container's
content values align-items property:

interactively on the container {
Playground. > Online: display: flex;
wdpg.io/2/12-1-5 align-items: stretch|flex-start|flex-end|center|baseline;

REMEMBER e stretch—Expands each item along the cross axis to fill the

Thest - tchvaluels container (the default)

the default, so declaring o flex-start—Aligns the items with the beginning of the cross axis
align-items:

stretch is optional. ¢ flex-end—Aligns the items at the end of the cross axis

208 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-1-5

Working with Flexbox Containers

e center—Aligns the items in the middle of the cross axis

¢ baseline—Aligns the items along their baseline of the first line
of text in the flex container

flex-start — A B C D E F

flex-end —

center —

space-between —

space-around —

"

space-evenly

P Figure 12.4 The justify—-content values at work

Figure 12.5 shows the effect that each value has on the arrangement of
the items within the container when the cross axis is vertical. (I've added an

outline around each container so you can visualize its boundaries.)

REMEMBER

If you want some space
between the items in
each column of your

flex container, set the
column-gap property
to the amount of space
you want. To add space
between the rows of your
flex container, use the
row-gap property.

WEB DESIGN PLAYGROUND 209

\

Creating Page Layouts with Flexbox

How do you

drectiondo. "0 00¥ouyantthe D0 you W EONEL
want the items want P
you want Cmme arranged the lInes arranged T -
the arranged I gth tems 2long the In which low do you How do you DOYOU oy g you
contRiner to. ,iong the Sonplhe to cross axis? direction do ~ Want the want the want multiple
run? A cross axis? Tt you want items items lines arranged
stretch — the aongedl armanged along the
container to along the along the T
run? main axis? cross axis? Wrap?
How do you
How do you want the Do you H'“: do I‘:Imll
want the items want I\Ina" (o p:::
items o arranged Itthe n:fo:rgr:g
arrange long th ems
along the c::sr;gaxi:? to e
main axis? wrap? How do you Bo you
flex-start - d]n Whid:’ wantthe How doyou Want gy goyou ~ flex-end
pecenire teems want the the . ant multiple
youwant arranged ttems Items ynoc arranged
the along the arranged to along the
container £ main axis? alongthe WraP? roce axis?
oLt cross axis?
In which How do vou want How do vou want Do vou How do vou want -
P direction do you the items arranged the items arranged want the multiple lines baseline
baseline want the along the main along thecross items to arranged along the
container to run? axis? gxsa wrap? cross axis?
P Figure 12.5 The align—-items valuesin action
FAQ Do You Want the Items to Wrap?

Are these alignment
options confusing, or

is it just me? Almost
everyone getting started
with Flexbox finds
alignment to be the most
confusing part. It may
help to think of the main
axis as the justification
axis because you

use the justify-
content property to
arrange items on that
axis. Similarly, think

of the cross axis as the
alignment axis, because
you arrange items on it
using the align-items
property.

By default, Flexbox treats a container as a single row (if you've declared flex-
direction asrow or row-reverse) or as a single column (if you've declared
flex-direction as column or column-reverse). If the container's items
are too big to fit into the row or column, Flexbox shrinks the items along
the main axis to make them fit. Alternatively, you can force the browser to
wrap the container's items to multiple rows or columns rather than shrinking
them. You do this by using the container's flex-wrap property:

container {
display: flex;
flex-wrap: nowrap|wrap|wrap-reverse;

nowrap—Doesn't wrap the container's items (the default)

wrap—Wraps the items to as many rows or columns as needed

e wrap-reverse—Wraps the items at the end of the cross axis

210 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-1-6

Working with Flexbox Containers

Figure 12.6 shows the effect that each value has on the arrangement of
the items within the container when the main axis is horizontal. (I've added
an orange outline around each container so you can visualize its boundaries.)

nowrap —

wrap —

/>

wrap-reverse

In which
direction do
you want the
container to
run?

In which direction do
you want the container
to run?

Do you want the items
to wrap?

Do you want the items
to wrap?

In which direction do
you want the container
to run?

How do you
want the items
arranged along
the main axis?

How do you
want the items
arranged along
the cross axis?

How do you want the
items arranged along
the main axis?

How do you want
multiple lines arranged
along the cross axis?

Do you want
the items to
wrap?

How do you want the
items arranged along
the cross axis?

How do you
want multiple
lines arranged

along the cross
axis?

How do you want
multiple lines arranged
along the cross axis?

How do you want the
items arranged along
the main axis?

P> Figure 12.6 How the flex-wrap values work

How do you want the
items arranged along
the cross axis?

How Do You Want Multiple Lines Arranged Along the Cross Axis?

Your final container-related decision is how you want multiple lines—that is,
multiple rows or columns—arranged along the cross axis. This is similar to
arranging individual flex items along the main axis, except that here, you're
dealing with entire lines of items. You control this arrangement by using the

container's align-content property:

container {

display: flex;
align-content: stretch|center|flex-start|flex-end|space-
between|space-around|space-evenly;

b

e stretch—Expands the wrapped lines along the cross axis to fill

the container height (the default)

o center—Places the lines in the middle of the cross axis

o flex-start—Places the lines at the beginning of the cross axis

¢ flex-end—Places the lines at the end of the cross axis

e space-between—Places the first line at the beginning of the
cross axis, the last line at the end, and the rest of the lines
evenly distributed in between

You can try out the
different align-items
values interactively
on the Playground.
=) Online: wdpg.io/2/12-1-6

REMEMBER

The nowrap value is
the default, so declaring
flex-wrap: nowrap
is optional.

You can wrap your head
around the three f1ex-
wrap values by trying
them out interactively
on the Playground.

=) Online: wdpg.io/2/12-1-8

WEB DESIGN PLAYGROUND 211

http://wdpg.io/2/12-1-8
http://wdpg.io/2/12-1-6

T~ Creating Page Layouts with Flexbox

REMEMBER e space-around—Distributes most of the lines evenly within the
The stretch value is container by supplying each line with a set amount of space on
the default, so declaring either side, the first item getting half that space before it and
align-content: the last item getting half that space after it

stretchis optional e space-evenly—Distributes the lines evenly within the

PLAY container by supplying each line the same amount of space

"""""""" - before and after
You can try out all the

:allgn—.content values Figure 12.7 shows the effect that each value has on the arrangement of
interactively on the

o the lines within the container when the main axis is horizontal. (I've added an
Playground. = Online:
wdpg.io/2/12-1-10 orange outline around each container so you can visualize its boundaries.)

- center
stretch —
\
flex-start — flex-end
space- - Space-
between evenly

space-around

P> Figure 12.7 Using the align—-content values

Lesson 12.1: Dead-Centering an Element with Flexbox
Covers: flex and other flex container properties

= Online: wdpg.io/2/12-1-0

By far, the most common question related to web page layouts is a deceptively
simple one: How do you center an element horizontally and vertically? That
is, how can you use CSS to place an element in the dead center of the browser
window? Over the years, many clever tricks have been created to achieve this
goal, with most of them using advanced and complex CSS rules. Fortunately,
you don't have to worry about any of that because Flexbox lets you dead-
center any element with four lines of CSS, as shown in the following example.

212 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-1-10
http://wdpg.io/2/12-1-0

Working with Flexbox Items

» Example =) online: wdpg.io/2/12-1-1
This example shows you how to center an h1 element horizontally and vertically within

the browser window.
o
(G
<
a
m
Ll
2 Center Me!
A div {
O display: flex; 4 Centers the hl horizontally
justify-content: center;
align-items: center; “47 Centers the hl vertically
height: 100vh;
} Sets the div to the
heigh’r of the window
E‘ <div>
= <hl>Center Me!</hl>
T </divs>

This example works by turning the div element into a flex container,
which automatically converts the hl element to a flex item. By setting both
justify-content and align-items to center, and by giving the div the
full height of the browser window (it's the width of the browser window by
default), you center the hl in the window.

Working with Flexbox Items

Now that you know everything that's worth knowing about Flexbox
containers, turn your attention to the Flexbox items inside those containers.
As before, learning about and using flex items is best approached by asking
yourself a series of questions:

¢ Do you want the item to grow if there's extra room?

¢ Do you want the item to shrink if there's not enough room?
* Do you want to suggest an initial size for an item?

¢ Do you want to change an item'’s order?

¢ Do you want to override an item'’s alignment?
WEB DESIGN PLAYGROUND 213

http://wdpg.io/2/12-1-1

MASTER

To calculate what
proportion of the empty
space is assigned to
each item, add all the
flex-grow values

for a given container
and then divide the
individual flex-grow
values by that total.
Values of 1, 2, and 1 add
up to 4, for example,

so the percentages are
25 (1 divided by 4), 50

(2 divided by 4), and

25 (1 divided by 4),
respectively.

€ > c a i io P

flex-grow: 0 —————

T~ Creating Page Layouts with Flexbox

The next few sections discuss these questions and provide some
answers.

Do You Want the Item to Grow if There’s Extra Room?

If you look back at Figure 12.4, notice that in the flex-start example, the
flex items are bunched up at the beginning of the container, leaving a chunk
of empty space to the right. This effect may be what you want, or you may
prefer to have the items fill that empty space. You can do that by applying
the flex-grow property to the item you want to expand:

item {
flex-grow: value;
}

By default, all flex items are given a £1lex-grow value of 0. To grow items
to fill a container's empty space, you assign positive numbers to those items
as follows (see Figure 12.8):

¢ If you assign any positive number to one flex item in a container,
the amount of empty space in the container is added to that item.

¢ If you assign the same positive number to multiple flex items
in a container, the amount of empty space in the container is
divided evenly among those items.

¢ If you assign different positive numbers to multiple flex items
in a container, the amount of empty space in the container
is divided proportionally among those items, based on the
values you provide. If you assign the values 1, 2, and 1 to three
items, those items get 25%, 50%, and 25% of the empty space,
respectively.

O % a2 w0 :

Empty space in
flex container

|
R 2 Ep—

flex-grow: 1

| |]
flex-grow: 1 3 3 p

B C DEF
flex-grow: 1 ~— — —

flex-grow: 2
P> Figure 12.8 The effect of different £1ex-grow values

214 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-2-2

Working with Flexbox Items

Do You Want the Item to Shrink if There’s Not Enough Room?

The opposite problem of expanding flex items to fill a container's empty
space is shrinking flex items when the container doesn't have enough space.
This shrinking is activated by default, so if the browser detects that the flex
items are too large to fit the container, it automatically reduces the flex items
to fit.

How much each item shrinks depends on its size in relation to the other
items and the size of the container. Suppose that you're working with a
horizontal main axis (that is, flex-direction is set to row) and that the
container is 1,200 px wide, but each of its five items is 400 px wide. That's
2,000 px total, so the browser must reduce the items by 800 px to fit the
container. In this case, because all the items are the same width, the browser
reduces the width of each by 160 px.

If the items have different widths, the calculations get more complicated,
so | won't go into them here. Suffice it to say that the amount each item'’s
width gets reduced depends on its initial width. The greater the initial width
is, the more the item shrinks.

Rather than let the browser determine how much each item gets reduced,
you can specify that a particular item be reduced more than or less than the
other items. You do that by applying the flex-shrink property to the item:

item {
flex—-shrink: value;
}

By default, all flex items are given a flex-shrink value of 1, which
means that they're all treated equally when it comes time to calculate the
shrink factor. To control the shrink factor yourself, assign positive values to
those items as follows (see Figure 12.9):

¢ If you set flex-shrink to a number greater than 1, the browser
shrinks the item more than the other items by a factor that's
somewhat proportional to the value you provide. (Again, the
math is quite complicated.)

e If you set flex-shrink to a number greater than 0 but less than
1, the browser shrinks the item less than the other items.

o If you set flex-shrink to 0, the browser doesn’t shrink the item.

You can play with
various flex-grow
values interactively

on the Playground.

=) Online: wdpg.io/2/12-2-2

Mike Riethmuller has
a lucid explanation

of the math involved
in calculating item
shrinkage here: https://
madebymike.com.au/
writing/understanding-
flexbox.

BEWARE

The browser won't
shrink an item to a size
less than the minimum
required to display its
content. If you keep
increasing an item's
flex-shrink value,
and the item refuses to
get smaller, the item is
probably at its minimum
possible size.

WEB DESIGN PLAYGROUND 215

https://madebymike.com.au/writing/understanding-flexbox
https://madebymike.com.au/writing/understanding-flexbox
https://madebymike.com.au/writing/understanding-flexbox
https://madebymike.com.au/writing/understanding-flexbox
http://wdpg.io/2/12-2-2

Creating Page Layouts with Flexbox

You can try out various
flex-shrink values
interactively on the

Playground. = Online:

wdpg.io/2/12-2-5

flex-shrink: 1

flex-shrink: 2 -

A B C D E F
flex-shrink: 0.5 ———————
A B C D E F

flex-shrink: 0 —

JA BCDEF

P Figure 12.9 The effect of different £ 1ex-shrink values. Each
item is 300 px, and the container is 600 px.

Do You Want to Suggest an Initial Size for an Item?

You've seen that flex items can grow or shrink depending on how they fit in
the container and that you have some control of this process via the flex-
grow and flex-shrink properties. But when | say that flex items can grow
or shrink, what are they growing and shrinking from? That depends:

e If the item has a declared width value (if flex-direction is set
to row) or a declared height value (if f1lex-direction is set to
column), the item grows or shrinks from this initial size.

¢ If the item doesn’t have a declared width or height, the item'’s
dimensions are set automatically by the browser to the
minimum values required to fit the item's content. The item can
grow from this initial value, but it can't shrink to a smaller value.

The latter case—that is, not having a declared width (for flex-
direction: row) or height (for flex-direction: column)—causes two
problems. First, it prevents an item from shrinking smaller than its content.
Second, the initial size (that is, the minimum required to display the content)
may be smaller than you require. You can solve both problems by declaring a
flex basis, which is a suggested size for the item. You do that by applying the
flex-basis property:

item {
flex-basis: value|auto]|content;

e value—Sets a specific measure for the width (with flex-
direction: row) or height (with flex-direction: column).
You can use any of the CSS measurement units you learned

216 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-2-5

Working with Flexbox Items

about in Chapter 7, including px, em, rem, vw, and vh. You can
also set value to a percentage.

e auto—Lets the browser set the initial value based on the
item's width or height property (the default). In the absence
of a declared width or height, auto is the same as content,
discussed next.

e content—Sets the initial width or height based on the content
of the item.

Using the Flex Shorthand Property

You should know that Flexbox offers a shorthand property for flex-grow,
flex-shrink, and flex-basis. This property is named flex, and it uses
any of the following syntaxes:
item {

flex: flex—-grow flex-shrink flex-basis;

flex: flex—-grow flex-shrink;

flex: flex-grow flex—-basis;

flex: flex—grow;

flex: flex-basis;
}

Here's an example declaration that uses the default values for each property:
flex: @0 1 auto;

This example sets flex-grow to 1 and flex-shrink to O:
flex: 1 0;

This final example styles an item with a fixed size of 10 em:
flex: 0 0 10em;

Do You Want to Change an Item's Order?

One of the most surprising—and surprisingly handy—tricks offered by
Flexbox is the ability to change the order of the items in a container. When
would you use this feature? Here are two common scenarios:

* One of the important tenets of accessibility is to place a page's
main content as near the top of the page as possible. If you have
ads or other nonessential content in, say, a left sidebar, that
content necessarily appears first in the source document. With
Flexbox, however, you can put the sidebar's code after the main
content and then change its position so that it still appears on
the left side of the page.

¢ A similarly important tenet of mobile web design is to place the
main content on the initial screen seen by mobile users. If you
don't want to restructure the content for desktop users, you can
add a CSS media query that uses Flexbox to change the content

order, depending on the device being used.
WEB DESIGN PLAYGROUND 217

\

Creating Page Layouts with Flexbox

MASTER You change the order of a flex item by using the order property:
Negative order values item {

are allowed, so an easy order: value;

way to move an item to ¥

the front of its container By default, all the items in a flex container are given an order value of 0.

is to set its order value You can manipulate the item order as follows:

to -1.
e The higher an item’s order value, the later it appears in the
container.
PLAY e The |t.em with the highest order value appears last in the
................. container.
You can mess around
with some order values ¢ The item with the lowest order value appears first in the
interactively on the container.
Playground. = Online:
wdpg.io/2/12-2-6 Figure 12.10 puts a few order values through their paces.
order: 0
A
- ™
S order: 1

B C D E F A

order: 1 3 S — order: 2

D E F C B A - order: 3

order: -1 —

E A B C D F

P Figure 12.10 The effect of different order values

Do You Want to Override an Item's Alignment?

You saw earlier that you can use the align-items property to arrange items
along a container’s cross axis. Rather than align all the items the same way, you
may prefer to override this global alignment and assign a different alignment to
an item. You can do that by setting the item's align-self property:

item {
align-self: stretch|flex-start|flex-end|center|baseline;
}

218 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-2-6

Working with Flexbox Items

The possible values act in the same manner as | outlined earlier (see
"How do you want the items arranged along the cross axis?"). You can also
assign the value auto to revert the item to the current align-items value.
Figure 12.11 shows a container with align-items set to flex-start but
with the last item having align-self set to flex-end.

align-items: flex-start

N

Do you want to
Do you want the ;o\, want the szggest an Do you want
item to grow if 4o 5 shrink if initial size for an to change an
there's extra orers ot enough item? item's order?
room? room?

Do you want to

override an
item's
alignment?
P> Figure 12.11 You can override a container's align-items value with /‘
align-self.

align-self: flex-end

Lesson 12.2: Creating a Thumbnail List
Covers: The flex-grow and flex-shrink properties

= Online: wdpg.io/2/12-2-0

A common web page component is a simple thumbnail list that has a
thumbnail image on the left and a description or other information on the
right. These elements are used for photo galleries, user directories, book
lists, project summaries, and much more. Getting the image and the text to
behave is tricky with garden-variety CSS, but it's a breeze with Flexbox, as
shown in the following example.

WEB DESIGN PLAYGROUND 219

http://wdpg.io/2/12-2-0

\

Creating Page Layouts with Flexbox

» Example = online: wdpg.io/2/12-2-1
This example shows you how to use Flexbox to create a thumbnail list of items.

o) - animal path
< A footpath or track made by the constant and long-term
[a B walking of animals.
[an]
[
R .
bridleway
A footpath that is also suitable for a horse and rider.
coffin trail
A footpath used for transporting a coffin to a cemetary
for burial.
desire line
An informal path that pedestrians prefer to take to get
from one location to another rather than using a
% sidewalk or other official route.
A .dictionary-container {
O list-style-type: none;
}
.dictionary-item {
display: flex; Each 1i becomes a flex
1 container
.dictionary-image {
- i 2 o ‘s .
flex-shrink: 0; Prevents the thumbnail
1 from shrinking
.dictionary-entry {
- . . VI
ELEHSERONE D Allows the text to use the
} rest of the container
§ <ul class="dictionary-container">
= <1li class="dictionary-item">
I

<div class="dictionary-image">
<img src="/images/animalpath.jpg" alt="Photo of an
animal path">
</div>
<div class="dictionary-entry"s>
<h4>animal path</h4>
<p>A footpath or track made by the constant and long-
term walking of animals.</p>
</divs>
</1li>
ete.
</uls>

220 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-2-1

Working with Flexbox Items

Lesson 12.3: Creating the Holy Grail Layout with Flexbox
Covers: Layout with flex and other Flexbox properties

= Online: wdpg.io/2/12-3-0

Okay, now you can turn your attention to building Chapter 11's holy grail
layout with Flexbox. The holy grail includes three instances in which you
need content side by side: the header, the navigation bar, and the content
columns. In all three instances, you'll place the elements in a Flexbox
container with a horizontal main axis.

First, however, note that you want these elements stacked, which means
they need a flex container that uses a vertical main axis. The <body> tag does
the job nicely, so set body as a flex container with a vertical main axis and the
content starting at the top:

body {
display: flex;
flex—-direction: column;
justify-content: flex-start;
max-width: 50em;
min-height: 100vh;

}

Note, too, that | specified a maximum width for the container and a
minimum height. You'll see why | used 100vh when | talk about adding a footer
a bit later. Now do the header, as shown in the following example.

b Example = 0nline: wdpg.io/2/12-3-1

REMEMBER

Placing containers with
horizontal main axes
inside a larger container
with a vertical main axis,
as I do in this example,

is a hack that enables
Flexbox to perform light-
duty two-dimensional
layout chores. However,
a better solution for
most web pages is to use
CSS Grid to create two-
dimensional layouts. See
Chapter 13 for more.

This example shows you how to use Flexbox to get the header logo and title side by side.

Site Title

ou
G
ER

=OR

WEB PAGE
mr«:

WEB DESIGN PLAYGROUND 221

http://wdpg.io/2/12-3-0
http://wdpg.io/2/12-3-1

\

Creating Page Layouts with Flexbox

A header {
O display: flex;
justify-content: flex-start; Displays the header
align-items: center; element as a flex
border: 1px solid black; container
padding: lem;
}
header img {
flex-shrink: 0; Prevents the logo
} from shrinking
hil {
ELEsEERen: L Lets the hl element use the
padding-left: .5em; rest of the header space
font-size: 2.5em;
}
E‘ <header>
[
T <hl>Site Title</hl>
</header>
In this code, | converted the header element to a flex container with the
items arranged at the start of the main (horizontal) axis and centered on the
cross (vertical) axis.
Now convert the navigation bar to a horizontal flex container, as shown
in the following example.
» Example =) online: wdpg.io/2/12-3-2
This example shows you how to use Flexbox to get the navigation bar items side by side.
il
2
fan
o Home Item Item Item
(11
=

continued

222 WEB DESIGN PLAYGROUND

http://wdpg.io/2/12-3-2

Working with Flexbox Items

nav {

padding: .5em;

border: 1px solid black;
1

nav ul {

display: flex;

justify-content: flex-start; %ld—‘\ Displays the ul_demen+
I —— as a flex container
padding-left: .5em;

}

nav 1i {
padding-right: 1.5em;

}

CSS

<navs

Home</1li>
Item
TItem
<lis>TItem</1li>

</navs

HTML

In this case, the ul element is converted to a flex container, meaning that
the 1i elements become flex items arranged horizontally from the start of
the container.

Next, convert the main element's <article> and <aside> tags to flex
items, which gives you the two-column content layout. The following
example shows how it's done.

» Example =) Online: wdpg.io/2/12-3-3
This example shows you how to use Flexbox to get the article and aside elements
side by side in a two-column layout.

w

O : . ’ .
< Article Title Sidebar Title
@ Article paragraph 1 Sidebar paragraph
; Article paragraph 2

WEB DESIGN PLAYGROUND 223

http://wdpg.io/2/12-3-3

\

Creating Page Layouts with Flexbox

@ el | 4 Displays main as
v display: flex; a {ﬁex container
flex-grow: 1;
1 Lets it grow vertically
article {
flex-grow: 3; “’/’——_—\\\\\
border: 1px solid black; Lets article use
} three units of space
aside {
Flesegrews 1; Lets aside use one
border: 1lpx solid black; unit of space
}
g <main>
= <article>
T <h2>Article Title</h2>
<p>Article paragraph 1l</p>
<p>Article paragraph 2</p>
</article>
<aside>
<h3>Sidebar Title</h3>
<p>Sidebar paragraph</p>
</aside>
</main>
MASTER A couple of interesting things are going on here. First, note that the main
Note, too, that the element does double duty: it acts as the flex container for the article and
articleand aside aside elements, and it's a flex item in the body element's flex container.
items are the same Setting flex-grow to 1 for the main element tells the browser to give main
height—a pleasant all the empty vertical space in the body container. Again, why you're doing

bonus that comes this will become apparent when you get to the footer.

Courtejsy o,fthe body For the article and aside flex items, | assigned flex-grow values
container's default -)))
stretch value for of 3 and 1, respectively, meaning that article gets 75% of the available
align-items. You get horizontal space, and aside gets the remaining 25%.

a true full-height sidebar Finally, add the footer element, which doesn't require any Flexbox
and don't have to resort properties. Figure 12.12 shows the result.

to any CSS tricks to get it.

224 WEB DESIGN PLAYGROUND

Working with Flexbox Items

Article Title

Article paragraph 1

Article paragraph 2

P> Figure 12.12 The complete holy grail layout using Flexbox

Notice that the footer element appears at the bottom of the browser
window, which is where it should be in a true holy grail layout. You got that
nice touch by doing three things:

e Turning the body element into a flex container with a vertical
main axis

e Declaringmin-height: 100vh on the body element, which
forces the body element to always be at least the same height
as the browser window

e Setting flex-grow: 1 onthe main element to force it to use
any available empty vertical space in the body container

How would you modify
this layout to display

the sidebar on the left
instead of the right?

= Online: wdpg.io/2/12-3-5

How would you modify
this layout to display
three content columns: a
sidebar to the left and to
the right of the article
element?) Online:
wdpg.io/2/12-3-6

WEB DESIGN PLAYGROUND 225

http://wdpg.io/2/12-3-5
http://wdpg.io/2/12-3-6

\

Creating Page Layouts with Flexbox

Summary

¢ In which direction do you want the container to run? Use
flex-direction.

« How do you want the items arranged along the main axis? Use
justify-content.

« How do you want the items arranged along the cross axis? Use
the align-items property.

¢ Do you want the items to wrap? Use flex-wrap.

 How do you want multiple lines arranged along the cross axis?
Add the align-content property.

¢ Do you want the item to grow if there's extra room? Use
flex-grow.

¢ Do you want the item to shrink if there's not enough room? Use
flex-shrink.

* Do you want to suggest an initial size for an item? Use the
flex-basis property.

¢ Do you want to change an item'’s order? Use the order
property.

¢ Do you want to override an item's alignment? Use align-self.

226 WEB DESIGN PLAYGROUND

Chapter 13

Creating Page
Layouts with Grid

2 This chapter covers
‘_] * Understanding how CSS Grid Layout works

" Learning how to work with Grid containers, rows,
and columns

* Working with Grid gutters, areas, and alignment

* Building the holy grail layout with Grid

For what seems like centuries, web designers have been using unwieldy
libraries such as Bootstrap to lay out page elements using one or more rows
and one or more columns. This grid layout gave designers decent control
over where each page element appeared. The cost, though, was high
because grid layout libraries were often complex and almost always weighed
down by too much extraneous CSS or even JavaScript code.

That's changing fast as a new CSS technology called CSS Grid Layout
(usually shortened to CSS Grid or just Grid) comes online. Supported now
by the current and recent versions of all the major browsers, CSS Grid is the
standards-friendly and no-library-required way to implement a grid layout on
your pages. This chapter introduces you to the basics of CSS Grid. You learn
what Grid is, what it can do, and how it works.

WEB DESIGN PLAYGROUND 227

T~ Creating Page Layouts with Grid

Understanding CSS Grid Layout

In Chapter 12, you learned that Flexbox enables you to break out of the
browser’s default object flow by creating flexible containers that give you
exquisite control to arrange items either horizontally or vertically. Wouldn't it
be great if there was some way to create a container that gave you pinpoint
control over your page objects both horizontally and vertically?

Well, I'm happy to report that CSS Grid Layout Module Level 1—which I'll
refer to as CSS Grid or just Grid—does exactly that. The basic idea underlying
Grid is to give you as a web designer a way to break out of the standard way
that the browser deals with blocks of content. The default browser flow is to
stack the elements one on top of another. Consider the following collection

of div elements:

<div class="container">
<div class="item itema">a</div>
<div class="item itemb">b</div>
<div class="item itemc">c</div>
<div class="item itemd">d</div>
<div class="item iteme">e</div>
<div class="item itemf">f</div>

</div>

Behind the scenes, I've set up rules for the classes to give each item a
unique background color, among other things. Figure 13.1 shows the results,

which is that the div elements are stacked vertically and extend to the width
of the browser window.

}Flgure131 & > C @ webdesi ind.io/ Ino-grid/ hx & RO
The default browser
stacking of the div
elements

228 WEB DESIGN PLAYGROUND

Understanding CSS Grid Layout

As you learned in Chapter 8, you can take one or more elements out of
this default flow by using floats or inline blocks; and as you learned in Chapter
12, you can use Flexbox to lay out child elements either horizontally or
vertically within a parent container. These are great and useful technologies,
but now we're after bigger game. That is, now we want full layout control
not just of individual elements, not just of a row or column of elements, but
of all the items within a container, both horizontally and vertically.

This kind of control is the strong suit of CSS Grid Layout. When you work
with Grid, you work with two kinds of page objects: containers and items. A
grid container is any type of parent block element—div, p, any of the HTML
semantic page elements you learned in Chapter 11, even the body element—
that surrounds one or more child elements. These child elements are called
grid items. Okay, it's time to start learning how CSS Grid Layout works.

Lesson 13.1: Working with Grid Containers
Covers: The display: grid declaration

= Online: wdpg.io/2/13-1-0

To get started with Grid, you designate a block-level element to be the grid
container by using a single CSS declaration: display: grid. For example,
the following rule turns the body element into a grid container:

body {
display: grid;

The container’s child elements automatically become grid items; no
extra rules, declarations, or code are required. From there, you can start
customizing your grid container and its items to suit the task at hand.

b Example = Online: wdpg.io/2/13-1-0
This example shows you how to convert an element to a grid container..

WEB PAGE

WEB DESIGN PLAYGROUND 229

http://wdpg.io/2/13-1-0
http://wdpg.io/2/13-1-0

\

Creating Page Layouts with Grid

A .container {
= display: grid; 47 1. container class is
1 converted to a grid
container
EI <div class="container">
= <div class="item itema">a</div>
T <div class="item itemb">b</div> [P
<div class="item itemc">c</div> These div elements
<div class="item itemd">d</div> are now grid items
<div class="item iteme">e</div>
<div class="item itemf">f</div>
</div>
The div element is
now a grid container
In the example, note that I've set up a div element with the class
container. Inthe CSS, I've applied display: gridtothe .container class.
As you can see in the results, it looks like nothing much has happened since
the child div elements still appear to be displayed using the default flow. (I
say “appear to” because the default layout has actually been converted to a
one-column grid, so it only looks like the items are still following the default
browser flow.) To fix that, you need to specify your grid rows and columns,
which you'll do next.
Lesson 13.2: Defining Grid Columns and Rows
Covers: The grid-template-columns and
grid-template-rows properties
REMEMBER = Online: wdpg.io/2/13-2-0

If you omit the
grid-template-
rows property, the

To get your grid container to do something useful, you need to specify the
numbers of columns and rows you want in your grid, which is known as a

web browser will grid template. You create such a template by declaring the grid-template-
automatically set columns and grid-template-rows properties on the grid container:

the row heights to container {

accommodate the height display: grid;

of the tallest element in grid-template—columns: col-values;

each row grid-template-rows: row-values;

230 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-2-0

Understanding CSS Grid Layout

» Example 2> 0nline: wdpg.io/2/13-2-1
This example applies a grid template to the grid container.

w

©)

<C

a

N A b C

w

=

A .container {

O display: grid;
grid-template-columns: 100px 200px 300px; /,/—\\Thﬁ container’s
grid-template-rows: 100px 150pX; grid template

1

g <div class="container"s>

= <div class="item itema">a</div>

T

<div class="item itemb">b</div>

<div class="item itemc">c</div>

<div class="item itemd">d</divs>

<div class="item iteme">e</div>

<div class="item itemf">f</div>
</divs>

The col-values and row-values are space-separated lists of the sizes FAQ
you want to use for each column and row in your grid. The sizes can be ’I.-’I'c:x./\.ln(;;nlstyleacolumn
numbers expressed in any of the standard CSS measurement units (px, em, to be only as wide as its
rem, vw, or vh), a percentage, or the keyword auto, which tells the browser widest item? Instead
to automatically set the size based on the other values you specify. of a specific value for

In the example, I've updated the .container class to define a grid of that column, use the
three columns (with widths of 100 px, 200 px, and 300 px) and two rows }guézﬁﬁ:jvﬁﬁgciﬁfs?zt-i
(with heights of 100 px and 150 px). ' '

WEB DESIGN PLAYGROUND 231

http://wdpg.io/2/13-2-2
http://wdpg.io/2/13-2-1

\

Creating Page Layouts with Grid

Lesson 13.3: Introducing the fr Unit
Covers: The fr measurement unit

REMEMBER = Online: wdpg.io/2/13-3-0

To use the £ r unit for one or
more rows, you need to set
an explicit height for the grid

For the grid-template-columns and grid-template-rows property
values, you can also use a new CSS Grid unit called fr, which represents a

container, which otherwise fraction of the free space available in the grid container, either horizontally
is only as tall as its content (for columns) or vertically (for rows). For example, if you assign the value
or the sum of your grid- 1fr to one of your columns, then that column’s width is expanded until it
template-rows values. takes up all the free horizontal space in the grid container. See the upcoming
For example, try adlding example.

the declaration height :

Similarly, if you assign the value 1fr to one column and the value 3fr
class and then setting a rows tO @nother column, then the first column expands to use up 25% of the free
height to 1£r. =) Online: horizontal space in the grid container, and the second column expands to
wdpg.io/2/13-3-2 use up the remaining 75% of the free space.

100vhtothe .container

b Example = 0nline: wdpg.io/2/13-3-1
This example uses the £x measurement unit to give the final column all the remaining
free horizontal space in the grid container.

%)
< b C
m
[
- e
A .container {
O] display: grid;
id- = : ; A
gr:!.d template-columns: 100px 200px 1fr; A vale o 18%
grid-template-rows: 100px 150px; is aPP"ed to the
} final column.
i‘ <div class="container">
= <div class="item itema"s>a</div>
T

<div class="item itemb">b</div>

<div class="item itemc">c</div>

<div class="item itemd">d</div>

<div class="item iteme"s>e</div>

<div class="item itemf">f</div>
</div>

232 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-3-0
http://wdpg.io/2/13-3-2
http://wdpg.io/2/13-3-1

Understanding CSS Grid Layout

Lesson 13.4: Adding Grid Gaps
Covers: The column-gap and row-gap properties

= Online: wdpg.io/2/13-4-0

By default, CSS Grid doesn't add any horizontal space between columns
or any vertical space between rows. To create some separation between
your grid items, use the column-gap and row-gap properties in your grid
container:

container {
display: grid;
column—gap: col-gap-value;
row—-gap: row-gap-value;

The col-gap-value and row-gap-value are numbers expressed in any of
the standard CSS measurement units (px, em, rem, vw, or vh). The resulting
spaces between the columns and rows are called gutters.

» Example = Online: wdpg.io/2/13-4-1
This example updates the . container class to define a grid gap of 15px for the
columns and 2 0px for the rows.

w

©)

B C
[an

m

[

=

A .container {

O display: grid;

grid-template-columns: 100px 200px 300px;
grid-template-rows: 100px 150px;
column-gap: 15px; 4 ~
row-gap: 20px;

} \, Defines the gap between each row

Defines the gap between each column

WEB DESIGN PLAYGROUND 233

http://wdpg.io/2/13-4-0
http://wdpg.io/2/13-4-1

\

Creating Page Layouts with Grid

<div class="container">
<div class="item itema"sa</div>
<div class="item itemb">b</div>
<div class="item itemc">c</div>
<div class="item itemd">d</div>
<div class="item iteme">e</div>
<div class="item itemf">f</div>

</div>

HTML

You can also add grid gaps using the shorthand gap property:

container {
display: grid;
gap: col-gap-value row-gap-value;

Lesson 13.5: Using the repeat() Function
Covers: The repeat () function

= Online: wdpg.io/2/13-5-0

If your grid layout uses multiple columns and/or rows of the same size, you
can save time by specifying those columns or rows using the repeat ()
function:

repeat (number, size)

Replace number with the number of columns or rows you want to create,
and replace size with the size you want to use for each of those columns or
rows. For example, the following two declarations are equivalent:

grid-template-columns: 200px 200px 200px;
grid-template—columns: repeat(3, 200px);

234 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-5-0

Understanding CSS Grid Layout

» Example 2> O0nline: wdpg.io/2/13-5-1
This example updates the . container class to use the repeat () function to define
three equal-sized columns and two equal-sized rows.

w

@)

<

a

om

[}

=

A .container {

o display: grid; Creates three
grid-template-columns: repeat (3, 200px) ;4—/ rePea+ed columns
grid-template-rows: repeat (2, 150px);<<—~\\ Creates two

} repeated rows

E <div class="container">

= <div class="item itema">a</div>

I <div class="item itemb"sb</div>

<div class="item itemc">c</div>

<div class="item itemd">d</div>

<div class="item iteme">e</div>

<div class="item itemf">f</div>
</div>

WEB DESIGN PLAYGROUND 235

http://wdpg.io/2/13-5-1

\

Creating Page Layouts with Grid

Lesson 13.6: Placing Items Within the Grid
Covers: The grid-column-+* and grid-row-*
properties

= Online: wdpg.io/2/13-6-0
Here are three important Grid terms you need to know:

e Grid cell-The grid rectangle that results from the intersection
between a row and a column.

e Grid lines—The notional horizontal and vertical lines that create
the grid and enclose the grid items. These lines are numbered,
starting from 1. For example, the top-left cell in a grid is
enclosed by four grid lines: row lines 1 and 2, and column lines
land 2.

o Grid area—A portion of the grid that spans one or more cells.

By default, the web browser populates the grid automatically based on
the widths of your columns and the heights of your rows. In these automatic
assignments, each grid item is given a single cell. If you want your grid items
to span multiple cells either horizontally or vertically (or both), then you
need to tell the browser the specific location where you want each grid item
placed within the grid.

To do this, you assign the following four values to each of your grid items:

item {
grid-column-start: col-start-value;
grid-column-end: col-end-value;
grid-row-start: row-start-value;
grid-row-end: row-end-value;

Each value is a grid line number. You must specify values for both the
grid-column-start and grid-row-start properties. The grid-column-
end property is optional and works like this:

¢ You can omit this property, which means the item is placed only
in the starting column.

¢ You can use the keyword end, which means the item runs from
its starting column through to the last column in the grid.

¢ You can use the keyword span followed by a space and then a
number, which specifies the number of columns you want the
item to span across the grid. For example, the following two
sets of declarations are equivalent:

236 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-6-0

Understanding CSS Grid Layout

grid-column-start: 2;
grid-column-end: 5;

grid-column-start: 2;
grid-column-end: span 3;

The grid-row-end property is also optional and works like this:

¢ You can omit this property, which means the item is placed only
in the starting row.

¢ You can use the keyword end, which means the item runs from
its starting row through to the last row in the grid.

¢ You can use the keyword span followed by a space and then a
number, which specifies the number of rows you want the item
to span down the grid. For example, the following two sets of
declarations are equivalent:

grid-row-start: 1;
grid-row-end: 3;

grid-row-start: 1;
grid-row-end: span 2;

b Example = Online: wdpg.io/2/13-6-1
This example updates the item classes with grid-column-* and grid-row-*
declarations to place the items within the five-column and three-row grid.

WEB PAGE

WEB DESIGN PLAYGROUND 237

http://wdpg.io/2/13-6-1

\

Creating Page Layouts with Grid

.container {
display: grid;
grid-template-columns: repeat (5, 100px) ;
grid-template-rows: repeat (3, 150px) ;

CSS

}

.itema {

grid-column-start: 1;
grid-column-end: 3; Columns |
grid-row-start: 1; and Z; row

grid-row-end: 1;
1

.itemb {

grid-column-start: 3;
grid-column-end: span 3; Columns 3, 4,
grid-row-start: 1; and 5; row

grid-row-end: 1;

1

.itemc {
grid-column-start: 1;
grid-column-end: 1;
grid-row-start: 2;
grid-row-end: end;

Column |; rows
2 and 3

1

.itemd {

grid-column-start: 2;
Columns 2 and 3;

grid-column-end: 4;
rows 2 and 3

grid-row-start: 2;
grid-row-end: end;
1

.iteme {

grid-column-start: 4;
grid-column-end: span 2; Columns 4 and
grid-row-start: 2; 5 row 2

grid-row-end: 2;

}

.itemf {

grid-column-start: 4;
grid-column-end: span 2; Columns 4 and
grid-row-start: 3; 5 row 3

grid-row-end: 3;

<div class="container">
<div class="item itema"s>a</div>
<div class="item itemb">b</div>
<div class="item itemc">c</div>
<div class="item itemd">d</div>
<div class="item iteme">e</div>
<div class="item itemf">f</div>

</divs>

HTML

238 WEB DESIGN PLAYGROUND

Understanding CSS Grid Layout

CSS has a couple of shorthand properties you can use for placing items
in the grid:
item {

grid-column: col-start-value / col-end-value;
grid-row: row-start-value / row-end-value;

Lesson 13.7: Using Named Grid Areas
Covers: The grid-template-areas and grid-area properties

= Online: wdpg.io/2/13-7-0

Rather than using row and column line numbers to place your grid items, you
can define named grid areas—such as header and sidebar—and assign grid
items to those names. To set this up, you first augment your grid template
with the named areas by adding the grid-template-areas property:

container {
display: grid;
grid-template-columns: col-values;
grid-template-rows: row-values;
grid-template-areas:
‘grid-rowl-names'
'grid-row2-names'

'grid-rowN-names"';
}
Here, grid-rowl-names, grid-row2-names, and SO on are space-
separated lists of names that you want to apply to each row in your grid.
Here are some notes:

¢ You provide a name for every cell in your grid.

¢ |f you want a named area to span more than one column, add
the name as many times as necessary in the column to get the
horizontal span size you want.

¢ If you want a named area to span more than one row, add the
name as many times as necessary to consecutive rows to get
the vertical span size you want.

¢ To designate an empty cell or area, use one or more periods (.)
in each cell.

With your template of named grid areas complete, you then assign a
name to each grid item using the grid-area property:

item {
grid-area: grid-area-name;

WEB DESIGN PLAYGROUND 239

http://wdpg.io/2/13-7-0

T~ Creating Page Layouts with Grid

» Example 2> Online: wdpg.io/2/13-7-1
This example updates the container class to create a grid of five even columns and
four rows. I've also included five named areas: header, nav, main, sidebar, and
footer. ['ve assigned these names to four grid items (class itema is assigned to
header, class itemb is assigned to nav, and so on).

5 Header
X
P Nav
"';J Main Sidebar
Footer
.container {
& height: 100vh;
O

display: grid;
grid-template-columns: repeat (5, 1fr);
grid-template-rows: 75px 50px 1fr 50px;
grid-template-areas:

'header header header header header'

, Defines
nav nav nav nav nav
.) . . . the named
'main main main main sidebar'
gru areas
'footer footer footer footer footer';

.itema {
background-color: tomato;
grid-area: header;

Assigned to the

_itemb { header area

background-color: mediumorchid;
grid-area: nav;

Assigned to the

" decme { nav area

background-color: royalblue;
grid-area: main; 4«——

Assigned to the
.itemd { main area

background-color: mediumseagreen;

id- : gsidebar; .
gri area slidebar; «— A95|9ned +O +he

.iteme { sidebar area

background-color: orange;
grid-area: footer;

} Assigned to the
footer area

240 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-7-1

Understanding CSS Grid Layout

<div class="container">
<div class="item itema">Header</div>
<div class="item itemb">Nav</div>
<div class="item itemc">Main</div>
<div class="item itemd">Sidebar</div>
<div class="item iteme">Footer</div>
</div>

HTML

You'll likely recognize the preceding example as Chapter 11's holy grail
layout. With just a half-dozen declarations in the container and a single
grid-area declaration for each layout item, we were able to build a classic
layout with very little coding.

Lesson 13.8: Aligning Grid Items
Covers: The justify-* and align-+* properties

= Online: wdpg.io/2/13-8-0

Because CSS Grid Layout is two-dimensional, dealing with alignment means
you have to bear in mind two different axes:

¢ [nline axis or row axis—The axis that lies in the same direction as
the current writing mode (that is, the direction that words run
when written out). In languages such as English and Arabic, the
writing mode direction is horizontal, so the grid’s inline axis is
also horizontal. The inline axis direction is also the direction that
content flows within a grid row, so the inline axis is also known
as the row axis.

e Block axis or column axis—The axis that lies perpendicular to
the inline axis. In languages such as English and Arabic where
the inline axis is horizontal, the grid’s block axis is vertical. The
block axis direction is also the direction that content flows
within a grid column, so the block axis is also known as the
column axis.

You can align grid items along the row and/or column axis either with
respect to the entire grid container or with respect to just the column or row
within which the item resides. First, consider the case of aligning items along
the row and/or column axis with respect to the entire grid container, which
is the topic of the next two sections.

WEB DESIGN PLAYGROUND 241

http://wdpg.io/2/13-8-0

\

REMEMBER

The stretchvalue is
the default, so declaring
justify-content:
stretch is optional.

You can try out all the
justify-content
values interactively

on the Playground.

= Online: wdpg.io/2/13-8-1

Creating Page Layouts with Grid

Aligning Grid Items Along the Row Axis

You can align your grid items along the row axis by applying the justify-
content property on your grid container:
container {
display: grid;
justify-content: start|end|center|stretch|space-between|space-
=around |space-evenly;

start—Aligns each row's items at the beginning
¢ end—Aligns each row's items at the end
e center—Aligns each row's items in the middle

e stretch—Aligns each row's items by expanding them across
the row axis (the default)

e space-between—Aligns each row'’s items with the first item at
the beginning of the row, the last item at the end, and the rest
of the items evenly distributed in between

¢ space-around—Distributes each row'’s items by supplying most
items with the same amount of space on either side, but the
first item gets half that space before, and the last item gets half
that space after

¢ space-evenly—Distributes each row'’s items evenly by
supplying each item the same amount of space on either side

Figure 13.2 shows the effect that each value has on the arrangement of
the items within each container when the row axis is horizontal. (I've added
an outline around each container so you can visualize its boundaries.)

center — '

o
ol o
=9

stretch —

o :
between

d e

space- > |

a b
d @

around

space- > l
evenly

a b
d e

P> Figure 13.2 Using the justify-content values

242 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-8-1

Understanding CSS Grid Layout

Aligning Grid Items Along the Column Axis

You can align your grid items along the column axis by applying the align-
content property on your grid container:

tainer
o 3isgla){/: grid; REMEMBER
align-content: start|end|center|stretch|space-between|space- The stretchvalue is
=around |space-evenly; the default, so declaring
align-content:
o start—Aligns each column'’s items at the beginning stretch is optional
e end Allgns. each column’s |terr.ls at tr.1e end | PLAY
¢ center—Aligns each column’s items in the middle You can try out all
e stretch—Aligns each column’s items by expanding them the align-content
across the column axis (the default) values interactively
on the Playground.
e gpace-between—Aligns each column'’s items with the first item E>Online: wdpg.io/2/13-8-2
at the beginning of the column, the last item at the end, and the
rest of the items evenly distributed in between
e space-around—Distributes each column’s items by supplying
most items with the same amount of space on either side, but
the first item gets half that space before, and the last item gets
half that space after
¢ space-evenly—Distributes each column’s items evenly by
supplying each item the same amount of space on either side
Figure 13.3 shows the effect that each value has on the arrangement of
the items within each container when the column axis is vertical. (I've added
an outline around each container so you can visualize its boundaries.)
“~ end

start—

center — “~__ stretch

<«_ space-

space- >
around

between

space- >
evenly

P Figure 13.3 Visualizing the align-content values

WEB DESIGN PLAYGROUND 243

http://wdpg.io/2/13-8-2

\

Creating Page Layouts with Grid

Now let's consider the case of aligning items along the row and/or
column axis with respect to the individual columns or rows (as opposed to
the entire grid container), which is the topic of the next two sections.

Aligning Grid Items Within a Column
You can align your grid items along the row axis within a particular column
by applying the justify-items property on your grid container:

container {
REMEMBER display: grid;
The stretch value is justify-items: start|end|center|stretch;
the default, so declaring
justify-items: « start—In each row, aligns each column'’s items at the
stretchis optional beginning of the column
PLAY e end—In each row, aligns each column’s items at the end of the
You can try out all cotumn
the justify-items e center—In each row, aligns each column’s items in the middle
values interactively of the column
on the Playground.

e stretch—In each row, aligns each column’s items across the

= Online: wdpg.io/2/13-8-3 column (the default)

MASTER Figure 134 shows the effect that each value has on the arrangement of
}f;;;‘;‘;g;tﬂt';ﬂoverride the items within each column when the row axis is horizontal. (I've added an
the justify-items outline around each container so you can visualize its boundaries.) In each
alignment of a case, the grid container has three same-width columns (and two same-
particular item, apply height rows).
the justify-self
property to that item. b d
The justify-self start s | s £
property takes the same
values as justify- a b d
items. end — e f
a b d
center — d e it
a b d
stretch — d e f

P> Figure 13.4 Trying out the justify-1items values

244 WEB DESIGN PLAYGROUND

http://wdpg.io/2/13-8-3

Understanding CSS Grid Layout

Aligning Grid Items Within a Row
You can align your grid items along the column axis within a particular row
by applying the align-items property on your grid container:

container {
display: grid;
align-items: start|end|center|stretch;

e start—In each column, aligns each row's items at the
beginning of the row

¢ end—In each column, aligns each row's items at the end of the
row

e center—In each column, aligns each row’s items in the middle
of the row

¢ stretch—In each column, aligns each row’s items across the
row (the default)

Figure 13.5 shows the effect that each value has on the arrangement of
the items within each row when the column axis is vertical. (I've added an
outline around each container so you can visualize its boundaries.) In each
case, the grid container has two same-height rows (and three same-width
columns).

start

end

/

center

stretch —

P Figure 13.5 Demonstrating the align-items values

REMEMBER

The stretchvalue is
the default, so declaring
align-items:
stretch is optional.

You can try out all the
align-items values
interactively on the
Playground. T Online:
wdpg.io/2/13-8-4

MASTER

If you want to override
thealign-items
alignment of a
particular item, apply
thealign-self
property to that item.
Thealign-self
property takes the
same values as align-
items.

WEB DESIGN PLAYGROUND 245

http://wdpg.io/2/13-8-4

\

Creating Page Layouts with Grid

Summary

246 WEB DESIGN PLAYGROUND

To convert a block element to a grid container, use display:
grid.

To specify the number and size of your columns, use the grid-
template-columns property. To specify the number and size of
your rows, use the grid-template-rows property.

Use the CSS Grid unit fr to represent a fraction of the free
space available in the grid container, either horizontally (for
columns) or vertically (for rows).

To add gutters between columns, use the column-gap
property. To add gutters between rows, use the row-gap
property.

Rather than typing out a long list of same-size columns or rows,
use the repeat () function.

To specify the columns within the grid where you want an item
to appear, use the grid-column-start and grid-column-end
properties. To specify the rows within the grid where you want

an item to appear, use the grid-row-start and grid-row-end
properties.

To define the named areas within the grid, use the grid-
template-areas property. To assign an item to a named area,
use the grid-area property.

To align grid items along the row axis, use the justify-
content property on your grid container. To align grid items
along the column axis, use the align-content property on
your grid container.

To align grid items along the row axis within a particular
column, use the justify-items property on your grid
container. To align grid items along the column axis within a
particular row, use the align-items property on your grid
container.

Chapter 14

Designing Responsive
Web Pages

4] This chapter covers

= Creating page layouts that are liquid and flexible
= Making adaptive layouts via media queries

= Creating mobile-first layouts

* Making fluid images respond to screen size

= Specifying responsive font sizes and responsive
measurements

I'll begin by defining what makes a web page responsive: A responsive page is
one that automatically adapts its layout, typography, images, and other content
to fit whatever size screen a site visitor is using to access the page. In other
words, the page content should be usable, readable, and navigable regardless
of the dimensions of the screen it's being displayed on.

WEB DESIGN PLAYGROUND 247

\

Designing Responsive Web Pages

Responsive web design—or RWD, as it's colloquially known in the web
design community—wouldn't be a big deal if only the occasional site user
were surfing with a smartphone or tablet. However, sometime back in 2014,
the worldwide percentage of web users on mobile devices surpassed that of
users with desktop browsers.

ccThe most important thing about responsive design
is flexibility. Everything must be flexible: layouts,
image sizes, text blocks—absolutely everything.
Flexibility gives your site the fluidity it needs
to fit inside any container. —Nick Babich

There are many reasons why it's good practice to make all your pages
responsive, and you'll learn about many of them as you progress through
this chapter. But arguably the most important reason is also the most basic:
when reading a web page, nobody should have to scroll horizontally.

Although it's true that a few pages are designed to be navigated by
scrolling from left to right, the vast majority of pages are oriented vertically,
so you read or scan them from top to bottom. One of the most annoying
web page experiences occurs when a page doesn't fit the width of your
screen, so seeing all the content requires scrolling to the right, back to the
left, then to the right again, and so on. It's maddening and a sure way to drive
people to another site—any site—within seconds.

Lesson 14.1: Why Fixed-Width Layouts Are the Enemy
Covers: Fixed-width page layouts

= Online: wdpg.io/2/14-1-1

Why don't web pages fit whatever screen they're being displayed on? In most
cases, the culprit is the use of large, fixed-width elements. These elements
stay the same size no matter how wide a screen they're shown on, so if their
width is greater than that of the screen, the dreaded horizontal scrollbar
appears. To see what | mean, consider the following example.

248 WEB DESIGN PLAYGROUND

http://wdpg.io/2/14-1-1

Designing Responsive Web Pages

» Example =) online: wdpg.io/2/14-1-1
This example shows you the bare-bones version of a typical fixed-width layout.

.container {
display: grid;
gr?d—template—columns: repeat (3, 320px) ; 4« —~ The comtelnes
grid-template-areas: class is a ﬂru
"header header header" container with
"article article sidebar" three fixed-width
"footer footer footer"; columns of BZOPx

CSS

}

header {
grid-area: header;
padding: 16px;

article {
grid-area: article;
padding: 1l6px;

aside {
grid-area: sidebar;
padding: 12px;

}

footer {
grid-area: footer;
padding: 16px;

<div class="container"s>
<header>
<hl>Responsive Web Design</hl>
</header>
<article>
<h2>A Brief History</h2>
<p>Early in the new millennium, etc.</p>
</article>
<aside>
<h3>Links</h3>
At
</aside>
<footer>
<p>© Logophilia Limited</p>
</footer>
</divs>

HTML

This example is a basic three-column CSS grid layout where the grid
container defines three columns, each of which has a fixed width of 320
pixels. Note, too, that all the padding declarations use fixed values in pixels.
If the browser viewport is at least 960 pixels wide, this web page displays
well, as shown in Figure 14.1. But what happens when the page is accessed

WEB DESIGN PLAYGROUND 249

http://wdpg.io/2/14-1-1

\

Designing Responsive Web Pages

by a smaller screen? As you can see in Figure 14.2, a tablet in portrait mode
isn't wide enough, so some content gets cut off, and the horizontal scrollbar
appears. Even worse is the page on a smartphone screen, as shown in
Figure 14.3, where even less of the content is visible, which means even
more horizontal scrolling for the poor reader.

» Figure 14.1
S) Responsive Web Design: A &1 x . §
The web page fits a desktop € 5 © [0 s oo o
screen.
A Brief History
ly in the new mil ium, it
By 2008, the World Wide Web Consortium (W3C) was talking about “liquid” layouts
i i i I ly 2009, the W3C
‘The next year, igner
‘been a staple of modern web design ever since.
© Logophilia Limited
4 7 \
a .
o G
A Brief History s |
= ok St
i A Brief History
evice sevomns Early in the new millennium, it was becom]
By 2008, the World Wide Web Consortium (W3C) was talking about “liquid" layouts be surfing the web on devices other than dg
i in pixel. I ealy 2009, the W3C. was still years away, but folks were starting|
(personal digital assistants), ebook readers|
Th b design o Obviously, any website was going to look
been a staple of modern web design ever since. few inches wide versus one that was a few f}
whether it was possible to make a web pagd
© Logophilia Limited device screens.
By 2008, the World Wide Web Consortium|
that use percentages instead of fixed widths
presented media queries—a mechanism th;
specific device characteristics, such as viey
The next year, web designer Ethan Marcott}
‘his famous article in A List Apart magazindg
been a staple of modern web design ever si;
AL - Scrollbar
|+ Scrollbar
+«—|
0
. J \ /
P> Figure 14.2 The web page is a bit too wide P Figure 14.3 The web

for a tablet screen.

page is far too wide for a
smartphone screen.

250 WEB DESIGN PLAYGROUND

Creating a Responsive Layout

cheveloping fixed-size web pages is a fundamentally
flawed practice. Not only does it result in web pages
that remain at a constant size regardless of the
user’s browser size, but it fails to take advantage
of the medium’s flexibility. —Jim Kalbach

Creating a Responsive Layout

Now that you know fixed-width layouts are bad, you can take steps to make
sure that your layouts display nicely on any size screen. There are several ways
to achieve this responsive ideal, and the next few sections take you through
these methods. But before that, you need to take care of some prerequisites.

First, you need to make sure that all your block-level elements are being
sized out to the border and not to the content, which is the default sizing. As
| explained in Chapter 9, the easiest way to do this is to include the following
rule at the top of your CSS:

* {

box-sizing: border-box;

Second, you need to configure the browser viewport's default width and
scale by adding the following tag somewhere within your page's <head>
section:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

By setting width=device-width, you're telling the browser to set the
width of the page to be the same as the width of whatever device the page
is being displayed on. By setting initial-scale=1.0, you're telling the
browser to display the page initially without zooming in or out. With those
tweaks added, you're ready to get responsive.

Lesson 14.2: Creating a Liquid Layout

Covers: Using fr units or percentages for liquid layouts

= Online: wdpg.io/2/14-2-0

As you saw earlier, the real problem with a fixed-width layout is setting the
grid-template-columns property to an absolute value, such as 320px for
each column. You can remedy that problem by converting your absolute
width values to relative widths that use percentages or CSS Grid's fr unit
instead of pixels. This solution is often called a liquid layout.

The following updates the earlier example with a liquid layout by
converting the grid columns’ pixel values to fr units.

REMEMBER

The Web Design
Playground’s panes can
be resized, but to really
try out the examples
responsively, you need to
download and work with
the examples outside of
the Playground. You can
access all the example
files using the book’s
GitHub repository:
https://github.com/paulmcfe/
wdpg2-example-files.

REMEMBER

A layout that uses
relative measurement
units, such as fr or
percentages, is known
as a liquid layout.

WEB DESIGN PLAYGROUND 251

https://github.com/paulmcfe/wdpg2-example-files
https://github.com/paulmcfe/wdpg2-example-files
http://wdpg.io/2/14-2-0

\

Designing Responsive Web Pages

b Example =) Online: wdpg.io/2/14-2-1
This code shows the conversion of the fixed-width layout to a liquid layout.

A body {
© LEESTACIE 0 Sl S S body element now
} has a maximum width.
.container {
display: grid;
grid-template-columns: repeat (3, 1fr); LS The grid columns
grid-template-areas: now uUse fr units.
"header header header"
"article article sidebar"
"footer footer footer";
1
= <div class="container”>
=
= <header>
T <hl>Responsive Web Design</hl>
</header>
<article>
<h2>A Brief History</h2>
<p>Early in the new millennium, etc.</p>
</articles>
<aside>
<h3>Links</h3>
etc.
</aside>
<footer>
<p>© Logophilia Limited</p>
</footer>
</div>
PLAY With the liquid layout in place, you can see in Figure 14.4 that a tablet in
You can get some portrait mode displays the web page content completely. Looking good!
practice converting a Figure 14.5 shows that a smartphone screen also displays the content
fixed-width layout to without requiring the reader to scroll horizontally. Nice.
a liquid layout on the In Figure 14.5, you can also clearly see that the resulting columns are

Playground. = Online:

. alarmingly narrow, which makes reading difficult. To fix that problem, you
wdpg.io/2/14-2-2

need to learn another responsive design technique. But first, consider the
following aside on viewport units.

252 WEB DESIGN PLAYGROUND

http://wdpg.io/2/14-2-1
http://wdpg.io/2/14-2-2

Creating a Responsive Layout

i A Brief History
Early in the new
i millennium, it was
becoming apparent that
peaple were soon going
to be surfing the web on
devices other than
desktop and laptop
computers. The
smartphone was still
T years away, but folks
were starting to talk

Obviously,

By 2008, the World Wide Web Consortium (WC) was talking about
“liquid” i i

jixcls. In carly 2009,

The next year, web designer
Yy - A oot List ot
‘magazine. The concept took offfrom there and has been a staple of
‘modern web design ever since.

about accessing the web
using PDAs (personal
digital assistants), ebook
readers, video game
consoles, and even TVs.
Obviously, any website
was going to look very
different when accessed
from a device a few

inches wide versus one

: . J

o J

P> Figure 14.4 With a liquid layout, the web page fitsa P> Figure 14.5 The liquid layout also
tablet screen perfectly. fits a smartphone screen but at the
cost of too-narrow columns.

Liquid Layouts with Viewport Units

When dealing with percentage units, it's important to remember that
assigning a percentage width to an element means that you're styling that
element to be a percentage of its parent's width. If a parent element is
800 pixels wide, and you declare width: 75% on a child element, that child
is 600 pixels wide. It doesn't matter whether the browser's screen width is
2,000 pixels; that child takes up only 600 pixels across the screen.

What if you want that child element to be 75% of the screen instead of its
parent? In that case, you need to switch from percentages to viewport units,
which act as percentage-like units that apply to the entire browser viewport.
You can use the following four units:

* vw—The viewport width unit, where 100vw equals 100% of the
current viewport width. If the viewport is 1,600 pixels wide, 1vw
is equivalent to 16px.

WEB DESIGN PLAYGROUND 253

\

Designing Responsive Web Pages

¢ vh—The viewport height unit, where 100vh equals 100% of the
current viewport height. If the viewport is 2,000 pixels high, 1vh
is equivalent to 20px.

¢ vmin—The viewport minimum unit, where 100vmin equals 100%
of the smaller of the two viewport dimensions. If the viewport is
800 pixels wide and 600 pixels high, 1vmin is equivalent to 6px
(because, in this case, the viewport height is the smaller of the
two dimensions).

e vmax—The viewport maximum unit, where 100vmax equals
100% of the larger of the two viewport dimensions. If the
viewport is 1,200 pixels wide and 1,024 pixels high, 1vmax is
equivalent to 12px (because the viewport width is the larger of
the two dimensions).

Suppose that you want to display an image so that it automatically
takes up the entire height of the viewport. You can do that by applying the
following rule to the image:

el rReiaht: 10ouh;

You can try out this width: auto;

full-height image b

;fl(;};;;%ien?f the | added the width: auto declaration to tell the browser to calculate
E>Online: wdpg.io/ the width automatically based on the height, which maintains the image’s
2/14-2-4 original aspect ratio.

Lesson 14.3: Creating an Adaptive Layout
Covers: Using emedia queries

= Online: wdpg.io/2/14-3-0

The liquid layout works well until the screen width gets too small, at which
point, the columns get too narrow for comfortable reading (especially the
sidebar). Look back at Figure 14.5. See how the page title (Responsive Web
Design) barely fits the width of the smartphone viewport? If that element
were even a few pixels bigger or a few letters longer, it would wrap and look
quite awful, as shown in Figure 14.6.

254 WEB DESIGN PLAYGROUND

http://wdpg.io/
http://wdpg.io/2/14-3-0

Creating a Responsive Layout

» Figure 14.6
Increase the size of the
page title a bit, and the
design breaks.

| | A Brief History

Early in the new millennium, it was

How are these two scenarios related? You can solve the underlying
problems by asking questions about the width of the browser viewport:

o s the viewport width less than 450 pixels? If so, modify the grid
layout so that the page elements display in the default stacked
layout.

o Is the viewport width less than 350 pixels? If so, reduce the type
size of the page title to 24pixels.

You can ask these and many other types of questions by defining media
queries within your CSS. A media query is an expression accompanied by a
code block consisting of one or more style rules. The expression interrogates
some feature of the screen, such as its width. If that expression is true for
the current device, the browser applies the media query's style rules; if the
expression is false, the browser ignores the media query’s rules. A layout that
uses media queries is often called an adaptive layout because it adapts itself
to the screen on which it's displayed.

Here's the general syntax:

@media (expression) {
selector {
declarations
}

etc.
}

The expression is most often min-width or max-width, followed by
a colon and a value.

REMEMBER

A layout that uses media
queries to adjust page
elements and properties
based on screen features
such as width is known
as an adaptive layout.

REMEMBER

Technically, the @media
rule can be followed by

a keyword that specifies
the type of media, such
as print or tv. The
default keyword is
screen, however, which
is the value you want on
the web, so you can leave
this out.

WEB DESIGN PLAYGROUND 255

Designing Responsive Web Pages

The vast majority of
the media queries
you'll write use min-
width ormax-width
in the expression.

But you can query
several other media
features, including
height, resolution, and
aspect ratio. To see the
complete list, check out
the Mozilla Developer
Network page at https://
developer.mozilla.org/
en-US/docs/Web/CSS/@
media#Media_features.

Given a three-column
flexbox layout, write

a media query that
displays the middle
column first on smaller
screens. 5 Online:
wdpg.io/2/14-3-3

If you want to apply styles on a screen no wider than a specified value,
use max-width. The following code tells the browser to display the hl
element with a type size of 24px whenever the screen width is less than or
equal to 350 pixels:

@media (max-width: 350px) {
hl {
font-size: 24px;

}

If you want to apply styles on a screen that's at least as wide as a specified
value, use min-width. The following code sets display: inline-block
on the aside element whenever the screen width is greater than or equal
to 1,024 pixels:

@media (min-width: 1024px) {
aside {
display: inline-block;

}

The following code updates the example to use a media query that
reconfigures the grid layout to use the default stacked flow (as well as
reduces the size of the header text) whenever the screen width drops to 450
pixels or less.

256 WEB DESIGN PLAYGROUND

https://developer.mozilla.org/en-US/docs/Web/CSS/@media#Media_features
https://developer.mozilla.org/en-US/docs/Web/CSS/@media#Media_features
https://developer.mozilla.org/en-US/docs/Web/CSS/@media#Media_features
https://developer.mozilla.org/en-US/docs/Web/CSS/@media#Media_features
http://wdpg.io/2/14-3-3

Creating a Responsive Layout

» Example =) online: wdpg.io/2/14-3-1
This code uses a media query to reconfigure the grid layout to use the default stacked

flow, as well as reduce the size of page title text.

.container {
display: grid;
grid-template-columns: repeat (3, 1fr);
grid-template-areas:
"header header header"
"article article sidebar"
"footer footer footer";

CSs

}
h1 { The media query applies to
font-size: 32px; screen widths up to 450px.
}
@media (max-width: 450px) {
.container {
grid-template-columns: 1fr;
grid-template-areas:

"header" The grid layout is changed
to a single column with the

"article"
"sidebar" elements stacked on top of
"footer"; each other.

1
hi {

font-size: 24px;
1

The page title is
reduced to 24px.

WEB DESIGN PLAYGROUND 257

http://wdpg.io/2/14-3-1

— Designing Responsive Web Pages

Figure 14.7 shows how the page layout appears on a screen with a width
greater than 450 pixels. As shown in Figures 14.8 and 14.9, however, the
layout changes on a screen with a width of 450 pixels or less.

» Figure 14.7 .
Here's the page
layout you see
when the screen
width is greater
than 450 pixels.
Given a version of
the example layout
in which the aside
element is hidden by
default, write a media
query that displays the
aside element when the
viewport is at least 1,024
pixels wide. = Online: -
wdpg.io/2/14-3-2 N\ J
(. *_\ (. *-\
))
i i “liquid” layouts that use p
instead of fixed widths expressed in
pixels. In early 2009, the W3C presented
i . . i media queries—a mechanism that enables
A Brief Hlstory a designer to write code that targets
Early in the new millennium, it was specific device characteristics, such as
i becoming apparent that people were soon i viewport width—as a Candidate
going to be surfing the web on devices Recommendation. The next year, web
other than desktop and laptop computers. designer Ethan Marcotte coined the term
The smartphone was still years away, but responsive web design in his famous
folks were starting to talk about accessing article in A List Apart magazine. The
the web using PDAs (personal digital concept took off from there and has been
assistants), ebook readers, video game a staple of modern web design ever since.

consoles, and even TVs. Obviously, any
website was going to look very different
when accessed from a device a few inches
wide versus one that was a few feet wide.
Some smart folks started wondering
whether it was possible to make a web
page flexible enough to adapt to this wide

range of device screens.

By 2008, the World Wide Web
Consortium (W3C) was talking about
“liquid” layouts that use p

instead of fixed widths expressed in
—___ _
P> Figure 14.8 Here's the top »-Figure 14.9 The bottom portion
portion of the page layout that of the screen confirms that the grid
appears on a screen that is less layout now displays all elements
than 450 pixels wide. stacked on top of each other.

258 WEB DESIGN PLAYGROUND

http://wdpg.io/2/14-3-2

Creating a Responsive Layout

A Note About Media Query Breakpoints

You may be tempted to set up your media queries to target specific device
widths, such as 320 pixels for older iPhones, 400 pixels for certain older
Samsung devices, 768 pixels for older iPads, and so on. Alas, that way lies
madness. There are just too many devices with too many different widths
for you to have any hope of targeting them all. Even if you could somehow
do that, your code would be out of date by the end of the day, because new
devices with new widths are being released constantly. Forget it.

Instead, it's much better to let your content dictate the min-width and
max-width values you use in your media queries. On a desktop screen, for
example, you might determine that your text lines are at their most readable
when they have about 75 characters per line. If you can get that line length
when the container element is 600 pixels wide, it makes sense to set that
element's max-width property to 600px. Suppose that you also determine
that your lines remain readable down to about 50 characters per line and
that you get that line length when the container element is 400 pixels wide.

Experiment with different screen widths to see when that container's
width falls below this 400-pixel threshold. This depends on your overall
page layout, but suppose that it happens when the screen width falls below
550 pixels because you've got a sidebar that gets too narrow beyond that
point. Your page becomes less readable below that width, so the design
breaks at 550 pixels. That value becomes the breakpoint for a media query:

@media (max-width: 550px) {
.container {
float: none;
width: 100%;

}

In general, you vary the width of the browser window and watch for
widths at which the design breaks: text lines getting too short or too long, a
type size becoming too big, a block element that ends up in a weird place,
and so on. Then, you can use the width as a breakpoint for a media query.

WEB DESIGN PLAYGROUND 259

\

REMEMBER

A layout that begins with
a structure designed for
mobile devices and adds
complexity only when
the screen is wide enough
is known as a mobile-
first layout.

REMEMBER

You don't necessarily
have to start with a
width as small as 320
pixels. If you have access
to your site analytics,
they should tell you what
devices your visitors

use. If you find that all
or most of your mobile
users are on devices that
are at least 400 pixels
wide, you should start
there.

Designing Responsive Web Pages

Lesson 14.4: Creating a Mobile-First Layout

Covers: Using emedia for nonmobile screens

= Online: wdpg.io/2/14-4-0

In Lesson 14.3, you saw how to use media queries to target mobile screens
and adjust layout features such as the grid structure. That works fine, but one
school of web design thought says that all CSS should be additive instead of
subtractive. That is, your CSS should add or modify property values, but never
remove them. Why? In a sense, CSS is like cooking; it's a lot easier to add salt and
other seasonings than to remove them. In your web design kitchen, it's always
best to start with the most minimal layout that works and then add things to it.

In almost every conceivable web page scenario, the most minimal layout
is the one that's designed to work on the smallest devices, which these days
means smartphones. The idea, then, is to build your page to look and work
well on the smallest smartphone screen (typically, 320 pixels wide). Only then
do you add to and modify the layout for larger screens. This layout is called a
mobile-first layout, and it's at the heart of responsive web design today.

One of the tenets of mobile-first design is to include in the initial,
mobile-focused layout only those page elements that are essential to the
user's experience of the page. Many mobile users are surfing over slow
connections with limited data plans, so as a conscientious web designer, it's
your job to ensure that these users are served nothing frivolous. What counts
as frivolous or nonessential is often a tough call because what's trivial to one
person might be vital to another. You'll need to exercise some judgment
here, but that's why they pay you the big bucks.

QcMobile devices require software development teams
to focus on only the most important data and actions
in an application. There simply isn't room in a 320
by 480 pixel screen for extraneous, unnecessary
elements. You have to prioritize. —Luke Wroblewski

As an illustration, suppose that you modify the example page so that it
includes a second aside element on the left, which you'll use to display
a quotation related to responsive web design. This touch is nice but not
essential, particularly because in the normal flow of the web page, this element
would appear before the article element. As shown in the following code,
add this new aside element with the display: none declaration to hide it
by default. Then use a media query to display the element on screens that
are at least 750 pixels wide.

260 WEB DESIGN PLAYGROUND

http://wdpg.io/2/14-4-0

Creating a Responsive Layout

» Example =) online: wdpg.io/2/14-4-1
This code uses a media query to display the otherwise-hidden <aside
class="quotation" > elementon screens that are at least 750 pixels wide.

.container {
display: grid;
grid-template-columns: 1fr;
grid-template-areas:

"hea(lier" By default, the mobile-friendly
"article" |a\/ou+ is a one-column, stacked
"sidebar" 9FM4

"footer";

CSS

}

.quotation { : '
display: none; The quotation class is

} hidden by default.

@media (min-width: 750px) {
.container {
grid-template-columns: repeat (4, 1fr); The larage-
grid-template-areas: screen ayou+
"header header header header" is a four-
"quotation article article sidebar" column ﬂr”-
"footer footer footer footer";

}

.quotation {
display: block; A&\ 0n screens at least 750px wide,
grid-area: quotation; the guotation is displayed.

<header>
<hl>Responsive Web Design</hl>
</header>
<mains>
<aside class="quotation">
<h3>Quote</h3>
etc.
</aside>
<article>
<h2>A Brief History</h2>
<p>Early in the new millennium, etc.</p>
</articles>
<aside>
<h3>Links</h3>
etc.
</aside>
</main>
<footer>
<p>© Logophilia Limited</p>
</footer>

HTML

The new quotation element

WEB DESIGN PLAYGROUND 261

http://wdpg.io/2/14-4-1

\

REMEMBER

A layout that uses
relative measurement
units, a flexible grid,
media queries, and a
mobile-first approach is
known as a responsive
layout.

Designing Responsive Web Pages

Figure 14.10 shows that on a smartphone, the layout doesn't include the
quotation sidebar, but it does appear on a wider screen like the tablet shown
in Figure 14.11.

A Brief History

Early in the new millennium, it was
becoming apparent that people were soon
going to be surfing the web on devices
other than desktop and laptop computers.
The smartphone was still years away, but
folks were starting to talk about accessing
the web using PDAs (personal digital
assistants), ebook readers, video game
consoles, and even TVs. Obviously, any By 2008, the World Wide Web Consortium (W3C)
website was going to look very different wastlking about liguid lyouts

when accessed from a device a few inches i
wide versus one that was a few feet wide.
Some smart folks started wondering
whether it was possible to make a web
page flexible enough to adapt to this wide
range of device screens.

web page flexbl
ide range of device screens.

By 2008, the World Wide Web
Consortium (W3C) was talking about
“liquid” layouts that use percentages

instead of fixed widths expressed in
O
k) g - J
»-Figure 14.10 The quotation p-Figure 14.11 The quotation sidebar does appear
sidebar doesn't appear on a narrow on a wider screen, such as a tablet.

smartphone screen.

Which Layout Is the Responsive One?
That's a good question. The answer is that, together, they all add up
to the modern conception of a responsive layout: one that uses relative
measurements, a flexible grid, and media queries, all presented with a
mobile-first approach. If you incorporate these concepts into your pages,
you'll be well along the road to your ultimate destination: a fully responsive
web design.

But you're not quite there yet. To complete the journey, you need to
know how to make your images and text responsive, and these are the
topics of the rest of this chapter.

262 WEB DESIGN PLAYGROUND

Making Images Responsive

Making Images Responsive

Making an image responsive is one of the biggest challenges web designers
face. The scale of the challenge comes from two problems associated with
making images responsive:

* Making a fixed-size image fit into a container with fluid dimensions.
An image that's 600 pixels wide will fit nicely inside an element
that's 800 pixels wide, but it overflows if that element is scaled
down to 400 pixels wide. Solving this problem requires making
images fluid so that the size adjusts to the changing screen size.

¢ Delivering a version of an image that's sized appropriately for
the user's screen dimensions. It's one thing to offer up a 2,000 x
1,500-pixel image to desktop users, but sending the same image
to smartphone users is a waste of upload time and bandwidth.

The next two lessons show you some basic methods for overcoming
these problems.

Lesson 14.5: Creating Fluid Images
Covers: Styling the img element for responsiveness

= Online: wdpg.io/2/14-5-0

An image comes with a predetermined width and height, so, at first blush,
it seems impossible to overcome these fixed dimensions. Fortunately, an
 tag is another page element. Yes, by default, the image is displayed
at its full width and height, like a div or any other block element. But in the
same way that you can make a block element fluid by using percentages,
you can make an image fluid.

You need to be a bit careful when working with images:

¢ In most cases, you don't want the image to scale larger than
its original size since, for most images, this scaling will result in
ugly pixelation and jagged edges.

¢ If you change one dimension of an image, it will almost certainly
appear to be skewed because its original aspect ratio—the ratio of the
width to the height of the image—will have been altered. Therefore,
you have to change both the width and the height proportionally to
retain the image’s original aspect ratio. Fortunately, you can get the
browser to do some of the work for you.

WEB DESIGN PLAYGROUND 263

http://wdpg.io/2/14-5-0

\

Designing Responsive Web Pages

To handle both concerns, you can create a fluid image that responds to
changes in screen size by applying the following rule:

im
PLAY ? maxewidth: 1008
In some cases, you don't height: auto;
want the image height ¥
to scale larger than Setting max-width: 100% allows the image to scale smaller or larger as

its original height, so

its parent container changes size but also specifies that the image can never
you need to set max-

height: 100%and scale larger than its original width. Setting height: auto tells the browser
width: 'auto :m the to maintain the image’s original aspect ratio by calculating the height based
image. = Online: on the image’s current width.

wdpg.io/2/14-5-2 The following code shows an example.

b Example =) Online: wdpg.io/2/14-5-1
This code creates a fluid image that scales smaller or larger as the screen size changes
but doesn't scale larger than its original dimensions.

a img {
v max-width: 100%; Makes images Fluid
height: auto;
1
= <header>
E <hl>Responsive Web Design</hl>
= </header>
<mains>
<aside class="quotation">
<h3>Quote</h3>
etc.
</aside>
<articles>
<h2>A Brief History</h2>
<p>Early in the new millennium, etc.</p>
</articles>
<aside>
<h3>Links</h3>
Sl
<img src="/images/rwd.png" alt="Responsive Web Design
image">
</aside> An image added to
</main> the aside element
<footer>
<p>© Logophilia Limited</p>
</footers>

264 WEB DESIGN PLAYGROUND WEB DESIGN PLAYGROUND 264

http://wdpg.io/2/14-5-2
http://wdpg.io/2/14-5-1

Making Images Responsive

Figures 14.12 and 14.13 show how the image size changes as the width of
its parent aside element changes.

(. ’:-\ -~ . N

CONCEDT TOOK OII ITOM THere and nas been
a staple of modern web design ever since.

A Brief History

Early in the new millennium, it was becoming.
apparent that people were soon going to be surfing
the web on devices ather than desktop and laptop
computers. The smartphone was still years away,
‘but folks were starting to talk about accessing the
‘web using PDAs (personal digital assistants), ebook
readers, video game consoles, and even TVs.
Obviously, any website was going to look very
different when accessed from a device a few inches
‘wide versus one that was a few feet wide. Some
smart folks started wondering whether it was
possible to make a web page flexible enough to
adapt to this wide range of device screens.

By 2008, the World Wide Web Consortium (W3C)
was talking about “liquid” layouts that use
pereentages instead of fixed widths expressed in
pixels. In early 2009, the W3C presented media
queries—a mechanism that enables a designer to
write code that targets specific device
characteristics, such as viewport width—as a
Candidate Recommendation. The next year, web
designer Ethan Marcotte coined the term responsive
‘web design in his famous article in A List Apart
magazine. The concept took off from there and has
been a staple of modern web design ever since.

. J U) J

P> Figure 14.12 The image as it appears when P Figure 14.13 When the aside element is displayed at a narrower
its aside parent element is given the fullwidth width, the image scales down accordingly.
of a smartphone screen

Scaling images based on screen size is a useful technique, but that doesn't
mean you should deliver the same image to every device. For example, if
you have a very large image, it's fine to deliver that image to desktops, but
it would be better to send a smaller version to smartphones. In the next
section, you learn some img element attributes that enable you to deliver
different versions of an image to different devices.

WEB DESIGN PLAYGROUND 265

\

BEWARE

When you're testing

the srcset attribute
by changing the
browser window size,
you may find that the
browser doesn't always
download a different-
size image. Although the
browser may detect that
a smaller image should
be used based on the
srcset values, it may
opt to resize the existing
image, because it has
already downloaded
that image.

REMEMBER

The default image—that
is, the image specified
with the src attribute—
is the fallback image that
will be displayed in older
browsers that don't
support the srcset
attribute. Good mobile-
first practice is to make
the default image the
one you prefer to deliver
to mobile users.

Designing Responsive Web Pages

Lesson 14.6: Delivering Images Responsively

Covers: The sizes and srcset attributes

= Online: wdpg.io/2/14-6-0

The other side of the responsive-image coin involves delivering to the user a
version of the image that has a size that's appropriate for the device screen.
You might deliver a small version of the image for smartphone screens, a
medium version for tablets, and a large version for desktops. In the past, you
needed a script to handle this task, but in HTML5, you can do everything
right in your tag thanks to two new attributes: sizes and srcset.

The sizes attribute is similar to a media query in that you use an
expression to specify a screen feature, such as a minimum or maximum
height, and then specify how wide you want the image to be displayed on
screens that match that configuration. You can specify multiple expression-
width pairs, separated by commas. Here's the general syntax:

sizes="(expressionl) widthl,
(expression2) width2,
etc.,
widthN"

Notice that if the last item doesn't specify an expression, the specified
width applies to any screen that doesn't match any of the expressions.
Suppose that you want images to be displayed with width 90vw on screens
that are less than or equal to 500px and 50vw on all other screens. Here's
how you'd set that up:

sizes="(max-width: 500px) 90vw, 50vw"

Next, add the srcset attribute to your tag, which you set to a
comma-separated list of image file locations, each followed by the image
width and the letter w. Here's the general syntax:

srcset="1locationl widthlw,
location2 width2w,
etc.">
This code gives the browser a choice of image sizes, and it picks the
best one based on the current device's screen dimensions and the preferred
widths you specified in the sizes attribute. Here's an example:

srcset="/images/small.tif 400w,
/images/medium.tif 800w,
/images/large.tif 1200w">
The following example puts everything together to show you how to
deliver images responsively.

266 WEB DESIGN PLAYGROUND

http://wdpg.io/2/14-6-0

Making Images Responsive

» Example = online: wdpg.io/2/14-6-1
This code creates a fluid image that scales smaller or larger as the screen size changes
but doesn't scale larger than its original dimensions.

/ The default image
<img £or older browsers

src="/images/img-small.png" ‘/_\

sizes=" (max-width: 700px) 100vw, 75vw" The sizes +o

srcset="/images/img-small.png 450w, }\ display the image

HTML

/images/img-medium.png 900w,
/images/img-large.png 1450w"> The images that
the browser can

choose from

Figures 14.14 through 14.16 show how the image that's delivered to the
browser changes as the size of the screen changes.

» Figure 14.14
[tsn't It Semanti- x ¥ [3 Responsive W' x ' [3 Isnit It Semantic x V [3 Responsive We' x ([HTML+CSS Play x ' € Lesson: G Tie X __ A wide browser VieWpOrt
: y ‘ gets the large image.

WEB DESIGN PLAYGROUND 267

http://wdpg.io/2/14-6-1

Designing Responsive Web Pages

S

i IR J

P> Figure 14.15 Atablet-size viewport gets the medium image.

REMEMBER

To run your own tests
in Chrome, change the
default font size by
clicking the Menu icon,
choosing Settings >
Appearance, and then
using the Font Size list
slider to set the size you
want.

P> Figure 14.16 A smartphone-size
viewport gets the small image.

With your images being delivered responsively, it's time to turn your
attention to your page’s most important asset: text. In the rest of this chapter,
you learn some techniques for making your page typography responsive.

Making Typography Responsive
Is your goal to enrage some of the people who visit your website? | thought
not, but you may be doing that if you use pixels for your site typography.
Web browsers such as Google Chrome and Mozilla Firefox enable users to
specify a default font size, which is set to 16px in all modern browsers, but
people with aging eyesight or visual impairments often bump this default
to 24px, 32px, or even higher. If you use the declaration font-size: 16px
for, say, your page's body text, all your visitors—and in particular those who
increased their default font size—will see your text at that size. Cue the rage.
Fortunately, it's easy to avoid that scenario by switching to relative
units for your font-size values. One possibility is the em unit, where lem

268 WEB DESIGN PLAYGROUND

Making Typography Responsive

corresponds to the browser's default font size—or, crucially, the user's
specified default font size. If that default is 16px, 1.5em corresponds to
24px, and 3em corresponds to 48px. If the default is 24px, 1.5em would
render at 36px, and 3em would render at 72px.

That solution may seem to be perfect, but there's an inheritance fly in this
responsive soup. First, let me point out that inheritance means that for certain
CSS properties, if a parent element is styled with the font-size property, its
child and descendant elements are automatically styled the same way. (See
Chapter 19 to learn more about this crucial CSS concept.) To see the problem,
first consider the following HTML and CSS, and then answer one question: If
the default font size is 16px, what is the font size, in pixels, of the h1l element?

HTML:

<body>
<header>
<hl>What’'s My Font Size?</hl>
</header
</body>

CSS:

body {
font-size: lem;
}

header {
font-size: 1.5em;
¥

hl {
font-size: 2em;
}

Your intuitive guess may be that because the hl element is declared with
font-size: 2em, it must get rendered at 32px. Alas, that's not the case,
and to understand why, you need to know that the font-size property is
inherited, which leads to the following sequence:

1 The body element’s font size (1em) is set to 16px.

2 The header element inherits the font size from the body element, so
the header element’s font size (1. 5en) is set to 24px.

3 The h1l element inherits the font size from the header element, so the
hl element's font size (2em) is set to 48px.

That's not a deal-breaker when it comes to using em units; you need to
be aware of this fact and take the inherited font sizes into account.

If you don't feel like doing the math required to work successfully with em
units, there's an alternative: the rem unit. rem is short for root em and refers to
the font size of the page root, which is the html element. Two things to note:

e Because the root's font size is the same as the default font size,
and because the rem unit scales in the same way as the em unit,
the rem unit is responsive.

REMEMBER

To run your own tests
in Firefox, change

the default font size

by clicking the Menu
icon, choosing Settings,
selecting the General
tab, and then using the
Size list in the Fonts
section to set your
preferred size.

WEB DESIGN PLAYGROUND 269

Designing Responsive Web Pages

¢ Because the rem unit always inherits its font size only from the
html element, there are no inheritance gotchas to worry about.
An hl element declared with font-size: 2rem will always
render at twice the default font size.

This isn't to say that you should always use rem over em. There may be
situations in which you want a child element's font size to be relative to its
parent's font size, in which case em units are the best choice.

Lesson 14.7: Using Responsive Font Sizes
Covers: Using rem units for font-size

= Online: wdpg.io/2/14-7-0

The following code updates the example page to replace the font-size
property's absolute px units with relative rem units.

b Example = O0nline: wdpg.io/2/14-7-1
This code updates the example page to replace the font - size property’s absolute px
units with relative rem units.

A hi {
(@] font-size: 2rem;
}
h2 {
font-size: 1.5rem; The header elements are given
} mobile-first rem font sizes.
h3 {

font-size: 1.25rem;

}
@media (min-width: 750px) {
hi {
font-size: 2.5rem;
}

h2 {
font-size: 2rem; The hgader elements are
} also given |arge—screen
rem font siz€s.
h3 {

font-size: 1.5rem;

}

270 WEB DESIGN PLAYGROUND

http://wdpg.io/2/14-7-0
http://wdpg.io/2/14-7-1

Making Typography Responsive

Lesson 14.8: Using Responsive Measurements

Covers: Using rem units for measurements

= Online: wdpg.io/2/14-8-0

Unfortunately, the bad design results that come from using absolute units
such as px aren't restricted to font sizes. To see what | mean, consider the
following code, the results of which are shown in Figure 14.17:

HTML:
<header>
<h1>Responsive Web Design</h1>
</header>
CSS:
header {
height: 64px;
¥

hl {
font-size: 2rem;
}

»-Figure 14.17 The h1 text looks good at 2rem.

Looks good! But what happens when | change the default fontin my web
browser (Firefox) to 30px? Figure 14.18 shows the sad story.

n ° i I i I i °
P> Figure 14.18 The element doesn't render so well when a larger default font is used.

At the larger default size, the heading is larger than the header element
in which it's contained, resulting in an overall crowded feel to the text and
(much worse) cutting off the descenders of the p and g.

Why did this happen? The header element's height property uses an
absolute value of 64px. That height won't budge a pixel no matter what font
size you use as the default. But consider the following revised code and the
result shown in Figure 14.19:

HTML:
<header>
<h1>Responsive Web Design</h1>
</header>
CSS:
header {
height: 4rem;
}

hl {
font-size: 2rem;
}

REMEMBER

This example is artificial
because, in practice,
you’d rarely set an
explicit height on an
element. Instead, it’s
always better to let

the content dictate

an element’s height
naturally.

WEB DESIGN PLAYGROUND 271

http://wdpg.io/2/14-8-0

\

BEWARE

Because a percentage

is relative to the parent
element’s width, you
may find that using
percentages for padding
or margins leads to
unexpected or bizarre
results. In such cases,
you should switch to rem
units for more control.

Designing Responsive Web Pages

P> Figure 14.19 With the header element's height property now using relative rem units,
the header scales along with the text as the default font size changes.

The only change | made was to declare height:

4rem on the header

element. Using the relative unit makes the height responsive, so it increases
(or decreases) along with the font size when the default font value is changed.

How you use relative units for measurements depends on many factors,
not least of which is the design effect you're trying to achieve. | can suggest
a few guidelines, however:

272 WEB DESIGN PLAYGROUND

For vertical measures such as padding-top, padding-bottom,
margin-top, and margin-bottom, use rem units.

For horizontal measures such as width, padding-right,
padding-left, margin-right, and margin-left, use
percentages.

For horizontal measures in which you want more control of

properties such as width, max-width, and min-width, use rem
units.

For vertical measures that you want to scale in relation to the
viewport height, use vh units.

For horizontal measures that you want to scale in relation to the
viewport width, use vw units.

Making Typography Responsive

b Example =) Online: wdpg.io/2/14-8-1
This code updates the example page to replace all the absolute px measurements with
relative rem or percentage units.

/ rem units used for

-container { greater control

max-width: 60rem;
} /—\ rem units used on all
header { vertical measures

padding: lrem 1.67%;

CSS

} Percenmges used on all the

hi { other horizontal measures
padding-left: 1.67%;

1

.quotation {
padding-right: 1.67%;
}

article {
flex-basis: 20rem;
padding-top: lrem;
padding-left: 1.67%;
}

p {
margin-bottom: lrem;
}

aside {
flex-basis: 10rem;
padding: lrem 1.67%;

}
div {

padding-bottom: .5rem;
}

footer {
padding: lrem 1.67%;
}

By using rem units on vertical measures and percentages on horizontal
measures, you maximize control over this aspect of your design while still
keeping things responsive. Win-win!

WEB DESIGN PLAYGROUND 273

http://wdpg.io/2/14-8-1

\

Designing Responsive Web Pages

Summary

* Avoid fixed-width layouts in which page elements are sized by
using absolute measurements such as pixels.

¢ Use liquid layouts in which horizontal measures such as widths,
paddings, and margins are expressed in percentages.

* To create an adaptive layout, use media queries to adjust
element sizes, change the layout, and hide or display elements
depending on the screen size.

* Use a mobile-first approach in which your initial page layout
is optimized for a smartphone, and use media queries to add
features and change the layout as needed for larger screens.

 Make your images fluid by styling them with the declarations
max-width: 100% and height: auto.

e Inyour tags, add the sizes and srcset attributes
to scale and deliver images that are appropriate for any
screen size.

¢ When styling font sizes, avoid absolute pixel values in favor of
rem units.

¢ Also use rem units when styling vertical measures such as
height, padding, and margins.

274 WEB DESIGN PLAYGROUND

Chapter 15

proJECT: | Creating
a Photo Gallery

] This chapter covers

= Planning and sketching your photo gallery
* Choosing typefaces for your page

* Adding the header and navigation links

= Adding the image thumbnails

* Adding dynamic captions and links to full-size
images

Unlike with your first two projects—the personal home page that you built
in Chapter 5 and the landing page you built in Chapter 10—you now know
enough to create a page that looks like it was designed and coded by a
professional. If that seems like a stretch at this point in your web design
journey, this chapter will prove that I'm right. Here, I'll take you through the
construction of a full-featured photo gallery, complete with dynamically
generated captions, links to full-size versions of each thumbnail, and much
more. You'll be using many of the tools and techniques that you've learned
so far, including class selectors, the CSS box model, images (of course), and
layouts. Let's get to work!

WEB DESIGN PLAYGROUND 275

MASTER

If you're not sure what
size thumbnails you
want to use, use a single
image for now and
repeat it throughout the
gallery. When you've
settled on the ideal size,
you can process the rest
of the photos you want
to use.

BEWARE

Your full-size images
can theoretically be any
size, but bear in mind
that large photos may
weigh in the double-digit
megabytes. You don't
want to use too much
compression on these
versions, so keep the size
within reason. I used
2048 x 1365 images in
my project.

— -~ PROJECT: Creating a Photo Gallery

What You'll Be Building

This project is an online gallery for showing off your photos. The page will
consist of at least half a dozen thumbnails, which are reduced-size versions
of your images. The idea is that a site visitor should be able to click one
of these thumbnails to display the full-size version of the image. Each
thumbnail should also display a short caption that describes the image.

On the surface, this project is a simple one. Truthfully, the resulting page
will look simple as well. It will look nice, mind you, but it will project to
the visitor an air of simplicity. The fact that the site looks unsophisticated,
however, doesn't mean that it's built that way. As you'll soon learn, this page
has some rocking technology under the hood, including a Flexbox-based
layout, viewport-based sizing, and sophisticated positioning techniques.

Getting Your Photos Ready

You should begin this project by getting at least some of your photos ready
to use. You'll want to use JPEGs for everything because they give you
smaller file sizes than PNGs while maintaining good photo quality. You'll also
need two versions of each image: a regular-size version and a thumbnail
version. In the page layout | use, all the thumbnails need to be the same
size. It doesn't matter what size you use, but in my project, | resized all
my thumbnails to a 300-pixel width and a 200-pixel height. The full-size
versions can be whatever size you want.

Sketching the Layout

As you've seen in the earlier projects (Chapters 5 and 10), your web projects
should begin with a pencil and paper (or whatever variation on that theme
you're most comfortable with). You're learning how to design web pages,
and any design worthy of the name always begins with a quick sketch to
get an overall feel for the page dimensions and components. Quick is the
operative word. You don't need to create an artist's rendering of the final
page. You need to lay out the main sections of the page and indicate the
approximate location, size, and contents of each section; for example,
Figure 15.1 shows a page layout with the following four sections:

¢ A header with a site logo and title

¢ A navigation area with links to other gallery pages

¢ The main section of the page containing the image thumbnails
e The page footer with a copyright notice and links to social

media sites

With that out of the way, it's time to turn your attention to the typeface
or typefaces you want to use for the page.

276 WEB DESIGN PLAYGROUND

Choosing Typefaces

» Figure 15.1

Site - Before diving into the page's
Logo P a g e T I t I e HTML and CSS details, use
pencil and paper to get a

GALLERY LINKS sense of the overall page

layout and content.

Thumbnail Thumbnail Thumbnail

Thumbnail Thumbnail Thumbnail

Thumbnail Thumbnail Thumbnail

Copyright and social media links

Choosing Typefaces

This page has little type, so the choice of a typeface shouldn't take up too
much of your time. There are three areas where your choice of typeface will
come into play:

e Heading—Something that looks handwritten would be nice. For
my project, I'm going to keep things simple and use the default
cursive typeface. For something that has good coverage on
both Windows PCs and Macs, you could go with Brush Script MT.

¢ Navigation and footer—The text here consists mostly of links, so
a nice, clean sans-serif font is a good choice. For my project, I'm
going with Calibri (installed on most Windows PCs) and Optima
(installed on most Macs).

e Thumbnail-image captions—These captions are fairly small, so
| recommend a typeface that remains readable even at small
sizes. I'll stick with Calibri and Optima for my captions.

In my CSS, I'll use the following declarations to specify these families:

font-family: cursive;
font-family: Optima, Calibri, sans-serif;

Now, you can turn your attention to a color scheme for the photo gallery.

WEB DESIGN PLAYGROUND 277

— -~ PROJECT: Creating a Photo Gallery

Choosing the Colors

This page is simple, color-wise, so you don't need to build an elaborate color
scheme. In fact, in my version of this project, I'm using just three main colors:

e Header and footer background—This design looks balanced when
the header and the footer have the same color. Because the main
background (discussed next) should be relatively plain to show
off the thumbnails, the header and footer background gives you a
chance to pick something with a bit of pizzazz to liven up the page.

e Main background—This area takes up the bulk of the page, and it's
used to show both the image thumbnails and the navigation links.
A color such as black or dark versions of gray, brown, or blue work
best for this purpose.

¢ Text—This color needs to read well in all three sections of the page:
header, main, and footer. Assuming these sections are using dark
backgrounds, an off-white color such as #eee would work fine, as
would something along the lines of a not-too-bright yellow.

Figure 15.2 shows the colors | chose for my project.

Text color

v

» Figure 15.2
The color scheme for my #543437

project

#221900

A A

Header and footer Main background

With the page layout sketched and your typefaces and colors chosen,
it's time to make things more concrete (virtually speaking) by translating
everything into HTML and CSS code.

Building the Page

To build your photo gallery, start with the skeleton code that | introduced
you to in Chapter 1. From there, go section by section, adding text, HTML
tags, and CSS rules.

278 WEB DESIGN PLAYGROUND

Building the Page

The Initial Structure
To get things started, take the basic page structure from Chapter 1, and add
the gallery layout. I'm going to use the HTML5 semantic elements:

¢ The page header section uses the header element, and it
consists of two items: an img element for the site logo and an
hl element for the site title.

¢ The navigation section uses the nav element, and it consists of
an unordered list of links to other pages of the gallery.

¢ The main section uses the main element, and it consists of
several img elements, each of which points to a thumbnail
version of a photo.

¢ The page footer section uses the footer element, and it consists
of a copyright notice and links to several social media sites.

b Try This = Online: wdpg.io/2/projects/photo-gallery/1
Here are the elements that make up the photo gallery's initial HTML structure.

H { YOUR
eader LOGO

section

L. Gallery 1
Navigation Gallery 2
section Gallery 3

WEB PAGE

300%200 300%200
Main
> section
300200 300<200
: i H H /
(Copyright and social medialinks «—_ ' coction
continued

WEB DESIGN PLAYGROUND 279

http://wdpg.io/2/projects/photo-gallery/1

— -~ PROJECT: Creating a Photo Gallery

E‘ <headers>
=
T <hl>Page Title</hl>
</header> Header
snav> section

Gallery 1</1li>
Gallery 2</1li>
Gallery 3 Navigation i
Gallery 4</1li> section sMeacl?ion
S/ (the image
</nav> thumbnails)
<main>

</main>
<footer>
<p>Copyright and social media links</p> ‘f\ Footer
</footers section
REMEMBER The gallery isn't much to look at right now, but you'll soon fix that
The initial page layout problem. You start by setting up the page's overall layout.
also includes a CSS
reset that sets the The Overall Layout
margin and padding After spending all that time learning how to use Flexbox in Chapter 12,

to 0 and the box sizing

you'll be pleased to hear that you'll be putting that effort to good use here,
to border-box.

because this project uses Flexbox for its entire layout.

Getthings rolling by setting up the initial Flexbox container. The <body > tag
will do nicely for that purpose, and you'll use it as a single-column container,
which gives you a vertical main axis. You want the items aligned with the
start of that axis (that is, the top of the page). You also want everything to be
centered horizontally, and you want the footer to appear at the bottom of the
screen, even when there isn't enough content to fill the rest of the page. The
following example shows you how to set everything up.

280 WEB DESIGN PLAYGROUND

http://placehold.it/300x200
http://placehold.it/300x200
http://placehold.it/300x200
http://placehold.it/300x200

Building the Page

b Try This = Online: wdpg.io/2/projects/photo-gallery/2
This example shows you how to configure the body element as a Flexbox container for

the entire page.
g bOd}éi{splaY' Flex: Sets up the Flexbox
: ! container
Sets a flex-direction: column;
minimum justify-content: flex-start;
heigh‘l' align-items: center;

\y min-height: 100vh;

font-family: Optima, Calibri, sans-serif;
background-color: #221900; A P“es a Font
color: #ecd078; stack and the

} background and
text colors

The one comment I'll add here concerns the min-height property. By
declaring this property to be 100vh, you're telling the browser that the body
element is always at least the height of the browser's viewport. Having the
body element height greater than or equal to the height of the viewport
ensures that the footer section appears at the bottom of the screen, even if
there isn't enough content to fill the viewport vertically.

The Header Section

The header section consists of a header element that contains two items:
an img element for the site logo and an hl element for the site title. You also
want the header to have the following features:

¢ Because the header background is different from the page
background, the header will look best if it extends across the
width of the browser window. To do this, declare width: 100%
on the header element.

¢ The site logo and title should be centered both horizontally
and vertically within the header. Configure the header element
as a Flexbox container with a horizontal main axis and both
justify-content and align-items set to center.

The following example shows the HTML and CSS that | used to accomplish
these goals and to style the rest of the header section.

WEB DESIGN PLAYGROUND 281

http://wdpg.io/2/projects/photo-gallery/2

— -~ PROJECT: Creating a Photo Gallery

» Try This = Online: wdpg.io/2/projects/photo-gallery/3
This example styles the photo-gallery header section as a Flexbox container that centers
the site logo and title horizontally and vertically.

W -
v s /
£ A D ey
@ mpersan oz‘qgrap 1y
=
A header {
O display: flex;
justify-content: center; The header is a
align-items: center; Flexbox container.
padding: lem O;
j . [<
w4007 The header uses the
background-color: #543437; Full window width.
1
hi {
padding-left: .5em;
font-family: cursive; Styles for the
font-size: 3em; site title
1
E <header>
= <img src="/images/ampersand-photography.png" alt="Ampersand
I

Photography logo">
<hl>Ampersand Photography</hl>
</header>

The Navigation Section

The next area of the page is the navigation section, which consists of several
links to other gallery pages. This section uses the nav element and contains
an unordered list of links. Here's a list of the goals you want to accomplish
for this section:

e The links should be centered both horizontally and vertically
within the navigation section. Set up the nav element as
a Flexbox container with a horizontal main axis and both
justify-content and align-items set to center.

¢ The links should appear as a horizontal bulleted list without
the bullets. To do this, configure the ul element as a Flexbox
container, and set the 1ist-style-type property to none.

The following example shows the HTML and CSS that | used to accomplish
these goals and to style the rest of the navigation section.

282 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/photo-gallery/3

Building the Page

» Try This = Online: wdpg.io/2/projects/photo-gallery/4
This example styles the photo gallery's navigation section as a Flexbox container that
displays the unordered list items horizontally.

L
©)
< _
o
[an]
Ll
=
A nav {
O display: flex;
justify-content: center; The nav is a
align-items: center; Flexbox container.
width: 100%;
background-color: inherit;}
nav ul {
display: flex; .
lisE—sZ e eraes meme; | — ~ The ul is a Flexbox
; Y ype: ! container, and its
nav 1i { bullets are hidden.
padding: lem 2.5em;
text-transform: uppercase;} Sfybs for the
1i elements
= <navs
>
=
I

Gallery l</1li>
Gallery 2</1i>
Gallery 3</1li>
Gallery 4</1li>

</navs

You should see two problems with the navigation links right away: MASTER

e The link text is the standard blue that browsers use for links. By You could declare the
default, links don't pick up the parent's text color, so you need Pagf—"s text C°l'°"€xPhatlyx
to tell the browser to use that color for links. In most cases, the but if you decide to

change the text color later,

easiest way is to declare color: inherit on the a element.

¢ Nothing indicates which gallery page is currently being
displayed. To solve this problem, apply a special style to the
navigation text for the current page. | created a class named
current-page and used it to style the current 11 element with
the background and text colors switched.

The following example shows the revised navigation links.

you have to make the
change in two places: the
body element and the a
element. When you use
inherit, the a element
automatically picks up any
change you make in the
body element's text color.

WEB DESIGN PLAYGROUND 283

http://wdpg.io/2/projects/photo-gallery/4

— -~ PROJECT: Creating a Photo Gallery

» Try This = Online: wdpg.io/2/projects/photo-gallery/5
This example styles the navigation links to use the body element's text color. It also adds
a class named current -page to the current page item to use reverse text.

W Current page Hovered link
2 \
<
[al
m
E GALLERY 1 GALLERY 3 GALLERY 4
htmlcssplayground.com/gallery2.html
A .current-page {
O padding: .75em;
background-color: #ecd078; The current-page class
color: #221900; creates a reverse text
} effect.
a {
color: mherl_t’ The a element inherits
text-decoration: none; the body text color.
1
a:hover {
SOLEES LS , Hover over styles
text-decoration: underline; for the links.
1
_, nav The link is replaced by a span
s <nav> /+ha+ uses the current-page class.
=
I Gallery l
Gallery 2</1li>
Gallery 3</1li>
Gallery 4</1li>

</navs>

With your header and navigation elements in place, you're ready to tackle
the main part of the project: the photo gallery itself.

The Main Section

The real meat of the photo gallery is, of course, the photos themselves.
The basic idea of a gallery is to display a thumbnail of an original photo and
enable the visitor to view the original with a click. The simplest way is to set
up each thumbnail as a link that points to the original, as I've done in the
following example. Note, too, that | set up main as a Flexbox container that
centers the thumbnails horizontally and allows them to wrap.

284 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/photo-gallery/5

Building the Page

» Try This = O0nline: wdpg.io/2/projects/photo-gallery/6
This example sets up the main element as a Flexbox container. The flex items are the
photo thumbnails, each of which links to its original photo.

w GALLERY 2 GALLERY 3 GALLERY 4
©) — i
< -
o
m
1]
=
A main { The main element is
o display: flex; }_/ a Flexbox container
justify-content: center;
flex-wrap: wrap;
max-width: 960px; o) Sets the maximum
font-family: Optima, Calibri, sans-serif; i
1
§ <mains
=
L <img src="/images/image0l-thumbnail.jpg" alt="Thumbnail for
image 1">

<img src="/images/image02-thumbnail.jpg" alt="Thumbnail for
image 2">

<img src="/images/image03-thumbnail.jpg" alt="Thumbnail for
image 3">

etc.
</mains>
Opens each linked image
in a new tab
REMEMBER
In this project’s main
The Footer Section element, the secondary

The final element of the photo gallery page is the footer section, which axis runs Verficallyyl so
you'll use to display a copyright notice and links to social media sites. To /e declarationalign-

align these items horizontally and vertically, configure the footer element conbents flessstant
) tells the browser to keep
as a flex container.

all the thumbnails aligned
with the top of the main
element.

WEB DESIGN PLAYGROUND 285

http://wdpg.io/2/projects/photo-gallery/6

PROJECT: Creating a Photo Gallery

Note as well that you want the footer element to appear at the bottom
of the page, even when the main element doesn't fill the browser window
vertically. You need to set the main element's flex-grow property to 1
to force it to fill in the space. That solution creates weird vertical spacing
in the thumbnails, however. To fix that problem, add align-content:
flex-start to the main element. The following example shows how.

P Try This = Online: wdpg.io/2/projects/photo-gallery/7
This example configures the footer element as a flex container and adds properties to the
main element to force it to fill any empty space between the main and footer elements.

© AMPERSAND PHOTOGRAPHY FACEBOOK TWITTER INSTAGRAM

WEB PAGE

main {
display: flex;
justify-content: center;
flex-wrap: wrap; The main element now fills the
align-content: flex-start; space down to the footer.
flex-grow: 1; +—"//
max-width: 960px;
font-family: Optima, Calibri, sans-serif;

CSs

}

fOOte.r { The footer element is
display: flex; a Flexbox container.
justify-content: center;

align-items: center;

width: 100%; -1———_____‘\\\\\\
padding: lem 0; The footer uses the
text-transform: uppercase; £ull window wid+th.
background-color: #543437;

1

footer p {
padding: 0 1.5em;

1

<footers>
<p>© Ampersand Photography</p>
<p>Facebook</p>
<p>Twitter</p>
<p>Instagram</p>
</footer>

HTML

286 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/photo-gallery/7

Adding a Few Tricks

Adding a Few Tricks

As it stands, your photo gallery is a decent page that looks good and works
well. That may be all you're looking for, and if so, you need read no further.
If you've been thinking that the gallery is a bit ho-hum and run-of-the-mill,
however, the next few sections show you how to add some dynamic and
useful features to the gallery.

Making the Footer Fixed

Earlier, you set things up so that your footer section displays at the bottom
of the screen even if there isn't enough content in the main section to fill the
browser window. When the main element has more content than will fit in
the browser window, it pushes the footer down, and the user must scroll to
see it. What if you prefer to have your footer always visible?

You can implement the following:

e Set the footer element's position property to fixed.

¢ Set the footer element's bottom property to 0, which tells the
browser to fix the footer to the bottom of the viewport.

¢ Add some padding to the bottom of the main element to ensure
that the last of its content isn't obscured by the fixed footer. Set
the padding-bottom value to the same value as the height of the
footer element (3. 5em, in this case).

The following example shows the added code that accomplishes all
these tasks.

» Try This = Online: wdpg.io/2/projects/photo-gallery/8

BEWARE

When adding a
copyright notice,

you may be tempted
to include the word
Copyright and the
copyright symbol

(©), but using both is
redundant. Use one or
the other, but not both.

This example fixes the footer element to the bottom of the viewport.

WEB PAGE

GALLERY 2 GALLERY 3

Fixed
footer

k' © AMPERSAND PHOTOGRAPHY FACEBOOK TWITTER

WEB DESIGN PLAYGROUND 287

@ ﬂmpersana/ Lpéfqgmp@‘

GALLERY 4

INSTAGRAM

continued

http://wdpg.io/2/projects/photo-gallery/8

— -~ PROJECT: Creating a Photo Gallery

A main {
©) display: flex;
justify-content: center;
flex-wrap: wrap; The bottom padding on
align-content: flex-start; e equals the helghi'
flex-grow: 1; of the footer.
max-width: 960px; /
padding-bottom: 3.5em;
}
footer {
display: flex; The footer is
justify-content: center; fixed.
align-items: center;
position: fixed;
bottom: 0; 4——\
width: 100%; The footer is positioned
text-transform: uppercase; at the bottom of +the
background-color: #543437; viewport.
1
PLAY Making the Nav Bar Sticky
The full code for the fixed ~ You may not be interested in having a fixed footer, but it's a common
nav element is available layout request to have the navigation bar onscreen full time, no matter how
on the Playground.

far down the user scrolls. In this case, however, you can't use the same
technique that you used for the footer in the preceding section. If you fix the
nav bar in place, you also have to fix the header; otherwise, you end up with
some ugly scrolling. But fixing the header is a waste of screen real estate, so
you need a different solution.

One possibility is to switch the positions of the header and nav elements.
With the latter now at the top of the screen, you could declare position:
fixed and top: 0 on the nav element and add padding-top: 3.5em to
the body element.

That solution is a nice one, but what if (like me) you prefer the nav
element to appear below the header? In that case, you can turn to the CSS
position value called sticky. Combined with a specific top or bottom
value, sticky tells the browser to scroll the element normally until it hits
the specified position and then sticks in place. To set this feature up for your
navigation bar, you need to do the following:

= Online: wdpg.io/2/
projects/photo-gallery/9

¢ Set the nav element's position property to sticky.

o Set the nav element's top property to 0, which tells the browser
to stick the nav bar when it's scrolled to the top of the viewport.

¢ Set the nav element’s z-index property to a positive number
(such as 10) to ensure the nav bar always appears on top of the
rest of the page elements as they scroll by.

288 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/photo-gallery/9
http://wdpg.io/2/projects/photo-gallery/9

Adding a Few Tricks

The following example shows the code you need to add to make this
happen.

» Try This = Online: wdpg.io/2/projects/photo-gallery/10
This example makes the navigation bar sticky.

W Sticky
©) nav
<
o
2\
§ GALLERY 1 GALLERY 2 GALLERY 3 GALLERY 4
- "L B
2 nav {
(O] display: flex;
Makes‘i'he justify-content: center;
nav sticky . .
align-items: center;

\v position: sticky;
top: 0; <

Sticks when it's
scrolled to the +op

z-index: 10;

height: 3.5em;

width: 100%;

background-color: inherit; Ensures that it's
} always visible

Adding Dynamic Captions

One thing your photo gallery lacks is captions for the thumbnails. One
straightforward way to add captions is to wrap each thumbnail in a div and
configure that div as a flex container with flex-direction set to column.
Then you could add the caption as, say, a figcaption element, and it will
appear below the thumbnail. The following example demonstrates this
technique.

WEB DESIGN PLAYGROUND 289

http://wdpg.io/2/projects/photo-gallery/10

— -~ PROJECT: Creating a Photo Gallery

b Try This = Online: wdpg.io/2/projects/photo-gallery/11
This example shows one method for adding captions below each thumbnail.

~

WEB PAGE

-

Ladies gossiping in Montreal To an ant, a flower is a world

CsS

o HTEERSEINISHE, { The image and caption wrapper
display: flex; is a flex container.
flex-direction: column;

align-items: center;

<div class="image-thumbnail"> ‘r/////”—_‘\\\A div wrapper sur-

The . .) o rounds each image and
captions caption

<figure>
<figcaptions>Ladies gossiping in Montreal</figcaptions>
</figure>
</div>
<div class="image-thumbnail">

<figure>
<figcaption>To an ant, a flower is a world</figcaption>

HTML

</figure>
</div>

That solution works fine, but I'd like to show you a more advanced technique
that comes with a considerable "wow" factor. In this technique, you keep the
figcaption wrapper but add the image-caption class and expand it with p
elements that you can use for both a caption title and the caption itself:

<div class="image-thumbnail">

<figcaption class="image-caption">
<p class="caption-title">Les Chuchoteuses</p>
The caption title <p class="caption-text">Sculpture of ladies gossiping in
and text are Montreal</p>
enclosed in this </figcaption>
figcaption </div>

290 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/photo-gallery/11

Adding a Few Tricks

Your goal is to hide the caption and display it only when the user hovers
the mouse over the thumbnail. In your CSS, you set up the image-thumbnail
class with relative positioning and a width and height equal to the actual
width and height of the thumbnail image:

. image-thumbnail {
position: relative;

width: 300px;
height: 200px; Set these to the same
dimensions as the thumbnail.

Now that image-thumbnail is positioned, you're free to use absolute
positioning on the image-caption class. That's important, because you
want to style this class with the same width and height as the thumbnail and
then position it in the top-left corner (that is, at top: 0and left: 0)so that
when you display it, it covers the thumbnail. Here's the full CSS for this class:

. image—caption { The caption is a

display: flex; flex container.

flex—direction: column;
justify-content: flex-end;

position: absolute; Positioned absolutely
left: 0; at top left
top: 0;

width: 300px;)))
height: 200px; b Same dimensions as the thumbnail

background-color: rgba(32, 32, 32, 0.75); <4))
color: #ecd078; Dark-gray, slightl

opacity: 0; transparent background

} Hidden by default

Notice that you've set up a flex container with a vertical main axis PLAY
and the items aligned with £lex-end so that they appear at the bottom Ty, f,1l code for this
of the container. The background color is set to a dark gray that's slightly example is available
transparent, so you'll still be able to see the thumbnail. Finally, the caption on the Playground.
has opacity set to 0, which means that it's hidden by default. To show it, = Online: wdpg.io/2/
add the hover pseudo-class to the image-caption class, and use it to set Projects/photo-gallery/12
the opacity to 1 (Figure 15.3 shows an example):

.image-caption:hover {

) opacity: 1;

» Figure 15.3

Hover the mouse over
a thumbnail to see the
caption.

W

LES CHUCHQTEUSES
Sculpture of ladies gossiping in Montreal

WEB DESIGN PLAYGROUND 291

http://wdpg.io/2/projects/photo-gallery/12
http://wdpg.io/2/projects/photo-gallery/12

T~ PROJECT: Creating a Photo Gallery

From Here

The final version of the photo gallery (mine is shown in Figure 15.4) is a great
showcase for your photos. (If you want to get your code on the web sooner
rather than later, check out the appendix for the details.)

» Figure 15.4

g A~
A full-featured photo ﬂmpersanm{o‘tgmp @
gallery
GALLERY 2 GALLERY 3 GALLERY 4

W
FLOWER & ANT

To an ant, a flower Is a world.
(click to enlarge)

© AMPERSAND PHOTOGRAPHY FACEBOOK INSTAGRAM

Even though you've built a full-featured photo gallery (especially if you
added the extra features from the last section), you still have many ways to
add to or modify the gallery. You can always add more images, of course, and
if you have a ton of photos to show off, you can add more gallery pages. You
can also change the colors, try different typefaces and type sizes, and so on.

Summary

¢ Prepare thumbnail and full-size versions of the photos you want
to display.

e Sketch out the photo gallery you want to build.
¢ Choose the typefaces for the page title and text.
e Choose colors for your background and your text.

¢ Build the initial page structure: the barebones HTML tags and
the global CSS properties applied to the body element.

* Add the Flexbox layout by setting up the body element as a flex
container.

¢ Fillin and style each section one by one: header, navigation,
main, and footer.

o Optionally, add a few tricks such as a fixed footer, a sticky nav
bar, and dynamic captions.

292 WEB DESIGN PLAYGROUND

Part 4

MakRing Your
Web Pages Shine

It has been roughly 30 years since most of us started to
take notice of the World Wide Web (as we would have long-
windedly called it back then). That's not long in the timeline
of human history, but it's long enough for us to have mostly
forgotten what the web was like back in, say, 1995. If you're
old enough to have used the web back then, let me refresh
your memory: it was drab. That dreariness was caused by
several things, including a universal lack of color, no style
sheets, and only a few rudimentary HTML tags. Back then, it
didn't even occur to most web surfers that pages could look
decent. Ah, now we know better. Now we know that pages
can not only look good but also positively shine.

Your own web designs will shine as well when you get
through the chapters in part 4, where you learn how to use
a few sophisticated HTML tags (Chapter 16), understand

how to apply colors and gradients (Chapter 17), gain some
advanced web typography skills (Chapter 18), and pick
up some professional-level CSS techniques (Chapter 19).
Chapter 20 brings everything together by showing you how
to build a shiny personal portfolio page.

Chapter 16

More HTML Elements
for Web Designers

16] This chapter covers

* Checking out some underused but important
HTML elements

* Linking to files on your site
* Linking to a specific element on a page

* Adding special characters and comments

You may have noticed that after a flurry of HTML-related activity in the early
chapters of the book, subsequent chapters had a decidedly CSS flavor. That's
not too much of a surprise, because after you know a few basic tags such
as <divs, <p>, and , you can hang a lot of CSS baggage on them and
create some fine-looking web pages. But there's more to HTML than these
basic elements. You saw a few useful page structure elements in Chapter 11,
but in this chapter, you'll extend your HTML know-how even further with
elements for everything from abbreviations to variables, advanced uses
of the <a> tag, adding nonkeyboard characters to your pages, and even
adding comments to make your code more readable. It's a reqular HTML
extravaganza!

WEB DESIGN PLAYGROUND 295

T~ More HTML Elements for Web Designers

Lesson 16.1: Other Text-Level Elements You Should Know
Covers: Text-level elements

= Online: wdpg.io/2/16-1-0

I've mentioned a few times in this book that it's important to construct the
HTML portion of your web page code semantically. That is, you should use
elements that tell the web browser—not to mention other web designers
and developers reading your code—what meaning each element has in the
context of the page. This is particularly true when it comes to the overall
layout of the page; as you saw in Chapter 11, tags such as <header>, <nav>,
and <article> make your code much easier to understand. These elements
are block-level elements, but you can also use inline elements and mark
them up semantically. HTML5 defines quite a few such text-level elements,
and although you may use them only rarely, you should know what they are
and what semantic freight they're meant to pull.

<abbr>

This element identifies text as an abbreviation or an acronym. Add the title
attribute to tell the browser the full version of the abbreviation or the full
expansion of the acronym. Most browsers display the title value in a
tooltip when you hover the mouse pointer over the element. Some browsers
(particularly Google Chrome and Mozilla Firefox) add a dotted underline to
the text.

» Example =) online: wdpg.io/2/16-1-1

| fear of missing out

WEB PAGE

<abbr title="fear of missing out">FOMO</abbr>

HTML

296 WEB DESIGN PLAYGROUND

http://wdpg.io/2/16-1-0
http://wdpg.io/2/16-1-1

More HTML Elements for Web Designers

<cite>

Use the cite element to mark text that's a reference to a creative work, such
as a book, article, essay, poem, blog post, tweet, movie, TV show, play, or
work of art. Most browsers display the cited text in italics.

» Example > Online: wdpg.io/2/16-1-2

L o .
O “A fine quotation is a diamond on the finger of a
5 man of wit, and a pebble in the hand of a fool. ”
& —Joseph Roux, Meditations of a Parish Priest
=
g <g>A fine quotation is a diamond on the finger of a man of wit,
= and a pebble in the hand of a fool.</g> —<cite>Joseph Roux,
T Meditations of a Parish Priest</cite>
<code>

This element identifies text as programming code. Most browsers display the
marked-up text in a monospace font.

» Example =>Online: wdpg.io/2/16-1-3

Use the CSS rgb () function.

WEB PAGE

Use the CSS <code>rgb()</code> function.

HTML

WEB DESIGN PLAYGROUND 297

http://wdpg.io/2/16-1-2
http://wdpg.io/2/16-1-3

\

More HTML Elements for Web Designers

<dfn>
You use this element to mark the initial or defining instance of a term. Most
browsers display the text in italics.

» Example > online: wdpg.io/2/16-1-4

L

g: A header is an element that appears

o0 at the top of the page.

[N}

=

EI A <dfn>header</dfn> is an element that appears at the top of the

[page.

T
<kbd>
You use the kbd element to indicate text that's entered via the keyboard
(such as typed characters or a pressed key, such as Enter or Return) or, more
generally, to indicate any type of user input (such as a voice command).
Most browsers display the text in a monospace font.

» Example =) online: wdpg.io/2/16-1-5

%)

< For example, type Helvetica and then

o press Enter.

[N}

=

EI For example, type <kbdsHelvetica</kbd> and then press

= <kbd>Enter</kbds>.

T
<mark>

Use the mark element to highlight page text that has some significance for
the reader, similar to the way you'd use a highlighter to mark a passage of
text in a book. Most browsers display the text with a yellow background.

298 WEB DESIGN PLAYGROUND

http://wdpg.io/2/16-1-4
http://wdpg.io/2/16-1-5

More HTML Elements for Web Designers

» Example = online: wdpg.io/2/16-1-6

|
(@) ¢ . 1
< Futura is a geometric sans-serif typeface
o that was designed by Paul Renner in 1927.
]
=
i‘ Futura is a geometric sans-serif typeface that was <mark>designed
= by Paul Renner in 1927</marks.
T
<pre>

The pre element doesn't have a semantic purpose in HTML5, but it's
used quite often with other semantic elements, such as code. One of the
problems with displaying programming code and similar text is that it's
difficult to show structuring elements such as indents because the web
browser ignores such whitespace. When you mark up the code with the pre
(short for preformatted text) element, however, the web browser preserves
all whitespace characters, including multiple spaces and new lines. The
browser also displays the text in a monospace font.

» Example = online: wdpg.io/2/16-1-7

(u; function helloWorld() {

E //Greet the reader

E alert('Hello World!');

= }

E‘ <pre><code>

= function helloWorld ()
T

//Greet the reader
alert ('Hello World!') ;
}</code></pre>

WEB DESIGN PLAYGROUND 299

http://wdpg.io/2/16-1-6
http://wdpg.io/2/16-1-7

\

More HTML Elements for Web Designers

<S>

Use the s element to mark text that's inaccurate, outdated, or in some other
way incorrect. Why not delete the text instead? Sometimes, you want to
leave the inaccurate text in place for comparison purposes, such as to show
a correction, updated information, or a revised price. The web browser
marks up this text by using a strikethrough effect.

» Example > online: wdpg.io/2/16-1-8

L

2

o On sale now for $12.99 $9.99.

&

=

EI On sale now for <s>$12.99</s> $9.99.

|_

E=
<samp>
The samp element enables you to mark up a passage of text as the sample
output from a computer program or similar system. The web browser
displays this text using a monospace font.

» Example = online: wdpg.io/2/16-1-9

o)

< The error message said comic Sans?

m Are you kidding me!?.

11}

=

E‘ The error message said <samp>Comic Sans!? Are you kidding me!?</

= samp>.

T
<small>

You use the small element to mark text as an aside from the regular text,
particularly one that has to do with what people often refer to as fine
print: copyright or trademark notices, disclaimers or disclosures, legal rights
or restrictions, warnings or caveats, or source attributions. The web browser
displays this text using a type size that's slightly smaller than the regular text.

300 WEB DESIGN PLAYGROUND

http://wdpg.io/2/16-1-8
http://wdpg.io/2/16-1-9

More HTML Elements for Web Designers

» Example = online: wdpg.io/2/16-1-10

| . .
o Thank you for reading this essay.
E TypeNerdNews is © 2023 Aldus Manutius.
E All rights reserved.
=
i‘ Thank you for reading this essay.

= <small>TypeNerdNews is © 2023 Aldus Manutius. All rights
T reserved.</small>
<sub>

The sub element marks text as a subscript, which is handy if your web page
requires chemical or mathematical formulas. The web browser displays this
text using a small type size that's set partially below the regular text baseline.

b Example > online: wdpg.io/2/16-1-11

(&') Many illuminated manuscripts are written
o using iron gall ink, which is iron sulfate
£ (FeSOy) added to gallic acid (C7HgOs).
=
E‘ Many illuminated manuscripts are written using iron gall ink,
= which is iron sulfate (FeSO₄) added to gallic acid
T (C₇H₆0₅) .
<sup>

The sup element marks text as a superscript, so it's often used for
mathematical formulas, but many web authors also use it to specify footnote
markers. The web browser displays this text using a small type size that's set
partially above the regular text baseline.

WEB DESIGN PLAYGROUND 301

http://wdpg.io/2/16-1-10
http://wdpg.io/2/16-1-11

\

More HTML Elements for Web Designers

» Example = online: wdpg.io/2/16-1-12

%) The W3C standard cautions us not to use
& subscripts and superscripts "for typographical
g presentation for presentation's sake."[1]
i‘ The W3C standard cautions us not to use subscripts and
= superscripts "for typographical presentation for presentation's
T sake."^[1]
<time>
You use the time element to indicate that a particular bit of text is a date, a
time, or a combination of the two:
<time datetime="machine-value">human text</time>
The idea is to represent the date and/or time in two ways:
¢ The text between the <time> and </time> tags is a human-
friendly way of showing the date or time, such as 1 p.m. on
August 23, 2023.
e The value of the datetime attribute is a machine-friendly
version of the date and/or time, such as 2023-08-23T16:00:00-
05:00. The general syntax to use is shown in Figure 16.1.
» Figure 16.1 Hour Minute Second
The syntax to use for the
<time>tag's datetime YYYY-MM-DDThh :mm: ss+HH: M‘M\
attribute /‘ /‘ \ ‘\
Year Month Day Hour Minute
Time ahead (+) or behind

(-) Greenwich Mean Time

The web browser doesn’t format the date/time in a special way. Instead,
you use the time element to give the browser and other software-based
visitors to your page a meaningful, readable date and/or time. It's often
useful to include the date and time when a page was created or last edited,
for example.

302 WEB DESIGN PLAYGROUND

http://wdpg.io/2/16-1-12

More HTML Elements for Web Designers

» Example =) Online: wdpg.io/2/16-1-13

L
g This web page was last modified on
o August 23rd, 2023,at 9:25AM.
[T
=
i‘ This web page was last modified on <time datetime="2023-08-
= 23T09:25:00-05:00">August 23rd, 2023 at 9:25AM</time>.
I
<u>

The u element has no semantic use that | can discern. The HTML standard
says that it “represents a span of text with an unarticulated, though explicitly
rendered, non-textual annotation.” | have no idea what that means. The
standard unhelpfully suggests that a possible use may be “labeling the text
as being misspelt,” but that seems dubious.

The real problem with the u element is that all web browsers render the
text as underlined, which means that every person who visits your page
will think that the text is a link, and a large subset of those visitors will try
to click it (and grow frustrated when nothing happens). You may think that
underlining is useful for emphasizing text, but that's what the tag is for.
In short, you have no good reason to use the <u> tag and plenty of good
reasons not to use it. | include it here because you may come across it when
looking at the source code of some (no doubt poorly designed) web pages.

» Example = Online: wdpg.io/2/16-1-14

L

SE It's a really bad idea to use the u element

o . i . .

P because its text looks just like a link.

|

=

E‘ It's a really bad idea to use the <code>u</code> element because
o its text <u>looks just like a link</u>.

T

WEB DESIGN PLAYGROUND 303

http://wdpg.io/2/16-1-13
http://wdpg.io/2/16-1-14

\

More HTML Elements for Web Designers

<var>

The var element enables you to mark up a word or phrase as a placeholder.
This placeholder could be a programming variable, a function parameter,
or a word or phrase used to represent a general class of things. The web
browser displays this text by using italics.

» Example > online: wdpg.io/2/16-1-15

L

9: Here's the syntax to use for the time element:

o

o <time datetime="machine-value">human text</time>.

L

=

g Here's the syntax to use for the <code>time</code> element:

= <code><time datetime="<var>machine-value</vars>"><var>human
I

text</var>< /time> .</code>

Now it's time to take a closer look at a familiar web page object: the <a> tag.

More about Links

When | showed you how to wield the <a> tag way back in Chapter 2, you
learned that creating a link is a straightforward matter of setting the link
address as the value of the <a> tag's href attribute. That's all true as far as it
goes, but there's more to the <a> tag because your web page links can come
in any of the following three varieties:

* Remote links to web pages outside your site
¢ Local links to other web pages on your site

¢ In-page links to other sections of the current web page

You learned about remote links in Chapter 2, and you'll learn about
in-page links in the next section. But now, I'm going to talk about local links
to your other web pages.

Linking to Local Files

The first thing to note is that for local links, the URL doesn’t require either
the protocol or the domain name. With an internal link, the browser assumes
that the protocol is HTTPS and that the domain name is the name of your
host server. That's straightforward enough, but before continuing with the
linking lesson, | want to take a short side trip to help you understand how
directories work in the web world.

304 WEB DESIGN PLAYGROUND

http://wdpg.io/2/16-1-15

More about Links

When you sign up with a company that will host your web pages, that
company gives you your own directory on its server. If you're putting
together only a few pages, that directory should be more than adequate.
If you're constructing a larger site, however, you should give some thought
to how you organize your files. Why? Well, think of your own computer. It's
unlikely that you have everything crammed into a single directory. Instead,
you probably have separate directories for the different programs you use
and other directories for your data files.

There's no reason why you can't cook up a similar scheme in your web
home. With this type of multidirectory setup, however, how you link to files
in other directories can be a bit tricky. As an example, consider a website that
has three directories:

y A Main directory

articles
jourl“nal// ’/—\ Subdirectories of
the main direc+ory

There are three scenarios to watch out for:

e Referencing a file in the same directory—This scenario is easiest
because you don’t have to include any directory information.
Suppose that the HTML file you're working on is in the journal
directory and that you want to reference a page named rant
.html that's also in that directory. In this case, you use only the
name of the file, like this:

e Referencing a file in a subdirectory from the main directory—
This scenario is common because your home page (which is
almost certainly in the main directory) is likely to have links to
files in subdirectories. Suppose that you want to link to a page
named design.html in the articles subdirectory of your
home page. Your <a> tag takes the following form:

¢ Referencing a file in a subdirectory from a different
subdirectory—This scenario is the trickiest one. Suppose that
you have a page in the articles subdirectory, and you want to
link to a page named poem.html in the journal subdirectory.
Here's the <a> tag:

In the last example, the leading slash (/) tells the browser to first go
up to the main directory and then go into the journal directory to find the
poem.html file.

WEB DESIGN PLAYGROUND 305

\

More HTML Elements for Web Designers

Lesson 16.2: Linking to the Same Page
Covers: In-page links

= Online: wdpg.io/2/16-2-0

When a surfer clicks a standard link, the page loads, and the browser displays
the top part of the page in the window. It's possible, however, to set up a
special kind of link that forces the browser to display some other part of the
page, such as a section in the middle.

When would you ever use such a link? Most of your HTML pages probably
will be short and sweet, and the web surfers who drop by will have no trouble
finding their way around. But for longer pages, you can set up links to various
sections of the page that enable a reader to jump directly to a section rather
than scroll through the page to get there.

To create this kind of link, you must set up a special identifier that marks
the spot to which you want to link. To understand how in-page links work,
think of how you might mark a spot in a book you're reading. You might dog-
ear the page, attach a sticky note, or place something (such as a bookmark)
between the pages. An in-page link identifier performs the same function: it
marks a particular spot in a web page, and you can use an a element to link
directly to that spot.

To set up an identifier for an in-page link, you add an id attribute to a tag
and supply it a value:

<h2 id="best-practices">Best Practices</h2>

The value you assign to the id attribute must meet the following criteria:
¢ |t must be unique on the web page.

¢ |t must start with a letter.

e The rest of the characters can be any combination of letters,

digits (0—9), hyphens (-), underscores (_), colons (:), or periods (.).

How you set up your in-page link depends on whether it resides in the
same page as the link or in a different page. If the identifier and the link are
in the same page, you link to it by using the id value, preceded by the hash
symbol (#):

Go to the Best Practices section

If the identifier is defined in a separate web page, your link's href value
is the URL of that page, followed by the hash symbol (#) and the id value:

See my primer on best
practices

The following example shows a few in-page links in action.

306 WEB DESIGN PLAYGROUND

http://wdpg.io/2/16-2-0

WEB PAGE

HTML

More about Links

» Example =) online: wdpg.io/2/16-2-1

This example shows a page that uses some in-page links.

Organizing Your Web Page Text

Contents:

Benefits
In-page links Workflow

In-page link address ~_ {

"
Link for
Best
Practices
heading

Best Practices

All great documents have something in common: excellent organization. Content and
formatting are important, but their effectiveness is diminished or even nullified if the
document has a slipshod organization. However, even a page with only so-so content and
negligible formatting can get its point across if it's organized coherently and sensibly.

P J

<h1>0rganizing Your Web Page Text</hl> Link for Benefits
<h4>Contents:</h4> heading
Benefits
 Lidlz Ser Wierd<Slew

Workflow
 e headMg

Best Practices

<p>

All great documents have something in common: excellent
organization. Content and formatting are important, but their
effectiveness is diminished or even nullified if the document

has a slipshod organization. However, even a page with only so-so
content and negligible formatting can get its point across if it's
organized coherently and sensibly. ‘(/’“Iden+HHer for Benefits
<h2 id="benefits">Benefits</h2> heading

There are many reasons to organize your web page text, but three
are the most important: narrative flow, accessibility, and search
engine optimization.

Narrative Flow</h3>

Research has shown — and poets and storytellers have known
for thousands of years — that humans have an innate hunger
for story. We learn better and take in data more effectively when
it's organized as a narrative.

<h3>Accessibility</h3>

Visually impaired visitors to your web page will often use special
screen readers to read aloud the page contents. These tools are
designed to look for and read web page headings so the user can
quickly get an overall sense of the page structure.

<h3>Search Engine Optimization</h3>

Most search engines include page headings as part of their
algorithms for determining where a page should rank in the
results. In general, text that resides higher up in the page
hierarchy is given more importance in the search results.

<h2 id="workflow">Workflow</h2>
<h2 id="best-practices">Best Practices</h2>

ldentifier for

ldentifier for Best Practices Work£low he“dmﬁ

heading

WEB DESIGN PLAYGROUND 307

http://wdpg.io/2/16-2-1

\

Set up an external link
to the following address:
www.w3.org/TR/html5/
text-level-semantics

.html. Set up an external
in-page link to the
identifier named
the-a-element onthe
same page. = Online:
wdpg.io/2/16-2-3

REMEMBER

If you include

the tag <meta
charset="utf-8">
in your page’s header
section, you can type
characters such as
the em dash (—) and
copyright symbol (©)
directly in your code.
You type an em dash
by pressing Alt-0151
in Windows or Option-
Shift+- (hyphen) in

macOS, for example.

More HTML Elements for Web Designers

You won't use in-page links all that often, but keep them in mind the next
time you build a long page with lots of sections.

Inserting Special Characters
Your HTML and CSS files consist only of text, but that doesn't mean that
they consist only of the letters, numbers, and other symbols that you can
type with your keyboard. If your web text needs an em dash (—), a copyright
symbol (©), or an e with an acute accent (&), you can add those elements to
your page by using special codes called character entities. These entities are
available in three flavors: hexadecimal code, decimal code, and entity name.
The hex and decimal codes are numbers, and the entity names are friendlier
symbols that describe (although often cryptically) the character you're trying
to display. You can display the registered trademark symbol (TM), for example,
by using the hex code ™, the decimal code ™, or the entity
name ™.

Note that all three references begin with an ampersand (&) and end with
a semicolon (;). Don't forget either symbol when you use character entities
on your own pages. Figure 16.2 shows a few common character entities.

Character Hex Code Decimal Code Entity Name
& &i#x0022; &i#34; "
& &i#x0026; & &
< < < <
> > > >
¢ ¢ ¢ ¢
£ £ £ £
© © © ©
® &i#tx00ae; &i#174; ®
% ½ &i#189; &fracl2;
é é é é
— &i#x2014; — —

P Figure 16.2 Some HTML5 character entities and their codes

To help you work with HTML entities, | built a tool that enables you to
browse and find what you need. Read on to learn how to access and use
this tool.

308 WEB DESIGN PLAYGROUND

http://www.w3.org/TR/html5/text-level-semantics
http://www.w3.org/TR/html5/text-level-semantics
http://wdpg.io/2/16-2-3

Using the HTMLS5 Entity Browser

Using the HTML5 Entity Browser

HTML5 has nearly 1,500 defined character entities, so it's not surprising
that two of the biggest frustrations associated with using character entities
are knowing what characters are available and finding the character you
want. Having been through this frustration many times myself, | decided
to do something about it. To that end, | built the HTML5 Entity Browser,
which organizes character entities by category (so you can easily see what's
available) and offers a search feature (so you can find any character quickly).
Here's how it works:

1 Inthe Web Design Playground (https://webdesignplayground.io/2), choose
Menu > HTML5 Entity Browser (under Tools).

2 Use the Category list to select the type of entity you're looking for.

The app filters the list of entities to show only those in the category
you selected, as shown in Figure 16.3.

» Figure 16.3
HTMLS Entity Browser LEFTWARDS ARROW UPWARDS ARROW . 9 .
Name: ← Name: ↑ With the HTML5 Entlty
& (~ Hex: ← Hex: ↑
peodbabel il adunlicald Decimal: 8#8592; Decimal: 848593; Browser, choose a category
sl RIGHTWARDS ARROW DOWNWARDS ARROW fi ist of entiti
category you want to browse, or enter e NenoRda to filter the list of entities,
a search string. The resulting entities ﬂ A A s &
appear on the right along with their Hex beabelde. l ey etie 1o, as shown here, or search
G 9 9 Decimal: 8#8594; Decimal: 8#8595; .
descriptions, entity names, and hex LEFT RIGHT ARROW UP DOWN ARROW the entities.
anddecimal codes: Name: ↔ Name: ↕
H Hex: ↔ Hex: ↕
Select a Category Decimal: ↔ Decimal: ↕
NORTH WEST ARROW NORTH EAST ARROW
Choose the entity category you want Name: ↖ Name: ↗
to browse: Hex: ↖ Hex: ↗
T | Decimal: ↖ Decimal: ↗
Arrows :]
L SOUTH EAST ARROW SOUTH WEST ARROW
\ Name: ↘ Name: ↙
Search the Entities Hex: ↘ Hex: ↙
Decimal: ↘ Decimal: ↙
+ LEFTWARDS ARROW RIGHTWARDS ARROW
Type your entity search text': WITH STROKE WITH STROKE
&/~ Name:↚ —£> Name: ↛
Hex: ↚ Hex: ↛
"You can enter all or part of the Decimal: ↚ Decimal: ↛
entity name or description. You can RIGHTWARDS WAVE LEFTWARDS TWO
also locate specific entities by ARROW HEADED ARROW
entering a hex or decimal code. ~a ﬁame': ↝ “— Eame': ↞

3 To search the list of entities, use the Search the Entities text box to

enter all or part of the entity name or description.

If you want to see a specific entity, you can enter that entity’'s hex or

decimal code.

WEB DESIGN PLAYGROUND 309

https://webdesignplayground.io/2

\

BEWARE

Although comment text
isn’t displayed in the
browser, it’s easy for
another person to see
it by viewing the page
source code. Therefore,
don’t put sensitive
information inside a
comment tag.

More HTML Elements for Web Designers

Adding Comments

A comment is a chunk of text that, although it resides in your HTML file,
is skipped by the web browser, so it doesn't appear when your page is
rendered. That behavior may strike you as odd, but comments have quite a
few good uses:

¢ You can add notes to yourself in specific places of the page
code. You can add a comment such as Here’s where the
logo goes when it’s finished.

¢ You can add explanatory text that describes parts of the page. If
you have a section that comprises the header of your page, you
can add a comment before the section such as This is the
start of the header.

¢ You can skip problematic sections of your page. If you have a
section that isn't working properly or a link that isn't set up yet,
you can convert the text and tags to a comment so as not to
cause problems for the browser or the user.

¢ You can add a copyright notice or other info for people who
view your HTML source code.

To turn any bit of text into a comment, surround it with the HTML
comment tags. Specifically, you precede the comment with <! -- and follow
it with -->, like this:

<!—-This text is a comment-—>

Summary

¢ If you're linking to a local file in the same directory, set the <a>
tag's href attribute to the name of the file; otherwise, you need
to precede the filename with the directory name.

e To create an in-page link, add the id attribute to the link
location; then set your <a> tag's href attribute to the id value,
preceded by a hash tag (#).

* To specify a special character, enter the character directly, if
possible, or use the decimal code, hexadecimal code, or entity
name, each of which begins with an ampersand (&) and ends
with a semicolon (;).

¢ To add a comment to your code, surround the comment text
with <!--and -->.

310 WEB DESIGN PLAYGROUND

Chapter 17

Adding a Splash
of Color to Your
Web Designs

1] This chapter covers

* Learning some color basics

* Understanding how CSS uses color
= Applying a color to an element
= Adding background colors

= Creating color gradients

CSS offers all the tools you need to add a dash of color to your headings, text,
links, and backgrounds. You learn how to use those tools in this chapter, as
well as how to wield a few special CSS tools for building color gradients that
will raise the “wow" factor on your pages.

WEB DESIGN PLAYGROUND 311

\

MASTER

With 256 available
values for each of the
three colors, you have a
palette of more than 16
million colors to choose
from.

MASTER

Whenever the red,
green, and blue values
are equal, you get a
grayscale color. Lower
numbers produce
darker grays, and
higher numbers produce
lighter grays.

Adding a Splash of Color to Your Web Designs

Understanding Colors

The good news about understanding colors for use in your web designs is
that you don't need to understand much. Yes, entire books have been written
on color theory, but you don't need to be versed in the physics of optics
to create beautiful, eye-catching web pages. You need to know only two
things: how to combine colors harmoniously and how colors are created.
For the former, see “"Choosing Harmonious Colors” later in this chapter; for
the latter, read on.

cc Color is free on the web. While there's nothing wrong
with black text on white, using different colors not
only adds a bit of drama to the page, but also creates
hierarchies for the content. —Erik Spiekermann

You can use two methods to create any color. The first method uses
the fact that you can create any color in the spectrum by mixing the three
main colors, which are red, green, and blue, so this method is sometimes
called the RGB method. Painters do this mixing on a palette, but you're in
the digital realm, so you mix your colors using numeric values, supplying a
number between 0 and 255 (or a percentage between 0 and 100) for each
of the three colors. A lower number means that the color is less intense, and
a higher number means that the color is more intense.

Table 17.1 lists nine common colors and their respective red, green, and
blue values.

P> Table 17.1 Thered, green, and blue values for nine common colors

Red

Green 0 255 0
Blue 0 0 255
Yellow 255 255 0
Magenta 255 0 255
Cyan 0 255 255
Black 0 0 0
Gray 128 128 128
White 255 255 255

312 WEB DESIGN PLAYGROUND

Understanding Colors

As you can see in table 17.1, when only one color is specified (that is, has a
value greater than 0), you get the pure color, but when two or more values are
specified, you get a blend of those colors. To help you visualize this blending
process, I've put together a short animation on the Web Design Playground.
Choose Menu > RGB Visualizer (or surf directly to wdpg.io/2/rgbvis), and you'll
see three circles—one red, one green, and one blue—slowly approach one
another and then overlap. When the overlap occurs, as shown in Figure 17.1,
notice four things:

¢ The overlap of red and blue produces magenta.
¢ The overlap of red and green produces yellow.

¢ The overlap of green and blue produces cyan.

¢ The overlap of all three colors produces white.

» Figure 17.1

On the Web Design
Playground, choose Menu >
RGB Visualizer to see

an animation in which

the three circles come
together and the overlaps
produce the blended colors
shown here.

The second method of creating a color involves supplying numeric values
for three attributes called hue, saturation, and lightness, so this technique is
sometimes called the HSL method:

¢ Hue—This value (which is more or less equivalent to the term
color) measures the position (in degrees) on the color wheel
with values between 0 and 359, as shown in Figure 17.2. Lower
numbers indicate a position near the red end (with red equal
to 0 degrees), and higher numbers move through the yellow,
green, blue, and violet parts of the spectrum.

WEB DESIGN PLAYGROUND 313

http://wdpg.io/2/rgbvis

\

Adding a Splash of Color to Your Web Designs

Hue = 120 (green)
» Figure 17.2
Hue refers to the position
on the color wheel, starting
at 0 (red) and passing
through 120 (green) and

240 (blue) / Hue = 0 (red)
Hue = 240 (blue) /
e Saturation—This value is a percentage and a measure of a given
hue's purity. A saturation value of 100% means that the hue is a
pure color. As shown in Figure 17.3, lower numbers indicate that
more gray is mixed with the hue; at 0%, the color becomes part
of the grayscale.
Saturation = 67% Saturation = 33%
» Figure 17.3

Saturation is a measure

of a color’s purity or how
much gray is mixed in. The
color wheel in Figure 17.2
is set to 100% saturation.
The lower the saturation
percentage, the grayer the
color appears.

e Lightness—This value is also a percentage and is a measure of
how light or dark the color is. As you can see in Figure 174,
lower percentages are darker (with 0% producing black), and
higher percentages are lighter (with 100% creating white).

314 WEB DESIGN PLAYGROUND

Adding Colors with CSS

Lightness = 75% Lightness = 25%

» Figure 17.4

Lightness measures
how dark or light a
color appears. The color
wheel shown previously
in Figure 17.3 is set to
50% lightness. Higher
percentages produce
lighter colors, and lower
percentages produce
darker colors.

Which method should you use? The answer depends on various factors. If
you want to specify a single color, the RGB method is a bit more straightforward,
but if you want to choose harmonious colors—such as colors that are
complementary or analogous—the HSL method is best. Before you decide,
you need to know the specifics of how you apply colors in CSS.

Adding Colors with CSS

As a measure of the importance of color not only in the style sheet world but
also in web design, CSS offers at least a half-dozen ways to define something
as apparently simple as a color. Each method has its uses, so you're going to
learn them all over the next few sections.

Lesson 17.1: Specifying Red, Green, and Blue with the rgb() Function
Covers: The rgb () function

= Online: wdpg.io/2/17-1-0

Earlier, you learned that you can define any of more than 16 million colors by
specifying a value between 0 and 255 for each of the color's red, green, and
blue components. One way to do this in CSS is to use the rgb () function,
shown in Figure 17.5.
To use this function, replace Red (0-255) Blue (0-255) » Figure 17.5

red-value with a number between /_& /_M To specify a color's red,

O and 255 to Speley the red rgb (red-value, green-value, blue-value) green,and bluecomponents'
you can use the rgb ()

component; replace green-value
with a number between 0 and 255 I function.
to specify the green component; Green (0-255)

WEB DESIGN PLAYGROUND 315

http://wdpg.io/2/17-1-0

\

Adding a Splash of Color to Your Web Designs

and replace blue-value with a number between 0 and 255 to specify the blue
component. (Note that the commas are optional, so feel free to leave them out.)
You can generate purple, for example, by using 128 for red, O for green, and 128
for blue. The following example shows how you'd use CSS to display all your h1
headings with purple text.

» Example = Online: wdpg.io/2/17-1-1
This example uses the rgb () function to assign the color purple to the h1 element.

Ll
O}
.
= Royalty: A History - <>
1}
=
& h1 { /—\ Specifies the hl
() color: rgb (128, 0, 128); element to style
} 4\
Uses the rgb () function to
set the color property value
§ <hl>Royalty: A History</hls>
|_
T
PLAY You can also specify the rgb () function’s red-value, green-value, and
How would you use blue-value parameters by using percentages, with 100% specifying the full
the rgb () function to intensity of the color (equivalent to the 255 decimal value) and 0% specifying
apply the color red to the lowest intensity of the color (so it's the same as 0 in the decimal notation).

an element?) Online:

! Table 17.2 is a repeat of table 17.1 with the decimal values replaced by their
wdpg.io/2/17-1-2

percentage equivalents.

b Table 17.2 Thered, green, and blue percentages for nine common colors

Green (%) Blue(%) Color

Red 100 0 0
Green 0 100 0
Blue 0 0 100
Yellow 100 100 0

316 WEB DESIGN PLAYGROUND

http://wdpg.io/2/17-1-1
http://wdpg.io/2/17-1-2

Adding Colors with CSS

Green (%) Blue(x) Color

Magenta

Cyan 0 100 100
Black 0 0 0
Gray 50 50 50
PLAY
i 100 100 100 How would you use the
rgb () function to apply
a light-gray color to an
Here's the color declaration for purple converted to percentages: element? = Online:
color: rgb(50%, 0, 50%) wdpg.io/2/17-1-3

The rgb () function is straightforward, but it's not particularly intuitive,
which is the main reason why most web designers eschew the rgb ()
function in favor of the more intuitive hsl () function, discussed next.

Lesson 17.2: Specifying Hue, Saturation, and Lightness with the
hsl() Function
Covers: The hs1 () function

= Online: wdpg.io/2/17-2-0

If you have a specific hue in mind, you may prefer to define your CSS color
by specifying the color’s hue, saturation, and lightness components. To do
this in CSS, use the hsl () function, shown in Figure 17.6.

To use this function, replace hue-value with a number between 0 and
359 to specify the hue component; replace sat-value with a percentage
between 0 and 100 to specify the saturation component; and replace
light-value with a percentage

between 0 and 100 to specify Hue (0-359) Lightness (0-100%) b Figure 17.6

th.e lightness component. Sticking /_& /_& To specify a color's hue,
with the purple hl text example, saturation, and lightness
the following shows how you'd components, use the

use CSS to display all your hl W’/ hs1 () function.
headings with purple text by using Saturation (0-100%)

the hsl () function.

hsl (hue-value, sat-value, light-value)

WEB DESIGN PLAYGROUND 317

http://wdpg.io/2/17-2-0
http://wdpg.io/2/17-1-3

\

» Example

WEB PAGE

CSsS

HTML

How would you use

the hs1 () function to
apply the color blue to
an element? = Online:
wdpg.io/2/17-2-2

How would you use

the hsl () function to
apply the color white to
an element? = Online:
wdpg.io/2/17-2-3

To learn how to

modify your colors

with transparency,

see the “Changing the
Transparency” lesson on

the Playground. 5 Online:

wdpg.io/2/17-6-0

h{ —

color: hsl (300, 100%, 25%);
1

Adding a Splash of Color to Your Web Designs

= Online: wdpg.io/2/17-2-1
This example uses the hs1 () function to assign the color purple to the h1 element.

Royalty: A History - <u1>

Speci{:ies the hl
element to style

Sets the color pro er+y
value via the hsl (f
function

<hl>Royalty: A History</hl>

Before learning the next method for specifying colors, this is as good a
time as any to learn how to control transparency in CSS

A Quick Note About Transparency

For the most part, you want your web page text to appear solid and readable.
However, there will be times when, for the sake of adding visual interest to
your page, you consciously decide to sacrifice a tiny bit of readability by
making your text slightly transparent. This means that whatever is behind the
text—it could be a solid color, an image, or even other text—shows through.

You control the transparency (also called the opacity) of your text by
using variants of the rgb () and hsl () functions: rgba () and hsla(). You
use these functions like rgb () and hsl (), respectively, except that you also
specify a fourth parameter called the alpha channel. The alpha channel
is @ numeric value between 0.0 and 1.0, where 1.0 means that the text is
completely opaque and 0.0 means that the text is completely transparent.
(Alternatively, you can stick with the rgb () and hsl () functions and just add
the alpha channel value as a fourth parameter.)

A Brief Detour into Hexadecimal Numbers

The next CSS color tool I'm going to tell you about uses hexadecimal
numbers, which use base 16 instead of the base 10 used by regular decimal

318 WEB DESIGN PLAYGROUND

http://wdpg.io/2/17-2-1
http://wdpg.io/2/17-2-2
http://wdpg.io/2/17-2-3
http://wdpg.io/2/17-6-0

Adding Colors with CSS

numbers. If you know about hexadecimal numbers, feel free to skip this
section; otherwise, before moving on with CSS colors, you need to make a
short but necessary detour into the hexadecimal realm.

Hexadecimal values are efficient because they use single-character
symbols for everything from 0 to 15. Specifically, they use O through 9 for
the first 10 values, just as in decimal numbers, but they use letters A through
F to represent the quantities 10 through 15. Figure 17.7 shows the decimal
and hexadecimal equivalents for the quantities O through 15.

— 01 23 4567 8 9101112131415 »figuell’

Hexadecimal uses 0

ETTTTTTTIT L]] e,
decimal, but it represents

/’0 123456789 ABCDEFTF the quantities 10 through 15

with the letters A through F.

Decimal

Hexidecimal

For two-digit values, a decimal number has two parts: a tens part on
the left and a ones part on the right. The number 10 can be read as “one
ten and zero ones,” and 36 can be read as “three tens and six ones.” A two-
digit hex number also has two parts: a sixteens part on the left and a ones
part on the right. The hex number 10 can be read as “one sixteen and zero
ones” (making it the equivalent of 16 decimal), and 5C hex can be read as
“five sixteens and C (twelve) ones,” making it the equivalent of 92 decimal.
Figure 17.8 shows a few examples.

One Six Three Six Nine Two > Figure 17.8
ten ones tens ones tens ones In the same way that a

\ / \ / \ / two-digit decimal number
consists of a tens place on
1 6 36 92 — the left and a ones place
Decimal on the right, a two-digit

‘ ‘ ‘ hexadecimal number

consists of a sixteens place
on the left and a ones place

10 24 5C — texatecimal et
SN NN

One Zero Two Four Five Twelve
sixteen ones sixteens ones sixteens ones

Okay, now that you know all about hexadecimal numbers (right?), it's
time to put that knowledge to good use by learning how to use hex numbers
to specify colors in CSS.

WEB DESIGN PLAYGROUND 319

Adding a Splash of Color to Your Web Designs

Lesson 17.3: Using RGB Hex Codes
Covers: RGB hexadecimal codes

= Online: wdpg.io/2/17-3-0

Rather than using the rgb () function to specify a color's red, green, and
blue components, you can use the CSS hexadecimal-based method, shown
in Figure 17.9.
These RGB hex codes always
» Figure 17.9 Red value (hex 00-ff) Blue value (hex 00-ff) begin with the hash symbol (#),
You can specify a color by

) followed by the two-digit hex
using the code #rrggbb,

. value for the red component, the
where rris the hex value #rrggbb . P
for the red component /A two-digit hex value for the green
ggis the hex value for the Green value (hex 00-f) component, and the two-digit
green component, and bb hex value for the blue component.
is the hex value for the blue (If you want to include an alpha
component. channel to control transparency, use the format #rrggbbaa, where aa is a

two-digit hex value.) In each case, the allowed hex values range from 00 to
£f. (If you're using the format #rrggbbaa, then when aa is 00, the color is
completely transparent, and when aa is ££, the color is completely opaque.)
Because these codes consist of three hex values, they're often called hex
triplets. Table 17.3 lists the RGB hex codes used for the nine common colors
shown earlier in tables 17.1 and 17.2.

P Table 17.3 The RGB hex codes for nine common colors

Red #££000

Green #00££00
Blue #0000ff
Yellow H#E£££00
Magenta H#EEO0OEE
Cyan HOOEEEE
Black #000000
Gray #808080
White H#EEEEEE

320 WEB DESIGN PLAYGROUND

http://wdpg.io/2/17-3-0

Adding Colors with CSS

The following example shows how you'd use this method to apply purple
to hl text. The hex equivalent of decimal 128 is 80, so for the color value,
the red component is hex 80, the green component is hex 00, and the blue
component is hex 80.

» Example =) online: wdpg.io/2/17-3-1

This example uses #rrggbb to assign the color purple to the h1 element.

SpeciFie; the hl
element to style

Ll

©)

< -

= Royalty: A History < <>

o

=

Qa h1f{ @ —

O color: #800080;

}

Uses #rrggbb to set the
color property value

3‘ <hl>Royalty: A History</hl>

|_

I

You can use an even shorter code in certain circumstances. If each of the
rr, gg, and bb values use repeated characters—such as 00, 66, or ff—you
can use one of the repeated characters for each color. The following two
codes are equivalent:

#3366¢C

#36¢

If you're finding any of this confusing, not to worry: I've added a tool to
the Web Design Playground that makes it easy to choose the color you want
and get the correct CSS code for that color.

Working with the Color Chooser

Dealing in RGB codes, HSL values, and hexadecimals may be convenient for
a computer, but the connection between those numbers and a particular
color isn't intuitive for humans. Color keywords are more comprehensible,
but they represent far too few of the available colors. To make it easier for
you to view and ultimately choose a color to use on a web page, the Web
Design Playground offers a tool called the Color Chooser. This tool provides
a color palette control that lets you select a preset color or any combination
of hue, saturation, luminosity, and transparency. The tool shows not only the

What RGB code would
you use to apply the
color blue to an element?

= Online: wdpg.io/2/17-3-2

What RGB code would
you use to apply the
lightest possible gray to
an element? = Online:
wdpg.io/2/17-3-3

WEB DESIGN PLAYGROUND 321

http://wdpg.io/2/17-3-1
http://wdpg.io/2/17-3-2
http://wdpg.io/2/17-3-3

ol Adding a Splash of Color to Your Web Designs

resulting color but also the rgb () function (both decimal and percentage),
the hsl () function, the RGB hex triplet, the color keyword (if applicable),
and the r() and hsla() functions if you set the transparency. Here's how
you use the Color Chooser tool:

1 Inthe Web Design Playground, choose Menu > Color Chooser (or
go directly to wdpg.io/2/colorchooser) to display the tool, as shown in
Figure 17.10.

2 To choose a preset color, click one of the swatches.

3 To specify a color, use the text box to enter an rgb () function, hsl ()
function, RGB hex triplet, color keyword, rgba () function, or hsla ()
function.

4 In the large color box, drag horizontally to set the saturation, or drag
vertically to set the lightness.

5 Use the vertical box to set the hue and the horizontal box to set the
transparency.

Color Chooser

Use this tool to select a color and then see its value in
various CSS color codes, including| rgb () ,|hs1(),
|#rrggbb, keyword (if applicable), as well as| rgba () |
and {h?a () |if you change the transparency. Click the
color palette below and then select your color elements.
The color appears on the right along with its CSS codes.

<« Selected color

Drag to set

("'c‘olor.i:hooserW(Related Tools W the zaturation.

Drag to set Drag to set
the lightness. the hue.
rgb(255, 140, 0)
rgb(looé, 55;, 0%) CSS codes for
— hs1(33, 100%, 50%) the selected
/’ B o oo #££8c00 color
darkorange

Preset Drag to set the You can type
colors transparency. a code here.

P Figure 17.10 Use the Web Design Playground's Color Chooser tool to select a color
and see its various CSS codes.

322 WEB DESIGN PLAYGROUND

http://wdpg.io/2/colorchooser

Choosing Harmonious Colors

Now you know how to apply colors to your page elements, but that's
only half the battle. Colors that are poorly matched or improperly applied
can make a page look worse, not better. The next section examines a few
basics for effectively using colors in your page designs.

Choosing Harmonious Colors

With so many colors available, the temptation is to go overboard and use a
dozen hues on each page. Using too many colors, however, can confuse your
users and even cause eye fatigue. Try to stick to two or three colors at most. If
you must use more, use different shades of two or three hues.

When selecting colors, think about the psychological effect of your
scheme on your users. Studies have shown that "cool” colors such as blue
and gray evoke a sense of dependability and trust. Use these colors for a
businesslike appearance. For pages that require a little more excitement,
‘warm” colors such as red, yellow, and orange can evoke a festive, fun
atmosphere. For a safe, comfortable ambiance, try using brown and yellow.
For an environmental touch, use green and brown.

Finally, you need to give some thought to how your colors work together.
Some colors naturally clash and, when used together, will make your page
look terrible. Fortunately, every hue has one or more colors that blend well
with it, resulting in harmonious designs that are pleasing to your visitors’
eyes. Note that harmonious doesn’'t mean boring! Depending on the colors
you choose, the result can be anything from soothing to vibrant, so the color
scheme you go with is a reflection of what you want your site to say.

Happily, you don’t have to guess which colors will do the job. You can
use the tricks described in the following list:

¢ Choose complementary colors. Complementary colors lie
opposite each other on the color wheel. In terms of the hs1 ()
function, complementary colors are those with hue values
that are 180 degrees apart. For example, red—hsl (0, 100%,
50%) —is the complement of hs1 (180, 100%, 50%).Asarule,
with any complementary color scheme, it's often best to use
one color as the main hue on the page and the other color as
an accent, particularly for elements you want the user to notice,
such as Subscribe or Buy buttons and similar call-to-action
objects.

WEB DESIGN PLAYGROUND 323

\

Adding a Splash of Color to Your Web Designs

e Choose analogous colors. Analogous colors lie adjacent to
each other on the color wheel. In terms of the hsl () function,
analogous colors are those with hue values that are plus or
minus 30 degrees from the main color. Red—hs1 (0, 100%,
50%) —is analogous to both hsl1 (30, 100%, 50%) and
hsl (330, 100%, 50%).If you prefer even less contrast (you
want colors that are closer to each other), you can create an
analogous scheme by using colors that are 15 degrees apart. If
you go with a scheme that has more contrast, it's usually best
to pick one color as the main hue for your page and to use the
other two colors for buttons, borders, and other accents.

e Choose triadic colors. Triadic colors are three colors that lie an
equal distance from one another on the color wheel. In terms
of the hsl () function, triadic colors are those with hue values
that are 120 degrees apart. Red—hsl1 (0, 100%, 50%) —is triadic
to both hsl (120, 100%, 50%) andhsl (240, 100%, 50%).
Triadic colors tend to have a similar level of vibrancy, so they
feel balanced and in harmony. Many sites that use a triadic
scheme pick one color for the page background, another color
for the page content and navigation, and the third color for
borders and other accents.

¢ Choose split complementary colors. A split complementary
color scheme is similar to a complementary color scheme
except that instead of using the opposite hue on the color
wheel, you use the two colors that lie 30 degrees to either
side of that opposite color. Red—hs1 (0, 100%, 50%)—is
split complementary with both hs1 (150, 100%, 50%) and
hsl (210, 100%, 50%).A good rule of thumb for implementing
a split complementary color scheme is to use the original
color as the page’s main hue and use the other two colors for
content, navigation, and accents.

To help you work with these color schemes, the Web Design Playground
includes a tool called the Color Scheme Calculator that does all the required
math for you. | discuss this tool in the next section.

Using the Color Scheme Calculator

If you know the color you want to use as the main hue on your page, calculating
the rest of your color scheme is straightforward:

¢ Complementary—Add or subtract 180 degrees.

e Analogous—Add 30 degrees for one color, and subtract 30
degrees for the other.

324 WEB DESIGN PLAYGROUND

Using the Color Scheme Calculator

e Triadic—Add 120 degrees for one color, and subtract 120
degrees for the other.

e Split complementary—Add 180 degrees to the hue, subtract 30
degrees for one color, and add 30 degrees for the other color.

The math is quite daunting if you know only the RGB code, however. Not
to worry: I've put a Color Scheme Calculator on the Web Design Playground.
Here's how you use it:

1 Choose Menu > Color Scheme Calculator (or navigate to wdpg.io/2/colorcalc).

2 On the Color Scheme tab, select the option for the color scheme type
you want: Complementary, Analogous, Triadic, or Split Complementary.
There's also a Monochrome scheme, which generates five colors with
the same hue, but varying saturation and lightness values.

3 Use the color picker to select your initial color.
You can click the color you want or use the text box to enter an RGB
hex triplet or rgb () function. (You can also type a color keyword or
hsl () function.) The calculator displays the color scheme and shows
the RGB code, rgb () function, and hsl () function for each color, as
shown in Figure 17.11.

4 Color Scheme Calculator X+ 9 > Figure 17.11
csc s o o *0@ Use the Web Design
=~ WEB DESIGN PLAYGROUND wew = Playground'’s Color Scheme

Calculator to generate a
color scheme for a given
RGB code.

Color Scheme | Related Tools

Select a color scheme type:
O Complementary

@ Analogous

O Triadic

O Split Complementary
©OMonochrome

Select an initial color:

EENvVE NN
| | |

#EEEEOD #B0££00 #££8000
rgb(255, 255, 0) rgb(128, 255, 0) rgb(255, 128, 0)
hs1(60, 1008, 50%) hs1(90, 100%, 50%) hs1(30, 100%, 50%)

.:l lhsi(60, 100%, 509

CSS colors are awesome, but you can take your web designs to a higher
level by using a special color technique called a gradient, which is the subject
of the next section.

WEB DESIGN PLAYGROUND 325

http://wdpg.io/2/colorcalc

\

Adding a Splash of Color to Your Web Designs

Applying a Color Gradient

So far, all the colors you've worked with have been a single hue—sometimes
lighter or darker or more transparent, true, but one hue nonetheless. It's
possible, however, to style a single page element with multiple colors by
using the concept of the gradient. A gradient is a combination of two or
more colors in which one color gradually (or sometimes quickly) transitions
into the next. When used sparingly, gradients can be effective ways to add
visual interest and pizzazz to a web page. Before you get started on the CSS,
you need to know a few things:

¢ Gradients are images that the web browser creates
automatically.

+ Gradients can be applied only as backgrounds, although a wide
range of elements supports background images.

¢ You can use two types of gradients:

¢ A linear gradient transitions from one color to the next along
a straight line.

o Aradial gradient transitions from one color to the next from a
single point outward in the shape of an ellipse or circle.

In the next couple of lessons, you'll see the CSS behind linear and radial
gradients.

Lesson 17.4: Creating a Linear Gradient
Covers: The linear-gradient function

= Online: wdpg.io/2/17-4-0

To specify a linear gradient, you apply the linear-gradient () function
to the background-image property of whatever element you're styling.
Figure 17.12 shows the general syntax to use.

» Figure 17.12 Color values

To define a linear gradient, ,/\,

usethe linear-

gradient () function to linear-gradient (angle, colorl[%], color2[%], etc.)
specify the angle and the /‘

color stops.

Degrees or keywords

326 WEB DESIGN PLAYGROUND

http://wdpg.io/2/17-4-0

Applying a Color Gradient

The angle value can be a number between 0 and 359 followed by PLAY

the deg unit or the keyword to followed by the keyword for a horizontal Create a linear gradient
direction (1eft or right), a vertical direction (top or bottom), or a diagonal that runs at a 60-degree
direction (top left, top right, bottom left, or bottom right). The angle. For the first color,
color values (colorl, color2, and so on) can be any of the color values use h“€.191 with full
that you learned earlier in the chapter. The percentages specify the color ~ Saturationand half

. - o . lightness; for the second
stops, which are the transition positions where the previous color ends and

) . o) color, keep the same hue,
the next color begins. The first default color stop is 0% (that is, starts at the but use one-quarter

beginning) and the last default color stop is 100% (that is, stops at the end), sqturation and 15%
so you don't need to enter these values. lightness. > Online:

The following example shows an empty div element styled with a linear wdpg.io/2/17-4-3
gradient.

» Example = 0nline: wdpg.io/2/17-4-1
This example shows a div element styled with a linear gradient that transitions from
yellow to blue.

w
Q
<
o
oM
w
=
A fallback style £or the (rare) browser
that doesn’'t support gradierﬂ-s
div {
background-color: blue;
background-image: linear-gradient (to bottom, yellow, blue) ;
height: 175px;
idth: 100%; Various styles
} i applied to >i-he The linear gmdien’r
div element defined to rdn from
the top to the bottom,
transitioning from
yellow Yo blue
| . .
s <div></div> “47 The div element
|_
T

Create a linear gradient
that runs from the top-left
corner to the bottom-right
corner. Use #76a5af as
the starting color and
#073763 as the finishing
color. =) Online: wdpg
i0/2/17-4-2

WEB DESIGN PLAYGROUND 327

http://wdpg.io/2/17-4-1
http://wdpg.io/2/17-4-3

Adding a Splash of Color to Your Web Designs

PLAY Notice in the example that | set the background color first and then
Determine the two colors applied the gradient. Adding a background-color declaration is a fallback
that go with the color for browsers that don't support gradients—mostly Internet Explorer 9 and

#674ea7 inan analogous earlier. Such browsers render the background color but ignore the gradient
color scheme. Create a style. Fortunately, all modern browsers support gradients, so only the
linear gradient that uses
increasingly rare older versions of Internet Explorer require this fallback.
all three colors and runs)])
If you use three or more colors in your gradient, you need to give some

from bottom right to top
left. = Online: wdpg. thought as to where you want each color to stop and the next to begin. If
io/2/17-4-8 you don't specify any stop locations, the browser does the work for you and

assumes that the transition occurs halfway between the colors on either
side. If you specify three colors, the middle color’s transition position is at
50%, halfway between the first (0%) and third (100%) colors. The following
example shows a linear gradient in which the second color kicks in a bit
earlier.

b Example = Online: wdpg.io/2/17-4-5
This example shows a div element styled with a three-color linear gradient in which the
middle color (white) begins its transition earlier than normal (at the 25% mark).

L
Q
<
[an
m
[
= ‘;
A fallback style for the
. (rare) browser that doesn’t
div { support gradients
background-color: blue;
background-image: linear-gradient (to top right, red, white 25%,
blue) ;
height: 175px;
width: 100%; The linear gradient defined
} to run £rom the bottom lef+
to the top right transitionin
Various g+y|eg aPPhed to from red to white at 257
the div element and then to blue
| q .
E <divs></div> 47> 110 4iv element
T

Linear gradients are awesome, but CSS lets you take things up another
notch by creating stunning radial gradients. The next section tells you
everything you need to know.

328 WEB DESIGN PLAYGROUND

http://wdpg.io/2/17-4-8
http://wdpg.io/2/17-4-8
http://wdpg.io/2/17-4-5

Applying a Color Gradient

Lesson 17.5: Creating a Radial Gradient

Covers: The radial-gradient function

= Online: wdpg.io/2/17-5-0

To specify a radial gradient, you apply the radial-gradient () function
to the background-image property of an element. Figure 17.13 shows the
general syntax.

Starting position
Circle or ellipse of the shape

\ \

radial-gradient (shape, extent at position, color-stops)

/

Where the last color ends

P Figure 17.13 Defining a radial gradient, using the radial-gradient ()
function to specify shape, extent, and color stops

The shape value can be circle (the default, so you can omit it) or
ellipse. The extent value is a keyword pair that tells the browser the
side or corner of the element where you want the last color to stop. The
possible values are closest-side, farthest-side, closest-corner, and
farthest-corner. The position value specifies the starting point for the
shape; it can be a set of x-y points (e.g., 45px 100px) or a keyword pair
that combines a horizontal position (1eft, center, or right) with a vertical
position (top, center, or bottom). The color values and stops are the same
as for a linear gradient.

The default value for extent is farthest-corner, and the default value
for positionis center center (which can be shortened to center). The
simplest possible rule for a radial gradient is radial-gradient (colorl,
color2), which creates a centered circular gradient that transitions from
colorlto color2 out to the farthest corner of the element. The following
example shows an empty div element styled with a radial gradient.

Make attractive
repeating background
patterns using linear
gradients and the CSS
background-size
property. 5 Online:
wdpg.io/2/17-4-7

Create a five-color
linear gradient that runs
from left to right. The
five colors (and their
stops) are #££££00

(0%), #05¢1ff (20%),
#274e13 (50%),
#05c1ff (80%),
#E£££00 (100%).

= Online: wdpg.io/2/17-4-6

WEB DESIGN PLAYGROUND 329

http://wdpg.io/2/17-5-0
http://wdpg.io/2/17-4-6
http://wdpg.io/2/17-4-7

ol Adding a Splash of Color to Your Web Designs

» Example = Oonline: wdpg.io/2/17-5-1
This example shows a <div> tag styled with a radial gradient that transitions from
yellow to blue.

N1]
(@)
<C
o
m
[F1]
=
(%) A fallback s-l-yle for
8 div { the (rare) browser that
background-color: yellow; cec e 5uPPor+ 9rad|en+9
background-image: radial-gradient (ellipse farthest-corner at
left top, yellow, blue); \
height: 200px; The radial gradient defined
width: 100%; to run from the top left to
} the bottom righ+, transitioning
£from \/ellow t0 blue
Various s+yles applied to
the div element
| . .
E el /el 47 The div element
T

Using the Gradient Construction Kit

Gradients are among the most eye-catching CSS effects, but they're also
some of the most laborious because of all the keywords, colors, and stops.
To make implementing this important feature on your own pages easier for
you, the Web Design Playground includes a Gradient Construction Kit that
enables you to use a form to select all the elements of your gradient. As you
build your gradient, you see exactly what the result looks like, and the CSS
editor shows the cross-browser code that you can copy and paste into your
project.
Here's how you use the Gradient Construction Kit:

1 Inthe Web Design Playground, choose Menu > Gradient Construction
Kit (or navigate directly to wdpg.io/2/kits/gradient).

2 Select the radio button for the type of gradient you want to create:
Linear or Radial.

The controls in the Options tab change to reflect your choice. For
example, Figure 17.14 shows the controls for a linear gradient.

330 WEB DESIGN PLAYGROUND

http://wdpg.io/2/17-5-1
http://wdpg.io/2/kits/gradient

Applying a Color Gradient

3 Select the options for your linear or radial gradient. For example, for a
linear gradient, you select the gradient direction by clicking an arrow
or entering a specific angle.

4 For each stop, select the color button and then, using the control that
appears, specify the color you want using the following techniques:

e To choose a preset color, click one of the swatches on the left side
of the control.

¢ To specify a color, use the text box to enter an rgb () function,
hsl () function, RGB hex triplet, color keyword, rgba () function,
orhsla () function.

¢ In the large color box, drag horizontally to set the saturation, or
drag vertically to set the lightness.

¢ Use the vertical box to set the hue and the horizontal box to set the
transparency.

When you're done, click Choose.

5 To choose a preset color, click one of the swatches on the left side of
the control.

6 To specify a color, use the text box to enter an rgb () function, hsl ()
function, RGB hex triplet, color keyword, rgba () function, or hsla ()
function.

7 In the large color box, drag horizontally to set the saturation, or drag
vertically to set the lightness.

8 Use the vertical box to set the hue and the horizontal box to set the
transparency.

9 When you're done, click Close.

The Gradient Construction Kit displays the gradient and shows the
corresponding CSS code in the CSS editor.

(Gradient Builder W(Related Toolsw > Figure 17.14
. Use the Web Design
SERCCRIGTMRSnT Playground's Gradient

®Linear O Radial Construction Kit to build

a linear or radial gradient
with a few mouse clicks.

Select a linear gradient direction:

A

Alternatively, enter a specific angle (0 to 359):
0 B ‘ degrees (°)
Select the gradient colors and stops:

Color: Location:

First: 0 @
Last: | 100 | ‘ ﬂ

WEB DESIGN PLAYGROUND 331

ol Adding a Splash of Color to Your Web Designs

Whether you use single colors or gradients, your web designs are always
improved by eschewing the browsers’ humdrum black and white defaults in
favor of something more colorful that suits your personality or the overall
aesthetic you're trying to achieve.

Summary

* Besides the color keywords you learned about in Chapter 4, you
have five ways to specify a CSS color: the rgb () function, the
hsl () function, an RGB hexadecimal code, the rgba () function,
and the hsla () function.

e To color an element’s text, use the color property.

¢ To color an element’s background, use the background-color
property.

e To apply a linear gradient to an element’s background, use the

linear-gradient () function; if you prefer a radial gradient
background, use the radial-gradient () function.

332 WEB DESIGN PLAYGROUND

Chapter 18

Enhancing Page Text
with Typography

1] This chapter covers

= Setting the typeface
= Working with Google fonts
= Styling your web page words and paragraphs

Do you want to know the secret of great web design? Specifically, do you want
to know the one design element common to almost all the best websites?
The hidden-in-plain-sight design secret shared by nearly every outstanding
website can be summed up in just two words: typography matters.

Typography—styles applied to enhance the legibility, readability, and appearance
of text—is the web's secret sauce, its magic dust. When you come across a site
that has aesthetic appeal, chances are that a big chunk of that appeal comes
from the site’s use of fonts, text sizes and styles, spacing, and other matters
typographical. The site has text appeal.

WEB DESIGN PLAYGROUND 333

\

Enhancing Page Text with Typography

If you want the same appeal on your own web pages, you need only
remember those two all-important words: typography matters. Typefaces
matter. Type sizes and styles matter. Spacing, alignment, and indents matter.
Fortunately, as you see in this chapter, CSS comes with a large set of
typographical tools that you can wield to spruce up your text. No, you don't
have the level of control that you get in a desktop page layout program, but
there are enough CSS properties and values to show the world that you care
about your web page text.

Specifying the Typeface

To shift your typography into high gear, you need to go beyond the generic
and system fonts that | talked about in Chapter 4 and embrace the powerful
concepts of the font stack and web fonts.

Lesson 18.1: Working with Font Stacks
Covers: The font-family property

= Online: wdpg.io/2/18-1-0

You may recall from Chapter 4 that when you use the font-family
property, you can use multiple font families as long as you separate them
with commas in what is known as a font stack. Why would you specify
more than one font family? With few exceptions, you can't be certain that
a system font is installed on the user’s device. Although the sans-serif font
Helvetica is installed on 100% of Macs, for example, it's installed on a mere
7% of Windows PCs. Similarly, the serif font Cambria is installed on more
than 83% of Windows PCs but is available on only about 35% of Macs. When
you specify a font stack, the browser checks the first family to see whether
it's installed. If not, the browser tries the next font family in the list, and the
process continues until the browser finds an installed system font. If none is
found, it's always good practice to include a similar generic font family at the
----------------------- end of the font stack. If your system fonts are serifs, for example, include the
To get the installation serif generic font at the end of the stack.

percentages for marny Besides the generic font, are there any other sure bets that you can
popular system fonts, as . K .

well as suggested stacks include in your font stack? Alas, not really, although some fonts are installed
for each font, see the cSs O at least 90% of both Macs and Windows PCs. The sans-serif fonts are
Font Stack at Arial, Arial Black, Tahoma, Trebuchet MS, and Verdana. The serif fonts are
www.cssfontstack.com. Georgia and Times New Roman. The monospace font is Courier New.

334 WEB DESIGN PLAYGROUND

http://wdpg.io/2/18-1-0
http://www.cssfontstack.com

Specifying the Typeface

Another font stack strategy is to include the font families in the following
order:

¢ Your preferred font
¢ A close facsimile of the preferred font
¢ Asimilar font that's nearly universal in both Mac and Windows

¢ The generic font from the same style

Here's an example:

font-family: "League Spartan", Futura, Tahoma, sans-serif;

The following example creates two font stacks: one for the h3 element
and one for the p and 11 elements.

» Example = online: wdpg.io/2/18-1-1
This example shows a serif-based font stack applied to the h3 element, as well as a
sans-serif-based font stack applied to the p and 11 elements.

Ll
©)
g / The h3 element The p element
g People of Collar /
The adjectives white-collar and blue-collar are familiar to most of us, but there are a few
more whimsical variants that you might not have heard of:
« Black-and-blue-collar: Football players
« Grey-collar: Employees who perform both white- and blue-collar tasks
The li elements « Green-collar: Environmentalists
« Open-collar: People who work at home
« Steel-collar: Robots
The h3 element ge+s a
A serif-based font stack.
(©)
h3 {
font-family: "Lucida Bright", Georgia, serif;
}
p, 1i {
font-family: Tahoma, Helvetica, Arial, sans-serif;
}

The p and 1i elements get a
sans-serif-based font sfack.

continued

WEB DESIGN PLAYGROUND 335

http://wdpg.io/2/18-1-1

\

Enhancing Page Text with Typography

—
>3
=
I

<h3>People of Collar</h3>
<p>The adjectives <i>white-collar</i> and <isblue-collar</i> are
familiar to most of us, but here are a few more whimsical variants
that you might not have heard of:</p>

Black-and-blue-collar: Football players
Green-collar: Environmentalists
Grey-collar: Employees who perform both white- and blue-
collar tasks
Open-collar: People who work at home
Steel-collar: Robots</1li>

Here are a few pointers to bear in mind when you build a font stack for
your web design:

¢ If you have a less popular system font you want to try, put it
at the beginning of the stack. If you put it after a font that's
installed on, say, 99% of devices, the less-popular font will rarely
be used.

o |f possible, try to match font characteristics within the stack.
Don't include in the same stack both a narrow font such as Arial
and a relatively thick font such as Verdana, for example.

« Always end the font stack with a generic font from the same style.

Specifying Web Fonts
Relying on system fonts is a straightforward way to bump up your typography
a notch from the browser’s default fonts. But system fonts suffer from two
glaring problems: a limited number of system fonts is available, and you can't
be sure that a given system font is installed on the user's computer. The latter
is a big problem because it means that you can't know with any certainty
how your web page will appear to every user. If you believe that typography
matters (and you should), this uncertainty is a major design hurdle.

Fortunately, you can leap gazelle-like over that hurdle by implementing
web fonts on your pages. Web fonts are font files that are hosted on the web
and referenced by a special CSS rule named @efont-face. The web browser
uses that rule to load the font files, thus ensuring that every user sees the
same fonts.

You have two ways to host web fonts:

e Use a third-party host.

¢ Host the font files on your own site.

The next two lessons provide the details as well as the pros and cons
associated with each method.

336 WEB DESIGN PLAYGROUND

Specifying the Typeface

Lesson 18.2: Using Third-Party Hosted Fonts
Covers: The 1ink element

= Online: wdpg.io/2/18-2-0

By far, the easiest way to implement web fonts is to link to the fonts hosted
on a third-party site. Many font-hosting services are available, including Fonts
.com (www.fonts.com) and Adobe Fonts (https:/fonts.adobe.com). In most cases, you
can purchase a font outright or pay a monthly fee, which gives you access to
a wide variety of fonts. Most new web designers, however, use Google Fonts
(https://fonts.google.com), which offers hundreds of free web fonts.

The main advantage of using a third party is that all rights to use the
web fonts have been cleared. Fonts are intellectual property, so you need
permission from the creator to use them, particularly on a website. Font
hosts have already obtained the necessary licenses, so their fonts are hassle-
and guilt-free.

QQWeb font services . . . handle the bulk of the licensing
and hosting work, leaving you to do what you do best—
build amazing and beautiful websites. —Dan Eden

The main disadvantage of using a third party is that the font files reside on
a remote server, so it can sometimes take a bit of extra time for your fonts
to load. The more fonts you link to, the slower the load time. Most big-time
font-hosting services have optimized delivery mechanisms, however, so this
font lag usually isn't a problem.

The method by which you specify which fonts you want to use varies
depending on the service, but the general procedure usually goes something
like this:

1 On the font host's website, locate and select the typeface you want to use. BEWARE

2 Customize the typeface by adding extra fonts such as italic, bold, and Remember that the more

possibly bold italic. fonts you add, the slower
your web pages will load.

3 Copy the <1link> tag (or tags) generated by the font host, and paste ;
Link only to fonts you

the code into the head section of your web page (that is, between the .

.) absolutely need. Besides
<head> and </head> tags) before the <link> tag for your own CSS file the regular font, most
(or before the <style> tag if that's where your CSS code is located). web pages need only
The copied code loads from the host a CSS file that includes the italics and bold.
required font code. Here are the <link> tags generated by Google
Fonts for the Lato typeface (where 400 refers to the regular font and
700 refers to bold):

WEB DESIGN PLAYGROUND 337

http://wdpg.io/2/18-2-0
http://www.fonts.com
https://fonts.adobe.com
https://fonts.google.com

Enhancing Page Text with Typography

FAQ <link rel="preconnect" href="https://fonts.googleapis.com">
""""""" <link rel="preconnect" href="https://fonts.gstatic.com"
Why does Google Crosso riging P ’

provide three <1ink> <link href="https://fonts.googleapis.com/

tags? The first two css2?family=Lato:ital,wght@@,400;1,400;1,700&display=swap"
<links> tags set rel="stylesheet">

up Google server

A 4 Add the font to your styles.
connections in advance.

That way, when the The following property tells the web browser to use the Lato font fam-
browser comes to the ily for all paragraph text (with the addition of a generic font name to
third <1ink> tag, display in case the third-party font file can’t be loaded):

which specifies the fonts
required, those fonts will
arrive much faster. }

p{
font-family: Lato, sans-serif;

» Example = Online: wdpg.io/2/18-2-1
This example shows two snippets of text. The first doesn't appear within a <p> tag, so it
uses the browser’s default font, and the second appears within a <p> tag, so it uses the
font family specified by the property shown in the CSS section.

This text just uses the browser's default font.

w

2

= This text resides within an HTML paragraph, so it uses the

w g . . e

= font specified in the style definition for the p tag.

a p {

©) font-family: Lato, sans-serif; e 75 dEmEn tEes
} the Lato font family.

. Tells the browser to download

s the font from Google

|_

T

<link rel="preconnect" href="https://fonts.googleapis.com" >
<link rel="preconnect" href="https://fonts.gstatic.com"
crossorigins>

<link href="https://fonts.googleapis.com/
css2?family=Lato:ital,wght@0,400;1,400;1,700&display=swap"
rel="stylesheet">

No p element

/ is specified,

so the default

This text just uses the browser's default font. font is used

<p>
This text resides within an HTML paragraph, so it uses the font
specified in the style definition for the p tag.

</p>

This text is within a p element, so it's formatted with the Lato font.

338 WEB DESIGN PLAYGROUND

https://fonts.googleapis.com
https://fonts.gstatic.com
https://fonts.googleapis.com/css2?family=Lato
https://fonts.googleapis.com/css2?family=Lato
http://wdpg.io/2/18-2-1
https://fonts.googleapis.com
https://fonts.gstatic.com
https://fonts.googleapis.com/css2?family=Lato
https://fonts.googleapis.com/css2?family=Lato

Specifying the Typeface

The alternative to using either default fonts or web fonts is to host your
own fonts, which is the topic of the next lesson.

Lesson 18.3: Hosting Your Own Fonts

Covers: The efont-face at-rule
= Online: wdpg.io/2/18-3-0

Using a third-party font host is the easiest way to get out of the default-font
rut and make your pages shine with an interesting typeface or two. Some
web designers, however, dislike having the look of their pages at the mercy
of some remote server, which might work slowly or not at all. In such cases,
designers go the host-it-yourself route, in which the actual font files reside
on the same server as the web page.

Unfortunately, you have a price to pay for the inherent speed and
reliability of hosting your own fonts: complexity. Whereas using third-
party-hosted fonts is a straightforward matter of generating and using a
<link> tag for a remote stylesheet, hosting your own fonts raises the
complexity level.

One complicating factor is font licensing. Most commercial fonts come
with a license that prevents them from being used on the web. Before you
can host a font yourself, you must purchase a license to use the font on
the web (assuming such a license is offered), or you can look for an open-
source font that allows web use.

For the latter, here are a few font collections to try:

o Befonts (https://befonts.com)
o Fontspring (www.fontspring.com)
« Font Squirrel (www.fontsquirell.com)

o Open Font Library (https:/fontlibrary.org)

Another complicating factor is the font file format. All modern browsers
support a format called Web Open Font Format 2.0 —WOFF2, for short—but
getting your fonts in that format can be difficult. What usually happens is
that you download your licensed font file, but what you get is a file or files
in the TrueType Font (TTF) or OpenType Font (OTF) format. These tend to be
big files compared to WOFF?2 files, so you need to convert them to WOFF2.
Practically, that'sdifficulttodo, somostfolksusea FontSquirrelservice called

Use Google Fonts to
generate <1ink> tags
for a stylesheet that
defines just the regular
font of the Merriweather
typeface. Set up a style
that applies the regular
font to all page text and
includes a generic font
name as a fallback.

=) Online: wdpg.io/2/18-2-2

Is a local font file always
faster than a remote font
file? Not necessarily.
Many font providers

use content delivery
networks (CDNs) that
are very fast, so the lag
can often be less than
with a local file.

BEWARE

Fonts are intellectual
property and should be
treated as such. Before
hosting any font on your
site, make sure that you
have a license to use

the font for personal
and/or commercial

use (depending on the
nature of your site).

WEB DESIGN PLAYGROUND 339

http://wdpg.io/2/18-3-0
https://befonts.com
http://www.fontspring.com
http://www.fontsquirell.com
https://fontlibrary.org
http://wdpg.io/2/18-2-2

Enhancing Page Text with Typography

the Webfont Generator (https://www.fontsquirrel.com/tools/webfont-generator),
which takes your downloaded font file and automatically creates a package
that includes the other file formats.

An alternative is to use the google-webfonts-helper (https://gwfh.mranftl.com/
fonts), which enables you to select the Google fonts you want to use and then
download the WOFF2 files (and also the earlier WOFF versions, which are
compatible with Internet Explorer 9 and later). Before downloading fonts, be
sure to click the Modern Browsers button on the Download page to simplify
the provided CSS code.

With your WOFF2 (and also WOFF, if needed) files downloaded, you now
add the necessary CSS code to use the fonts on your site. This code uses the
@font-face at-rule, and the generic syntax looks like this:

/-\ Font hames with spaces must

@font-face { be enclosed in quotation marks.
font-family: 'Font Name';
src: url('font_filename.woff2') format('woff2'),
url('font_filename.woff') format('woff');

}

To apply the @font-face rule, use its font-family value as the
font-family property of the element you want to style.

b Example =) Online: wdpg.io/2/18-3-1
This example sets up an @ ont - face rule for the Bree Serif font and applies it to the
ul element.

Prefer to get your word origins on the web? Looking to kill some time at work?
‘Wondering when this incessant questioning will end? Here are some fun websites
that'll give your clicking finger a workout:

Online Etymology Dictionary (www.etymonline.com)
Oxford English Dictionary (www.oed.com)

The Phrase Finder (www.phrases.org.uk)

The Word Detective (www.word-detective.com)

Word Spy (www.wordspy.com)

‘World Wide Words (www.worldwidewords.org)

WEB PAGE

 text

340 WEB DESIGN PLAYGROUND

https://www.fontsquirrel.com/tools/webfont-generator
https://gwfh.mranftl.com/fonts
https://gwfh.mranftl.com/fonts
http://wdpg.io/2/18-3-1

Specifying the Typeface

The font-family name is used

a efont-face { to apply the font to the element.
O font-family: 'Bree Serif';
src: url ('/fonts/breeserif.woff2') format ('woff2'),
url ('/fonts/breeserif.woff') format ('woff');
}
ul {
font-family: 'Bree Serif';
}
= <p>
E Prefer to get your word origins on the web? Looking to kill some

time at work? Wondering when this incessant questioning will end?
Here are some fun websites that'll give your clicking finger a
workout :
<p>

Online Etymology Dictionary (https://www.etymonline.com)</1li>
<1li>Oxford English Dictionary (https://www.oed.com)</1i>
<1li>The Phrase Finder (https://www.phrases.org.uk)</1li>
<1i>The Word Detective (http://www.word-detective.com)</11i>
Word Spy (https://www.wordspy.com)</1i>
World Wide Words (https://www.worldwidewords.org)

Here are some notes to bear in mind when using directories with the REMEMBER
@font-face rule filenames:

If you're using both
« If the font files reside in the same directory as the CSS file WOFF2 and WOFF,
(or the HTML file that contains the CSS code), no directory is then for best cross-

browser results, set up
the @font-face rule
so that the WOFF?2 font
format appears before
the WOFF format.

required:
url ('breeserif.woff2")

« If the font files reside in a subdirectory of the location where
the CSS (or HTML) file is stored, precede the filename with the
directory name and a backslash (/):

url ('fonts/breeserif.woff2')
o If the font files reside in a subdirectory of the site's root
directory, precede the filename with a backslash (/), the

directory name, and then another backslash (/):

url ('/fonts/breeserif.woff2"')

WEB DESIGN PLAYGROUND 341

https://www.fontsquirrel.com/tools/webfont-generator
https://gwfh.mranftl.com/fonts
https://gwfh.mranftl.com/fonts
https://www.etymonline.com
https://www.oed.com
https://www.phrases.org.uk
http://www.word-detective.com
https://www.wordspy.com
https://www.worldwidewords.org

\

Small caps are also
often used to make
all-uppercase text (such
as acronyms) blend in

Enhancing Page Text with Typography

Working with Text Styles

When you have your typeface (or typefaces) picked out and can format them
with different type sizes, you're well on your way to making typographically
pleasing web pages. But to make your pages stand out from the herd, you
need to know a few more CSS properties related to styling text.

Lesson 18.4: Styling Small Caps
Covers: The font-variant property

= Online: wdpg.io/2/18-4-0

When you want some page text to be noticed, most of the time, you'll turn to
bold or italics to get the job done. For something a bit different, however, try
small caps. Small caps are an all-uppercase style of text in which lowercase

a bit better with the letters are converted to uppercase equivalents that are slightly smaller than
surrounding text. normal uppercase letters. (Original uppercase text is left unchanged.)

You style text as small caps by using the font-variant property and
setting its value to small-caps.

» Example =) Online: wdpg.io/2/18-4-1

WEB PAGE

HTML

This example uses the font -variant property setto small -caps to style the
names in the text as small caps.

Movable type was invented by JOHANNES GUTENBERG in the
mid-fifteenth century. The first printing press in England was
set up by WiLL1aM CAXTON in 1476.

span {
font-variant: small-caps; Styles the span element to

1 use small caps

Movable type was invented by Johannes Gutenberg in
the mid-fifteenth century. The first printing press in England was
set up by William Caxton in 1876.

The names within the span elements
are rendered using small caps

You probably won't use small caps all that often, but it can be an effective
design feature for certain pages. A design feature that you will (or should)
use often is line height, which | discuss in the next lesson.

342 WEB DESIGN PLAYGROUND

http://wdpg.io/2/18-4-0
http://wdpg.io/2/18-4-1

Working with Text Styles

Lesson 18.5: Setting the Line Height

Covers: The 1ine-height property

= Online: wdpg.io/2/18-5-0

The last major factor in making your web page text look typographically
solid is the line height, which is the height of the so-called line box, which
is the invisible box that the browser uses to contain a line of text. The line
box extends just above the tallest character in the font and just below the
lowest-hanging character in the font.

You set the line height by using the CSS property named line-height.
The types of values you can assign to this property are outlined in table 18.1.

b Table 18.1 Valuesyou canapply to the 1ine-height property

Value Description

Anumeric value entered without a unit. The computed line heightis

namoer the current type size multiplied by the number.
Jemgigln Anumeric value entered with a unit, such as em.
- Apercentage value. The computed line height is the current type size
12 e multiplied by the percentage.
normal Akeyword that tells the browser to set the line height automatically

based on the current type size.

The line height is crucial for readable text, as you can see in Figure 18.1.
The text on the left is set with 1ine-height equal to 0.75, which results in
the lines being unreadably close together. The text on the right is set with
line-height equalto 2.25, which results in the lines being too far apart for
comfortable reading. The text in the middle has its 1ine-height setto 1.5,
which looks just right.

ccTypography is two-dimensional architecture,
based on experience and imagination, and guided
by rules and readability. —Hermann Zapf

MASTER

Another way to
manipulate the case of
text is with the text -
transform property.
Set this property to
lowercase to convert
the text to lowercase
letters or uppercase
to convert the text to
uppercase. You can also
use capitalizeto
apply uppercase to only
the first letter of each
word.

WEB DESIGN PLAYGROUND 343

http://wdpg.io/2/18-5-0

\

» Figure 18.1

When the line height is
too small (left) or too large
(right), the text is difficult

to read.

Enhancing Page Text with Typography

"Vertical space is metered in a
different way [to horizontal
space]. You must choose not only
e overall measure — the deg}h
of the column or page — but also
a basic rhythmical unit. This unit
is the leading, which is the
istance from one baseline to the

next. .
—Robert Bringhurst

"Vertical space is metered in a
different way [to horizontal
space]. You must choose not only
the overall measure — the depth
of the column or page — but also
a basic rhythmical unit. This unit
is the leading, which is the
distance from one baseline to the
next."

—Robert Bringhurst

"Vertical space is metered in a
different way [to horizontal
space]. You must choose not only
the overall measure — the depth
of the column or page — but also
a basic rhythmical unit. This unit

is the leading, which is the

distance from one baseline to the
next."

—Robert Bringhurst

b Example =) Online: wdpg.io/2/18-5-2
This example sets the 1ine-height property of the p element to 0.9, which
results in so-called tight leading. Try a normal leading value of around 1. 4, as well
as a loose leading value of 1. 75 or higher.

The name /ine height 1s often used synonymously with /eading

(1t's pronounced /edding). This term comes from the movable

3})&: profession, where typesetters often use a strip of lead to set
e amount of space between two lines of text.

WEB PAGE

p {

ECIRISEE R A oLy Ad‘jus-f the p element's line-height
line-height: 0.9; value to create tight, normal, and
} loose Ieading.

<p>

The name <i>line height</i> is often used synonymously with
<i>leading</i> (it's pronounced <i>ledding</i>). This term comes
from the movable type profession, where typesetters often use a
strip of lead to set the amount of space between two lines of text.

</p>.

HTML

Now that you're familiar with all the major font-related CSS properties,
you're ready to learn the handy shorthand property for styling your fonts
with a single declaration. The next lesson tells you everything you need
to know.

344 WEB DESIGN PLAYGROUND

http://wdpg.io/2/18-5-2

Working with Text Styles

Lesson 18.6: Using the Shorthand font Property
Covers: The font property

= Online: wdpg.io/2/18-6-0

As you've seen so far in this book, there are six main font-related components
for CSS typography: typeface, type size, bolding, italics, small caps, and line
height. These components are represented, respectively, by the CSS properties
font-family, font-size, font-weight, font-style, font-variant, and
line-height. Handily, you can apply any or all of these properties with a
single statement by using the font shorthand property, which takes the syntax
shown in Figure 18.2.

Italics Small caps Line height » Figure 18.2

/_M /_M /—M You can apply up to six

font: font-style font-weight font-variant font-size/line-height font-family font properties atthe same

time by using the font
~— ~—— ~— y using on

roperty.
Bolding Font size Typeface property

This syntax is a straightforward repetition of everything you've learned so
far, although you need to keep the following notes in mind:

¢ You can use some or all of the values, but at minimum, you
must provide the font-size and the font-family values, in
that order.

¢ If you omit a property, that property gets reset to its initial value.

¢ You can add the font-style, font-weight, and font-variant
values in any order, as long as they all come before the font-size
value.

¢ You've no doubt noticed and are more than a little curious
about the font-size/line-height part of the syntax. That
slash is borrowed from traditional print typography, in which as
shorthand, one might say that text was “set 12/18,” meaning that
it uses 12-point type and an 18-point line height.

WEB DESIGN PLAYGROUND 345

http://wdpg.io/2/18-6-0

\

Enhancing Page Text with Typography

» Example =) Online: wdpg.io/2/18-6-1
This example sets the font property of the div, dt, and span elements.

The <div> text

[
2 h
£ Typogra
- graphy
ul
= A Glossary of Terms
ascender
The part of a tall lowercase letter such as b or h that extends above lowercase
letters such as a and c.
baseline
The invisible line upon which lowercase characters such as o and w appear to sit.
These are descender
<dt> text. lT’he part of a lowercase letter such as g or y that extends below the BaSELINE.
leading
(pronounced ledding) See LINE HEIGHT.
line height
The distance between the saseLiNEs of two adjacent lines of text.
x-height
The height of a typeface’s lowercase x.
These are
 text.
a div {
O . 5 q .)
font: bold 1.5em/1.3 Lora; The div text is bold Lora with
1 type size L5 em and line height 1.3.
dat {
font: italic 1.lem/1.25 Lora; The dt text is italic Lora
} with type size |l em and

span { line height 1.25.
font: small-caps lem Lora; The span text is small caps

} Lora with +\/Pe size | em.

346 WEB DESIGN PLAYGROUND

http://wdpg.io/2/18-6-1

Working with Text Styles

The dt'+ex+ is italic Lora with +yfe This element embeds the Lora
size |l em and line he|9h+ 1.25. +\/Pc{:ace from 6[009|e Fonts.

HTML

<link href="https://fonts.googleapis.com/
css?family=Lora:400,4001i,700,7001i" rel="stylesheet">

<h1>Typography</hl> _ The div text is bold Lora with
<div>A Glossary of Terms</div> 4 type size 15 em and line height 13
<dl>

<dt>ascender</dt>
<dd>The part of a tall lowercase letter such as <i>b</i> or <is>h</
i> that extends above lowercase letters such as <i>a</i> and
<isc</is>.

<dt>baseline</dt>

<dd>The invisible line upon which lowercase characters such as
<i>o</i> and <i>w</i> appear to sit.</dd>

<dt>descender</dt>

<dd>The part of a lowercase letter such as <i>g</i> or <i>y</i>
that extends below the <spans>baseline</spans>.
<dt>leading</dt>

<dd> (pronounced <i>ledding</i>) See <spans>line height</spans>.</
dd>

<dt>line height</dt>

<dd>The distance between the <spansbaselines of two
adjacent lines of text.</dd><dt>x-height</dt>

<dd>The height of a typeface's lowercase <i>x</i>.</dd>
</dl>

The span text is small caps
Lora with +y|pe size | em.

From working with font stacks to specifying third-party or hosted web
fonts to styling small caps and line height, you now know enough to design
all your pages with top-notch typography

WEB DESIGN PLAYGROUND 347

https://fonts.googleapis.com/css?family=Lora
https://fonts.googleapis.com/css?family=Lora

\

Enhancing Page Text with Typography

Summary

348 WEB DESIGN PLAYGROUND

Use hosted or local font files rather than rely on system fonts.

Choose a typeface that suits your text and your overall
message.

Use font-variant: small-caps as an alternative way to
emphasize or highlight text.

Give your text blocks room (but not too much room) between
the lines by setting the 1ine-height property.

Save time by using the font property as shorthand.

Chapter 19

Learning Advanced
CSS Selectors

] This chapter covers

* Learning the powerful ID and universal selectors

= Leveling your style game with the descendant,
child, and sibling selectors

= Targeting your styles by combining two or more
selectors

* Becoming a style master by understanding CSS
inheritance, cascading, and specificity

On the surface, CSS seems like a simple topic: you apply values to some
properties, combine them into a rule, and then apply that rule to a page
element. Repeat a few more times, and voila: your page is beautiful. But the
apparent simplicity of CSS is only skin deep. Underneath the straightforward
implementation of declarations and rules are obscure caves of complexity
and unfathomed depths of dynamism. This chapter serves as an introduction
to this hidden world, which is home to some of the most powerful and
practical CSS concepts.

WEB DESIGN PLAYGROUND 349

\

My WebDev Workshop
includes a complete
rundown of all the CSS
selectors, with examples.
Check it out: https://
webdevworkshop.io/code/
selector-reference/.

BEWARE

Like class names,
id values are case-
sensitive.

REMEMBER

As with class names, your
id value must begin with
a letter—or a hyphen

(-) followed by a letter—
and can include any
combination of letters,
numbers, hyphens (-),
underscores (_).

Learning Advanced CSS Selectors

Working with ID Selectors
In Chapter 7, | introduced you to CSS selectors, which enable you to specify
the page object you want to style:

selector {
propertyl: valuel;
property2: value2;

}

So far, you've learned that the selector part of this CSS rule can be
the name of an HTML tag (a type selector) or the name of a CSS class (a
class selector). A large collection of CSS selectors exists, however. Many of
these selectors are rather obscure, but the more common ones are powerful
tools indeed. The lessons in this chapter introduce five of these selectors,
beginning with the ID selector.

Lesson 19.1: Using ID selectors

Covers: The #id selector

= Online: wdpg.io/2/19-1-0

Back in Chapter 16, you learned you can link to a specific element in a web
page by adding the id attribute to that element and then including the id
value in your link address. You can also use an element'’s id value to apply
CSS styling to that element. To do this in an internal or external style sheet,
you type the id value preceded by a hash symbol (#) to create the selector:

#id-value {
propertyl: valuel;
property2: value2;
}

The following example shows ID selectors in action.

350 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-1-0
https://webdevworkshop.io/code/selector-reference/
https://webdevworkshop.io/code/selector-reference/
https://webdevworkshop.io/code/selector-reference/

Working with ID Selectors

» Example =) Oonline: wdpg.io/2/19-1-1
This example adds an ID to each of two <div> tags—section-quote and
section-summary—and then uses the corresponding ID selectors to apply rules to
each div element.

5 Metaphors for New Words
<
o “Because in our brief lives we catch so little of the vastness of history, we tend
m y s 2 i, 2 z
o too much to think of language as being solid as a dictionary, with a granite-like id= "section-quote"
= permanence, rather than as the rampant restless sea of metaphor which it is.”
—Julian Jaynes
‘We make metaphors for many things, but when we make many
metaphors for one thing, it says that thing is important to us. We make id= "section-summary"
metaphors for new words almost as readily as we make new words.
A #section-quote {
O color: darkgray;
font-size: 1.25rem;
font-style: italic; Rule for the .
text-align: right; section-quote id
}
#section-summary {
color: dimgray;
font—51?e: 1.5rem; Rule for the
font-weight: bold; section-summary id
text-align: center;
}
E‘ <hls>
= Metaphors for New Words . .
T </h1> The section-quote id

. . assigned to a div element
<div id="section-quote"> 9

“Because in our brief lives we catch so little of the vastness of
history, we tend too much to think of language as being solid as

a dictionary, with a granite-like permanence, rather than as the
rampant restless sea of metaphor which it is.”
-Julian Jaynes
</div>

<div id="section-summary">

We make metaphors for many things, but when we make many metaphors
for one thing, it says that thing is important to us. We make
metaphors for new words almost as readily as we make new words.
</div>

The section-summary id
assigned to a div element

Now that you know about class selectors and ID selectors, you might be
wondering which one you should use. That's the subject of the next section.
WEB DESIGN PLAYGROUND 351

http://wdpg.io/2/19-1-1

\

Learning Advanced CSS Selectors

BEWARE Best Practices: Classes vs. IDs

ID selectors, because When should you use an ID selector versus a class selector? Ask yourself the
they apply to a single following questions:

element, make your CSS

code harder to maintain ¢ Will the styles | want to use be applied to one and only one

and troubleshoot. You'll element?

understand why)”h_en If so, use an ID selector on that element.

I talk about specificity

later in this chapter. o Will the styles | want to use be applied to multiple elements?

Therefore, the true best
practice when it comes
to ID selectors is to never o Will the styles | want to use be applied to only one element now
use them. but could be applied to other elements in the future?

If so, use a class selector on each of those elements.

If so, use a class selector on that one element now. You can always
apply the class selector to other elements as needed down the road.

Web Page Genealogy: Parents, Descendants, and Siblings

Before continuing with the selectors, you need to take a mercifully brief

detour into the hierarchical structure of a web page so that you can learn

a few key concepts. Figure 19.1 shows the hierarchy of a typical web page.
Now let's traverse this (upside-down) tree structure:

¢ The html element is the root of the structure.
e The html element has two main branches: head and body.
¢ The head element has two branches: title and style.

¢ The body element has three branches: an hl element and two p
elements.

¢ The first of the p elements has a div branch.

e That div branch has two p branches.

¢ The second of those p branches has a section branch.

¢ The section branch has two p branches.

Given this hierarchy, | can define a few useful terms that you'll need to
know to understand the CSS selectors that follow:

e Parent—An element that contains one or more other elements.
In Figure 19.1, html is the parent of head and body elements,
and the div element is the parent of the two p elements.

e Grandparent—An element that contains a second level of
elements. In Figure 19.1, html is the grandparent of (among
others) the title and hl elements, and the div element is the
grandparent of the section element.

352 WEB DESIGN PLAYGROUND

Working with Contextual Selectors

» Figure 19.1
The tree structure of a
typical web page

<tle> | [<style> | [<ht> | [<p> | [<p> |

’_k_"¥ This <p> tag is the adjacent
<div>

sibling of the <h1> tag.

These two <p>
tags are children
of the <div> tag.

These four <p> tags
are descendants of
the <div> tag.

<section>

e Ancestor—An element that contains one or more levels of
elements. In Figure 19.1, html is an ancestor of every other
element, and the body element is an ancestor of the div
element and every element contained within the div element.

¢ Child—An element that's contained within an element that lies
one level above it in the hierarchy. That is, the element has a
parent in the structure. In Figure 19.1, title is a child of head,
and the div is a child of its containing p element.

¢ Descendant—An element that's contained within an element
that lies one or more levels above it in the hierarchy. That is,
the element has an ancestor in the structure. In Figure 19.1,
title is a descendant of html, and the four p elements are all
descendants of their containing div element.

¢ Sibling—An element that lies on the same level as another
element. In Figure 19.1, the three child elements of the body
element—that is, the h1 and the two p elements—are all siblings.
Note in particular that a sibling that immediately follows
another sibling is called an adjacent sibling.

All this talk of parents and children, ancestors and descendants might seem
like an unnecessary abstraction. What's the point? It's that these concepts
are crucial when it comes to understanding the contextual selectors that are
the topic of the next few lessons.

Working with Contextual Selectors
With the terms from the preceding section in mind, let's talk about how you
can use the web page hierarchy to construct some powerful CSS rules by
using three contextual selectors (so named because they define an element's
context within the web page).
WEB DESIGN PLAYGROUND 353

\

REMEMBER

In CSS lingo, the
character that you place
between two elements

to form a selector (such
as the space used in this
section’s selectors) is
called a combinator.

BEWARE

The descendant selector
is powerful because it
targets every descendant
of an ancestor, no
matter how far down
the hierarchy those
descendants reside.

To avoid unexpected
results, if you want to
target a descendant one
level below an ancestor,
you should use the child
selector (discussed in
Lesson 19.3).

Learning Advanced CSS Selectors

Lesson 19.2: The Descendant Combinator

Covers: The x y combinator

= Online: wdpg.io/2/19-2-0

One common CSS scenario is applying a style rule to all the elements
contained within (that is, are descendants of) some other element (the
ancestor). To do that, use the descendant combinator, which separates the
ancestor and descendant elements with a space, as shown in the following
syntax:

/ The element’s Paren+ element

The element you

ancestor descendant { want to s+y|e

propertyl: valuel;
property2: value2;

—

The s+y|es you
1 want to app|y

Your page may have a couple of p elements at the beginning that serve as
a summary of the page and quite a few more p elements that hold the body
text. Assuming you want to style the summary text differently from the
body text, a generic p selector won't work. If, instead, you enclose all the body
text p elements in a div element, you can target all the p elements with the
following selector:

div p

The following example uses the descendant combinator to style a page's
body text.

354 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-2-0

Working with Contextual Selectors

» Example =) online: wdpg.io/2/19-2-1
This example uses the descendant selector div p to target only those p elements that
are contained within the div element.

w Weird Word Origins
= . . This <p> tag is not a
m Welcome to the always wonderful, sometimes weird, / descendant of a <div>.
[. . .
= and often downright wacky world of word histories
Never thought you'd hear adjectives such as wacky and weird associated with the
history of words? Think again, oh soon-to-be-even-wiser-than-you-are-now reader!
The study of word origins isn't about memorizing technical terms or resurrecting dead
languages or puzzling over parts of speech. Instead, it's all about telling stories. These <p> tags are
descendants of a <div>.
The history of a word is a narrative, plain and simple: where the word began, how it
changed over time, and how it got where it is today. Delightfully, these narratives are
often full of plot twists, turning points, heroes and villains, and surprise endings.
A body {
O color: blue;)
font-family: Verdana, sans-serif; 5+yms apfhed
. to all tex
font-size: 1.25rem;
div p {
color: #444;
font-family: Georgia, serif;
font-size: lrem; Styles applied onl
} to p elements that
are descendants of
a div element
g <h2>Weird Word Origins</h2>
= <p>Welcome to the always wonderful, sometimes weird, and often
T

downright wacky world of word histories</p>
<div>

<p>Never thought you’d hear adjectives such as <iswacky</
i> and <i>weird</i> associated with the history of words? Think
again, oh soon-to-be-even-wiser-than-you-are-now reader! The
study of word origins isn't about memorizing technical terms or
resurrecting dead languages or puzzling over parts of speech.
Instead, it's all about telling stories.</p>

<p>The history of a word is a narrative, plain and simple:
where the word began, how it changed over time, and how it got
where it is today. Delightfully, these narratives are often full
of plot twists, turning points, heroes and villains, and surprise
endings.</p>
</div>

WEB DESIGN PLAYGROUND 355

http://wdpg.io/2/19-2-1

Learning Advanced CSS Selectors

Create a rule that
applies a green color
and a font size of 1.25
remto any <code> tag
that is a descendant of
a <div> tag. = Online:
wdpg.io/2/19-2-2

MASTER

To select an element
that’s the first child

of its parent, use the
element:first-
child pseudo-class.
Similarly, to select an
element that’s the last
child of its parent, use
the element:last-
child pseudo-class.
= Online: wdpg.io/2/19-3-4

MASTER

Another powerful child
pseudo-class is :nth-
child (n), where n
specifies which child
or children you want
to select. For example,
:nth-child(3) selects
the third child element.
Use :nth-child(odd)
to select the odd (first,
third, and so on)
children, or use :nth-
child (even) to select
the even (second, fourth,
and so on) elements.

= Online: wdpg.io/2/19-3-5

The descendant combinator is powerful because it targets every descendant of
an ancestor, no matter how far down the hierarchy those descendants reside. To
avoid unexpected results, if you want to target a descendant one level below an
ancestor, you should use the child combinator, which | discuss in the next lesson.

Lesson 19.3: The Child Combinator

Covers: The x > y combinator

= Online: wdpg.io/2/19-3-0

Rather than select every descendant of a specified element, you often
need to target only its children. To do that, use the child combinator, which
separates the parent and child elements with a greater-than sign (>), as
shown in the following syntax:

The element's paren+ element

The element you
want to s+y|e

}\ The s+y|es you

} want +0 apply

parent > child {

propertyl: valuel;
property2: valueZ2;

Referring to Figure 19.1, you can style the div element's two p children
with the following selector:

div > p

The following example uses the child combinator to style those p
elements that are children of a div element.

356 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-3-0
http://wdpg.io/2/19-3-4
http://wdpg.io/2/19-3-5
http://wdpg.io/2/19-2-2

Working with Contextual Selectors

» Example = online: wdpg.io/2/19-3-1
This example uses the div > p child selector to set a font size of 1 . 25emand a color
of dark green to only those p elements that are direct children of a div element.

N1]
Q Contextual Selectors
a
g The Descendant Combinator
The Child Combinator
These .<P> tags The First Child Pseudo-Class
are children of These <p> tags
a <div>. The Last Child Pseudo-Class are not children
The Nth Child Pseudo-Class of a <div>.
The Sibling Combinator
A p {
©) color: darkblue;
P T— S+yles for all p text
font-weight: bold;
}
div > p {
font-si : 1.25 ;
Orll ?1§e " rém Styles for p elements
COLEs ChiieeEns that are children of
} div elements
§ <hl>Contextual Selectors</hls>
[<div>
T

<p>The Descendant Combinator</p> %,.—‘\ .
<p>The Child Combinator</p> The child p
elements

<section>
<p>The First Pseudo-Class</p>
<p>The Last Pseudo-Class</p>
<p>The Nth Pseudo-Class</p>
</section>
<p>The Sibling Combinator</p>
</div>

Selecting children and descendants is common in CSS, but you'll also
find yourself needing to select siblings, which are elements on the same
level of the hierarchy. | discuss sibling selection in the next lesson.

WEB DESIGN PLAYGROUND 357

http://wdpg.io/2/19-3-1

\

Given a numbered list
that's nested within
another numbered list,
use the child combinator
to create a rule that styles
the nested list to use
lowercase letters instead
of numbers. = Online:
wdpg.io/2/19-3-2

» Example

This <div> isa

Learning Advanced CSS Selectors

Lesson 19.4: The Sibling Combinator
Covers: The x ~ y combinator

= Online: wdpg.io/2/19-4-0

Instead of selecting an element's children or descendants, you might need
to target the siblings that come after the element. To do that, use the sibling
combinator, which separates the reference element and the sibling element
with a tilde (~), as shown in the following syntax:

The reference element

P/ 4 The element you

element ~ sibling { want to style

}\ The s+y|es you

} want to apply

propertyl: valuel;
property2: value2;

In Figure 19.1, you can style the two p elements that are the subsequent
siblings of the hl element with the following selector:

hl ~p

The following example shows the sibling combinator in action.

= Online: wdpg.io/2/19-4-1
This example uses the hl ~ div selector to set a sans-serif font stack and a bold font
weight to only those div elements that are subsequent siblings of the h1 element.

Here’s a quick look at the book’s contents:

w
(@) sibling of the <h1>, The <h1> ta
< i &
o butcomesbeforeit. A Smart Vocabulary —Contents —
m
[T
; Chapter 1: Names of Things You Didn't Know Had These <div> tags
Names)))) are siblings that
. From the indentation on your upper lip to the indentation on the come after the
These <div> tags bottom of a wine bottle. <h1> ta
are not siblings Chapter 2: Making Word Whoopee 8-
of the <h1>. Codswallop, nincompoop, willy-nilly, and other words that will bring a
smile to vour face.
@ div {
font-family: Georgia, serif;
font -wei hEtI- gl] Styles for
: ont-weight: normal; all ‘div text
hl ~ div {
font-family: Verdana, sans-serif; .
o ety et AL S G
ght: i elements that are
} siblings of hl

358 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-4-0
http://wdpg.io/2/19-3-2
http://wdpg.io/2/19-4-1

Taking Things Up a Notch by Combining Selectors

This sibling div comes before the hl
<div> ‘///,~— I

Here’s a quick look at the book’s contents:
</div>
<hls>
A Smart Vocabulary—Contents
</hl>
<div>
Chapter 1: Names of Things You Didn't Know Had Names
<div>From the indentation on your upper lip to the indentation
on the bottom of a wine bottle.</div>
</div>
<div>
Chapter 2: Making Word Whoopee
<div>Codswallop, nincompoop, willy-nilly, and other words that
will bring a smile to your face.</divs>
</div>

HTML

The subsequen-f sibling div elements

CSS selectors such as those that use the descendant, child, and sibling MASTER
combinators are useful all by themselves, but they become amazingly = =-55%SFRSSmER
powerful when you combine them with other selectors. Learning how to To select only the next

combine selectors is the topic of the next section. sibling ofan_element’
change the tilde to a

plus sign: element +

Taking Things Up a Notch by Combining Selectors sibling(asinhl +

CSS selectors are useful tools because they enable you to target areas p). = Online: wdpg
of your web page that you want styled. By specifying a particular class 10/2/19-4-4

or an element's descendants, you gain much more control of your page

presentation. But what if instead of needing to use either the class selector

or the descendant selector, you need to use both? That is, what if you want

to target not the element that has been assigned a particular class, but its

descendants? Table 19.1 demonstrates a few ways to combine CSS selectors.

P> Table 19.1 Some ways to combine selectors

Example Description
<div class—"sidebar alert"s Applies t?oth the class named sidebar andthe classnamed alert
tothe div element

Applies a rule to those p elements that have been assigned the class

.footnote {styles
= 7 } named footnote

Applies a rule to a elements that are the children of those p elements
that have been assigned the class named footnote

Applies arule to a elements that have been assigned the class named

p.footnote > a {styles}

p.footnote a.external {styles} external and thatare the descendants of those p elements that have
been assigned the class named footnote

#payables-table li:nth-child (even) Applies arule to the even-numbered 1 i elements in the list that have

{styles} beenassigned the IDpayables-table

WEB DESIGN PLAYGROUND 359

Learning Advanced CSS Selectors

REMEMBER

To insert a special
character as the
custom content, use the
character's hexadecimal
code, preceded by

a backslash (\). The
declaration content :
"\0266f" ;, for
example, specifies the
musical sharp sign (¢)
as the custom content.
Use the HTML5 Entity
Browser (wdpg.io/2/
charent/) to look up a
character's hex code.

While I'm on the topic of combining things, | should mention that it's
perfectly valid CSS to apply a single style rule to two or more selectors. You
do that by separating the selectors with commas, like so:

selectorA,

selectorB {
propertyl: valuel;
property2: value2;

}

Suppose that you have a class named pullquote that you use to style
the pull quotes in your website's news articles and a class named sidebar
that you use for the sidebars in your website's tutorial pages. If these two
classes use the same rule, you can combine them:

.pullquote,

.sidebar {
color: #444;
background-color: #ccc;

}

You'll combine selectors frequently in your CSS code because these
combinations enable you to precisely target just the elements you want to
style. Another way to zero in on a specific page target is to generate that
target with CSS code. That sounds like magic, but as you learn in the next

lesson, it's just another useful CSS technique

Lesson 19.5: The ::before and ::after Pseudo-Elements

Covers: : :before and ::after

= Online: wdpg.io/2/19-5-0

In CSS, you can create web page objects that aren't officially part of the page
hierarchy, and these objects are known as pseudo-elements. Two common
examples are : :beforeand : :after, which you use to insert content before
and after, respectively, the content of whatever element you specify. In CSS,
this content is called generated content because you don't type the content
yourself; it's created by the browser automatically. Here's the syntax:

The web page element

Where you want the

element::before|after { content’ added

content: value; 4 ™ The content vou
content styles want to insert

Optional styles applied to
+IrEe inser+e>;i conﬁgn’r

360 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-5-0
http://wdpg.io/2/charent/
http://wdpg.io/2/charent/

Taking Things Up a Notch by Combining Selectors

You can use the following rule to automatically add a pilcrow (1), also
called a paragraph mark, after each paragraph:

p::after {
content: 'q';

One of the most common uses for the ::before pseudo-element is
to replace the default bullets in an unordered list with custom bullets. The
following example shows how.

» Example = online: wdpg.io/2/19-5-1
This example uses 1ist-style-type to remove the bullets from the ul element
and then uses 11 : :before to add a custom bullet character—a pointing finger (hex
code 261e)—and a nonbreaking space (hex 00a0).

Here are some interesting characters to use in place of the standard bullets:

@ Circled bullet: @

@ Circled white bullet: @

" Rightwards arrow with loop: =
@ Black star: Jr

@ White star: ¥t

=" Triangle bullet: »

N

WEB PAGE

Pointing finger character as a custom bullet

CSs

ul { Removes the default bullet
list-style-type: none; /

margin-left: 0;
padding-left: lrem; Ensures that bullet text

text-indent: -lrem; wraps correcﬂy

}

1i::before { Adds a pointing finger
content:'\261e\00a0"'; / and spage I I
color: red;
font-size: 1.lem; 5+y|es o

} custom bullet

continued

WEB DESIGN PLAYGROUND 361

http://wdpg.io/2/19-5-1

\

Learning Advanced CSS Selectors

—
=
=
I

<div>
Here are some interesting characters to use in place of the
standard bullets:
</div>
<uls>

An external link

points to a resource

on a different site.
Create a CSS rule that
automatically adds an
icon to denote external
links, the way that
Wikipedia does (see
Figure 19.2). = Online:
wdpg.io/2/19-5-3

CSS offers the
counter-increment
property that lets you
set up a counter for a
numbered list. If you set
the ol element's 1ist -
style-type property
to none, you can use
ol: :before to create
custom numbers for a
list. = Online: wdpg
.i0/2/19-5-2

<lisCircled bullet: ⦿</1i>
Circled white bullet: ⦾
Rightwards arrow with loop: lac;
<lisBlack star: ★</1i>

White star: ☆</11i>

Triangle bullet: ‣</1i>

While I'm talking about pseudo-elements, it's worth
mentioning that you can use the ::first-letter
pseudo-element to apply one or more styles to the first
letter of a text block. div::first-letter {font-
size: 1.5rem; color: red;}, for example, styles
the first letter of each div element to have size 1. 5rem
and the color red. To style the entire first line of a text
block, use the : : first-1ine pseudo-element.

You've seen some truly powerful CSS selectors so far in this chapter, but in
the next section, you learn about what is arguably the most powerful selector
of them all.

External links

o Official website &
o CSS& at DMOZ

» Figure 19.2
Wikipedia marks external
links with anicon.

Resetting CSS with the Universal Selector

The universal selector (*) applies to every element on the web page, which
may seem to be an odd way of approaching styles. After all, how often
would a particular set of styles apply to every element on a page? Almost
never. The universal selector is useful, however, when it comes to a CSS
reset—a way of removing the web browser's default styles so that you can
apply your own without having to worry about conflicts with the browser.
Here's a basic CSS reset:

* {
box-sizing: border-box;
margin: 0;

This reset sets the box-sizing property to border-box and removes the
browser's default margins (both of which you learned about in Chapter 9).

362 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-5-3

Styles: What a Tangled Web Page They Weave

Styles: What a Tangled Web Page They Weave

Most of the style declarations and rules you've worked with so far have
operated in splendid isolation. You style an hl element with a font size
and a p element with an alignment, and the web browser applies these
two rules independently of each other. However, in the real world of web
design, such simplicity is rare. I'm talking hen's-teeth rare. For all but the
most basic web pages, it's a certainty that your styles are fraternizing and
sometimes even fighting with one another. It's mayhem, but you can restore
some semblance of order by understanding three key CSS mechanisms:
inheritance, cascading, and specificity.

Lesson 19.6: Understanding Inheritance
Covers: CSS inheritance

= Online: wdpg.io/2/19-6-0 PLAY

The a element inherits

With all that talk earlier in the chapter about ancestors, parents, children, and
style properties such as

descendants, you won't be surprised to learn that CSS comes with a method)

)) i o) color, but you don'’t
for passing traits along from one "generation” to the next. This method see this inheritance: the
is called, appropriately enough, inheritance, and it means that for certain browser overrides the
CSS properties, if a parent element is styled with that property, its child and inheritance so that your

descendant elements are automatically styled the same way. links stand out from the
What did | mean when | said that only certain properties are inherited? regular page text. Can
Although many CSS properties are inherited by descendant elements, notall ~ You think of away to

of them are. If you were to apply a border around the parent div element in force the text of child a
elements to use the same

the preceding example, that same border style wouldn't be applied to any of color as their parent?
its descendants, because it would look odd to have, say, a border around an = Online: wdpg.io/2/19-6-2
em or a sup element.
In the following example, a div element is assigned the class intro,
which styles the element with 1.1rem brown text. Notice that the div
element’s children—the em, sup, and code elements, as well as the nested
div element—are styled the same way because, in each case, they've
inherited those styles from the parent div.

WEB DESIGN PLAYGROUND 363

http://wdpg.io/2/19-6-0
http://wdpg.io/2/19-6-2

\

Learning Advanced CSS Selectors

b Example = Online: wdpg.io/2/19-6-1
This example demonstrates inheritance by showing how the styles of the parent div
element get passed down to child elements such as em, code, and the nested div.

A child

)

Why don’t all CSS properties inherit their parent’s styles'?‘ Because in some

cases it would lead to weird or nonsensical results. For example, if you apply a
T:e " border around, say, a div element, it would look odd indeed to apply the same
paren

<div> border to a child span or strong element. Similarly, applying, say,a p 4\
A child <code>

WEB PAGE

element’s width value to a child em element doesn’t make sense.

* See www.w3.org/TR/REC-CSS2/propidx.html 4\
A child <div>

.intro {
color: saddlebrown;
font-size: 1.l1lrem; S Stvles for the
line-height: 1.4; intro class

CSss

< The parent div element)
A child em element

<div class="intro"> ¢//~\\
Why don’t all CSS properties inherit their parent’s
styles?[*] Because in some cases it would lead to weird
or nonsensical results. For example, if you apply a border around,
say, a <code>div</code> element, it would look odd indeed to apply
the same border to a child <codes>span</code> or <code>strong</
code> element. Similarly, applying, say, a <code>p</code>
element’s <code>width</code> value to a child <code>em</code>
element doesn’t make sense.

HTML

A child code element

<divs>
[*] See www.w3.org/TR/REC-CSS2/propidx.html
</div>
</divs>

A child div element

Inheritance is just the beginning of understanding how CSS applies its
styles. You also need to know how inheritance works, and that's the topic of
the next lesson.

364 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-6-1
http://www.w3.org/TR/REC-CSS2/propidx.html

Styles: What a Tangled Web Page They Weave

Lesson 19.7: Learning About the Cascade

Covers: CSS cascade

= Online: wdpg.io/2/19-7-0

Besides the fact that styles get passed down from parent elements to
descendant elements through inheritance, CSS also defines the way that the
styles get propagated. This definition is called the cascade, and if inheritance
is the "what" of style propagation, the cascade is the "how.” (Before
continuing, let me answer the question that's no doubt on your mind: yes,
the cascade is the reason why collections of styles are called cascading style
sheets.) To see how the cascade works, consider the following code:

<style>
div {
color: red;
}

</style>

Internal 9+ylc sheet

Inline style
<div style="color: blue;"> ren Y
What is the color of this text?

</div>

Here, an internal style sheet tells the div element to use red text, and an
inline style colors the <div> tag's text blue. What color is the text between
the <div>and </div>tags? Thatis, how will the browser resolve the conflict
between the internal style sheet and the inline style?

To answer both questions, you need to know how the cascade does its
job. First, you already know that there are three main ways to specify CSS:
inline styles, internal style sheets, and external style sheets. Together, these
methods constitute what the W3C calls author style sheets (because they're
created by the person who wrote the web page—that's you). But two other
style sheets get applied when a web page loads: the browser's default styles
(called the user agent style sheet) and the browser user's custom styles
(called the user style sheet).

The cascade organizes these five sources of style data into the following
hierarchy:

¢ User agent style sheet
e User style sheet
¢ External and internal author style sheets

¢ Inline styles

The World Wide Web
Consortium (W3C)
maintains a slightly
out-of-date list of CSS
properties. Among other
tidbits, that list helpfully
specifies whether each
property is inherited. See
www.w3.0rg/TR/CSS2/
propidx.html.

WEB DESIGN PLAYGROUND 365

http://wdpg.io/2/19-7-0
http://www.w3.org/TR/CSS2/propidx.html
http://www.w3.org/TR/CSS2/propidx.html

\

» Example

WEB PAGE

HTML

MASTER

There’s a sixth style
source you need to know:
adding the ! important
keyword to the end of
any style declaration.
This keyword carries the
greatest possible CSS
weight, so it overrides
any other source.

= Online: wdpg.io/2/19-7-2

Learning Advanced CSS Selectors

These sources are listed in ascending order of importance (weight, in CSS
lingo). If the browser sees that a particular style rule is defined in two or more
of these sources, it resolves the conflict by applying the style from the source
that has the greatest weight. For the code example | showed earlier, you can
see that an inline style trumps an internal style sheet, so the text between the
<div> and </div> tags will display as blue, as shown in the following example.

= Online: wdpg.io/2/19-7-1
This example demonstrates the CSS cascade, where the div elements inline style gets rendered
because it carries more weight than the d 1w type selector from the internal style sheet.

. . The <div> ta
What is the color of this text? <« ’

<style>
div {
color: red; Internal style
} sheet
</style>

<div style="color: blue;">
What is the color of this text?
</div>

Inline s+y|e

The cascade is often a kind of competition where different selectors vie
to apply their styles to the same element. How CSS determines the "winner”
of such competitions is the subject of the next lesson.

Lesson 19.8: Introducing Specificity
Covers: CSS specificity

= Online: wdpg.io/2/19-8-0

You may be wondering what happens to the CSS cascade when two styles
that target the same element come from the same source. Consider the
following code:

<style>
p.colored-text {
color: purple;
}

.colored-text {

366 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-8-0
http://wdpg.io/2/19-7-2
http://wdpg.io/2/19-7-1

Styles: What a Tangled Web Page They Weave

color: blue;

RN

Descendant selector

}
div p {
color: green;

}
p{ O Type selector
color: red;

b
</style>

<div>
<p class="colored-text">What is the color of this text?</p>

</div>

The style sheet contains four rules, all of which target the p element.
The first rule selects all p elements that use the colored-text class; the
second rule selects all elements that use the colored-text class; the third
rule selects p elements that are descendants of a div element; and the
fourth rule selects all p elements. What color will the browser render the
text between the <p> and </p> tags? The cascade alone doesn't answer
this question because all the rules come from an internal style sheet and
therefore are given equal weight.

To figure out the winner in this CSS fight, you need to know a bit about
a concept called specificity. Specificity is one of the most complex ideas
in all of CSS, but for purposes of this chapter, | can say this about it: the
more specifically a particular selector targets something on a web page,
the greater weight it's given when the browser is calculating which rules
to apply. You can judge how specifically a selector targets something by
applying the following recipe to the selector:

1 Count the number of elements (such as p or div) and pseudo-elements
(such as : :before), and assign 1 point to each.

2 Count the number of classes and pseudo-classes (such as :hover),
and assign 10 points to each.

3 Count the number of IDs, and assign 100 points to each.

The points assigned are indicative of the weight each selector carries.
Returning to the example, count the points:

e p.colored-text—This selector contains one element and one
class, for a total of 11 points.

e .colored-text—This selector contains one class, for a total of
10 points.

e div p—This selector contains two elements, for a total of 2
points.

e p—This selector contains one element, for a total of 1 point.

REMEMBER

This recipe is something

I made up to make
specificity easier to
understand. The actual
algorithm used by the
cascade uses a score of
the form I-C-T, where I is
the number of IDs in the
selector, C is the number of
classes or pseudo-classes
(also attribute selectors),
and T is the number of
types (that is, elements
and pseudo-elements).
Two or more such scores
are compared from left
to right to determine the
winner. For example,
1-0-0 wins over 0-1-1 and
0-2-1wins over 0-1-4.

BEWARE

Earlier in the chapter, I
cautioned you against
overusing the ID
selector, and here, you
see the main reason
to approach it with
caution. This selector
greatly outweighs
elements, pseudo-
elements, classes, and
pseudo-classes.

WEB DESIGN PLAYGROUND 367

Learning Advanced CSS Selectors

You can see that the p.colored-text selector has the most points, so
the text between the <p> and </p> tags gets rendered as purple, as shown
in the following example.

» Example =) online: wdpg.io/2/19-8-1
This example demonstrates CSS specificity, where the selector p . colored-text is
more specific than the other selectors, so the browser renders the text as purple.

[N}

) The <p> tag

< ¥ »

o What is the color of this text? —

Ll

=

g <style>

':E p.colored-text { Specificity = Il points (or O-I-)

color: purple;
1
.colored-text {
color: blue;

Specificity = 10 points (or 0--0)

iliv o { x Specificity = 2 points (or 0-0-2)
color: green;
I}J { x Specificity = | point (or 0-0-1)

color: red;

1
</style>
<divs>

<p class="colored-text">What is the color of this text?</p>
</div>

If you create a rule that targets a particular element, but the browser
doesn't show those styles when it renders the page, it means that a selector
with a greater specificity has trumped your selector. You need to dig into
your code and find out which selector has more specificity.

Finally, you might be wondering what the cascade does when two (or
more) selectors from the same source have the same specificity. In that case,
the cascade breaks the tie by looking at the order in which the selectors
appear in the CSS code. Whichever selector appears later in the code is
declared the winner.

368 WEB DESIGN PLAYGROUND

http://wdpg.io/2/19-8-1

Summary

Summary

¢ An ID selector applies CSS rules to any element that uses the
specified ID value.

¢ To target all the elements contained within a parent element,
use the descendant selector, which is the parent and
descendant element names separated by a space.

¢ To target all the child elements contained within a parent
element, use the child selector, which is the parent and child
element names separated by a greater-than sign (>).

* To target all the elements that are siblings of some other
element, use the sibling selector, which is the names of the two
elements separated by a tilde (~).

e Append : :before or : :after to a selector to insert generated
content before or after the element’s content.

e Many CSS properties are inherited from the element's parent.

¢ Inheritance occurs via the cascade, which assigns greater
importance to declarations whose sources are closer to the
element. In ascending order, these sources are browser default
styles, user custom styles, external style sheets, internal style
sheets, and inline styles.

¢ For declarations from the same source, specificity tells the
browser to render the styles from the more specific of the
selectors. In ascending order, these selectors are elements and
pseudo-elements, classes and pseudo-classes, IDs, inline styles,
and the ! important keyword.

WEB DESIGN PLAYGROUND 369

Chapter 20

proJECT:| Creating
a Portfolio Page

] This chapter covers

* Planning and sketching your portfolio page
* Choosing typefaces and colors for your page
* Adding the page text and images

* Adding contact information

If you do creative work—illustration, writing, music, fine art, or even web
design—you owe it to yourself and your career to put yourself out there and
tell the world how talented you are. How do you do that? Social media is the
standard way of blowing your own horn these days. That's fine, but when
you use someone else's platform to talk yourself up, you're giving up lots of
control over how you present yourself. It's always better to control your own
message, and the best way to do that is to build your own online presence.
For creative types, that online stake in the ground should include a portfolio
page that showcases your best or your most recent work.

WEB DESIGN PLAYGROUND 371

\

Project: Creating a Portfolio Page

This chapter takes you through the process of putting together a simple
portfolio page. I'll be concentrating on many of the techniques you learned
here in Part 4 (such as in-page links, typography, and colors), but by the end,
you'll see how to build a sophisticated portfolio page that'll put your best
creative foot forward.

What You'll Be Building

This project is a basic portfolio page, which refers to a page that's designed
to show off some of (or even all of) your creative work. It's the online
equivalent of a hard-copy portfolio that starving artists have been lugging
around from patron to patron and employer to employer for decades. The
main idea of a portfolio page is to show off your creative work to people
who may want to buy it or may want to hire you to do your creative thing. If
your creative work is a hobby, by all means, use your portfolio page to show
off your side projects to anyone you can persuade to stop by.

Sketching the Layout

You've been through several of this book’s projects by now, so you know
the drill: begin by using a pen or pencil to draw the basic layout on a piece
of paper. This drawing gives you a kind of blueprint to use when you start
throwing around HTML tags and CSS properties.

Figure 20.1 shows the example that I'm going to use for my portfolio
page. This page is a variation on a layout that's sometimes called five boxes:
one large box that serves as your introduction followed by four smaller
boxes that you populate with your portfolio images.

Figure 20.1 shows the layout of a page with the following six sections:

¢ A page header that includes a logo, a page title, and a few links
to other page sections

A short introduction to the portfolio

e The portfolio with four examples of my work

¢ A section that tells the page visitor about me and my work

¢ A section that enables the reader to contact me

* A page footer with a copyright notice and links to social media

The first task on your portfolio to-do list is to choose the typeface or
typefaces you want to use for your page.

372 WEB DESIGN PLAYGROUND

Choosing Typefaces

» Figure 20.1

| Portfolio | | About | [Contact | Before you start slinging
S|te HTML and CSS, draw up a
quick sketch of the page

LogO P a g e T i t I e layout and content.

Intro heading

Intro subheading Intro
A short introduction to the portfolio. Image

Portfolio

Example #1 Example #2 Example #3 Example #4

About Me

A short paragraph about who you are and what you do creatively. A novel
isn’t required here. This just needs to be a sentence or three that tells the
reader a bit about your creative side, your experience, any famous clients
you might have worked with, and so on.

Contact Me

Email address
Social media links

Other site links
Copyright notice

Choosing Typefaces

Although the portfolio itself consists of images, your portfolio page contains
a decent amount of text, including headings and body text—the large
blocks of nonheading text that comprises the bulk of your portfolio’'s words.
Because a good chunk of your audience will be reading your page on the
screens of laptops, tablets, and smartphones, it's important to take a bit of
time up front to choose typefaces that will be legible and readable on these
smaller screens.

WEB DESIGN PLAYGROUND 373

\

Project:

MASTER

Notice that letters

such as a and e have
both a counter and an
aperture, meaning that
a larger counter implies
a smaller aperture,
and vice versa. To
ensure these common
characters render well
onscreen, look for an
x-height that’s more
than half the font size.

» Figure 20.2

When deciding on a
typeface that will render
well even on small displays,
look for larger counters and
apertures, good x-height,
and low stroke contrast.

Thick stroke "

Creating a Portfolio Page

You can visit Google Fonts (https:/fonts.google.com), view a typeface, type
some text, and then eyeball the result to see how good it looks and how easy
it is to read. But if you want to be a bit more methodical, certain criteria are
common to typefaces that render well on small screens. Here are four things
to look for when you're auditioning type on Google Fonts (or whichever font
provider you use), each of which is demonstrated in Figure 20.2:

e Large counters—A counter is the enclosed negative space
inside letters such as A, R, d, and g. A large counter enhances
character legibility.

e Large apertures—An aperture is the partially enclosed negative
space inside letters such as C, S, a, and e. A large aperture also
enhances legibility.

¢ Medium to large x-height—The x-height is the distance from the
baseline to the top of lowercase letters such as x and o, or to the
top of the bowl in letters that have ascenders (such as d and h) or
descenders (such as g and y). A decent x-height (say, half the font
size or more) usually leads to large counters and apertures.

¢ Low to medium stroke contrast—Extremely thin strokes can get
lost on a small screen, making text difficult to read. Look for
typefaces that have a minimal difference between the thinnest
and thickest strokes.

You could build your page with a single typeface, but mixing two
typefaces—one for headings and the other for body text—adds dynamism
and contrast to the page. My preferred use is a sans-serif typeface for
headings and a serif typeface for body text, but I'm going to reverse these
preferences for my version of the project. For your own portfolio page, feel
free to use two serif or two sans-serif fonts. The only criterion to look for is
that the two typefaces work in harmony, which means that they have similar
legibility characteristics: counters, apertures, x-height, and stroke contrast.
Finally, make sure that each typeface you choose comes with the fonts you
require, which, at a minimum, usually means regular, italic, and bold fonts.

Counters

Cd

Apertures

Thin stroke

374 WEB DESIGN PLAYGROUND

https://fonts.google.com

Choosing a Color Scheme

Google Fonts offers hundreds of typefaces and dozens that work well
on even the smallest screens. How do you choose? It's certainly fun to play
around on the site, but if you prefer a starting point, table 20.1 lists a half-
dozen body and heading typeface pairings that work well (and an alternative
sans-serif font for body text).

P> Table 20.1 Recommended Google Fonts pairings for headings and body text

Headings Body Body (Alternative)
Playfair Display Open Sans Raleway

Merriweather Fira Sans Merriweather Sans

Source Serif Pro Source Sans Pro Lato

Domine Roboto Open Sans

Lora Varela Round Lato

Roboto Slab Roboto Raleway

For this project's headings, I'm going to use one of my favorite text
typefaces: Playfair Display. This is a gorgeous font that offers nice, big
counters and a generous x-height. It has a high stroke contrast, but that
shouldn’t be much of a problem for the larger heading sizes I'll be using.
Playfair Display comes in six fonts, so it has a style for every occasion. For
the body text, I'm going to use Open Sans, one of the most popular sans
serifs on the web. It's a sturdy typeface that features large counters and
x-height, as well as minimal stroke contrast. A less-popular but still excellent
alternative is Merriweather Sans, the sans-serif companion to Merriweather.

To use Google Fonts to link to Playfair Display's bold and bold italic fonts, and
to Open Sans's regular, italic, and bold fonts, I'll use the following <1ink> tags:

<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com"
crossorigin>

<link href="https://fonts.googleapis.com/css2?family=
Open+Sans:ital,wght@®,400;0,700;1,400&family=Playfair+Display:
ital,wght@@,700;1,700&display=swap" rel="stylesheet">

In my CSS, I'll use the following declarations to specify these families:
font-family: "Playfair Display", Georgia, serif;
font-family: "Open Sans", Verdana, sans-serif;

With the page layout in place and your typefaces chosen, your next job
is to pick out a color scheme.

Choosing a Color Scheme

The colors you choose depend on the type of portfolio you're highlighting
and the overall image you want to project. The example I'm going to use is for
a book restoration and repair service (which is, alas, hypothetical). | want to
use colors that exude warmth (because people who love old books enough
to want them restored tend to be warm, gentle folk) and security (because

REMEMBER

Although it's unlikely
that Google would fail
to deliver your linked
fonts, there could be

a lag before the fonts
show up. To ensure the
browser doesn't display
the default serif or sans
serif while it waits, add
a system font to your
stack. Georgia (for serifs)
and Verdana (for sans
serifs) are installed

on almost all new
computers.

WEB DESIGN PLAYGROUND 375

https://fonts.googleapis.com
https://fonts.gstatic.com

\

Project: Creating a Portfolio Page

those same people don't want to give their precious books to just anyone).
Rich brown colors can set both emotional tones quite effectively. Using the
Web Design Playground’s Color Scheme Calculator (see wdpg.io/2/colorcalc), |
chose a monochrome color scheme based on the color value #77613c, as
shown in Figure 20.3.

» Figure 20.3

A monochrome color
scheme based on the hex
colorvalue #77613¢

#cde9cl #a99879 #77613c #5b431la #362507

With the page layout in place and your typefaces and colors chosen, it's
time to translate this rough sketch into precise HTML and CSS code.

Building the Page

To build out your portfolio page, start with the skeleton code that | introduced
you to in Chapter 2. From there, go section by section, adding text, tags, and
properties.

The Initial Structure

To start, take the basic page structure from Chapter 2, and add the portfolio
layout, using the HTML5 semantic page layout tags:

e The page header section uses the header element, and it
consists of three items: an img element for the site logo, a
navigation area that uses the nav element and consists of an
unordered list of links to other items on the page, and an hl
element for the page title.

e The main section uses the main element, and it consists of
several section elements, each of which is a container for a
different section of the page.

* The page footer section uses the footer element, and it consists
of a copyright notice and links to several social media sites.

376 WEB DESIGN PLAYGROUND

http://wdpg.io/2/colorcalc

WEB PAGE

HTML

Building the Page

» Try This = Online: wdpg.io/projects/portfolio-page/1

Header
section

Here are the elements that make up the portfolio page's initial HTML structure.

Portfolio
About
Contact
Page Title
Portfolio

150 150 150 % 150 150 150 150 150 Main
section

About Me
Contact Me

Copyright and social media links 4\
Footer section

The header
section

<header>

<navs
<uls>
<lis>Portfolio</1i>
<lisAbout</1i>
Contact</1li>

<hl>Page Title</hl>
</navs
</header>
<main>> The main
<sections>> section
<hlsPortfolio</hl>> //
>
>
>
>
</sections>>
<section>>
<hls>About Me</hl>>
</sections>>
<section>>
<hl>Contact Me</hl>>
</sections>>
</main>
<footer>
<p>Copyright and social media links</p>
</footer>

The footer
section

WEB DESIGN PLAYGROUND 377

http://wdpg.io/projects/portfolio-page/1

\

Project: Creating a Portfolio Page

REMEMBER The portfolio page is about as bare-bones as pages come right now, but it
The initial page layout won't stay that way for long. I'll turn now to structuring the page’s overall layout.
also includes a CSS reset

that, among other tasks, The Overall Layout

sets the margin and
padding to o and the
font size to 100%.

As you might imagine, putting together a layout nicknamed five boxes
simply cries out for a Flexbox-based structure, and that's what you'll add
here. However, you want the content to be centered in the middle of the
browser window, and that's best done using CSS Grid. Here's the overall
structure you're shooting for:

¢ The initial grid container will be the body element. By configuring
this element with grid-template-columns: 1fr auto 1fr,
you create three columns, where the middle column automatically
sizes to the content, and the left and right columns take up the
remaining space equally, which centers the middle column.

¢ For the content itself, nest a div element inside the body
element, and set gridcolumn: 2 to place the div in the middle
of your grid layout. The div is also a Flexbox container with
flex-direction: columnand justify-content: flex-
start, which gives you a single-column container with the
content aligned with the top of the container.

The following example shows you how to set everything up.

b Try This = Online: wdpg.io/2/projects/portfolio-page/2
This example shows you how to configure the body element as a grid
container and a nested div as a Flexbox container for the page content.

A body {

] display: grid;
grid-template-columns: 1fr auto 1fr; Applies a font stack
min-height: 100vh; and the background

margin-top: lrem; and text colors.

+ﬁ:+§1;ﬁ font-family: "Open Sans", Verdana, sans-serif; >
rid background-color: #cdc9cl; >
container background-image: radial-gradient (circle farthest-side at

center top, hsl (0, 0%, 100%) 0%, #cdc9cl 100%) ;>
color: #362507;
}

.container {
grid-column: 2;

display: flex;
flex-direction: column; Sets up the nested Flexbox

justify-content: flex-start; container for the content
max-width: 60rem;

} Sets a maximum width
for the content

378 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/portfolio-page/2

Building the Page

<body>
<div class="container">
</divs>

</body>

HTML

With the overall grid layout in place, you're ready to start coding the
individual sections of the portfolio page. First up is the header section.

The Header Section

The header section consists of a header element that contains three items:
an img element for the page logo, a nav element for the navigation links,
and an hl element for the page title. | also want the header to have the
following features:

¢ The page logo should be aligned with the left side of the
content container, and the navigation and title should be
aligned with the right side of the content container.

o All the header content should be centered vertically within the
header.

The easiest method is to use Flexbox, so configure the header element
as a Flexbox container with a horizontal main axis and align-items set to
center. For horizontal alignments, separate the header into left and right
sections by using div elements. The following example shows the HTML
and CSS that | used to accomplish these goals and to style the rest of the
header layout.

P Try This = Online: wdpg.io/2/projects/portfolio-page/3
This example adds the HTML code for the header and the CSS for the
header structure.

WEB PAGE

+ PortfolioThis Old Book
+ About
+ Contact

continued

WEB DESIGN PLAYGROUND 379

http://wdpg.io/2/projects/portfolio-page/3

\

Project: Creating a Portfolio Page

A header {
O display: flex;
justify-content: center; The header is a
align-items: center; Flexbox container.
padding: .5rem 0;
1
.header-left {
ey L0 29Uy The left+ header gets one-
Cextuationiip e tEy third of the width; the right
} gets two-thirds.
.header-right { .Q;.,///
flex: 2 0 67%;
display: flex;
flex-wrap: wrap; The right header is a
justify-content: flex-end; Flexbox container.
1
E <header>
[<div class="header-left">
T <}mg src="/images/portfolio-logo.png" The left side
alt="This 0ld Book logo"> of the header
</divs>
<div class="header-right">
<navs>
<uls>
Portfolio</1li>
The <a href="#about" class="btn"sAbout</1li>
th+ Contact</1li>
side
of the </navs
header <h1>This 01d Book</hl>
</div>
</header>

With the header structure set up, you can tend to the styling of the header
elements. The logo is fine as is, but you need to turn the navigation links into
proper buttons and style the page title. The following example shows the
HTML and CSS that | used.

380 WEB DESIGN PLAYGROUND

WEB PAGE

CSsS

» Try This

Building the Page

= Online: wdpg.io/2/projects/portfolio-page/4

This example styles the header elements.

hi {
padding-top: lrem;
}

.btn {
background-color: #362507;

PORTFOLIO A

@
o]

uT CONTACT

(
(

This Old Book

The hl element is
given some Padding.

padding: .25rem .75rem;
border-radius: .75rem; [
font-size: lrem;
color: #cdc9cl;
text-transform: uppercase;
}
nav ul {
display: flex;
list-style-type: none;
} —

nav 1i {
padding-left: lrem;

a {
text-decoration: none;

a:hover {
color: #362507;
background-color: #cdc9cl;
1
hi {
font-size: 4rem;
font-weight: bold;

font-family: "Playfair Display", Georgia, serif;

This class turns the
navigaﬂon items into
proper buttons.

This CSS s+y|es the list

of navigaﬂon items.

This CSS s’ryles the links
(regular and’ hover).

This CSS
s+yles the
page title.

WEB DESIGN PLAYGROUND 381

http://wdpg.io/2/projects/portfolio-page/4

\

Project: Creating a Portfolio Page

MASTER Of special note here is the btn class, which you saw earlier applied to the
The border-radius <a> tags in the nav section. Each a element is a bulleted-list item, and the
property rounds the purpose of the btn class is to turn the content of each 11 element (the link
corners of an element. text) into a proper button. The btn class does the following:

You can specify a

measurement value (the
higher the value, the » Adds padding around the text
more the corners are
rounded), or you can

¢ Adds a background color

e Uses the border-radius property to round the corners

enter a percentage (a ¢ Sets the font size and color, and converts the text to uppercase

value of 50% rounds the

borders into a circle, for After the header portion of the page is done, your next task is to add the
example). introduction to the portfolio, which | cover in the next section.

The Portfolio Introduction

The portfolio introduction serves to bring the reader to your page by offering
a quick overview of what you do creatively. It should have a title and perhaps a
subtitle, a short paragraph, and another link to your Contact section.

In the following example, I've styled my page introduction with dark
brown text (#362507), an h2 title, an h3 subtitle, a clickable button, and a
related image for visual interest. To keep everything nice and neat, | set up
the introduction (using a class named intro) as a Flexbox container.

»Try This = Online: wdpg.io/projects/2/portfolio-page/5
This example adds the introduction to the portfolio page.

<div class= “intro-text” > <div class= “intro-image” >

-~ Al N /_M

<h2>
<h3>

WEB PAGE

<section class= “intro” > —<

<a> <p>

382 WEB DESIGN PLAYGROUND

http://wdpg.io/projects/2/portfolio-page/5

Building the Page

The CSS for the
intro class

CSS

.intro {
display: flex;
align-items: center;
margin: 2rem O;
border: 3px solid #77613c;
color: #362507;
font-size: 1.25rem;
background-color: #a99879;
background-image: radial-gradient (ellipse closest-corner at
center, #cdc9cl 0%, #a99879 100%) ;
1
.intro-text {
flex: 2 0 67%;
padding: 2rem 0 2rem 2rem;

}

.intro-text p {
margin: 1.5rem 0;
1

.intro-image {
flex: 1 0 33%;

padding-right: 2rem; The CSS for the
text-align: right; intro-image class

The CSS for the
intro-text class

1
h2 {
font-size: 2.5rem;
1
h3 {
font-size: 2rem; e The CSS
font-style: italic; For the
} headings
h2, h3 {
font-family: "Playfair Display", Georgia, serif;

}

continued

WEB DESIGN PLAYGROUND 383

\

Project: Creating a Portfolio Page

—
=
=
I

<main>
<section class="intro">
<div class="intro-text">

<h2>Book Restoration and Repair</h2>

<h3>If it’s broke, I’'1l fix it</h3>

<p>Welcome to This 0ld Book, the online home of book
restorer Paul McFedries. I take old books that have seen better
days and breath new life into them with careful and respectful
repairs and cleaning. Got a precious family Bible that’s a little
worse for wear? Have a rare or important book that could use some
TLC? Let’s talk.

</p>
<div>
Contact Me
</div>
</div>
<div class="intro-image">
<img src="/images/portfolio-intro.png"
alt="Illustration showing several old books">
</div>
</section>
</mains>

The header and introduction serve to invite the reader into the page. With
that accomplished, your next task is a crucial one for this project: adding the
portfolio itself. | show you how that's done in the next section.

The Portfolio

Next is the real meat of the page, which is the portfolio itself—a series of
images that show off your work. When deciding how much to show, you
have three choices:

e Show all your work. This option is the way to go if your portfolio
is small. If you have a big portfolio, you can show it, but it may
be better to show just a subset and then link to a second page
that shows everything.

e Show your most recent work. This option is a good one if you
think that your newest stuff is particularly good, if your style has
changed recently, or if you've landed some high-profile clients.

e Show your best work. This route is the one to take if you want
to really show people what you can do.

A typical portfolio has one to three rows, with two to four images per row.
You'll want to precede the portfolio with a heading and perhaps a sentence
or two as a lead-in. The portfolio itself should be configured as a Flexbox
container to make everything look tidy. The following example shows how |
did all of this on my portfolio page.

384 WEB DESIGN PLAYGROUND

Building the Page

P Try This = Online: wdpg.io/2/projects/portfolio-page/6
This example adds the portfolio to the page.

w <h2> <p>

%] P

< J

[a

o Some Recent Work <div class=

L Here are some of my recent restoration projects. The images you see below are the “before” versions / “« Ortfoli 0-ti ext” >

; of each book. To see an “after” version, move your mouse over an image (or tap it). P

<section class=
“portfolio” > .
p <div class=
“portfolio-images” >

 tags

A .portfolio {

O margin-bottom: lrem;

}

.portfolio-text p {
margin: .5rem 0 1.5rem;
font-size: 1.25rem;

1

.portfolio-images {
display: flex;

justify-content: space-between; The PorH:O“,O Images
} are housed in a Flexbox

L container.
.portfolio-image {

position: relative;
cursor: pointer;
margin-bottom: lrem;

continued

WEB DESIGN PLAYGROUND 385

http://wdpg.io/2/projects/portfolio-page/6

\

Project: Creating a Portfolio Page

The PorH:olio text container is a div The porﬂlolio container is a section

element with class portfolio-text. element with class and id portfolijo.
<section class="portfolio" id="portfolio"><q—————————————"”’////}
<div class="portfolio-text">
<h2>Some Recent Work</h2>
<p>Here are some of my recent restoration projects. The
images you see below are the “before” versions of each book. To
see an “after” version, move your mouse over an image (or tap
it) .</p>
</div> '/_\ The portfolio images container
<div class="portfolio-images"> 5 @) ey e i @lee
. o portfolio-images.
<div class="portfolio-image">

<img class="image-overlay" src="/images/portfolio-
bookl-after.png">
</divs>
<div class="portfolio-image">

<img class="image-overlay" src="/images/portfolio-
book2-after.png">
</divs>
<div class="portfolio-image">

<img class="image-overlay" src="/images/portfolio-
book3-after.png">
</div>
<div class="portfolio-image">

<img class="image-overlay" src="/images/portfolio-
book4-after.png">
</divs>
</div>
</section>

HTML

The portfolio content resides in a section tag to which I've assigned the
portfolio class. Note, too, that | assigned the ID portfolio, which sets up
this section element as a target for the header's Portfolio navigation link
you saw earlier.

The portfolio text resides in a div with class portfolio-text. It consists
of an h2 heading and a p element for the lead-in sentence.

386 WEB DESIGN PLAYGROUND

Building the Page

The portfolio images reside in a div with class portfolio-images. It
consists of several div elements (with class portfolio-image). For most
portfolios, you need only include an img element within each of these div
elements. In my project, however, | wanted to present before and after
images, with the latter appearing when the user hovers the mouse over an
image (or taps an image on a portable device). To do that, | added a second
img element with class image-overlay. Here's the CSS for that class:

.image-overlay { USE IT
position: absolute; A A -
left: 0; The idea of having
top: 0; before and after images
width: 200px; in your portfolio is
height: 156px; useful for many creative
z-index: 1; its includi
opacity: 0; pursylts, including
transition: opacity 1.5s ease; furniture repair, art

} . restoration, fitness

. 1magejgve r}ay thover { training, hair styling,
opacity: i and interior decoration.

The overlay uses the same dimensions as the before image, and it's
positioned absolutely at the top-left corner of the div element with class
portfolio-image (which uses relative positioning to set a positioning
context for the after image). The overlay is given a z-index value of 1 to
make sure it appears on top of the before image, and it's given an opacity
value of 0 to prevent it from appearing when the page first loads. Then, the
hover event changes the opacity value to 1 to make the image appear. The
transition property in the image-overlay class animates the appearance
of the overlay.

The About Section

The next element of the portfolio page is the About section, which you can
use to toot your own horn in whatever way you feel comfortable. You can
talk up your education, your work experience, your appointments, your
awards, and so on. Use whatever works to supply your portfolio with the
bona fides required to persuade potential clients, employers, or sponsors
that you have the creative chops they're looking for.

The About section is simple: a heading followed by a paragraph of self-
aggrandizing text. The following shows an example.

WEB DESIGN PLAYGROUND 387

\

Project: Creating a Portfolio Page

» Try This = O0nline: wdpg.io/2/projects/portfolio-page/7
This example adds the About section to the portfolio page.

<h2> <p>

About Me «J /

Paul McFedries is a book conservator, bookbinder, and an expert in the history and conservation of
<section class= Gothic and Art Deco bookbindings. He is a graduate of the Canadian Bookbinding and Book Arts Guild,
“about” > and apprenticed with some of the top North American and European book restorers, including Don
Palmer, Rose Eldridge, and Betsy Taylor-Newlove. Paul was formerly president of the Gothic Book
Workers Guild and is currently executive director of the Historical Art Deco Bookbinding Society.
Working with both institutional and private clients, he has restored hundreds of books over the years.

WEB PAGE

.about {
margin-bottom: lrem;
} The CSS for the
.about-text p { About section
margin: .5rem 0 1.5rem;
font-size: 1.25rem;

CSS

The About text container is a div The About container is a section element
element with class about-text. with the about class and the about id

HTML

<section class="about" id="about">
<div class="about-text">
<h2>About Me</h2>
<p>Paul McFedries is a book conservator, bookbinder,
and an expert in the history and conservation of Gothic and Art
Deco bookbindings. He is a graduate of the Canadian Bookbinding
and Book Arts Guild, and apprenticed with some of the top North
American and European book restorers, including Don Palmer, Rose
Eldridge, and Betsy Taylor-Newlove. Paul was formerly president of
the Gothic Book Workers Guild and is currently executive director
of the Historical Art Deco Bookbinding Society. Working with both
institutional and private clients, he has restored hundreds of
books over the years.
</p>
</div>
</section>

388 WEB DESIGN PLAYGROUND

http://wdpg.io/2/projects/portfolio-page/7

Building the Page

The About content uses a section element with the about class. | also
assigned the id about, which sets up this element as a target for the About
navigation link in the header. You're almost done! Next up is the crucial
Contact section.

The Contact Section

The final element of the main section of the portfolio page is the all-
important Contact section, which is where you give interested visitors one
or more ways to get in touch with you. At minimum, you should supply an
email address, but you'll almost always want to include one or more links to
your social networking profiles.

The Contact section is straightforward: a heading, a lead-in paragraph,
and your email address and social network links. The following shows an
example.

Can I have people
contact me using a
form? A formis a great
way to get a message,
but it’s not ideal for
most new web designers
because it requires a
script to process the
form data. However,
some services on the web
not only enable you to
build a form but also
process the data for you.
Check out TypeForm
(www.typeform.com) and
Wufoo (www.wufoo.com).

<div class=
“contact-text” >

»Try This = Online: wdpg.io/2/projects/portfolio-page/8
This example adds the Contact section to the portfolio page.
" <h2> <p>
2 o/
a Contact Me
E If you want to know more about my work, or if you want to discuss a project, please get in touch:
= <section class= paul at thisoldbook dot com
“contact”> Alternatively, click an icon below to reach out using your favorite social network:
000
<div class= “contact-social-links” >
A .contact {
O margin-bottom: lrem;
1

.contact-text p {
margin: .5rem 0 1.5rem; The CSS for
font-size: 1.25rem; the Contact

} section

.contact-social-links a {
margin-right: 1.5em;

}

continued

WEB DESIGN PLAYGROUND 389

http://wdpg.io/2/projects/portfolio-page/8
http://www.typeform.com
http://www.wufoo.com

\

Project: Creating a Portfolio Page

-
>3
=
E=

The Contact text container is a div The Contact container is a section
element with class contact-text. element with class and id contact.

<section class="contact" id="contact">
<div class="contact-text">
<h2>Contact Me</h2>
<p>If you want to know more about my work, or if you want to
discuss a project, please get in touch:</p>
<p><is>paul at thisoldbook dot com</i></p>
<p>Alternatively, click an icon below to reach out using
your favorite social network:</p>
</div>
<div class="contact-social-links">
<img src="/images/
facebook-round.png" alt="Facebook icon">
<img src="/images/
twitter-round.png" alt="Twitter icon">
<img src="/images/
instagram-round.png" alt="Instagram icon">
</div>
</section>

The Contact social media container is a div
element with class contact-social-links.

REMEMBER The Contact content uses a section tag with the contact class and an id

When you add your value set to contact, which enables this element to act as an anchor for the
email address to the Contact button in the header and the Contact Me button in the portfolio
Contact section, make iﬂtl’OdUCtiOﬂ.

sure that you don't Your portfolio page is so close to being complete! All that remains now is

dlsr_)lay the addressin to add the page footer, which | discuss in the next section.
plain text so that the

address isn’t harvested

The Page Footer
by spammers. Instead,
obfuscate the address The final element of the portfolio page is the page footer. As you can see in
in a way that fools the the following example, | used the footer to display a copyright notice and
spammers’ bots but is some links to other sections of the site.

still straightforward for
a human to decode.

390 WEB DESIGN PLAYGROUND

Building the Page

P Try This = Online: wdpg.io/projects/2/portfolio-page/9
This example adds the footer to the portfolio page.

<div class= “footer-copyright” >

<footer> > Copyright 2023 This Old Book o—/ /—vﬂamﬁ' FAQ Site Map Privacy

WEB PAGE

<div class= “footer-links” >

footer {
display: flex;
padding: lem O; The footer is set

border-top: 1px solid #a99879; up as a Flexbox
} container.

CSs

.footer-copyright {
flex: 1 0 50%;
text-align: left;
font-style: italic;
font-size: 1.25em;

1

.footer-links {
flex: 1 0 50%;
text-align: right;
font-size: 1.25em;

1

.footer-links a {
color: #362507;
margin-left: lem;

<footer>
<div class="footer-copyright"> <4 The footer copyr@h+ notice
Copyright 2023 This Old Book is a div element with class
</divs> footer-copyright.
<div class="footer-links"> 47> [, cooter site links container
Home is a div element with class
FAQ footer-links.
Site Map
Privacy
</div>
</footer>

HTML

WEB DESIGN PLAYGROUND 391

http://wdpg.io/projects/2/portfolio-page/9

\

Project: Creating a Portfolio Page

BEWARE The footer content uses a footer element that's configured as a Flexbox
When adding a container. The copyright notice (with class footer-copyright) is a Flexbox
copyright notice, item aligned to the left, and the set of site links (with class footer-1inks) is
don't add both the a Flexbox item aligned to the right.

word Copyright and Congratulations! You've built yourself a fine portfolio page. In the next
the copyright symbol section, | suggest a few ways you can improve upon the project, if you feel
(©) because this is

redundant. Use one or like doing some homework.

the other, but not both.
From Here

The final version of the portfolio page (mine is shown in Figure 20.4) offers a
solid start for getting the word out about your creative work.

» Figure 20.4
A portfolio page, ready for
the web

This Old Book

Some Recent Work

Here are some of my recent restoration projects. The images you see below are the “before” versions
of each book. To see an “after” version, move your mouse over an image (or tap it).

N /
\ W
A 7/

About Me

Paul McFedries is a book conservator, bookbinder, and an expert in the history and conservation of
Gothic and Art Deco bookbindings. He is a graduate of the Canadian Bookbinding and Book Arts Guild,
and apprenticed with some of the top North American and European book restorers, including Don
Palmer, Rose Eldridge, and Betsy Taylor-Newlove. Paul was formerly president of the Gothic Book
Workers Guild and is currently executive director of the Historical Art Deco Bookbinding Society.
Working with both institutional and private clients, he has restored hundreds of books over the years.

Contact Me

If you want to know more about my work, or if you want to discuss a project, please get in touch:

paul at thisoldbook dot com

Alternatively, click an icon below to reach out using your favorite social network:

000

Copyright 2023 This Old Book Home FAQ SiteMap Privacy

392 WEB DESIGN PLAYGROUND

Summary

The biggest thing missing from the portfolio page is responsiveness.
The page looks good in desktop web browsers and even on some tablets in
landscape mode, but the design breaks on smaller screens. I'll leave to you
the exercise of adding media query breakpoints (see Chapter 14) that help
the page look good all the way down to a smartphone.

This is the last chapter of the book, but that doesn't mean it's the last
chapter of your web-design education—far from it. Be sure to pay a visit
to the Web Design Playground (https://webdesignplayground.io/2) for lots of
examples, exercises, and tutorials that will help you sharpen your skills and
expand your knowledge. See you there!

Summary

Sketch out the page you want to build.
Choose the typefaces for the headings and body text.
Choose a color scheme.

Build the initial page structure: the bare-bones HTML tags and
the global CSS properties applied to the body element.

Set up your main Flexbox containers.

Fill in and style each section one by one: the header, the
portfolio introduction, the portfolio itself, the About section, the
Contact section, and the footer.

WEB DESIGN PLAYGROUND 393

https://webdesignplayground.io/2

From Playground to
Web: Getting Your
Pages Online

You've covered much ground in this book, and no doubt worked your fingers
to the bone applying the electronic equivalent of spit and polish to buff your
website’s pages to an impressive sheen. But you need to perform a couple
of related tasks before you can cross "Make website" off your to-do list: find
a web home for your site, and move your website files to that new home.
This appendix helps take care of both tasks. You first learn how to look for
and choose a spot on the web where friends, family, and even total strangers
from far-flung corners of the world can eyeball your creation. Then you learn
how to emigrate your web pages from their native land (the Web Design
Playground or your hard disk) to the New World (the web). You'll learn how to
best prepare your pages for the journey, select a mode of transportation, and
settle the pages in when they've arrived.

WEB DESIGN PLAYGROUND 395

\

From Playground to Web: Getting Your Pages Online

From There to Here: Saving Your Playground Work

If you've been using the Web Design Playground to try some experiments
and even build a few sandboxes (the name | use to describe projects on
the Playground), the next step is getting your code from the Playground
to your computer. You have two ways to go about this: copying code and
downloading code. To begin, I'll show you how to copy code from the
Playground.

Copying Playground Code

The Web Design Playground is chock full of HTML and CSS code: it's in the
lesson pages, it's in the HTML Editor, and it's in the CSS Editor. One way of
getting code to your computer is to copy it from one of these Playground
locations. When you've done that, you can paste the code into an existing
file using your favorite text editor. The Web Design Playground offers three
ways to copy code:

e In a lesson—When a lesson page offers an HTML or CSS code
snippet, you see a Copy to Clipboard button below the code, as
shown in Figure A.1. Click that button to copy the code to your
computer's clipboard (the memory area used to store the most
recently copied or cut data).

€SS

.quotation {
padding: 0.5em;
width: 80%;
border: 3px double
green;

}

» Figure A.1
To copy code from an HTML
or CSS snippet in a Playground

lesson, click the Copy to

Clipboard button.

e In the HTML Editor—The HTML Editor contains the current
lesson's HTML code, existing HTML code that you've modified,
or custom HTML code that you've added to a sandbox.
Whatever the source, you can grab the HTML code by clicking
the menu icon in the top-left corner of the HTML Editor and
then clicking Copy to Clipboard, as shown in Figure A.2. This
step copies the full HTML code to your computer’s clipboard.

396 WEB DESIGN PLAYGROUND

From There to Here: Saving Your Playground Work

X HTML

Display errors ages/your-logo-

- » Figure A.2
Copy to clipboard AT

To copy code from the HTML

5 Editor, click the editor's menu
o icon, and then click Copy to
8 Home</1i> Clipboard.

e In the CSS Editor—The CSS Editor contains the current lesson'’s
CSS code, existing CSS code that you've modified, or custom CSS
code that you've added to a sandbox. To place that CSS code
in your computer's memory, click the menu icon in the top-left
corner of the CSS Editor, and then click Copy to Clipboard, as
shown in Figure A.3. This step copies the full CSS code to your
computer's clipboard.

X CSs
— » Figure A.3
ISplay errors
To copy code from the CSS
Copy to clipboard X K o
"S; b°;d”*b“; Editor, click the editor's menu
o I icon, and then click Copy to
7B Clipboard.

When you've run the Copy to Clipboard command, open your HTML
or CSS file in a text editor, position the insertion point where you want the
copied code to appear, and then run the text editor's command for pasting
clipboard data. In the vast majority of editors, you do this by choosing Edit >
Paste or by pressing Ctrl-V (Windows) or Cmd-V (Mac).

Downloading Playground Code
Rather than copy and paste bits of HTML or CSS code, you may prefer to get
the entire contents of both the HTML and CSS Editors. This is the way to go if
you want all the code from a particular lesson, or if you've created a sandbox
and have been populating it with custom HTML and CSS code.

Here are the steps to follow:

1 Inthe Web Design Playground, open the lesson that has the code you
want, or create a sandbox with your custom code.

2 Choose Menu > Download Code.

The Playground gathers the code into a zip archive file and tells your
web browser to download the file.

WEB DESIGN PLAYGROUND 397

\

From Playground to Web: Getting Your Pages Online

3 Locate the downloaded file, which is named webdesign.zip.
4 Double-click the webdesign.zip archive to openiit.
In the folder that appears, you see two files:

e index.html—This file contains a basic HTML page structure
with the contents of the HTML Editor inserted between the
<body> and </body> tags. It also includes a 1ink element in
the <head> section that references the styles. css file.

e styles.css—This file contains the contents of the CSS
Editor.

5 Copy or move these files to the folder where you store the rest of your
web page files (such as the page image files).

Now that you have your Playground code safely stashed on your Mac or
PC, you're about ready to get that code onto the web. Before you can do
that, however, you need to perform a few more chores to get your files web
ready. First on this to-do list is setting up your web page folders on your
computer.

Selecting a Text Editor

You can use the Web Design Playground to experiment and play with HTML
and CSS, but when it's time to get serious about your code, you'll want to
edit it on your computer. To do that, you need a text editor, preferably one
that was designed with web coding in mind. A good web code editor comes
with features such as syntax highlighting (which color-codes certain syntax
elements for easier reading), line numbers, code completion (when you
start typing something, the editor displays a list of possible code items that
complete your typing), and text processing (such as automatic indentation
of code blocks, converting tabs to spaces and vice versa, shifting chunks of
code right or left, removing unneeded spaces at the ends of lines, and hiding
blocks of code). Here, in alphabetical order, are a few editors that offer all of
these features (and usually quite a few more):

* Notepad++—Available for Windows only. Free!
https://notepad-plus-plus.org

¢« Nova—Available for Mac for $99, but a free trial is available.
https://nova.app

¢ Sublime Text—Available for both Windows and Mac for $99, but
a free trial is available. www.sublimetext.com

e Visual Studio Code—Available for Windows and Mac. Yep, this
one is free, as well. https://code.visualstudio.com/

398 WEB DESIGN PLAYGROUND

https://notepad-plus-plus.org
https://nova.app
http://www.sublimetext.com
https://code.visualstudio.com/

Setting Up Your Folders

Setting Up Your Folders

When you sign up for a home to store your web page files (see "Getting a
Web Host" later in this appendix), you're given your own folder to store files
on the server. That folder is called your website's root folder. The question
you need to ask yourself now is a simple one: Do | need to create one or
more subfolders within the root folder?

| use the word apparently here because it's not always clear whether you
need subfolders. Examine the possible scenarios:

¢ One web project consisting of a single file—The simplest
possible web project consists of a single HTML file. That file
contains only text, HTML tags, CSS styles inserted inline or in an
internal style sheet (that is, between the <style>and </style>
tags), and media (such as images) that use remote references
(that is, references to files that reside on other websites). In this
case, you can store that file in the root folder, and you don't
need any subfolders.

¢ One web project consisting of a small number of files—Most
simple or beginning web projects consist of a few files: an
HTML file, a CSS file, and one or more image files. In this case,
it's almost certainly overkill to use subfolders, so you should
store all the files in the root folder.

e One web project consisting of many files—It's not unusual for a
large project to have multiple HTML files, several CSS files, and
lots of media files, particularly images. In this scenario, it's fine
to place all your HTML files in the root folder, but to keep things
organized, you should create separate subfolders for each of
the other types of files: CSS, images, and so on.

o Multiple web projects—If you get into web design even a little,
you'll find that you can't create only one project. Multiple
projects are the norm, and in this case, you should keep the
projects separate by storing each one in its own subfolder. If a
particular project is large, you'll want to create sub-subfolders
to store the project's various file types (CSS, images, media, and
so on).

Why worry about all this now? You'll make your web design life
immeasurably easier and more efficient if you set up your computer's local
folder structure to mirror what you want to set up remotely after you sign
up with a web host:

1 Begin by designating a local folder as the main storage area for your
web files.

This folder will be the local equivalent of your root folder on the
web host.

WEB DESIGN PLAYGROUND 399

\

REMEMBER

Another way to run the
validation is to copy
your HTML code from
your text editor, select
the Validate by Direct
Input tab, paste your
HTML code into the
text box, and then
click Check.

From Playground to Web: Getting Your Pages Online

2 If you'll be working on multiple web projects, set up a subfolder for
each project.

3 If a project is large enough to require subfolders for certain file types,
create these subfolders within the project folder.

4 When you download files from the Playground (as described in the
preceding section), or when you create your own HTML, CSS, or
image files and save them for the first time, be sure to store them in
the appropriate folder.

With all that done, your next task is making sure that your code passes
muster by getting it validated.

Validating Your Code

You've seen in this book that although HTML tags and CSS properties aren't
complex, they can be finicky. If you forget a closing tag or brace, leave out
a quotation mark or comma, or spell a tag or property hame incorrectly,
there's a good chance that your web page won't render properly. In some
cases, the error is a glaring one (such as the page's failing to show anything),
but all too often, the error is subtle and hard to notice.

Either way, you don't want to foist an error-filled page on the web pubilic,
so besides going over your HTML and CSS code with a careful eye, you
can get some help online by submitting your code to one of the available
validation services.

Validating HTML

The World Wide Web Consortium (W3C) hosts a Markup Validation Service
that can examine your HTML code and let you know whether it contains any
errors or warnings. Here's how you use it:

1 Use a web browser to surf to https://validator.w3.org.

2 Click the Validate by File Upload tab.

3 Click Browse.
The site prompts you to select the file you want to validate.

4 Locate and select the HTML file you want to check, and click Open.
The site uploads the file.

5 Click Check.

The Markup Validation Service checks the HTML code and displays the
results.

Ideally, you'll see the No errors or warnings to show. message, as
shown in Figure A4.

400 WEB DESIGN PLAYGROUND

https://validator.w3.org

Validating Your Code

Nu Html Checker

This tool is an ongoing experiment in better HTML checking, and its behavior remains subject to change

Showing results for uploaded file index.html

—Checker Input— —

| i T

Check by file upload /| | Browse..
Uploaded files with .xhtml or .xht extensions are parsed using the XML parser.
D il No errors or to show.

Used the HTML parser.
Total execution time 2 milliseconds.

If your HTML file didnt validate, however, you'll see one or more error or
warning messages, as shown in Figure A.5.

1. | Emor Element:t_jt}' must not be empty.

From line 5, column 16; to line 5, column 23

2. Emor Attribute ot allowed on elemen
From line 9, column 1; to line 9, column 24

at this point.

There were errors.

Used the HTML parser.
Total execution time 3 milliseconds.

Validating CSS
The W3C also offers the CSS Validation Service, which can peruse your CSS
code and alert you to any errors or warnings. Here's how to use it:
Use a web browser to surf to https://jigsaw.w3.org/css-validator.
2 Click the By File Upload tab.
Click Browse (Windows) or Choose File (Mac).
The site prompts you to select the file you want to validate.
4 Locate and select the CSS file you want to check; then click Open.
The site uploads the file.
5 Click Check.

The CSS Validation Service checks the CSS code and displays the
results.

Ideally, you'll see the No Error Found message, shown in Figure A.6.

» Figure A.4

HTML validation bliss: No
errors or warnings
to show.

» Figure A.5
HTML validation misery:
There were errors.

REMEMBER

An alternative CSS
validation method is to
copy your CSS code from
your text editor, select
the By Direct Input tab,
paste your CSS code into
the text box, and then
click Check.

WEB DESIGN PLAYGROUND 401

https://jigsaw.w3.org/css-validator

—— From Playground to Web: Getting Your Pages Online

» Figure A.6
CSS validation joy:

Congratulations!

The W3C CSS Validatio

No Error Found Jump to: Validated CSS

W3C CSS Validator results for styles.css (CSS level 3)

Congratulations! No Error Found.

This document validates as CSS level 31

If your CSS file contains invalid data, however, the service returns one or
more errors or warnings, as shown in Figure A.7.

» Figure A.7 B I .
S5 vlidation sorrow: The W3C CSS Validation Service

S Validator resul

Sorry! We found

the fol 1owing Jump to: Errors (2) Validated CSS

errors. W3C CSS Validator results for styles.css (CSS level 3)

Sorry! We found the following errors (2)

URI : styles.css

4 body Value Error : font-size Unknown dimension 20pz ‘

10 divp Value Error : color purpel is not a color value : purpel ‘

When you've fixed all the errors in your code, your HTML and CSS files
are ready for web prime time. First, though, you need to secure a place to
put those files. You need, in short, to find a web host.

Getting a Web Host

Back in Chapter 1, you learned that a web page is stored on a special
computer called a web server, which accepts and responds to web browser
requests for the page and its associated files. Before anyone else can view
your web project, you need to get its files on a web server. To do that, you
need to sign up with a service that offers space on its server. Because the
service in effect plays host to your files, such a service is called a web hosting
provider, or web host.

When you evaluate a web host, what criteria should you use? The answer
depends on the type of website you want to set up, but the following criteria
are the most common:

e Maximum bandwidth—The maximum amount of your data
per month that the host will transfer to web browsers. In
most cases, you pay extra for data that exceeds your monthly
maximum. Some web hosts offer unlimited bandwidth.

* Total disk space—The amount of hard disk storage space you get
on the web server. At a minimum, total disk space usually is a few
hundred megabytes, which is more than enough for a simple site.

402 WEB DESIGN PLAYGROUND

Getting a Web Host

¢ Number of websites—The number of root folders you can set up.

o Number of email addresses—The number of email addresses
that are included with the hosting service.

¢ Domain name hosting—Whether the web host also hosts
domain names that you've previously purchased from a
domain name registrar. Some hosts sell domain names, and
others offer free subdomain names of the form yourdomain.
webhostdomain.com.

e FTP support—Support for the File Transfer Protocol (FTP), which
is the internet service you use to transfer your files to the web
host. Almost all web hosts support FTP, but some offer only
proprietary file transfer services.

As a rule, the cheaper the web host, the fewer of these features you get.
Before you start looking for a web host, make a list of these features and
decide what you need and what's optional. That might be difficult right now
for something like maximum bandwidth because bandwidth is determined
in part by how popular your site becomes, but make your best stabs at each
one for now. When you're looking for a web host, you have three main
choices:

¢ Your internet service provider (ISP)—The company or institution
you use to access the internet may also offer a web hosting
service. Many ISPs offer free web hosting for simple personal
websites, and some organization networks include a web server
that you can use. In most cases, the hosting includes features
such as bandwidth and disk space at the lower end of the scale.

¢ Free web hosting provider—Many services will host your web
pages without charge. The catch is that you usually have
fairly severe restrictions on most hosting features, particularly
bandwidth and disk space, and you almost always get only a
single website. Some free web hosts also display ads, although
that's becoming rare these days.

e Commercial web hosting provider—If you want to get a
reasonable set of features for your web presence, you
need to shell out money to rent space with a commercial
web hosting provider. Note that I'm not talking about big
bucks. Popular providers such as Bluehost (www.bluehost.com),
GoDaddy (www.godaddy.com), and HostGator (www.hostgator.com)
offer feature-packed hosting usually for less than $5 per
month. If you think you'll be getting into web design beyond
the creation of a basic home page, you should consider a
commercial web host.

WEB DESIGN PLAYGROUND 403

http://yourdomain.webhostdomain.com
http://yourdomain.webhostdomain.com
http://www.bluehost.com
http://www.godaddy.com
http://www.hostgator.com

\

From Playground to Web: Getting Your Pages Online

When you've signed up with a web host, it usually takes anywhere from
a few minutes to a few hours before everything is ready. When your hosting
service is good to go, then it's time to get your stuff online.

Uploading Your Files

With your HTML and CSS files coded and validated, your support files (such
as images) in place, your folders set up, and your web host ready to serve
your stuff to a waiting world, all that remains is to send your files from your
computer to the web host's server—a process known as uploading.

How you go about uploading your files depends on the web host, but the
following three methods are by far the most common:

e FTP—Most hosts offer support for FTP uploads. First, you need
to get yourself an FTP client, which is a software program
that connects to your web host's FTP server and offers an
interface for basic file chores, such as navigating and creating
folders, and uploading, deleting, and renaming files. Popular
Windows clients are CuteFTP (www.globalscape.com/cuteftp) and
Cyberduck (https://cyberduck.io). For the Mac, try Transmit (https://
panic.com/transmit) or FileZilla (https://filezilla-project.org). When you've
downloaded the software, check your web host's support pages
for information on how to connect to the host's FTP server.

e cPanel—Many web hosts offer an administration tool called
cPanel that presents a simple interface for hosting tasks such
as email and domain management. cPanel also offers a File
Manager component that you can use to upload files and
perform other file management chores.

e Proprietary—Some web hosts offer their own interface for
uploading and working with files. See your host's support page
for instructions.

Whatever method is available, upload all your website files and folders
to your root folder on your host. Then load your site into your favorite web
browser to make sure that everything's working okay. It wouldn't hurt to try
your site in a few different browsers and on a few different devices to make
sure that it works properly for a wide variety of users. Welcome to the web!

404 WEB DESIGN PLAYGROUND

http://www.globalscape.com/cuteftp
https://cyberduck.io
https://panic.com/transmit
https://panic.com/transmit
https://filezilla-project.org

Index

B s Bt e et en s
<a>tag 19-20, 36-38, 304 tag 29-30, 38,59

href attribute 304 background-attachment property 166
<abbr>tag 296 background-color property 68

title attribute 296 background image
About section, portfolio page 387-389 hero backgroundimage 165-166
absolute positioning 136-138 background-image property 96
absolute values 122 background images 96-101
adaptive layouts 254-258 adding heroimages 99
adjacentsibling 353 background shorthand properties 101
Adobe Typekit 337 controlling the background repeat 97
::after pseudo-element 360-362 setting background positions 98
align-content property 211-212,285 background-position property 99
aligning background property 101

images 94-95 backgrounds

overriding item alignment in Flexbox 218-219 applying colorsto 68-70

paragraphs horizontally 62 controlling repeat 97

text 94-95 setting background position 98
align-items property 210, 285 background shorthand properties 101
align-* property 241 background-size property 329
align-self property 218-219, 245 banded content 160
alpha channel 318 Befonts 339
alt attribute 88 : :before pseudo-element 360-362
ampersand character 308 block-level elements 44,126
ancestor element blockquote element 32

definition of 353 <blockquotestag 32-33
anchors 36 blocks, adding visual breaks between 45-46
apertures 374 Bluehost 403
<articles>tag 43,194, 223 <body>tag 24,221,280, 398
asideelement 265 body text 73
<aside>tag 198,223 bold text 59-60
attribute border-radius property 382

definition of 19 borders 143-157
audio boxes 144-145

addingtoapage 102-110 boxmodel 145

audio element 107-109 box-sizing: border-box

embedding in web pages 107-109 including at the top of your CSS = 251

web audio formats 103
tag 307
<audio>tag 108,110 breakpoint
author style sheets 365 setting for a media query 259
auto keyword 153 breakpoints. See media query breakpoints

405

Index

breaks. See line breaks ; See also line breaks
visual, adding between blocks 45-46

br element 42

browser viewport
configuring the default width and scale 251

bulleted lists 6, 47, 49-51

bullets 93

<buttons>tag 169

Calibri typeface 60

call-to-action button 165, 168-169
captions 277,289-291

cascade 365-366

hierarchy of style data 365-366

Cascading Style Sheets. See CSS (Cascading Style
Sheets)

CDNs (content delivery networks) 339
centering. See dead-centering elements
character entities
definition of 308
ending with a semicolon (;) 308
referencing as entity names 308
referencing as hex or decimal codes 308
starting with an ampersand (&) 308

table of common HTML5 character
entities 308

using the HTMLS5 Entity Browser 309
child combinator 356-357
childelement

definition of 353
cite attribute 32
<cite>tag 297
class selectors

overview 119-120
class selectors vs. ID selectors 352
clear property 126
closing right brace 21

closing tag

partsof 18
<code>tag 297 356
collapsing

margins 156-157

colon character 21

Color Chooser tool 321-322
color gradients, applying 326-332

406 WEB DESIGN PLAYGROUND

Gradient Construction Kit 330-331
linear-gradient function 326-328
linear gradients, creating 326-328
radial-gradient function 329-330
radial gradients, creating 329-330
color property 21, 67
colors 311-332
alpha channel, specifying 318
analogous 324
applying to backgrounds 68-70
applyingtotext 67
choosing a color scheme 278
choosing a home page color scheme 73-74

choosing a portfolio page color
scheme 375-376

choosing harmonious colors 323-324
choosing the landing page color scheme 162
Color Scheme Calculator 324-325
complementary 323
CSS color keywords 66-67
hex triplets 320
splitcomplementary 323-324
transparency (opacity) 318
triadic 324-325
understanding 312-315
working with 66-70
colors, adding with CSS = 315-322
Color Chooser tool 321-322
hexadecimal numbers 318-319
hsl () function 317
RBG hex codes 320-321
rgb () function 315-317
transparency 318
column-gap property 233
combinator
definition of 354
comments 77
comments, adding
using the <-- and -->commenttags 310
Contact section, portfolio page 389-390
containers. See inline containers and elements
arranging items along the cross axis 208-209
arranging items along the main axis 208

arranging multiple lines along the cross
axis 211-212

collapsing and preventing collapse 127-129

converting a block-level elementto a
container 205

dead-centering elements 212-213
direction of container items 206-207
display: flex CSSdeclaration 205
in Flexbox 205-212
helpful Flexbox container questions 206
wrapping items 210-211
contentbands 170-172
contextual selectors, in CSS 353-358
child combinators 356
descendant combinators 354
sibling combinators 358
copyright symbol 83, 287
counter-increment property 362
counters 374
cPanel
capabilitiesof 404
Cross axis
arranging itemsalong 208-209
arranging multiple linesalong 211-212
CSS (Cascading Style Sheets) 3, 349-369
: :after pseudo-element 360-362
background color property 68
: :before pseudo-element 360-362
cascade 365-366
cascade, definition of 7
color property 67
combining selectors 359-360
contextual selectors 353-358
creating web with 10
defining how a page looks 7
editor 14
exampleof 8-9
ID selectors 350-352
inheritance 363-364
in Web Design Playground 12
limitations of 10
naming id values 350
overview of 7
properties 14, 20
property-value pairs 20
resetting with universal selectors 362
separating structure and presentation 8
specificity 366-369

structural hierarchy of a typical web
page 352-353

style, definition of 7

styles 363-369

stylesheet 7

units of measurement for CSS
properties 121-122

usesfor 8

CSS code, validating 401-402
CSS Editor 396-397
CSS Grid 189

adding grid gaps 233-234

aligning grid items 241

aligning grid items along the column axis 243

aligning grid items along the row axis 242

aligning grid items withina column 244

aligning grid items withinarow 245

align-content property 211-212

align-items property 208-210

align-self property 245

arranging container items both horizontally
and vertically 228

column-gap property 233-234

converting an element to a grid
container 229-230

display: grid CSSdeclaration 229
end keyword 236

fr measurementunit 232

grid area, definition of 236

grid-area property 239-241

grid cell, definition of 236
grid-column-* property 236-238

grid container, definition of 229

grid item, definition of 229

grid lines, definition of 236

grid-row-* property 236-238
grid-template-areas property 239-241
grid-template-columns property 230-231
grid template, definition of 230
grid-template-rows property 230-231
introductionto 227

justify-* property 241

max-content keyword 231

overview of 228-229

placing items within the grid 236-237
repeat () function 234-235

WEB DESIGN PLAYGROUND 407

Index

row-gap property 233

span keyword 236

using named grid areas 239-241
CSS Validation Service 401-402
cursive typefaces 55
custom bullets

creating with the ::before pseudo-
element 361

CuteFTP 404
CyberDuck 404

darkgray keyword 66
darkgrey keyword 66
<dd>tag 347
dead-centering elements 212-213
declaration 20

inserting directly intoan HTML element 23
declaration block 115
descendant combinator 354-355
descendant element

definition of 353
description list 47
<dfn>tag 298
direction of container items 206-207
display: flex CSSdeclaration 205
display: grid CSSdeclaration 229
divelement 43

nested 171

outer 171
<div>tag 43
dividing text 43
<dl>tag 347
IDOCTYPE element 24
<!DOCTYPE html> 23-26
<dt>tag 347
double quotation marks

usinginthe href attribute 20
dropcaps 130

element

converting to a grid container 229-230
element box

controlling whitespace 145

408 WEB DESIGN PLAYGROUND

height property 146-148
main parts of 144-145
margins 153-157
outline property 152
padding 148-150
setting width and height 146-148
width property 146-148
element:first-child pseudo-class 356
element:last-child pseudo-class 356
elements
::after pseudo-element 360, 362
::before pseudo-element 360-362
dead-centering with Flexbox 212-213
nameof 18
using lowercase lettersin 20
elements, floating 123-139, 125-133
absolute positioning 136-138
clearing 126-127
default page flow 124
dropcaps 130
fixed positioning 138-139
positioning 123-139
preventing container collapse 127-129
pullquotes 131-133
relative positioning 134-135
tag 18, 31,61
embedded style sheet 114
embedding
audioinweb pages 107-110
video in web pages 104-106
emphasizing text 30
empty string 88
emtag 18
em units
setting the font-size property in 268
end keyword 236
externallink 362
external style sheets 117-119

fantasy typefaces 55

feet 55

figcaptionelement 91
<figcaption>tag 91-92,109
figureelement 91

<figures>tag 91-92,109
file formats 89
files
uploading 404
validating your HTMLand CSScode 400-402
FileZilla 404
::first-letter pseudo-element 130

appling styles to the first letter of a text
block 362

::first-line pseudo-element 362
five boxes layout
definition of 372
fixed footer 287
fixed positioning 138-139
fixed-width layouts 55, 248-251
flex-basis property 216-217
Flexbox 189
Flexbox items 213-219
arranging items along the cross axis 208-209
arranging items along the main axis 208

arranging multiple lines along the cross
axis 211-212

changing order of items 217
containers 205-212
creating holy grail layouts with 221-226
creating page layouts with 203
creating thumbnail lists 219
dead-centering elements with 212-213
definitionof 205
direction of container items 206-207
flex shorthand property 217
growingitems 214
helpful questions about 213
overriding item alignment 218-219
overview of 204-205
shrinking items 215
suggesting initial sizes for items 216-217
wrapping items 210-211
flex container
definitionof 205
flex-direction property 206, 216, 289
flex-grow property 214, 286
flex shorthand property 217
flex-shrink property 215
flex-startvalue 208

flex-wrap property 210-211
floating elements 123-139, 125-133

browser stacking of block-level
elements 124

clearing 126-127
default page flow 124
dropcaps 130-131
::first-letter pseudo-element 130
preventing container collapse 127-129
pullquotes 131-133
flow. See page flow
flush 65
folders
root folder 399
settingup 399-400
Fontex 339
@font-facerule 336,340
font-family property 55, 80, 162, 334
fonts. See also typeface; See also typefaces
differentiating from a typeface 54
@font-facerule 340
fontstack 334-336
font-variant property 342
generic 55-56
google-webfonts-helper 340
hosting your own fonts 339-341
italicizing text 61
linking to third-party hosted fonts 337
responsive font sizes 270
shorthand properties 345-348
specifying web fonts 336
system 56-57
third-party hosted fonts 337-338
Webfont Generator service 340
Web Open Font Format 2.0 (WOFF2) 339
font-size property 21,58, 77 269
asinherited 269
settinginemunits 268-269
settingin remunits 269-270
Fontspring 339
Font Squirrel 339
Webfont Generator service 340
font-style property 61
font-variant property 342
font-weight property 59-60

WEB DESIGN PLAYGROUND 409

Index

footer element 224

footers. See page footers

footer section 285-287
footer element 279, 286
making the footer fixed 287

<footer>tag 200

forward slash 18

fr measurement unit 232

FTP (File Transfer Protocol)
using for uploading files 403

generated content

definition of 360
Georgia typeface 81
GIF (Graphics Interchange Format) 90
GoDaddy 403
Google Fonts 337, 374
google-webfonts-helper 340
Gradient Construction Kit 330-331
grandparent element

definition of 352
grayscale keyword 66
greater-thansign 18
Grid. See CSS Grid
grid area

definition of 236
grid-area property 239-241
grid cell

definition of 236
gridcolumn 378
grid-column-* property 236-238
grid container

definition of 229

display: grid CSSdeclaration 229
grid item

definition of 229
grid lines

definition of 236
grid-row-* property 236-238
grid template

definition of 230
grid-template-areas property 239-241
grid-template-columns property 230
grid-template-rows property 230

410 WEB DESIGN PLAYGROUND

<hl>tag 18-19,22

hangingindent 65

hash symbol 306, 320

<head>tag 24,114,398

header 164-165

<header>tag 191

header section
configuring the header element 281-282
styling as a Flexbox container 282

header section, portfolio page 379-382

turning the navigation links into
buttons 381-382

headings 6, 34
height property 146-148
heroimage
backgroundimage 165-166
heroimages
adding 99-100
hexadecimalnumbers 318-320
holy grail layout
overview 188-189, 201-202
partsof 188-189
holy grail layouts
creating with Flexbox 221-226
horizontal alignment of paragraphs 62
horizontal measures 272
horizontal navigation 149
horizontalrule 45-46
horizontal scrolling, avoiding 250
HostGator 403
hosting your own fonts 339
house styles 7
:hover code 80
href attribute 20, 36
hrelement 45-46
HSL (hue, saturation, and luminance) 313, 317
hsla() function 318
hsl () function 317
HTML5 Entity Browser
searching for character entities 309
HTMLS5 (Hypertext Markup Language)
inserting figures 91
most important semantic elements 190
semantic page elements 190-200

HTML code, validating 400-401
HTML Editor 396

HTML (Hypertext Markup Language)
adding comments 310
adding tag attributes 19

adding visual breaks between
blocks 45-46

applyingtoplaintext 6
computer languagesand 4
creating inline containers 44
creating web with 10
dividing web page text 43
editor 14
elements 295-310
elements for structuring page text 40-46
exampleof 5
formattingwith 6
headingsin 6
HTML5 entity browser 309
inserting line breaks 42
inserting special characters 308
in Web Design Playground 12
limitations of 10
linking to local files 304-305
linking to the same page 306
links 304-306
overview of 4
page structureand 4-5
paragraphs 40
partsof HTML tags 18
usesfor 4

<html>tag 24

hypertext documents
web pagesand 4

hypertext link
definitionof 4

hypertext reference 20, 36

hyphen character 56, 112

<i>tag 32,38, 61, 344
id attribute
identifying anin-page link 306
#idselector 350
ID selectors vs. class selectors 352

images 88-95
aligning 94-95
background images 96-101
creating fluid images 263-265
delivering responsively 266-267
getting graphics 90-91
image file formats 89-90
inserting HTML5 figures 91
maintaining the original aspect ratio of 264
making images responsive 263
optimizing 101-102
preparing for the web 94
settingup aslinks 92
sizing for device screens 266

styling the img element for
responsiveness 263-265

using as custom bullets 93
images, full-size
sizing 276
using JPEGs 276
imgelement 88-89
alt attribute 88
srcattribute 88
titleattribute 88
tag 19, 88-89,92-94, 104, 109
!important keyword 366
indenting text 64
indent styles 65
inheritance 363-364
definition of 269
inline containers and elements 44
inline styles 112-114
internal style sheets 114-117
ISP (internet service provider) 403
italicizing text 61

JPEG (Joint Photographic Experts Group) 90
justification axis 210

justify-content property 208-209
justify-* property 241

<kbd>tag 298
keywords, formatting 29

WEB DESIGN PLAYGROUND 411

landing page 159-184
adding a contentband 175
banded content 160
building 163-182
buttontag 169
call-to-action button 168-169
choosing color schemes 162
choosing typefaces 161-162
definition of 160
final version of 182-183
font-family property 162
header 164-165
hero backgroundimage 165-166
initial element structure 163-164
overview of 160
page footer 181-182
pricing table 174-178
product description 169
productimage 166-167
productinfo 167-168
product testimonials 173-174
setting up content bands 170-172
sketching layout of 160-161
social media links 180-181
layouts. See page layouts
creating 251-267
creating adaptive layouts 254-258
creating mobile-first layouts 260-262
identifying 262-263
liquid layouts 251-255
media query breakpoints 259
leftangle bracket 18
leftbrace 21
less-thansign 18
lightness 314
tag 47-51
linear-gradient function 326-328
linear gradients, creating 326-328
line breaks 42
line-height property 78
line height property, setting 343-344
<links>tag 117 122,375
linking to third-party hosted fonts 337

412 WEB DESIGN PLAYGROUND

linktag
syntax for 117
links 304-306
idattribute 306
linking to local files 304-305
linking to the same page 306-307
overview 4, 36
setting upimagesas 92
tosocial media 79
liquid layouts
creating 251-253
with viewport units 253-254
lists
bulleted lists, adding 49-51
numbered lists, adding 47-49
ordered list 47-49
organizing textinto 46-51
thumbnail lists, creating 219
unordered list 47,49-50
list-style-image property 93
list-style-type property 48, 50,93
litag 47
local font file 339
lossless compression 90
luminance
overview 314
specifying with thehsl () function 317

main axis 208
main section 284-285

main element, contentsof 279
<main>tag 193
margins 153-157

collapsing 156-157

controlling 153-155

setting the four margin values 153
<mark>tag 298
markup

definitionof 4
Markup Validation Service 400-401
max-content keyword 231
max-width property 148, 259
measurement

unitsof 121-122

measurement, responsive 271-274
@mediarule 255

examples of 256-257
media query

definition of 255

setting the breakpoint for 259
media query breakpoints, adding 393
<meta> tag 24
min-height property

settingto 100vh 281
min-width property 148, 259
mobile-first layout 260-262
monospace typeface 55
MP3 audio format 103
MPEG-4 audio format 103
MPEG-4 container 103

<nav>tag 192
navigation section 282-284, 288-289
making the nav bar sticky 288-289
styling the nav element 282
negative indent 65
negative margin values 153
negative order values 218
Normalize.css
including as a professional CSSreset 154
nowrap value 211
:nth-child(n) pseudo-class 356
numbered list
setting up a counter for 362
numbered lists 47-49

Ogg audio format 103

Ogg container 103

tag 47-49,51

opacity (transparency), controlling 318
Open Font Library 339

opening leftbrace 21

openingtag 18

ordered list 47-49

order property 218

outdent 65

outline property 152
overflowproperty 147

<p>tag 18, 37, 40,45
padding 148-150
outline property 152
padding shorthand property 149
setting the four property values 148
padding-bottom property 287
padding-right property 131
padding-top property 131
page flow 124

page footer

landing page 181-182

page footer, portfolio page 390-392
page footers

of home pages 82

page layout

creating 280

sketching 276

page layouts 187-202

creating adaptive layouts 254-258

creating a holy grail layout with
Flexbox 221-226

creating liquid layouts 251-254
creating mobile-first layouts 260-262
creating thumbnail lists 219

creating with Flexbox 203
dead-centering elements 212-213
fixed-width layouts 248-251

Flexbox containers 205-212

Flexbox items 213-219

holy grail layout 189-194, 201-202

HTML5 semantic page elements 190-194,
199

methods 189-190

overview 204-205
semanticarticle element 194-195
semantic aside element 197-198
semantic footer element 199
semantic header element 191
semanticmainelement 193
semanticnavigationelement 192

WEB DESIGN PLAYGROUND 413

Index

semantic sectionelement 195-196
sketching the home page 72-73
sketching the landing page 160-161
structure of the landing page 163-164
page structure 39-51, 279-280
adding bulleted lists 49-51
adding numbered lists 47-48
adding visual breaks between blocks 45-46
creatinginline containers 44
divelement 43
dividing web page text 43
HTML elements for 40-46
inserting line breaks 42
organizing text into lists 46-51
overview 23-24
paragraphs 40
paragraphs 62-64
aligning horizontally 62
indenting text 64
overview 40
parent element
definition of 352
percentages 251
personal home page
adding a page footer 82
adding social media links 79
adding the initial page elements 74-75
choosing a color scheme 73-74
choosing readable typefaces 73
planning and creating 71-83
sketching the layout 72-73
styling the body text 80-82
styling the page introduction 78-79
photo galleries, creating
adding dynamic captions 289-291
choosing colors 278
choosing typefaces 277
fixed footer 287
footer section 285-287
header section 281-282
initial structure of 279-280
main section 284-285
making the nav bar sticky 288-289
min-height property 281
navigation section 282-284, 288-289

414 WEB DESIGN PLAYGROUND

overalllayout of 280-281
overview 275-278
preparing the photos 276
sketching the layout 276
pixels 95
playground. See Web Design Playground
PNG (Portable Network Graphics) 90
portfolio page, creating 371-393
About section 387-389
building 376-392
choosing color schemes 375-376
choosing typefaces 373-375
Contact section 389-390
display options for portfolio works 384-385
final version of the portfolio page 392
header section 379-382
initial HTML structure of 376-378
introductionto 382-384
overview of 372-373
page footer 390-392
portfolio images, adding 384-387
sketching the layout 372-373

using Flexbox and CSS Grid for the overall
layout 378

positioning elements 123-139, 133-139
absolute positioning 136-138
fixed positioning 138-139
position property 134
relative positioning 134-135
sticky positioning 139-141
z-1index property 138

positive indent 65

positive margin values 153

<pre>tag 299

preformatted text
marking with <pre> 299

pricing table 174-178

principle of proximity 143

product
description of 169
image of 166-167
info 167-168
testimonials 173-174

pseudo-class
definition and use of 80

pseudo-elements
::after 360-362
::before 360-362

ptag 40-41

pullquotes 131-133, 151, 360

<g>tag 32-33
quotations 32, 56

radial-gradient () function 329-330
radial gradients, creating 329-330
referencing external style sheets 117-119
relative positioning 134-135
relative values 122
remote fontfile 339
remunit
definition of 269-270
renderingtags 4
repeat, background 97
repeat () function 234-235
resetting CSS with universal selectors 362
responsive
avoiding fixed-width page layouts 248-250
converting absolute width values to relative
widths 251-252
fontsizes 270
images 263-267
layout, definition of 262
layouts, creating 251-267
measurements 271-274
mobile-first layout 260-262
page, definition of 247
settingwidth=device-width 251

switching from percentages to viewport
units 253

typography 268-274
web design 248, 271-273
RGB (red, green, and blue)
mixing the three main colors 312
rgba () function 318
rgb () function 315-317
RGB hex codes 320-321
RGB method 312

rightangle bracket 18
rightbrace 21

root element 122, 269
root folder 399

row-gap property 233-234
rowvalue 207

<s> tag 300
<samp>tag 300
sans-serif typeface 55,73
saturation
overview 314
specifying with the hsl() function 317
Scalable Vector Graphics (SVG) 90
<gsection>tag 43,195-196
selectors

applying a single style rule to two or more
selectors 360

child 356

combining 359-360

contextual 353-358

descendant 353-354

ID 350-352

sibling 353-358

universal 362

x>y combinator 356

X~y combinator 358

xy combinator 354
self-closingtags 19
semanticarticle element 194-195
semantic aside element 197-198
semantic footer element 199-200
semantic header element 191
semanticmain element 193
semantic nav element 192
semantic page elements

overview of 190-194
semantic sectionelement 195-196
semicolon

using with property-value pairs 113
serif typeface 55
shorthand. See background shorthand properties
shorthand font property 345-347
shrinkingitems 215

WEB DESIGN PLAYGROUND 415

Index

sibling combinator 358-359
sibling element
definition of 353
single quotation marks 113
sizes
height, setting 146-147
of type, setting 58
styling 143-157
width, setting 146-147
sizes attribute 266
<smalls>tag 300
social media links 79, 180-181
<gource>tag 105,108, 110
span element 44-45, 61
tag 44,342
span keyword 236
special characters 308
specificity 366-369
judging how a selector targets something 367
src attribute 88, 105
srcset attribute 266
sticky positioning 139-141
stretchvalue 208
strongelement 28, 31
tag 28-29, 38,59
structural hierarchy of a typical web
page 352-353
structure. See page structure
style
cascade, definition of 7
definitionof 7
stylesheet 7
styleattribute 7, 112
stylerule 20-22
stylerules 115
styles
absolute vs. relative measurement units 122
adding internal style sheets 114-117
addingtopages 112-120
declaration, definition of 115
external style sheets, advantages of 118
inserting inline styles 112-114
link tagsyntax 117
property name 112
referencing external style sheets 117-119

416 WEB DESIGN PLAYGROUND

syntax of a style declaration 112
units of measurement for CSS properties 121
use of the . css extension 117
using class selectors 119-120
style sheets
author style sheets 365
external, referencing 117-119
internal, adding 114-117
user agent style sheets 365
user style sheets 365
<style>tag 24, 114-118, 122, 337,399
<sub>tag 301
suggesting sizes for items in Flexbox 216-217
<sup>tag 301
SVG (Scalable Vector Graphics) 90

tags

adding tag attributes 19
definitionof 4

indenting 23

inHTML 18

rendering (translating) 4, 10
text. See also fonts; typeface
adding 26

adding bulleted lists 49-51
adding numbered lists 47-48
aligning 94-95

alternative, formatting 31
applying colorsto 67

bold 59-60
dividing web page text 43
emphasizing 30
font-family property 55
important, marking 28
indenting 64

italicizing 61

of body 80-82

organizing into lists 46-51
paragraphs, aligning horizontally 62
paragraphs, indenting 64
paragraphs, styling 62

setting type size 58
specifying a generic font 55-57
specifying a system font 56-57

styles 59-61
styling 54
text-align-last property 64
text-align property 22,62-63
text editor, choosing 398-399
textelements 27
emphasizingtext 30
formatting alternative text 31
formatting keywords 29
marking important text 28
quotations 32
text-indent property 64-65
text-transform property 343
thumbnailimages
sizing 276
using JPEGs 276
thumbnail list, creating 219-220
tilde 358
tiling background 97
<time>tag 302
titleattribute 296
<title>tag
adding 24-25
titles
of pages 77
trademark symbol 308
Transmit 404
transparency (opacity), controlling 318
triadic colors 324-325
typeface. See also fonts
categoriesof 54-55
definition of 54
differentiating fromafont 54
font-family property 55
font-size property 58
font-style property 61
font-weight property 59-60
italicizing text 61
specifying a generic font 55-56
specifying a system font 56-57
typefaces. See also fonts
choosing 277
choosing for the home page 73
choosing for the landing page 161-162
choosing for the portfolio page 373-375

criteria for rendering on small screens 374
@font-facerule 340

font-family declarations for selected
typefaces 375

fontstack 334-336
font-variant property 342
google-webfonts-helper 340
hosting your own fonts 339-341
line-height property, setting 343-344
<link> tags for selected Google Fonts 375
linking to third-party hosted fonts 337
local fontfile 339
recommended heading and body text
pairings 375
remote fontfile 339
shorthand font property 345-347
small caps, styling 342
specifying 334-341
specifying the CSS declarations 277
textstyles 342-348
text-transformproperty 343
third-party hosted fonts 337-338
Webfont Generator service 340
web fonts, specifying 336
Web Open Font Format 2.0 (WOFF2) 339
type selector 119
typography, responsive 268-274
remunit, definition of 269-270
setting font-sizeinemunits 268-269
setting relative units for font -size 268-271

<u>tag 303
tag 45,49-51
Uniform Resource Locator (URL) 36

units of measurement for CSS
properties 121-122

universal selector (*)
resetting CSSwith 362
universal selectors 146
unordered list 47, 49-50
uploading your HTML and CSS files 404
URL (Uniform Resource Locator) 36
user agent style sheets 365
user style sheets 365

WEB DESIGN PLAYGROUND 417

©00 o

validating your HTML and CSS code
procedures for 400-402
<var>tag 304
vertical-alignproperty 94
vertical-bar symbol 79
vertical measures 272
video
addingtopage 102-110
embedding in web pages 104-106
web video formats 103
video element
adding multiple source elements 105-107
syntax for 104-107
<video>tag 102,105,107 110
viewport height unit (vh) 254
viewport maximum unit (vmax) 254
viewport minimum unit (vmin) 254
viewport width unit (vw) 253-254
visual breaks 45-46
void elements 19

W3C (World Wide Web Consortium)
host of a CSS Validation Service 401-402
host of a Markup Validation Service 400-401
WAV audio format 103
web audio formats 103
Web Design Playground 11-14, 396-397
Color Chooser tool 321-322
Color Scheme Calculator 376
Copy to Clipboard button 396
CSS Editor 396-397
CSSin 12

418 WEB DESIGN PLAYGROUND

Display Errorscommand 14
Gradient Construction Kit 330-331
HTML Editor 396

HTMLin 12

loading lesson files 13

procedure for downloading Playground
code 397-398

savingworkin 13, 396-398

three ways to copy Playground
code 396-397

Webfont Generator service 340
web hosting provider 10
web hosting providers
criteria for evaluating 402-403
uploading your HTML and CSS files 404
using a commercial provider 403
using a free provider 403
using an ISP (internet service provider) 403
WebM audio format 103
WebM container 103
Web Open Font Format 2.0 (WOFF2) 339
Web Page Markup Language (WPML) 4
web pages
initial structure of 74-77
page introduction 78
web video formats 103
whitespace 27,138
width=device-width, setting 251
width: autodeclaration 254
width property 146-148
width, setting 146-147
wrapping items, in Flexbox 210-211

Z

©00 o

z-index property 134,138

Adding a hero background image on the Web Design Playground

g Lesson 6.2: Working with Back X + v
& > @ & webdesignplayground.io/2/l 25/ h oA o RO
Run Code
6.1: Adding an Image to the Page] - HTML = css
=) 1 <div class="hero-ima LR
- 2 <hl>Welcome!</hl> 2 margin: 0;
4m Previous Page Next Page 3 <h2>Are you ready to see Toronto in an 3 padding: 0;
entirely new way?</h2> 4 box-sizing: border-box;
1 %/divs)
Lesson 6.2 5 <div class="main"> 6 .hero-image {
6 The main page content goes here. 7 height: 100vh;
Working Wlth Background 7 </div> 8 background-image:
8 url(/images/toronto.jpg);
|mages 9 background-position: center center;
10 background-size: cover;
Adding a Hero Image 11 color: hsl(ss, 71%, 208);
123y
11
This example shows you how to add a hero

image to a page.

Hide Editors § New Sandbox |

HTML / WEB DESIGN

See first page

—ADAM WAN, NEXPLORE

WEB PLAYGROQUND
Seconp EpiTioN

HTML + CSS THE INTERACTIVE WAY

PauL McFEeDRIES

. —SRIKAR VEDANTAM,
If you can use a web browser, you can create a web site! Web VOLVO GROUP

Design Playground, Second Edition shows you how, progress-
ing step by step through fun and engaging projects. You learn
the basics of HTML, CSS, and other important web skills. With its
unique online “playground,” the book helps you build a landing
page, a photo gallery, a portfolio site, and more, all from scratch.
No prior experience or knowledge of special tools is required.

Web Design Playground, Second Edition takes a creative, visual
approach and clear explanations of the components, concepts,
and of each step you'll need to build your own web pages. You'll
become a confident web designer as you practice each new skill
in the Playground. The many small projects introduce everything
from page layout basics to new tags and features like Flexbox
and CSS Grid—all presented in author Paul McFedries’s inimitably
friendly style.

WHAT'S INSIDE

® Structure a web page with HTML
® Style a web page with CSS
® Modern page layout techniques

® How to use colors and typography
No web design experience required.

Paul McFedries has written more than 100 books, which have
sold over four million copies worldwide.

For print book owners, all ebook formats are free:

/'l MANNING

ISBN-13: 978-1-63343-832-3

‘ | |‘ ‘ || ||90000 |‘

781633 " 438323 I

