
Web-Based
Projects that
Rock the Class

Build Fully-Functional Web Apps and
Learn Through Doing
—
Christos Karayiannis

Web-Based Projects
that Rock the Class

Build Fully-Functional Web Apps and
Learn Through Doing

Christos Karayiannis

Web-Based Projects that Rock the Class: Build Fully-Functional Web Apps and Learn
Through Doing

ISBN-13 (pbk): 978-1-4842-4462-3     ISBN-13 (electronic): 978-1-4842-4463-0	
https://doi.org/10.1007/978-1-4842-4463-0

Copyright © 2019 by Christos Karayiannis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484244623. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Christos Karayiannis
Karditsa, Thessaloniki, Greece

https://doi.org/10.1007/978-1-4842-4463-0

For my children, Vasilis and Stamatia.

v

Table of Contents

Chapter 1: The Apache Web Server��� 1

Getting Started with Apache�� 1

Installing and Testing Apache��� 2

Adding New Directories and Web Pages�� 4

Testing Your Web Site from Another Computer of Your LAN��� 7

Providing a Static Private IP Address to the Web Server�� 9

Using the Linux Firewall��� 14

Managing the Apache Process��� 16

Working with Virtual Hosts��� 19

Using IP-Based Virtual Hosts�� 21

Using Port-Based Virtual Hosts��� 25

Using Name-Based Virtual Hosts�� 30

Inspecting the Overall Virtual Host Configuration��� 35

Reading Apache Log Files�� 36

Summary��� 37

Chapter 2: Server-Side Programming with PHP�� 39

The PHP Engine�� 39

Installing and Testing PHP�� 41

Testing PHP Without a Web Server��� 43

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

vi

Running Your First PHP Examples from the Web Server�� 46

Working with Variables and Strings�� 46

Setting the PHP Variables with the GET Method�� 54

Setting the PHP Variables with the POST Method�� 58

Running Client-Side vs. Server-Side Programs��� 61

The JavaScript/PHP Addition Web Page��� 62

The Second Version of the JavaScript/PHP Addition Web Page�� 67

The Third Version of the JavaScript/PHP Addition Web Page��� 75

Form Validation with PHP��� 75

The validate.php Source Code Commentary��� 80

Summary��� 87

Chapter 3: Connecting Your Apache Server to the Internet������������������������������������� 89

The NAT Protocol�� 89

Enabling Port Forwarding to Your Router��� 90

Implementing Port Forwarding with Apache Vhosts�� 94

Testing the New Virtual Host�� 96

Using the GeoIP Apache Module�� 100

Responding to the Visitor’s Native Language��� 107

Using a Map to Display the Visitor’s Location�� 113

A New Version of the Static Map Web Page��� 120

Summary��� 124

Chapter 4: Obtaining a Domain Name with DDNS�� 125

DNS and DDNS��� 125

Registering with a DDNS Service Provider�� 126

Configuring the Router’s DDNS�� 131

Implementing Web Redirect��� 133

Implementing an Online Web Service�� 137

Editing the Apache Configuration File�� 139

Editing the Web Page for Submitting the User’s Data�� 141

Working with Regular Expressions�� 145

Table of Contents

vii

Testing the JavaScript Form Validation�� 146

Running whois from the Command Line�� 148

Editing the File That Processes the User Data��� 149

Testing the WHOIS Online Service�� 154

Adding a Favorite Icon to the Site�� 156

Summary��� 163

Chapter 5: The Lighttpd Web Server�� 165

Installing Lighttpd�� 165

Testing Lighttpd��� 166

Working in the Lighttpd Configuration File��� 168

Applying a Basic Configuration��� 170

Binding to a Specific IP Address or Hostname��� 171

Changing the Document Root��� 173

Enabling and Disabling the Directory Listing�� 174

Sending Custom-Made Error Replies to the Client��� 176

Accessing the Lighttpd Log Files��� 178

Using Virtual Hosts with Lighttpd��� 181

Using PHP with Lighttpd�� 189

Creating Online Services with Lighttpd�� 190

Creating the Directory Index of the Online Service�� 195

Creating the Action File for the Online Service�� 197

Enabling the Site to Serve Multiple Client Requests�� 203

Creating an Animated PNG Image�� 208

Summary��� 217

Chapter 6: The MySQL Database Server�� 219

Installing and Testing MySQL��� 219

Creating Your First MySQL Database��� 223

Creating and Deleting Tables of Your Database�� 225

Inserting, Displaying, and Deleting Records��� 228

Table of Contents

viii

Altering the Table’s Structure��� 230

Testing the Table Connection�� 233

Performing SQL Queries with the MySQL Server��� 235

Modifying Records with the update Command�� 238

Using the SQL like Operator��� 239

Web Scraping with MySQL and the Linux Shell��� 241

The URLs Describing the Resources��� 241

Designing the Web Scraping Project�� 245

Creating the MySQL Database Used for the Web Scraping Project�� 252

Implementing the Web Scraping Project�� 254

The Script’s First Part��� 257

The Script’s Second Part�� 260

Testing the Web Scraping Shell Program��� 264

Summary��� 268

Chapter 7: Creating a Dynamic Content Web Site�� 269

Search-Enabled Site Overview�� 269

Designing the Project��� 271

Creating the First Web Content Samples��� 272

Creating and Updating the Project’s Database�� 273

Writing the Shell Script That Updates the Database�� 275

Automating the Database Updates with cron�� 279

Designing the Home Page of the Site�� 285

Creating the Directory Index of the Site��� 286

Creating the Action PHP Program��� 288

Testing the Dynamic Content Site�� 294

Making Modifications��� 298

Improving the Query Results Appearance with a Two-Colored Table��� 302

Implementing Pagination��� 304

The Pagination-Enabled Version of index.php�� 309

The Pagination-Enabled Version of search.php��� 311

Table of Contents

ix

Using Images Instead of Submit Buttons��� 318

Implementing the Site with the GET Method��� 321

Summary��� 326

Chapter 8: Implementing Secure Sockets Layer on Your Site������������������������������� 327

Implementing SSL/TLS��� 327

SSL Certificates�� 328

Creating Self-Signed Certificates with OpenSSL��� 330

Configuring SSL for Lighttpd�� 334

Configuring SSL for Apache�� 336

Testing the Self-Signed Certificate�� 338

Enabling Your Site to Be Viewed Outside of Your LAN�� 345

HTTP Cookies and PHP Sessions��� 352

Setting a Cookie with PHP�� 353

Retrieving a Cookie Value from PHP��� 355

Removing Cookies with PHP��� 355

Creating a Site That Uses Cookies�� 355

Viewing the Cookie Details in Your Browser��� 361

Using Wireshark to View the HTTP Cookie Header��� 361

Using Browser Tools to View the HTTP Cookie Header��� 365

Using PHP Sessions��� 366

Running a PHP Session Example�� 368

The Source Code for index.php�� 371

The Source Code for page1.html and page2.html�� 376

Experimenting with the Sessions Project��� 380

Summary��� 383

Chapter 9: Running Your Site with a Certificate from a Certificate Authority������� 385

Obtaining Your Own Domain Name�� 386

Obtaining a CA SSL Certificate for Your Domain Name�� 387

Configuring SSL on the Web Servers��� 392

Installing the CA Certificate on the Apache Web Server��� 392

Installing the CA Certificate on the Lighttpd Web Server�� 399

Table of Contents

x

Testing the SSL CA Certificate��� 402

Project: Securely Logging In to a Site�� 406

Designing the Project’s Site��� 407

The Source Code for the Home Page of the Site�� 409

The Web Page for Creating the User Account��� 411

Creating the Database Used for the Project��� 419

Testing the PHP to MySQL Connection��� 421

The Source Code of the Login Web Page�� 425

The Source Code for the User Profile Page�� 432

Allowing the User to Log Out�� 436

Testing the User Connection to the Site��� 437

Improving the profile.php Web Page��� 439

Summary��� 441

Chapter 10: Running Online Services Using PHP Sockets������������������������������������� 443

Updating the Domain Name IP Address with ddclient��� 443

Utilizing PHP Sockets��� 449

The Code for the Command-Line PHP Socket Server��� 450

Testing the PHP Command-Line Socket Server�� 452

Implementing a Command-Line PHP Client�� 453

Configuring the Web Servers for the New Site��� 454

Create the Site That Interfaces with the Command-Line Server�� 455

A TCP Port Check Site�� 458

The Source Code for index.php and ports.php��� 460

Testing the Online Open Port Check Site Locally�� 464

Testing the Online Port Test Site Remotely��� 467

A Second Version of the Open Port Check Tool Source Code�� 471

Creating an Online Service Displaying QOTD Messages�� 473

The Source Code for the QOTD Project��� 475

Testing the QOTD Site��� 479

Using Different FQDNs for Your Sites��� 482

Summary��� 484

Table of Contents

xi

Appendix: Exchanging Variables Between JavaScript and PHP���������������������������� 485

Example 1: Passing Variables from PHP to JavaScript Using the echo Command��������������������� 485

Example 2: Passing Variables from JavaScript to PHP Using the location Object���������������������� 486

Example 3: Passing Variables from JavaScript to PHP with HTML Form Submission���������������� 487

Example 4: Passing Variables from JavaScript to PHP and Back with Ajax������������������������������� 488

Example 5: Passing Variables from JavaScript to PHP with Cookies��� 492

Example 6: Passing Variables from PHP to JavaScript with Cookies��� 494

Index�� 497

Table of Contents

xiii

About the Author

Christos Karayiannis has taught web development

courses for more than 20 years in high schools and

institutes of technology in Greece. He holds an MSc in

computer science from the University of Wales and a

physics degree from Aristotle University. His main interests

are networking, operating systems, and programming.

Christos has contributed to open source projects by

documenting source code.  

xv

About the Technical Reviewer

François-Denis Gonthier is a graduate of the Université de Sherbrooke computer

science program. He first worked for a startup company delivering cryptographic

software using open source technologies. Since then, he has never strayed far from the

Linux and open source world. He went from programming front ends in JavaScript and

HTML 5.0 to coding back ends using Java, J2EE, JSF, or plain old Unix daemons. The cool

Web 2.0 kids would call this being a full-stack developer. Nowadays, he mostly works on

embedded Android projects and writes JavaScript running on Node.js in his spare time.

xvii

Acknowledgments

Writing this book would not have been possible without the contribution of the people

of Apress. I would like to specially thank Louise Corrigan for entrusting me to turn an

idea into this book, Nancy Chen and James Markham for their valuable advice and

support, Francois-Denis Gonthier for providing his insightful comments, and finally

Sathyamurthy Krishnan and Arockia Rajan for the proofreading of this book.

xix

Introduction

This book includes several web-based projects. With each project you’ll create a

complete client-server application while learning about different aspects of web

development. Each project includes detailed steps to build the software that executes on

both the client and server sides. Introductory examples are also provided to highlight the

techniques and programming concepts that are then used in the projects.

The projects are real-world web services that you would typically find on the Internet

today. Here are a few examples:

•	 A site that pinpoints a visitor’s location on a map and greets them in

that country’s native language

•	 An online WHOIS service

•	 A remote TCP port scan service

•	 A test service for displaying how a site is viewed remotely

•	 A dynamic content site where users can search with keywords and

read online scientific papers, with a database automatically updated

when new documents are inserted into a directory

•	 A project that implements web scraping techniques

•	 A site that use cookies to remember a visitor

•	 A site that uses sockets to connect to other Internet services, like

QOTD

•	 A site that implements PHP sessions, where visitors log in with an

encrypted password and while connected browse the site with access

only to their own personal details

The techniques you’ll learn while creating these services can be applied to your own

future projects.

xx

�About the Tools and Source Code
Each chapter contains all the steps for installing and setting up the required software

tools for the project being discussed. For instance, two different web servers are used

in the book, along with a PHP interpreter and the MySQL database server. The book

also explains how to set up a router, and it contains a DDNS guide that explains how to

configure the projects for the Internet.

The software tools used in this book are free and don’t require you to purchase API

keys, such as when using a static map. The only exceptions are the steps for purchasing a

second-level domain name and an SSL certificate; however, obtaining these is optional

for running the corresponding projects.

I’ve tried to keep the source code to a minimum so that the projects can be

completed within a time-constrained web development course. All the projects are

original in that they were designed just for this book. You will not find the source code

used anywhere on the Web or in other textbooks.

However, just because these projects were designed for a classroom setting does

not mean they are not professional-grade quality. Anyone interested in the underlying

mechanisms of modern web development can also use this book.

Let’s get started with the projects so you can design and build your first online

service, used in the classroom or in the real world!

Introduction

1
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_1

CHAPTER 1

The Apache Web Server
Most people are familiar with using a web browser. Even when they use a new browser

for the first time, they are capable of visiting a web page and navigating to other

sites immediately. This is because browsers usually encompass all the same handy

functionalities. For example, all browsers include an address bar at the top of the

window, a history option, a favorites folder, and some navigation buttons.

Web servers, on the other hand, rarely look similar to each other. However, servers

do share some common ground. In this book, you’ll be using two different web servers,

and you’ll learn about the common features of both as well as the differences. In this

chapter, you’ll use the Apache web server, and in Chapter 5 you’ll use another popular

web server, Lighttpd.

�Getting Started with Apache
The Apache web server is one of the most popular web servers today. This is because

of how easy the administrative features are to use and because of its flexibility based

on its modular design. Apache got its name in 1995 when the Apache Project started.

The Apache Project was a collaboration of many programmers, and hence the source

code required many patches (software fixes). Through software modules, Apache

offers additional functionality that administrators can install. Because of these added

components, Apache isn’t by default a huge, monolithic piece of software.

Apache was one of the first servers to support virtual hosts (vhosts). This

notion—also referred as virtual servers on other web servers like Cherokee—denotes

the capability of a single web server to run multiple sites simultaneously that are

differentiated either by the IP address, by the port number, or by the domain name used

in the client request.

2

�Installing and Testing Apache
The Apache program is currently known as apache2, and you can download and install it

from the Linux terminal using the following command:

$ sudo apt-get install apache2

The apache2 process starts running. Use the ps (process status) command from the

Linux terminal to view the apache2 processes.

$ ps xa | grep apache2

More than one apache2 process is created instantly to be ready to serve further client

requests. Figure 1-1 displays the process IDs (PIDs) for the Apache processes returned at

this time by the command ps.

The web server is up and running and ready to dispatch the first page. In the address bar

of your browser, enter the loopback IP address, which is the IP address your PC owns even if

no network card is installed, or its corresponding host name. Here are some examples:

127.0.0.1

http://127.0.0.1

localhost

Figure 1-1.  The command ps output lists the apache2 PIDs

Chapter 1 The Apache Web Server

3

Apache responds by providing the directory index since no actual web page was

specified in the URL.

Hint! A default page set for a specific directory is called the directory index
for this directory. Also, the directory index for the document root (i.e., the base
directory for a website) is the directory index of the site.

The directory index contents include a short introduction to the Apache

configuration options. Figure 1-2 displays the Apache default page for Ubuntu.

As the first section’s title states, “It works!” The bad news is that so far it works only

for users who use their own PC and are interested in just the Apache configuration.

There is good news, though. Following the steps in the book, you can customize your

web server with your preferences, and you can make your site available to the whole

Internet.

Figure 1-2.  The Apache directory index for Ubuntu

Chapter 1 The Apache Web Server

4

�Adding New Directories and Web Pages
By reading the web page’s content, you can find out the document root and the file name

of the directory index. The following text:

"You should replace this file (located at /var/www/html/index.html)"

indicates that this path is the document root:

/var/www/html/

and indicates that this file is the directory index:

index.html

From the Linux terminal, change the current working directory to /var/www/html, as

shown here:

$ cd /var/www/html

Create a copy of index.html to use your own directory index.

$ sudo cp index.html index_OLD.html

Use a Linux text editor such as gedit to edit the original index.html, as shown here:

$ sudo gedit index.html

In the gedit window, enter your own HTML source code, for instance:

<!DOCTYPE html>

<html>

<head>

<title>Testing Apache</title>

</head>

<style>

p {

 font-size:24px;

 text-align:center;

 color:blue;

}

Chapter 1 The Apache Web Server

5

body{

background-color:yellow;

}

</style>

</head>

<body>

<p>Hello World!</p>

</body>

</html>

Click the Save button in the gedit window. Next enter the loopback IP address in the

browser’s address bar. As displayed in Figure 1-3, the Apache server displays your own

web page.

To request another web page, for instance index_OLD.html, you can provide the URL

for the web page file by including the web page path starting from the document root.

For instance, enter one of the following in the address bar of your browser:

127.0.0.1/index_OLD.html

localhost/index_OLD.html

Because index_OLD.html is in the document root, the path includes only the file

name of the web page. By using this URL, the default web page of Apache for Ubuntu is

displayed again, as shown in Figure 1-4.

Figure 1-3.  A customized directory index printing “Hello World!”

Chapter 1 The Apache Web Server

6

Start including subdirectories in the document root to better organize your web site.

At the Linux terminal, change the working directory to the document root.

$ cd /var/www/html/

Create a new test directory. In the new directory, create test.html, another HTML file.

$ sudo mkdir test

$ sudo gedit test/test.html

In the gedit window, enter some HTML source code for test.html and click the Save

button. Then enter the file name path of the web page, excluding the document root, in

the address bar of your browser. The file name path for test.html is as follows:

/var/www/html/test/test.html

You can omit the document root part since on the web server any file reference starts

from the document root; therefore, the URL of test.html is as follows:

localhost/test/test.html

or 127.0.0.1/test/test.html

The web page is loaded in your browser, as displayed in Figure 1-5.

Figure 1-4.  Downloading a specific web page by including its path in the URL

Chapter 1 The Apache Web Server

7

�Testing Your Web Site from Another Computer
of Your LAN
As another test, you can see whether Apache connects to other computers on the same

local area network (LAN) as your PC. A connection between two workstations on the

same LAN happens via the Internet layer of the TCP/IP protocol between their private

IP addresses. The private IP addresses are valid only internally to the LAN. This is in

contrast to public IP addresses that are globally accessible to the whole Internet. Put

simply, all workstations in a LAN possess private IP addresses and are represented to the

Internet with the public IP address of the LAN router (which also includes a private IP

address for internal communication with the LAN workstations).

At the Linux terminal, use the ifconfig command to find out the private IP address

of your computer.

$ ifconfig

You can also use the hostname command.

$ hostname -I

The private IP address of my computer used at the given time was 192.168.1.5, as

shown in Figure 1-6.

Figure 1-5.  Testing a web page located in the document root subdirectory

Chapter 1 The Apache Web Server

8

Use the private IP address returned by ifconfig in the address bar of the local

browser. The web page loads just like previously (with the loopback address), as shown

in Figure 1-7.

Figure 1-6.  ifconfig returning the private IP address

Figure 1-7.  Testing the web server using a private IP address

Chapter 1 The Apache Web Server

9

Next try the same IP address from another computer of your LAN. Figure 1-8 displays

the browser used on a Windows 7 system in the same LAN.

�Providing a Static Private IP Address to the
Web Server
The next step for the web server configuration is to set up a static private IP address.

This is a private IP address that remains the same each time the computer that hosts

your web server restarts. This step is optional to test your server from your LAN, but it is

essential for making the server available to the whole Internet. To provide a static private

IP address, the network connection of the computer that hosts the web server has to

properly configured.

The most straightforward configuration for a workstation in a LAN is to obtain

its IP address with the Dynamic Host Configuration Protocol (DHCP). When a PC is

configured with the DHCP option, on startup it is assigned by the router with an IP

address, a network mask, the IP address of the default gateway (the router itself), and

the DNS server used for performing the translations between domain names and IP

Figure 1-8.  Testing the web server from another PC of your LAN

Chapter 1 The Apache Web Server

10

addresses. The drawback with DHCP is that your PC gets the next available IP address

from an IP address pool, which may be a different address from the one obtained the

previous time (a dynamic address).

Your other option is to use a static private IP address. Each time you start your PC, its

IP address remains the same. A static IP address is mandatory for a server required to be

available for connections across the Internet. To implement a static IP address, you have

to configure manually the information previously retrieved by DHCP. Run first the route

command from your terminal to find the default gateway (the router) in your LAN, as

shown in Figure 1-9.

$ route –n

The IP address for the gateway (the router) is therefore 192.168.1.1.

Run ifconfig again to gather information about the current IP address and the

mask.

As you saw in Figure 1-6 earlier in the chapter, the IP address for the web server is

currently 192.168.1.5 with a netmask of 255.255.255.0. The nonzero part of the netmask

describes the part of the IP address that corresponds to the network, while the zero

describes the part that corresponds to the computer in that network. By logical ANDing

the IP address and its netmask, you get the network address.

Figure 1-9.  The route command returns the default gateway IP address

Chapter 1 The Apache Web Server

11

The LAN in this example therefore has the IP address 192.168.1.0. This leaves

the last byte to represent the computer in the network. This is therefore the byte that

you will change to choose the static IP address for the web server. You can select any

unused value from 1 to 254. For instance, for the value 100, you get the IP address

192.168.1.100.

With the information collected, click the Wired Network icon on your desktop and

then click Next. Alternatively, select System Settings ➤ Network ➤ Wired or Settings ➤

Preferences ➤ Network Connections depending on your Ubuntu version. In the Network

Connections window that appears, as shown in Figure 1-10, double-click “Wired

connection 1” (or the option with a similar name in the Ethernet list).

The “Editing Wired connection 1” window that appears next provides the IPv4

Settings and IPv6 Settings tabs for configuring IPv4 and IPv6 addresses, respectively

(Figure 1-11).

Figure 1-10.  The Network Connections window

Chapter 1 The Apache Web Server

12

On the IPv4 Settings tab, the method currently selected is Automatic (DHCP).

Deselect this option and select instead Manual from the Method list (Figure 1-12).

Figure 1-11.  The “Editing Wired connection 1” window

Chapter 1 The Apache Web Server

13

Click the Add button to complete the required fields for manually setting the

connection parameters. Under Address, enter your preferred IP address. For the given

LAN with the IP address 192.168.1.0, you could enter, for instance, 192.168.1.100

as the new static IP address for the web server. Enter also the value for the netmask,

255.255.255.0, for the Netmask option, and enter the IP address of the router,

192.168.1.1 in this example, for the Gateway option. You need also to provide the IP

address (or addresses) for a DNS server in the “DNS servers” field. If you enter more than

one IP address, separate them using commas. For the DNS server, you can use the IP

address of the DNS server suggested by your Internet service provider (ISP) or use the IP

address of a freely available DNS server like Google’s 8.8.8.8.

Figure 1-12.  Applying the Manual method for configuring the IPv4 settings

Chapter 1 The Apache Web Server

14

Click the Save button to confirm the new settings. To activate the new IP address,

click the Network Manager icon and select Disconnect; then click again and select

“Wired connection 1” or enter the following at the Linux terminal:

$ sudo service network-manager restart

You can try now the static IP address of your web server by entering it in the address

bar of a browser and running it from another PC in your LAN, as indicated in Figure 1-13.

In the following section, you can configure your Linux firewall to block connections

for all port numbers except the ones set by you.

�Using the Linux Firewall
You should be able to view your web page on another PC in your LAN without a

problem. However, if a firewall is enabled in your system, you will get the error message

“This site can’t be reached” or a similar one in your browser. (A firewall is an application

that checks the connections to your system and permits or bans them according to the

rules that you set.)

Figure 1-13.  Testing the web server by using its static IP address

Chapter 1 The Apache Web Server

15

In the system I used in the previous section, the pre-installed Ubuntu Linux firewall

(ufw) was disabled by default. To disable it, you can use this command:

$ sudo ufw disable

Now try to connect and see if you get the error message. You can then restore it using

the following command:

$ sudo ufw enable

To allow the Apache server to receive connections while a firewall is on, you can

specify the appropriate rules. Apache, trying to make your work easy, has already set the

basic rules for you when it was installed on your system. At the command line, enter the

following:

$ sudo ufw app list

The command’s output includes the ufw profiles for Apache shown in Figure 1-14.

Figure 1-14.  Listing the ufw profiles

•	 Profile Apache is for the default HTTP port 80.

•	 Profile Apache Full is for both ports80 and 443.

•	 Profile Apache Secure is for the default HTTPS port 443.

Chapter 1 The Apache Web Server

16

To allow incoming traffic for the Apache Full profile, enter the following at the Linux

terminal:

$ sudo ufw allow 'Apache Full'

To verify this, enter the following:

$ sudo ufw status

The command’s output is shown in Figure 1-15.

An even better way to verify this is to connect to the Apache web server from another

PC in your LAN. The web page should load as usual.

�Managing the Apache Process
To apply new configuration rules while Apache runs and also to start and stop the

Apache process (required, for instance, when you want to try other web servers), you

need to run a few commands from the Linux terminal.

To stop your web server, enter the following at the command line:

$ sudo systemctl stop apache2

Or use:

$ sudo service apache2 stop

Figure 1-15.  Displaying the status of the ufw firewall with the Apache Full
profile set

Chapter 1 The Apache Web Server

17

To start the Apache web server when it is already stopped, enter the following:

$sudo systemctl start apache2

Or use:

$ sudo service apache2 start

Do the following experiment to implement the previous commands. First run the

following to view the apache2 processes:

$ ps xa | grep apache2

Then use the systemctl stop command and run the ps command again. You’ll

find that the apache2 processes have been “killed.” You can also try a request from your

browser. You’ll find that the message “The site can’t be reached” appears, as viewed in

Figure 1-16.

Use the systemctl start command to restore the Apache server.

Figure 1-17 shows the previous commands.

Figure 1-16.  Trying to download a web page with the Apache server stopped

Chapter 1 The Apache Web Server

18

To stop and then start the Apache server again, enter the following:

$ sudo systemctl restart apache2

To reload Apache (that is, to retain the process running and just update the

configuration), enter the following:

$ sudo systemctl reload apache2

or you can enter the following:

$ sudo service apache2 force-reload

which is equal to the the following:

$ sudo service apache2 reload

The Apache server starts by default when the system boots. To disable that

configuration, enter the following:

$ sudo systemctl disable apache2

To make Apache start on system boot, enter the following:

$ sudo systemctl enable apache2

Figure 1-17.  Displaying the Apache PIDs when the server runs and the absence of
Apache PIDs when the server stops

Chapter 1 The Apache Web Server

19

�Working with Virtual Hosts
Virtual hosts (vhosts) or virtual servers enable a web server to host multiple sites

simultaneously. Vhosts fall into one of the following categories:

•	 IP-based virtual hosts, where each vhost is dedicated to a site that

makes use of a specific IP address from the web server IP addresses

•	 Port-based virtual hosts, where each vhost listens on a different port

number for each site it hosts

•	 Name-based virtual hosts, where each vhost is dedicated to a site

with a specific domain name

An Apache configuration can mix all these categories and also include a default host.

The initial Apache configuration file is called 000-default.conf and is found in the

/etc/apache2/sites-available directory. Apache requires a new configuration file

to have a .conf file extension. At the Linux terminal, change the working directory to

sites-available, which is the Apache directory that contains the configuration files.

$ cd /etc/apache2/sites-available

Open the default configuration file 000-default.conf with the command cat, as

shown here:

$ cat 000-default.conf

The file opens in a new window. The file contents are as follows:

<VirtualHost *:80>

 # �The ServerName directive sets the request scheme, hostname and port

that

 # the server uses to identify itself. This is used when creating

 # redirection URLs. In the context of virtual hosts, the ServerName

 # �specifies what hostname must appear in the request's Host: header

to match this virtual host. For the default virtual host (this

file) this value is not decisive as it is used as a last resort

host regardless.

Chapter 1 The Apache Web Server

20

 # However, you must set it for any further virtual host explicitly.

 #ServerName www.example.com

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 # �Available loglevels: trace8, ..., trace1, debug, info, notice, warn,

 # error, crit, alert, emerg.

 # It is also possible to configure the loglevel for particular

 # modules, e.g.

 #LogLevel info ssl:warn

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # For most configuration files from conf-available/, which are

 # enabled or disabled at a global level, it is possible to

 # �include a line for only one particular virtual host. For example the

 # following line enables the CGI configuration for this host only

 # after it has been globally disabled with "a2disconf".

 #Include conf-available/serve-cgi-bin.conf

</VirtualHost>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

Each Apache configuration file includes three kinds of entries.

•	 Directives that define the behavior of the web server

•	 Containers, such as VirtualHost, that define blocks of directives for

a vhost

•	 Comments, starting with a hash (#), that provide some aid in the

usage of the directives

Container <VirtualHost *:80> pairs with </VirtualHost> just like an HTML start

and end tag. The VirtualHost pair encloses all directives for the specific vhost and also

defines the IP address and port number to which the given vhost should respond. In this

Chapter 1 The Apache Web Server

21

configuration file, the asterisk (*) corresponds to any IP address, and 80 corresponds

to port 80, which is the default port for the HTTP protocol. You already tested this

configuration in the previous sections when one of the following IP addresses was used

in the address bar of your browser to download the directory index:

127.0.0.1

192.168.1.100

Both addresses succeeded because the configuration accepted any valid IP address

for this server. In the following section, you will create two different vhosts, each one

serving a different IP address.

�Using IP-Based Virtual Hosts
In this section, you’ll create a new configuration file with gedit to implement two

IP-based vhosts using the directives contained between the start/end VirtualHost

containers. One vhost will be responsible for the loopback IP address, 127.0.0.1,

and the other will be responsible for the private IP address of the web server,

192.168.1.100, both listening on port 80. The pair of IP address and port number for

each vhost is indicated in the VirtualHost container. For instance, <VirtualHost

127.0.0.1:80> indicates the loopback IP address 127.0.0.1, and 80 is the default

port number for the HTTP protocol. You can provide a different directory index to

each vhost, such as index1.html for the first and index2.html for the second, using

the DirectoryIndex directive. You can leave the other directives with their default

values from the 000-default.conf file.

At the Linux terminal, change the working directory to sites-available and use

gedit to create the file example1.conf.

$ cd /etc/apache2/sites-available

$ sudo gedit example1.conf

Enter the following configuration rules and save the file:

1st vhost

<VirtualHost 127.0.0.1:80>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 DirectoryIndex index1.html

Chapter 1 The Apache Web Server

22

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

2nd vhost

<VirtualHost 192.168.1.100:80>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 DirectoryIndex index2.html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

Next you need to enable the new configuration using the a2ensite (apache2 enable

site) command. At the Linux terminal, enter the following:

$ sudo a2ensite example1.conf

Or simply enter this:

$ sudo a2ensite example1

To enable the new Apache configuration, you need also to reload the web server.

$ sudo service apache2 force-reload

Create two web pages in the document root directory that will serve as the directory

indexes for the two vhosts.

$ cd /var/www/html

$ sudo gedit index1.html

Enter the following HTML source code:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Apache Web Server</title>

Chapter 1 The Apache Web Server

23

<style>

 body {

 background-color:lightblue;

 }

 p {

 background-color:red;

 font-size:20px;

 }

</style>

</head>

<body>

<p>Hello from 127.0.0.1</p>

</body>

</html>

In /var/www/html, create a web page called index2.html to be used as the directory

index for the second vhost. Use the following HTML source code:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Apache Web Server</title>

<style>

 body {

 background-color:red;

 }

 p {

 background-color:lightblue;

 font-size:20px;

 }

</style>

</head>

<body>

<p>Hello from 192.168.1.100</p>

</body>

</html>

Chapter 1 The Apache Web Server

24

Open two tabs in your browser. On the first, enter the following address in the

address bar:

127.0.0.1

On the second tab, enter the following address in the address bar:

192.168.1.100

With the current configuration, Apache displays different content for each request.

The first request, with the IP address 127.0.0.1, resolves to index1.html (Figure 1-18).

The second request with IP address 192.168.1.100 resolves to index2.html

(Figure 1-19).

Figure 1-18.  Testing the first IP-based vhost

Chapter 1 The Apache Web Server

25

Next you’ll look at a similar example, this time using port-based virtual hosts.

�Using Port-Based Virtual Hosts
The configuration used next will create two virtual hosts that listen on different ports, for

instance port 8080 and port 8181. When anything other than the default port number for

the HTTP protocol, port 80, is used, the port is required to be appended to the URL with

a colon (:). Here’s an instance:

192.168.1.100:8080

Using a different port than the default one makes the URL a bit more complicated,

but that is not really a problem when you implement a DDNS service (see Chapter 4)

that hides this complexity from the user.

In the sites-available directory, create a new configuration file.

$ cd /etc/apache2/sites-available

$ sudo gedit example2.conf

Figure 1-19.  Testing the second IP-based vhost

Chapter 1 The Apache Web Server

26

In the file example2.conf, enter the following directives to direct the server to

include port numbers 8080 and 8181 in the list of the listening ports:

Listen 8080

Listen 8181

To create a vhost that listens on port 8080 on any IP address of the server, you can use

the asterisk notation in the VirtualHost container as <VirtualHost *:8080>. Similarly,

for the vhost that listens on port 8181, also on any IP address of the server, use the

<VirtualHost *:8181> container. The complete listing of example2.conf is as follows:

Listen 8080

Listen 8181

1st vhost

<VirtualHost *:8080>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 DirectoryIndex index3.html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

2nd vhost

<VirtualHost *:8181>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 DirectoryIndex index4.html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

Save the new configuration file and enable it using the a2ensite command. Type the

following:

$ sudo a2ensite example2.conf

or simply type the following:

$ sudo a2ensite example2

Chapter 1 The Apache Web Server

27

To enable the new Apache configuration, you also need to reload the web server.

$ sudo service apache2 force-reload

Sometimes the same configuration rules apply to different sites, causing

unpredictable results. If you have to work on sites with conflicting rules, then you have to

disable one of the sites. To disable, for instance, example1, use the a2dissite (apache2

disable site) command, as shown here:

$ sudo a2dissite example1

To have two new port numbers that the server will listen to, you need to set up ufw

to permit connections for those port numbers. At the Linux command line, type the

following:

$ sudo ufw allow 8080

$ sudo ufw allow 8181

Create at the document root the two directory indexes, index3.html and index4.

html, and refer to them in the example2.conf file. These indexes are for the vhosts that

listen on port 8080 and on port 8181, respectively.

$ cd /var/www/html

$ sudo gedit index3.html

In the gedit window that appears, enter the following HTML source code:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Apache Web Server</title>

<style>

 body {

 background-color:red;

 }

 p {

 background-color:lightblue;

 font-size:20px;

 }

</style>

</head>

Chapter 1 The Apache Web Server

28

<body>

<p>Hello from 8080</p>

</body>

</html>

Next, in the document root directory, add the following HTML source code to

index4.html:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Apache Web Server</title>

<style>

 body {

 background-color:lightblue;

 }

 p {

 background-color:red;

 font-size:20px;

 }

</style>

</head>

<body>

<p>Hello from 8181</p>

</body>

</html>

To test the new vhosts, open two tabs in your browser. On the first tab, enter the

following in the address bar:

127.0.0.1:8080

or enter the following:

192.168.1.100:8080

The directory index index3.html is displayed (Figure 1-20).

Chapter 1 The Apache Web Server

29

On the second tab, enter one of the following in the address bar:

127.0.0.1:8181

192.168.1.100:8181

The directory index index4.html is displayed (Figure 1-21).

In the following section, you will create another pair of vhosts that serve requests for

specific domain names in the Host field of the client's HTTP request.

Figure 1-20.  Testing the first port-based vhost

Figure 1-21.  Testing the second port-based vhost

Chapter 1 The Apache Web Server

30

�Using Name-Based Virtual Hosts
The third approach for running multiple sites is to use name-based vhosts, where

each vhost responds to the client’s request if the client provides a host HTTP header

value that matches its ServerName directive. You will not use the Domain Name

System for your web server until Chapter 4, so for now you can only try the name-

based virtual hosts locally, from the same computer as the server. To provide names to

your computer, edit the /etc/hosts file as indicated in Figure 1-22. Use the following

command at the terminal:

$ sudo gedit /etc/hosts

As you can see, you have already used one entry from this file, localhost, which

corresponds to IP address 127.0.0.1. Enter two more entries in /etc/hosts, both

resolving to the web server’s static private IP address.

192.168.1.100 webserver.com

192.168.1.100 myserver.com

Save the /etc/hosts file and try one of those names, for instance webserver.com, in

your browser’s address bar. The domain name resolves to the IP address 192.168.1.100,

and with sites of the example1 configuration disabled, the vhost that dispatches this

request is the default one, 000-default.conf. The web page downloaded is therefore the

one indicated in Figure 1-23.

Figure 1-22.  Adding two more host names to /etc/hosts

Chapter 1 The Apache Web Server

31

Create two name-based vhosts, each one responsible for one of the previous names.

Use gedit to create the configuration file of the two vhosts.

$ sudo gedit example3.conf

In example3.conf, enter the following directives:

<VirtualHost *:80>

 ServerName webserver.com

 DocumentRoot "/var/www/html/test1"

</VirtualHost>

<VirtualHost *:80>

 ServerName myserver.com

 DocumentRoot "/var/www/html/test2"

</VirtualHost>

The first vhost listens to the default HTTP port, which is port 80. It is triggered when

it receives an HTTP request with the value of the Host header set to webserver.com. The

second vhost also listens to port 80. It waits for HTTP requests with the value of the Host

header set to myserver.com.

Figure 1-23.  With no name-based vhost configured so far, the default vhost serves
the webserver.com request

Chapter 1 The Apache Web Server

32

The two sites use two different document roots, /var/www/html/test1 and /var/

www/html/test2, and since no directory indexes are defined with the DirectoryIndex

directive, the default one for Apache, index.html, will be used. Create next a file named

index.html in each directory root. At the Linux terminal, enter the following:

$ cd /var/www/html/test1

$ sudo gedit index.html

In the gedit window, insert the following HTML code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Apache Web Server</title>

<style>

 body {

 background-color:red;

 }

 p {

 background-color:lightblue;

 font-size:20px;

 }

</style>

</head>

<body>

<p>Hello from webserver.com</p>

</body>

</html>

Create a file called index.html in the second document root. At the Linux terminal,

enter the following:

$ cd /var/www/html/test2

$ sudo gedit index.html

Chapter 1 The Apache Web Server

33

In the gedit window, enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Apache Web Server</title>

<style>

 body {

 background-color:lightblue;

 }

 p {

 background-color:red;

 font-size:20px;

 }

</style>

</head>

<body>

<p>Hello from myserver.com</p>

</body>

</html>

Enable the new configuration using the following:

$ sudo a2ensite example3

You also have to reload the web server to enable the new sites.

$ sudo service apache2 force-reload

In a browser on the computer that hosts the web server, open two tabs. In the first

tab, enter the following in the address bar:

webserver.com

The web page index.html, located in /var/www/html/test1, is displayed in the

browser’s window, as displayed in Figure 1-24.

Chapter 1 The Apache Web Server

34

Use the following URL on the second tab:

myserver.com

The web page index.html, located in document root /var/www/html/test1, is

displayed in the browser’s window, as viewed in Figure 1-25.

In Chapter 9 you’ll test the ServerName directive with a globally valid domain name

like httpsserver.eu and see how to obtain and apply such a domain name.

Figure 1-24.  Testing the first name-based vhost

Figure 1-25.  Testing the second name-based vhost

Chapter 1 The Apache Web Server

35

�Inspecting the Overall Virtual Host Configuration
Each configuration enabled with the a2ensite command adds a symbolic link of itself to

the directory /etc/apache2/sites-enabled. Use the following:

$ ls /etc/apache2/sites-enabled

As displayed in Figure 1-26, the ls command lists three configuration files:

000-default.conf, example2.conf, and example3.conf. The configuration example1.

conf is not included in this directory because it was disabled with the a2dissite

command. Use the following to view the details of the overall configuration:

$ sudo apachectl -S

Figure 1-26 displays also the output of the apachectl -S command, which provides

an overview of the vhost configuration.

Figure 1-26.  Listing the enabled sites and details of the Apache configuration

Chapter 1 The Apache Web Server

36

�Reading Apache Log Files
To get an idea of the number of visitors and see some of the connection details, such as

the client IP address and the time, you can read the log files of Apache. For the vhosts

examples of this chapter, the directives related to log files are used in the configuration

files as follows:

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

To locate APACHE_LOG_DIR, use the following at the Linux terminal:

$ grep APACHE_LOG_DIR /etc/apache2/envvars

The Linux terminal responds with the following output:

export APACHE_LOG_DIR=/var/log/apache2$SUFFIX

With an empty value assigned for the variable $SUFFIX in the file envvars, the

Apache log directory resolves to /var/log/apache2.

Change the working directory to /var/log/apache2, where the file access.log is

used to list the visitor details and the file error.log is used to report any errors.

$ cd /var/log/apache2

Move to another computer of your LAN and make an HTTP request to the Apache

server. For instance, at the browser’s address bar, type the following:

192.168.1.100

Read the access.log file using more, less, tail, or a similar command:

$ tail –n 1 access.log

The previous Linux shell command prints one line from the end, which corresponds

to the last record of the access log. You can also use the –f argument to continuously

print the last visitor’s details of the access log:

$ tail –fn 1 access.log

Chapter 1 The Apache Web Server

37

The details about the new connection are displayed next, including the IP address of

the computer used by the client, the date and time the request was issued, the URL used,

the operating system, and the browser:

192.168.1.2 - - [14/Jun/2018:16:09:23 +0300] "GET /favicon.ico

HTTP/1.1" 404 504 "http://192.168.1.100/" "Mozilla/5.0 (Windows NT 6.1)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36”

�Summary
In this chapter, you set up and ran Apache, the first of two web servers used in this book.

You created a number of virtual hosts (vhosts), each one corresponding to a different

site. Two test sites were then run to display how Apache can discriminate between

multiple sites belonging to each of the three main vhost categories: IP-based vhost,

port-based vhost, and name-based vhost.

In the next chapter, you’ll set up the PHP engine, namely, the interpreter that

cooperates with Apache to create web pages with PHP source code that executes on

the web server before the web page is dispatched to the client. With PHP, you enable

sites to dispatch different content according to the client request and also to interface

with other programs to work with the server, thus providing dynamic content to the

visitors of the site.

Chapter 1 The Apache Web Server

39
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_2

CHAPTER 2

Server-Side
Programming with PHP
In the beginning of the Internet, web servers dispatched only static content to the client.

Soon, though, web servers became capable of dispatching dynamic content as well. To

do this, a mechanism was needed that offered programming capabilities as well as the

possibility of interfacing the terminal with other programs. Popular mechanisms for this

purpose were the Common Gateway Interface (CGI) and later the PHP language. PHP

is a recursive acronym for PHP: Hypertext Preprocessor. PHP is a general-purpose open

source language that can be embedded in an HTML file or be included in its own stand-

alone PHP file.

In this chapter, you will connect the Apache server to a PHP engine to create sites

that accept client-specific data from HTML forms, which are processed, and then the

results are dispatched back to the client’s browser, thus serving dynamic content. You

will be introduced to PHP, and then you will compare client-side programming in

JavaScript to server-side programming in PHP. Last, you’ll build a PHP-based site that

validates the feature codes that can be entered online at a website in exchange for prizes.

�The PHP Engine
A PHP-enabled web server can receive a request for a PHP file mainly in two ways.

•	 By using the URL of the PHP file in the web browser’s address bar

•	 By submitting an HTML form, where the action attribute is set to the

URL of the PHP file

On receiving the request for a PHP file, the web server locates the file and passes

it to the PHP engine for processing. The PHP engine is a PHP interpreter that the web

server is currently assigned. What the user actually views in the browser is not the

40

PHP file itself but rather the output of all the PHP commands, sent back by the web

server. For instance, the echo PHP command is the one used to output messages.

Here’s an example:

echo "Hello world!";

The start/end PHP tags (<?php and ?>) are used as the delimiters for a PHP program.

<?php

echo "Hello world!";

?>

The PHP engine evaluates the previous program to a string, which is what the user

actually sees when requesting hello.php.

Hello world!

Other than PHP commands, the PHP engine accepts HTML tags, for instance:

<?php

echo "Hello
world!";

?>

The user views the following message in bold:

Hello

world!

This capability makes PHP an ideal language for use on the Web.

PHP is a full-fledged programming language that you can use to make

programs that run on the server side, limited only by your creativity. Here are a few

epigrammatic uses for PHP:

•	 Interfacing with the operating system’s shell, for instance the Linux

terminal, and running terminal commands

•	 Interfacing with user programs, most commonly databases, and thus

allowing the user to conduct a search and have the web server offer

dynamic content

Chapter 2 Server-Side Programming with PHP

41

•	 Interfacing with the filesystem and allowing for reading and writing

files on the server side

•	 Interfacing with remote servers by establishing network connections

You’ll see examples of all these uses for PHP in the following chapters.

�Installing and Testing PHP
In this book, PHP version 7.0 is used. To install PHP 7.0, follow the steps in this section.

Add the ondrej/php personal package archive (PPA).

$ sudo add-apt-repository ppa:ondrej/php

Run the update.

$ sudo apt-get update

Install PHP 7.

$ sudo apt-get install php7.0

Enable the Apache module php7.0, also installed with the previous command.

$ sudo a2enmod php7.0

Ensure that the mpm_prefork (prefork multiprocessing) Apache module is enabled

and the mpm_event module is disabled.

$ sudo a2dismod mpm_event && sudo a2enmod mpm_prefork

Install also the CLI (Command Line Interface) PHP:

$ sudo apt-get install php7.0-cli

Restart Apache.

$ sudo systemctl restart apache2

To test your newly installed PHP engine, create a PHP file, named info.php, at the

document root directory. Enter the following PHP source code:

<?php

phpinfo();

?>

Chapter 2 Server-Side Programming with PHP

42

The previous code snippet includes just one command, the phpinfo() function call.

As with each PHP command, it ends with a semicolon. The function phpinfo() returns

a plethora of information about the PHP version, the operating system, the web server,

etc., that spans multiple screens.

In your browser’s address bar, type the URL that leads to info.php, for instance:

192.168.1.100/info.php

192.168.1.100 in this example is the private IP address of the web server.

Figure 2-1 shows the info page.

The information on the info.php web page will be used in the following examples.

In the following section, you will try PHP independently from a web server; you’ll use

the command line to simulate the process followed by a web server equipped with a

PHP engine.

Figure 2-1.  The info.php web page displayed in a browser

Chapter 2 Server-Side Programming with PHP

43

�Testing PHP Without a Web Server
Sometimes it is useful to run and test PHP source code and view the result as it would

appear in the user’s browser without requiring a web server. There are PHP interpreters,

like CLI PHP, that run from the command line of your operating system; however, they

do not deliver the exact effect because they do not process HTML tags. There are also

online PHP editors, some of which like phptester.net process HTML tags, but you can’t

combine them with the software of your computer. For this purpose, the following

example can be used, which relies on CLI PHP.

To test whether you have already installed PHP CLI installed, enter the following at

the command line:

$ php -v

The output on my system is as follows:

PHP 7.1.17-0ubuntu0.17.10.1 (cli) (built: May 9 2018 17:28:01) (NTS)

Copyright (c) 1997-2018 The PHP Group

Zend Engine v3.1.0, Copyright (c) 1998-2018 Zend Technologies

 �with Zend OPcache v7.1.17-0ubuntu0.17.10.1, Copyright (c) 1999-2018, by

Zend Technologies

To view the available options, use the -h (help) switch.

To simulate the process of using PHP code inside a web page and viewing the result

with a browser, without requiring a web server, use the following steps. First create a PHP

file that uses HTML tags and also PHP source code. Specifically, create a file called a.php

in your home directory using these commands:

$ cd ~

$ gedit a.php

Enter the following source code and save the file:

<html>

<head>

<title>Testing PHP without a web server</title>

</head>

<body>

Chapter 2 Server-Side Programming with PHP

44

<?php

$command = "users";

$output = shell_exec($command);

echo $output;

?>

</body>

</html>

Three PHP commands are included between the start (<?php) and the end (?>) PHP

tags. The first one sets the $command variable to the value of the command name that

will be executed by the operating system. In this example, the shell command users

was used, which lists the logged-in users. The second command uses shell_exec(),

which is the PHP function that interfaces with the shell and executes the command

given in the argument, in this case users, which is the value of $command. As a result, the

users command is executed, and its output is stored to the $output variable. The third

command prints the contents of the variable $output in bold since the PHP block is

included between the start and end tags.

The file a.php is the original PHP file that will be evaluated and viewed from a

browser; however, for this file, the auxiliary file c.php is required to run. Create the file

c.php next.

$ gedit c.php

Enter the following source code and save the file:

<?php

shell_exec("php a.php > b.html");

shell_exec("firefox b.html");

?>

What the program c.php does is run the code of file a.php with PHP CLI and then

redirect (>) the output to the HTML file b.html.

$ php a.php > b.html

Next the Firefox web browser is invoked from the command line to open the web page

b.html. This is the equivalent of running the next command from the command line:

$ firefox b.html

Chapter 2 Server-Side Programming with PHP

45

After creating a.php and c.php, the command you issue from the command line that

starts everything is as follows:

$ php c.php

Figure 2-2 displays the result of running the previous command: the Firefox window

opens and lists the currently logged-in users.

A simple but efficient way to debug PHP code received from a web server by the user

browser is to right-click the web page and select View Page Source (or similar) from the

pop-up menu. As shown in Figure 2-3, a new tab opens with the evaluated PHP code.

Figure 2-2.  Running c.php from CLI PHP results in displaying file a.php in a
web page

Figure 2-3.  The source code of the evaluated PHP code

Chapter 2 Server-Side Programming with PHP

46

As shown in the web page source resulting from the evaluated PHP code, just one

user is currently logged in, and the username is included between the start/end bold

tags in the body section of the HTML source code. Starting in the next section, all PHP

examples will run through the web server. The Apache web server, introduced in the

previous chapter, will be used here (starting in Chapter 5 you will use another open

source web server, the Lighttpd).

�Running Your First PHP Examples from the
Web Server
You will now test PHP files evaluated by the PHP engine and dispatched by the Apache

web server. The following examples show how variables are combines with strings and

the difference between double and single quotes when used with strings. Also, I explain

how you can mix JavaScript and PHP in the same command. Understanding those

details in the source code is essential for understanding the web-based projects included

in the rest of the book.

�Working with Variables and Strings
First you’ll see how PHP strings and variables can be combined. Create a new file with a

.php file extension in your document root directory.

$ cd /var/www/html

$ sudo gedit test.php

Enter the following source code that does not include any strings and save the test.

php file:

<!DOCTYPE html>

<html>

<head>

<title>

Testing PHP

</title>

<style>

p {

Chapter 2 Server-Side Programming with PHP

47

font-size:24px;

color:blue;

</style>

</head>

<body>

<?php

// working with variables

$var1 = 5;

$var2 = 8;

$var3 = $var1 + $var2;

echo $var3;

?>

</body>

</html>

Test the PHP file by entering its URL in the address bar of your browser. If you test

from the web server, use the following:

localhost/test.php

If you also test from the web server or from another computer of your LAN, you can

use the following:

192.168.1.100/test.php

Here, 192.168.1.100 is the private IP address of the computer that hosts the web

server. Figure 2-4 shows the web page downloaded to the browser.

Figure 2-4.  The evaluated test.php web page

Chapter 2 Server-Side Programming with PHP

48

The PHP program uses three variables: $var1 and $var2 that are initialized to

specific values, and $var3, whose value is calculated by the addition of the values of the

previous two variables. The echo PHP command is used to output the $var3 variable’s

value to the web page displayed in your browser. Also, a double forward slash (//) is

used to mark a line as a comment. To include multiple continuous lines in a comment,

use the slash and star notation, that is, /* for starting and */ for ending.

Notice that a variable name in PHP starts with the dollar sign ($). Prepending a

variable with the dollar sign may look like overhead, but it is handy when you include

the variable in a string. To display this feature, replace the previous PHP code in test.

php with the following:

<?php

// working with variables

$var1 = 5;

$var2 = 8;

$var3 = $var1 + $var2;

echo "The sum of $var1 and $var2 is $var3";

?>

Strings in PHP can be included between double (") or single (') quotes. When a

variable is inserted in a string with double quote delimiters, it is evaluated to its actual

value. The web page in this example displays the following:

The sum of 5 and 8 is 13

This is not the case, however, when single quotes are used as string delimiters.

Replace the previous PHP code in test.php with the following:

<?php

// working with variables

$var1 = 5;

$var2 = 8;

$var3 = $var1 + $var2;

echo 'The sum of $var1 and $var2 is $var3';

?>

The web page displays the following:

The sum of $var1 and $var2 is $var3

Chapter 2 Server-Side Programming with PHP

49

You can also use the concatenation operator (.) to concatenate strings and variables.

Change the previous PHP code in test.php to the following:

<?php

// working with variables

$var1 = 5;

$var2 = 8;

$var3 = $var1 + $var2;

echo "The sum of " . $var1 . " and ". $var2 . " is " . $var3;

?>

The web page test.php evaluates now to the following:

The sum of 5 and 8 is 13

You can instead use single quotes to have the same effect.

<?php

// working with variables

$var1 = 5;

$var2 = 8;

$var3 = $var1 + $var2;

echo 'The sum of ' . $var1 . ' and ' . $var2 . ' is ' . $var3;

?>

�Escaping Double or Single Quotes in PHP

To include double quotes in a string printed in the echo command without getting them

mixed up with the message’s double quotes used as delimiters, you can prepend them

with the backslash (\) character. This is referred as escaping the double quotes. Another

method is to include the message with the double quote characters in single quote

delimiters. For instance, the following PHP file source code allows the double quote to

be included in the echo messages:

<?php

echo "This message includes a double quote(\")
";

echo 'This message also includes a double quote(")
';

?>

Chapter 2 Server-Side Programming with PHP

50

Similarly, you can include single quotes in a string by escaping them with the

backslash character in a single-quoted string or use double quotes as string delimiters.

The following PHP example displays this technique:

<?php

echo 'This message includes a single quote(\')
';

echo "This message also includes a single quote(')";

?>

�Mixing JavaScript and PHP

While JavaScript is used for the client-side programming language and PHP is used for the

server-side language, there are cases where HTML and JavaScript have to be mixed with

PHP. This section outlines the general rules for mixing JavaScript, PHP, and HTML tags.

To start with, a PHP file may include HTML tags such as a common HTML file, for

instance:

<!DOCTYPE html>

<html>

<head>

<style>

p{

font-size:24px;

}

</style>

</head>

<body>

<?php

echo "<p>Hello World!</p>";

?>

</body>

</html>

You can instead use a PHP file with HTML-free content like the following:

<?php

echo "Hello World!";

?>

Chapter 2 Server-Side Programming with PHP

51

A PHP file may also include JavaScript source code, as in the following example:

<script>

document.write("Hello ");

</script>

<?php

echo "World!";

?>

In the previous PHP file, the two source code blocks are not mixed, and both

functions individually print their own part on the web page, with JavaScript running

when the browser loads the page and PHP running before the web page is submitted to

the user’s browser. Next you will see some cases where the PHP and JavaScript source

code are mixed. As a general rule, HTML tags, like <script>, <style>, etc., may be

included in a PHP file, however, not inside a PHP source code block, defined between

the <php and ?> delimiters. Otherwise, the PHP code won’t run, and the evaluated

web page will display an error message (HTTP error 500). The following example will

run because the start and end script tags are outside the PHP block and the JavaScript

commands are printed in their place with a PHP echo command:

<script>

<?php

echo '

alert("Hello World!");

';

?>

</script>

Also, the following source code snippet will run because all script tags are included

in the echo PHP message, and therefore the whole script is printed to the web page when

the PHP source code evaluates:

<?php

echo '

<script>

alert("Hello World!");

</script>

';

?>

Chapter 2 Server-Side Programming with PHP

52

In the next example, the source code will not run because the script’s start and end

tags are included inside the PHP block, however, without being included in the echo

command:

<?php

<script>

echo '

alert("Hello World!");

';

</script>

?>

In this book, you will see a lot of cases where you have to use PHP and JavaScript

in the same command. For instance, sometimes a PHP variable needs to appear to the

user in a pop-up window instead of being typed into the browser’s window with the echo

command. With PHP belonging to the server side, you don’t give control to the user’s

browser to create a pop-up window. You instead include JavaScript in the PHP evaluated

page. The following PHP file contains PHP code in two blocks. In the first block, for

simplicity, the variable $name is hardwired to a specific value, and in the second block, a

PHP block is combined with JavaScript code as part of the alert() text so that the PHP

variable $name appears in a pop-up window message:

<?php

$name = "Madison";

?>

<script>

alert("Hello <?php echo $name; ?> ");

</script>

Consider also the example where the pop-up window appears only if the value of

$name is 'Jennifer'. In this case, the whole script needs to be conditionally included in

the PHP source code, but it may never run.

<?php

$name = 'Susan';

if ($name === Susan) {

echo '

Chapter 2 Server-Side Programming with PHP

53

<script>

alert("Hello ' . $name . ' ");

</script>

';

} else {

echo 'Hello';

}

?>

In the previous example, for simplicity, the $name variable was hardwired to the

source code instead of allowing for multiple values, e.g., values derived from an HTML

form. Like with the script tag, PHP code can be mixed with other HTML tags.

Here’s an example of source code that won’t run:

<?php

echo "Hello World!";

?>

On the other hand, the following example runs as expected:

<?php

echo "Hello World!";

?>

Or you can also use the following:

<?php

echo "Hello World!";

?>

In the examples used in this section, the PHP program initialized the PHP variables

to their values. Next you will use HTML forms that the site visitor uses to submit user-

specific data to the web server and then set the PHP variables according to the user

preferences.

Chapter 2 Server-Side Programming with PHP

54

�Setting the PHP Variables with the GET Method
The most common way to allow the user to send data to the web server is to use an

HTML form that implements the GET or POST method and also refers to the URL of the

PHP program that receives and processes the user data from the action attribute of the

form element. In the following example, you will create a web page that includes an

HTML form with the method attribute set to GET. First create the HTML file get.html that

includes a form to enable the user to insert numbers in two fields and also to select an

arithmetic operator with a drop-down list. When the submit button is clicked, the user

data is transmitted to the get.php program, which is located, as the relative URL of the

action attribute indicates, on the web server that dispatched the current web page and in

the same directory as the current web page.

Use the following commands to switch to the server’s document root and create the

file get.html:

$ cd /var/www/html

$ sudo gedit get.html

Insert the following HTML source code:

<!DOCTYPE html>

<html>

<head>

<style>

input, select{

font-size:24px;

}

</style>

</head>

<body>

<form method="get" action="get.php">

<input type="number" name="n1">

<select name="operator">

 <option value="add">+</option>

 <option value="subtract">-</option>

 <option value="multiply">*</option>

 <option value="divide">/</option>

</select>

Chapter 2 Server-Side Programming with PHP

55

<input type="number" name="n2">

<input type="submit" value="Calculate">

</form>

</body>

</html>

Create the get.php file in the same directory.

$ sudo gedit get.php

Insert the following HTML source code that embeds the PHP source code:

<!DOCTYPE html>

<html>

<head>

<style>

p{

font-size:24px;

}

</style>

</head>

<body>

<p>

<?php

$num1 = $_GET["n1"];

$num2 = $_GET["n2"];

$operator = $_GET["operator"];

switch($operator) {

 case "add":

 echo $num1 + $num2;

 break;

 case "subtract":

 echo $num1 - $num2;

 break;

 case "multiply":

 echo $num1 * $num2;

 break;

Chapter 2 Server-Side Programming with PHP

56

 case "divide":

 echo $num1 / $num2;

 break;

}

?>

</p>

</body>

</html>

With the GET form method array $_GET, a global PHP variable is passed by the PHP

engine to get.php, the PHP action program. The $_GET array elements consist of the

data sent by the form. By using the name of the form’s element with $_GET as the index to

submit a value, the specific value is returned. For instance, with the following command,

the PHP variable $num1 gets the value submitted by the form’s field named n1:

$num1 = $_GET["n1"];

Similarly, the value entered by the user in the second field of the type number is

assigned to the PHP variable $num2.

$num2 = $_GET["n2"];

The drop-down list of the form submits also a value that corresponds to one of

the following arithmetic operators: addition (+), subtraction (-), multiplication (*),

division (/). The user choice for the operator is then accessed with the PHP $operator

variable as follows:

$operator = $_GET["operator"];

Next, $operator enters a PHP switch command that according to the $operator

value performs the corresponding arithmetic operation between $num1 and $num2.

To test the client-server interaction of this example, use another computer in your

LAN and enter the following in the browser’s address bar:

192.168.1.100/get.html

192.168.1.100 is in this example the private IP address of the computer that hosts

your web server. Alternatively, you can test the example from the same computer where

your web server resides by entering the following:

127.0.0.1/get.html

Chapter 2 Server-Side Programming with PHP

57

Fill in the fields of the form with numeric values and select an arithmetic operator.

Figure 2-5 displays the web page get.html with the values 200 and 100 entered in the

number fields and also the multiplication sign selected from the drop-down list. Click

the Calculate button to submit the form data to get.php.

Figure 2-6 displays the web page resulting from the evaluation of get.php, the action

program in the web server, that received the data from the get.html form. The PHP code

multiplies the two numeric variables $num1 and $num2, and the result is printed with the

echo command to the output returned by the web server to the client browser.

The data submitted by the user is appended as the query string in the URL. The

query string, for this example, is as follows:

n1=200&operator=multiply&n2=100

This includes the name-value pairs of all form fields submitted to the server and

comprises the info received by the PHP program, which is used to fill the $_GET array and

provide the PHP program with the user-defined variables.

Figure 2-5.  The web page get.html with the form fields completed

Figure 2-6.  The evaluated get.php web page as it appears in the user browser

Chapter 2 Server-Side Programming with PHP

58

�Setting the PHP Variables with the POST Method
Let’s now try the POST method of the form element, which is another option for

submitting data to the web server. Create the file post.html as follows:

$ cd /var/www/html

$ sudo gedit post.html

Enter the following HTML source code, which differs from the get.html code only by

the values of the form attributes method and action:

<!DOCTYPE html>

<html>

<head>

<style>

input, select{

font-size:24px;

}

</style>

</head>

<body>

<form method="post" action="post.php">

<input type="number" name="n1">

<select name="operator">

 <option value="add">+</option>

 <option value="subtract">-</option>

 <option value="multiply">*</option>

 <option value="divide">/</option>

</select>

<input type="number" name="n2">

<input type="submit" value="Calculate">

</form>

</body>

</html>

Chapter 2 Server-Side Programming with PHP

59

The method used is therefore POST, and the PHP file post.php is used to handle the

user request. Create the file post.php also at the document root as follows:

$ cd /var/www/html

$ sudo gedit post.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

p{

font-size:24px;

}

</style>

</head>

<body>

<p>

<?php

$num1 = $_POST["n1"];

$num2 = $_POST["n2"];

$operator = $_POST["operator"];

switch($operator) {

 case "add":

 echo $num1 + $num2;

 break;

 case "subtract":

 echo $num1 - $num2;

 break;

 case "multiply":

 echo $num1 * $num2;

 break;

Chapter 2 Server-Side Programming with PHP

60

 case "divide":

 echo $num1 / $num2;

 break;

}

?>

</p>

</body>

</html>

To test the client-server interaction of this example, use another computer in your

LAN and in the browser’s address bar enter the following:

192.168.1.100/post.html

Here, 192.168.1.100 is the private IP address of the computer that hosts your web

server. Alternatively, you can test the example from the same computer where your web

server resides by entering the following:

127.0.0.1/post.html

Provide a numeric value for each of the two fields and choose also an arithmetic

operator from the drop-down list. In Figure 2-7, the two form fields of the web page

post.html are completed with the numeric values 3000 and 5, respectively, and the

division operator is selected from the drop-down list.

Click the Calculate button. The form values are submitted to post.php. On the web

server, the PHP engine is invoked, and the form values are retrieved from the global PHP

variable $_POST, which is an array similar to $_GET with the values submitted from the

Figure 2-7.  The web page post.html with the form completed

Chapter 2 Server-Side Programming with PHP

61

form elements. The PHP source code performs the division between 3000 and 5. The

result is output with the echo command to the web page, as displayed in Figure 2-8, and

is sent back from the web server to the user.

Notice that in the address bar of your browser the URL remains the same. With the

POST method, the data is not included in the URL of the HTTP request line, as with the

method GET, but is rather appended to the body of the HTTP request sent to the web

server. In the following section, another form is used to submit data to a PHP program

on the server, and this process is compared with the JavaScript code that performs the

corresponding calculation locally.

�Running Client-Side vs. Server-Side Programs
You will next compare how server-side programs and client-side programs act, using

JavaScript and PHP source code embedded in the same web page. Both languages are

used to perform the same operation, specifically an arithmetic addition. JavaScript runs

on the client side in the client’s browser and displays the web page. PHP runs on the

server side since the addition is performed on the web server that provides the specific

web page.

A simple pattern for defining the programming process is to input the data to the

source code and output the results. With JavaScript, the web server submits the source

code via the network, and then the input/output data is used locally on the client’s

system. With PHP, the contrary applies: the client submits the data to the server, which

makes the calculation remotely to the client, and the output is sent back to the client, as

shown in Figure 2-9.

Figure 2-8.  The evaluated post.php web page as it appears in the user’s
browser

Chapter 2 Server-Side Programming with PHP

62

�The JavaScript/PHP Addition Web Page
In this section, you’ll create two calculators, which for simplicity here only do addition,

in the same web page, program.html. The first is a client-side calculator that runs

JavaScript, and the second is a server-side calculator that runs PHP. At the Linux

terminal, create program.html in the document root of the web server with the following

terminal commands:

$ cd /var/www/html

$ sudo gedit program.html

In the gedit window, enter the following HTML page that embeds the PHP and

JavaScript source code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Client side and Server side programs</title>

Figure 2-9.  Defining the programming process

Chapter 2 Server-Side Programming with PHP

63

<style>

input{

font-size:24px;

text-align:right;

background-color:lime;

}

input[type="submit"] {

background-color:yellow;

color:lime;

}

button{

font-size:24px;

color:lime;

background-color:yellow;

}

span{

font-size:24px;

color:lime;

}

</style>

</head>

<body>

<div>

Add using JavaScript:

<input type="text" id = "t1" size=5>

+

<input type="text" id = "t2" size=5>

<button onclick="f1()">=</button>

<input type = "text" id = "t3" size=5>

</div>

<div>

Add using PHP:

<form method="get" action="addition.php" style="display:inline;">

Chapter 2 Server-Side Programming with PHP

64

<input type="text" name="t4" size=5>

+

<input type="text" name="t5" size=5>

<input type="submit" value="=">

</form>

</div>

<script>

function f1() {

var x = Number(document.getElementById("t1").value);

if (isNaN(x)) {

alert("Please enter a number");

return false;

}

var y = Number(document.getElementById("t2").value);

if (isNaN(y)) {

alert("Please enter a number");

return false;

}

var z = x + y;

document.getElementById("t3").value = z;

}

</script>

</body>

</html>

The HTML file is used to perform addition in two ways: by using JavaScript and by

using PHP. For JavaScript, the fields t1 and t2 are used to fill the operands and t3 is

used to output the sum. When the button with the equal sign is clicked, the calculation

is performed. This button is assigned function f1() for handling the onclick event. The

JavaScript section implements function f1(). This routine sets the JavaScript variable x

to the current value of the element t1 (the first textbox) and sets the JavaScript variable

y to the current value of the element t2 (the second textbox). The JavaScript function

Number() is then used to convert the textbox value to a numeric value. Without using

Number(), the value 5 would represent the character 5, and the addition 5+5 would result

Chapter 2 Server-Side Programming with PHP

65

in 55. Because with JavaScript the calculation is performed locally in the browser, no

data is transferred to and from the web server, and therefore when using JavaScript, the

URL never changes.

The second way to do the addition is to use PHP. With PHP the values of textboxes

t4 and t5 are transferred to the web server via a form submission when the submit

button is clicked. The submit button looks like the equal button from the JavaScript

technique, but it functions by sending the data to the web server contrary to the

JavaScript button that invokes a function to make the calculation locally. The program

that receives the data on the web server is determined by the value of the action

attribute of the form. This is set to addition.php, which is a PHP file that should be

found in the document root of the web server, as indicated by the relative URL that

includes only the file name.

Create this program with the following command:

$ sudo gedit addition.php

In the gedit window, enter the following source code and click the Save button:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:lime;

font-size:24px;

}

</style>

</head>

<body>

<?php

$x = $_GET["t4"];

$y = $_GET["t5"];

$z = $x + $y;

echo $z;

?>

</body>

</html>

Chapter 2 Server-Side Programming with PHP

66

The PHP file addition.php includes a PHP block where the value sent by textbox

t4 is retrieved from the $_GET[] global PHP array, and it is assigned then to the PHP

variable $x. Similarly, the value sent by textbox t5 is stored in the PHP variable $y. Next,

$x and $y are added together, and the result is assigned to the variable $z. The value of

$z is printed with the echo command to the web page sent back to the browser.

To try the calculators, enter the following URL in your browser’s address bar:

localhost/program.html

On the web page you can test the JavaScript code first. In the example in Figure 2-10,

the result of adding 6 and 9 appears when the first equal sign button is clicked.

Test the PHP addition next. Enter two numbers in the PHP fields. In the example

in Figure 2-9, the numbers 8 and 12 were entered. Click the button with the equal sign,

which is an HTML form submit button. The evaluated source code of the action file,

addition.php, appears, as shown in Figure 2-11.

Figure 2-11.  The result of the PHP addition as returned from the web server

Figure 2-10.  Performing the addition locally with the JavaScript calculator

Chapter 2 Server-Side Programming with PHP

67

In the case of JavaScript, the source code is executed locally on the same computer,

and the web page remains the same. For the PHP code, the code is executed in the web

server, and the reply is submitted to the client with a new page. In the previous example,

it may look like an unfair comparison because PHP provides the result in a web page that

is not consistent with the initial one. With the next versions of the files program.html and

addition.php, this can be fixed.

�The Second Version of the JavaScript/PHP Addition
Web Page
Create a file called program2.html with gedit or any other text editor. Enter the following

source code in program2.html:

<!DOCTYPE html>

<html>

<head>

<title>Client side and Server side programs</title>

<style>

input{

font-size:24px;

text-align:right;

background-color:lime;

}

input[type="submit"], input[type="button"] {

background-color:yellow;

color:lime;

}

button{

font-size:24px;

color:lime;

background-color:yellow;

}

span{

font-size:24px;

color:lime;

}

Chapter 2 Server-Side Programming with PHP

68

</style>

</head>

<body>

<div>

Add using JavaScript:

<form method="get" action="addition2.php" style="display:inline;">

<input type="text" id = "t1" size=5 name="t1">

+

<input type="text" id = "t2" size=5 name="t2">

<input type="button" onclick="f1()" value="=">

<input type = "text" id = "t3" size=5 name="t3">

</div>

<div>

Add using PHP:

<input type="text" name="t4" size=5>

+

<input type="text" name="t5" size=5>

<input type="submit" value="=">

<input type="text" name="t6" size=5>

</form>

</div>

<script>

function f1() {

var x = Number(document.getElementById("t1").value);

if (isNaN(x)) {

alert("Please enter a number");

return false;

}

var y = Number(document.getElementById("t2").value);

if (isNaN(y)) {

alert("Please enter a number");

return false;

}

Chapter 2 Server-Side Programming with PHP

69

var z = x + y;

document.getElementById("t3").value = z;

}

</script>

</body>

</html>

The HTML file program2.html differs from program.html because of the value of the

action attribute of the form element. Instead of addition.php, the program addition2.

php is used. But there is another difference as well: the first three textboxes, t1, t2,

and t3, used for the JavaScript section now use a name attribute, which will be used to

transfer their values to the web server when the submit button is clicked. Those values

will not be used for any calculation by the PHP web server program, addition2.php, but

the values will be submitted to the addition2.php source code to be returned as values

in the corresponding textboxes in the evaluated page. Thus, a continuity will be retained

with the state of the original page, program2.html.

Create a file named addition2.html in the document root of your server with the

following commands:

$ cd /var/www/html

$ sudo gedit addition2.php

Enter the following code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Client side and Server side programs</title>

<style>

input{

font-size:24px;

text-align:right;

background-color:lime;

}

input[type="submit"], input[type="button"] {

background-color:yellow;

color:lime;

}

Chapter 2 Server-Side Programming with PHP

70

button{

font-size:24px;

color:lime;

background-color:yellow;

}

span{

font-size:24px;

color:lime;

}

</style>

</head>

<body>

<?php

if (isset($_GET["t1"])){

$t1 = $_GET["t1"];

}

if (isset($_GET["t2"])){

$t2 = $_GET["t2"];

}

if (isset($_GET["t3"])){

$t3 = $_GET["t3"];

}

if (isset($_GET["t4"])){

$t4 = $_GET["t4"];

}

if (isset($_GET["t5"])){

$t5 = $_GET["t5"];

}

if (isset($t4) && isset($t5)){

$t6 = $t4 + $t5;

}

?>

<form name="f1" action="addition2.php" method="GET">

<div>

Add using JavaScript:

Chapter 2 Server-Side Programming with PHP

71

<input type = "text" id="t1" name = "t1" size=5 value = "<?php echo $t1 ?>" >

+

<input type = "text" id="t2" name = "t2" size=5 value = "<?php echo $t2 ?>" >

<input type="button" value="=" onclick="function1()">

<input type = "text" id="t3" name = "t3" size=5 value = "<?php echo $t3 ?>" >

</div>

<div>

Add using PHP:

<input type = "text" name = "t4" size=5 value = "<?php echo $t4 ?>" >

+

<input type = "text" name = "t5" size=5 value = "<?php echo $t5 ?>" >

<input type="submit" value="=">

<input type = "text" name = "t6" size=5 value = "<?php echo $t6 ?>" >

</div>

</form>

<script>

function function1() {

var x = Number(document.getElementById("t1").value);

if (isNaN(x)) {

alert("Please enter a number");

return false;

}

var y = Number(document.getElementById("t2").value);

if (isNaN(y)) {

alert("Please enter a number");

return false;

}

var z = x + y;

document.getElementById("t3").value = z;

}

</script>

</body>

</html>

Chapter 2 Server-Side Programming with PHP

72

In this new version of the PHP file, the result of the PHP addition appears as the

value of a new textbox, named t6, visually simulating the JavaScript calculator. You can

test both calculators in this new version. As displayed in Figure 2-12, the fields of the

JavaScript calculator reflect the addition previously issued, and in the PHP calculator the

operand fields are set for the addition.

After clicking the submit button, the result appears in the evaluated addition2.php

web page. As displayed in Figure 2-13, addition2.php has the same look and feel as the

previous web page, program2.html. Moreover, all textbox values from both JavaScript

and PHP sections are retained.

Figure 2-12.  The web page program2.html before submitting the form

Figure 2-13.  The evaluated web page addition2.php when the form is submitted

Chapter 2 Server-Side Programming with PHP

73

This is achieved with the following PHP block:

<?php

if (isset($_GET["t1"])){

$t1 = $_GET["t1"];

}

if (isset($_GET["t2"])){

$t2 = $_GET["t2"];

}

if (isset($_GET["t3"])){

$t3 = $_GET["t3"];

}

if (isset($_GET["t4"])){

$t4 = $_GET["t4"];

}

if (isset($_GET["t5"])){

$t5 = $_GET["t5"];

}

if (isset($t4) && isset($t5)){

$t6 = $t4 + $t5;

}

?>

In the previous PHP block, the values of the JavaScript textboxes, t1, t2, and t3, are

submitted along with two of the values of the PHP section, t4 and t5. The value for the

result of the PHP section, appearing in t6, is calculated next from the values of t4 and t5.

Function isset() is used to check whether a variable is set.

To return the values of t1 up to t6 in the corresponding textboxes, an echo command

is included for each text input element in a separate PHP block. For instance, for t1, its

last value, maintained in the PHP code in variable $t1, is printed in the first textbox with

the following PHP block contained in the input element:

<input type = "text" id="t1" name = "t1" size=5 value = "<?php echo $t1 ?>" >

The previous input tag processed by the PHP engine, for instance when t1 currently

has the value 12, is as follows:

<input type = "text" id="t1" name = "t1" size=5 value = "12" >

Chapter 2 Server-Side Programming with PHP

74

This value, carried to the server side and returned to the client side, is maintained to

retain the state of the two calculators.

To enable the evaluated page to use the JavaScript calculator, the script of program2.

html is also included in addition2.php.

<script>

function function1() {

var x = Number(document.getElementById("t1").value);

if (isNaN(x)) {

alert("Please enter a number");

return false;

}

var y = Number(document.getElementById("t2").value);

if (isNaN(y)) {

alert("Please enter a number");

return false;

}

var z = x + y;

document.getElementById("t3").value = z;

}

</script>

Figure 2-14 shows the results. You can access the JavaScript fields in addition2.php

to make further local additions.

Next you’ll create the final version of this site.

Figure 2-14.  The new version addition2.php enables both remote PHP additions
and local JavaScript additions

Chapter 2 Server-Side Programming with PHP

75

�The Third Version of the JavaScript/PHP Addition Web
Page
Since addition2.php evaluates to the program2.php web page that submits the data,

program2.php can be completely omitted from the site. Therefore, the only PHP file

required, addition.php, can replace program2.php as the home directory of the site. The

following URL will be used:

localhost/addition2.php

In the following section, you will create a site that validates promotional codes

dispatched from an HTML form and uses PHP to validate the data submitted by this

form.

�Form Validation with PHP
So far you have used HTML and JavaScript to validate a web page. Another option you

have is to use PHP. With PHP you validate the web page remotely. To test this scheme,

create a new PHP site that simulates a scenario where promotional codes are redeemed

so that the user can win free products. At the Linux terminal, create the validate.php

file in the document root of the web server.

$ cd /var/www/html

$ sudo gedit validate.php

Enter the following source code and save the file:

<html>

<head>

<title>PHP Form Validation</title>

<style>

h1{

color:orange;

}

.error{

color:red;

font-size:20px;

}

Chapter 2 Server-Side Programming with PHP

76

label{

color:blue;

font-size:24px;

}

input{

color:blue;

font-size:24px;

background-color:orange;

}

</style>

</head>

<body>

<?php

 $errormsg1="";

 $errormsg2="";

 $errormsg3="";

 $valid1=false;

 $valid2=false;

 $valid3=false;

if (isset($_POST['submit']))

{

 $name=$_POST["name"];

 $email=$_POST["email"];

 $code=$_POST["code"];

 if(empty($name) || is_numeric($name))

 {

 $errormsg1.='<p class="error">* Please enter a valid name.</p>';

 $valid1=false;

 }

 else

 {

 if(is_string($name))

 $valid1=true;

Chapter 2 Server-Side Programming with PHP

77

 else

 {

 $errormsg1.='<p class="error">* Please use valid characters.</p>';

 $valid1=false;

 }

 }

 if(empty($email) || is_numeric($email))

 {

 $errormsg2.='<p class="error"> * Please enter your e-mail.</p>';

 $valid2=false;

 }

 else

 {

 if(is_string($email))

 $valid2=true;

 else

 {

 $errormsg2.='<p class="error">* Please use valid characters.</p>';

 $valid2=false;

 }

 }

 if(empty($code))

 {

 $errormsg3.='<p class="error">* Please enter your code number.</p>';

 $valid3=false;

 }

 else

 {

 $len=strlen($code);

 if($len==10)

 $valid3=true;

 else

 {

 �$errormsg3.='<p class="error">* Code should be in alphabetic letters and

numerical digits format with 10 characters in it.</p>';

Chapter 2 Server-Side Programming with PHP

78

 $valid3=false;

 }

 }

 if($valid1==true && $valid2==true && $valid3==true)

 header("Location:process.php? code=$code&name=$name&email=$email");

}

?>

<h1>Submit your name, your e-mail, and your code</h1>

<form name="form1" method="post" action="<?php echo htmlspecialchars

($_SERVER["PHP_SELF"]);?>">

<label for="name">Full Name:</label>

<input type="text" name="name">

<?php

 if((errormsg1!="") && isset($_POST['submit']))

 echo $errormsg1;

?>

<label for="email">E-mail:</label>

<input type="text" name="email">

<?php

 if((errormsg2!="") && isset($_POST['submit']))

 echo $errormsg2;

?>

<label for="code">Code:</label>

<input type="text" name="code">

<?php

 if((errormsg3!="") && isset($_POST['submit']))

 echo $errormsg3;

?>

<input type="submit" name="submit" value="Go">

</form>

</body>

</html>

Chapter 2 Server-Side Programming with PHP

79

As displayed in Figure 2-15, validate.php creates a web page that includes a form

with three fields and a submit button, with the caption Go.

For this form, all fields are required to be filled in, and the code must be an

alphanumeric string of 10 characters. Figure 2-16 displays the error messages generated

by the PHP code when the user clicks the Go button without completing all the fields.

Test the form by completing just two of the fields, e.g., Full Name and Code, with

the latter including only three characters. Figure 2-17 displays an example. Click the Go

button.

Figure 2-16.  The error messages displayed in the web page when fields are
incomplete

Figure 2-15.  The web page created by validate.php

Chapter 2 Server-Side Programming with PHP

80

The PHP source code validates the form according to the rule set and displays two

warnings, one for the empty field and one for the length of the string entered in the Code

textbox. Figure 2-18 displays the warnings.

In the following section, I’ll discuss the PHP source code for the form validation.

�The validate.php Source Code Commentary
The Go button of the form, which is of type submit, relays the data to the PHP file

indicated by the value of the form’s action attribute. This is set to $_SERVER["PHP_

SELF"], which is another variable of the global PHP $_SERVER[] array. This value is filled

Figure 2-18.  The warnings displayed for the entries of Figure 2-16

Figure 2-17.  Testing the form with only two fields completed

Chapter 2 Server-Side Programming with PHP

81

by the PHP engine on the fly relative to the document root path of the current file, for this

example /validate.php. Notice that the action attribute of the form is set as follows:

action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]);?>

The value of the action is enclosed in the PHP tags so that the value of

htmlspecialchars($_SERVER["PHP_SELF"])

is actually printed as the action’s value. Function htmlspecialchars() is used to sanitize

the file’s pathname so that symbols like the double quote (") is converted to ",

which is the equivalent HTML entity. The purpose of this is to avoid a possible $_

SERVER["PHP_SELF"] exploit, which is a cross-site scripting (XSS) exploit, where a hacker

injects JavaScript code into web pages viewed by other users.

At the beginning of the PHP source code, three fields are evaluated. For instance,

consider the following validation code for the value of the first field sent as $_POST["name"]:

if (isset($_POST['submit']))

{

 $name=$_POST["name"];

 $email=$_POST["email"];

 $code=$_POST["code"];

 if(empty($name) || is_numeric($name))

 {

 $errormsg1.='<p class="error">* Please enter a valid name.</p>';

 $valid1=false;

 }

 else

 {

 if(is_string($name))

 $valid1=true;

 else

 {

 $errormsg1.='<p class="error">* Please use valid characters.</p>';

 $valid1=false;

 }

 }

Chapter 2 Server-Side Programming with PHP

82

With function isset(), it is ensured that the evaluation takes place only when the

submit button is clicked and the submit method is POST. Otherwise, the fields would get

evaluated even before the user had the chance to fill them.

if (isset($_POST['submit']))

The variables $valid1, $valid2, and $valid3 are used as flags to signal a valid (true)

or an invalid (false) value for the first, second, and third fields, respectively. Also, the

variables $errormsg1, $errormsg2, and $errormsg3 are used to specify the appropriate

error message for the first, second, and third fields, respectively. For instance, with the

following commands, errormsg3 appears when the value of the code does not have a

length of ten characters:

if($len==10)

 $valid3=true;

 else

 {

 $errormsg3.='<p class="error">* Code should be in alphabetic letters and

numerical digits format with 10 characters in it.</p>';

The concatenating assignment operator (.=) is a PHP string operator that appends

the argument on the right side to the argument on the left side.

The form submits to the same PHP file, where it is included, while the user does

not provide the expected values, thus allowing for validating the form. When all three

fields are filled with valid values, the following if condition holds true and the header()

function runs:

if($valid1==true && $valid2==true && $valid3==true)

 header("Location:process.php? code=$code&name=$name&email=$email");

The header() function, which sends raw HTTP headers, is used here with the

Location HTTP header. This function redirects the browser to the URL indicated by the

Location value. In this example, the value includes the attached query string with the

variable-value pairs required to be forwarded to the destination file, process.php. Thus,

the function header() provides the escape mechanism to validate.php to break out of

the loop of continuously submitting data to itself.

Chapter 2 Server-Side Programming with PHP

83

Create the file process.php in the document root with the following commands:

$ cd /var/www/html

$ sudo gedit process.php

Enter the following source code and save the file:

<html>

<head>

<title>Code evaluation</title>

<style>

p{

color:green;

font-size:32px;

}

</style>

</head>

<body>

<p>

<?php

$var=$_GET['code'];

$var2=$_GET['name'];

$var3=$_GET['email'];

if(isset($var) && $var == 'SX1DF908RW')

{

echo nl2br("$var2 congratulations you have entered the lucky code: $var\n

You have won one T-shirt. We will contact you soon.");

// Save the user's e-mail for contacting him/her

$filename = "code.txt";

$handle = fopen($filename, "w") or die(" Unable to open file!");

if ($handle)

{

fwrite($handle, $var2);

fwrite($handle, PHP_EOL);

fwrite($handle, $var3);

Chapter 2 Server-Side Programming with PHP

84

fwrite($handle, PHP_EOL);

fclose($handle);

}

}

else

{

 echo "You didn't win, please try another time!";

}

?>

</p>

</body>

</html>

The three variable values submitted (code, name, and email) from header() in file

validate.php are now retrieved as var, var2, and var3, respectively. The following if

condition looks for the lucky code:

if(isset($var) && $var == 'SX1DF908RW')

If the condition is true, the following message is returned to the browser:

echo nl2br("$var2 congratulations you have entered the lucky code: $var\n

You have won one T-shirt. We will contact you soon.");

The function nl2br() is used to translate escape characters to their meaning; for

instance, \n is treated now as a newline.

Test the validate.php form by providing the correct code, SX1DF908RW, as shown in

Figure 2-19.

Figure 2-19.  The validate.php form filled with the correct code

Chapter 2 Server-Side Programming with PHP

85

Click the Go button. The form is submitted, and the browser redirects to process.

php, which displays the message shown in Figure 2-20 to the client browser.

Try validating validate.php with a wrong code, as displayed in Figure 2-21.

Click the Go button to redirect to process.php. The message displayed to the client’s

browser is shown in Figure 2-22.

Figure 2-21.  Testing validate.php with a wrong code

Figure 2-22.  The reply viewed in the user’s browser for a wrong code

Figure 2-20.  The message displayed from process.php for the correct code

Chapter 2 Server-Side Programming with PHP

86

Let’s not forget the promise to get back to the user. To save the visitor’s details, the

PHP source code is used to provide the interface between the web server and the local

filesystem. A new file called code.txt is required to store the winner’s personal details:

the full name and the e-mail. With the following PHP code file, code.txt is used to

store this information. The file handle $handle is created with fopen(), which in this

example is used for writing (w mode) to the file, with the name indicated in the value of

$filename. The function fwrite() is used twice to fill the winner’s name and e-mail and

also the PHP_EOL value between. This inserts a line break.

// Save the user's e-mail for contacting him/her

$filename = "code.txt";

$handle = fopen($filename, "w") or die(" Unable to open file!");

if ($handle)

{

fwrite($handle, $var2);

fwrite($handle, PHP_EOL);

fwrite($handle, $var3);

fwrite($handle, PHP_EOL);

fclose($handle);

}

To enable the web server (and the PHP engine) to access file code.txt, create it first

with the touch command and then change its ownership to belong to the user www-data,

a member of the group www-data, which is the user assumed by the web server. At the

command line, enter the following:

$ sudo touch /var/www/html/code.txt

$ sudo chown www-data:www-data /var/www/html/code.txt

Figure 2-23 displays the content of code.txt, including the personal details for the

user who provided the correct code.

Chapter 2 Server-Side Programming with PHP

87

The user’s personal details are thus saved for contacting the user to claim their prize.

�Summary
In this chapter, you saw some examples of the Apache web server utilizing the PHP

engine to create programs that run on the server side, and you implemented similar-

functioning programs with JavaScript that run on the client side. You also created a site

where the form data was validated with PHP, and also PHP code was used to redirect to

another web page and to interface the web server with the filesystem. In the following

chapter, you will continue to use PHP in combination with the GeoIP geolocation

module that you set up for Apache so that information about a visitor’s location can be

retrieved and used from the PHP source code on the site’s web pages. But first you will

set up your router to officially assign the Apache host as the web server of your LAN and

thus enable your site to be accessible from the whole Internet.

Figure 2-23.  The personal details of the winner stored in file code.txt

Chapter 2 Server-Side Programming with PHP

89
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_3

CHAPTER 3

Connecting Your Apache
Server to the Internet
In this chapter, you’ll configure your router to forward any incoming packet with a TCP

port number from the web service to the computer hosting your web server. TCP port 80

is the default port number for the HTTP protocol; however, other port numbers can also

be used. Another port number used often for the HTTP protocol is port 8080. This port

number, sometimes called the HTTP alternate port, is used when the ISP does not allow

incoming traffic for port 80.

With the router configured to forward requests for the port you prefer to the web

server, your site becomes available to the whole Internet. In this chapter, you’ll use

a DNS domain name for the server instead of an IP address and thus make the URL

for your site more user-friendly.

By allowing the Apache web server to connect to the Internet, your next project

is to utilize the GeoIP Apache module to allow the server to locate the geographic

origin of the site visitors, pinpoint them on a map, and even respond in their native

language.

�The NAT Protocol
The router device that connects two networks requires two IP addresses. Like Janus,

the two-faced ancient Roman god of gates, it looks in two directions: externally

and internally to the network. These addresses are referred to as public and private

addresses, respectively. All workstations in the LAN allocate private IP addresses.

The router represents all the private IP addresses of the LAN with its unique public IP

address by implementing the Network Address Translation (NAT) protocol. NAT was

90

developed to address the problem of the IPv4 address shortage. With a single public IP

address for the router, multiple computers and Internet-enabled devices can connect to

the Internet in a seamless manner.

NAT comes in two variations: static and dynamic. With static NAT, each host requires

one public IP address for its private IP address to be reachable over the Internet.

With dynamic NAT, multiple hosts can translate their private IP address to the

public IP address of the router. An extension of dynamic NAT is port forwarding, aka

port mapping, which consists of a router service. With port forwarding, the router is

configured to dispatch packets with a specific destination port number to a specific

machine on the LAN. For instance, the router in Figure 3-1 is set to forward all packets

with destination port 80 to the host with the private IP address 192.168.1.100.

�Enabling Port Forwarding to Your Router
To relay HTTP requests aimed at the public IP address of your router with the HTTP port

number, you have to apply port forwarding on your web server. When an HTTP request

with port 80 (or any other port number that you choose) arrives at the router, it will be

forwarded to the private IP address of your web server. Most routers today include port

forwarding not only because it’s a feature of dedicated web servers but also of many

home appliances that act as servers, for instance IP cameras.

Internet

Router

Public IP Address
94.64.2.196

Private IP Address
192.168.1.1

Destination IP Address 94.64.2.196
Destination Port Number 80

packet 1

192.168.1.100

192.168.1.101

192.168.1.102

packet 1

Destination IP Address 192.168.1.100
Destination Port Number 80

Switch

Figure 3-1.  A packet with destination addresses the public IP address of the router
and port number 80 with the dynamic NAT service is forwarded to the private IP
address of the web server

Chapter 3 Connecting Your Apache Server to the Internet

91

Most router configuration options are accessed through the HTTP or Telnet protocol.

To use the first approach, enter the private IP address of your router in the address bar of

your browser and provide the username and the password to go to the web-based router

setup page. Locate the Port Forwarding option in the main menu of your router. For the

examples in this book, the private IP address of the router is 192.168.1.1. When using

this address in the browser’s address bar, the web page for the router appears; Figure 3-2

shows the page for the Speedport Entry 2i VDSL router.

Click the Firewall link to go to the web page where the Port Forwarding option is

available below the main navigation bar.

Click the Port Forwarding link to go to the web page displayed in Figure 3-3.

Figure 3-2.  The home web page for the web-based configuration interface of the
test router

Chapter 3 Connecting Your Apache Server to the Internet

92

Click the Create New Item button to create a new entry for the Port Forwarding list.

The form elements for the Port Forwarding settings appear, as shown in Figure 3-4.

Figure 3-3.  The Port Forwarding configuration web page

Figure 3-4.  The form with the port forwarding details

Chapter 3 Connecting Your Apache Server to the Internet

93

Enter a name for the service you implemented with port forwarding in the Name

field, e.g., Web Server. Enter the private IP address for this computer, e.g., 192.168.1.100

(in the field LAN Host IP Address), and enter the port numbers you will use for the web

service, e.g., 8080 (in the fields WAN Port Range and LAN Host Port Range). For the

Protocol option, select TCP from the drop-down list to implement the HTTP protocol.

Click the Apply button to confirm the settings. The new entry appears in the Port

Forwarding list.

This is a good chance to add all the port numbers used for the HTTP and HTTPS

protocols for the examples in this book. You can assign the computer with the private IP

address of 192.168.1.100 the responsibility of receiving the TCP/IP packets on your LAN

for the port numbers 80, 8080, 8181, and 443.

Each router model uses a different GUI environment to provide the Port Forwarding

settings. Figure 3-5 shows the configuration page of the FBR-1161 LevelOne ADSL router,

which displays the settings under the NAT option of the Advanced Setup menu.

The previous configuration assigns ports 8080 and 8181 to be forwarded to the LAN

computer with IP 192.168.1.101 for all protocols (both TCP and UDP).

Figure 3-5.  The port forwarding web page for the LevelOne FBR-1161 ADSL
router

Chapter 3 Connecting Your Apache Server to the Internet

94

As a general rule, you have to provide three main settings: the port number on which

the port forwarding applies for the router’s public IP address, the private IP address of

the LAN computer assigned with the task to dispatch client requests for this specific port,

and TCP as the transport protocol used for the HTTP and HTTPS services. As each router

implements a different user interface for the web-based settings, it is useful to locate

your specific router model options for port forwarding at https://portforward.com/

router.htm.

�Implementing Port Forwarding with Apache Vhosts
To implement the port forwarding feature, you can use the example1.conf configuration

file from Chapter 1, which is a simple copy of the file 000-default.conf and which

utilizes the default HTTP port 80. If your ISP blocks requests to this port, you can use

another Apache virtual host that serves another port, for instance the HTTP alternate

port, 8080. In that case, use the following commands at the Linux terminal to create a

new configuration file by copying and modifying the default Apache configuration file

000-default.conf:

$ cd /etc/apache2/sites-available

$ sudo cp 000-default.conf example4.conf

Use a text editor to edit the file example4.conf.

$ sudo gedit example4.conf

Change just the first two lines as indicated next:

Listen 8080

<VirtualHost *:8080>

 # �The ServerName directive sets the request scheme, hostname and port that

 # the server uses to identify itself. This is used when creating

 # redirection URLs. In the context of virtual hosts, the ServerName

 # �specifies what hostname must appear in the request's Host: header to

 # �match this virtual host. For the default virtual host (this file) this

Chapter 3 Connecting Your Apache Server to the Internet

https://portforward.com/router.htm
https://portforward.com/router.htm

95

 # �value is not decisive as it is used as a last resort host

regardless.

 # However, you must set it for any further virtual host explicitly.

 #ServerName www.example.com

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 # �Available loglevels: trace8, ..., trace1, debug, info, notice, warn,

 # error, crit, alert, emerg.

 # It is also possible to configure the loglevel for particular

 # modules, e.g.

 #LogLevel info ssl:warn

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # For most configuration files from conf-available/, which are

 # enabled or disabled at a global level, it is possible to

 # �include a line for only one particular virtual host. For example the

 # following line enables the CGI configuration for this host only

 # after it has been globally disabled with "a2disconf".

 #Include conf-available/serve-cgi-bin.conf

</VirtualHost>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

The first directive, Listen 8080, instructs Apache to listen on TCP port 8080.

The starting <VirtualHost *:8080> container is used with the end </VirtualHost>

container to enclose the group of directives that apply to the new vhost. The wildcard

asterisk (*) with the port number 8080 appended with a colon indicates that the enclosed

directives apply to incoming requests destined to any one of the available IP addresses

(*) of the web server over port 8080.

Click the Save button of the gedit window to apply the configuration to the vhost.

Next you need to enable the new configuration with the a2ensite command.

$ sudo a2ensite example4

Chapter 3 Connecting Your Apache Server to the Internet

96

To disable any previous configuration files that utilize the same port, for instance

example2.conf, to avoid conflictions, use the a2dissite command.

$ sudo a2dissite example2

To enable the new configuration file, you need to reload the web server.

$ sudo service apache2 force-reload

If you intend to use port 8080 with the Apache server, you should configure ufw, the

Linux firewall, to permit it. For port number 80, no actions are required because you

already allowed this port in Chapter 1. Enter the following at the Linux terminal:

$ sudo ufw allow 8080

�Testing the New Virtual Host
To implement the router’s port forwarding service, you have to access your site from

an external LAN using the public IP address of your router. The common case is your

ISP assigns your router a dynamic public IP address that changes, e.g., each time the

router restarts. Alternatively, an ISP can offer static IP addresses, usually after the client’s

request. In each case, to find the current public IP address of your router, use an online

service like https://bearsmyip.com/. The current public IP address of your router is

displayed in your browser, as shown in Figure 3-6.

Chapter 3 Connecting Your Apache Server to the Internet

https://bearsmyip.com/

97

Enter the URL consisting of this IP address in your browser’s address bar from a LAN

computer.

http://94.64.2.196

Alternatively, if you utilize port 8080 for your web server, enter the following:

http://94.64.2.196:8080

Your directory index is displayed in your browser, as shown in Figure 3-7.

Figure 3-6.  Discovering the public IP address of the router with an online
service

Chapter 3 Connecting Your Apache Server to the Internet

98

To make the test definitive, you next have to request the web page from an external

computer to your LAN. You can either use your mobile phone’s Internet connection

and view the web page with the previous URL or have a remote computer make the

connection for you. There are many online services for testing web pages from various

positions around the world. Actually, in Chapter 5, you will follow the steps to create a

similar Internet service all by yourself. Such an online service is www.webpagetest.org.

Using the images sent to your browser by this site, you can view the web page the way

it is downloaded to the site’s remote browser. You can even choose the country, city,

and browser, and also view statistics such as the download time. Figure 3-8 shows the

webpagetest.org home page.

Figure 3-7.  Testing the site using the public IP address of your router, from a
computer of your LAN

Chapter 3 Connecting Your Apache Server to the Internet

http://www.webpagetest.org
http://webpagetest.org

99

Enter the URL you want to test in the main textbox.

94.64.2.196

Or if you use a different port such as port 8080 instead of the default HTTP port,

append the port number to the IP address with a colon. Here’s an example:

94.64.2.196:8080

Use the Test Location drop-down list to select a location (country and city) where

the request to your server will originate from, and select the browser used from the

Browser drop-down list. Click the Start Test button. After a few seconds, images of your

web page are displayed along with info about the download time and the web page’s

size. Figure 3-9 displays the result web page.

Figure 3-8.  The home page of webpagetest.org

Chapter 3 Connecting Your Apache Server to the Internet

100

On the web page in your browser, you can view screenshots of the directory index,

each one taken from different tests for your site. You can click those images to enlarge

them. This test verifies that your web site is able to be viewed externally.

With your site available to users throughout the world, you can make use of the

GeoIP Apache module to give your web server information about the visitor’s location

based on their IP address. The PHP source code will use these geographical details and

return geographical information in the web page sent back to the user.

�Using the GeoIP Apache Module
With the online service proving that your web pages are available to the whole Internet,

it is a good chance to use a geolocation service to retrieve information about the origin

of the users visiting your site and at the same time try an Apache module. With a

geolocation service, the IP addresses of your visitors are compared to a database and are

matched to specific countries, cities, geographical coordinates (latitude or longitude),

etc. Those values are assigned to the Apache server variables for each client’s request

and become available from the PHP engine.

Figure 3-9.  The result web page for testing your site remotely with
webpagetest.org

Chapter 3 Connecting Your Apache Server to the Internet

101

With the following steps, you will implement a geolocation service with MaxMind’s

Apache module geoip_module.

Hint! T o avoid prepending the sudo keyword in the following commands, enter
the following at the Linux terminal:

$ sudo su

Install geoip_module with the following command:

$ apt-get install libapache2-mod-geoip

The geoip_module shared object file (mod_geoip.so), which includes the compiled

source code used by Apache, is installed in the directory /usr/lib/apache2/modules.

The geoip_module module is included among the other Apache modules loaded

from Apache. Use the following command to view the list of loaded modules:

$ apache2ctl –M

Figure 3-10 displays the list of modules currently loaded.

Figure 3-10.  Command apache2ctl -M returns the list of loaded Apache
modules

Chapter 3 Connecting Your Apache Server to the Internet

102

You can find the module’s configuration files in the directory called mods-available.

Using gedit from the Linux terminal, edit the configuration file geoip.conf of the geoip_

module as follows:

$ gedit /etc/apache2/mods-available/geoip.conf

Set the GeoIPEnable directive from Off to On. The configuration file

includes then the following directives:

<IfModule mod_geoip.c>

 # �For performance reasons, it's not recommended to turn GeoIP on

serverwide,

 # but rather only in <Location> or <Directory> blocks where it's actually

 # needed.

 GeoIPEnable On

 GeoIPDBFile /usr/share/GeoIP/GeoIP.dat

</IfModule>

Enable the new configuration file using the a2enmod (apache2 enable module)

command:

$ a2enmod geoip

Hint! I f you need to disable the GeoIP module, you can use the a2dismod
(apache2 disable module) command as follows:

$ a2dismod geoip

geoip_module is included now as a symbolic link to the directory /etc/apache2/

mods-enabled.

Reload Apache using this:

$ sudo service apache2 force-reload

geoip_module looks up the client’s IP address from MaxMind’s database. The

following are the steps to download the GeoIP database.

Change the working directory to GeoIP.

$ cd /usr/share/GeoIP/

Chapter 3 Connecting Your Apache Server to the Internet

103

wget is a command-line utility for downloading web pages and other resources

with web protocols. You will use wget next to download the GeoIP.dat.gz zipped

database file:

$ wget http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/

GeoIP.dat.gz

Decompress with the gunzip utility the zipped file GeoIP.dat.gz to the GeoIP.dat

database file.

$ gunzip GeoIP.dat.gz

Create a PHP file for testing the GeoIP database.

Use gedit to create a PHP file called geo1.php.

$ gedit geo1.php

Enter the following PHP source code in the file geo1.php, which includes the

function apache_note() and can be used from the Apache server:

<!DOCTYPE html>

<html>

<body>

<?php

$country_name = apache_note("GEOIP_COUNTRY_NAME");

print "Your Country: " . $country_name;

?>

</body>

</html>

The previous source code makes use of apache_note(), an Apache-specific function

that accesses the Apache notes table to retrieve the information exchanged between

Apache modules. The file geo2.php, on the other hand, includes PHP source code that

can be used independently from other web servers as well.

<!DOCTYPE html>

<html>

<body>

<?php

$country_name = $_SERVER["GEOIP_COUNTRY_NAME"];

Chapter 3 Connecting Your Apache Server to the Internet

104

print "Your Country: " . $country_name;

?>

</body>

</html>

With the GeoIP module enabled, the web server looks up the IP address of the

client in the database files and sets environment variables such as GEOIP_COUNTRY_

NAME used next from the PHP global variable $_SERVER, for instance $_SERVER["GEOIP_

COUNTRY_NAME"].

Hint!  You can test the environment variables with the following PHP code:

<?php

echo 'Client IP Address: ' . getenv('GEOIP_ADDR') . "
";

echo 'Client Country Code: ' . getenv('GEOIP_COUNTRY_CODE') . "
";

echo 'Client Country Name: ' . getenv('GEOIP_COUNTRY_NAME') . "
";

echo 'Client City: ' . getenv('GEOIP_CITY');

?>

Insert the previous source code in a PHP file located in the document root of your web
server and request this file next in your browser. Here is some sample output:

Client IP Address: 206.189.190.142

Client Country Code: US

Client Country Name: United States

Client City: Chicago

Test the files geo1.php and geo2.php using a web page tester like webpagetest.org.

On the home page of this site, enter a URL that includes the current IP public address of

your router and the port set in the port forwarding service of your router, relative to the

document root path of the PHP file you are testing. Here’s an example:

94.64.2.196/geo1.php

If you are using another port other than the default, append this port number with a

colon to the IP address, as shown here:

94.64.2.196:8080/geo1.php

Chapter 3 Connecting Your Apache Server to the Internet

http://webpagetest.org

105

Select a country in the Test Location drop-down list, as shown in Figure 3-11, where

the test will run from. For instance, in the following test, Ireland was selected:

Ireland – EC2

Select also the browser’s name in the Browser drop-down list.

Chrome

Alternatively, you can select the country from a map using the Select from Map

button. The available geographical locations are pinned on the map, as displayed in

Figure 3-12. Click a specific pin to use the corresponding remote computer for your test.

Figure 3-11.  Selecting at the webpagetest.org site a specific computer in a country
where the test will run

Chapter 3 Connecting Your Apache Server to the Internet

http://webpagetest.org

106

Click the Start Test button.

Figure 3-13 displays the web page, returned when the test runs, enlarged by clicking

it. This is the web page that will appear in the web browser of the user in Ireland.

Figure 3-12.  Selecting a test computer from the webpagetest.org map

Figure 3-13.  The web page displaying “Your Country: Ireland” as it appears on
the computer located in Ireland

Chapter 3 Connecting Your Apache Server to the Internet

http://webpagetest.org

107

The web page displays the following:

Your Country: Ireland

Hint! N otice that the geolocation service is not always accurate. Also, the GeoIP
database file needs to be constantly updated, something that can be automated
with a software tool like cron.

In the site in the following section, the geographical information for the user is taken

from the PHP source code and processed to display web pages with text corresponding

to the time in the official language of the country associated with the user’s IP address.

�Responding to the Visitor’s Native Language
With this next project, you’ll create a web site that looks up the IP address of the visitor to

the GeoIP database, retrieves the visitor’s two-letter country code (ISO 3166-1 alpha-2),

and responds by saying “hello” in the official language of that country. This is a simplified

example; however, similar techniques are used on the sites of international corporations to

provide their content, e.g., device manuals, in different areas of the world.

In the document root directory /var/www/html, create a file called geo3.php with the

following source code:

<!DOCTYPE html>

<html>

<head>

<style>

p {

font-size:80px;

color:red;

}

</style>

</head>

<body>

<?php

$cc = $_SERVER["GEOIP_COUNTRY_CODE"];

Chapter 3 Connecting Your Apache Server to the Internet

108

switch ($cc) {

 case "US":

 case "UK":

 print "<p>hello</p>";

 break;

 case "FR":

 print "<p>bonjour</p>";

 break;

 default:

 print "<p> 😀 </p>";

}

?>

</body>

</html>

The PHP code retrieves the GEOIP_COUNTRY_CODE environmental variable, whose

value is a two-letter country code. A switch statement then checks this value against

some predefined country codes, for instance, US, UK, and FR. You can add more

switch statements for more country codes. For each country, a “hello” message in

the corresponding language is printed on the screen. The default statement, which

applies for all cases not covered in the previous switch statements, prints a Unicode

smiley instead of a greeting. The specific smiley used in the example corresponds

to Unicode hex code 1F600. To print the characters in a large red font, CSS style

properties were used.

Visit the webpagetest.org home page to test your server and select a U.S. city from

the Test Location list. In the example shown in Figure 3-14, a computer located in

California was used.

Chapter 3 Connecting Your Apache Server to the Internet

109

Enter the following URL at the main textbox:

94.64.2.196/geo3.php

Or if your server configuration implements port number 8080 use:

94.64.2.196:8080/geo3.php

The IP address 94.64.2.196 used in this example should be substituted with the

public IP address of your router. Click the Start Test button. The web page in Figure 3-15

displays the content of the web page viewed from the remote computer in California.

Figure 3-14.  Running the test from a computer located in California

Chapter 3 Connecting Your Apache Server to the Internet

110

Perform the test again, this time from a French location. On the home page of

webpagetest.org, displayed in Figure 3-16, a computer from Strasburg is selected to

download your specified web page.

Figure 3-15.  The message “hello” displayed in the browser of a test computer
located in California

Figure 3-16.  Running the test from a computer located in Strasburg

Chapter 3 Connecting Your Apache Server to the Internet

111

Click the Start Test button to run the test. As displayed in Figure 3-17, the web page of

your site greets the visitor with “bonjour.”

Do a final test using a South Korean site. In the example in Figure 3-18, a computer

located in Seoul was selected. For simplicity, the PHP code of geo3.php supports only

three countries, leaving all other country visitors to be welcomed with a smiley.

Figure 3-17.  The message “bonjour” displayed in the browser of a computer
located in France

Chapter 3 Connecting Your Apache Server to the Internet

112

As displayed in Figure 3-19, for a non-US, UK, or France visitor, instead of a written

message, the downloaded web page from your site displays a broad smile.

Figure 3-19.  The smiley displayed in the browser of a computer located in Korea

Figure 3-18.  Running the test from a computer located in Seoul

Chapter 3 Connecting Your Apache Server to the Internet

113

Another site for testing your page is www.geoscreenshot.com. It performs multiple

tests from different locations and displays the results in a single web page. Figure 3-20

shows a test for the geo3.php web page.

In the following section, you’ll install another database, GeoIPCity, to look up the

IP address of the visitor and retrieve the latitude and longitude associated with the IP

address so that the visitor’s location on the map is returned to the user.

�Using a Map to Display the Visitor’s Location
In this project, you’ll gather more information about the visitor, such as the city

registered with the IP address used and also the geographical coordinates. The latitude

and the longitude associated with the IP address of the client can be used to pinpoint the

location of the client on a map. To use this information, another database file should also

be downloaded and included in the files that the Apache server looks up.

Like previously, type sudo su to avoid prepending most of the following commands

with sudo.

$ sudo su

Figure 3-20.  Using geoscreenshot.com to test your site remotely

Chapter 3 Connecting Your Apache Server to the Internet

http://www.geoscreenshot.com

114

Move to the GeoIP directory.

$ cd /usr/share/GeoIP/

Use the wget utility from the command line to download GeoLiteCity.dat.gz in the

current directory.

$ wget http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz

To uncompress the database file, use the following command:

$ gunzip GeoLiteCity.dat.gz

Rename the uncompressed database file as required by the Apache module.

$ mv GeoLiteCity.dat GeoIPCity.dat

Enter the GeoIPCity.dat entry in the geoip.conf file.

$ cd /etc/apache2/mods-available

$ gedit geoip.conf

Insert the new entry in geoip.conf and save the file. The contents of the

configuration file are now as follows:

<IfModule mod_geoip.c>

 # �For performance reasons, it's not recommended to turn GeoIP on

serverwide,

 # but rather only in <Location> or <Directory> blocks where it's actually

 # needed.

 GeoIPEnable On

 GeoIPDBFile /usr/share/GeoIP/GeoIP.dat

 GeoIPDBFile /usr/share/GeoIP/GeoIPCity.dat

</IfModule>

Reload Apache to enable the new configuration.

$ service apache2 force-reload

Create another PHP file, called geo4.php, in the document root of the web server.

$ cd /var/www/html

$ gedit geo4.php

Chapter 3 Connecting Your Apache Server to the Internet

115

Enter the following source code and save the geo4.php file:

<!DOCTYPE html>

<html>

<head><title>Location on the map</title>

</head>

<body>

<h1>Your position on the map</h1>

<?php

echo '

<img width="600" src="https://static-maps.yandex.ru/1.x/?lang=en-US&ll='

. $_SERVER['GEOIP_LONGITUDE']

. ','

. $_SERVER['GEOIP_LATITUDE']

. '&z=8&l=map&size=600,300">';

?>

</body>

</html>';

The previous PHP source code injects the basic HTML tags with the echo

command. By using a single quote (') instead of a double quote (") in echo, you can

maintain the double quotes of the HTML source code without having to escape them

with a backslash (\") in order not to intervene with the PHP string delimiter double

quotes.

The $_SERVER['GEOIP_LONGITUDE'] and $_SERVER['GEOIP_LATITUDE'] parts that

correspond to the visitor’s longitude and latitude, respectively, are the PHP global

variables. The Apache module sets them by looking up the client’s IP address in the

GeoIPCity.dat database. The coordinates will be used in the URL value of the src

attribute of the image element (img) to create the static map that will be displayed

in the web page of the user. Static maps are image files, commonly in PNG or JPEG

format, that do not require a mapping library. However, they lack interactivity with

controls like the Zoom control or the Map Type control. According to the coordinates

in the image URL, a specific area will be displayed that will reflect the origin of the

client’s host computer.

Chapter 3 Connecting Your Apache Server to the Internet

116

There are many static map APIs you can use; some require a registration and a fee.

In this project, Yandex will be used. At https://staticmapmaker.com/yandex/, you can

find the following example for using Yandex to create a static map:

<img width="600" src="https://static-maps.yandex.ru/1.x/?lang=en-

US&ll=-73.7638,42.6564&z=13&l=map&size=600,300" alt="Yandex Map of -

73.7638,42.6564">

The previous tag is inserted into the HTML source code and creates an image with

a width of 600 pixels and a height of 300 pixels, with English language labels. It focuses

on longitude 73.7638 and latitude 42.6564 with a zooming level set to 13. There is also

alternative text (alt) in case a problem occurs and the map does not load. Figure 3-21

displays how the user visiting staticmapmaker.com can interact with the Static Map

Maker online tool. By using the provided form, the user can use specific geographical

coordinates, zoom level, width, and height for the image created, and they can define

the category of the map formed, e.g., satellite or traffic. So, you can include this map on

a site, a URL with the required query string according to the user settings is also created

automatically. The image tag that includes the previous URL as the value of the src

attribute is also formed to be used readily in the HTML source code.

Figure 3-21.  Using the Static Map Maker tool to create a static map image

Chapter 3 Connecting Your Apache Server to the Internet

https://staticmapmaker.com/yandex/
http://staticmapmaker.com

117

You can use the format of the image element from Static Map Maker for the

static map included in your web page. The basic attributes of the static map are set

in the query string of the URL value of the src attribute. For instance, in the source

code of geo4.php, the zoom level was set to 8 (z=8). The longitude and the latitude

were replaced by the PHP global variables $_SERVER['GEOIP_LONGITUDE'] and $_

SERVER['GEOIP_LATITUDE'] to hold the values associated with the client’s IP address.

To form the src attribute, which includes the PHP global variables, a number of echo

commands are used.

<?php

echo '

<img width="600" src="https://static-maps.yandex.ru/1.x/?lang=en-US&ll='

. $_SERVER['GEOIP_LONGITUDE']

. ','

. $_SERVER['GEOIP_LATITUDE']

. '&z=8&l=map&size=600,300">

';

?>

To test this web page, use an online service like whatismyipaddress.com to find the

public IP address of your router and replace it with the IP address used in this example,

87.202.116.192:

87.202.116.192/geo4.php

Or if you utilize port number 8080 use:

87.202.116.192:8080/geo4.php

Figure 3-22 displays the requested web page geo4.php from a computer in the LAN

where the web server is hosted for this example.

Chapter 3 Connecting Your Apache Server to the Internet

http://whatismyipaddress.com

118

Right-click the web page and select View Page Source to display the web page source

code and find the values for $_SERVER['GEOIP_LONGITUDE'] and $_SERVER['GEOIP_

LATITUDE'] as included in the query string of the src attribute in the image element. For

the previous example, the image element is formed as follows:

<img width="600" src="https://static-maps.yandex.ru/1.x/?lang=en-US&ll=21.9

21600,39.365601&z=8&l=map&size=600,300">

Rename the geo4.php file as geo5.php and use it to make a new version of the

previous source code.

$ cp geo4.php geo5.php

$ gedit geo5.php

The contents of geo5.php are displayed here:

<!DOCTYPE html>

<html>

<head>

<title>Location on the map</title>

</head>

<body>

<h1>Your position on the map is in

Figure 3-22.  Testing geo4.php from a computer of your LAN

Chapter 3 Connecting Your Apache Server to the Internet

119

<?php

echo $_SERVER['GEOIP_CITY']

. ', '

. $_SERVER['GEOIP_COUNTRY_NAME']

. �'</h1><img width="600" src="https://static-maps.yandex.ru/1.x/?lang=en-

US&ll='

. $_SERVER['GEOIP_LONGITUDE']

. ','

. $_SERVER['GEOIP_LATITUDE']

. '&z=8&l=map&size=600,300"></body></html>';

?>

</body>

</html>

Two more PHP global variables are used in the previous source code: $_

SERVER['GEOIP_CITY'], which holds the name of the city and $_SERVER['GEOIP_

COUNTRY_NAME'], which corresponds to the name of the country as registered with the

client’s IP address.

Using the URL of file geo5.php, the web page is displayed, as shown in Figure 3-23.

Figure 3-23.  Testing geo5.php

Chapter 3 Connecting Your Apache Server to the Internet

120

In the next section of this chapter, you’ll make changes to improve the appearance of

the previous site.

�A New Version of the Static Map Web Page
Here you’ll use gedit to create in the document root of your web server a new version of

the geo5.php file, called geo6.php.

$ cd /var/www/html

$ sudo gedit geo6.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Your Location</title>

<style>

body{

background-color:#B9D6E5;

}

.center {

margin: auto;

}

p{

text-align: center;

}

</style>

</head>

<body>

<div class="center">

<p>

<?php

echo '

<h1 style="text-align:center">Your position on the map is in '

. $_SERVER['GEOIP_CITY']

. ', '

Chapter 3 Connecting Your Apache Server to the Internet

121

. $_SERVER['GEOIP_COUNTRY_NAME']

. �'</h1><p><img width="600" src="https://static-maps.yandex.

ru/1.x/?lang=en-US&ll='

. $_SERVER['GEOIP_LONGITUDE']

. ','

. $_SERVER['GEOIP_LATITUDE']

. '&z=4&l=map&size=600,300&pt='

. $_SERVER['GEOIP_LONGITUDE']

. ','

. $_SERVER['GEOIP_LATITUDE']

. ',pm2rdl"></p></body></html>';

?>

</p>

</div>

</body>

</html>

Test geo6.php in your browser, as shown in Figure 3-24.

Figure 3-24.  The map as displayed in the new version, geo6.php

Chapter 3 Connecting Your Apache Server to the Internet

122

In the new file geo6.php, there are a few significant differences from the web page

created with the file geo5.php. First, the image is centered on the web page. A div

element of the class center is used to include the image and the heading. The class is

defined with CSS as follows:

.center {

margin: auto;

}

The second difference in the geo5.php source code is the zoom level, set now to 4, to

include a larger area on the map. By zooming out on the map, the name of the city is not

printed anymore, and instead a map pin is used to indicate the city’s location. There are

a lot of different placemarks offered for the Yandex maps. You can view them at https://

tech.yandex.com/maps/doc/staticapi/1.x/dg/concepts/markers-docpage/. The

format for the value of the pt variable on the image’s URL, used for placing a specific

marker, is as follows:

{longitude},{latitude},{style}{color}{size}{content}

In the URL of the map, the value of pt includes the coordinates of a city to pinpoint

the marker at an exact location.

...pt='. $_SERVER['GEOIP_LONGITUDE'] . ',' . $_SERVER['GEOIP_LATITUDE'] .

',pm2rdl...

The value pm2rdl corresponds to a placemark that belongs to group 2 of the Yandex

placemarks (pm2), is red (rd), and also has a large (l) size.

The third difference is the background color selected for the web page, which is

actually the same color used for the oceans on the map. To find the specific color (RGB

color code #B9D6E5 in this example), use the following instructions.

First make a screenshot of the geo6.pphp web page, using a Linux screenshot tool

like Shutter. To download and install Shutter, use the following command at the Linux

terminal:

$ sudo apt-get install shutter

Start the application from the Linux GUI or from the command line as follows:

$ shutter

Chapter 3 Connecting Your Apache Server to the Internet

https://tech.yandex.com/maps/doc/staticapi/1.x/dg/concepts/markers-docpage/
https://tech.yandex.com/maps/doc/staticapi/1.x/dg/concepts/markers-docpage/

123

The Shutter window opens, as displayed in Figure 3-25.

Open with your browser the previous version, geo5.php, to detect the ocean color.

Click the arrows for the up-down control at the bottom of the Shutter window to set

the seconds (e.g., 5) of the Delay field. This corresponds to the delay timer for the shot.

Click next to the Window menu button and select Active Window. The delay timer

starts counting, and within this interval you have to select with the mouse the browser

window, displaying geo5.php, for the screenshot. Click the browser window to select it.

The image is saved in the Pictures folder of your home directory.

Use an image editor like mtPaint to open the image file. With the Eyedropper tool,

click the color of the ocean. As displayed in Figure 3-26, the Eyedropper tool for mtPaint

is included as a button in the Palette Editor window, which you open by selecting the

Palette menu and then Palette Editor.

Figure 3-25.  The Shutter window

Chapter 3 Connecting Your Apache Server to the Internet

124

The color used for the oceans in geo5.php is used in the source code of geo6.php as

the background color, by setting the value of the background color in the CSS section to

the RGB value #B9D6E5.

�Summary
This chapter covered the following:

•	 You enabled the web server to become accessible to the whole

Internet by configuring the router to implement port forwarding.

•	 You installed the GeoIP Apache module that associates the visitor’s IP

address with geographic information.

•	 You ran examples that use the information provided from the GeoIP

module with the PHP source code.

•	 You used online tools to test your site remotely.

Figure 3-26.  The Eyedropper tool of mtPaint

Chapter 3 Connecting Your Apache Server to the Internet

125
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_4

CHAPTER 4

Obtaining a Domain
Name with DDNS
In the previous chapter, your site passed the borders of your LAN and became available

to the whole Internet. URLs that were not exactly user-friendly like the following were

used:

http://94.64.2.196:8080/

In this chapter, you will learn how to use the Dynamic DNS (DDNS) service to

obtain and use a domain name for your site; for example, you can use webtoolsonline.

servehttp.com instead of an IP address in the URL.

With a proper URL for your site, you can set up PHP to interface with the Linux

shell and use an online service like WHOIS. Also, you will further improve your site’s

appearance by creating a favicon icon, which is an icon that represents your site in

clients’ browser tabs and in the list of bookmarks.

�DNS and DDNS
The Domain Name System (DNS) service translates the domain name of a computer

to the corresponding static IP address. Purchasing a static IP address from your ISP

is usually more expensive than having a dynamic IP address that often changes, for

instance every time your router reboots. Correlating a domain name to a dynamic IP

address is still possible with DDNS. There are two ways to update the DDNS service

provider data with your changed IP address. The method discussed in this chapter is

to use a DDNS service in your router. Today most routers support DDNS services. The

only drawback is that some router models support DDNS for only certain DDNS service

providers. If your router does not support your DDNS provider, you can use a DDNS

http://webtoolsonline.servehttp.com
http://webtoolsonline.servehttp.com

126

client program that runs in the background of your web server as a daemon process. This

is the method implemented in Chapter 10, where you’ll use the program ddclient. The

program ddclient checks in constant time intervals to see whether the public IP address

of your router has changed. If it has, an update message is sent to your DDNS service

provider.

DDNS services can be free or require a monthly fee. A nice feature offered by most

DDNS service providers is web redirect. Consider, for instance, the following URL with

an IP address:

http://94.64.2.196:8080/

Using a DDNS service, the client can replace the public IP address of the router with

a domain name and use the following in the address bar of a browser:

http://christos.ddns.net:8080

The domain name is used instead of the IP address; however, the port number is

present. Web redirect helps you hide the port number and enables your visitors to use a

more readable URL, as shown here:

http://christos.ddns.net

�Registering with a DDNS Service Provider
This section describes the steps to register with a no-IP DDNS service provider. This is

one of the providers supported by the router that is used in the examples of this book.

You can register with any other provider supported by your router following a similar

process. As with most online services, you sign up by providing your e-mail address

and a unique password. For a DDNS service provider, you can choose a third-level

domain name. For instance, I chose christos under the configuration authority of the

second-level domain name ddns (the DDNS service provider itself), which is under the

configuration authority of the top-level domain (TLD) or first-level domain net. The fully

qualified domain name (FQDN), used in the site, therefore becomes the following:

 christos.ddns.net

Chapter 4 Obtaining a Domain Name with DDNS

127

With this specific DDNS server provider, you can choose three hostnames and also

implement web redirect for free.

Now visit the no-IP site.

http://www.noip.com

Once there, click the Sign Up button to begin the registration process (Figure 4-1).

The next page, shown in Figure 4-2, allows you to select a hostname (e.g., christos)

and the second-level domain name (for instance, zapto.org or ddns.net) from a drop-

down list. You need also to provide your password and your e-mail. Click the Terms of

Service and Privacy Policy box and then click the Free Sign Up button.

Figure 4-1.  The Sign Up button of the no-IP home page

Chapter 4 Obtaining a Domain Name with DDNS

http://zapto.org
http://ddns.net

128

The next page, shown in Figure 4-3, asks you to confirm your account by clicking the

link of the e-mail sent to the account you provided. This allows the DDNS provider to

verify that your e-mail account is a real one.

Figure 4-2.  Setting your preferences for your hostname with no IP

Figure 4-3.  The web page requiring e-mail account confirmation

Chapter 4 Obtaining a Domain Name with DDNS

129

Figure 4-4 displays a snapshot of the e-mail received.

After clicking the Confirm Account button, the window shown in Figure 4-5 appears

in a new tab of your browser with the message “Your account is now active!”

Figure 4-4.  The e-mail, including a Confirm Account button for validating the
no-IP account

Figure 4-5.  The web page informing you that the account is activated

Chapter 4 Obtaining a Domain Name with DDNS

130

Click the “Get started with Dynamic DNS” link to continue. The window displayed

in Figure 4-6 informs you to create a username and a security question to complete your

account configuration. Click the Add Now button to proceed.

In the web page shown in Figure 4-7, you set your username, security question, and

also some personal information.

Figure 4-6.  The dialog for proceeding to the final step of creating a DDNS
account

Figure 4-7.  The final web page of the DDNS account setup process

Chapter 4 Obtaining a Domain Name with DDNS

131

Click the Save button to save the information entered and thus complete the account

setup process. You can use the hostname obtained here to configure the router of your

LAN to implement the DDNS service.

�Configuring the Router’s DDNS
With a new domain name obtained in the previous section, you can now configure your

router to relay its public IP address to the DDNS provider each time this IP address

changes. Locate the DDNS section in the web-based configuration interface of your

router. As shown in Figure 4-8, for the router used in the examples, you can view the

DDNS configuration options by selecting Internet and then DDNS from the menu.

Select the DDNS provider from the Provider drop-down list, which has all the DDNS

providers that the router supports. Enter the details required: your username, your

password, and the hostname you chose at the DDNS registration process. Complete also

the Provider URL field, and select the On DDNS radio button. Click the Apply button to

confirm the new settings.

Figure 4-8.  The DDNS configuration section for the router used in the
examples

Chapter 4 Obtaining a Domain Name with DDNS

132

Test your new domain name (christos.ddns.net is used in the following examples).

In this chapter, the Apache configuration created in Chapter 1 is used. You can test the

URLs of the web pages created in the previous chapter, for instance geo5.php. Enter the

following URL for geo5.php in the address bar of your browser, substituting the domain

name used here with yours:

http://christos.ddns.net/geo5.php

If your ISP blocks inbound port 80, which is the default HTTP port, use an alternate

port like 8080.

http://christos.ddns.net:8080/geo5.php

The web page geo5.php is displayed, as shown in Figure 4-9.

The web page geo5.php loads with the URL that includes the previously acquired

domain name. In the following section, you will implement web redirect so that if you do

not utilize the default HTTP port number, but another one such as 8080, this number is

hidden from the URL.

Figure 4-9.  Testing the web page geo5.php with the new domain name

Chapter 4 Obtaining a Domain Name with DDNS

http://christos.ddns.net

133

�Implementing Web Redirect
If your ISP blocks the default HTTP port for incoming connections to your LAN, you

can still use URLs that do not append a colon and the port number after the domain

name, although behind the scenes the specific port number is actually used. To

include this feature, you need to configure the web redirect service offered by DDNS

providers.

By setting a specific port number, such as port 8080 in the web redirect option, you

are enabling clients to use a port-free URL. The DDNS provider redirects visitors to

another domain name, where the port number is already appended with a colon. To test

the web redirect feature, another domain name is required, so this is a good chance to

utilize the second of the three domain names offered from the DDNS provider.

Log in on the DDNS provider home web page and click the Dynamic DNS link in the

left panel. The first domain name, e.g., christos.ddns.net, appears as a link that leads

to the configuration web page of this domain name, as displayed in Figure 4-10.

Click the Create Hostname button to create your second domain name, the one

used for web redirect. Enter the third-level domain name in the Hostname textbox,

as shown in Figure 4-11. For instance, in this example, webtoolsonline was used.

Figure 4-10.  The Hostnames web page displays the hostnames created so far

Chapter 4 Obtaining a Domain Name with DDNS

http://christos.ddns.net

134

To also change the second-level domain name, select a different one from ddns.net

in the Domain drop-down list. In this example, servehttp.com was used. The FQDN

therefore becomes as follows:

webtoolsonline.servehttp.com

For the Record Type radio buttons, select Web Redirect to implement this service for

the new domain name. By selecting this option, a new textbox URL/IP address appears.

Type the first domain name with port 8080 appended after a colon.

christos.ddns.net:8080

Each time the new hostname webtoolsonline.servehttp.com is used from a client,

the DDNS service redirects the request to christos.ddns.net:8080.

Click the Create Hostname button. As viewed in Figure 4-12, the new domain name

is added in the Hostname list.

Figure 4-11.  Creating the second hostname with the Web Redirect option set

Chapter 4 Obtaining a Domain Name with DDNS

http://ddns.net
http://servehttp.com
http://webtoolsonline.servehttp.com
http://christos.ddns.net:8080

135

To try the new domain name, enter the following in the address bar of your browser:

http://webtoolsonline.servehttp.com

With the web redirect service enabled, the URL http://webtoolsonline.

servehttp.com redirects to christos.ddns.net:8080. The directory index of the Apache

vhost listening to port number 8080 (used in Chapter 1) is displayed in the web browser,

as shown in Figure 4-13.

Figure 4-12.  The Hostnames web page displays the hostnames created so far

Chapter 4 Obtaining a Domain Name with DDNS

http://webtoolsonline.servehttp.com
http://webtoolsonline.servehttp.com
http://christos.ddns.net:8080

136

To visibly retain the original URL, you have to implement the Mask URL feature by

configuring the DDNS provider. Edit the hostname on the Hostnames web page of the

DDNS provider’s site and select the Mask URL box. Click the Update Hostname button to

apply the configuration.

With the URL mask enabled, the DDNS service injects JavaScript into the source

code of the web page to create an HTML frame that covers the entire browser window

and includes the same content but a different URL in the address bar of the browser. The

result, as displayed in Figure 4-14, is a web page with the same content; however, instead

of the expected URL shown here where the client redirects:

http://christos.ddns.net:8080

the following URL appears in the address bar:

http://webtoolsonline.servehttp.com

Figure 4-13.  The URL webtoolsonline.servehttp.com redirects to christos.ddns.
net:8080

Chapter 4 Obtaining a Domain Name with DDNS

http://webtoolsonline.servehttp.com
http://christos.ddns.net:8080
http://christos.ddns.net:8080

137

Hint! T o view the frame created with the Mask URL option, right-click the web
page and select View Page Source for Chrome or the corresponding option for other
browsers. In this case, the URL of the address bar is altered with JavaScript code.

You have so far created and used two hostnames for your registered DDNS account.

You will use the third hostname, e.g., secureserver.ddns.net, in Chapter 8. In Chapter 9,

you will find the steps to obtain and use your own second-level domain name, e.g.,

httpsserver.eu, required for running a secure site. In the following section, you will put

the hostnames created so far to use to create your next project.

�Implementing an Online Web Service
With such a catchy domain name like webtoolsonline.servehttp.com, it is tempting to

implement an actual online web service. You can implement, for instance, the WHOIS

service, which applies whois, a query and response protocol that is widely used for

querying databases that store the assignees of Internet resources, such as domain names

Figure 4-14.  Using the URL mask option to modify the URL displayed in the client
browser

Chapter 4 Obtaining a Domain Name with DDNS

http://secureserver.ddns.net
http://webtoolsonline.servehttp.com

138

and IP addresses. You can run the whois command at the command line, but it is also

offered as an online web service from various sites, e.g., whois.domaintools.com or

ping.eu, which is shown in Figure 4-15.

Ping.eu, along with other similar sites, offers online web services, for instance DNS

lookup, ping, traceroute, and port check. You will implement port checking in Chapter 10.

To create a site that offers WHOIS as an online service, you can use a web page with

a form; the form will include a textbox to submit an IP address to the PHP program on

the web server that interfaces with the Linux shell and returns information about the

corresponding domain name.

The first step to implement the online service is to change the default web page that

Apache sends in response to using port 8080. As explained in the previous sections of

this chapter, the domain name webtoolsonline.servehttp.com resolves to christos.

ddns.net:8080 and to the router’s public IP address through port 8080. The Apache vhost

configuration file for serving port 8080 for any domain name was set up in Chapter 1 to

example2.conf. The directory index used in this file for port 8080 is index3.html, which is

actually the web page shown in the previous section with the URL http://webtoolsonline.

servehttp.com. As a second step, edit example2.conf and replace index3.html with

another HTML file, for instance onlineservice.html.

Figure 4-15.  The web page of the ping.eu WHOIS service

Chapter 4 Obtaining a Domain Name with DDNS

http://whois.domaintools.com
http://webtoolsonline.servehttp.com
http://christos.ddns.net:8080
http://christos.ddns.net:8080
http://webtoolsonline.servehttp.com
http://webtoolsonline.servehttp.com

139

Create a new web page called onlineservice.html that includes a form similar to

the one on the ping.eu page. This form will be used to submit the user’s data to the web

server, and as viewed from ping.eu, two form elements are required at a minimum: the

textbox that will receive the IP address or the hostname and a submit button. The form’s

action attribute will refer to a PHP file that receives the user’s data, interfaces with

the whois command-line program, and then passes the user’s data as arguments.

Finally, the whois output is included on the web page generated by PHP and sent back

to the user. With similar steps, you can implement any other online service such as the

ones offered by ping.eu.

�Editing the Apache Configuration File
In this section, you’ll edit the configuration file example2.conf used in Chapter 1 to

implement two sites with two vhosts, one listening on port 8080 and one listening on

port 8181. In this example, only the vhost listening to port 8080 is required; therefore, for

this vhost the Apache DirectoryIndex directive is edited to set the file onlineservice.

html as the new directory index of the site.

At the Linux terminal, enter the following:

$ cd /etc/apache2/sites-available

$ sudo gedit example2.conf

Replace index3.html with onlineservice.html.

Listen 8080

Listen 8181

1st vhost

<VirtualHost *:8080>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 DirectoryIndex onlineservice.html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

2nd vhost

<VirtualHost *:8181>

Chapter 4 Obtaining a Domain Name with DDNS

140

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 DirectoryIndex index4.html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

Click the Save button in the gedit window to confirm the changes. To reflect the

configuration changes for the vhost listening on port 8080, the Apache web server needs

to be reloaded. At the Linux terminal, enter the following:

$ sudo service apache2 force-reload

Hint! I n this example, an existing configuration file was used. Consider the case
that you implement the site with a new configuration file for a vhost that listens
to the default HTTP port, which is 80. You can create the configuration with the
following commands:

$ cd /etc/apache2/sites-available

$ sudo gedit onlineservice.conf

Enter the following directives and save the file:

Listen 80

<VirtualHost *:80>

ServerAdmin webmaster@localhost

DocumentRoot /var/www/html

DirectoryIndex onlineservice.html

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

Chapter 4 Obtaining a Domain Name with DDNS

141

Then use the following:

$ sudo a2ensite onlineservice

$ sudo service apache2 force-reload

To test the site, you create the first file called onlineservice.html as described
in the following section, and you enter the first hostname, christos.ddns.
net, in the address bar of the browser. The second one, webtoolsonline.
servehttp.com, redirects to christos.ddns.net:8080, which listens to port
8080 instead of the default port.

The next step is to create the directory index used from the vhost. This is called

onlineservice.html and is the web page that contains the form for submitting an IP

address.

�Editing the Web Page for Submitting the User’s Data
The HTML file that includes the form used by the user to provide the data to the web

server is onlineservice.html, which was set in the previous section in the vhost

configuration file as the directory index for the site webtoolsonline.servehttp.com.

Figure 4-16 displays the directory index.

Chapter 4 Obtaining a Domain Name with DDNS

http://christos.ddns.net
http://christos.ddns.net
http://webtoolsonline.servehttp.com
http://webtoolsonline.servehttp.com
http://christos.ddns.net:8080
http://webtoolsonline.servehttp.com

142

Create the file onlineservice.html in the document root of the vhost. At the Linux

terminal, enter the following:

$ cd /var/www/html

$ sudo gedit /var/www/html/onlineservice.html

Enter the following lines and save the file:

<!DOCTYPE html>

<html>

<head>

<title>

Online WHOIS service

</title>

<style>

p.large {

font-size:32px;

color:red;

Figure 4-16.  The browser displays onlineservice.html, the directory index of
the site

Chapter 4 Obtaining a Domain Name with DDNS

143

background-color:blue;

display:inline;

}

p.small {

font-size:16px;

color:white;

background-color:black;

display:inline;

padding: 15px 32px;

}

input {

 background-color: black;

 border: none;

 color: white;

 padding: 15px 32px;

 text-align: center;

 font-size: 16px;

}

</style>

</head>

<body>

<p class="large">Online WHOIS service</p>

<form method="POST" action="result.php" name="f1" onsubmit="return

validate()">

<p class="small">IP address: </p>

<input type="text" name="user_data">

<input type="submit" value="Go">

</form>

<script>

function validate() {

var f = document.forms["f1"]["user_data"].value;

f=f.trim();

var ipformat = /^((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.){3}

(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])$/

Chapter 4 Obtaining a Domain Name with DDNS

144

if(!(f.match(ipformat))){

alert("Enter a valid IP address");

return false;

}

}

</script>

</body>

</html>

The HTML source code includes a form that implements the method POST for

submitting the data and sets the value of the action attribute to result.php. This is the

program on the server side that will accept and process the data submitted.

There are two more attributes in the form element, both required for the form

validation, which is implemented locally by JavaScript. The name attribute is used by

the JavaScript function validate(), which validates the form, to refer to this form. The

return value of validate() is set as the value of the fourth attribute of the form, the

onsubmit event. Events are actions applied to the web page that JavaScript responds to.

The onsubmit event defines the form submission as the exact instant in time that the

source code bound to this event will run.

By setting the onsubmit event value to return validate(), the function validate()

will run when the form is submitted, and also the form will be submitted only when

validate() returns true. The function validate() is implemented in the following

script:

<script>

function validate() {

var f = document.forms["f1"]["user_data"].value;

f=f.trim();

var ipformat = /^((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.){3}

(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])$/

if(!(f.match(ipformat))){

alert("Enter a valid IP address");

return false;

}

}

</script>

Chapter 4 Obtaining a Domain Name with DDNS

145

The name attribute of the form is used next to refer to the specific form in the

HTML file and then return the value of the user_data textbox to variable f. For

the variable f, which is an object of class string, the trim() method removes

whitespace from both sides of the string. If the user accidentally enters spaces in

the user_data textbox with the IP address, trim() is used so that validate() won’t

reject the IP address.

The ipformat regular expression (regex) is used next to check whether the value of

variable f matches the pattern of a valid IP address according to ipformat. The details of

this regex are explained in the following section.

The match string() method is used to search string f for a match against the

regular expression. The following if command uses match() to verify whether the

ipformat regex does not (!) match string f:

if(!(f.match(ipformat))){

If a match is not met, the IP address is considered invalid, and validate() returns

false. In that case, the form is not submitted, and the user is asked to enter a valid IP

address with a pop-up window message, created by alert().

�Working with Regular Expressions
Expressions are character sequences that define search patterns. They are extremely

useful in validating or extracting information from text. The regular expression assigned

to the JavaScript variable ipformat is used to describe the pattern for a valid IP address

and validate the user data. The following command assigns the regex to the ipformat

variable:

var ipformat = /^((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.){3}

(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])$/

A regex usually uses two slash characters, e.g., /abc/, to delimit the search pattern.

The caret (^) and the dollar sign ($) anchors match the start and the end, respectively, of

the string the regex pattern is applied to.

Chapter 4 Obtaining a Domain Name with DDNS

146

The first block is repeated three times, as indicated by the quantifier {3}. A valid

IP address consists of four numbers from 0 to 255, separated with three periods. Each

repetition validates one number from 0 to 255 with a period appended. The bracket

expressions ([]) are replaced by one of the characters specified in the range. The

following expressions are used:

•	 25[0-5] matches text numbers (in text form) from 250 up to 255.

•	 2[0-4][0-9] matches numbers (in text form) from 200 up to 249.

•	 1[0-9][0-9] matches numbers (in text form) from 100 up to 199.

•	 [1-9][0-9] matches numbers (in text form) from 10 up to 99.

•	 [0-9] matches numbers (in text form) from 0 to 9.

The or (|) operator is used to include just one number of the previous expressions.

With the quantifier {3}, three numbers are required, each followed by a period. Here’s

an example:

89.4.100.

For the fourth number, a period is not allowed. An example of matching text is as

follows:

223

The total regex validates the IP addresses in this form:

89.4.100.223

�Testing the JavaScript Form Validation
You’ll now test the form validation in the HTML file onlineservice.html using

JavaScript. In the address bar of your browser, enter the URL of the site, as shown here:

http://webtoolsonline.servehttp.com

Enter in the textbox an invalid IP address, for instance:

256.5.46.7

Chapter 4 Obtaining a Domain Name with DDNS

147

or the following:

1.2

Click the Go button, which submits the IP address to the web server. A web server

program to receive the data is not defined yet, but you can still view the warning message

the JavaScript creates for an invalid IP address.

A pop-up window with the message “Enter a valid IP address” appears, as displayed

in Figure 4-17. In the message, the domain name of the server is included as christos.

ddns.net:8080, which is the domain name that webtoolsonline.servehttp.com

actually redirects to.

Next you will create the action program for the form, result.php, which receives that

IP address and uses it with the whois command-line program. But first you can try to run

whois from the command line to find out how it outputs data and comments. The latter

will be excluded from the output of the PHP program for the WHOIS service.

Figure 4-17.  Testing the web page using an invalid IP address

Chapter 4 Obtaining a Domain Name with DDNS

http://christos.ddns.net:8080
http://christos.ddns.net:8080
http://webtoolsonline.servehttp.com

148

�Running whois from the Command Line
The IP address entered by the user in the textbox of form f1 will be submitted to program

result.php on the web server. The PHP engine that processes result.php will run the

whois shell utility with this specific IP address as an argument. The output of whois will

be entered in the web page the user receives from the echo PHP command.

Before using PHP to interface with the whois utility, try to run whois directly from the

Linux terminal. To install whois at the command line, enter the following:

$ sudo apt install whois

Test whois with an IP address. You can try a random IP address, for instance:

$ whois 1.2.3.4

Figure 4-18 displays the whois output at the Linux terminal.

Notice that some lines include comments starting with the percent (%) symbol. In the

evaluated result.php, it is probably a good idea to remove those comments and make

the output appear more professional.

Figure 4-18.  The whois output with percent symbols indicating comments

Chapter 4 Obtaining a Domain Name with DDNS

149

Try another IP address, for instance 4.3.2.1:

$ whois 4.3.2.1

Figure 4-19 displays the whois output for the second IP address.

Notice in this case that the hash symbol is also used to indicate the start of the

comments. Now it’s time to create result.php, the program that receives the IP address

entered by the user, processes it with the whois command, and returns to the user the

output with the comments excluded.

�Editing the File That Processes the User Data
You create next result.php in the document root (/var/www/html) of the vhost used.

At the Linux terminal, enter the following:

$ sudo gedit /var/www/html/result.php

Figure 4-19.  The whois output with hash symbols indicating comments

Chapter 4 Obtaining a Domain Name with DDNS

150

Enter the following lines and save the file:

<!DOCTYPE html>

<html>

<body>

<span style="color:red;text-align:left;font-size:32px;background-

color:blue;float:left">

Online WHOIS Service

<span style="color:yellow;text-align:right;font-size:32px;background-

color:blue;float:right">

<?php echo "Your IP address: " . $_SERVER['REMOTE_ADDR']; ?>

<?php

echo '<h1 style="color:blue;text-align:center"> whois ' . $_POST['user_

data'] . '</h1>';

echo '<p style="font-family:monospace;font-size:16px;background-

color:black;color:white">';

$user_data = $_POST['user_data'];

if (isset($user_data)) {

 $exec_string = "whois $user_data";

 $output = shell_exec($exec_string);

 $stream = fopen('data://text/plain,' . $output,'r');

 while(! feof($stream)) {

 $x = fgets($stream);

 if((strpos(trim($x), '%') === 0) || (strpos(trim($x), '#') === 0))

 continue;

 echo $x;

 echo "
";

 }

}

echo '</p>';

?>

</body>

</html>

Chapter 4 Obtaining a Domain Name with DDNS

151

In the result.php source code, the global PHP variable $_SERVER, set by the PHP

engine, includes the element $_SERVER['REMOTE_ADDR'], which holds the visitor’s IP

address. This information is not required by the WHOIS service but could be used as

additional info for users who view your site.

With the following source code, the IP address entered by the user in the user_

data textbox in the file onlineservice.html is now received by the PHP engine as

$_POST['user_data']. This IP address is part of the message displayed when result.

php is evaluated. For instance, for the IP address 1.2.3.4, the message is whois 1.2.3.4,

which indicates the query whois performed. This information is included as a header,

because it consists of the content of an h1 HTML element.

echo '<h1 style="color:blue;text-align:center"> whois ' . $_POST['user_

data'] . '</h1>';

The $_POST['user_data'] valus is assigned then to the PHP variable $user_

data.

The variable $exec_string is set to the string that represents the command that

will be executed from the terminal at the web server. It is set to whois $user_data. This

evaluates to whois <IP address>, where <IP address> is the specific value provided by

the user, e.g., 87.202.116.192.

Hint! T o implement a different service, you could change the command assigned
as a value to $exec_string. For instance, for the ping service, you could use the
following:

$exec_string = "ping –c 3 $user_data";

This sends three ICMP echo messages to the destination IP address and receives
the reply. ICMP stands for Internet Control Message Protocol. It is part of the TCP/IP
protocol suite and is used for diagnostic purposes.

The command defined in exec_string is passed to the Linux terminal with the

function shell_exec().

 $output = shell_exec($exec_string);

Chapter 4 Obtaining a Domain Name with DDNS

152

The value stored in shell_exec is the output of the whois command that you ran

previously at the terminal. The output of the command executed is returned to the

$output variable. This is a long string that usually includes multiple lines. To process

this string, one approach is to store it in a file. Another approach is to process it on the

fly using the notion of a Unix stream. A stream treats a string like a file. To access the

$output string as a stream, for a read (r) operation, the file descriptor $stream is used in

the following command:

 $stream = fopen('data://text/plain,' . $output,'r');

For this stream, the data wrapper specifies the stream type, and the text/plain target

specifies the stream format.

The following while loop is used to read one line at a time of the $stream and output

all noncomment lines:

 while(! feof($stream)) {

 $x = fgets($stream);

 if((strpos(trim($x), '%') === 0) || (strpos(trim($x), '#') === 0))

 continue;

 echo $x;

 echo "
";

 }

The while condition, ! feof($stream), is true, while the end of the stream is not

reached. Each line of the stream is returned in each while iteration by the fgets()

function to variable $x.

 $x = fgets($stream);

The following command ignores all the lines starting with the percent (%) or the hash

(#) symbol:

 if((strpos(trim($x), '%') === 0) || (strpos(trim($x), '#') === 0))

 continue;

The function trim() is used to remove the characters specified in its second

argument. Since in this example no second argument exists, it returns a string stripped

of any space, tab, or newline characters at the start and the end of the string. This is the

corresponding PHP function to the JavaScript trim() method used previously in file

onlineservice.html.

Chapter 4 Obtaining a Domain Name with DDNS

153

The two strpos() functions receive the returned string and check whether the

character at position 0 (first position) is either the percent or the hash character. If this

is the case, the command continue executes, and as a result, the while loop proceeds

without executing the last two while commands in the current iteration. If the current

line starts with the percent or hash character, this line is therefore ignored.

Hint! T o check the result of the functions trim() and strpos() and of other
string functions of PHP, use the PHP CLI utility. CLI stands for command-line
interface, and if this program is not installed on your system, install it now by
using this:

$ sudo apt-get install php7.0-cli

In the current directory, create a PHP file, for instance test.php.

$ gedit test.php

Enter the following code snippet and save the file:

<?php

$str = "\n\n\t\t Hello World!";

echo $str;

echo "\nPosition of character H: ";

echo strpos($str, 'H');

echo "\n";

$str2 = trim($str);

echo "$str2";

echo "\nPosition of character H: ";

echo strpos($str2, 'H');

?>

Chapter 4 Obtaining a Domain Name with DDNS

154

The value of variable $str is prepended with two newline characters (\n), which
have the effect of pressing the Enter key of the keyboard, and two tab characters
(\t), which have the effect of pressing the Tab key. The first strpos() call returns
the position of character H in the string. The return value is 5 because character H
is in the sixth position, which is position 5 starting counting from 0. Next, trim()
is used to strip the tab and newline characters at the start of the string. The second
strpos() therefore returns 0 because now H is the first character.

To run the program, use the following:

$ php test.php

The output in the Linux terminal is as follows:

christos@pc:~$ php test.php

 Hello World!

Position of character H: 5

Hello World!

Position of character H: 0

If the current line is not a comment, it is printed with the echo command, and also a

break tag is used to change the line.

echo $x;

echo "
";

All not-commented lines are thus included in the output generated by the PHP

engine and returned to the user from the web server.

�Testing the WHOIS Online Service
You can test next your online WHOIS service at webtoolsonline.servehttp.com. Enter

one of the IP addresses previously tested with the whois command from the terminal,

e.g., 1.2.3.4, as viewed in Figure 4-20.

Chapter 4 Obtaining a Domain Name with DDNS

http://webtoolsonline.servehttp.com

155

Click the Go button to submit the IP address to the web server.

The result.php evaluated web page for the IP address 1.2.3.4 is displayed in Figure 4-21.

Figure 4-20.  Testing a valid IP address with the online service

Figure 4-21.  The online WHOIS service output

Chapter 4 Obtaining a Domain Name with DDNS

156

You will notice that the style of this web page resembles the Linux terminal. At the

top of the web page, the message whois 1.2.3.4 appears in the center, and the public IP

address of the client is displayed on the right. The output differs from the whois terminal

command because it lacks comment lines.

In the next section, you can add a favicon image to the web site to make the site

instantly recognizable.

�Adding a Favorite Icon to the Site
A favorite icon, referred as a favicon in its filename, is the tiny icon you see on the left of

your browser tab when a web page loads. It makes a site recognizable because you can

easily locate it when lots of tabs are open in the browser. Even before the web page loads,

the favicon icon appears in the address bar of the browser, next to the address, which is

completed with the autofill feature. This ensures that the address you are about to enter

is the correct one. Favicons appear also in the bookmark list, where the URLs of your

favorite sites are saved.

The first step of including a favicon image is to design it. In the Linux locate an

image editor program or download and install one if necessary. The example shown

here uses the mtPaint editor, which is the default image editor on the Linux system I’m

using. Open mtPaint, and from the File menu select New. Favicons require a size of

16×16 pixels; therefore, in the dialog that appears (Figure 4-22), set the dimensions of the

new image to 16 pixels width by 16 pixels height.

Chapter 4 Obtaining a Domain Name with DDNS

157

mtPaint displays a black-colored canvas, sized 16×16 pixels, for the new image

(Figure 4-23).

Figure 4-22.  Setting the dimensions of the favicon icon to 16x16 pixels

Figure 4-23.  The tiny favicon image with a 16×16 pixel size

Chapter 4 Obtaining a Domain Name with DDNS

158

This is a tiny canvas to work with, so zoom in to enlarge it. To do this, in the zoom

percentage drop-down, use a bigger zoom than 100%, for instance 1200% (Figure 4-24).

You can start by applying your ideas to the canvas. For instances, you can click

the Flood Fill button (the paint bucket), select a white color (e.g., color 7 from the

color list on the left), and click next any pixel of the canvas to turn the background of

your image to white. Using the Paint button (the blue pencil), select a color from the

list and click any pixel to color it. In Figure 4-25, the blue and red colors are being

used. The image displayed includes two letters, OT, for “online tools.” The letter T

strives to look like a hammer.

Figure 4-24.  Zooming in on the image for detailed drawing

Chapter 4 Obtaining a Domain Name with DDNS

159

From the File menu, choose Save As to save the image to one of your directories,

e.g., Pictures, and in the dialog that appears, provide the Pictures file path and favicon

file name. Select also PNG as the image format in the File Format list and click the OK

button.

Although you can use the PNG file type for the favicon files, the default one used

for the whole site defaults to the name favicon.ico. The ICO file type is not supported

by mtPaint. You can, however, change the file type from the terminal using the convert

command included in the imagemagick package. Install imagemagick using the

following:

$ sudo apt-get install imagemagick

Change then the file type using:

$ convert -background transparent "favicon.png" -define icon:auto-

resize=16,24,32,48,64,72,96,128,256 "favicon.ico"

Copy next the favicon.ico file to the document root:

$ sudo cp ~/Pictures/favicon.png /var/www/html

Test your site next. As viewed in Figure 4-26, the favicon image appears on the left of

the web page tab in your browser.

Figure 4-25.  The favicon image completed

Chapter 4 Obtaining a Domain Name with DDNS

160

To use a different favicon image for another web page of your site, make explicit

reference from the web page to another favicon image. Create a second favicon file,

favicon2.png, that includes for simplicity just a yellow background, and copy it to the

document root directory. Edit a web page, for instance the result.php file, and add in

the head section a link reference to favicon2.png. Specifically, in the head section of the

HTML source code, enter the following tag:

<link rel="icon" href="favicon2.png"/>

Because this is a specific reference where the file name is provided, the file type used

can be of a different type than ICO; e.g., in this example PNG is used. The source code of

result.php becomes the following:

<!DOCTYPE html>

<html>

<head>

<link rel="icon" href="favicon2.png"/>

</head>

<body>

Figure 4-26.  The site’s home page includes a favicon image on the browser’s tab

Chapter 4 Obtaining a Domain Name with DDNS

161

<span style="color:red;text-align:left;font-size:32px;background-

color:blue;float:left">

Online WHOIS Service

<span style="color:yellow;text-align:right;font-size:32px;background-

color:blue;float:right">

<?php echo "Your IP address: " . $_SERVER['REMOTE_ADDR']; ?>

<?php

echo '<h1 style="color:blue;text-align:center"> whois ' . $_POST['user_

data'] . '</h1>';

echo '<p style="font-family:monospace;font-size:16px;background-

color:black;color:white">';

$user_data = $_POST['user_data'];

if (isset($user_data)) {

 $exec_string = "whois $user_data";

 $output = shell_exec($exec_string);

 $stream = fopen('data://text/plain,' . $output,'r');

 while(! feof($stream)) {

 $x = fgets($stream);

 if((strpos(trim($x), '%') === 0) || (strpos(trim($x), '#') === 0))

 continue;

 echo $x;

 echo "
";

 }

}

echo '</p>';

?>

</body>

</html>

Test the onlineservice.html file using, for instance, the following URL:

127.0.0.1:8080.

As shown in Figure 4-27, the home page of the site loads with the default favicon

image.

Chapter 4 Obtaining a Domain Name with DDNS

162

Enter in the form textbox an IP address and click the Go button. The result.php

web page is displayed in your browser. As shown in Figure 4-28, result.php includes the

yellow favicon2.png icon on the left of its tab.

Figure 4-27.  The home page of the site loads with the default favicon image

Figure 4-28.  The web page result.php uses a different favicon image

Chapter 4 Obtaining a Domain Name with DDNS

163

You can create a favicon icon in a few steps to provide an image that personalizes

your site and even become the motivation for an inspired logo for the web content of

the site.

�Summary
In this chapter, you did the following:

•	 You used the DDNS service to provide a user-friendly domain name

to your site.

•	 You created a web project with an online web service, specifically

WHOIS.

•	 You created a favicon.ico image for your site.

In the next chapter, the source code of another web service is displayed, which

creates a site that allows web server administrators and web designers find how their

site looks from a remote location. But first you are introduced to another popular open

source web server, the Lighttpd server.

Chapter 4 Obtaining a Domain Name with DDNS

165
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_5

CHAPTER 5

The Lighttpd Web Server
Most of the web browsers used today have the same common features; therefore,

it’s easy for users to make the transition from using one browser to another. This

is an advantage that it is not found on the server side. Web servers are specialized

programs, not expected to be used by the average user. Therefore, the graphical user

interface (GUI), if the web server is supplied with one, or the commands used at the

terminal for configuring and running the server may be completely different from

one server to another. In this chapter, you will have the chance to use another open

source web server, Lighttpd (called “Lighty”). You will run the server and identify

characteristics that you used previously in Apache, like the document root and the

virtual servers. Experimenting with a second server will make it easier for you to

transition to a third one.

You will then use Lighttpd with PHP to create your next online web service, which

will simulate a web service like webpagetest.org that tests the appearance of your site

remotely; you used webpagetest.org in Chapter 3.

�Installing Lighttpd
Running two web servers at the same time is possible but not recommended because if

the servers are not carefully configured (for instance, bound to different port numbers),

this might lead to conflicts and unpredictable results. To stop the apache2 process and

leave the field free for Lighttpd, use the following:

$ sudo service apache2 stop

This stops Apache until you shut down and reboot your computer. To avoid

restarting the Apache process the next time your computer starts, use the following:

$ sudo systemctl disable apache2

http://webpagetest.org
http://webpagetest.org

166

You don’t have to worry about your saved work so far—all the files saved in the

document root directory (e.g., /var/www/html) remain there.

To install Lighttpd from the terminal, use the following commands:

$ sudo apt-get update

$ sudo apt-get install lighttpd

�Testing Lighttpd
The default document root for Lighttpd is /var/www/html, which is the same directory

as with Apache’s document root. Notice that for some Ubuntu distributions the default

document root is /var/www. You can change the default document root from the

Lighttpd configuration file, as discussed in the following section. A directory index with

the name index.lighttpd.html was already created in the document root. Enter this

file in your browser’s address bar using the default loopback address, 127.0.0.1, or the

corresponding hostname localhost, as shown here:

localhost/index.lighttpd.html

Although index.lighttpd.html is a directory index, including the file name in the

URL path is required because this is the third directory index name included in the

configuration file, discussed in the following section. The files index.php and index.

html, included first in the list, take precedence and are displayed instead.

The web page index.lighttpd.html is the test page for the Lighttpd web server. As

shown in Figure 5-1, it provides information about the basic Lighttpd configuration.

Chapter 5 The Lighttpd Web Server

167

If you see a file with the name index.html, created when using Apache, in the
document root, rename it as follows:

$ sudo mv index.html index.htmlOLD

Create a new directory index for the Lighttpd server in the document root

index.html.

$ cd /var/www/html

$ sudo gedit index.html

Enter a simple HTML source code, like the following, and save the file:

<!DOCTYPE html>

<html>

<head>

</head>

<body>

Hello World!

</body>

</html>

Figure 5-1.  The test page of the Lighttpd web server

Chapter 5 The Lighttpd Web Server

168

Then test your new directory index using the localhost hostname or the IP address

127.0.0.1 in the browser’s address bar. Figure 5-2 displays the directory index dispatched

by Lighttpd.

Try also to use in the URL the private IP address of the web server, which is

192.168.1.100 for the examples used in this text.

Figure 5-3 displays the directory index viewed from another computer in the same

LAN with the web server.

To view the web page from outside the local LAN, you have to use either the

public IP address of the router or one of the fully qualified domain names obtained in

Chapter 4. In the following section, you will make the required changes to the Lighttpd

configuration file to test your web server externally from your LAN.

�Working in the Lighttpd Configuration File
The Lighttpd configuration file is lighttpd.conf, located in the directory /etc/

lighttpd.

Figure 5-2.  The directory index viewed from a browser locally

Figure 5-3.  The directory index viewed from a browser on another computer in
the web server LAN

Chapter 5 The Lighttpd Web Server

169

Before starting to modify the configuration file, make a copy of the original one with

the following commands:

$ cd /etc/lighttpd/

$ sudo cp lighttpd.conf lighttpd.conf.bak

Edit lighttpd.conf with a text editor, for instance gedit.

$ sudo gedit lighttpd.conf

The file contents are as follows:

 server.modules = (

 "mod_access",

 "mod_alias",

 "mod_compress",

 "mod_redirect",

)

server.document-root = "/var/www/html"

server.upload-dirs = ("/var/cache/lighttpd/uploads")

server.errorlog = "/var/log/lighttpd/error.log"

server.pid-file = "/var/run/lighttpd.pid"

server.username = "www-data"

server.groupname = "www-data"

server.port = 80

index-file.names = �("index.php", "index.html", "index.lighttpd.

html")

url.access-deny = ("~", ".inc")

static-file.exclude-extensions = (".php", ".pl", ".fcgi")

compress.cache-dir = "/var/cache/lighttpd/compress/"

compress.filetype = �("application/javascript", "text/css",

"text/html", "text/plain")

default listening port for IPv6 falls back to the IPv4 port

Use ipv6 if available

#include_shell "/usr/share/lighttpd/use-ipv6.pl " + server.port

include_shell "/usr/share/lighttpd/create-mime.assign.pl"

include_shell "/usr/share/lighttpd/include-conf-enabled.pl"

Chapter 5 The Lighttpd Web Server

170

The Lighttpd directives follow object-oriented programming principles. The first part

is the object that is referred to, and then after a dot the specific attribute of this object is

indicated. The attribute is then assigned a value using the equal (=) sign.

At the start of the configuration file, you will see the server.modules directive, which

is a list with the modules of the web server to be loaded. Other directives follow. Here are

some examples:

•	 server.errorlog, the location of the error log file.

•	 server.pid-file, the file that stores the process ID (PID) of the

Lighttpd server. This is the PID that you can find using the command

ps xa | grep lighttpd.

•	 server.username, the username of the user the Lighttpd server

assumes.

•	 server-groupname, the group the Lighttpd user belongs to.

•	 server.document-root, which defines the document root.

�Applying a Basic Configuration
If in your Lighttpd version the document root directive (server.document-root) is set

to /var/www, you can change this to /var/www/html so you can test the book’s sites from

both Lighttpd and Apache without modification.

If you use the default HTTP port number (80) for your server, you can use the server’s

configuration file as is. If, on the other hand, your ISP blocks the inbound port 80 and

you utilize another port, e.g., 8080, or if you plan to implement the HTTPS protocol

(more about this in Chapter 8) that uses port 443, you can change the default server.

port value.

server.port = 80

In the previous section, you viewed the directory index index.lighttpd.html.

This is included third in the directory’s indexes list, indicated by the index-file.names

directive.

index-file.names = �("index.php", "index.html", "index.lighttpd.

html")

Chapter 5 The Lighttpd Web Server

171

This directive assigns the list of files used as directory indexes for the web server.

From this directive, you can change the order of the filenames used. To enable any

changes in the configuration file, click the Save button in the gedit window and reload

the web server as follows:

$ sudo service lighttpd force-reload

With the configuration file updated and the Linux firewall already set from

Chapter 1, you can connect to the web server from any location on the Internet. Use the

public IP address of your router in your browser’s address bar. This time retrieve your

external IP address by using the following command:

$ curl ifconfig.co

The output in this example is:

87.202.116.97

You can also use a fully qualified domain name, like the ones created in Chapter 4, in

the URL of your site. Here’s an example:

webtoolsonline.servehttp.com

Hint! T o ensure that your site runs as expected from any Internet-connected
computer, you have to test the web server externally from your LAN, by using your
mobile Internet connection or an online web service like webpagetest.org.
Actually, the web project you will develop in this chapter creates a similar web
service.

�Binding to a Specific IP Address or Hostname
With the bind directive, you can restrict the server to a specific IP address or hostname,

where the web server listens for client requests, for instance:

server.bind = "87.202.116.97"

Chapter 5 The Lighttpd Web Server

http://webpagetest.org

172

87.202.116.97 is the public IP address of the router used in this example. To

implement this directive, insert the previous directive in the configuration file, save the

file, and reload the server using the following:

$ sudo service lighttpd force-reload

In the following example, it is assumed that the server listens on port 8080. Use the

following IP address and port number combination in the browser’s address bar:

87.202.116.97:8080

The web page is loaded as usual. Use the following IP address and port number

combination:

127.0.0.1:8080

The web page does not load anymore. Comment out the previous directive in the

configuration file by prepending it with the hash symbol.

#server.bind = "87.202.116.97"

Next enable the new configuration.

$ sudo service lighttpd force-reload

Use the IP address and port number combination one more time in the browser’s

address bar.

 127.0.0.1:8080

The web page loads again normally.

You can also test the server.bind directive with domain names. One of the two

domain names created in Chapter 4 is the following:

christos.ddns.net

To bind the web server to this domain name, uncomment the server.bind directive

and replace the IP address in its value with the FQDN christos.ddns.net.

server.bind = "christos.ddns.net"

Save the configuration file and reload the server using this command:

$ sudo service lighttpd force-reload

Chapter 5 The Lighttpd Web Server

http://christos.ddns.net

173

Test the domain name from the browser. Using christos.ddns.net, it loads as usual.

If you try the public IP address of the router, e.g., 87.202.116.97, in the address bar, you’ll

see it does not load anymore. Comment out the server.bind directive and reload the

server to bring its configuration to the previous state.

�Changing the Document Root
The default document root as set in the configuration file is /var/www/html. Try to

set another one, for instance /var/www/html2. First you have to create the new html2

directory in www.

$ sudo mkdir /var/www/html2

Create a new directory index called index.html in html2.

$ sudo gedit /var/www/html2/index.html

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

</head>

<body>

This is file /var/www/html2/index.html

</body>

</html>

Next edit the configuration file.

$ sudo gedit /etc/lighttpd/lighttpd.conf

Change the value of the server.document-root directive from /var/www/html to /

var/www/html2. Save the file and reload the server.

$ sudo service lighttpd force-reload

Test locally the new document root using the port the server listens on, either the

following:

localhost

Chapter 5 The Lighttpd Web Server

http://christos.ddns.net

174

or the following:

localhost:8080

The new web page is loaded.

Restore the document root to /var/www/html to set the web server to the

previous state.

�Enabling and Disabling the Directory Listing
To allow the user to view the contents of a directory, when no directory index is present

in this directory, you can set the dir-listing.activate directive. By default the

directory listing is disabled. To test this, create directory dir1 under the document

root, and inside dir1 create two files, for instance file1 and file2, using the following

commands at the terminal:

$ sudo gedit mkdir /var/www/html/dir1

$ cd /var/www/html/dir1

$ sudo touch file1 file2

Enter the following URL in your browser address bar:

localhost/dir1

or if you utilize port 8080:

localhost:8080/dir1

A web page with the HTTP error message 403 appears, as displayed in Figure 5-4.

Figure 5-4.  The HTTP 403 error status code displayed using the URL of a directory
with no directory index and the directory listing disabled

Chapter 5 The Lighttpd Web Server

175

Open the configuration file for editing.

$ sudo gedit /etc/lighttpd/lighttpd.conf

Enter the following line:

dir-listing.activate = "enable"

Save the configuration file and reload the server.

$ sudo service lighttpd force-reload

Figure 5-5 shows the directory contents, and the users can download the files

included in this directory by clicking the file names.

To restore the dir-listing.activate directive, switch its value in the configuration

file from enable to disable, save the configuration file, and reload the web server.

Figure 5-5.  The directory contents listed using the URL of a directory lacking a
directory index when the directory listing is enabled

Chapter 5 The Lighttpd Web Server

176

�Sending Custom-Made Error Replies to the Client
In the previous section, the web server sends the default message for the HTTP error

status code 403. This is the message:

403 – Forbidden

To customize the content of the error message, open the configuration file for

editing.

$ sudo gedit /etc/lighttpd/lighttpd.conf

With the following line, set the server.errorfile-prefix directive and save the file:

server.errorfile-prefix = "/srv/www/errors/status-"

Reload the web server.

$ sudo service lighttpd force-reload

Create the directory www/errors in /srv.

$ sudo mkdir –p /srv/www/errors

Here, the –p option creates parent directories (www in this case).

Create next in the errors directory your customized status code web pages

with the format:<errorfile-prefix><status-code>.html

<errorfile-prefix> is the value of the server.errorfile-prefix directive, and

<status-code> is the specific error status code. For instance, for the HTTP error status

code 403, create the file /srv/www/errors/status-403.html.

$ sudo gedit /srv/www/errors/status-403.html

Enter the following source code:

<!DOCTYPE html>

<html>

<head>

<style>

p{

color:red;

Chapter 5 The Lighttpd Web Server

177

font-size:120px;

text-align:center;

text-decoration: underline overline;

}

img {

 display: block;

 margin-left: auto;

 margin-right: auto;

}

.top-right {

 position: absolute;

 top: 8px;

 right: 16px;

}

.top-left {

 position: absolute;

 top: 8px;

 left: 16px;

}

</style>

</head>

<body>

<div class="top-left">

<p>Error</p>

</div>

<div>

</div>

<div class="top-right">

<p>403</p>

</div>

</body>

</html>

Chapter 5 The Lighttpd Web Server

178

With the dir-listing.activate directive disabled, you can test the customized

error page by using the URL of the directory dir1, created previously. Here’s an example:

http://webtoolsonline.servehttp.com/dir1

Figure 5-6 displays the customized error page.

�Accessing the Lighttpd Log Files
Create and use Lighttpd log files to collect information about the visitors of your site. For

instance, create a file called access.log in the /var/log/lighttpd/ directory with the

following command:

$ sudo touch /var/log/lighttpd/access.log

Using the chown command, I set the owner of the file access.log to the Lighttpd

process using the chown command. At this command I use: www-data:www-data the first

www-data is the username, the Lighttpd process assumes the second www-data is the

group this user belongs.

$ sudo chown www-data:www-data /var/log/lighttpd/access.log

Figure 5-6.  The custom error page for the 403 HTTP error status code

Chapter 5 The Lighttpd Web Server

179

Edit the Lighttpd configuration file next.

$ sudo gedit /etc/lighttpd/lighttpd.conf

Include mod_accesslog in the group of modules to be loaded. It should appear after

mod_alias since the order of the modules is the order they will be executed in. Include

also the accesslog.filename directive to set the file name and path of the log file.

accesslog.filename = "/var/log/lighttpd/access.log"

The configuration file is now as follows:

server.modules = (

 "mod_access",

 "mod_alias",

 "mod_accesslog",

 "mod_compress",

 "mod_redirect",

)

server.document-root = "/var/www/html"

server.upload-dirs = ("/var/cache/lighttpd/uploads")

server.errorlog = "/var/log/lighttpd/error.log"

server.pid-file = "/var/run/lighttpd.pid"

server.username = "www-data"

server.groupname = "www-data"

server.port = 8080

#server.bind = "webtoolsonline.servehttp.com"

server.errorfile-prefix = "/srv/www/errors/status-"

dir-listing.activate = "disable"

accesslog.filename = "/var/log/lighttpd/access.log"

index-file.names = �("index.php", "index.html", "index.lighttpd.

html")

url.access-deny = ("~", ".inc")

static-file.exclude-extensions = (".php", ".pl", ".fcgi")

Chapter 5 The Lighttpd Web Server

180

compress.cache-dir = "/var/cache/lighttpd/compress/"

compress.filetype = �("application/javascript", "text/css",

"text/html", "text/plain")

default listening port for IPv6 falls back to the IPv4 port

Use ipv6 if available

#include_shell "/usr/share/lighttpd/use-ipv6.pl " + server.port

include_shell "/usr/share/lighttpd/create-mime.assign.pl"

include_shell "/usr/share/lighttpd/include-conf-enabled.pl"

Reload the server to enable the changes in the configuration file.

$ sudo service lighttpd force-reload

To test the access.log file, first do a local client request, e.g., using localhost:8080

from a browser on the web server, and then do another request from any other computer,

external to your LAN. Probably the nearest computer is your mobile phone. Figure 5-7

displays a connection to webtoolsonline.servehttp.com/index.html from a Samsung

Galaxy S3 using the Google Chrome browser.

Figure 5-7.  Connecting from a mobile phone to test access.log

Chapter 5 The Lighttpd Web Server

http://webtoolsonline.servehttp.com/index.html

181

Read the contents of access.log using the following commands:

$ sudo su

cat /var/log/lighttpd/access.log

The output from the previous commands in this example is as follows:

127.0.0.1 localhost:8080 - [10/Aug/2018:08:29:18 +0300] "GET /favicon.

ico HTTP/1.1" 404 345 "http://localhost:8080/" "Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/67.0.3396.99

Chrome/67.0.3396.99 Safari/537.36"

66.249.81.241 christos.ddns.net:8080 - [10/Aug/2018:08:29:56 +0300]

"GET /index.html HTTP/1.1" 304 0 "http://webtoolsonline.servehttp.

com/index.html" "Mozilla/5.0 (Linux; Android 5.1.1; SM-J320FN Build/

LMY47V) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.70 Mobile

Safari/537.36"

The first recording provides details for the local connection, issued from the web

server computer, while the second provides details for the remote connection, issued

from the mobile phone.

�Using Virtual Hosts with Lighttpd
In Chapter 1 you used IP-based, port number–based, and name-based virtual hosts with

Apache. Those features are also available with Lighttpd. The names used in the name-

based Apache virtual host tests were hostnames, like myserver.com, that used only

locally on the web server. In Chapter 4, you created FQDN hostnames like christos.

ddns.net and webtoolsonline.servehttp.com that could be used universally,

throughout the Internet. Next you can apply those DNS names to create two virtual hosts

that run simultaneously on the web server, with each one dedicated to a completely

different site. The names created in Chapter 4 are actually not different because with the

DDNS configuration, the name webtoolsonline.servehttp.com redirects to christos.

ddns.net.

This is your chance to create a third DDNS name using the steps for creating the

other two. You can use the third name for the first one of the two virtual hosts. Log in to

the DDNS server provider’s web page, which is https://www.noip.com for the examples

used in the book. Figure 5-8 shows the Dashboard web page.

Chapter 5 The Lighttpd Web Server

http://myserver.com
http://christos.ddns.net
http://christos.ddns.net
http://webtoolsonline.servehttp.com
http://webtoolsonline.servehttp.com
http://christos.ddns.net
http://christos.ddns.net
https://www.noip.com

182

Enter the name of a server that is available in the Hostname field, for instance

secureserver. In the Domain drop-down list, select a second-level domain name, e.g.,

ddns.net, as shown in Figure 5-9.

Figure 5-9.  The Dashboard web page with the user settings for creating a new
hostname

Figure 5-8.  The Dashboard web page of no-IP

Chapter 5 The Lighttpd Web Server

http://ddns.net

183

This name will also be used in Chapter 8, which is about cryptography and secure

communication. Click the Add Hostname button to confirm your choice. Click also the

Dynamic DNS menu on the left and then select the No-IP Hostnames option to view all

the hostnames created so far. Figure 5-10 displays the Hostnames web page.

You can test your new hostname instantly by entering the following URL:

secureserver.ddns.net

or if you have configured the web server to listen on port 8080:

secureserver.ddns.net:8080

As displayed in Figure 5-11, the web page is loaded in your browser’s window.

Figure 5-10.  The Hostnames web page displays the hostnames already
created

Chapter 5 The Lighttpd Web Server

184

To create two virtual hosts on Lighttpd, with each serving a different domain name,

use the following steps.

Create two document root directories, one for each virtual host. Give the

corresponding name of the domain name used to the document root directory.

$ cd /var/www

$ sudo mkdir secureserver.ddns.net christos.ddns.net

For each document root, change the owner from root (the Linux administrator is the

owner because the directory was created with the sudo command) to www-data, the one

Lighttpd assumes. This user belongs to the group www-data (www-data:www-data).

$ sudo chown www-data:www-data secureserver.ddns.net christos.ddns.net

Create one directory index named index.html for each virtual host. Use the

following for the first virtual host:

$ sudo gedit /var/www/secureserver.ddns.net/index.html

Enter the following HTML source code and save the file:

<!DOCTYPE html>

<html>

<head>

Figure 5-11.  Displaying a web page using the new hostname

Chapter 5 The Lighttpd Web Server

185

<title>Welcome!</title>

<style>

body{

background-color:yellow;

}

p{

font-size:80px;

}

</style>

</head>

<body>

<p>

Hello from secureserver.ddns.net!

</p>

</body>

</html>

Do the same for the second virtual server.

$ sudo gedit /var/www/christos.ddns.net/index.html

Enter the following HTML source code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Welcome!</title>

<style>

body{

background-color:orange;

}

p{

font-size:80px;

}

</style>

</head>

Chapter 5 The Lighttpd Web Server

186

<body>

<p>

Hello from christos.ddns.net!

</p>

</body>

</html>

Edit the Lighttpd configuration file.

sudo gedit /etc/lighttpd/lighttpd.conf

Append the following lines to the end of the file and save it:

$HTTP["host"] == " secureserver.ddns.net" {

 server.document-root = "/var/www/ secureserver.ddns.net"

}

$HTTP["host"] == "christos.ddns.net" {

 server.document-root = "/var/www/christos.ddns.net"

}

With the previous conditional configuration, you will provide the option of using

a different document root for each one of the previous domain names. The condition

of the first directive checks whether the value of the Host HTTP protocol header of

the client request corresponds to secureserver.ddns.net , and if this matches, the

document root is set to /var/www/secureserver.ddns.net. In the second directive, the

value of the Host header is also checked against christos.ddns.net, and if this matches,

the document root is set to /var/www/christos.ddns.net.

Save lighttpd.conf and reload the server.

 $ sudo service lighttpd force-reload

Test the two virtual servers from any computer on the Internet. For the first one,

enter the following in your browser’s address bar:

secureserver.ddns.net

or if for the if the port 8080 configuration is used:

secureserver.ddns.net:8080

Chapter 5 The Lighttpd Web Server

http://secureserver.ddns.net
http://christos.ddns.net
http://christos.ddns.net

187

Use the URL of the second virtual host.

christos.ddns.net

or if the configuration for the 8080 port is used:

christos.ddns.net:8080

The web page displayed in Figure 5-13 loads in your browser.

Figure 5-12.  The directory index of the first virtual host

Figure 5-12 displays the web page that loads.

Chapter 5 The Lighttpd Web Server

188

Hint! A practical way to configure multiline options in lighttpd.conf is
to create another file in the /etc/lighttpd directory and move the extra
configuration there. Create, for instance, a second configuration file using the
following:

$ sudo gedit /etc/lighttpd/vhost.conf

Cut the following conditional directives from lighttpd.conf and paste them into
vhost.conf:

$HTTP["host"] == " secureserver.ddns.net" {

 server.document-root = "/var/www/ secureserver.ddns.net"

}

$HTTP["host"] == "christos.ddns.net" {

 server.document-root = "/var/www/christos.ddns.net"

}

Figure 5-13.  The directory index of the second virtual host

Chapter 5 The Lighttpd Web Server

189

In lighttpd.conf, to create a link to vhost.conf, append the following
directive to the end of the file:

include "vhost.conf"

Reload the server to enable the changes in the configuration files.

$ sudo service lighttpd force-reload

�Using PHP with Lighttpd
To use PHP with Lighttpd, assuming that PHP 7.0 is already installed on your server,

enter the following command at the Linux terminal:

$ sudo apt-get install php7.0-cgi

Test the PHP instantly using the file /var/www/html/info.php created in Chapter 2

for Apache. Because the original document root /var/www/html is different from those

used for the virtual hosts, you can restore the configuration file to exclude virtual hosts.

At the end of lighttpd.conf, comment out the include directive.

#include "vhost.conf"

Reload the web server to enable the changes in the configuration file.

$ sudo service lighttpd force-reload

In your browser’s address bar, enter the following:

http://christos.ddns.net/info.php

Or, if your server listens on port 8080, enter the following:

http://christos.ddns.net:8080/info.php

As shown in Figure 5-14, the web page that appears displays the output of the

phpinfo() function, indicating that PHP is up and running.

Chapter 5 The Lighttpd Web Server

190

With the basic Lighttpd server configuration options discussed in the previous

sections, you can use Lighttpd in the following section to create your next online web

service.

�Creating Online Services with Lighttpd
In Chapters 3 and 4, you created online services with Apache. Here you’ll use the

Lighttpd server and the PHP and JavaScript languages to create another online

service. The service will simulate online web services that test sites remotely like the

webpagetest.org site utilized in Chapter 3. Similar to the other PHP projects, you will

start by preparing two basic web pages.

•	 index.php, the web page that includes a form for submitting the URL

of a site to the server.

screenshot.php, the program referred to in the action attribute

of the index.php form, which processes the URL sent by the client

and returns to the client’s browser an image of the corresponding

Figure 5-14.  The web page with the evaluated phpinfo() function

Chapter 5 The Lighttpd Web Server

http://webpagetest.org

191

web page. As shown in the Lighttpd configuration file, lighttpd.

conf, the index-file.names directive has already set index.php

as a directory index.

index-file.names = �("index.php", "index.html", "index.lighttpd.

html")

The file name index.php has precedence over the index.html and

index.lighttpd.html file names. This means that by default the Lighttpd web server

will serve index.php if this file name exists in the directory specified by the URL, for

instance:

http://webtoolsonline.servehttp.com

When the user enters the previous URL in the browser’s address bar, index.php

appears, as shown in Figure 5-15.

The form in index.php includes just one textbox, without any submit button. As

shown in Figure 5-16, the user inserts the URL of a site in the textbox and presses the

Enter key to submit the data.

Figure 5-15.  The home page of the online service

Chapter 5 The Lighttpd Web Server

192

In the previous figure, the URL https://www.amazon.com was entered. The client

request may take a few seconds to complete, so when the user presses the Enter key, the

message “Please wait…” appears in the upper area of the browser’s window, as shown in

Figure 5-17.

Figure 5-16.  Inserting a URL to the form’s textbox

Figure 5-17.  The message “Please wait…” appears when the user submits the data
until the server responds

Chapter 5 The Lighttpd Web Server

https://www.amazon.com

193

When the web server finishes processing the request, the web page replies with

the evaluated code of screenshot.php. This is the web page that is set as the value

of the action argument of the form tag. As viewed in Figure 5-18, for any valid

URL, the screenshot.php displays a small-sized capture of the home page of the

corresponding site.

The user may insert an erroneous URL, for instance https://123www.amazon.com, as

shown in Figure 5-19.

Figure 5-18.  The web server responds to the client request by displaying a
screenshot of the web page specified by the user

Chapter 5 The Lighttpd Web Server

﻿https://123www.amazon.com﻿

194

As shown in Figure 5-20, by pressing the Enter key, the screenshot.php code

evaluates by displaying a message and a button instead of an image. These are used for

getting back to the online service home.

Figure 5-20.  The web server’s response to an invalid URL

Figure 5-19.  Testing an invalid URL

Chapter 5 The Lighttpd Web Server

195

�Creating the Directory Index of the Online Service
Use the following commands at the Linux terminal to create index.php:

$ cd /var/www/html

$ sudo gedit index.php

Insert the following lines for the index.php source code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:yellow;

}

.center {

 background-color:yellow;

 padding: 50px 50px;

 border: 3px dotted white;

 text-align: center;

 font-size:56px;

 color:darkblue;

 text-shadow: 2px 2px #ffffff;

 position:absolute;

 top:50%;

 left:50%;

 -ms-transform: translateX(-50%) translateY(-50%);

 -webkit-transform: translate(-50%,-50%);

 transform: translate(-50%,-50%);

}

input[type=text] {

 width: 400px;

 height:50px;

Chapter 5 The Lighttpd Web Server

196

 border: 3px solid darkblue;

 font-size:56px;

 color:darkblue;

 background-color:yellow;

 padding: 10px 10px;

}

h1{

color:darkblue;

font-size:56px;

}

</style>

</head>

<body>

<h1 id="id1"></h1>

<script>

function sub() {

document.getElementById("id1").innerHTML = "Please wait...";

}

</script>

<div class="center">

<form name="form1" method="post" action="screenshot.php" onsubmit="sub()">

 URL: <input type="text" name="url">

</form>

</div>

</body>

</html>

This PHP web page basically includes the form that submits a URL to the web

server. It includes a CSS section for defining properties for styling the HTML elements.

The basic content of this web page is a form that includes just one textbox named url.

This is the object the client uses to submit the site’s URL. The form’s method is POST,

and the action is set to the PHP file screenshot.php. Therefore, screenshot.php will

take action to process the user request on the web server since no other directory path

is included.

Chapter 5 The Lighttpd Web Server

197

A JavaScript onsubmit type function, named sub(), is assigned to the onsubmit event

of the form. Therefore, the function sub() will execute when the form is submitted. One

line is included in this function, shown here:

document.getElementById("id1").innerHTML = "Please wait...";

The web page’s HTML element with the value of the id (Identity) attribute equal

to id1 is returned by getElementById(). getElementById() is a method of the

document instance, and the document represents the current web page. The element

of the current web page with id equal to id1 is the header with size 1 (<h1>). For this

element, the innerHTML property indicates the header text, which is the text included

between the start and end <h1> tags. When the user presses the Enter key and before

the new web page loads, the message “Please wait...” will fill the text between the

start/end <h1> tags, which is initially empty.

�Creating the Action File for the Online Service
To create screenshot.php in the document root of the Lighttpd server, enter the

following commands at the Linux terminal:

$ cd /var/www/html

$ sudo gedit screenshot.php

Enter the following lines and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

body {

background-color:yellow;

}

</style>

</head>

Chapter 5 The Lighttpd Web Server

198

<body>

<?php

if(!empty($_POST['url'])){

$url = $_POST["url"];

$command = "xvfb-run --server-args=\"-screen 0, 1366x768x24\" wkhtmltoimage

--crop-w 1366 --crop-h 768 " . $url . " /var/www/html/screenshot/php.png";

exec($command, $out, $status);

if ($status===0) {

$command2 = "convert -resize 50% /var/www/html/screenshot/php.png /var/

www/html/screenshot/php.png";

shell_exec($command2);

echo '<img style="display:block;margin-left:auto;margin-right:auto;"src="

screenshot/php.png">';

} else {

echo '<div><p style="font-size:80px;color:darkblue;text-

align:center;">Please enter a valid URL.</p></div>';

echo '<div>';

echo '<button style="font-size:80px;color:yellow;background-color:darkblue;

margin:auto;display:block;">Go Back</button>';

echo '</div>';

}

}

?>

</body>

</html>

The PHP code accepts as $_POST["url"] the value submitted by the textbox named

url in the form of index.php. This is then assigned as the value of the PHP variable

$url. This value is the URL entered by the user, which may be valid or invalid, and it is

the information that the web server requires to act. The PHP engine that evaluates the

screenshot.php source code uses the URL to form the following string:

 xvfb-run --server-args=\"-screen 0, 1366x768x24\" wkhtmltoimage --crop-w

1366 --crop-h 768 " . $url . " /var/www/html/screenshot/php.png

Chapter 5 The Lighttpd Web Server

199

This string consists of the command and the command arguments that the PHP

engine has to pass to the Linux terminal to create an image of the web site corresponding

to the URL.

This certainly looks like a long command that requires some explanation. It uses

the wkhtmltoimage open source command-line tool, which renders a web page into

an image file. To enable the PHP engine to use the previous command, you have

to download and install wkhtmltoimage using the following command at the Linux

terminal:

$ sudo apt-get install wkhtmltopdf

An example of running wkhtmltoimage from the Linux terminal is as follows:

$ wkhtmltoimage https://www.amazon.com amazon.png

This creates the image amazon.png that depicts the home page of amazon.com.

This is a large image because the Amazon home page spans many computer screens, as

viewed in Figure 5-21.

Chapter 5 The Lighttpd Web Server

http://amazon.com

200

Figure 5-21.  The large image created by wkhtmltoimage for Amazon.com

Chapter 5 The Lighttpd Web Server

http://amazon.com

201

To include only the upper part, the image must be cropped to the screen dimensions

of the computer the program was used on, e.g., 1366×768, using the crop width (crop-w)

and the crop height (crop-h) arguments.

$ wkhtmltoimage --crop-w 1366 --crop-h 768 https://www.amazon.com amazon.

png

Although the previous command runs if used directly at the command line, using

it from the PHP engine may require an X Server specified for the graphics part. For this,

you can download the Xvfb (X virtual framebuffer) server, which enables the PHP engine

to run graphical applications without a display. Download and install Xvfb using the

following at the Linux terminal:

$ sudo apt-get install xvfb

The following command, run from the PHP engine, starts wkhtmltoimage using the

Xvfb server:

$command = "xvfb-run --server-args=\"-screen 0, 1366x768x24\" wkhtmltoimage

--crop-w 1366 --crop-h 768 " . $url . " /var/www/html/screenshot/php.png";

Notice that $command is the variable that stores the string of the command to run, and

notice that escape characters (\) were used to retain the double quotes inside the string.

Using the dot (.) notation, the $url variable (the URL sent by the client) is concatenated

with two strings, i.e., the first part of the command and the file path of the image

file, created by the command. To create the directory screenshot, use the following

command:

$ sudo mkdir /var/www/html/screenshot

Because screenshot was created by the user root, with the previous sudo command,

the screenshot’s owner is user root. You can verify this using the ls –l /var/www/html

command. You need to change the owner of the directory to enable Lighttpd and the PHP

engine to access it in order to store the image files it creates. Use the following command:

$ sudo chown –R www-data:www-data /var/www/html/screenshot

This command sets the new owner of /var/www/html/screenshot to the user www-

data that belongs to the group www-data. The recursive (-R) option is used for www-data

to retain the ownership to all subdirectories of screenshot.

Chapter 5 The Lighttpd Web Server

202

Next, the string value of the $command variable is passed to the exec() PHP function.

exec($command, $out, $status);

In Chapter 4, you used the function shell_exec() to run terminal commands from

the PHP engine. This time, the function exec() is used, which returns the return status

of the command to its third argument ($status in this example). By checking the value

of $status, you can find out whether the $command execution succeeded or failed. You

can use an if condition and replace the //SUCCESS and //FAILURE comments with the

appropriate actions.

if ($status===0) {

//SUCCESS

} else {

//FAILURE

}

For the success case, you can use the following source code lines:

$command2 = "convert -resize 50% /var/www/html/screenshot/php.png /var/

www/html/screenshot/php.png";

shell_exec($command2);

echo '<img style="display:block;margin-left:auto;margin-right:auto;"

src="screenshot/php.png">';

A second PHP variable, $command2, is used to store another command, convert,

which is used to resize the image at a rate of 50 percent. The file path is used twice

because using convert you have the option to convert the file format, such as from PNG

to JPEG. For this, you would enter the following at the command line:

$ convert �-resize 50% /var/www/html/screenshot/php.png /var/www/html/

screenshot/php.jpg

This time the function shell_exec() is used to execute the second command.

To use convert, download and install the imagemagik package using the following:

$ sudo apt-get install imagemagick

Chapter 5 The Lighttpd Web Server

203

The final command of the success case creates an HTML image tag () that

renders the previously created php.png image at the center of the screen.

echo '<img style="display:block;margin-left:auto;margin-right:auto;"

src="screenshot/php.png">';

For the failure case, you can use the following source code:

echo '<div><p style="font-size:80px;color:darkblue;text-

align:center;">Please enter a valid URL.</p></div>';

echo '<div>';

echo '<button style="font-size:80px;color:yellow;background-color:darkblue;

margin:auto;display:block;">Go Back</button>';

echo '</div>';

This returns a web page with the message “Please enter a valid URL.” to the client

and also creates a button that, when clicked, returns the user to the site’s home page.

�Enabling the Site to Serve Multiple Client Requests
While the source code of screenshot.php works well for a single client request, as

tested previously, the server cannot dispatch multiple client requests when they are

issued simultaneously because two or more Xvfb simultaneously calls fail. To verify this,

open two (or more) tabs in your browser, all using the URL http://webtoolsonline.

servehttp.com. In the textbox of the first tab, insert a URL of a site for testing and press

the Enter key. Switch quickly to the second tab and do the same. Notice that while the

first client request is fulfilled, the second fails. Figure 5-22 displays two tabs, with the

second one including the “failure” page.

Chapter 5 The Lighttpd Web Server

http://webtoolsonline.servehttp.com
http://webtoolsonline.servehttp.com

204

Hint!  You can also test this from the command line by calling the xvfb
command used in screenshot.php twice (as fast as you can). Enter the
following, for instance, at the Linux terminal:

$ sudo xvfb-run --server-args="-screen 0, 1366x768x24"
wkhtmltoimage --crop-w 1366 --crop-h 768 https://www.amazon.
com /var/www/html/screenshot/php1.png &

Then enter at the same terminal a command like the following. By using the
ampersand (&) symbol at the end of the command, you are running the command
in the background and the terminal is released to wait for another command.

$ sudo xvfb-run --server-args="-screen 0, 1366x768x24"
wkhtmltoimage --crop-w 1366 --crop-h 768 https:// https://www.
barnesandnoble.com /var/www/html/screenshot/php2.png &

The following message is output to the terminal the second time:

xvfb-run: error: Xvfb failed to start

Figure 5-22.  Issuing two simultaneous client requests to the site

Chapter 5 The Lighttpd Web Server

﻿https://www.barnesandnoble.com﻿
﻿https://www.barnesandnoble.com﻿

205

To solve this problem, create a second version of the site that will require replacing

the action file screenshot.php with screenshot2.php in index.php. Use the following

command to edit index.php:

$ sudo gedit /var/www/html/index.php

In the form tag, replace screenshot.php with screenshot2.php.

<form name="form1" method="post" action="screenshot2.php" onsubmit="sub()">

Save the file and create the new action file.

$ sudo gedit /var/www/html/screenshot2.php

In the new version, the PHP file locking mechanism will be used to block all other

client requests when an initial one is served. Therefore, only one request each time will

be enabled to use the PHP code that creates the PNG file from a given URL. You’ll create

a text file, e.g., lock.txt, to be used just for implementing the file locking mechanism,

without serving any other purpose in the source code. At the Linux terminal, use the

touch command to create the text file.

$ soudo touch /var/www/html/lock.txt

Also, use the chown command to set the new owner of the file to the user assumed by

the web server and PHP, www-data.

$ sudo chown www-data:www-data /var/www/html/lock.txt

The new text file will be used from the screenshot2.php source code as follows:

$fp = fopen("lock.txt", "w");

if (flock($fp, LOCK_EX)) {

// PHP source Code that previously conflicted

 flock($fp, LOCK_UN);

}

fclose($fp);

In the previous lines, the file handle fp is created for writing (w) to lock.txt with

a call to the function fopen(). Then comes a call to the function flock(), which locks

the file exclusively (LOCK_EX). The PHP source code is therefore assured to be executed

Chapter 5 The Lighttpd Web Server

206

only from a single process. Other instances will find the file locked and will block until

the file is unlocked. The role of this file is therefore to hand over permission to use the

enclosed code from one process to the other, with the assurance that all other processes

are waiting to take their turn and won’t return without serving the client. With the next

flock() call in the LOCK_UN argument, the file unlocks when the current process is done.

The complete source code of screenshot2.php is as follows:

<html>

<head>

<style>

body {

background-color:yellow;

}

</style>

</head>

<body>

<?php

if(!empty($_POST['url'])){

$url = $_POST["url"];

$fp = fopen("lock.txt", "w");

if (flock($fp, LOCK_EX)) {

$command = "xvfb-run --server-args=\"-screen 0, 1366x768x24\" wkhtmltoimage

--crop-w 1366 --crop-h 768 " . $url . " /var/www/html/screenshot/php2.png";

exec($command, $out, $status);

if ($status===0) {

$command2 = "convert -resize 50% /var/www/html/screenshot/php2.png /var/

www/html/screenshot/php2.png";

shell_exec($command2);

echo '<img style="display:block;margin-left:auto;margin-right:auto;"

src="screenshot/php2.png">';

} else {

echo '<div><p style="font-size:80px;color:darkblue;text-

align:center;">Please enter a valid URL.</p></div>';

echo '<div>';

echo '<button style="font-size:80px;color:yellow;background-color:darkblue;

margin:auto;display:block;">Go Back</button>';

Chapter 5 The Lighttpd Web Server

207

echo '</div>';

}

flock($fp, LOCK_UN);

}

fclose($fp);

}

?>

</body>

</html>

Test the new version of the site by opening two (or more) tabs in your browser and

entering a URL in each web page’s textbox. As shown in Figure 5-23, all client requests

are now dispatched.

When you have issued the second request, switch to the Linux terminal and enter the

following command:

$ sudo lslocks

Figure 5-23.  Testing the site with multiple client requests succeeds

Chapter 5 The Lighttpd Web Server

208

This command displays information about the current file locks in the system. The

output of the command includes two records about lock.txt, which means that there

are currently two processes that lock or try to exercise a lock to the file test.txt. In this

example, the records have the following form:

php-cgi 722 FLOCK 0B WRITE* 0 0 �0 /var/www/

html/lock.txt

php-cgi 724 FLOCK 0B WRITE 0 0 �0 /var/www/

html/lock.txt

Here, 722 and 724 are the process IDs (PIDs) of php-cgi, the process that executes

the PHP source code. Use, for instance, the following command to verify this:

$ ps xa | grep 724

The command’s output is as follows:

724 ? S 0:00 /usr/bin/php-cgi

When the first client request is dispatched and the image of the test page is rendered

to the web page, enter the lslocks command at the terminal another time:

$ sudo lslocks

As the command’s output indicates, this time there is only one record about lock.

txt, which means only one process locks lock.txt.

php-cgi 722 FLOCK 0B WRITE 0 0 �0 /var/www/

html/lock.txt

When the second client request is fulfilled, try lslocks again. This time, as expected,

no records are output about lock.txt.

�Creating an Animated PNG Image
In the project of the previous section, it is a good idea to include an animated image that

appears while the client’s request is being processed to signify that the wait is because of

the request processing and not because of any network latency or other problem. This

improves the user’s experience and makes the waiting time less boring.

Chapter 5 The Lighttpd Web Server

209

You can create animated images using software applications on your PC or using

online tools. In this example, you will use the online tool https://ezgif.com/apng-

maker to create an animated PNG image. The procedure of making the animated PNG

file is similar to using other online PNG animation tools.

To create the animated PNG image file, you need to create a number of PNG files

used as frames that will be displayed consecutively and create the effect of animation.

There is a basic option you have to configure, which is the time that should elapse

between each frame. All PNG frames, along with the time lapse information, are then

packaged into a final PNG file, in other words, the animated PNG file.

Use your favorite image editor to create a PNG image like file 0.png, shown in

Figure 5-24.

Figure 5-24.  The pattern for making the images for the animated PNG image

This image will be used as a pattern that other PNGs will be based on. I purposely

used black to paint the unused areas, because with the ezgif.com online service, it is

easy to turn black to transparent. This means when the image is loaded in your web

page, the black color will be replaced by the current background of the page. You can

also use other colors for setting transparency, but because an RGB code is required, it is

best to do this with black or with white.

Figure 5-25 displays the idea behind the animated PNG. You create six PNG files,

file 1.png up to file 6.png, with each one lighting up a different square with a chosen

color. For example, the first image lights up the first square, the second image lights up

the second square, and so on. Rendering all images, one after the other, has the effect

of moving the bright color from the first to the last square. Then just copy file 5.png as

7.png, 4.png as 8.png, 3.png as 9.png, and finally 2.png as 10.png. Therefore, after

6.png, the sequence returns backward until file 10.png, and then everything starts again

from the beginning.

Chapter 5 The Lighttpd Web Server

https://ezgif.com/apng-maker
https://ezgif.com/apng-maker
http://ezgif.com

210

Place files 1.png up to 10.png in the folder png and zip the files, creating a zipped file.

Enter the URL https://ezgif.com/apng-maker in your browser’s address bar to visit the

web page, as shown in Figure 5-26. Click the Choose Files button and located the zipped

folder with the PNG files in the directory tree of your computer. Click the Open button in

the dialog and then click the Upload! button on the ezgif.com web page.

Figure 5-25.  The PNG images required for creating the animated PNG file

Chapter 5 The Lighttpd Web Server

https://ezgif.com/apng-maker
http://ezgif.com

211

The uploaded zipped file is extracted, and all images are visible in your browser’s

window, as displayed in Figure 5-27.

Figure 5-26.  The Animated PNG Maker web page

Figure 5-27.  The uploaded images to the Animated PNG Maker site

Chapter 5 The Lighttpd Web Server

212

Scroll down to view the toolbar, as displayed in Figure 5-29. Click the effects tool.

On this web page, you can set the delay time and also the loop count. You can leave those

settings at their default values. Scroll down and click the Make APNG! button. As shown in

Figure 5-28, the animated PNG file has been created under “Animated PNG output.”

Figure 5-28.  The Animated PNG file displayed on the ezgif.com web page

Figure 5-29.  The effects tool in the ezgif.com toolbar

Chapter 5 The Lighttpd Web Server

http://ezgif.com
http://ezgif.com

213

Figure 5-31.  The processed image as viewed on the ezgif.com web page

Figure 5-30.  The ezgif.com web page buttons for setting color transparency

The web page displayed in Figure 5-30 appears. In the “Replace color with

transparency” section, select the black box to turn all the black pixels of the PNG files

transparent. Click the “Apply selected!” button.

The new processed image with the transparency set renders in the “Processed

image” section and starts animating, as shown in Figure 5-31.

Chapter 5 The Lighttpd Web Server

214

Right-click the image, and in the pop-up menu that appears select “Save image as”

(or your browser’s equivalent option). In the directory tree of the dialog that appears,

set the destination of the home directory as animation.png. Use the following sudo

command to enable copying the file to the document root of the site:

$ sudo mv ~/animation.png /var/www/html

Change the file owner (set with sudo to root) to www-data.

$ sudo chown www-data:www-data /var/www/html/animation.png

Use the animated PNG image instead of the “Please wait…” message. The source

code of index.php is now as follows:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:yellow;

}

.center {

 background-color:yellow;

 padding: 50px 50px;

 border: 3px dotted white;

 text-align: center;

 font-size:56px;

 color:darkblue;

 text-shadow: 2px 2px #ffffff;

 position:absolute;

 top:50%;

 left:50%;

 -ms-transform: translateX(-50%) translateY(-50%);

 -webkit-transform: translate(-50%,-50%);

 transform: translate(-50%,-50%);

}

Chapter 5 The Lighttpd Web Server

215

input[type=text] {

 width: 400px;

 height:50px;

 border: 3px solid darkblue;

 font-size:56px;

 color:darkblue;

 background-color:yellow;

 padding: 10px 10px;

}

#id1{

display:none;

margin-left: auto;

margin-right: auto;

}

</style>

</head>

<body>

<script>

function sub() {

document.getElementById("id1").style.display = "block";

}

</script>

<div class="center">

<form name="form1" method="post" action="screenshot2.php" onsubmit="sub()">

 URL: <input type="text" name="url">

</form>

</div>

</body>

</html>

Chapter 5 The Lighttpd Web Server

216

The function getElementById() in the JavaScript source code in this version of the

function sub() accesses the element of the current web page (document) with a value

for the attribute id equal to id1.

document.getElementById("id1").style.display = "block";

This id belongs to the image element. Its style is then accessed with the style

property, which represents an element’s style attribute. The display style property is set

then to block. In the CSS section of the source code, the display for the element with the

id equal to id1 was previously set to none.

#id1{

display:none;

margin-left: auto;

margin-right: auto;

}

Therefore, by submitting the form, the function sub() runs, and this displays the

animated PNG, which is the image with the id property equal to id1.

The new directory index when the user URL is processed looks like the one in

Figure 5-32.

Figure 5-32.  The animated PNG runs while waiting for the web server to respond

By creating an inspired animated PNG image, the waiting time is more fun.

Chapter 5 The Lighttpd Web Server

217

�Summary
In this chapter, you installed and set up Lighttpd, an open source web server. You had

the chance to use features similar to Apache in another web server, and ideally this

will make the transition to a third web server more straightforward. You mainly set the

directory index, document root, listening port number, listening IP address or hostname,

virtual servers, log files, and custom error reply web pages.

You also created another online web service that tests web pages remotely. In

the following chapter, you will start using the MySQL database to take your online

services to another level. With database queries enabled, your site’s capabilities

greatly increase.

Chapter 5 The Lighttpd Web Server

219
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_6

CHAPTER 6

The MySQL Database
Server
With PHP you can enable the web server to interface with any other program. One of

the most commonly used applications for interfacing with a web server is a database

server. With a database connection to the web server, your site can search the data of the

database system and thus offer dynamic content. There is a large list of database systems

to choose from. In this chapter, you will download and start using one of the most

common ones, MySQL, which is a relational database that utilizes the Structured Query

Language (SQL). SQL is the most widespread set of instructions used to set up and query

a database system.

In this chapter, you will use some basic SQL commands to create and manage a

MySQL database and to create a shell script to automatically feed a MySQL database

with data collected from a web site, a process that is often called web scraping.

�Installing and Testing MySQL
Use the following command at the Linux terminal to download the MySQL database

system:

$ sudo apt-get install mysql-server mysql-client

The mysql-server package will install the MySQL database server, which you can

interact with from the terminal by using the mysql command from the mysql-client

package. During the installation process, the dialog shown in Figure 6-1 appears, and

you are prompted to enter a password for the MySQL administrator user, named root.

In the examples used in this book, no password was provided for accessing the MySQL

server, and the password value in the source code examples is an empty string. Likewise,

you can leave the password field blank and just press the Enter key.

220

A second window appears for the password confirmation. If you did not enter a

password previously, leave the field in this window empty and press Enter again.

The installation process continues, with information displayed in the terminal until

completion.

To find out the status of the MySQL server, use the following command:

$ service mysql status

Some sample output of this command indicating that MySQL is up and running is

shown here:

 �Loaded: loaded (/lib/systemd/system/mysql.service; enabled; vendor

preset: enabled)

 Active: active (running) since Sun 2018-08-19 13:23:05 EEST; 3min 3s ago

 �Process: 662 ExecStartPost=/usr/share/mysql/mysql-systemd-start post

(code=exited, status=0/SUCCESS)

 �Process: 608 ExecStartPre=/usr/share/mysql/mysql-systemd-start pre

(code=exited, status=0/SUCCESS)

Figure 6-1.  The first dialog of the MySQL installation process prompts you for a
password

Chapter 6 The MySQL Database Server

221

 Main PID: 661 (mysqld)

 Tasks: 28 (limit: 4915)

 CGroup: /system.slice/mysql.service

 └─661 /usr/sbin/mysqld

Aug 19 13:22:50 pc systemd[1]: Starting MySQL Community Server...

Aug 19 13:23:05 pc systemd[1]: Started MySQL Community Server.

Press Q (quit) on the keyboard to exit the command and release the terminal.

Like with Apache and Lighttpd, to stop the MySQL server and then start it again, use

the following commands at the terminal:

$ sudo service mysql stop

$ sudo service mysql start

To connect to the MySQL server, you can use the mysql client program. At the Linux

terminal, enter the following command:

$ mysql –u root

A welcome message along with some basic information is output to the terminal.

Also, the MySQL prompt appears instead of the shell’s prompt, indicating that you are

connected to the MySQL server, ready to send SQL commands.

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 36

Server version: 5.7.22-0ubuntu0.17.10.1 (Ubuntu)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input

statement.

mysql>

This message notes that you can use the command help or its corresponding

shortcut (\h) to list all the available commands. Run help as a first command.

mysql> help

Chapter 6 The MySQL Database Server

222

The output of help displays the commands that mysql interprets, shown here:

List of all MySQL commands:

Note that all text commands must be first on line and end with ';'

? (\?) Synonym for `help'.

clear (\c) Clear the current input statement.

connect (\r) Reconnect to the server. Optional arguments are db and host.

delimiter (\d) Set statement delimiter.

edit (\e) Edit command with $EDITOR.

ego (\G) Send command to mysql server, display result vertically.

exit (\q) Exit mysql. Same as quit.

go (\g) Send command to mysql server.

help (\h) Display this help.

nopager (\n) Disable pager, print to stdout.

notee (\t) Don't write into outfile.

pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.

print (\p) Print current command.

prompt (\R) Change your mysql prompt.

quit (\q) Quit mysql.

rehash (\#) Rebuild completion hash.

source (\.) �Execute an SQL script file. Takes a file name as an

argument.

status (\s) Get status information from the server.

system (\!) Execute a system shell command.

tee (\T) �Set outfile [to_outfile]. Append everything into given outfile.

use (\u) Use another database. Takes database name as argument.

charset (\C) �Switch to another charset. Might be needed for processing

binlog with multi-byte charsets.

warnings (\W) Show warnings after every statement.

nowarning (\w) Don't show warnings after every statement.

resetconnection(\x) Clean session context.

For server side help, type 'help contents'

Test, for instance, the system command, which executes shell commands, with the

terminal command clear.

mysql> system clear

Chapter 6 The MySQL Database Server

223

The terminal clears with the mysql prompt ready to accept the next command.

To end the MySQL session and return to the Linux terminal, type the exit command.

mysql> exit

With these commands, you can start and exit the MySQL client and also view and

run the set of the available commands that mysql interprets. Next, you will learn about

the SQL statements that mysql issues to the MySQL server to create and manage a

database.

�Creating Your First MySQL Database
Start the mysql client to connect to the server so you can create and use your first

database. In this section, you will design the tables included in this database, you

will define the relationships between the tables, and then you will use the tables to

enter your data. You will then be able to issue database queries on the table data and

generate results.

First connect to the MySQL server by using mysql at the Linux terminal.

$ mysql –u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3

Server version: 5.7.22-0ubuntu0.17.10.1 (Ubuntu)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

To create a new database named library, enter the following create database SQL

statement and press Enter:

mysql> create database library;

Chapter 6 The MySQL Database Server

224

MySQL server responds with the following message:

Query OK, 1 row affected (0.00 sec)

Hint! E ach MySQL command requires a semicolon (;) to indicate the ending.
Some SQL databases require the commands to be inserted in uppercase
characters (e.g., CREATE DATABASE library;). The MySQL syntax used here
does not require uppercase.

To view all the databases included so far, use the show databases statement.

mysql> show databases;

The command’s output indicates that your new database is added in the default set

of the five databases. The MySQL server already includes the following:

+--------------------+

| Database |

+--------------------+

| information_schema |

| apress |

| library |

| mysql |

| performance_schema |

| sys |

+--------------------+

6 rows in set (0.00 sec)

You can delete the new database at any time, regardless of whether it is empty or

filled with data, using the drop database statement.

 mysql> drop database library;

If you test drop at this time, make sure to repeat the previous create command to

re-create the database.

Chapter 6 The MySQL Database Server

225

�Creating and Deleting Tables of Your Database
To start working with the new database, you have to define that the commands that will

follow will refer to that specific database. The use SQL statement indicates the database

that will be used for the commands that follow, up to the point where another use is typed.

mysql> use library;

You’ll now create your first table for the database. For each table that will be

included in the database, the column (field) names and the types of data inserted to the

columns must be defined at creation time. For instance, for the first table of library,

called author, the author’s name and the author’s country will be defined as the table’s

columns. To create table author, enter the following at the mysql prompt:

mysql> CREATE TABLE author (name VARCHAR(30), country CHAR(2));

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.43 sec)

The first column, called name, is of type VARCHAR, which means it’s a string of

characters with a variable length. You allocate the maximum number of characters for

the value in parentheses. In this example, the author’s name can be up to 30 characters.

The second column is of type CHAR, also a string of characters but with a fixed length.

The length in this example is specified in the parentheses as 2, which means the author’s

country will always be inserted as two characters. This is sufficient because the country

column value will be provided as the ISO 3166-1 alpha two-character code, e.g., uk.

To print an overview of the table’s structure, enter the following:

mysql> describe author;

MySQL responds with a description of the table’s columns, shown here:

+---------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+-------------+------+-----+---------+-------+

| name | varchar(30) | YES | | NULL | |

| country | char(2) | YES | | NULL | |

+---------+-------------+------+-----+---------+-------+

2 rows in set (0.01 sec)

Chapter 6 The MySQL Database Server

226

Because it’s a relational database, MySQL allows you to connect two or more tables

by relating their entries. This allows you to store data in multiple tables, instead of just a

big one. This approach makes data more manageable and less error prone.

The queries you’ll execute next will combine columns from both tables. In this

example, details of the books written by the authors in the author’s table will make

up a second table called book. To connect the two tables and allow their data to be

combined, a common column must be used from both tables. This column is defined

as the primary key for the first table and the foreign key for the second. A primary key

(and therefore a foreign key) must have a unique value in each table’s record so that it

discriminates this record from the others.

So far, no primary key was used for the author table. To correct this, you have two

options: delete this table and re-create it or alter the existing table’s structure. You can

delete a table regardless of whether the table is empty or filled with data. Since you are

in an early stages of the database’s design, I’ll display the table deletion here and leave

the table modification for later. To delete table author, use the drop table statement as

follows:

mysql> drop table author;

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.22 sec)

Re-create the table authors, this time including author_id, which is the column that

will be the primary key of the table. The primary key constraint is the one that assigns

author_id as the primary key. The auto_increment keyword defines that for each record

(row) inserted in the table, the author_id value will receive automatically the next

available integer, starting from 1. The data type of author_id is set to int (integer). At the

mysql prompt, enter the following:

mysql> create table author (author_id int auto_increment, primary

key(author_id), name varchar(30), country char(2));

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.44 sec)

Use the describe SQL statement again to view the new table’s structure.

mysql> describe author;

Chapter 6 The MySQL Database Server

227

The MySQL server responds by displaying the following table, which describes the

structure of author:

+-----------+-------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+-------------+------+-----+---------+----------------+

| author_id | int(11) | NO | PRI | NULL | auto_increment |

| name | varchar(30) | YES | | NULL | |

| country | char(2) | YES | | NULL | |

+-----------+-------------+------+-----+---------+----------------+

3 rows in set (0.00 sec)

Notice that the author_id field is identified by the PRI value in the Key column

as the primary key. In addition, as indicated by the NO value in the Null column field,

author_id should not be empty for any record. Also, the auto_increment keyword for

the primary key is shown in the Extra column.

Next, create book, the second table that will be used for the library database.

Column book_id will be the primary key for the book table; column title will hold the

book title, which will be up to 255 characters; column language will be the language the

book is written to; and column author_id will be the foreign key from the author table,

defining a connection among the two tables. The not null constraint is also set so that

all author_id values are required to be filled. At the mysql prompt, enter the following

create table command:

mysql> create table book (book_id char(13), primary key(book_id), title

varchar(255), language varchar(20), author_id int not null, foreign

key(author_id) references author(author_id));

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.57 sec)

Use the describe SQL statement for the second table to view its structure.

mysql> describe book;

Chapter 6 The MySQL Database Server

228

The MySQL server responds with the following output:

+-----------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------+--------------+------+-----+---------+-------+

| book_id | char(13) | NO | PRI | NULL | |

| title | varchar(255) | YES | | NULL | |

| language | varchar(20) | YES | | NULL | |

| author_id | int(11) | NO | MUL | NULL | |

+-----------+--------------+------+-----+---------+-------+

4 rows in set (0.01 sec)

This time, two columns have a NO value in the Null column: book_id, which is the

primary key, and author_id, the foreign key, which was explicitly set to not null. The MUL

(multiple) key indicates that multiple rows may have the same value as the author_id

column.

�Inserting, Displaying, and Deleting Records
You can use the insert into SQL statement to enter a number of records in the author

table. You don’t have to specify the author_id value since it is automatically entered

because of the auto_increment attribute. The following three commands are used, with

their output shown here:

mysql> �insert into author (name, country) values(' Tolkien, John Ronald

Reuel', 'UK');

Query OK, 1 row affected (0.07 sec)

mysql> �insert into author (name, country) values('Steinbeck, John Ernst

Jr.', 'US');

Query OK, 1 row affected (0.07 sec)

mysql> insert into author (name, country) values('Eco, Umberto', 'IT');

Query OK, 1 row affected (0.08 sec)

Chapter 6 The MySQL Database Server

229

To view the records inserted into table author so far, use the select SQL statement,

which is one of the most important statements used for SQL queries. In its simplest

form, without any clause, select takes as argument the asterisk (*) wildcard, which

corresponds to all columns, with no other condition. The following command therefore

displays all elements of table author:

mysql> select * from author;

The command’s output is as follows:

+-----------+----------------------------+---------+

| author_id | name | country |

+-----------+----------------------------+---------+

| 1 | Tolkien, John Ronald Reuel | UK |

| 2 | Steinbeck, John Ernst Jr. | US |

| 3 | Eco, Umberto | IT |

+-----------+----------------------------+---------+

3 rows in set (0.01 sec)

Enter the last record another time.

mysql> insert into author (name, country) values('Eco, Umberto', 'IT');

Use the SQL select statement to view the table records again.

mysql> select * from author;

The duplicated entry for the name is displayed next. In this case, this is an unwanted

result, which can be corrected in the next section.

+-----------+----------------------------+---------+

| author_id | name | country |

+-----------+----------------------------+---------+

| 1 | Tolkien, John Ronald Reuel | UK |

| 2 | Steinbeck, John Ernst Jr. | US |

| 3 | Eco, Umberto | IT |

| 4 | Eco, Umberto | IT |

+-----------+----------------------------+---------+

4 rows in set (0.00 sec)

Chapter 6 The MySQL Database Server

230

Use the delete SQL statement to remove the fourth entry of the author table. In the

following command, the fourth record is indicated with the where clause, which specifies

the records to be deleted by setting the condition: author_id (the primary key) equal to 4.

mysql> delete from author where author_id=4;

The MySQL server responds with an OK message.

Query OK, 1 row affected (0.18 sec)

Display the remaining author records using the SQL select statement.

mysql> select * from author;

The command’s output is as follows:

+-----------+----------------------------+---------+

| author_id | name | country |

+-----------+----------------------------+---------+

| 1 | Tolkien, John Ronald Reuel | UK |

| 2 | Steinbeck, John Ernst Jr. | US |

| 3 | Eco, Umberto | IT |

+-----------+----------------------------+---------+

3 rows in set (0.01 sec)

�Altering the Table’s Structure
Even when a table is filled with data, it is not too late to modify the table’s characteristics.

In this section, you will make three alterations in a table’s structure. The first one

solves the problem of the duplicated entry shown in the previous section. The second

modification will be to the data type, and the third will be to add a column.

First, by using the alter table statement with the add clause, you’ll turn the column

name into a unique key. This is a third kind of key category, with the others being the

primary and foreign keys.

mysql> alter table author add unique(name);

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.47 sec)

Records: 0 Duplicates: 0 Warnings: 0

Chapter 6 The MySQL Database Server

231

To view the new table’s structure and display the UNI (unique) key, use the describe

SQL statement.

mysql> describe author;

+-----------+-------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+-------------+------+-----+---------+----------------+

| author_id | int(11) | NO | PRI | NULL | auto_increment |

| name | varchar(30) | YES | UNI | NULL | |

| country | char(2) | YES | | NULL | |

+-----------+-------------+------+-----+---------+----------------+

3 rows in set (0.00 sec)

To test the unique key, use the insert SQL statement with a value for the column

name already entered.

mysql> insert into author(name, country) values('Eco, Umberto', 'IT');

The duplicated record is not allowed in the table, and the web server responds with

an error message.

ERROR 1062 (23000): Duplicate entry 'Eco, Umberto' for key 'name'

As the second example of the alter table statement, you will change the data type

of a column. For the author table, try first to enter a record with a name value larger than

30 characters.

mysql> �insert into author (name, country) values('Solzhenitsyn, Aleksandr

Isayevich', 'RU');

The MySQL server responds with an error message.

ERROR 1406 (22001): Data too long for column 'name' at row 1

Use the alter table SQL statement to modify the data type of the name column.

mysql> alter table author modify name varchar(255);

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.56 sec)

Records: 0 Duplicates: 0 Warnings: 0

Chapter 6 The MySQL Database Server

232

Try to enter the previous entry again with the long name.

mysql> �insert into author (name, country) values(Solzhenitsyn, Aleksandr

Isayevich', 'RU');

This time MySQL responds with an OK message.

Query OK, 1 row affected (0.07 sec)

With the select statement, you can view the previous entry of the author table.

mysql> select * from author;

MySQL displays the result.

+-----------+-----------------------------------+---------+

| author_id | name | country |

+-----------+-----------------------------------+---------+

| 1 | Tolkien, John Ronald Reuel | UK |

| 2 | Steinbeck, John Ernst Jr. | US |

| 3 | Eco, Umberto | IT |

| 6 | Solzhenitsyn, Aleksandr Isayevich | RU |

+-----------+-----------------------------------+---------+

4 rows in set (0.00 sec)

Use the describe SQL statement to view the new data type, reflected in the table’s

structure.

mysql> describe author;

The command’s output displays a data type of varchar(255) instead of varchar(30).

+-----------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+--------------+------+-----+---------+----------------+

| author_id | int(11) | NO | PRI | NULL | auto_increment |

| name | varchar(255) | YES | UNI | NULL | |

| country | char(2) | YES | | NULL | |

+-----------+--------------+------+-----+---------+----------------+

3 rows in set (0.01 sec)

Chapter 6 The MySQL Database Server

233

For the third modification, you will add a new column to the book table, for instance

pub_date, corresponding to the publication date of each book. Like most modern

programming environments, MySQL supports a large set of data types. Common values

such as date, time, or year are expected to have their own type. This is the case with the

year type that will be used next. At the mysql prompt, enter the following:

mysql> alter table book add pub_date year;

MySQL responds with an OK message.

Query OK, 0 rows affected (1.16 sec)

Records: 0 Duplicates: 0 Warnings: 0

To view the new book structure, use the describe statement.

mysql> describe book;

The MySQL server responds by displaying the new structure of the book table.

+-----------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------+--------------+------+-----+---------+-------+

| book_id | char(13) | NO | PRI | NULL | |

| title | varchar(255) | YES | | NULL | |

| language | varchar(20) | YES | | NULL | |

| author_id | int(11) | NO | MUL | NULL | |

| pub_date | year(4) | YES | | NULL | |

+-----------+--------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

�Testing the Table Connection
By using a foreign key, the two database tables are connected with a parent-child

relationship. In this example, the parent table is author, which provides its primary

key as a foreign key to the book table. You can’t delete the author table if you have not

already deleted the book table. Also, you can’t insert a book entry with a foreign key value

that does not exist.

Chapter 6 The MySQL Database Server

234

In the following command, the nonexistent value 8 of the foreign key is used:

mysql> insert into book (book_id, title, language, author_id, pub_date)

values('9780743273565','The Great Gatsby', 'English',8,2004);

The MySQL server responds with an error message.

ERROR 1452 (23000): Cannot add or update a child row: a foreign key

constraint fails (`library`.`book`, CONSTRAINT `book_ibfk_1` FOREIGN KEY

(`author_id`) REFERENCES `author` (`author_id`))

Enter some records in the table book to be used in the query examples. For instance,

run the following insert commands (the output of each command is also included):

mysql> insert into book (book_id, title, language, author_id, pub_date)

values('9780140177374','The Pearl','English',2,2000);

Query OK, 1 row affected (0.06 sec)

mysql> insert into book (book_id, title, language, author_id, pub_date)

values('9782806272836','De ratones y hombres','Spanish',2,2016);

Query OK, 1 row affected (0.07 sec)

mysql> insert into book (book_id, title, language, author_id, pub_date)

values('9780547928227','The Hobbit','English',1,2012);

Query OK, 1 row affected (0.06 sec)

mysql> insert into book (book_id, title, language, author_id, pub_date)

values('9780547928197','The Return of the King','English',1,2012);

Query OK, 1 row affected (0.07 sec)

mysql> insert into book (book_id, title, language, author_id, pub_

date) values('9780143105459','The Acts of King Arthur and His Noble

Knights','English',2,2008);

Query OK, 1 row affected (0.06 sec)

In the previous commands, since book_id is the primary key for book, the book_id

values must be unique. For the values of the book_id column, the ISBN-13 of each book

was chosen because it’s unique to each book.

To view the book records, do a basic query by selecting all (*) records.

mysql> select * from book;

Chapter 6 The MySQL Database Server

235

MySQL outputs the following result:

+---------------+-----------------------+----------+-----------+----------+

| book_id | title | language | author_id | pub_date |

+---------------+-----------------------+----------+-----------+----------+

| 9780140177374 | The Pearl | English | 2 | 2000 |

| 9780143105459 | The Acts of King

 Arthur and His Noble

 Knights | English | 2 | 2008 |

| 9780547928197 | The Return of the King | English | 1 | 2012 |

| 9780547928227 | The Hobbit | English | 1 | 2012 |

| 9782806272836 | De ratones y hombres | Spanish | 2 | 2016 |

+---------------+-----------------------+----------+-----------+----------+

5 rows in set (0.00 sec)

The two tables, connected now with a parent-child relationship and filled with

records, are used in the following section for extracting information from the database.

In other words, you’ll next query the database.

�Performing SQL Queries with the MySQL Server
You have used the select statement so far in its simplest form and with the asterisk

wildcard. select can be combined with functions such as avg (average), count, max,

min, round, etc. The where clause is used to filter records by providing a condition that

must be met. For instance, to count the number of book records with the language set to

English, use the following:

mysql> select count(book_id) from book where language='English';

The result is four books.

+----------------+

| count(book_id) |

+----------------+

| 4 |

+----------------+

1 row in set (0.00 sec)

Chapter 6 The MySQL Database Server

236

You’ll now use the select statement to execute a query that selects columns from

both tables. To specify a column, the table’s name must be prepended to the column's

name, separated by a period. For instance, using this notation, book.author_id

discriminates from author.author_id. The outcome of this combination is determined

by the join clause. In the next example, the inner join clause is used, which selects for

the output only records that have matching values in both tables.

mysql> select book.title, author.name, book.pub_date from author inner join

book on book.author_id=author.author_id where book.language='English';

The inner join includes records of the two tables that have the same value in their

author_id columns. The columns for the records included are the title (from book),

the name (from author), and the publication date (from author) where the language

column in the book table is English.

MySQL displays the following output:

+---------------------------------+----------------------------+----------+

| title | name | pub_date |

+---------------------------------+----------------------------+----------+

| The Pearl | Steinbeck, John Ernst Jr. | 2000 |

| The Acts of King Arthur and

 His Noble Knights | Steinbeck, John Ernst Jr. | 2008 |

| The Return of the King | Tolkien, John Ronald Reuel | 2012 |

| The Hobbit | Tolkien, John Ronald Reuel | 2012 |

+---------------------------------+----------------------------+----------+

4 rows in set (0.00 sec)

The following variation of the previous command sorts the records according to the

pub_date column in descending order:

mysql> select book.title, author.name, book.pub_date from author inner join

book on book.author_id=author.author_id where book.language='English' order

by book.pub_date desc;

Chapter 6 The MySQL Database Server

237

+---------------------------------+----------------------------+----------+

| title | name | pub_date |

+---------------------------------+----------------------------+----------+

| The Return of the King | Tolkien, John Ronald Reuel | 2012 |

| The Hobbit | Tolkien, John Ronald Reuel | 2012 |

| The Acts of King Arthur and

 His Noble Knights | Steinbeck, John Ernst Jr. | 2008 |

| The Pearl | Steinbeck, John Ernst Jr. | 2000 |

+---------------------------------+----------------------------+----------+

4 rows in set (0.00 sec)

The following query includes a count function and an inner join clause. The group

by clause groups the results by the column author.name.

mysql> select count(book.title), author.name from author inner join book on

book.author_id=author.author_id group by author.name;

As the output indicates, for the first author, three books are included in the database

and for the second two books are included.

+-------------------+----------------------------+

| count(book.title) | name |

+-------------------+----------------------------+

| 3 | Steinbeck, John Ernst Jr. |

| 2 | Tolkien, John Ronald Reuel |

+-------------------+----------------------------+

2 rows in set (0.00 sec)

In the following command, two columns participate in the group by clause.

mysql> select count(book.title), author.name, pub_date from author inner

join book on book.author_id=author.author_id group by author.name, pub_date;

Chapter 6 The MySQL Database Server

http://author.name

238

The query’s result is as follows:

+-------------------+----------------------------+----------+

| count(book.title) | name | pub_date |

+-------------------+----------------------------+----------+

| 1 | Steinbeck, John Ernst Jr. | 2000 |

| 1 | Steinbeck, John Ernst Jr. | 2008 |

| 1 | Steinbeck, John Ernst Jr. | 2016 |

| 2 | Tolkien, John Ronald Reuel | 2012 |

+-------------------+----------------------------+----------+

4 rows in set (0.00 sec)

In the previous table, the output is grouped from right to left, first by publication date

(two records have the value 2012) and then by author’s name.

�Modifying Records with the update Command
Use the following update and set statements to change an author’s name:

mysql> update author set name='Tolkien, J.R.R.' where name='Tolkien, John

Ronald Reuel';

To view the changes, display the author table’s contents.

mysql> select * from author;

The MySQL server displays the following result:

+-----------+-----------------------------------+---------+

| author_id | name | country |

+-----------+-----------------------------------+---------+

| 1 | Tolkien, J.R.R. | UK |

| 2 | Steinbeck, John Ernst Jr. | US |

| 3 | Eco, Umberto | IT |

| 6 | Solzhenitsyn, Aleksandr Isayevich | RU |

+-----------+-----------------------------------+---------+

4 rows in set (0.01 sec)

Chapter 6 The MySQL Database Server

239

�Using the SQL like Operator
A useful operator, used with the where clause, is like. You can use it to query a database

when the user wants to specify a keyword but recalls only part of it. With like, you can

query for a pattern that is included in the value of a column. For instance, to look for the

title, author, and publication date (year) of a book that includes the word king in its title,

you can use the like clause as shown here:

mysql> select book.title, author.name, book.pub_date from author inner join

book on book.author_id=author.author_id where book.title like '%king%';

The command’s output is as follows:

+----------------------------------+---------------------------+----------+

| title | name | pub_date |

+----------------------------------+---------------------------+----------+

| The Acts of King Arthur and

 His Noble Knights | Steinbeck, John Ernst Jr. | 2008 |

| The Return of the King | Tolkien, J.R.R. | 2012 |

+----------------------------------+---------------------------+----------+

2 rows in set (0.00 sec)

Two wildcard characters are used with like.

•	 The percentage (%) wildcard matches any string of zero or more

characters.

•	 The underscore (_) wildcard matches a single character.

You’ll next use the previous command in another way. This time the title must end

with the word king.

mysql> select book.title, author.name, book.pub_date from author inner join

book on book.author_id=author.author_id where book.title like '%king';

Chapter 6 The MySQL Database Server

240

The command’s output is as follows:

+------------------------+-----------------+----------+

| title | name | pub_date |

+------------------------+-----------------+----------+

| The Return of the King | Tolkien, J.R.R. | 2012 |

+------------------------+-----------------+----------+

1 row in set (0.00 sec)

You can try to delete the two tables used so far. Try first to delete the parent table author.

mysql> drop table author;

MySQL displays the following error message:

ERROR 1217 (23000): Cannot delete or update a parent row: a foreign key

constraint fails

The constraint, which exists because of the parent-child relationship, does not allow

the parent table to be deleted without previously deleting the child table. So, use the

drop table statement to delete the child table, book.

mysql> drop table book;

The MySQL server responds with the following output:

Query OK, 0 rows affected (0.23 sec)

Now you can delete author.

mysql> drop table author;

The table is deleted this time with no complaints:

Query OK, 0 rows affected (0.17 sec)

Chapter 6 The MySQL Database Server

241

�Web Scraping with MySQL and the Linux Shell
In the previous examples, you manually inserted records into your database. Filling your

database one record at a time is certainly tedious. For more realistic examples, you can

use automated methods to transfer your data to one or more tables.

In this section, you will implement what is commonly called web scraping. This is the

detection and collection of data from various web pages and inserting it into a file (e.g.,

a spreadsheet) or more appropriately into a database. The Bash shell scripting language

and MySQL will be used for this project. Writing a Linux shell script that applies only to a

certain web site may seem like overkill; however, this may help you process thousands of

data records in some cases.

�The URLs Describing the Resources
To start with web scraping, you have to identify the format in which the data is encoded

for a specific portal. To search for data in specific web pages, you first have to describe

their URLs in a systematic way. Consider, for instance, amazon.com. By visiting

any product page, you can find that what uniquely identifies a product for Amazon

is the Amazon Standard Identification Number (ASIN) code. This is a 10-charcter

alphanumeric unique identifier.

The ASIN is included in the URL of the specific product. For example, here is one of

the products returned from searching using the keyword hi-fi:

https://www.amazon.com/Sharp-XLHF102B-HI-Component-MicroSystem/dp/

B00XWIVTXY/ref=sr_1_2?s=amazon-devices&ie=UTF8&qid=1535449079&sr=8-

2&keywords=hi-fi

Figure 6-2 displays the web page with the previous URL.

Chapter 6 The MySQL Database Server

http://amazon.com

242

Usually an identifier like the ASIN in this example specifies the product’s web page

with a more straightforward URL. Try, for instance, the following:

https://www.amazon.com/dp/B00XWIVTXY/

The same web page is rendered with the simplified format, as shown in Figure 6-3.

Figure 6-2.  The ASIN is included in the product’s URL

Chapter 6 The MySQL Database Server

243

A unique identifier is used in most commercial sites. For web sites that deal with

books, there is no need to use any other product identifier because each book is already

identified in a unique way with its ISBN. ISBN stands for International Standard Book

Number and currently is used in two formats.

•	 A 13-digit ISBN, used for books released after the January 1, 2007

•	 A 10-digit ISBN, used for books released before January 1, 2007

Apress.com identifies its products with the 13-digit ISBN identifier. Visit the Apress

home page at apress.com, displayed in Figure 6-4, and then click any link advertising an

Apress book.

Figure 6-3.  The ASIN included in the simplified URL format of a product

Chapter 6 The MySQL Database Server

http://apress.com
http://apress.com

244

As viewed in Figure 6-5, the URL in the address bar for the specific example is as

follows:

https://www.apress.com/gp/book/9781484227183?wt_mc=Internal.

Banner.3.EPR868.APR_DotD_Teaser#otherversion=9781484227190

Figure 6-4.  The Apress home page

Chapter 6 The MySQL Database Server

245

Notice also that (similarly to the previous Amazon.com example) the URL can be

simplified. For instance, the following URL leads to the same web page:

https://www.apress.com/gp/book/9781484227183

The next step is to locate and extract the data format used in the HTML source code

of each product web page. For e-commerce sites, the data format is stored in a consistent

way by implementing a data layer. The structure that defines the data layer for this

example, the appDataLayer struct, is discussed in the following section.

�Designing the Web Scraping Project
The following is the plan for creating the scrapping project: The web scraping shell

script receives as an argument the URL of an Apress web page, which includes

books of a certain category. It downloads this web page and then searches in the

HTML source code of this web page for URLs of web pages that represent certain

books. For each URL, the Bash shell script will perform an HTTPS connection to

download the corresponding web page. The shell script will examine the web page’s

Figure 6-5.  A product page on the Apress site identifies a book with the ISBN in
the URL

Chapter 6 The MySQL Database Server

http://amazon.com

246

data layer, found behind the scenes, in the HTML source code for values of specific

book attributes such as for the title, ISBN, and price. These values will be stored in a

MySQL database table that will be created for gathering the data acquired with the

previous web scraping technique.

Visit first the Apress home page and hover your mouse over the Categories menu at

the top of the web page. As shown in Figure 6-6, a number of menu choices appear, with

each one corresponding to a specific book category.

For this project, you can run the script for some (or even one) of these categories

and collect the attributes of the books appearing in each category. Let’s visit one of those

categories, for instance, Web Development. By clicking this category’s link, the web page

displayed in Figure 6-7 appears.

Figure 6-6.  The Categories menu on the Apress home page

Chapter 6 The MySQL Database Server

247

On this web page, a number of images representing the books appear. Those images

are links to web pages that provide descriptions to the corresponding books.

Hint! E ach option in the Categories menu leads to a web page that includes only
a portion of the category’s books. It is, however, sufficient for examining the web
scraping method here. To view all the books in each category, follow the “Browse
all titles” link in each category.

Notice the URL of the category in the address bar.

https://www.apress.com/gp/web-development

Similarly, the URL is formed for any other category by concatenating two parts.

https://www.apress.com/gp/

It uses the category name, in lowercase, with the space between the words

substituted by a hyphen (-).

Figure 6-7.  The books included in the Web Development category of Apress

Chapter 6 The MySQL Database Server

248

For instance, for the Open Source category, the URL is as follows:

https://www.apress.com/gp/open-source

This consistency can be used to further automate the process and use the script to

search multiple categories; however, to simplify the shell script for this example, one

category will be used to feed the script each time it runs. The following command will be

used at the Linux terminal for the web scraping process:

$./shell.sh https://www.apress.com/gp/web-development apress book

pPriceGross fn isbn

The following are the parts that make up the command:

•	 shell.sh is the name of the shell script that performs the web

scraping.

•	 https://www.apress.com/gp/web-development is the URL of the

category web page, used to provide the URLs of the books included

in the category web page, which finally will be downloaded and

searched for the pPriceGross, fn, and isbn values of each book.

•	 apress is the database name that will be used to store the

information.

•	 book is the apress database’s table that includes the pPriceGross, fn,

and isbn fields.

•	 pPriceGross, fn, and isbn are three fields found in the data layer of

each page that provide values for the price, the name, and the ISBN,

respectively. The number of fields this script supports is variable,

which means that the same script can also run for two or five fields

without changing any part of the source code.

The web page of the URL provided to the shell script command is the category

page that includes a number of URLs leading to product web pages, each one

dedicated to a single book. The product URLs have to be retrieved by the script and

to be visited to extract the values of the pPriceGross, fn, and isbn fields of the data

layer struct.

Chapter 6 The MySQL Database Server

https://www.apress.com/gp/web-development

249

On the category page, all product pages are included between the start and ending

<h3> tags. For instance, a product page link is as follows:

#<h3><a href="/gp/book/9781484233986" onmousedown="wt.sendinfo({linkId:

'recommendation', customClickParameter : { 2 : 'shoppage.

recommendedproducts - 1'}});" data-baynote-pid="978-1-4842-3398-6">CSS

Framework Alternatives</h3>

By including product links in the heading tags of a specific size, size 3 in this case,

the designer of the site separated them from other links that appear in the page. For each

product, the shell script extracts the ISBN, found after the /gp/book/ directory in the

URL, and then uses this ISBN to form the product’s simplified URL. As you recall from

the previous section, this has the following form:

https://www.apress.com/gp/book/{ISBN}

Here’s an example:

https://www.apress.com/gp/book/9781484233986

Collecting the URLs of the products included in the category page is the first part

of the script’s functionality. The second part is visiting all those URLs and extracting

from the HTML source code of the web pages the information about the specified fields

(pPriceGross, fn, and isbn in this example). To locate where those fields are stored

in each product page, visit a book’s URL from https://www.apress.com/gp/web-

development. For instance, visit https://www.apress.com/gp/book/9781484233986,

which is shown in Figure 6-8.

Chapter 6 The MySQL Database Server

https://www.apress.com/gp/web-development
https://www.apress.com/gp/web-development
https://www.apress.com/gp/book/9781484233986

250

Right-click the web page and choose View Page Source from the pop-up menu. As

shown in Figure 6-9, the web page’s source code appears on a new tab in your browser.

Figure 6-8.  Visiting an Apress book web page to view the HTML source code and
locate the fields required for the shell script

Figure 6-9.  The HTML source code of an Apress web page for a specific book

Chapter 6 The MySQL Database Server

251

In the first lines of the source code, you can detect the appDataLayer struct. It looks

like the following:

<script type="text/javascript">

 appDataLayer = [

 {

 "pageType" : "product",

 "topLevelCategory" : "Computer",

 "productCategory" : "Computer",

 "isbn" : "9781484233986",

 "productId" : "9781484233986",

 "pPriceGross" : "21.39",

 "ePriceGross" : "16.99",

 "eIsbn" : "9781484233993",

 "pIsbn" : "9781484233986",

 "fn" : "CSS Framework",

 "description" : "CSS Framework Alternatives",

 "currency" : "EUR",

 "url" : "//www.apress.com/978-1-4842-3398-6",

 "photo" : "https://images.springer.com/sgw/books/medium/9781484233986.jpg",

 "ecommerce" : {

 "currencyCode" : "EUR",

 "detail" : {

 "products" : [{

 "name" : "CSS Framework Alternatives",

 "id" : "978-1-4842-3399-3",

 "price" : "16.99",

 "brand" : "Apress",

 "category" : "Computer Science",

 "variant" : "ebook"

 }, {

 "name" : "CSS Framework Alternatives",

 "id" : "978-1-4842-3398-6",

 "price" : "21.39",

 "brand" : "Apress",

Chapter 6 The MySQL Database Server

252

 "category" : "Computer Science",

 "variant" : "softcover"

 }]

 }

 },

 "content" : {

 "authorization" : {

 "status" : false

 }

 }

}

];

The data layer is a collection of information required to pass data to other systems

or software. The data layer is included in the source code of the web page, and more

specifically to the JavaScript source code, usually as an object or a variable and therefore

is hidden from the user. The format of the data layer can be considered as variable-value

pairs (for instance, variable description and value CSS Framework Alternatives).

This data layer struct, found in each product page, is the resource for the information

that the web scraping script will gather. In the current example, the values of the three

fields retrieved (pPriceGross, fn, and isbn) will be stored in a database table, which is

created in the following section.

�Creating the MySQL Database Used for the Web
Scraping Project
To connect to the MySQL server with mysql, assuming that no MySQL password was set,

use the following at the Linux terminal:

$ mysql –u root

The mysql> prompt appears to receive MySQL commands. To create a new database

called apress, use the following command:

mysql> create database apress;

Chapter 6 The MySQL Database Server

253

Select the specific database to apply the commands that will follow by entering the

following:

mysql> use apress;

With the following command, you create a table called book, which has three fields.

•	 isbn, which is of type CHAR with a length of 13 characters

•	 fn, which is of type VARCHAR with a length up to 40 characters

•	 pPriceGross, of type DECIMAL, with four digits and two decimal places

mysql> create table book (isbn CHAR(13), fn VARCHAR(40), pPriceGross

DECIMAL(4,2));

You can view the table created previously by displaying all the database tables with

the show tables statement.

mysql> show tables;

The command’s output is as follows:

+------------------+

| Tables_in_apress |

+------------------+

| book |

+------------------+

1 row in set (0.01 sec)

To view details about the table’s format, use the following command:

mysql> describe book;

Chapter 6 The MySQL Database Server

254

The command’s output is as follows:

+-------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+-------+

| isbn | char(13) | YES | | NULL | |

| fn | varchar(40) | YES | | NULL | |

| pPriceGross | decimal(4,2) | YES | | NULL | |

+-------------+--------------+------+-----+---------+-------+

3 rows in set (0.00 sec)

In the following section, you will create a Bash shell script that runs the web scraping

project to download the web content, search for the specified fields, and fill the database.

�Implementing the Web Scraping Project
shell.sh is the shell script, implemented with the Bash scripting language, that will be

used for the web scraping project. It is roughly separated into two parts. The first finds

all hyperlinks included between the <h3> and </h3> tags and extracts the ISBN, e.g.,

9781484233986 in this example:

<h3><a href="/gp/book/9781484233986" onmousedown="wt.sendinfo({linkId:

'recommendation', customClickParameter : { 2 : 'shoppage.

recommendedproducts - 1'}});" data-baynote-pid="978-1-4842-3398-6">CSS

Framework Alternatives</h3>

The ISBNs from all links are stored in the file file.txt. Then, in the second part of

the shell code, the ISBNs are used to form the simplified product URLs like the following:

https://www.apress.com/gp/book/9781484233986

All URLs are then visited, and the appDataLayer array in each web page is used to

provide the values for the isbn, fn, and pPriceGross fields. Finally, the fields are stored

in a database table.

To create the file shell.sh in your home directory, enter the following in the Linux

terminal:

$ cd ~

$ gedit shell.sh

Chapter 6 The MySQL Database Server

255

Insert the following lines in shell.sh:

#!/bin/bash

USAGE:

./shell.sh https://www.apress.com/gp/web-development apress book

pPriceGross fn isbn

1st PART

store arguments in a special array

args=("$@");

get number of elements

ELEMENTS=$#;

connect to the URL indicated by the 2nd argument, argument $1 (the first,

$0, is the script name)

fill file.txt with ISBNs of the books

wget -q -O - $1 | \

grep '<h3><a href="/gp/book/' | \

sed 's:.*<a href="/gp/book/::' | \

awk -F'"' '{print $1}' > file.txt;

2nd PART

get all book urls of a web page

for line in `cat file.txt`;

do

echo -e "\n---------------------------\n";

a="https://www.apress.com/gp/book/";

b=aline;

echo $b;

for the number of fields to be retrieved

for ((i=3;i<$ELEMENTS;i++)); do

output=$(\

wget -q -O - $b | \

grep -m 1 ${args[${i}]} | \

awk -F ":" '{print $2}' | \

sed 's/,//g' | \

Chapter 6 The MySQL Database Server

256

sed 's/\"//g');

args2[${i}]=$output;

done

mysql=${args[3]};

for ((i=3+1;i<$ELEMENTS;i++)); do

sql=${args[${i}]};

mysql="$mysql, $sql";

done

echo $mysql;

mysql2="'${args2[3]}'";

mysql2="$(echo $mysql2 | sed 's/ //')";

for ((i=3+1;i<$ELEMENTS;i++)); do

sql2=${args2[${i}]};

sql2="$(echo $sql2 | sed 's/ //')";

mysql2="$mysql2, '$sql2'";

done

echo -e "$mysql2\n";

sqlstring="INSERT INTO $3 ($mysql) VALUES($mysql2);";

mysql --user="root" --database="$2" -e "$sqlstring";

echo $sqlstring;

done

echo -e "\n---------------------------\n";

rm -f file.txt;

To provide execute (x) file permission to yourself as the owner user (u) of the shell

script so that you can execute it like any other program at the terminal, use the chmod

(change mode) command. If your shell file is located in your home directory, enter the

following at the Linux terminal:

$ sudo chmod u+x ~/shell.sh

Chapter 6 The MySQL Database Server

257

The shell.sh script makes use of two classic but still powerful Unix tools used for

text manipulation: awk and sed. It utilizes also the commands grep and cat and the wget

program. A short intro to those commands follows:

•	 awk takes its name from the initials of its developers Aho, Weinberger,

and Kernighan. It is a utility language used for data extraction from

text. awk is often combined with sed, and the most common usage is

to extract a column from text.

•	 sed stands for Stream Editor and is capable of receiving text and

performing operations such as appending, inserting, deleting,

or substituting text. The latter is one of the most commonly used

operations of sed and is the one applied in the current example.

•	 grep is a command-line utility for searching text for lines that match

a regular expression (or just a piece of text). Its name comes from

the text editor command g/re/p that means to globally (g) search a

regular expression (re) and print (p).

•	 cat is used to read content of files or concatenate (hence the

command’s name) files.

•	 wget (web get) is used to fetch content of the web servers it connects

to from the command line.

�The Script’s First Part
The first line of shell.sh sets Bash as the scripting language that will be used in this

shell program:

#!/bin/bash

The next lines starting with a hash (#) are just comments. The comment illustrates by

example the syntax of the shell.sh command.

USAGE:

�./shell.sh https://www.apress.com/gp/web-development apress book

pPriceGross fn isbn

Chapter 6 The MySQL Database Server

258

Notice that the command in the previous comment is executed from the same

directory where the shell script is located (./). When executing a Linux program, a

relative or absolute directory path must be prepended, as shown here:

/home/christos/shell.sh https://www.apress.com/gp/web-development apress

book pPriceGross fn isbn

In the next section, you will enable shell.sh to run from any directory at the

terminal with only its name provided.

The script starts with the following lines:

1st PART

store arguments in a special array

args=("$@");

get number of elements

ELEMENTS=$#;

In Bash, variable $0 indicates the script’s name, $1 is the first argument of the

command, $2 is the second, and so on. The special variable $@ indicates all arguments

passed to the script. The arguments are stored in the args array with the following

instruction:

args=("$@");

The ELEMENTS variable is assigned the number of arguments, indicated by the special

variable $#:

ELEMENTS=$#;

This also could be indicated as ELEMENTS=${#args[@]}.

The next part of the code uses the Unix pipe (|) symbol to apply the Unix piping

technique to a number of commands. By piping the output of the command, the left side

of the symbol becomes input to the command on the right side. The backslash (\) is also

used to indicate that the command is continued to the next line.

wget -q -O - $1 | \

grep '<h3><a href="/gp/book/' | \

sed 's:.*<a href="/gp/book/::' | \

awk -F'"' '{print $1}' > file.txt;

Chapter 6 The MySQL Database Server

259

In the first command, wget runs in quiet (flag -q) mode, outputs the content

retrieved to stdout (flag -O), and connects to the URL indicated with the first argument

($1) of the shell program (the URL of the category web page).

The source code of the web page downloaded with wget is passed therefore to the

grep command to extract the line including the string <h3><a href="/gp/book/, the

fixed part of the hyperlink inserted in the <h3> header, which is the format of the links for

products included in this web page.

The previous line is passed next as input to sed. The default symbol used as a

delimiter in the sed command is the forward slash (/), but since this character is

included in the string, any other symbol can be used instead, for instance a colon (:).

The sed substitution (s) command has, with the colon delimiter, the following syntax:

sed 's:text_to_be_substituted:text_that_replaces_the_original:'

In this example, this applies as follows:

sed 's:.*<a href="/gp/book/::' | \

In the output provided by grep, the text <a href="/gp/book/ with zero or more characters

to the left (.*) is therefore substituted with empty text. Therefore, this text is deleted. Consider,

for instance, the following line with the three dots indicating extra text to the left:

. . .<h3><a href="/gp/book/9781484233986" onmousedown="wt.sendinfo({linkId:

'recommendation', customClickParameter : { 2 : 'shoppage.

recommendedproducts - 1'}});" data-baynote-pid="978-1-4842-3398-6">CSS

Framework Alternatives</h3>

When the previous sed command is fed this line, it outputs the following:

9781484233986" onmousedown="wt.sendinfo({linkId:

'recommendation', customClickParameter : { 2 : 'shoppage.

recommendedproducts - 1'}});" data-baynote-pid="978-1-4842-3398-6">CSS

Framework Alternatives</h3>

This output is then passed as input to awk, which with the –F option defines the

double quotes (") that follow -F as the column separator. It then prints the first column,

and the output is redirected with the greater-than symbol (>) from standard output to the

file file.txt. The first column separated from the second with double quotes is the ISBN.

9781484233986

Chapter 6 The MySQL Database Server

260

Therefore, when the script runs, file.txt includes a number of ISBNs, with each

one placed on its own line.

�The Script’s Second Part
The second part of the script reads each line of file.txt using a for loop and assigns

it during each iteration to the variable line. The variable line holds therefore an ISBN

identifier.

2nd PART

get all book urls of a web page

for line in `cat file.txt`;

do

In the for loop, each ISBN value is concatenated to the fixed string https://www.

apress.com/gp/book/ to form the simplified URL of the products pages. Here’s an

example:

https://www.apress.com/gp/book/9781484233986

In the following lines of the Bash code, variable a, which holds the fixed part of the

URL, is concatenated with the variable line, which holds the specific ISBN to form the

value of variable b, which is the product’s URL:

a="https://www.apress.com/gp/book/";

b=aline;

echo $b;

Notice that the value of b is output to the terminal with the echo Bash command. The

echo commands in the program are used to display the connections performed by the

shell script while the script runs.

The code snippet that follows uses a for loop to make one iteration for any field

entered as a shell argument:

for ((i=3;i<$ELEMENTS;i++)); do

output=$(\

wget -q -O - $b | \

grep -m 1 ${args[${i}]} | \

awk -F ":" '{print $2}' | \

Chapter 6 The MySQL Database Server

https://www.apress.com/gp/book/
https://www.apress.com/gp/book/
https://www.apress.com/gp/book/9781484233986

261

sed 's/,//g' | \

sed 's/\"//g');

args2[${i}]=$output;

done

Consider, for instance, the case that the shell.sh runs with the following command:

�./shell.sh https://www.apress.com/gp/web-development apress book

pPriceGross fn isbn

In this case, the number of fields to be filled in the database is three (pPriceGross,

fn, and isbn), and the loop iterates three times. The loop starts from number 3 because

array args[] includes the following elements for the current example:

args[0] : https://www.apress.com/gp/web-development

args[1] : apress

args[2] : book

args[3] : pPriceGross

args[4] : fn

args[5] : isbn

For each field (arguments 3 to 5), a wget connection is created to the product’s URL,

and the source code of the web page fetched is searched with grep for the specific field

(e.g., pPriceGross). The lines returned by grep are passed next to awk, which uses a

colon (:) as the delimiter symbol to print the second column. Recall that the fields are

found in the appDataLayer[] array of each page, which has the following format:

<script type="text/javascript">

 appDataLayer = [

 {

 "pageType" : "product",

 "topLevelCategory" : "Computer",

 "productCategory" : "Computer",

 "isbn" : "9781484233986",

 "productId" : "9781484233986",

 "pPriceGross" : "21.39",

 "ePriceGross" : "16.99",

Chapter 6 The MySQL Database Server

262

 "eIsbn" : "9781484233993",

 "pIsbn" : "9781484233986",

 "fn" : "CSS Framework",

 . . .

The second column therefore consists of the values of the fields, with the field names

consisting of the first column and with the two columns separated by colons. The values

are included in double quotes and are suffixed with commas. For instance, when grep

searches for the field fn, the second column of the line returned is as follows:

"CSS Framework",

The following two sed commands strip off the double quotes and the commas:

sed 's/,//g' | \

sed 's/\"//g');

The output is assigned to variable output. In this example, this is as follows:

CSS Framework

The value of output fills the corresponding element of a new array called args2[].

args2[${i}]=$output;

Therefore, if args[4] currently has the value fn, args2[4] has the value of the field

fn, in this example CSS Framework.

For each line of file.txt, the args2[3], args2[4], and args2[5] elements are filled.

The following code snippet concatenates the args[] elements with the field names

args[3], args[4], and args[5] using commas:

mysql=${args[3]};

for ((i=3+1;i<$ELEMENTS;i++)); do

sql=${args[${i}]};

mysql="$mysql, $sql";

done

shell.sh was used here with three fields, but it works equally for any number

of fields. For example, if four fields were used, the previous code snippet would

concatenate the elements args[3], args[4], args[5], and args[6] (the new field) using

commas.

Chapter 6 The MySQL Database Server

263

The code runs recursively and assigns the first field name to variable mysql, finds the

next and concatenates the two fields with commas as mysql again, and repeats until all

fields are included.

For the current example, the elements are pPriceGross, fn, and isbn. The variable

mysql after the concatenation has the following value:

pPriceGross, fn, isbn

This string will be used to form the sqlstring, the 'INSERT INTO' SQL command,

that will be used on the MySQL server to insert the data into the database’s book table.

An example of sqlstring is as follows:

INSERT INTO book (pPriceGross, fn, isbn) VALUES('35.3', 'Mastering Zoho

Creator', '9781484229064');

To form the values part of the fields for the sqlstring, the values of the fields,

previously placed in args2[3], args2[4], and args2[5] elements, must be enclosed in

single quotes and be separated by commas. Here’s an example:

'35.3', 'Mastering Zoho Creator', '9781484229064'

The following code snippet does this:

mysql2="'${args2[3]}'";

mysql2="$(echo $mysql2 | sed 's/ //')";

for ((i=3+1;i<$ELEMENTS;i++)); do

sql2=${args2[${i}]};

sql2="$(echo $sql2 | sed 's/ //')";

mysql2="$mysql2, '$sql2'";

done

In the previous source code, mysql2 forms the string of all field values separated by

commas with a recursive process. The reason the spaces need to be removed from the

mysql2 and sql2 variables is that Bash currently prepends a space character to elements,

which are read using a for loop from an array.

With the following code line, the MySQL query string, held in variable sqlstring, is

finally formed:

sqlstring="INSERT INTO $3 ($mysql) VALUES($mysql2);";

Chapter 6 The MySQL Database Server

264

For instance, the sqlstring may hold this value:

INSERT INTO book (pPriceGross, fn, isbn) VALUES('35.3', 'Mastering Zoho

Creator', '9781484229064');

For this example, statement INSERT INTO inserts a record into the book table by

entering value 35.3 in the pPriceGross field, value Mastering Zoho Creator in the fn

field, and value 9781484229064 in the isbn field.

To issue the previous command, a connection is created with the mysql server.

The value root is provided to the argument --user, and the value apress (the value of

variable $2) is provided as the --database argument. The execution command (-e) is

the value of the sqlstring.

mysql --user="root" --database="$2" -e "$sqlstring";

The previous command runs a number of times equal to the number of books

included in the web page source of the URL provided as the first argument of the

shell ($1).

The text file used in this shell program is deleted at the end of the script.

rm -f file.txt;

�Testing the Web Scraping Shell Program
After creating the shell.sh script and the book table in the apress database, you can

use your web scraping shell script to complete the table. At the Linux terminal, change

the working directory to the one that includes the shell script, in this example the home

directory, and enter the shell.sh command with the required arguments.

$ cd ~

$./shell.sh https://www.apress.com/gp/web-development apress book

pPriceGross fn isbn

Chapter 6 The MySQL Database Server

265

Hint! T o run the shell script from any working directory, copy the shell.sh file
to /usr/local/bin.

$ sudo cp ~/shell.sh /usr/local/sbin

Execute it then from any working directory as follows:

$ sudo shell.sh https://www.apress.com/gp/web-development
apress book pPriceGross fn isbn

In shell.sh, all programs run in silent mode; therefore, the only messages printed

to the output are the echo command messages printed at the terminal. The message

displayed in each iteration has the following format:

https://www.apress.com/gp/book/9781484237144

pPriceGross, fn, isbn

'35.3', 'RESTAPI Development with Node.js', '9781484237144'

INSERT INTO book (pPriceGross, fn, isbn) VALUES('35.3', 'RESTAPI

Development with Node.js', '9781484237144');

When the shell.sh script ends, open the apress database and print the book table

contents. Use Ctrl+Alt+T to open a second terminal window. At the command line, enter

the following:

$ mysql –u root

The MySQL server connects, and the mysql> prompt appears.

Enter the following commands to select the apress database and also view all the

records of the table book.

mysql>use apress;

mysql>select * from book;

Chapter 6 The MySQL Database Server

https://www.apress.com/gp/web-development

266

The following is the output of the select command:

+---------------+----------------------------------+-------------+

| isbn | fn | pPriceGross |

+---------------+----------------------------------+-------------+

| 9781484233986 | CSSFramework | 21.39 |

| 9781484232514 | IntroducingJavaScript Game | 26.74 |

| 9781484230923 | Beginning | 32.09 |

| 9781484232781 | Angular5 | 39.58 |

| 9781484232156 | LeanGame Development | 26.74 |

| 9781484232668 | Discussionsin User Experience | 29.95 |

| 9781484232811 | IntroducingArcGIS API 4 for | 32.09 |

| 9781484230268 | Beginning | 37.44 |

| 9781484229361 | TheDefinitive Guide to | 40.65 |

| 9781484228258 | Electron | 37.44 |

| 9781484239216 | UsingYour Web Skills To Make | 26.74 |

| 9781484238639 | HTML5and JavaScript | 40.65 |

| 9781484226094 | WebApplications with | 24.60 |

| 9781484210741 | Scalability | 24.56 |

| 9781484237144 | RESTAPI Development with Node.js | 35.30 |

| 9781484238639 | HTML5and JavaScript | 40.65 |

| 9781484236963 | Programming | 35.30 |

+---------------+----------------------------------+-------------+

17 rows in set (0.00 sec)

Run the script a second time, using another URL from the ones included in the

Categories link of the www.apress.com home page. For instance, use the following:

$./shell.sh https://www.apress.com/gp/open-source apress book pPriceGross

fn isbn

At the second terminal, enter again the last used command.

mysql>select * from book;

Chapter 6 The MySQL Database Server

http://www.apress.com

267

As indicated by the following output, more records are added to the database table

(see Figure 6-10):

+---------------+-------------------------------------+-------------+

| isbn | fn | pPriceGross |

+---------------+-------------------------------------+-------------+

| 9781484233986 | CSSFramework | 21.39 |

| 9781484232514 | IntroducingJavaScript Game | 26.74 |

| 9781484230923 | Beginning | 32.09 |

| 9781484232781 | Angular5 | 39.58 |

| 9781484232156 | LeanGame Development | 26.74 |

| 9781484232668 | Discussionsin User Experience | 29.95 |

| 9781484232811 | IntroducingArcGIS API 4 for | 32.09 |

| 9781484230268 | Beginning | 37.44 |

| 9781484229361 | TheDefinitive Guide to | 40.65 |

| 9781484228258 | Electron | 37.44 |

| 9781484239216 | UsingYour Web Skills To Make | 26.74 |

| 9781484238639 | HTML5and JavaScript | 40.65 |

| 9781484226094 | WebApplications with | 24.60 |

| 9781484210741 | Scalability | 24.56 |

| 9781484237144 | RESTAPI Development with Node.js | 35.30 |

| 9781484238639 | HTML5and JavaScript | 40.65 |

| 9781484236963 | Programming | 35.30 |

| 9781484235690 | Practical | 35.30 |

| 9781484230749 | PracticalFree Alternatives to | 32.09 |

| 9781484234914 | BuildingGames with Ethereum Smart | 37.44 |

| 9781484230800 | BlockchainEnabled | 35.30 |

| 9781484231760 | TheCLI | 21.39 |

| 9781484233054 | IntroducingZFS on | 29.95 |

| 9781484229064 | MasteringZoho Creator | 35.30 |

| 9781484229033 | MasteringZoho | 35.30 |

| 9781484229996 | BeginningUbuntu for Windows and Mac | 32.09 |

| 9781484228869 | AdvancedMicroservices | 32.09 |

| 9781484238936 | HowOpen Source Ate | 32.09 |

| 9781484235270 | BeginningModern Unix | 37.44 |

Chapter 6 The MySQL Database Server

268

| 9781484237298 | TheLinux Philosophy for | 40.65 |

| 9781484236963 | Programming | 35.30 |

| 9781484235690 | Practical | 35.30 |

| 9781484235690 | Practical | 35.30 |

+---------------+-------------------------------------+-------------+

33 rows in set (0.01 sec)

You can add even more records by using the rest of the Categories menu links.

�Summary
In this chapter, you used the MySQL server to create, manage, and query databases using

SQL commands. You inserted records into the database tables manually and also used

the web scraping technique to fill the database automatically by collecting data provided

by a site.

In the following chapter, you will run PHP programs that connect to the MySQL

server, enabling the web server to provide a search capability and therefore offer

dynamic web content to its sites.

Figure 6-10.  The output

Chapter 6 The MySQL Database Server

269
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_7

CHAPTER 7

Creating a Dynamic
Content Web Site
In this chapter, you’ll create a site that provides a form for the user to submit keywords

to the web server, query a database, and view the results. The results page will list

hyperlinks that lead to web pages related to the keywords entered.

To do this, you will utilize the PHP language to make the connection to the MySQL

server via the MySQL-PHP interface routines.

Instead of having the query results appear on a single page, you’ll implement

pagination to group the results on separate web pages, with images (buttons) used to

switch back or forth from one web page to another.

Also, you’ll implement an automated procedure, based on the cron daemon, that

executes scheduled commands to update the MySQL database with the contents of the

web pages included in the site.

�Search-Enabled Site Overview
As discussed, in this project you’ll create a search-enabled site. Allowing a user to

perform queries remotely in a web environment is a feature commonly found on

e-commerce sites, search engines, wikis, and online academic databases. You will

create next a site that provides similar services as the rfc-editor.org site and also you

can borrow RFCs for your site’s content. Requests for Comments (RFCs) are the content

offered from this site that the user will query. (RFCs are papers describing Internet

protocols and technologies.)

The following is the URL to search RFCs at rfc-editor.org:

https://www.rfc-editor.org/search/rfc_search.php

http://rfc-editor.org

270

Figure 7-1 displays results for using the HTTP keyword in the RFC Editor. The results

are links that lead to the corresponding RFCs. Pagination is also implemented to group

them into 25 results per web page.

Figure 7-2 displays the home page of the project’s site.

Figure 7-1.  Querying the RFC Editor for HTTP

Figure 7-2.  The home page of the project’s site

Chapter 7 Creating a Dynamic Content Web Site

271

As displayed in Figure 7-3, the results appear as links to RFCs, and pagination is used

to show five results per page.

�Designing the Project
The site you’ll implement requires a number of web pages that will be the content that

the site offers; these pages are placed in a separate directory called info in this example.

A Bash shell script running in regular intervals from cron will update a database with

all the web page files currently included in the directory info. The title included in each

“content” web page is what the user will remotely query in the database. The query will

be issued from the home page where the user will enter keywords in an HTML form.

A PHP program, after receiving the keywords, will connect to and query the database

and return the results as links, with the title as the link text and the relative URL of the

content web page file as the link’s URL.

Figure 7-3.  The results of querying the project’s site for HTTP

Chapter 7 Creating a Dynamic Content Web Site

272

�Creating the First Web Content Samples
You can place this project’s content web pages in the new directory in the document root

so that they are isolated from the directory index that provides the form and the action

PHP program that processes the keywords. In this way, only the content web pages will

be automatically inserted into the database. To create a new directory named info, enter

the following command at the Linux terminal:

$ sudo mkdir /var/www/html/info

To create the first web page of this site, continue with the following commands:

$ cd info

$ sudo gedit page1.html

Enter the following HTML source code:

<!DOCTYPE html>

<html>

<head>

<title></title>

</head>

<body>

<h1>Hypertext Markup Language - 2.0</h1>

</body>

</html>

This is an empty web page that includes a heading (<h1>) that is the RFC’s title. The

heading size here must be the same that the Bash shell will use for locating the title of

each content web page. You can borrow the titles from the previous RFC Editor search.

You can also enter some content in the body section of your page, which for simplicity

is empty here other than the heading. What is required for this project is to create a

large number of similar web pages with different titles to display how pagination is

implemented. For the moment, just create a second content web page by using the

following at the Linux terminal:

$ sudo cp page1.html page2.html

$ sudo gedit page2.html

Chapter 7 Creating a Dynamic Content Web Site

273

In the gedit window, change the title to another one from the RFC Editor and save

the file. Use, for instance, the title Form-based File Upload in HTML in the h1 element.

<!DOCTYPE html>

<html>

<head>

<title></title>

</head>

<body>

<h1>Form-based File Upload in HTML</h1>

</body>

</html>

You can continue this process to create lots of web pages for the site. The aim is to

have many pages so that you can have a lot of query results.

�Creating and Updating the Project’s Database
Next, you will create the database that includes all the titles of the content web pages

placed in the info directory. As described in the following section, the database update

will be an automated process.

To create info, the database used in this project, and also content, the table

included in the info database, connect to the MySQL server with mysql, the MySQL

client, using the following command:

$ mysql –u root

At the mysql> prompt that appears, create the info database.

mysql> create database info;

The MySQL server responds with an OK command.

Query OK, 1 row affected (0.00 sec)

The database is included with the other databases of the MySQL server. You can view

this with the following command:

 mysql> show databases;

Chapter 7 Creating a Dynamic Content Web Site

274

The MySQL server responds with the following table, with the names of all the

databases included so far:

+--------------------+

| Database |

+--------------------+

| information_schema |

| apress |

| info |

| library |

| mysql |

| performance_schema |

| sys |

+--------------------+

7 rows in set (0.00 sec)

You can locate database info and database apress, used in the previous chapter,

as well as all the preexisting MySQL databases. Select info as the database that the

commands entered from this point on will target.

mysql> use info;

The MySQL server responds with the following message:

Database changed

Create a table called content. This table will include two columns: url, which is a

varchar up to 255 characters, and title, which also is type varchar. The url column

will store the root-relative URL path of a specific web page. For instance, the URL for

page1.html will be /info/page1.html, where the first slash is the document root. The

column url is a nice candidate for a primary key because it includes unique values; no

files are allowed by the operating system to have the same name in the same directory.

The title column corresponds to the title of the web page, included in the <h1> tags. For

instance, for page1.html, the title is Hypertext Markup Language - 2.0. To create the

table content, use the create table SQL statement.

mysql> create table content (url varchar(255), primary key(url), title

varchar(255));

Chapter 7 Creating a Dynamic Content Web Site

275

The MySQL server responds with an OK message.

Query OK, 0 rows affected (0.40 sec)

You don’t have to manually enter any records because, as explained previously, this

will be an automated process. Exit the MySQL client using the following command:

mysql> exit

MySQL responds with a good-bye message.

Bye

�Writing the Shell Script That Updates the Database
Who will be responsible for updating the database so that each time a new web page is

added to the site its title is included in the database? For this, many approaches can be

used. For instance, it could be the responsibility of the person who places a new web

page in the info directory to open MySQL and use an insert into command to store

the title of the new page in the database. This sounds like it creates a little overhead,

and if a person forgets to do this every time they add a page, the system will lose its

reliability. Another approach is to create a shell script that hides the overhead from the

administrator; however, forgetting to run the script would result in the same problem

of unreliability. Another solution would be to automate the process and have the script

run at regular intervals to update the database. Because this approach doesn’t require

anyone to intervene, it is less error prone.

To create db.sh, the Bash shell script that updates the database, change the working

directory to your home directory, e.g., /home/christos/, with the following command:

$ cd ~

Use a text editor like gedit to create a file called db.sh.

$ gedit db.sh

In the new window that appears, enter the following lines of Bash code and save

the file:

Chapter 7 Creating a Dynamic Content Web Site

276

#!/bin/bash

FILES=/var/www/html/info/*

 db="info";

 table="content";

 sqlstring="truncate table $table;";

 mysql --user="root" --database="$db" -e "$sqlstring";

for file in $FILES

do

 title=`grep -o '<h1>.*</h1>' $file | sed 's/\(<h1>\|<\/h1>\)//g'`;

 filename=$(basename "$file");

 path="/info/";

 url=$path$filename;

 records="url, title";

 my_values="'$url', '$title'";

 sqlstring="insert into $table ($records) values($my_values);";

 mysql --user="root" --database="$db" -e "$sqlstring";

done

The first line is a directive stating that the Bash language will be used for this script.

Next comes a number of variable definitions. For instance, FILES means all (*) files

found in /var/www/html/info. The variable db is assigned to info, which is the name

of the database in this example. Also, table, the variable that holds the name of the

database’s tables, is assigned to the value content. The variable sqlstring temporarily

holds the value:

"truncate table $table;"

That evaluates to the following string:

"truncate table content;"

One approach for the script is to enter only the titles of the HTML files that are not

already included in the table. However, if the title of a specific file changes, the database

will still include the previous one. The other approach is to delete all the database

entries and add all the titles from HTML files located in info to the database. This script

implements the second approach, and for this, the truncate table SQL statement is

used to remove all the records from a table.

Chapter 7 Creating a Dynamic Content Web Site

277

The db.sh script will run either manually, invoked by the user, or automatically

in predefined time intervals. Each time the script runs, it truncates the table and then

inserts the titles and file paths of the HTML files in the info directory.

The following is the command used by the shell script to connect to the MySQL

server:

mysql --user="root" --database="$db" -e "$sqlstring";

It evaluates to the following command:

mysql --user="root" --database="info" -e "truncate table content;";

Hint! T his is a command run from inside a shell program, but you can run this as
a single command from the Linux terminal. After all, a shell program is a collection
of shell commands.

After all the records in the table are deleted, you can use a for loop to insert the title

and root-relative path of each HTML file in the info directory to the info database. The

loop is included between the do...done commands.

for file in $FILES

do

...

done

For each file in the directory info, the line that includes the h1 element—whose text

is the web page’s title—is extracted with grep:

title=`grep -o '<h1>.*</h1>' $file | sed 's/\(<h1>\|<\/h1>\)//g'`;

By using the Unix pipe operator (|), the line output by grep is passed as input to sed.

Then sed removes the start and end tags of the h1 element by replacing them with an

empty character. The sed output, which is the title of the HTML page, is assigned as a

value to the variable title.

The web page file name is returned to the variable filename when the command

basename runs.

 filename=$(basename "$file");

Chapter 7 Creating a Dynamic Content Web Site

278

The file name is then concatenated to string /info/ to form url, the root-relative

path.

path="/info/";

url=$path$filename;

For instance, for the file name page1.html, the path becomes /info/page1.html.

The title and url values (e.g., info/page1.html and Hypertext Markup

Language - 2.0) will be entered in the corresponding table columns (url, title) with

the sqlstring, which forms the SQL insert command.

records="url, title";

my_values="'$url', '$title'";

sqlstring="insert into $table ($records) values($my_values);";

The next command uses the mysql client to connect to the MySQL server and submit

the command included in sqlstring, shown here:

mysql --user="root" --database="$db" -e "$sqlstring";

The following is an example of the command sent to the server after evaluating the

variables:

mysql --user="root" --database="info" -e "insert into content (url, title)

values('/info/page1.html', 'Hypertext Markup Language - 2.0');";

To run the shell script, you need to grant executable (x) file permission at least to

yourself, that is, to the user (u). The other options are to grant this right to your group (g)

and all others (o). Use the chmod command from your home directory as follows:

$ chmod u+x db.sh

Run manually the shell script from your home directory as follows:

$./db.sh

The period before the slash denotes the current directory. This is used because when

running executable Linux files, their relevant or absolute path needs to be provided

except if the script is stored on one of the directories assigned to the PATH environment

variable. To view the directories included in the PATH list, use the following:

$ echo $PATH

Chapter 7 Creating a Dynamic Content Web Site

279

Next, connect to the info database to view the contents of the table called content.

Use the command:

$ mysql –u root

The MySQL client waits for the next command with the mysql> prompt. Select the

database to work with.

mysql> use info;

Read all the records of the table content.

mysql> select * from content;

After using this command, the MySQL server responds by outputting the following

table (given that so far you have created two web pages in the directory info: page1.html

and page2.html):

+------------------+---------------------------------+

| url | title |

+------------------+---------------------------------+

| /info/page1.html | Hypertext Markup Language - 2.0 |

| /info/page2.html | Form-based File Upload in HTML |

+------------------+---------------------------------+

2 rows in set (0.00 sec)

Close the database with the exit command.

mysql> exit

The MySQL server responds with a good-bye message.

Bye

�Automating the Database Updates with cron
To schedule db.sh to execute automatically, use Linux cron to schedule tasks.

This daemon process checks a crontab (cron table) file containing instructions for

cron to execute. cron as a daemon process runs in the background and executes

commands at specific dates and times; for instance, it can be used hourly to take

backups from a database.

Chapter 7 Creating a Dynamic Content Web Site

280

The crontab command opens the crontab for editing and lets you add, remove, or

modify scheduled tasks. Before using crontab, you may want to select the text editor to

work with. For instance, to use gedit, enter the following at the Linux terminal:

$ export VISUAL=gedit

Run the command crontab as follows:

$ crontab –e

As shown in Figure 7-4, crontab opens in the gedit environment. Enter the following

entry:

*/20 * * * * /home/christos/db.sh

Each crontab entry consists of six fields, specified in the following order:

minute(s) hour(s) day(s) month(s) weekday(s) command(s)

An asterisk (*) indicates “every,” a forward slash (/) means repeat at a specific

interval, and a hyphen (-) indicates a range. Therefore, the previous entry indicates the

following: “Execute /home/christos/db.sh every 20 minutes (*/20), every hour, every

day, every month, every weekday.”

Chapter 7 Creating a Dynamic Content Web Site

281

Hint! T o experiment with the syntax, use the URL https://crontab.guru/ in
the address bar of your browser.

This site, displayed in Figure 7-5, provides a textbox to insert a crontab entry and
get a description, based on the entry, about how often a specific job will be run.

Figure 7-4.  The crontab entry used in the example

Chapter 7 Creating a Dynamic Content Web Site

https://crontab.guru/

282

Do not click the Save button yet in the gedit window.

To test crontab, press Ctrl+Alt+T to open a new terminal, connect with mysql to the

MySQL server, and use the info database. Run the select statement, the same used in

the previous section.

mysql> select * from content;

The MySQL server responds with the same output as last time.

+------------------+---------------------------------+

| url | title |

+------------------+---------------------------------+

| /info/page1.html | Hypertext Markup Language - 2.0 |

| /info/page2.html | Form-based File Upload in HTML |

+------------------+---------------------------------+

2 rows in set (0.00 sec)

Press Ctrl+Alt+T to open a new terminal window. Make info the working directory.

$ cd /var/www/html/info

Figure 7-5.  The crontab test page from crontab.guru

Chapter 7 Creating a Dynamic Content Web Site

283

Create another web page.

$ sudo cp page1.html page3.html

Change the title of page3.html to be a different one from the one used in page1.

html.

$ sudo gedit page3.html

Replace the original title with another. For instance, use the following:

<h1>Hypertext Transfer Protocol -- HTTP/1.1</h1>

Save the file and close the gedit window.

Move to the gedit window of crontab and change the time interval of the crontab

entry from 20 to 2 minutes so that you won’t wait long for the daemon process to run.

You can restore it to 20 minutes later. You can now click the Save button in the gedit

window of crontab. Wait for two minutes, and at the terminal of the mysql client press

the up arrow on the keyboard to execute the previous command.

mysql> select * from content;

In the output table, a new record is included with the columns corresponding to the

page3.html filepath and title.

+------------------+---+

| url | title |

+------------------+---+

| /info/page1.html | Hypertext Markup Language - 2.0 |

| /info/page2.html | Form-based File Upload in HTML |

| /info/page3.html | Hypertext Transfer Protocol -- HTTP/1.1 |

+------------------+---+

3 rows in set (0.00 sec)

This entry was added by the db.sh shell script that was run by cron. You can restore

now the entry interval from 2 to 20 minutes.

At this point, the database used for searching all the web page titles has been created,

and the Bash script scheduled by cron constantly updates the database to reflect the

added or deleted HTML files of the info directory.

Chapter 7 Creating a Dynamic Content Web Site

284

Now is a good opportunity to create more web pages and therefore more entries in

the info database so you can have a larger number of results, which will be required

when we implement pagination. The site will show five results per web page, instead

of putting all the results on a single web page. For the example used in this chapter,

the HTML files page1.html up to page30.html were created, as indicated by the ls -l

output for the info directory, displayed in Figure 7-6.

After the time indicated in the crontab file, db.sh updates the database with the 30

entries shown in Figure 7-7.

Figure 7-6.  Web pages page1.html up to page30.html are the content web pages
used for the example’s site

Chapter 7 Creating a Dynamic Content Web Site

285

With the content of the site ready, you can proceed to designing index.php, the

home page of the site that provides the search form, and also search.php, the action

program that receives the form’s keywords, connects to the info database, and returns

the results to the client.

�Designing the Home Page of the Site
Like with the previous web-based projects, two basic HTML files are required for this

site. One web page provides the HTML form for submitting the keywords to the web

server, usually included in the home page of the site. Another web page, indicated in

the action attribute of the form element, is the one that receives the keywords, queries

the database, and dispatches the query results to the user. The database is automatically

updated at regular intervals with the titles and the filepaths of all the content web pages

of the site.

Figure 7-7.  Cron updates the database and creates one record for each web page
found in the info directory

Chapter 7 Creating a Dynamic Content Web Site

286

In the previous chapter, you learned how to connect to the MySQL server with the

Bash shell scripting language. Here you will connect to the MySQL server from a PHP

program. The PHP-MySQL interface routines will be used to issue the query and include

the results in an HTML table, in the form of hyperlinks that lead to the corresponding

content web pages.

�Creating the Directory Index of the Site
For the home page of the site, you will use the index.php file. You probably already have

a directory index with the name index.php in the document root directory from a project

of a previous chapter. If the command ls /var/www/html returns an index.php file,

rename it by using the following commands:

$ cd /var/www/html

$ sudo cp index.php indexOLD.php

Create next a new index.php file with gedit.

$ sudo gedit index.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:greenyellow;

}

.center {

 margin: auto;

 width: 80%;

 border: 3px solid #74AD23;

 padding: 10px;

}

p{

text-align:center;

font-size:32px;

Chapter 7 Creating a Dynamic Content Web Site

287

color:green;

font-weight:bold;

}

input{

border-color:#74AD23;

font-size:32px;

color:green;

padding:10px;

background-color:greenyellow;

}

</style>

</head>

<body>

<div class="center">

<form name="form1" method="post" action="search.php">

 <p>Search the Papers:

 <input type="text" name="keywords">

 <input type="submit" value="Go">

 </p>

</form>

</div>

</body>

</html>

The previous source code creates a web page with a form. You center the form

horizontally by setting the CSS margin property to auto.

margin: auto;

The form’s method is POST, and the form’s action is set to search.php. The code of

search.php will therefore receive the keywords the user enters in the textbox and will

use the PHP-MySQL interface routines to forward them to the MySQL server to query

the info database. The query results will be converted to links with text that is the title of

the web page. An HTML table with the results will be displayed to the user. As indicated

by the value in the action attribute file, search.php is located in the same directory as

index.php since no other relevant or absolute path is provided.

Chapter 7 Creating a Dynamic Content Web Site

288

Figure 7-8 shows the home page of the site (index.php).

There are two main methods to connect PHP and MySQL.

•	 MySQLi extension (MySQL improved)

•	 PDO (PHP Data Objects)

In this project, you will use the first one. To be able to use the mysqli PHP command,

you have to install the MySQL extension for PHP. At the command line, enter the following:

$ sudo apt-get install php-mysql

�Creating the Action PHP Program
Create search.php in the document root directory. search.php is used as the value

of the form’s action attribute, the one that defines the file that processes the user’s

keywords.

$ cd /var/www/html

$ sudo gedit search.php

Figure 7-8.  The home page of the site

Chapter 7 Creating a Dynamic Content Web Site

289

Enter the following lines and click the Save button in the gedit window to save

the file:

<!DOCTYPE html>

<html>

<head>

<style>

body {

background-color:yellowgreen;

}

a {

font-size:24px;

}

</style>

</head>

<body>

<?php

if(!empty($_POST["keywords"])){

$keywords = $_POST["keywords"];

}

$array = preg_split('/\s+/', trim($keywords));

$cnt=0;

$items="";

foreach ($array as $item) {

 ++$cnt;

 $item = " title like '%{$item}%'";

 if ($cnt != count($array)) {

 $item="{$item} or ";

 }

 $items .= $item;

}

Chapter 7 Creating a Dynamic Content Web Site

290

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "info";

$mysqli = new mysqli($servername, $username, $password, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

}

$sqlquery = "select title, url from content where ".$items." ;";

if ($result = mysqli_query($mysqli, $sqlquery)) {

 echo "<table>";

 while ($row = mysqli_fetch_assoc($result)) {

 echo "<tr><td>";

 echo "".$row['title']."";

 echo "</td></tr>";

 }

 echo "</table>";

 mysqli_free_result($result);

}

$mysqli->close();

?>

</body>

</html>

The PHP code starts with the following command, which sets the PHP variable

$keywords to the value sent with the POST HTTP method, from the textbox named

keywords of the form found in index.php:

if(!empty($_POST["keywords"])){

$keywords = $_POST["keywords"];

}

In the next code line, the PHP function trim() removes spaces before and after the

$keyword value, which is a string.

Chapter 7 Creating a Dynamic Content Web Site

291

At a result, the preg_split() function applies. PREG stands for PCRE Regular

Expression, where PCRE means Perl Compatible Regular Expressions. preg_split()

splits a string into a regular expression and returns the parts to an array, $array in this

example. The regular expression used is as follows:

/\s+/

This indicates one or more (+) spaces (\s) from the start to the end of the string (/ /).

$array = preg_split('/\s+/', trim($keywords));

The next code snippet starts by setting the variable $cnt to zero. This variable

will increase by one at any foreach() iteration, which extracts each item of $array

and assigns it to the variable $item. $array at this point is an array of all the

keywords inserted into the form’s textbox. On each iteration, the current $item is

used to form the string title like '%{$item}%', which for instance for the keyword

HTML evaluates to the string title like '%HTML%'. This string will be used as

part of the SQL query command for the info database that will be submitted to the

MySQL server.

select title, url from content where title like '%HTML%';

Hint! T he curly braces ({}) provide another way to enter a PHP variable into a
string.

As you recall from the previous chapter, the like operator is used with the where

SQL clause to return select columns that include the keyword that like applies to. By

including the keyword between the like wildcard symbol (%), which represents zero

or more characters, the keyword may be included in any position of the column’s

value.

The $cnt variable is used therefore to determine the last element of the $array. For

any item of the array except the last one, an or (the OR logical operator) is appended at

the end of the item. For a multikeyword search, for instance if both the HTML and HTTP

keywords are used, the values of the variable $items will be concatenated with or (and

for the last keyword an or operator should not be used).

title like '%HTML%' or title like '%HTTP%'

Chapter 7 Creating a Dynamic Content Web Site

292

The concatenation of all $item values takes place recursively and is accumulated to

the $items variable. The concatenating assignment operator (.=) is used to append the

argument on the right side to the argument on the left side.

$cnt=0;

$items="";

foreach ($array as $item) {

 ++$cnt;

 $item = " title like '%{$item}%'";

 if ($cnt != count($array)) {

 $item="{$item} or ";

 }

 $items .= $item;

}

The following variables are used for the mysqli() function in the PHP code to make

a connection to the MySQL server:

•	 $servername indicates the hostname of the computer, and it can

simply be assigned to the localhost value.

•	 $username is assigned to root, the username used for the MySQL

server connection. This corresponds to the –u argument of the mysql

command.

$ mysql –u root

•	 $password is the password used for the MySQL connection, provided

with the –p argument when running mysql at the command line. The

empty string (no password) is used in this example.

•	 $dbname is assigned to info, the name of the database used in the

MySQL server.

The previous variables hold therefore the following values for this connection:

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "info";

Chapter 7 Creating a Dynamic Content Web Site

293

Those variables are passed to the mysqli() object constructor function to return on

connection success $mysqli, the newly created mysqli object. The following code makes

and also tests the connection from the PHP code to the MySQL server:

$mysqli = new mysqli($servername, $username, $password, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

}

With the arrow (->) operator and the name of the object, you can access object

properties and methods.

Next, the $sqlquery variable is assigned the command of the query to be

executed. The following value after evaluation selects the columns title and url

from the table content where the title includes one or more of the keywords entered

in the form by the user.

$sqlquery = "select title, url from content where ".$items." ;";

The query is submitted to the server with the mysqli_query() function, and the

results are retrieved with the $result variable. The function mysqli_fetch_assoc()

returns the next record of the query results in the variable $row. The while loop iterates

until all result rows are read. For each $row value, the two table columns url and title

are indicated as $row['url'] and $row['title'], respectively. An HTML link will be

formed with the title as the link text and the URL as the value of the href attribute. By

using the PHP concatenation operator (.) to concatenate strings like <a href=\" and

string variable values like $row['url'], a working HTML link is formed. For example,

with the title Hypertext Markup Language - 2.0 and URL /info/page1.html, the

HTML link element becomes the following:

Hypertext Markup Language - 2.0

Notice that the PHP escape (\) character is used with a double quote (\") to allow

the double quote be used as a normal character so that it does not delimit the start or

end of a string.

All links will be included in a table data (<td>) element, and this element will be

included in a table row (<tr>) element of a table. The table is used to align the results.

For example, center alignment can also be used for better visual appearance. The table

is delimited with the start table tag and the end table tag, both entered in the evaluated

PHP code with the PHP echo command.

Chapter 7 Creating a Dynamic Content Web Site

294

if ($result = mysqli_query($mysqli, $sqlquery)) {

 echo "<table>";

 while ($row = mysqli_fetch_assoc($result)) {

 echo "<tr><td>";

 echo "".$row['title']."";

 echo "</td></tr>";

 }

 echo "</table>";

 mysqli_free_result($result);

}

$mysqli->close();

The function mysqli_free_result() is used to free the memory occupied by

$result when it is no longer needed. Also, the database connection is closed by invoking

the close method of $mysqli as follows:

 $mysqli->close();

The result of the previous code snippet is to evaluate the PHP code to an HTML table

without borders. Each row includes the title of each result that the MySQL query returns.

This title is a link that leads to the web page that discusses the topic included in the title.

�Testing the Dynamic Content Site
In the address bar of your browser, use the URL domain name you have registered

to display the directory index (index.php) of your site. In this example, the following

domain name is used:

http://webtoolsonline.servehttp.com/

Use some keywords and feel free to include unnecessary spaces before and after the

words, as displayed in Figure 7-9.

Chapter 7 Creating a Dynamic Content Web Site

295

Click the Go button. The query results (in the form of links) appear, as shown in

Figure 7-10.

Figure 7-9.  Entering keywords in the home page’s form

Figure 7-10.  The query results appear as links, each one leading to one of the
content web pages

Chapter 7 Creating a Dynamic Content Web Site

296

Click any of the links included in the results. The corresponding web page appears

in your browser, as shown in Figure 7-11 (for simplicity it is not filled with any usable

content yet).

Next, enter a query that will return more results. You can use even more keywords

than the ones used here. Figure 7-12 displays, for instance, using HTML, HTTP, and

protocol as keywords.

Figure 7-11.  The web page of one of the query results

Chapter 7 Creating a Dynamic Content Web Site

297

Click Go again. The web page shown in Figure 7-13 appears.

Figure 7-13.  Viewing multiple results requires scrolling

Figure 7-12.  Using multiple keywords to view more results than a computer
screen accommodates

Chapter 7 Creating a Dynamic Content Web Site

298

To view the query results, scrolling is required. Another approach is to use

pagination to group the results onto separate pages. This is what you’ll do next.

�Making Modifications
To make some modifications and inspect in detail the inner workings of the previous

code, create a backup copy of search.php called search2.php.

$ cd /var/www/html

$ sudo cp search.php search2.php

You can modify search.php and restore it when you finish experimenting. In the

following steps, you will change the source code to examine how the exclusion of trim()

and preg_split() can lead to serious problems.

Enter at the end of the following code snippet the echo $items command for

inspecting the variable’s value:

<?php

if(!empty($_POST["keywords"])){

$keywords = $_POST["keywords"];

}

// trim() spaces left right, preg_split() between

$array = preg_split('/\s+/', trim($keywords));

$cnt=0;

$items="";

foreach ($array as $item) {

 ++$cnt;

 $item = " title like '%{$item}%'";

 if ($cnt != count($array)) {

 $item="{$item} or ";

 }

 $items .= $item;

}

echo $items;

Chapter 7 Creating a Dynamic Content Web Site

299

Use your browser to make a query from index.php and view the results. Use the

following keywords (including some spaces before or after the words):

working with hypertext

Click the Go button. As displayed in Figure 7-14, the $items value is displaying in the

search.php window.

The $items value is as follows:

title like '%working%' or title like '%with%' or title like '%hypertext%'

Modify the following line:

$array = preg_split('/\s+/', trim($keywords));

Remove the trim() function:

$array = preg_split('/\s+/', $keywords);

Figure 7-14.  Printing echo messages for relating the source code to the query
results

Chapter 7 Creating a Dynamic Content Web Site

300

Run the previous query again. Without trim() in the query string, there are now

empty keywords (%%) at the start and the end, as the following echo output displays:

title like '%%' or title like '%working%' or title like '%with%' or title

like '%hypertext%' or title like '%%'

Figure 7-15 shows the evaluated search.php web page.

As shown in Figure 7-15, including like '%%' inserts all the available database

records in the query results.

Make a final modification to search.php by removing the function trim() and the

function preg_split() from the command line. Insert $array using a simple function

like explode() that uses a single space as a delimiter.

$array = explode(" ", $keywords);

Figure 7-15.  By excluding trim(), all database records are selected

Chapter 7 Creating a Dynamic Content Web Site

301

The $items may look like the following:

title like '%%' or title like '%%' or title like '%%' or title like '%%' or

title like '%working%' or title like '%%' or title like '%%' or title like

'%with%' or title like '%%' or title like '%%' or title like '%%' or title

like '%%' or title like '%%' or title like '%hypertext%' or title like '%%'

or title like '%%' or title like '%%' or title like '%%' or title like '%%'

or title like '%%' or title like '%%' or title like '%%' or title like '%%'

or title like '%%' or title like '%%'

As shown in Figure 7-16, by excluding preg_split(), all the database query records

are included in the query results.

Finally, restore the original search.php file.

$ sudo rm search.php

$ sudo mv search2.php search.php

Figure 7-16.  By excluding preg_split(), all database records are selected

Chapter 7 Creating a Dynamic Content Web Site

302

�Improving the Query Results Appearance
with a Two-Colored Table
Next, you’ll use CSS properties to provide a different background color to the even-

numbered rows than the odd-numbered rows. Also, with the :hover CSS pseudoclass,

you can provide a different background color to the row the mouse is resting on. Change

the style element of search.php to look like the following:

<style>

body {

background-color:yellowgreen;

}

a {

font-size:24px;

}

table.center {

 margin-left:auto;

 margin-right:auto;

 }

table {

 border-collapse: collapse;

 /* border: 1px solid blue; */

}

 th {

 text-align: center;

 padding: 8px;

 color: goldenrod;

 font-size:24px;

}

 td {

 text-align: left;

 padding: 8px;

Chapter 7 Creating a Dynamic Content Web Site

303

 color: green;

 font-size:18px;

}

tr:nth-child(even){

background-color: lightcyan;

}

tr:hover {

background-color:silver;

}

tr.no_hover:hover {

 background-color:floralwhite;

}

</style>

Use the form in index.php to make a new query, e.g., for the keyword protocol.

Figure 7-17 displays the results displayed in a two-colored table and also shows the

row highlighted that the mouse pointer is on.

Figure 7-17.  Using a two-colored table

Chapter 7 Creating a Dynamic Content Web Site

304

�Implementing Pagination
Instead of having all the results appear on a single page, you can group them into

sets of a specific number per page, e.g., 20, and present them using several web

pages that are linked with buttons or images. You can use at least two buttons: one

for the next available results and one for the previous results (if any exist). This

is especially useful when the query returns lots of results like a real-world search

engine query usually does.

Each web page will provide part of the total results. The limit MySQL clause is the

key to return the results starting at a specific offset and to include a count of the number

of results to return. To experiment with the limit option, run a SQL query from the

MySQL client. For example, use the following:

$ mysql –u root

mysql> use info;

mysql> select * from content where title like '%http%';

MySQL responds with the following results:

+-------------------+---+

| url | title |

+-------------------+---+

| /info/page10.html | HTTP Remote Variant Selection

 Algorithm -- RVSA/1.0 |

| /info/page11.html | Internet X.509 Public Key Infrastructure

 Operational Protocols: FTP and HTTP |

| /info/page12.html | Hypertext Transfer Protocol -- HTTP/1.1 |

| /info/page13.html | HTTP Authentication: Basic and Digest Access

 Authentication |

| /info/page14.html | An HTTP Extension Framework |

| /info/page15.html | HTTP Over TLS |

| /info/page16.html | Internet Open Trading Protocol (IOTP)

 HTTP Supplement |

| /info/page17.html | HTTP MIME Type Handler Detection |

| /info/page18.html | Use of HTTP State Management |

Chapter 7 Creating a Dynamic Content Web Site

305

| /info/page19.html | HTTP State Management Mechanism |

| /info/page20.html | Hypertext Transfer Protocol (HTTP)

 Digest Authentication Using Authentication and

 Key Agreement (AKA) Version-2 |

| /info/page21.html | PATCH Method for HTTP |

| /info/page22.html | HTTP-Enabled Location Delivery (HELD) |

| /info/page24.html | Transport of Real-time Inter-network Defense (RID)

 Messages over HTTP/TLS |

| /info/page25.html | HTTP Strict Transport Security (HSTS) |

| /info/page27.html | HTTP Header Field X-Frame-Options |

| /info/page28.html | HTTP Usage in the Registration Data

 Access Protocol (RDAP) |

| /info/page29.html | Hypertext Transfer Protocol Version 2 (HTTP/2) |

| /info/page3.html | Hypertext Transfer Protocol -- HTTP/1.1 |

| /info/page30.html | Mutual Authentication Protocol for HTTP |

| /info/page4.html | An Extension to HTTP : Digest Access Authentication |

| /info/page5.html | HTTP State Management Mechanism |

| /info/page6.html | Use and Interpretation of HTTP Version Numbers |

| /info/page7.html | A Trivial Convention for using HTTP in

 URN Resolution |

| /info/page8.html | Simple Hit-Metering and Usage-Limiting for HTTP |

| /info/page9.html | Transparent Content Negotiation in HTTP |

+-------------------+---+

26 rows in set (0.01 sec)

Next use the same command with the limit clause, where limit 5, 3 indicates

limit is 5 and count is 3:

mysql> select * from content where title like '%http%' limit 5, 3;

Chapter 7 Creating a Dynamic Content Web Site

306

The results are restricted therefore to only three records, starting from the record that

is indexed as five. Because the first record is indexed as zero, the following table includes

the sixth, seventh, and eighth records:

+-------------------+---+

| url | title |

+-------------------+---+

| /info/page15.html | HTTP Over TLS |

| /info/page16.html | Internet Open Trading Protocol (IOTP)

 HTTP Supplement |

| /info/page17.html | HTTP MIME Type Handler Detection |

+-------------------+---+

3 rows in set (0.00 sec)

In the new version of the previous site, the number of records per page will be set for

simplicity to five. The initial query from index.php will set the limit and count values

to 0 and 5, respectively, to display the first five records. Two buttons with the captions

Previous and Next will be used on the evaluated search.php page for browsing the rest

of the records. Initially, the Previous button will be disabled since the first results page

does not include previous results. By clicking the Next button, the following five (or fewer

if the remaining result number is less than five) records will be fetched. The Previous

button will move you to the five records before the first one currently displayed.

Each button is used as a submit-type button in a separate HTML form, requesting a

query that moves the offset backward for the Previous button and forward for the Next

button to the result list.

Where is the current offset saved, though, when swapping from one page to another?

The PHP engine extracts the offset sent along with the form data, updates it (either

increasing or decreasing it), and includes it on the reply page so that it can be available

for the next form submission. The offset placement is not visible to the user since it is

included as the value of the form’s input element of type Hidden. Other than the offset,

the keywords entered by the user need also to be retained at each pagination transition

when clicking the buttons. The initial web page used by the client includes a textbox for

entering the keywords; however, the Previous and Next buttons can perform a keyword

search on the same keywords by carrying them also in a hidden field.

Chapter 7 Creating a Dynamic Content Web Site

307

Figure 7-18 displays the HTML form of the new version of search.php used to

query the database for HTTP. This is the same query executed previously from the

command line.

By clicking the Go button, the first set of records appear, as shown in Figure 7-19.

Figure 7-18.  Using the pagination version of index.php

Figure 7-19.  Displaying the query results with the new version of search.php

Chapter 7 Creating a Dynamic Content Web Site

308

So far, no previous results exist, and therefore the Previous button is disabled.

Click the Next button. The web page displayed in Figure 7-20 with the next five records

appears.

This time, both buttons are enabled, and you can proceed forward or return

backward. Click the Next button four times until you reach the final web page, the sixth

one, displayed in Figure 7-21.

Figure 7-20.  By clicking the Next button, the Previous button becomes
enabled

Chapter 7 Creating a Dynamic Content Web Site

309

The Next button as expected is disabled, and you can move only backward. You can

also provide on each page a Home link to get to the home page of your site. For now, you

can click the Refresh button of your browser to move to the home page.

�The Pagination-Enabled Version of index.php
To implement the pagination feature on the site, changes to both the index.php and

search.php source code are required. In these files, the new code added will be included

between comment lines of forward slashes. The HTML comments in those files will look

therefore like the following:

<!-- ///////////// -->

CSS comments will look like the following:

/* ///////////// */

PHP comments will look like the following:

/////////////////////

Figure 7-21.  When you reach the last web page of results, the Next button becomes
deactivated

Chapter 7 Creating a Dynamic Content Web Site

310

The source code for the new version of index.php is as follows:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:greenyellow;

}

.center {

 margin: auto;

 width: 80%;

 border: 3px solid #74AD23;

 padding: 10px;

}

p{

text-align:center;

font-size:32px;

color:green;

font-weight:bold;

}

input{

border-color:#74AD23;

font-size:32px;

color:green;

padding:10px;

background-color:greenyellow;

}

</style>

</head>

<body>

<div class="center">

Chapter 7 Creating a Dynamic Content Web Site

311

<form name="form1" method="post" action="search.php">

 <p>Search the Papers:

 <input type="text" name="keywords">

 <input type="submit" value="Go">

 </p>

<!-- ////////////////////////////////////// -->

<input type="hidden" name="offset" value="0">

<!-- ////////////////////////////////////// -->

</form>

</div>

</body>

</html>

The only line added is the hidden input type element required to provide zero as the

initial offset value for the first set of result records. The original index.php version did not

use a limit clause for the select statement, and therefore no offset variable was used.

�The Pagination-Enabled Version of search.php
The following is the source code of the new version of search.php:

<!DOCTYPE html>

<html>

<head>

<style>

body {

background-color:yellowgreen;

}

a {

font-size:24px;

}

table.center {

 margin-left:auto;

 margin-right:auto;

 }

Chapter 7 Creating a Dynamic Content Web Site

312

table {

 border-collapse: collapse;

 /* border: 1px solid blue; */

}

 th {

 text-align: center;

 padding: 8px;

 color: goldenrod;

 font-size:24px;

}

 td {

 text-align: left;

 padding: 8px;

 color: green;

 font-size:18px;

}

tr:nth-child(even){

background-color: lightcyan;

}

tr:hover {

background-color:silver;

}

tr.no_hover:hover {

 background-color:floralwhite;

}

/* // */

/* class center is used just for the second table */

.center {

 margin-left:auto;

 margin-right:auto;

 }

/* // */

Chapter 7 Creating a Dynamic Content Web Site

313

</style>

</head>

<body>

<?php

//if(!empty($_POST["keywords"])){

$keywords = $_POST["keywords"];

//}

// trim() spaces left right, preg_split() between

$array = preg_split('/\s+/', trim($keywords));

$cnt=0;

$items="";

foreach ($array as $item) {

 ++$cnt;

 $item = " title like '%{$item}%'";

 if ($cnt != count($array)) {

 $item="{$item} or ";

 }

 $items .= $item;

}

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "info";

$mysqli = new mysqli($servername, $username, $password, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

}

//

// count: number results per page

$count = 5;

$offset = isset($_POST["offset"])?$_POST["offset"]:"";

Chapter 7 Creating a Dynamic Content Web Site

314

$sqlquery = "select title, url from content where ".$items." limit $offset, $count ;";

///

if ($result = mysqli_query($mysqli, $sqlquery)) {

 echo "<table>";

 while ($row = mysqli_fetch_assoc($result)) {

 echo "<tr><td>";

 echo "".$row['title']."";

 echo "</td></tr>";

 }

 echo "</table>";

 mysqli_free_result($result);

}

///

$sqlquery2 = "select count(title) as c from content where ".$items." ;";

if ($result2 = mysqli_query($mysqli, $sqlquery2)) {

$row = mysqli_fetch_assoc($result2);

$c = $row['c'];

//echo $c;

//echo ceil($c/$count);

}

///

$mysqli->close();

?>

<!-- /// -->

<table class="center">

<tr><td>

<form method="POST" action="<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>">

<?php $sub=$offset-$count; echo $sub>=0? '<input type="submit" value=

"PREVIOUS">'.'<input type="hidden" name="keywords" value="'.$keywords.'">'.'

<input type="hidden" name="offset" value="'.$sub.'">':'<input type="submit"

value="PREVIOUS" disabled>'; ?>

</form>

</td><td>

Chapter 7 Creating a Dynamic Content Web Site

315

<form method="POST" action="<?php echo htmlspecialchars($_SERVER['PHP_

SELF']); ?>">

<?php $sum=$offset+$count; echo $sum<$c? '<input type="submit"

value="NEXT">'.'<input type="hidden" name="keywords"

value="'.$keywords.'">'.'<input type="hidden" name="offset"

value="'.$sum.'">':'<input type="submit" value="NEXT" disabled>'; ?>

</form>

</td></tr>

</table>

<!-- // -->

</body>

</html>

In the CSS section, the class center was used for the second HTML table, which

includes only the Previous and Next buttons. A distinct class is required that does not

implement multicoloring, as the plain table selector does for the first table, used for the

query results.

The following PHP code sets $offset and $count, the two arguments of limit.

The variable $count is set to five. $offset is set by $_POST["offset"], and for the

query issued from the form’s textbox, the value sent is always zero. The form of

index.php is not, however, the only form included in the new version of this client-

server application. As shown in the last part of the new version of search.php, each

one of the two buttons (Previous and Next) is used in their own form, which updates

the offset value.

With the $count set to a constant value and $offset set either by the index.php form

or by the forms used with the buttons, the query can be executed in the new version with

the limit option.

//

// count: number results per page

$count = 5;

$offset = isset($_POST["offset"])?$_POST["offset"]:"";

$sqlquery = "select title, url from content where ".$items." limit $offset,

$count ;";

///

Chapter 7 Creating a Dynamic Content Web Site

316

With the following code, the variable $c holds the number of the results of

the previous query (the limit option is not used for this query to return the result

number). The variable $c will be used later to disable the Previous and Next buttons

when at the start or at the end of the query results, respectively. Notice that the echo

ceil($c/$count); command is commented out but can be also used for debugging

purposes to return the total number of result pages. The PHP function ceil() returns

the next highest integer value by rounding up if necessary.

///

$sqlquery2 = "select count(title) as c from content where ".$items." ;";

if ($result2 = mysqli_query($mysqli, $sqlquery2)) {

$row = mysqli_fetch_assoc($result2);

$c = $row['c'];

//echo $c;

//echo ceil($c/$count);

}

///

The last added source code creates the second HTML table for this web page with

the two buttons Previous and Next that are used as the submit buttons of their forms.

The value of the action attribute in each form is filled by PHP code, specifically by the

echo command. It is set to $_SERVER['PHP_SELF'], the variable that returns the current

PHP script executed.

<!-- /// -->

<table class="center">

<tr><td>

<form method="POST" action="<?php echo htmlspecialchars($_SERVER['PHP_

SELF']); ?>">

<?php $sub=$offset-$count; echo $sub>=0? '<input type="submit"

value="PREVIOUS">'.'<input type="hidden" name="keywords"

value="'.$keywords.'">'.'<input type="hidden" name="offset"

value="'.$sub.'">':'<input type="submit" value="PREVIOUS" disabled>'; ?>

</form>

</td><td>

<form method="POST" action="<?php echo htmlspecialchars($_SERVER['PHP_

SELF']); ?>">

Chapter 7 Creating a Dynamic Content Web Site

317

<?php $sum=$offset+$count; echo $sum<$c? '<input type="submit"

value="NEXT">'.'<input type="hidden" name="keywords"

value="'.$keywords.'">'.'<input type="hidden" name="offset"

value="'.$sum.'">':'<input type="submit" value="NEXT" disabled>'; ?>

</form>

</td></tr>

</table>

<!-- //

The PHP code for the Previous button updates the offset, used hence as $sub, by

decreasing it by five as follows:

$sub=$offset-$count;

Then a conditional echo runs, with the condition $sub>=0. If this is true, which

means there are more previous pages, the following HTML tags are printed with the

conditional echo command to the evaluated web page received by the client.

'<input type="submit" value="PREVIOUS">'.'<input type="hidden"

name="keywords" value="'.$keywords.'">'.'<input type="hidden" name="offset"

value="'.$sub.'">'

This prints to the evaluated web page the tags that create three form elements: a

submit button with the Previous caption and also two hidden objects, one for sending

the keywords used by the client and the other for sending the updated offset ($sub).

If the echo condition is false, just one form element is formed: a submit button. It is

disabled, though.

'<input type="submit" value="PREVIOUS" disabled>';

Similar is the code for the Next button, with the difference being that the update to

the offset is done by adding the following count:

$sum=$offset+$count;

Also, the choice to provide an enabled or disable Next button is determined by the

following condition:

$sum<$c

Here, $c is the total number of query results.

Chapter 7 Creating a Dynamic Content Web Site

318

By using each one of the Previous and Next buttons as the submit buttons of two

forms, whose action attribute indicates the same PHP code, and using hidden input

type fields for updating the offset value and carrying the keywords, with a button click

the query slide moves one position backward or forward.

�Using Images Instead of Submit Buttons
For a stylish appearance, you can replace the submit buttons with images by providing

the appropriate CSS properties to switch them from enabled to disabled. In the following

example, two images were borrowed from Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Minimal-next-icon.png

https://commons.wikimedia.org/wiki/File:Minimal-prev-icon.png

Download the files, rename them to simpler names such as next.png and prev.png,

and copy them to the document root directory.

Change the source code for the second table of search.php to the following:

<!-- /// -->

<table class="center">

<tr><td>

<form method="POST" action="<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>">

<?php $sub=$offset-$count; echo $sub>=0? '<input type="image" src="prev.png"

border=0>'.'<input type="hidden" name="keywords" value="'.$keywords.'">'.'<input

type="hidden" name="offset" value="'.$sub.'">':'<input type="image" src="prev.

png" border=0 disabled>'; ?>

</form>

</td><td>

<form method="POST" action="<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>">

<?php $sum=$offset+$count; echo $sum<$c? '<input type="image" src="next.png"

border=0>'.'<input type="hidden" name="keywords" value="'.$keywords.'">'.'

<input type="hidden" name="offset" value="'.$sum.'">':'<input type="image"

src="next.png" border=0 disabled>'; ?>

</form>

</td></tr>

</table>

<!-- // -->

Chapter 7 Creating a Dynamic Content Web Site

319

The previous code replaces the buttons created from the input elements of type

submit with image buttons using a submit property. The following tag is used for the

prev.png image file:

<input type="image" src="prev.png" border=0>

The following tag is used for the next.png image file:

<input type="image" src="next.png" border=0>

The disabled attribute can also be used in the previous code with the images.

<input type="image" src="prev.png" border=0 disabled>

Test the new site using the same query as previously. The two images appear in

Figure 7-22.

Figure 7-22.  Using images instead of buttons in search.php

Chapter 7 Creating a Dynamic Content Web Site

320

Notice that there is no characteristic to visually indicate that the left image is

disabled, although it still behaves as disabled when you click it. You can change that

by utilizing CSS properties. In the CSS section of search.php, enter the following CSS

disabled selector that applies to the input elements of type image:

input[type=image]:disabled

{

 opacity:0.5;

}

When the image is disabled, its opacity property level becomes 0.5, with 1 being not

transparent and 0 being completely transparent.

Run the previous query again. The transparency of the left image is set to 50 percent,

as shown in Figure 7-23. This indicates that the image is not active.

Figure 7-23.  Changing the opacity CSS property for the disabled images

Chapter 7 Creating a Dynamic Content Web Site

321

�Implementing the Site with the GET Method
Next, you’ll change the request method for this site from POST to GET.

The method POST stores the form data in the body of the request message of the

HTTP request, while GET attaches the data to the URL as the query string (name-value

pairs) in the request line of the message. By using pagination and the GET method, the

URL changes in each page to reflect the offset, count, and keywords carried in the query

string.

Change all POST references to GET for both files used in this client-server application.

In index.php, change the value of the form method attribute to get.

<form name="form1" method="get" action="search.php">

In search.php, replace all the $_POST variables with $_GET. Use, therefore, $_

GET["keywords"] instead of $_POST["keywords"] and $_GET["offset"] instead of

$_POST["offset"].

Replace also POST with GET in the form elements, created for the buttons, so that you

finally have the following:

<form method="GET" action="<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>">

To test the GET method, do not use a domain name like http://webtoolsonline.

servehttp.com/, which was used previously with POST because of the masking DDNS

feature, discussed in Chapter 4, which alters the visible URL in the user’s browser. Use,

for instance, the address from the masking service, which in the examples of Chapter 4

was as follows:

http://christos.ddns.net:8080/index.php

Or, as shown in Figure 7-24, simply use the following:

localhost/index.php

Chapter 7 Creating a Dynamic Content Web Site

http://webtoolsonline.servehttp.com/
http://webtoolsonline.servehttp.com/

322

Run the previous query for the keyword HTTP. The query string is now visible in the

address bar of your browser. In this example, as shown in Figure 7-25, it is as follows:

keywords=http&offset=0

Figure 7-24.  Viewing the GET version of the site locally

Figure 7-25.  With GET, the query string appears in the URL of the site

Chapter 7 Creating a Dynamic Content Web Site

323

Click the right-facing arrow image. The query string, as shown in Figure 7-26,

becomes as follows:

x=3&y=3&keywords=http&offset=5

As expected, the keywords value remains the same, but the other values change. The

offset is updated to 5, and you can also see x with a value of 3 and y with a value of 3. The

explanation for those two mysterious names comes is that because an image was used

as a submit button, it attaches to the query string the x and y coordinates of the mouse

pointer when the mouse clicks the image. The value pair (3, 3) means that the mouse

pointer was placed near to the origin (0, 0) of the coordinates, which is the upper-left

corner of the image.

In the browser’s address bar, change the offset value manually, for instance to 17:

localhost/search.php?x=3&y=3&keywords=http&offset=17

Press the Enter key. As shown in Figure 7-27, the page content gets updated with the

five next records, starting at offset 17.

Figure 7-26.  Viewing the mouse coordinates in the query string

Chapter 7 Creating a Dynamic Content Web Site

324

You can use this shortcut in many commercial sites when you want to move to the

results at a position that is not included by the web page buttons. For instance, at the

amazon.co.uk site, displayed in Figure 7-28, the current web page is page 4 of the query

results as indicated with the page number at the bottom of the page and also in the web

page’s URL.

https://www.amazon.co.uk/gp/search/ref=sr_pg_4?rh=n%3A266239%2Ck%3Aapress&

page=4&keywords=apress&ie=UTF8&qid=1536775199

Figure 7-27.  Manually changing a value in the query string

Chapter 7 Creating a Dynamic Content Web Site

325

Change the value 4 in page=4 to 40 and press the Enter key to instantly move to page

40 of the results (Figure 7-29).

Figure 7-28.  Amazon.co.uk showing page 4

Figure 7-29.  Amazon.co.uk showing page 40

Chapter 7 Creating a Dynamic Content Web Site

326

�Summary
In this chapter, you created a project that includes a multiword search feature that is

found in a large number of web sites. The query searches the contents of the site and

specifically the title of each web page entered in a database. The query results are

returned as links to web pages that include the keyword.

You also automated the process of updating the database with new web pages

entered into the site by using cron to schedule the updates with a Bash shell script.

In the following chapter, you’ll implement Secure Sockets Layer (SSL) for your site so

that cryptography is enabled and a secure communication between the web server and

the clients is ensured.

Chapter 7 Creating a Dynamic Content Web Site

327
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_8

CHAPTER 8

Implementing Secure
Sockets Layer on
Your Site
In this chapter, you’ll move from using the HTTP protocol to using HTTPS, and you’ll

apply the SSL/TLS protocols to implement cryptography for a secure communication

between the clients and the web server of your site. The messages exchanged

after this between the client and the web server will be encrypted, and it will be

extremely difficult for “any man in the middle” to decrypt them. The HTTPS protocol

implementation will be indicated in the protocol part of the URLs as https:// instead

of http://, which was used in the previous chapters for simple HTTP connections. For

this to work, the public key infrastructure (PKI) of the web server (Apache or Lighttpd)

has to be configured correctly.

You’ll create two more projects in this chapter. The first one uses HTTP cookies to

allow the otherwise stateless HTTP protocol to retain some user-specific data for each

visitor, such as the user’s name, which is stored on the client side. The second project

utilizes HTTP cookies to implement PHP sessions and allow users to switch from one

page to another in your site while maintaining the user-defined customization settings,

which are stored on the server side.

�Implementing SSL/TLS
PKI is considered one of the previous century’s most important inventions. The ability

to transfer sensitive data, such as account numbers in bank transactions or credit card

details when online shopping, is essential for the reliable operation of all web services.

328

Web security relies on the protocols of public key cryptography, also referred as

asymmetric cryptography. The adjective asymmetric means two different cryptographic

keys are used for the encryption and the decryption of a message—the private key and

the public key. A key in cryptography is a string of bits of a specific length, and it used

by a cryptographic algorithm to transform plain text into cipher text, or vice versa. A

message encrypted with the public key, which is usually publicly available for the clients,

can be decrypted only by its corresponding private key, which is kept secret on the server

side. While a PKI session between a client and a server initiates with the public/private

key pair, at the end of the session a symmetric key is established to be used for the client-

server communication.

Secure HTTP (HTTPS) is implemented by including Secure Sockets Layer (SSL)—or

its successor the Transport Layer Security (TLS) protocol—in the TCP/IP protocol stack

just below the application protocol, which is HTTP for the World Wide Web.

�SSL Certificates
To establish a secure communication with SSL/TLS, the client and the server

exchange the information required to create a common symmetric key. The

server sends to the client its public key in the form of a digital certificate. A digital

certificate, commonly called an SSL certificate, is a data file that binds the public

key of the web server with other attributes that identify the specific server. A valid

certificate adds authentication to the communication by ensuring that an imposter,

or the man in the middle of the communication path, will not assume the identity of

the other communication’s end.

Hint!  While the TLS protocol tends to replace SSL, the name SSL is used broadly
when referring to the cryptographic protocol used, even when the underlying
mechanism is actually TLS. Because of this, certificates are generally called SSL
certificates even though the right term is SSL/TLS certificates.

Digital certificates are granted by root certificate authorities (CAs), which are trusted

third parties that issue SSL certificates after verifying the identity of their clients. The

certificates of root CAs, called root certificates, are self-signed. That is, in a way, they

guarantee for themselves and also are pre-installed in the browsers so that they can

readily be used to verify the applicant’s domain certificate. To enhance the security of the

Chapter 8 Implementing Secure Sockets Layer on Your Site

329

root certificate, other intermediate certificates may be utilized, with one signing another

and thus creating a “chain of trust” with the domain certificate of the web server at the

one end and the root CA certificate at the other.

The public key of a certain site is retrieved by the browser through the site’s domain

SSL certificate. To create a digital certificate for a domain, the applicant has to create

a certificate-signing request (CSR) file and submit it to a CA or otherwise can self-sign

it. A self-signed certificate enables a site with HTTPS; however, it will not be trusted

by certain browsers, and users will be warned by some browsers against visiting the

potentially insecure site. The CSR is a digital document including the public key and

other identifying information and is usually created along with the matching private

key. The CA may request identifying information. For instance, the applicant may be

asked to prove ownership of a domain, e.g., by responding to an e-mail sent to the

address of the specific domain. Next, the CA generates the certificate, signs it using its

private key, and issues it to the applicant, who then imports the CA signed certificate to

their own web server.

Hint!  What does digital signing mean?

The CA signs a certificate by implementing a hash algorithm on the certificate
to generate a message digest, which is a fixed-length string that is typically
shorter than the algorithm’s input and—theoretically—a unique output string.
A hash algorithm is a one-way algorithm. You cannot derive the algorithm’s
input from its output. The digest is then encrypted with the CA’s private key.
The signed certificate, which is the certificate attached to the digest, is sent
then to the recipient.

The recipient can verify that the certificate is received unaltered by decrypting
its digest with the CA’s public key. Also, it generates another digest from the
received certificate using the same hashing algorithm as the sender. The two
digests are compared, and if found to be identical, the certificate is considered
a valid one.

After receiving a copy of the certificate, the client side (e.g., the browser) checks

which CA has signed the certificate. When the validation process succeeds, the public

key of the server is used on the client side, and the private key of the server is used on

Chapter 8 Implementing Secure Sockets Layer on Your Site

330

the server side to encrypt the messages of the SSL handshake process. This process

involves exchanging a number of messages between the client and the server that result

in creating a symmetric key used for the client-server communication.

�Creating Self-Signed Certificates with OpenSSL
As mentioned in the previous section, an inexpensive option for your site, especially

when you are just experimenting with cryptography and do not have to run an

absolutely trustworthy commercial site, is to self-sign an SSL certificate instead of using

a CA. Obtaining a certificate from a CA costs money and usually requires purchasing

a non-DDNS domain name. On the other hand, this cost is not prohibitive, and you

certainly avoid the browser warning messages viewed by your visitors about entering an

insecure site.

Hint!  In this chapter, you will create and use a self-signed certificate and
configure the web server to use it. In the following chapters, you will learn how to
obtain and use one from a certificate authority. However, you don’t have to obtain a
CA certificate to run the projects in the next chapters.

To generate a self-signed certificate and also your private key, use the openssl req

(request) command in your home directory as follows:

$ cd ~

$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout server.

key -out server.crt

The openssl req command creates a certificate request in the PKCS#10 format,

which is the common format used with CAs. It can additionally create self-signed

certificates, which is how it will be used here.

The command’s arguments are as follows:

•	 -nodes (no DES) creates a certificate that does not require a Data

Encryption Standard (DES) passphrase.

•	 -newkey rsa:2048 creates a 2048-bit RSA (Rivest-Shamir-Adleman)

key for use with the certificate.

Chapter 8 Implementing Secure Sockets Layer on Your Site

331

•	 -x509 creates a self-signed certificate instead of a certificate request.

•	 -keyout specifies server.key as the private key file that will be

created.

•	 -out specifies server.crt as the certificate file.

•	 -days determines the length of time in days that the certificate will be

issued for.

You will be asked to enter the following information; you can press Enter for the

default values or insert a period for a blank value:

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

As the common name, you can specify your name or the fully qualified domain

name (FQDN), e.g., secureserver.ddns.net.

Two files, server.key and server.crt, are created in your home directory. Restrict

the file’s access rights to be read-only by the root. Use the following:

$ sudo chmod 400 server.key server.crt

Hint!  To read the file contents of server.key or server.crt, use cat as follows:

$ sudo cat server.key

The command’s output will look like the following:

-----BEGIN PRIVATE KEY-----

MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCwgxSlj6d+eCtw

xWFNhBMlMN4fhhk7vmMd43JjHBO0JyJzQOk+5ziBHF9MRT9KHbDlVlCfIL30ivQm

I6AvV17vEK6zDXJ87WxhIzSdY4H9YhT7dkZ2a8YhwBLiQDDOmIf/QE2bV9Ghgdek

xj+qqcpxASh2Q4NcOgSax6rxFv3o+rxk1S7IxsjSyTnWTWQQFzEtRCV1C/sGV3PM

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://secureserver.ddns.net

332

Ws2waf9B9tEn7H0Ubq0teFXSl4P1v/iMSWddGjl2kBb8tzQ1ZIps/cPefY+Tx7MO

U7vLSv+RBRfO6Mr6iNeZnCEQ0MxIxEgxpewGtEzNou8q+bRcDf9XyAL5KMVcOsE9

FIILA6AFAgMBAAECggEAFrO1Oxn/099GzwlD24FqKPVhDDLmGe4Bt31iX+bjjd8e

qi4mEaYReWGZzCh33GN3NfflBKJkbAhXIHSijJQzLJI7teG74N90egXaJYf/1wP/

aNwscdyorfyTMTBKVrf9fdHaaWlhF+GoR5QL6jpORDx+5L8ILRt1LicSEFIBtC4c

rgqAiJzD1qHhQzbpT9E+0cR+Ue/JK4h3YOmPF7I9wcfqOGyMoOTh1c+NIRgAgybs

1k6Kpe4pN9tujmWuHolnjOaOpX/ZtbEX9Go0gW0LUwPjw7PbzKou1UyUt3r2ufQe

ZbWGGqmktd1+tSDfserfQepZwpW8Orv8bBh8yGZYoQKBgQDkD1b16sNb7WVy5AcE

+bTB74X4s/xgt3BXcMpz1s5WWfzLTlpiU2UomO8OFtDldX1TgXrDWjzpGD8DIZjr

oSplFZ7MyWtHPLsxGxccT7oBzcx5PADDmuk3ZSez8/fvbde1xzt+eIGUD6R6XhmW

RXeduZVigtcb7Xu1lh4zJLKxGQKBgQDGIwpt3JtzWmOByblPmzY5kxtxSghPdqt+

mPI81nB1PmxmuWJULDuEcAxs6zY+6vEJiK9URago2tHHWxDIb42SwoxSxYtOVkup

DZBb8rJJLD0e/wouakjPNIDBqiTvx24vp0B9pYfuqozR1tHRaC2QhIu/BIhtUD81

Mpy/L5knzQKBgH7nWkh1XkglDbKk2JMYMFFKa448+U8IRGcjyEQ1X5QFdvnam8jj

BwNUNpHseEl220pAXoOeDw7WAxpG88UKZYDiSv9BhYSacr+ch3ulkae3UPSVQweV

h/jfPPyR4YFF6iaoup5hiBlPqwK8ohhQh4Mo5ctvayuLNq+Q3TUwUo7hAoGAcLtv

K6LhL3i2NRo5PXnqGEgCzSp6H/w9BwKukL7RrWOe+bNwpsOj+W5nI3GQo6u5CNuk

JiabzuLxiKPfoKsXufDHNjD/WcrvsXfuMuKbXda1z/T8Lfx7AKm2uHm+Gk81+hcH

MnYEKV8QUDQRnTvQ8PD5Me26Ubfevr3VQVIrqeECgYAdKGP29sE4JxV9yCk5pECN

T4OHtHbZTTmENzNm8UaMGnFiQNtBWOa/JEuejeV80anKHCgxoWn792Pync+hfE6D

3lzgc94vfsdthgVztpV1JHtJ5lwVqO+k8RqTHMPOc+Eg21ESghF0jagoAVFSsV1F

MLWnqVLzTBD8QPHgYfHhIA==

-----END PRIVATE KEY-----

Chapter 8 Implementing Secure Sockets Layer on Your Site

333

Unlike with your public key, you should never display your private key (the previous
key has been exposed and therefore was replaced by another one). From the
private key created previously, you can extract the public key. To include the public
key in another file, e.g., file public.key, use the following in your home directory:

$ sudo openssl rsa -in server.key -pubout -out public.key

The server responds with the following output:

writing RSA key

Use cat to read public.key.

$ sudo cat public.key

The public.key contents are displayed next.

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsIMUpY+nfngrcMVhTYQT

JTDeH4YZO75jHeNyYxwTtCcic0DpPuc4gRxfTEU/Sh2w5VZQnyC99Ir0JiOgL1de

7xCusw1yfO1sYSM0nWOB/WIU+3ZGdmvGIcAS4kAwzpiH/0BNm1fRoYHXpMY/qqnK

cQEodkODXDoEmseq8Rb96Pq8ZNUuyMbI0sk51k1kEBcxLUQldQv7BldzzFrNsGn/

QfbRJ+x9FG6tLXhV0peD9b/4jElnXRo5dpAW/Lc0NWSKbP3D3n2Pk8ezDlO7y0r/

kQUXzujK+ojXmZwhENDMSMRIMaXsBrRMzaLvKvm0XA3/V8gC+SjFXDrBPRSCCwOg

BQIDAQAB

-----END PUBLIC KEY----

Concatenate the two files created, server.key and server.crt, as a .pem file. PEM

stands for Privacy Enhanced Mail and is the de facto file format for storing and sending

cryptographic keys and certificates.

$ sudo cat server.key server.crt > server.pem

Change the access right of server.pem.

$ sudo chmod 400 server.pem

Chapter 8 Implementing Secure Sockets Layer on Your Site

334

Set root as the owner of server.pem.

$ sudo chown root:root server.pem

You need to import the server.pem file into the configuration of both the Lighttpd

and Apache web servers to enable the HTTPS protocol. In the following two sections,

you will first configure SSL for Lighttpd and then do the same for Apache.

�Configuring SSL for Lighttpd
To use the PEM file created in the previous section to configure SSL with Lighttpd, use

the steps in this section.

Copy the file server.pem in /etc/lighttpd.

$ sudo cp server.pem /etc/lighttpd

Edit lighttpd.conf, the Lighttpd configuration file. Use any text editor like gedit.

$ sudo gedit /etc/lighttpd/lighttpd.conf

Replace the server.port value currently used (port 80 or 8080) with port number

443, which is the one used by HTTPS.

server.port = 443

Also, set the value of the ssl.engine directive to enable, and set the ssl.pemfile

directive to the filepath of your .pem file.

ssl.engine = "enable"

ssl.pemfile = "/etc/lighttpd/server.pem"

After saving lighttpd.conf, it should look like the following:

server.modules = (

 "mod_access",

 "mod_alias",

 "mod_accesslog",

 "mod_compress",

 "mod_redirect",

)

Chapter 8 Implementing Secure Sockets Layer on Your Site

335

server.document-root = "/var/www/html"

server.upload-dirs = ("/var/cache/lighttpd/uploads")

server.errorlog = "/var/log/lighttpd/error.log"

server.pid-file = "/var/run/lighttpd.pid"

server.username = "www-data"

server.groupname = "www-data"

###

server.port = 443

###

#server.port = 8080

#server.bind = "webtoolsonline.servehttp.com"

server.errorfile-prefix = "/srv/www/errors/status-"

dir-listing.activate = "disable"

accesslog.filename = "/var/log/lighttpd/access.log"

#accesslog.format = �"%V %h %l %u %t \"%r\" %>s %b \"%{Referer}i\"

\"%{User-Agent}i\""

index-file.names = �("index.php", "index.html", "index.lighttpd.

html")

url.access-deny = ("~", ".inc")

static-file.exclude-extensions = (".php", ".pl", ".fcgi")

compress.cache-dir = "/var/cache/lighttpd/compress/"

compress.filetype = �("application/javascript", "text/css",

"text/html", "text/plain")

##

ssl.engine = "enable"

ssl.pemfile = "/etc/lighttpd/server.pem"

##

default listening port for IPv6 falls back to the IPv4 port

Use ipv6 if available

#include_shell "/usr/share/lighttpd/use-ipv6.pl " + server.port

include_shell "/usr/share/lighttpd/create-mime.assign.pl"

include_shell "/usr/share/lighttpd/include-conf-enabled.pl"

Chapter 8 Implementing Secure Sockets Layer on Your Site

336

#include "vhost.conf"

At this point it is assumed that the Lighttpd server runs. If Apache is

currently used stop this server and start lighttpd:

$ sudo service apache2 stop

$ sudo service lighttpd start

To enable the changes in the configuration file, enter the following at the Linux

terminal:

$ sudo service lighttpd force-reload

�Configuring SSL for Apache
The same PEM file as used previously for the Lighttpd server can be used for Apache.

To test Apache, stop the Lighttpd process. At the Linux terminal, enter the following:

$ sudo service lighttpd stop

$ sudo service apache2 start

You can start the Lighttpd server using this:

$ sudo service lighttpd start

Copy the PEM file used for Lighttpd to the /etc/apache2 directory.

$ sudo cp /etc/lighttpd/server.pem /etc/apache2

You can find the default-ssl.conf configuration file in the /etc/apache2/sites-

available directory. Make a backup of this file to use it as the configuration file for the

Apache HTTPS server.

$ sudo cp /etc/apache2/sites-available/default-ssl.conf /etc/apache2/sites-

available/default-ssl.conf.bak

Edit the default-ssl.conf with a text editor.

$ sudo gedit /etc/apache2/sites-available/default-ssl.conf

You just need to add the following directive:

SSLCertificateFile /etc/apache2/server.pem

Chapter 8 Implementing Secure Sockets Layer on Your Site

337

The default-ssl.conf file (with most comments omitted) will look like the

following:

<IfModule mod_ssl.c>

 <VirtualHost _default_:443>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # SSL Engine Switch:

 # Enable/Disable SSL for this virtual host.

 SSLEngine on

 SSLCertificateFile /etc/apache2/server.pem

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars

 </FilesMatch>

 <Directory /usr/lib/cgi-bin>

 SSLOptions +StdEnvVars

 </Directory>

 </VirtualHost>

</IfModule>

Next, you need to enable the ssl module. Use the following:

$ sudo a2enmod ssl

The command’s output is as follows:

Considering dependency setenvif for ssl:

Module setenvif already enabled

Considering dependency mime for ssl:

Module mime already enabled

Considering dependency socache_shmcb for ssl:

Enabling module socache_shmcb.

Chapter 8 Implementing Secure Sockets Layer on Your Site

338

Enabling module ssl.

See /usr/share/doc/apache2/README.Debian.gz on how to configure SSL and

create self-signed certificates.

To activate the new configuration, you need to run:

$ systemctl restart apache2

To enable the site with the configuration defined in default-ssl.conf, use the

following:

$ sudo a2ensite default-ssl

The command’s output is as follows:

Enabling site default-ssl.

The last action is to reload Apache with the new configuration. Use the command

suggested by the a2enmod output.

$ sudo systemctl restart apache2

Or use the following:

$ sudo service apache2 force-reload

Test your site using either Apache or Lighttpd with the steps included in the

following section.

�Testing the Self-Signed Certificate
Test your site locally first using the following URL:

https://localhost

Because the HTTPS connection to this site is not verified by a certificate authority,

the user will see a warning message, like the one shown in Figure 8-1, to urge the user to

skip visiting an untrusted site.

Chapter 8 Implementing Secure Sockets Layer on Your Site

339

Since you know that it is your own site, proceed by clicking the Advanced link.

The following message appears (for the Chromium browser), displayed in Figure 8-2:

“This server could not prove that it is localhost; its security certificate is
not trusted by your computer’s operating system. This may be caused by
a misconfiguration or an attacker intercepting your connection.”

Click the “Proceed to localhost (unsafe)” link.

Figure 8-1.  Chromium warning against visiting an untrusted site

Chapter 8 Implementing Secure Sockets Layer on Your Site

340

The directory index of the site appears, as displayed in Figure 8-3.

Figure 8-2.  By clicking the Advanced link, you have the option to proceed to a
potentionally “untrusted” site

Figure 8-3.  The directory index of your site, as viewed with Chromium, when a
self-signed certificate is implemented

Chapter 8 Implementing Secure Sockets Layer on Your Site

341

As you’ll notice, the Chromium browser strikes out the protocol part of the URL in

the address bar with a red line. Firefox, on the other hand, is more tactful. Using the

same URL in Firefox, you get the message displayed in Figure 8-4.

Click the Advanced button. A frame that includes the Add Exception button appears,

as shown in Figure 8-5.

Figure 8-4.  A warning message from Firefox about an insecure connection

Chapter 8 Implementing Secure Sockets Layer on Your Site

342

Click the Add Exception button. A new dialog, displayed in Figure 8-6, requests

that you add a security exception for https://localhost/. Click the Confirm Security

Exception button.

Figure 8-6.  The dialog requesting a confirmation for the security exception

Figure 8-5.  The Add Exception button in Firefox enables the user to visit the
untrusted site

Chapter 8 Implementing Secure Sockets Layer on Your Site

343

The directory index of the site appears, as shown in Figure 8-7.

Test the site as usual. In the search textbox, enter, for instance, the Internet protocol

keywords and click the Go button. The results appear in the user’s browser, as shown

in Figure 8-8. Click any link in the results. As expected, the corresponding web page is

served with the HTTPS protocol.

Figure 8-7.  The directory index of your site, as viewed in Firefox, when a self-
signed certificate is implemented

Chapter 8 Implementing Secure Sockets Layer on Your Site

344

You can alternatively test your site using the private IP address of your server, as

displayed in Figure 8-9.

Figure 8-8.  The online search for the web site is carried out with HTTPS

Figure 8-9.  Testing the site with the private IP address of your server

Chapter 8 Implementing Secure Sockets Layer on Your Site

345

�Enabling Your Site to Be Viewed Outside of Your LAN
As with port 80 for the HTTP protocol in the previous chapters (or port 8080 if your ISP

bans inbound port 80 connections), you have to enable port forwarding for port 443, the

default HTTPS port number. Connect using the web interface of your router by entering

its private IP address in the address bar of your browser. As displayed in Figure 8-10, the

router’s private IP address is 192.168.1.1 in this example.

Locate the Port Forwarding (or similar name) tab, as shown in Figure 8-11.

Figure 8-10.  Connecting to a router’s web interface

Chapter 8 Implementing Secure Sockets Layer on Your Site

346

Create a new entry for port 443, as displayed in Figure 8-12, and save the new

configuration.

Figure 8-11.  Locating the port forwarding service in the router’s web interface

Figure 8-12.  Creating a new entry in the router’s Port Forwarding section for port 443

Chapter 8 Implementing Secure Sockets Layer on Your Site

347

Your site is now available from outside your LAN. You can access it with the public

IP address of your router or with the domain name of your web server. Test this using

the router’s public IP address in the address bar of your browser. To find the public IP

address of your router, use a “find my IP” online service or enter the following in the

Linux terminal:

$ curl ifconfig.me

The command’s output consists just of the public IP address of your router. Here’s an

example:

94.69.57.219

Enter the following URL in your browser’s address bar:

https://94.69.57.219

The web browser displays the “not secure” warnings discussed in the previous

section, and if you proceed to download the web page, the directory index of your site is

displayed, as shown in Figure 8-13.

Chapter 8 Implementing Secure Sockets Layer on Your Site

348

You can also use the one of the FQDN DNS names you registered in Chapter 4. For

instance, you can use the following:

https://christos.ddns.net

Or, you can use the one registered last with a more appropriate name.

https://secureserver.ddns.net

The directory index of the site also appears, as displayed in Figure 8-14.

Figure 8-13.  Testing the HTTPS connection to your site using the router’s public IP
address

Chapter 8 Implementing Secure Sockets Layer on Your Site

349

At this point, you might expect that everything works fine. It doesn’t, at least until

you check the connection from outside your LAN. Using a online network tool, like

webpagetest.org or geoscreenshot.com, you may discover that the web page test fails.

At this point, you have to check the following:

•	 Your router (port forwarding)

•	 Your firewall

•	 Your ISP’s inbound port 443 policy

Having set up the port forwarding feature on the router as described previously, the

next immediate step is to check your firewall. You can use the ufw as follows:

$ sudo ufw enable

$ sudo ufw allow 443

$ sudo ufw status verbose

Figure 8-14.  Testing the HTTPS connections to your site using an FQDN

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://webpagetest.org
http://geoscreenshot.com

350

The previous command’s output for this example, shown next, indicates that the

ports used in the previous chapters are all opened:

Status: active

Logging: on (low)

Default: deny (incoming), allow (outgoing), disabled (routed)

New profiles: skip

To Action From

-- ------ ----

10000/tcp ALLOW IN Anywhere

80,443/tcp (Apache Full) ALLOW IN Anywhere

443 ALLOW IN Anywhere

8080 ALLOW IN Anywhere

8181 ALLOW IN Anywhere

10000/tcp (v6) ALLOW IN Anywhere (v6)

80,443/tcp (Apache Full (v6)) ALLOW IN Anywhere (v6)

443 (v6) ALLOW IN Anywhere (v6)

8080 (v6) ALLOW IN Anywhere (v6)

8181 (v6) ALLOW IN Anywhere (v6)

If this still doesn’t work, you have to contact your ISP and request unblocking

the ports if they were indeed blocked. The ISP used for the examples of the book was

blocking all inbound ports from 0 up to 1023 (the primary ports). While a connection to

the site was achieved internally with the FQDN, the external test with the online service

webpagetest.org failed. After a request to the ISP, the primary ports were opened.

Online services like www.canyouseeme.org and www.yougetsignal.com can verify

whether a specific port number of the computer whose IP address is entered in the

corresponding textbox is open. Figure 8-15 displays the test run by yougetsignal.com,

which shows that port 443 used for the connection to the server’s address was closed.

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://webpagetest.org
http://www.canyouseeme.org
http://www.yougetsignal.com
http://yougetsignal.com

351

After the primary ports were opened by the ISP, the same online service ascertains

that port 443 is open, as shown in Figure 8-16.

Figure 8-15.  The online service yougetsignal.com verifies that port 443 is closed

Figure 8-16.  The online service yougetsignal.com verifies that port 443 is open

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://yougetsignal.com

352

Hint!  In Chapter 5, you created an online web service like webpagetest.org.
In Chapter 10, you’ll acually implement a service similar to https://www.
yougetsignal.com/tools/open-ports/.

With port 443 released, you can make the final test for the connections to

your site issued externally to your LAN. Use an online service like webpagetest or

geoscreenshot.com, as displayed in Figure 8-17, that displays your site from various

locations in the world, or you can simply test the site using the mobile Internet

connection from your cell phone.

�HTTP Cookies and PHP Sessions
The HTTP protocol is stateless, which means there is no recording of any previous client

request activity by default. Therefore, when a client logs in to an e-commerce site and

adds an item to the shopping basket, a second login would be required to make a second

purchase. To overcome this situation, commercial sites implement mainly two methods

to maintain user-specific data: HTTP cookies and PHP sessions. A third method, using

Figure 8-17.  Checking the HTTPS connection to your site from an online service

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://webpagetest.org
https://www.yougetsignal.com/tools/open-ports/
https://www.yougetsignal.com/tools/open-ports/
http://geoscreenshot.com

353

input elements of type hidden, was examined in the previous chapter. However, its use is

temporary. When a user exits the browser, the information contained in a hidden field is

lost forever.

In the project for this chapter, PHP sessions will be used. A PHP session is a

technique that is based on HTTP cookies, which are small pieces of data that are sent

by the web server to the browser and are stored in text files as name-value pairs on the

client’s file system. With any further requests to the web server, the information stored in

the specific client’s cookies is attached to the HTTP request message headers. Therefore,

cookies are carried back and forth between the client and the server with their values

updated by the web server programs.

While with cookies the data is stored on the client side, with PHP sessions, all the

data is stored on the server side, except the session ID, which is stored on the client side,

usually in the form of a cookie. With PHP sessions, users or spyware programs do not

have access to the stored information, and for this reason, PHP sessions are considered a

more secure method than cookies.

Because PHP sessions are based on the cookies in the current chapter, you’ll first

create a cookies-based project and then a PHP sessions project. Also, in the following

chapter, when you implement SSL certificates issued from a certificate authority, you’ll

create a project that utilizes PHP sessions to allow a client to log in to the site and while

connected view the user-specific data.

�Setting a Cookie with PHP
There are three basic reasons to use cookies for your site.

•	 Session maintenance, for allowing the user to log in to the site and

stay connected, e.g., to add new items to a shopping card

•	 Customization, for recalling user preferences set by the user in

previous visits to the site, e.g., maintaining a specific background

color when the user e-mails are displayed in a webmail service

•	 User tracking, for recording and analyzing user behavior, e.g.,

e-commerce sites providing advertisements with products relevant to

the ones included in web pages visited in the past by the user

Chapter 8 Implementing Secure Sockets Layer on Your Site

354

The setcookie() PHP function defines a cookie to be sent along with the rest of the

HTTP headers. This function has the following syntax:

setcookie(name, value, expire, path, domain, secure, httponly);

Except name, the parameters are optional. The parameters of setcookie() are

described next:

•	 name: Specifies the name of the cookie.

•	 value: Specifies the value of the cookie.

•	 expires: Specifies the time, set in Unix timestamp format, after

which the cookie will become invalid.

•	 path: Specifies the URL path on the server for which the cookie will

be available. If path is set to / (root), the cookie will be available

within the entire domain.

•	 domain: Specifies the domain for which the cookie is available, e.g.,

webtoolsonline.servehttp.com.

•	 secure: Indicates that the cookie should be sent only in secure

HTTPS connections.

•	 httponly: Indicates that the cookie will be available only through the

HTTP protocol, without being accessible from scripting languages,

e.g., JavaScript.

The following PHP code creates a cookie named username, assigns the value tyler

to it, and specifies that the cookie expires in 30 days (30 days * 24 hours * 60 minutes * 60

seconds) from now. The function time() returns an integer containing the current time

as a Unix timestamp.

<?php

setcookie("username", "tyler", time()+30*24*60*60);

?>

This function setcookie() calls should be placed before sending any output because

cookies are sent in the headers of HTTP requests, and the headers of http requests come

before the content of a web document.

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://webtoolsonline.servehttp.com

355

�Retrieving a Cookie Value from PHP
The PHP $_COOKIE superglobal variable is used to retrieve a cookie previously set. The

following PHP code snippet types the value of the username cookie:

<?php

echo $_COOKIE["username"];

?>

�Removing Cookies with PHP
To remove a cookie, you just call setcookie() for the cookie you want to delete with an

expiration data that refers to the past. For instance to delete the username cookie, you

could call the following:

<?php

setcookie("username", "", time()-3600);

?>

�Creating a Site That Uses Cookies
You can create a PHP site that asks the visitor’s first name and recalls it every time the

user returns to the site until the cookie is expired.

In the document root of your web server (/var/www/html for both Apache and

Lighttpd), create cookies, a new directory for this project, at the Linux terminal.

$ sudo mkdir /var/www/html/cookies

Create index.php, the directory index for this directory.

$ sudo gedit /var/www/html/cookies/index.php

Enter the following HTML and PHP source code:

<?php

if(isset($_POST)){

if (!(isset($_COOKIE["username"])) && (isset($_POST['t1']))){

setcookie("username", $_POST['t1'], time()+3600); //1 hour

}

}

?>

Chapter 8 Implementing Secure Sockets Layer on Your Site

356

<!DOCTYPE html>

<html>

<head>

<title>Testing Cookies</title>

<style>

.p1{

color:blue;

font-size:32px;

text-align:center;

}

input{

color:blue;

font-size:32px;

}

.smiley{

color:orange;

font-size:160px;

text-align:center;

}

.center{

margin:auto;

}

</style>

</head>

<body>

<p class="p1">

<?php

if(isset($_COOKIE["username"])){

 �echo "Hi " . htmlspecialchars($_COOKIE["username"]) . " I can see it is

you!";

 echo '<p class="smiley">😃</p>';

Chapter 8 Implementing Secure Sockets Layer on Your Site

357

} else{

 echo "Welcome to the site!";

 echo '<p class="smiley">😄</p>';

}

?>

<p>

<div class="center">

<form method="post" action="<?php echo htmlspecialchars($_SERVER['PHP_

SELF']); ?>">

<p class="p1">Please enter your first name: <input type="text" name="t1">

</p>

</form>

</div>

</body>

</html>

Since no data is submitted with a POST method to index.php, the first time the PHP

code evaluates, the following block of code does not run:

<?php

if(isset($_POST)){

if (!(isset($_COOKIE["username"])) && (isset($_POST['t1']))){

setcookie("username", $_POST['t1'], time()+3600); //1 hour

}

}

?>

The first time the PHP code evaluates, the PHP global variable $_

COOKIE["username"] is not set yet. Therefore, on the first visit of the user at the site, the

second block of PHP code runs the else part, which prints a general welcome message

and also a smiley Unicode character in a large size, displayed in Figure 8-18.

The smiley chosen is a smiling face with open mouth and smiling eyes. This is

Unicode character 😄.

Chapter 8 Implementing Secure Sockets Layer on Your Site

358

Figure 8-18.  The smiley with the closed eyes appears before the user submits the
first name

<p class="p1">

<?php

if(isset($_COOKIE["username"])){

 �echo "Hi " . htmlspecialchars($_COOKIE["username"]) . " I can see it

is you!";

 echo '<p class="smiley">😃</p>';

} else{

 echo "Welcome to the site!";

 echo '<p class="smiley">😄</p>';

}

?>

<p>

Chapter 8 Implementing Secure Sockets Layer on Your Site

359

Any time the visitor returns to the site, the user will remain anonymous until

deciding to enter their first name. In that case, the name, e.g., Christos, is entered in the

textbox, as shown in Figure 8-18, and submitted by pressing the Enter key. The action

attribute of the form, as evaluated in the following PHP block, specifies the same file,

index.php, as the one that will receive the form’s data:

<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>

When the form’s data is received by index.php, the first block of PHP code runs.

<?php

if(isset($_POST)){

if (!(isset($_COOKIE["username"])) && (isset($_POST['t1']))){

setcookie("username", $_POST['t1'], time()+3600); //1 hour

}

}

?>

In this code block, because the username cookie has not been set yet and also

because a value (the user’s name) was sent via the POST method by the t1 textbox, the

username cookie is assigned the value sent by textbox t1.

For the next hour (3,600 seconds), when someone connects to the site, using the

same browser at the same computer, the if part of the second PHP block runs and

they receive a personalized welcoming with the specific name previously sent. Also,

the smiley changes from the one with the smiling eyes to the one with the open eyes

(Unicode character 😃). See Figure 8-19.

Hint! E ach browser maintains its own cookies. To display this, visit with
Chromium and with Firefox and provide different names in the textbox. Then visit
the site another time using both Chromium and Firefox. Each browser recalls you
with the specific name you submitted in the form of each browser.

Chapter 8 Implementing Secure Sockets Layer on Your Site

360

Figure 8-19.  The smiley with the opened eyes along with a personalized welcome
message appears when the user submits their first name

Hint!  To run the previous project, cookies must be enabled on your browser. For
instance, for Google Chromium, use the following steps:

	1.	 Click the Customize and Control Chromium button (the control button with

the three dots in the upper-right corner of the browser window) and select

Settings.

	2.	O n the new tab with the settings, click the Advanced link at the bottom to

expand the page contents.

	3.	U nder “Privacy and security,” click “Content settings.”

	4.	 Click Cookies and ensure that the “Allow sites to save and read cookie data

(recommended)” option is on.

Chapter 8 Implementing Secure Sockets Layer on Your Site

361

�Viewing the Cookie Details in Your Browser
For the next hour for which the username cookie is valid, you can view the cookie’s

details in your browser. For instance, for Google Chromium, use the following steps.

Click the Customize and Control Chromium button and select Settings. On the new

tab with the settings, click the Advanced link at the bottom to expand the page contents.

Under “Privacy and security,” click “Content settings.” Click Cookies and then “See

all cookies and site data.” In the list that appears, locate the URL used for the site, e.g.,

localhost. Click the URL and locate the cookie’s name, e.g., username. Click the arrow at

the right to view details about the cookie, as displayed in Figure 8-20.

Figure 8-20.  Displaying cookies details in the browser

�Using Wireshark to View the HTTP Cookie Header
The cookies are transferred between the client (the browser) and the web server in the

Cookie field in the HTTP protocol headers. You can use the Wireshark packet analyzer to

view a cookie’s fields. To install Wireshark, use the following command:

$ sudo apt-get install wireshark

Chapter 8 Implementing Secure Sockets Layer on Your Site

362

To invoke Wireshark, use the following at the terminal:

$ sudo wireshark

The Wireshark program loads in a new window. As indicated in Figure 8-21, you can

choose the interface from the interface list, for instance the wired Ethernet interface

denoted as eno1 or with a similar name. If you are not sure about the interface name, you

can run ifconfig at the terminal. Click the “Edit/apply display filter” button (the second

one that depicts a funnel icon) to display only the packets that carry HTTP protocol

messages. In the filter string textbox of the dialog that appears, enter http. Click the

Apply and OK buttons. The text http appears in the Filter toolbar.

For this chapter, it is assumed that the ISP has released ports 80 and 443. In the

previous chapters, the web servers were listening either to port 80 or to port 8080,

and in a few examples to port 8181. Because the emphasis in those examples was to

cover the case where the ISP bans inbound connections to port 80, examples using

port 8080 were mostly used. Because HTTPS encrypts the HTTP headers, it is more

straightforward with Wireshark to examine unencrypted headers. Therefore, an

HTTP connection will be used next. If you have not used port 80 so far with Lighttpd,

follow the next steps.

Change the Lighttpd configuration file for the server to accept also HTTP (except

HTTPS) by using the following:

$ sudo gedit /etc/lighttpd/lighttpd.conf

In the configuration file, add the following conditional directive for the web server to

utilize port 80 (except port 443):

$SERVER["socket"] == ":80" {

server.document-root = "/var/www/html"

server.upload-dirs = ("/var/cache/lighttpd/uploads")

server.errorlog = "/var/log/lighttpd/error.log"

server.pid-file = "/var/run/lighttpd.pid"

server.username = "www-data"

server.groupname = "www-data"

}

Chapter 8 Implementing Secure Sockets Layer on Your Site

https://doi.org/10.1007/978-1-4842-4463-0_9#Fig21

363

Save the file and reload the server to enable the new configuration by using the

following:

$ sudo service lighttpd force-reload

For Apache to use HTTP port 80, the default configuration file 000-default.conf

should contain at a minimum the following directives:

<VirtualHost 192.168.1.100:80>

 DocumentRoot "/var/www/html"

</VirtualHost>

If you have altered the file 000-default.conf, enable the new configuration by using

the following:

$ sudo service apache2 force-reload

Next, open Wireshark by entering the following at the Linux terminal:

$ sudo wireshark

In the Wireshark main toolbar, click the “Start capturing packets” button, which is

the blue fin button, and from another computer connect to the web server via port 80,

using the following URL:

http://192.168.1.100/cookies

In the textbox of the directory index enter a name (Christos was used in this

example) and press Enter to set the username cookie. The requests from this browser for

the specific URL will carry the cookie in the HTTP headers of the packets sent to the web

server.

On the web server, terminate the packet capturing process using the “Stop capturing

packets” button, which is the red square button. You can also enter http in the “Apply

a display filter” textbox to list only HTTP packets. In Figure 8-21, an HTTP packet is

selected destined for the web server (IP address 192.168.1.100).

Chapter 8 Implementing Secure Sockets Layer on Your Site

364

Figure 8-21.  The Wireshark window displays the client request, carrying the
cookie

The following are the HTTP headers for the specific packet:

 POST /cookies/index.php HTTP/1.1\r\n

 Host: 192.168.1.100\r\n

 �User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:62.0) Gecko/20100101

Firefox/62.0\r\n

 �Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;

q=0.8\r\n

 Accept-Language: en-US,en;q=0.5\r\n

 Accept-Encoding: gzip, deflate\r\n

 Referer: http://192.168.1.100/cookies/\r\n

 Content-Type: application/x-www-form-urlencoded\r\n

 Content-Length: 11\r\n

 Cookie: username=Christos\r\n

 Connection: keep-alive\r\n

 Upgrade-Insecure-Requests: 1\r\n

 Cache-Control: max-age=0\r\n

 \r\n

Chapter 8 Implementing Secure Sockets Layer on Your Site

365

The cookie with the name username and the value Christos is included in the

cookie header in this and any other packet sent to the web server from the specific

browser.

�Using Browser Tools to View the HTTP Cookie Header
Many web browsers like Chromium and Firefox enable the user to view many details

about the web page content and the connections, and this feature can be used to display

the cookie header. In this section, you’ll use Chromium to display the cookies set from

another site, e.g., from minix3.org, using an HTTPS connection.

Visit the site and respond positively to the message about accepting cookies to the

site (if such a message is used). Click the Customize and Control Chromium button (the

three dots in the upper right of the window) and select “More tools” and then “Developer

tools.” A new pane appears on the right of the window with the Network tab selected by

default. Reload the page to view the client request messages and the web server replies.

Click the web page request called, e.g., minix3.org. The HTTP header fields appear, as

displayed in Figure 8-22. Scroll down to locate the cookie header.

Figure 8-22.  Viewing the HTTP headers from the Chromium browser

Chapter 8 Implementing Secure Sockets Layer on Your Site

http://minix3.org
http://minix3.org

366

Similarly, you can view the cookie header from Firefox by clicking the Open menu

button (the three stripes on the upper right of the window) and then selecting Web

Developer and then Network. Reload the web page to view the request messages and

the web server replies. Click the GET request of type html. The HTTP protocol headers,

among them the cookie header, appear, as shown in Figure 8-23 after scrolling.

�Using PHP Sessions
Retaining data from the client and server interaction using cookies has some

security drawbacks. First, because they are stored on the user’s system, they are less

secure against potential attacks that could modify the cookie contents. With PHP

sessions, sensitive data is safely stored in a centralized way on the web server. There

is also another disadvantage. With cookies, each time the client makes a request

to the server for a specific URL, all the cookies for this site are carried to the server

along with the request. For ten cookies, each one with a size of 4KB, the browser

will upload 40KB of extra data for each page being viewed, which will decrease the

performance of your site.

Figure 8-23.  Viewing the HTTP headers from the Firefox browser

Chapter 8 Implementing Secure Sockets Layer on Your Site

367

Data with PHP sessions, on the other hand, is stored to temporary text files locally on

the web server. Only the session ID, which is the unique identity of the session, is saved

on the client side, usually as a cookie. Therefore, all sensitive information is stored in a

centralized place under the authority of the site administrator.

To begin a new session, use the PHP session_start() function, for instance:

<?php

session_start();

?>

The function session_start() checks whether the session is already established

by searching for a session ID on the client computer with a value of an alphanumeric

string. The session ID is the only piece of data that is stored on the client side. If a session

ID is found, i.e., the session is already started, session variables stored on the server

computer for the specific client can be set and retrieved. Otherwise, a new session is

started by creating a new session ID and storing it on the client as a cookie with the

name PHPSESSID. The file that stores the session variables is automatically created on the

server in a designated directory and with a file name consisting of the ID value prefixed

by sess_ , e.g., sess_hg7egmhroh4vbk9925v8vu8op4.

The PHP function session_start() (for the same reasons as setcookie()) should

be called at the beginning, before the HTML tags, of each page of your site that will

participate in the given session. All session data, stored as variable-value pairs, are

then shared among the current page and the other web pages of the site for the specific

session. This session is identified by the PHPSESSID cookie, which is valid for a specific

browser on the client’s system for the specified period of time.

The global PHP variable $_SESSION is the array used to store the session variables.

The following PHP code creates a session and stores the values Henrik and Ibsen in the

session variables firstname and lastname, respectively:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

$_SESSION["firstname"] = "Henrik";

Chapter 8 Implementing Secure Sockets Layer on Your Site

368

$_SESSION["lastname"] = "Ibsen";

?>

</body>

</html>

The session is terminated with the session_unset() and session_destroy() PHP

functions. The function session_unset() removes all session variables, and session_

destroy() deletes the session.

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

session_unset();

session_destroy();

?>

</body>

</html>

�Running a PHP Session Example
In the document root of your server (usually /var/www/html for both Apache and

Lighttpd), create sessions, which is the new directory for this project.

$ sudo mkdir /var/www/html/sessions

Create a site consisting of three web pages: index.php used as the directory index

and page1.php and page2.php, which are two web pages linked from the directory index.

$ cd /var/www/html/sessions

$ sudo touch index.php page1.php page2.php

On index.php, the site’s home page, the user has the option to personalize the web

pages and choose one of three available background colors (orange, light blue, and

lime) by clicking the corresponding colored button. The user can also choose the white

Chapter 8 Implementing Secure Sockets Layer on Your Site

369

button to reset the background color to the initial one. By clicking a colored button, the

corresponding color applies to not only the home page but also to any other web page of

the site. In this example, the home page includes two links called Books and Magazines,

leading to page1.html and page2.html, respectively. As displayed in Figure 8-24, light

blue is selected after the user clicks the light blue button (the second one).

The user can click a link to see the background color of the corresponding web page.

Figure 8-25 displays page1.php after the Books link is clicked.

Figure 8-24.  The home page of the PHP sessions site with the light blue
background color selected

Chapter 8 Implementing Secure Sockets Layer on Your Site

370

Figure 8-26 displays page2.php after the Magazines link is clicked.

Figure 8-26.  The Magazines web page retains the user’s color selection

Figure 8-25.  The Books web page retains the user’s color selection

Chapter 8 Implementing Secure Sockets Layer on Your Site

371

The PHP session mechanism is implemented in this project to store the user

preferences as PHP session variables that are automatically available to any PHP web

page of the site that calls the function session_start() in a PHP block before the web

page’s HTML source code. The session variable’s value is used to change the background

color of the current page but is also available to all other web pages of the site and is used

as the background-color property of the body selector in the CSS section. Next you’ll

create the home page of the site.

�The Source Code for index.php
Use the gedit command to edit index.php.

$ sudo gedit /var/www/html/sessions/index.php

Enter the following source code in the gedit window and click the Save button:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP Sessions</title>

<style>

a{

font-size:32px;

padding:5px;

}

body{

background-color:<?php

if(isset($_SESSION["favcolor"])){

echo $_SESSION["favcolor"] . ";";

} else {

echo "white;";

}

?>

}

Chapter 8 Implementing Secure Sockets Layer on Your Site

372

p{

font-size:48px;

color:fuchsia;

}

.center{

text-align:center;

background-color:yellow;

}

.center2{

text-align:center;

}

.div1 {

 display: inline-block;

}

</style>

</head>

<body>

<?php

if(isset($_POST['s1'])){

$_SESSION["favcolor"] = "orange";

echo '

<script>

document.body.style.background = "orange";

</script>

';

} else if(isset($_POST['s2'])){

$_SESSION["favcolor"] = "lightblue";

echo '

<script>

document.body.style.background = "lightblue";

</script>

';

} else if(isset($_POST['s3'])){

$_SESSION["favcolor"] = "lime";

echo '

Chapter 8 Implementing Secure Sockets Layer on Your Site

373

<script>

document.body.style.background = "lime";

</script>

';

} else if(isset($_POST['s4'])){

session_unset();

session_destroy();

echo '

<script>

document.body.style.background = "white";

</script>

';

}

?>

<div class="center">

<div class="div1">

<p>Choose a background color:</p>

</div>

<div class="div1">

<form method="POST" action="<?php echo htmlentities($_SERVER['PHP_SELF']); ?>">

<input type="submit" name="s1" value="" style="width:50px;height:50px;

border:0;background-color:orange;border:1px solid white;">

</div>

<div class="div1">

<input type="submit" name="s2" value="" style="width:50px;height:50px;

border:0;background-color:lightblue;border:1px solid white;">

</div>

<div class="div1">

<input type="submit" name="s3" value="" style="width:50px;height:50px;

border:0;background-color:lime;border:1px solid white;">

</div>

Chapter 8 Implementing Secure Sockets Layer on Your Site

374

<div class="div1">

<input type="submit" name="s4" value="" style="width:50px;height:50px;

border:0;background-color:white;border:1px solid white;">

</form>

</div>

</div>

<div class="center2">

<div class="div1">

Books

</div>

<div class="div1">

Magazines

</div>

</div>

</body>

</html>

The first block of the PHP code starts a new session (if not already started).

 <?php

session_start();

?>

Next comes the CSS part inside the HTML head element. Certain styles are being

applied, such as the position of the buttons and the links and the color and size of the

text, but the noticeable part is the one that sets the background color of the page.

body{

background-color:<?php

if(isset($_SESSION["favcolor"])){

echo $_SESSION["favcolor"] . ";";

} else {

echo "white;";

}

?>

}

Chapter 8 Implementing Secure Sockets Layer on Your Site

375

The first time the user views the home page—and until the user clicks a colored

button—the web page’s background color is white. The four colored buttons for selecting

the background color are actually input elements of the submit type of the same form

that submits the user selection to the same PHP page, as indicated by the global variable

$_SERVER['PHP_SELF']. Each submit button is differentiated by a distinct name. The

names used are s1, s2, s3, and s4. For instance, the second button is created with the

following input element:

<input type="submit" name="s2" value="" style="width:50px;height:50px;

border:0;background-color:lightblue;border:1px solid white;">

Then, according to the button’s name used for the data submission, the PHP and

JavaScript source code runs.

With PHP, the PHP session variable favcolor is set. For instance, if s2 (the light blue

button) was the one submitted, the data favcolor is assigned to lightblue.

} else if(isset($_POST['s2'])){

$_SESSION["favcolor"] = "lightblue";

echo '

<script>

document.body.style.background = "lightblue";

</script>

Also, JavaScript runs locally in the web browser and sets instantly the background of

the current web page to light blue.

Hint! A s is the case with any other CSS property, background-color changes
its name when accessed by JavaScript. For the background-color property, the
name in JavaScript becomes background.

All other web pages of the site when visited retain the light blue background with the

favcolor value setting in the CSS section of the background-color property of the body

selector. The following code snippet can be used in any other web page of the site:

body{

background-color:<?php

if(isset($_SESSION["favcolor"])){

echo $_SESSION["favcolor"] . ";";

Chapter 8 Implementing Secure Sockets Layer on Your Site

376

} else {

echo "white;";

}

?>

}

With the white button, there is an exception. By clicking this button, JavaScript is

used locally on the client to set instantly the background color of the current web page,

but the PHP code does not set favcolor; rather, it destroys the session. When favcolor

is not set for any other web page visited, the else part of the previous source code runs,

and the CSS background-color property for the body selector defaults to white.

?>

The last part of code in index.php creates two links to page1.php and page2.php

called Books and Magazines, respectively.

<div class="center2">

<div class="div1">

Books

</div>

<div class="div1">

Magazines

</div>

</div>

You’ll create the two web pages page1.html and page2.html next.

�The Source Code for page1.html and page2.html
With the user selections, the favcolor PHP session variable obtains a value, and this

value will be available to the other two web pages of the site, e.g., page1.php and page2.

php, given that they also implement PHP sessions. Here you’ll create page1.html, the

Books page, and page2.html, the Magazines page.

At the Linux terminal, use gedit to insert the source code to page1.php.

$ sudo gedit /var/www/html/sessions/page1.php

Chapter 8 Implementing Secure Sockets Layer on Your Site

377

Enter the following source code and save the file:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:<?php

if(isset($_SESSION["favcolor"])){

echo $_SESSION["favcolor"] . ";";

} else {

echo "white;";

}

?>

}

p{

text-align:center;

font-size:48px;

}

.center{

text-align:center;

}

</style>

</head>

<body>

<div>

<p>Books</p>

</div>

<div class="center">

Home

</div>

</body>

</html>

Chapter 8 Implementing Secure Sockets Layer on Your Site

378

The first PHP block connects to the session started from index.php using the same

function call with index.php, session_start().

<?php

session_start();

?>

After the function session_start() is called, if the PHP session variable favcolor

was previously set in index.php, it becomes also available to page1.php. Its value is

used to set the background color of page1.php. If the user decides to click the Books link

and navigate to page1.php without first selecting one of the three colors, the favcolor

variable is not set, and the default color (white) applies for the background color of the

page.

body{

background-color:<?php

if(isset($_SESSION["favcolor"])){

echo $_SESSION["favcolor"] . ";";

} else {

echo "white;";

}

?>

In the body of page1.php, there is some text (Books) and a link for returning to the

home page.

<body>

<div>

<p>Books</p>

</div>

<div class="center">

Home

</div>

</body>

Create the web page page2.php.

$ sudo gedit /var/www/html/sessions/page2.php

Chapter 8 Implementing Secure Sockets Layer on Your Site

379

Enter the following for the page1.html source code and save the file:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:<?php

if(isset($_SESSION["favcolor"])){

echo $_SESSION["favcolor"] . ";";

} else {

echo "white;";

}

?>

}

p{

text-align:center;

font-size:48px;

}

.center{

text-align:center;

}

</style>

</head>

<body>

<div>

<p>Magazines</p>

</div>

Chapter 8 Implementing Secure Sockets Layer on Your Site

380

<div class="center">

Home

</div>

</body>

</html>

From index.html, select one of the available background colors, and you’ll see they

also apply on page1.html and page2.html by visiting the corresponding links, Books and

Magazines.

�Experimenting with the Sessions Project
Comment out the session_start() function for page2.php to temporarily deactivate it.

<?php

//session_start();

?>

Click one of the three colored buttons on the home page to select a color. Visit

then the Books and Magazines links. As expected, only page1.php has the same color

background as the one selected. Uncomment the session_start function to enable

again the session for page2.php.

Visit the home page of the site and select a color, e.g., orange. Locate the file where

the session data is stored and view its contents. You can find this information in the

php.ini file, which is the PHP configuration file. Load the info.php web page created in

Chapter 2 that evaluates the phpinfo() function, which displays lots of information about

the PHP configuration. Use, for instance, the following in your browser’s address bar:

https://localhost/info.php

Figure 8-27 shows the web page.

Chapter 8 Implementing Secure Sockets Layer on Your Site

381

As derived from this page in the system used for the project, the php.ini

configuration file is as follows:

/etc/php7/cgi/php.ini

The file php.ini is a long one, so pipe its output to grep to search for keyword save_

path.

$ sudo cat /etc/php7/cgi/php.ini | grep save_path

The command’s output for this example is as follows:

; session.save_path = "N;/path"

; session.save_path = "N;MODE;/path"

;session.save_path = "/var/lib/php/sessions"

; (see session.save_path above), then garbage collection does *not*

Run next ls to view the contents of the /var/lib/php/sessions directory.

$ sudo ls -l /var/lib/php/sessions

Figure 8-27.  The info.php web page source code calls function phpinfo()

Chapter 8 Implementing Secure Sockets Layer on Your Site

382

The command’s output is as follows:

total 4

-rw------- 1 www-data www-data 22 Sep 25 16:38 sess_

hg7egmhroh4vbk9925v8vu8op4

The file name consists of the prefix sess_ and the session ID:

hg7egmhroh4vbk9925v8vu8op4

To view the file’s data, enter the following:

$ sudo cat /var/lib/php/sessions/sess_hg7egmhroh4vbk9925v8vu8op4

The output for the favcolor icon set to orange is as follows:

favcolor|s:6:"orange";

Switch to your browser and click the white button. The PHP session is destroyed, as

revealed from the ls –l command:

$ sudo ls -l /var/lib/php/sessions

The command’s output is as follows:

total 0

While all the information about the session is stored on the server side, the session

ID is stored as a cookie on the client’s computer. Use the settings of your browser to

locate the specific cookie. For the Chromium browser, click the Customize and Control

Chromium button (the one with the three dots in the upper right of the window) and

select Settings. On the new Chromium tab that opens with the available settings, click

the Advanced link at the bottom to expand the page contents. Under “Privacy and

security,” click “Content settings.” Click Cookies and then “See all cookies and site data.”

In the list that appears, locate the URL used for the site, e.g., localhost. Click the URL

and locate the cookie’s name, which is PHPSESSID. Click the arrow at the right to view

details about the cookie. Figure 8-28 displays the cookie properties.

Chapter 8 Implementing Secure Sockets Layer on Your Site

383

As expected, the value of the cookie is hg7egmhroh4vbk9925v8vu8op4.

This cookie for the default session remains until the time indicated in the Expires

section under “When the browsing session ends.” Close the browser and open again the

Settings web page. The cookie is now deleted.

�Summary
In this chapter, you did the following:

•	 Implemented SSL for your site using a self-signed certificate

•	 Used HTTP cookies to maintain the state of the otherwise stateless

HTTP protocol by storing data across web pages on the client side

•	 Used PHP sessions to store to store sensitive data across web pages

on the web server side

In the next chapter, you’ll enhance your site’s credibility by enabling HTTPS

connections with an SSL certificate from a certificate authority.

Figure 8-28.  Displaying the properties of the PHPSESSID cookie

Chapter 8 Implementing Secure Sockets Layer on Your Site

385
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_9

CHAPTER 9

Running Your Site with
a Certificate from a
Certificate Authority
In this chapter, you will upgrade your site, which so far implements HTTPS with a self-

signed certificate, by obtaining an SSL certificate from a certificate authority (CA). As

a result, the web browser warnings about an insecure site will not appear, and instead

a padlock icon, indicating secure communication, will appear on the left of the URL in

the address bar of your browser. To obtain an SSL certificate, you usually need to own a

second-level domain (SLD), like httpsserver in httpsserver.eu, as opposed to a name

with the second-level domain owned by a DDNS company (like the names used in the

previous chapters with the SLD ddns.net). For this reason, in this chapter, you’ll learn

how to obtain a domain name, and I’ll discuss the process to obtain both the domain

name and the SSL certificate. The cost at the time of this writing is about $8/year for

the domain name and $19/year for the SSL certificate. However, it is not required that

you register to run the projects. The source code for the projects used in this and the

following chapter can run with the old server configuration; you will just continue to get

the browser warnings.

By obtaining an SSL certificate from a CA, you will create a site that provides a login

connection. For a system requiring a user login, implementing SSL is an indispensable

option because the password and all other sensitive data is transmitted encrypted. In

this project, you will also learn how to encrypt the user password when stored in the

database.

The user enters the username and the password, and by utilizing PHP sessions, the

user will stay connected and can view user-specific data while browsing all the web

pages of this site until a logout is issued.

http://ddns.net

386

�Obtaining Your Own Domain Name
Plenty of companies offer domain name registration. You first have to search the

company’s site to see whether the name you want is available. An SLD name such as

httpsserver may be available for certain top-level domains (TLDs) such as for eu but

be unavailable for another TLD like com. Usually the prices for the domain names are

different for the various TLDs.

Visit the Domains link at Dynu.com, the provider used in this example. In the

textbox, enter your preferred domain name, e.g., httpsserver.eu, and click the Search

button. Figure 9-1 displays the results indicating that httpsserver.eu is available for

purchase.

By clicking the Purchase button corresponding to the TLD of your choice, e.g., eu,

you can start the registration process at Dynu.com, which includes the payment process

for obtaining the domain name. When you’re finished, the domain is included in the list

of your domain names as a link, as displayed in Figure 9-2. You can further manage your

domain name by clicking this link.

Figure 9-1.  Searching the availability of a domain name

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

http://dynu.com
http://dynu.com

387

The next step for running a secure site is to acquire an SSL certificate from a

certificate authority for your new domain name.

�Obtaining a CA SSL Certificate for Your Domain Name
To go to the SSL certificates web page at Dynu.com, click the gears icon and then click

the SSL Certificates link. Make a choice from the available SSL certificate offers and

proceed with the payment. Figure 9-3 shows an SSL certificate from Comodo being used.

The status of the SSL certificate is Awaiting CSR.

Figure 9-2.  The newly registered domain name is added to the list of your domain
names

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

http://dynu.com

388

A certificate-signing request (CSR) is an encoded file with your application form for

the CA. It is usually generated on the web server and includes information such as your

location, your e-mail, your organization, etc., and basically contains your public key that

will be included in the SSL certificate. You can generate your key pair, consisting of the

CSR file (that includes your public key) and also your private key, by using the following

openssl req command at the Linux terminal:

$ sudo openssl req -new -newkey rsa:2048 -nodes -keyout server.key -out

server.csr

In this command, the following options are used:

•	 new: Generates a new certificate request

•	 newkey rsa:2048: Generates a new private key, an RSA key that is

2,048 bits in size, as its argument indicates

•	 nodes: Specifies that the private key created will not be encrypted

Figure 9-3.  By purchasing an SSL certificate, your domain name status turns to
Awaiting CSR

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

389

•	 keyout server.key: Specifies server.key as the file name to write

the newly created private key to

•	 out server.csr: Specifies server.csr as the file name of the CSR file

OpenSSL asks about the following information:

•	 Country name (two-letter code)

•	 State or province name (full name)

•	 Locality name (e.g., city)

•	 Organization name (e.g., company)

•	 Organizational unit name (e.g., section)

•	 Common name (e.g., server FQDN or your name)

•	 E-mail address

•	 A challenge password

•	 An optional company name

Most of the previous information is self-explanatory. In the Common Name field,

enter your domain name, e.g., httpsserver.eu. If you don’t represent any company

or organization, just enter your name because many CAs require that all the fields be

completed. When you fill in all the fields, the openssl command terminates, and the

two files server.key and server.csr are created in your working directory. Use the

following command to view them:

$ ls –l

The command’s output is as follows:

total 8

-rw-r--r-- 1 root root 1058 Feb 27 19:49 server.csr

-rw------- 1 root root 1704 Feb 27 19:49 server.key

Change the server.csr file user rights so that only root has access to this file. File

server.key has the user rights already set.

$ sudo chmod 0600 server.csr

Use the ls –l another time:

$ ls –l

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

390

The command’s output is as follows:

total 8

-rw------- 1 root root 1058 Feb 27 19:49 server.csr

-rw------- 1 root root 1704 Feb 27 19:49 server.key

Of the two files generated, your private key (server.key) is the one that you keep

secret. The other one (server.csr) is the CSR file that includes your public key, and it

can be available to anyone. This is the file you have to submit to the CA. Open the CSR

file with a text editor, copy the contents, and switch back to your browser. In the Actions

column of the Dynu.com web page accessed previously, click the Manage button (the

blue pencil) to submit your CSR file. Paste your CSR text in the Certificate Signing

Request (CSR) window, as viewed in Figure 9-4, and click the Save button.

In the Web Server Type list, select Apache SSL. Also, in the Approved Email list,

select admin@httpsserver.eu. Unless you run a mail server, you probably do not

have an e-mail address that uses your domain name. Such an e-mail address is,

however, required by CAs for the verification process. SSL certification providers like

Dynu.com create a temporary e-mail account for you to receive e-mail from the CA,

Figure 9-4.  Providing the CSR file contents to the CA

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

http://dynu.com
http://dynu.com

391

via the Dynu.com webmail interface. The username and the password for the Dynu.com

webmail site are provided by Dynu.com so that you can reply to the CA’s e-mail and thus

complete the SSL certificate registration process.

You’ll receive an e-mail from Dynu.com that includes your certificate (e.g.,

httpsserver.eu_2018.cer) and a bundle file (e.g., httpsserver-eu.ca-bundle) with

all the intermediate certificates. For security reasons, the CA uses a chain of trust, where

one intermediate certificate signs the next. At one end of the chain is the root certificate,

which is the CA identity, and at the other end is your domain certificate, which is the

certificate you purchase from a CA.

Hint!  Sometimes the SSL certificate provider sends the root and intermediate
certificates instead of a bundle file. You have to copy and paste the contents of the files
in the order suggested by the SSL certificate provider into the .ca-bundle file. You
can skip this and ask your SSL provider to send you a ready-to-use bundle file instead.

Since the SSL certificate is already provided, the status of the SSL Certificates web

page of Dynu.com changes to Complete, as displayed in Figure 9-5.

Figure 9-5.  With the SSL certificate granted, the status of the domain name on the
SSL Certificates web page becomes Complete

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

http://dynu.com
http://dynu.com
http://dynu.com
http://dynu.com
http://dynu.com

392

In the following section, you’ll install the SSL certificate on the Apache and Lighttpd

web servers so you can have a secure communication for the client login project.

�Configuring SSL on the Web Servers
For both Apache and Lighttpd, three files are required for using HTTPS.

•	 The server’s private key

•	 The SSL certificate for the domain name

•	 The bundle file that includes the root certificate and the intermediate

certificates

Download the files sent with the e-mail from the SSL certificate provider and rename

the certificate file using the .crt file extension.

$ cp httpsserver.eu_2018.cer ssl.crt

Next the installation process for Apache and then for the Lighttpd web

servers are discussed.

�Installing the CA Certificate on the Apache Web Server
Create a new directory named ca in /etc/apache2 and copy the certificates and your

private key into it. In the following cp commands, the files are assumed to be copied

from the home directory. Use sudo su to avoid including sudo in the rest of the

commands.

$ sudo su

mkdir /etc/apache2/ca

cp ~/server.key /etc/apache2/ca

cp ~/ssl.crt /etc/apache2/ca

cp ~/httpsserver_eu.ca-bundle /etc/apache2/ca

Edit the default Apache SSL configuration file.

gedit default-ssl.conf

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

393

In the configuration file, make sure the following directives are added:

 ServerName httpsserver.eu

 SSLCertificateFile /etc/apache2/ca/ssl.crt

 SSLCertificateKeyFile /etc/apache2/ca/server.key

 SSLCertificateChainFile /etc/apache2/ca/httpsserver_eu.ca-bundle

The whole file should look like the following:

<IfModule mod_ssl.c>

 <VirtualHost _default_:443>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html/login

 # Available loglevels: trace8, ..., trace1, debug, info, notice, warn,

 # error, crit, alert, emerg.

 # It is also possible to configure the loglevel for particular

 # modules, e.g.

 #LogLevel info ssl:warn

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # For most configuration files from conf-available/, which are

 # enabled or disabled at a global level, it is possible to

 # include a line for only one particular virtual host. For example the

 # following line enables the CGI configuration for this host only

 # after it has been globally disabled with "a2disconf".

 #Include conf-available/serve-cgi-bin.conf

 # SSL Engine Switch:

 # Enable/Disable SSL for this virtual host.

 SSLEngine on

 # A self-signed (snakeoil) certificate can be created by installing

 # the ssl-cert package. See

 # /usr/share/doc/apache2/README.Debian.gz for more info.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

394

 # If both key and certificate are stored in the same file, only the

 # SSLCertificateFile directive is needed.

 #SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem

 #SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

#####################

 ServerName httpsserver.eu

 SSLCertificateFile /etc/apache2/ca/ssl.crt

 SSLCertificateKeyFile /etc/apache2/ca/server.key

 SSLCertificateChainFile /etc/apache2/ca/httpsserver_eu.ca-bundle

####################

 # Server Certificate Chain:

 # Point SSLCertificateChainFile at a file containing the

 # concatenation of PEM encoded CA certificates which form the

 # certificate chain for the server certificate. Alternatively

 # the referenced file can be the same as SSLCertificateFile

 # when the CA certificates are directly appended to the server

 # certificate for convinience.

 #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt

 # Certificate Authority (CA):

 # Set the CA certificate verification path where to find CA

 # certificates for client authentication or alternatively one

 # huge file containing all of them (file must be PEM encoded)

 # Note: Inside SSLCACertificatePath you need hash symlinks

 # to point to the certificate files. Use the provided

 # Makefile to update the hash symlinks after changes.

 #SSLCACertificatePath /etc/ssl/certs/

 #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt

 # Certificate Revocation Lists (CRL):

 # Set the CA revocation path where to find CA CRLs for client

 # authentication or alternatively one huge file containing all

 # of them (file must be PEM encoded)

 # Note: Inside SSLCARevocationPath you need hash symlinks

 # to point to the certificate files. Use the provided

 # Makefile to update the hash symlinks after changes.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

395

 #SSLCARevocationPath /etc/apache2/ssl.crl/

 #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

 # Client Authentication (Type):

 # Client certificate verification type and depth. Types are

 # none, optional, require and optional_no_ca. Depth is a

 # number which specifies how deeply to verify the certificate

 # issuer chain before deciding the certificate is not valid.

 #SSLVerifyClient require

 #SSLVerifyDepth 10

 # SSL Engine Options:

 # Set various options for the SSL engine.

 # o FakeBasicAuth:

 # �Translate the client X.509 into a Basic Authorisation. This

means that

 # �the standard Auth/DBMAuth methods can be used for access

control. The

 # �user name is the `one line' version of the client's X.509

certificate.

 # �Note that no password is obtained from the user. Every entry

in the user

 # file needs this password: `xxj31ZMTZzkVA'.

 # o ExportCertData:

 # �This exports two additional environment variables: SSL_

CLIENT_CERT and

 # �SSL_SERVER_CERT. These contain the PEM-encoded certificates

of the server (always existing) and the client (only existing

 # when client

 # �authentication is used). This can be used to import the

certificates

 # into CGI scripts.

 # o StdEnvVars:

 # �This exports the standard SSL/TLS related `SSL_*' environment

variables.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

396

 # �Per default this exportation is switched off for performance

reasons, because the extraction step is an expensive

operation and is usually useless for serving static content.

So one usually enables the exportation for CGI and SSI

requests only.

 # o OptRenegotiate:

 # �This enables optimized SSL connection renegotiation handling

when SSL

 # directives are used in per-directory context.

 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars

 </FilesMatch>

 <Directory /usr/lib/cgi-bin>

 SSLOptions +StdEnvVars

 </Directory>

 # SSL Protocol Adjustments:

 # The safe and default but still SSL/TLS standard compliant shutdown

 # �approach is that mod_ssl sends the close notify alert but

doesn't wait for

 # �the close notify alert from client. When you need a different

shutdown

 # approach you can use one of the following variables:

 # o ssl-unclean-shutdown:

 # �This forces an unclean shutdown when the connection is

closed, i.e. no SSL close notify alert is send or allowed to

 # �received. This violates the SSL/TLS standard but is needed

for some brain-dead browsers. Use this when you receive I/O

 # errors because of the standard approach where

 # mod_ssl sends the close notify alert.

 # o ssl-accurate-shutdown:

 # �This forces an accurate shutdown when the connection is

closed, i.e. a

 # �SSL close notify alert is send and mod_ssl waits for the

close notify

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

397

 # �alert of the client. This is 100% SSL/TLS standard compliant,

but in

 # �practice often causes hanging connections with brain-dead

browsers. Use

 # �this only for browsers where you know that their SSL

implementation

 # works correctly.

 # Notice: Most problems of broken clients are also related to the HTTP

 # �keep-alive facility, so you usually additionally want to

disable

 # �keep-alive for those clients, too. Use variable "nokeepalive"

for this.

 # �Similarly, one has to force some clients to use HTTP/1.0 to

workaround

 # �their broken HTTP/1.1 implementation. Use variables

"downgrade-1.0" and

 # "force-response-1.0" for this.

 # BrowserMatch "MSIE [2-6]" \

 # nokeepalive ssl-unclean-shutdown \

 # downgrade-1.0 force-response-1.0

 </VirtualHost>

</IfModule>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

For the Apache configuration, it is assumed that the SSLEngine directive in the

configuration file is set to on and also that the ssl module is enabled, as described in the

previous chapter. If it is not enabled, enable it now using the following:

$ sudo a2enmod ssl

$ service apache2 force-reload

The DocumentRoot directive was also set to /var/www/html/login, which will be the

root directory used next in this chapter’s project.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

398

To enable redirection to the HTTPS protocol (https://) when a user connects

using the HTTP protocol (http://), edit the corresponding configuration file, e.g.,

000-default.conf, and add the following directive:

Redirect / https://httpsserver.eu

The file should look like the following:

<VirtualHost *:80>

 # The ServerName directive sets the request scheme, hostname and port that

 # the server uses to identify itself. This is used when creating

 # redirection URLs. In the context of virtual hosts, the ServerName

 # specifies what hostname must appear in the request's Host: header to

 # match this virtual host. For the default virtual host (this file) this

 # value is not decisive as it is used as a last resort host regardless.

 # However, you must set it for any further virtual host explicitly.

 #ServerName www.example.com

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html/login

 Redirect / https://httpsserver.eu

 # Available loglevels: trace8, ..., trace1, debug, info, notice, warn,

 # error, crit, alert, emerg.

 # It is also possible to configure the loglevel for particular

 # modules, e.g.

 #LogLevel info ssl:warn

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # For most configuration files from conf-available/, which are

 # enabled or disabled at a global level, it is possible to

 # include a line for only one particular virtual host. For example the

 # following line enables the CGI configuration for this host only

 # after it has been globally disabled with "a2disconf".

 #Include conf-available/serve-cgi-bin.conf

</VirtualHost>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

399

With the redirection directive, the client request shown here:

http://httpsserver.eu

is redirected by the server to the following request:

https://httpsserver.eu

When a URL is entered with the http:// protocol (or no protocol at all), the HTTP

status code returned directs the client to a different URL (the connection in this case)

with the https:// protocol.

Reload Apache to validate the new configuration.

service apache2 force-reload

�Installing the CA Certificate on the Lighttpd Web Server
Use the certificates and the server’s private key to enable SSL on the Lighttpd web server.

If you didn’t previously, enter sudo su to become the root user and avoid prepending

sudo in the commands that follow.

$ sudo su

Stop Apache from running so you can work next with Lighttpd.

service apache2 stop

Next, start the Lighttpd web server.

service lighttpd start

Create a new directory for storing the private key and the certificates.

mkdir /etc/lighttpd/ca

Copy the files of the /etc/apache2/ca directory to the new ca directory.

cp /etc/apache2/ca /etc/lighttpd/ca

Create the PEM file with the private key and the domain certificate.

cd /etc/lighttpd/ca

cat server.key ssl.crt > server.pem

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

400

Edit the Lighttpd configuration file.

gedit /etc/lighttpd/lighttpd.conf

Enter the following lines and save the file:

$SERVER["socket"] == ":443" {

 server.document-root = "/var/www/html/login"

 ssl.engine = "enable"

 server.username = "www-data"

 server.groupname = "www-data"

 ssl.pemfile = "/etc/lighttpd/ca/server.pem"

 ssl.ca-file = "/etc/lighttpd/ca/httpsserver_eu.ca-bundle"

 server.name = "httpsserver.eu"

}

Also, to redirect the HTTP requests to HTTPS, include the following lines in the

conditional configuration for port 80:

 $HTTP["host"] =~ "(.*)" {

 url.redirect = ("^/(.*)" => "https://%1/$1")

 }

Set the document root from /var/www/html/ to /var/www/html/login in the

conditional configurations for ports 80 and 443, which will be the one used next in the

project.

The file lighttpd.conf should look like the following:

server.modules = (

 "mod_access",

 "mod_alias",

 "mod_accesslog",

 "mod_compress",

 "mod_redirect",

)

server.document-root = "/var/www/html"

server.upload-dirs = ("/var/cache/lighttpd/uploads")

server.errorlog = "/var/log/lighttpd/error.log"

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

401

server.pid-file = "/var/run/lighttpd.pid"

server.username = "www-data"

server.groupname = "www-data"

#server.port = 8080

#server.port = 443

#server.bind = "webtoolsonline.servehttp.com"

server.errorfile-prefix = "/srv/www/errors/status-"

dir-listing.activate = "disable"

accesslog.filename = "/var/log/lighttpd/access.log"

#accesslog.format = �"%V %h %l %u %t \"%r\" %>s %b \"%{Referer}

i\" \"%{User-Agent}i\""

index-file.names = �("index.php", "index.html", "index.lighttpd.

html")

url.access-deny = ("~", ".inc")

static-file.exclude-extensions = (".php", ".pl", ".fcgi")

compress.cache-dir = "/var/cache/lighttpd/compress/"

compress.filetype = (�"application/javascript", "text/css",

"text/html", "text/plain")

$SERVER["socket"] == ":443" {

 server.document-root = "/var/www/html/login"

 ssl.engine = "enable"

 server.username = "www-data"

 server.groupname = "www-data"

##

 ssl.pemfile = "/etc/lighttpd/ca/server.pem"

 ssl.ca-file = "/etc/lighttpd/ca/httpsserver_eu.ca-bundle"

 server.name = "httpsserver.eu"

##

}

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

402

$SERVER["socket"] == ":80" {

server.document-root = "/var/www/html/login"

server.upload-dirs = ("/var/cache/lighttpd/uploads")

server.errorlog = "/var/log/lighttpd/error.log"

server.pid-file = "/var/run/lighttpd.pid"

server.username = "www-data"

server.groupname = "www-data"

###

 $HTTP["host"] =~ "(.*)" {

 url.redirect = ("^/(.*)" => "https://%1/$1")

 }

###

}

default listening port for IPv6 falls back to the IPv4 port

Use ipv6 if available

#include_shell "/usr/share/lighttpd/use-ipv6.pl " + server.port

include_shell "/usr/share/lighttpd/create-mime.assign.pl"

include_shell "/usr/share/lighttpd/include-conf-enabled.pl"

#include "vhost.conf"

Enable the new configuration by reloading Lighttpd.

service lighttpd force-reload

�Testing the SSL CA Certificate
Figure 9-6 displays the home page of httpsserver.eu. This is the home page of the

project that you’ll create next in this chapter.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

403

The browser warnings about entering an insecure site do not appear anymore.

A padlock icon, indicating a secure connection, appears in the address bar of the

browser, and the https:// protocol is not struck through as previously, with the self-

signed certificate. Click the padlock icon to find out some details about the current

secure connection. For the Chromium browser, the menu options appear as displayed in

Figure 9-7.

Figure 9-6.  The home web page of the project’s site

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

404

Click the Certificate (Valid) option, as displayed in Figure 9-8, to open the certificate

viewer and find details about the current certificate.

Figure 9-7.  Clicking the green padlock allows you to get information about the
secure connection

Figure 9-8.  Using the Certificate Viewer in Chromium

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

405

Next use an online tool that tests and analyzes the web server certificates, for

instance SSL Checker (www.sslshoper.com). In the Server Hostname textbox, enter your

domain name, e.g., httpsserver.eu, and click the Check SSL button. Figure 9-9 displays

the results, indicating no problems were diagnosed.

Scroll down to view the chain of trust for your site, as displayed in Figure 9-10.

Figure 9-9.  Using an online tool to check your SSL certificate

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

http://www.sslshoper.com

406

The chain from your domain name certificate leads, in this example, through two

intermediate certificates to the CA root certificate.

You will test your SSL certificate next with the project in the following section.

�Project: Securely Logging In to a Site
By enhancing your site with an SSL certificate, obtained from a CA, you can now create

a site that securely allows the user to create an account and log in to view some personal

information. You do this by implementing a MySQL database that stores all the user

accounts. The user can remain connected while browsing the site’s pages until finally

logging out. For simplicity, this example will just have one page, but you could expand it

to more web pages. By implementing PHP sessions, you’ll allow PHP session variables

to be shared between the PHP source code of the site’s web pages. In this project, the

session_user variable set by the username when the user logs in successfully is shared

among the web pages. In web pages like profile.php, which appears when the user

Figure 9-10.  Displaying the chain of trust for your SSL certificate

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

407

logs in, the session_user value is the ticket to querying a database and displaying user-

specific information. This can be extended to other web pages and thus allow the user to

access more information while connected.

The project requires the following five PHP files:

•	 index.php, the home web page that allows the user to either create

an account or connect to the site using this account

•	 account.php, the web page that creates the account

•	 login.php, the web page that logs the user in to the site

•	 profile.php, the web page the user is transferred to after a successful

login to view user-specific information

•	 logout.php, the file that uses the PHP code for the logout process,

which also transfers the user from profile.php to login.php

�Designing the Project’s Site
Figure 9-11 displays the four web pages and the way they are linked together to form

the site.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

408

The login project site will be placed in a new directory, called login, in the

document root. Create this directory with the following command:

$ sudo mkdir /var/www/html/login

You can use either web server you’ve been using in this book, but these instructions

will use Apache. The directory /var/www/html/login is already set as the document root

of the site for the Apache web server in the default-ssl.conf configuration file with the

DocumentRoot directive.

DocumentRoot /var/www/html/login

Figure 9-11.  The design of the project’s site

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

409

If Apache is not running currently, enable it now using this:

$ sudo service lighttpd stop

$ sudo service apache2 start

�The Source Code for the Home Page of the Site
Next, create the directory index, index.php, so that the site can be accessed from the

address bar of the browser simply as follows:

https://httpsserver.eu

or since redirection applies simply as:

httpsserver.eu

Create index.php by entering the following command at the Linux terminal:

$ sudo gedit /var/www/html/login/index.php

Enter the following code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:brown;

}

.center {

 margin: auto;

 width: 80%;

 border: 3px solid black;

 padding: 10px;

 background-color:lightsalmon;

}

p{

text-align:center;

font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida

Typewriter,monospace;

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

410

font-size:32px;

color:#9F0251;

font-weight:italic;

}

span{

padding:10px;

}

a{

text-decoration:none;

}

a:link, a:visited {

 color: #9F0251;;

}

a:hover {

 color: black;

}

</style>

</head>

<body>

<div class="center">

<p>

Create Account

|

Login </

a>

</p>

</div>

</body>

</html>

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

411

As indicated in its source code, index.php is a simple web page that basically

includes two links. Create Account leads to account.php, which is the PHP file that

evaluates to the web page used for creating the user account, and Login leads to login.

php, which is the PHP file that evaluates to the web page where the user logs in to the site

(Figure 9-12).

Next, you will create two more web pages: account.php and login.php.

�The Web Page for Creating the User Account
By following the Create Account link, the user goes from index.php to the account.php

page, displayed in Figure 9-13, where the account for the specific web service is created.

In this example, the service is about securely logging in to a site, where the user can view

some details about the books loaned from a local library.

The user is required to enter the following details in the HTML form of account.

php (which will be stored in the user table of the login database created in the following

section with MySQL):

Figure 9-12.  The home page includes two links for creating user accounts and for
user login

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

412

•	 First

•	 Last name

•	 E-mail address

•	 Username

•	 Password

•	 Password retyped

All form objects are of type text, except the e-mail, which is of type email, and the

two password fields, of type password. The e-mail field requires an entry of the form

X@Y.Z, and the password fields hide the characters by replacing them with bullets. The

password has to be retyped to validate the first password entry. Two checks are done in

the PHP form validation process: that all fields are nonempty and that the two password

entries match. If those conditions are not met, the appropriate message appears at the

top of the web page, as displayed in Figure 9-14.

Figure 9-13.  The account.php web page of the site

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

413

To create the file account.php, enter the following command at the Linux terminal:

 $ sudo gedit /var/www/html/login/account.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:brown;

}

.center {

 margin: auto;

 width: 80%;

 border: none;

 padding: 10px;

 background-color:lightsalmon;

}

Figure 9-14.  Error messages are displayed when the form is incomplete or when
the password entries are not identical

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

414

.center2 {

 margin: auto;

 width: 80%;

 border: none;

 padding: 10px;

 background-color:brown;

}

p{

text-align:center;

font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida

Typewriter,monospace;

font-size:24px;

color:white;

font-weight:italic;

}

input{

border-color:#9F0251;

font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida

Typewriter,monospace;

font-size:24px;

color:black;

padding:5px;

background-color:lightsalmon;

}

input[type=submit],[type=reset]{

background-color:brown;

color:lightsalmon;

padding:5px;

}

a{

text-decoration:none;

}

a:link, a:visited {

 color: lightsalmon;

}

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

415

a:hover {

 color: black;

}

label {

 font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida

Typewriter,monospace;

 display: inline-block;

 width: 40%;

 text-align: right;

 color:brown;

 font-size:24px;

}

</style>

</head>

<body>

<?php

 $errormsg1 = "";

 $errormsg2 = "";

 $valid1 = 0;

 $valid2 = 0;

if (isset($_POST['s1'])) {

 $first = $_POST["first"];

 $last = $_POST["last"];

 $email = $_POST["email"];

 $user = $_POST["user"];

 $pass1 = $_POST["pass1"];

 $pass2 = $_POST["pass2"];

if((empty($first)) || (empty($last)) || (empty($email)) || (empty($user))

|| (empty($pass1)) || (empty($pass2))) {

$errormsg1 = '<p>Please complete all the fields. </p>';

} else {

$valid1 = 1;

}

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

416

if((strcmp($pass1, $pass2))) {

$errormsg2 = '<p>Please enter the same password at the Password fields. </

p>';

} else {

$valid2 = 1;

}

}

if (($valid1 == 1) && ($valid2 == 1)) {

create_entry($first, $last, $email, $user, $pass1);

}

function create_entry ($first, $last, $email, $user, $pass1) {

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "login";

$mysqli = new mysqli($servername, $username, $password, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

}

$hashed_password = password_hash($pass1, PASSWORD_DEFAULT);

$sql = "INSERT INTO user (first, last, email, username, password) VALUES

('$first', '$last', '$email', '$user', '$hashed_password')";

if(mysqli_query($mysqli, $sql)){

 //echo "Records inserted successfully.";

}else{

 if(mysqli_errno($mysqli) == 1062) {

 echo "<p>Username already inserted (duplicate entry)</p>";

 }else{

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

417

 �echo "ERROR: Could not able to execute $sql. " . mysqli_

error($mysqli);

 }

 }

$mysqli->close();

}

?>

<?php

 if(($errormsg1 != "") && isset($_POST['s1']))

 echo $errormsg1;

 if(($errormsg2 != "") && isset($_POST['s1']) && ($errormsg1 == ""))

 echo $errormsg2;

?>

<form name="form1" method="post" action="<?php echo htmlspecialchars

($_SERVER["PHP_SELF"]); ?>">

<div class="center">

<label for="first">First Name: </label><input type="text" name="first">

</div>

<div class="center">

<label for="last">Last Name: </label><input type="text" name="last">

</div>

<div class="center">

<label for="email">E-mail: </label><input type="email" name="email">

</div>

<div class="center">

<label for="user">Username: </label><input type="text" name="user">

</div>

<div class="center">

<label for="pass1">Password: </label><input type="password" name="pass1">

</div>

<div class="center">

<label for="pass2">Retype Password: </label><input type="password"

name="pass2">

</div>

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

418

<div class="center">

<label for="s1"> </label><input type="submit" name="s1" value="Create

Account">

</div>

<div class="center">

<label for="r1"> </label><input type="reset" name="r1"

value=" Clear Form ">

</div>

</form>

<div class="center2">

<p>Home</p>

</p>

</body>

</html>

A large part of the code is for formatting the web page with CSS and creating the

HTML form. PHP code blocks are also used in various positions in the body section of

the HTML source code. In the HTML form, the action attribute, indicating the file that

will receive the form’s data, is set to account.php.

<form name="form1" method="post" action="<?php echo htmlspecialchars

($_SERVER["PHP_SELF"]); ?>">

When the form is completed by the user and the form data is submitted from

account.php to itself, the PHP code included in the following if statement runs:

if (isset($_POST['s1'])) {

...

}

This if condition checks whether data is submitted by the s1 named button of

the form, with the POST method, and therefore whether the $_POST['s1'] PHP global

variable is set. Notice that s1 is the name of the form’s submit button. The HTTP request

method POST is preferred over method GET to send SSL data, because although the GET

data is also encrypted, it may be visible to server logs or the browser’s history. Moreover,

GET exposes the data to the URL, so the query string may be visible to anyone standing

next to you. Also, GET limits the data sent by applying a maximum data length.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

419

The next lines of the same PHP block assign the variables $first, $last, $email,

$user, $pass1, and $pass2 to the corresponding values that the form’s fields send. Two

checks are performed with the form validation process. First you ensure that the values

sent are not empty and, if all the form data is completed, that the two password fields’

values match. If the checks succeed, the function create_entry() is called with the

arguments $first, $last, $email, $user, and $pass1.

create_entry() connects to the login MySQL database (which will be created in the

following section) and inserts the row provided by the create_entry() arguments in the

table user. These rows correspond to the table columns first, last, email, username,

and password. Before inserting the values into the database, the PHP function password_

hash() is called to encrypt the password value.

$hashed_password = password_hash($pass1, PASSWORD_DEFAULT);

$sql = "INSERT INTO user (first, last, email, username, password) VALUES

('$first', '$last', '$email', '$user', '$hashed_password')";

All passwords included in the database are therefore hashed to a value with a

constant size (e.g., 60 characters when password_hash() is applied with the PASSWORD_

DEFAULT argument). Hashed values are theoretically irreversible, which means you

can’t obtain the password from the password’s hashed value. What you can do is hash

the value of the user’s entry and compare it with the hashed value already stored in the

database.

The function mysqli_query() submits the query to the database. If this function

returns false, the error with the number 1062 is checked, which indicates a duplicate

entry. A duplicate entry for the username is not allowed by the database design, which is

discussed in the following section.

In this case, an appropriate message is printed at the top of the window. Also, for

other reasons of failure, the corresponding error number is printed.

�Creating the Database Used for the Project
To test account.php, create the database used in the project. Connect with the mysql

client to the MySQL server using the following at the command line:

$ sudo mysql -u root

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

420

At the mysql> prompt that appears, enter the following command to create the new

database called login:

mysql> create database login;

The MySQL server responds with the following message:

Query OK, 1 row affected (0.00 sec)

Select the new database to work with.

mysql> use login;

The MySQL server responds with the following message:

Database changed

Create the table user with the column id as the primary key. The id field will

increment each time automatically by one, starting from one, and therefore you don’t

have to provide it when you insert a new record into this table.

mysql> CREATE TABLE user(id int NOT NULL AUTO_INCREMENT, PRIMARY KEY

(id), username varchar(255) NOT NULL, UNIQUE KEY (username), password

varchar(255) NOT NULL, email varchar(255) NOT NULL, first varchar(255) NOT

NULL, last varchar(255) NOT NULL);

The MySQL server responds with a message similar to the following:

Query OK, 0 rows affected (0.43 sec)

At this point, you may want to view the page’s structure. You can enter the following:

mysql> describe user;

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

421

The command’s output is as follows:

+----------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| username | varchar(255) | NO | UNI | NULL | |

| password | varchar(255) | NO | | NULL | |

| email | varchar(255) | NO | | NULL | |

| first | varchar(255) | NO | | NULL | |

| last | varchar(255) | NO | | NULL | |

+----------+--------------+------+-----+---------+----------------+

6 rows in set (0.00 sec)

In the CREATE TABLE SQL command, the UNIQUE KEY constraint was used for the

username column in the user table (displayed with the UNI keyword in the table’s

structure) to ensure that there are no two identical usernames. Any attempts to insert

a duplicate value is detected in the source code of the function create_entry() in

account.php, and an appropriate error message is displayed at the top of the window.

Do not exit mysql yet since the MySQL client connection to the database is required

for the next section.

�Testing the PHP to MySQL Connection
In this section, you’ll enter some records in the user table of the database from the

account.php form. In your browser, display the directory index, index.php, by entering

the following address in the address bar:

https://httpsserver.eu/

Then follow the Create Account link. You can also view the account page directly,

without using the directory index first, by entering the following:

https://httpsserver.eu/account.php

Enter in the form’s fields the details of some test users and submit them by clicking

the Create Account button. For instance, you can create two users: Robert and Sophie.

Figure 9-15 displays the values inserted in the form fields for user Robert.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

422

Although generally not recommended, to compare the output of hashing two

different-sized passwords, use a simple password for Robert, such as 123, and then a

stronger one for Sophie, such as supersophie3mi8#m&&. Figure 9-16 shows the values

entered in the form for user Sophie.

Figure 9-15.  The values entered in the account.php form for user Robert

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

423

Switch to the terminal and connect to the MySQL client. Use the following command

to view the new contents of the table user:

 mysql> select * from user;

The command’s output is as follows:

+----+----------+----------------------+----------------------+--------+---------+

| id | username | password | email | first | last |

+----+----------+----------- ----+----------------------+--------+---------+

| 1 | robert | $2y$10$UWc3eeIjxFlbF

 j75muUiF.wweL2VSpk7b7

 ytsApi5rBGQtGLLCLda | rob.walker@gmail.com | Robert | Walker |

| 2 | sophie | $2y$10$nNTcBgLkzpSbk

 CZTcjmdVetzk2/KYsOq2o

 YyZpQTJIO5hghzkaJwS | s.edwards@yahoo.com | Sophie | Edwards |

+----+----------+----------------------+----------------------+--------+---------+

2 rows in set (0.00 sec)

Figure 9-16.  The values entered in the account.php form for user Sophie

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

424

As you’ll notice, regardless of their initial size, both passwords after hashing have

a constant length of 60 characters. For instance, for Robert, the password 123 after the

hashing process has the following value:

$2y$10$UWc3eeIjxFlbFj75muUiF.wweL2VSpk7b7ytsApi5rBGQtGLLCLda

where:

•	 $2y$ is the algorithm used, which is the bcrypt algorithm for the

PASSWORD_DEFAULT argument of password_hash().

•	 10$ is the algorithm cost.

•	 UWc3eeIjxFlbFj75muUiF. is the salt.

•	 wweL2VSpk7b7ytsApi5rBGQtGLLCLda is the hashed password.

Password hashing is a nice solution for maintaining password security even when

the database is compromised. The one-way hashing applied by password_hash()

leads to a result that cannot be reversed from the original password. Since the hashed

password, and not the original one, is stored in the database, to verify the password

of the user who log ins to the site, the entered password has to be hashed and then

compared with the stored password.

The hashing procedure is enforced by using a salt. Applying a common hash

algorithm to a password always leads to the same result for the given password. This

might be proved insecure, since an attacker might try a number of passwords, hashed

with the same algorithm until he succeeds. A collection of hashed passwords used

for the attack is called a rainbow table. By attaching a salt to the password, which is a

random string either generated by the hashing method or provided by the user, the

hashing outcome will be different even when the same password is hashed twice. When

comparing the stored password with the password entered by the visitor of the site, the

latter is hashed with the salt stored in the hashed password of the database.

Before testing the user login functionality of the site, you need to create a second

table for the login database with details about the books loaned by the users. Then on

login, the personal information will be available for each user at the web page that the

login connection leads to.

At the Linux terminal, with mysql open, enter the following:

mysql> create table book_loan (book_id char(13), primary key(book_id),

loan_date date, user_id int, foreign key(user_id) references user(id));

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

425

The MySQL server responds with a similar output:

Query OK, 0 rows affected (0.47 sec)

Enter a number of insert operations on the database like the following:

mysql> insert into book_loan(book_id, loan_date, user_id)

values(6183443458964, NOW(), 1);

mysql> insert into book_loan(book_id, loan_date, user_id)

values(3487368817469, NOW(), 1);

In the previous commands, the MySQL function NOW() returns the current date and

time as a YYYY-MM-DD string.

View next the contents of the table book_loan by using the following:

mysql> select * from book_loan;

The MySQL server outputs the following table:

+---------------+------------+---------+

| book_id | loan_date | user_id |

+---------------+------------+---------+

| 3487368817469 | 2018-10-04 | 1 |

| 6183443458964 | 2018-10-04 | 1 |

+---------------+------------+---------+

2 rows in set (0.00 sec)

Therefore, the user with an id value of 1 (user robert) is billed with two books so far.

In the next section, this information will be available to Robert, and the information that

no books are loaned will be also available to Sophie.

�The Source Code of the Login Web Page
Figure 9-17 displays the login.php page that appears when the user clicks the Login link

on index.php.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

426

To create the file login.php, enter the following command at the Linux terminal:

$ sudo gedit /var/www/html/login/login.php

Enter the following source code and save the file:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:brown;

}

.center {

 margin: auto;

 width: 80%;

Figure 9-17.  The login.php web page allows the user to log in to the site

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

427

 border: 3px solid black;

 padding: 10px;

 background-color:lightsalmon;

}

.center2 {

 margin: auto;

 width: 70%;

 border: none;

 padding: 10px;

 background-color:brown;

}

p{

text-align:center;

font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida

Typewriter,monospace;

font-size:32px;

font-weight:italic;

}

input{

border-color:#9F0251;

font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida

Typewriter,monospace;

font-size:32px;

color:black;

padding:10px;

background-color:lightsalmon;

}

input[type=submit]{

background-color:brown;

color:lightsalmon;

}

a{

text-decoration:none;

}

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

428

a:link, a:visited {

 color: lightsalmon;

}

a:hover {

 color: black;

}

</style>

</head>

<body>

<?php

if (isset($_POST['s1'])) {

 $user = $_POST["user"];

 $pass = $_POST["pass"];

if((empty($user)) || (empty($pass))) {

echo '<p style="color:white">Please complete the username and the password.

</p>';

} else {

verify_password($user, $pass);

}

}

function verify_password($user, $pass) {

$dbserver = "localhost";

$dbuser = "root";

$dbpass = "";

$dbname = "login";

$mysqli = new mysqli($dbserver, $dbuser, $dbpass, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

}

$user = mysqli_real_escape_string($mysqli, $user);

$sql = "SELECT password FROM user WHERE username='$user'";

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

429

if($query = mysqli_query($mysqli, $sql)) {

$rows = mysqli_num_rows($query);

}

if ($rows == 1) {

$row = mysqli_fetch_assoc($query);

$dbstored_pass=$row['password'];

$isValid = password_verify($pass, $dbstored_pass);

if ($isValid){

$_SESSION['session_user']=$user;

header("location: profile.php");

}

} else {

echo '<p>Username or Password is invalid</p>';

}

$mysqli->close();

}

?>

<div class="center">

<form name="f1" method="post" action="<?php echo htmlspecialchars($_

SERVER["PHP_SELF"]); ?>">

<p>Username: <input type="text" name="user">

</p>

<p>Password: <input type="password" name="pass">

</p>

<p><input type="submit" name="s1" value=" Login

; ">

</p>

</form>

</div>

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

430

<div class="center2">

<p>Home</p>

</p>

</body>

</html>

Like with account.php and index.php, CSS attributes are implemented to style the

login web page. Like account.php, an HTML form is used that implements the POST

method to submit the values to login.php and validate the data passed. The form

validation checks whether the two fields are empty, and its source code is included in the

PHP block that runs when the form with the submit button s1 has sent data back to the

same web page.

if (isset($_POST['s1'])) {

...

}

In the case of nonempty fields, the following function is called:

verify_password($user, $pass);

Here, $user and $pass are the PHP variables for the username and the password

sent by the form:

$user = $_POST["user"];

$pass = $_POST["pass"];

What verify_password() does is connect to the MySQL server and specifically to the

login database and run the following query, which retrieves the stored password in the

database of the specific user:

SELECT password FROM user WHERE username='$user'

Before $user is passed to the SQL query, mysqli_real_escape_string() applies to

this variable to escape some characters, that is, to prepend a backslash before any special

character, taking into account the character set of the current database connection,

which appears as the first parameter of mysqli_real_escape_string(). The function

mysqli_real_escape_string() is used for security reasons and especially for avoiding

SQL injections, that is, executing commands hidden in the SQL query.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

431

With the function mysqli_num_rows(), the number of rows of the query is returned,

and if the row number is one (there is a password of the specific user), the row is

retrieved as the $row array, and the password is retrieved as the array’s item stored in

index password.

$row = mysqli_fetch_assoc($query);

$dbstored_pass=$row['password'];

The following command calls the PHP function password_verify() to verify the

password provided by the user and sent by the login form ($pass), with the password

stored in the database ($dbstored_pass).

$isValid = password_verify($pass, $dbstored_pass);

As mentioned in the previous section, $pass is the plaintext password (e.g., 123),

while $dbstored_pass is the hashed password. The function password_verify()

compares the entered password with the stored one after it hashes the former using the

salt stored along with the latter.

If the two passwords match, the value of $user is assigned to the PHP session

variable session_user. At this point, more session variables could be used if required.

Therefore, the username will be available to all other web pages of the site while the user

is connected, and its unique value will be the key, which is where all information about

the user will be derived from. The session variable, available for all web pages of the site

that join the session, is stored on the server side, and the user cannot have any access to

it and cannot substitute it with another user’s.

After a successful login, the web browser redirects to profile.php.

if ($isValid){

$_SESSION['session_user']=$user;

header("location: profile.php");

Recall also that for the session to function as expected, the following PHP block that

creates the session should be at the top of the web page:

<?php

session_start();

?>

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

432

�The Source Code for the User Profile Page
Next, create profile.php, which is the web page the user redirects to on login. At the

Linux terminal, enter the following:

$ sudo gedit /var/www/html/login/profile.php

Enter the following source code and save the file:

<?php

session_start();

$user=$_SESSION['session_user'];

?>

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:brown;

}

.right {

 margin: auto;

 width: 100%;

 border: none;

 padding-right: 20px;

 text-align:right;

 background-color:lightsalmon;

 font-size:24px;

}

table{

background-color:lightsalmon;

color:black;

font-size:24px;

width:70%;

margin: 0 auto;

padding:20px;

}

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

433

td{

text-align:center;

}

h1{

text-align:center;

}

</style>

</head>

<body>

<p class="right">

You are currently logged in as user <?php echo $user ?>

Logout

</p>

<h1>Books Loaned</h1>

<?php

display_books($user);

function display_books($user) {

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "login";

$mysqli = new mysqli($servername, $username, $password, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

} else {

$sql = "SELECT book_loan.book_id, book_loan.loan_date FROM user INNER JOIN

book_loan ON user.id = book_loan.user_id WHERE user.username='$user'";

if($result=mysqli_query($mysqli, $sql)){

 if (mysqli_num_rows($result)>=1){

 echo "<table>";

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

434

 echo "<tr><td>" . "ISBN" . "</td><td>" . "Loan Date" . "</td></tr>";

 while ($row=mysqli_fetch_assoc($result))

 {

 �echo "<tr><td>" . $row['book_id'] . "</td><td>" . $row['loan_date'] .

"</td></tr>";

 }

 echo "</table>";

 mysqli_free_result($result);

 } else{

 echo "<h1>No results found</h1>";

 }

} else{

 echo "ERROR: Could not able to execute $sql. " . mysqli_error($mysqli);

}

$mysqli->close();

}

}

?>

</body>

</html>

The first block of PHP source code allows profile.php to join the PHP session and

also retrieves from variable $user the value set by login.php for the session variable

session_user.

<?php

session_start();

$user=$_SESSION['session_user'];

?>

In the top-right area of the web page, the message “You are currently logged in as

user” appears followed by the username of the logged-in user, provided by the $user

value. Next to the name, a Logout link appears. (I’ll discuss later in this section how this

link works.)

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

435

Under the heading “Books Loaned” is a list with the book ISBNs that correspond to

the book_id column of the book_loan table and also the date loaned that corresponds to

the loan_date column of the same table. If the user has not currently loaned any books,

as in the example with the user Sophie, the message “No results found” appears instead.

Like the source code in the files account.php and login.php, a connection with the

login database is established with the function mysqli().

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "login";

$mysqli = new mysqli($servername, $username, $password, $dbname);

On a successful connection, the following SQL command is executed, using the

function mysqli_query():

$sql = "SELECT book_loan.book_id, book_loan.loan_date FROM user INNER JOIN

book_loan ON user.id = book_loan.user_id WHERE user.username='$user'";

This time, data from two tables is required, and an inner join between the two tables

is formed. With the inner join, a new result table is created that selects only the rows

from the two tables that match the join condition. In the previous SQL command, the

join condition is equality among the primary key of table user and the foreign key of

table book_loan. This type of join based on equality is often referred as equijoin, and this

is often used to denormalize data. The term normalizing refers to the process of storing

data in different tables. With the denormalizing process, data from different tables can

be retrieved.

With the previous SQL command, the book_id and loan_date columns from the

book_loan table are selected for the matching columns of user_id (of table book_loan)

and id (of table user) from the rows where the username column (of table user) is the

value of $user (e.g., robert). The query depends therefore on the PHP session variable

session_user, whose value is assigned to the PHP variable $user.

If the return value of mysqli_num_rows() holds one or more rows, the results

($row['book_id'] and $row['loan_date']) are included in an HTML table.

 if (mysqli_num_rows($result)>=1){

 echo "<table>";

 echo "<tr><td>". "ISBN" . "</td><td>" . "Loan Date" . "</td></tr>";

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

436

 while ($row=mysqli_fetch_assoc($result))

 {

 �echo "<tr><td>". $row['book_id'] . "</td><td>" . $row['loan_date'] .

"</td></tr>";

 }

 echo "</table>";

The function mysqli_fetch_assoc() is used to provide the result rows. If no rows are

returned, no table is formed, and the message “No results found” appears in a heading

element.

} else{

 echo "<h1>No results found</h1>";

 }

The user-specific data is thus displayed. In the following section, you’ll create the

web page that logs the user out.

�Allowing the User to Log Out
On profile.php, the PHP session is maintained, and the session variable session_user

indicates the user who logged in and provides information specific to this user. Other

web pages of the site could also be used to access the session_user variable and allow

the user to stay connected and view user-specific data while visiting the site.

As mentioned previously, a message at the top right reminds the user of their name,

and also a link called Logout allows the user to disconnect. This link leads to logout.php.

<p class="right">

You are currently logged in as user <?php echo $user ?>

Logout

</p>

Create the file logout.php using the following command at the Linux terminal:

$ sudo gedit /var/www/html/login/logout.php

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

437

Enter the following PHP code and save the file:

<?php

session_start();

setcookie(session_name(), “, 100);

unset($_SESSION['session_user']);

session_destroy();

header('Location: login.php');

exit;

?>

The previous PHP source code snippet uses the function session_start() to join

the current session and then deletes the cookie from the user’s browser by setting the

expiration time to a value in the past. By setting the expiration time to 100, you indicate

value 100 as a Unix timestamp, which corresponds to the number of seconds after the

Unix epoch, which is January 1, 1970 00:00:00 UTC. The session variable session_user

is destroyed with the function unset(), and the PHP session is terminated by calling

the function session_destroy(). With the header() function, the web page redirects to

login.php.

�Testing the User Connection to the Site
To test the two users, you can use the login.php page, which appears when you return to

the home page. Just click the Home link on account.php and then use the Login link. Or,

since you already know the site’s structure, enter the following:

https://httpsserver.eu/login.php

Enter the username, e.g., robert, and the user’s password, e.g., 123, for Robert, and

click the Login button, as displayed in Figure 9-18.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

438

User Robert gets connected to his profile page with personal information about his

recent activity. In the top-right area of the page, the message “You are currently logged in

as user robert” appears.

Figure 9-18.  Testing the site by connecting as Robert

Figure 9-19.  The profile web page for Robert, displaying the ISBN and loan date
of loaned books

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

439

For books currently loaned to user Robert, the ISBN and loan date appear.

The Logout link leads to logout.php, where its evaluated PHP source code logs out

the user by terminating the current session. The user then gets transferred back to the

login.php web page.

�Improving the profile.php Web Page
The data format for the loan date, appearing in profile.php, is the default one used by

MySQL. To change this to a more readable format and also add a new column called Due

Date, replace the display_book() function with the following new version:

function display_books($user) {

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "login";

$mysqli = new mysqli($servername, $username, $password, $dbname);

if ($mysqli->connect_error) {

 die("Connection failed: " . $mysqli->connect_error);

} else {

$sql = "SELECT book_loan.book_id, book_loan.loan_date FROM user INNER JOIN

book_loan ON user.id = book_loan.user_id WHERE user.username='$user'";

if($result=mysqli_query($mysqli, $sql)){

 if (mysqli_num_rows($result)>=1){

 echo "<table>";

 �echo "<tr><td>". 'ISBN' . "</td><td>" . 'Loan Date' .

"</td><td>" . 'Due Date' . "</td></tr>";

 while ($row=mysqli_fetch_assoc($result))

 {

 $date1 = strtotime($row['loan_date']);

 $newformat1 = date('l, j F Y', $date1);

 $date2 = strtotime("+ 21 days", $date1);

 $newformat2 = date('l, j F Y',$date2);

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

440

 �echo "<tr><td>". $row['book_id'] . "</td><td>" . $newformat1 . "</

td><td>" . $newformat2 . "</td></tr>";

 }

 echo "</table>";

 mysqli_free_result($result);

 } else{

 echo "<h1>No results found</h1>";

 }

} else{

 echo "ERROR: Could not able to execute $sql. " . mysqli_error($mysqli);

}

$mysqli->close();

}

}

The first call to the PHP function strtotime() converts the string $row['loan_

date'] to a Unix timestamp and returns this value to the variable $date1. The function

date() is called to change $date1, passed as its second parameter, from a Unix

timestamp to a readable format, indicated by the first parameter, ('l, j F Y').

 $date1 = strtotime($row['loan_date']);

 $newformat1 = date('l, j F Y', $date1);

In the example of the source code, the following characters are used for the format

parameter:

•	 l, a full textual representation of the day of the week

•	 j, the day of the month without leading zeros

•	 F, a full textual representation of a month

•	 Y, a full numeric representation of a year

The second time strtotime() is called, it results in a Unix timestamp increased by

21 days, which is the specified period in the local library in this example for book loans.

The date() call converts the Unix timestamp to the previous readable format:

 $date2 = strtotime("+ 21 days", $date1);

 $newformat2 = date('l, j F Y',$date2);

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

441

Figure 9-20.  The new version of profile.php includes a Due Date column

Finally, $newformat1 and $newformat2 are printed in the Loan Date and Due Date

columns, respectively, as viewed in Figure 9-20.

�Summary
In this chapter, you obtained an SSL certificate from a certificate authority to enable your

site to implement cryptography without getting any browser warnings, just like well-

known commercial sites.

You also created a project that allows the users to log in and remain connected to

your site until they log out. While connected, they can view user-specific data provided

by the site.

The most common ways to exchange data between the client-side JavaScript and

server-side PHP language are discussed in the next chapter.

Chapter 9 Running Your Site with a Certificate from a Certificate Authority

443
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0_10

CHAPTER 10

Running Online Services
Using PHP Sockets
In this final chapter of the book, you will use either web server, Apache or Lighttpd,

with the SSL certificate obtained in the previous chapter. You’ll start by configuring and

running a DDNS client program to update your public IP address to the DDNS server

provider instead of relying the IP address of your router.

The projects in this chapter require socket programming so that the PHP code

executing on the server side can connect to other Internet services.

Specifically, for this chapter’s projects, the web server uses PHP sockets to connect

to other Internet services. As an example of applying socket programming, you’ll create

a PHP server first that listens to a specific port number and is tested with Telnet and then

with a PHP client program. Then the web server is used to connect to this PHP server,

thus implementing a web interface to the service that the PHP server offers.

In the second project, socket programming is used to create a site that simulates an

open port check, similar to the online service used in Chapter 8, and a site where the

web server connects to an existing quote of the day (QOTD) server.

Finally, for each site you will create in this chapter, a separate FQDN is assigned.

�Updating the Domain Name IP Address with ddclient
At this point, you have a site that is enabled to run either on Apache or on Lighttpd, and

both servers use the PHP language to connect to the MySQL server and provide dynamic

content. For the site, you used DDNS domain names (e.g., christos.ddns.net),

and you optionally purchased a second-level domain name (e.g., httpsserver.eu) so

that the web servers can implement HTTPS with an SSL certificate from a CA. Also, all

HTTP requests redirect to HTTPS via port 443. You can use both servers by starting and

stopping them accordingly.

http://christos.ddns.net

444

Hint!  If you don’t recall which server currently is running, use the following
command to find out whether any Lighttpd or Apache process is running on your
system:

ps xa | grep -E 'apache2 | lighttpd'

To toggle between Apache and Lighttpd, use servicecommand to stop the server

running and start the inactive one. For instance, if Lighttpd currently is running, enter

the following at the Linux terminal:

$ sudo service lighttpd stop

$ sudo service apache2 start

Both Apache and Lighttpd currently are serving the site displayed in Figure 10-1,

which has the document root /var/www/html/login and the file index.php as the

directory index.

Figure 10-1.  The web site currently running for both web servers

Chapter 10 Running Online Services Using PHP Sockets

445

Before continuing with the projects in this chapter, let’s ensure that the domain

name obtained (e.g., httpsserver.eu) is still usable. If your ISP uses a dynamic IP

address service, the domain name is expected sooner or later. For example, when the

router restarts, your router’s public IP address changes, and the domain name used with

the DDNS service will not correspond anymore to your public IP address used when the

domain was registered.

Chapter 3 discussed the router service for updating the public IP address on the

domain name provider. However, if the router model does not support that specific

provider, you can’t rely on the router for the update. In that case, you have two options.

The first is to ask your ISP to upgrade to a static IP address service. This is the best

solution, especially if you really want to run a site 24/7. In that case, on your domain

name’s provider site, after logging into your account, you can bind the static IP address

to your domain name. For instance, for the domain name provider used in the examples

of this chapter, the configuration page looks like the one in Figure 10-2.

The other option is to install and run on your server a utility such as ddclient to do

DDNS updates. You can run ddclient as a daemon process that periodically checks your

public IP address and informs the domain name provider when this changes.

Figure 10-2.  Displaying the current IP address that is bound to the domain name
on the domain name provider’s site

Chapter 10 Running Online Services Using PHP Sockets

446

To install ddclient, enter the following at the Linux terminal:

$ sudo apt-get install ddclient

The installation process starts with the window in Figure 10-3, which asks you

whether your provider appears in the included list. Use the keyboard arrows to choose

Other, click the Tab key to select OK, and press Enter.

The installation process continues with a number of windows that retrieve

information for the ddclient configuration file. At this point, you can skip each window

by pressing the Esc key until the installation is complete, and then you can use one of the

predefined ddclient configuration files that your domain name provider offers.

Most domain name providers provide complete guidance for setting up ddclient to

use with their service, like the ones displayed in Figure 10-4.

Figure 10-3.  The first dialog in the ddclient installation

Chapter 10 Running Online Services Using PHP Sockets

447

To edit the ddclient configuration file, enter the following at the Linux terminal:

$ sudo gedit /etc/ddclient.conf

Enter the settings recommended by your domain name provider; replace the

username, password, and domain name with yours; and save the file. In the following

sample file, used for Dynu.com, the three last lines were changed. You can also modify

the time interval that ddclient uses to check for changed IP addresses. In the following

configuration file, the time interval is set to 60 seconds.

daemon=60

syslog=yes

mail=root

mail-failure=root

pid=/var/run/ddclient.pid

use=web, web=checkip.dynu.com/, web-skip='IP Address'

server=api.dynu.com

protocol=dyndns2

Figure 10-4.  Viewing instructions for ddclient configuration from the DDNS
provider’s site

Chapter 10 Running Online Services Using PHP Sockets

http://dynu.com

448

login=christosffxdyv

password=somePsw

httpsserver.eu

Configure ddclient to run as a daemon process. Run the following to edit the /etc/

default/ddclient configuration file:

$ sudo gedit /etc/default/ddclient

Change false to true in the following line:

run_daemon="false"

Save the file and run the following commands at the Linux terminal:

$ sudo update-rc.d ddclient enable

$ sudo systemctl start ddclient.service

Test next the ddclient daemon. Switch off your router so that the public IP address

of your router renews and then switch it back on. Run the following command that filters

the lines with the word SUCCESS on it, created by ddclient:

$ sudo cat /var/log/syslog | grep SUCCESS

The output indicates the successful update of the IP address.

Oct 20 16:21:44 pc ddclient[4014]: SUCCESS: updating httpsserver.eu: good:

IP address set to 94.69.186.8

View also the DNS configuration web page at your DNS provider, as displayed in

Figure 10-5.

Chapter 10 Running Online Services Using PHP Sockets

449

As viewed in the web page, the IP address corresponding to the domain name

httpsserver.eu is indeed successfully updated to 94.69.186.8.

With your domain name always corresponding to the public IP address of your

router, even when the IP address changes, you can use this domain name for the sites

that run the chapter’s projects. Because the projects are based on TCP/IP sockets, the

basic notions of the socket programming are discussed next.

�Utilizing PHP Sockets
A socket as a networking term is a pair of an IP address and a port number that belongs

to each one of the two ends of a network connection, e.g., a client and a server socket for

a client-server connection. The socket in an application programming interface (API)

provides the routines for interprocess communication between applications at the

TCP/IP or at the UNIX local level.

The PHP language supports a full-fledged sockets library similar to the one

introduced with Berkeley Sockets (POSIX Sockets). Berkeley Sockets were initially

released in 1983 as a library of the C language. Since then, many other programming

Figure 10-5.  Displaying the new public IP address of your router, corresponding to
your domain name at the DDNS service provider’s site

Chapter 10 Running Online Services Using PHP Sockets

450

languages include the Sockets API. Sockets are usually implemented as system calls,

routines that allow a programming language to interact with the operating system (OS),

and request services, in the case of socket networking services. With PHP sockets, you

may connect to a port number at a given IP address and connect therefore to any service

bound on the specific port number on that system. Your browser uses sockets to connect

to a given web server. With sockets you can implement a client or a server for any

Internet service: email, DNS, a network online game, and so on.

The ability for the PHP code to connect to Internet services with sockets is very

important to web development because the web server may interact with other services.

You have already created a few sites where the web server exchanges information with

the MySQL server. Consider also another example like the project of Chapter 8, where

a user account is created by submitting personal details such as the first name, the last

name, and the e-mail address. Most sites verify the e-mail address of a new member by

submitting an e-mail to the client that includes a link, which activates the account. As

with the MySQL interaction the PHP code of the web server to provide e-mail handling

it must interact with the e-mail services. The final project included in the current site

enables the web server PHP code to connect as a client with an Internet service using a

more simplified protocol like the quote of the day (QOTD).

In the following section, you will create a PHP command-line program that

implements a server listening to a specific port number, used as a first example for

connections to non-HTTP services.

�The Code for the Command-Line PHP Socket Server
You will create a server listening to a specific port number with a PHP terminal program.

In the following example, the server listens to port 33000 and does not implement any

well-known service but simply returns to the client the message previously sent in

uppercase characters. At the Linux command line, enter the following:

$ gedit server.php

Enter the following PHP source code and save the file:

<?php

// Set the IP address and port number the server will listen on

$address = '192.168.1.100';

Chapter 10 Running Online Services Using PHP Sockets

451

$port = 33000;

// Create the server socket, a TCP Stream socket

$server = socket_create(AF_INET, SOCK_STREAM, 0);

// Bind the socket to an IP address / port number pair

socket_bind($server, $address, $port) or die('Could not bind to address');

// Start listening for connections

socket_listen($server);

//loop for and listen for connections

while (true) {

// Accept incoming requests and handle them as child processes

 �$client = socket_accept($server) or die("Could not accept incoming

connection\n");

 if($client){

 // Read client input of 1024 bytes

 $input = socket_read($client, 1024) or die("Could not read input\n");

 // Strip all white spaces from input

 $output = strtoupper($input);

 // Send $output back to client

 �socket_write($client, "you wrote " . $output . "\n") or die("Could not

write output\n");

 // Close the client socket

 socket_close($client);

 }

}

?>

The PHP program creates a socket descriptor (a notion similar to a file descriptor

for accessing a connection) $server with the function socket_create(). The first

parameter of socket_create() is AF_INET, which indicates that the IPv4 protocol will

be used. Other options are AF_INET6 for IPv6 Internet-based protocols and AF_UNIX

for process communication in the same computer. The second parameter is set to

Chapter 10 Running Online Services Using PHP Sockets

452

SOCK_STREAM, used for TCP connections. Other options are the SOCK_DGRAM for UDP

connections, SOCK_SEQPACKET, SOCK_RAW, and SOCK_RDM.

The socket is then bound, with socket_bind(), to the private IP address of the

computer, 192.168.1.100 in this example, and to port number 33000, which is randomly

selected out of the range of the system ports numbers (0–1023).

With the function socket_listen(), the server socket listens for connections and

enters an infinite loop where if a client connects, the function socket_accept() returns

$client as its socket descriptor.

Next, with the function socket_read(), the socket reads user data up to 1,024

bytes in this example, and with the PHP function strtoupper() converts the lowercase

characters entered by the client to uppercase. The function socket_write() sends a

message back to the client, which includes the client’s text in uppercase characters.

Finally, the function socket_close() closes the client socket descriptor.

�Testing the PHP Command-Line Socket Server
To test the command-line PHP server, you can create a PHP command-line client.

However, instead of this, you will simulate a client by using Telnet, the Swiss Army knife

for networking. At the Linux terminal, enter the following command to start server.php:

$ php server.php

Next, switch to another terminal by using Ctrl+Alt+T and run Telnet as follows:

$ telnet 192.168.1.100 33000

Telnet responds with the following message, which indicates that a connection is

issued to IP address 192.168.1.100, the host of the server program in this example, at the

selected port number (33000):

Trying 192.168.1.100...

Connected to 192.168.1.100.

Escape character is '^]'.

Enter some text and press Enter.

hello world

Chapter 10 Running Online Services Using PHP Sockets

453

The server responds with the following message:

you wrote HELLO WORLD

Connection closed by foreign host.

In the following section, you’ll connect to the PHP server by implementing a PHP client.

�Implementing a Command-Line PHP Client
Next, you’ll create a command-line sockets client with PHP code. Similar source code

will be used in the PHP source code of the web server to make a connection to the

command-line PHP server.

To create a PHP client program, use the following command at the Linux terminal:

$ gedit client.php

Enter the following PHP source code and save the file:

<?php

$host = "192.168.1.100";

$port = 33000;

$server = socket_create(AF_INET, SOCK_STREAM, 0) or die("Could not create

socket\n");

$result = socket_connect($server, $host, $port) or die("Could not connect

to server\n");

$prompt = "Write your message here: ";

$message = readline($prompt);

socket_write($server, $message, strlen($message)) or die("Could not send

data to server\n");

$result = socket_read($server, 1024) or die("Could not read server response\n");

echo "Reply: " . $result;

socket_close($server);

?>

Chapter 10 Running Online Services Using PHP Sockets

454

The socket_create() function returns $server, which is a socket descriptor and

is used by the function socket_connect() to connect to IP address 192.168.1.100 on

port 33000, where the PHP server listens. A message is then entered by the user with

the PHP function readline(), and this message is sent to the server with the function

socket_write(). Then socket_read() function returns the server’s response, up to

1,024 bytes in this example, to the client. The reply is printed to the terminal with the

echo command, and the $server socket closes with socket_close().

Now test the command-line server with the command-line client. Start the PHP

server using the following command at the Linux terminal:

$ php server.php

Then switch to a different terminal and start the PHP client using the following

command:

$ php client.php

The client responds with the following message:

Write your message here:

Enter your message. For instance, enter hello world at the client’s prompt and press

Enter.

Write your message here: hello world

The response from the PHP command-line server client with PHP code. Similar

source code will be used in the to the client terminal is as follows:

Reply: you wrote HELLO WORLD

Next, you will connect to the terminal PHP server from the PHP source code run by

the PHP engine of the web server. You have to create a new site to allow the web interface

into the terminal PHP server, but first you have to set up the web servers.

�Configuring the Web Servers for the New Site
Now you’ll create another site to use for the chapter’s projects in which I’ll show the

directory index and document roots for the next three projects. The site will be served

from both the Apache and Lighttpd servers. Create a subdirectory called sockets of the

Chapter 10 Running Online Services Using PHP Sockets

455

default document root used for those servers, /var/www/html/, and set this directory as

the document root. At the Linux terminal, enter the following:

$ sudo mkdir /var/www/html/sockets

Edit the configuration files of the two web servers so that both are enabled to run

the site, although only one of the two will be active. For Apache, edit default-ssl.conf,

which is the configuration file for HTTPS, using the following:

$ sudo gedit /etc/apache2/sites-available/default-ssl.conf

Set the new document root with the DocumentRoot directive and save the file.

DocumentRoot /var/www/html/sockets

Reload the Apache server so that the new configuration is enabled.

$ sudo service apache2 force-reload

Edit next the Lighttpd configuration file. Use the following:

$ sudo gedit /etc/lighttpd/lighttpd.conf

Set the value of the server.document-root directive to the new document root and

save the file.

server.document-root = "/var/www/html/sockets"

Reload the Lighttpd server to enable the changes in the configuration file.

$ sudo service lighttpd force-reload

�Create the Site That Interfaces with the Command-Line
Server
One option for connecting a remote client to the PHP command-line server is to use

a client program that connects to the public IP address of the router and uses port

forwarding for port 33000 to access the computer that hosts server.php. The other

option used in this section is to create a web-based interface that connects to the

command-line server via port 33000 with no specialized client program required.

Create the web page message.php, which will include an HTML form with a textbox

for the user to type a message. The message is then submitted to client.php, the action

Chapter 10 Running Online Services Using PHP Sockets

456

file of the form on the web server. This file uses PHP source code to interface as a client

with the Linux terminal program server.php. The user’s message from client.php

is relayed to the terminal server, and the resulting uppercase message is returned to

client.php and displayed on the evaluated HTML web page.

In the document root, create two PHP files. Use the following commands on the

Linux terminal to create message.php:

$ cd /var/www/html/sockets

$ sudo gedit message.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:lightsteelblue;

}

p{

text-align:center;

font-size:32px;

}

</style>

</head>

<body>

<?php

 if(isset($_POST["t1"])) {

 $text = $_POST["t1"];

 }

 $host = "192.168.1.100";

 $port = 33000;

 $socket = socket_create(AF_INET , SOCK_STREAM , 0);

 $connection = socket_connect($socket , $host , $port);

Chapter 10 Running Online Services Using PHP Sockets

457

 socket_write($socket, $text, strlen($text));

 $result = socket_read ($socket, 1024);

 socket_close($socket);

 echo "<p>" . $result . "</p>";

?>

</body>

</html>

Test the client-server system. First open server.php at the Linux terminal as follows:

$ php server.php

Switch next to the browser and enter the following URL:

https://httpsserver.eu/sockets/message.php

Figure 10-6 shows the web page message.php.

Figure 10-6.  The HTML form that submits the user’s text to client.php, which
connects with sockets to the terminal server

Chapter 10 Running Online Services Using PHP Sockets

458

In the textbox, enter some text, such as nice to meet you. Click the Send button. The

server's response, which is the message in capital letters, is shown in Figure 10-7.

In the following section, you’ll create the first of the two main projects for this

chapter, where the server-side programs use sockets to connect to remote computers.

�A TCP Port Check Site
Create a project that uses TCP/IP sockets to simulate an online service and checks

whether a port on the client system is open. This is similar to the service used in Chapter 8

(e.g., www.yougetsignal.com or www.canyouseeme.org), as displayed in Figure 10-8.

Figure 10-7.  The terminal server’s output as it appears to the evaluated client.php

Chapter 10 Running Online Services Using PHP Sockets

http://www.yougetsignal.com
http://www.canyouseeme.org

459

Two PHP files are required for this file. The file index.php, displayed in Figure 10-9,

is the directory index that the user views when it uses the domain name of the site as the

URL, as shown here:

https://httpsserver.eu

Figure 10-8.  An online open port check tool

Chapter 10 Running Online Services Using PHP Sockets

460

On index.php, the user enters the port number to be checked and clicks the Go

button. The form data is submitted to ports.php, the second PHP file used in this

project, and the PHP code connects to the client computer via the specific port number.

According to the connection status, the port is considered open or closed. The server’s

response message is displayed in a dialog that is created by the JavaScript source code

injected in PHP.

�The Source Code for index.php and ports.php
Create the first PHP file using the following command in the Linux terminal:

$ sudo gedit /var/www/html/sockets/index.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<style>

Figure 10-9.  The home page of the open port check tool site

Chapter 10 Running Online Services Using PHP Sockets

461

body{

background-color:orangered;

}

input[type=number]{

 width: 300px;

}

p{

text-align:center;

font-size:32px;

color:lightsalmon;

}

input{

border-color:#9F0251;

font-size:32px;

color:black;

padding:10px;

background-color:lightsalmon;

}

</style>

</head>

<body>

<form method="post" action="ports.php">

<p>

<label for="port">Enter TCP Port Number:</label>

<input name="port" type="number" placeholder="Min: 0, Max: 1023" min="0"

max="1023" maxlength="25">

</p>

<p>

<input type="submit" name="s1" value="Go">

<input type="reset" value="Reset">

</p>

</form>

</div>

</body>

</html>

Chapter 10 Running Online Services Using PHP Sockets

462

The web page created with the index.php source code consists of a form that

includes three objects: one field of type number, and two buttons, one of typesubmit and

one of type reset. By using the input element of type number, you apply the restriction

that the value entered by the user should be an integer number. In addition, the max and

min attributes of the element are set to the upper and lower limits of the number entered.

The range is between TCP port numbers 0 and 1023, the well-known ports, also known

as system ports. The well-known ports are assigned to commonly used types of Internet

services. For instance, the web server utilized two system ports, ports 80 and 443, in the

previous chapters.

When the number entered by the user in the number field exceeds the well-known

port number range, a warning message is displayed, as viewed in Figure 10-10.

A similar message appears when a non-numeric value is entered. Also, the arrows

that appear in the Firefox browser on the right of the number field increase/decrease the

number entered by one.

The method attribute of the form is set to POST, and the action attribute is set to

ports.php. Create this file using the following:

$ sudo gedit /var/www/html/sockets/ports.php

Figure 10-10.  A warning message is displayed when the user exceeds the system
port number limits

Chapter 10 Running Online Services Using PHP Sockets

463

Enter the following source code and save the file:

<!DOCTYPE HTML>

<html>

<head>

<title>Port Scanning</title>

</head>

<body>

<?php

$host = $_SERVER['REMOTE_ADDR'];

if (isset($_POST['s1'])){

 $port = intval($_POST["port"]);

 if (isset($port)) {

 $socket = socket_create(AF_INET , SOCK_STREAM , SOL_TCP);

 $connection = socket_connect($socket , $host , $port);

 echo '

 <script>

 alert("Port number ';

 echo $port;

 echo ' is';

 if (!$connection){

 echo ' not';

 }

 echo ' open.");

 window.location = "index.php";

 </script>';

 }

}

?>

</body>

</html>

Chapter 10 Running Online Services Using PHP Sockets

464

The PHP source code of ports.php creates a TCP socket that binds to the IP address

of the visitor’s computer and also to the port number to be tested. The IP address is

assigned to the PHP variable $host by the PHP global variable $_SERVER['REMOTE_

ADDR'], and the TCP port number is assigned to the PHP variable $port from the data

submitted by the HTML, $_POST["port"]. The value is typecast to an integer with the

PHP function intval(). A socket connection is created as follows:

$connection = socket_connect($socket , $host , $port);

If the value returned to the $connection variable is true, a connection to the

specified IP address on the tested port succeeds, and the port is considered open to the

client computer. Otherwise, it is considered closed. The PHP code prints with the echo

command some JavaScript source code that will be executed on the client side by the

client’s browser. The script creates a dialog that reports the state of the specific port. Also,

the following JavaScript command redirects the web page to index.php, where another

port can be tested:

window.location = "index.php";

�Testing the Online Open Port Check Site Locally
Enter the URL of your site in the address bar of your browser.

https://httpsserver.eu

Test first a port number that is open. If your router, for instance, port forwards to

ports 443 and 80, those are the open ports, with all the others closed. Enter, for instance,

443 in the form’s number field, as displayed in Figure 10-11.

Chapter 10 Running Online Services Using PHP Sockets

465

Click the Go button. The web page shown in Figure 10-12 appears.

Figure 10-12.  The port check output indicates an open port for port 443

Figure 10-11.  Testing the port number check tool for port 443

Chapter 10 Running Online Services Using PHP Sockets

466

As indicated in the message, “Port number 443 is open.” Click the OK button to

return to index.php and test another port. Enter 25 this time as the port number, as

displayed in Figure 10-13.

Click the Go button. The web page shown in Figure 10-14 appears.

Figure 10-13.  Testing the port number check tool for port 25

Chapter 10 Running Online Services Using PHP Sockets

467

As indicated in the message, “Port number 25 is not open.”

Next, you’ll test the online server from a computer external to your LAN to ensure it

functions as expected.

�Testing the Online Port Test Site Remotely
To test the port check tool remotely from a remote workstation, you cannot use online

web page test services like webpagetest.org like in the previous chapters because this

time the remote system needs to provide some form data. Instead, use an online service

that allows you to interact with the remote browser such as browserling.com. In your

browser, enter the following URL:

https://www.browserling.com

In the browser’s drop-down list, select one of your favorite browsers, for instance

Chrome, as viewed in Figure 10-15.

Figure 10-14.  The port check output indicates a closed port for port 25

Chapter 10 Running Online Services Using PHP Sockets

http://webpagetest.org
http://browserling.com

468

In the textbox, enter the URL of your site, e.g., httpsserver.eu, and click the “Test

now!” button. In a few seconds, the remote browser loads the web page of your site, as

indicated in Figure 10-16.

Figure 10-15.  The browserling.com online service home page

Chapter 10 Running Online Services Using PHP Sockets

https://www.browserling.com

469

Test port 443 remotely first by using the online service’s browser. Enter 443 in

the number field of the form and click the Go button. Your web server will attempt to

connect to the remote client on the specified port number, and accordingly a message

will appear in the dialog of the evaluated PHP source code. As indicated in Figure 10-17,

the connection succeeded, and a message appears to indicate that port 443 is open.

Figure 10-16.  The open port check tool site as viewed from the remote browser

Chapter 10 Running Online Services Using PHP Sockets

470

Test for another port, e.g., port 80. This time, as viewed in Figure 10-18, the port is

closed.

Figure 10-18.  Verifying that port 80 is closed on the remote system

Figure 10-17.  Verifying that port 443 is open on the remote system

Chapter 10 Running Online Services Using PHP Sockets

471

�A Second Version of the Open Port Check Tool Source
Code
Now try the following version of index.php. Because it submits data to itself, it does not

require a second PHP file (ports.php) for processing the data sent.

<!DOCTYPE html>

<html>

<head>

<style>

body{

background-color:orangered;

}

input[type=number]{

 width: 300px;

}

p{

text-align:center;

font-size:32px;

color:lightsalmon;

}

input{

border-color:#9F0251;

font-size:32px;

color:black;

padding:10px;

background-color:lightsalmon;

}

</style>

</head>

Chapter 10 Running Online Services Using PHP Sockets

472

<body>

<?php

if (isset($_POST['s1'])) {

$host = $_SERVER['REMOTE_ADDR'];

if (isset($_POST['s1'])){

 $port = intval($_POST["port"]);

 if (isset($port)) {

 $socket = socket_create(AF_INET , SOCK_STREAM , SOL_TCP);

 $connection = socket_connect($socket , $host , $port);

 echo '

 <script>

 alert("Port number ';

 echo $port;

 echo ' is';

 if (!$connection){

 echo ' not';

 }

 echo ' open.");

 </script>';

 }

}

}

?>

<form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_

SELF"]); ?>">

<p>

<label for="port">Enter TCP Port Number:</label>

<input name="port" type="number" placeholder="Min: 0, Max: 1023" min="0"

max="1023" maxlength="25">

</p>

Chapter 10 Running Online Services Using PHP Sockets

473

<p>

<input type="submit" name="s1" value="Go">

<input type="reset" value="Reset">

</p>

</form>

</div>

</body>

</html>

In this version, the form submits data to the current PHP file, indicated by the global

PHP variable $_SERVER["PHP_SELF"].

<form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_

SELF"]); ?>">

The source code that accepts the form values is the first PHP block. A socket

connection is then issued with the user’s IP address on the port to be checked. Also,

a JavaScript block is created by the PHP code and is executed by the user’s browser,

creating a windowed message with the alert() method about the state of the port on

the user’s computer.

In this project, the web server connected to a client system with sockets. In the

project in the following section, the server will connect with sockets to a server system.

This time it’s a server that implements another Internet service, namely, a QOTD service.

�Creating an Online Service Displaying QOTD
Messages
With PHP socket programming, the web server can connect to any open port number

on a given computer and therefore connect to other Internet services this time as a

client. Earlier in the chapter, you learned how to connect the web server through PHP

sockets to the local terminal PHP server. In this project, you will connect the web server

to a remote Internet service. Other than the Web, there are a large number of Internet

services such as e-mail, File Transfer Protocol (FTP), Telnet, and DNS that follow the

client-server model of a server that accepts a connection on a specific port number using

the message formats defined by the corresponding protocol. To interface with those

services from the Web, you can’t rely on a client-side language like JavaScript, because

Chapter 10 Running Online Services Using PHP Sockets

474

a nonsystem language cannot support sockets and make a direct connection to one of

these services. This can be performed, however, by the web server using PHP on behalf

of the web client.

The service the web server connects to in this project will be a quote of the day

(QOTD) service. This service implements a simple protocol, defined in RFC 865, to

deliver daily quotes. RFC 865 recommends that the quotes should be limited to the

ASCII printable characters, spaces, and newlines; their length should be less than 512

characters; and the port used for both TCP and UDP should be port 17.

Hint!  You can read RFC 865 at https://tools.ietf.org/html/rfc865.

The user can choose one of the two available QOTD servers to receive its quote of the

day. This happens through an Ajax request, which sets the values of the PHP code on

the server side.

•	 cygnus-x.net

•	 djxmmx.net

To test the QOTD servers before implementing the PHP server-side sockets program,

use the following Telnet command at the Linux terminal:

$ telnet cygnus-x.net 17

Telnet connects to the cygnus-x.net QOTD server on port 17 and prints a quote of

the day. The command’s output is as follows:

Trying 66.229.218.72...

Connected to cygnus-x.net.

Escape character is '^]'.

"Our greatest weakness lies in giving up. The most certain way to succeed

is always to try just one more time."

- Thomas Alva Edison

Connection closed by foreign host.

Next, you will create the source code that utilizes the Ajax technique to request the

QOTD message without reloading the initial web page with the form.

Chapter 10 Running Online Services Using PHP Sockets

https://tools.ietf.org/html/rfc865
http://cygnus-x.net
http://djxmmx.net
http://cygnus-x.net

475

�The Source Code for the QOTD Project
Create a file called index2.php in the document root with a text editor.

$ sudo gedit /var/www/html/sockets/index2.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

<title>Quote of the Day</title>

<style>

body {

background-color:lime;

}

select{

padding:20px;

font-size:32px;

color:navy;

background-color:yellow;

}

#demo{

color:deepskyblue;

padding:20px;

font-size:24px;

}

p{

text-align:center;

}

</style>

</head>

Chapter 10 Running Online Services Using PHP Sockets

476

<body>

<p>

<select name="sel1" id="sel1" onchange="sendRequest()">

 <option value="-1">Select a QOTD server</option>

 <option value="1">QOTD server 1</option>

 <option value="2">QOTD server 2</option>

</select>

</p>

<script>

function sendRequest() {

if ((document.getElementById("sel1").value == 1) || (document.

getElementById("sel1").value == 2)){

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4 && xhr.status == 200) {

 document.getElementById("demo").innerHTML = xhr.responseText;

 }

 };

 xhr.open("POST", "qotd.php", true);

 xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

 var data = document.getElementById("sel1").value;

 xhr.send(`var1=${data}`);

 document.getElementById("demo").style.backgroundColor = "yellow";

} else{

 document.getElementById("demo").style.backgroundColor = "lime";

 document.getElementById("demo").innerHTML = "";

 }

}

</script>

<div>

<p id="demo"></p>

</div>

</body>

</html>

Chapter 10 Running Online Services Using PHP Sockets

477

The source code creates the web page displayed in Figure 10-19.

To view the page, use the following URL:

https://httpsserver.eu/index2.php

The source code creates a drop-down list with two active elements: one submitting

the value 1, which for the PHP code on the web server corresponds to the domain name

of the first QOTD server, cygnus-x.net, and the other submitting the value 2, which

corresponds to the domain name of the second QOTD server, djxmmx.net. The list

responds to the onchange JavaScript event, which is activated each time a new selection

is made, handled by the function sendRequest().

<select name="sel1" id="sel1" onchange="sendRequest()">

The function sendRequest() creates xhr, an XMLHttpRequest instance, that submits

a POST request to the web server by implementing the Ajax mechanism. The data is

sent behind the scenes without reloading the web page, and only the specified HTML

element is updated, which for this example is a paragraph with an id value of demo.

 if (xhr.readyState == 4 && xhr.status == 200) {

 document.getElementById("demo").innerHTML = xhr.responseText;

Figure 10-19.  The home page of the QOTD online service

Chapter 10 Running Online Services Using PHP Sockets

http://cygnus-x.net
http://djxmmx.net

478

In the second parameter of the open() method, belonging to the XMLHttpRequest

instance, the qotd.php page was set as the destination program to receive the submitted

data.

xhr.open("POST", "qotd.php", true);

The drop-down list selection is then sent as the value of variable var1.

 var data = document.getElementById("sel1").value;

 xhr.send(`var1=${data}`);

Notice that the function sendRequest() submits the data only if it is the currently

selected element with value 1 or the element with value 2. There is also a third,

dummy element to indicate the list functionality. It prints “Select a QOTD server” and

corresponds to value -1. If this element is selected after a valid selection that prints a

quote, sendRequest() is also called, and the else statement executes to clear the quote

and reset its background color from yellow to lime.

Create a file called qotd.php using the following command at the Linux terminal:

$ sudo gedit /var/www/html/sockets/qotd.php

Enter the following source code and save the file:

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<?php

if($_POST['var1'] == "1") {

 $host = gethostbyname("cygnus-x.net");

} elseif($_POST['var1'] == "2") {

 $host = gethostbyname("djxmmx.net");

}

 $port = 17;

 $socket = socket_create(AF_INET , SOCK_STREAM , SOL_TCP);

 $connection = socket_connect($socket , $host , $port);

 $result = socket_read ($socket, 512);

Chapter 10 Running Online Services Using PHP Sockets

479

 socket_close($socket);

 echo $result;

?>

</body>

</html>

The file qotd.php is the one assigned in the index2.php source code as the server-

side program to receive the data sent with the Ajax mechanism. The PHP source code

block checks the value submitted with Ajax. If the value sent is 1, a connection with the

QOTD server with the domain name cygnus-x.net will be created. Also, for a value of 2,

a connection to the QOTD server djxmmx.net is issued. The function gethostbyname()

returns the IP address corresponding to the given QOTD server FQDN, passed as the

function’s argument. With this IP address and port 17, the port used for the QOTD

service, a TCP socket is created.

 $socket = socket_create(AF_INET , SOCK_STREAM , SOL_TCP);

 $connection = socket_connect($socket , $host , $port);

For the QOTD service, the client just reads the data (the quote) sent by the QOTD

server, which according to RFC 865 has a maximum length of 512 bytes.

 $result = socket_read ($socket, 512);

The text read is assigned to the $result variable, whose value qotd.php is sent to

index2.php with the echo command.

 echo $result;

In the index2.php source code, the $result value (the quote) is received by the

xhr.responseText attribute via the Ajax mechanism and is printed as the content of the

paragraph demo, thus updating only a small portion of the web page.

�Testing the QOTD Site
Next, you’ll test the QOTD site by using the URL of the site. For example, use the

following in the address bar of your browser:

https://httpsserver.eu/index2.php

Chapter 10 Running Online Services Using PHP Sockets

http://cygnus-x.net
http://djxmmx.net

480

In Figure 10-20, the user has selected QOTD server 1, and the quote of the

cygnus-x.net QOTD server is displayed in the web page.

In Figure 10-21, the user has selected QOTD server 2, and the quote of the djxmmx.net

QOTD server is displayed on the web page.

Figure 10-20.  Displaying the quote of the first QOTD server

Chapter 10 Running Online Services Using PHP Sockets

http://cygnus-x.net
http://djxmmx.net

481

Select next the dummy option “Select a QOTD server.” As displayed in Figure 10-22,

the quote is deleted, and its background color is reset from yellow to lime.

Figure 10-22.  By selecting the dummy option, the web page is reset to its initial state

Figure 10-21.  Displaying the quote of the second QOTD server

Chapter 10 Running Online Services Using PHP Sockets

482

In the final section, you’ll separate the last two sites you created by using a different

fully qualified domain name for each one.

�Using Different FQDNs for Your Sites
In this section, you’ll implement two different fully qualified domain names for your

domain, e.g., httpsserver.eu, with each one serving a different site. For instance, you

can use sockets.httpsserver.eu for the site that runs the open port check tool and

qotd.httpsserver.eu for the site that interfaces with a QOTD server.

You may at this point want to separate the files of the two sites. Use the following:

$ cd /var/www/html/sockets

$ sudo mkdir ports qotd

$ sudo cp index.php ports

$ sudo cp index2.php qotd.php qotd

In the default-ssl.conf Apache configuration file, add two new name-based virtual

hosts, with each one serving a FQDN.

$ sudo gedit /etc/apache2/sites-available/default-ssl.conf

Add the following lines at the end of the configuration file to create the two vhosts

and save the file:

<VirtualHost *:443>

 ServerName ports.httpsserver.eu

 DocumentRoot "/var/www/html/sockets/ports"

</VirtualHost>

<VirtualHost *:443>

 ServerName qotd.httpsserver.eu

 DocumentRoot "/var/www/html/sockets/qotd"

 DirectoryIndex index2.php

</VirtualHost>

Reload the configuration file to enable the new settings.

$ sudo service apache2 force-reload

Chapter 10 Running Online Services Using PHP Sockets

483

Test the first vhost using the following in the address bar of your browser:

https://ports.httpsserver.eu

The web page loading is displayed, as shown in Figure 10-23.

Test the second vhost using the following in the address bar of your browser:

https://qotd.httpsserver.eu

The web page loads, as shown in Figure 10-24.

Figure 10-23.  The FQDN ports.httpsserver.eu is used for the open port check site

Chapter 10 Running Online Services Using PHP Sockets

484

For both sites, the browsers display the insecure site warning, while the SSL

certificate verifies the domain names.

https://httpsserver.eu

and also the same for the hostname www:

https://www.httpsserver.eu

The other two hostnames for the httpsserver domain, ports and qotd, are not

supported with the SSL certificate. To use one SSL certificate for any FQDN for your

domain name, you have to purchase a wildcard SSL certificate, which usually costs more

than a simple certificate.

�Summary
In this chapter, you installed ddclient to update your router’s public IP address to the

DDNS service provider. You then used sockets programming to allow the web server

to connect to a server listening to a non-HTTP port and interface with other services.

Finally, you created an online open port check tool and a site that interfaces with a

QOTD site.

Figure 10-24.  The FQDN qotd.httpsserver.eu is used for the QOTD site

Chapter 10 Running Online Services Using PHP Sockets

485
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0

�APPENDIX

Exchanging Variables
Between JavaScript
and PHP
In this book, the JavaScript language is used for the client side of the HTTP client-

server model, and PHP is used for the server side. In some cases, the two languages

need to exchange variables, and there are a number of ways to do that. The examples

in this appendix display the main ways to exchange variable values between JavaScript

and PHP.

�Example 1: Passing Variables from PHP to
JavaScript Using the echo Command
To allow PHP to set JavaScript variables, you can simply inject PHP echo commands

into the script in the PHP file. These commands are then evaluated on the server side

and create the JavaScript code that is executed locally at the browser. The JavaScript

code that appears within the PHP code has to be included in an echo message;

otherwise, it is omitted when the PHP code is evaluated. In the following code, which

shows the test1.php PHP file, the PHP variable $p holds the current IP address of the

client, and it is assigned to the JavaScript variable j. The value of variable j is then

printed on the web page.

<?php

 $p = $_SERVER['REMOTE_ADDR'];

 echo '

 <script>

https://doi.org/10.1007/978-1-4842-4463-0

486

 var j = "';

 echo $p;

 echo '";

 document.write(j);

 </script>';

?>

The previous PHP code evaluates, for the IP address 94.69.186.8, to the following

code:

<script>

var j = "94.69.186.8";

document.write(j);

</script>

�Example 2: Passing Variables from JavaScript
to PHP Using the location Object
PHP works on the server side, in other words, at the web server. Therefore, for JavaScript

to assign values to PHP variables, the values must be submitted to the web server.

The following HTML file, called index.html, includes the JavaScript source code. The

window.location object (or simply location) is used to get information about the URL

of the current web page (document); it also redirects the browser to another web page. In

this example, the location.href property sets the URL that the current page redirects to.

The new page is test2.php, and the p1 and p2 values are included in the query string.

<!DOCTYPE html>

<html>

<head></head>

<body>

<script>

var j1 = "hello";

var j2 = "world";

location.href = "test2.php?p1=" + j1 + "&p2=" + j2;

</script>

Appendix Exchanging Variables Between JavaScript and PHP

487

</body>

</html>

The source code of test2.php is as follows:

<?php

if (isset($_GET["p1"]) && isset($_GET["p2"])) {

 $p3 = $_GET["p1"] . " " . $_GET["p2"];

 echo $p3;

}

?>

The request issued by JavaScript passes the values of p1 and p2, which can be

retrieved by PHP as $_GET["p1"] and $_GET["p2"], respectively. The echo message

printed to the web page when PHP resolves is hello world.

�Example 3: Passing Variables from JavaScript to
PHP with HTML Form Submission
In the previous example, the HTTP method GET is only for submitting JavaScript data

to PHP. With HTML forms, you can utilize either GET or POST. Consider the following

example of index.php, where JavaScript fills the value of a hidden element and submits

it with the form.

<!DOCTYPE html>

<html>

<head></head>

<body>

<form id="f1" method="POST" action="test3.php">

<input type="hidden" id="p1" name="p1" value="">

</form>

<script>

var j1= "hello world";

document.getElementById('p1').value = j1;

document.getElementById("f1").submit();

</script>

</body>

</html>

Appendix Exchanging Variables Between JavaScript and PHP

488

The form is submitted from the JavaScript source code with the submit() method of

the form object.

document.getElementById("f1").submit();

The source code of test3.php, the program that receives the form data, is as follows:

<?php

if (isset($_POST["p1"])) {

 $p2 = $_POST["p1"];

 echo $p2;

}

?>

The value of the JavaScript variable j1 is submitted using the form and is assigned

then from the PHP source code to the PHP variable $p2. The value of $p2 is printed to the

user’s web page with the echo command.

�Example 4: Passing Variables from JavaScript
to PHP and Back with Ajax
Another way to pass variables from JavaScript to PHP is to use the Ajax mechanism.

Ajax is not a programming language; rather, it is a technique that involves the JavaScript

XMLHttpRequest object, which creates an asynchronous connection to the web server in

the background. Asynchronous means that the script sends a request to the web server

and continues its execution without waiting for a reply. For the asynchronous request,

a callback function is set that handles the returned data from the server when it arrives.

Initially Ajax was implemented with the XML language, which handled all the requests

to the server.

Another way to use the Ajax method is with the DOM model. JavaScript uses the

DOM to provide positions to the web page for where to place the server’s reply, such as

at a paragraph with a specific ID. These positions are the only parts of the web page that

are updated, instead of reloading the whole page. DOM objects provide the positions of

the data that will be submitted to the web server.

CSS also plays an important part in the Ajax method because the returned data can

be formatted with CSS to retain the styling of the web page that submits the Ajax request.

Appendix Exchanging Variables Between JavaScript and PHP

489

XMLHttpRequest() is the constructor method that is used to create XMLHttpRequest

instances (that is, objects) for the XMLHttpRequest class. The objects are used to

connect to a web server, dispatching an HTTP request and receiving the reply. The

XMLHttpRequest class defines methods (routines) and properties (variables) for the

request handling. The following are the XMLHttpRequest class methods:

•	 XMLHttpRequest() is the constructor of the XMLHttpRequest object.

•	 abort() cancels the current request.

•	 getAllResponseHeaders() returns the headers of the response

message.

•	 getResponseHeader() returns a specific response header.

•	 open() initializes the request by setting its attributes.

•	 send() sends the request to the web server.

•	 setRequestHeader() sets the headers of the request.

The following are the XMLHttpRequest class properties:

•	 onreadystatechange defines the function that will be called when

the readyState property changes.

•	 readyState takes an integer value that corresponds to the status of

the XMLHttpRequest, specifically:

0: Request not initialized

1: Server connection established

2: Request received

3: Processing request

4: Request finished and response ready

•	 responseText holds the response data as a string.

•	 responseXML holds the response data as XML data.

•	 status holds the status of the request reply as an HTTP status code.

Examples of HTTP status codes are the following:

200, 301, 400, 403, 404, and 501

•	 statusText holds the corresponding text of the HTTP status code.

Here are some examples:

Appendix Exchanging Variables Between JavaScript and PHP

490

OK for status code 200

Moved Permanently for status code 301

Bad Request for status code 400

Forbidden 403

Not Found for status code 404

Not Implemented for status code 501

The following file, test4.html, uses the POST method to submit data to the program

test4.php with the Ajax mechanism. The JavaScript function sendRequest() runs when

the web page is loaded.

window.onload = sendRequest;

In this example, the JavaScript variable j1 is sent via Ajax as value1 to the PHP

source code and is received in the global variable $_POST["value1"]. This is echoed to

the web page returned to the browser, and the message hello world, the initial value of

j1, is printed to the predefined paragraph element, p1.

<!DOCTYPE html>

<html>

<head>

<script>

function sendRequest() {

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4 && xhr.status == 200) {

 document.getElementById("p1").innerHTML = xhr.responseText;

 }

 }

 xhr.open("POST", "test4.php", true);

 �xhr.setRequestHeader("Content-type", "application/x-www-form-

urlencoded");

 var j1 = "hello world";

 xhr.send(`value1=${j1}`);

}

window.onload = sendRequest;

</script>

</head>

Appendix Exchanging Variables Between JavaScript and PHP

491

<body>

<p id="p1"></p>

</body>

</html>

The source code for test4.php is as follows:

<?php

if (isset($_POST["value1"])) {

 $p2 = $_POST["value1"];

 echo $p2;

}

?>

The equivalent version for the HTTP method GET would be as follows:

<!DOCTYPE html>

<html>

<head>

<script>

function sendRequest() {

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4 && xhr.status == 200) {

 document.getElementById("p1").innerHTML = xhr.responseText;

 }

 }

 var j1 = "hello world";

 xhr.open("GET", `test4b.php?value1=${j1}`, true);

 xhr.send();

}

window.onload = sendRequest;

</script>

</head>

<body>

<p id="p1"></p>

</body>

</html>

Appendix Exchanging Variables Between JavaScript and PHP

492

The source code for the action file, test4b.php, is as follows:

<?php

if (isset($_GET["value1"])) {

 $p2 = $_GET["value1"];

 echo $p2;

}

?>

�Example 5: Passing Variables from JavaScript
to PHP with Cookies
Another option for exchanging variables between JavaScript and PHP is through cookies.

Cookies can be set and retrieved from JavaScript and also from PHP. In addition, a cookie

set with JavaScript can be retrieved by PHP and vice versa.

The following source code, used in a PHP file such as test5.php, uses JavaScript to

set the value of the cookie message in the head section of the HTML source code. Then in

the body section of the HTML source code, the PHP code retrieves the cookie’s value and

prints this message: Cookie 'message' has value hello.

<!DOCTYPE html>

<html>

<head>

<script>

function setCookie(name, value, expires, path, domain, secure){

 cookieString = name + "=" + encodeURIComponent(value) + "; ";

 if(expires){

 expires = setExpiration(expires);

 cookieString += "expires=" + expires + "; ";

 }

 if(path){

 cookieString += "path=" + path + "; ";

 }

 if(domain){

 cookieString += "domain=" + domain + "; ";

 }

Appendix Exchanging Variables Between JavaScript and PHP

493

 if(secure){

 cookieString += "secure; ";

 }

 document.cookie = cookieString;

}

function setExpiration(days){

 var today = new Date();

 var expires = new Date(today.getTime() + days * 24 * 60 * 60 * 1000);

 return expires. toUTCString();

}

window.onload = setCookie("message", "hello", 1);

</script>

</head>

<body>

<?php

$c_name = "message";

if(!isset($_COOKIE[$c_name])) {

 echo "Cookie named '" . $c_name . "' is not set";

} else {

 echo "Cookie '" . $c_name . "' has value " . $_COOKIE[$c_name];

}

?>

</body>

</html>

In the JavaScript source code, the cookie string is formed with the required

information from these properties: name, value, expires, path, domain, and secure. The

function encodeURIComponent() is used to encode the following special characters with

their UTF encoded versions:

, / ? : @ & = + $ #

Appendix Exchanging Variables Between JavaScript and PHP

494

For the expiration date, the current date is calculated in milliseconds via today.

getTime(), and the days the cookie is valid, also in milliseconds, is calculated and added

to the current date to form the Unix timestamp. The toUTCString() method converts

this date to a string according to Coordinated Universal Time (UTC) standard. Here’s an

example:

Mon, 29 Oct 2018 06:35:38 GMT

The cookie is set when the web page is loaded with the following JavaScript

command:

window.onload = setCookie("message", "hello", 1);

The PHP code retrieves the cookie in the global variable $_COOKIE[$c_name], where

$c_name is the message in the current example.

�Example 6: Passing Variables from PHP to
JavaScript with Cookies
The following PHP code creates a cookie named message, assigns the value hello to it,

and specifies that the cookie expires in one hour (60 minutes * 60 seconds) from now.

The function time() returns an integer containing the current time as a Unix timestamp.

<?php

$c_name = "message";

$c_value = "hello";

setcookie($c_name, $c_value, time()+3600);

?>

In the following example, which is included in a PHP file called test6.php, the PHP

code sets the value of the cookie named message to hello, and then JavaScript retrieves

this value and prints it on the web page:

<?php

$c_name = "message";

$c_value = "hello";

setcookie($c_name, $c_value, time()+3600);

?>

Appendix Exchanging Variables Between JavaScript and PHP

495

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<script>

function retrieve_cookie(w){

 var c_value = "";

 var dUC = decodeURIComponent(document.cookie);

 cArray = new Array();

 cArray = dUC.split(';');

 for(i = 0; i < cArray.length; i++){

 cValues = new Array();

 cValues = cArray[i].split('=');

 if(cValues[0] == w){

 c_value = decodeURIComponent(cValues[1]);

 }

 }

 return c_value;

}

var cookie_name = "message";

var val = retrieve_cookie(cookie_name);

if(val) {

 �document.write('Cookie with name "' + cookie_name + '" has value ' + '"'

+ val + '"');

} else {

 document.write('Cookie with name "' + cookie_name + '" does not exist');

}

</script>

</body>

</html>

The function retrieve_cookie() returns the value for the cookie name passed as

a parameter. This function splits document.cookie, a string containing a semicolon-

separated list of all cookies of the site, and creates an array where each element includes

Appendix Exchanging Variables Between JavaScript and PHP

496

information for a single site cookie. Consider, for instance, the case where two cookies

were set with the following PHP code:

<?php

$c_name = "message";

$c_value = "hello";

setcookie($c_name, $c_value, time()+3600);

$c_name = "message2";

$c_value = "hello2";

setcookie($c_name, $c_value, time()+3600);

?>

The document.cookie string in this case would be as follows:

message=hello; message2=hello2

To print the value of document.cookie, use the following command in retrieve_

cookie():

document.write(document.cookie);

In a for loop in retrieve_cookie(), each name-value pair is split across an equal

sign, and a new array is created with the first element as the name and the second

element as the value. If the given name that was passed as a parameter to the function

matches the first element, the second element (the value) is returned. Notice that

encodeURIComponent() is used to ensure that document.cookie does not contain any

commas, semicolons, or whitespace.

Appendix Exchanging Variables Between JavaScript and PHP

497
© Christos Karayiannis 2019
C. Karayiannis, Web-Based Projects that Rock the Class, https://doi.org/10.1007/978-1-4842-4463-0

Index

A, B
a2enmod (apache2 enable module)

command, 102
Ajax, 474, 488
alert() method, 52, 473
alter table statement, 230
Amazon Standard Identification

Number (ASIN), 241
Animated PNG image

ezgif.com web page
color transparency, 213
display, 212
effects tool, 212
process, 213

frames, 209
getElementById(), 216
pattern, 209
0.png file, 209
runs, 216
six PNG files, 209
source code, 214–215
sub() runs, 216
uploaded

images, 211
web page, 211
zipped file, 210

Apache configuration,
139–141, 336–338

apache_note() function, 103
Apache Vhosts, 94–96

Apache web server
administrative features, 1
Apache process, 16–18
apache2 process, 2
CA certificate, 392
command ps output lists, 2
directory index, Ubuntu, 3
download and install, 2
ifconfig command, 7, 8
LAN, 7–9
Linux firewall, 14, 16
logging, 36
new directories and web pages, 4–7
PHP engine, 37
static private IP address, 9–14
testing, IP address, 8
vhosts (see Virtual hosts (vhosts))

appDataLayer struct, 251, 252
Application programming

interface (API), 449
Asymmetric cryptography, 328
ATCP port check site

home page, 460
index.php, source code, 460–462

system ports, 462
warning message, 462

online open port check tool, 459
online port test site, 467

home page, 468
port verification, 470
remote browser, 469

https://doi.org/10.1007/978-1-4842-4463-0

498

port 443 testing, 465
port.php, source code, 463–464
port 25 testing, 466–467

auto_increment keyword, 226
awk tool, 257

C
cat command, 257
ceil() function, 316
Certificate authorities (CAs), 328
Certificate-signing request

(CSR), 329, 388
chmod (change mode)

command, 256
Client-server communication, 330
Client-side vs. server-side programs

JavaScript/PHP addition web page
action attribute, 65
addition2.html, 69–71
addition.php, 66
addition2.php, 72, 74
HTML file, 62–64
JavaScript calculator, 66
Number() function, 64
onclick event, 64
program.html, 62
program2.html, 67–69, 74
result, 66

$cnt variable, 291
Command-Line PHP client, 453–454
Command-Line PHP socket

server code, 450–452
Common Gateway Interface (CGI), 39
$connection variable, 464
Cookies, 353–354, 492
create_entry() arguments, 419
CREATE TABLE SQL command, 421

cron, database update
Bash script, 283
crontab, 280–281
gedit, 283
HTML files, 284
MySQL server, 282
web pages, 284–285

crontab command, 280
Cross-site scripting (XSS), 81

D
Database, search-enabled site

Bash shell script, 275
chmod command, 278
do…done commands, 277
info database, 279
MySQL server, 277–279

creation
info database, 273
MySQL client, 275
MySQL server, 274

Data layer, 252
ddclient daemon, 448
delete SQL statement, 230
describe SQL statement, 226
DocumentRoot directive, 397
Domain name IP address, ddclient

Apache/Lighttpd, 443
current IP address, 445
ddclient installation, 446
DDNS provider’s site, 447–448
Linux terminal, 444
new public IP address, 449

Domain name registration
CA SSL certificate, 387

CSR, 388
directory, 389
OpenSSL, 389

ATCP port check site (cont.)

INDEX

499

newly registered domain name, 387
search availability, 386
TLD, 386

Domain Name System (DNS) service, 125
drop table statement, 226
Dynamic content web site

pagination (see Pagination)
project design, 271
search-enabled site, 269–271
submit buttons, 318, 320
testing

directory index, 294
echo $items command, 298
explode() function, 300
$items value, 299
multiple keywords, 296–297
preg_split() function, exclude, 301
query, 295–296, 299
trim() function, exclude, 300

web content samples, 272–273
Dynamic DNS (DDNS) service

account creation, 130
no-IP, register, 126
router configuration, 131–132
updation, 125

Dynamic Host Configuration Protocol
(DHCP), 9, 10

Dynamic IP address service, 445

E
echo command, 52, 61, 73, 115, 265, 454
e-mail account confirmation, 128
equijoin, 435

F
Favorite icon (favicon), 156–163
fgets() function, 152

File Transfer Protocol (FTP), 473
Form validation

error messages, 79
form testing, 80
JavaScript, testing146–147
PHP source code, 80
validate.php file,

creation, 75
warnings display, 80
web page creation, 79

Fully qualified domain name
(FQDN), 126

ports.httpsserver.eu, 483
qotd.httpsserver.eu, 484
QOTD server, 482
vhosts creation, 482

fwrite() function, 86

G
GeoIP Apache module

a2enmod command, 102
apache2ctl–M command, 101
apache_note() function, 103
GeoIP.dat.gz, 103
geo2.php, 103
geoip_module, 101–102
mods-available, 102
test location, 105–106
webpagetest.org, 104–105

GeoIPCity, 113
GeoIP.dat.gz, 103
geoip_module, 101–102
getElementById() function, 216
GET method, 54
GET method, site implementation

amazon.co.uk site, 324–325
offset value, 323–324
POST references, 321

Index

500

query string, 322–323
test, 321

grep command, 257

H
header() function, 82, 437
Home page, dynamic content web site

directory index, 286–288
HTML files, 285
PHP

echo command, 293–294
like operator, 291
MySQL server, 292–293
search.php, 288–290

PHP-MySQL interface, 286
Hostnames, 133, 135
htmlspecialchars() function, 81
HTTP alternate port, 89
HTTP cookies

browser tools, 365–366
display details, 361
e-commerce site, 352
Lighttpd configuration file, 362–363
Linux, 363
and PHP sessions (see PHP sessions)
remove, PHP, 355
retrieve, PHP, 355
settings, 353–354
site creation, PHP, 355–357, 359–360
web server programs, 353
Wireshark packet analyzer, 361, 364

I
info.php web page, 42
INSERT INTO command, 263–264

insert into SQL statement, 228
International Standard Book Number

(ISBN), 243
Internet protocol, 343
intval() function, 464
IP-based virtual hosts

address bar, 24
a2ensite (apache2 enable site)

command, 22
configuration rules, 21
DirectoryIndex directive, 21
directory indexes, 22
index1.html, 21, 24
index2.html, 23
Linux terminal, 22
testing, 24–25
start/end VirtualHost

containers, 21
isset() function, 73, 82

J, K
JavaScript to PHP

Ajax, 488–491
cookies, 492–493
HTTP method, 487–488
location object, 486–487

L
Lighttpd

animated PNG image (see Animated
PNG image)

basic configuration, 170–171
change, document root, 173
configuration, 334–336
created online services (see Online

services with Lighttpd)

GET method, site implementation (cont.)

INDEX

501

enabling and disabling the directory,
174–175

error message, 176, 178
GUI, 165
installation, 165–166
log files access, 178–180
multiple client requests, 203–208
object-oriented programming

principles, 170
PHP 7.0, 189
phpinfo() function, 189
server.modules directive, 170
specific IP address/hostname,

171–172
testing

basic configuration, 166–167
directory index, 167–168
document root, 166
HTML source code, 167
index.lighttpd.html, 166

virtual hosts, 181–189
Lighttpd web server,

CA certificate, 399
Linux firewall, 14, 16
Local area network (LAN)

FQDN, 350
HTTPS connection testing,

347–349, 352
port 443, 346, 350–351
port locating, 346
router web interface, connection, 345

M
match string() method, 145
method attribute, 462
mods-available, 102
mysql-client package, 219

MySQL database
alter table statement, 230
describe SQL statement, 232–233
download, 219
help command, 221, 222
insert SQL statement, 231
installation, 219–220
mysql client, 221
MySQL server, 223–224
select statement, 232
status, 220
table

connection, 233–235
CREATE TABLE command, 227
describe SQL statement, 226–227
drop table statement, 226
foreign key, 226
primary key, 226

mysqli() function, 292
mysqli_fetch_assoc() function, 293
mysqli_free_result() function, 294
mysqli_query() function, 293, 419
mysqli PHP command, 288
MySQL-PHP interface, 269
mysql-server package, 219

N
Name-based vhosts

create, 31
000-default.conf, 30
/etc/hosts file, 30
HTML code, 32
index.html, 32
Linux terminal, 32
localhost, 30
reload, web server, 33
ServerName directive, 30

Index

502

testing
first name-based, 34
second name-based, 34

web page downloaded, 30
Network Address Translation (NAT)

protocol, 89–90
nl2br() function, 84
no-IP

account activation, 129
Confirm Account button, 129
e-mail account confirmation, 128
home page, 127
hostname, 128

Normalizing, 435

O
onclick event, 64
Online services with Lighttpd

action file creation
directory screenshot, 201
exec() PHP function, 202
PHP code, 198
php.png image, 203
save file, 197
screenshot.php, 197
shell_exec(), 202
wkhtmltoimage, 199–200
Xvfb server, 201

basic web pages, 190
create directory index, 195–196
home page, 191
index.php, 191
invalid URL, 194
screenshot.php, 193
URL inserts, 191
web server responses, 193

Online web service
site creation, 138–139
WHIOS testing, 154–155

open() method, 478
Open port check tool, 471–473
openssl req command, 388

P
Pagination

forward or backward, 308
HTML form, 307
index.php version, 310–311
limit clause, 305
limit MySQL, 304–305
PHP engine, 306
search.php, 307, 311–315

$count, 315
echo command, 316–317
$offset, 315

PCRE Regular Expression (PREG), 291
PHP

CLI results, 45
echo command, 51
engine, 39
epigrammatic uses, 40
form validation (see Form validation)
installation, 41–42
interpreters, 43
testing, 41–45
user-defined variables, 57
variables setting

GET method, 54
POST method, 58

web page source code, 46
PHP Command-Line socket server,

452–453
PHP data objects (PDO), 288

Name-based vhosts (cont.)

INDEX

503

PHP-enabled web server, 39
phpinfo() function, 380
PHPSESSID cookie, 383
PHP sessions

cookie modification, 366
CSS section, 371
directory index, 368
index.php, 371–376
page1.html, 376–380
page2.html, 378–380
PHPSESSID cookie, 367
project experimentation, 380–383
session ID, 367
web page, 369, 371

PHP sockets, 449–450
command-line server, 455–456, 458
web server, configuration, 454–455

PHP to JavaScript
cookies, 494–495
echo command, 485–486

ping.eu WHOIS service, 138
Port-based virtual hosts

a2ensite command, 26
configuration rules, 27
create, 26
directory indexes, 27
document root directory, 28
HTML source code, 27
Linux command line, 27
listening ports, 26
testing, 29

Port forwarding
Apache vhosts, 94, 96
configuration web page, 92
form details, 92
LevelOne FBR-1161 ADSL router, web

page, 93
routers, 90

settings, 93
web-based configuration interface,

test router, 91
Port number, 94
POST method, 58, 321, 357, 359
preg_split() function, 291
Privacy Enhanced Mail (PEM), 333
Private IP address, 94
Public and private addresses, 89
Public IP address, 96
Public key infrastructure

(PKI), 327, 328

Q
Query results, two-colored

table, 302–303
Quote of the day (QOTD) protocol, 450

online service creation, 473
ajax technique, 474
QOTD servers, 474

project, source code, 475–476
site testing, 479
source code

cygnus-x.net, 477
djxmmx.net, 477
online service homepage, 477
qotd.php, 478
TCP socket, 479

R
Rainbow table, 424
Regular expressions, 145–146
Requests for comments (RFCs), 269
Root certificates, 328
route command, 10
Router configuration options, 91

Index

504

S
Search-enabled site

home page, 270
RFC editor, 270
rfc-editor.org site, 269

search.php, 288
Second-level domain (SLD), 385
Secure logging, project

database creation, 419, 421
design, 408–409
home page, 409
login web page, 425
PHP to MySQL connection, testing, 421
profile.php web page, 439
user account, web page, 411
user connection, testing, 437, 439
user log out, 436–437
user profile page, 432

Secure Sockets Layer (SSL), 328
CA certificate, testing

certificate viewer, chromium, 404
chain of trust, 406
home web page, 402–403
online tool, 405
secure connection, 404

configuration, Lighttpd
Apache, 336–338
Lighttpd, 334–336

select SQL statement, 229–230
Self-signed certificates

openSSL
home directory, 330–333
HTTPS protocol, 334

testing
chromium browser warning, 338–339
directory index, 340, 343
HTTPS protocol, 343–344
insecure connection, 341

IP address, 344
local host link, 339–340
security exception, 342
untrusted site, 341–342

sendRequest() function, 477
Server-side programming with PHP

echo command, 52
GET method, 54
POST method, 58
variables and strings

escaping double/single quotes, 49
evaluated test.php web page, 47
HTML tags, 50
JavaScript source code, 51
mixing PHP and HTML tags, 53
$name variable, 52–53
.php file extension, 46
test.php file, 46, 48
user preferences, 53

session_start() function, 367, 380
session_user variable, 406, 436
setcookie() function, 354
shell_exec() function, 44
Shell script, 245
show databases statement, 224
show tables statement, 253
socket_bind(), 452
socket_close(), 452
socket_listen(), 452
Speedport Entry 2i VDSL router, 91
Spyware programs, 353
SQL queries

group by clause, 237
inner join clause, 236
like operator, 239–240
select statement, 236
update command, 238

sqlstring, 263

INDEX

505

SSLEngine directive, 397
ssl module, 337, 397
SSL/TLS

certificates, 328–329
public key cryptography, 328
TCP/IP protocol, 328

Static IP address service, 445
Static Map Maker tool, 116
Static map web page

eyedropper tool of mtPaint, 124
geo6.php, 120–122
new version, 121
shutter window, 123

Static private IP address
Add button, 13
DHCP, 9
DNS server, 13
Editing Wired connection 1

window, 12
ifconfig, 10
IPv4 and IPv6 settings, 11
LAN, 11, 13
manual method, IPv4 settings, 13
Network Connections window, 11
options, 10
route command returns, 10
Save button, 14
testing, 14

Stream Editor (sed), 257, 259
String delimiters, 50
strpos() function, 153
strtotime() function, 440
strtoupper() function, 452
Structured Query Language (SQL), 219
Submit buttons, images

CSS properties, 318
CSS disabled selector, 320
opacity property, 320

search.php, 318–319
submit property, 319

T
TCP/IP sockets, 449
Telnet protocol, 91
Top-level domains (TLDs), 126, 386
toUTCString() method, 494
Transport Layer Security (TLS) protocol, 328
Transport protocol, 94
trim() function, 152

U
Unix pipe operator (|), 258, 277
user data, file edition, 149, 151–153
URL mask option, 137

V
validate() function, 144
Virtual hosts (vhosts)

categories, 19
download, directory index, 21
enabled sites and details, 35
IP-based, 21–22, 24
Lighttpd

create directory index, 184
Dashboard web page, 181
DDNS configuration, 181
directory index, 187–188
document root directory, 184
Host header value, 186
Hostnames web page, 183
HTML source code and

save file, 184–186
multiline options, lighttpd.conf, 188
loaded web page, 183

Index

506

reload, 189
secureserver, 182
settings, 182
URL, 187

ls command lists, 35
name-based vhosts (see Name-based

vhosts)
port-based vhosts, 25–29
VirtualHost pair, 20

Virtual host, testing
public IP address, router, 96–98
result web page, 100
router’s port forwarding service, 96
webpagetest.org home page, 98–99

Visitor’s location, map
Apache module, 114
echo commands, 115, 117
GeoIPCity.dat database, 115
geoip.conf, 114
geo4.php, 115, 118
geo5.php, 118, 119
PHP global variables, 119
src attribute, 116
Static Map Maker tool, 116
sudo su, 113

Visitor’s native language
GEOIP_COUNTRY_CODE

environmental variable, 108
geo3.php, 107
geoscreenshot.com, 113
test location list

California, 109–110
France, 111
Korea, 112
Seoul, 112
Strasburg, 110

webpagetest.org home page, 108

W
Web page, editing, 141–145
Web page testing, IP address, 147
webpagetest.org home page, 98–99
Web Redirect option, 134
Web scraping, 219, 241

args array, 258
awk, 259
categories menu, 246–247
echo commands, 260
file.txt, 254, 260
for loop, 260
grep, 259
HTML source code, 249–250
ISBN, 249, 254, 260
Linux, 248
MySQL database, 253–254
product link, 249
shell program testing, 264–268
shell.sh, 254–257, 262
URL, category, 247
wget, 259, 261

Web scraping, MySQL and Linux Shell
URL

address bar, 244–245
Apress home page, 243–244
ASIN, 241, 243
ISBN, 243

Web Server, 93
wget (web get) command, 257
where clause, 235
while loop, 152
Whois installation, command line, 148–149
Wireshark packet analyzer, 361

X, Y, Z
XMLHttpRequest(), 489

Virtual hosts (vhosts) (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Apache Web Server
	Getting Started with Apache
	Installing and Testing Apache
	Adding New Directories and Web Pages

	Testing Your Web Site from Another Computer of Your LAN
	Providing a Static Private IP Address to the Web Server
	Using the Linux Firewall
	Managing the Apache Process
	Working with Virtual Hosts
	Using IP-Based Virtual Hosts
	Using Port-Based Virtual Hosts
	Using Name-Based Virtual Hosts
	Inspecting the Overall Virtual Host Configuration

	Reading Apache Log Files
	Summary

	Chapter 2: Server-Side Programming with PHP
	The PHP Engine
	Installing and Testing PHP
	Testing PHP Without a Web Server
	Running Your First PHP Examples from the Web Server
	Working with Variables and Strings
	Escaping Double or Single Quotes in PHP
	Mixing JavaScript and PHP

	Setting the PHP Variables with the GET Method
	Setting the PHP Variables with the POST Method
	Running Client-Side vs. Server-Side Programs
	The JavaScript/PHP Addition Web Page
	The Second Version of the JavaScript/PHP Addition Web Page
	The Third Version of the JavaScript/PHP Addition Web Page

	Form Validation with PHP
	The validate.php Source Code Commentary

	Summary

	Chapter 3: Connecting Your Apache Server to the Internet
	The NAT Protocol
	Enabling Port Forwarding to Your Router
	Implementing Port Forwarding with Apache Vhosts
	Testing the New Virtual Host
	Using the GeoIP Apache Module
	Responding to the Visitor’s Native Language
	Using a Map to Display the Visitor’s Location
	A New Version of the Static Map Web Page
	Summary

	Chapter 4: Obtaining a Domain Name with DDNS
	DNS and DDNS
	Registering with a DDNS Service Provider
	Configuring the Router’s DDNS
	Implementing Web Redirect

	Implementing an Online Web Service
	Editing the Apache Configuration File
	Editing the Web Page for Submitting the User’s Data
	Working with Regular Expressions
	Testing the JavaScript Form Validation
	Running whois from the Command Line
	Editing the File That Processes the User Data
	Testing the WHOIS Online Service
	Adding a Favorite Icon to the Site
	Summary

	Chapter 5: The Lighttpd Web Server
	Installing Lighttpd
	Testing Lighttpd
	Working in the Lighttpd Configuration File
	Applying a Basic Configuration
	Binding to a Specific IP Address or Hostname
	Changing the Document Root
	Enabling and Disabling the Directory Listing
	Sending Custom-Made Error Replies to the Client

	Accessing the Lighttpd Log Files
	Using Virtual Hosts with Lighttpd
	Using PHP with Lighttpd
	Creating Online Services with Lighttpd
	Creating the Directory Index of the Online Service
	Creating the Action File for the Online Service
	Enabling the Site to Serve Multiple Client Requests
	Creating an Animated PNG Image
	Summary

	Chapter 6: The MySQL Database Server
	Installing and Testing MySQL
	Creating Your First MySQL Database
	Creating and Deleting Tables of Your Database
	Inserting, Displaying, and Deleting Records
	Altering the Table’s Structure
	Testing the Table Connection

	Performing SQL Queries with the MySQL Server
	Modifying Records with the update Command
	Using the SQL like Operator

	Web Scraping with MySQL and the Linux Shell
	The URLs Describing the Resources

	Designing the Web Scraping Project
	Creating the MySQL Database Used for the Web Scraping Project
	Implementing the Web Scraping Project
	The Script’s First Part
	The Script’s Second Part

	Testing the Web Scraping Shell Program
	Summary

	Chapter 7: Creating a Dynamic Content Web Site
	Search-Enabled Site Overview
	Designing the Project
	Creating the First Web Content Samples
	Creating and Updating the Project’s Database
	Writing the Shell Script That Updates the Database
	Automating the Database Updates with cron
	Designing the Home Page of the Site
	Creating the Directory Index of the Site
	Creating the Action PHP Program

	Testing the Dynamic Content Site
	Making Modifications

	Improving the Query Results Appearance with a Two-Colored Table
	Implementing Pagination
	The Pagination-Enabled Version of index.php
	The Pagination-Enabled Version of search.php
	Using Images Instead of Submit Buttons
	Implementing the Site with the GET Method
	Summary

	Chapter 8: Implementing Secure Sockets Layer on Your Site
	Implementing SSL/TLS
	SSL Certificates

	Creating Self-Signed Certificates with OpenSSL
	Configuring SSL for Lighttpd
	Configuring SSL for Apache

	Testing the Self-Signed Certificate
	Enabling Your Site to Be Viewed Outside of Your LAN
	HTTP Cookies and PHP Sessions
	Setting a Cookie with PHP
	Retrieving a Cookie Value from PHP
	Removing Cookies with PHP
	Creating a Site That Uses Cookies
	Viewing the Cookie Details in Your Browser
	Using Wireshark to View the HTTP Cookie Header
	Using Browser Tools to View the HTTP Cookie Header

	Using PHP Sessions
	Running a PHP Session Example
	The Source Code for index.php
	The Source Code for page1.html and page2.html
	Experimenting with the Sessions Project

	Summary

	Chapter 9: Running Your Site with a Certificate from a Certificate Authority
	Obtaining Your Own Domain Name
	Obtaining a CA SSL Certificate for Your Domain Name

	Configuring SSL on the Web Servers
	Installing the CA Certificate on the Apache Web Server
	Installing the CA Certificate on the Lighttpd Web Server

	Testing the SSL CA Certificate
	Project: Securely Logging In to a Site
	Designing the Project’s Site
	The Source Code for the Home Page of the Site
	The Web Page for Creating the User Account
	Creating the Database Used for the Project
	Testing the PHP to MySQL Connection
	The Source Code of the Login Web Page
	The Source Code for the User Profile Page
	Allowing the User to Log Out
	Testing the User Connection to the Site
	Improving the profile.php Web Page

	Summary

	Chapter 10: Running Online Services Using PHP Sockets
	Updating the Domain Name IP Address with ddclient
	Utilizing PHP Sockets
	The Code for the Command-Line PHP Socket Server
	Testing the PHP Command-Line Socket Server
	Implementing a Command-Line PHP Client
	Configuring the Web Servers for the New Site
	Create the Site That Interfaces with the Command-Line Server

	A TCP Port Check Site
	The Source Code for index.php and ports.php
	Testing the Online Open Port Check Site Locally
	Testing the Online Port Test Site Remotely
	A Second Version of the Open Port Check Tool Source Code

	Creating an Online Service Displaying QOTD Messages
	The Source Code for the QOTD Project
	Testing the QOTD Site

	Using Different FQDNs for Your Sites
	Summary

	Appendix: Exchanging Variables Between JavaScript and PHP
	Example 1: Passing Variables from PHP to JavaScript Using the echo Command
	Example 2: Passing Variables from JavaScript to PHP Using the location Object
	Example 3: Passing Variables from JavaScript to PHP with HTML Form Submission
	Example 4: Passing Variables from JavaScript to PHP and Back with Ajax
	Example 5: Passing Variables from JavaScript to PHP with Cookies
	Example 6: Passing Variables from PHP to JavaScript with Cookies

	Index

