Foundational CSS3 Components

4

0472580
TR

; .
ug({gi.@:c“ GO

i
L
3 _."g?s s
ot ’” ‘}“3-&‘} '
0 .l‘“

N eea e
///»{.f,?f(\

O’REILLY" Eric A. Meyer

Values, Units, and Colors

Nearly everything you do with CSS involves units for determining the
look and formatting of your web page elements. With this concise guide,
you'll learn how to work with an array of units—including measurements
and keywords—that help you define color, text, distance between
elements, location of external files, and other values.

This book contains chapters from the upcoming fourth edition of CSS:
The Definitive Guide. When you purchase either the print or the ebook
edition of Values, Units, and Colors, you'll receive a significant discount
on the entire Definitive Guide when it’s released. Why wait when you
can learn how to use units and other key CSS3 features right away?

B Use RGB or HSL values to mix your own colors, and designate the
degree of opacity

H Learn how to apply global keywords introduced in CSS3
B Use string values to wrap a sequence of text characters in quotes

B Describe margins, letter spacing, and other properties, with either
fixed or relative length units

m Understand how number, integer, and percentage values differ
B Explore CSS3 unit types for describing display resolution

B Use time values for transitions and animations

Purchase the ebook edition of this O’Reilly title at oreilly.com and get
free updates for the life of the edition. Our ebooks are optimized for
several electronic formats, including PDF, EPUB, Mobi, and DAISY—all
DRM-free.

Twitter: @oreillymedia
facebook.com/oreilly

i 53.’.!35"-”@

UsS 7.99 CAN $8.99
ISBN: 978-1-449-34251-7

7814491342517

Values, Units, and Colors

Eric A. Meyer

O’REILLY*

Beijing + Cambridge - Farnham - Kéln - Sebastopol « Tokyo

Values, Units, and Colors
by Eric A. Meyer

Copyright © 2012 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette Cover Designer: Karen Montgomery
Production Editor: Kristen Borg Interior Designer: David Futato
Copyeditor: Rachel Leach lllustrator: Robert Romano
Proofreader: O’Reilly Production Services

Revision History for the First Edition:
2012-09-25 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342517 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Values, Units, and Colors, the image of a salmon, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-34251-7
[LSI]
1348247002

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449342517

Table of Contents

Preface ...ooo v
Values, Units,and Colorsoooiiiiiiii 1
Keywords, Strings, and Other Text Values 1
Keywords 1
Strings 3
URLs 4
Images 5
Identifiers 6
Numbers and Percentages 6
Integers 6
Numbers 6
Percentages 7
Distances 7
Absolute Length Units 7
Resolution Units 10
Relative Length Units 11
Color 16
Named Colors 16
Colors by RGB and RGBa 17
Colors by HSL and HSLa 21
Bringing the Colors Together 24
Angles 25
Time and Frequency 26
Position 26
Summary 27

Color Equivalence Table 28

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

N

o This icon signifies a tip, suggestion, or general note.
qs
W og.
MY SN
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Values, Units, and Colors by Eric A. Meyer
(O’Reilly). Copyright 2012 O’Reilly Media, Inc., 978-1-449-34251-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

S f Safari Books Online (www.safaribooksonline.com) is an on-demand digital
aiari library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/values-units-colors.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

vi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/values-units-colors
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Values, Units, and Colors

In this book, we’ll tackle features that are the basis for almost everything you can do
with CSS: the units that affect the colors, distances, and sizes of a whole host of prop-
erties, as well as the units that help to define those values. Without units, you couldn’t
declare that an image should have 10 pixels of blank space around it, or that a heading’s
text should be a certain size. By understanding the concepts put forth here, you’ll be
able to learn and use the rest of CSS much more quickly.

Keywords, Strings, and Other Text Values

Of course, everything in a style sheet is text, but there are certain value types that directly
represent strings of text as opposed to, say, numbers or colors. Included in this category
are URLs and, interestingly enough, images.

Keywords

For those times when a value needs to be described with a word of some kind, there
are keywords. A very common example is the keyword none, which is distinct from 0
(zero). Thus, to remove the underline from links in an HTML document, you would
write:

a:link, a:visited {text-decoration: none;}

Similarly, if you want to force underlines on the links, then you would use the keyword
underline.

If a property accepts keywords, then its keywords will be defined only for the scope of
that property. If two properties use the same word as a keyword, the behavior of the
keyword for one property will not necessarily be shared with the other. As an example,
normal, as defined for letter-spacing, means something very different than the
normal defined for font-style.

CSS3 defines two “global” keywords, one of which has fairly widespread support:
inherit and initial.

inherit

The keyword inherit makes the value of a property on an element the same as the value
of that property on its parent element. In other words, it forces inheritance to occur
even in situations where it would not normally operate. In many cases, you don’t need
to specify inheritance, since many properties inherit naturally. Nevertheless, inherit
can still be very useful.

For example, consider the following styles and markup:

#toolbar {background: blue; color: white;}

<div id="toolbar">

0One | Two |
Three

</div>

The div itself will have a blue background and a white foreground, but the links will
be styled according to the browser’s preference settings. They’ll most likely end up as
blue text on a blue background, with white vertical bars between them.

You could write a rule that explicitly sets the links in the “toolbar” to be white, but you
can make things a little more robust by using inherit. You simply add the following
rule to the style sheet:

#toolbar a {color: inherit;}

This will cause the links to use the inherited value of color in place of the user agent’s
default styles. Ordinarily, directly assigned styles override inherited styles, but
inherit can undo that behavior.

Similarly, you can pull a property value down from a parent even if it wouldn’t happen
normally. Take border, for example, which is (rightfully) not inherited. If you want a
span to inherit the border of its parent, all you need is span {border: inherit;}. More
likely, though, you just want the border on a span to use the same border color as its
parent. In that case span {border-color: inherit;} will do the trick.

Internet Explorer did not support inherit until IES.

initial

The keyword initial sets the value of a property to the defined initial value, which in
a way means it “resets” the value. For example, the default value of font-weight is
normal. Thus, declaring font-weight: initial is the same as declaring font-weight:
normal.

2 | Values, Units, and Colors

This might seem a little bit silly until you consider that not all values have explicitly
defined initial values. For example, the initial value for color is “depends on user agent.”
That’s not a funky keyword you should type! What it means is that the default value
of color depends on things like the preferences settings in a browser. While almost
nobody changes the default text color setting from black, someone might set it to a
dark gray or even a bright red. By declaring color: initialj;, you’re telling the browser
to set the color of the element to whatever the user’s default color is set to be.

As of mid-2012, there was limited browser support for initial: Safari
and Chrome supported it as-is, whereas Firefox supported it as

-moz-initial.

Strings
A string value is an arbitrary sequence of characters wrapped in either single or double
quotes, and is represented in value definitions with <string>. Two simple examples:

"I like to play with strings.”
'Strings are fun to play with.'

Note that the quotes balance, which is to say that you always start and end with the
same kind of quotes. Getting this wrong can lead to all kinds of parsing problems, since
starting with one kind of quote and trying to end with the other means the string won’t
actually be terminated. You could accidentally incorporate following rules into the
string that way!

If you want to put quote marks inside strings, that’s okay as long as they’re either not
the kind you used to enclose the string or are escaped using a backslash.

"I've always liked to play with strings."

'He said to me, "I like to play with strings."'

"It's been said that \"haste makes waste.\""
"There\'s never been a "string theory" that I\'ve liked.'

Note that the only acceptable string delimiters are ' and ", sometimes called “straight
quotes.” That means you can’t use “curly” or “smart” quotes to begin or end a string
value. You can use them inside a string value, though, and they don’t have to be escaped.

"It’s been said that “haste makes waste.”"
'There’s never been a “string theory” that I’ve liked.'

Of course, this requires that you use Unicode encoding for your documents, but you
should be doing that regardless.

If you have some reason to include a newline in your string value, you can do that by
escaping the newline itself. CSS will then remove it, making things as if it had never
been there. Thus, the following two string values are identical from a CSS point of view:

Keywords, Strings, and Other Text Values | 3

"This is the right place \
for a newline."
"This is the right place for a newline."

If, on the other hand, you actually want a string value that includes a newline character,
then use the Unicode reference \A where you want the newline to occur.

"This is a better place \Afor a newline."

URLs

If you’ve written web pages, you’re obviously familiar with URLs (or, as in CSS2.1,
URIs). Whenever you need to refer to one—as in the @import statement, which is used
when importing an external style sheet—the general format is:

url(protocol://server/pathname)

This example defines what is known as an absolute URL. By absolute, I mean a URL
that will work no matter where (or rather, in what page) it’s found, because it defines
an absolute location in web space. Let’s say that you have a server called web.waffles.org
(http://web.waffles.org). On that server, there is a directory called pix, and in this di-
rectory is an image waffle22.gif. In this case, the absolute URL of that image would be:

http://web.waffles.org/pix/waffle22.gif

This URL is valid no matter where it is found, whether the page that contains it is
located on the server web.waffles.org or web.pancakes.com.

The other type of URL is a relative URL, so named because it specifies a location that
is relative to the document that uses it. If you’re referring to a relative location, such as
a file in the same directory as your web page, then the general format is:

url(pathname)

This works only if the image is on the same server as the page that contains the URL.
For argument’s sake, assume that you have a web page located at http://web.waffles.org/
syrup.html and that you want the image waffle22.gif to appear on this page. In that
case, the URL would be:

pix/waffle22.gif

This path works because the web browser knows that it should start with the place it
found the web document and then add the relative URL. In this case, the pathname
pix/waffle22.gif added to the server name hitp://web.waffles.org equals http://web.waf
fles.org/pix/waffle22.gif. You can almost always use an absolute URL in place of a rel-
ative URL; it doesn’t matter which you use, as long as it defines a valid location.

In CSS, relative URLs are relative to the style sheet itself, not to the HTML document
that uses the style sheet. For example, you may have an external style sheet that imports
another style sheet. If you use a relative URL to import the second style sheet, it must
be relative to the first style sheet.

4 | Values, Units, and Colors

http://web.waffles.org
http://web.waffles.org
http://web.pancakes.com
http://web.waffles.org/syrup.html
http://web.waffles.org/syrup.html
http://web.waffles.org
http://web.waffles.org/pix/waffle22.gif
http://web.waffles.org/pix/waffle22.gif

As an example, consider an HTML document at http://web.waffles.org/toppings/tips
.html, which has a link to the style sheet http://web.waffles.org/styles/basic.css:

<link rel="stylesheet" type="text/css"
href="http://web.waffles.org/styles/basic.css">
Inside the file basic.css is an @import statement referring to another style sheet:
@import url(special/toppings.css);
This @import will cause the browser to look for the style sheet at http://web.waffles.org/

styles/special/toppings.css, not at http://web.waffles.org/toppings/special/toppings.css. If
you have a style sheet at the latter location, then the @import in basic.css should read:

@import url(http://web.waffles.org/toppings/special/toppings.css);

Note that there cannot be a space between the url and the opening parenthesis:

body {background: url(http://www.pix.web/picturel.jpg);} /* correct */
body {background: url (images/picture2.jpg);} /* INCORRECT */

If the space is present, the entire declaration will be invalidated and thus ignored.

Images

An image value is a reference to an image, as you might have guessed. Its syntax rep-
resentation is <image>.

At the most basic level of support, which his to say the one every CSS engine on the
planet would understand, an <image> value is simply a <url> value. In more advanced
user agents, <image> stands for one of the following:

<url>
A URL identifier of an external resource; in this case, the URL of an image.
<image-1list>
Perhaps unsurprisingly, a list of images. As of mid-2012 there was no support for
this value type.

<element-reference>
Refers to an element within the document. The element is then copied and used
as an image, possibly as a “live” copy—that is to say, a copy that updates if the
element is altered through Dom scripting or user interaction. As of mid-2012, only
Firefox supported this capability.

<gradient>
Refers to either a linear or radial gradient image. Gradients are fairly complex.

Keywords, Strings, and Other Text Values | 5

http://web.waffles.org/toppings/tips.html
http://web.waffles.org/toppings/tips.html
http://web.waffles.org/styles/basic.css
http://web.waffles.org/styles/special/toppings.css
http://web.waffles.org/styles/special/toppings.css
http://web.waffles.org/toppings/special/toppings.css

Identifiers

There are a few properties that accept an identifier value, which is a user-defined iden-
tifier of some kind; the most common example is generated list counters. They are
represented in the value syntax as <identifier>. Identifiers themselves are strings, and
are case-sensitive; thus, myID and MyID are, as far as CSS is concerned, completely distinct
and unrelated to each other. In cases where a property accepts both an identifier and
one or more keywords, the user cannot define an identifier identical to a valid keyword.

Numbers and Percentages

These value types are special because they serve as the foundation for so many other
values types. For example, font sizes can be defined using the em identifier (covered
later in this text) preceded by a number. But what kind of number? Defining the types
of numbers here lets us speak clearly later on.

Integers

An integer value is about as simple as it gets: one or more numbers, optionally prefixed
by a + or - sign to indicate a positive or negative value. That’s it. Integer values are
represented in value syntax as <integer>. Examples include 13, -42, 712, and 1066.

Integer values that fall outside a defined range are, by default, considered invalid and
cause the entire declaration to be ignored. However, some properties define behavior
that causes values outside the accepted range to be set to the accepted value closest to
the declared value. In cases (such as the property z-index) where there is no restricted
range, user agents must support values up to +1,073,741,824 (£230).

Numbers

A number value is either an <integer> or a real number, which is to say an integer
followed by a dot and then some number of following integers. Additionally, it can be
prefixed by either + or - to indicate positive or negative values. Number values are
represented in value syntax as <number>. Examples include 2.7183, -3.1416, and
6.2832.

The reason a <number> can be an <integer> and yet there are separate value types is that
some properties will only accept integers (e.g., z-index), whereas others will accept any
real number (e.g., opacity). As with integer values, number values may have limits
imposed on them by a property definition; for example, opacity restricts its value to be
any valid <number> in the range 0 to 1, inclusive. As with integers, number values that
fall outside a defined range are, by default, considered invalid and cause the entire
declaration to be ignored. However, some properties define behavior that causes values
outside the accepted range to be set to the accepted value closest to the declared value.

6 | Values, Units, and Colors

Percentages

A percentage value is a <number> followed by a percentage sign (%), and is represented
in value syntax as <percentage>. Examples would include 50% and 33.333%. Percentage
values are always relative to another value, which can be anything—the value of another
property of the same element, a value inherited from the parent element, or a value of
an ancestor element. Any property that accepts percentage values will define any re-
strictions on the range of allowed percentage values, and will also define the way in
which the percentage is relatively calculated.

Distances

Many CSS properties, such as margins, depend on length measurements to properly
display various page elements. It’s no surprise, then, that there are a number of ways
to measure length in CSS.

All length units can be expressed as either positive or negative numbers followed by a
label (although some properties will accept only positive numbers). You can also use
real numbers—that is, numbers with decimal fractions, such as 10.5 or4.561. All length
units are followed by short abbreviation (usually two characters) that represents the
actual unit of length being specified, such as in (inches) or pt (points). The only ex-
ception to this rule is a length of 0 (zero), which need not be followed by a unit.

These length units are divided into two types: absolute length units and relative length
units.

Absolute Length Units

We'll start with absolute units because they’re easiest to understand, despite the fact
that they’re almost unusable in regular web design. The six types of absolute units are
as follows:

Inches (in)
As you might expect, this notation refers to the inches you’d find on a ruler in the
United States. (The fact that this unit is in the specification, even though almost
the entire world uses the metric system, is an interesting insight into the perva-
siveness of U.S. interests on the Internet—but let’s not get into virtual sociopolitical
theory right now.)

Centimeters (cm)
Refers to the centimeters that you’d find on rulers the world over. There are 2.54
centimeters to an inch, and one centimeter equals 0.394 inches.

Millimeters (mm)
For those Americans who are metric-challenged, there are 10 millimeters to a cen-
timeter, so an inch equals 25.4 millimeters, and a millimeter equals 0.0394 inches.

Distances | 7

Points (pt)
Points are standard typographical measurements that have been used by printers
and typesetters for decades and by word processing programs for many years. Tra-
ditionally, there are 72 points to an inch (points were defined before widespread
use of the metric system). Therefore, the capital letters of text set to 12 points
should be one-sixth of an inch tall. For example, p {font-size: 18pt;} is equivalent
top {font-size:0.25in;}.

Picas (pc)
Picas are another typographical term. A pica is equivalent to 12 points, which
means there are 6 picas to an inch. As just shown, the capital letters of text set to
1 pica should be one-sixth of an inch tall. For example, p {font-size: 1.5pc;}
would set text to the same size as the example declarations found in the definition
of points.

Pixels (px)
A pixel is a small box on screen, but CSS defines pixels more abstractly. In CSS
terms, a pixel is defined to be the size required to yield 96 pixels per inch. Many
user agents ignore this definition in favor of simply addressing the pixels on the
monitor. Scaling factors are brought into play when page zooming or printing,
where an element 100px wide can be rendered more than 100 device dots wide.

Of course, these units are really useful only if the browser knows all the details of the
monitor on which your page is displayed, the printer you’re using, or whatever other
user agent might apply. On a web browser, display is affected by the size of the monitor
and the resolution to which the monitor is set—and there isn’t much that you, as the
author, can do about these factors. You can only hope that, if nothing else, the meas-
urements will be consistent in relation to each other—that is, that a setting of 1.0in
will be twice as large as 0.5in, as shown in Figure 1.

[one] This paragraph has a one-"inch" left margin.

[two] This paragraph has a half-"inch" left margin.

Figure 1. Setting absolute-length left margins

Nevertheless, despite all that, let’s make the highly suspect assumption that your com-
puter knows enough about its display system to accurately reproduce real-world meas-
urements. In that case, you could make sure every paragraph has a top margin of half
an inch by declaring p {margin-top: 0.5in;}. Regardless of font size or any other cir-
cumstances, a paragraph will have a half-inch top margin.

Absolute units are much more useful in defining style sheets for printed documents,
where measuring things in terms of inches, points, and picas is much more common.

8 | Values, Units, and Colors

Pixel lengths

On the face of things, pixels are straightforward. If you look at a monitor closely
enough, you can see that it’s broken up into a grid of tiny little boxes. Each box is a
pixel. If you define an element to be a certain number of pixels tall and wide, as in the
following markup:

<p>

The following image is 20 pixels tall and wide: <img src="test.gif"

style="width: 20px; height: 20px;" alt="" />

</p>
...then it follows that the element will be that many monitor elements tall and wide, as
shown in Figure 2.

The following image is 20 pixels tall and wide: D

Figure 2. Using pixel lengths

In general, if you declare something like font-size: 18px, a web browser will almost
certainly use actual pixels on your monitor—after all, they’re already there—but with
other display devices, like printers, the user agent will have to rescale pixel lengths to
something more sensible. In other words, the printing code has to figure out how many
dots there are in a pixel.

Unfortunately, there is a potential drawback to using pixels. If you set font sizes in
pixels, then users of Internet Explorer for Windows previous to IE7 cannot resize the
text using the Text Size menu in their browser. This can be a problem if your text is
too small for a user to comfortably read. If you use more flexible measurements, such
as em, the user can resize text. (If you’re exceedingly protective of your design, you might
call that a drawback, of course.)

One example of a problem with pixel measurements can be found in an
% early CSS1 implementation. In Internet Explorer 3.x, when a document

was printed, IE3 assumed that 18px was the same as 18 dots, which on
a 600dpi printer works out to be 18/600, or 3/100, of an inch—or, if
you prefer, .03in. That’s pretty small text!

On the other hand, pixel measurements are perfect for expressing the size of images,
which are already a certain number of pixels tall and wide. In fact, the only time you
would not want pixels to express image size is when you want them scaled along with
the size of the text. This is an admirable and sometimes useful approach. You do end
up relying on the image-scaling routines in user agents, but those have been getting
pretty good. Scaling of images really makes sense with vector-based images like SVG,
of course.

Distances | 9

Pixel theory

In its discussion of pixels, the CSS specification recommends that in cases where a
display type is significantly different than 96 pixels per inch (ppi), user agents should
scale pixel measurements to a “reference pixel.” CSS2 recommended 90ppi as the ref-
erence pixel, but CSS2.1 and CSS3 recommend 96ppi. The most common example is
a printer, which has dots instead of pixels, and which has a lot more dots per inch than
96! In printing web content, then, it may assume 96 pixels per inch and scale its output
accordingly.

If a display’s resolution is set to 1,024 pixels wide by 768 pixels tall, its screen size is
exactly ten and two-thirds inches wide by eight inches tall, and the screen it is filled
entirely by the display pixels, then each pixel will be 1/96 of an inch wide and tall. As
you might guess, this scenario is a fairly rare occurrence. So, on most displays, the actual
number of pixels per inch (ppi) is higher than 96—sometimes much higher. The Retina
display on an iPhone 4S, for example, is 326ppi; the display on the iPad 3,264ppi.

B
o)

As a Windows 7 user, you should be able to set your display driver to
make the display of elements correspond correctly to real-world meas-
urements. To do so, click Start—=Control Panel. In the Control Panel
click Display; then click “Set custom text size (DPI)” in the left sidebar;
then hold a ruler up to the screen and move the slider until the onscreen
ruler matches the physical ruler. Click OK until you’re free of dialog
boxes, and you’re set.

by

In Windows XP, the path to the ruler dialog is Start—~Control Panel;
double-click Display; click the Settings tab; then click Advanced to re-
veal a dialog box (which may differ on each PC). You should see a drop-
down or other form control labeled “Font Size;” select “Other.”

Resolution Units

With the advent of media queries, three new unit types were introduced in order to be
able to describe display resolution:

Dots per inch (dpi)
The number of display dots per linear inch. This can refer to the dots in a paper
printer’s output, the physical pixels in an LED monitor or other device, or the
elements in an e-ink display such as that used by a Kindle.

Dots per centimeter (dpcm)
Same as dpi, except the linear measure is one centimeter instead of one inch.
Dots per pixel unit (dppx)
The number of display dots per CSS px unit, as described previously. As of CSS3,
1dppx is equivalent to 96dpi because CSS defines pixel units at that ratio. Of course,
that ratio could change in future versions of CSS.

10 | Values, Units, and Colors

As of mid-2012, these units are only used in the context of media queries. As an ex-
ample, an author can set a media block to be used only on displays that have higher
than 500dpi:

@media (min-resolution: 500dpi) {...}

Interestingly, dppx is not defined by the Media Queries module, but appears in the Units
and Values modules alongside dpi and dpcm, which are defined in Media Queries. What
this means for the future is by no means clear.

Relative Length Units

Relative units are so called because they are measured in relation to other things. The
actual (or absolute) distance they measure can change due to factors beyond their con-
trol, such as screen resolution, the width of the viewing area, the user’s preference
settings, and a whole host of other things. In addition, for some relative units, their size
is almost always relative to the element that uses them and will thus change from ele-
ment to element.

em and ex units

First, let’s consider em and ex, which are closely related. In CSS, one “em” is defined to
be the value of font-size for a given font. If the font-size of an element is 14 pixels,
then for that element, 1em is equal to 14 pixels.

Obviously, this value can change from element to element. For example, let’s say you
have an h1 with a font size of 24 pixels, an h2 element with a font size of 18 pixels, and
a paragraph with a font size of 12 pixels. If you set the left margin of all three at 1em,
they will have left margins of 24 pixels, 18 pixels, and 12 pixels, respectively:

hi {font-size: 24px;}

h2 {font-size: 18px;}

p {font-size: 12px;}

hi, h2, p {margin-left: 1em;}

small {font-size: 0.8em;}

<h1>Left margin = <small>24 pixels</small></h1>
<h2>Left margin = <small>18 pixels</small></h2>
<p>Left margin = <small>12 pixels</small></p>

When setting the size of the font, on the other hand, the value of em is relative to the
font size of the parent element, as illustrated by Figure 3.

Left margin = 24 pixels

Left margin = 18 pixels

Left margin = 12 pixels

Figure 3. Using em for margins and font sizing

Distances | 11

In theory, one “em” is equal to the width of a lowercase “m” in the font used—that’s
where the name comes from, in fact. It’s an old typographer’s term. However, this is
not assured in CSS.

ex, on the other hand, refers to the height of a lowercase x in the font being used.
Therefore, if you have two paragraphs in which the text is 24 points in size, but each
paragraph uses a different font, then the value of ex could be different for each para-
graph. This is because different fonts have different heights for x, as you can see in
Figure 4. Even though the examples use 24-point text—and therefore, each example’s
em value is 24 points—the x-height for each is different.

Times:
Garamond:
Helvetica:

Arial:
Impact:

Courier:

Figure 4. Varying x-heights

NGOBE X X M

The rem unit

Like the em unit, the rem unit is based on declared font size. The difference—and it’s a
doozy—is that whereas em is calculated using the font size of the element to which it’s
applied, rem is always calculated using the root element. In HTML, that’s the html
element. Thus, declaring any element to have font-size: 1rem; is setting it to have the
same font-size value as the root element of the document.

12 | Values, Units, and Colors

As an example, consider the following markup fragment. It will have the result shown
in Figure 5.

<p> This paragraph has the same font size as the root element thanks to inheritance.</p>
<div style="font-size: 30px; background: silver;">

<p style="font-size: 1em;">This paragraph has the same font size as its parent
element.</p>

<p style="font-size: 1rem;">This paragraph has the same font size as the root
element.</p>
</div>

This paragraph has the same font size as the root element thanks to inheritance.

This paragraph has the same font size as its parent element.

This paragraph has the same font size as the root element.

Figure 5. ems versus rems

Basically, rem acts as a reset for font size: no matter what relative font sizing has hap-
pened to the ancestors of an element, giving it font-size: 1rem; will put it right back
where the root element is set. This will usually be the user’s default font size, unless of
course you (or the user) have set the root element to a specific font size.

For example, given this declaration, 1rem will always be equivalent to 13px:

html {font-size: 13px;}

However, given this declaration, 1rem will always be equivalent to three-quarters the
user’s default font size:

html {font-size: 75%;}

In this case, if the user’s default is 16 pixels, then 1rem will equal 12px. If the user has
actually set their default to 12 pixels—a few people do this—then 1rem will equal 9px;
if the default setting is 20 pixels, then 1rem equals 15px. And so on.

Of course, you are not restricted to the value 1rem. Any real number can be used, just
as with the em unit, so you can do fun things like set all of your headings to be multiples
of the root element’s font size:

h1 {font-size: 2rem;}
h2 {font-size: 1.75rem;}
h3 {font-size: 1.4rem;}
h4 {font-size: 1.1rem;}
h5 {font-size: 1irem;}
hé {font-size: 0.8rem;}

W

As of mid-2012, support for rem was fairly widespread, missing only in
older versions of browsers that could still be hanging around.

Distances | 13

The ch unit

An interesting addition to CSS3 is the ch unit, which is broadly meant to represent “one
character.” The way it is defined in CSS3 is:

Equal to the advance measure of the “0” (ZERO, U+0030) glyph found in the font used
to render it.

The term “advance measure” is actually a CSS-ism that corresponds to the term “ad-
vance width” in font typography. (CSS uses the term “measure” because some scripts
are not right-to-left or left-to-right, and so may have an advance height rather than an
advance width.) Without getting into too many details, a character glyph’s advance
width is the distance from the start of a character glyph to the start of the next. This
generally corresponds to the width of the glyph itself plus any built-in spacing to the
sides. (Although that built-in spacing can be either positive or negative.)

As mentioned previously, CSS pins the ch unit to the advance width of a zero in a given
font. This is in parallel to the way that em is calculated with respect to the font-size
value of an element.

The easiest way to demonstrate this unit is to run a bunch of zeroes together and then
set an image to have a width with the same number of ch units as the number of zeroes,
as shown in Figure 6.

img {height: 1em; width: 25ch;}

This example uses Times.

|

This example uses Garamond.

|

This example uses Helvetica.
00000

F
|

This example uses Arial.
0000000000000000000000000

This example uses Impact.

This example uses Courier.
0000000000000000000000000

Figure 6. Character-relative sizing

14 | Values, Units, and Colors

Given a monospace font, all characters are by definition 1ch wide. In any proportional
face type, which is what the vast majority of Western typefaces are, characters may be
wider or narrower than the “0” and so cannot be assumed to be 1ch wide.

As of mid-2012, support for ch was limited to Firefox.

Viewport-relative units

Another new addition in CSS3 are the three viewport-relative size units. These are
calculated with respect to the size of the viewport—browser window, printable area,
mobile device display, etc.

Viewport width unit (vw)
This unit is calculated with respect to the viewport’s width, which is divided by
100. Therefore, if the viewport is 937 pixels wide, 1vw is equal to 9.37px. If the
viewport’s width changes, say by dragging the browser window wider or more
narrow, the value of vw changes along with it.

Viewport height unit (vh)
This unit is calculated with respect to the viewport’s height, which is divided by
100. Therefore, if the viewport is 650 pixels tall, 1vh is equal to 6.5px. If the view-
port’s height changes, say by dragging the browser window taller or shorter, the
value of vh changes along with it.

Viewport minimum unit (vmin)
This unitis 1/100 of the viewport’s width or height, whichever is lesser. Thus, given
a viewport that is 937 pixels wide by 650 pixels tall, 1vmin is equal to 6.5px.

These units are particularly handy for creating full-viewport interfaces, such as those
one would expect to find on a mobile device, because it can allow elements to be sized
compared to the viewport and not any of the elements within the document tree. It’s
thus very simple to fill up the entire viewport, or at least major portions of it, and not
have to worry about the precise dimensions of the actual viewport in any particular case.

Here’s a very basic example of viewport-relative sizing, which is illustrated in Figure 7.
div {width: 50vh; height: 33vw; background: gray;}

An interesting (though perhaps not useful) fact about these units is that they aren’t
bound to their own primary axis. Thus, for example, you can declare width: 25vh; to
make an element as wide as one-quarter the height of the viewport.

As of mid-2012, support for these units was limited to Internet Explorer
= 9 and above.

Distances | 15

|A paragraph which follows the single div we actually have in this example.

Figure 7. Viewport-relative sizing

Color

One of the first questions every starting web author asks is, “How do I set colors on
my page?” Under HTML, you have two choices: you could use one of a small number
of colors with names, such as red or purple, or employ a vaguely cryptic method using
hexadecimal codes. Both of these methods for describing colors remain in CSS, along
with some other—and, I think, more intuitive—methods.

Named Colors

Assuming that you’re content to pick from a small, basic set of colors, the easiest
method is simply to use the name of the color you want. CSS calls these color choices,
logically enough, named colors. As of CSS3, the CSS color specification defines 16 basic
color keywords, which are the 16 colors defined in HTML 4.01, as shown in Table 1.

Table 1. The basic 16 color keywords

aqua gray navy silver
black green olive teal
blue lime purple white
fuchsia maroon red yellow

So, let’s say you want all first-level headings to be maroon. The best declaration would

be:

h1 {color: maroon;}

16 | Values, Units, and Colors

Simple and straightforward, isn’t it? Figure 8 shows a few more examples:

h1 {color: silver;}
h2 {color: fuchsia;}
h3 {color: navy;}

Salutations!

Howdy-do!

Figure 8. Naming colors

Of course, you’ve probably seen (and maybe even used) color names other than the
ones listed earlier. For example, if you specify:

h1 {color: lightgreen;}

As of the CSS3 color specification, the 16 colors from HTML 4.01 have been subsumed
into a longer list of 147 color keywords. This extended list is based on the standard
X11 RGB values that have been in use for decades, and have been recognized by brows-
ers for many years, with the addition of some color names from SVG (mostly involving
variants of “gray” and “grey”). A table of color equivalents for all 147 keywords defined
in the CSS Color Module Level 3 is given in “Color Equivalence Table” on page 28.

Fortunately, there are more detailed and precise ways to specify colors in CSS. The
advantage is that, with these methods, you can specify any color in the color spectrum,
not just 17 (or 140) named colors.

Colors by RGB and RGBa

Computers create colors by combining different levels of red, green, and blue, a com-
bination that is often referred to as RGB color. Each point of display is known as a pixel,
which is a term discussed earlier in the chapter. Given the way colors are created on a
monitor, it makes sense that you should have direct access to those colors, determining
your own mixture of the three for maximum control. That solution is complex, but
possible, and the payoffs are worth it because there are very few limits on which colors
you can produce. There are four ways to affect color in this manner.

Functional RGB colors

There are two color value types that use functional RGB notation as opposed to hexa-
decimal notation. The generic syntax for this type of color value is rgb(color), where
color is expressed using a triplet of either percentages or integers. The percentage values
can be in the range 0%-100%, and the integers can be in the range 0-255.

Color | 17

Thus, to specify white and black, respectively, using percentage notation, the values
would be:

rgb(100%, 100%,100%)
rgb(0%,0%,0%)

Using the integer-triplet notation, the same colors would be represented as:

rgh(255,255,255)

1gh(0,0,0)
Assume you want your h1 elements to be a shade of red that lies between the values for
red and maroon. red is equivalent to rgb(100%,0%,0%), whereas maroon is equal to (50%,
0%,0%). To get a color between those two, you might try this:

h1 {color: rgb(75%,0%,0%);}

This makes the red component of the color lighter than maroon, but darker than red. If,
on the other hand, you want to create a pale red color, you would raise the green and
blue levels:

h1 {color: rgb(75%,50%,50%);}

The closest equivalent color using integer-triplet notation is:

h1 {color: rgb(191,127,127);}

The easiest way to visualize how these values correspond to color is to create a table of
gray values. The result is shown in Figure 9:

p.one {color: rgh(0%,0%,0%);}
p.two {color: rgh(20%,20%,20%);}
p.three {color: rgb(40%,40%,40%);}
p.four {color: rgh(60%,60%,60%);}
p.five {color: rgh(80%,80%,80%);}
p.six {color: rgb(0,0,0);}

p.seven {color: rgb(51,51,51);}
p.eight {color: rgb(102,102,102);}
p.nine {color: rgb(153,153,153);}
p.ten {color: rgh(204,204,204);}

[one] This is a paragraph.
[two] This is a paragraph.
[three] This is a paragraph.

[six] This is a paragraph.
[seven] This is a paragraph.
[eight] This is a paragraph.

Figure 9. Text set in shades of gray

18 | Values, Units, and Colors

Of course, since we’re dealing in shades of gray, all three RGB values are the same in
each statement. If any one of them were different from the others, then a color hue
would start to emerge. If, for example, rgb(50%,50%,50%) were modified to be rgb(50%,
50%,60%), the result would be a medium-dark color with just a hint of blue.

It is possible to use fractional numbers in percentage notation. You might, for some
reason, want to specify that a color be exactly 25.5 percent red, 40 percent green, and
98.6 percent blue:

h2 {color: rgb(25.5%,40%,98.6%);}

A user agent that ignores the decimal points (and some do) should round the value to
the nearest integer, resulting in a declared value of rgb(26%,40%,99%). In integer triplets,
of course, you are limited to integers.

Values that fall outside the allowed range for each notation are “clipped” to the nearest
range edge, meaning that a value that is greater than 100% or less than 0% will default to
those allowed extremes. Thus, the following declarations would be treated as if they
were the values indicated in the comments:

P.one {color: rgh(300%,4200%,110%);} /* 100%,100%,100% */

P.two {color: rgh(0%,-40%,-5000%);} /* 0%,0%,0% */

p.three {color: rgb(42,444,-13);} /* 42,255,0 */
Conversion between percentages and integers may seem arbitrary, but there’s no need
to guess at the integer you want—there’s a simple formula for calculating them. If you
know the percentages for each of the RGB levels you want, then you need only apply
them to the number 255 to get the resulting values. Let’s say you have a color of 25
percentred, 37.5 percent green, and 60 percent blue. Multiply each of these percentages
by 255, and you get 63.75, 95.625, and 153. Round these values to the nearest integers,
and voila: rgb(64,96,153).

Of course, if you already know the percentage values, there isn’t much point in con-
verting them into integers. Integer notation is more useful for people who use programs
such as Photoshop, which can display integer values in the “Info” dialog, or for those
who are so familiar with the technical details of color generation that they normally
think in values of 0-255.

RGBa colors

As of CSS3, the two functional RGB notations were extended into a functional RGBa
notation. This notation simply adds an alpha value to the end of the RGB triplets; thus,
“red-green-blue-alpha” becomes RGBa. The alpha stands for alpha channel, which is
a measure of opacity.

For example, suppose you wanted an element’s text to be half-opaque white. That way,
any background color behind the text would “shine through,” mixing with the half-
transparent white. You would write one of the following two values:

Color | 19

rgba(255,255,255,0.5)
rgba(100%,100%,100%,0.5)

To make a color completely transparent, you simply set the alpha value to 0; to be
completely opaque, the correct valueis 1. Thus, rgb(0,0,0) and rgba(0,0,0,1) will yield
precisely the same result (black). Figure 10 shows a series of paragraphs set in increas-
ingly transparent black, which is the result of the following rules.

p.one {color: rgba(0,0,0,1);}

p.two {color: rgba(0%,0%,0%,0.8);}

p.three {color: rgba(0,0,0,0.6);}

p.four {color: rgba(0%,0%,0%,0.4);}

p.five {color: rgba(0,0,0,0.2);}

[one] This is a paragraph.
[two] This is a paragraph.
[three] This is a paragraph.

Figure 10. Text set in progressive translucency

As you’ve no doubt already inferred, alpha values are always real numbers in the range
0 to 1. Any value outside that range will either be ignored or reset to the nearest valid
alpha value. You cannot use <percentage> to represent alpha values, despite the math-
ematical equivalence.

Hexadecimal RGB colors

CSS allows you to define a color using the same hexadecimal color notation so familiar
to old-school HTML web authors:

h1 {color: #FF0000;} /* set His to red */

h2 {color: #903BCO;} /* set H2s to a dusky purple */

h3 {color: #000000;} /* set H3s to black */
h4 {color: #808080;} /* set H4s to medium gray */

Computers have been using “hex notation” for quite some time now, and programmers
are typically either trained in its use or pick it up through experience. Their familiarity
with hexadecimal notation likely led to its use in setting colors in HTML. The practice
was simply carried over to CSS.

Here’s how it works: by stringing together three hexadecimal numbers in the range
00 through FF, you can set a color. The generic syntax for this notation is #RRGGBB. Note
that there are no spaces, commas, or other separators between the three numbers.

20 | Values, Units, and Colors

Hexadecimal notation is mathematically equivalent to the integer-pair notation dis-
cussed in the previous section. For example, rgh(255,255,255) is precisely equivalent
to #FFFFFF, and rgb(51,102,128) is the same as #336680. Feel free to use whichever
notation you prefer—it will be rendered identically by most user agents. If you have a
calculator that converts between decimal and hexadecimal, making the jump from one
to the other should be pretty simple.

For hexadecimal numbers that are composed of three matched pairs of digits, CSS
permits a shortened notation. The generic syntax of this notation is #RGB:
h1 {color: #000;} /* set His to black */

h2 {color: #666;} /* set H2s to dark gray */
h3 {color: #FFF;} /* set H3s to white */

As you can see from the markup, there are only three digits in each color value. How-
ever, since hexadecimal numbers between 00 and FF need two digits each, and you have
only three total digits, how does this method work?

The answer is that the browser takes each digit and replicates it. Therefore, #F00 is
equivalent to #FF0000, #6FA would be the same as #66FFAA, and #FFF would come out
#FFFFFF, which is the same as white. Obviously, not every color can be represented in
this manner. Medium gray, for example, would be written in standard hexadecimal
notation as #808080. This cannot be expressed in shorthand; the closest equivalent
would be #888, which is the same as #888888.

There is no hexadecimal notation that includes alpha values.

Colors by HSL and HSLa

New to CSS3 (though not to the world of color theory in general) are HSL notations.
HSL stands for Hue, Saturation, and Lightness, where the hue is a hue angle in the
range 0360, saturation is a percentage value from 0 (no saturation) to 100 (full satu-
ration), and lightness is a percentage value from 0 (completely dark) to 100 (completely

light).

The hue angle is expressed in terms of a circle around which the full spectrum of colors
progresses. It starts with red at zero degrees and then proceeds through the rainbow
until it comes to red again at 360 degrees. Figure 11 illustrates this visually by showing
the angles and colors of the spectrum on a wheel as well as a linear strip.

If you’re intimately familiar with RGB, then HSL may be confusing at first. (But then,
RGB is confusing for people familiar with HSL.) You may be able to better grasp the
hues in HSL by contemplating the diagram in Figure 12, which shows the spectrum
results from placing and then mixing red, green, and blue.

Color | 21

€

Figure 11. The spectrum on a wheel and a strip

o° 6a° 120°

180°

240°

300°

360°

Figure 12. Mixing RGB to create the spectrum

22 | Values, Units, and Colors

As for the other two values, saturation measures the intensity of a color. A saturation
of 0% always yields a shade of gray, no matter what hue angle you have set, and a
saturation of 100% creates the most vivid shade of that hue for a given lightness. Simi-
larly, lightness defines how dark or light the color appears. A lightness of 0% is always
black, regardless of the other hue and saturation values, just as a lightness of 100% always
yields white. Consider the results of the following styles, illustrated on the left side of
Figure 13.

p.one {color: hsl(0,0%,0%);}

p.two{color: hsl(60,0%,25%);}

p.three {color: hs1(120,0%,50%);}

p.four {color: hs1(180,0%,75%);}

p.five {color: hs1(240,0%,0%);}

p.six {color: hsl(300,0%,25%);}

p.seven {color: hs1(360,0%,50%);}

[one] This is a paragraph.
[two] This is a paragraph.

[three] This is a paragraph.

[five] This is a paragraph.

[six] This is a paragraph.

[seven] This is a paragraph.

[one] This is a paragraph.
[two] This is a paragraph.

[three] This is a paragraph.

[five] This is a paragraph.
[six] This is a paragraph.

[seven] This is a paragraph.

Figure 13. Varying lightness and hues

The gray you see isn’t just a function of the limitations of print: every single one of
those bits of text is a shade of gray, because every color value has 0% in the saturation
(middle) position. The degree of lightness or darkness is set by the lightness (third)
position. In all seven examples, the hue angle changes, and in none of them does it
matter. But that’s only so long as the saturation remains at 0%. If that value is raised to,
say, 50%, then the hue angle will become very important, because it will control what
sort of color you see. Consider the same set of values that we saw before, but all set to
50% saturation, as illustrated on the right side of Figure 13.

It can be instructive to take the 16 color keywords defined in HTML4 (Table 1) and
plot them against a hue-and-lightness wheel, as shown in Figure 14. The color wheel
not only features the full spectrum around the rim, but also runs from 50 percent light-
ness at the edge to 0 percent lightness in the center. (The saturation is 100 percent
throughout.) As you can see, the twelve keywords of color are regularly placed through-
out the wheel, which bespeaks careful choice on the part of whoever chose them. The
gray shades aren’t quite as regularly placed, but are probably the most useful distribu-
tion of shades given that there were only four of them.

Color | 23

maroon|

Lo
aqua

Figure 14. Keyword-equivalent hue angles and lightnesses

Just as RGB has its RGBa counterpart, HSL has an HSLa counterpart. This is simply
an HSL triplet followed by an alpha value in the range 0—1. The following HSLa values
are all black with varying shades of transparency, just as in the RGBa section earlier
(and illustrated in Figure 10).

p.one {color: hsla(0,0%,0%,1);}

p.two {color: hsla(0,0%,0%,0.8);}

p.three {color: hsla(0,0%,0%,0.6);}

p.four {color: hsla(0,0%,0%,0.4);}

p.five {color: hsla(0,0%,0%,0.2);}

Bringing the Colors Together

Table 2 presents an overview of some of the colors we’ve discussed. Note that there are
some rows that do not contain shortened hexadecimal values. That happens in cases
where the longer (six-digit) values cannot be shortened. For example, the value #880
expands to #888800, not #808000 (otherwise known as olive). Therefore, there is no
shortened version of #808000, and the appropriate entry in the table is blank.

24 | Values, Units, and Colors

Table 2. Color equivalents

Color Hexa-decimal ~ RGB Decimal RGB Percentage HSL

aqua #OOFFFF" rgb(0,255,255) rgb (0%, 100%,100%) hs1(180,100%,50%)
black #000000" rgb(0,0,0) rgb(0%,0%,0%) hs1(0,0%,0%)

blue #0000FF” rgb(0,0,255) rgb(0%,0%,100%) hs1(240,100%,50%)
fuchsia #FFOOFF” rgb(255,0,255) rgb(100%,0%,100%) hs1(300,100%,50%)
gray #808080 rgb(128,128,128) rgb(50%,50%,50%) hs1(o0,0%,50%)
green #008000 rgb(0,128,0) rgb (0%, 50%,0%) hs1(120,100%,50%)
lime #00FF00" rgb(0,255,0) rgb (0%, 100%,0%) hs1(120,100%,50%)
maroon #800000 rgb(128,0,0) rgb(50%,0%,0%) hs1(0,100%,25%)
navy #000080 rgb(0,0,128) rgb (0%, 0%, 50%) hs1(240,100%,25%)
olive #808000 rgb(128,128,0) rgb(50%,50%,0%) hs1(60,100%,25%)
purple #800080 rgb(128,0,128) rgb(50%,0%,50%) hs1(300,100%,25%)
red #FF0000" rgb(255,0,0) rgb(100%,0%,0%) hs1(0,100%,50%)
silver #C0C0CO rgh(192,192,192) rgb(75%,75%,75%) hs1(0,0%,80%)
teal #008080 rgb(0,128,128) rgb(0%,50%,50%) hs1(180,100%,25%)
white #FFFFFF* rgb(255,255,255) rgh(100%,100%,100%) hs1(0,0%,100%)
yellow #FFFF0O" rgb(255,255,0) rgb(100%,100%,0%) hs1(60,100%,50%)

" Can be represented using the “short-hex” pattern (e.g., #000).

Angles

Since we just finished talking about hue angles in HSL, this would be a good time to
talk about angle units. Angles in general are represented as <angle>, which is a <num
ber> followed by one of four unit types:

deg
Degrees, of which there are 360 in a full circle.

grad
Gradians, of which there are 400 in a full circle. Also known as “grades” or “gons.”

rad
Radians, of which there are 2n (approximately 6.28) in a full circle.

turn
Turns, of which there is one in a full circle. This unit is mostly useful when ani-
mating a rotation and you wish to have it turn multiple times, such as 10turn to
make it spin ten times. (Sadly, the pluralization turns is invalid, at least as of
mid-2012.)

Angles | 25

Table 3. Angle equivalents

Degrees Gradians Radians Turns
45deg 50grad 0.785rad 0.125turn
90deg 100grad 1.571rad 0.25turn
180deg 200grad 3.142rad 0.5turn
270deg 300grad 4.712rad 0.75turn
360deg 400grad 6.283rad 1turn

Angle units are mostly used in 2D and 3D transforms, though they do appear in a few
other places. Note that angle units are not used in HSL colors, where all hue angle values
are always degrees and thus do not use the deg unit!

Time and Frequency

In cases where a property needs to express a period of time, the value is represented as
<time> and is a <number> followed by either s (seconds) orms (milliseconds.) Time values
are most often used in transitions and animations, either to define durations or delays.
The following two declarations will have exactly the same result.

alhref] {transition-duration: 2.4s;}
a[href] {transition-duration: 2400ms;}

Time values are also used in aural CSS, again to define durations or delays, but support
for aural CSS is extremely limited as of this writing.

Another value type historically used in aural CSS is <frequency>, which is a <number>
followed by either Hz (Hertz) or kHz (kiloHertz). As usual, the identifiers are case-in-
sensitive, so Hz and hz are equivalent. The following two declarations will have exactly
the same result:

h1 {pitch: 128hz;}
hi {pitch: 0.128khz;}

Position

A position value is how you specify the placement of an origin image in a background
area, and is represented as <position>. Its syntactical structure is rather complicated:

[
[left | center | right | top | bottom | <percentage> | <length>] |
[left | center | right | <percentage> | <length>]
[top | center | bottom | <percentage> | <length>] |
[center | [left | right] [<percentage> | <length>]?] &&
[center | [top | bottom] [<percentage> | <length>]?]

26 | Values, Units, and Colors

That might seem a little nutty, but it’s all down to the subtly complex patterns that this
value type has to allow.

If you declare only one value, such as left or 25%, then a second value is set to center.
Thus, left is the same as left center and 25% is the same as 25% center.

If you declare (either implicitly, as above, or explicitly) two values and the first one is
a length or percentage, then it is always considered to be the horizontal value. This
means that given 25% 35px, the 25% is a horizontal distance and the 35px is a vertical
distance. If you swap them to say 35px 25%, then 35px is horizontal and 25% is vertical.
This means that if you write 25% left or 35px right, the entire value is invalid because
you have supplied two horizontal distances and no vertical distance. (Similarly, a value
of right left or top bottom is invalid and will be ignored.) On the other hand, if you
write left 25% or right 35px, there is no problem because you’ve given a horizontal
distance (with the keyword) and a vertical distance (with the percentage or length).

If you declare four values (we’ll deal with three just in a moment), then you must have
two lengths or percentages, each of which is preceded by a keyword. In this case, each
length or percentage specifies an offset distance, and each keyword defines the edge
from which the offset is calculated. Thus, right 10px bottom 30px means an offset of
10 pixels to the left of the right edge, and an offset of 30 pixels up from the bottom
edge. Similarly, top 50% left 35px means a 50 percent offset from the top and a 35-
pixels-to-the-right offset from the left.

If you declare three values, the rules are the same as for four except the last offset is set
to be zero (no offset). Thus right 20px top is the same as right 20px top 0.

Summary

Units and values cover a wide spectrum of areas, from length units to special keywords
that describe effects (such as underline) to color units to the location of files (such as
images). For the most part, units are the one area that user agents get almost totally
correct, but it’s those few little bugs and quirks that can get you. Navigator 4.x’s failure
to interpret relative URLs correctly, for example, has bedeviled many authors and led
to an overreliance on absolute URLs. Colors are another area where user agents almost
always do well, except for a few little quirks here and there. The vagaries of length units,
however, far from being bugs, are an interesting problem for any author to tackle. These
units all have their advantages and drawbacks, depending upon the circumstances in
which they’re used.

Summary | 27

440#

400#

000#

440#

XaH Hoys

Color Equivalence Table

4800004
444400#
JEVTOaH
208444#
a356194#
0Sd4L44#
IT697Q#
004444
0v364S#
£88493at
VavTsviH
392vsH
410000#
43444
0000004#
AIEEEE:
BIEREE
444404#
[(EEETE:
444400#
Lag3v4#
448404#

[ewDap-eXaH

(%LT“%00T 0¥Z) TSY
(%0S ‘%001 “08T)TSY
(%LY “%€88YE)TSY
(%€6°%00T “8¥)TSY
(%99°%6L6TZ)TSY
(%99 ‘%001 €9T)TSY
(%LY%SLST)TSY
(%05 “%00T €06)TSY
(%05 ‘%Sz “Z8T)TSY
(%OL“YLS¥E)TSY
(%1¥°%650) TSy
(%€S°%49L“TLT)TSY
(%05 ‘%00T ‘0¥Z) TSY
(%06 “%00T ‘9€) TSy
(%0°%0°0) TSy
(%88%00T ‘£€)TSY
(%76°%9509) TSy
(%L6°%00T“08T)TSY
(%SL“%00T“09T)TSY
(%0S ‘%001 “08T)TSY
(%T6°%8L¥E)TSY
(%L6%00T ‘80Z) TSY
TSH

(%S5 %0 %0)q3x
(%00T ‘%00T “%0)q81
(%2 ‘%8 ‘%98)q31
(%98 “%L6%00T)q81
(%€6°%8S “%46€)q81
(%TE€ %05 ‘%00T)q8x
(%zr 4Ty ‘%28)q81
(%0°%00T ‘%05)q81
(%€9°%29°%L€)q81
(%€S ‘%eL “%L8)q8x
(%97 %91 “%59) 31
(%68 %L1 “%¥S)q8x
(%0071 %0 °%0)q81
(%08 %26 “%00T)q81
(%0°%0°%0)q31
(%LL“%68‘%00T)q81
(%98°%96 “%96) 981
(%00T “%00T ‘%¥6)q3x
(%€8“%00T ‘%05)q81
(%00T “%00T ‘%0)q81
(%8 %t6°%86)q81
(%00T “%L6 “%76)q81
abeuadag gy

(6€T°0°0)q3x
(552¢SSz€0)qdx
(090z¢0z7)q3x

(ozz 8vzSST)qsx
(L€ 6Y100T)q31
(08LzT“5S2)qdx
(o€sot‘oTT)qdx
(0°SSz‘LzT)qsx
(09T°851°56)q3x
(SE€T“v8TTTe)qdx
(zv e s9T)qsx
(9zz‘evgeT)qdn
(552°0‘0)q3x
(S0z‘s€zS52)qdx
(0‘0¢0)q3x
(961°822°S5T)q31
(ozz ‘Stz sve)qdx
(§Sz°sSzfove)qdx
(zTzsSzfler)qdx
(552¢sSz€0)qdx
(STz S€z¢052)q3x
(SSz gvz ovz)qsx
[ewnaq goy

anTqgxep

uekd

UOSWTID
JTISUI0d
9NTQISMOTHUIOD
110D
93e10d0Yd
asnaijreyd
anTqisped
poomATIng
umoIq
}9T0TASNTq
anTq
puowTepaydueTq
Xerq

anbstq

a31aq

a1inze
sutIewenbe
enbe
911ymanbTiue
aNnTgqadITe

aWeu 10j0)

28 | Values, Units, and Colors

696969#
696969#
4449004
eovT444
€Q00v6#
Td3000#
EIEVEL4:
dvdvdes
48a¢€gt#
4809484
V.9663#
000098#
JJTE66H#
002844#
42995S#
480048#
g9.9aa#
6Y6vovH
00t7900#
6V6Y6VH
4098844#
4848004
X3H MOYyS |ewap-exay

(%Tr‘%00)TSY
(%17 ‘%0°0)TSY
(%0S “%00T“S6T)TSY
(%S ‘%001 ‘8Z€) TSY
(%1t7¢%001“282) TSY
(%1 %001 “T8T)TSY
(%ST%ST 08T)TSY
(%S2%S708T)TSY
(%65 ‘%6 “8YZ)TSY
(%59°%ST0TT)TSY
(%0L gzl ST)TSY
(%LT“%001°0)TSY
(%05 “%19°082) TSY
(%05 “%00T “£€)TSY
(%0€ “%6€“28)TsY
(%LT“%00T 00€)TSY
(%85 “%8€ 95) TSy
(%99°%0°0)TsY
(%02 %001 “0ZT)TSY
(%99°%0°0) TSY
(%8€“%68“€¥)TSY
(%LT“%00T“08T)TSY
ISH

(4Tt 4Tt ‘%Tt)qS81
(%T¥“y1v‘%1¥) 81
(%001 “%SL“%0)q8x
(%85 ‘%8 “%400T)q81
(%€8%0°%85)q31
(%28°%18%0)q31
(%1€ %1€ %81)q81
(%TE4TE ‘%81) 981
(%SS ‘%z %8z)qdx
(%95 ‘v %95)q8x
(%87 ‘%65 ‘%16)q81
(%0°%0°%55)q81
(%08 %07 “%09)q81
(%0°%SS ‘%00T)q81
(%81 ‘%z %£€)q81
(%SS ‘%0°%S5)q81
(%2v “%eL %vL)qsx
(%99 %99 ‘%99)q81
(%0°%6€ “%0)q81
(%99°%99%99)q31
(%V ‘%S ‘%L)q81
(%SS “%SS ‘%0)q81
abejuadIRd 4oy

(Sot‘sot‘Sot)qgdx
(soTsot‘soT)qdx
(5Sz‘T6T0)q31
(L¥Tf0TSST)q8x
(TTz08¥T)q31
(60z°90z‘0)q3x
(6L6L°L¥)q31
(6L6LL¥)q81
(6€T°192L)q31
(evT881€¥T)qd1
(zzTosT€€T)qda
(0‘0‘6€1)q8x
(voz‘osest)qdx
(o‘ovTSSz)qsx
(L¥Lo1°S8)qsx
(6€T¢0°6€T)q31
(LoT€81°68T)q81
(691691 °691)q8x
(00010)q31
(69T 69T 69T)q31
(TTveETP8T)q31
(6€T°6€T¢0)q31
[ewnaq g9y

KaxButp
Kex3utp
anTgAysdasp
sutddasp
19TOTAYIEp
astonbinyyzep
Ka1333eTS3 18P
Kex3arersyiep
anTqajeTsyIep
usaxdeasyep
uowesyIep
paxyjiep
pTy>1031EP
93uexoy1ep
us313anTTONIEP
ejuadeus zep
Dieyypirep
Ka13x1€p
uaaxdyrep
Keadyzep
poiuap1o3sy1ep
uekoyxep

aWeu 10]0)

Color Equivalence Table | 29

00D4DL#
S40444#
V49393#
1893044
044444#
cgoogv#
250SQ#
7969444
0444044
080808#
4¢44Qv#
000800#
080808#
0TSYVa#
00.a44#
4484844
J02a1a#
4044 440044#
[44:}:144:4
04V444#
[44444:T
44063T#
X3H MOYyS |ewap-exay

(%6Y ‘%001 €06)TSY
(%L6°%00T ‘oFE)TSY
(%v6°%L9°0¥T)TSY
(%SLYLLYS)TSY
(%L6°%00T€09)TSY
(%ST“%001°SLT)TSY
(%8S “%€S€0)TSY
(%TL%00T“0E€) TSY
(%L6°%00T°0ZT)TSY
(%0S“%00) TSy
(%65 ‘%001 ‘¥8) TSY
(%ST“%00T°0ZT)TSY
(%05 “%0°0) TSy
(%6Y“%rL€v)TSY
(%05 “%00T“TS)TSY
(%66 %001 ‘OtZ) TSY
(%98%0°0) TSY
(%05 ‘%001 “00€) TSY
(%€ ‘4190TT)TSY
(%L6°%00T “‘0t7) TSY
(%er“%89°0) TSy
(%95 ‘%001 €0TZ)TSY
ISH

(%0°%66 “%67)q81
(%96 “%v6 ‘%001)q31
(%86 %06 ‘%06)q81
(%SS ‘%06 “%v6)q81
(%6 “%00T ‘%001)q31
(%15 %0 %62)q81
(%9€ “%9¢€ “%08) q81
(%L %1% “%001)q31
(%¥6 ‘%001 “%4¥6)q3x
(%05 ‘%05 “%05)q81
(%8T°%00T ‘%89)q81
(%0°%05“%0)q8x
(%05 ‘%05 “%05)q81
(%€T%59°%58)q8x
(%0“%v8“%001)q81
(%00T “%L6“%L6)q8x
(%98 ‘%98 “%98)q31
(00T “%0“%001)q81
(%ET“%SS ‘%€T)q81
(%6 ‘%86 ‘%00T)q81
(%€T%€T%0L)q8x
(%00T ‘%95 ‘%21)q31
abejuadIRd 4oy

(0‘zsz‘ver)qsn
(S¥z orzSSz)qsa
(0Sz‘o€z‘0€)q3x
(ov10€Z 0¥2)q31
(ovz€sSzS5z)qdx

(0€T0°5L)q8x

(z6t6°S0z)qsx
(08T°S0TS52)qs1
(o¥zsSz ovez)qdx
(gzT87Tg8C1)q81

(Ly°sszeeLT)qsx
(0‘gzT0)q8x
(gzT‘87Tg8C1)q81
(z€°591°8TT)q31

(0‘StTzSST)qsx
(sSz 8hz gre)qsa
(ozz‘ozz‘ozz)qsa

(§Sz‘0°SSz)qsx

(V€ 6£T¢PE)q8x
(o¥z€0Sz552)qdx

(ve‘ve“gLT)qsx

(sszvvTeog)qdx
[ewnaq g9y

uaax3umet
YsnTqIapuanet
Tapuanet
ey

KI0AT
o3tput
paIueTpuT
jyutdioy
mapAauoy
K313
moTTeAusa13
u2a13

Kei3
poIuapto3
p1o3d
93Tymysoys
oxoqsuted
eTsyony
u9913159104
9] TYMTEIOTH
MTIGRITY
anTqxadpop

aWeu 10]0)

30 | Values, Units, and Colors

404#

o40#

68Lt
68L#

XoH 1oys

Yvad¥99#
000008#
1400444
9304V4#
CEQITEH
004400#
0344444
iavoog#
6688LL#
6688LL#
v43DL8#
vvegoc#
v.iOV44#
1399444
€qeqeat
0633064
€Qeqeas
avdvd#
444403#
080804#
938aav#
aQv444#

[ewDIP-eX3H

(%09 %TS09T)TSY
(%57%00T‘0)TSY
(%0S %001 00€)TSY
(%76°%L9°0€)TSY
(%05 “%19°0ZT)TSY
(%05 “%00T 0ZT)TSY
(%v6°%00T€09)TSY
(%8L 4Tv “¥12)TSY
(%S %Pt 0TT)TSY
(%S “%vT0TZ)TSY
(%SL%z6°€0Z)TSY
(4T %0LLLT)TSY
(%L %00T“LT)TSY
(%98°%00T“TSE) TSY
(%€8°%0°0) TSy
(%SL%EL 0TT)TSY
(%€8%0°0) TSY
(%06 ‘%08 09) TSy
(%6 ‘%001 “08T)TSY
(%TL %6L0)TSY
(%6L%ESS6T)TSY
(%06 ‘%00T ‘¥S)TSY
ISH

(%L9 %08 ‘%0t7)qs1
(%0°%0°%05)q81
(00T “%0“%001)q81
(%06 “%v6 ‘%86)q81
(%02 ‘%08 ‘%02)q81
(%0°%00T ‘%0)q81
(%88 “%00T “%001)q81
(%L8‘%LL %69)q81
(%09 “%€S “%L¥)q81
(%09°%€S“%LY)q3x
(%86 %18 %€5)q31
(%L9°%0L ‘%€T)q3x
(%8Y“%€9°%001)q81
(%9L %L “%00T)q31
(%€8“%€8°%€8)q81
(%95 ‘%€6°%95)q81
(%€8°%€8°%€8)q81
(%28 %86 %86)qs1
(%001 ‘%007 ‘%88)q31
(%05 “%0S ‘%¥6)qs1
(%06 ‘%58 ‘%89)q31
(%08 %86 %007)q81
abejuadIRd 4oy

(oL1°S0z‘z0T)q31
(0‘0°gzT)qdx
(§Sz‘0°SSz)qsx
(o€zotz 0Sz)q3x
(05°50z¢05)q3x
(0°sSzf0)qsx
(vezsszsse)qsa
(2zz961°9.1)q31
(€ST9€T6TT)q81
(€ST9€T6TT)q81
(0Sz¢90zS€T)q81
(oLTgL1 2€)q81
(zeT091552)q81
(€61281°552)q31
(TT2TTZ TT2) 931
(vrT8€T ¥v¥1)qs1
(TTz T TTC) 981
(otz‘0S2¢0S2)q3x
(SSzsSz‘vee)qdx
(8zT‘8TT‘0VZ) 81
(0€z 9T €L1)q81
(S0z€0S5z“SSz)qdx
[ewnaq g9y

sutxewenbewntpaw
uoozeu

ejuadew

usuTT
uaax3auty

i
MOTTaA3y3TT
anTqre93s3YsTT
Ko18a3etsiy3Tt
Kex3a1e1s1ydrT
anTgqAysy3tT
u2213easys3TT
uowTesystT
HuTdaysTy
K183yt
uaa133y31T
Kex8yy3tT
moTTaAporusapTo8iy3T
ueAo3y3t
Te1023y31T
anTq3ydIT
UO4JTYDUOWST

aWeu 10]0)

Color Equivalence Table | 31

8691864
Vv8333#
9qoLva#
00SY44#
00SY44#
€23899#
0008084
9354044
0800004
av3iadd#
FLLEEEE:
LELEEEE:
VEEELEE:
0L6TOTH#
S8STLO#
JJTasv#
Y6v4004
338949L#
TLEADEH
gaoLeo#
€assvat
@D0000#
X3 Moys |ewap-exay

(%6L°%£6°02T)TSY
(%08%L9°SS)TSY
(%59°°%65 “20€) TSY
(%05 ‘%001 “9T)TSY
(%05 “%00T“6£) TSY
(%S€°%09°08)TSY
(%ST%00T€09)TSY
(%56°%S8°6€)TSY
(%S2“%00T ‘ote) TSy
(%78 %001 9€)TSY
(%58 %001 “8€)TSY
(%¥6°%001¢9)TSY
(%86 °%00T <0ST)TSY
(%LT yw9‘ore)Tsy
(%€¥ 418 2TE) TSy
(%SS‘%09°8LT)TSY
(%6Y %001 €LST)TSY
(%L9°%08“6¥2)TSY
(%LY %08 “LyT) TSy
(%59°%09092) TSy
(%85 ‘%65 “882)TSY
(%0 ‘%00T ‘0tZ) TSY
ISH

(%09 %86 “%09)q31
(%L9°%T6°%€6)qs1
(%8 %y ‘%S8)q3x
(%0°%Lz‘%001)q81
(%0°%S9“%00T)q81
(%1 ‘%95 ‘%zv)q8x
(%0°%05 ‘%05)q81
(%06 %96 ‘%66)qS1
(%05 ‘%0 °%0) 981
(%89°%L8“%00T)q81
(%TL %68 %00T)q81
(%88 “%68 ‘%00T)q81
(%86 “%00T “%96)q81
(%t ‘%01 ‘%01)q81
(%15 %8 %8L)q31
(%08 ‘%78 ‘%82)q81
(%09%86°%0)q31
(%€6 “%Tv ‘%8v)q3x
(% “%0L ‘%vz)q8x
(%98 ‘% “%85)q81
(%€8°%E€“%€EL)q81
(%08 “%0°%0)q81
abejuadRd 4oy

(zSt1S2fesT)gdn
(oLTzET8€7)qd1
(vtzferTigTe)qs
(069552)q3x
(0°591°552)q3x
(S€“ev1Lot)q81
(o‘geTgeT)qsx
(ogzshzesz)qdx
(8z1‘0‘0)q81
(€L1Tez SST)qs
(181822¢552)q81
(Szz 8z “SSz)qsx
(0SzsSz Shz)qdx
(zTT52¢52)q31
(€€T°TT66T)q31
(voz‘60z‘TL)q3x
(¥ST€057°0)q31
(8€z‘vo1€2T)q31
(€1T°6L1°09)q31
(612‘TTTLYT)q31
(TTT98¢981)q31
(s0z‘0‘0)qsx
[ewnaq g9y

usazdated
pozuapTodated
pTYa10
paxaduero
28uero
qeIpPIATTO

JATTO

aoerpro

Aneu
911ymoLeneu
uTSedd0W
9501A}STW
Weaxd3uTwW
aNTq3ysTupTY
pa132TOTAUNTPAW
astonbInjunTpauw
uaa183utadsuntpaw
aNTgo3eTSWNTpaw
udax3easuntpau
ardanduntpauw
PTYDIOWNTPSW
anTqunTpaw

aWeu 10]0)

32 | Values, Units, and Colors

06080L#
aDVSYo#
g9330L8#
0202024
aczsov
3354444
L9983t
09vv 14
¢LogY4#
€Tavas#
T369TH#
4848J4#
004# 00004 4#
080008#
9303094
aaovaa#
930044#
1€980#
6avadd#
S04344#
€60.90#
33334v#
X3H MOYyS |ewap-exay

(%05 ‘%€T 0TZ)TSY
(%8S “%€S ‘8¥Z) TSy
(%ELYTLL6T)TSY
(%SL%0°0)TsYy
(%0t %95 “6T) TsY
(%L6°%00T°ST)TSY
(%9€ ‘%05 “ovT) TSy
(%L9°%L8°8T)TSY
(%TL‘%€6°9)TSY
(%TE%9L°ST)TSY
(%LS“%€LSTT)TSY
(%59°%ST0)TsY
(%05 “%00T “0) TSY
(%ST°%00T <00€)TSY
(%08“%2S L8T)TSY
(%SL %Ly 00€)TSY
(%88°%00T“0S€) TSY
(%€5 %65 “0€) TSy
(%98 %001 ‘8Z) TSY
(%26°%400T“LE)TSY
(%59°%09 “ov€) TSY
(%418°%59°08T) TSY
ISH

(%95 “%0S ‘%) q8x
(%08 ‘%S¢ “%zv)qsx
(%26 ‘%18 °%€5)q81
(%SL“%SL %SL)q8x
(%81 ‘%€ ‘%€9)qs1
(%€6 %96 “%00T)q81
(%€ “%SS “%81)q81
(%8€ ‘%9 “%96)qs1
(%S %05 “%86)q3x
(%L %Lz “%SS)q81
(%88 ‘4T %52)q81
(%95 ‘%95 “%vL)q31
(%0°%0“%001)q81
(%05 “%0“%05)q81
(%06 ‘%88 ‘%69)q81
(%L8°%€9°%L8)q31
(%08 %S L “%00T)q81
(%52 “%eS “%08)q81
(%€L°%S8%001)q8x
(%8 ‘%6 “%00T)q81
(%8S ‘%vv ‘%98)q31
(%€6°%€6°%69)q81
abejuadIRd 4oy

(vv18eTTTT)q81
(S0z€06901)q31
(S€2907°S€1)q8x
(261261 C61)q31
(S¥“zg‘091)qsx
(8€zSvzsSz)qdx
(L8°6€T°9Y)q31
(96v9T “¥irz)qsx
(¥11°82T052)q81
(6169°6€T)q31
(Szz“501°99)q81
(€vT €PT88T)q81
(0°0°SSz)q8x
(8z10‘87T)q3x
(0€z‘¥zz 9L1)q3x
(TTz 09T T2T)q81
(€02°z61°552)qs1
(€9°€€1°507)q8x
(S81°81T7557) 981
(€T2°6€7°552)qs1
(L¥T TTT6TT)q81
(8€z°8€z“SLT)q81
[ewnaq g9y

Kex3ajers
anTqalers
an1qkys
ISATTS
BUUDTS
TT2Ysess
uaa13deas
umoxgApues
uouTes
umMoIgaTppes
anqrekox
umoxqAsox
pax

a1dand
anTqxapmod
wntd

yutd

nxad
J4ndydead
drymeAeded
pai13a10TASTEd
astonbinyated

aWeu 10]0)

Color Equivalence Table | 33

ZEQDV6H
0444 0044444
S45454#
444# 444444#
€930S4#
332833#
00030v#
LYE9d4#
8049804
080800#
J8vazay
Yac89v#
4£4400#
LEVEEEE
06080L#

X9H MOYS [ewiIp-exsy

(%05 “%19°08)TSY
(%05 “%00T€09) TSy
(%96°%0°0) TSy
(%00T“%0°0) TSY
(%€8°%LL 6E)TSY
(%2L“%9L“00€) TSY
(%95 “%zLVLT)TSY
(%79°%00T°6)TSY
(%08 ‘%z 00€) TSY
(%ST“%00T€08T)TSY
(%69 4y “v€)TSY
(%67 v L0Z) TSY
(%05 “%00T “0ST) TSY
(%66°°%00T°0)TSY
(%0S “%ET0TZ) TSY
ISH

(%07 %08 ‘%09)q31
(%0 %001 ‘%0071)q3x
(%96 “%96 ‘%96) q81

(%001 ‘%007 ‘%001)81

(%0L“%L8%96)q31
(%6 “%TS ‘%€6)q81
(%78%88°%52)q31
(%82 “%6€ ‘%001)q81
(%58 °%SL %58)q81
(%05 ‘%05 “%0)q31
(%S “%TL%z8)q3x
(9412415 %L2)q81
(%05 “%00T ‘%0)q81
(%86 ‘%86 ‘%001) 81
(%95 “%0S ‘%) q8x
abejuaiag goy

(0550 “¥ST)q81
(0°SSz“SSz)qsx
(Sbzsvzsver)qdx
(§52°65755T)qs
(64T TTz Sve)qsa
(8€z0€T8€7)q31
(80z‘vzz¥9)qs1
(TL°66°S52)qsx
(9Tz‘16T9T2)q31
(821¢8710)q81
(o¥108T‘0T2)q31
(081 ‘0€T0L)q81
(LzT°5ST¢0)931
(0Sz€052°SSz)q3x
(vv18eTTTT)q81
[ewnag g9y

uaax3moTTak
MOTTaA
oWsa3Tym
93TYm
3eaym
19TOTA
astonbiny
03ewoy
9TISTY3
Tea3

uey
aNTqra93s
uaa188utads
Mous
Ka1333e1s

aWeu 10]0)

34 | Values, Units, and Colors

About the Author

Eric A. Meyer has been working with the Web since late 1993 and is an internationally
recognized expert on the subjects of HTML, CSS, and web standards. A widely read
author, he is a past member of the CSS&FP Working Group and was the primary creator
of the W3C's CSS1 Test Suite. In 2006, Eric was inducted into the International Acad-
emy of Digital Arts and Sciences for “international recognition on the topics of HTML
and CSS” and helping to “inform excellence and efficiency on the Web.”

Eric is currently the principal founder at Complex Spiral Consulting, which counts
amonyg its clients a wide variety of corporations, educational institutions, and govern-
ment agencies. He is also, along with Jeffrey Zeldman, co-founder of An Event Apart
(“The design conference for people who make websites”), and he speaks regularly at
that conference as well as many others. Eric lives with his family in Cleveland, Ohio,
which is a much nicer city than you've been led to believe. A historian by training and
inclination, he enjoys a good meal whenever he can and considers almost every form
of music to be worthwhile.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Values, Units, and Colors
	Keywords, Strings, and Other Text Values
	Keywords
	inherit
	initial

	Strings
	URLs
	Images
	Identifiers

	Numbers and Percentages
	Integers
	Numbers
	Percentages

	Distances
	Absolute Length Units
	Pixel lengths
	Pixel theory

	Resolution Units
	Relative Length Units
	em and ex units
	The rem unit
	The ch unit
	Viewport-relative units

	Color
	Named Colors
	Colors by RGB and RGBa
	Functional RGB colors
	RGBa colors
	Hexadecimal RGB colors

	Colors by HSL and HSLa
	Bringing the Colors Together

	Angles
	Time and Frequency
	Position
	Summary
	Color Equivalence Table

