Professional

Website
Performance

Optimizing the Front End and the Back End

Peter Smith

PROFESSIONAL WEBSITE PERFORMANCE

INTRODUCTION. ...ttt ittt ittt iieieneneeneneneanenennans XXiii
» PART I FRONT END

CHAPTER1 A Refresheron Web Browsers. i . 3
CHAPTER 2 Utilizing Client-Side Cachingo e 23
CHAPTER 3 Content Compression. ..o e 39
CHAPTER 4 Keeping the Size Down with Minification 53
CHAPTER5 Optimizing Web Graphicsand CSS 71
CHAPTER 6 JavaScript, the Document Object Model, and Ajax................. m
» PARTII BACKEND

CHAPTER7 WorkingwithWeb Servers. i 141
CHAPTER 8 Tuning MySQL e 193
CHAPTER9 MySQLinthe Network i 255
CHAPTER 10 Utilizing NoSQL Solutions. i 309
CHAPTER 11 Working with Secure Sockets Layer (SSL). 359
CHAPTER 12 Optimizing PHP. e 375
» PART Il APPENDIXES

APPENDIX A TCP Performance.t 405
APPENDIX B Designing for Mobile Platforms. it 409
APPENDIX C COmMPresSiON. ..ottt e e e e e 417

PROFESSIONAL

Website Performance
OPTIMIZING THE FRONT END AND THE BACK END

Peter Smith

WILEY
John Wiley & Sons, Inc.

Professional Website Performance: Optimizing the Front End and the Back End

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-48752-5

ISBN: 978-1-118-48751-8 (ebk)
ISBN: 978-1-118-55172-1 (ebk)
ISBN: 978-1-118-55171-4 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http: //booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012949514

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://booksupport.wiley.com

To my wife, Stef, and my parents

ABOUT THE AUTHOR

PETER G. SMITH has been a full-time Linux consultant, web developer, and system administrator, with
a particular interest in performance for the past 13 years. Over the years, he has helped a wide range
of clients in areas such as front-end performance, load balancing and scalability, and database opti-
mization. Past open source projects include modules for Apache and OSCommerce, a cross-platform
IRC client, and contributions to The Linux Documentation Project (TLDP).

ABOUT THE TECHNICAL EDITOR

JOHN PELOQUIN is a software engineer with back-end and front-end experience ranging across
web applications of all sizes. Peloquin earned his B.A. in Mathematics from the University of
California at Berkeley, and is currently a lead engineer for a healthcare technology startup, where
he makes heavy use of MySQL, PHP, and JavaScript. He has edited Professional JavaScript for
Web Developers, 3rd Edition by Nicholas Zakas (Indianapolis: Wiley, 2012) and JavaScript
24-Hour Trainer by Jeremy McPeak (Indianapolis: Wiley, 2010). When he is not coding or col-
lecting errata, Peloquin is often found engaged in mathematics,

philosophy, or juggling.

CREDITS

EXECUTIVE EDITOR
Carol Long

PROJECT EDITOR
Kevin Shafer

TECHNICAL EDITOR
John Peloquin

PRODUCTION EDITOR
Rosanna Volis

COPY EDITOR
San Dee Phillips

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
Nancy Carrasco

INDEXER
Robert Swanson

COVER DESIGNER
Ryan Sneed

COVER IMAGE
© Henry Price / iStockphoto

ACKNOWLEDGMENTS

A LOT OF PEOPLE HAVE BEEN INVOLVED in making this book happen. I’d like to thank everyone at
Wiley for their hard work, especially Carol Long for having faith in my original idea and helping me
to develop it, and Kevin Shafer, my Project Editor, who patiently helped turn my manuscript into

a well-rounded book. Special thanks are also due to John Peloquin, whose technical review proved
invaluable.

I'd also like to take the opportunity to thank my friends and family for being so supportive over the
past few months.

CONTENTS

INTRODUCTION

XXiii

CHAPTER 1: A REFRESHER ON WEB BROWSERS 3
A Brief History of Web Browsers 3
Netscape Loses Its Dominance 4
The Growth of Firefox 4
The Present 5
Inside HTTP 5
The HyperText Transfer Protocol 5
HTTP Versions 8
Support for Virtual Hosting 9
Caching 9
How Browsers Download and Render Content 10
Rendering 1
Persistent Connections and Keep-Alive 12
Parallel Downloading 14
Summary 21
CHAPTER 2: UTILIZING CLIENT-SIDE CACHING 23
Understanding the Types of Caching 23
Caching by Browsers 23
Intermediate Caches 24
Reverse Proxies 25
Controlling Caching 25
Conditional GETs 25
Utilizing Cache-Control and Expires Headers 28
Choosing Expiration Policies 30
Coping with Stale Content 30
How Not to Cache 31
Dealing with Intermediate Caches 31
Cache-Control Revisited 31
Caching HTTP Responses 32
The Shift in Browser Behavior 32
Using Alternative 3xx Codes 34

CONTENTS

DNS Caching and Prefetching 34
The DNS Resolution Process 35
DNS Caching by the Browser 35
How DNS Lookups Affect Performance 36
DNS Prefetching 36
Controlling Prefetching 37

Summary 37

CHAPTER 3: CONTENT COMPRESSION 39

Who Uses Compression 39

Understanding How Compression Works 41
Compression Methods 42
Other Compression Methods 47
Transfer Encoding 48

Compression in PHP 49
Compressing PHP-Generated Pages 49
Compressing Other Resources 51

Summary 51

CHAPTER 4: KEEPING THE SIZE DOWN WITH MINIFICATION 53

JavaScript Minification 54
YUI Compressor 55
Google Closure 56
Comparison of JavaScript Minifiers 58

CSS Minification 59
Use Shorthand 59
Grouping Selectors 60
CSS Minifiers 60
Improving Compression 62

HTML Minification 63
HTML Minification Techniques 64
HTML Minification Tools 66

Summary 69

CHAPTER 5: OPTIMIZING WEB GRAPHICS AND CSS 71

Understanding Image Formats 71
JPEG 72
GIF 72
PNG 73
SVG 73

Xiv

CONTENTS

Optimizing Images 74
Image Editing Software 74
Choosing the Right Format 74
Interlacing and Progressive Rendering 75
PNG Optimization 77
GIF Optimization 80
JPEG Compression 80
Image Optimization Software 84
Data URIs 85
Favicons 85
Using Lazy Loading 87
Avoiding Empty src attributes 88
Using Image Maps 89

CSS Sprites o1
Sprite Strategies 94
Repeating Images 94

CSS Performance 99
CSS in the Document Head 100
Inline versus External 100
Link versus @import 100
Redundant Selectors 100
CSS Expressions 101
Selector Performance 102
Using Shorthand Properties 102
Inheritance and Default Values 104
Doing More with CSS 104

Looking Forward 109
MNG 109
APNG 109
JPEG 2000 10

Summary 110

CHAPTER 6: JAVASCRIPT, THE DOCUMENT OBJECT MODEL,
AND AJAX 1M1

JavaScript, JScript, and ECMAScript 12
A Brief History of JavaScript 12
JavaScript Engines 12

The Document Object Model 15
Manipulating the DOM 17
Reflowing and Repainting 17

Browser Queuing 119

XV

CONTENTS

Event Delegation 19
Unobtrusive JavaScript 120
Memory Management 121
Getting the Most from JavaScript 122
Language Constructs 122
Loading JavaScript 127
Nonblocking of JavaScript Downloads 128
Merging, Splitting, and Inlining 130
Web Workers 134
Ajax 136
XMLHttpRequest 136
Using Ajax for Nonblocking of JavaScript 137
Server Responsiveness 137
Using Preemptive Loading 138
Ajax Frameworks 138
Summary 138
CHAPTER 7: WORKING WITH WEB SERVERS 141
Apache 141
Working with Modules 142
Deciding on Concurrency 145
Improving Logging 146
Miscellaneous Performance Considerations 148
Examining Caching Options 150
Using Content Compression 155
Looking Beyond Apache 158
Nginx 158
Nginx, Apache, and PHP 164
The Best of the Rest 168
Multiserver Setups with Nginx and Apache 169
Nginx as a Reverse Proxy to Apache 170
Proxy Options 17
Nginx and Apache Side by Side 172
Load Balancers 173
Hardware versus Software 173
Load Balancer Features 174
Using Multiple Back-End Servers 176
HAProxy 181

Summary 191

XVi

CONTENTS

CHAPTER 8: TUNING MYSQL 193
Looking Inside MySQL 194
Understanding the Storage Engines 195

MyISAM 195
InnoDB 196
MEMORY 197
ARCHIVE 198
Tuning MySQL 198
Table Cache 198
Thread Caching 202
Per-Session Buffers 204
Tuning MyISAM 205
Key Cache 205
Miscellaneous Tuning Options 210
Tuning InnoDB 21
Monitoring InnoDB 21
Working with Buffers and Caches 212
Working with File Formats and Structures 217
Memory Allocation 218
Threading 219
Disk I/0 219
Mutexes 222
Compression 223
Working with the Query Cache 225
Understanding How the Query Cache Works 225
Configuring the Query Cache 227
Inspecting the Cache 228
The Downsides of Query Caching 232
Optimizing SQL 234
EXPLAIN Explained 234
The Slow Query Log 237
Indexing 239
Query Execution and Optimization 247
Query Cost 248
Tips for SQL Efficiency 249
Summary 254

CHAPTER 9: MYSQL IN THE NETWORK 255

Using Replication 256

The Basics

256

xvii

CONTENTS

Advanced Topologies 264
Replication Performance 270
Miscellaneous Features of Replication 273
Partitioning 273
Creating Partitions 274
Deciding How to Partition 276
Partition Pruning 276
Physical Storage of Partitions 277
Partition Management 278
Pros and Cons of Partitioning 278
Sharding 279
Lookup Tables 280
Fixed Sharding 281
Shard Sizes and Distribution 281
Sharding Keys and Accessibility 281
Cross-Shard Joins 282
Application Modifications 283
Complementing MySQL 283
MySQL Proxy 283
MySQL Tools 286
Alternatives to MySQL 294
MySQL Forks and Branches 294
Full-Text Searching 296
Other RDBMSs 307
Summary 308
CHAPTER 10: UTILIZING NOSQL SOLUTIONS 309
NoSQL Flavors 310
Key-Value Stores 310
Multidimension Stores 310
Document Stores 31
memcache 31
Installing and Running 312
membase — memcache with Persistent Storage 321
MongoDB 325
Getting to Know MongoDB 325
MongoDB Performance 328
Replication 339
Sharding 343
Other NoSQL Technologies 353
Tokyo Cabinet and Tokyo Tyrant 354

CouchDB

xviii

354

CONTENTS

Project Voldemort 355
Amazon Dynamo and Google BigTable 355
Riak 356
Cassandra 356
Redis 356
HBase 356
Summary 356
CHAPTER 11: WORKING WITH SECURE SOCKETS LAYER (SSL) 359
SSL Caching 360
Connections, Sessions, and Handshakes 360
Abbreviated Handshakes 360
SSL Termination and Endpoints 364
SSL Termination with Nginx 365
SSL Termination with Apache 366
SSL Termination with stunnel 367
SSL Termination with stud 368
Sending Intermediate Certificates 368
Determining Key Sizes 369
Selecting Cipher Suites 369
Investing in Hardware Acceleration 371
The Future of SSL 371
OCSP Stapling 371
False Start 372
Summary 372
CHAPTER 12: OPTIMIZING PHP 375
Extensions and Compiling 376
Removing Unneeded Extensions 376
Writing Your Own PHP Extensions 378
Compiling 379
Opcode Caching 381
Variations of Opcode Caches 381
Getting to Know APC 382
Memory Management 382
Optimization 382
Time-To-Live (TTL) 382
Locking 383
Sample apc.ini 384
APC Caching Strategies 384
Monitoring the Cache 386
Using APC as a Generic Cache 386

Xix

CONTENTS

Warming the Cache 387
Using APC with FastCGil 387
Compiling PHP 388
phc 388
Phalanger 388
HipHop 388
Sessions 389
Storing Sessions 389
Storing Sessions in memcache/membase 390
Using Shared Memory or tmpfs 390
Session AutoStart 391
Sessions and Caching 391
Efficient PHP Programming 392
Minor Optimizations 392
Major Optimizations 392
Garbage Collection 395
Autoloading Classes 396
Persistent MySQL Connections 396
Profiling with xhprof 398
Installing 398

A Simple Example 399
Don’t Use PHP 401
Summary 401
APPENDIX A: TCP PERFORMANCE 405
The Three-Way Handshake 405
TCP Performance 408
Nagle’s Algorithm 408
TCP_NOPUSH and TCP_CORK 408
APPENDIX B: DESIGNING FOR MOBILE PLATFORMS 409
Understanding Mobile Platforms 409
Responsive Content 410
Getting Browser Display Capabilities with JavaScript 4an
Server-Side Detection of Capabilities 411

A Combined Approach 412
CSS3 Media Queries 413

Determining Connection Speed 413

XX

CONTENTS

JavaScript and CSS Compatibility 414
Caching in Mobile Devices 414
APPENDIX C: COMPRESSION 417
The LZW Family 417
Lz77 417
LZ78 418

LZW 419

LZ Derivatives 420
Huffman Encoding 421
Compression Implementations 424
INDEX 427

XXi

INTRODUCTION

THE PAST DECADE has seen an increased interest in website performance, with businesses of all
sizes realizing that even modest changes in page loading times can have a significant effect on their
profits. The move toward a faster web has been driven largely by Yahoo! and Google, which have
both carried out extensive research on the subject of website performance, and have worked hard to
make web masters aware of the benefits.

This book provides valuable information that you must know about website performance
optimization — from database replication and web server load balancing, to JavaScript profiling
and the latest features of Cascading Style Sheets 3 (CSS3). You can discover (perhaps surprising)
ways in which your website is under-performing, and learn how to scale out your system as the
popularity of your site increases.

WHY SPEED IS IMPORTANT

At first glance, it may seem as if website loading speeds aren’t terribly important. Of course, it puts
off users if they must wait 30 seconds for your page to load. But if loading times are relatively low,
isn’t that enough? Does shaving off a couple of seconds from loading times actually make that much
of a difference? Numerous pieces of research have been carried out on this subject, and the results
are quite surprising.

In 2006, Google experimented with reducing the size of its Maps homepage (from 100 KB to
70-80 KB). Within a week, traffic had increased by 10 percent, according to ZDNet (http://www
.zdnet .com/blog/btl/googles-marissa-mayer-speed-wins/39252p=3925). Google also found
that a half-second increase in loading times for search results had led to a 20 percent drop in sales.
That same year, Amazon.com came to similar conclusions, after experiments showed that for each
100-millisecond increase in loading time, sales dropped by 1 percent (http://ai.stanford
.edu/~ronnyk/IEEEComputer20070nlineExperiments.pdf).

The fact that there is a correlation between speed and sales perhaps isn’t too surprising, but the
extent to which even a tiny difference in loading times can have such a noticeable impact on sales
certainly is.

But that’s not the only worry. Not only do slow websites lose traffic and sales, work at Stanford
University suggests that slow websites are also considered less credible (http: //captology
.stanford.edu/pdf /p61-fogg.pdf). It seems that, as Internet connections have become faster, the
willingness of users to wait has started to wane. If you want your site to be busy and well liked, it
pays to be fast.

http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-wins/3925?p=3925
http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-wins/3925?p=3925
http://ai.stanford.edu/~ronnyk/IEEEComputer2007OnlineExperiments.pdf
http://ai.stanford.edu/~ronnyk/IEEEComputer2007OnlineExperiments.pdf
http://captology.stanford.edu/pdf/p61-fogg.pdf
http://captology.stanford.edu/pdf/p61-fogg.pdf
http://Amazon.com

INTRODUCTION

If all this weren’t enough, there’s now yet another reason to ensure that your site runs quickly. In
2010, Google announced that loading times would play a role in how it ranked sites — that is,
faster sites will rank higher (http://googlewebmastercentral.blogspot.com/2010/04/
using-site-speed-in-web-search-ranking.html). However, loading times carry a relatively
low weight at the moment, and other factors (relevance, backlinks, and so on) are still much more
important.

Hopefully you are now convinced of the need for speed. So, let’s take a look at some of the reasons
why sites are slow.

Why Sites Are Slow

The most common reason why websites run slowly is that they simply weren’t designed with speed
in mind. Typically, the first step in the creation of a site is for a graphics designer to create templates
based on the ideas of the site owner (who is often not technically minded). The graphic designer’s
main goal is an attractive looking interface regardless of size, and the nontechnical site owner gener-
ally wants lots of bells and whistles, again without appreciating the performance impact.

The next step is for a programmer to make things work behind the scenes, which typically involves
a server-side scripting language (such as PHP or Perl) and a back-end database. Sadly, performance
is often low on the programmer’s agenda, too, especially when his or her boss wants to see visible
results fast. It simply isn’t worth the programmer’s time to compress the bloated graphics created by
the designer, or to convert them to sprites.

Another often overlooked fact is that much of the development and testing of a new website will
probably be carried out on a development server under low load. A database query that takes a
couple of seconds to run may not be a problem when the site has only a couple of users. But when
the site goes live, that same query could well slow down the site to a crawl. Tools such as Apache
Benchmark can simulate heavy traffic.

There is also the issue of caching. Those involved in the creation and development of a site typi-
cally already have primed caches. (That is, images and external JavaScript/CSS used by the site will
already be cached in their browsers.) This causes the site to load much faster than it would for first-
time visitors.

Other factors affecting the speed of a website are connection speed and computer “power.”
Developers typically have powerful computers and a good Internet connection, and it’s easy to for-
get that plenty of people (especially in rural locations) still use dial-up modems and computers that
are 10 years old. Care must be taken to ensure that such users are accommodated for.

The Compromise between Functionality and Speed

The creation of a website is often a battle between the designers who want looks and functionality,
and the programmers who want performance. (Sadly, “battle” tends to be a more apt description
than “collaboration.”) Inevitably, some compromises must be made. Both sides tend to be guilty of

XXiv

http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html

INTRODUCTION

tunnel vision here, but it’s worth trying to develop a rounded view of the situation. Although speed
is important, it’s not the “be all and end all.” In your quest for more and more savings, be wary of
stripping down your website too much.

Scaling Up versus Scaling Out
There are two basic approaches to scaling your website:

> Scaling up (sometimes referred to as scaling vertical) means keeping the same number of
servers but upgrading the server hardware. For example, you may run your whole setup from
a single server. As your site gets more traffic, you discover that the server is beginning to
struggle, so you throw in another stick of RAM or upgrade the CPU — which is scaling up.

> With scaling out (also referred to as scaling horizontally), you increase the number of
machines in your setup. For example, in the previous scenario, you could place your data-
base on its own server, or use a load balancer to split web traffic across two web servers.

So, which method is best? You’ll hear a lot of criticism of vertical scaling, but in reality, it is a viable
solution for many. The majority of websites do not achieve overnight success. Rather, the user base
steadily increases over the years. For these sites, vertical scaling is perfectly fine. Advances in hard-
ware mean that each time you want to upgrade, a machine with more CPU cores, or more memory,
or faster disks will be available.

Scaling up isn’t without its problems, though. You pay a premium for top-of-the-range hardware.
The latest monster server will usually cost more than two mid-range servers with the same overall
power. Also, additional CPU cores and RAM don’t tend to result in a linear increase in perfor-
mance. For example, no matter how much RAM you have, access to it is still along a fixed-width
bus, which can transfer only at a finite rate. Additional CPU cores aren’t a great benefit if your bot-
tleneck is with a single-threaded application. So, scaling up offers diminishing returns, and it also
fails to cope when your site goes stratospheric. For that, you need a topology where you can easily
add additional mid-range servers to cope with demand.

Scaling out is trickier, because it involves more planning. If you have a pool of web servers, you
must think about how sessions are handled, user uploads, and so on. If you split your database over
several machines, you must worry about keeping data in sync. Horizontal scaling is the best long-
term solution, but it requires more thought as to how to make your setup scalable.

Finally, be wary of taking the idea of horizontal scaling to extremes. Some people take the idea
too far, setting up clusters of Pentium I machines because “that’s how Google does it.” Actually,
Google doesn’t do this. Although Google scales out to a high degree, it still uses decent hardware
on each node.

Scaling out isn’t without its drawbacks either. Each additional node means extra hardware
to monitor and replace, and time spent installing and deploying code. The most satisfactory
arrangement tends to be through a combination of scaling up and scaling out.

XXV

INTRODUCTION

The Dangers of Premature Optimization

There’s a famous quote by Donald Knuth, author of the legendary The Art of Computer
Programming (Reading, MA: Addison-Wesley Professional, 2011). “Premature optimization is the
root of all evil,” he said, and this is often re-quoted in online discussions as a means of dismissing
another user’s attempts at more marginal optimizations. For example, if one developer is contem-
plating writing his or her PHP script as a PHP extension in C, the Knuth quote will invariably be
used to dispute that idea.

So, what exactly is wrong with premature optimization? The first danger is that it adds complex-
ity to your code, and makes it more difficult to maintain and debug. For example, imagine that you
decided to rewrite some of your C code in assembly for optimal performance. It’s easy to fall into
the trap of not seeing the forest for the trees — you become so focused on the performance of one
small aspect of the system that you lose perspective on overall performance. You may be wasting
valuable time on relatively unimportant areas — there may be much bigger and easier gains to be
made elsewhere.

So, it’s generally best to consider optimization only after you already have a good overview of how
the whole infrastructure (hardware, operating system, databases, web servers, and so on) will fit
together. At that point, you will be in a better position to judge where the greatest gains can be made.

That’s not to say you should ignore efficiency when writing your code. The Knuth quote is often mis-
used because it can be difficult to say what constitutes premature optimization, and what is simply
good programming practice. For example, if your application will be reading a lot of information
from the database, you may decide that you will write some basic caching to wrap around these calls,
to cut down on load on the database.

Does this count as premature optimization? It’s certainly premature in the sense that you don’t even
know if these database calls will be a significant bottleneck, and it is adding an extra degree of com-
plexity to your code. But could it not also be classed as simply planning with scalability in mind?
Building in this caching from the outset will be quicker (and probably better integrated) than hacking
it in at a later date.

If you’re tempted to optimize prematurely, stop and consider these two points:
> Will there definitely be a benefit — and will it be a significant one?
> Will it make the code significantly more difficult to maintain or debug?

If the answers are “yes” and “no,” respectively, you should optimize.

Time Is Money

Optimizing is a satisfactory experience — so much so that you may find yourself attempting opti-
mization for the sake of it, rather than because it is needed. That’s not necessarily a bad thing.
Research has shown that even tiny increases in page loading times can have an impact on revenue
and user experience, so optimization doesn’t have to be a case of passively responding to complaints
about speed. But time is also money, and sometimes simply throwing extra hardware at the problem

XXVi

INTRODUCTION

is the best solution. Is spending the best part of a week trying to perform further optimizations the
right move, or would spending $100 on a RAM upgrade be just as effective? The latter option seems
like a cop-out but is probably the most cost-effective route.

TOOLS OF THE TRADE

The bottlenecks in an application don’t always occur where you might expect them to, and an
important precursor to optimization is to spend time watching how the application runs.

Waterfall Views

Waterfall views are extremely useful when looking at the front end of a website. These are graphs
showing the order in which the browser is requesting resources, and the time that it takes each
resource to download. Most waterfall tools also show things like the time spent for domain name
service (DNS) lookups, for establishing a TCP connection to the web server, for parsing and render-
ing data, and so on.

There are a lot of waterfall tools out there — some run in your browser; others are websites into
which you enter the URL that you want to check. But many have subtle flaws. For example, one
popular online tool will request any resources contained in commented-out Hypertext Markup
Language (HTML) such as the following:

<l--

->

Web browsers have the sense to ignore such links, so this tool will give a distorted view of the page
loading process. Another well-known online tool will fetch all the resources (images and fonts)
referenced in the style sheet, even if the selectors containing them are not used in the HTML docu-
ment. Again, in practice, web browsers are smart enough not to make this mistake.

WebPageTest.org

By far, the best online waterfall tool is probably webpageTest . org (commonly known as WPT),
developed by Google, AOL, and others. It offers dozens of locations around the world from which to
perform tests and has an impressive list of browsers to test in — from Internet Explorer 6 through
to 10, to iPhone, Firefox, and Chrome. Figure I-1 shows WPT in action.

Figure I-1 shows the results page for http://www.google.com. The six images at the top right
indicate how the site scored in what WPT determined to be the six key areas. Remember that this is
just a summary for quick reference and should not be taken as an absolute. For instance, in the test,
google.com scored an “F” for “Cache static content,” yet it is still well optimized. Clicking any of
these scores will give a breakdown of how the grade was determined.

XXVii

http://www.google.com
http://google.com
http://WebPageTest.org
http://WebPageTest.org

INTRODUCTION

Page Speed 1.12 Score: 99/100 Need help improving?
www.google.com A A A A X
From: Dulles, VA - IE 8 - DSL FirstByte Keepalive Compress Compress Cache coH
Thursday, July 12, 2012 3:26:26 AM Time Enabled Text Images static detected
content
ny S Performance Review Page Speed Content Breakdown Domains Screen Shot
Re-run the test Raw page data - Raw object data
Export HTTP Archive (.har)
Document Complete Fully Loaded
Load Time FirstByte StartRender DOMElements | Time Requests BytesIn| Time Requests Bytesin
First View 0562s 0236s 0.408s 270 05625 4 186 KB | 2.169s " 266 KB
Repeat View 0420s 0238s 0.431s 270 0.420s 1 26KB |0704s 2 26KB
Waterfall Screen Shot
[—— € e
“? Google
First View T e 4 3
(0.562s) T —
]
¥
€ e
i Google
Repeat View I |
(0.420s) H —

The way in which a page loads can vary dramatically, depending on whether the user’s cache

is primed (that is, if the user has previously visited the site). Some static resources (such as CSS,
JavaScript, images, and so on) may already be in the browser cache, significantly speeding things up.
So, the default is for WPT to perform a First View test (that is, as the browser would see the target
site if it had an unprimed cache), and a Repeat View test (that is, emulating the effect of visiting

the site with an already primed cache). A preview image is shown for both these tests, and clicking
one brings up the full waterfall graphic, as shown in Figure 1-2.

0.2 04 06 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1 1
I ms

htbp /A google com

1. ww.google,com - 4

2. ww,google.com - chrome-48.png
3. uww . google.com - logodw.png
d. u . google .com. . .OmSMOpWkGdS0IH-_wDA 1319 ng
5. ==l.gstatic.com - j_eGadacad.png
. . google.com - nav_logold?.ong
7. uw.google.com - fawvicon.ico
. ssl.gstatic.com...0FhdbSFS244FEF2 . js L 473 s
9. www.google.com - 3ddcbee?fd52a242 . js 151 m=s ;
10, www.google.com - tia.png 101 ms ;
11, www.google.com - suxa.gif 119 ms ;
12, ww.google com - csi 100 mz ;
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.5 2.0
CPU Utilization
[
BanduidthIn (0 - 1,476 Kbps) \/—\/\
FIGURE I-2

XXviii

INTRODUCTION

The horizontal bar shows time elapsed (with resources listed vertically, in the order in which they
were requested). So, the browser first fetched the index page (/), then chrome-48.png, then logo3w
.png, and so on. Figure I-3 shows the first half second in more detail.

https/ i .goagle com 0.08 0.0 015 0,20 0.25 0,30 0,35 0.40

1
o i google com - I77 ms
oo google.con — chrome-48.png
. u L google.com - logodw.png

1
2
3
4. www.google.com. . .OnSHOpWkSASOIH-_wOA
]
]
7

. ssl.gstatic.com - j_eBaBacad.png
oo google.con - nay_logold?.png
. uw.google.com - favicon.ico

FIGURE I-3

The section at the beginning of the first request indicates a DNS lookup — the browser must

resolve www.google.com to an IP address. This took approximately 50 milliseconds. The next
section indicates the time taken to establish a connection to the web server. This includes setting

up the TCP connection (if you’re unfamiliar with the three-way handshake, see Appendix A, “TCP
Performance”), and possibly waiting for the web server to spawn a new worker process to handle the
request. In this example, that took approximately 70 milliseconds.

The next section shows the time to first byte (TTFB). At the beginning of this section, the client has
issued the request and is waiting for the server to respond. There’ll always be a slight pause here
(approximately 120 milliseconds in this example), even for static files. However, high delays often
indicate an overloaded server — perhaps high levels of disk contention, or back-end scripts that are
taking a long time to generate the page.

Finally, the server returns a response to the client, which is shown by the final section of the bar.
The size of this section is dependent on the size of the resource being returned and the available
bandwidth. The number following the bar is the total time for the resource, from start to finish.

After the web browser fetches the HTML document, it can begin fetching resources linked to in it.
Note that in request 2, there is no DNS lookup — the browser already has the response cached. For
request 3, the resource resides on a subdomain, ss1.gstatic.com, so this does incur a DNS lookup.

Also notice two vertical lines at approximately the 40-millisecond and 55-millisecond marks. The
first line indicates the point at which the browser began to render the page. The second line indi-
cates the point at which the onLoad event fired — that is, the point at which the page had finished
loading.

You’ll learn more about these waterfall views later in this book — you’ll learn how to optimize the
downloading order, why some of the requests have a connection overhead and others don’t, and
why there are sometimes gaps where nothing seems to be happening.

Firebug

The downside to WPT is that it shows how the page loads on a remote machine, not your own.
Usually, this isn’t a problem, but occasionally you want to test a URL inside a members-only area,

XXiX

http://www.google.com
http://ssl.gstatic.com

INTRODUCTION

or see the page as it would look for someone in your country (or on your ISP). WPT does actually
support some basic scripting, allowing it to log in to htpasswd-protected areas, but this isn’t any
help if you want to log in to something more complicated.

Firebug is a useful Firefox extension that (among other things) can show a waterfall view as a page
loads in your browser. This is perhaps a more accurate portrayal of real-world performance if you’re
running on a modestly powered PC with home broadband because the WPT tests are presumably
conducted from quite powerful and well-connected hardware.

The output of Firebug is similar to that of WPT, complete with the two vertical lines representing
the start and end of rendering. Each resource can be clicked to expand a list of the headers sent and
received with the request.

System Monitoring

This book is intended to be platform-neutral. Whether you run Berkeley Software Distribution
(BSD), Linux, Solaris, Windows, OS X, or some other operating system, the advice given in this
book should still be applicable.

Nevertheless, for system performance-monitoring tools, this will inevitably be quite platform-
specific. Some tools such as netstat are implemented across most operating systems, but the likes
of vmstat and iostat exist only in the UNIX world, and Windows users must use other tools. Let’s
briefly look at the most common choices to see how they work.

vmstat

vmstat is an essential tool on most flavors of UNIX and its derivatives (Linux, OS X, and so on).

It provides information on memory usage, disk activity, and CPU utilization. With no arguments,
vmstat simply displays a single-line summary of system activity. However, a numeric value is usu-
ally specified on the command line, causing vmstat to output data every x seconds. Here’s vmstat
in action with an interval of 5 seconds:

vmstat 5

procs ----------- memory---------- ---swap-- ----- io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
4 0 28528 355120 160112 4283728 0 0 0 0 0 020 275 4
4 0 28528 353624 160124 4283764 0 0 0 106 817 1303 28 1 71 O
1 0 28528 358008 160128 4283808 0 0 0 1354 926 1511 28 1 71 O
2 0 28528 351380 160132 4283828 0 0 0 167 757 1428 30 1 69 O
2 0 28528 356360 160136 4283940 0 0 0 1309 864 1420 26 1 72 O
3 0 28528 355552 160140 4284012 0 0 10 133 823 1573 37 161 0
5 0 28528 349416 160144 4284092 0 0 5 1598 918 1746 30 1 68 O
3 0 28528 353144 160152 4284116 0 0 14 82 791 1301 24 1 74 O
1 0 28528 355076 160156 4284344 0 0 13 1242 839 1803 27 1 71 1

XXX

INTRODUCTION

The first columns are as follows:

» r— This is the number of currently running processes.

» p— This is the number of blocking processes.
Blocking processes are those that cannot yet run because they are waiting on the hardware (most
often the disks). Naturally, this is the least-desirable state for a process to be in, and a high number
of blocking processes generally indicates a bottleneck somewhere (again, usually the disks). If the

number of running processes exceeds the number of CPU cores on the system, this can also cause
some degrading of performance, but blocking is the real killer.

The next four columns are similar to the information given by the free command, as shown here:
> swpd — This is how much swap memory is in use (expressed in bytes).
> free — This is idle memory.
> puff — This is memory used for buffers.
> cache — This is memory used for caching.
If you’re coming to UNIX from the world of Windows, it’s worth taking some time to ensure that

you are absolutely clear on what these figures mean — in UNIX, things aren’t as clear-cut as “free”
and “used” memory.

The next two columns show swap usage:
> si— This is the bytes read in from swap.
> so— This is the bytes written out to swap.
Swapping is usually a bad thing, no matter what operating system you use. It indicates insufficient

physical memory. If swapping occurs, expect to see high numbers of blocking processes as the CPUs
wait on the disks.

Following are the next two columns:

> bi— This is the bytes read from block devices.

> po— This is the bytes written to block devices.
Invariably, block devices means hard disks, so these two columns show how much data is being read
from and written to disk. With disks so often being a bottleneck, it’s worth studying these columns

with the goal of trying to reduce disk activity. Often, you’ll be surprised just how much writing is
going on.

NOTE For a breakdown of which disks and partitions the activity occurs on, see
the iostat command.

XXXi

INTRODUCTION

Now, consider the next two columns:

» in— This is the number of CPU interrupts.

> cs — This is the number of context switches.
At the risk of digressing too much into CPU architecture, a context switch occurs when the CPU
either switches from one process to another, or handles an interrupt. Context switching is an

essential part of multitasking operating systems but also incurs some slight overhead. If your
system performs a huge number of context switches, this can degrade performance.

The final four columns show CPU usage, measured as a percentage of the CPU time:
> us — This is the time spent running userland code.
» sy — This is the system time (that is, time spent running kernel code).
> id — This shows the idle time. (That is, the CPU is doing nothing.)
> wa — This shows the time that the CPU is waiting on I/O.
id (idle) is naturally the most preferable state to be in, whereas wa (waiting) is the least. wa indicates

that the CPU has things to do but can’t because it’s waiting on other hardware. Usually, this is the
disks, so check for high values in the io and swap columns.

Whether the CPU will mostly be running user code or kernel code depends on the nature of the appli-
cations running on the machine. Many of the applications discussed in this book spend a lot of time
sending and receiving data over the network, and this is usually implemented at the kernel level.

The previous vmstat example was taken from a web server at a fairly quiet time of the day. Let’s
look at another example, taken from the same server, while the nightly backup process was running:

vmstat 5

procs ----------- memory---------- ---swap-- ----- io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in c¢s us sy id wa
1 1 26968 330260 161320 4328812 0 0 0 0 0 020 275 4
4 0 26968 234492 160988 4370996 0 0 5329 6415 1041 3678 25 3 63 8
1 1 26968 238424 158284 4377120 0 0 4729 5066 1035 2128 18 2 71 9
0 2 27020 255812 150904 4386456 0 0 8339 14990 1169 1987 25 2 64 8
1 6 27992 254028 142544 4366768 0 53 10026 13558 1194 3906 44 5 35 15
4 0 27992 261516 138572 4384876 0 0 7706 17494 1081 2029 41 4 39 16
1 1 31648 277228 131832 4374340 0 0 10300 17186 1127 2262 31 3 58 9
1 2 31648 280524 130676 4385072 0 0 3330 5765 915 2059 23 2 68 6
0 1 31648 282496 130220 4385120 0 0 2096 1918 934 1474 21 1 68 10

Although the machine is far from being overloaded, performance is not ideal. You see regular block-
ing processes, disk activity is higher, and the CPUs (this machine had six cores) are spending more
of their time in the waiting (wa) state.

XXXii

INTRODUCTION

Depending on your operating system, there may be other data available from vmstat. For example,
the Linux version can give a more detailed breakdown of disk activity (with the -d switch) and can
show statistics on forking (with the - switch). Check the man pages to see exactly what your system

supports.

perfmon

On Windows, the Performance Monitor (perfmon) shown in Figure I-4 provides similar information.

@ File Action View Favorites Window Help

- 8] x
=3 EHem >
Reliability and Performa . -
@ _TV) Resource Overview
+ 'm Monitoring Tools
o 3
B Performance Monil|| €PY 100% Disk 100 KB/sec Network 56 Kbps Memory 100 Hard Fa...
= Reliability Monitor|
» [Data Collector Sets
» g Reports
60 Seconds
‘ CPU B 6% [7 100% Maximum Frequency = ‘
‘ Disk ™ 64 KB/sec B 1% Highest Active Time - ‘ I
‘ Network H 0 Kkbps B 0% Network Utilization) ‘
Memory 8 0 Hard Faults/sec ™ 45% Used Physical Memory -
Image PID Hard F... Commit (KB) Working Set (KB) Shareable (KB) Private (KB)
FlashPlayerPlugin_11_3 300_268.exe 1252 0 457,592 315696 11,072 304624 |E‘
firefoxexe 4012 1 130,336 149,600 30912 118,688
dwm.exe 2152 0 116,748 145,496 62,324 83,172
WINWORD EXE 4260 0 74,640 150,840 86,424 64,416
svchost.exe (LocalSystemNetworkRes.., 1048 0 66,284 69,576 8,108 61,468
gimp-28.exe 2852 1259 33918 50632 18,436 32,196
explorer.exe 2240 1 54,476 66,984 37,020 29,964 -
earchindever eve 1944 49 11A 120 7556 A5
< 1 Al 1A
FIGURE I-4

Don’t underestimate the power of perfmon. The default provides a wealth of information and can be
extended to show all manner of additional data.

WHO THIS BOOK IS FOR

The information in this book is designed to appeal to a wide range of readers, from system

administrators charged with managing busy websites, to web developers looking to write efficient,
high-performance code.

This book makes no assumptions about your underlying operating system, and the information is
(in most cases) equally applicable whether you run OS X, Linux, Windows, FreeBSD, or another
flavor of UNIX. Situations are highlighted in which some of the information depends on the
operating system used.

xXxiii

INTRODUCTION

WHAT THIS BOOK COVERS

A wide range of technologies are in use on the web, and it would be futile to attempt to cover them
all (or at least cover them in sufficient detail). Rather, the discussions in this book concentrate on the
most popular open source technologies — PHP, MySQL, Apache, Nginx, memcache, and mongodb.

In this book, yow’ll discover many of the advanced features of these technologies, and the ways
in which they can be utilized to provide scalable, high-performance websites. You’ll learn cur-
rent performance best practices, tips for improving your existing sites, and how to design with
scalability in mind.

The browser market is wide and varied. The discussions in this book focus on the five main web
browsers (which together make up the vast majority of web users) — Internet Explorer, Chrome,
Firefox, Opera, and Safari. Behavior can vary in suitable (but important) ways between versions,
and, in most cases, when particular aspects of browser behavior are examined, the discussion
includes versions from the past 5 years or so. It’s unfortunate (but inevitable) that a sizeable number
of users will not be running the most current version.

HOW THIS BOOK IS STRUCTURED

The book is divided into two parts, covering aspects of website performance related to the front end
(Part I) and the back end (Part II).

In the first part you’ll meet topics such as the HTTP protocol, how web browsers work, browser
caching, content compression, minification, JavaScript, CSS, and web graphics — all essential topics
for web developers. Following are the chapters included in this part of the book:

> Chapter 1, “A Refresher on Web Browsers” — This chapter provides a look under the hood
at how the web works. In this chapter, you will meet the HTTP protocol, and features such
as caching, persistent connections, and Keep-Alive.

> Chapter 2, “Utilizing Client-Side Caching” — This chapter examines the ways in which
web browsers cache content, and what you can do to control it.

> Chapter 3, “Content Compression” — Here you find everything you need to know about
compressing content to speed up page loading times.

> Chapter 4, “Keeping the Size Down with Minification” — In this chapter, you discover the
art of minifying HTML, CSS, and JavaScript to further reduce payload sizes.

> Chapter 5, “Optimizing Web Graphics and CSS” — Here you learn how to optimize the
most common image formats, and discover ways in which CSS can be used to create lean,
efficient markup.

> Chapter 6, “JavaScript, the Document Object Model, and Ajax” — JavaScript is an increas-
ingly important part of the web. In this chapter, you learn about performance aspects of the
language, with an emphasis on interaction with the document object model (DOM).

XXXiV

INTRODUCTION

The second part of the book focuses on the technologies behind the scenes — databases, web
servers, server-side scripting, and so on. Although many of these issues are of more interest to back-
end developers and system administrators, they are vital for front-end developers to understand to
appreciate the underlying system. Following are the chapters included in this part of the book:

>

Chapter 7, “Working with Web Servers” — This chapter provides everything you need to
know about tuning Apache and Nginx. The second half of the chapter looks at load balanc-
ing and related issues that arise (for example, session affinity).

Chapter 8, “Tuning MySQL” — 1In this first of two chapters devoted to MySQL, you meet
the myriad of tuning options and discover the differences between MyTSaM and InnoDB.

Chapter 9, “MySQL in the Network” — Here you learn how to scale out MySQL using
such techniques as replication, sharding, and partitioning.

Chapter 10, “Utilizing NoSQL Solutions” — NoSQL is a collective term for lightweight
database alternatives. In this chapter, you learn about two of the most important players:
memcache and mongodb.

Chapter 11, “Working with Secure Sockets Layer (SSL)” — SSL can be a performance
killer, but there are a surprising number of things that you can do to improve the situation.

Chapter 12, “Optimizing PHP” — Perhaps the most popular back-end scripting language,
PHP can have a significant impact on performance. In this chapter, you learn about opcode
caching, and discover how to write lean, efficient PHP.

This book also includes three appendixes that provide additional information:

>

Appendix A, “TCP Performance” — Transmission control protocol (TCP) and Internet
Protocol (IP) are the protocols that drive in the Internet. In this appendix, you learn about
some of the performance aspects of TCP, including the three-way handshake and Nagle’s
algorithm.

Appendix B, “Designing for Mobile Platforms” — An increasing number of users now
access the web via mobile devices such as cell phones and tablets. These bring about their
own design considerations.

Appendix C, “Compression” — This book makes numerous references to compression.
Here you discover the inner workings of the LZW family, the algorithm behind HTTP com-
pression, and many image formats.

WHAT YOU NEED TO USE THIS BOOK

To get the most out of this book, you should have a basic working knowledge of web development —
HTML, JavaScript, CSS, and perhaps PHP. You should also be familiar with basic system
management — editing files, installing applications, and so on.

XXXV

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicates notes, tips, hints, tricks, and/or asides to the current
discussion.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
> We show filenames, URLs, and code within the text like so: persistence.properties.
>

We present code in two different ways:
We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and, at the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page, you can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list, including links to each book’s errata, is also
available at www .wrox. com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

XXXVi

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml

INTRODUCTION

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies, and to interact
with other readers and technology users. The forums offer a subscription feature to e-mail you
topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
Your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXVii

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

PART |
Front End

» CHAPTER 1: A Refresher on Web Browsers

» CHAPTER 2: Utilizing Client-Side Caching

» CHAPTER 3: Content Compression

» CHAPTER 4: Keeping the Size Down with Minification
» CHAPTER 5: Optimizing Web Graphics and CSS

» CHAPTER 6: JavaScript, the Document Object Model, and Ajax

A Refresher on Web Browsers

WHAT’S IN THIS CHAPTER?

> Reviewing web browsers and the HTTP protocol
> Understanding the steps involved in loading a web page

> Getting to know Keep Alive and parallel downloading

To access a website, you need a web browser — the piece of client-side software that requests
resources from a web server and then displays them. Web browsers are one of the most important
pieces of software in the modern Internet, and competition between vendors is fierce — so much
so that many vendors have chosen to give their browsers away for free, knowing that an increased
share of the browser market can indirectly reap profits in other areas.

Although such competition is good news for consumers, it can be a different story for web
developers, who must strive to make their sites display correctly in the myriad of browsers,
each of which has its own idiosyncrasies and nonstandard behavior. To understand how
this situation has evolved, let’s begin by returning to the early days of the World

Wide Web.

A BRIEF HISTORY OF WEB BROWSERS

Although Mosaic is often thought of as the first web browser to hit the market, this isn’t
actually true — that honor falls on WorldWideWeb, a browser developed by Tim Berners-Lee in
1990 at the same time as he developed the HTTP 0.9 protocol. Other browsers soon followed,
including Erwise, ViolaWW W, MidasWW W, and Cello — with Cello being, at this point, the
only browser for Microsoft Windows. The year 1992 also saw the release of Lynx, the first
text-based browser — the others all utilized graphical user interfaces (GUIs).

4 | CHAPTER1 A REFRESHER ON WEB BROWSERS

In 1993, Marc Andreessen and Eric Bina created Mosaic. Although Mosaic was not as sophisticated
as its competitors, a lot of effort had gone into making it easy to install. And it had one other big
advantage. Previous browsers had mostly been student projects, and as such, they often floundered
after the students graduated. On the other hand, Mosaic had a team of full-time programmers
developing it and offering technical support. Thanks to some clever marketing, Mosaic and the web
were starting to become linked in the minds of the public.

In 1994, a dispute over the naming of Mosaic forced a rebranding, and Netscape Navigator was
born. Unfortunately, regular changes to the licensing terms meant that, for the next few years, there
was ongoing confusion over how free it actually was.

Microsoft entered the market in 1995 with Internet Explorer (IE) 1.0, which was also based on
Mosaic, from whom Microsoft had licensed the code. IE 2.0 followed later that year, with IE 3.0
following in 1996. IE 3.0 was notable for introducing support for cascading style sheets (CSS),
Java, and ActiveX, but Netscape continued to dominate the market, with IE making up only
approximately 10 percent of the market.

Netscape Loses Its Dominance

Over the following years, the market swiftly turned in Microsoft’s favor. By IE 4.0 (released in
1997), Microsoft’s share of the market had increased to 20 percent, and, by the release of IE 5
in 1999, this had risen to 50 percent. Microsoft’s dominance peaked in the first few years of the
twenty-first century, with IE 6.0 (released in 2001) claiming more than 80 percent of the
market.

Microsoft’s aggressive marketing included a decision to bundle IE with Windows. But there’s no
denying that, at this point in the late 1990s, IE was simply the better browser. Netscape was prone
to crashing, it was not as fast as IE, and it was beginning to look distinctly old-fashioned.

In an attempt to revive its fortunes, Netscape decided to release the source code for Navigator,
and branded it as Mozilla (also known as Netscape 5), entrusting it to the newly formed Mozilla
Foundation. Although this was an important turning point in the history of the web, it did little
to help in the immediate future. AOL purchased Netscape, and released Netscape 6 in 2000 and
Netscape 7 in 2002. This failed to halt the downturn, though, and AOL eventually announced the
end of Netscape in 2008, a year after the release of both Netscape 8 and 9 (which, ironically, were
now based on Firefox).

The Growth of Firefox

By 2000, it was clear that Microsoft had won the browser wars, and for the next few years, it
enjoyed unchallenged dominance of the market. However, the Mozilla Foundation was still hard
at work. Mozilla 1.0 was released in 2002 but failed to make much of an impact in the Windows
environment.

Inside HTTP | 5

Some Mozilla developers were becoming increasingly unhappy with the direction Mozilla was tak-
ing, feeling it was becoming increasingly bloated, and branched off their own port of the Mozilla
code. After several changes to the name, this ultimately became Mozilla Firefox — usually referred
to simply as Firefox.

Firefox 1.0 was released in 2004, but it wasn’t until version 2.0, released 2 years later that things
began to take off. Mozilla marketed Firefox heavily to the everyday user as a faster, more secure
alternative to IE; while bloggers and techies were quick to praise the more advanced features.
Finally, it was felt, there was a worthy rival to IE, and by the end of 2006, Firefox’s share of the
market had risen to 10 percent.

Firefox 3.0 was released in 2008, and by the end of 2010, had a market share of approximately

25 to 30 percent. It’s ironic that just as IE’s early growth was boosted by dissatisfaction among
Netscape users, Firefox’s growth was aided enormously by growing dissatisfaction among IE users.
Indeed, it was felt that, having won the browser war, Microsoft had become somewhat complacent,
with IE 6 and 7 being somewhat insipid.

The Present

Microsoft managed to get back on track with the release of IE 8 in 2008. As well as being compliant
with CSS 2.1 and Acid 2, IE 8 finally included tabbed browsing — a feature that had been present in
Opera and Firefox for some time.

In 2011, IE 9 was released, boasting CSS 3 support; improved graphics rendering; and a new
JavaScript engine, Chakra, which was capable of better utilizing multicore CPUs. Also in 2011,
Firefox 4 was released with its own new JavaScript engine (JagerMonkey) and hardware graphics
accelerator.

INSIDE HTTP

Before beginning an examination of optimization techniques, it would be beneficial to understand
how the web works. The remainder of this chapter recaps the basics of the HyperText Transfer
Protocol (HTTP), discusses the differences between HTTP 1.0 and 1.1 (in particular, those relating
to performance), and then follows the steps taken when a browser requests a page — from the initial
domain name service (DNS) look-up through to the rendering. Later chapters revisit these steps in
more detail, and you will learn ways to improve performance.

The HyperText Transfer Protocol

HTTP is the means by which web browsers (clients) communicate with web servers and vice versa.
It’s a text-based protocol operating at the application layer, and, as such, HTTP doesn’t concern
itself with issues such as routing or error checking: This is the job of the lower layers such as trans-
mission control protocol (TCP) and Internet Protocol (IP).

6 | CHAPTER1 A REFRESHER ON WEB BROWSERS

THE OSI MODEL

The Open Systems Interconnection (OSI) model is a commonly used means of rep-
resenting the various parts of network traffic in terms of layers, reflecting the way
in which encapsulation of data works. The OSI model defines seven layers (the older
TCP/IP model defines just four). The seven layers include the following:

e Physical layer (layer one) — This is the underlying means of transmitting the
electrical signal across the network (for example, Ethernet, USB, or Bluetooth).

e Data Link layer (layer two) — This sits above the physical layer and provides
transport across it. In the case of Ethernet, the data link layer handles the

construction of Ethernet frames, and communicates with devices via their
Media Access Control (MAC) addresses.

e Network Layer (layer three) — This deals with packet routing across more
complicated networks. Internet Protocol (IP) is the most commonly used protocol
at this level, and is capable of traveling across multiple networks, and through
intermediate devices such as routers.

e Transport Layer (layer four) — This sits on top of the network layer and provides
higher-level features such as flow control and the concept of connections. The
most commonly seen protocols at this level are Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP).

e Session Layer (layer five) — This handles the management of sessions between
the applications on either side of the network connection. Protocols used at this
layer include NetBios, H.245, and SOCKS.

e Presentation Layer (layer six) — This handles the formatting of data. One of the
most common examples is seen in telnet, where differences in the capabilities of
terminals must be accounted for. Here, the presentation layer ensures that you see
the same thing in your telnet session no matter what your terminal capabilities or
character encodings are.

e Application Layer (layer seven) — At the top of the OSI model is the application
layer, which contains some of the most well-known protocols, including Simple
Message Transport Protocol (SMTP), HTTP, File Transfer Protocol (FTP), and
Secure Shell (SSH). In many cases, these protocols are plain text (rather than
binary), and are, by their nature, high level.

Instead, HTTP deals with the higher-level requests involved in navigating the web, such as, Fetch
the Index Page from http://www.google.com or Post This Form Data to the CGI Script at
Such-and-Such.

Navigating to a web page in your browser typically results in a series of HTTP requests being issued
by the client to fetch the resources contained on the page. For each request, the server issues a
response. Usually, the response contains the resource requested, but sometimes it indicates an error

http://www.google.com

Inside HTTP | 7

(such as the infamous 404 Not Found error) or some other message. Let’s take a look at the HTTP
protocol in action.

Using the Live HTTP Headers extension for Firefox, you can watch the HTTP headers that flow as
you browse the web. This is an incredibly useful extension, and one that you will frequently use. If
your knowledge of HTTP is a bit rusty, now would be a good time to install Live HTTP Headers
and spend a bit of time watching traffic flowing.

Here is the traffic generated when you view a simple test page. (For brevity, some lines have been
removed.)

GET /test.html HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:1.9.1.8)
Gecko/20100308 Iceweasel/3.5.8 (like Firefox/3.5.8) GTB7.1

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,%*/*;g=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Keep-Alive: 300

Connection: keep-alive

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Debian) PHP/5.3.2-1 with Suhosin-Patch mod ssl/2.2.15
OpenSSL/0.9.8m mod perl/2.0.4 Perl/v5.10.1

Last-Modified: Thu, 29 Jul 2010 15:02:49 GMT

Etag: "31b8560-3e-48c8807137840"

Accept-Ranges: bytes

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 68

Keep-Alive: timeout=3, max=10000

Connection: Keep-Alive

Content-Type: text/html

GET /logo.gif HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:1.9.1.8)
Gecko/20100308 Iceweasel/3.5.8 (like Firefox/3.5.8) GTB7.1

Accept: image/png,image/*;g=0.8,*/%*;g=0.5

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;g=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP/1.1 200 OK
Server: Apache/2.2.15 (Debian) PHP/5.3.2-1 with Suhosin-Patch mod ssl/2.2.15
OpenSSL/0.9.8m mod perl/2.0.4 Perl/v5.10.1
Last-Modified: Wed, 15 Apr 2009 21:54:25 GMT
Etag: "31bd982-224c-4679efda84640"
Accept-Ranges: bytes
Content-Length: 8780

8 | CHAPTER1 A REFRESHER ON WEB BROWSERS

Keep-Alive: timeout=3, max=9999
Connection: Keep-Alive
Content-Type: image/gif

GET /take tour.gif HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:1.9.1.8)
Gecko/20100308 Iceweasel/3.5.8 (like Firefox/3.5.8) GTB7.1

Accept: image/png,image/*;g=0.8,*/*;g=0.5

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;g=0.7,*;9g=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP/1.1 200 OK
Server: Apache/2.2.15 (Debian) PHP/5.3.2-1 with Suhosin-Patch mod ssl/2.2.15
OpenSSL/0.9.8m mod perl/2.0.4 Perl/v5.10.1
Last-Modified: Wed, 15 Apr 2009 21:54:16 GMT
Etag: "31bd9bc-c9e-4679efdlef200"
Accept-Ranges: bytes
Content-Length: 3230
Keep-Alive: timeout=3, max=10000
Connection: Keep-Alive
Content-Type: image/gif

In this example, you first see the browser send a GET request for /test .html from the web server
on 127.0.0.1. Notice that the wanted HTTP protocol version is also stated. The remaining lines of
the request include some additional information: the browser user agent; the Multipurpose Internet
Mail Extension (MIME) type, languages, and compression methods that the browser accepts; and
Keep Alive/Connection options.

The server responds with HTTP/1.1 200 OK (indicating success) and returns test .html in the body
of the response. (Remember, this discussion is about headers here, not bodies.) The server response

indicates the MIME type of the resource returned (text/HTML), the size, and the compression type
(gzip here). The last modified time is given, which will be important when you learn about caching.

After the browser has fetched test.html, it can parse the HTML and request any resources
contained in it. The test page contains two images, and the browser now requests these. The
responses are similar to the first, but there are a few subtle differences: The content -Type in the
response is now image/gif, and no Content-Encoding header is set. (This web server isn’t config-
ured to use compression when delivering images.)

A full discussion of HTTP could take up a whole book. Assuming you’re broadly happy with HTTP,
let’s continue the discussion by looking at the areas that relate to performance.

HTTP Versions

The history of the HTTP protocol can be traced back to the first version, 0.9, defined in 1991. The
web was a different place then, and although this crude protocol served the job, it wasn’t long

Inside HTTP | 9

before refinements were made. These resulted in the creation of HTTP 1.0, defined in RFC
1945 in 1996.

Whereas HTTP 0.9 was limited to making simple GET requests with no additional headers, version
1.0 added most of the features now associated with the protocol: authentication, support for proxies
and caches, the PosST and HEAD methods, and an array of headers. HTTP 0.9 is pretty much obsolete
now, but HTTP 1.0 is still occasionally seen in use and is still a usable protocol for navigating the
modern web.

Although the move from HTTP 0.9 to 1.0 marked a major improvement to the protocol, the current
version — HTTP 1.1 (laid out in RFC 2616 in 1999) — is essentially just a fine-tuning of HTTP
1.0, with particular improvements made to caching, reuse of connections, and support for virtual
hosting. Let’s look in more detail at the major improvements.

Support for Virtual Hosting

In the early days of the web, each domain had its own IP address, and there was never any need for
an HTTP request to specify from which domain it was requesting a resource. It simply connected to
the appropriate IP (obtained via DNS), and the web server knew which domain name this mapped
to. As the Internet boomed, and concerns grew about the limited IPv4 address space, web serv-

ers began to support virtual hosting — a method to host multiple domain names on the same IP
address. One of the changes in HTTP 1.1 was the introduction of the Host header, which enabled
the client to specify for which domain it was requesting the resource.

A typical HTTP 1.0 request would have looked like this:
GET /index.html HTTP/1.0
In HTTP 1.1, this now appears as follows:

GET /index.html HTTP/1.1
Host: mydomain.com

Although this feature has little to do with performance, it had a big impact on the growth of the
web and is one of the most compelling reasons to use HTTP 1.1 over 1.0.

Caching

Caching is an important topic that will be discussed numerous times in this book. In general, it
consists of storing resources in a temporary location for faster retrieval in the future. In the case of
client-side caching, this temporary location is an area of the user’s hard disk, set aside by the web
browser. In many situations, the browser can retrieve previously requested resources directly from
the cache, without needing to query the web server.

Although the caching mechanisms of HTTP 1.0 provide fairly good caching support (albeit
somewhat vaguely defined), HTTP 1.1 extends these and adds a host of new options, including the
Cache-Control and vary headers. These offer you much greater control over how browsers and
intermediate proxies can cache your content.

http://www.mydomain.com

10

CHAPTER1 A REFRESHER ON WEB BROWSERS

NOTE You'll learn more about intermediate caches and proxies in Chapter 2,
“Utilizing Client-Side Caching.”

HOW BROWSERS DOWNLOAD AND RENDER CONTENT

One of the most important building blocks for the budding web optimizer is an understanding of
how browsers render websites. They don’t always behave as you might expect, and there can be
subtle differences from browser to browser. Only when you fully understand these can you be in a
position to perform effective optimization.

“Waterfall” graphs are invaluable when trying to understand this. Let’s dive in with an example,
albeit for a fairly simple page — http://kernel.org, the home of the Linux kernel — shown in
Figure 1-1.

0.2 0.4 0.6] 1.0 1.2 1.4 1.6] 2.0
http:/fkernel .org/
1: kernel.org - / 847 ms
21 kernel.org - kernel.css [
3: kernel.org - Us.png [
d: kernel.org - eu.png =135 ng
5: kernel.org - downloadarrow_small.png ;285 ng
6: kernel.org - eu.png 135 ms =
7: kernel.org - hostedatisc.png 142 m=s =
8: kernel.org - umubl.png 151 ms =
9: kernel.org - hplogo.gif 1dd mz =
10: kernel.org - 1flogo-med.png 154 mz =
11: kernel.org - osl.png 143 mz =
12: kernel.org - logo70-tran.png 291 ms =
131 kernel.org - valid-xhtmllo 152 ns N
14: kernel.org - Favicon.ico 288 me |
0.2 0.4 0.6 L] 1.0 1.2 1.4 1.6] 2.0
CPU Utilization
Bandwidth In (0 - 8,480 Kbps) .

FIGURE 1-1

The first thing the browser does is resolve kernel .org to an IP address using DNS, as indicated
by the first segment of the first request line. It then attempts to open an HTTP connection to
kernel.org. The second segment shows the time taken to do this.

At the beginning of the third segment, the TCP connection has been created, and, at this point, the
browser issues its request. However, it isn’t until the start of the fourth segment that the web server
starts to send back content. (This can be attributed to latency on the web server.) Finally, some 847
milliseconds (ms) after the start, the HTML document has been fully retrieved.

Of course, most web pages don’t consist of simply an HTML document. (If they did, the lives of
web masters would be less complicated.) Invariably, there are also links to style sheets, images,
JavaScript, and so on, embedded in the page, which the browser must also retrieve.

http://kernel.org
http://kernel.org
http://kernel.org

How Browsers Download and Render Content | 11

The browser doesn’t wait until it finishes retrieving the HTML document before it starts fetch-
ing these additional resources. Naturally, it can’t start fetching them immediately, but as soon the
HTML document starts to arrive, the browser begins parsing it and looks for links. The first of
these is the style sheet (kernel.css) contained near the top of the page in the head, and it duly
requests this. You now have two connections running in parallel — this is enormously faster than
the requests made in a linear fashion, one by one.

This time, you don’t have the delay of a DNS lookup (the response from the previous lookup has
been cached by the browser), but you once again have a delay while the browser initiates a TCP

connection to the server. The size of this particular CSS file is a mere 1.7 KB, and the download
segment of the request is hence barely visible.

Given what you now know about the browser parsing the document as it comes in, why is there
such a delay until us.png is requested? Perhaps this image isn’t referenced until approximately
three-quarters of the way through the document (because the download appears to begin approxi-
mately three quarters of the way through downloading the HTML). Actually, this image is first
referenced on line 35 of the document (which is more than 600 lines in total).

The reason for the delay is that, historically, most browsers only download two resources in parallel
from the same host. So, the request for us.png doesn’t begin until the request for kernel.css fin-
ishes. Look carefully at the rest of the waterfall to see that at no point are there ever more than two
requests running in parallel. (You’ll learn more about this shortly.)

There’s something else different about us.png (and the resources that follow it) — there is no

TCP connection segment. The browser is reusing the existing TCP connection it has with the server,
cutting out the time required to set up a new connection. This is an example of the persistent con-
nections mentioned earlier in this chapter. In this example, the saving is approximately 0.1 second
on each request — and more than 12 requests, which mounts up to sizeable savings.

It’s also worth noting that, in this example, the overhead involved in making the request makes up
a significant proportion of the overall time. With the first, fifth, and twelfth resources, the actual
downloading of data accounts for approximately one-half the time needed to fetch the resource.
With the other resources, the download time is virtually insignificant, dwarfed by the latency of
issuing the request and waiting for a response from the server. Although this is only one example,
the pattern of many small resources is common and illustrates that performance is not all about
keeping the size of resources small.

Rendering

After the browser retrieves the HTML document, it can begin to parse the document and render
it on the screen. Referring to the waterfall view in Figure 1-1, the first vertical line shows the point
at which the browser begins rendering, whereas the second vertical line shows the point at which
rendering is complete.

If the image dimensions are not known, the browser does not allocate any screen space to them
during the initial rendering. As a result, the page flow must be recalculated after they have been
downloaded, and the dimensions become known. This can lead to the rather ugly effect of text
jumping around the page as the page loads.

12

CHAPTER1 A REFRESHER ON WEB BROWSERS

Although the kernel.org example implies that the page takes approximately 1 second to render,
this is a little misleading. Actually, the majority of the page renders in the blink of an eye. Then
you must wait for the images to download. If no images were involved (or they were already in the
browser’s cache), how long would it take the browser to simply parse and render the HTML docu-
ment? This is an area discussed again in Chapter 6, “JavaScript, the Document Object Model, and
Ajax,” when you learn about ways to reduce rendering times.

Persistent Connections and Keep-Alive

In HTTP 1.0, the default behavior is to close the connection after a resource has been retrieved.
Thus, the following is the flow of events when the client needs to fetch multiple resources:

. The client opens a TCP connection to the server.

The client requests the resource.

The server responds and closes the connections.

. The client opens a new TCP connection.

5. The client requests another resource.

This is a rather wasteful approach, and the process to build up and tea down the TCP connections
adds a significant amount of latency to requests (not to mention extra CPU and RAM usage on both
client and server). This overhead is even more significant when requesting many small resources,
which tends to be the nature of most websites.

Figure 1-2 shows this problem with a waterfall view showing a page containing 22 small images
loading in IE 7. The effect has been exaggerated a bit by conducting the test from a dial-up
connection to a web server located on the other side of the Atlantic. (So the latency is quite high.)
The problem still exists for broadband users, just not to the same degree.

httpi//linuzbox co.uk/ LA icons html
13 linuxbox.co.Uk - 1GOns.htnl] 846 ns
: linushox.co.uk - pied.prg L g6 ns

: linuzhox.co.uk - portal.png Lpes ns
1 linuzhox.co.uk - papng 673 ms
1 linuzhox.co.uk - ps.png B 673 mE

= linuxbox.co.uk - quill.png 677 ns

= linuxbox.co.uk - right.png 67 ns

t linuzbox.co.uk - SEreuZ.png D] 683 ns

= linuxbox.co.uk - script.png T

102 linuxhox.co.uk - soundl.png L] 594 ms

11: linuxhox.co.uk - soundZ.png 87 ms

12: linuxbox.co.uk - spherel.png ez me [

13: linuxbox.co.uk - sphereZ.png 684 ms

14: linuxbox.co.uk - tar.png 679 ns [

15: linuxbox.co.uk - tex.png 671 ns [

16: linuxbox.co.uk - text.png 680 ns [

17: linuxbox.co.uk - transfer.png 689 ms]

18: linuxhox.co.uk - unknoun.png 67z ms [

19: linuxbox.co.uk - up.png 676 ms [

20: linuxbox.co.uk - uuencoded .png 674 ms [
21: linuxbox.co.uk - uu.png 682 ms [
22: linuxhox.co.uk - worldl.prg 681 ms [

FIREE R

o

EE2bESm

(AN

231 linuxhoz.co.uk - world2.png B89 mE
1 z 3 4 5 & 7 g

FIGURE 1-2

http://kernel.org

How Browsers Download and Render Content | 13

Clearly, this is not an ideal situation, which is one of the reasons that (as you have seen) browsers
typically issue more requests in parallel when talking in HTTP 1.0.

Keep-Alive

This shortcoming was partially addressed by the introduction of keep-aAlive. Although it was never
an official part of the HTTP 1.0 specifications, it is well supported by clients and servers.

With Keep-Alive enabled, a server will not automatically close the connection after sending a
resource but will instead keep the socket open, enabling the client to issue additional requests. This
greatly improves responsiveness and keeps network traffic down.

A client indicates it wants to use Keep-Alive by including the header Connection: Keep-alive
in its request. If the server supports Keep-Alive, it signals its acceptance by sending an identical
header back in the response. The connection now remains open until either party decides to close it.

Unfortunately, browsers can’t always be relied upon to behave themselves and close the connection
when they finish issuing requests, a situation that could lead to server processes sitting idle and
consuming memory. For this reason, most web servers implement a Keep-Alive timeout — if the
client does not issue any further requests within this time period (usually approximately 5 to 10
seconds), the server closes the connection.

In addition, servers may also limit the number of resources that may be requested during the
connection. The server communicates both these settings with a Keep-alive header like this:

Keep-Alive: timeout=5, max=100

However, Keep-Alive is not an officially recognized header name and may not be supported by all
clients.

Persistent Connections

HTTP 1.1 formalized the Keep-Alive extension and improved on it, the result being known as per-
sistent. Persistent connections are the default in HTTP 1.1, so there’s no need for the client or server
to specifically request them. Rather, the client and server must advertise their unwillingness to use
them by sending a connection: close header.

NOTE Just to clarify, Keep-Alive is the name of the unofficial extension to
HTTP 1.0, and persistent connections are the name for the revised version

in HTTP 1.1. It’s not uncommon for these terms to be used interchangeably,
despite the (admittedly small) differences between them. For example, the
Apache xeepAlive directives (which you’'ll learn about in Chapter 7, “Working
with Web Servers”) also relate to persistent connections.

Keep-Alive and Persistent Connections

Let’s revisit an earlier example, again conducted from a dial-up connection but this time to a server
that has Keep-alive enabled. Figure 1-3 shows the waterfall view.

14 | CHAPTER1 A REFRESHER ON WEB BROWSERS

0.5 1.0 1.5 2.0 2.5 3.0 3.5
httpi//linuzbox co.uk/ LA icons html
= linuxhox.co.uk - icons.himl 862 ms

: linushox.co.uk - pied.prg] 214 ms

: linuzhox.co.uk - portal . png ?686 s

1 linuzhox.co.uk - papng | 214 mg

: linuxbox.co.uk - ps.png L 380 ms

= linuhox.co.uk - quill.png] 216 ns

= linuxhox.co.uk - right.png L 214 ns

= linuxhox.co.uk - screws.png 238 ns

= linuxhox.co.uk - script.png 21 ws 0]

10: linuxhox.co.uk - soundl.png 245 ns]

11 linuxhox.co.uk - soundZ.prg 243 ms]

12: linuxhox.co.uk - spherel.png 24z ms]

13: linuxhox.co.uk - sphere2.png 240 ms]

14: linuxhox.co.uk - tar.prg 240 ms [

15: linuxhox.co.uk - tex.prg 243 ws

161 linuxkox.co.uk - text.png 253 ne [

171 linuxhox.co.uk - transfer.png 257 ms [l

18: linuxbox.co.uk - unknown.png 257 ms [

19: linuxbox.co.uk - up.png 247 ms [

20: linuxbox.co.uk - uuencoded.png 245 ns [
21: linuxbox.co.uk - uu.png 251 ms [0
22: linuxhox.co.uk - worldl.png 259 ns [

23: linuxbox.co.uk - world2.png 269 ms
0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIGURE 1-3

R RS

This time, the results are significantly better, with the page loading in less than half the time. Although
the effect has been intentionally exaggerated, Keep-Alive is still a big asset in the majority of situations.

When Not to Use Keep-Alive

So, if Keep-Alive is only an asset in the majority of situations, under which circumstances might
Keep-Alive not be beneficial?

Well, if your website mostly consists of HTML pages with no embedded resources (CSS, JavaScript,
images, and so on), clients will need to request only one resource when they load a page, so there
will be nothing to gain by enabling Keep-Alive. By turning it off, you allow the server to close the
connection immediately after sending the resource, freeing up memory and server processes. Such
pages are becoming rare, though, and even if you have some pages like that, it’s unlikely that every
page served up will be.

Parallel Downloading

Earlier in this chapter, you learned that most browsers fetch only a maximum of two resources in
parallel from the same hostname and saw a waterfall view of IE 7 loading http://kernel.org to
illustrate this point. Given that parallel downloading is so beneficial to performance, why stop at two?

The reason that browsers have (historically) set this limit probably stems from RFC 2616 (which
details version 1.1 of HTTP; you can find it at http: //www.ietf.org/rfc/rfc2616.txt).
According to that RFC, “Clients that use persistent connections should limit the number of simul-
taneous connections that they maintain to a given server. A single-user client should not maintain
more than 2 connections with any server or proxy.... These guidelines are intended to improve
HTTP response times and avoid congestion.”

However, the Internet has come a long way since 1999 when that RFC was written, and for some
time, web developers have been more than happy to use tricks to get around this limit. You’ll learn
about some of these shortly.

http://kernel.org
http://www.ietf.org/rfc/rfc2616.txt

How Browsers Download and Render Content | 15

More recently, browser vendors have started to flout this guideline, too, usually justifying it by
pointing out that the RFC says “should not,” not “must not.” Of course, their main concern is with
providing a faster browsing experience to users (especially if other vendors have already increased
their maximum connections per domain) — any increase in network congestion or overloading of
the web server isn’t their problem.

The issue has caused fierce debate, with apocalyptic predictions of web servers being brought to
their knees by this flood of parallel connections. This hasn’t happened yet, though, and for good
reason. While a browser making eight parallel requests rather than two can certainly increase server
load, it stands to reason that these eight connections will be open for a shorter period of time.

So, although it may cause a slight spike in load, it’s only short-lived. It would be hypocritical for
web developers to complain about this aspect of browser behavior because they often use tricks to
increase parallel downloading.

The first major browser to break from this “rule” of two maximum connections per hostname was
Safari, starting with version 3 in 2007. Firefox 3 and Opera followed in 2008, and IE 8 in 2009.
Table 1-1 shows the current state of play.

TABLE 1-1 Maximum Parallel Connections Per Host

BROWSER MAX PARALLEL CONNECTIONS PER HOST
IE6and 7 2
IE8 6
IE9 6
IE 10 8
Firefox 2 2
Firefox 3 6
Firefox 4 to 17 6
Opera 9.63 4
Opera 10 8
Opera 11 and 12 6
Chrome 1and 2 6
Chrome 3 4

Chrome 4 to 23 6

Safari 3 and 4 4

It’s worth noting that IE 8 automatically reduces this figure to two for users on dial-up connections
and enables web developers to detect the current value in JavaScript via window
.maxConnectionsPerServer.

16 | CHAPTER1 A REFRESHER ON WEB BROWSERS

Increasing Parallel Downloads

Earlier, you learned that web developers have traditionally often used tricks to increase the amount
of parallelization. With the current generation of browsers all enabling more than two parallel con-
nections, the need for this has greatly diminished. As of this writing, IE 7 still makes up a significant
share of the market, though, so it’s still a topic worth discussing.

Eagle-eyed readers will have noticed that this discussion has been quite pedantic in saying that
browsers establish only x number of parallel connections per hostname. It’s not globally (there’s
another limit for that), per server, per IP address, or even per domain. You can easily exploit this by
forcing the browser to fetch more than two resources in parallel.

Consider the following HTML snippet:

Let’s look at how this loads in IE 7, a browser that sticks to the RFC guidelines, as shown in Figure 1-4.

0.5 1.0 1.5 A0
http:sflinuxbox .co.uk/icons .html |
1: linuxhox.co.uk - icons.html 443 ms
2: linuxbox.co.uk - tar.png [
3: linuxbox.co.uk — soundZ.png 290 mE
d: linuxbox.co.uk - soundl.png B 148 ms
S: linuxbox.co.uk - screwl.gif 157 ms
&1 linuxbox.co.uk - portal .giF :143 ms
7: linuxbox.co.uk - worldl.gif :136 ms
d: linuxbox.co.uk - piel.gif :136 5
9: linuxbox.co.uk - pieZ.gif :139 ms
10 linuxbox.co.uk - pie3.gif :141 ms
11: linuxhox.co.uk - pied.gif 137 ms :
12: linuxbox.co.uk - pieS.gif 139 ms :
13: linuxbox.co.uk - pie6.gif 138 ms :
14: linuxhox.co.uk - pie?.gif 138 ms :
15: linuxbox.co.uk - generic.phg 138 mz :
16: linuxbox.co.uk - folder.png 136 mz [0
171 linuxbox.co.uk - link.png 140 s :
18: linuxbox.co.uk - lavout . phg 136 mz :
190 linuxbox.co.uk - dvi.png 136 mz]
201 linuxhox.co.uk - broken.phg 140 ms :
21 linuxbox.co.uk - bomb .png 138 mz :
ZZ; linuxbox.co.uk - favicon.ico 247 ms |
0.5 1.0 1.5 4.0
CPU Utilization /_\
Bandwidbth In 0 - 1,171 Khps) WJ

FIGURE 1-4

How Browsers Download and Render Content | 17

Increase the level of parallelization by splitting the images across two subdomains: static.1linuxbox
.co.uk and images.1inuxbox. co.uk, as shown here:

As shown in Figure 1-5, using this simple technique has cut approximately 0.6 seconds off the page
loading time. (Keep in mind that the nature of the Internet makes it difficult to exactly replicate the
conditions between runs. The second run may have found the network a little quieter, or the web
server less busy.)

0.2 0.4 0.6 0.8 1.0 1.2 4.9 1.6
httpe//linw=box .co.uk/ficons html
1: linuxbox.co.uk - icons.html 354 ms
21 linuxbox.co.uk - tar.png] 195 ms
31 images.linuxbox.co.uk - soundz.phg 449 mz
d: images.linuxhox.co.uk - soundl.phg 379 me
5: static.linuxbox.co.uk - screul.gif 359 ms
6: static.linuxbox.co.uk - portal.gif | 338 ms
71 images.linuxhox.co.uk - piel.gif 138 ms =
8: static.linuxhox.co.uk - pieZ.gif 138 ms =
9: static.linuxbox.co.uk - pie3.gif 147 ms =
10: images.linuxbox.co.uk - worldl.gif 153 m=s =
11: images.linuxbox.co.uk - pied.gif 137 ms =
12: static.linuxbox.co.uk - pied.gif 141 ms =
13: static.linuxbox.co.uk - pie?.gif 138 ms =
14: images.linuxbox.co.uk - pieS.gif 142 ms =
15: images.linuxbox.co.uk - generic.png 140 mz =
16: static.linuxbox.co.uk - link.png 136 ms =
17: static.linuxhox.co.uk - lavout.png 140 mz =
18: images.linuxbox.co.uk - folder.phg 142 mz =
19: images.linuxbox.co.uk - dvi.png 140 mz =
201 static.linuxbox.co.uk - bomb.png 140 mz =
21t images.linuxbox.co.uk — broken.png 140 ms]
221 linuxbax.co.uk - favicon.ico 244 ms| =
0.2 0.4 0.6 0.8 1.0 1.2 4.4 1.6
CPU Utilization
Bandwidth In (0 - 1,962 Khps)

FIGURE 1-5

http://images.linuxbox.co.uk/images2/sound2.png
http://images.linuxbox.co.uk/images2/sound1.png
http://static.linuxbox.co.uk/images2/screw1.gif
http://static.linuxbox.co.uk/images2/portal.gif
http://images.linuxbox.co.uk/images2/world1.gif
http://images.linuxbox.co.uk/images2/pie1.gif
http://static.linuxbox.co.uk/images2/pie2.gif
http://static.linuxbox.co.uk/images2/pie3.gif
http://images.linuxbox.co.uk/images2/pie4.gif
http://images.linuxbox.co.uk/images2/pie5.gif
http://static.linuxbox.co.uk/images2/pie6.gif
http://static.linuxbox.co.uk/images2/pie7.gif
http://images.linuxbox.co.uk/images2/generic.png
http://images.linuxbox.co.uk/images2/folder.png
http://static.linuxbox.co.uk/images2/link.png
http://static.linuxbox.co.uk/images2/layout.png
http://images.linuxbox.co.uk/images2/dvi.png
http://images.linuxbox.co.uk/images2/broken.png
http://static.linuxbox.co.uk/images2/bomb.png

18 | CHAPTER1 A REFRESHER ON WEB BROWSERS

What if you take this to extremes and use enough hostnames to make all the images download in
parallel?

Figure 1-6 shows the result. It’s not quite what you had hoped for — the page loading time has
just doubled! Although the additional DNS lookups required haven’t helped (but this could be
eliminated by using IP addresses rather than hostnames), the main problem seems to be the web
server (Apache, in this case), which was somewhat slow to answer the barrage of requests.

0.5 1.0 1.8 2.0 2.8 3.0 3.8 4.0
httpe//linu=box . co.uk/icons html
1: linuxbox.co.uk - icons.html 354 ms
2: linuxbox.co.uk - tar.png] L
3: images.linuxbox,co.uk - soundz.png L 110d e
d: images.linuxhox.co.uk - soundl.phg 1081 mz
5: static.linudbox.co.uk - screwl.gif L1059
6: static.linuxbox.co.uk - portal.gif 1000 ms
7: content.linuxhox.co.uk - worldl.gif L La0E me
8: content.linuxhox.co.uk - piel.gif 1229 ms
9: resources.linuxbox.co.uk - pied.gif T
10: resources.linuxbox.co.uk - pieZ.gif 1323 ms
11: media.linuxbox.co.uk - pieS.gif] 1328 ms
12: media.linuxbox.co.uk - pied.gif 1279 ms
13: bart.linuxbox.co.uk - pie6.gif 128 s
1d: homer.linuxbox.co.uk - generic.png L1790 s
15: homer.linuxbox.co.uk - Folder.phg 1738 ms
16: marge.linuxhox.co.uk - link.png 2732 ms
17: hart.linuxbox.co.uk - pie?.gif 1731 ms
18: liza.linuxbox.co.uk - dvi.png 2735 m3
19: marge.linuxhox.co.uk - lavout.png 2585 ms
201 maggie. linuxbox.co.uk — bomb.png 2928 ms
211 lisa.linuxbox.co.uk - broken.png 2585 ms
221 linuxbox.co.uk - favicon.ico 237 ms |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
CPU Utilization
A
Bancwidth In (0 - 2,746 Khps) /\/M_/\

FIGURE 1-6

http://images.linuxbox.co.uk/images2/sound2.png
http://images.linuxbox.co.uk/images2/sound1.png
http://static.linuxbox.co.uk/images2/screw1.gif
http://static.linuxbox.co.uk/images2/portal.gif
http://content.linuxbox.co.uk/images2/world1.gif
http://content.linuxbox.co.uk/images2/pie1.gif
http://resources.linuxbox.co.uk/images2/pie2.gif
http://resources.linuxbox.co.uk/images2/pie3.gif
http://media.linuxbox.co.uk/images2/pie4.gif
http://media.linuxbox.co.uk/images2/pie5.gif
http://bart.linuxbox.co.uk/images2/pie6.gif
http://bart.linuxbox.co.uk/images2/pie7.gif
http://homer.linuxbox.co.uk/images2/generic.png
http://homer.linuxbox.co.uk/images2/folder.png
http://marge.linuxbox.co.uk/images2/link.png
http://marge.linuxbox.co.uk/images2/layout.png
http://lisa.linuxbox.co.uk/images2/dvi.png
http://lisa.linuxbox.co.uk/images2/broken.png
http://maggie.linuxbox.co.uk/images2/bomb.png

How Browsers Download and Render Content | 19

After a little Apache tuning (you’ll learn exactly what was done in Chapter 7), if you rerun the test,
the results are more promising, as shown in Figure 1-7.

0.2 0.4 0.6 0.8 1.0
httpe//linw=box couk/icons html
1: linuxbox.co.uk - icons.html 341 ms

i linudios.co.uk - tar.png 51t me

1 images.linuxbox.co.uk - soundZ.png [

¢ images.linuxbox.co.uk - soundl.png 6809 mz

: static.linuxbox.co.uk - screwl.gif 612 ms

: static.linuxbox.co.uk - portal.gif 5685 ms
: content.linuxhox.co.uk - worldl.gif 585 ms
: content.linuxhox.co.uk - piel.gif 524 ms

: resources.linuxbox.co.uk - pieZ.gif 534 ms
10: resources.linuxbox.co.uk - pie3.gif 4593 ms
11: media.linuxbox.co.uk - pied.gif 4597 ms
12: media.linuxbox.co.uk - pieS.gif 457 m3

13: bart.linuxbox.co.uk - pie6.gif 466 ms 1
14: bart.linuxbox.co.uk - pie7?.gif 426 ms
15: homer.linuxbox.co.uk - generic.png 433 mz
16: homer . linuxhox.co.uk - folder.png 395 m3
17: marge.linuxhox.co.uk - link.png 417 mz
18: marge.linuxbox.co.uk - lavout.png 357 ms
19: lisa.linuxbox.co.uk - dvi.png 388 ms
201 lisa.linuxbox.co.uk - broken.png 326 mz
21: maggie.linuxbox.co.uk — bomb.png 345 mz
0.2 0.4 0.6 0.8 1.0

CPU Utilization

Bancuidth In (0 - 7,238 Khps) /_/\‘/

FIGURE 1-7

This time, the load time was 1.15 seconds, an improvement on the test using two subdomains.
This illustrates that, unless the web server is geared toward such a flood of traffic, too much
parallelization can dramatically reduce loading times.

So, where is the sweet spot? Research suggests that splitting content across two to four hostnames
offers the best performance. With anything more than four hostnames, you risk flooding the server
with requests, and (in the case of dial-up users) saturating the network connections.

It’s a mistake to think that parallelization can solve the problem of pages being too heavy, too. It’s
a great way to reduce the latency involved with issuing many requests for small resources (which is
how most sites are structured). However, if you have, for example, two large images, arranging for
them to download in parallel will simply result in each downloading more slowly. Bandwidth is a
finite resource.

Coping with Modern Browsers

Although splitting resources across hostnames used to be a great technique to reduce loading times,
its days are numbered because the most recent generation of browsers moves away from the RFC
guidelines. Catering for both older and newer browsers poses somewhat of a problem, though. It’s
quite easy to envision a scenario in which a site, carefully tuned to accommodate the two-connection
limit of IE 7, results in a surge of connections in IE 8, driving up CPU usage on both the client and
server, and killing performance.

20 | CHAPTER1 A REFRESHER ON WEB BROWSERS

One option is to compromise. Splitting resources across just two domains will still speed things up a
little for older browsers but will lessen the risk of the more recent browsers creating a packet storm.

Another solution would be to use server-side scripting to determine the browser type and ver-
sion, and rewrite the HTML document accordingly. Thus, a Firefox 2 user may see resources split
across four domains, whereas a visitor on Safari would see them split across just two. Naturally,
this causes some additional CPU usage on the server, but it need not be too intense if the server
were simply returning different versions of a static document, rather than rewriting the page
on-the-fly.

Coping with Proxies

This isn’t quite the full story, though. When multiple users behind a proxy visit a site

simultaneously, the web server sees a flood of connections all coming from the same IP address. With
older browsers, the two-connection limit helped to lessen this effect. With newer browsers issuing
perhaps four or six requests in parallel, the potential for a flood is much greater, and an Intrusion
Detection System (IDS) could easily mistake this for a SYN flood or other form of denial-of-service
(DoS) attack (perhaps leading to the IP address being blocked). For this reason, most newer browsers
lower the number of parallel connections when the browser connects via a proxy, and, consequently,
their behavior is more like that of older browsers.

Incidentally, most proxies don’t support HTTP 1.1, so a client connecting through a proxy usually
must downgrade to HTTP 1.0, which leads neatly into the next subject.

Parallel Downloads in HTTP 1.0

Although persistent connections (also known as kKeep-Alive) are supported in many HTTP 1.0
implementations, they are not an official part of the specification. As such, clients connecting via a
proxy — or to a server that does not support HTTP 1.1 — lose out on performance. Increasing the
number of parallel connections is a way to mitigate some of this performance loss. As a result, many
browsers use different levels of parallelization for HTTP 1.0 and 1.1. Thus, Table 1-1 can be refined
to show the data in Table 1-2.

TABLE 1-2: Different Levels of Parallelization for HTTP 1.0 and HTTP 1.1

BROWSER MAX PARALLEL CONNECTIONS
HTTP 1.1 HTTP 1.0

IE6and 7 2 4

IE8 6 6

IE9 6 6

IE 10 8

Firefox 2 2 8

Summary | 21

Firefox 3 6
Firefox 4 - 17 6
Opera 9.63 4
Opera 10

Opera 11 and 12
Chrome 1and 2
Chrome 3

Chrome 4 - 23

~ o A A O 0O » O O

~ o A O O ©

Safari 3 and 4

The effect is most noticeable in the older browsers, with newer browsers generally having
abandoned this strategy — perhaps because of the conflict with the proxy connection limitations
previously discussed.

In the past, both acl.com and Wikipedia have intentionally downgraded to HTTP 1.0, presum-
ably with the intention to speed up their loading times by tricking the browser into increasing
parallelization. This seems to be a somewhat muddled logic. If you must increase parallelization,
the techniques described in this chapter are a better path to follow.

SUMMARY

After a refresher on the history of the web, this chapter provided an inside look at the HTTP
protocol, and some of the key concepts for performance — persistent connections, parallel
downloading, and rendering. You also met caching, which is an essential part of any

website — both for speeding up loading times for the user, and for reducing load on the
server.

In Chapter 2, you’ll learn about the various types of caching, how they work, and how to
implement them to achieve blistering performance.

http://aol.com

Utilizing Client-Side Caching

WHAT’S IN THIS CHAPTER?

Discovering the different types of caches and proxies
Learning how to encourage browsers to cache your contents

Learning how browsers cache 301 redirects

Y Y VY

Understanding DNS caching and prefetching in the major browsers

Caching is an important part of the modern Internet, but it is also an issue surrounded by a
lot of confusion and misunderstanding. The issue is so significant that many web masters see
caching as their enemy and spend copious amounts of time trying to force content not to be
cached. As you shall see, though, caching is a significant concept to ensure the smooth flow of
the web, and web masters would do well to embrace it.

UNDERSTANDING THE TYPES OF CACHING

Caching is a somewhat broad term, but generally refers to the storage of web resources (HTML
documents, images, and so on) in a temporary location to improve performance. Caches can be
implemented by most web browsers, perimeter (intermediate) web proxies, and at the gateways of
large internal networks. Transparent proxies (caches) are used by many Internet Service Providers
(ISPs), reverse proxies sit in front of web servers, and the web server itself utilizes caching.

To understand caching, let’s take a closer look at each of these scenarios.

Caching by Browsers

Most web browsers implement a cache (an area of disk on which previously retrieved resources
can be temporarily stored) to hold recently and frequently accessed resources. This makes

24 | CHAPTER2 UTILIZING CLIENT-SIDE CACHING

perfect sense — it’s much faster to retrieve a resource from the cache than to request it again from
the web server. When deciding what to cache, browsers are usually quite well behaved and
respect the caching policy dictated by the server (which you learn more about in the “Controlling
Caching” section of this chapter).

There are several problems with browser caching. First of all, the size of the cache tends to be quite
small by default. Although the size of the average hard disk in a desktop PC has continued to grow
at quite a rate, increases in the default browser cache size have been more modest. Given that web
pages have become increasingly heavy, browsers would probably be more effective if they defaulted
to much larger caches.

Table 2-1 shows a breakdown of the maximum cache sizes for common browsers.

TABLE 2-1: Maximum Cache Sizes for Common Browsers

BROWSER MAXIMUM CACHE SIZE

Firefox 17 1024 MB

IE6,7 8 1/32 of the drive space, capped at 50 MB
IE9 1/256 of the drive space, capped at 250 MB
Safari Unlimited

Opera 10+ 400 MB

Chrome 300 MB

Also, when the cache becomes full, the algorithm to decide what to remove is crude. Commonly,
the Least Recently Used (LRU) algorithm is used to purge old items. This may seem fine at first
glance, but it fails to take into account the relative “cost” to request different types of resources.
For example, the loading of JavaScript resources typically blocks loading of the rest of the page.
(You will learn in Chapter 6, “JavaScript, the Document Object Model, and Ajax,” why this
doesn’t need to be the case.) It makes more sense for these to be given preference in the cache
over, say, images. Hopefully, this is something that future generations of browsers must take into
consideration.

Finally, there is the human element. Many browsers offer an easy way for the user to remove
temporary data (such as cached pages, sessions, and so on) for the sake of privacy. Users often feel
that cleaning the browser cache is an important step in somehow stopping their PCs from running
slowly. (Although, if you press them for the logic behind this, the most you’ll get is a vague answer
about giving things a spring cleaning.)

So, although the browser cache is a huge benefit, it’s not without its faults.

Intermediate Caches

The intermediate cache/proxy (so called because so often it fulfills the purposes of both caching and
proxying) is commonly used by ISPs and larger organizations.

Controlling Caching | 25

When used by ISPs, it typically takes the form of a transparent caching proxy that silently intercepts
HTTP traffic. When the client makes a request, the proxy intercepts it and checks its local cache for
a copy of the resource. If none is found, it makes the request on the client’s behalf and then relays
this back to the client, caching a copy itself in the process. When another client on the same ISP
requests the same resource, a cached copy is then already at hand.

Although this type of proxy can offer significant performance benefits (because the connection
between the client and the proxy is generally low latency and high bandwidth), the downside is that
there is some increased latency for resources that are not in the intermediate’s cache.

Closely related to this type of cache are the border-level caching proxies implemented by many large
organizations. Often, the primary reason for these is security (because they offer the capability to
filter content), and clients inside the local area network (LAN) must configure their browsers to
connect to the outside world via the proxy. However, they are often used for caching, too.

Reverse Proxies

Whereas browser caches and intermediate proxies are generally for the benefit of the client, reverse
proxies are usually used for the benefit of the web server. These proxies sit in front of the web server
and have two purposes (although sometimes they are used for just one of these reasons): caching and
load balancing. For caching, they can be used to lighten load on the back-end web server by serving
up cached versions of dynamically generated pages (thus cutting CPU usage). For load balancing,
they can be used for load-balancing multiple back-end web servers.

CONTROLLING CACHING

Now that you have a grasp of the main types of caches and proxies available, let’s look at methods
that attempt to control them.

NOTE [n most cases, all you can do is to suggest policies to caches and proxies,
but most of them will respect these suggestions.

Conditional GETs

Look again at the browser cache. How does it know if a local, cached copy of a resource is

still valid? The standard way is to send a conditional GET request. This takes the form of an
If-Modified-Since header in the request. If the server determines that the resource has been
modified since the date given in this header (which will be set by the browser as the Last-Modified
time returned with the original response), the resource is returned as normal. Otherwise, a

304 Not Modified status is returned.

This can be neatly illustrated by requesting a resource in a browser, then re-requesting it a few
seconds later. Unless the web server is overriding this default caching behavior, you see a 200 ok
the first time (assuming you don’t already have a copy in the cache) and then a 304 the second time.
Here’s what you see when you request http://www.debian.org/Pics/debian.png:

http://www.debian.org/Pics/debian.png:

26 | CHAPTER 2 UTILIZING CLIENT-SIDE CACHING

http://www.debian.org/Pics/debian.png

GET /Pics/debian.png HTTP/1.1

Host: www.debian.org

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:1.9.1.8)
Gecko/20100308 Iceweasel/3.5.8 (like Firefox/3.5.8) GTB7.1

Keep-Alive: 300

Connection: keep-alive

Referer: http://www.debian.org/

Pragma: no-cache

Cache-Control: no-cache

HTTP/1.1 200 OK

Date: Sun, 01 Aug 2010 08:24:47 GMT

Server: Apache/2.2.9 (Debian) mod perl/2.0.4 Perl/v5.10.0
Last-Modified: Sat, 30 Jun 2007 13:26:17 GMT
Accept-Ranges: bytes

Content-Length: 3895

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: image/png

http://www.debian.org/Pics/debian.png

GET /Pics/debian.png HTTP/1.1

Host: www.debian.org

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.8)
Gecko/20100308 Iceweasel/3.5.8 (like Firefox/3.5.8) GTB7.1

Keep-Alive: 300

Connection: keep-alive

Referer: http://www.debian.org/

If-Modified-Since: Sat, 30 Jun 2007 13:26:17 GMT

Cache-Control: max-age=0

HTTP/1.1 304 Not Modified

Date: Sun, 01 Aug 2010 08:24:50 GMT

Server: Apache/2.2.9 (Debian) mod perl/2.0.4 Perl/v5.10.0
Connection: Keep-Alive

Keep-Alive: timeout=15, max=98

On the first request, a Last-Modified header of sat, 30 Jun 2007 13:26:17 GMT is returned in
the response. The browser caches the image, along with this date.

When you issue the second request, the header 1f-Modified-Since: Sat, 30 Jun 2007
13:26:17 GMT is sent to the server, saying “send me /Pics/debian.org if it has been modified
since Sat, 30 Jun 2007 13:26:17 GMT.” In this example, this isn’t the case, and the server sends
back a 304 Not Modified status.

The benefits of this should be obvious. Rather than spending time downloading the resource again,
the browser can use its locally cached copy. However, there is also a significant drawback: The
browser must still request the resource. In this example, in which the image was a mere 3.8 KB, the
time in setting up the connection and issuing the request is likely to far outweigh the actual time
that would be spent downloading the image.

http://www.debian.org/Pics/debian.png
http://www.debian.org
http://www.debian.org/
http://www.debian.org/Pics/debian.png
http://www.debian.org
http://www.debian.org/

Controlling Caching | 27

Let’s try another test, this time using an HTML document containing four small images.
Figure 2-1 shows the waterfall view the first time the page is requested.

W

Console

HTML

[s-1-]

Script DOM | Netw |

N=[5]0]

Jw | Clear Persist [lAII HTML CSS JS XHR Images Flash

URL

| Status

| Domain | Size | Timeline

GET test.html

GET rss_icon.pn
& GET FaceBook-i
GET xmms-icons
'+ GET alert-icon.g

linuxbox.co.uk 109 B (7) [
linuxbox.co.uk 2.7 KB (7}

linuxbox.co.uk 1.8 KB (?)
linuxbox. co.uk 2.4 KB (?)
linuxbox. co.uk 1.7 KB (?)

79ms
45ms
| B 51ms
] A 53ms

5 requests

168ms (onload: 175ms)

FIGURE 2-1

With none of the resources having previously been requested, the cache is empty, and all resources
must be downloaded. When you repeat the test (as shown in Figure 2-2), all five resources are now
in the browser cache. The server sends back 304 Not Modified in response to the conditional GETs,
but this doesn’t help much because the time spent actually downloading the resource was so small.

3% o
% % Console HTML CS5 Script DOM | Net~ B2
4l Clear Persist |All HTML CSS |S XHR Images Flash

URL Status Domain Size Timeline

GET test.html 304 Mot Modified linuxbox.co.uk 1098 JEms

* GET rss_icon.pn odified linuxbox.co.uk 2.7KB - 3Ems

GET FaceBook-i lified linuxbox.co.uk 1 8KB o 7sms

GET xmms-iconk o d linuxbox.co.uk 2.4 KB [83ms

+ GET alert-icon.g 304 Not Modified linuxbox.co.uk 1.7 KB | | 57ms

5 requests 8.6 KB (8.6 KB from cache) 177ms (onload: 200ms)

FIGURE 2-2

In this test, the second run was slightly slower than the first. This was a blip, perhaps because of
network conditions or changes in load on the server. Even so, the improvement in performance is
never going to be particularly big in this example.

That’s not to say this method of caching is useless, but merely that, in cases in which the download-
ing of the resource forms only a small fraction of the request time, it doesn’t have much benefit. Had
you used larger images, the difference would be noticeable.

Figure 2-3 shows another test page containing a 3.7 MB JPEG image:

¥ o
é’ & console

e | Clear Persist [|AH HTML €SS |S XHR Images Flash
URL | Status | Size | Timeline

¥ Net panel activated. Any requests while the net panel is inactive are not shown.

HTML €SS Script DOM | Net= | | SEE

GET test2.html
GET monet.jpg

200 0K
200 0K

linuxbox.co.uk 228 (7) || 102ms
linuxbox.co.uk 3.7 MB (7]

3.33s

2 requests

3.7 MB

3.43s (onload: 6.01s)

FIGURE 2-3

28 | CHAPTER 2 UTILIZING CLIENT-SIDE CACHING

On the first run, the image takes a little more than 3 seconds to load, and the HTML page hasn’t

finished rendering until 6 seconds later.

On the second run (shown in Figure 2-4), with the cache primed, the overhead to send the

conditional GET is almost insignificant to the size of the image,

136 milliseconds (ms) — quite a saving.

and the page loads in a mere

% s —
% X Console HTML CS5 Script DOM | Netw |

=50

| Clear Persist ||AII HTML CSS JS XHR Images Flash

URL | Status | Domain | Size | Timeline

*# GET test2.html 304 Mot Modified linuxbox.co.uk

GET monet.jpg

220
3.7MB

79ms
40ms

2 requests 3.7 MB (3.7 MB from cache)

123ms (onload: 136ms)

FIGURE 2-4

Of course, these two examples are extremes of the spectrum. But, in practice, pages do tend to be
more like the first example (with many small resources) than the latter.

It would be great if there were a way to tell the browser not to issue these conditional GETs if it

already had the resource in the cache. As it turns out, there is.

Utilizing Cache-Control and Expires Headers

In the previous examples, the server sent a Last -Modified header in responses, which contained the
date that the resource was last modified. The client cached this date with the resource and used it to
send an If-Modified-Since header when requesting the same resource at a future date.

There are two more headers that can control caching: Expires and Cache-Control: max-age.
These headers effectively say to the client, “This resource expires on such-and-such a date. Until
then, you can just use your locally cached copy (if you have one).” The result is that the client

doesn’t need to issue a conditional GET.

But why are there two different headers for doing this? What are the differences, and which is the

best to use?

The main difference is that Expires was defined in HTTP 1.0, whereas the cache-control family
is new to HTTP 1.1. So, in theory, Expires is safer because you occasionally still encounter cli-
ents that support only HTTP 1.0. Modern browsers understand both headers; although if both are

present, preference is given to Cache-Control: max-age.

mod_expires

In Apache, the mod_expires modules can be used to set both Expires and Cache-Control headers
at one time. The syntax is simple, but be sure that mod expires is loaded first:

ExpiresByType image/gif "access plus 2 months"

Controlling Caching | 29

This tells Apache to set Expires and Cache-Control: max-age headers with a date 2 months in
the future (that is, 2 months from the date at which the request is made) for files of the images/

gif Multipurpose Internet Mail Extension (MIME) type. Alternatively, you can set the values to a
fixed date. (Most examples on the web seem to use a date of Thu, 15 Apr 2010 20:00:00 GMT,
which suggests a lot of copy and pasting is going on.) However, this is recommended only for special
circumstances — it’s much better to use relative dates.

Let’s set up some expiration rules in an .htaccess, and then run the example again. Set GIF, PNG,
and JPEG files to expire in two months, as shown here:

ExpiresByType image/gif "access plus 2 months"
ExpiresByType image/png "access plus 2 months"
ExpiresByType image/jpeg "access plus 2 months"

First, you do a hard refresh of the page to force all resources to download again, as shown in
Figure 2-5.

*] PR
‘éf ¥ console HTML €SS Script DOM | Netw | | BEE
v | Clear Persist | |AH HTML CSS |S XHR Images Flash

URL | Status | Domain | Size ‘ Timeline

[# GET test.html 200 QK linuxbox.co.uk 1398 (?) | 29Tms

[# GET rss_icon.png [s]'4 linuxbox.co.uk 2.7 KB (?) 53ms

¥ GET FaceBook-ict oK linuxbox co.uk 1.8KB (7) L 118ms

#l GET xmms-icon5.| oK linuxbox.co.uk 2.4 KB (?) B 60ms

= GET alert-icon.gif 200 0K linuxbox.co.uk 1.7 KB (?) B 135ms

Headers Response

Response Headers

Date
Server

Mon, 02 Aug 2010 09:456:50 GMT

Apache/2.2.9 (Debian) PHP/S.2.6-1+lenny8 with Suhosin-
.4 Perl/v5.10.0

Thu, 30 Oct 2008 20:17:03 GMT

Patch mod_ss1/2.2.9 OpensSsSL/0.9.8g mod_perl/2.0

Last-Modified

Accept-Ranges
Content-Length
Cache-Control
Expires
Keep-Alive
Connection
Content-Type

bytes

1717

max -age=5184000

Fri, Ol Oct 2010 09:46:50 GMT
timeout=15, max=55
Keep-Alive

image/gif

Request Headers

FIGURE 2-5

The header information has been expanded for the final request response to show the
Cache-Control and Expires headers that have now been set.

When you re-request the page, the difference is spectacular, as shown in Figure 2-6.

s =
"N Console HTML €55 Script DOM | Netw | eEE
U | Clear Persist [lAII HTML CSS JS XHR Images Flash

URL | Status | Domain ‘ Size | Timeline

GET testl.html 200 OK linuxbox.co.uk 139817 [4?2”'53

1 request 139 B 272ms (onload: 306ms)

FIGURE 2-6

30 | CHAPTER 2 UTILIZING CLIENT-SIDE CACHING

This time, only the HTML page is requested. The four images contained in it are simply loaded
from the cache without bothering the server.

Choosing Expiration Policies

Armed with this powerful tool, you now must decide what to cache and for how long. Images are
prime candidates, along with cascading style sheet (CSS), JavaScript, HTML, Flash movies, and so
on. The only type of resources you don’t usually want to cache (or at least not for long periods of
time) is dynamically generated content created by server-side scripting languages such as PHP, Perl,
Ruby, and so on. Implementation is then just creating a ExpiresByType directive for each MIME
type. This can be done server-wide or on a per-directory basis, and, in the former case, you can
always override it for specific directories.

How long should you cache for? One or two months seems like a good figure, although there’s
nothing to stop you from setting longer times. Clients re-requesting resources once every couple of
months are unlikely to be a particular drain on the server, and for caching periods longer than this,
the benefits become less and less.

What about nonstatic resources that change on a semi-regular basis? Although it might be tempting
to not cache these, even a caching time of a couple of hours can make a significant difference in
performance.

Coping with Stale Content

Although far-future Expires/Cache-control headers are great for performance, there will inevita-
bly come a time when you need to roll out an updated version of your site’s logo, CSS, or JavaScript.
How do you deal with clients that already have these resources cached?

Fortunately, there are a few tricks you can use to make the client re-request the resource, all of
which revolve around changing the URL to trick the browser into thinking the resource is not
already cached. Following are some examples:

> Use a version/revision number or date in the filename (for example, sitecode-1.0.1.5s).

> Use a version/revision number or date in the path (for example, /javascript/2011-03-26/
sitecode.js).

> Switch the resource to a Canonical Name (CNAME) (for example, http://reviol
.mysite.com/javascript/sitecode.js).

> Append a dummy query string (for example, sitecode.js?v=1.0.1).

The folks at bbc.co.uk go with the last method, as shown here:

<link rel="stylesheet" type="text/css"
href="http://static.bbc.co.uk/homepage/css/bundles/domestic/main.css?553"
media="screen,print" />
<link rel="stylesheet" type="text/css" href="http://static.bbc.co.uk/
homepage/css/contentblock/promo/mediazone.css?553"
media="screen,print" />

http://rev101.mysite.com/javascript/sitecode.js
http://static.bbc.co.uk/homepage/css/bundles/domestic/main.css?553
http://static.bbc.co.uk/homepage/css/contentblock/promo/mediazone.css?553
http://static.bbc.co.uk/homepage/css/contentblock/promo/mediazone.css?553
http://rev101.mysite.com/javascript/sitecode.js
http://bbc.co.uk

Dealing with Intermediate Caches | 31

The folks at eBay. co.uk use a combination of the first and second examples, as shown here:

link rel="stylesheet" type="text/css" href="http://include.ebaystatic.com/
v4css/en GB/e6791/CCHP HomepageV4 DLSR €679111667273 en GB.css">

Few sites (if any) use the third method yet — probably because it involves additional work to set up
the domain name service (DNS) and has no particular benefit over the other techniques.

It’s also worth noting that some intermediate proxy-caches may not cache resources that contain a
query string. So, the first two options are the safest bet.

With a bit of planning, none of these URL tricks should be difficult to implement, and rolling out
new versions of resources should just entail changing global variables somewhere.

How Not to Cache

It’s common to see meta tags used in the HTML of pages to control caching. This is a poor man’s
cache control technique, which isn’t terribly effective. Although most browsers honor these meta
tags when caching locally, most intermediate proxies do not — because they tend to look at only the
headers of requests and not the body,. So, unless you’re in a hosting environment in which you don’t
have control over HTTP headers (in which case, moving the host would be a much better bet), such
meta tags should be avoided.

DEALING WITH INTERMEDIATE CACHES

Thus far, you have learned about controlling browser caching. What differences (if any) do you see
with intermediate caching devices?

Cache-Control Revisited

The cache-Control response header supports a lot more options than just max-age, and some of
these options deal specifically with public caches. Following is a list of the most commonly seen
Cache-Control options:

» Cache-Control :max-age=<seconds> — This is the maximum number of seconds for
which the resource should be cached.

» Cache-Control :s-maxage=<seconds> — This is the maximum number of seconds for
which the resource should be cached on shared (for example, public) caches.

> Cache-Control:public — This means that the response is cachable. This is used to
override situations in which the response would usually be noncachable (for example,
where HTTP authentication is used).

» Cache-Control:private — This means that shared caches should not cache this resource.
Private caches (for example, those specific to a user, such as the browser cache) may cache
this resource.

http://include.ebaystatic.com/v4css/en_GB/e679i/CCHP_HomepageV4_DLSR_e679i11667273_en_GB.css
http://include.ebaystatic.com/v4css/en_GB/e679i/CCHP_HomepageV4_DLSR_e679i11667273_en_GB.css
http://eBay.co.uk

32 | CHAPTER2 UTILIZING CLIENT-SIDE CACHING

> Cache-Control:no-store — This means that the resource should not be cached in any
situation, whether on shared or private caches.

> Cache-Control :must-revalidate — This requests that the cache must honor any
Expires/Cache-Control: max-age headers set in the request. Without this, there are rare
situations in which the cache may serve a stale copy of the resource.

> Cache-Control :proxy-revalidate — This is similar to must-revalidate but applies
only to caching proxies.

> Cache-Control:no-cache — This means that the response must not be cached.

Recall from the earlier discussion about mod_expires that Cache-Control :max-age headers
can be set using the ExpiresByType directive (which also sets Expires headers). To set other
Cache-Control headers, you can use the Headers directive (part of mod headers). Following is
an example:

<FilesMatch "\. (php)$">
Header set Cache-Control "private"
</FilesMatch>

Don’t forget to ensure that mod_headers is loaded in your Apache configuration file.

Cache-Control options may also be combined, as shown here:

Cache-Control: max-age=7200, must-revalidate
Requests, not Orders

The guidance provided previously about Expires and cache-Control :max-age should also apply to
public proxies and intermediate caches. Just remember that all caching-related headers are requests,
not orders. Although you can ask a cache to behave a certain way, you can’t force it. Although
browser caches are usually fairly well behaved, it’s not uncommon to find intermediate caching
proxies that stubbornly insist on doing things their own way. In these situations, sadly, nothing
much can be done.

CACHING HTTP RESPONSES

Caching is usually associated with HTML documents and other resources, but there is also the
opportunity for browsers to cache certain HTTP response codes, potentially saving a round trip
to the web server. Unfortunately, this can cause problems for developers — especially if they are
unaware of this behavior.

The Shift in Browser Behavior

A regular source of head-scratching for many web developers has been caused by a subtle shift in the
way in which 3xx HTTP responses are cached by browsers.

Until a couple of years ago, none of the major browsers cached 301 redirect responses. So, if you set
up a 301 redirect from, say, http://mysite.com/a.html to http://mysite.com/b.html, when a

http://mysite.com/a.html
http://mysite.com/b.html

Caching HTTP Responses | 33

user entered http://mysite.com/a.html into the browser’s address bar, the browser would
always issue a request for http://mysite.com/a.html — even if it had previously seen this
resource return a 301.

Given that a 301 status means “Moved Permanently,” it seems logical that browsers should

cache (or have the option of caching) such responses, and the HTTP 1.1 RFC (RFC 2616 at http://
www.w3 .org/Protocols/rfc2616) says as much. According to that RFC, “This response is cache-
able unless indicated otherwise.”

Nevertheless, this doesn’t mean that browsers should cache 301s, and for more than 10 years (the
RFC was published in 1999), none of the major ones did. Thus, web developers became quite used
to the idea that 301 redirects could be modified server-side without any browser caching problems. .

Things changed in 2009 when the new browsers, such as Google Chrome and Firefox (perhaps
driven by the increasing interest in performance), began caching 301 responses. The other major
browsers followed suit soon afterward.

Technically, this is probably the right thing to do, and the RFC appears to encourage it. But for a
generation of web developers used to the idea that 301s would not be cached, it has caused a lot of
controversy.

To compound the problem, many browser developers chose not to set a default expiration time on
these cache entries (Firefox is a prime example). So, after they are in the browser’s cache, they are in
there forever. Even using the browser’s option to empty the cache won’t remove them because they
are stored elsewhere. This creates no end to the problems if you have a 301 redirect in place and
want to change it. Even though a 301 says, Moved Permanently, this probably will not apply for all
eternity. In extreme situations, this caching can even result in infinite redirects, with the browser
bouncing between two URLs that it believes redirect to each other.

It’s not all bad news. Although many of the latest browsers can cache 301s indefinitely by default,
you can control this behavior (including disabling it) by setting an appropriate Cache-control or
Expires header (or, for safety, both). In the past, the main problem has simply been that web devel-
opers did not realize they would need to do this.

On a more practical level, the issue arises of how to actually set cache-control and Expires head-
ers on a 301 redirect. In Apache, a standard Redirect doesn’t offer this option and, at first glance,
neither does mod_rewrite. If you’ve worked with mod_rewrite before, though, you know how
powerful it can be. With a little bit of trickery, you can set additional headers on a 301.

You must first abandon Redirect in favor of mod_rewrite, as shown here:

Redirect 301 /a.html http://mysite.com/b.html
RewriteRule “/a.html$ http://mysite.com/b.html [R=301,L]

The magic comes in when you also set an environmental variable at this stage. You can then create
rules farther down that set headers if the env variable is set. The full code is as follows:

RewriteRule “/a.html$ http://mysite.com/b.html [R=301,L,E=foo:1]
Header always set Expires "Thu, 01 Jan 1970 00:00:00 GMT" env=foo
Header always set Cache-Control "no-store, no-cache, must-revalidate" env=foo

http://mysite.com/a.html
http://mysite.com/a.html
http://www.w3.org/Protocols/rfc2616
http://www.w3.org/Protocols/rfc2616
http://mysite.com/b.html
http://mysite.com/b.html
http://mysite.com/b.html

34 | CHAPTER 2 UTILIZING CLIENT-SIDE CACHING

In this example, the env variable is foo, and is given a value of 1 if the rewrite rule matches.

You then set two headers to request that the client does not cache the result. Of course, you could
just as easily set Expires headers in the near future to allow short-term caching of the redirect.
Using mod_rewrite will always be more expensive than a simple redirect, but it’s currently the only
solution to set caching times on 301s.

Using Alternative 3xx Codes

Given that a 301 means Moved Permanently, it’s worth rethinking the situations in which you use it.
Web developers too often use a 301 for any form of redirect, no matter how transient it may be.

302 Found

A 302 Found response is one option. It indicates that the resource is temporarily located at
another URL, and the RFC is quite clear that it should be cached only if appropriate Expires or
Cache-control headers have been set to permit it. (Incidentally, the HTML meta refresh tag
uses 302s.) This sounds promising but turns out to be something of a minefield for Search Engine
Optimization (SEO).

Because many web masters may not appreciate the difference between 301 and 302, Google actu-
ally treats a 302 as a 301 if it decides the web master meant the latter. Bing and Yahoo don’t appear
to do this, but there is still concern over all three of the big search engines handling 302s in an
unwanted way. Because a 302 is generally taken to mean a temporary redirect, it doesn’t seem
appropriate to use it for long-term redirects.

303 See Other

For redirects that you do not want to cache, a 303 See Other is perhaps the most suitable option.
The RFC states that this response must not be cached, regardless of the presence or lack of caching-
related headers. This makes it useful in situations in which you have limited control over headers or
are worried about badly behaved browsers caching 302s.

In most cases, though, you probably do want redirects to be permanent (or at least semi-permanent),
and a 301 is the most appropriate response. You just need to be aware that browsers will take this
literally and set appropriate caching headers to prevent them from caching the 301s indefinitely.

DNS CACHING AND PREFETCHING

DNS is a prime example of effective, well-thought-out caching. Without caching, the whole system
would fail under the load. DNS caching occurs at many levels, and although web developers or
system administrators don’t have a huge amount of control over how clients behave in this regard,
it is important enough that it should be examined. Later, you’ll learn about some specific measures
introduced in web browsers, but to start let’s review the DNS resolution process and the places in
which caching can occur.

DNS Caching and Prefetching | 35

The DNS Resolution Process

When a user enters a URL into the browser’s address bar, the first step is for the browser to resolve
the hostname to an IP address, a task that it delegates to the operating system. At this stage, the
operating system has a couple of choices. It can either resolve the address using a static hosts file
(such as /etc/hosts on Linux), or it can query a DNS resolver. Most commonly, the resolving
DNS server is hosted by the client’s ISP, but some home users also run a resolver locally to increase
performance. In larger corporate environments, it’s common for a resolving DNS server to run

inside the LAN.

If the queried resolver does not have the answer (to the DNS query), it attempts to establish which
name servers are authoritative for the hostname the client wants to resolve. It then queries one of
them and relays the answer back to the client that issued the request.

There’s quite a lot going on here, with a single DNS query potentially resulting in a string of queries
between multiple servers. Yet, despite this, DNS usually works efficiently, with a typical query tak-
ing less than 200 ms.

In practice, queries can be much faster than this because of the effects of caching. Whenever the
client issues a request to an ISP’s resolver, the resolver caches the response for a short period (the
Time-To-Live, or TTL, set by the authoritative name server), and subsequent queries for this host-
name can be answered directly from the cache. Because the latency between the client and the ISP’s
resolving name servers is generally low, responses are typically under 50 ms. (However, remember
that wireless and dial-up connections have inherently higher latency.) Because this cache is shared
among all customers of the ISP, the cache may well be primed already as a result of look-ups by
other users.

The caching doesn’t stop there, though. Even if end users aren’t running their own caching (resolv-
ing) name server, the operating system typically caches DNS answers. Because this doesn’t involve
any network traffic, the latency is very low.

DNS Caching by the Browser

If that weren’t enough, the major browsers now also implement their own DNS cache, which, in
many cases, removes the need for the browser to ask the operating system to resolve. Because this
isn’t particularly faster than querying the operating system’s cache, the primary motivation here is
better control over what is cached and for how long.

For example, Opera caches DNS answers for 10 minutes, while Internet Explorer (IE) 4 and
upward cache for 30 minutes. With Firefox 3.5 onward, the defaults are up to 400 cache entries
with a 3-minute life, but this is conﬁgurable via network.dnsCacheEntries and network
.dnsCacheExpiration. None of the big browsers offer a way to specifically clear the

DNS cache; although using the option to clear general cached data will usually have the

same effect.

36 | CHAPTER 2 UTILIZING CLIENT-SIDE CACHING

How DNS Lookups Affect Performance

The result of all this caching is that DNS look-up times can vary dramatically — anything from a
few milliseconds to perhaps one-half a second (longer look-ups aren’t uncommon for users on high-
latency links) if a remote name server must be queried. This manifests itself mostly as a slight delay
when the user first loads the site. On subsequent views, the DNS query is answered from a cache. If
you have a lot of resources spread across different hostnames (for example, to improve download
concurrency, although this usually isn’t necessary these days), these look-up times can mount up.

Using IP addresses rather than hostnames is one way to avoid the cost of the DNS look-up. But this
doesn’t tend to be practical given how extensively virtual hosting is used. (There’s no one-to-one
mapping between IP and hostname.) Instead, you should ensure that DNS queries on your domains
are resolved quickly and used with a high TTL to encourage longer caching. If necessary, use your
own name servers, where you have greater control over the TTL and network performance.

DNS Prefetching

Web browsers have another trick up their sleeves to help with DNS performance: DNS prefetching.
Introduced in Chrome in 2008, prefetching involves performing DNS lookups on URLSs linked to in
the HTML document, in anticipation that the user may eventually click one of these links. All the
major browsers now support DNS prefetching; although the implementations differ slightly.

Prefetching is slightly reminiscent of those annoying browsers and plug-ins that were popular a
decade or so ago. They would prefetch all the links in an HTML document to improve responsive-
ness. Web masters hated these browsers because they drove up bandwidth and server load, made
web stats meaningless, and end users often got a nasty shock if they were not on unmetered band-
width. The difference with DNS prefetching is that the amount of data sent over the network is
much lower. Typically, a single User Datagram Protocol (UDP) packet can carry the question, and a
second UDP packet can carry the answer.

In Chrome, prefetching occurs in the background after the HTML document has been fetched —
either while additional resources are retrieved, or the user is reading the page. Because a slow
look-up on one query would cause a delay in resolving the others, Chrome uses multiple threads
(up to a maximum of eight) on operating systems that don’t support asynchronous DNS lookups
(such as Windows). This ensures that a slow name server doesn’t hold up any other queries.

It’s interesting to note that when Chrome receives the responses to these DNS prefetch queries, it
simply discards them, rather than storing them in its DNS cache. Although this may seem odd, it
serves to prime the operating system’s DNS cache, which can return a response immediately should
the browser later request it.

Firefox 3.5 took Chrome’s prefetching implementation one step further. Whereas the original
Chrome implementation only prefetched hostnames used in anchor links, when Firefox downloads
an HTML document, it immediately begins resolving hostnames used in other resources (such as
images, CSS, and JavaScript). This is beyond the anticipatory prefetching used in other browsers and
is more of a case of streamlining parallel downloading.

Summary | 37

Controlling Prefetching

One situation in which prefetching fails to be effective is with links that redirect straight to another
URL. A prime example would be the links in Google search results, which take the user to their
intended destination after first passing through a tracking URL. Here, the tracking hostname would
be prefetched but not the ultimate destination domain. To accommodate this, most browsers now
support a <link> tag with the nonstandard rel="dns-prefetch" attribute. This causes the browser
to prefetch the given hostname and can be used to precache such redirect links. Following is an
example:

<link rel="dns-prefetch" href="http://www.example.com">

In addition, site owners can disable or enable prefetching through the use of a special HTTP header
like this:

X-DNS-Prefetch-Control: off

Although introduced by Chrome, this header is recognized by all browsers that support prefetching.

SUMMARY

Caching is an essential part of website performance. Left to their own devices, browsers make a rea-
sonable effort to cache through the use of conditional GeTs. Although this cuts down on data trans-
ferred from the server to the client, it does nothing to reduce the number of HTTP requests. Instead,
Expires or Cache-Control headers should be used because they are far more powerful and effective.

HTTP resources aren’t the only things to be cached by browsers, however. All the major browsers
perform some level of DNS caching, and within the last few years they have also begun to perform
DNS prefetching. Again, the details vary from browser to browser.

The flip side to aggressive caching is that sometimes the client has stale content, and trickery is
needed to force the browser to refresh. In recent years, this has become a particular problem with
301 redirects because of a shift in the way that browsers handle the caching of them.

Although you can set specific Cache-Control headers to discourage caching (for example, to stop
intermediate proxies from caching private data), resources on which you have previously set a
far-future expiration time are more problematic. The most common workaround is to use version
numbers in either the filename or the query string (for example, changing your HTML source to
reference myscript-v2.js rather than myscript-vi.js).

So far, you’ve seen only client-side aspects of caching. but in Chapter 7, “Working with Web
Servers,” you’ll see caching from the opposite end, and learn how web servers can save themselves a
lot of work by serving pre-generated content from a cache.

While caching is a very useful means of reducing loading times for repeated page views, it does
nothing to speed up the initial loading of a page (where the user’s cache is not primed). In Chapter 3,
you’ll see how compression can be used to reduce the amount of data that the client’s browser needs
to fetch.

http://www.example.com

Content Compression

WHAT’S IN THIS CHAPTER?

>

>

>

>

Understanding how HTTP compression works

Becoming familiar with browser quirks and how to handle clients
that don’t support compression

Exploring alternatives to gzip and deflate compression

Compressing directly in PHP

With bandwidth being a bottleneck for many users (and for dial-up users, easily the largest
bottleneck), it’s not surprising that web masters would want to compress their content. The
benefits are obvious — faster loading times for users and reduced data transfer bills for web
masters. This chapter examines the available methods of compression, which browsers
support them, and situations in which compression is not appropriate.

WHO USES COMPRESSION

Armed with a list of the 1,000 most popular websites (courtesy of Alexa.com), a quick

test of average page sizes and compression support revealed how the top 20 rate, as shown in
Table 3-1.

http://Alexa.com

40 | CHAPTER3 CONTENT COMPRESSION

TABLE 3-1: Average Page Sizes of the Top 20 Websites

GzIP HOMEPAGE SIZE HOMEPAGE SIZE PERCENT OF
COMPRESSION (UNCOMPRESSED) (COMPRESSED) UNCOMPRESSED

DOMAIN SUPPORTED? IN KB IN KB SIZE
Google.com Yes 13.7 5.2 38
Facebook. com Yes 30.9 9.6 31
Youtube . com Yes 671 16.3 24
Yahoo.com Yes 161.0 39.5 25
Live.com No 35.0 = -
Baidu.com Yes 6.3 3.0 48
Wikipedia.org Yes 46.9 1.7 25
Blogger.com Yes 12.6 4.6 37
Msn.com Yes 90.3 271 30
Twitter.com Yes 441 9.4 21
qagq.com Yes 193.2 49.0 25
Yahoo.co.jp Yes 29.0 7.0 24
Google.co.in Yes 14.0 5.0 36
Taobao.com Yes 166.2 31.3 19
Amazon.com Yes 138.9 25.6 18
Sina.com.cn Yes 172.4 1.7 67
Google.de Yes 13.0 5.0 38
Google.com.hk Yes 12.0 5.0 42
Wordpress.com Yes 35.6 1.2 31
Ebay.com Yes 356 1.5 32

As you can see, compression is well supported. Of the top 1,000 sites, 227 did not support compres-
sion, with only 1 in the top 20 (1ive.com) and 10 in the top 100 not supporting it.

There’s also a fairly wide range in the amount of compression achieved in this Top 20 table, with the
size of the compressed contents being anything between 15 percent and 60 percent of the original.
In general, you should expect to see a compression ratio of approximately 1:3 or 1:4 for HTML,

but it is highly dependent on the nature of the text (in particular, repeating patterns). Later in this
chapter, you’ll learn more about ways to improve this.

http://Google.com
http://Facebook.com
http://Youtube.com
http://Yahoo.com
http://Live.com
http://Baidu.com
http://Wikipedia.org
http://Blogger.com
http://Msn.com
http://Twitter.com
http://qq.com
http://Yahoo.co.jp
http://Google.co.in
http://Taobao.com
http://Amazon.com
http://Sina.com.cn
http://Google.de
http://Google.com.hk
http://Wordpress.com
http://Ebay.com
http://live.com

Understanding How Compression Works | 41

Although it’s difficult to produce accurate empirical data about download times (because there are
so many other factors), it would take a dial-up user approximately 14 seconds to retrieve the
youtube . com homepage without compression. With compression, this figure drops to 2 seconds.
For the painfully large sina.com.cn, without compression, dial-up users would need to wait more
than a minute for the homepage HTML document to download, a figure that drops to an almost
bearable 16 seconds with compression.

The picture isn’t quite so bleak for broadband users. Uncompressed, the homepage HTML
document of sina.com.cn (which is, admittedly, unusually large) would take approximately 4
seconds to retrieve from a 1 megabit (mb) connection. Compressed, this figure drops to 1 second.
For more reasonably sized HTML documents (such as those on the homepages of Wikipedia or
Twitter), the benefits of compression for broadband users are fractions of a second. But this is
still a saving worth making. As connection speeds have increased, so, too, have expectations

of users.

UNDERSTANDING HOW COMPRESSION WORKS

Like many other features of HTTP (such as KeepAlive, as discussed in Chapter 1, “A Refresher on
Web Browsers”), content compression occurs only when a client advertises, wants to use it, and a
server indicates its willingness to enable it.

Clients indicate they want to use it by sending the Accept -Encoding header when making
requests. The value of this header is a comma-separated list of compression methods that the

client will accept. If the server supports content compression (or, more accurately, if it supports any
of the compression methods that the client has advertised), it may deliver a compressed version of
the resource. It indicates that the content has been compressed (and the compression method used)
with the content -Encoding header in the response, as shown here:

GET /1/icons.html HTTP/1.1

Host: linuxbox.co.uk

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:1.9.1.8)
Gecko/20100308 Iceweasel/3.5.8 (like Firefox/3.5.8) GTB7.1

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9g=0.7,%*;9=0.7

Keep-Alive: 300

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny8 with Suhosin-Patch
mod ssl/2.2.9 OpenSSL/0.9.8g mod perl/2.0.4 Perl/v5.10.0

Accept-Ranges: bytes

Vary: Accept-Encoding

Content-Encoding: gzip

http://youtube.com
http://sina.com.cn
http://Sina.com.cn
http://linuxbox.co.uk

42 | CHAPTER3 CONTENT COMPRESSION

Content-Length: 152
Keep-Alive: timeout=15, max=98
Connection: Keep-Alive
Content-Type: text/html

The content-Length header in the response indicates the size of the compressed content, not the
original, uncompressed contents.

If a client supports multiple compression methods, it may express a preference using so-called g-values.
In the following example, the client expresses a preference for deflate by specifying a g-value of 1.0
for deflate and 0.5 for gzip.

Accept-Encoding: gzip;g=0.5, deflate; g=1.0

Compression Methods

The HTTP specifications define four possible compression values:

>

identity — This indicates no compression. If a client advertises only this method in the
Accept-Encoding header, the server should not compress the response contents. This value
is used only in the Accept -Encoding header — a server sending uncompressed content
should not send a content-Encoding: identity header.

compress — This method uses the UNIX compress method, which is based on the
Lempel-Ziv Welch (LZW) algorithm. Use of compress is deprecated in favor of the next
two methods.

gzip — For a long time, gzip was the most popular compression format. It’s based on
LZ77, which, in turn, is based on LZW. As the name implies, it is the same algorithm used
in the UNIX gzip tool.

deflate — Essentially, this is just gzip without the checksum header. def1ate tends to be
a little faster but is also a little less efficient.

NOTE Rather than exploring the subtleties of these various compression
formats here, you should look at Appendix A, “TCP Performance,” which
discusses them in more depth.

Of these four methods (the first of which isn’t actually a compression method), the latter two are the
most important and are well supported by today’s browsers. deflate is slightly superior, but any
compression is better than nothing. So, if you are in the situation of using only gzip, don’t worry
too much.

What to Compress

Potentially any resource can be served up compressed, but compression is usually just applied to
text-based content such as HTML, XML, CSS, and JavaScript. The reason is twofold:

Understanding How Compression Works | 43

Text tends to compress much more than binary data.

Many of the binary formats in use on the web already use compression. GIF, PNG, and JPEG
are prime examples, and there is virtually nothing to be gained by applying content com-
pression to these. That simply wastes CPU cycles and may even make the size slightly larger
(because the compression method can add its own headers to the data).

In view of this latter point, there’s usually nothing to be gained by compressing text resources
smaller than a certain size either. The savings are minimal, and headers added by the compression
method may well result in the compressed resource being larger than the original. When you learn
about web servers in Chapter 7, “Working with Web Servers,” you’ll discover methods to compress
only certain content.

Browser Support

Sadly, browser support for content compression hasn’t always been great. Although the major
browsers started to introduce support for this feature in the late 1990s, one browser in particular
(no prizes for guessing which) has, until recently, suffered regular small glitches in its implementa-
tion. When a browser simply does not support content compression, that’s fine. But when a browser
claims to support compression, but does not do so correctly, this causes problems.

Table 3-2 summaries gzip and deflate support in the major browsers.

TABLE 3-2: gzip and deflate Support in Major Browsers

BROWSER GZIP/DEFLATE SUPPORT? NOTES

IE 4+ Yes Support was added in Internet Explorer (IE) 4, but
see the following for exceptions.

IE 4.5 and 5 (Mac) No

IE 5.5 and 6.0 Partial A bug causes first 2,048 bytes of compressed
content to be lost in some situations.

IE 6.0 SP1 Partial A security update breaks gzip compression in
some situations.

IE 6,7,8 Partial These versions of IE implement deflate
incorrectly, which may cause problems.

Netscape 4.06+ Partial There were numerous bugs in versions 4.06
through 4.08.

Netscape 6+ Yes
Firefox Yes

continues

44 | CHAPTER3 CONTENT COMPRESSION

TABLE 3-2 (continued)
BROWSER GZIP/DEFLATE SUPPORT? NOTES

Opera 5+ Yes Opera 6 appears to be the only major browser that
detects and automatically decodes compressed
content if the server has not sent
Content-Encoding: gzip (or deflate).

Lynx 2.6+ Yes deflate support was added on version 2.8.6.

Safari Yes There have been problems in the past with
compression of non-HTML data (for example, CSS).

Chrome Yes

The problems with IE’s support for deflate stem from inconsistencies in the HTTP/1.1 RFC (2616).
While the deflate compression algorithm is simply a stream of compressed data, RFC 2616 defines
the deflate content encoding method as a deflate stream inside z1ib wrappers (the wrappers
provide error checking, among other things). Versions 6, 7, and 8 of IE expect to see just a deflate
stream, and choke on the z1ib headers.

Because of the confusion, many browsers choose to support both the HTTP/1.1 definition of
deflate and the “raw” deflate stream. You can find a more detailed comparison at
http://www.vervestudios.co/projects/compression-tests/results.

NOTE You can learn more about z1ib and deflate in Appendix C,
“Compression.”

In Chapter 7, when you learn about web servers, you can see how they can be configured not to
compress content for browsers with known buggy implementations.

Dealing with Clients That Don’t Support Compression

An analysis of log files shows that approximately 10 percent to 15 percent of clients don’t advertise
support for content compression (via the Accept-Encoding header). Can it actually be that 10 to 15
percent of the Internet still uses prehistoric browsers with no compression support?

It turns out that of this 10 to 15 percent, approximately one-half do actually support compression,
even though they don’t advertise it. The most common reasons for this discrepancy are intermediate
proxies and antivirus software stripping the Accept -Encoding header from the requests.

Why would they do this? Proxies and antivirus software are often used to filter content, and it’s
easier for them if the content is uncompressed. Despite the fact that it should be relatively trivial for
them to uncompress, they choose to penalize the client by stripping the Accept -Encoding header.
Usually, the end user isn’t aware that this is even happening. And, if you think this type of behav-
ior would be restricted to uneducated two-bit software developers, think again. Big names such as
McAfee, ZoneAlarm, Norton, and Squid have all been guilty of this practice in the past.

http://www.vervestudios.co/projects/compression-tests/results

Understanding How Compression Works | 45

One strategy to deal with these problematic clients is to send some compressed content anyway to
see how the clients handle it. If the client parses it correctly, it should be safe to use compression
when delivering future content. The general logic of such checks would be as follows:

1. When the client issues a request, check for the presence of a cookie. (Call it gzip_ ok.) If the
cookie has a value of 1, you already know the client understands gzip compression and can
deliver compressed content to it.

2. If the cookie is unset and the client is claiming not to support gzip, check to see if it can han-
dle gzipped content. You do this by including a link to an external JavaScript file containing
some simple script to set the gzip_ ok cookie to 1. You configure the web server to always
serve this script compressed. If the client can parse this JavaScript file, the gzip_ ok will be set.

3. If the cookie has a value of zero, you know that you’ve already tested for gzip support, and
it hasn’t worked.

4. The next time a resource is requested, you can use the presence of the gzip ok cookie to
decide whether to serve compressed contents.

This seems like a somewhat long-winded technique and goes against the principals of keeping pages
lean, reducing the number of external resources, and so on. But don’t forget that this technique
would be applied only on clients that claim not to support gzip compression, and even then it would
be for only the first request. The major drawback to this method isn’t its intricacy — it’s that it relies
on the client supporting JavaScript.

Another option is to compile a list of browsers that are known to support content compression, and
then serve compressed content to them no matter what the Accept -Encoding headers says. This
actually is not recommended, though. There may be legitimate reasons for the browser not advertis-
ing support for compression (such as the user having disabled it), and sending compressed content to
a client that can’t decode it can render your site inaccessible. Better to risk longer page loading times
than no loading at all.

Even if you do concoct a mechanism such as one of these to deal with misbehaving clients, you’ll
still be left with perhaps 5 percent of clients that simply can’t handle compressed content. As such,
you should still strive to keep document sizes small. (Remember that a large document doesn’t just
mean larger download times; it also means larger parsing and rendering times.) Don’t fall into the
lazy trap to think that bloated HTML doesn’t matter because it will shrink after it’s compressed.

Disadvantages of Content Compression

Although content compression is almost always a good thing, there are a couple of small drawbacks.

First, there is additional CPU usage at both the server side and client side. The server must compress
the document, and the client must decompress it. As you’ll learn in Chapter 7, it’s often possible

for web servers to deliver precompressed versions of resources, rather than compressing resources
on-the-fly each time a request is made.

Second, as already mentioned, there will always be a small percentage of clients that simply can’t
accept compressed content. Because of this, you can’t use compression to excuse bloated HTML. In
Chapter 4, “Keeping the Size Down with Minification,”, you’ll learn about techniques to reduce or
improving compression ratios and minifying HTML.

46 | CHAPTER3 CONTENT COMPRESSION

gzip Performance

In Apache, mod_gzip and mod deflate compress resources on-the-fly when a compression-aware cli-
ent requests them. Apart from being rather wasteful of CPU cycles, just how good is the compression?

As you’ll see in Chapter 7, with many web servers, you can compress the files and then have the

web server deliver these precompressed versions when talking to compression-enabled clients. This
allows you to break free from using the gzip/deflate implementation in the web server. But is there
any real advantage in doing this?

Let’s now revisit the list of the top 20 websites (refer to Table 3-1) — only this time, without

the country-specific versions of Google and Yahoo, and Live.com (because it doesn’t support
compression). Can you improve on their compression ratios by using specialist compression tools?
7-Zip (http://www.7-zip.org/) has a reputation to pull out all the stops to deliver high levels of
compression, and it can write files in the gzip format.

Table 3-3 compares this to the GNU gzip tool (running at its highest compression level).

TABLE 3-3: Average Page Sizes of the Top 20 Websites with gzip and 7-Zip

PERCENTAGE
DEFAULT IMPROVEMENT

UNCOMPRESSED COMPRESSION GZIP SIZE IN 7-ZIP SIZE IN IN 7-ZIP OVER
DOMAIN SIZE IN BYTES SIZE IN BYTES BYTES BYTES DEFAULT
Google.com 13,725 5,220 5,346 5,288 -1.29
Facebook.com 30,923 9,586 9,261 9,124 4.82
Youtube . com 67,084 16,339 12,177 12,114 19.74
Yahoo. com 16,339 39,522 39,477 39,207 0.78
Baidu.com 62,969 2,993 3,003 2,978 0.5
Wikipedia.org 46,861 11,695 11,576 11,520 1.5
Blogger.com 12,584 4,647 4,653 4,603 0.95
Msn.com 90,329 27126 25,030 24,817 8.51
Twitter.com 44118 9,422 9,267 9,289 1.41
qq.com 193,192 48,984 48,996 48,471 1.05
Taobao. com 166,168 31,331 30,874 31,160 0.55
Amazon.com 138,941 25,526 27,944 27,676 —11
Sina.com.cn 172,398 116,726 36,486 36,267 68.93
Wordpress.com 35591 1,177 9,927 9,821 1213

Ebay.com 35,502 11,506 9,874 9,795 14.87

http://www.7-zip.org/
http://live.com
http://Google.com
http://Facebook.com
http://youtube.com
http://Yahoo.com
http://Baidu.com
http://Wikipedia.org
http://Blogger.com
http://Msn.com
http://Twitter.com
http://qq.com
http://Taobao.com
http://Amazon.com
http://Sina.com.cn
http://Wordpress.com
http://Ebay.com

Understanding How Compression Works | 47

In each case, 7-Zip outperforms gzip; although the saving is so small as to be almost insignificant
(averaging approximately 1 percent).

The results are made somewhat more confusing because you don’t know the compression tools
used by these sites. Some use the on-the-fly gzip modules shipped with their web server; others
serve up pregenerated gzipped resources. However, the results do clearly show that many sites are
not compressing as efficiently as they should be — WordPress, eBay, MSN, and YouTube are prime
examples. As for Sina.com.cn, something is going seriously wrong.

NOTE Interestingly, Amazon’s compression outperforms both gzip and 7-Zip,
suggesting it uses a tailored gzip compression implementation geared toward
higher levels of compression. Appendix C provides more information on the
scope for performance improvements in the underlying algorithm used by gzip.

In short, if you do need to compress on-the-fly, you should look at how efficient your compression
routine is — in some situations, you may be surprised. Try compressing your data with GNU gzip
and comparing the difference. If your setup allows you to serve pregenerated gzip data, you might
as well use 7-Zip, but there probably won’t be a huge difference over standard tools.

Other Compression Methods

Although gzip and deflate are widely used, a number of other compression methods are available.
None of these are part of the HTTP specifications, however, and support for them across browsers
is generally poor. Let’s take a quick look at them here, in anticipation of them perhaps becoming
more popular in the future.

bzip2

UNIX users have long been familiar with the bzip2 format, which offers superior compression to
gzip (at the expense of somewhat higher CPU usage). With HTTP supporting compression and
gzip, it seems only natural that bzip2 should also be supported. Despite this, none of the major
browsers natively support bzip2. (Although some do by means of third-party extensions.)

SDCH

Apparently pronounced “sandwich,” Shared Dictionary Compression for HTTP (SDCH) is a com-
pression method developed by Google. It enables a high level of cross-request redundancy through
the use of a domain-specific shared dictionary.

When a client first requests a resource from a domain, a link to download the shared dictionary is
returned in the response header. This dictionary contains strings commonly used on the website.
Subsequent responses may then have their content encoded by replacing such strings with a reference
to their position in the dictionary.

This has the potential for huge savings. Elements common to many pages (such as the header,
footer, navigation menu, and so on) — whole blocks of markup — can potentially be replaced with

http://Sina.com.cn

48

CHAPTER3 CONTENT COMPRESSION

just a reference to the dictionary. Appendix C highlights the similarities with the dictionary-based
encoding of formats such as LWZ.

SDCH also introduces problems for filtering proxies and personal antivirus software because mali-
cious code could potentially be split across multiple requests, making it difficult to detect. The view
among developers of such software already seems to be that it’s easier just to strip SDCH-related
headers from outgoing requests than to attempt to decode and parse SDCH-encoded content. After
reading the earlier section in this chapter, “Dealing with Clients That Don’t Support Compression,”
this attitude won’t surprise you, but it’s the end user who loses out.

At present, Chrome is the only browser that supports SDCH, and Google’s web servers are the only
servers that support it. Perhaps this will change in the future.

EXI

Intended for XML content, EXI encodes XML into a binary format, drastically reducing the file
size. Although none of the major browsers support EXI natively yet, the W3C is acting favorably
toward it, and it looks set to play an important part in the web in the future.

peerdist

Developed by Microsoft, peerdist applies the logic of peer-to-peer networks to the web by
enabling a client to retrieve content from its peers, as well as the originating web server. In theory,
this should enable faster retrieval and lighten the load on the originating server.

At the moment, support for peerdist is low, but with Microsoft being such a big player, it may
change this in the future.

Transfer Encoding

To conclude this section, let’s take a brief look at Transfer Encoding (TE), which is often confused
with Content Encoding. The two are similar. However, whereas Content Encoding is end-to-end,
TE is hop-to-hop. Any intermediate devices that encounter messages with TE headers can uncom-
press the message and may not necessarily recompress before sending it on. As such, Content
Encoding is to be preferred.

Dynamically generated content poses a problem for servers, which are expected to send a
Content-Length header in responses. The server has the choice to either wait for the content to be
fully generated (so that it may calculate the size), or omit the Content-Length header.

The latter method was fine under HTTP 1.0 where Keep-alive was not the default. The server
would simply close the connection after it had finished sending, and the client would infer that there
was no more content to come.

With persistent connections in HTTP 1.1 (or Keep-Alive in HTTP 1.0), the problem is trickier.
Because the connection will probably not be automatically closed, the client has no way to tell
when the server has finished delivering the response content. The server must send a
Content-Length header.

Compressionin PHP | 49

The disadvantage to this is that the server must wait until the back-end script has finished running
before it can start sending the response. End users could easily be left twiddling their thumbs,
waiting for a heavyweight PHP script to finishing running before seeing any content.

The solution is Chunked Transfer Encoding (CTE), which enables an HTTP response (or, more
rarely, a request) to be split into multiple smaller packets. After the server generates the first X
number of bytes, it can send them off (with the appropriate Content-Length and a
Transfer-Encoding: Chunked header), and the client knows that there is more to follow. The
server indicates that it has finished by sending a zero-sized chunk. Each chunk can have content
compression applied to it, too, which is the justification to include this discussion in this chapter.

By default, CTE is considered to be enabled in both client and server in HTTP 1.1, so no addi-
tional headers are needed to enable it, and there is no extra work for the web master or system
administrator.

If CTE seems like a perfect solution, there is the small matter of increased packet flow across the
network. Although the overall size of the response body stays the same, each chunk will have its
own set of headers, which will increase the overall amount of data sent down the wire. Unless the
client has severely restricted bandwidth or high latency, this shouldn’t be a cause for concern, and
the increase in speed perceived by the user will more than make up for it.

COMPRESSION IN PHP

A solution often used by web developers is to compress HTML output in a scripting language before
sending it to the browser. This has the advantage of not requiring any modifications to the web
server (for example, enabling or compiling in compression modules) and makes it well-suited for
code that will be distributed. As you will see, though, this approach is ultimately less powerful than
using the compression offered by many web servers.

Compressing PHP-Generated Pages

For compressing pages generated by PHP, there are a couple of options: output buffering and z1ib.
The latter is the preferred solution these days, but the first is still widely used, and you’ll see exam-
ples of both here.

Using Output Buffering
Let’s look at an example in PHP:
<?php

ob _start ("ob _gzhandler") ;
?>

<html>
<head>

50

CHAPTER 3 CONTENT COMPRESSION

Here, output buffering is used with the ob_gzhandler callback function to compress the buffered
output before sending it to the browser.

You can go one step further to create your own callback function to handle the compression.
Although this doesn’t mean you can use an alternative compression method such as bzip (you’re still
limited to what the client supports), it does provide the opportunity to deploy some minification.
Consider the following;:

<?php
ob_start ("myhandler") ;

function myhandler ($buffer) {
Sbuffer = str replace(
array (u\rn’ n u’ ||\nn, "\t"),
nn),.
return Sbuffer;

?>

<html>
<head>

NOTE Chapter 4 discusses minification in more detail.

There are two main drawbacks to this method. The first is that you must manually add the
output buffering line to the top of all scripts. This can be mitigated by placing the code in an
auto prepend file.

The second disadvantage is that, as a consequence of the buffering, no compression takes place
until the script finishes executing. At that point, the data in the buffer will be compressed, and
then drip-fed to the client. This contrasts with Apache’s mod_gzip, which can perform streaming
compression — as your code generates output and sends it to Apache, mod gzip begins compress-
ing it and sending it out to the client (which, in turn, can begin uncompressing the data immedi-
ately). Tricks like these can help to reduce the latency of requests, particularly for dynamic pages
that take a long time to generate or are large.

Compressing with zlib

These days, the preferred method to compress with PHP is to enable the output compression
option of the z1ib extension. (Although this may seem to suggest otherwise, ob_gzhandler uses
the z1ib extension, too.) This is a php ini option and can be set in either the code itself (via ini
set ()), a .htaccess file, or, as shown here, php.ini:

zlib.output compression = 1

Summary | 51

Optionally, you can also set the compression level, as shown here:
zlib.output compression level = 9

The default value is -1, which causes PHP to pick a level.

The only disadvantage here is that the setting is global, so, unlike ob_gzhandler, you can’t pick and
choose to which scripts it will be applied. This usually isn’t a problem, though, because you’ll gener-
ally want to compress as much as possible.

Compressing Other Resources

What is a problem is that compression in PHP naturally applies only to the HTML document —
style sheets, JavaScript, and so on, are not affected. You could argue that the benefits to compress
these resources are lower because they are invariably being cached. But compression is generally a
no-brainer and is worth using even in marginal cases.

Some web developers get around this by using a simple PHP script to serve up CSS and JavaScript
like so:

<?php

header ('Content-type: text/css');
ob_start ("ob_gzhandler") ;
include('style.css');

?>
Then you link to it like so:
<link rel="stylesheet" type="text/css" href="myscript.php"/>

Evoking PHP to serve up static resources like this hurts performance, though, and actually isn’t nec-
essary when better alternatives (such as mod_gzip) exist. Although compression in PHP is certainly
an option, it’s usually faster, cleaner, and more efficient to use mod_gzip or similar.

SUMMARY

Compressing web content speeds up downloads and reduces your bandwidth bills. Although
compression causes a slight increase in CPU usage on both the client and server, the benefits far out-
weigh this, and enabling compression is almost always the right thing to do. Any plain-text resource
is a candidate for compression: HTML documents, style sheets, JavaScript, XML, and so on. But
there is generally little to be gained from compressing binary resources. (Most images, for example,
are already highly compressed.)

Browser support for compression has been buggy in the past, with some browsers incorrectly
handling compressed CSS or JavaScript. Fortunately, those days have passed, and today you should
generally compress as much as possible.

52

CHAPTER 3 CONTENT COMPRESSION

The standard compression methods are gzip or deflate — they are essentially the same
thing — and, although other methods (offering better compression) have been proposed, none are
yet widely supported.

The standard way to compress content is via a web server module such as mod_gzip (a topic that
will be discussed in more detail in Chapter 7), but you can also generate compressed content directly
via a scripting language. The examples provided in this chapter used PHP, but you can implement
the same principals in ASP, Python, Ruby, Perl, and so on. Nevertheless, compression this way isn’t
as efficient, nor is it the preferred route.

While compression is an excellent way of improving page loading times, it is not being used to its
full potential if the text being compressed is bloated. Minification refers to the process of stripping
down the plain text (often prior to compression), and is the subject of Chapter 4.

Keeping the Size Down with
Minification

WHAT'’S IN THIS CHAPTER?

> Shrinking your CSS, JavaScript, and HTML

> Learning the tricks used by Google’s Closure Compiler and Yahoo's
YUl Compressor

» Comparing automatic minifiers

Minification is the act to strip out unnecessary characters from code to reduce the size, and a
minifier is the tool that does it. Most often, the term is applied to JavaScript, but as you shall
see, the technique can also be used on CSS and (to some extent) HTML.

For the web master, the aim of minification is, of course, to reduce file size and thus speed
up transfer times for clients. Using gzip compression offers bigger reductions in file size,
and it’s often claimed that this makes minification redundant — a minified, gzipped page
isn’t much smaller than an unminified, gzipped page. Although there is some truth in this
argument, minification is still a useful technique. And with approximately 10 percent of
web traffic passing through browsers that don’t support gzip compression (see http://
developer.yahoo.com/performance/rules.html), there is a sizable minority of users
for whom minification can help a lot.

The downside with minification is that code becomes difficult to read and modify. One
solution is to store your code unminified and then minify it on-the-fly, as clients request it.
This is a terribly inefficient way to handle what are usually fairly static resources, though, and
definitely not something recommended. Instead, you should keep an unminified copy of the
code in a separate directory and pass it through the minifier when you are ready for it to go
live, possibly as part of your build process

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html

54 | CHAPTER4 KEEPING THE SIZE DOWN WITH MINIFICATION

NOTE For all but the most basic websites, it is common to automate the process
of deploying a new version of the site via a basic shell script or batch file. This
might consist of copying the code over from a development/staging area, setting
the correct file permissions, pre-compressing resources, and so on. This is an
ideal place in which to perform minification.

What are “unnecessary characters”? In the languages discussed here, whitespace and comments are
the main candidates for removal, and many simplistic minifiers remove only these. This is often just
scraping the surface of what is possible though — especially with JavaScript, which is where the
discussion in this chapter starts.

NOTE Be aware that minification shouldn’t be used as an excuse to write sloppy
code. Don’t fall into the trap to think that it’s okay to write bloated, badly
structure code because a minifier will clean it up for you. Your first step should
always be to manually clean up your code as much as possible; only then

should you pass it through the minifier.

JAVASCRIPT MINIFICATION

Of the three languages examined here (JavaScript, CSS, and HTML), JavaScript offers the most
potential for minification. Aside from removing whitespaces and comments, Windows-style line
breaks (CRLF) can be converted to UNIX-style breaks (LF), and variable names can be shortened.

Let’s look at the typical minification process for a small block of code. In this case, the code handles
a function to toggle the “visibility” (more accurately the display) of an element:

function toggle (elementID) {

if (document.getElementById(elementID).style.display != 'none') ({
document .getElementById(elementID) .style.display = 'none';
}

else {

}

document .getElementById(elementID) .style.display = '';

}

As it stands, this function weighs in at 297 bytes.

Before you run it through a minifier, you should attempt some manual optimization. Using a
variable holding a reference to the element’s display would be a good start, as shown here:

function toggle (elementID) {
var el = document.getElementById(elementID) ;
if (el.style.display != 'none') {

JavaScript Minification | 55

el.style.display = 'none';

}

else {

}

el.style.display vy

}

This takes the weight down to 246 bytes.

You can simplify things a bit more by getting rid of the if/else block and using the ternary
operator:

function toggle (elementID) {
var el = document.getElementById(elementID) ;
(el.style.display != 'none') ? el.style.display = 'none'
el.style.display = '';

}

This takes it down to 193 bytes. So far, you have preserved whitespaces, and the code is still readable.

Now that you’ve seen how to clean up this code, you can pass it through a minifier.

YUI Compressor

One of the most popular minifiers is Yahoo’s YUI Compressor. It’s a command-line minifier, written in
Java, that can process both JavaScript and CSS. You can download it from http://developer.yahoo
.com/yui/compressor/. (Of course, you must have Java installed.) Running it is simple, as shown here:

$ java -jar /usr/local/bin//yuicompressor-2.3.5/build/yuicompressor-2.3.5.jar
input.js > output.js

Now try it on the sample function introduced earlier:

$ java -jar /usr/local/bin/yuicompressor-2.3.5/build/yuicompressor-2.3.5.jar
function.js > function minified.js

$ cat function minified.js

function toggle(a){var b=document.getElementById(a);if (b.style.display!="none")
{b.style.display="none"}else{b.style.display=""}};

A few things have happened here. Unnecessary whitespaces have been removed, and the two vari-
ables have had their names shortened: elementID to A, and el to B. Because these variables exist
only inside the function, it’s safe to rename them without worrying about it impacting other code.

This takes the function’s size down to 93 bytes — a significant improvement from the original 342.

Just to stress the importance of manually optimizing your code first, look at how the YUI
Compressor copes with the original function before you made any changes to it:

function toggle(R) {var B=document.getElementById () ;
if (document.getElementById (A) .style.display!="none")
{document .getElementById(A) .style.display="none"}
else{document.getElementById(A) .style.display=""}};

http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/

56

CHAPTER 4 KEEPING THE SIZE DOWN WITH MINIFICATION

It has still renamed the local variables and removed whitespaces, but the long-winded if/else
block with references to the element’s display are still there, and the size is down to only 204 bytes.
The YUI Compressor may be clever, but it’s not a mind reader.

You may have wondered why, in the manual optimization examples, var el = document
.getElementById (elementID) ; was not simply written to el = document
.getElementById (elementID) ; to save a few more bytes.

Although it may seem that declaring a variable with var is unnecessary, there is a subtle impact

on the variable’s scope. Variables defined inside a function with var are local — that is, they exist
only inside the function. Initializing a variable without var causes it to have a global scope, and it is
available to code outside the function.

Aside from it making good programming sense to use local variables (because that lessens the
potential for variable names to clash), the choice of a local versus global variable also has an
impact on minification. For example, say that you run the following through the YUI
Compressor:

function toggle (elementID) {
el = document.getElementById(elementID) ;
(el.style.display != 'none') ? el.style.display = 'none' : el.style.display = ";

Following is the output this time:

function toggle (A) {el=document.getElementById (A) .style.display;
(elt="none")?el="none":el=""};

The YUI Compressor realizes that el is a global variable and shies away touching it in case it breaks
another part of your code. In general, it’s best to define your variables with var.

Google Closure

The YUI Compressor is not the only JavaScript minifier out there. The new kid on the block at the
moment is Google’s Closure Compiler (http://code.google.com/closure/compiler/), which is
set to become the leader of the pack. Crude benchmarking suggests its standard mode offers levels
of minification similar to the YUI Compressor, whereas the advanced (and less foolproof) option has
the capability to make more savings.

Two of the most exciting features of this advanced mode are function inlining and the removal of
unused code..

Inline expansion (or inlining) will be familiar to anyone who has studied C compilers. It’s the act to

insert the contents of a function into the place where the function would have been called. This can

improve the execution speed (by cutting out the overhead involved in calling the function), and — in
the case of small functions that are rarely called — reduce the overall file size.

http://code.google.com/closure/compiler/

JavaScript Minification | 57

Let’s look at an example.

function showalert (message) {
el = document.getElementById('alertbox') ;

el.innerHTML = message;
el.style.visibility = 'visible';

x = document.getElementById('formfield');

if (x.value == "no") {
showalert ("Did you really mean no?");
}

NOTE innerHTML is nonstandard but is well supported and a little faster than
the alternatives.

This is not a useful piece of code, but it serves nicely as an example. Look at the value of a domain
object model (DOM) element named formfield. If the value is "no", you call a function to display
an alert message.

Let’s see what happens when you run this through Closure. For the sake of readability, let’s use the
PRETTY PRINT formatting option to preserve whitespaces.

java -jar compiler.jar --compilation level ADVANCED OPTIMIZATIONS --js
example.js --formatting PRETTY PRINT

x = document.getElementById("formfield") ;

if (x.value == "no")
el = document.getElementById("alertbox") ;
el.innerHTML = "Did you really mean no?";

el.style.visibility = "visible"
}

i

As you can see, the showalert function has been removed. Its content has been placed inline where
the showalert () call previously was.

That’s fine in this simplistic example, where the function is called only once. But what happens if
your code makes multiple calls to the function, as shown here?

function showalert (message) {
el = document.getElementById('alertbox') ;

el.innerHTML = message;
el.style.visibility = 'visible';

x = document.getElementById('formfield') ;

58 | CHAPTER4 KEEPING THE SIZE DOWN WITH MINIFICATION

if (x.value == "no") {
showalert ("Did you really mean no?");
}

y = document.getElementById('formfieldl') ;
if (y.value == "no") {

showalert ("Did you really mean no?");
}

z = document.getElementById('formfield2"');
if (z.value == "no") {

showalert ("Did you really mean no?");
}

The result is as follows:

java -jar compiler.jar --compilation level ADVANCED OPTIMIZATIONS
--js example.js --formatting PRETTY PRINT

function a(b) {
el = document.getElementById("alertbox") ;
el.innerHTML = b;
el.style.visibility = "visible"

= document.getElementById ("formfield") ;
.value == "no" && a("Did you really mean no?");
= document.getElementById("formfieldl") ;
.value == "no" && a("Did you really mean no?");
= document.getElementById("formfield2") ;
.value == "no" && a("Did you really mean no?");

N NN X X~

This time, Closure had the sense not to inline the function.

The second cool feature of the advanced mode — removal of unused functions — is straightforward.
If Closure deems that a function will never be called, it removes it.

The danger emerges when the function is called from elsewhere (for example, if you have a bunch
of JavaScript files and are passing them through Closure one by one) or is called by means of an
eval () statement. eval statements are a common stumbling block for minifiers, are slow to run,
and are a potential security problem. So, whenever possible, you should avoid using them anyway.
Google also recommends compiling all the code used on a page in one go (by passing multiple file-
names to Closure at the command line) to lessen the problem of functions being removed.

Comparison of JavaScript Minifiers

So far, you’ve learned about the two big players, the YUI Compressor and Google Closure. But there
are plenty of other JavaScript minifiers out there.

The examples presented in this chapter thus far have been small, hence the savings have been small,
too. To illustrate how useful minification can be, a bigger example is needed.

CSS Minification | 59

Prototype (http://www.prototypejs.org/) is a popular JavaScript framework for AJAX
developers. Version 1.6.0 consists of a single JavaScript file, weighing in at 122 KB.

Table 4-1 shows the results of passing prototype.js through five of the most popular JavaScript
minifiers.

TABLE 4-1: JavaScript Minifier Comparison

MINIFIER UNCOMPRESSED (KB) GZIPPED (KB)
None 122 28
YUI Compressor 71 21
JSMin 91 23
Closure (simple) 70 21
Closure (advanced) 55 18
Packer (Perl port) 90 23

As you can see, the YUI Compressor and Closure are easily the leaders, and — in the case of the
Closure’s simple mode — offer similar levels of compression. If you’re feeling brave, and are willing
to debug any errors, Closure’s advanced mode offers an even greater boost.

These results also address the criticism of minification given at the beginning of this chapter —
that minification is largely redundant because of gzip compression. The difference in size between
the gzipped unminified code and the gzipped YUI Compressor output is 7 KB, a reduction of

25 percent. With Closure’s advanced mode, the decrease in size is more than 30 percent. Coupled
with the fact that minified code tends to execute slightly faster, minification of JavaScript certainly
should not be ignored.

CSS MINIFICATION

Many of the minification techniques outlined for JavaScript minification are also applicable to CSS —
the removal of extra whitespaces, removal of comments, and conversion of CRLF to LF. And, as with
JavaScript, this is where many simplistic minifiers end. At first glance, it may seem as if there isn’t
much more you can do to shrink the size of CSS, but as you shall see, this is certainly not the case.

Use Shorthand

Many properties have shorthand variations. Consider the following example:

.myclass {
margin-left: 10px;
margin-right: 10px;
margin-bottom: 20px;
margin-top: 20px;

http://www.prototypejs.org/

60

CHAPTER 4 KEEPING THE SIZE DOWN WITH MINIFICATION

You can write this simply as follows:
.myclass { margin: 20px 10px 20px 10px;}

Or, because in this case the top and bottom margins are equal to each other and so are the left and
right, you could write this just as simply as follows:

.myclass { margin: 20px 10px;}

This shrinks the code to one-quarter of its original size (from 122 bytes to 31 bytes).

Similarly, consider the following;:

p {
font-size:12pt;
font-family: verdana, helvetica, sans-serif;
font-weigth:bold;
font-variant: italic;

}

This can be more cleanly expressed as follows:
p { font: italic bold 12pt verdana, helvetica, sans-serif;}

Hex triple color codes may be written in shorthand, providing both characters of the triplet are the
same. For example, #FFEEDD can be abbreviated as simply #FED, and #88DD22 as #8D2; conversely,
#ABCDEF cannot be shortened.

Grouping Selectors

In some situations, selectors can be grouped together. Consider the following;:

hl { background-color:red;}

h2 { background-color:red;}

h3 { background-color:red;}
This can be shortened to the following:

hl, h2, h3 { background-color:red;}

CSS Minifiers

Earlier in this chapter, you learned about JavaScript minification, and that, although many
minifiers could optimize certain aspects of the code (for example, shortening variable names,
inlining functions, and so on), it still pays to do some manual optimization first. How true is
this for CSS?

The following code has plenty of scope for optimization. Can you spot them all?

CSS Minification

| 61

.myclassl {
margin-left: 10px;
margin-right: Opx;
margin-bottom: 20px;
margin-top: 20px;
background: #AABBCC;
color:white;

}

.myclass2 {
margin-left:10px;
margin-right:0px;
margin-bottom:20px;
margin-top:20px;
background: #AABBCC;
color:white;

}

Aside from stripping whitespaces, you can group the two selectors together, shorten #aaBBCC to
#ABC, change 'white' to #FFF, and group the margin attributes together, ending with the
following (with whitespace preserved for readability):

.myclassl, .myclass2 {
margin:20px 0 20px 10px;
background: #ABC;
color: #FFF

}

Let’s see how the YUI Compressor handles it:

java -jar /usr/local/bin/yuicompressor-2.3.5/build/yuicompressor-2.3.5.jar
/tmp/test.css

.myclassl{margin-left:10x;margin-right:0;margin-bottom:20px;
margin-top:20px;background: #ABC;color:white; } .myclass2
{margin-left:10x;margin-right:0;margin-bottom:20px;
margin-top:20px;background: #ABC;color:white; }

Although this has taken the size down from 334 bytes to 212, it’s mostly because of whitespace
being stripped out. The only other change has been to convert opx to just 0. This is somewhat
disappointing, considering how much else could be done.

Luckily, there are plenty of alternatives, and a personal favorite is CSSTidy (http://csstidy
.sourceforge.net/), available for Windows, UNIX, and Linux. By default, CSSTidy preserves
whitespace, but you can easily override this at the command line. Let’s see how it copes with the
sample style sheet.

$ wine csstidy.exe /tmp/test.css --template=highest output.css
Selectors: 2 | Properties: 12

Input size: 0.327KiB Output size: 0.07KiB Compression ratio: 78.51%

3: Optimised number: Changed "Opx" to "O"

http://csstidy.sourceforge.net/
http://csstidy.sourceforge.net/

62

CHAPTER 4 KEEPING THE SIZE DOWN WITH MINIFICATION

6: Optimised color: Changed "#AABBCC" to "#ABC"
7: Optimised color: Changed "white" to "#FFF"
12: Optimised number: Changed "Opx" to "0"

15: Optimised color: Changed "#AABBCC" to "#ABC"
16: Optimised color: Changed "white" to "#FFF"

CSSTidy 1.3 by Florian Schmitz 2005, 2006
$ cat output.css
.myclassl, .myclass2{background:#ABC;color:#FFF;margin:20px 0 20px 10px;}

That’s quite impressive, and the resulting file size is down to a respectable 73 bytes.

Is there anything more you can do? CSSTidy has an array of command-line options that control indi-
vidual optimization tricks, but most are enabled by default. The option to remove the trailing semico-
lon from the end of the selector properties is not, however. Turning this on results in the following:

.myclassl, .myclass2{background:#ABC;color:#FFF;margin:20px 0 20px 10px}

There is a mere saving of 1 byte in this example, but you may as well still use it.

Improving Compression

Because you’ll generally want to serve up CSS compressed (for example, using mod_deflate in
Apache), anything that a minifier can do to improve the compression ratio is also welcome. As you
will learn in Appendix C, “Compression,” LWZ (the basis for gzip and deflate) compression
likes repeating strings, so your aim should be to increase the frequency of these. Being consistent in
your use of case and spacing helps to improve compression, as does listing properties in a consistent
order. Consider the following:

.myClass {
color:#FFF;
background-color: #fff;
border: solid 1lpx black;

}

.myOtherClass{
border: solid black 2px;
background-color:white;
color:#fff;

}

This compresses poorly. The second rule uses lowercase for the hex color code and a color name for
the background, lists the border attributes in a different order, is missing a space before the opening
curly bracket, and lists the attributes in a different order than the first class rule. Now, rewrite the
rules like so:

.myOtherClass {
color:#FFF;
background-color: #FFF;
border: solid 2px black;

HTML Minification | 63

Here, the opportunity for greater compression is increased. Remember that LWZ uses a

history window and searches only so far back when looking for repeating strings (how far
depends on the implementation). So, although nearby rules may give matches, rules at the other
end of the style sheet probably won’t. As a result, you must think about the order in which rules
(not just attributes) are defined, and you may find it beneficial to group together rules with
similar attributes.

This is an aspect of minification that most minifiers ignore. But CSSMin (https://github.com/
barryvan/cssMin/) is different. Written in Java, CSSMin performs the ordering of properties,
conversion to lowercase, and replacement of simple names with their hex or numeric equivalents.
(For example, font -weight :bold is converted to font-weight:600, color:black to color:#000.)
You get all this, plus the usual minification techniques.

NOTE Be aware, however, that re-ordering properties can cause problems.
Occasionally, it is necessary to list properties in a specific order because of
browser quirks.

HTML MINIFICATION

Whereas minification of CSS and JavaScript are both popular techniques (as evidenced by the
number of minifiers and blog posts on the subject), minification of HTML has so far failed to
catch on.

Part of the reason for this is that it requires more thought to implement. Whereas CSS and
JavaScript are usually static files, HTML is often generated on-the-fly by assembling fragments of
markup using a back-end scripting language. Web masters are then faced with the choice to either
minify each of these fragments, or perform the minification on-the-fly, prior to the HTML being
sent to the client. In the latter case, the performance overheads may well outweigh the benefits
(which can admittedly be quite low).

That said, minification of HTML is still a worthwhile endeavor. Although the benefits of CSS and
JavaScript minification are often seen only once for the client (because these resources are generally
cached by the browser, at least for the length of the session), the benefits of HTML minification are
seen on each page load. So, although the percentage decrease in size may be lower for HTML

documents, the cumulative effect over the length of the user’s session is often greater than that for
CSS and JavaScript.

HTML minification is also quite a controversial subject, partly because many of the minification
techniques result in markup that is not valid XHTML. The whole HTML versus XHTML argu-
ment has been raging for years and isn’t something to be examined here, except to say that using
XHTML for your documents may not be as important as you think. (Most web servers still serve
pages using the text/html content type, so, even if you use XHTML in your doctype, the browser
still renders it as HTML. Part of the reason for the lack of uptake of XHTML — which would be
served as application/XHTML+XML — is that Internet Explorer does not support it.)

https://github.com/barryvan/CSSMin/
https://github.com/barryvan/CSSMin/

64

CHAPTER 4 KEEPING THE SIZE DOWN WITH MINIFICATION

HTML Minification Techniques

Let’s look at some of the most popular HTML minification techniques. Some of these (such as
removing comments and excess whitespace) are quick and painless. Others (such as the removal of
attribute quotes or closing tags) can cause compatibility issues if you are not careful, and you should
always be mindful of the Document Type Declaration (DTD, or doctype) that you are writing for.

Whitespace and Comments

Stripping comments and extra whitespace forms a large part of the minification process. (And,
again, many basic minifiers stop here.) However, with HTML, even this can be problematic.

In most situations, consecutive whitespaces in (X)HTML documents are rendered as a single space.
Consider the following example:

<p>This is a space</p>
This is displayed identically to the following:
<p>This is a space</p>

This isn’t the case for text wrapped inside <pres tags, however. Text inside these tags is considered
to be preformatted and is rendered as-is. It’s easy for a minifier to spot <pre> tags and ignore the
content between them, but the next problem is more challenging.

CSS supports the white-space property, which controls how whitespace in an element is handled.
Consider the following;:

<p style="white-space:pre">This is a space</p>

This has an identical effect to the <pre> tag — that is, whitespace is preserved, rather than being
collapsed down.

In practice, this property would most likely be defined in an external CSS file, rather than via the
style tag in this example. So, for a minifier to determine which elements contain preformatted text, it
would need to parse the CSS and calculate the properties associated with every element. Given the
cascading nature of CSS and the powerful way in which selectors can be specified, this is no easy task.

So, perhaps it’s not surprising that few (if any) of the HTML minifiers can cope with the
white-space property. (Although, in fairness, some do acknowledge this problem.) The good

news is that white-space isn’t a widely used property. So, for the moment, the best approach is to
check to see if your CSS rules make use of it; then either forgo whitespace compression, or manually
repair your preformatted text afterward.

Attribute Quotes

According to the HTML 4.0 specifications (http://www.w3.org/TR/REC-html40/intro/sgmltut
.html#h-3.2.2), it is acceptable to omit the quotes from attribute values, provided the value is

limited to alphanumerics, hyphens, and periods. So, it is perfectly valid to say <a href=index.php
title=home> rather than . Needless to say, removing attribute
quotes will result in invalid XHTML.

http://www.w3.org/TR/REC-html40/intro/sgmltut.html#h-3.2.2
http://www.w3.org/TR/REC-html40/intro/sgmltut.html#h-3.2.2

HTML Minification | 65

Things get rather messy if you ignore the proviso about which characters are allowed in unquoted
attribute values. In particular, using the forward slash in unquoted values can result in markup
that still validates but fails to render correctly in browsers (according to http://www.cs. tut
.fi/~jkorpela/gattr.html). If you use a minifier that supports this option, ensure that it
understands the situations in which values must be quoted.

Inline CSS and JavaScript

It’s usually good practice to keep as much of your CSS and JavaScript as possible in external
resources, because this increases the potential for caching. Given the logistics of moving inline
CSS/JavaScript out of the HTML document, this is almost certainly a task that you need to
perform manually.

On the subject of JavaScript, it’s worth noting that following frequently seen markup is deprecated
(and has been for a long time):

<script language="JavaScript">
Instead, you can simply say the following:
<scripts>

Occasionally the 1anguage= property specifies a specific version of JavaScript to be used (for
example, language="'JavaScript1.8"), but this isn’t particularly reliable and should be avoided
whenever possible.

 and , and <i>

Many web authors consider to be synonymous with , and to be synonymous
with <i>. They tend to render identically in browsers, so it may be tempting to replace all occur-
rences of with in a document, as a means to shrink the document size.

Unfortunately, this logic is flawed. Although and may render the same in
common browsers, their meaning is subtly different. is purely a presentational tag, telling
the browser to render the text in bold, but carrying no other meaning. In contrast,
carries a semantic meaning — it indicates to the browser that the text is strongly emphasized.
Most browsers render such text in bold, but this is purely a decision made by the browser — it is
not a requirement.

Actually, the word “browser” probably isn’t the right choice of words here. There is a wide range
of user agents, of which desktop web browsers are only a handful. The real benefit to make a
distinction between and comes for agents such as audio readers, where there is a
marked difference in meaning between bold text and strongly emphasized text.

In short, replacing with (and with <is) generally isn’t a good idea. This is worth
mentioning because some HTML minifiers carry this option.

http://www.cs.tut.fi/~jkorpela/qattr.html
http://www.cs.tut.fi/~jkorpela/qattr.html

66 | CHAPTER4 KEEPING THE SIZE DOWN WITH MINIFICATION

Removing title and alt Attributes

Another minification technique not recommended (but is offered by some minifiers) is the
removal of title and alt attributes. An example might be transforming <a href="/home
.html" title="Home">Go Home into
Go Home.11ﬂscenainbfcutsdown1
the size, but at the expense of accessibility and search engine optimization (SEO).

Boolean Attributes

In form elements, it’s common to use attributes that simply have on/off values, such as selected
and checked. The standard method to write these is like so:

<option value="red">Red</option>
<option value="blue" selected="selected">Blue</option>
<option value="green">Green</options

However, it’s perfectly valid in HTML 4 to omit the attribute value, as shown here:

<option value="red">Red</options>
<option value="blue" selected>Blue</option>
<option value="green">Green</options

Again, this shortcut is not valid in XHTML documents.

Closing Tags

In many situations, it’s also acceptable to omit closing tags in HTML (but not XHTML) documents,
thus going against everything you were taught about clean markup. The previous example could,
therefore, be condensed further to the following:

<option value="red">Red
<option value="blue" selected>Blue
<option value="green">Green

Or if you’re happy with the option values being identical to their text labels, you could use the
following:

<option>Red
<option selected>Blue
<option>Green

This results in 48 bytes of code, compared to the 104 bytes of the original.

If your conscience allows you to cut corners like this, the savings in size can be quite substantial.

HTML Minification Tools

As mentioned earlier, HTML minification hasn’t yet taken off to the extent that CSS and JavaScript
minification has. That said, there are plenty of tools available to perform it. As with CSS and

HTML Minification

| 67

JavaScript minifiers, the quality varies a lot, with basic tools doing little more than stripping

whitespace and comments (which is still a good start) — or even worse, replacing good markup with

bad (such as removing alt attributes and replacing strong with b).

Two popular HTML minifiers are HTMLMinifier (http://github.com/kangax/html-minifier)

and htmlcompressor (http://code.google.com/p/htmlcompressor/). The first is writ-

ten in JavaScript and intended to be run via a web browser. The second is a command-line Java

application.

HTMLMinifier is newer and is still experimental, but tests indicate that it does appear to offer

slightly better levels of compression. It also has the option to include some riskier techniques, should

you be feeling brave. Following are the available options:

Remove comments.

Remove comments from JavaScript and CSS blocks.

Remove character data (cpaTa) blocks from CSS and JavaScript.
Collapse whitespace.

Collapse boolean attributes (for example, selected="selected").
Remove attribute quotes (when it is safe to do so).

Remove redundant attributes (for example, language="JavaScript").
Use short doctype

Remove empty attributes (for example, title="").

Remove optional closing tags.

Remove empty elements such as <p></p>.

Y Y Y VY Y Y VY VY VY VY VY'Y

Remove type="text/javascript" from inline script.

All these options are enabled by default, save for the last two, which are potentially dangerous.

HTMLMinifier also includes a Lint validator that reports on errors and deprecated code.

htmlcompressor is a little less adventurous but is still powerful; and being a command-line tool,
it is easier to integrate into an automated build system. htmlcompressor can also compress XML
documents and can integrate with the YUI Compressor to perform minification of any inline CSS

and JavaScript.

Let’s have a look at the available options:

$ java -jar htmlcompressor-0.9.1.jar -h
Usage: java -jar htmlcompressor.jar [options] [input file]

<input file> If not provided reads from stdin

Global Options:
-o <output file> If not provided outputs result to stdout

http://github.com/kangax/html-minifier
http://code.google.com/p/htmlcompressor/

68 | CHAPTER4 KEEPING THE SIZE DOWN WITH MINIFICATION

--type <html|xml> If not provided autodetects from file extension
--charset <charset> Read the input file using <charset>
-h, --help Display this screen

XML Options:
--preserve-comments Preserve comments
--preserve-intertag-spaces Preserve intertag spaces

HTML Options:

--preserve-comments Preserve comments

--preserve-multi-spaces Preserve multiple spaces

--remove-intertag-spaces Remove intertag spaces

--remove-quotes Remove unneeded quotes

--compress-js Enable JavaScript compression using YUICompressor
--compress-css Enable CSS compression using YUICompressor

JavaScript Options (for YUI Compressor) :

--nomunge Minify only, do not obfuscate
--preserve-semi Preserve all semicolons
--disable-optimizations Disable all micro optimizations

--line-break <column num> Insert a line break after the specified column

CSS Options (for YUI Compressor) :
--line-break <column num> Insert a line break after the specified column

Please note that if you enable JavaScript or Css compression parameters,
YUI Compressor jar file must be present at the same directory as this jar.

To get a rough idea of how HTMLMinifier and htmlcompressor compare, a test was performed
by running the homepages of a couple of well-known sites through them. The level of minification
is obviously heavily dependent on the content and will vary a lot from document to document. So,
although sampling just two websites isn’t enough to get any empirical evidence, it does provide a
general idea of how efficient HTML minifiers are. Table 4-2 shows the results of the testing.

TABLE 4-2: Comparing HTMLMinifier and htmlcompressor

HTMLMINIFIER HTMLCOMPRESSOR
UNCOMPRESSED HTMLMINIFIER PERCENTAGE HTMLCOMPRESSOR PERCENTAGE
URL (BYTES) (BYTES) IMPROVEMENT (BYTES) IMPROVEMENT
Kernel 29,143 25,655 11.93 26,604 8.71
.org
Amazon 183,066 173,940 4.99 179,054 2.19
.com

HTMLMinifier is the winner here, with a 3,478-byte reduction on kernel.org (approximately

12 percent) and a 9,127-byte reduction on Amazon.com (approximately 5 percent — although, after
having looked at the markup on amazon.com, HTML minification should be the least of

the priorities).

http://Kernel.org
http://Amazon.com
http://Amazon.com
http://Amazon.com
http://kernel.org

Summary | 69

SUMMARY

Minification plays an important role to reduce the size of resources (which speeds up download
times) and can often result in a slight increase in execution speed. The downside is that it reduces
the readability of code. Although on-the-fly minification is possible, it’s wasteful of resources, and
minification is best carried out once, when the code is deployed.

In this chapter, you have learned about some popular minification tools: YUI Compressor
(JavaScript and CSS), Google Closure Compiler (JavaScript), CSSTidy, HTMLMinifier, and
htmlcompressor. Whichever tools you use, remember that they are not a magic bullet. Your first
step in minification should always be to manually clean up the code, and, in the next two chapters,
you will learn more about writing efficient and concise JavaScript and CSS.

In Chapter 5, you’ll spend some time looking at the issues surrounding web graphics and image
optimization.

Optimizing Web Graphics
and CSS

WHAT'’S IN THIS CHAPTER?

» Getting to know the three primary image formats

> Achieving high levels of compression

» Cutting down on HTTP requests by using CSS sprites
> Making your CSS leaner

The images used on a website are often created by a web designer or graphic designer, for
whom quality is the primary concern (because this is the standard by which they are usually
judged). So, it’s not surprising that optimization is often ignored. You can frequently cut 10
KB or 20 KB off an image without any visible loss in quality.

If graphic designers are guilty of tunnel vision in this respect, you should be careful not to
fall into the same trap. Although size is your primary concern, and some loss of quality is
probably acceptable, you should resist the temptation to over-optimize — tacky looking
graphics are just as likely to put off visitors as slow loading times.

UNDERSTANDING IMAGE FORMATS

For a long time, two main image formats were used on the web: JPEG and GIF. JPEG (which is
an acronym for Joint Photographic Experts Group) were used for photographs, and a1F (which
stands for Graphics Interchange Format) was used for computer-generated images such as icons.

In the mid-1990s, it came to light that the Lempel-Ziv Welch (LZW) compression method
used by GIF was patented, and the search was on for an alternative. In 1996, the first

72 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

specification for a new format, PNG (which stands for Portable Network Graphics), was released.
Later that year, it had become a World Wide Web Consortium (W3C) recommendation, with most
major browsers supporting it by the end of that decade. Although the LZW patent expired in 2003,
pNG had shown itself to be a superior format, and G1F never fully recovered.

Although the roles of JPEG and c1F are well defined, PNG’s purpose is vague. The pnG format can
be used as a replacement for both JPEG and GIF. So, let’s start with a review of these three formats.
Because much of this is common knowledge to those with even a basic knowledge of web develop-
ment, this examination is brief.

JPEG

JPEG is a lossy compression method (there is a lossless mode, but it’s not widely supported), and is
well-suited to photographic images, which typically have many different colors and gradients. With
JPEG, there is a trade-off between file size and image quality, but even at the lowest compression
level (that is, the largest file size), where artifacts are virtually nonexistent, JPEG images are still con-
siderably smaller than nonlossy formats such as TIFF (which stands for Tagged Image File Format).

NOTE With lossy compression, some data is lost during the compression. With
lossless compression, no data is lost during the compression.

JPEG compression levels are usually specified as either a percentage (where 0 percent is the smallest
file size, but lowest quality, and 100 percent is the best quality, but largest size) or a number in

the range 0 to 1. A value of approximately 60 percent to 80 percent is generally considered a good
middle ground for web images.

GIF

GIF has been around since 1987 and is commonly used for logos, sprites, and clip art.

GIF images use a color table (also known as a palette), which can hold up to 256 colors. Each pixel
of the GIF image is then replaced by a number representing which of these colors it contains. The
obvious limitation here is that a GIF can contain only 256 different colors at most. But, surprisingly,
this is still often enough — especially because the color table is not preset but allocated from the
colors actually used in the image. (So, for example, the image could contain 256 shades of red.)

It’s also interesting to note that GIF compression is based around LWZ, a revised version of the LZ78
algorithm, which as you learned in Chapter 3, “Content Compression,” is used in gzip and deflate.

Because compression occurs in horizontal rows
(from left to right), images that contain a horizon-
tal color gradient compress worse than those with

a vertical gradient. Consider the images shown in
Figure 5-1. The image on the left weighs in at 25 KB,
whereas the one on the right is only 17 KB.

FIGURE 5-1

Understanding Image Formats | 73

PNG

PNG is a lossless format that was designed as a replacement for GIF after the licensing issues with
LWZ became apparent. PNG uses the deflate algorithm (which itself uses LZ77, which, as you
learned in Chapter 3, is similar to LWZ).

PNG supports both paletted and non-paletted RGB and RGBA (RGB with an alpha channel) images.
Paletted flavors are often referred to as pNGs (for PNG), PNG24 (for RGB), and pNG32 (for RGBA),
with the numbers reflecting the number of bits per pixel.

> pNG8 is the most similar to GIF, using an 8-bit (that is, 256) color table. In most cases, it
outperforms GIF, making it an ideal drop-in replacement. It’s worth noting that pnG8 sup-
ports both paletted and RGBA, making it a potential choice for image alpha transparency.

> The RGB mode (pNG24) is sometimes also used as a lossless alternative to JpEG; although the
large file size means this is not commonly used on the web.

> PNG32 is similar to RGB mode but includes an alpha channel. Although this mode isn’t used
much, there are certain situations in which it is the only viable format. For an image with
lots of color gradients that also require transparency, neither JPEG, GIF, nor PNG8 are ideal
(because JPEG lacks support for transparency, whereas GIF and PNG8 have limited color
depths). pNG32 handles such images well — but don’t expect the file size to be small!

NOTE Although PNG has been around since the late 1990s, Internet Explorer
(IE) has had numerous flaws in its support for the format, particularly pnG32. For
example, IE 6.0 and earlier versions fail to handle alpha transparency correctly,
whereas IE 7.0 struggles when transparency is used on top of semi-transparent
HTML elements. (See http: //support .microsoft.com/kb/265221 for more
information.)

SVG

The image formats examined thus far all work along similar principles, containing information
on the color of each pixel in the image. What differs is the way in which this information is
encoded.

Scalable Vector Graphics (SVG) takes a completely different approach by using XML to describe an
image in terms of geometrical shapes. If you’ve ever drawn on a canvas in your favorite program-
ming language, you’ll be familiar with the idea of specifying the dimensions of polygons, setting a
fill color, overlaying text, and so on. Following is the content of a simple SVG file:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<circle cx="100" cy="50" r="20" stroke="black" stroke-width="1"
fill="blue" />
</svg>

http://support.microsoft.com/kb/265221
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg

74 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

This draws a circle on the canvas with radius 20 pixels at coordinates 100 x 50 pixels. The
circle is filled with a blue color, and has a black border of radius 1 pixel. Aside from circles,
ellipses, polygons, and text, SVG also supports color gradients, filters, blur effects, and drop
shadows.

In many situations, SVG is an ideal alternative to traditional image formats. It can result in smaller
file sizes (sometimes, but not always), and (as the name implies) is scalable, meaning that the image
can be resized without affecting its quality.

One of the main reasons why the SVG format is not as widely used as it should be is because of poor
support in IE. While most of the major browsers have had some level of SVG support since around
2005 (Konqueror in 2004, Firefox in 2005, Opera in 2005, Chrome and Safari in 2006), IE did not
begin to offer native support for SVG until version 9 in 2011. Because a sizeable number of your
visitors will still be using earlier versions of IE, the only practical solution if you wish to utilize SVG
files is to use content negotiation and serve up a non-SVG version of the graphic to earlier versions
of IE.

While SVG files are not affected by traditional image optimization considerations (that is,
compression levels, color depths, interlacing, and so on), the fact that they must be parsed and
rendered by the browser raises its own performance considerations. The larger the XML file,
the more shapes must be drawn, and this has the potential to be slower than merely displaying
an image in a format such as GIF or PNG (even taking into account that these formats require
decoding). Particularly costly are advanced effects such as gradients, fillers, and opacity.
However, provided that you use these sparingly, SVG files need not be particularly CPU-
intensive to render.

OPTIMIZING IMAGES

Now that you have refreshed your memory about the three main image formats, let’s look at some
of the techniques to keep image sizes down.

Image Editing Software

A bewildering array of image-editing software is available, but one favorite is the GNU Image
Manipulation Program (GIMP) (http://www.gimp.org). It’s free, it works on UNIX, Windows,
and Mac, and it does a good job to compress images. So much so that, although there are a large
number of tools available specifically for optimizing images, they rarely result in any significant
reduction in file size when run on images saved by GIMP.

Choosing the Right Format

The general rule for using the JPEG format for photography and GIF or PNG for everything else
can serve you well most of the time. But occasionally you encounter images somewhere in
between — often images generated digitally that contain more than 256 colors, or lots of

http://www.gimp.org

Optimizing Images | 75

gradients. In these situations, trial and error (and a good eye for detail) is the best approach.
Experiment with different formats and different compression levels until you find the best
trade-off between size and quality.

Interlacing and Progressive Rendering

So far, you have learned a bit of background on techniques to keep image file sizes low. However,
user perception of how quickly a page loads is important, too, so now think the unthinkable. Let’s
look at a couple of techniques that actually often increase file size but can improve the user percep-
tion of loading times.

The default compression method for JPEG is called baseline, in which the data is compressed from
top to bottom. This leads to the well-known effect where a large JPEG image starts rendering
from the top downward, as shown in Figure 5-2.

FIGURE 5-2

JPEG also offers a second method of compression, known as progressive, in which multiple passes
are made of the image, each producing higher detail. When loaded in a browser, such images start
out blurry and gradually become more detailed, as shown in Figure 5-3.

76

CHAPTER 5 OPTIMIZING WEB GRAPHICS AND CSS

FIGURE 5-3

In terms of usability and user perception of speed, progressive JPEG files are generally considered
to be a good thing, especially for those who use slow connections. Progressive JPEG files provide a
rough overview of the image quickly, and the final stages of rendering are often unnoticed by the
user. Not everyone feels this way, though. There is the danger that the user is never quite sure if the
image has finished loading, or sees the early passes and assumes the image is of a poor quality.

How does progressive rendering affect file size? It actually tends to reduce the size slightly;
although this isn’t always the case. Research at Yahoo (http://yuiblog.com/blog/2008/12/05/
imageopt-4/) suggests that approximately 10 KB is the sweet spot. For images larger than this,
progressive rendering results in a decrease in file size. For images smaller than this, file size goes up
a little.

GIF and PNG formats both support a similar technique (of which pNG’s is far superior), which is
known as interlacing. As with progressive JPEGs, the idea is to show the image in multiple passes,
each pass adding more detail. With a a1F file, the first pass draws every eighth line, the second pass
every fourth line, the third pass every second line, and the fourth (last) pass the remaining lines.

By contrast, PNG uses a two-dimensional interlacing scheme consisting of seven passes. The result is
a much smoother transition with more clarity in the early stages of rendering.

http://yuiblog.com/blog/2008/12/05/imageopt-4/
http://yuiblog.com/blog/2008/12/05/imageopt-4/

Optimizing Images | 77

The downside to interlacing is that it always increases the file size — more so for PNG than GIF.
Interlacing is almost always unnecessary for small images, so the dilemma arises only for large NG
and cr1F files, which themselves are not common. As always, it’s difficult to make hard and fast
rules. You should experiment with and without interlacing on an image to see which you prefer. A
common opinion is that interlacing is unnecessary the majority of the time.

PNG Optimization

Optimization of PNG images can be divided into four steps:

1.
2.

3.
4.

Remove redundant headers.

Reduce the color depth. (For example, switch from RGB to paletted, or reduce the number
of colors in the palette.)

Re-implement or use alternative filters.

Improve the performance of the LZ77 and deflate algorithms. Sometimes custom
implementations are used.

Let’s look at each of these steps in more detail.

Removing Redundant Headers

This step involves removing meta data that is not of the image itself. As such, there is no loss in
image quality; although whether this step can truly be referred to as lossless is debatable because
data is still being removed.

The pNG format supports more than a dozen additional headers, which are not required to be
present, and many can be omitted without ill effect. Following are prime candidates for removal:

>

>

bKGD — Specifies a default background color. This option is not used by web browsers.
pHYs — Gives the intended aspect ratio or pixel size of the image.

sBIT — Stores the number of significant bits, enabling a decoder (for example, a web
browser) to reconstitute images converted from a lower sample depth.

sPLT — Stores a suggested palette when the viewer lacks the capability to show the full
intended color range.

HIST — Contains a palette histrogram, charting how frequently each color appears in the
image.

tIME — The last modified time of the image.

cHRM — Stores the X/Y coordinates of the primary colors used in the image.

In addition, there are three text fields (zTXT, tEXT, and iTxT) that may be used to store textual
information relating to the image. Typically, this includes title, author, description, copyright infor-
mation, comments, and so on.

78 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

Reducing the Color Depth

Hopefully, this step is not required because you should already have experimented with setting the
lowest acceptable palette depth.

While it is common knowledge that pNG8 supports binary transparency (that is, a pixel is either
transparent or it is not), less well-known is the fact that pncs also supports alpha transparency. If
you have been using pNG32 simply because you needed alpha transparency, now is the time to exper-
iment with pnGs. File sizes should be significantly smaller.

The most frequent problem with alpha transparency in PNG32 is the buggy support in earlier ver-
sions of IE. Versions 6 and earlier could not handle the alpha channel, and would render alpha
pixels in grey, with less than pleasing results. While IE6 still does not support alpha transparency in
PNGS8, it chooses to display such pixels as fully transparent, which is usually more acceptable.

Re-Implementing (or Using Alternative) Filters

At the precompression stage, filters can transform the data into a form that can compress easier.
p p g p
Note that, in this context, “filter” has nothing to do with visual aspects of the image such as alpha
g p g p
channels.) LZ77 looks for repeating sequences, and anything you can do to increase these can aid
compression.

NOTE Appendix C, “Compression,” provides more detail on LZ77.

Consider the following sequence:
1,2,3,4,5,6,7,8,9

With no repeating sections, this sequence offers no scope of LZ77 compression. And yet, there is a
definite pattern — each value is one more than the previous.

Let’s apply a filter where each value in the sequence is replaced with the difference between itself and
the previous value. (So, for example, the difference between 5 and 6 is 1, the difference between 6
and 7 is 1, and so on.) The sequence now looks like this:

1,1,1,1,1,1,1,1,1

This is the kind of data that LZ77 loves, and provided that you know the filter that was applied, you
can easily reverse it to recover the original string.

Of course, this was a contrived example. Consider the following sequence:
2,3,4,5,2,3,4,5,2,3,4,5
Here, the filtered sequence would be as follows:

2,1,1,1,-3,1,1,1,-3,1,1,1

Optimizing Images | 79

This actually compresses a little less. You might say that it compresses less for this particular
filter — with a bit of thought you could no doubt come up with a more complicated filter for which
this sequence did compress better.

pNG currently offers five different filters (although the first simply says “no transformation is made”),
and (rather usefully) a different filter may be used on each row of the image. The four remaining
filters are as follows:

> sub — Each pixel is replaced with the difference between it and the pixel to its left (as in the
earlier example).

> up — Each pixel is replaced with the difference between it and the pixel above it (that is, in
the previous row).

> average — Each pixel is replaced with the difference between it and the average value of
the pixels above and to the left of it.

> paeth — This is a much more complex filter based around the Paeth Predictor and using
pixels to the left, top, and top left. The details are outside the scope of this book, but if
you want to learn the nitty gritty of Paeth, PNG: The Definitive Guide (Sebastopol, CA:
O’Reilly Media, 1999) by Greg Roelofs is, well, the definitive guide.

Because these filters are preset, there’s no scope to implement your own filter. The only scope for
optimization at this stage is deciding which filter to use. Although a different filter may be used on
each row of the image, it is mathematically impractical to try every possible combination, except on
small images.

Improving Algorithm Performance

Having removed meta data and reduced the size of the raw image, the last possibility for optimiza-
tion is in the compression.

As mentioned earlier, PNG uses the deflate algorithm. Just to refresh your memory, deflate uses a
combination of LZ77 and Huffman encoding. LZ77 is a dictionary coder that looks for sequences
of data that match sequences that have already been encoded. Such sequences are then replaced
with a length-distance pair representing the size and offset of the earlier occurrence. Huffman uses
a tree structure (usually referred to as a table) to encode frequently occurring symbols into shorter
representations.

Recall that LZ77 uses a sliding window and searches back only a limited distance when looking
for matches. Although this lowers memory and CPU usage, it does tend to result in matches being
missed. In deflate tools (such as gzip) that enable the compression level to be set, the size of this
window is typically one of the factors that can be changed.

The z1ib implementation offers nine levels of compression, but if you’re happy with trading slower
compression for smaller file sizes, there’s no reason why you cannot go beyond this. As such, custom
deflate implementations tend to offer the capability to set larger window sizes.

Similarly, the efficiency of the Huffman encoding is effectively limited by memory. Output from
LZ77 is piped to the Huffman encoder, and the buffer is flushed when it reaches a maximum size.
Raising the size of this buffer allows a larger, more organized tree.

80 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

Lossless Compression

Which, if any, of these steps are lossless? That depends on how you define lossless. Generally, loss-
less means no loss in visible image quality, but, strictly speaking, step 1 involves the potential loss of
meta data in the image headers, even if this has no effect on image quality.

Step 2 can be lossless or lossy, depending on the situation. Shrinking the palette to remove unused
colors is lossless, but sometimes it may be acceptable to lose a few colors for the sake of size, in
which case loss does occur.

The final two steps are always lossless. PNG optimization tools often contain their own implementation
of deflate, which outperforms that found in image-editing software. It’s worth noting that such
images can still be viewed correctly by the client — no special decoding method is needed.

GIF Optimization

With pNG generally being a superior format to GIF, there’s no need to spend too much time discuss-
ing optimization of GIFs. In fact, GIF offers less scope for optimization, and optimization techniques
tend to be somewhat pedestrian — reducing the size of the palette to a visually acceptable level and
removing unnecessary meta data.

GIF supports three sets of text-format meta data (usually referred to as extensions), and each may appear
multiple times in the file. They are Comment, Plain text, and Application. All may safely be removed.

A discussion of GIF optimization would not be complete without a quick look at animated GIFs.
(However, many developers are still scarred by their extensive misuse in the early days of the web.)

Reducing the number of frames is usually the first step — the less the better, although, of course,
quality will suffer. When possible, you should also use frame differencing (also known as
inter-frame transparency). Using this technique, each frame contains only the pixels that have
changed from the previous frame.

JPEG Compression

JPEG compression is something new and quite different from the LZW family of encoding schemes.
Whereas LZW and LZ77 perform lossless encoding, JPEG encoding is intentionally lossy — this is
where most of the savings occur. Unfortunately, JPEG compression is a significantly more compli-
cated technique than deflate or LZW, and a detailed explanation is outside the scope of this book.
So, let’s settle for a brief overview.

NOTE Appendix C, “Compression,” provides more detail on LZ77.

Compression Internals

The first step in compression is to convert the image from RGB to YCbCr (where “Y” is the bright-
ness, “Cb” the blue chrominance, and “Cr” the red chrominance). Humans are much less sensitive
to changes in chrominance than brightness, and the YCbCr color space takes this into account,
allowing the image to be compressed more without a noticeable loss in quality.

Optimizing Images | 81

To achieve this compression, down-sampling is then applied to reduce the resolution (and, thus,
the level of detail, and the size) of the Cb and Cr components. The JPEG format supports numerous
ratios of sampling, of which the three most common are: 4:4:4 (no resampling), 4:4:2 (resampling
on the horizontal), and 4:4:0 (resampling on both the horizontal and vertical).

Next, the image is split into 8 x 8 pixel blocks, and a Discrete Cosine Transform (DCT) is applied
to each pixel in the block, resulting in a frequency domain. While the math involved in this step is
well beyond the scope of this book, the result is a two dimensional grid in which each frequency in
the image is plotted against its magnitude — low frequencies appear at the top left of the grid, and
high frequencies appear at the bottom right. Quantization (that is, compressing a range of values

to a single quantum value) is then applied. Because the DCT tells you the relevance of each value,
you can apply more quantization to lower-frequency values, and use less quantization for the higher
frequencies. The result is that less significant data is compressed more than more significant data.
It’s at this stage that the compression level set by the user (typically offered as a percentage) comes
into play, with a lower value resulting in more quantization.

NOTE The terminology here can be rather confusing. Some utilities such as
GIMP refer to this setting as “quality” and use a percentage, whereas higher val-
ues mean higher quality. Other tools use a number between 0 and 1. Still others
call the setting “compression level” and lower values mean higher quality. For
consistency, the setting will be referred to here as “quality” or “quality level.”

The final stage is to pass the quantized data through a modified Huffman encoder.

Optimization
What does this all mean in terms of optimization? Well, in addition to the quality level, you also
have the ability to choose which sampling method to use. Although 4:4:2 tends to be the default
ratio, there are situations in which better overall compression can be achieved by using 4:4:4 in
combination with a lower quality level. This is typically the case in images with small amounts of
fine detail, such as images with text on them.

From this (albeit basic) understanding of JPEG compression, you can also draw some conclusions
about the types of images that compress well, and methods to improve the compression ratio:

> JPEG files excel with gradual changes in color (the exact opposite of PNG and GIF files).
As such, adding a small amount of blur to produce softer edges can aid the compression
process.

> Similarly, reducing the color saturation produces smoother color transitions, leading to
better compression.

> Decreasing the contrast lowers the range of brightness, which again allows better

compression.

Admittedly, none of these techniques is hugely practical because they mean altering visible aspects of
the original image. But they’re still useful to know.

82 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

It’s also important to remember that acceptable quality levels vary from image to image. One image
may show no visible artifacts at, say, 60 percent quality, whereas another may look bad. This makes
it difficult to do any sort of batch resampling of JPEG files, and for the best optimization, the human
eye is still no match for a machine.

It should also be noted that because JPEG is a lossy format, resaving a JPEG — even if no changes
to quality/compression are made — still results in loss of information. Ideally, the original image
should be stored using a nonlossy format (such as some flavors of PNG or TIFF, or even an applica-
tion’s native format, such as GIMP’s xcF) and converted to JPEG as the final stage in publishing.

Zonal Compression

Although having fine-grained control over the level of compression used for a JpEG file is useful,
it can be somewhat inflexible because the same level of compression is applied to every part of
the image. Zone compression (also referred to as spatial, weighted, or regional compression) is a
technique whereby different parts of an image are compressed at different levels. This can lead to
lower file sizes and better quality in the parts of the image that matter.

Zonal compression is ideally suited to JPEG photography where a main subject is set against a less
important background — outdoor shots are a prime example.

In the photograph shown in Figure 5-4, the main focus is the black cat. Although it’s nice to appre-
ciate the clarity of the weeds in the background, these are of secondary importance. You can reduce
the file size significantly by applying a higher level of compression to this region.

FIGURE 5-4

Although GIMP does not support zonal compression, both Adobe Photoshop and Fireworks do.
In Fireworks, you first select the region you want to keep at a higher quality using the Lasso tool,
and then save it as a JPEG mask (Modify = Selective JPEG). The masked area is highlighted in a
different color, as shown in Figure 5-5.

Optimizing Images | 83

: 1

FIGURE 5-5

Finally, you can use the Optimize dialog (as shown in Figure 5-6) to set the quality level of the high-
lighted region (“Selective quality”) and the remainder of the image (“Quality”).

Figure 5-7 shows the original image with a quality level of 70 for the cat’s face and 20 for the
background. (A low quality level has been used so that the differences in compression are more
pronounced.)

i v Optimize =

= =
ot |

Quality: v

Selective quality: E?

Smoothing:

Sort: |Mone 0 colors

FIGURE 5-6 FIGURE 5-7

Figure 5-8 shows a more realistic quality level of 70 for the face and 40 for the background. This
results in a file size of 24 KB — a significant saving on the 42 KB size when the entire image is saved
at a quality level of 70.

CHAPTER 5 OPTIMIZING WEB GRAPHICS AND CSS

s W, " AN
FIGURE 5-8

Image Optimization Software

Image-manipulation programs such as GIMP and Photoshop usually do a decent job to create lean
images. (However, sometimes this isn’t the default behavior, and you must hunt around for a “save
for the web” option or something similar.) But there is usually at least some room for improvement.
Sometimes, it is virtually insignificant; at other times, it can have a big impact.

There are a number of (usually command-line) tools for optimization PNG, GIF, and JPEG images. Each
has its own fan base, and if you search the Internet, it’s not hard to find “evidence” that any one tool

is better than the others. The differences tend to be small, though, and given what Disraeli had to say
about statistics (although Mark Twain attributed “lies, damn lies, and statistics” to Disraeli, the phrase
doesn’t appear in any of Disraeli’s writings), no attempt has been made by the author to quantify the
performance of each of these tools. You should just go with the one you feel most comfortable with.

Following is more information about a few of these tools:

> PNGOUT (http://advsys.net/ken/utils.htmé#pngout) is a freeware tool, available for
Windows and Linux. It uses a custom implementation of the deflate algorithm, which
results in better compression, at the expense of speed.

> pngcrush (http://pmt.sourceforge.net/pngcrush/) is an open source tool for manipu-
lating PNG images. One of its most useful features is a “brute force” mode in which it will
attempt every possible combination of optimization options to find which give the best
(smallest) file size.

> advpng (part of AdvanceCOMP, at http://advancemame.sourceforge.net/comp-readme
.htm1) also uses a custom implementation of deflate, this time from the 7-Zip program.
OptiPNG (http://optipng.sourceforge.net/) is an improved version of pngcrush,
offering automatic reduction of bit depth and color palette. It also features a “brute force”
mode, which outperforms pngcrush in many ways.

> RIOT (http://registry.gimp.org/node/20778) is a Windows-only plug-in for GIMP that
offers a huge array of optimization techniques for PG, ¢1F, and JPEG.

http://advsys.net/ken/utils.htm#pngout
http://pmt.sourceforge.net/pngcrush/
http://advancemame.sourceforge.net/comp-readme.html
http://optipng.sourceforge.net/
http://registry.gimp.org/node/20778
http://advancemame.sourceforge.net/comp-readme.html

Optimizing Images | 85

» @IFsicle (http://www.lcdf.org/gifsicle/) can be used on both animated and inani-
mate GIFs to remove comments, redundant colors, and so on.

> JPEGTran (http://jpegclub.org/) can strip comments and other meta data, and can
perform lossless editing.

Data URIs

One of the most exciting recent developments (actually the idea has been around since 1998, but it’s
only in recent years that browsers have started to support it) is the data URI scheme. This scheme
enables data (such as images) to be embedded inline in web pages, rather than from an external
source. The syntax is as follows:

data:<mime types>;baseb4,<data>
Following is an example:

<img src="
zI7ccj7MMs7spRzKF1vMSavkid7ysgDMAKfihgjCBt jxrbvplmTRUET
NO+X2t 0TSNh7HGADFAADYANbvpd7vrWXTUQAAAAAAAAAAAAAAAAAAAAAAAANA
AAAAACHSBAEHAAEALAAAAAAMAAOAAAUMYCCOZE1Ch]j1CRaGKw4K8ANW80PSYVa
RcCYaJsJhMHK/GBCB8OUMAOw==" width=12 height=10>

Of course, the advantage is that by embedding the image data inline, you cut out a HTTP request.
You can even use data URIs in CSS, rather than directly in the HTML, thus taking advantage of
caching.

As you’ve probably guessed, though, there are downsides. Firstly, although all the major brows-

ers do now support data URIs, IE 7 and earlier versions (which still make up a significant share of
the market) do not. The workaround here is to load a different version of the CSS (not using inline
images) for such users, either through the use of CSS conditional comments, or back-end PHP code.

Secondly, as you might have noticed from the previous example, the image data needs to be base
64 encoded, which typically increases the size by approximately one-third. There’s also the matter
to convert the data into base 64; although this is easily achieved with PHP or other scripting lan-
guages, as shown here:

<? php
$contents = file get contents($file);
Sbase64 = base64 encode ($contents) ;
?>

It should also be noted that IE 8 imposes a 32-KB limit on the length of the URI string.

Favicons

Creating a high-performing website means looking at all aspects of page loading times, not just
the low-hanging fruit. Favicons (the filename is actually favicon.ico) are a prime example. These
small images are so often overlooked, yet there are a few things you can do to improve them.

http://www.lcdf.org/gifsicle/
http://jpegclub.org/

86

CHAPTER 5 OPTIMIZING WEB GRAPHICS AND CSS

The first thing to appreciate is that browsers will request them no matter what. So, even if you don’t plan
to use a favicon, it’s better to return a 200 OK (or even a 204 No Content) than a 404 Not Found. The
situation can be improved further by setting far-future Expires/Cache-Control headers on . ico files.

The standard way to specify the favicon is via a 1ink tag in the document head:
<link id="favicon" rel="shortcut icon" href="/favicon.ico">

But because browsers will just request /favicon.ico anyway, if you omit the tag, is there any real
benefit to using it? Unless you want to use a different name for your favicon, the answer is “no” —
quite the reverse, in fact. With no link to the favicon in the HTML document, most browsers will
request /favicon.ico toward the end of the page loading process. However, if a favicon link is
present, it will be requested near the beginning of the page loading process. So, although there is no
net change in page loading time, leaving out the favicon link should cause a perceived increase in
speed (and trim a few bytes off the size of your HTML document).

Supported File Formats

While the 1co file format is the standard way of storing favicons, many browsers support other
formats too. PNG, GIF, and JPEG are supported by Firefox, Chrome, Opera, and Safari (but, note,
not Internet Explorer); while Firefox, Chrome, and Opera also support animated GIFs. Because of
IE’s limitations, 1¢O is the most widely used format, and there is generally little to be gained from
attempting to deliver, say, a PNG favicon for non-IE users and an 1co file for IE users. (Despite what
many people think, 1co files do support alpha transparency — you are not stuck with pnG.)

If you do decide not to use the 1co format, the MIME type for the favicon can be explicitly set like so:

<link id="favicon" rel="shortcut icon" type="image/png"
href="/favicon.ico">

The official MIME type for 1¢0 files is image/vnd.microsoft.ico, but it’s interesting to note that
this causes problems in IE, and is best omitted.

Keeping the Size Down

Keeping the size of the icon down is worth exploring, too. Favicons can be created at various sizes,
but 16 x 16 pixels is the most common. (Anything up to 48 x 48 pixels is commonly seen.) You
should prefer 16 x 16, partly because of the smaller file size, and partly because your icon should be
understandable at these dimensions. There’s no point to create a beautiful icon at 48 x 48 if no one
can understand what it is meant to be when a browser resizes it to 16 x 16.

Icon images are paletted, so one of the points made in the earlier discussion on GIF and pNG8 holds
true — try to keep the number of colors down. Also, try to keep the file size of the favicon low;
anything more than 1 KB or so is too big.

Eliminating the HTTP Request

One of the reasons that favicons are so frustrating for those who care about performance (aside
from the fact that they can’t be disabled) is that they result in an additional HTTP request. Because
the icon is usually small, the overhead to issue the request is relatively high.

Optimizing Images | 87

To that end, there are a few techniques to eliminate the HTTP request. They all have their problems,
though, and this is probably a case in which the simplest solution is the best — just use far-future
Expires headers, and accept that there will still be a favicon request from clients without a primed
cache. Still, for the sake of completeness, let’s take a brief look at a couple of techniques.

The first is to use a data URI, like so:

<link id="favicon" rel="shortcut icon" type="image/png"
href="data:image/png;base64,....==">

As you have already seen, support for data URIs is not universal, with Internet Explorer (IE) being
the main problem. You could get around this by using IE conditional comments, such that a tradi-
tional favicon.ico is used for IE, and data URIs for other browsers — but, in some ways, this is
a step backward. At least with a favicon you can ask the browser to cache it for future use. With

a data URI, you have the overhead to contain the embedded icon in your HTML documents with
every request.

Moving the data URI into an external style sheet is one way to increase the chances of it being
cached. You could set it as the background image of the element with ID favicon. This is an even
less supported method, though, and appears to be handled inconsistently between browsers.

Finally, if you’re happy with not having a favicon, another option is to point the href to a resource
that has already been loaded (or is in the process of being loaded). Because the resource is already
being requested, this won’t cause an additional HTTP request. Following is an example:

<link id="favicon" rel="shortcut icon" type="image/png"
href="/style/style.css">

Intentionally feeding the browser a resource that you know it wouldn’t parse as an icon seems the
wrong thing to do, which could potentially cause unexpected behavior. But, in practice, this method
seems to work well.

Using Lazy Loading

Lazy loading is a term generally applied to the loading of resources as they are needed, rather than
in anticipation of them being needed at some point. In the context of images, this usually means not
automatically loading images that fall below the page fold, and, thus, are not visible on the initial
page load. As the user scrolls through the page, the missing images are loaded as needed. Lazy load-
ing can be implemented in JavaScript.

The benefits are obvious. By loading only the images needed immediately, you can cut down sig-
nificantly on the volume of data that must be sent to the client. To the user, it appears that the page
has loaded quicker. Of course, if the user scrolls through the rest of the page, the images will still be
loaded anyway, but lazy loading results in the browser’s page loading feedback (for example, a turn-
ing wheel or loading bar) finishing earlier, and these feedback cues are an important part of a user’s
perception of speed.

Don’t underestimate the effect on data transfer with this method, either. A large number of your
visitors won’t scroll past the page fold, and if you have a significant number of images lower down

88 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

the page, the bandwidth savings will be considerable. Not only that, web server processes will be
freed up quicker, resulting in a lighter load on the web server.

There is, of course, a downside. There’s always latency involved in sending HTTP requests and
receiving a response — more so when a connection must be established first. When lazy loading is
used for images, there can be a noticeable flicker — the user scrolls the hidden part of the page into
view, and it might be half a second or so before the image loads. This can have a negative effect on
the user’s perception of the site.

Still, lazy loading is an idea that is worth looking at — particularly if you have a large number
of images below the fold. Both YUI and jQuery have lazy loading plug-ins, or you can write your
own — but be careful to cover all situations in which additional content may come into view

(for example, resizing of the browser window, removing/resizing dynamic elements on the page,
scrolling, and so on).

Avoiding Empty src attributes

As back-end code has grown more and more complex, the opportunities for accidentally outputting
 tags with empty src attributes have increased. Consider the following example,:

<img src="<?php echo $image ?>">

If the $image variable is not set, you end up generating an empty src attribute. It would seem
logical that browsers should ignore image tags if no source URL is given, but the reality is
surprising. Firefox 3.5 and later will not issue a request; Opera will not issue a request; but
Safari, Chrome, and IE will.

In the case of IE, a request is made to the parent directory. Thus, if the current URL is http://
www . example .com/news/articles.html, a request will be made to http://www.example.com/
news/. Most likely, this URL will return an HTML document or a 404 error rather than an image,
so the response will simply be ignored.

With Safari and Chrome, a request is made to the current URL — http://www.example.com/
news/articles.html in the previous example.

While browsers have the sense not to attempt to parse HTML documents or error pages as images,
this behavior still results in an additional HTTP request. Equally troublesome is the impact it could
have on the server, because the number of requests on the URL is potentially being doubled. For a
heavily scripted page, this could cause a significant increase in server load.

Setting Appropriate Width and Height Attributes

The dimensions of an image can be specified either via the width and height attributes of the
tag, or through the width and height CSS properties. But since the page will apparently load just
fine without them, why not keep your code slim by leaving them out?

http://www.example.com/news/articles.html
http://www.example.com/news/articles.html
http://www.example.com/news/
http://www.example.com/news/articles.html
http://www.example.com/news/articles.html
http://www.example.com/news/

Optimizing Images | 89

The problem is that, without these attributes, the browser has no way of knowing the image dimensions
until it begins to load them. As each image is loaded, the browser must redraw the page to accommo-
date them. The result is the often seen effect where content jumps around on the page as it is loading.

By specifying the width and height of each image, the browser immediately knows how much screen
space the images will occupy, and can allocate appropriate space for when they are finally loaded.
The result is a much smoother page loading.

You should ensure that the width and height that you specify match the dimensions of the image.
It’s not uncommon for web masters to intentionally scale images by setting larger or smaller
dimensions, but the results are not good. Scaling images up in this way results in a noticeable drop
in quality, while scaling down is inefficient. The image file that is being requested will be larger than
is necessary. For best results, always resize images with image-editing software (such as Gimp or
Photoshop) first, and set the correct width and height in your mark-up.

Using Image Maps

As you learned in Chapter 1, “A Refresher on Web Browsers,” cutting down the number of
resources on a page is one of the main ways to boost performance. However, although you may have
merged your CSS and JavaScript files, there will typically still be numerous images. Earlier in this
chapter, you learned about reducing the size of images, and now it’s time to look at reducing the
number of images requested.

Image Maps

In a normal image link, the whole graphic becomes a clickable link to the destination. Image maps are
a popular technique for mapping specific parts of the image to different destinations. (Actually, there
are two forms of image maps — client-side and server-side — but the former is much more common.
Because of this, a reference to just an “image map” actually means “client-side image map.”)

A common use of image maps is for hyperlinking different parts of a map, as shown in the
screenshot of http://time.gov in Figure 5-9.

Moving the mouse around different parts of the image
causes the name of the time zone to be displayed at the
bottom left, and the link URL to change to a location
showing the time in this particular zone. (The HTML
for creating this image map is somewhat tedious, with
each region being a polygon described by a series of
coordinates.)

In this situation, an image map was the obvious choice — ;
it would have been impractical for the map to have been MonTe e
composed of multiple images, one for each time zone. '
However, there are situations in which the obvious choice =~ FIGURE 5-9
is a series of adjacent images, and, in these cases, an image

map can be used to reduce these images to one. E ﬁ =gt O\% @

Consider the icons shown in Figure 5-10. FIGURE 5-10

http://time.gov

90 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

It’s not too difficult to imagine these six icons forming part of a toolbar on, say, a social
networking site. The HTML might look something like this. (Yes, alt and title attributes have

been omitted — it’s for clarity though, not laziness,)

href="/games.php">

<a

<a
<a
<a

Because they sit adjacent on the page, these icons are ideal I

candidates for an image map.

First, you combine them into a single image using GIMP, as
shown in Figure 5-11, and then save it as a PNG8 file.

Next, you create the image map, as shown here:

<map name="navigation"s
<area
<area
<area
<area
<area
<area
</map>

href="/calendar.php">
href="/search.php">
href="/help.php">

File Edit Select View |mage Layer Colors Tools Filte

o,

[209 . 0, [200

1

g T

I>I:}-

FIGURE 5-11

href="/games.php" shape="rect" coords="0,0,42,32">
href="/videos.php" shape="rect" coords="42,0,79,32">
href="/mail.php" shape="rect" coords="79,0,116,32">
href="/calendar.php" shape="rect" coords=117,0,154,32"">
href="/search.php" shape="rect" coords="155,0,190,32">
href="/help.php" shape="rect" coords="191,0,230,32">

As you can see, the image map consists of a series
of <areas tags that define hotspots in the image —
regions that will be clickable. Numerous shapes are
possible, but a rectangle is the natural choice here,
and the four coordinates specify the bottom-left
X,Y and top-right X,Y coordinates of the hotspot
(with the origin being the top left of the image).

The end result is indistinguishable from the original,
but you’ve reduced the number of images from six to
one, and along the way saved a few kilobytes — the
six individual images totaled 11,092 bytes, whereas
the sprite weighs in at just 4,461 bytes.

Figure 5-12 shows a waterfall view of the original
page loading (using IE 7 and a DSL connection).

Ignoring favicon.ico, you have seven requests in
total and a loading time of 1.16 seconds. Now, take
a look at Figure 5-13 to see the effect of using the
image map.

htt://62 11,18, 16/t /test .ntnl

62.11.19.16 - test.html

82.11.19.16 - appl ications-ganes.png

62.11.19.46 - a...ioms-nultinedia.prg

62.11.19.16 - inkernet-nail.png
.19.16 - office-calendar.png
19,16 ~ system-search.png

82.11.19.16 - help-brauser .png

EEEE R

153,25 px v I mu%jaa:kgmund(lzza KB)

CPU Utilization

Bandwidth In €0 - 3,343 Kbps)

FIGURE 5-12

http://82.11.19.16/t test .htnl
1: 82.11.19.16 - test.html

0.z

0.2

2: 62.11.19.16 - inagensp_nav.pg

CPU Utilization

Bandwidth In €0 - 573 Kbps)

FIGURE 5-13

CSS Sprites | 91

Here, the number of resources has dropped to two, and the loading time is down to 0.62 seconds —
a saving of approximately one-half of a second.

If all this seems too good to be true, it might just be. There are a few problems with using image
maps:

> Navigation breaks for users on text-based browsers (or those who have images turned off),
and may cause accessibility issues for text-to-speech engines.

> Mouse-over effects become problematic.

> Images must be adjacent.

Of these, the first should be the biggest drawback. In practice, it tends to be the second and third
that discourage web masters.

Luckily, there is a much more powerful technique for merging images.

CSS SPRITES

The CSS background-image property enables you
to set an image to be used as the background of a
given element. One of the neat things about CSS
backgrounds is that an offset for the image may be
given using the background-position property.
Take a look at the example in Figure 5-14.

Figure 5-14 shows an image that measures 554
pixels wide and 394 pixels high. To display this as a
background image, you can use the following code:

FIGURE 5-14
<style>
.mybackground {
background-image:url (' /images/flowers.png') ;
width: 554px;
height: 394px;

}

</style>
<div class="mybackground"></div>

However, using background-position, you can
display only a section of the image. Now pick an
arbitrary region inside the image, as shown in
Figure 5-15.

The upper-left coordinates of the highlighted area
are 193 pixels and 100 pixels, and the region is 95
pixels wide and 71 pixels deep. Thus, consider the
following:

FIGURE 5-15

92 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

<style>
.mybackground {
background-image:url ('/images/flowers.png') ;
background-position: -193px -100px;
width: 95px;
height: 71px;
border: solid 1px black;

}

</style>

<div class="mybackground"></div>

For added clarity, a small border has been put around the div. As shown in
Figure 5-16, when you load this in a browser, only the selected region of the :
background image is shown. FIGURE 5-16

Perhaps you have already surmised how background-image and

background-position could be used to great effect. You can join together multiple images into
one larger montage, and then selectively show regions of this montage in the appropriate place.
This slashes the number of image requests, and the montage — or sprite, as it is more commonly
called — is usually significantly smaller than the sum of the images it contains.

Earlier in this chapter during the discussion on image maps, you saw i :
e s icom into 8 nin Figure BOEQ0

how to combine six icons into a single file (as shown in Figure 5-17), &

with the intention of using a client-side image map. FIGURE 5-17

Let’s try this again; only this time, using CSS sprites.

In the previous example, you set the background for a div element, but things are trickier for links.
If you set the background for the <a> element, like so, nothing is shown:

With no content inside the anchor tags, the element takes up zero screen space, even if you use
width/height attributes in CSS. You can get around this by setting the display: block, but that
causes your icons to display on new lines.

One solution is to use an element inside the anchor, and assign a CSS class to this. You can’t
leave the image blank, though, so instead, you use a holding image — a 1 x 1 pixel transparent gif
(with an alt attribute for the benefit of those with images turned off), as shown here:

Thus, the full code looks like so:

<style>
.sprite {
background-image:url ('imagemap nav.png') ;
width: 37px;

height: 44px;

CSS Sprites | 93

}

.sprite games { background-position: -4px -0px;}
.sprite videos { background-position: -41px -0px;}
.sprite mail { background-position: -78px -0px;}
.sprite calendar { background-position: -115px -0px;}
.sprite search { background-position: -152px -0px;}
.sprite help { background-position: -189px -0px;}
img { border:0; }
</style>

<img alt="games" class="sprite sprite games"
src="holder.gif">

<img alt="videos" class="sprite sprite videos"
src="holder.gif">

<img alt="mail" class="sprite sprite mail"
src="holder.gif">

<img alt="calendar" class="sprite sprite calendar"
src="holder.gif">

<img alt="search" src="holder.gif" class="sprite
sprite_search"s

<img alt="help" src="holder.gif" class="sprite
sprite help">

Two CSS class selectors have been used for each anchor tag — one containing “core” attributes of
the sprite and the other containing specifics for the region in question. Although this isn’t essential,
it keeps your CSS rules slim and is the logical thing to do. (The advantages would not have been so
clear-cut if the icons had not been of identical sizes.)

The downside to this approach is that the elements are largely redundant. You can eliminate
the need for a 1 x 1 pixel holding the image and remove the element completely with a little
extra thought — either by giving the anchor tags the block display property (inline-block), or by
using float positioning (for example, float:left).

Alternatively, since it is common practice to hold navigation links inside a styled list (this approach
degrades well in older browsers and has more semantic meaning), you can often just apply the back-
ground sprite to the <1i> element, as shown in the following example:

<ul class="sprite">
<1li class="sprite games"></1i>
<li class="sprite videos"s</1li>

CSS sprites have a few obvious advantages over an image map:

> The images no longer must be adjacent. Although the six icons are side-by-side in this exam-
ple, they could just as easily be scattered across the page.

> Each image can be used multiple times, in different places.

94 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

> You retain the ability to set an alt attribute for each image, thus improving accessibility.

Google is one of the biggest names to use CSS sprites and does so effectively. In fact, the majority of
the images used on google.com are contained in a single sprite, as shown at http://www.google
.com/images/srpr/nav_logol3.png.

No doubt you can recognize many of these images from the various parts of the Google site.

Sprite Strategies

The Google master image also raises an interesting implementation issue. With only a few of the
sprites appearing on any one page, there’s a performance hit when the master image is first retrieved.
The master image is currently 28 KB, whereas an image containing just the sprites used on a partic-
ular page would be one-half that. Certainly, this is bad for performance in the short term — a user
who visits google.com, does a basic web search, and then leaves, has downloaded an unnecessarily
large image. But in the long term, the big master image does improve performance.

Deciding on which images to place in the master sprite is tricky and should be based on an analysis
of client usage patterns. Although you certainly want to place core icons used on every page in your
master image, it may make sense to place lesser-used images in a separate master image, or even not
sprite them at all. Although a master file containing every image used on your site is beneficial for
devoted visitors, the large file size will punish the casual visitor. Keeping first-time visitors on your
site is almost as important as getting them to visit in the first place, and a bulky master image won’t
do much to help that cause.

Repeating Images

A common use of background images is to tile a much smaller image horizontally or vertically (or
both). As shown in Figure 5-18, Microsoft’s current homepage provides a neat example of this.

United States Change

About Microsoft

Microsoft”

E:S.Officezc)lo
MAKE IT GREAT

NEW OFFICE 2010

I Ll Microsole I

FIGURE 5-18

http://www.google.com/images/srpr/nav_logo13.png
http://google.com
http://www.google.com/images/srpr/nav_logo13.png
http://google.com

CSS Sprites | 95

The actual image used for the red-yellow gradient is a single pixel wide, as shown in
Figure 5-19.

However, the gradient is tiled horizontally using the background-repeat property, as
shown here:

div.hl5-header

{
background-image: url('/global/en/us/publishingimages/
office canvas bg top.jpg') !important;
background-repeat: repeat-x;
background-color: transparent;
border: none !important;
color: #FFF !important;

}

How do you achieve a similar effect with sprites? Sprites may be repeated vertically or
horizontally (but not both!). The key is their positioning in the master image.

For the Microsoft background image, which was 1 pixel wide and 556 pixels high, you
can place additional sprites below this image, providing the width of the master image
does not exceed 1 pixel (the width of the Microsoft background image). This somewhat |

limits what you can place there — another repeating background image is probably the FIGURE 5-19
only practical possibility. An alternative would be to widen the first image (as it repeats

horizontally) to, say, 20 pixels, providing sufficient width to place some icons below it but sacrificing
file size a little.

Horizontal or Vertical?

All this talk of horizontally and vertically aligned images raises a question. In situations in which
you don’t need to worry about repeating backgrounds — and can, hence, arrange your sprites verti-
cally or horizontally — is there anything to be gained by choosing one direction over the other?

Because the LWZ compression method (used in ¢IF and pPNG) scans horizontally, there should theo-
retically be an increase in compression (or rather the possibility for compression) if you stack your
sprites horizontally.

Again, Figure 5-20 shows the sprites used earlier in this chapter.

e O m O
The pNG shown in Figure 5-20 has a size of 2,102 bytes. If you were to - ﬁ HEQ @
align the images horizontally (and again save as a PNG file), the size would = FIGURE 5-20

be 2,297 bytes.

So, there certainly is some advantage to aligning vertically, albeit not a big one in this example.
Except in the case of repeating background sprites, it generally doesn’t matter which axis the sprites
are aligned along. So, you may as well use vertical and save a few bytes.

Drawbacks to Using Sprites

Although CSS sprites may seem too good to be true, there are a number of drawbacks to
using them.

| CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

The first is that they are somewhat fiddly to create and implement — merging images, calculat-

ing pixel offsets, creating appropriate CSS rules. If one sprite must be changed at a later date to an
image of different dimensions, this can affect the offset of many of the other sprites. In the section,
“Automating the Process,” later in this chapter, you’ll learn about some useful tools for automating
this process.

A much less common problem (but still one worth noting) is that a GIF or PNG file is stored uncom-
pressed in memory by the browser. Situations have occurred (albeit not often) in which a huge (in
terms of dimensions) background image — mostly consisting of whitespace — is used. Although
such an image compresses well, and, hence, has an apparently innocent file size, it’s a different mat-
ter when the browser loads the image.

A disadvantage of background images in general is that when a page is printed, browsers tend not
to include them. (However, the client usually has the capability to override this.) In many cases, this
is actually wanted behavior. Printing unnecessary images slows down printing and wastes ink, but
sometimes these “background” images are an integral part of the page. In such situations, a sepa-
rate style sheet for printing (using the media="print" attribute when linked to) can alleviate the
problem.

Finally, you should not lose sight of the big picture. The overall aim is to improve page loading
times, and although reducing the number of HTTP requests is usually beneficial, this isn’t always
the case. Let’s look at an example.

Say that you have a master image containing four sprites (Van Gogh paintings, actually) that are the
sizes shown in Table 5-1.

TABLE 5-1: Sprites in Sample Master Image

IMAGE NAME SIZE (BYTES)
Vgl.Jjpg 44318
Vg2.jpg 35172
Vg3.jpg 35067

Vg4 .jpg 57824

0.5 1.0 1.5 2.0 2.5 3.0 A
http://82.11.19.16/t/van_gogh_sprites...

The total size of these four images is 172,381 bytes, [Zasase - mstamieein 22000

whereas the master image is an almost identical size [* %" et s
at 173,354 bytes. (The images chosen were inten-

tionally quite big, so no sort of optimization was R
attempted on any of them.) Figure 5-21 shows the L/
waterfall view for the loading of this page. FIGURE 5-21

CPU Utilization

Clearly, this 173 KB image is the bottleneck in the loading of the page. (Although you didn’t need
a waterfall view to tell you that.) Would it be more efficient to keep the images separate and make
use of parallel downloading? With most browsers downloading only two resources in parallel, you
would need to split the four images across two domains.

CSS Sprites | 97

Of course, this turns out to be false logic. Although the images would now download in parallel,
they would be competing for finite bandwidth. Hence, each one would take longer to download.
The overall loading time would almost be the same as when using sprites.

There is, however, one situation in which this technique would be beneficial. If the client has more
bandwidth than the server, splitting the images across two separate servers prevents server band-
width from being the bottleneck.

Figure 5-22 shows the result of using this technique, and the loading time has almost been cut in
half. Admittedly, situations such as this are rare, but they do help to illustrate the potential danger
of spriting everything in sight.

http:/f82.11.19 16/ Avan_gogh_nosprit. ..
: 82.11.19.16 - van_gogh_nosprites.html QNI 301 ms
; 82.11.19.16 - wel.jpg
1 82.11.19.16 - veZ.jps 1633 ms
: linuxbox.co.uk - w23, jpg
: linwxbox.co.uk - wgd.jpg
@ 82.11.19.16 - favicon.ico

[S B S L

CRU Utilizatiaon

Bandwidth In (0 - 25,346 Khps

FIGURE 5-22

Palette Colors

An additional problem with sprites concerns the number of colors. Most likely, you’ll want to create
a paletted master image in GIF or pNG8 format, both of which limit the number of colors that can be
used. And with an image containing a variety of sprites, you may find that there isn’t enough space
in the color table to hold all the unique colors. The result is that the sprites look ragged or crudely
drawn.

This problem can be partly mitigated by grouping sprites with similar color palettes and using
several master images rather than one. An alternative is to use a nonpaletted format, such as pNG24
or JpG — but you’ll likely pay a big price in increased file size. If it’s just one image that uses a dra-
matically different color palette than the rest, it may simply be best not to sprite it at all. Sprites are
a powerful technique, and you can easily get carried away with it. Learning when 7ot to use them is
an important consideration.

Automating the Process

Creating sprites is a tedious process, but a number of tools are available to automate the process.
These range from simply spriting a series of images supplied by the user, to automatically parsing a
page and then generating sprites and CSS for all images found. Although tools in the latter category
are certainly clever, you may find you prefer a more hands-on approach.

98

CHAPTER 5 OPTIMIZING WEB GRAPHICS AND CSS

Following are a couple of favorites:

> CSS Sprite Generator (online at http://spritegen.website-performance.org/, or
available to download from https://launchpad.net/css-sprite-generator) creates a
master image from a list of user-supplied images. It offers the capability to resize images,
align horizontally or vertically, and can output in JPG, PNG, or GIF format. Optionally,
supporting CSS can be generated, too. This is a valuable tool because it is simple, yet
powerful, with plenty of options.

> SpriteMe (http://spriteme.org/) uses the novel approach to run via a JavaScript book-
mark. Simply visit the site you want to inspect, find SpriteMe in your bookmarks, and click
it. The SpriteMe widget then loads on the page, as shown in Figure 5-23. The widget lists all
the images found on the page and notes those that are possible candidates for spriting, and
those that are not (for example, because they repeat both vertically and horizontally). With
just a few clicks, you can generate a master image, and SpriteMe can show you the changes
you need to make to your CSS.

Mobiks | Help

Weather

& SpriteMe

2 sprite suggestions share your savings

Suggested Sprites

= vertical, varied width

hitp fistatic bb J works! _imain_spiite.png
2104340

jc b 1 | Jbsidebadakait

3064800
.

ic. b 1 limglsprite.pna

17x33
http/istatic b 1 fimg/large-spinnerlight gif
| | 32032

hitp fistatic bb J limg/play icon.png

17413
http/istatic b 1 /img/announce-close.qif
15:22

Weather

ic. b | il expl

G20 nears deal on
recession risks

ic. b | lima!

Monday Tuesday
7 minutes ago http-fistatic_bb 1 timafbgsprite.png
- 3004560
MORE TOP STORIES + - hitp fistatic bb J /img/carousel-bg.png
2054146
Pope hits out over Belgium raids — i bt limaiplay icon 2.png
17x13
i Sunny Sunny Intervals | Sul
Union to postpone BA striks vots Jistatic. bt 1 ima/listen_icon.png
Jobless ‘tould get help to move’ 17x13

NOTE Although SpriteMe is sleek and has many useful features, it doesn’t offer
any control over the automatically generated master image, so you still need

to optimize it manually. As always, you should exercise caution before blindly
accepting the SpriteMe suggestions.

Although interactive tools are all okay, in some situations, you may need to create sprites
programmatically.

For example, consider a dating site on which photos of the ten most recent members are shown on
the homepage. The obvious way would be to select the ten newest members from the database, then

http://spritegen.website-performance.org/
https://launchpad.net/css-sprite-generator
http://spriteme.org/

CSS Performance | 99

select the primary photos associated with each member, and dynamically generate the appropriate
HTML to display them. A better way (that is, better in terms of performance anyway) would be to
use a cron job to generate this HTML fragment every hour or so, thus cutting down on database
queries. What if you wanted to go a step further and convert these ten images into sprites? Clearly a
scriptable, command-line solution is needed.

NOTE On UNIX and its derivatives (Linux, OS X, and so on), the widely used
cron utility lets you schedule commands to be executed at specified times. cron
is used for everything from periodically cleaning up temporary files, to updating
spam and anti-virus definitions, to generating stats on system load. cron is ideal
for periodically compiling HTML fragments to cut down on the server-side
scripting and database queries. Under Windows, the Task Scheduler performs a
similar role, and can also be used for such web automation.

With a little bit of magic (ImageMagick, that is), this is actually quite an easy task. ImageMagick
(http://www.imagemagick.org/) is a suite of command-line tools used for manipulating images,
one of which — convert — can be used to join images together. The syntax can be as simple as the
following:

convert imagel.png image2.png image3.png -append output.png

This creates a vertically aligned master image named output .png from the three specified files. For
a horizontally aligned master image, just use +append instead of -append.

convert accepts a whole host of other options, too, including the capability to set the image type
(for example, paletted versus RGB), color depth, and transparency. Following is an improved version
of the previous command:

convert -type Palette -colors 256 -background Transparent
imagel.png image2.png image3.png -append PNG8:output.png.

This specifies a paletted NG file with a transparent background, and a color depth of 256, which is
probably closer to what you want. Although convert does a decent job to keep the file size down,
you may still want to pass the resulting image through something like pngcrush.

Of course, there’s nothing to stop you from using something like the command-line version of CSS
Sprite Generator. However, you may prefer the power and flexibility to roll your own solution.

CSS PERFORMANCE

In contrast to the other areas examined thus far in this chapter, there isn’t a great deal to say about
CSS performance. Still, there are a few small areas of interest, and a couple of popular performance
“rules” that deserve some clarification.

http://www.imagemagick.org/

100 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

CSS in the Document Head

With JavaScript, it is advantageous to load external scripts as late as possible. With CSS, the oppo-
site is true. Most browsers delay rendering a page until the CSS has been downloaded to avoid a
repaint/redraw, so it’s usually best to place links to external style sheets in the <head> of the docu-
ment. Unlike JavaScript, these links do not block, and the browser can happily continue with down-
loading other content.

Inline versus External

The decision on whether to include CSS inline or as an external file boils down to the trade-off
between the number of HTTP requests and cachability. If you include the CSS inline, you eliminate
an HTTP request but increase the size of the HTML document. If you use an external style sheet,
you have an additional HTTP request, but the resource can be more readily cached. (Most of the
time, you don’t want to cache the HTML document because it has been dynamically generated.)

Link versus @import

Most of the time, you want your style sheet to be external, but you then have the choice of whether
to use <link> or @import to load the resource. This is an easy decision. Stick with <1ink> because
it is nonblocking, and can enable other resources to download in parallel.

Steve Souders has written an excellent article (although note that it is a few years old) on the subject
at http://www.stevesouders.com/blog/2009/04/09/dont -use-import/, showing how differ-
ent browsers implement @import, and what happens when you mix @import with <link>. All cause
blocking behavior to some extent, and because there isn’t a valid reason for favoring @import over
<links in the first place (old browsers don’t support @import, so it can be used as a hack to stop
them from loading the CSS), the solution is simply not to use it.

Redundant Selectors

Over time, your style sheets can become rather messy and out of sync — duplicate rules are added,
elements are removed from the HTML document, but the developers forget to remove the CSS selec-
tors, and so on. The result is redundant selectors adding unnecessary weight to your style sheet. Of
course, in theory, this shouldn’t happen. Your development and deployment process should be rigor-
ous enough to ensure that the CSS is kept in sync. But, in practice, it does happen.

Dust-Me Selectors is a popular Firefox extension that can be used to find unused CSS selectors.
However, development of the product seems to have stopped, and it will not work in the latest ver-
sions of Firefox.

Instead, check out CSS Usage (https://addons.mozilla.org/en-US/firefox/addon/css-usage/),
which is an extension for the always useful Firebug. Figure 5-24 shows CSS Usage in action on
kernel.org. Toward the bottom is a link enabling you to export the cleaned-up CSS if you are

happy with the scan.

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/
https://addons.mozilla.org/en-US/firefox/addon/css-usage/
http://kernel.org

CSS Performance | 101

=l
'|Cnn§n|e HTML €55 Script DOM HNet | CSS Usage

9g p | =

Scan Clear AutoScan

[http: ffkernel.org/kernel.css 1 scns) expon deaned css

Line CSS Selector S
1 bodyy { margin: 10px; padding: Opx; background: none repeat scroll 0% 0% rgb(255, 255, 255); color: rgbi0, 0. 0); font-family: Sans-Serif; 3
5 hi, { padding: 4px; text-align: center; border: 4px double rgbi0, 0, 0); background: none repeat scroll 0% 0% rgb(255, 255, 221); }

h21q { padding: 4px; border: 1px solid rgb(136, 136, 136); background: none repeat scroll 0% 0% rgb(255, 255, 221); }

13 table, { border: Opt none; margin-left: auto: margin-right: auto; margin-bottorn: 10px; }

19 ths { background: none repeat scroll 0% 0% rgh(187, 187, 221); padding: 2px; }

22 tdyoo { padding: 2px; border-bottom: 1px dotted rgbi187, 187, 221); }

26 td plain; { padding: 2px; border-bottom: Opt none; }

30 imo« { border: Opt none; vertical-align: middle; }

n. Seen before, Unseen, hover

[

o

&

33 blockquote; { font-weight: bold; font-size: 80%; J

36 { background: none repeat scroll 0% 0% rgh(255, 255, 0): }

37 rimao { background: none repeat scroll 0% 0% rgb(255, 255, 2550 }

38 headtext; { color: rgb(136, 136, 153); text-align: center; }

39 #container; { width: 600px; text-align: center; clear: both; margin-left: auto; margin-right: auto; }
40 #directory; { float: left: margin-left: auto; margin-right: aute: ¥

41 dbutton, { float: right; }
432 #bandwidth { color: rgh{136, 136, 153); text-align: center; font-size: 75%; }
43 .bandwidth { color: rghi136, 136, 153); text-align: center; font-size: 75%: }
44 #news, { color: rgbid, 0, 51); }

a

45 #sponsors { text-align: center; margin-left: auto; margin-right: auto; }
46 #trademark, { font-size: 75%; text-align: center: }
47 Fver =1 { text-align: center; }

48 lver; { text-align: center; color: rgb(0, 0, 68); font-size: 90%; padding: 10px;
49 pukeyy { color: rgbi68, 0, 0); font-size: 66%; }
50 per{ margin-left: 10px: margin-right: 10px; }
51..m ternz: { border-bottomn: 1px dotted rgh(187, 187, 221); padding: 2px: margin-right: 20px; font-size: 75%; }
52 newsitern pag { margin-left: Opx; margin-top: 3px; margin-bottom: 3px; }
tats 21 fo

ad, 3 notfound, 2 ianared, B8% covered

Ehttp:/fkernel.org/ sms export cleancd css
504 Elements

14 Images

0 Iframes

0 Objects

0 Embeds

FIGURE 5-24

The big danger with any automated tool like this is that it might miss rules that actually are being
used. For a global style sheet, you should scan every page of the site to be sure you haven’t missed

a rule that is used on only one page, buried deep inside the site. Even then, you risk missing DOM
elements added by JavaScript, or content that varies based on the user’s country, logged-in status,
and so on. At best, these tools should just be used to find possible candidates for removal, which you
can then check over manually.

CSS Expressions

Avoiding the use of CSS expressions was once one of the most important rules for CSS performance.
But the use of these beasties has been deprecated for a while now (since IE 8, and they were sup-
ported only in IE anyway), so there’s no point wasting too much time covering them here.

CSS expressions were a way to set CSS attributes dynamically using JavaScript embedded in the
style sheet. Unfortunately, the rules are re-evaluated every time the browser window is resized
or scrolled, or the mouse is moved. The result is that an expression can easily be re-evaluated
thousands of times during a page view. Although the expressions are generally fairly light, with
this number of executions, performance can suffer.

102 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

You can use expressions that will be evaluated only once, but almost always the same end result can
be achieved using pure JavaScript — which isn’t IE-specific and isn’t deprecated.

Selector Performance

The performance of CSS selectors themselves has received a lot of attention in the past few years,
mainly because of some well-publicized benchmarks showing a dramatic drop in performance under
certain conditions.

Selectors are parsed from right to left. Consider the following example:

#body div div p {
background:red;
}

When the browser hits this rule, it goes through every <p> element in the page and checks whether
it is the child of a <div> tag. Then it checks if this div is the child of another div, and if this other
div is the child of an element with ID body. This seems like quite a lot of work, and the obvious
conclusion is that you should keep your chain of selectors short to minimize all this backtracking.

The problem often isn’t as bad as you might expect in practice. Consider the following;:

#body div div p .highlight {
background:red;
}

This time, you match elements only with class="highlight", so, although you have the same level
of nesting, the more specific selector means that less elements are going to match. Wildcard selectors
are the most dangerous to use, but, in general, there isn’t a significant performance impact, and it’s
not worth your while to try to optimize your selectors.

What about the benchmarks? Many of these were rather artificial examples using deeply nested
selectors with lots of wildcards on a huge DOM. Although it might seem reasonable to assume that
the effect would still be there (albeit to a lesser degree) on a normal page, it turns out things are not
quite that simple.

It seems that many browsers will hit a threshold at which performance drops off significantly. As you
add DOM elements, the time taken to parse the CSS gradually increases in a linear fashion. But after
you get into the tens of thousands of DOM elements, you hit a point in which CSS parsing suddenly
starts to tail off dramatically. So, although these benchmarks are correct in showing that selectors do
affect performance, the magnitude of the effect isn’t quite so significant on real-life sites.

Using Shorthand Properties

Many CSS properties support a shorthand notation that is much quicker to write, which can make a
big impact on the size of the style sheet.

One example is when specifying colors. Generally, a hex triplet is used, with two digits for each RGB
part (for example, #F368C4, where F3 is the red component, 68 the green, and c4 the blue). When the
two digits in each part are the same, you can omit one of them; thus, #FF99cc becomes #F9oc.

CSS Performance | 103

With the margin and padding properties, the longhand way is to write them like so:

margin-top:5px;
margin-bottom:4px
margin-left:3px;
margin-right:2px

However, this can be simplified to the following;:

margin:5px 2px 4px 3px
Notice the order of the values. You start at the top and go around clockwise — so the top margin
first, then the right margin, then bottom, and then left.

If the top and bottom values are the same, and so, too, are the left and right, you can simplify things
further, as shown here:

margin: 10px 5px
With only two values passed, browsers assume that the first refers to the top and bottom margins,
and the second to the left and right margins.

There are many other shorthand notations. Table 5-2 shows some CSS properties along with their
shorthand equivalents.

TABLE 5-2: CSS Properties and Shorthand Equivalent

LONGHAND SHORTHAND

border-width:1px; border: 1px solid #000;
border-color:#000;

border-style:solid;

background-color:red; background: red url (foo.png) no-repeat fixed 0 0;
background-image:url (foo.png) ;

background-repeat :no-repeat;

background-attachment : fixed;

background-position:0 0;

font-family: Helvetica; font: italic normal lem Helvetica;
font-size:lem;

font-style:italic;

font-weight:normal;

104 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

Inheritance and Default Values

Some of the biggest savings in CSS come from knowing when properties can safely be omitted —
either because they have been inherited from a parent element, or because the default value is
appropriate. In many cases, the default value for a property is inherited. Check the online CSS
documentation if you’re unsure.

Doing More with CSS

In many situations, it makes sense to use CSS more rather than less because it’s the most efficient
option. Certainly, placing style rules in an external style sheet (cacheable by the browser) is
generally a better option than embedding the rules in the HTML document. (The exception is
when there are a large number of rules used only on one page — here, inlining is sometimes
better.)

CSS versus Data URIs

With CSS sprites being a better supported way to achieve a similar effect, is there a need for data
URIs? Youw’ll recall from the earlier discussion of CSS sprites that it isn’t always practical to convert
images to sprites sometimes because of the color table, and sometimes because of horizontal and
vertical repetition. In these situations, data URIs are an excellent solution.

Mouse-Over Techniques

Using CSS, rather than JavaScript, for mouse-over effects (for example, in menus) is a popular
option. Previously, this was the preserve of JavaScript (or even worse, Java or Flash applets). But for
basic effects, CSS is better suited, and can do a surprisingly lot — pop-over windows, image switch-
ing, pull-down menus, and so on. For example, to swap an image with another one when the mouse
is moved over it, the HTML and CSS is simply as follows:

span.swap {
background-image: image2.png;
background-repeat :no-repeat;
display:block;

}

span.swap:hover img({
visibility:hidden;

}

Aside from being more elegant, this method works even if the client does not support JavaScript (or
has it disabled). Unfortunately, CSS solutions lack many of the keyboard navigation shortcuts, and
JavaScript still has the edge here.

CSS Performance | 105

Creating Rounded Corners

Rectangular boxes are so 1990s. These days, site owners want aesthetically pleasing boxes with
rounded corners. There are a number of ways to achieve these, but most are rather ugly, rely on
creating images for each corner, and possibly the use of HTML tables.

Again, CSS comes to the rescue by defining the border-radius property, which can be used to
round the corners of a rectangular box. border-radius first appeared in CSS 3 but had been under
discussion for several years previous. As a result, many browsers had already started to implement
support for it but had used their own naming.

Creating rounded corners in CSS is currently best achieved using rules such as the following:

.roundedcorner {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
-khtml-border-radius: 5px;
border-radius: 5px;

}

-moz-border-radius is Mozilla’s name for the property and is supported by most Gecko-

based browsers (Firefox, Konqueror, and so on). -webkit-border-radius is used by
WebKit-based browsers such as Chrome and Safari, whereas -khtml-border-radius is for older
versions of Konqueror. border-radius is the accepted CSS 3 name, and you should include it for
future-proofing — for a time when all the major browsers support this and begin to deprecate
their own naming conventions.

What about IE and Opera? IE began to support only border radii from version 9 onward but
did so using the correct CSS3 property name — so there are no browser-specific hacks for IE. It’s an
identical story for Opera, which began supporting border-radius from version 10.5 onward.

In fact, most of the other major browsers now support -border-radius, too, so the browser-
specific properties are becoming less necessary. For the next few years, it will still be important to
continue to use these hacks, however, to ensure compatibility with older browsers.

What about older versions of IE and Opera? Various hacks are available for these browsers (mostly
involving falling back on images or JavaScript), but another option is simply to ignore them. One
of the beauties of border-radius is that it degrades gracefully — if a browser doesn’t support it, it
simply falls back on displaying the border without nonrounded corners.

CSS3

Rounded corners are just one of the many new cool features offered by CSS3 and are a prime
example of how advances in CSS can solve problems that previously required JavaScript. CSS3 is
modular in nature, and with each module being at a different stage of development, it isn’t simply a
case of asking, “Does browser X support CSS3?” All of the major browsers do now support CSS3,
but to varying degrees. The main browsers to watch out for are IE 7 and 8, which have limited CSS3
support. With IE 9, Firefox, Chrome, Safari, and Opera, support is much more comprehensive.

106 | CHAPTERS5 OPTIMIZING WEB GRAPHICS AND CSS

Let’s look at some of the ways in which CSS3 can improve performance.

Multiple Background Images

With CSS3, the background property now supports multiple images, which will be displayed on top
of each other (the first image listed will appear at the top), like so:

background:
url ("/images/imagel.png") 800px 40px no-repeat,
url ("/images/image2.png") ,
url ("/images/image3.png")

7

In some situations this can be a very efficient way to reduce the size of complex images. Too often,
it seems, you encounter images for which neither palette nor RGB color schemes are wholly suitable
— for example, a company name in a stylized font on top of a photographic image. If you save as a
JPEG, the text will become jagged; if you save in a paletted format, the file size will be huge.

One way to solve this is by storing the two parts of the image separately, and using CSS3 to
superimpose them. In this way, you can apply the most appropriate compression method to each.
Even though this does result in an extra HTTP request, the overall saving may be worth it.

Text Shadows

On the subject of text inside images, the preferred method is to place a text element on top of an
image using CSS, rather than having the text embedded in the image. Aside from reducing the image
size, this is better for both accessibility and search engines.

If you have highly styled text, this isn’t always possible, but the introduction of text shadows takes
you one step closer (in fact, they were proposed in CSS2, but Safari was the only browser to imple-
ment them), and can be used to create surprisingly advanced images.

Figure 5-25 shows an example using the following styling for the text element:

.selector{
color:white;
text-shadow:2px 2px 4px #000000;

}

The first two parameters specify the horizontal and vertical offset = B
of the shadow, while the third parameter sets the level of blurring, S S I CXTESITITU OWS

and the fourth the color of the shadow.

FIGURE 5-25
Box Shadows
Shadows around boxes are aesthetically pleasing, but have histori- I
cally been rather messy to implement, often relying on tables or a
mess of nested divs, coupled with a handful of small graphics. CSS3 FIGURE 526

has changed all this, and box shadows are one of the most popular
and frequently used new features — especially since they degrade well in browsers that do not sup-
port them. Figure 5-26 shows an example box shadow, and here’s the CSS for the box element:

CSS Performance | 107

#shadow {
box-shadow: 8px 8px 5px #666;

}

IE has supported box shadows since version 9, while Firefox has supported the box-shadow
property since version 4.0. Prior to that, the Firefox-specific -moz-box-shadow was needed, and it’s
still a good idea to include it for backward compatibility. With WebKit-based browsers (Chrome,
Konqueror, and Safari), the -webkit-box-shadow property is still required. Thus, a more robust
example would be the following:

#examplel {

-moz-box-shadow: 8px 8px 5px #666;
-webkit-box-shadow: 8px 8px 5px #666;
box-shadow: 8px 8px 5px #666;

}

Custom Fonts

The efont - face selector first appeared in CSS 2, was dropped in 2.1, and finally re-appeared in
CSS 3 as part of the CSS Fonts Level 3 module. Firefox 3.5 supports it, as do Opera 10, Safari 3.1,
and Chrome 4. Surprisingly, IE has supported @font - face since version 5 back in the late 1990s,
albeit using a proprietary font format (ironically called Embedded OpenType, or EOT). The other
major browsers support TrueType (TT) and FreeType (FT),

In light of these cross-compatibility issues, it’s wise to store two copies of the font on your
server, in both EOT and TT/FT format. (Be sure to check first that the licensing on the font
allows you to redistribute it, because this is essentially what you are doing.) In addition, it can be
helpful to provide the font in SVG format for older browsers. The CSS then looks like this:

@font-face {
font-family: "myfontname";
src: url (/media/fonts/MyFont.eot) ;
src: url(/media/fonts/MyFont.ttf) format ("truetype");
src: url (/media/fonts/MyFont.svg) format ("svg");

}

.customFont {
font-family: "myfontname", sans-serif;

}

You start by giving the font a name for internal use (myfontname). The next two src lines then
specify the location of the font file for IE and non-IE browsers, respectively. At a later point in your
CSS, you can then use the font name defined as you would any other font.

NOTE Although font files are generally small, remember that they also incur the
overhead of an extra HTTP request. Use a custom font only if you really need it,
not for the “wow” factor.

108 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

Linear Gradients

Another situation in which images are commonly used for styling is with background gradients on
buttons and text boxes. Typically, a single pixel-wide gradient image is repeated horizontally using
CSS (you saw an example of this in Figure 5-19, earlier in this chapter). Although such images are
usually tiny, they still result in an additional HTTP request.

CSS3 introduces support for linear color gradients, with the option for the browser to fall back on
using an image if it does not support gradients. Unfortunately, the major browsers all use their own
specific versions of this property at the moment, so the CSS is rather long-winded. Let’s look at an
example:

.gradient
background-color: #00F;
background-image: url (images/gradient.png) ;
background-image: -webkit-gradient (linear, 0% 0%, 0% 100%, from (#FO00),

to (#00F)) ;

background-image: -webkit-linear-gradient (top, #F00, #00F);
background-image: -moz-linear-gradient (top, #F00, #00F);
background-image: -ms-linear-gradient (top, #F00, #O00F);
background-image: -o-linear-gradient (top, #FO00, #O00F);

}

This creates a linear, vertical gradient, starting with red at the top, and ending with blue at the
bottom.

You start by setting the background color, followed by a fallback image. Versions of Safari prior to
5.1, and Chrome prior to 6, would annoyingly still load the fallback image anyway (even though
they did support gradients). This bug has now been fixed.

Next come the browser-specific rules. -webkit-gradient is for Safari 4 onward and Chrome 1
through Chrome 9. However, this syntax is now deprecated (hence, there’s no need to explain
each property). For more recent versions of these two browsers, -webkit-linear-gradient is
preferred.

Gradient support was added in Firefox 3.6, in the form of -moz-linea-gradient. IE introduced
gradients in version 10, via -ms-1linear-gradient, while Opera introduced -o-1linear-gradient
in version 11.10. Eventually, there should be an official, cross-browser property, but in order to
maintain backward compatibility, these browser-specific solutions will be around for several years
to come.

Transformations

CSS3 introduces both two-dimensional (2D) and three-dimensional (3D) transformations, although
the latter are not yet supported in IE or Opera. Two-dimensional transformations are probably the
most useful (although IE has only supported them since version 9), offering the capability for you to
scale, rotate, stretch, and move elements.

Looking Forward | 109

As with many new CSS3 features, transformations are currently implemented using browser-specific
prefixes. Thus, to rotate an element by 90 degrees, the following code is needed:

.myrule {

transform: rotate(90deg) ;

-ms-transform: rotate(90deg); /* IE 9 */

-moz-transform: rotate(90deg); /* Firefox */
-webkit-transform: rotate(90deg); /* Safari and Chrome */
-o-transform: rotate(90deg); /* Opera */

}

Like rounded corners, shadows, and gradients, transformations are exciting because they raise the
possibility of eliminating images (and, in this case, possibly JavaScript), resulting in a lighter page.

LOOKING FORWARD

There are many exciting developments in the field of web graphics on the horizon, and over the next
few years, these should enter the mainstream. In fact, some are already supported to some degree;
although lack of complete cross-browser support (you can guess which browser is behind all the
others) means that none are actually suitable for production use yet.

To conclude this discussion of all things graphics-related, let’s take a look at what the future has in
store.

MNG

One of the main reasons that the GIF format hasn’t died out on the web (aside from inertia) is
that its replacement, PNG, doesn’t support animation. Although this may seem like an oversight
by the creators of PNG, it was intentional — because they were also developing the lesser known
Multiple-Image Network Graphics (MNG) format specifically for animation.

Although the idea of the mnG format began at approximately the same time as PNG, its development
has slowed down, and the format hasn’t caught on. As of 2012, only Konqueror supported the for-
mat natively, although plug-ins are available for IE, Firefox, and Opera.

Perhaps part of the reason for the slow uptake is that, thankfully, animated cIFs have fallen out of
fashion. With alternative formats under development, however, it may be that MNG may never enjoy
widespread support.

APNG

Animated Portable Network Graphics (APNG) is an extension to PNG, and offers features similar to
MNG. Its chief advantages over MNG are better browser support and a less-complicated format.

Because the first frame of an APNG file looks like a regular pnG file, browsers with no APNG support
can still display the first frame — thus, there is some degree of backward compatibility. Currently,
Opera and the Gecko-based browsers are the only ones that support APNG natively, although
Chrome supports it via a plug-in.

110 | CHAPTER5 OPTIMIZING WEB GRAPHICS AND CSS

JPEG 2000

JPEG 2000 is intended to replace JPEG. But despite it having been around since 2000, only
Konqueror and Safari currently support it natively (IE and Firefox both support it via plug-ins). It
looks as if things will stay this way for a while.

The main advantage of JpEG 2000 will be better compression, offering smaller file sizes and higher
image quality. Other goodies include error checking, multiple resolution representations, and
support for alpha channels.

SUMMARY

Choosing the right file format is an essential first step to optimize your images, and an understand-
ing of the underlying compression algorithms used by the three main image formats (PNG, JPEG, GIF)
can help you to make further reductions in file size.

Each image used in a page results in an extra HTTP request, so cutting down on the number of
images is a worthwhile goal. The two main techniques are image maps and CSS sprites. Sprites are
the best general-purpose solution, but they are somewhat fiddly to implement.

It’s worth being aware of the way in which selectors are parsed (right to left) and the effect of this
on CSS performance — especially when wildcards are used. Also, ensure that you become familiar
with the shorthand notations available for many CSS properties because these can make your style
sheets significantly smaller in size.

While advances in CSS can be utilized to cut down on the use of JavaScript, there are still many
situations where JavaScript is the only viable solution. Love it or hate it, JavaScript is an essential
part of the modern web (especially so since the birth of Web 2.0), and an understanding of how to
optimize it is essential. In Chapter 6, you learn all about JavaScript, the Document Object Model,
and Ajax.

JavaScript, the Document
Object Model, and Ajax

WHAT'’S IN THIS CHAPTER?

» Looking at the JavaScript engines used by the major browsers

» Understanding the impact that the Document Object Model has on
performance

> Looking at performance considerations of the JavaScript language
> Understanding how browsers download and execute JavaScript

> Getting some tips for efficient Ajax programming

In the late 1990s, JavaScript suffered from a poor reputation among professional web
developers. Too often it was used for flashy (but pointless) special effects and was a nightmare
for cross-browser compatibility. Even visiting a particular vendor’s website using its own
browser might have resulted in JavaScript error messages.

The situation has improved dramatically in the last decade, with browser-specific quirks
having decreased, along with the need for ugly hacks to get around them. In a testament to
how much things have changed, Ajax (which is built around JavaScript) is now such a big part
of the modern web and works surprisingly smoothly most of the time. There’s also been a shift
in how JavaScript is used, with less emphasis on gimmicks and more on usability. These days,
the majority of big sites (and most Web 2.0 sites) use JavaScript to some degree, often without
it being particularly apparent.

This chapter looks at the performance considerations for using JavaScript and the ways in
which browsers download and execute it. JavaScript is closely related to the Document
Object Model (DOM), and you’ll also learn how the DOM affects page rendering times,
as well as how JavaScript interacts with it. Finally, this chapter looks at Ajax, and ways in
which it can be sped up.

112 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

JAVASCRIPT, JSCRIPT, AND ECMASCRIPT

Before getting into the intricacies of JavaScript performance, it’s worth looking at the history of the
language, including the competing implementations, the official standards, and the engines used by
each browser. Toward the end of this section, you learn about the different approaches offered by
the engines, and the ways in which they aim to boost performance.

A Brief History of JavaScript

The first release of JavaScript was in Netscape Navigator 2.0, in 1995. Originally, it was called
LiveScript, but within a few months, it had been rebranded to JavaScript. (Many commentators have
suggested that this was simply a marketing ploy to cash in on the success of Java, which had become
something of a buzzword.)

Naturally, Microsoft was not going to be left behind, and by the following year, the newly released
Internet Explorer 3.0 contained Microsoft’s implementation of JavaScript. To avoid any trademark
disputes, it named its scripting language JScript.

At around the same time, Netscape passed the language to the European Computer Manufacturers
Association (ECMA) standards organization, the international standards organization for
Information Communication Technology (ICT) and Consumer Electronics (CE), which began
formalizing and standardizing the language. The result was ECMAScript, which continues to
undergo regular refinements and enhancements.

So, ECMAScript is the blueprint for the language. JavaScript and JScript are vendor-specific names
for their particular implementations of the language. Although it’s probably more accurate to say
ECMAScript, most people still refer to the language as JavaScript, and they aren’t necessarily
talking specifically about Netscape’s implementation but the language in general. (In this book,
this implementation will be specifically referred to as Netscape’s JavaScript.)

Surprisingly, the differences between JScript and Netscape’s JavaScript have never been huge, even
in the ugly days of the browser wars. This was no doubt partly because of the neutral role played

by ECMA. Still, there were enough small niggles that writing cross-browser JavaScript was tricky.
(However, many of these problems were because of differences in the DOM, rather than JavaScript.)

The situation has improved since then. Although differences still exist, they are well known and
can be worked around. With the increased interest in JavaScript, there are plenty of libraries and
frameworks that can accommodate the differences. For the most part, the differences these days
tend to be in vendor-specific extensions, rather than incompatibilities in core features.

JavaScript Engines

The major browser vendors have all developed their own engines for interpreting and executing
JavaScript, and this is where most of the exciting development is happening these days. With the
increase in the use of JavaScript at the professional level (as already noted, in the late 1990s, it was
often viewed as a toy for amateur web developers), performance has become an important factor,
and vendors are currently falling over themselves to offer the best speeds.

JavaScript, JScript, and ECMAScript | 113

Firefox

Versions of Firefox prior to 3.5 used the SpiderMonkey interpreter, which had been in use since the
early Netscape Navigator days. Recent versions of Firefox have benefited from the addition of several
JIT compilers running alongside SpiderMonkey, which itself has seen numerous enhancements.

TraceMonkey

The first of these JIT compilers was TraceMonkey, which debuted in Firefox 3.5 in 2009, and used
the innovative technique of tracing to produce the majority of the performance gains. One of the
reasons that executing JavaScript is slow is that the language is weakly typed — a variable could
happily contain a string, integer, or floating-point number, and it’s difficult to predict in advance
which will be used. As a result, compiled code must handle them in a generic way. Contrast this
with C, where variable types are declared in advance, and the compiler can optimize accordingly.

NOTE Tracing is a relatively new method for improving the performance of
JIT compilers. It works by observing the code as it executes, and from this, it
determines variable types, allowing further optimizations to take place.

In TraceMonkey, the first time the script runs, it does so through the relatively slow SpiderMonkey
interpreter. TraceMonkey watches, determines the variable types, and compiles type-specific code.
Execution then switches to this compiled version.

Of course, just because a variable contained an integer value on the first run, it doesn’t mean that
this will always be the case. So, TraceMonkey also inserts type checks into the code. If any of these
fail, execution switches back to the interpreter, and another branch of the code is compiled using the
new variable type.

TraceMonkey has a few shortcomings:

> Only loops are traced. They have the biggest potential for gain, and compiling and running
code that executes only once is often slower than simply interpreting it.

> Code with lots of branches or type changes tends to run more slowly in TraceMonkey
because of the extra time needed to compile these different branches.

> Because tracing is primarily used to distinguish between strings, floats, and integers,
TraceMonkey doesn’t offer a significant performance increase for objects.

JagerMonkey

It wasn’t long before Mozilla began refining TraceMonkey in an attempt to reduce some of its
shortcomings, and the result was JagerMonkey, released in Firefox 4.

As you have just seen, in many cases with TraceMonkey, control must switch back from execution
of native code to the interpreter because of changing variable types. In practice, this happened a lot
more than had been expected. Therefore, JigerMonkey adopts the more traditional “method JIT
compilation” approach used by most other JavaScript engines. Onto this, it then adds tracing to
further optimize loops.

114 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

lonMonkey

Looking toward the future, Mozilla is already working on a new JavaScript engine named
IonMonkey. It will essentially be a refined and updated version of JaigerMonkey, with an emphasis
on adding additional optimization techniques. Initially, lonMonkey was planned for release toward
the end of 2011. This proved to be rather optimistic, but a release should not be far away.

Google Chrome

The impetus for change in Firefox and IE was in part because of the arrival of Google Chrome,
which boasted particularly fast JavaScript execution in the form of the V8 engine. V8 uses a JIT
compiler and compiles directly into native code (rather than a bytecode intermediate, as was the
common strategy in other browsers at the time).

CrankShaft is the name for V8’s current compilation infrastructure, and consists of two distinct
compilers. The first is a quick-and-dirty compiler that does very little in the way of optimization,
but compiles very quickly in order to reduce start-up latency. When a page is first loaded, this base
compiler is used to enable the JavaScript to start executing quickly.

While code from the first compiler is being executed, the second compiler kicks into action. This
compiler is slower, but produces faster code, thanks to numerous optimization techniques. By
watching execution of the code generated by the first compiler, it is also able to determine variable
types, and makes use of this knowledge when compiling.

Internet Explorer

As with Opera, Internet Explorer (IE) has seen a move away from the traditional runtime inter-
preter introduced in IE 3, to a just in time (JIT) compiler for performance reasons. The new engine,
Chakra, was introduced in IE 9, and has done a lot to improve the image of IE. (At the time, IE 8’s
JavaScript performance was particularly poor in comparison to that of other browsers.)

Chakra introduces a number of innovative features and is particularly suited for today’s multicore
processors. The most significant change is the introduction of a JIT compiler, but because this can be
slow to start up (although the code produced runs faster), IE 9 continues to use an interpreter for the
first run of the script. At the same time, the JIT compiler is started up in the background in another
thread to compile the script. This compiled version is then used for subsequent runs of the script.

This approach makes better utilization of multicore processors (the JIT compiler can run on a differ-
ent core) and gets around the dilemma over whether JIT is a better solution than interpreting.

Opera

Until 2009, Opera used an engine named Futhark for JavaScript execution. At the time of its
introduction (1996), it was the fastest engine available, which was built with the intention of being
small and having a low-memory footprint.

In Opera 10.5, a new engine, Carakan, was unveiled. The new engine reflects the way in which
JavaScript usage has grown, and this time the primary focus is on speed. For example, whereas
Futhark first compiled scripts into platform-neutral bytecode, Carakan compiles some or all the
script directly into native machine code. This enables it to avoid operations such as loops that

The Document Object Model | 115

are costly in bytecode. In addition, caching of compiled code is performed, further increasing
performance.

The second significant change in Carakan is a move away from the stack-based model of Futhark (in
which instructions are pushed and popped from the stack) to a register-based approach. Instead of a
dynamically sized stack, fixed-size registers are used, and these can be accessed directly without the
need to move data back and forth from the stack. Tests (by Opera) show Carakan to be about twice
as fast as Futhark.

Safari

As with the other main browsers, Safari has seen a shift away from a relatively slow JavaScript
interpreter to a bytecode interpreter and compiler.

Prior to 2008, the interpreter used was named JavaScriptCore (part of WebKit, on which Safari is
built). The new SquirrelFish (also called Nitro and SF) engine was introduced with Safari 4. As with
other engines of this period, SquirrelFish generates intermediate bytecode and performs most of

its optimizations at this level. It uses registers rather than stacks and supports some degree of type
inference.

Within a few months, there was already talk of an improved version of SquirrelFish, and
SquirrelFish Extreme (also known as SFX or Nitro Extreme) was released the following year in beta
versions of Safari 4. SFX expands on the new approach introduced in SquirrelFish and uses a JIT
compiler to generate native code for faster execution. Other changes include a significantly faster
regular expression (regex) engine (WebKit claims a five-fold speed increase), inline caching, and
better type prediction.

NOTE You’ll learn more about regexes in the section, “Regular Expressions,”
later in this chapter.

In the last five years, the major browser vendors have invested a great deal of effort into improving
their JavaScript engines. Partly as a result of this, the major bottleneck nowadays in JavaScript-
heavy sites tends not to be in the compilation and execution of the language, but rather in the way
that JavaScript interacts with the browser’s Document Object Model.

THE DOCUMENT OBJECT MODEL

The Document Object Model (DOM) is a tree-like structure that describes the relationship between
every element in the HTML document. When a web browser has finished retrieving a document, the
HTML is parsed and the DOM constructed, and from this the page is rendered.

After the DOM has been constructed, it is accessible through JavaScript. You can traverse the tree,
enumerate an element’s parent or children, get and set an element’s properties, and even add and
remove sections of the tree. DOM manipulation is at the core of most JavaScript.

116 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

A large DOM affects performance in a number of ways. It generally means a large HTML docu-
ment, which takes longer to download, parse, and render by the browser. But the biggest impact is
on JavaScript. Manipulating the DOM becomes increasingly expensive, and some operations cause a
reflow or repaint (more on these later), which can take longer with a heavy DOM.

So, keeping the size of the DOM down makes for an overall increase in responsiveness. But how
big is too big? As ever, there’s no right or wrong answer, but you can get an idea of what’s accept-
able by seeing how the big names compare. They’ve generally spent a lot of time looking into
performance.

NOTE [t would seem that sina.com.cn is an exception, however, because it
has more than 150 KB of CSS and JavaScript embedded in the index page.

An easy way to count the number of elements in the DOM is with JavaScript using the Firebug
extension for Firefox. Simply open up the Firebug console and enter the following:

document .getElement sByTagName ('*') .length

Table 6-1 shows the results for the top 20 websites at the beginning of 2012.

TABLE 6-1: Number of DOM Nodes in Top 20 Websites

DOMAIN NUMBER OF DOM NODES
Google.com 244
Facebook.com 430
Youtube.com 1,279
Yahoo.com 884
Live.com 251
Baidu.com 70
Wikipedia.org 638
Blogger.com 621
Msn.com 1,431
Twitter.com 242
gqg.com 2,370
Yahoo.co.jp 860

Google.co.in 252

http://Sina.com.cn
http://google.com
http://Facebook.com
http://Youtube.com
http://Yahoo.com
http://Live.com
http://Baidu.com
http://Wikipedia.org
http://Blogger.com
http://Msn.com
http://Twitter.com
http://qq.com
http://Yahoo.co.jp
http://Google.co.in

The Document Object Model | 117

Taobao.com 1,404
Amazon.com 1,861
Sina.com.cn 3,710
Google.de 241
Google.com.hk 240
Wordpress.com 317
Ebay.com 1,073

There’s quite a lot of variation here, but perhaps that shouldn’t be surprising. The home page of
Amazon.com is a lot busier than Google’s, and it’s inevitable that a richer page will have a larger
DOM. It’s well known that both Amazon.com and Google have invested a lot of resources into
studying performance. Clearly, for Amazon. com, the benefits of a rich page outweigh the cost of a
heavier DOM.

So, it’s impossible to give guidelines on what an acceptable DOM size is. In some cases, a heavy
page is justified because it contains plenty of contents to catch the user’s attention, but you should be
particularly cautious of heavy pages that also perform a lot of DOM manipulation in JavaScript.

No matter how big or small, it’s worth reviewing your HTML and seeing if you can simplify the
structure without affecting the visible layout. Although tables are often criticized for creating
bloated layouts, many web developers are also guilty of excessive use of <divs elements, and use
multiple levels of nested divs where one will do. Content Management Systems (CMSs) are some of
the worst offenders for this.

Manipulating the DOM

In JavaScript, a common way to access the DOM is in this fashion:
document .getElementById('id of element')

This forces the entire DOM to be traversed until the matching element is found. So, if you intend to
access the element multiple times, it makes sense to cache a reference to the element and use this:

var foo = document.getElementById('id of element');
foo.style.display = 'none';
foo.style.display = 'block';

Reflowing and Repainting

Earlier in this chapter, you learned that after the DOM has been constructed, the browser then
renders the page. But actually there’s a little more to it than that. The DOM is concerned with
structure, not physical appearance, and after the DOM has been constructed, a render tree is then

http://Taobao.com
http://Amazon.com
http://Sina.com.cn
http://Google.de
http://Google.com.hk
http://Wordpress.com
http://Ebay.com
http://Amazon.com
http://Amazon.com
http://Amazon.com

118 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

generated. The render tree is similar in structure to the DOM but contains the computed styles for
each element (based on the parsed CSS). After the render tree has been constructed, the output is
then drawn (painted) to the browser.

In many situations, modifying the DOM with JavaScript causes a change on the layout of the page
(for example, if you resize a visible element). This triggers a reflow — the browser must regenerate the
render tree (or at least all parts of the tree that have been affected by the change) and draw it to the
screen. By contrast, a repaint occurs when the DOM is modified in a way that does not affect the page
geometry (for example, if you change the background color of an element). This also causes the render
tree to be updated and the screen repainted.

So, both reflow and repaint are expensive and take longer as the number of DOM elements in the
page increases. They adversely affect the user experience and give the impression of the page being
sluggish. What can you do to minimize them?

First, let’s look at common actions that cause a reflow/repaint. Reading the properties of DOM
elements (for example, capturing the text entered into a form field) generally aren’t a problem
(although see the discussion in the later section, “Browser Queueing”). It’s writes that you

must be wary of. Anything that changes the visible layout of the page can cause a reflow/repaint.
This includes changing the display or visibility of an element, changing its position, color, and
so on — basically any action that changes style properties of an element.

Some of these actions are more visually disruptive than others. Resizing an element at the top of the
page causes a more noticeable effect than changing the color of some text. But all involve repainting
some (or all) of the screen and recalculating the render tree. Because the browser reconstructs only
parts of the render tree that have been invalidated (rather than rebuilding it from scratch), changes
to nodes toward the end of the tree (or with fewer children) can help to minimize disruption.

Modifying the DOM is particularly expensive because this results in both the DOM and the render
tree being updated. Thus, adding and removing nodes from the DOM should be avoided where
possible.

It’s not all doom and gloom though. In situations in which you need to perform several modifica-
tions to the same DOM element, you can reduce the number of reflow/repaints that occur. Consider
the following:

var el = document.getElementById('mydiv');
el.style.background = '#EEE';
el.style.border = '2px';

el.style.color = 'red';

Normally, this would result in three reflow/repaints. You can get around this by temporarily setting
the element’s display property to none, making your changes, and then making the element visible
again. Having two reflow/repaints instead of three is not a huge change, but is increasingly useful as
the number of changes you’re making increases.

Another option here is to define all these style changes in a separate CSS class, and then just change
the className property of the element. This time, there would be only one reflow/repaint.

The Document Object Model | 119

Yet another option is to use the cssText property to set (or get) the style declarations on an
element, as shown here:

document .getElementById('mydiv') .style.cssText =
'background: #EEE; border-width:2px; color: red!'

Again, this only causes one reflow/repaint, and, in some situations, is simpler than declaring a
separate CSS class.

Browser Queuing

Most modern browsers are smart enough to queue changes that would cause a reflow/repaint, and
execute them in a batch. In the example just presented, browsers wouldn’t, in practice, execute three
reflow/repaints. Instead, the operations would be queued and executed as a batch a fraction of a
second later.

There is a catch, though. If you attempt to retrieve layout information about an element, this forces
the browser to execute any queued actions (because it wants to be sure that it is not returning stale
data), and you lose the benefit of queuing. So, setting a style property on an element that affects its
layout, and then immediately retrieving layout properties of the same element, should be avoided.
In fact, querying layout information on any element that may have been affected by the change will
cause the queue to be flushed.

Event Delegation

Often, JavaScript interacts with the DOM through event handlers. You add, say, an onclick
attribute to an element’s HTML mark-up and execute some code when the element is clicked. These
event handlers can quickly add up. Imagine if you need to add a handler to every item in a list, or
every cell in a table. This increases the size of your mark-up, takes the browser longer to initialize,
and consumes more memory.

The solution is event delegation, which makes use of the event bubbling feature of JavaScript.
With event bubbling, when an event is triggered on an element, it bubbles up through each of
the element’s ancestors until it reaches a handler, or the top of the DOM. For example, here’s the
traditional approach:

<li id="iteml" onClick="foo('iteml')">Item 1</1li>
<li id="item2" onClick="foo('item2')">Item 2</1li>
</uls>
With event delegation, you add the handler to the element instead:

<ul onClick="foo (event) ">
<li id="iteml">Item 1
<li id="item2">Item 2

</uls>

120 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

With no event handlers assigned to the <1i> elements, clicking these causes the event to bubble up

to the element, where it reaches your handler and stops. In your JavaScript, you can easily tell
which <1i> element triggered the event like so:

function foo(e) {
// This is the IE way var target = e.srcElement;
target = e.target;
var target = e.target || e.srcElement
if (target.nodeName.toLowerCase() === '1i') {
alert ("Click 1i element with ID " + target.id);
}

e.stopPropagation(); // stops the even from propagating further for IE9 and
onward only

}

// Other browsers var

IE uses a different method to access the target element than other browsers, but most JavaScript
frameworks accommodate this.

Unobtrusive JavaScript

Just as you use CSS to separate style from content, you can also (to some degree) separate JavaScript
from your document. This is known as unobtrusive JavaScript. Revisiting the event delegation
example, rather than adding the event handler to the element in the markup, you can use
addEventListener and an anonymous function for a more aesthetically pleasing solution:

<ul id='ourlist'>
<li id="iteml">Item 1
<li id="item2">Item 2</1li>

</uls>

document .getElementById ('ourlist') .addEventListener ("click",
function (e) {

var target = e.srcElement; // The IE way
var target = e.target; // Other browsers

if (target.nodeName.toLowerCase() === '1i') {
alert ("Click 1i element with ID " + target.id);
}
, false

)

Note that addEventListener () was only introduced in IE in version 9 (other browsers have
supported it for much longer). For earlier versions of IE, attachEvent () is needed:

document .getElementById('ourlist') .attachEvent ("onclick",
function (e) {

var target = e.srcElement; // The IE way

if (target.nodeName.toLowerCase() === '1i') {
alert ("Click 1i element with ID " + target.id);
}

The Document Object Model | 121

There’s a lot to be said for this approach. It improves maintainability if you have different developers
working on the markup and the JavaScript, and it shifts the weight from the HTML document into a
(presumably) external resource where it has a better chance of being cached. You’re much more likely
to be setting far-future expiration headers on your JavaScript files than on your HTML documents.

Memory Management

In the old days, memory management wasn’t a big issue for JavaScript developers. That’s not to say
that browsers didn’t have memory leaks (and lots of them), but these were mostly problems that the
vendors needed to deal with, and there was little that web developers could do. The potential cer-
tainly exists for JavaScript to be wasteful of memory, but the short lifetime of web pages tended to
stop this from being a problem. As soon as the user clicked to another page, the memory was freed
up again (although note that this wasn’t the case with IE 6).

With the rise of JavaScript-heavy web applications, things have changed. It’s quite feasible that the
user may spend his or her entire session just on one page, with Ajax being used to communicate with
the server. As a result, inefficient memory usage has the opportunity to mount up into something
more significant.

Generally, the most common problem is circular reference — specifically, when a JavaScript refer-
ence still exists to a DOM node (either directly, or indirectly through closure) when the DOM node
is removed from the DOM, preventing its memory from being reclaimed. If a DOM node is removed
and there are no circular references keeping it or its descendant nodes in memory, there generally
should not be an issue.

JavaScript uses the garbage collection methodology for managing memory. Memory is allocated to
objects, and reclaimed by the garbage-collection process when the object is no longer being used.
To determine if an object is in use, browsers keep a count of how many references there are to
each object. If the number of references drops to zero, the object can be removed (and the memory
reclaimed).

Circular references occur when two objects reference each other, meaning that their reference counts
will never be less than 1 (hence, they are not candidates for garbage collection). Although most
JavaScript implementations are intelligent enough to spot circular references between two JavaScript
objects, things get tricky when the reference is between a DOM node and a JavaScript object,
because both use their own separate garbage collectors.

Let’s look at an example using one of the most common sources of such circular references: refer-
encing a DOM element from inside an anonymous function attached to the element via an event

handler.

<scripts>
function addHandler() {
var mydiv = document.getElementById ("myid") ;
mydiv.onclick = function() {
alert (this.innerHTML) ;
}

</scripts>

122 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

<body onload="start()">
<div id="mydiv"></div>

In this example, the global variable myobject refers to the DOM element mydiv, which refers back
to myobject (via expandoProperty) .The result is a circular dependency between the DOM and
JavaScript. The solution, of course, is to nullify myobject once you are finished with it.

By now, you should have a good understanding of the importance of the DOM, and how interacting
with it via JavaScript can be surprisingly expensive. As noted at the beginning of this section,

DOM interaction tends to be one of the main areas where performance can suffer. But as you will
see in the following section, there is often plenty of scope for improving the performance of purely
JavaScript code.

GETTING THE MOST FROM JAVASCRIPT

Advances in the JavaScript engines of the big browsers have gone a long way toward improving
JavaScript performance. But this is not an excuse for laziness. As a JavaScript programmer, you
should still strive to write optimal code for your website’s visitors. In this section, you discover some
of the most common causes of performance problems in the JavaScript language, along with ways to
efficiently load JavaScript resources into your documents.

Language Constructs

As the previous section has hinted, it’s generally DOM manipulation that is slow, rather than
JavaScript itself. Nevertheless, there are situations in which JavaScript can perform poorly. Let’s
look at the common cases.

Loops

As with most other languages, loops are a potential source of severe performance degradation
because tiny inefficiencies are magnified each time the loop runs. Consider the following
example:

for (var x=0; x < myarray.length; x++) {
}

The problem here is that the number of items in the array is calculated for each iteration of the loop,
which is unnecessary. You can improve the situation dramatically by fetching the size of the array
outside of the loop, as shown here:

var count = myarray.length;
for (var x=0; x < count; x++) {

}

Getting the Most from JavaScript | 123

If you don’t mind traversing the array in reverse order, you can remove an extra condition from the
loop and write it as simply the following:

var count = myarray.length;
for (var x=count; x--;) {

}

These differences are small when dealing with a modest number of iterations but can reduce time
significantly for large numbers of iterations. Incidentally, if you wonder whether for is faster than
while or do, the answer is that it doesn’t actually matter.

In the previous example, it was fairly obvious that myarray.length would cause the length of the
array to be calculated. But sometimes it’s not so obvious, and, in general, you should be wary of any
loop conditions — they may not behave quite as you expect.

A prime example is if you want to act on all the elements of a particular type in the document. Your
loop might look something like this:

for (var x=0; x < document.getElementsByTagName ("span").length; x++) {

}
This also causes the number of span elements in the document to be recalculated for each iteration.
Surprisingly, the following code is also affected:

for (var varx=0, elements = document.getElementsByTagName ("spans"); x <
elements.length; x++) {

}
Again, the solution is to calculate the length outside of the loop.

A commonly used optimization technique by C/C++ compilers is function inlining, where the
body of a function is inlined directly at the point where the function would have been called.
Although this increases the size of the code, it also eliminates the overhead involved in calling
the function (passing arguments to the function, jumping to execution of another part of the
program, and so on).

Inlining is most useful for functions called inside loops, especially if the loop is iterated through
many times. Knowing that calls to functions carry some overhead, you can perform inlining your-
self where it is appropriate. Consider the following example, which converts between the Celsius
and Fahrenheit temperature scales:

for (x=0; x <1000; x++) {

var Fahrenheit = convertCF (x) ;

// now do something with Fahrenheit
function convertCF(x) {

return x*1.8+32;

124 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

Admittedly, this a rather trivial example, but it illustrates the logic used in many scripts. To cut the
overhead of calling convertcCF, you can rewrite the loop like so:

for (x=0; x <1000; x++) {
var Fahrenheit = x*1.8+32;
// now do something with Fahrenheit

}

In the real world, candidates for inlining aren’t always this clear-cut. If the convertcr function
were less trivial and were used in other places in the code, maintainability would suffer — after all,
the whole point of functions is to reduce code duplication. Still, when it comes to loops, inlining can
be a very attractive option.

Variable Scope

JavaScript uses the concept of local and global variables. Local variables exist only inside the
function in which they are defined; global variables are accessible from anywhere. Although local
variables are generally preferred because of their limited scope (which limits the chances of acciden-
tally clobbering another variable with the same name), they need a little more thought to deploy,
and many web developers lazily use global variables. Consider the following example:

var x = 1;
function foo() {
var y =
alert (x // x has global scope, so this displays "1"
alert(y); // displays "2"

)
2;
)
}

Using global variables inside functions comes at a cost, though. JavaScript uses lexical scoping. At
the top is the global scope, and beneath that are any variables defined in top-level functions. If any
of these functions contain functions of their own, then variables in these nested functions are stored
in a second level of scope, and so on. Consider the following code:

var a = 1;
function bar() {
var b = 2;
function baz() {
var ¢ = 3;
}

}

Here you have three levels of scope. What happens if, inside function baz, you decide to use the
global variable a? To determine the value for a, JavaScript must climb up the chain until it finds

a. So, first it checks the local scope, then it looks in its parent chain, and then finally it checks the
global scope and finds a. Backtracking through the scope chain incurs a slight cost, which can be
eliminated (or at least reduced) by prudent use of local variables. Aside from that, local variables are
generally a cleaner way to code.

Getting the Most from JavaScript | 125

One way to get around the use of globals inside of a function is to pass the variables that you need
as function parameters:

var x = 1;
function foo(z) ({

alert(z); // local variable, with value of 1
)

foo(x) ;

Or if you must access a global multiple times inside the function, copy it to a local variable first. The
following example causes the global x to be looked up twice:

var x = 1;
function foo()
var v,z;
y =x * 2;
zZ =X * 3;
}

foo() ;
The following example results in only one global lookup of x:

var x = 1;
function foo()

var y,z;
var tmp = X;
y = tmp * 2;

Z = tmp * 3;

}

foo();

Of course, the downside here is an increase in memory usage, since the data is being stored twice:
once globally, and once in the local scope. Unless the variable is very large, this is usually an accept-

able trade-off.

eval()

eval () suffers from a bad reputation in JavaScript for a number of reasons. It can be slow
(although this situation is changing); it can introduce security issues; and it has a tendency to be
wildly misused. There are situations in which eval () is the right choice, but care must be taken,
and too often there are better ways to do things. That’s not to say you should never use eval (). Just
think carefully beforehand.

The reason for the poor performance of eval () is that browsers typically did not cache the
compiled code. So, every time the eval () was executed, the browser would be forced to recompile
the code. The situation has changed in the last few years, though, and most browsers now actually
do cache the code, assuming that it is static. If the contents of the eval () statement are dynamic,
there is no opportunity for caching.

126 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

Regular Expressions

Regular expressions (regexes) are an important part of most high-level programming languages.
JavaScript is no different, and the tips presented here are mostly equally valid for other languages, too.

NOTE Regular expressions are found in most high-level languages (Perl,
Python, PHP, Ruby, and so on) and many UNIX tools (such as grep, sed, and
awk). They also provide advanced pattern maiching for strings. The power of
regular expressions (or regexes, as they are often known) goes well beyond
standard string searching, offering support for wildcards, character classes

(for example, any lowercase letter), and back-tracking. For many people, regular
expressions are mysterious and daunting, but it’s well worth learning at least the
basics — they are incredibly useful and powerful when used correctly.

However, think before you use a regex. Is it actually needed? If you simply want to test whether one
string is contained in another, or occurs at the beginning or end of the string, use one of JavaScript’s
string functions, which will be a lot faster.

Generally speaking, the longer the string that you match against, the more JavaScript has to do
when applying the regex. So, keep the target string as short as possible (trim it first, if possible), and
try to use * or $ to anchor the pattern being matched — that enables the regex parser to quickly
eliminate many impossible matches.

Modifiers

Regex modifiers are used to alter the meaning of the pattern being matched. In JavaScript, the two
most common modifiers are i (match case insensitive) and g (global, don’t stop after the first match
found). If you don’t need these modifiers, don’t use them. If you do think you need them, consider if
it is possible to rewrite the regex with them, because, although they are not a serious problem, they
do cause extra work for JavaScript.

Reusing Expressions

The following example shows one of the most common ways of using regexes in JavaScript:

for (var x = 0; x < array.length; x++) {
var matches array[x] .match(/patterntomatch/)
if (matches.length > 0) {
// we've got a match
}

}

Here, the pattern is passed directly to the match method, which returns true if there is a match.

The problem here is that JavaScript must internally parse and compile the regex, and this happens
for each iteration of the loop. In these situations, using the RegExp construct is a better option,
because it allows you to build the pattern once, outside of the loop, and then reuse it.

Getting the Most from JavaScript | 127

var myregex = /patterntomatch/
for (var x = 0; x < array.length; x++) {
if (myregex.test(...) (array([x]) {
// we've got a match
}

}

This time, the regex is compiled by JavaScript and stored in the myregex object. You can then call
the test () method (or exec () if you want to return the string matched) on the object without
incurring the performance hit of having to recompile the regex. This change can result in a substan-
tial speed increase, but note that if you are not planning to reuse a regex, it’s cheaper simply to pass
the pattern directly, rather than creating a RegExp object.

Loading JavaScript

Let’s return to the examination of how JavaScript interacts with the browser. During the initial page
loading, browsers usually download resources in parallel. With JavaScript, the situation is a little
different. If the browser encounters a link to an external JavaScript file, it begins to download it in
the usual way but blocks any other downloads from starting until the JavaScript is retrieved, parsed,
and executed.

An example should help to clarify this. Consider the following code:

<script type="text/javascript" src="test.js"></script>

Figure 6-1 shows the waterfall view when this page
loads in IE 8.

http://1inuxbox .co.uk/ js-test htnl 0.5 1o 1.5 2.0 2.5 3.0

.

. linushox.ca.uk - js-test.html
. linudhox.co.uk - paypaloards. jpg
- linudhox.co.uk - test.js

. linuxhox.co.uk — forum.jpg

. linushox.ca.uk - favicon.ica

1552 ms

139 ws
0.5 1.0 1.5 2.0 z.5 3.0

The browser first encounters the link to
paypalcards.jpg and begins to retrieve this.
Next comes the external JavaScript, and because
you haven’t reached the maximum number of
parallel requests, this begins to download, too. Notice, however, that the second image does not
begin to download until test.js has been fully retrieved.

@a e owon

FIGURE 6-1

One reason for this blocking behavior is to guard against race conditions when downloading
multiple JavaScript files because you have no guarantee of the order in which they would finish
downloading and be executed. A script sourced further down in the HTML document could easily
be executed before an earlier script, even if there were a dependency between them. Serialization of
script execution is essential for avoiding nasty surprises.

Other resources are blocking from download in parallel with scripts for similar reasons. The script
may modify the DOM, which may cause unpredictable behavior if other resources have already
been downloaded.

This blocking behavior is one of the reasons why it is suggested to load any scripts at the end of the
page. (Another reason might be that many scripts simply don’t need to be loaded until the end.) By
loading visual elements first, you create a site that seems faster.

128 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

Let’s rewrite the test page a little to see what happens:

<script type="test/javascript" src="test.js"></script>

httpz//1inudoox.co.uk/js-test .htnl

Figure 6-2 shows the waterfall view.

.

. linuxhox.ca.uk - js-test.htnl
. linuxhox.co.uk - paypalcards. jpg
. linuxhox.co.uk - forun. jpg

. linuxhox.co.uk — test.js

. linuxhox.ca.uk - favicon.ico

With the JavaScript pushed to the end, there’s an
increase in the amount of parallelization, and the
overall loading time of the page is reduced. FIGURE 6-2

@ae e

This works great if there is only one external script to load, and if you can happily place it at the end

of the document. But what happens if you must source several external scripts? You can’t execute

them in parallel (for reasons already given), but there’s no reason why you shouldn’t download them

in parallel.

Nonblocking of JavaScript Downloads

There are a few methods to create the nonblocking of the download of JavaScript. Let’s take a
closer look.

defer Attribute

The defer attribute is an [E extension that has found its way into Firefox (starting with v3.5),
Safari (v5), and Google Chrome (v7). The syntax is as follows:

<script type="text/javascript" defer src="test.js"></script>

In supporting browsers, parsing this causes the script to be retrieved immediately, in a nonblocking

fashion, but it will not be executed until the page has finished loading. Order is preserved, so scripts

appearing earlier in the document will be executed first.

The drawback with this method is a lack of browser support. For a long time, it was an [E-only
extension, and it has been only recently that other browsers have started to support it.

async

In HTML 5, you can use the async attribute to ask the browser to download the script without
blocking other downloads:

<script type="text/javascript" async src="test.js"></scripts>

This time, the script will be executed as soon as it has downloaded. So, when multiple scripts are
used on the page, the order of execution cannot be predicted.

Getting the Most from JavaScript | 129

iframes

Another method is to load the script inside an iframe like so:
<iframe src="loader.html"></iframe>

Here, loader.html is a simple HTML document containing the appropriate <script> tag. This
method results in the script downloading and executing immediately.

There are two main reasons why this method isn’t favored:

> iframes are relatively expensive to load — many times slower than other DOM elements —
although for a single iframe, this probably isn’t significant.

> For JavaScript loaded in an iframe to access the parent page DOM, changes must be made
to the code.

Dynamically Writing Script Tags
Probably the most popular method to invoke the nonblocking of the download of JavaScript is to
dynamically write the script tag with JavaScript. This method has traditionally been the best
supported (although note the earlier comments about the increase in support for defer), and does
not have the performance penalty associated with the iframe method.

var newjs = document.createElement ('script');
newjs.src = 'test.js';

var head = document.getElementsByTagName ('head') [0];
head.appendChild (newjs) ;

When the external script is included in this way, it is downloaded without blocking, and executes
immediately after the download has finished. Despite its popularity, this method has the drawback
that execution order is not guaranteed. So, again, you may end up with scripts executed in the
“wrong” order.

User Feedback

When a web page is busy loading, the user typically gets some form of feedback — often an ani-
mated turning wheel near the top and information in the status bar (assuming it has not been hid-
den). Usability research has shown that these are important parts of the user experience. Users like
to feel that a page has finished loading before they start to interact with it.

How do the nonblocking JavaScript methods affect this behavior? Not surprisingly, the answer isn’t
consistent from browser to browser, but, in general, all the methods cause loading feedback, with
the exception of Ajax techniques. (However, this still causes feedback in Chrome and Safari.) This
can be a good thing or a bad thing.

NOTE You'll learn more about Ajax techniques in the “Ajax” section later in
this chapter.

130

| CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

With code that forms an essential part of the page, displaying loading feedback discourages users
from interacting until the code has fully loaded. On the other hand, if the code is not essential, there
is no harm in the user browsing the site before it has finished loading. Showing a busy indicator
simply makes the site look sluggish.

Picking the Right Method

At the moment, dynamically inserting the script tag into the DOM is probably the best method;
although the defer attribute is becoming increasingly well supported and may be the way to go in
the future. If you want to avoid browser feedback, use one of the Ajax methods discussed in the
“Ajax” section of this chapter.

Some newer browsers do actually support nonblocking JavaScript by default, and, in the not too
distance future, the techniques just described will hopefully become increasingly unnecessary. For
example, IE8 onward downloads multiple scripts in parallel (and will execute them in the correct
order), as does Firefox 3.5 onward. With the two market leaders having adopted this, it’s likely that
other vendors will eventually follow suit.

Merging, Splitting, and Inlining

Web designers are often particular about their code, and enjoy nothing more than separating
different JavaScript functionality into different files. Thus, inside the <head> of a document, it’s
common to see half a dozen or more <script> tags loading external files, some with only a small
amount of code in them.

Merging

There’s no question that storing scripts separately is the best way to maintain a big project. But for a
production website, it has an adverse effect on performance. For each request, there’s the additional
latency to send the request to the server and wait for a response. So, merging everything into one file
(then minifying it, of course) is often the way forward. If necessary, you can keep the scripts sepa-
rate in your source tree and write a simple shell script to “publish” them for the live site.

Figure 6-3 shows the waterfall for a page with five P T
small scripts in the document head. e BUST O (-] 2 v

. Linuxhok.ca.Uk - filel.js e ns
. Linuskox.co.uk = Filez.js I 144 ws

Linuxhos.co.uk = Filed.js [145 ns
. Linushox.co.uk = filed.js [168 ns
. Linushox.co.uk - filed.js [143 ns

Each script is 1,447 bytes, so the time spent down-
loading the scripts is tiny and is not visible in this
waterfall. Instead, the browser spends most of its
time waiting for the web server to respond.

PO R R

. Linuxhox.co.uk = favicon.ico 133 ns ||
0.2 0.4 0.6 0.8 1.0 1.2

FIGURE 6-3

Figure 6-4 shows a waterfall after merging the five [t metecoksistest i

1. linusbox.co.uk - js-test.htnl

scripts into a single file (combined.js). As you can | - i - coovivea.a
see, you save about 0.4 second by merging.

326 ms

157 me |
0.5 0.6 0.7 08

FIGURE 6-4
In the previous section, you learned that recent

browsers now download JavaScript in parallel. The example shown in Figure 6-4 was for IE 7.
Figure 6-5 shows that the results are quite different for IE 8.

Getting the Most from JavaScript | 131

http A inuxboy . couk s je=test html 0.4 0.5 0.8 0.7 0.8

1. linuxbox.co.uk - js-test.htnl 333 ms

2z, linuxbox.co.uk - filel.js 158 ms

3. linuxbowx.co.uk - File2.js s

4. linuxbowx.co.uk - Filed.js L 302 s

5. linuxbox.co.uk - Filed.js L 300 s

6. linuxbowx.co.uk - FileS.js [P

7. linuxhox.co.uk - favicon.ico 142 ms

04 0.5 0.6 07 0.8

FIGURE 6-5

IE 8 can download up to four resources in parallel (including JavaScript), so, although the waterfall
diagram shows a lot of time being spent creating the connection and waiting on the web server, the
overall page loading time isn’t dramatically different from when the five scripts were merged together.
This test shows a slight improvement — although such small fluctuations should be taken with a pinch
of salt when benchmarking against a live server over an unreliable medium (such as the Internet).

The relevance of this test has also suffered from

. . . http://linudbox .co.uk/js-test .htn] 0.2 0.4 0.6
short-sightedness. It fails to consider how the over- | i iwmer.cou - jetesenens 1w
. . . 2. linudsox.co.uk - Filel.js [135 e
all page loading time is affected. If you add four 5. Minumo.co.uk - Filez.ga
. . . . 4. linuzhox.co.uk - Filed.js L s s
images to the page, the waterfall view (again with . e co.ux - F11e3. g2 il =5 vs
i . 6. linuzhox.co.uk - File5.js Ll 1m0 us
IE8) looks as shown in Figure 6-6. G IMEDAET) S
. linushox.co.uk - inage2.gif
9. linughox.co.uk - image3.gif
As before, four JavaScript resources are loaded in e
0.2 0.4 0.6

parallel. Once the JavaScript has been loaded and
executed, the image resources are then fetched over
the already-open connections.

FIGURE 6-6

In Figure 6-7, the combined JavaScript file is used. Resource 3 is fetched over the existing
connection, but resources 4 and 5 each require a new connection to be opened.

http://1inusbo: . oo uk/ js-testl html 0.2
1. linuxbox.co.uk - js-testl.html
2. linuxbox.co.uk — combined.js
3. linuxbox.co.uk - imagel.gif
4. linuxbox.co.uk - inage2.gif
5. linuxbox.co.uk - imaged.gif
6. linuxhox.co.uk - inaged.gif
7. linuxbox.co.uk - favicon.ico
0.2

FIGURE 6-7

This time, the overall page loading time is approximately one-half a second lower, and there are a
few interesting things happening here.

In both waterfalls, JavaScript finishes loading at roughly the same time. But, in Figure 6-6, the
four parallel connections have already been established at this point, and the image requests do not
suffer the penalty of waiting for a connection to be established. In Figure 6-7 two of the images are
retrieved over new connections, increasing the request latency.

| CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

NOTE Incidentally, you may have noticed a slight gap in some of the waterfall
figures, between the JavaScript download finishing and the next request starting.
Figure 6-6 shows a good example of this, at approximately the 0.7 seconds mark.
The reason is, after downloading the script, the browser must next execute it. It
does this before it issues any more requests. Usually, the delay is minimal, but
large gaps here can indicate inefficient JavaScript — or just lots of it.

To some extent, though, this penalty is offset by better utilization of bandwidth. In the waterfall
shown in Figure 6-6, there is a period (from approximately 0.7 to 0.9 seconds) when the browser is
not downloading anything, but simply waiting for the web server to respond. After the four images
begin to download, they do so in parallel, resulting in bandwidth being split across them. In the
waterfall shown in Figure 6-7, image1.gif begins downloading first, and benefits from having the
whole bandwidth (well near enough — packets are still flowing as the browser sets up the other two
connections) to itself.

In browsers that support parallel downloading of JavaScript, keeping scripts separate actually
improves loading times in many cases. But you must keep in mind that not all browsers do this, and
the overall gain is dependent on resources in the rest of the page.

The results also depend on the degree of parallelization offered by the browser. As you’ve already
seen, older browsers generally supported two requests in parallel, whereas newer browsers usually
perform four, six, or eight. With IE 8, this value is six, so there’s nothing to be gained on IE 8 from
having more than six external scripts (six external scripts next to each other in the document, any-
way). If the six scripts were scattered through the page, the situation would be different. So, merging
your JavaScript into a maximum of two or four scripts is probably the best trade-off for perfor-
mance versus cross-browser compatibility.

One thing not yet touched upon is how blocking affects all this. In the waterfall images so far,
nothing else happened until the JavaScript had been downloaded. Clearly, IE 8 will download other
JavaScript files in parallel, but not other resources.

(This is more noticeable in the tests using the com- A Ot 02 OF 04 08 06 07 63 09 Ls L
bined JavaScript file.) Let’s try again in IE8 using - binus.co.uk - consines s
the defer attribute.

o

+ Linuxbox.co.uk - inagel gif
. Linuxbox.co.uk - inaged.gif
Linuxboc.co.uk - inage?.gif
. Linuxbox.co.uk - inaged.gif
+ Linuxbox.co.uk - favicon.ico

P AN

Figure 6-8 shows the defer attribute being used

to load the combined JavaScript file. No block- FIGURE 6-8
ing occurs, and three of the images are requested
immediately. httpz//1inuo:..co.uk/ js-test htnl 0.2

i

+ Linuxbox.co.uk - Js-test.html
+ Linuxbox.co.uk - Filel.js

+ Linuxbox.co.uk - File2.js

+ Linuxbox.co.uk - Filed.js

- Linuxbesc.co.uk - inagel.gif

- Linuxbesc.co.uk - inaged.gif
Linuxboo.co.uk - Filed. js

- Linuxbeoic.co.uk - File5.js
Linuxboo.co.uk - inage?. gif

In Figure 6-9, the defer attribute is used on each
of the four JavaScript resources. This leads to an
increase in the amount of parallelization, but the

effect is still an increase in loading time. The com- | 2 o - masezae

bined version is approximately 1 second faster to e Hinoon.co.dk - Fevicon-ico o
complete. FIGURE 6-9

Efovowmaswn

Getting the Most from JavaScript | 133

So, sometimes it pays to merge your JavaScript into a single file, and sometimes it doesn’t. Too much
depends on the nature of your code and other resources on the page. There is no hard-and-fast rule
on whether to merge the JavaScript on your site, but at least you now know about the tools for you
to make your own decision.

Splitting

Some websites use a set of one or more external JavaScript files that need to be loaded on every
page, but for many sites, the script needed varies from page to page. For example, you might have
some form-checking code that needs to be loaded only on a contact page.

If you opt to merge all the JavaScript into a single file, you have a dilemma. If you include the code
that is specific to certain pages, you increase the size of your global, combined file. If you leave it
out, you increase the number of resources to be downloaded. So, where do you draw the line? If one
of your JavaScript libraries is used on half the pages on your site, should you merge it into the global
script? What if the script is used only on a few pages, but is only a few hundred bytes?

One solution seen in many CMSs (where the JavaScript and CSS used tend to be large and can vary
greatly depending on admin settings) is to pass a list of required files to a dynamic script that builds
the JavaScript or CSS on-the-fly. A call to such a script might look like this:

<script type="text/javascript"
src="/rollup.php?files=main.js, forms.js,ajax.js, toolbar.js"> </script>

The back-end PHP script fetches these four files, merges them together, and spits out the result (with
an appropriate content -type header).

The advantage here is that you can load only the code you need for this particular page, and you
have only one browser request. The downsides are that it makes caching difficult, increases latency
(running some PHP code and opening multiple files is always going to be slower than serving a sin-
gle static file), and puts extra work on the server, (Usually you’d want to serve static resources from
something like Nginx without evoking PHP.) So, although this is sort of okay for people who don’t
want to get their hands dirty, for websites where performance ranks high, it’s not good enough.

Although merging is often the right thing to do, generally it also makes sense to keep code separate
if it is used only on a few pages (to avoid the overhead of loading where it is not needed). In some
cases, that can even mean that splitting an existing script is the right thing to do.

In the case of sites with a members area, one possible way of bundling is to group your code into
two files: one for logged-in users and one for guests. Typically, guests wouldn’t have access to what-
you-see-is-what-you-get (WYSIWYG) editors for making posts, instant messaging chat widgets, and
so on. Here’s a simple example of how such logic might work:

<script type="text/javascript" src="/resources/guest.js">
<?php
if ($_SESSION['userid']l > 0) {
print '<script type="text/javascript" src="/resources/member.js"s>';

}

</script>

134 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

guest . js is loaded no matter what. But if the user is logged in (in this example, the session variable
userid holds a numeric ID if the user is logged in), a second resource, member . js, is also loaded.

Usually, the goal is to minimize loading times as much as possible for the first page that visitors hit.
Web users can be impatient, and you don’t want slow loading times to scare them away. If you have
a page that receives a clear majority of incoming traffic (such as the homepage), it can make sense to
keep the scripting on this to a bare minimum — don’t load code used on the majority of the rest of
the site because visitors may not even get that far.

Inlining
Usually, you store JavaScript in external files because it is cacheable and reduces overall page loading
times; although web developers do it because it increases maintainability and ease of development.
However, for small files, the cost to fetch an additional resource outweighs the decrease in the size
of your HTML document. If you load other scripts, you can simply append a small script to one of
these. Failing that, putting your JavaScript inline (directly inside the HTML document) can be the
best option.

It’s difficult to say at which exact point this becomes the more attractive option, but it’s roughly at
the 1 KB or 2 KB upward mark that issuing an additional request for external code becomes faster
overall than inlining.

Web Workers

The last few years have seen great advances in the performance of many JavaScript engines for many
browsers, but they are still held back by JavaScript’s inherently single-threaded nature. In many
situations, this isn’t a problem. Typically, JavaScript is used to execute short blocks of code based

on user interaction — for example, the user submits a form, and some field checking takes place. As
such, responsiveness tends not to be too sluggish.

Things are different, though, if you must execute particularly intensive or long-running code

(as has become increasingly common with today’s JavaScript-rich sites, which often behave almost
like desktop applications). Because there is only one thread, nothing else can execute until the long-
running block of code has finished.

For example, consider a script for drawing the Mandelbrot set. After the user has clicked a button
to start the script running, all other scripts on the page will be unresponsive until it has finished —
that includes unrelated scripting such as form checking or JavaScript navigation menus. Of course,
plotting the Mandelbrot set is something of an extreme example, but there are plenty of situations in
which this single-threaded behavior causes the interface to appear slightly sluggish.

One option is to use timers (specifically, the setTimeout () function) to periodically pause execution
of a long-running block of code, allowing other code to be handled. This gives the impression of
multi-tasking, but is rather hacky, and still not as smooth as you would wish.

The solution comes in the form of web workers — background threads running separate scripts, and
communicating with the parent thread via messages. All the major browsers now support web work-
ers, and Table 6-2 shows when support was introduced.

Getting the Most from JavaScript | 135

TABLE 6-2: Introduction of Web Workers

BROWSER WEB WORKERS INTRODUCED

Firefox Version 3.5
IE Version 10.0
Opera Version 10.6
Chrome Version 4.0
Safari Version 4.0

Because web workers run in their own thread, there is some work to do in initializing the thread
and communicating with the parent. Web workers are only intended for heavy, long-running scripts
(such as the Mandelbrot example). For anything smaller, the overhead of initializing the worker
thread cancels out any performance gains.

The first step is to create a new worker thread, passing it the name of the script to load:
var worker = new Worker('code.js');

A new worker thread is created, and the code is downloaded in this thread. But execution does not
start until specifically instructed, as shown here:

worker.postMessage () ;

As well as starting the worker code running, postMessage is also used for communicating with the
worker:

worker.postMessage ("hello") ;
The worker can capture these messages by setting up an event listener:

self.addEventListener ('message’,
function(e)
// e.data contains the string "hello"

, false);

Data can also be passed as JavaScript Object Notation (JSON) and is automatically parsed by
the receiver. In the following example, the message object is automatically serialized to JSON
bythepostMessagenuxhod:

// in main script
worker.postMessage ({'action': 'execute', 'order': '66'});

// in worker script
self.addEventListener ('message',

136 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

function(e) {
if (e.data.order == 66) {

}

, false);

Usually, you want to communicate both ways, and catching messages sent from the worker to the
parent works in a similar fashion via an event handler — this time, a property of the worker object,
as shown here:

worker. addEventListener ('message’',
function(e) {
// again, e.data holds the received message
}

, false);

If you’ve written threaded applications before, you’ll be aware of how messy things can get. For this
reason, web worker threads have limited access to the DOM (because they could potentially write to
the DOM at the same time as other threads are reading or writing). This is the main reason why an
elaborate messaging system is used between threads and parents.

In addition to restrictions on accessing the DOM, web workers have no access to the window, parent,
or document objects. They can, however, use XMLHt t pRequest, access the navigator and location
objects, and load external JavaScript files. Worker threads also have the capability to spawn subwork-
ers, but situations in which these are needed are rare. Remember that there is an overhead associated
with spawning a new worker.

AJAX

In recent years, Ajax has become a buzzword and is one of the driving forces behind the annoyingly
titled Web 2.0. Yet, Ajax is quite a loose term and refers to technologies that have been around for
some time — JavaScript, DOM manipulation, and XML/JSON.

It’s misleading to think of Ajax performance as a separate concern because it is just a question of
performance in these areas. There are no magic tricks specifically for Ajax. Rather, benefits come
from optimized JavaScript, careful use of the DOM, and a responsive back-end web server.

XMLHttpRequest

At the heart of Ajax is the XMLHt tpRequest (XHR) function used in JavaScript to load a resource

in the background. This function allows for both synchronous and asynchronous calls. The latter
(asynchronous calls) are preferable because they do not cause the calling script to block. Instead, you
write an event listener to trigger when the request has completed.

XHR also offers the choice of GET or POST requests. Surprisingly, it turns out that, even when PoSTing
tiny amounts of data, the request is split into two packets — the first containing the HTTP header
and the second containing the PosT data. All the major browsers (with the exception of Firefox)
behave like this. With GET, the data is contained in a single packet. So, if all other things are equal,
GET is the preferred method.

Ajax | 137

All other things aren’t always equal, though. Caching and privacy are the other major factors, and
there are sometimes cases where POST is preferred because the response will not be cached.

Using Ajax for Nonblocking of JavaScript

You can also use Ajax as a means to invoke the nonblocking of the download of JavaScript. You can
fetch the script via xHR and then execute it by passing the response through eval (). Some libraries
such as Prototype even have an option to automatically use eval () on the response.

Alternatively, you could use xHR to fetch the script, and then insert it into the DOM inside a
<script> tag.

These methods don’t offer any advantages over the other techniques examined earlier in this chapter.
They cause the script to be downloaded without blocking; it executes immediately, and there is no
guarantee of the order of execution. In addition, with this being Ajax, you can fetch scripts hosted
only on the same domain name. These methods also mean loading an Ajax library; although you can
write a simple cross-browser xHR library in 20 or 30 lines of code.

Server Responsiveness

The responsiveness of the web server is crucial to create an Ajax application that does not feel slug-
gish — even more so than with standard HTTP requests — and you want to minimize latency as
much as possible. Using a lightweight server such as Nginx usually helps, and you should keep the
use of back-end scripting and database lookups to a minimum. Serving cached contents where pos-
sible is an even better idea.

If you do use preforked Apache, keeping a high number of idle servers free cuts out the possible
overhead of spawning a new child process to handle incoming xHR requests. Unfortunately, there
may also be situations in which Apache is up to its MaxClients limit and is queuing requests.
Although this may add “only” a second or two to the response time, this can be noticeable on Ajax-
driven sites.

NOTE The Apache web server (which you will learn about in much more
detail in Chapter 7, “Working with Web Servers”) supports several modes of
process management, of which prefork is the most common. In this mode, each
request is handled by a separate child process. This contrasts with the worker
module, which is built around threading. To avoid overloading the server,
Apache is configured to handle a maximum number of requests simultaneously
(MaxClients). If this limit is reached, requests are queued up, leading to a delay
in the request being served.

Apache’s mod_gos can be used to shape traffic, giving priority to requests on a particular directory.
In this way, you could ensure that all requests for Ajax scripts go to the top of the queue, should
there be a backlog. In practice though, connection queuing indicates a server straining to cope, and
you should be looking at scaling up or out, rather than taping up the cracks.

138 | CHAPTER6 JAVASCRIPT, THE DOCUMENT OBJECT MODEL, AND AJAX

Using Preemptive Loading

Ajax can take advantage of preemptive loading. With Ajax, you have the capability to load scripts in
a manner that (with the exception of Safari and Chrome) will not generate any loading feedback in
the browser. Thus, one option is to load what you need for the landing page, wait until the page has
rendered, and send an Ajax request for the remaining JavaScript. Although you don’t need it yet, it
will be cached in the browser in anticipation.

Ajax Frameworks

Many developers use a framework such as Prototype or JQuery to develop Ajax websites. These
libraries have a lot of features that can make Ajax a breeze, but they can also be rather heavy. If all
you need is XHR, a full-blown framework isn’t necessary. Instead, a lightweight solution is microajax
(http://code.google.com/p/microajax/), which provides a cross-browser XHR wrapper in 841
bytes.

SUMMARY

Developers of the major browsers have made significant improvements to their JavaScript engines,
and manipulation of the DOM tends to be the most expensive part of JavaScript-rich sites. Knowing
this, you can minimize your use of the DOM and employ tricks such as storing references in vari-
ables to lessen this.

Browsers have historically loaded JavaScript in a blocking manner, which can make pages appear
slow to load. This is gradually changing, but there are also a number of tricks to get around this.
You must also think carefully about how JavaScript is arranged. Should it be inline, external, or a
combination of the two? A lot depends on what it is used for, and how users access the site.

Ajax is popular, and although most of this chapter’s discussion on JavaScript and the DOM applies
here, there are a number of small tips specifically for Ajax development.

So far, you have learned about a variety of front-end aspects of website performance — from
JavaScript and CSS to minification and compression. The second part of this book is devoted to the
back end — the applications and code that run behind the scenes to make the web work. You’ll be
learning how to tune the most commonly used tools (PHP, MySQL, Apache, and Nginx) for optimal
performance, discovering what all the hype over NoSQL is about, and seeing how load balancing
and other multi-server setups work. Chapter 7 begins with a review of web servers.

http://code.google.com/p/microajax/

PART Il
Back End

» CHAPTER 7: Working with Web Servers

» CHAPTER 8: Tuning MySQL

» CHAPTER 9: MySQL in the Network

» CHAPTER 10: Utilizing NoSQL Solutions

» CHAPTER 11: Working with Secure Sockets Layer (SSL)

» CHAPTER 12: Optimizing PHP

Working with Web Servers

WHAT’S IN THIS CHAPTER?

> Tuning Apache for optimal performance
Using Nginx for both static and dynamic content

> Setting up load balancing across multiple servers using Nginx and
HAProxy

For the majority of system administrators and web developers, Apache is the automatic choice
for a web server. It’s (fairly) fast, powerful, widely used, and available precompiled for most
operating systems. Apache is so popular in the Linux world that it’s easy to forget that alter-
natives exist. Yet, Apache is not perfect, and as web growth has accelerated (and as Ajax has
changed the nature of some of this traffic), the need to serve huge numbers of requests has
given birth to several lightweight web servers specifically designed with performance in mind.

This chapter examines performance considerations for Apache, before taking a look at the
most prominent of the competitors that have emerged in the last decade. This chapter also
discusses the challenges that can arise when moving away from Apache, and takes a brief look
at caching, front-end proxies, and load-balanced server pools.

APACHE

The Apache HTTP Server is such an important part of the Internet’s history (and the history
of Linux, for that matter, too, since Apache + Linux + x86 quickly became a viable alternative
to commercial web servers running on UNIX mainframes in the 1990s). Because of that, this
discussion assumes that you have at least a basic knowledge of Apache management and con-
figuration, even if you have never compiled it from source (because so many operating systems
offer precompiled Apache binaries in their package systems).

142 | CHAPTER7 WORKING WITH WEB SERVERS

Numerous aspects of Apache have the potential to affect performance, and, in this section, you’ll
learn how modules impact memory usage, the differences between the various Multi-Process Models
(MPMs), how to choose an optimal level of concurrency, the various caching modules available, and
much more.

Working with Modules

Part of the reason for Apache’s popularity is its modular system, enabling third-party developers
to extend the core functionality. The number and variety of modules are a testament to Apache’s
success. There are modules that provide both forward and reverse proxying, enhanced security, all
manners of alternative authentication systems, and even passive operating system fingerprinting.

But these modules come at a price. Each additional module loaded increases the memory footprint
of Apache, and sometimes increases the CPU overhead when handling a request. Thus, one of the

first steps in tuning Apache should be to remove any unnecessary modules from the configuration
files.

This isn’t quite as easy a task as it might seem. A typical default Apache installation can have dozens
of modules enabled, and some are useful enough to be considered almost essential (for example, the
handling of MIME types with mod_mime). Before blindly removing modules, it’s worth checking
precisely what they do.

You can find a good overview in the Apache 2.2 docs at http://httpd.apache.org/docs/2.2/
mod/. In addition, Linux distribution vendors configure their Apache packages in slightly differ-
ent ways. On Red Hat-derived distributions (such as CentOS or Fedora), LoadModule statements
are typically contained in the main httpd.conf file (under /etc/httpd/conf/), whereas Debian-
derived systems use a separate file for each module, contained under /etc/apache2/
mods-available. In most situations, it’s enough to comment out the LoadModule directive. Any
directives specific to the module are typically wrapped in <I1fModules blocks to prevent them from
being executed if the module has not been loaded.

Of course, this assumes that Apache has been compiled with support for dynamically loadable
modules. Most distribution vendors do this, but if you compile Apache from a source, you have the
choice.

The alternative is to compile the modules that you need directly into Apache and disable dynamic
shared object (DSO) support. Removing DSO support lowers Apache’s footprint a little (and can
be useful for security, too, because it prevents an attacker inserting malicious modules). But it can
also be greatly inconvenient — if you ever want to add or remove a module, you need to recompile
Apache. For this reason, removing DSO support should be left until the list of modules that are
required has been decided and tested.

Multi-Process Modules (MPMs)

Apache 2 introduced the concept of Multi-Process Modules (MPMs), which control how Apache
handles concurrent requests. Only one MPM can be loaded at a time. (A recompile is required to
change MPMs.) For Linux, there are two MPMs to choose from (special MPMs that are specific to
the operating system exist for OS2, Netware, and Windows): prefork and worker. Prefork is gener-
ally the default and is the most stable, whereas worker is more experimental but promises better
performance.

http://httpd.apache.org/docs/2.2/mod/
http://httpd.apache.org/docs/2.2/mod/

Apache | 143

Prefork MPM

The prefork MPM is a nonthreaded model in which multiple child processes each run as a single
thread, and each child handles a single connection at a time. The following configuration snippet
shows the available prefork options:

StartServers 10
MinSpareServers 5
MaxSpareServers 10
ServerLimit 100
MaxClients 100
MaxRequestsPerChild 1000

StartServers is the initial number of child processes to start, whereas MinSpareServers and
MaxSpareServers control the minimum and maximum number of spare processes to keep in the
pool. MaxClients controls the maximum number of child processes that may run at any one
time — and, therefore, the maximum number of clients that Apache can serve concurrently — but
this is also governed by serverLimit.

Why have two directives that appear to do the same thing? Changes to the value for MaxClients
can be affected by sending Apache a S1GHUP (that is, a reload), whereas any change to ServerLimit
requires a full stop/start of Apache. This is because serverLimit also helps Apache to judge the
amount of shared memory to allocate when starting up. Therefore, ServerLimit should always

be equal to (or higher than) MaxClients. In practice, it’s useful to keep it slightly higher, allowing
MaxClients to be raised slightly without a full restart.

Finally, MaxRequestsPerchild governs how many requests a single child process can handle in its
lifetime. The reason this is not unlimited (although you can set this value to zero for unlimited if
you want) is that memory leaks can (and do) occur. By setting a reasonably high value, you prevent
memory leaks from accumulating too much while lessening the overhead involved in spawning new
children too often.

This, then, is what happens when a preforking Apache server receives a request. The parent process
receives the request and attempts to assign it to a child. Parent and child communicate with each
other through a scoreboard, which is implemented in shared memory. (This is the default under
Linux, anyway.) If a spare child exists in the pool, it handles the request. If no spare child processes
exist (and MaxClients has not been reached), a new child is spawned to handle the process. If the
maximum number of child processes is already running, the request is queued until a child becomes
available.

After the request has been served, a number of things may happen. If MaxRequestsPerchild has
been reached, or there are already MaxSpareservers in the pool, the child is destroyed. Otherwise,
the child is kept alive so that it may serve future requests.

The reason to maintain a pool of spare servers is that the act to spawn a new child is somewhat
CPU-intensive and adds to the latency of responses. By keeping a handful of children spare, you
reduce the likelihood that a new process needs to be spawned — unless, of course, a sudden flood of
requests requires more than MaxSpareServers number of processes.

The downside to having a large number of spare children in the pool is that they all add to memory
usage — and memory is a precious resource. The overhead from spawning a new child is not so

144 | CHAPTER7 WORKING WITH WEB SERVERS

great that it should be avoided at all costs, and it is generally not worth setting the maximum and
minimum number of servers high in the hope that Apache will rarely need to spawn extra children.
The memory could be put to better use.

Still, if the machine runs as a dedicated web server, or request latency is of high importance (such as
in an AJAX application), it’s generally a good idea to raise these two values significantly. Remember,
too, that with modern web browsers requesting up to eight resources in parallel from the same host,
a single client could take up to eight child processes.

Worker MPM

The worker MPM uses a multithreaded model in which each child process runs many threads, with
each thread handling a single request. This makes the worker MPM ideally suited for multiprocessor
machines, and it offers the promise of being faster, having a lower memory footprint, and scaling
better than the prefork MPM.

The configuration options for a worker MPM are similar to those for prefork:

StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25

MaxRequestsPerChild 1000

Again, StartServers specifies how many child processes to start when Apache is launched.
MaxClients controls the maximum number of concurrent requests, and MaxRequestsPerChild
governs how many requests a single child processes before terminating.

The worker MPM has three different settings, however. ThreadsPerchild sets the number of threads
that each child process will run, whereas MinSpareThreads and MaxSpareThreads control the num-
ber of threads that are kept spare. These are analogous to the maximum and minimum spare servers
in the prefork MPM, only this time, these options deal with threads, not child processes.

This promise of a slimmer, more efficient model may sound too good to be true. There is a signifi-
cant downside to the worker MPM. All Apache modules must be thread-safe. For trivial modules,
this usually isn’t a problem. But for the likes of mod php, this is a big problem. Not only must the
programming language (covered in more detail in Chapter 12, Optimizing PHP) be thread-safe, but
any libraries that it depends on must also be. In practice, this makes it extremely difficult to ensure
that PHP is thread-safe. Unless you are brave, PHP combined with a worker MPM is simply not a
viable option at the moment.

There’s also the question of just how efficient the worker MPM is. Although benchmarking figures
are sometimes unreliable, they do tend to vary a lot for the worker MPM. Some users report a per-
formance increase of a few hundred percent, others see little difference, whereas still some actually
see a drop in performance. This suggests that it is far from being a magic bullet, but it is suited to
particular workloads.

If thread safety is not a problem, you should try the worker MPM. Most likely, it can improve per-
formance. But be aware that, in some situations, it might make things worse. For the remainder of
this chapter, let’s assume that the prefork MPM is used.

Apache | 145

Deciding on Concurrency

No matter which MPM you choose to use, you must decide on the maximum number of concurrent
clients that Apache should handle. If you decide to use too few, the hardware will be under-utilized.
If you decide to use too many, you risk sending the server into a downward spiral of swapping.

Setting MaxClients

It’s best to start with a conservative figure and gradually raise MaxClients after you are sure that
the system can handle it. Although there’s the temptation to set MaxClients as high as the server
can tolerate, this doesn’t usually lead to the best overall throughput. At this level of concurrency,
each request will doubtlessly take longer for Apache to process, so the overall throughput may well
remain the same (or lessen, because of increased context switching). Rather than aiming for the
highest possible concurrency, aim for the fastest overall handling of a client’s request.

You can attempt to calculate an approximate limit for MaxClients based on the memory usage of

a single child. This relies on the principle that MaxClients times memory per child should never
exceed the amount of RAM you have set aside for Apache. On a dedicated web server, this would
be a little less than the overall installed memory because some would be needed for the rest of the
operating system. On a dual-purpose Apache/MySQL box, this might be approximately one-half the
available RAM.

When looking at the memory usage of multiple instances of the same application, the resident set
size (RSS) usage is the most appropriate because it excludes the footprint of shared libraries. Under
Linux and other flavors of UNIX, you can see the RSS in the output of ps:

ps -ylC apache2 --sort:rss

#

S UID PID PPID C PRI NI RSS SZ WCHAN TTY TIME CMD

S 33 1955 585 0 80 0 9048 18462 - ? 00:00:00 apache2
S 0 585 1 0 80 0 16604 18347 - ? 00:00:06 apache2
S 33 1863 585 1 80 0 24216 20075 - ? 00:00:01 apache2
S 33 32077 585 1 80 0 36356 21004 - ? 00:00:08 apache2
S 33 26948 585 1 80 0 36504 21131 - ? 00:00:37 apache2
R 33 1166 585 1 80 0 38832 23345 - ? 00:00:02 apache2

So, the hungriest Apache process currently running uses approximately 38 MB. On a dedicated web
server with 6 GB of RAM, you could run approximately 150 of these processes, still leaving a few
hundred megabytes free for the rest of the operating system.

There are so many assumptions and over-simplifications here, however, that this figure must be
treated with a pinch of salt, and only used as a rough ballpark figure. For starters, not every child
will use 38 MB of memory — as the ps output showed (or would have shown had it not been trun-
cated), most were using less. Conversely, because these figures show only a single point in time, it
might be that Apache children are regularly using more than 38 MB.

Secondly, it has been assumed that RAM is only bottleneck. It may well be that your server hits
CPU and I/0 bottlenecks before the 150-client limit is reached.

146 | CHAPTER7 WORKING WITH WEB SERVERS

Finally, memory usage in many operating systems can be rather complicated, and asking how much
memory an individual process “uses” is ambiguous. Still, it provides a rough figure from which
to start and helps to illustrate the importance of removing unneeded modules. A small change in

the memory footprint of a single child can become significant when multiplied by a few hundred
children.

ListenBacklog

One thing not yet mentioned is what happens when MaxClients is reached. The answer is that
Apache queues requests up to a maximum defined by the ListenBacklog directive. (The default for
this option is 511; although it depends on the operating system.)

In most web browsers, this results in a blank, white page with the progress bar stalled at zero,
with only the browser’s animated loading icon showing that something is still happening. When
the request reaches the front of the queue, it is passed to a child process and is handled as usual.
If the backlog queue becomes full, Apache returns a 503 status code, and the browser displays a
message along the lines of The Server Is Too Busy. It’s almost always fine to leave ListenBacklog
at its default value.

Improving Logging

A busy web server can generate a significant number of log entries. Naturally, Linux buffers these
writes, but with disk I/O being one of the most common bottlenecks, it makes sense to look closely
at logging. In addition, because it is common to use separate log files for each virtual host, Linux
may regularly seek not just one, but dozens of different files.

Apache offers two types of log files: access logs and error logs.

An error log contains error messages and has an associated logging level — one of the standard
eight logging levels used by syslog and others, including debug, info, notice, warn, error, crit,
alert, and emerg. Thus, a log level of warn would log error messages of a warning level or higher
(error, crit, alert, and emerg).

Some modules (in particular PHP) can be rather verbose in their error logging, and it pays to set the
log level to a reasonably high value — certainly debugging events are unlikely to be of any interest
on a production server. The default level is warn, but error is generally a better value for use on
production servers:

ErrorLog logs/error log
LogLevel error

An access log is a log of all requests sent to the server, and access logs pose more of a challenge. To
start with, they tend to be much bigger, and turning off logging is not an option for most sites. They
rely on statistics generated from the access logs to monitor access patterns, incoming links, search
engine search terms, and so on.

Log Formatting

The good news is that Apache is extremely flexible when it comes to logging. Not only can you con-
trol what is logged, but also where it is logged to, as shown here:

Apache | 147

LogFormat "$h %1 %u %t \"$r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
mylogformat
CustomLog logs/access log mylogformat

In this example, you create your own log format named mylogformat and write it to logs/access
log. A complete list of available format strings is available at http://httpd.apache.org/docs/
current /mod/mod_log config.html#formats. This example produces log entries like so:

1.2.3.4 - - [22/Nov/2012:11:49:01 +0000] "GET /favicon.ico HTTP/1.1" 200 3638
"-n "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.2 (KHTML,
like Gecko) Chrome/15.0.874.121 Safari/535.2"

One approach to keeping the size of the logs down is to be more selective about which fields you log.
For example, if you decide you can live without the browser’s user agent, you halve the size of each
log entry. The result should be more log entries that are buffered in memory before Linux needs to
write them out to disk. Similarly, you might decide you can live without the HTTP status returned
(¥s) and the number of bytes transferred (3b). The savings here are rather modest, though, and if
this data has any use for monitoring or statistics, just leave it in.

Conditional Logging

Another option is to attempt to reduce the number of log entries that each visitor generates. When
a user visits your website (especially if it’s with an empty cache), there will typically be a flood of
requests — for example, images, external CSS and JavaScript, favorite icon, and so on — with a log
entry for each request. In practice, though, you probably want to know the name of only the page
that the user requested.

You can filter out the noise using conditional logging and environmental variables (so ensure that
the setEnvIf module is loaded), as shown here:

SetEnvIf Request URI "\. (PNG|png|gif|GIF|jpg|JPG|css|CSS|js|IS|ico|ICO)S""
ignorethese

LogFormat "$h %1 %u %t \"$r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" mylogformat

CustomLog logs/access log mylogformat env=!ignorethese

This example sets an env variable, ignorethese, if the request URI is for any of the file extensions
listed. If the env variable has been set, CustomLog ignores does not log the entry.

This should have a dramatic effect on the size of your log files. But remember that sometimes this
extra information does have its uses. For example, you can get an idea of how effective your
caching strategies are by looking at the number of clients who request a page, but not the
associated media.

Similarly, you can restrict logging based on a handful of other conditions — for example, ignore
requests from localhost, or on a resource in a particular directory.

Piping Logs

As well as writing logs to a file, Apache also supports the piping of log events to an external applica-
tion. This can be an incredibly useful feature, which opens up several new possibilities.

http://httpd.apache.org/docs/current/mod/mod_log_config.html#formats
http://httpd.apache.org/docs/current/mod/mod_log_config.html#formats

148 | CHAPTER7 WORKING WITH WEB SERVERS

For example, you could feed your logs directly to a stats-generation application, which, in turn,
would need to only write a summary of events to disk. Or you could send the events to a logging
daemon on a remote host, removing the need to write anything to the local disk. Of these two
ideas, the latter is the most practical because any local log parser application inevitably takes away
resources from Apache.

Rather than reinventing the wheel, it makes sense to use syslog/syslog-ng for this because it
already supports remote logging over the network. For the ErrorLog directive, you can simply spec-
ify syslog as the destination, optionally including the syslog facility, as shown here:

ErrorLog syslog:remoteapache

For the access log, you must pipe to the logger binary, which can be used for sending log events to
syslog:

CustomLog "|/usr/bin/logger -t 'apache 192.168.0.1'" -p remoteapache combined

Both of these examples assume that the remoteapache log facility has been appropriately defined in
syslog.conf.

Miscellaneous Performance Considerations

Let’s take a look at a somewhat random collection of performance tips for Apache, which don’t fit
cleanly into any of the previous sections, and which don’t warrant detailed discussion.

Reducing DNS Lookups

Hostnames are generally easier to work with than IP addresses, and many administrators would
prefer that Apache’s access logs use hostnames rather than IP addresses. This option is controlled by
the HostnameLookups directive, but unless you have a compelling reason to enable this, it is best left
turned off (the default). Not only does it increase network traffic (because Apache queries the
nameserver), it also increases request latency.

If you need to resolve IP addresses to hostnames in the Apache logs, there are a couple of options.
You can run a caching, resolving nameserver on the local web server, eliminating network latency.
Or you can simply perform the lookups at a later time — for example, as part of the log rotation
script. Apache includes a tool, logresolve, specifically designed for this.

Even with HostnameLookups turned off, there are still some situations in which Apache performs
DN lookups. For example, if you use hostnames in access clauses such as Allow From and

Deny From, a two-way lookup will be performed on the client — first to resolve the IP address to
a hostname, and then to resolve the hostname back to an IP address (to ensure you get back to the
same IP). Generally, such access rules are used only on restricted areas, though, so the impact on
(nonmischievous) users should be minimal. However, if you’re in the habit of blocking sitewide
access based on hostname (for example, blocking a whole ISP or country), you should be aware of
this performance hit. Again, using a local caching, resolving nameserver can help.

Apache | 149

Disabling .htaccess Files

When Apache receives a request, it must backtrack up the directory tree checking for the exis-
tence of any .htaccess files. For example, if a request is made for http://www.example.com/
news/2012/July/stories.html, it would check for the existence of /var/www/example.com/
news/2012/July/.htaccess, /var/www/example.com/news/2012/.htaccess, /var/www/
example.com/news/.htaccess, and /var/www/example.com/.htaccess (assuming the document
root is /var/www/example . com, of course).

Although this isn’t a huge performance issue, you can eliminate it nevertheless by setting
Allowoverride None (disabling .htaccess files) and putting your .htaccess rules directly in the
Apache configuration files. This makes it a little inconvenient to edit your rules because you must
restart Apache after making any changes. But on a production server, such changes should be rare
anyway.

Dealing with symlinks

For the sake of security, Apache can be configured not to follow symlinks, or to follow them only if
they have the correct ownerships. As with .htaccess files, this involves backtracking up the
directory tree and checking if any component of the path is a symlink. If you’re willing to forgo
these security checks, you can improve performance a little by telling Apache not to care about
symlinks like so:

Options +FollowSymLinks -SymLinksIfOwnerMatch

Directorylndex Wildcards

It’s standard to specify a list of directory index files, in order of preference:
DirectoryIndex index.php index.html index.htm index.pl

But there is a lazier option, as shown here:
DirectoryIndex index

This causes any filename beginning with the string index to match. Needless to say, this method
doesn’t result in great performance, and the former way should be used.

Setting SendBufferSize

This sendBuffersize directive controls how much data Apache writes out to a socket before block-
ing (that is, waiting for a response, or acknowledgment, from the client). Raising this value means
that Apache can send more data without blocking, which can be useful on high-latency links.

An ideal size for the buffer would be slightly larger than the biggest web page you have, allowing
you to send the whole document in one chunk without needing to wait for acknowledgments from
the client. But, in practice, it may be that you have one or two unusually large documents, and you
should simply aim for sendBuffersize to be large enough for the majority of web pages.

http://www.example.com/news/2012/July/stories.html
http://www.example.com/news/2012/July/stories.html

150

CHAPTER7 WORKING WITH WEB SERVERS

NOTE Incidentally, setting this value to zero causes Apache to use the buffer
sizes set by the operating system. Also, setting SendBufferSize to a value higher
than the kernel’s TCP send buffer won’t have any effect.

Examining Caching Options

Caching is a vital part of high-traffic websites. In addition to operating system-level disk buffering,
PHP opcode caches, client-side caching, caching proxies, and the MySQL query cache, Apache also
provides its own caching support. This section looks at Apache’s caching options and discusses their
advantages and disadvantages.

Apache actually offers several server-level caching modules (not to be confused with the likes of
mod_expires and mod_headers, which can be used to encourage client-side caching). Some of these
are interconnected, and because they all have similar names, things can get a little confusing.

mod_cache

The primary caching module is mod_cache, which provides a flexible and powerful caching solu-
tion. In turn, mod_cache relies on a storage module, and the current choices are mod_disk cache
and mod_mem_cache (nothing to do with memcache). So, if you use mod cache, you must also enable
either mod_disk cache or mod mem cache.

NOTE You learn more about memcache in Chapter 10, “Utilizing NoSOL
Solutions.”

mod_disk_cache

As the name implies, mod_disk cache provides disk-based storage of cached files and provides
directives controlling the cache root, file size limits, and directory structures.

For each cached HTML document, two files are created: one containing the headers and the other
containing the document. The filename is based on a 22-character hash of the resource (including
the protocol, path, query string, port, and hostname), and files can optionally be stored in a hierar-
chy by setting the cacheDirLevels directive.

For example, with three levels of depth, a cache file named abcdefghijklmnopgrstuv would be
stored as a/b/c/defghijklmnopgrstuv. With 64 possible characters (case-sensitive, alphanumeric),
this gives you a maximum of 64 directories at any one level. Setting CacheDirLevels gives you a
way to limit the number of files in a given directory because a large number of files in a single direc-
tory can cause performance problems with many filesystems.

The real power of caching comes on dynamically generated code. But even static documents can
benefit from disk caching. This may seem surprising because you’re still reading from disk, but
files served from the cache bypass many of Apache’s filters and handlers — .htaccess rules,
for example. Figure 7-1 shows the flow of events when a client make requests to a server using

mod_disk_cache.

Apache | 151

Client requests
resource

|

NO

Is the
resource in the
cache?

Fetch resource from
back end

Yes

Has the

Send a conditional GET resource expired?

resource cachable?
to the back end

) Return resource
to client

Cache resource

Update cache

A

FIGURE 7-1

When Apache receives a request, it first checks if the resource exists in the cache. If it doesn’t,
mod_cache fetches it from the back-end server and returns it to the client, caching it in the process
(if it is deemed cacheable). If the resource is in the cache but has expired, mod_cache sends a
conditional GET request to the back-end server, asking for a fresh copy only if the resource has
been modified. The cache is then updated — either with a fresh copy of the document or with fresh
expiration headers.

By default, mod_disk_cache caches items for 1 hour; although this can easily be changed using
CacheDefaultExpire. However, if the resource contains its own expiration times, these take prece-
dence. It’s worth noting, though, that even expired resources are often served faster from the cache
than noncached resources because mod_cache needs to perform only a conditional GET on the back-
end server. Typically, this simply involves using a stat () call to check to see if the file’s size or last
modified time has changed..

It should also be remembered that not all resources are deemed cachable — for example, if they con-
tain Authorization headers or are in response to requests with posTed data. In addition, resources
with query strings won’t be cached unless they contain suitable Expires or Cache-Control headers.

This brings up the subject of cache performance and efficiency. If you do decide to cache resources
with query strings, resources with differing query strings will be stored as separate entries in the
cache. (As you have already seen, the cache entry key is composed of the full URL.) In some cases,
this is the right thing to do — news.php?page=1 will clearly contain different contents from news
.php?page=2. But other times, this is undesirable.

For example, news .php?sessionid=12345 could well be the same as news .php?sessionid=23456
if you simply use the query string to track session data. (But, on the other hand, the pages might
show slightly different content based on the user’s session.) You can ignore all query string

152

| CHAPTER7 WORKING WITH WEB SERVERS

components with CacheIgnoreQueryString On, but it makes more sense to ignore only some keys,
which you can achieve like so:

CacheIgnoreURLSessionIdentifiers sessionid id

In these examples, query string keys named sessionid or id will be stripped from the URL before
it is hashed into a cache filename.

It’s also worth turning on UseCanonicalNames in httpd.conf so that http://www.example.com/
foo.html and http://example.com/foo.html are not stored as two separate cache entries, which
is probably not what you want.

mod_disk cache provides basic maintenance of files stored in the cache, removing entries if they
are no longer valid. However, it has no controls on the overall size of the cache, and regular mainte-
nance is usually needed to stop the cache from becoming too large. (Although, if disk space permits,
there’s certainly nothing wrong with this.)

Htcacheclean is a tool shipped with Apache that you can use to keep the cache size in check. In can
be run either as a daemon (in which case it actively monitors cache entries being added/removed) or
as a standalone application that can be run via cron. You simply pass the maximum cache size to
htcacheclean, which then ensures that the cache does not grow larger than this.

Alternatively, you can roll your own solution, allowing more intelligence over purging. For example,
less frequently accessed entries could be removed in preference to more frequently used entries, or
static resources could be purged in preference to cached dynamic content (because the latter is typi-
cally more expensive to generate).

mod_mem_cache

The second storage module for mod_cache is mod mem cache, which provides in-memory caching.
It offers two different caching modes: caching of documents and caching of open file descriptors.
Although the caching of documents is the preferable mode, memory is a scarce resource, and cach-
ing of open file descriptors provides a good trade-off between memory usage and performance gain.

It may seem automatic to choose mod_mem_cache over mod_disk_cache — after all, you know

that memory-based caches are several orders of magnitude faster than disk-based caches. However,
mod_mem_cache has one subtle (but significant) drawback that limits its effectiveness. It operates on
a per-process basis.

If you set a 10 MB maximum cache size and have 20 Apache processes running, each process

will have its own private memory cache up to 10 MB in size. Entries cannot be shared across

these caches, and the cache will be destroyed when the process is destroyed (for example, when
MaxRequestsPerChild is reached). Not only does this cause this method of caching to be inefficient,
it also significantly increases the potential memory usage.

You can alleviate this to some degree by setting a higher value for MaxRequestspPerchild. But
unless you have a small set of resources that are accessed heavily, mod mem cache is rarely as
useful as you might have hoped. In addition because Linux caches disk I/O, it’s likely that many
of the resources cached by mod disk cache can actually reside in memory already, lessening the
potential advantage of memory-based caching.

http://www.example.com/foo.html
http://example.com/foo.html
http://www.example.com/foo.html

Apache | 153

mod_file_cache

An alternative to mod_cache is mod_file cache, which implements a more basic form of caching
without many of the features offered by mod_cache. As with mod_mem_cache, mod_file cache
offers both the caching of file handles and the contents of files in memory, and it is aimed firmly at
static content that rarely changes.

To use the module, you specify in httpd.conf a list of files/handles to be loaded at startup, as
shown here:

CacheFile /var/www/html/index.html ## Cache file handle
CacheFile /var/www/html/contact.html
MmapFile /var/www/html/about.html ## Map file into memory

As with mod_mem cache, there are memory-scaling issues here. Each child process receives its own
private copy of the cache, so you must be careful not to over-allocate memory.

There are a few drawbacks to this module. There is nothing in the way of cache management (such
as expiring or revalidation of stale resources). If a file/file handle is in the cache, it is used. If not,
the cache is ignored. If you want to add new entries to the cache or expire old ones, you must restart
Apache (and possibly edit httpd.conf). And all cache entries are held in memory. In the case of
large caches, it is usually best to opt for disk-based caching and let the operating system buffer the
more frequently accessed entries in memory.

mod_memcache_cache

One of the strengths of Apache is that anyone can write a module. Although the previously covered
caching modules form part of the standard Apache distribution, third-party solutions do exist.

One such module is mod_memcache cache (http://code.google.com/p/modmemcachecache/),
which is a storage module for mod_cache (like mod mem cache or mod_disk cache) that uses
memcached as the back end. Using a network-aware back end opens up new possibilities. Your cache
is no longer confined to the available RAM on the web server, and you can balance the cache among
multiple memcached nodes. If you run a pool of web servers, each can access a common cache,
which is hugely more efficient (in terms of cache size and duplication) than each web server having
its own private cache.

NOTE You learn more about memcache in Chapter 10.

Although activity on mod_memcache_cache is low, it hopefully illustrates the potential for building
new caching structures.

Monitoring with mod_status

Aside from a highly useful logging module that enables you to compile all manner of usage statistics,
Apache also provides a real-time monitoring module in the form of mod_status. When enabled, this
module provides a URL that you can visit to view a scoreboard containing a breakdown of all the
requests currently handled.

http://code.google.com/p/modmemcachecache/

154 | CHAPTER7 WORKING WITH WEB SERVERS

Enabling is as simple as loading the module, setting a URL through which the status page can be
accessible, and configuring a list of hosts allowed to view the page. The following example also
turns ExtendedStatus on, which gives a more detailed report:

LoadModule status_module mod status.so
<Location /my-server-status>
SetHandler server-status
ExtendedStatus On

Order Deny,Allow
Deny from all
Allow from 1.2.3.4
</Location>

With these rules in place, you can head over to http://example.com/my-server-status to view
the breakdown. The first part of the output shows some overall server statistics — uptime, number
of resources served, CPU usage, and average requests per second:

Server uptime: 13 hours 23 minutes 18 seconds

Total accesses: 771875 - Total Traffic: 6.5 GB

CPU Usage: u442.53 s10 cu.02 csO - .939% CPU load

16 requests/sec - 140.4 kB/second - 8.8 kB/request

30 requests currently being processed, 21 idle workers

Next is the scoreboard showing what each Apache child process is currently doing:

Scoreboard Key:
" " Waiting for Connection, "S" Starting up, "R" Reading Request,

g Sending Reply, "K" Keepalive (read), "D" DNS Lookup,
"C" Closing connection, "L" Logging, "G" Gracefully finishing,
"I" Idle cleanup of worker, "." Open slot with no current process

In this example, the majority of children are idle (as denoted by a period). The rest are in varying
stages of handling requests. Some are sending a reply to the client, others are initiating the connec-
tion, but the majority are in the Keep Alive status. They’ve already handled one request and are
listening for others. This gives you a useful at-a-glance overview of what Apache is up to.

The remainder of the status page provides a breakdown of what each Apache child process is cur-
rently doing: the request being handled (if any), the vhost, client IP, and various stats on CPU/mem-
ory usage and processing time. Following is an example:

Srv PID Acc M CPU SS Reqg Conn Child Slot Client Vhost Request
4-0 6110 0/142/10263 10.47 0 O 0.0 1.30 83.25 x.xX.x.X xxx.com GET

/favicon.ico HTTP/1.1

SrvChild Server number - generation
PID OS process ID
Acc Number of accesses this connection / this child / this slot

http://example.com/my-server-status

Apache | 155

M Mode of operation

CPU CPU usage, number of seconds

SS Seconds since beginning of most recent request

Req Milliseconds required to process most recent request
Conn Kilobytes transferred this connection

Child Megabytes transferred this child

Slot Total megabytes transferred this slot

If Secure Sockets Layer (SSL) support is enabled in Apache, a final section of the page shows some
SSL-related statistics.

NOTE You can learn more about SSL in Chapter 11, “Working with Secure
Sockets Layer (SSL).”

mod_status is useful (and many monitoring tools like munin generate graphs based on its output),
but there is a performance hit to enabling it with ExtendedStatus on. Each time Apache handles a
request, it makes two calls to gettimeofday (). This isn’t a killer, but it’s a needless expense if you
have no intention to use mod_status. So, as always, if you don’t need it, disable it.

Using Content Compression

Content compression is one of the most important things you can do to improve performance, and
you first met it in Chapter 3, “Content Compression.” The focus then was client-side support,

and the practicalities of implementing compression on specific web servers was left open for this
discussion. This section looks at how to set up content compression in Apache, potential gotchas,
and how to deliver precompressed content.

mod_deflate

In the Apache 1.x series, mod_gzip was the stock compression module. Version 2 of Apache intro-
duces mod_deflate as its replacement, and although the two are similar, they are not identical.
(You may want to refer back to the discussion of deflate versus gzip in Chapter 3.) The perfor-
mance differences between gzip and deflate are minor, and because Apache 2 supports only
mod_deflate, the differences are academic.

Assuming mod_deflate has been compiled, the following example can cause some of the most com-
mon plain-text resources to be compressed:

LoadModule deflate module /usr/lib/apache2/modules/mod deflate.so

<IfModule mod deflate.c>
AddOutputFilterByType DEFLATE text/html text/plain text/xml text/css
application/x-javascript application/javascript
DeflateCompressionLevel 9
</IfModule>

You specify the resource by its MIME type (rather than, say, file extension). These can vary a little
from platform to platform. For example, sometimes JavaScript is application/javascript,
application/x-javascript, or even text/javascript, and you may want to verify the

156 | CHAPTER7 WORKING WITH WEB SERVERS

Content-Type header being set on such resources (for example, using HTTP Live Headers for
Firefox) before you add the defiate filters.

Some older browsers (most notably Netscape 4.x) have trouble handling deflated contents; either
all deflated resources, or resources other than the HTML document. The following (somewhat old)
rules are often seen on the Internet for working around this:

Netscape 4.x has some problems...
BrowserMatch “Mozilla/4 gzip-only-text/html

Netscape 4.06-4.08 have some more problems
BrowserMatch “Mozilla/4\.0[678] no-gzip

MSIE masquerades as Netscape, but it is fine
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

NOTE: Due to a bug in mod setenvif up to Apache 2.0.48
the above regex won't work. You can use the following
workaround to get the desired effect:

BrowserMatch \bMSI[E] !no-gzip !gzip-only-text/html

In reality, though, these rules probably aren’t necessary. Netscape 4.08 dates back to 1998, and the
latest release in the 4.x series was version 4.8 in 2002. Stats from statcounter.com show Netscape
had a mere 0.07 percent of the market in 2008. These days, its market share is so low (0.01 percent
for August 2012, according to statcounter.com) that it is generally just lumped in to the “other
browsers” category in stats reports. Aside from that, Netscape 4’s CSS support was so messed up
that there’s a good chance your site won’t render correctly in it anyway.

As its name suggests, the DeflateCompressionLevel controls the level of compression — 1 is the
lowest and 9 the highest. As usual, this is a trade-off between better compression and high CPU
usage. The differences are modest. Setting a compression level of 9 won’t cause a big increase in
CPU usage but won’t cause a big decrease in content size either. Feel free to experiment with differ-
ent values for DeflateCompressionLevel, but in the section, “Precompressing Content,” later in
this chapter, you’ll learn about a more powerful method that eliminates this trade-off.

Aside from setting the compression level, mod deflate offers a few other options:

> DeflateBufferSize <bytess>— This is the size of the buffer to use. When the buffer is
full, mod_deflate compresses it and flushes it to the client, so this is effectively the block
size.

> DeflateMemLevel <ints— Thisis how much memory is available for mod deflate to use
when compressing. Rather than specifying the number of bytes, a value in the range 1 to 9
is given.

> DeflateWindowSize <int>— Accepting a value between 1 and 135, this controls the win-
dow size used during compression.

Recall that z1ib (the underlying compression method used by mod_deflate) uses a history win-
dow when searching for multiple occurrences of a string. Thus, a larger window and buffer size
give greater opportunity for compression, at the expense of slightly higher memory and CPU usage.

http://statcounter.com
http://statcounter.com

Apache | 157

Again, it’s a case of experimenting to see what works best in practice. But setting these values to the
maximum shouldn’t cause any serious problems, and will give the best levels of compression (albeit
possibly only a slight increase).

Precompressing Content

The big drawback to mod_deflate is that it offers no way to serve up precompressed content.
Although the memory and CPU usage from deflating content on-the-fly isn’t huge, it’s incredibly
wasteful to compress a relatively static HTML document each time it is requested. It is better to
compress the resource in advance and then serve this up. The old mod_gzip in Apache 1 offered this,
as does Nginx (as you’ll see soon). But if you want to precompress with mod_deflate, a few ugly
hacks are needed.

Things become complicated because not all clients support compression. So, you can’t just zip up
your files and serve this. You must keep two copies of each: one compressed and one uncompressed.
You then need a bit of magic to ensure that the correct content is served to the client, based on
whether the client advertises gzip compression support.

Using mod_rewrite

Assume that you have an external script named init.js. The first step is to create a compressed
copy (using gzip, or compatible) named init.js.gz. Because this is one-off compression, you can
afford to set the highest compression level available, as shown here:

$ gzip -9 init.js
$ 1ls -1

init.js
init.js.gz

Next, you use some rules in .htaccess (or httpd.conf) to set the MIME type on all .js.gz files to
text/javascriptandtoSendtheContent—Encoding:gzip}waden

<FilesMatch "\.js.gzs$">

ForceType text/javascript

Header set Content-Encoding: gzip
</FilesMatch>

Finally, you redirect the client to the .gz version of the file, if it advertises compression support via
the Accept-Encoding: gzip header:

RewriteCond %{HTTP:Accept-Encoding} gzip
RewriteCond %{REQUEST URI} \.(js|css)$
RewriteRule “/(.*)$ /$1.gz [L,QSA]

Thus, if the client requests init.js and supports compression, init.js.gz will be served up to it.

Using Content Negotiation

The downside to use the mod_rewrite method is the extra load on the server. mod_rewrite isn’t the
leanest of modules, and regular expressions are relatively expensive. An alternative technique makes
use of type-map files and content negotiation.

158

| CHAPTER7 WORKING WITH WEB SERVERS

Again, you start with two copies of the resource: a compressed version and a plain version. You then
create a type-map file (traditionally the .var extension is added, so init.js.var) containing the
following:

URI: init.js
Content-Type: text/javascript; charset=UTF-8

URI: index.js.gz
Content-Type: text/javascript; charset=UTF-8
Content-Encoding: gzip

The type-map file is divided into blocks (each separated by a blank line) that define different content
types, depending on what the client is willing to accept. The first block is the default (the uncom-
pressed JavaScript), whereas the second (the compressed script) is delivered if the client advertises
gzip support.

Finally, you must tell Apache to treat files with the .var extension as type-maps and set the appro-
priate content-type headers on .js.gz files. These rules can be in either the main httpd.conf or a
.htaccess file:

AddHandler type-map .var
AddType text/javascript js.gz
AddEncoding x-gzip .gz

Now, if the client requests init.js.var, the appropriate resource will be returned.

This is certainly funky to set up, but it does avoid the need for mod_rewrite. In this example, the
link to the resource changed as well (from .js to .js.var). If you’re careful, you could define .js
as the type-map file and use, say, .js.uncompressed for the uncompressed version of the file to
avoid having to rename files in your HTML code.

While Apache is a very powerful and popular web server, it is by no means the only option, and in
the next section you’ll learn about some of the most popular alternatives.

LOOKING BEYOND APACHE

Although you have seen lots of ways in which Apache performance can be tuned, many would argue
that Apache is built on a model that is fundamentally unable to deliver high performance (more

on this in a minute) — no matter how much tuning you do. Coupled with the fact that Apache is a
general-purpose web server, the search is on for a mean, lean alternative.

In this section, you discover one of Apache’s main competitors, Nginx, and learn how it can be used
to complement Apache, or even replace it. This will then lead to a look at how web servers can be
clustered and load-balanced.

Nginx

Nginx (pronounced “engine X”) appeared on the scene in the mid-2000s, and although initial
uptake was slow because of lack of documentation, it has quickly gained in popularity. Many

Looking Beyond Apache | 159

surveys now show it to be the third most used web server (behind Apache and IIS), and it is particu-
larly popular for high-traffic sites.

Nginx’s structure is notably different from Apache’s. As you have seen, Apache uses processes or
threads (depending on the MPM used), each of which use significant resources (not to mention the
overhead involved in creating and destroying child processes). By contrast, Nginx uses an asyn-
chronous, event-driven model, which removes the need for each request to be handled as a separate
child/thread. Instead there is a single master process with one or more worker processes.

The performance impact of this change is huge. Whereas each additional Apache process consumes
an extra 4 MB or 5 MB (if the likes of mod_php have been loaded, this figure will be more like 15+
MB) of memory, the impact of additional concurrent requests on Nginx is tiny. The result is that
Nginx can handle a huge number of concurrent requests — much more than Apache, even with the
newer threaded MPM.

Configuration

The discussions earlier in this chapter skipped the basics of Apache configuration because it was
assumed you had some knowledge of this already (because of Apache’s ubiquitous nature). The same
isn’t necessarily true for Nginx, though, and many administrators are cautious about straying away
from the safety of Apache. So, let’s look at various Nginx configuration options, including a com-
plete minimum configuration.

The configuration of Nginx has changed a little over the years, and the structure of configuration
files tends to vary from system to system. For example, installing Nginx from under Debian results
in the sites-enabled and sites-available directories, familiar to Debian Apache users. In general,
though, configuration files for Nginx on UNIX or Linux live under /etc/nginx, with the master
file being /etc/nginx/nginx.conf.

As with Apache, this may, in turn, reference other configuration files using the include syntax. As
of this writing, the default config file shipped with the Nginx Debian package looks like this:

user www-data;
worker processes 1;

error log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
worker_connections 1024 ;
multi accept on;

}
http {
include /etc/nginx/mime.types;

access_log /var/log/nginx/access.log;

sendfile on;
#tcp_nopush on;

keepalive timeout 65;

160

| CHAPTER7 WORKING WITH WEB SERVERS

tcp_nodelay on;

gzip on;
gzip disable "MSIE [1-6]\.(?!.*SV1)";

include /etc/nginx/conf.d/*.conf;
include /etc/nginx/sites-enabled/*;

}

Let’s spend some time looking through a few of these options. This isn’t intended to be an exhaus-
tive guide to configuring Nginx (you can find plenty of documentation on http://wiki.nginx
.org), so let’s just concentrate on performance-related options.

Worker Processes and CPU Affinity

As previously mentioned, Nginx does not use the process-per-request model of traditional web serv-
ers, so why would it need multiple worker processes? Certainly, Nginx can run just fine with this
option left to the default value of 1, but on machines with multiple processing cores, increasing the
number of workers can be advantageous.

A lot depends on workload. When using SSL or gzip compression (both of which are CPU-
intensive), CPU bottlenecks can occur. Remember that a single process can be executed only on one
core, so with worker processes set to 1, Nginx can max out only a single CPU core, leaving the
others idle. A good starting point, therefore, is to set worker processes to the number of CPU
cores on the system. Raising it above this level is unlikely to produce any benefit — if anything, per-
formance will degrade a little from an increase in context switching.

Disk 1/0 also causes bottlenecks, and although there is no advantage to having multiple workers

all reading from the same disk at once (overall throughput will still be the same), when content is
spread over multiple disks, you can raise the amount of parallel reading by increasing worker
processes to equal the number of disks on which web content is stored. (Don’t forget any writes to
access/error logs, too.)

With processor affinity, Linux might schedule all worker processes to run on the same CPU, which
is almost certainly not what you want. The worker cpu_affinity directive enables you to control
this.

Each option to worker cpu affinity is a bit mask specifying on which CPU a worker should run.
Thus, on a quad-core machine, you’d probably set worker processes to 4 and would need to spec-
ify four bit masks to worker cpu_affinity, as shown here:

worker cpu affinity 1000 0100 0010 0001

This can be particularly useful for processors that support hyper-threading because you can assign
a worker to multiple logical processors. For example, a mask for 0101 assigns a worker to both the
first and third processors.

Concurrency

Nginx has no MaxClients directive, but the worker connections option in the events block
serves a similar purpose. This limit is per-worker. So, with worker connections set to 1024, and
worker processes set to 8, you allow a maximum of 8,192 simultaneous connections.

http://wiki.nginx.org
http://wiki.nginx.org

Looking Beyond Apache | 161

With Apache’s prefork MPM, you could estimate an approximate value for MaxClients by looking
at the typical memory usage of a child process. But this doesn’t work for a worker model such as
Nginx (or Apache’s worker MPM, for that matter). The good news is that setting too high of a limit
on concurrency doesn’t tend to risk sending the system into a downward spiral, the way it does with
Apache, so you can afford to be fairly liberal.

Watching CPU/RAM use of Nginx workers and monitoring disk I/O and CPU blocking (for exam-
ple, with vmstat) can be useful to identify bottlenecks if you are too optimistic with worker
connections. But, in reality, most bottlenecks occur in things like the PHP subsystem (which
you’ll learn about in Chapter 12, “Optimizing PHP”).

tcp_nodelay and tcp_nopush

In the earlier discussion about Apache’s sendBuffersize directive, you learned about the potential
usefulness of sending the entire HTTP response in a single chunk, without waiting for a response
from the client.

In Nginx, tcp nodelay serves a similar purpose, instructing the server to use the TCP_ NODELAY
option when creating a socket. tcp _nopush (which passes the TcP_NoPUSH option to the socket) has
a similar effect and can cause Nginx to attempt to send out HTTP headers inside a single packet. It’s
generally worth enabling both of these options.

NOTE tcp nodelay and tcp nopush are discussed in more detail in Appendix A,
“TCP Performance.”

sendfile

As with Apache, you can use sendfile to provide faster serving of static files. Rather than read-
ing the contents of a file into userspace (that is, the web server), sendfile enables the web server to
simply copy the data from one file descriptor to another (the latter being a socket). This is all done
inside the kernel, making it more efficient. Naturally, this works only on static files that don’t con-
tain any dynamic code.

Disk 1/0

In theory, you can improve performance substantially by using Asynchronous I/0 (AIO) to perform
nonblocking disk reads and writes. Rather than sitting and waiting for data to be read from disk,
Nginx can continue execution and be alerted when the data becomes available.

This sounds great in theory, but there are a number of drawbacks under Linux. (Note that some
operating systems such as FreeBSD don’t have these limitations.)

For starters, you can’t use sendfile and must use direct /O (0_DIRECT). This causes the file to
bypass Linux’s disk caches, so you don’t benefit from having the file potentially cached in memory.
Usually, you want this caching, but in a few situations, not caching is better. For example, if the file
is large (say a video), you probably don’t want to fill your disk buffers with it. Similarly, if you have
a large working set (too large to all fit in memory) being accessed in a fairly distributed manner, the
disk cache may not help much. In these two cases, the benefits of AIO can outweigh the drawbacks.

162

CHAPTER7 WORKING WITH WEB SERVERS

The Nginx documentation gives the following example of AIO usage:

location /video {
aio on;
directio 512;
output buffers 1 128k;

}

You need to explicitly enable direct I/O and have the option of also setting a minimum size. Only
files larger than this size will be read using direct I/O. It makes a lot of sense to use only AIO on
directories containing large files — at least until the Linux implementation improves. For direct /0,
it’s worth experimenting with using it globally with a high value to prevent large files from polluting
your disk caches. But remember that enabling direct I/O causes sendfile to be disabled.

sendfile isn’t always the ideal method for reading from disk. Because the operating system reads
the data in fairly small chunks, there may be a lot of seeking back and forth on busy systems, as the
operating system attempts to read multiple files at once. When sendfile is disabled (or isn’t being
used because you’re serving dynamic content), you can control the size of the chunks of data that are
read from disk using output_buffers, as shown here:

output buffers 2 512k;

This causes Nginx to create two buffers in memory, each of 512 KB. When handling requests, it
then attempts to read 512 KB of data from disk in one chunk, before processing it. The 512 KB
should be big enough to hold even a large HTML document.

Compression

As youd expect, Nginx supports gzip compression, and the options are mostly similar to Apache’s.
You can set the compression level (1 through to 9), a list of MIME types to compress, the capability
to disable compression for certain user agents, and a minimum document length. (It’s generally not
worth compressing small documents because the additional gzip headers cancel out any saving.)

Nginx also has the capability to serve up precompressed contents via the Gzip Precompression
module (--with-http gzip static module). However, this module is not compiled in by default.
With this module enabled — and gzip static set to on — Nginx can check for the existence of a
precompressed version of the requested file, and return this in preference to the original if it has a
newer timestamp. Thus, if a client requests http: //www.example.com/news/archive.html, Nginx
checks for the existence of archive.html.gz in the news directory of the document root.

If Nginx doesn’t find a precompressed version of the requested document, the standard gzip module
kicks in (if it is turned on) and compresses the document on-the-fly. It won’t save a compressed copy
for future use, though. Creating the precompressed files is an exercise for the system administrator.
A small shell script can be used to recursively compress the documents under the web root.

Another benefit of precompressing is that you can use the highest compression level because you
will presumably compress only occasionally, when static pages have been edited. Usually, the lowest
compression level gives the best compromise between size and compression speed. You don’t have to
use gzip because there are alternatives that offer slightly better compression levels.

http://www.example.com/news/archive.html

Looking Beyond Apache | 163

With Nginx, you also have control over the size of the gzip buffer(s). Actually, that’s not entirely
true. The buffer is a fixed size of 4 KB (one page of memory), but you can increase the number of
buffers. Under Linux, the current defaults are as follows:

gzip buffers 16 k

Note that, since the individual buffer size is fixed, the second argument here has no effect.

NOTE Most operating systems handle memory in fixed size blocks known as
pages. On x86 and x64 architectures, the most common page size is 4 KB, with
Linux, FreeBSD, and Windows all using this default. On the SPARC architecture
(mostly used for Solaris), 8 KB pages are the default.

So, with 16 buffers, each at 84KB, you would have 64 KB. Thus, the maximum size for your
compressed contents is 64 KB. That’s enough for most purposes because the uncompressed contents
would likely be approximately 5 to 10 times this size. But if you plan to compress large documents,
the number of buffers can be increased as necessary.

Modules

Development of Nginx is currently moving at quite a rapid pace, often with several releases per
month. As such, precompiled Windows binaries and the package repositories of most Linux/UNIX
distributions will be quite behind (especially for those distributions that favor stability over bleed-
ing edge), and Nginx is one of those applications where it’s definitely a good idea to compile from
source.

Unlike Apache, Nginx does not support dynamically loadable modules — everything needs to be
compiled in. And, as usual, package maintainers tend to favor more rather than less. The result is a
packaged binary that probably contains more modules than you need (and maybe lacks some that
you do need) — although the performance penalty of extra modules is much lower than in Apache
because you aren’t running hundreds of child processes.

The full list of configuration options for Nginx is available by running . /configure --help
(from inside the Nginx source directory). The defaults are quite sensible with support for Common
Gateway Interface (CGI), logging, basic authentication, gzip, URL rewriting, and so on, all being
included. A few of these standard modules may not be needed, though, and they must be explicitly
disabled. These include the following:

> Support for server-side includes (SSIs)

> Load balancing (via the Upstream module)

> FastCGI, Simple CGI (SCGI), and uWSGI

NOTE CGI isn’t just for Perl. If you want to use PHP under Nginx, you need
some form of CGI support.

164 | CHAPTER7 WORKING WITH WEB SERVERS

Of the modules not enabled by default in Nginx, the most likely ones that you’ll need include the
following:

> SSL support
> Stub Status (server stats)

> Real IP for correct logging of IP addresses in X-Forwarded-For headers (for example,
behind load balancers/proxies)

Aside from the official modules, a healthy collection of third-party modules must be downloaded
separately and then compiled in. These include an enhanced FastCGI module (AFCGI), etags, a
filter for on-the-fly stripping of excess whitespace from contents, and alternative load-balancing
techniques.

Nginx, Apache, and PHP

One of the biggest issues for users moving away from Apache is the lack of a PHP module in Nginx.
Whereas with Apache you can just load mod_php and happily run PHP scripts, with Nginx, you
must use CGI. This isn’t anywhere near as bad a performance issue as you might imagine, though,
and with a bit of work, you can equal the performance of Apache plus mod php, and get a more flex-
ible setup in the process.

FastCGl (fcgi)

The main reason that CGI tends to be so slow is because a new process (be it Perl, Python, PHP, and
so on) must be forked to handle the request. FastCGI solves this by maintaining a pool of persistent
processes to handle CGI requests. When the web server needs to process a CGI script, it connects

to the FastCGI daemon over a socket and sends the request. FastCGI then delegates the request to

a free worker process and returns the response to the web server over the same socket. Figure 7-2
shows the topology of an Nginx-FastCGI setup.

PHP daemons

Client
\ O]
o > oagaaasaal »
“I“ L Q(((((((((((((((
FastCGlI Daemon\ _
Nginx O]
FIGURE 7-2

There’s nothing Nginx-specific about FastCGI. It’s a technique used for other web servers that don’t
natively support PHP (or similar), too. There’s even a FastCGI module for Apache. But why would
you want to go to the trouble to use FastCGI with Apache when mod_php, mod_perl, mod_python,
and so on, make life so much easier?

Separating the processing of your dynamic code from the web server actually has two significant
benefits. First, you avoid the overhead of loading the scripting module for requests that might not

Looking Beyond Apache | 165

even contain dynamic code (for example, static HTML, images, and so on). Earlier in this chapter,
you learned how the likes of mod php dramatically increase the memory footprint of each Apache

child. Second, it gives you the flexibility to execute the PHP on a different server — or even spread
the load across a pool of servers.

FastCGI is by no means a poor man’s alternative to mod_php.

Setting Up FastCGI for PHP

Providing that PHP has been compiled with CGI support (or the appropriate php-cgi package
installed), you can use PHP 5’s built-in FastCGI support to launch the FastCGI daemon from the
command prompt like so:

export PHP_FCGI_CHILDREN=5
php-cgi -b 127.0.0.1:9000

In this example, the daemon can listen for incoming connections on 9000/TCP of the localhost.
The number of worker daemons to spawn is governed by the PHP FCGI CHILDREN environmental
variable. Alternatively, a simple init script can be used — the Nginx FastCGI documentation at
http://wiki.nginx.org/FcgiExample provides a suitable example.

With FastCGI running, all that is left is to tell Nginx to use it:

location ~ \.php$ {
include /etc/nginx/fcgi params.conf;
fastcgi_pass 127.0.0.1:9000;

}

In this example, any request ending with .php is passed to FastCGI. Note the inclusion of an
external file containing FastCGI configuration options. The example given on the Nginx wiki is as
follows:

fastcgl param GATEWAY INTERFACE CGI/1.1;

fastcgil param SERVER SOFTWARE nginx;

fastcgi param QUERY STRING Squery string;
fastcgi_param REQUEST METHOD $request_method;
fastcgi param CONTENT TYPE $content type;
fastcgi_param CONTENT LENGTH $content length;
fastcgi param SCRIPT FILENAME $document root$fastcgi script name;
fastcgi_param SCRIPT NAME $fastcgi_script_name;
fastcgi param REQUEST URI S$request_uri;

fastcgi param DOCUMENT URI $document _uri;
fastcgi param DOCUMENT ROOT $document_root;
fastcgi_param SERVER PROTOCOL $server protocol;
fastcgi param REMOTE ADDR S$remote addr;
fastcgi_param REMOTE_PORT $remote_port;

fastcgi param SERVER ADDR $server addr;

fastcgi param SERVER PORT $server port;

fastcgi param SERVER NAME $server name;

Aside from fastcgi_param, there are a few other fastcgi * directives of interest from a perfor-
mance perspective. fastcgi buffers controls the number of buffers (as before, under Linux [A64,

http://wiki.nginx.org/FcgiExample

166

CHAPTER7 WORKING WITH WEB SERVERS

each is 4 KB) used for reading in the response from the FastCGI daemon. Just to complicate matters,
Nginx also maintains a second buffer (controlled by fastcgi_buffer size) used for the FastCGI
response header, and the first part of the response. After this buffer has been filled, the buffers con-
trolled by fastcgi buffers are used to hold the remainder of the response. Again, the default is
one page, or probably 4 KB.

For fastcgi_buffers, the default is eight buffers, giving 32 KB (8 X 4 + fastcgi_buffer size)
plus however big fastcgi buffer size is in total, but it’s worth raising this to approximately 256
to give just more than 1 MB of buffer space. Any response larger than the total buffer space is writ-
ten to a temporary file on disk, so it makes sense to raise fastcgi_buffers to a value large enough
to hold the majority of responses. (Of course, the response contains the full HTML document, after
the PHP in it has been parsed.)

You can disable the writing of oversized responses to disk by setting fastcgi max temp file size
to 0, but this isn’t recommended. Although it might seem tempting, with this option turned off,
FastCGI returns its response as fast as the client can read it (via Nginx, of course), which probably
is a lot slower than writing to disk. FastCGI is still relatively resource hungry, and you should aim
to minimize for how long each PHP worker runs. Nginx is much more suited for drip-feeding the
response to the client.

FastCGI Caching

Nginx supports the capability to cache responses from FastCGI, which has the potential to dramati-
cally cut down on work load for the PHP workers. Caching dynamic pages is always tricky, though,
and you must take care not to cache (or make allowances for) user-specific copies of pages. (You
don’t want regular users to see admin-specific versions, for example.)

Caching is enabled by setting a value for fastcgi_cache. This option takes an arbitrary string as
the name for the cache, as shown here:

fastcgi_cache mycache;

As youd expect, you can set the caching period, and Nginx offers the neat capability to specify dif-
ferent values for different HTTP return codes. Thus, you might cache 200 oxs for a few hours, but
404s for a shorter period. By default, only 200, 301, and 302 codes are cached, but you can easily
override this, as shown here:

fastcgi_cache_valid 200 302 14;
fastcgi_ cache valid 301 7d;
fastcgi cache valid 404 5m;
fastcgi_ cache valid any 10m;

NOTE The any keyword serves as a catch-all, acting on any return code.

You also have the capability to set the key used for the cache entry. This requires a bit of thought,
however. If you use the script name as the key, you risk duplicates. (Imagine Nginx serving a dozen
virtual hosts, each with an index.php.) If you get around this by using the domain name plus the

Looking Beyond Apache | 167

script name, you hit issues when http://example.com/foo.php and https://example.com/foo
.php contain different content. So, you must also include the protocol in the key, as shown here:

fastcgi_cache key $schemeShost$request uri;

This results in keys such as http://www.example.com/foo.php?bar=baz, and also solves the
potential problem of different query strings resulting in different content being shown.

This still isn’t the end of the matter, though. Different HTTP methods can result in different
responses. For starters, you probably don’t want to cache PosT requests — luckily, these are disabled
by default in Nginx. HEAD requests are more of an issue because these generate a blank response
(save for the headers). If a client issues a HEAD request and the result is cached, subsequent GET
requests on the resource cause a blank page to be returned.

The best thing you can do is include the request method in the key name, as shown here:
fastcgi cache key $schemeShost$request uri$request method;

This is not perfect because you are potentially cluttering the cache with cached HEAD responses. But
because they are small (and relatively uncommon), you needn’t worry too much about cache space.

A final issue is how to deal with the caching of pages for logged-in users (or users who see specific
content for whatever reason). If you store authentication information (such as a session ID) in the
query string, all is well — you already know about including the query string in your cache key.
Passing a session ID in the query string isn’t great for security, though, and the usual method would
be to store authentication information in a cookie.

Again, the solution is to modify the cache key string, this time to add the value of a given cookie to
it. In Ngnix, you can access cookie data using the syntax $cookie COOKIENAME. For example, if you
use $cookie Userid, the cache key now looks something like this:

fastcgi cache key
$schemeShost$request uri$request method$cookie userid$server port;

FastCGl under Apache

Although mod_php is the most popular way of running PHP scripts under Apache, there is something
to be said for using FastCGI instead. First of all, it eliminates the overhead of loading the PHP inter-
preter for every request, which is particularly useful if you are using Apache to serve static resources,
too (although, as noted, the likes of Nginx generally make better static file servers than Apache).
Secondly, it provides a scaling option, since the PHP FastCGI back ends can be distributed across
multiple servers. Perhaps more importantly, it also means that you can run Apache with the

worker MPM. As you saw earlier in this chapter in the section, “Multi-Processing Modules,”

the worker MPM is more efficient, but does not sit well with mod_php.

From a non-performance perspective, it can also be used as a way of executing PHP code under the
user ID of the owner, rather than as the Apache user.

Installation

Under Apache, mod_fcgid is currently the recommended module for providing FastCGI support.
Its licensing is less restrictive than the older alternative, mod_fastcgi. If you’ve compiled Apache

http://example.com/foo.php
https://example.com/foo.php
http://www.example.com/foo.php?bar=baz
https://example.com/foo.php

168 | CHAPTER7 WORKING WITH WEB SERVERS

from source, you’ll need to manually download and build the mod_fcgid module (download from
http://httpd.apache.org/mod_fcgid/). On systems that use packages/ports (for example,
FreeBSD, Ubuntu, or CentOS), it will probably be available from there. (On Debian, the package is
libapache2-mod-fcgid.)

Configuration
Configuration is a simple case of loading the module, and then instructing Apache to use it for PHP

files (don’t forget to disable mod_php):

LoadModule fcgid module modules/mod fcgid.so
AddHandler fcgid-script .fcgi .php

MaxRequestsPerProcess 1000
MaxProcessCount 10
FCGIWrapper /usr/bin/php-cgi .php
IdleTimeout 240

Also, remember to ensure that +ExecCGI is listed in the options directive for each vhost for which
you want to enable mod_fcgid.

The Best of the Rest

Although Apache might dominate the Linux and UNIX web server world, there is plenty of com-
petition. In the past, the competition has tended to be heavyweight alternatives such as Apache
Tomcat, NCSA, Oracle, or (under Windows) IIS. But the past decade has seen increasing demand
for lightweight servers, such that the most interesting (and actively developed) web servers tend to be
in this area. You’ve already learned about one of these, Nginx, but there are numerous other alter-
natives. Let’s take a closer look at a couple of alternatives.

lighttpd

Usually pronounced “lighty,” lighttpd offers a similar set of features to Nginx. A threaded model
enables for high concurrency and low resource usage, along with all the usual extras — FastCGI,
SSL, virtual hosting, URL rewriting, and SSI. Actually, lighttpd’s FastCGI implementation is more
integrated that that of Nginx and will spawn processes as (and when) needed without the need

for you to maintain a separate FastCGI daemon. lighttpd also has native support for standard
CGI — something missing in Nginx.

lighttpd’s other historical advantage over Nginx is that the documentation has been much better,
and configuration has been simpler. Unfortunately, lighttpd was also bugged by reports of memory
leaks and benchmarks that showed higher CPU usage than Nginx. A lot of these factors are out-
dated now. Documentation for Nginx has improved significantly, and many of the alleged memory
leaks in lighttpd have either been fixed or turned out to be false alarms.

Speaking of benchmarking, lighttpd versus Nginx is one of those subjects that provides as much
heated debate as vi versus emacs, or Linux versus BSD, and each side can invariably provide bench-
marks that show Nginx is “better” than lighttpd, or vice versa. It’s worth remembering that these
benchmarks are often narrow, and often the tester will have more experience with one server than
the other, potentially leading to one having been configured better than the other.

http://httpd.apache.org/mod_fcgid/

Multiserver Setups with Nginx and Apache | 169

The benchmarking results are narrow because all they show is how the two servers cope with a
specific workload. For example, you might bombard Nginx and lighttpd with 10,000 requests for
a static 1 KB HTML document, and plot the average time taken to handle the request. Most likely,
the results will be close, but whichever server wins, benchmarking with say a 50 KB HTML docu-
ment could produce different results. (Think of how sendfile or output buffers could affect
Nginx performance here.)

It’s also important to remember that performance isn’t just about how long it takes to serve a client’s
request. If a particular web server uses significantly more CPU and memory than the other, a small
decrease in response time is often missing the point.

Overall, Nginx might be preferred over lighttpd because Nginx uses less resources in production
environments. It’s a close call, though, and when making your decision, just remember that a lot of
the pros and cons are outdated now.

thttpd

thttpd stands for Tiny HTTPD or Turbo HTTPD (or various other things). thttpd is a small and
basic web server, which makes Nginx and lighttpd look feature-rich in comparison. Performance
doesn’t tend to be significantly better than either Nginx or lighttpd, so thttpd’s main use is for spe-
cialist situations — for example, embedded applications because it is so small. However, it does sup-
port CGI, so it is sometimes used alongside Nginx. (Although CGI modules are now available for
Nginx.)

Development of thttpd seems to have ground to a halt, too, with the last stable release in 2003. For
these reasons, thttpd isn’t a suitable general-purpose, light web server these days.

Node.js

Node. js is a JavaScript framework that can be used to create high-performance web servers (among
other things). It is built around Chrome’s V8 JavaScript engine, and uses an event-driven I/0O model
to provide high levels of concurrency.

Although relatively new (the first release was in 2009), Node . js has gained increasing popularity. Its
capability to provide PUSH services makes it a useful alternative to Comet technologies.

So far, you’ve seen how Apache and Nginx can work in single-server setups. Eventually, there will
(hopefully) come a time when your website outgrows a single web server, and you must split tasks
across several servers. In the next section, you discover various ways in which Apache and Nginx

can run together.

MULTISERVER SETUPS WITH NGINX AND APACHE

You’ve now learned about some of the core performance-related features of Apache and looked at
one of its main lightweight competitors, Nginx. Although in many situations there’s a strong case
of abandoning Apache in favor of Nginx, a lot of system administrators are wary about leaving the
familiarity and safety of Apache completely (or still want to retain some of the advanced features
offered by Apache). Certainly it’s true that there’s a learning curve involved. You must learn a new
syntax of rewrite rules, probably set up some form of FastCGI scripting, and so on.

170 | CHAPTER7 WORKING WITH WEB SERVERS

As a result, many administrators choose a dual-server setup, with Nginx handling static resources
(where it excels) and Apache continuing to serve dynamic content such as PHP or Perl CGI scripts
(where the advantages of Nginx are less clear cut).

There are two main ways to do this:
> Running Apache and Nginx side by side (on different IP addresses)
> Using Nginx’s proxying abilities to forward requests for dynamic resources to an Apache

back-end server

Let’s look at the latter method first.

Nginx as a Reverse Proxy to Apache

You can easily use Nginx as a reverse proxy to Apache using Nginx’s proxying support, as shown
in Figure 7-3. As shown in the following code snippet, Nginx is set up on 80/TCP of the public-
facing IP address, and then Apache is configured to listen on a different port — say, 8080. If Nginx
receives a request for a static resource, it handles it itself; otherwise, it proxies the result on to the
back-end Apache server.

Client
GET logo.gif
> Nginx listening
—%oF on port 80
()
« 111
Nginx handles request
and returns response
Client

GET settings.php

Nginx forwards
- CoF request to Apache
= W~

Apache
response

v

A

Nginx relays response
back to the client

[
1111
FIGURE 7-3

Multiserver Setups with Nginx and Apache | 171

location ~ */(images|javascript|js|css|media|static)/ {
root /var/www/html/;
expires 30d;

}

location / {
proxy pass http://127.0.0.1:8080;
include /etc/nginx/proxy.conf;

}

In other words, any URL under /images, /javascript, /js, and so on, is served directly.
Everything else is proxied to Apache listening on 8080 of the loopback interface.

Proxy Options

As you might expect, Nginx offers a wealth of proxy-related configuration options, and it makes
sense to store them in an external file (/etc/nginx/proxy.conf in the previous example) for reuse.
Let’s spend a few moments looking at these options.

proxy redirect is needed only when the back end (for example, Apache) generates Location head-
ers that must be rewritten — for example, to the URL of the front-end server. In most cases, you can
leave this turned off.

Nginx uses a similar approach to buffering proxy traffic as it does for gzip and regular output.
Each buffer is a fixed size (equal to one page of memory — usually 4 KB), but you can increase the
number of buffers to increase the overall size, as shown here:

proxy buffers 20 4k

(Again, note that the second parameter has no effect, because it is fixed.)

This gives a total of 80 KB. When buffering is enabled, Nginx reads the response from the back-end
server straight into the buffer and then feeds this back to the client as fast as the client can receive it.
With proxy buffering turned off, the rate at which Nginx reads from the back-end server is depen-
dent on the rate at which the client can read the response from Nginx (because there is no tempo-
rary buffer to hold the data). Because the back-end server is generally a lot heavier than Nginx, it
makes sense to minimize the time it spends handling requests, and proxy buffering should generally
be turned on (and the buffer size set large enough to handle the majority of responses).

One frequent problem is that, with a proxy in place, you lose the ability to track client IP addresses
in the back end (because all requests now appear to come from Nginx). The solution is to set the
following custom headers via Nginx:

proxy set header X-Real-IP $remote addr;
proxy set header X-Forwarded-For S$proxy add x forwarded for;

The back-end code (say, PHP running under Apache) can now access the x-Real-IP variable to
get the client’s true IP address (for example, $ SERVER['X-Real-IP']). This isn’t much use if you

172 | CHAPTER7 WORKING WITH WEB SERVERS

need to rewrite your application, though, and there’s a handy Apache module called mod_rpaf that
solves this problem:

LoadModule rpaf module /usr/lib/apache2/modules/mod rpaf.so
<IfModule mod rpaf.c>

RPAFenable On

RPAFsethostname On

RPAFproxy ips 127.0.0.1

</IfModule>

With rpaf in place (note RPAFproxy ips has been set to the IP address of the Nginx server), the
proxy is effectively hidden, and you can access the client’s IP address in the usual way (for example,
$ SERVER ['REMOTE_ADDR"]). This also eliminates the need to rewrite the Apache logging directives
to log the true IP address.

Nginx also offers a handful of options for controlling timeouts when talking to the back-end server.
You’ll learn more about these in the section, “Load Balancers,” later in this chapter.

Nginx and Apache Side by Side

Proxying requests for dynamic content through Nginx adds a small amount of latency to each
request/response and also adds another point of failure. If Nginx goes down, both static and
dynamic content is affected. If you have only one Apache server and want to use Nginx for serving
static resources, a better solution is to run them both side by side on different IP addresses (but both
on the same machine). This ensures the least latency and means that if one web server daemon goes
down, the other isn’t affected.

To save on the use of an additional IP address (which, given the current IPv4 address space situa-
tion, is a growing concern), you could run both web servers on the same IP address, but on different
ports — Apache on port 80, and Nginx on, say, 8080 — ensuring that the links to static resources in
your HTML documents contain the port number. Unfortunately, corporate and personal firewalls
are too varied to make this a reliable method. There are simply too many users whose browsers can-
not access resources on anything other than ports 80 and 443.

Aside from these issues, an additional downside is that this model doesn’t scale so well. After you
reach the stage of needing multiple Apache servers, you’re going to need middleware in front of them
anyway (to handle load balancing). Nginx fills this role nicely, so you might as well just use it in
front of Apache from the start.

So far, you’ve seen how Nginx and Apache can co-exist, with Nginx proxying requests to Apache,
or sitting alongside it. Once you start proxying requests to multiple back-end servers, extra consid-
erations arise. How does the system cope if one of the back-end servers goes down? In fact, how do
you even decide if a server is down — does it have to be completely unresponsive, or should it be
pulled out of the pool if the system load gets higher than a certain level? Should each server receive
an equal share of traffic, or do some of the servers have better hardware than others?

Devices that proxy to multiple back-end servers are known as load balancers, and the questions
raised in the previous paragraph show just how involved the subject can be. In the following section,
you discover how to handle these issues and much more.

Load Balancers | 173

LOAD BALANCERS

Using Nginx to distribute requests across a pool of back-end servers is an example of the more
generic class of devices known as load balancers. Load balancers are often divided into software
(typically open source applications running on generic PC hardware) and hardware.

But the distinction isn’t so clear-cut — after all, even hardware load balancers invariably run
some sort of software. There’s also a great range in load-balancer intelligence, from simple
round-robin handling of requests to more complex algorithms based on the health of individual
back-end servers. Many load balancers also include complementary features such as SSL accel-
eration, traffic shaping, and firewalling — more on these shortly, in the section, “Load Balancer
Features.”

In this section, you’ll learn some of the advanced features offered by load balancers, and how Nginx
and HAProxy can be used to provide highly configurable software-based balancing. But let’s start
by looking at the differences between hardware and software load balancers.

Hardware versus Software

Although the distinction is blurred (and the nomenclature somewhat inaccurate), it’s still useful to
think in terms of software and hardware load balancers.

Hardware load balancers often run on special hardware and contain any software pre-installed and
configured by the vendor. Management is usually performed through a web interface. This makes
them a black box in many ways, which can be a blessing or a curse. You can’t hack in new features
or changes, but you are also relieved from having to set up and maintain the system. Hardware load
balancers also have the potential to offer the lowest latency (although, in practice, the difference in
latency compared to a well-tuned software load balancer is relatively small).

By contrast, software load balancers usually just run on standard PC hardware, using applications
like Nginx and HAProxy. This provides a huge amount of control over the balancing but can take
longer to set up and monitor.

Hardware load balancers generally operate on Layers 3 and 4 of the OSI model (see Chapter 1, “A
Refresher on Web Browsers,” for more information about the OSI model) and simply work in terms
of TCP/IP packets — routing traffic to back-end servers and possibly handling Network Address
Translation (NAT). Software load balancers have the capability of operating on Layer 7 (the OSI
application layer) and, as such, can “talk” HTTP. They can perform the compression of resources
passing through, and perform routing based on the presence of cookies (based on the request URL
and so on).

Balancers that operate solely on Layers 3 and 4 tend to be a little faster and have high capacity
(because there isn’t the need to analyze the Layer 7 contents). However, they are also less intelligent
and flexible. In practice, many hardware load balancers also support Layer 7.

So which is best? There’s no concrete answer to that question. Both are perfectly viable solutions.
However, the following discussion concentrates on software load balancing.

174 | CHAPTER7 WORKING WITH WEB SERVERS

Load Balancer Features

Load balancing might seem like quite a straightforward task — spread a series of requests evenly
over a bunch of back-end servers. But deciding what “evenly” means can actually be rather com-
plicated. Let’s consider the basics of a simple balancing algorithm to see how it rapidly becomes
complex.

Using a round-robin algorithm is the simplest method of balancing. The round-robin just cycles
through a list of servers and sends each new request to the next server. When it reaches the end of
the list, it starts over at the beginning.

This method assumes that all requests have an equal performance cost on the server, and that each
server has identical processing power. In reality, the power of each back-end server might vary, so
you add weighting to allow some back-end servers to receive more requests than others.

This still leaves you with the problem that not all requests are equal. A request for a static resource
will be several orders of magnitude less resource-intensive than a request for a dynamic resource.
You can adjust for this by comparing the number of requests forwarded on to a server with the num-
ber of responses received. If a particular server starts to build up a backlog, you can automatically
lower its weighting and forward subsequent requests on to a quieter server.

This still isn’t perfect, though, because a request taking a long time to be answered is not necessar-

ily an indication of an overloaded back-end server. For example, a PHP script that generates reports
from a database might take a long time to return — but most of the load would be on the database

server, not the back-end server.

To deal with this, you need monitoring that is more sophisticated than simply watching requests
going back and forth. You need to query the back-end server to discover memory and CPU usage,
server load, and perhaps even network latency. Many load balancers do, indeed, do this, either using
Simple Network Management Protocol (SNMP), or a dedicated communications channel (for exam-
ple, a daemon running on each back-end server that talks to the load balancer over a long-running
TCP connection). Even this isn’t perfect, though, because load on a back-end server can change dra-
matically in a short period of time. (For example, think of a request that uses a lot of CPU but runs
only for one-tenth of a second.)

Load-balancing intelligence doesn’t need to stop there. As you will soon see, sending requests from
the same client to the same back-end server each time can be useful to ensure sticky sessions (that is,
ensuring the session data is not lost). But this can defeat the purpose of trying to spread load evenly
over each back-end server. When you try to factor in both session affinity (sticky sessions) and bal-
ancing of the load, things get even more complicated.

Hashing based on an IP address ensures that, if the client has a fixed IP address, subsequent requests
will all go to the same back-end server. This is great for session affinity and produces a fairly even
balance across servers with a large enough sample. Unfortunately, there’ll always be a small percent-
age of users behind proxy farms, whose IP addresses change from request to request. Often, it’s just
the last octet that changes, and hashing on the first three octets solves this. But you can’t always
guarantee this, and you usually can’t afford to alienate these users. Conversely, some users will be
behind NAT devices, making them all appear to originate from the same IP address (the address of

Load Balancers | 175

the NAT device).This behavior is mostly seen on corporate LANs that only have one public-facing
IP address.

A solution to the problem of a client’s IP address changing between requests is cookies, of which
there are two possible options:

> The load balancer sets a cookie when the client first issues a request. This cookie contains
the ID of the back-end server that was assigned to handle the request. The balancer checks
for the cookie on subsequent requests from the client and routes them to the same back-end
server.

> The balancer utilizes a cookie already set by the application (for example, a session ID).

Both methods rely on the client accepting cookies, of course. But with the latter option, your appli-
cation probably won’t work if the client doesn’t. So, this isn’t penalizing clients any more than they
already have been. The latter method does require that the load balancer maintain a lookup table
mapping session ID to back-end server, though, and this table can grow rather large. In practice, you
must keep the table to a reasonable size by expiring entries after a certain time, and this can cause
session affinity to be lost.

Ultimately, the best solution to session affinity is simply not to store session data on individual back-
end servers. memcache is the ideal alternative.

NOTE You learn more about memcache in Chapter 10.

SSL Acceleration and Termination

SSL communications can cause a significant amount of CPU overhead, both during the initial
handshake (when keys are exchanged) and the encryption/decryption of packets sent over the
connection. This can have an impact on the performance of back-end servers, and many load
balancers offer features to take over some of the work.

NOTE Advances in hardware over the past decade mean this is much less of a
problem than it was. See http://www.imperialviolet.org/2010/06/25/
overclocking-ssl.html for a discussion of Gmail’s experiences.

With SSL termination, the load balancer becomes one endpoint of the SSL connection, rather than
the back-end web server. (The other endpoint is the client, of course.) This relieves the back-end
servers of the overhead of managing the SSL connection. Whether this is beneficial is debatable
because all you’ve done is to shift the processing from the back end to the load balancer. If the
load balancer runs specialist hardware, it’s probably more economical to place the extra load on
relatively inexpensive back-end servers, rather than risk causing a bottleneck on an expensive load
balancer.

http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html

176 | CHAPTER7 WORKING WITH WEB SERVERS

Still, there are a couple of advantages to making the load balancer the termination point. For start-
ers, it means that the load balancer can inspect the contents of the HTTPS packets (because they
have been decrypted). This allows enhanced firewalling and means that you can balance requests
based on the contents of the packets — for example, the request URI, virtual host, the content (or
presence of) cookies, and so on. With encrypted HTTPS content, many of the advanced balancing
methods previously discussed simply aren’t possible.

Another advantage is that some hardware load balancers (in particular, the high-end ones) include
an additional processor specifically for SSL encryption/decryption. These dedicated cryptography
processors can offer a huge boost in performance (hence, they are often referred to as SSL
accelerators), but this is reflected in the cost — it may be cheaper just to invest in more powerful
back-end servers.

SSL acceleration isn’t just available on custom hardware, though. A number of manufacturers
produce PCI cards containing SSL processors. Using these is as simple as plugging them in and
loading the appropriate driver module into the kernel. These cards aren’t cheap, though, and,
again, there’s the suspicion that it may be just as economical to invest in a faster motherboard
CPU. Still, for a PC acting as a load balancer and SSL endpoint, these cards are certainly worth
looking into.

Security

Although security isn’t a primary concern in this book, it’s worth noting that software load bal-
ancers add an additional layer of security to the network by hiding the back-end web servers from
the Internet. Because all requests to back-end servers must first go past the balancer, they also pro-
vide the capability to filter out unwanted requests (for example, /phpmyadmin/, /admin/) or limit
them to authenticated users only. Load balancers can also help to protect against SYN floods (DoS
attacks) because they pass traffic only on to a back-end server after a full TCP connection has been
set up with the client.

Traffic Shaping

One interesting possibility with a load balancer is to prioritize certain types of traffic. You can
attempt to improve caching by hashing to ensure that the same request goes to the same back-end
server each time. With traffic/rate shaping, you could give priority treatment to certain IP blocks or
requests.

For example, you could send all requests for a reports-generating script to a particular server.
Requests may end up being queued on this server (because of the intensive, long-running nature of
the report-generating script), but end users will probably be okay with waiting longer for this kind
of request, and it stops spikes on the rest of your back-end servers.

Using Multiple Back-End Servers

One advantage of using Nginx and Apache side by side is that it paves the way for a multiserver
setup with more than one back end, and even includes its own load-balancing proxy (Nginx), as
shown in Figure 7-4.

Load Balancers | 177

Client Nginx g

GET logo.gif / I

JULIIlY \ E Pool of

¥ Apache
(111 Servers

=

v

FIGURE 7-4

Nginx can serve the following three roles here:
> Nginx acts solely as a load-balancing proxy, forwarding all requests to an Apache back end.
> Nginx forwards requests for dynamic content to Apache and serves static resources.

> Nginx forwards all requests to Apache (including static resources) but also acts as a cache
for static and/or dynamic content.

Having Nginx forward requests for dynamic content to Apache (and serving static content) is gener-
ally the most optimal. You could even combine it with elements of the third option so that FastCGI
responses are cached. You then end up with Nginx acting as a reverse proxying, load-balancing,
static file serving, dynamic request cache — quite a mouthful.

Nginx as a Load-Balancing Proxy

The key to load balancing with Nginx is the upstream module compiled in by default. Rather than
passing an IP:port to proxy pass, use the upstream directive to define a pool of back-end servers;
then pass the name that you’ve assigned to this pool to proxy pass, as shown here:

upstream apachepool
server 192.168.0.100 weight=5;
server 192.168.0.101 weight=10;
server 192.168.0.102 weight=10;

}

server {
location / {
proxy pass http://apachepool;
}

}

This code example creates an upstream named apachepool and assigns three servers to it. (Port
80 is assumed by default.) The first server is given a lower weight to illustrate how a mixture of
hardware power can be used.

http://apachepool

178

CHAPTER7 WORKING WITH WEB SERVERS

Nginx can balance requests across these three servers using the weighting given. (If none is given,
each server is considered equal.) If a back-end server is down, Nginx moves on to the next one.

It’s usual to want more control over this process, and, as always, Nginx does not disappoint. The
server directive accepts the following additional parameters that can be used to fine-tune behavior:

> max fails — This is the number of times a back-end server can fail before Nginx considers
it to be “down.” By default, a timeout or connection error is considered a failure. The default
for max failsis 1.

> fail timeout — This is the time frame for max_fails. If more than the specified
max_fails occur during this time, the server is considered “down,” and Nginx moves
on to the next one. The default is 10 seconds.

When a server is marked as “down” by Nginx, how long does it stay “down”? This value is also
defined by fail timeout. So, with max fails=3 and fail timeout=15, a server will be considered
“down” if more than 3 requests fail within the space of 15 seconds. When this happens, the server
will be temporarily removed from the pool for a further 15 seconds.

Proxy next upstream can be used to control exactly what it means for a server to be “down.” The
default is for just transmission errors (timeouts, errors sending requests/reading responses) to trigger
a fail, but you can extend this to include specific HTTP status codes. In the following example, this
is specified, for example, if the back-end server returns a 500 Internal Server Error:

proxy next upstream error timeout http 500

Nginx’s default load-balancing logic is far from perfect, though. It uses a round-robin approach, so,
if all servers have the same weight, it simply cycles through them. This approach fails to take into
account the cost of serving each request.

For example, generating a report might take 10 seconds, whereas generating the index page might
take only 0.2 second. Consider what happens with a pool of three servers if a hit on the report-
generating page is received, followed by five hits on the index page:

1. Nginx passes the report-generating page request to the first server in the pool.
2. The first index page request is passed to the second server.

3. The second index page request is passed to the third server.
4

. The fourth index page request is passed to the first server again, even though it is still strug-
gling with generating the report.

5. The fifth index page request is passed to the second server.

Clearly, step 4 is not optimal — it’s preferable for the first server to be skipped because the other
two are sitting idle. The third-party module (so you need to compile it in) upstream fair solves
this problem. It keeps tracks of how many requests are currently served by each back-end server and
routes requests to the server with the least load.

Actually, upstream fair uses a “weighted least-connection round-robin” algorithm. So, although
the load on each back-end server is the major factor, it also takes into account the weighting of

Load Balancers | 179

each server and uses the round-robin approach when two servers are otherwise equal. In addi-
tion, upstream_fair has a number of options for specialist situations (such as the capability to
disable the round robin). The module is available from http://nginx.localdomain.pl/wiki/
UpstreamFair.

It’s likely that you’ll be using some form of PHP opcode cache on each FastCGI back-end server. This
is a topic discussed in a lot more depth in Chapter 12. But if you’re unfamiliar with such caches, all
you need to know for now is that they can improve performance by providing partial caching of PHP
code. Naturally, it’s rather inefficient if each cache is duplicating data stored in the caches of other
FastCGI nodes, and it’s equally poor if a given FastCGI server does not have in its cache elements the
request it is currently handling while its neighbor does.

Clearly, neither of the load-balancing options examined thus far help here, but there are a couple of
possible solutions.

The upstream fair supports an option to load balance based on a hash of the client’s IP address.
(Actually, it uses the first three octets from the IP, such as 192.168.5.x.) So, a client will always be
served by the same back-end server (unless the server is “down,” in which case the next available
server is used).

This isn’t a great help for efficient opcode caching, but it can be used for session affinity (also
known as sticky sessions) to ensure that session data (which is often stored in a file on the
back-end server) isn’t lost between requests.

NOTE There are lots of other ways to deal with the problem of session affinity,
such as storing in a database (which can be a performance bottleneck), stor-
ing all client-side data in cookies (which can be insecure), or using a network
filesystem (for example, an NES partition) to hold the session files. One favorite
is memcache, though. You learn more about memcache in Chapter 10.

HTMLS also introduced sessionStorage and localStorage, which are
features that allow the client to store data locally. As with cookies, however,
there is the potential for the user to tamper with this data, and you should treat it
accordingly.

You can enable IP hashing like so:

upstream apachepool
ip_hash;
server 192.168.0.100 weight=5;
server 192.168.0.101 weight=10;
server 192.168.0.102 weight=10;

}

Another solution is the third-party Upstream Hash module (ngx_http upstream hash module),
which performs hashing based on environmental variables. The possibilities here are endless. If you
hash based on the request URI, you can ensure that requests for the same dynamic content always
go to the same server, which is the most efficient in terms of utilizing opcode caches.

http://nginx.localdomain.pl/wiki/UpstreamFair
http://nginx.localdomain.pl/wiki/UpstreamFair

180 | CHAPTER7 WORKING WITH WEB SERVERS

upstream apachepool {
hash $request uri;
server 192.168.0.100;
server 192.168.0.101;
server 192.168.0.102;

NOTE You can’t use weighting when using Upstream Hash.

You can even hash a combination of the request URI and client IP address to ensure a high hit rate
on your opcode caches while preserving session affinity, as shown here:

hash S$request urisShttp remote addr;

Just how useful is balancing based on a URL, though? It certainly increases the efficiency of your
PHP opcode caches, but this may offer only a minor performance gain, and you lose out on the
capability to distribute requests based on the load on each back-end server. Session affinity is prob-
ably an issue that can be left out of the equation for the moment because there are better solutions
(for example, storing session data globally in memcache). Ultimately, you should be aware of both
possibilities, but balancing based on load is probably the superior solution overall.

Nginx as a Load Balancer and Static File Server

An improvement on this model is to have Nginx handle static files, taking weight off the back-end
servers (which are more suited for handling dynamic content than serving static files). Adding this is
simple. You just define a location before your location / catch-all, as shown here:

location ~ */(images|javascript|js|css|media|static)/ {
root /var/www/html/;
expires 30d;

}

location / {
proxy pass http://apachepool;
}

Nginx as a Load Balancer and Cache

A third option is to let Apache continue to serve static resources but implement caching of them in
Nginx to reduce (or even eliminate) the need to bother Apache. The end result isn’t much different
from the previously discussed model (Nginx as a load balancer and static file server), but it may be
more appropriate in certain situations. Most of the time, though, having the static resources on a
centralized server (the Nginx load balancer) rather than distributed across each back-end server is
the more sensible solution.

Nginx as a Load Balancer, Static File Server, and Dynamic Content Cache

With this final option, Nginx serves static files locally and load balances requests for dynamic content
across a pool of back-end servers. But it also caches the (dynamic) responses from the back-end servers,
further cutting down on traffic to them. The caching of FastCGI has been previously discussed.

http://apachepool

Load Balancers | 181

Eliminating Apache

The topologies examined thus far have clung on to Apache as a back-end server for dynamic content.
But as you’ve already seen, Nginx plus FastCGI can be just as good of a replacement — and when it
comes to multiserver setups, it can even be a better option because FastCGI can load balance across
multiple back-end servers.

Figure 7-5 shows a simple layout in which a single Nginx server handles dynamic content via
FastCGI, balancing the load across a pool of FastCGI back-end servers.

Client Nginx E
GET foo.php Pl |

& \ E Pool of

= FastCGl
(111 Servers

=

v

FIGURE 7-5

You’ve already seen how to use FastCGI for handling dynamic content. Implementing load balancing
into this is actually rather simple. You use the upstream module, as shown here:

upstream phppool {
server 192.168.0.100:9000 weight=5;
server 192.168.0.101:9000 weight=10;
server 192.168.0.102:9000 weight=10;

}

location ~ \.php$ {
include /etc/nginx/fcgi params.conf;
fastcgi pass phppool;

}

Now, you just need to ensure that your FastCGI daemon is listening on the appropriate interface and
port on each host. As before, you can use weighting, max_fails, fail timeout, and proxy next
upstream to control how load is spread across these back-end servers, and what happens when a
node goes down.

HAProxy

Nginx already seems to work quite well as a load balancer (and optionally a cache, too), but there
are plenty of alternatives. One of the most popular is HAProxy, a fast balancer that also implements
high-availability features. Although HAProxy does not offer caching, benchmarks usually show it to

182 | CHAPTER7 WORKING WITH WEB SERVERS

be a little faster than Nginx (in terms of the number of connections per second it can handle), and it
has a wealth of extra features. Let’s take a look at HAProxy configuration options before looking at
topologies involving HAProxy and Nginx.

NOTE HAProxy is known to run on Linux (this being the favored), Solaris,
FreeBSD, and OpenBSD, but other platforms are not supported.

Configuration

The HAProxy configuration (usually /etc/haproxy/haproxy.cfg) file generally consists of three
sections:

> global — This is where global parameters (mostly relating to HAProxy) are defined.

> defaults — This contains options specific to the proxying method (for example,
connection timeouts).

> listen— This is a block defining the interface/ports on which to listen and the back-end
servers to proxy to.

You can dispense with the defaults block and place its directives directly inside a 1isten block,
and you can write the listen blocks in a more verbose form. But the three-section approach is
preferred. A simple configuration file might be as brief as the following:

global
daemon
maxconn 256

defaults
mode http
timeout connect 5000ms

listen mybackends
bind *:80
server serverl 192.0.0.101:80 maxconn 16
server server2 192.0.0.102:80 maxconn 16

This tells HAProxy to run as a daemon allowing a maximum of 256 connections. The defaults
section defines the protocol as HTTP (HAProxy can be used to balance many protocols), and a
connection timeout of 5 seconds. Finally, this instructs the proxy to listen on port 80/TCP on all
interfaces and to load balance across two back-end servers (192.168.0.101 and 192.168.0.102). Let’s
take a more detailed look at the global configuration options.

NOTE Incidentally, most of the work carried out by HAProxy goes on in kernel
space, rather than user space. (By its author’s observations, approximately 95
percent of the time is spent in the kernel.) As such, tuning the operating system/
kernel has a much greater impact on performance than application-level settings.

Load Balancers | 183

Global

The global section contains the majority of the performance-related options for HAProxy. But
remember that it runs on many platforms, and some of these options (for example, event polling
on BSD systems) may not be relevant. You can find a full list of options in the documentation at
http://haproxy.lwt.eu/download/1.4/doc/configuration.txt.

NOTE Speaking of event polling, on Linux, HAProxy defaults to speculative
event polling, and there isn’t usually a good reason to stray from this default.

One potential gotcha is the nbproc option, which controls how many processes to spawn. It’s tempt-
ing to see this as analogous to worker processes for Nginx, and set it to equal the number of CPU
cores on the system. This isn’t recommended, though.

As you’ve already seen, the vast majority of the processing carried out by HAProxy is at the kernel
level — and the kernel is multithreaded, so it makes good use of multiple cores. Increasing the num-
ber of userland processes isn’t going to help here. If anything, performance will be reduced because
there is now the additional overhead of the worker processes communicating with each other over
shared memory.

nbproc was introduced to only work around limits on the number of file descriptors an individual
process could create on some operating systems. This isn’t (or at least, doesn’t have to be) an issue
on Linux. Thus, nbcproc can be left to the default of 1.

TCP splicing is a relatively new feature of the Linux kernel, which can reduce CPU overhead on
systems that are acting as a proxy. Some versions of the 2.6 kernel have bugs in their implementa-
tion, though, and HAProxy offers the capability to disable splicing via the nosplice option. Buggy
splicing can be difficult to diagnose, so unless you are sure that the kernel you are running is not
affected (or cannot afford to sacrifice the reduction in CPU usage), or are not using Linux, it’s
probably safest to turn splicing off.

maxconn sets the maximum number of concurrent connections that HAProxy will accept.
You can afford to set this relatively high because HAProxy can queue connections to the back-end
servers — this is governed by the maxconn setting in the 1isten section(s).

The remaining global performance options all take the form tune.xxx <numbers and shouldn’t
need changing from their defaults. In brief, they are as follows:

> tune.bufsize — This is the per-request buffer size. Lowering this value will allow more
sessions to co-exist in memory but will break requests with large amounts of data in the
HTTP header.

> tune.chksize — This is the size of the buffer to use when performing string matching on
HTTP headers. Setting this too low may cause matches to be missed; setting it too high
wastes memory. It’s best for performance not to be in the situation of needing to parse
potentially large HTTP headers anyway.

http://haproxy.1wt.eu/download/1.4/doc/configuration.txt

184

CHAPTER7 WORKING WITH WEB SERVERS

defaults

tune.maxaccept — This option is mostly for use in multiprocess mode (that is, when
nbproc is greater than 1) to ensure a fair distribution of requests across each process. It sets
the maximum number of requests that a single process will accept in one batch.

tune.maxpollevents — This controls the number of events that will be processed in each
call to the polling system. The HAProxy documentation notes that lowering this value tends
to cause a small reduction in latency (at the expense of extra bandwidth), whereas increas-
ing it has the opposite effect. Either way, this option is usually set automatically, and there
shouldn’t be a need to change it.

tune.maxrewrite — Related to bufsize, this is the size of the buffer used when rewriting
headers (for example, inserting cookies). If this value is too low, any particularly large request
won'’t fit fully. If it is too high, you waste memory. The suggested starting point is 1024.

tune.rcvbuf.client, tune.rcvbuf.server, tune.sndbuf.client, and tune

.sndbuf . server — These final four options tune the kernel socket buffer size for sending
and receiving on both the client and server sides. Normally, these will be set automatically
by HAProxy, based on the amount of system memory. But it can occasionally be useful to
lower these to save memory (at the expense of an increase in CPU usage).

NOTE Unless you are absolutely sure that there is a need to change any of these
values, it is strongly recommended to leave them alone.

Whereas the global section lets you configure global options for HAProxy, the defaults section

specifically deals with options for the chosen proxy mode. Because you’re dealing only with HTTP,
this distinction may seem unimportant. But it makes perfect sense if HAProxy is used as a load bal-
ancer for several protocols at once.

Currently, three proxy modes are supported: tcp, http, and health. The latter is for performing
health checks on servers, so let’s concentrate on the first two for the moment.

With tcp mode, HAProxy operates at the TCP level (OSI Layer 4 — see Chapter 1 for an overview
of the OSI model) only. It forwards traffic between client and server without caring (or even under-
standing) the higher-level HTTP protocol. This offers the lowest latency but is the least flexible
because it cannot balance based on HTTP content.

In http mode, HAProxy acts on OSI Layer 4 (TCP) and Layer 7 (HTTP). This gives HAProxy the power
to inspect and rewrite HT TP packets, allowing for more advanced load balancing. But it also means
more work, so there is an increase in latency, as well as CPU and memory usage. Usually, these overheads
aren’t significant, and the advantages of having a Layer 7-aware proxy more than make up for them.

Timeouts

The default section is also the home for setting the various timeout options. All these options
accept a numeric value and can optionally include a units suffix (for example, 10s). If no units are
given, milliseconds are assumed. Following are the timeout options:

Load Balancers | 185

> timeout check — When performing health checks on servers, this option determines how
long HAProxy should wait until it decides a back-end server is timing out. Health checks
should be a lot faster to run than normal HTTP queries, so you can set this quite low,
unless the back-end servers are on a high-latency link.

timeout client — This is the timeout period when communicating with clients.

timeout connect — This is the timeout when HAProxy is attempting to establish a con-
nection to a back-end server. Although you’d usually expect back-end servers on a local area
network (LAN) to respond within, say, 100 milliseconds, it’s advisable to set this option to
a few seconds to accommodate the occasional dropped packet or server spike. The default
is no timeout, but this should be avoided because it has the potential to cause a buildup of
half-open connections.

> timeout http-keep-alive — When the back-end servers use keep Alive, HAProxy must
keep the connection open following the first request and response, in case the client wants
to send further requests. This option defines for how long the connection will be allowed to
remain open without the client issuing any requests. If unset, the timeout http-request is
used.

> timeout http-request — It’s often quite easy to perform denial-of-service (DoS) attacks
on heavy web servers like Apache by opening hundreds of connections, but not sending any
data (or sending data at a slow rate — say, one character per minute). This option requires
that the HTTP request headers have been fully sent by the client within this period of time.
It doesn’t apply to the request body, unfortunately, because PosT data could potentially take
much longer to send. Generally, a value of a few seconds is best, and if not set, the value of
timeout client will be used.

> timeout queue — HAProxy can be configured to limit the maximum number of con-
current requests it sends to a back-end server (to avoid overloading it). When this limit is
reached, requests are queued in HAProxy, and this option defines how long an item may
remain in the queue before HAProxy throws a 503 Service Unavailable error. If no
value is set, timeout connect is used.

> timeout server — Whereas timeout client deals with timeouts when communicating
with the clients, this option governs the timeout period when waiting for a back-end server to
acknowledge a request or send a response. Obviously, the time taken for the back-end server
to process the request is the major delay here, so this value should be set sufficiently large.

Cookies and Session Affinity

As mentioned earlier, cookies can be used to ensure session affinity, and (unlike IP address hashing)
these work even if the client is behind a proxy farm that causes the IP address to change from one
request to the next.

In HAProxy, the appsession option can be used to set session affinity based on the presence of a
particular cookie (for example, PHPSESSTID). When HAProxy sees a server set the cookie, it stores
the cookie’s contents and the server ID in a lookup table. If HAProxy subsequently sees a client
issue a request with the cookie in the headers, it checks the lookup table and directs the request to
the appropriate server.

| CHAPTER7 WORKING WITH WEB SERVERS

The full syntax for appsession is as follows:
appsession <cookie name> len <length> timeout <lifetime> [request-learn]

Following are the options used:

> Len is the number of characters (starting at the beginning) of the cookie to store in the
lookup table. Using this option helps to keep the size of the table down but is only practical
if the cookie can be uniquely identified by these characters.

> The timeout value specifies how long before unused cookie entries are removed from the
table, again helping to reduce memory usage.

» When request-learn is set, HAProxy attempts to learn client-server associations if it
spots the cookie in a client request, but does not have an entry for it in the lookup table.
This improves reliability in situations in which the cookie entry has been expired from the
lookup table.

Although this sticky behavior is desirable for requests for dynamic content, it’s usually unneces-
sary if the client is requesting a static resource. But the cookie would usually be sent with these
static requests as well (unless the cookie path or domain had been carefully set to exclude them),
and, hence, they would all go to the same back-end server. To stop such behavior, HAPRoxy offers
the ignore persist option, which enables the cookie to be ignored in certain user-defined situa-
tions — for example on requests for files in a particular directory or with a particular extension.

Access Control Lists

These user-defined situations are implemented as Access Control Lists (ACLs), and a thorough
examination could easily fill the next dozen pages exploring the intricacies of HAProxy’s implemen-
tation of them. Briefly, though, you would define an ACL using the ac1 keyword, like so:

acl static_resources path end .gif .png .jpg .css .js .ico .txt

It should be apparent that this defines an ACL named static_resources, which applies when the
path of the request ends in any of the extensions listed. You can subsequently use this ACL with
ignore-persist, as shown here:

Ignore-persist if static_resources

This only scrapes the surface of what is possible with ACLs, though. For example, you could bal-
ance dynamic requests across a pool of heavy back-end servers such as Apache plus mod_xxx, while
static requests are sent to a lightweight Nginx instance. The HAProxy documentation contains
more information, along with plenty of useful examples.

Connection Handling and Keep Alive

Another significant part of the HAProxy defaults configuration is the handling of connections,
particularly for Keep Alive. You can use these options to override the behavior of back-end web
servers and correct bad protocol implementations. Hopefully, you won’t need any of these, but in
brief they are as follows:

Load Balancers | 187

listen

option httpclose — This adds a 'Connection: close' header to the request and
response, if one does not already exist. This effectively prevents Keep Alive, even if the
back-end servers support it.

option forceclose — This closes the connection as soon as the server has responded.
This is a faster (but less graceful) way to close the connection than option httpclose, and,
naturally, it also prevents the use of Keep Alive.

option http-pretend-keepalive — If either of the previous two options are set,
HAProxy ends up adding a 'Connection: close' header to the request sent to the
back-end server. With some web servers, this causes them not to use chunked encoding in
responses. With http-pretend-keepalive, the server will think that a persistent connec-
tion is used, eliminating this behavior.

Let’s now take a look at the heart of the configuration — the 1isten section — the part that speci-
fies your back-end servers and how to balance across them. An example shows that the syntax isn’t a
million miles away from that of Nginx, and is easy to pick up.

Let’s start by defining the IP(s) and port(s) on which the proxy should listen:

bind 192.168.0.10:80

The balance keyword is used to specify the load-balancing method to use; although, this applies
only to nonpersistent connections — session affinity takes precedence where applicable. Currently,
the following balancing methods are available:

>

static-rr — This uses a weighted round-robin approach — something you’ve already
learned about in detail.

roundrobin — This offers an improvement over static round-robin in that weightings are
dynamic and can be adjusted in real time by HAProxy. One use for this is so-called slow
starts, in which a server that had previously been marked as offline is brought back slowly
into the pool, rather than bombarding it with connections when it comes back online. This
method uses slightly more CPU than the static-rr method.

leastconn — Here, HAProxy balances based on the number of existing connections to
each back-end server and falls back to a round-robin if several servers have the same number
of connections. Because the HTTP requests are generally short-lived, the number of connec-
tions to a back-end server can vary dramatically in a short period of time. As such, this isn’t
a good balancing method for web traffic; although it is excellent for long-running requests
such as a POP3 session.

source — This uses hashing of the client’s IP address, resulting in stickiness — a given cli-
ent will always be directed to the same back-end server provided the number of back-end
servers remains the same. Cookies are usually a better way to achieve session affinity, but
this method can be used if HAProxy runs in TCP mode (rather than HTTP mode) or, for
other reasons such as to stop cookies from being used (for example, when clients refuse
cookies).

188 | CHAPTER7 WORKING WITH WEB SERVERS

> uri— This balances based on the request URI (excluding any query string). As previously
discussed, this improves cache hits and efficiency (if caching is used) because requests for the
same resource always go to the same back-end server. But it doesn’t give a particularly even
spread of requests across the back-end servers.

> url param— Similar to the uri method, this time HAProxy searches the query string for
a particular parameter (hashes) and balances on this. This can be used for session affinity
in situations in which a unique identifier is passed from page to page in the query string.
(Although it can also be set to search posT data.)

> hdr (name) — This method balances based on the content of the header given (or falls back
on round-robin if the header is not present). This is more of a specialist method, but possible
uses would be for balancing based on vhost, the client’s country of origin, or even if the
client supports Keep Alive or gzip compression.

> rdp-cookie — Remote Desktop Protocol (RDP) is used for ensuring that RDP sessions are
correctly routed to the back-end servers when HAProxy runs in TCP mode, which is not a
concern for this discussion.

Following are a few examples:

balance static round-robin
balance url_param uid
balance hdr (Accept-Encoding) gzip

It’s interesting to note that cookie-based balancing doesn’t appear in this list. In fact, you enable this
separately (if wanted), using the cookie option. You still set a balance method, though, which will
be used if the cookie isn’t present.

Aside from the name of the cookie to use, you must also tell HAProxy whether it will be using an
existing cookie (that is, one generated by the web application), or adding a cookie of its own by
using either rewrite (using existing cookie) or insert (add cookie). In most situations, it is prefer-
able to insert a cookie to cause minimal interference to the web application, as shown here:

cookie SERVERID insert

This is closely related (but not identical) to the appsession option discussed earlier. With
appsession, HAProxy maps cookie to the back-end server using an internal lookup table.
With cookie, HAProxy actually creates or modifies cookies.

Finally, your list of back-end servers is specified as a name followed by an address/port, and optional
additional arguments. Thus, your whole 1isten block can be as simple as this:

bind 192.168.0.10:80
balance round-robin
server serverl 192.168.0.100:80
server server2 192.168.0.101:80
server server3 192.168.0.102:80

Load Balancers | 189

This balances across three back-end servers using the round-robin method.

The real fun comes with the extra options available because these enable you to set up weighting, con-
nection queuing, health-checking, and slow starts. Let’s take a look at the most interesting options.

weight <integer>

This option takes an integer value between zero and 256 specifying the relative weight of the server.
Following is an example:

server serverl 192.168.0.100:80 weight 50
server server2 192.168.0.101:80 weight 50
server server3 192.168.0.102:80 weight 100

In this situation, server3 should receive approximately one-half of the total traffic, and server1
and server2 approximately one-quarter each.

maxconn <integer>

This defines the maximum number of concurrent connections that HAProxy allows the server to
receive. Any further connections to this server will be queued. This can be useful to prevent a server
from being overloaded with connections; although MaxClients (or equivalent) should already

have been prudently set on the server to prevent overloading. Still, you can use this option as an
additional safety check, or for some non-HTTP services that may not offer the capability to limit
concurrency.

maxqueue <integer>

If maxconn is reached, connections will be queued, and this option defines the maximum size of the
queue. The default is zero (unlimited), but there is a case for setting it to a finite value. If the queue

fills up, requests will be sent to another server in the pool, and although this will break any session
affinity, it will probably offer the best response time for the client.

It’s worth thinking about situations in which maxconn and maxqueue might be high when deciding
on suitable values. If the server pool is under high load, in general, it’s inevitable that connection
queuing needs to take place, and you need to set the queue high enough that clients won’t be turned
away too quickly.

However, if queuing starts to happen on an individual server, it could be that the server is locked in
a downward spiral. (Perhaps the requests that it handles are particularly intensive, or an unrelated
process is hogging resources.) In this case, there’s a good chance that queued requests will never be
processed. Hence, it may be better to keep the queue small, forcing the requests to go to other serv-
ers. You’ll lose your session affinity, but at least the request will get a response.

NOTE HAProxy can still take servers out of the pool if they are completely
unresponsive. This is just to guard against situations in which a server enters into
a downward spiral.

190 | CHAPTER7 WORKING WITH WEB SERVERS

check

At its most basic level, health checking consists of HAProxy attempting to establish a TCP connec-
tion to a back-end server on the IP address and port that it is balanced to. Thus, on web servers, the
check would (probably) be on TCP/80, as shown here:

server serverl 192.168.0.100:80 weight 50 check

Checking is set on a per-server basis, giving you the option to disable it on certain back-end servers
if necessary.

Of course, simply attempting to create a TCP connection to the back-end service is no guarantee
that things are running perfectly, and HAProxy offers enhanced checking for a number of protocols:

HTTP, SMTP, MySQL, and SSL. The syntax is as follows:

option httpchk
option httpchk <uris
option httpchk <methods> <uris>

The default is to send an 0PTIONS request, which is low on overhead and should be a good indication
of the web server’s sanity. HAProxy treats a 2xx or 3xx response as success, and anything else as a fail.

inter

The time period between health checks is governed by the inter parameter to server, and defaults
to 2,000 milliseconds. To not flood the network with packets, checks are automatically staggered

a little. But you can increase this further (if wanted) using spread-checks. This global parameter
takes a percentage value between 0 and 50 that specifies the degree of randomness in the checking
time. Thus, with a check interval of 2,000 milliseconds on a server and a spread-checks value

of 10 percent, health checks would take place at intervals between 1,800 and 2,200 milliseconds.
Following is an example:

spread-checks 20
server serverl 192.168.0.100:80 weight 50 check inter 2000

fall <integer>
By default, a health check must fail three times in a row before HAProxy flags the server as “down,”
but this can be overridden using the fall option, as shown here:

server serverl 192.168.0.100:80 weight 50 check inter 2000 fall 5

Be wary of setting this too low. Taking a server out of the pool puts additional strain on the remain-
ing machines, which, in turn, could cause them to fail. So, you must avoid being too trigger-happy
here. Certainly, a value of 1 would introduce the possibility of too many false positives.

Summary | 191

rise <integer>

Even when a server has been marked as “down,” HAProxy still sends health checks, and this option
defines how many consecutive successful checks are needed for the server to be deemed “alive”
again. The default is 2.

slowstart <integer>

When HAProxy does detect that a back-end server has come back to life, it can be advantageous
not to immediately start bombarding it with connections. For web servers like Apache, a gradual
increase in the number of requests gives time for additional processes to be forked without causing
spikes in CPU and disk I/O. Even for web servers that don’t operate on a process-per-request model,
slow starts can be used if there’s a danger of the server immediately falling down as soon as it has
come back up.

This option takes a time period (by default, in milliseconds) during which the weight of the back-
end server will move from 0 percent to 100 percent of its configured value. In addition, maxconn
moves from 0 percent to 100 percent during this time, too.

In most situations, slowstart isn’t essential; although a smallish value (say a couple of seconds) can
reduce latency in handling requests if the back-end server must spawn new children to handle each
request. Following is an example:

server serverl 192.168.0.100:80 weight 50 check inter 2000 slowstart 2000

observe <mode>

As an alternative to proactively sending out health checks, HAProxy can assess server health by
monitoring the traffic already flowing from the server. For example, if a back-end server starts gen-
erating 5xx error codes in response to client requests, HAPRoxy can spot this and act on it.

Two observation modes are support: layer4 and layer7. In layera mode, HAProxy simply looks
at the TCP packet level — are TCP connections to the back-end failing? In 1ayer7 mode, HAProxy
has the power to analyze HTTP responses and detect HTTP error codes, too.

There are dangers to relying on passive health checking. For example, an HTTP error code may
not mean the whole server is “down.” It may even be down because of a badly behaved client. As a
result, you should use dedicated health checking, but if you’d like to try passive checking, there are
more details in the HAProxy documentation.

SUMMARY

Although Apache is a great multipurpose web server, it doesn’t cope well with high levels of concur-
rency, especially when the prefork MPM is used. Nginx provides an excellent high-performance
alternative, and although using PHP with Nginx is a little trickier, the end result is a more powerful
and flexible setup. When you have outgrown a single-server setup, Nginx makes it easy to balance
traffic across multiple back-end servers.

192 | CHAPTER7 WORKING WITH WEB SERVERS

Despite that, HAProxy has the edge over Nginx when it comes to load balancing. It offers health
monitoring of the back-end servers and provides greater control over how traffic is balanced across
them. Using HAProxy as a load balancer with several Nginx and FastCGI back-end servers results
in a powerful and robust setup.

Web servers are naturally at the heart of a website’s back-end setup, but database systems also play
a highly important part in many infrastructures. MySQL is one of the most popular database solu-
tions in the open source world, and will be covered in detail over the next two chapters. In Chapter
9, you discover the intricacies of MySQL replication and load balancing. But before that, let’s see
how single-server MySQL setups can be tuned for blistering performance, which is the focus of the
discussion in Chapter 8.

Tuning MySQL

WHAT’S IN THIS CHAPTER?

> Getting to know the myriad of performance tuning options available
in MySQL

> Writing efficient SQL queries, and spotting bottlenecks in existing
queries

> Getting the most out of the MySQL query cache

> Discovering the latest advances in MyISAM and InnoDB

As a relative newcomer on the scene (with the first release in 1995), MySQL has quickly
become the de facto relational database management system (RDBMS) for Linux, and one
of the most popular for Windows and UNIX. Despite lacking some of the more advanced
features found in other RDBMSs (this is gradually changing, but things like stored
procedures and transactions are still relatively new additions), MySQL is lightweight,

and has a good reputation for speed, making it an excellent choice for general-purpose
web development.

Despite this reputation for speed, there is typically still a huge scope for optimization, both in
the configuration of the MySQL server, and in queries themselves. This chapter familiarizes
you with the performance aspects of MySQL.

This chapter begins by examining how the main storage engines differ, and the impact that
this has on performance. After looking at general MySQL tuning issues, this chapter discusses
tuning of the two most popular engines: MyIsaM and InnoDB. After a discussion of MySQL’s
query caching capabilities, this chapter concludes with tips on how to write more efficient
SQL queries, and how to debug slow-running queries.

194 | CHAPTER8 TUNING MYSQL

reflect real-world usage.

NOTE The terms cache and buffer, and index and key are often used
interchangeably throughout the MySQL community. Thus, index buffer means
the same as index cache, key cache, or key buffer. The discussions in this book
also use the terms interchangeably — partly for variety, and partly because they

LOOKING INSIDE MYSQL

MySQU’s internal structure can be divided into several logical sections, and, in most cases, each of
them can be tuned. Figure 8-1 shows the major components of MySQL.

Client Connection
Request Handling
FIGURE 8-1

Query
Cache

Parser

—> Optimizer

|

Execution

Storage Engines
(MyISAM, InnoDB, and such)

At the core is the parser, whose job it is to parse the SQL statement issued by the client, and check
the syntax. At this point, the parser may pass the query to the query cache in an attempt to find an
already cached response to the query, or send it straight to the optimizer. The optimizer decides on
the best (most efficient) way to execute the query and then passes it to the execution engine. Before
a request gets this far, though, the connection handling layer deals with matters such as authentica-

tion and threading.

Understanding the Storage Engines | 195

Storage engines are a separate logical entity and are modular in nature. The rest of the internal
structure of MySQL doesn’t need to know the internal details of how the storage engines store the
data, only a set of standard methods for interacting with them. As a result, storage engines can

be radically different in how they manage things like the physical storage of data, indexing, and
locking.

Most tuning is performed through the MySQL configuration file, my . cnf, which usually resides in
/etc or /etc/mysqgl/ on Linux and UNIX. Unfortunately, MySQL doesn’t have a reload option,
so if any changes are made in my . cnf, you must perform a restart to force MySQL to re-read the
configuration.

NOTE Many MySQL init scripts offer a reload option, which, in turn, runs
mysgladmin reload. However, this reloads only the grants table. Be sure to
perform a full stop and start after making changes to my . cnf.

As an alternative, global variables (those appearing in my.cnf) can also be set at the MySQL
command-line interface (CLI) by users with privileged rights. The syntax is as follows:

SET variable-name=value;

Global variables set in this way are reset (to the values in my . cnf) upon a server restart, so permanent
changes should go in the configuration file. However, as a means to make a quick change without
having to restart MySQL, global variables used in this manner are ideal.

UNDERSTANDING THE STORAGE ENGINES

As previously mentioned, the storage engine is a distinct part of MySQL, and you are free to use
any one of a number of built-in engines (or even write your own!). Some are general-purpose
engines, whereas others are designed for a specific purpose. Each engine has its own strengths
and weaknesses. This section looks at performance aspects associated with the two main engines
(My1saM and InnoDB), and covers some of the less common engines that are of particular interest
when considering performance.

MyISAM

Up until MySQL version 5.5, MyIsaM was the default engine and is probably still the most widely
used. Conventional wisdom has it that My1sam is faster (whatever you choose that to mean) than its
main rival, InnoDB, but this isn’t always the case. My1saM does have a reputation for speed, however,
particularly with SELECT queriesl

The main disadvantage of MyISam from a performance point of view is that it uses table-level
locking for write queries. That is, if a DELETE, INSERT, or UPDATE query is being executed, the
whole table is locked for the duration of the query. During this time, all other queries on the table
(including SELECTS) must wait.

196

| CHAPTER8 TUNING MYSQL

This can be a particular problem on interactive sites such as forums or social networking where
there is a higher ratio of writing to reading. (The traditional maxim was that databases used for
websites spend approximately 90 percent of their time handling read queries, and 10 percent
handling write queries. But, as the web has become more interactive, this gap has lessened a little,
and it can vary a lot from site to site.). As you’ll see later in this chapter in the section, “Tuning
MyISAM,” this problem can be mitigated by using concurrent inserts, a MyISaM feature that allows
INSERT queries to run without blocking SELECT queries.

Although it’s obvious that slow-running write queries can cause problems when table-level locking
is in force, slow-running SELECT statements can also affect performance because any write queries
need to wait for these to finish before they can acquire a write lock.

The MyTsaM engine also enables tables to be packed using the myisampack tool. Packed tables are
compressed on a row-by-row basis and are typically half the size of uncompressed My1sam tables.
This makes accessing data a little faster (even when the cost of uncompressing is factored in because
there is less data to be read from disk), but such tables are read-only, which limits their usefulness
somewhat. Still, if you have a table with data that is rarely changed, the performance gain from
packing it may make up for the manual intervention involved in unpacking, updating, repacking,
and re-indexing.

Another popular reason for using MyISAM is its support for full-text searching — a feature not
offered by any of the other stock storage engines. As you’ll see in the next chapter, however, full-text
searches can cause a significant performance hit, and busy sites tend to opt for alternative solutions.

InnoDB

InnoDB’s support for transactions is often the main reason why developers move away from MyIsam
(which has no support for them). But for a long time, it suffered a reputation for being slower than
MyTISAM (a reputation that was not always deserved) and was generally thought of as something of a
specialist engine.

THE CONCEPT OF TRANSACTIONS

Transactions are a database concept in which several queries can be run atomi-
cally — that is, either they all run or none run. This is vital in some situations, the
most commonly cited example being banking. Imagine transferring money from one
user’s account to another. This might consist of the following two queries:

UPDATE userl SET balance=balance-100
UPDATE user2 SET balance=balance+100

It simply isn’t acceptable for the second query to fail (perhaps because the server
crashes, or the disk becomes full). Transactions guard against this by keeping a log
of all actions performed, and rolling back if the entire transaction does not complete
successfully.

Understanding the Storage Engines | 197

In the last few years, things have changed. Although development of My1sam has slowed down, there
has been a lot of focus on InnobB. Oracle’s decision to make InnoDB the default engine in MySQL
version 5.5 onward sent a clear signal that it is now the favored engine.

A lot has happened over the past few years. Performance issues that had dogged TnnopB on
multicore machines have been resolved, support for compressed tables has been added (through
the addition of a new file format), and a whole host of additional tuning options have been added.
InnoDB is rapidly making MyIsam seem rather primitive. If you’ve looked at I1nnoDB in the past and
discounted it, now might be the time to re-evaluate it.

Despite its reputation for being slower on lookups than MyIsaM, InnoDB has always offered
particularly fast lookups on primary keys. The situation with secondary keys is more complicated
and is a subject that will be addressed later in this chapter in the section, “Tuning InnoDB.” But by
no means is it an inevitable performance killer.

InnoDB also offers significant advantages over MyTIsSaM when it comes to locking. Whereas MyTsam
must lock a whole table when issuing an UPDATE or DELETE query, InnoDB implements row-level
locking. On write-heavy tables, this alone can be enough reason to use InnoDs.

Finally, it should be noted that, although TnnoDB offers a lot of features, it lacks full-text support.
If you require this, you’ll either have to stick with MyIsam, or implement search routines outside of
MySQL.

MEMORY

The MEMORY engine (also sometimes referred to by its earlier name, HEAP) is unique in that it stores
the entire table in memory. This makes for fast access. Like MyTsawm, it lacks support for transactions,
foreign keys, and row-level locking. There are also a number of specific drawbacks that limit it from
general use.

The contents of MEMORY tables do not persist across server restarts, meaning that they are only useful
for holding temporary data. (Session data is the classic example.) There is also a limitation on col-
umn types, with neither blob nor text columns allowed.

The indexing method can also be problematic in some situations. The MEMORY engine supports both
B-tree and hash indexes, with the latter being the default. B-trees are generally quite a bit slower
than hashes, but in situations in which there are many duplicate index values, performance of hash
indexes can (not will) deteriorate rapidly, and B-trees can be a better option.

The maximum size of MEMORY tables is limited by the max_heap table size variable, which
defaults to 16 MB.

Finally, the MEMORY engine uses fixed-size rows, with the memory allocated for each row being
determined by the size of the largest row. This is somewhat inefficient, and can result in a lot of
wasted memory.

198 | CHAPTER8 TUNING MYSQL

B-TREES AND HASH INDEXES

The MEMORY engine is the only major storage engine to offer the choice of B-tree or
hashing for indexes — MyISaM and InnoDB both use B-tree only. So, which is better?

B-trees are particularly suited for large indexes where it is impractical to keep the
entire structure in memory. They take into account that the majority of the tree
will be held in secondary storage (that is, a hard disk), and they are designed to
minimize the number of disk reads required. Because of their tree structure, B-trees
make it easy to perform range searches (for example, =>, =<, BETWEEN) and prefix
matching (for example, LIKE ' foo%').

Hash indexes are less flexible but are also much faster. Rather than traversing a

tree structure, MySQL can go directly to the value in the table. The table structure
also means that range searches aren’t particularly efficient. With a B-tree, a whole
branch may be returned, whereas with hash tables, the whole table must be scanned.

So, B-trees are usually a better choice for large indexes (which won’t fit fully into
RAM). Hash tables are faster but only for smaller indexes (they don’t scale as well
as B-tree), and only when performing equality tests.

ARCHIVE

In many ways, the ARCHIVE engine is similar to packed MyTsaM tables, although it does support
INSERTs. Both use compression to save disk space and speed up reading, and both are read-only.
ARCHIVE uses z1ib, and generally offers slightly better compression that packed My1sam. However,

ARCHIVE doesn’t support indexing. Locking occurs at the row-level (like InnoDB), thus improving
concurrency.

TUNING MYSQL

Having looked at various aspects of the MySQL internal structure, let’s now concentrate on perfor-

mance tuning. MySQL provides a whole host of configuration options that can impact performance.
Some are specific to individual storage engines, whereas others affect MySQL as a whole. Let’s start
with the latter.

Table Cache

The table cache is perhaps the single most important aspect of nonengine-specific tuning but is a
little more complicated than some of the other caches/buffers. Also, some minor improvements and
changes to variable names were introduced in MySQL version 5.5, so be careful of online documen-
tation written for earlier versions of the software.

The table cache improves performance by holding open tables (that is, tables that are being read/
written by a MySQL process via a file handle) in memory, eliminating the overhead involved in

Tuning MySQL | 199

opening them. (This also involves a write because the table header must be modified each time the
table is opened. The header of the table contains a counter that keeps track of how many open file
handles there are for the table.) Generally, it’s a good idea to strive for all tables being held in

the cache, but in some situations, this is not possible.

If the cache becomes full, and a client attempts to access a table not in the cache, a Least Recently
Used (LRU) algorithm is used to remove (that is, close and write back to disk) an old cache entry.
Running FLUSH TABLES causes all tables in the cache to be removed.

table_open_cache

The primary configuration option for the table cache is table open cache (previously known as
just table cache), which controls the maximum number of tables the cache can hold.

Simply setting this variable to the total number of tables in your databases is unlikely to yield good
results, however. To avoid locking problems when multiple clients simultaneously attempt to access
the same table, MySQL actually keeps a separate copy of the table open for each client accessing

it. Although this results in higher memory usage, it greatly improves performance. Therefore, the
most desirable size for the table cache is proportional to the max_connections — the more clients
simultaneously connected, the higher the number of open tables.

The last thing you want to happen is for tables to be opened and closed mid-query. Therefore, you
should aim for a cache size at least large enough to cope with a worst-case scenario in which the
maximum number of allowed clients is connected, each issuing queries across multiple tables. To
calculate this value, look through your web code for the most tables ever used in a single query,
and multiply by your max_connections. At a minimum, table open cache should be set to

this value.

Of course, this ensures that tables won’t be opened and closed mid-query. Ideally, you want the table
cache to be large enough to minimize the number of tables being opened — period. You could mod-
ify the previous equation and set a value for the table cache equal to max connections multiplied
by the total number of tables in your databases. But in many situations, this is overkill and would
use an unacceptably large amount of memory. (There are also some performance issues with large
table caches, which will be discussed shortly.) Instead, you should start with a reasonable minimum
value (given by the first equation), then observe MySQL running, and tune the cache size up based
on how well the table cache is utilized.

The main variable of interest is opened_tables, which counts the number of times MySQL
has opened a table (that is, not served it from the table cache) since it was last restarted. By
observing the rate at which this increases, you can judge whether table open cache should be
increased.

NOTE Don’t forget that because the table cache starts out empty, opened
tables will initially increase rapidly before gradually tailing off. Therefore, you
should avoid sampling these figures until MySQL has been running for some
time. (Twenty-four hours is generally considered the minimum.)

200 | CHAPTER8 TUNING MYSQL

The following results were taken from a dedicated MySQL server with 6 GB of RAM.
max_connections was set to 1000 and table_open cache to 3000. (The biggest JOIN query
ran on three tables.) MySQL had been running for more than one week.

mysgl> SHOW GLOBAL STATUS LIKE 'Opened tables';
Hommm e Hmmm-oo- +
| Variable name | Value |
R L E LT R i +
| Opened tables | 19915 |

After a few minutes, the query was rerun and produced the following results:

mysgl> SHOW GLOBAL STATUS LIKE 'Opened tables';
Hommm oo R +
| Variable name | Value |
R T b +
| Opened tables | 19978 |

With 63 tables having been opened in this period, you should definitely look at increasing
table open cache.

An additional way to analyze the effectiveness of table caching is to look at the number of currently
open tables, as shown here:

mysgl> SHOW GLOBAL STATUS LIKE 'Open tables';

Hmmmmm oo tommmm oo +
| Variable name | Value |
Hmm oo 4mmmmm o +
| Open_tables | 3002 |
oo tommmo - +

In other words, the table cache is full. Increasing the size should be your priority here (memory
permitting).

NOTE [ncidentally, if you wonder how you can have 3,002 open tables when
the table cache size is only 3,000, MySQL enables the cache size to be temporar-
ily increased if none of the existing cached tables can be removed (because they
are all in use by other clients).

table_definition_cache

New to MySQL version 5.1 was table definition cache, a lightweight partner to the table cache.
One drawback of the table cache (aside from memory usage) is that it requires a lot of file descriptors
(which you’ll learn more about shortly), and the table definition cache offers an alternative strategy
in which only the table definitions (describing the structure of the table, column types, indexing, and
so on) are held in memory. Because these are not open tables, entries in this cache aren’t using file
descriptors, and the memory footprint of each entry is a lot lower than table cache.

Tuning MySQL | 201

Despite these advantages, table definition_cache doesn’t offer as great a performance increase

as the standard table cache. The recommended way to utilize it is as a secondary caching mecha-
nism when the table cache becomes full. (In some situations, memory constraints, max_connections,
or the sheer number of tables that exist mean that it is impractical to set table open_cache large
enough to hold all tables.) The default value in MySQL version 5.5 upward is 400, and any value
from 256 to 524,288 is permitted.

File Descriptors and open_files_limit

File descriptors (sometimes referred to as file handles) are created by the operating system when a
file is opened, and the kernel imposes limits on both the number of descriptors a particular process
can create, and the maximum number of descriptors globally. A large table cache means lots of open
files. In the case of Mmy1saM tables, two descriptors are needed per table, and, in some situations, this
can cause the operating system to run out of file descriptors.

In Linux, you can view the current global limit via proc, as shown here:

$ cat /proc/sys/fs/file-max
205094

But, for more details, inspect via file-nr, as shown here:

$ cat /proc/sys/fs/file-nr
6688 184 205094

These three columns show the following:

> The number of descriptors currently in use

> The number of allocated descriptors available

> The maximum number of descriptors that can be allocated
As files are opened, and descriptors are allocated, this second field decreases. When it gets to zero
(or close to zero), Linux simply makes more descriptors available, up to the maximum.

It’s unlikely that MySQL alone can exhaust the global maximum number of descriptors. (But if it
is sharing a server with other busy services, it may be worth keeping an eye on usage.) Rather, the
problem for MySQL is usually the per-process descriptor limit imposed by Linux, which typically
defaults to 1,024 — too small in many cases. You can inspect and set this limit in the bash shell
using ulimit, as shown here:

ulimit -n
1024

The root user also has the power to change this limit, as shown here:
ulimit -n 2048

ulimit -n
2048

202 | CHAPTER8 TUNING MYSQL

You can inspect the limit imposed on any running process by inspecting /proc/ PID /limits, as
shown here:

cat /proc/'pidof /usr/local/mysqgl/bin/mysgld'/limits|grep "Max open files"
Max open files 3310 3310 files

NOTE The first figure is the soft limit, and second is the hard limit.

It’s not uncommon for init scripts to use ulimit to raise the file descriptor limit for the daemons
they launch, and this is one way to solve the problem with MySQL. However, MySQL provides an
easier solution, the open_files limit configuration option, which essentially does this same thing.
(The value is actually just passed to mysqgld safe, which calls ulimit.)

If you find MySQL complaining about Too Many Open Files, raising open files limit should
be your first avenue. You can estimate a suitable minimum value based on the earlier observa-
tions that MyTsaMm tables need two descriptors per table, and the maximum number of open tables
is determined by the table open cache size. (However, this limit can be temporarily exceeded.)
However, don’t forget that MySQL still needs file descriptors for other things, too.

For 1nnoDB, the number of file descriptors needed depends on the storage method being used. (You’ll
learn about these shortly in the section, “Tuning InnoDB.”) Traditionally, all InnoDB tables were
held in a single file (hence the “too many open files” problem rarely appeared), but there is now also
the option to store each table in its own file. Unlike My1SaM, only one file per table is used.

NOTE Under Windows, MySQL version 5.1 and earlier had a hard limit of
2,048 file descriptors. The problem has been fixed in version 5.5 and later.

Table Cache Scaling

A recurring theme with MySQL cache tuning (and sometimes caching in general) is that bigger is
better — but often only up to a point. Throughout this chapter, you’ll see examples of situations in
which setting a cache too large can actually be detrimental to performance.

The table cache is one such case. As the size of the table cache increases, the speed at which tables
can be closed (which is triggered if the table cache is full) actually decreases. Thus, if you are in a
situation where you have lots of frequently used tables, and you know that the table cache can never
be big enough to hold them all, a lot of table opening and closing will be inevitable. It may make
sense to keep the table cache small to speed up this activity. Admittedly, this is a somewhat extreme
scenario, but it does illustrate the dangers of blindly following the “bigger is better” mantra.

Thread Caching

MySQL is a multithreaded service. As such, a new thread must be created each time a client
connects. On busy servers, this can result in a significant amount of time spent simply creating
and destroying threads.

Tuning MySQL | 203

To combat this, MySQL provides a thread cache to allow existing threads to be reused. When a cli-
ent connects, MySQL first checks the thread cache. If there is a spare thread, it is used; otherwise, a
new thread is created. When the client disconnects, the thread is placed in the cache for future use.

The size of the thread cache is controlled by thread _cache_size, which accepts values between 0
at 16,384. Note that the default size is zero, effectively disabling this feature.

How big should the cache be? Although there is a performance hit associated with creating and
destroying threads, it may not be particularly noticeable unless the server receives many connections
per second. So, in some situations, the thread cache may have an impact on performance. In other
situations, the effect will be marginal.

Let’s start by looking at the counters available for inspecting thread activity:

> SHOW GLOBAL STATUS LIKE 'thread%';

R ECEEE LR e Hmmmmmm- +
| Variable name | value |
e +-------- +
| Threads_cached | 2 |
| Threads_connected | 10 \
| Threads_created | 158703 |
| Threads running | 2 |
fmmm oo R et +

Threads_cached shows the number of threads currently in the cache, naturally enough, whereas
Threads_connected gives the number of currently open connections. Because some of these open
connections may be sleeping, waiting for further queries, Threads running displays how many of
these are actually running.

Of particular interest is Threads created, which shows the number of times a thread has been
created (that is, not served from the cache) since MySQL was last restarted. Because this value is
dependent on MySQL’s uptime, the absolute value is largely irrelevant. Instead, you are interested

in the rate of change — that is, how fast the counter is increasing. If the number of threads created
is increasingly rapidly, you should look at increasing the thread cache size. If the rate of increase is
modest, there will probably be little to gain from upping the cache size.

Another statistic you can look at is the connections counter. By dividing the number of threads cre-
ated by this (shown previously as 158,703), you can calculate the cache miss ratio.

> SHOW GLOBAL STATUS LIKE 'Connections';

oo mmm oo D +
| Variable name | Value |
Hmmm e m - 4ommmm oo +
| Connections | 9201962 |
oo oo Hommmooo- +

In this example, you would arrive at a miss ratio of 0.0173 (158,703/9,201,962) — in other words,
the vast majority of connections use threads from the cache. Be wary of attaching too much
significance to this ratio, though, because it doesn’t tell you the actual number of threads created.
On a relatively quiet server, a high miss ratio might translate to only one or two new threads per
minute. Conversely, on a busy server, an apparently healthy miss ratio may hide that hundreds of

204 | CHAPTER8 TUNING MYSQL

new threads are created each minute. This is an important point, and one that will be repeated when
looking at other caches.

Per-Session Buffers

Although the table cache and thread cache are important enough to warrant detailed study, there
are also a number of other lesser buffers worth a brief examination. None of these is specific to a
particular storage engine, and, in most cases, none offer potential performance gains anywhere near
the table and thread caches. But there are always exceptions to the rule.

sort_buffer_size

The sort buffer is allocated on a per-client basis for any query that needs to perform a sort operation
(that is, ORDER BY and GROUP BY operations). The whole buffer is allocated in one go, so setting
sort buffer size too high can quickly use up a lot of memory if max connections is high, aside
from the performance penalty of allocating overly large chunks of memory.

On Linux, MySQL uses mmap () rather than malloc () for allocating sort buffer sizes larger than
256 KB, and this is somewhat slower. So, ideally you should keep the sort buffer at 256 KB or less.
There is a similar threshold at 2 MB. If you do require a value higher than 256 KB, you should also
aim to keep it under 2 MB.

If you have only a few queries that would benefit from a large sort buffer, you can set a modest
global default and then increase it on a per-session basis by issuing a SET SESSION query after
connecting.

read_buffer_size

The read buffer is used for queries that perform sequential scans of tables. As with the sort buffer,
the full buffer size is allocated for queries that need it (by using read buffer size), and so similar
caveats apply. Again, there are also thresholds at 256 KB and 2 MB, above which performance can
drop, and you are advised not to blindly raise this value too high (unless you have a good reason).

In particular, LIMIT queries on large tables can cause some unexpected detrimental behavior when
read buffer size is set too high. In these situations, the whole table is read into the buffer;
although only the number of rows specified by LIMIT is returned — the rest are simply discarded.

read_rnd_buffer_size

The read rnd cache is the counterpart to read buffer used when reading sorted rows (rather than
sequential rows) and helps to cut down on disk seeks. However, as with the sort and read buffers,
this cache is allocated per client, and you should be careful not to raise it too high globally. Instead,
set it on a per-session basis with SET SESSTON.

join_buffer_size

join buffers are allocated per-session, with one buffer for each non-indexed join between two
tables. Thus, with complex queries, multiple join buffers may be created. They are used for only

Tuning MyISAM | 205

non-indexed joins, and, in most cases, better column indexing produces a greater performance
increase than raising this buffer. As with the other per-session buffers discussed here, care should be
taken not to make the join buffer too big.

Having looked at tuning aspects of MySQL itself, let’s take a look at performance aspects of the
main storage engines (MyISaM and InnoDB). While many of the MyIsam options are well known,
InnoDB is evolving rapidly, and new features are regularly being added. As such, even if you are an
old hand at configuring MySQL, you may learn something new.

TUNING MYISAM

There is a distinct difference between tuning options of MySQL (which you just learned about) and
tuning of individual engines. So, let’s now look at MyIsam-specific settings, and, later in this chapter,
tuning for the InnoDB engine will be examined.

Key Cache

The my1saM key cache is a memory buffer used to hold frequently accessed index (key) blocks. The
size of the cache can be one of the most important MyIsaM-specific tuning options, yet there is also a
lot of misinformation about picking an appropriate size. Unfortunately, a large amount of guessing
is often involved.

The key buffer size ini directive is used to control the size of the cache, with a value of zero
disabling it. Disabling the cache isn’t quite as bad as it may seem because the operating system’s disk
buffering should help to reduce the frequency of index reads from disk. But it is still advisable to
turn the key cache on and set it to a reasonable size.

For a dedicated MySQL server, the general rule of thumb is to allocate between 25 percent and 50
percent of the total memory to the key cache. However, as always, this is only a rough figure.

If you have a particularly small dataset (or a huge amount of memory), this figure may be too large.
Conversely, you should be careful not to set this figure too high. The key cache is used only for
buffering indexes, and MySQL still needs memory for the tables’ contents.

If the key cache is too large, the system may run out of physical memory and start swapping — a
situation that can cause a huge deterioration in performance. Remember that the key cache is for
MyISAM tables only. InnoDB tables have their own buffer, and the size of the My1sam key cache needs
to be reduced.

So, how do you determine a suitable size for the cache? Looking at MySQL’s counters is a good
start, as shown here:

mysqgl> SHOW STATUS LIKE '$key read$';

o mm oo R +
| Variable name | Vvalue |
Hmmmmm oo 4mmmmmoooe +
| Key read requests | 14052595 |
| Key reads | 96504 |
4o oo 4mmmmmmmooe +

206 | CHAPTER8 TUNING MYSQL

Key read_requests shows the total number of requests to read a key block, whereas Key reads
shows the number of times a key block was read from disk (because it was not in the cache). You
can calculate the ratio of cache misses by dividing Key reads by Key read requests. In the
previous example, you would end up with a figure of 0.0069 (96,504/1,405,295).

Because you know that reading from disk is several orders of magnitude slower than reading from
memory, it follows that you should probably experiment with increasing the key buffer size in an
attempt to reduce the number of Xey reads. Unfortunately, things aren’t quite that simple. You’ll often
hear figures bandied about — the most popular seems to be that the cache miss ratio shouldn’t exceed
approximately 0.01 — but, by now, you should know to treat such statements with a pinch of salt.

For starters, a ratio is just that. It contains no information on the actual number of misses, nor the
period of time over which these misses occurred.

Consider the situation of a MySQL server that has been running for the past 24 hours. During
this time, there have been 1,000 key read requests and 48 key reads. This yields a miss ratio of
0.048 (almost five times higher than many sources recommend), and yet this translates only as two
disk-based key reads per hour (on average). Conversely, on a server that handled 288,000 key read
requests during the past 24 hours, of which 1,440 had been from disk, the healthy looking miss
ratio of 0.005 fails to tell the full story — that disk-based key reads have been averaging one per
second [1440/(24 x 60)].

The second problem with this ratio is the assumption that cache misses will actually be several
orders of magnitude slower. Because many operating systems use free memory for caching disk I/0,
you can’t be sure that these key reads will actually be from disk at all.

Finally, you must also be careful not to sample these counters too soon after a server restart. As
you know, the key buffer starts out empty — hence, the miss ratio starts out high and gradually
decreases over time.

Perhaps a more useful metric would be to look at the rate of change of the key read counters because
this would tell you how many potential disk reads were occurring per unit interval. To do this, you
can simply execute SHOW STATUS LIKE 'Skey read$', as shown here:

mysgl> SHOW STATUS LIKE '%key read%';

R ECEEEE LR R ECEEE TR +
| Variable name | Value |
e T T Fommmmmm oo +
| Key read requests | 14092559640 |
| Key reads | 889876 |
e e e T e LT +

Then, wait about 30 seconds, and run it again:

mysql> SHOW STATUS LIKE 'Skey read$';

Hmmm oo R EGERE T e +
| Variable name | Value |
bmmmmm oo dmmmmm oo +
| Key read requests | 14092701815 |
| Key reads | 889877 |

Tuning MyISAM | 207

Here you see 142,175 read requests (14,092,701,815 — 1,4092,559,640), of which only 1 resulted in
a (possible) disk read.

You can take this one step further and use mysqladmin to generate stats at regular intervals (in this
example, every 60 seconds):

mysqladmin ext -ri60 | grep Key reads

#

| Key reads | 889918 |
| Key reads | 6 \
| Key reads | 4 |
| Key reads | 6 |
| Key reads | 4 |
| Key reads | 5 \
| Key reads | 3 |
| Key reads | 1 |
| Key reads | 4 |

Discounting the first field (which shows the total number of key reads so far), you can see that MySQL
averages approximately four key reads — which may or may not result in disk reads — every minute.
You can now ask two questions. Is this level of potential disk activity liable to cause a deterioration

in performance for other aspects of MySQL (or other services running on the system)? Is disk activ-
ity high enough (or the disks slow enough) that reading these blocks from disk will cause a significant
performance penalty? (Note that iostat can shed further light on both these questions.) In many
cases, the answers to both of these questions will be “no,” and a small level of cache misses is quite
acceptable.

Index Preloading

When MySQL is first started, the key cache is naturally empty, and blocks are gradually added to it
as they are accessed from disk. This adds a little overhead, and also results in index blocks existing
in the cache in a somewhat scattered fashion.

Assuming the key cache is big enough to hold them, you can preload entire indexes into the buffer by
using the LOAD INDEX INTO CACHE <table names statement. This has the advantage of sequential
blocks being faster to access, and cuts down on possible disk reads at a later stage. Optionally, you
can append IGNORE LEAVES to not preload leaf nodes. This helps to counter the main disadvantage
of this technique — that loading an entire index into the cache will be wasting valuable space if many
blocks are never accessed.

The preload buffer size variable can be used to control the size of the cache used when preload-
ing indexes. The default value is 32,768, with accepted values in the range 1,024 to 1,073,741,824
bytes (1 GB).

Optimum Block Sizes

MySQL enables you to control the size of the blocks of memory used in the cache with the key cache
block_size configuration option. In addition to this, you can also tune the size of blocks in the physi-
cal index files using the -myisam block_ size startup option. Accepted values for both range from 512
to 1,6384 bytes, with the defaults being 1,024 bytes.

208 | CHAPTERS8 TUNING MYSQL

Your motivation for changing these is to match the block size used by Linux for disk I/O (not to be
confused with the filesystem’s block size). On x86 Linux, use a value of 4 KB.

NOTE On most flavors of UNIX (including Linux), the following Perl one-liner
can be used to show the disk 1/O block size:

perl -e 'Sa=(stat ".")[11l]; print Sa'

Other flavors of UNIX support adding the -g flag to the df command to show
block sizes.

On Windows, the £sutil command can be used (look for the Bytes Per Cluster
value in the output).

Using Multiple Key Caches

Prior to MySQL version 4.1, access to the key caches was linear, with only one request allowed at a
time. Fortunately, this situation has now changed, but there are still a couple of caveats:

> If the buffer is being updated, clients must still wait for the update to complete before they
can access it.

If the buffer is full, concurrent accesses are permitted only if they do not cause keys being
used by another client to be purged from the cache.

To reduce these problems, MySQL enables you to create multiple key caches of user-defined sizes.
After allocating a name and size to these caches, you can then assign individual table indexes to
them. (Any indexes not assigned will continue to use the default key cache.) Following is an example:

mysgl> SET GLOBAL mycachel.key buffer size=1024*1024*16;

Here, a cache named 'mycache1' has been created, and 16 MB of memory has been allocated to it.

The syntax for querying the size of the cache, or the size of each block, is a little different and
requires you to use the @@GLOBAL syntax, as shown here:

mysgl> select @@GLOBAL.mycachel.key buffer size;

e e +
| @@GLOBAL.mycachel.key buffer size |
e R +
| 16777216 |
e +

e it +
| @@GLOBAL.mycachel.key cache block size |
e ittt +
| 1024 |

Tuning MyISAM | 209

The CACHE INDEX statement is used to assign the indexes on a table to a given key cache, as shown here:

mysgl> CACHE INDEX categories, comments IN mycachel;

oo o mm oo Hommmmoooo- e +
| Table | op | Msg type | Msg text |
 EEREEEE TR e T T $ommmmmm - $---- - +
| live.categories | assign to_keycache | status | OK |
| live.comments | assign to keycache | status | oK |
e e e T e R T +

Aside from the benefits of reduced contention, you attain more control over block retention through
careful selection of which indexes to cache where. For example, if you have an index that you never
want to be flushed from the cache (by the LRU or MIS implementations), you can assign it to its own
key cache (making sure that the cache is large enough to fit the index).

Hot, Cold, and Warm Caches

The MySQL documentation also outlines a suggested three-tier setup, in which indexes are assigned
to a cache based on how static or dynamic they are likely to be. Let’s take a broad look at this.

You assign 60 percent of your key cache memory to the default cache and then create two additional
caches, each of 20 percent. The first of these new caches, referred to as the hot cache, is used for the
indexes of tables that are searched heavily, but rarely updated. The second custom cache, the cold
cache, is used for tables that are frequently being modified. All other indexes go in the default cache,
which is referred to as the warm cache, and contains tables that fall in the middle ground (that is,
neither hot nor cold).

Because index blocks in the hot cache never (or rarely) change, if you reach the stage where the
cache is full and blocks must be removed to make way for new ones, the purged blocks won’t need
to be written back to disk.

The use of a cold cache improves the chances that the frequently modified (but not necessarily

searched) indexes remain in memory. This makes updating of the index much faster.

Configuring Multiple Key Caches

So far, you’ve learned how to create custom key caches at the MySQL prompt. To conclude this sec-
tion, let’s briefly look at the configuration file syntax.

For creating a cache, you simply prepend your wanted cache name to the beginning of the variable,
as shown here:

mycachel.key buffer size = 512M
mycache2.key buffer size 1G

Things are a little tricky if you want to automate the CACHE INDEX statement to assign table indexes
to these caches. For this, you need an init file, which you simply populate with the queries to exe-
cute, as shown here:

CACHE INDEX categories, comments IN mycachel
CACHE INDEX userprofiles IN mycache2

210 | CHAPTERS8 TUNING MYSQL

You then source this file (you can imagine that it has been saved as /var/lib/mysql/custom.sql)
from my.cnf like so:

init file=/var/lib/mysql/custom.sqgl

Caching Algorithms

When the key cache becomes full, an LRU retention policy is used by default — that is, frequently
used blocks are more likely to remain in the cache than less frequently used ones. If a block set for

removal is dirty (that is, it has been modified since it was read in from disk), it is written back to
disk first.

If the LRU policy seems a little crude, Mmy1sam also supports a Midpoint Insertion Strategy (MIS).
If you choose to use MIS for the key cache, there are a couple of configuration options to set:

> key cache division limit — This specifies the percentage of the key cache to allocate to
the warm list. The default value, 100, effectively causes MIS to be disabled (because the hot
list will be of zero size). When lowering this value, remember that the warm list will be used
more than the hot list, and the sizes of each should reflect this. Broadly speaking, a division
limit of approximately 60 percent to 90 percent should be right in most cases.

> key cache age threshold — This controls how long an unused entry should stay in the
hot list before being moved back into the warm list. The default is 300 seconds, and permit-
ted values range from 100 seconds upward.

Miscellaneous Tuning Options

Although the key cache is the cornerstone of tuning performance of MyISaMm tables, there are a num-
ber of other MyIsamM-specific configuration options that can help, so let’s take a brief look at some of
them.

concurrent_insert

Enabled by default, the concurrent _insert option enables INSERT statements to be executed on

a table at the same time as SELECT queries are reading from it. This partly alleviates the table-level
locking previously described. (Although it does nothing to help the table-level locking that occurs on
UPDATE and DELETE queries.)

Things aren’t quite that simple, though. The concurrent insert variable actually supports three
settings:

> A setting of 0 turns this option off.

> A setting of 1 (the default) enables concurrent inserts only when there are no deleted rows in
the middle of the table.

> A setting of 2 enables concurrent inserts even if such deleted rows exist. If any SELECT
queries are running, the data will be inserted at the end of the table. Otherwise, it will be
inserted in the gap left by the deleted row (the default behavior).

Tuning InnoDB | 211

low_priority_updates

Despite its name, low priority updates doesn’t just lower the priority of UPDATES — it also
applies to DELETEs and INSERTs. As you might have guessed, it causes queries that modify a table
to have a lower priority than those that read from it. So, if multiple queries are waiting to be run
against a table, write queries are pushed to the bottom of the queue.

If you choose not to enable this option globally, it can still be set on a per-query basis using the fol-
lowing syntax:

update low _priority into ..

delay_key_write

When a my1sam index/key is updated, the default behavior is to write the changes back to disk. For
frequently modified tables, this can result in a lot of disk writes. By enabling delay key write (either
on a per table basis, or globally by specifying a value of anL), changes to the indexes are buffered in
memory, and not written out to disk until the table is closed. This greatly speeds up index updates.

The downside is that if MySQL is not shut down cleanly, there’s a good chance of index corruption
(because the buffer will not have been flushed to disk). You can fix this with myisamchk, but for big
tables, it will take a while to run.

As you have seen, MyIsaM provides a wealth of tunable configuration options, and careful use of
these can have a huge impact on how well MySQL is able to handle heavy usage.

For many years, MyISAM was the de facto storage engine, and InnoDB was seen as something of a
specialist engine, mainly used in situations where transactions were needed. This is emphatically
no longer the case, and InnoDB has evolved (and continues to do so) into a very powerful storage
engine. Let’s take a closer look at it.

TUNING INNODB

InnoDB has come a long way over the last few years, and provides an impressive set of configurable
parameters. Since InnoDB has become the default storage engine for MySQL, this situation can only
improve. Certainly, as you’ll see in this section, InnoDB is where all the exciting developments are
taking place.

Monitoring InnoDB

The primary means of monitoring the status of InnoDB is via the InnoDB monitor, accessible via the
following command:

show engine innodb status\G

This provides detailed information on the health of various aspects of Innobg, including threads,
buffers, and semaphores. Although the majority of this information probably doesn’t mean much at
this stage, each of these areas will be covered in the following sections.

212 | CHAPTERS8 TUNING MYSQL

Figure 8-2 shows the first page of the monitor’s output taken from a busy database server.

mysql> show engine innodb status\G

EEER AR AA AR AR R AR EAAEEE | poy PEREAEERE R AR AR R AR AR
Type: InnoDB
Name :

status:

120905 15:01:22 INNODB MONITOR OUTPUT

Per second averages calculated from the last 11 seconds

=rv_master_thread loops: 17017844 1_second, 16766673 sleeps, 1697685 10_second, 43035 background, 43035 flush
srv master thread log flush and writes: 15438024

SEMAPHORES

08 WAIT ARRAY INFO: reservation count 3048501, signal count 5082931
Mutex spin waits 40781379, rounds 43905374, 05 waits 917985
RW-shared spins 3216781, rounds 60468862, O5 waits 1872812

RW-excl zpinz 277838, round=z 11712081, 0S5 waits 237546

Spin rounds per wait: 1.08 mutex, 18.80 RW-shared, 42.15 RW-excl

FILE I/O

I/0 thread 0 state: waiting for completed aio requests (insert buffer thread)
1/0 thread 1 state: waiting for completed aio requests {log thread)
I/0 thread 2 state: waiting for completed aio requests (read thread)
I/0 thread 3 state: waiting for completed aic requests (read thread)
I/0 thread 4 state: waiting for completed aio requests (read thread)
I/0 thread 5 state: waiting for completed aio requests (read thread)
1/0 thread 6 state: waiting for completed aio reguests (write thread)
I/0 thread 7 state: waiting for completed aio requests (write thread)
I/0 thread 8 state: waiting for completed aio requests (write thread)
I/0 thread 9 state: waiting for completed aio requests (write thread)
Pending normal aioc reads: 0 [0, O, 0, 01 , aio writes: O [0, O, O, 0] ,
ibuf aio reads: 0, log ifo's: 0, sync ifo's: 0

Pending flushes (fsync) leg: 0: buffer peol: 0

16541911 03 file reads, 230963809 08 file writes, 254469%3 03 fsyncs
0.00 reads/s, 0 avg bytes/read, 12.54 writes/s, 1.45 fsyncs/s

INSERT BUFFER AND ADAFTIVE HASH INDEX

Ibuf: size 1, free list len 5, seg size 7, 26756 merges

FIGURE 8-2

Working with Buffers and Caches

The 1nnoDB buffer pool (innodb_buffer pool size in my.cnf) is the most important cache pro-
vided by InnoDB, holding a similar importance to the key buffer in My1sam. But whereas the MyTsam
key buffer caches only indexes, leaving caching of data to the underlying operating system, InnoDB
caches both indexes and data in its buffer pool. Taking this task away from the operating system
gives extra responsibility to InnoDB, and, as you’ll see shortly, a more advanced LRU algorithm is
used.

In an ideal world, you’d make the buffer pool large enough to hold all your data, thus drastically
reducing disk I/O access times. This largely depends on the size of your data, but in many situations,
it is feasible, albeit with several potential hurdles along the way.

On 32-bit hardware, a process won’t access more than 4 GB of memory. However, 32-bit architec-
tures are becoming increasingly uncommon, especially on high-end servers, and, in most situations,
this won’t be an issue.

Even if the entire data set won’t fit into memory, you should still strive to make the buffer pool as
big as possible. The buffer pool itself has some overhead, as does the rest of MySQL, and you must
ensure that you leave enough memory for these and other applications running on the server.

Tuning InnoDB | 213

One issue that may get in the way is the disk buffering implemented by the operating system. As

you have already seen, many operating systems reduce disk I/O by caching reads and writes in free
memory, and this largely duplicates the caching done in the buffer pool by InnopB. This can poten-
tially lead to double-buffering situations, with data cached in both places. Usually, you might prefer
operating system-level caching, but in this situation, the TnnobpB buffer pool is much better suited for
the job. Thus, you want to prevent the operating system from also caching the data.

As luck would have it, MySQL provides a cnf setting for this, innodb_flush_method. By setting
this to 0_DIRECT, you can eliminate operating system-level caching for InnoDB. In case you wonder,
double buffering is an issue with MyIsaM, too. It’s just that My1sam doesn’t provide a way to bypass it.

NOTE o0 DIRECT is only available on Linux, FreeBSD, and Solaris. On
Windows, the flush method is always unbuffered.

NUMA AND SWAPPING

Linux will swap out pages of memory to disk if it starts to run out of physical mem-
ory. But a significant number of MySQL users on high-end servers have observed
behavior where Linux starts to swap heavily, despite there being plenty of free mem-
ory. Naturally, this is a performance killer and seems bizarre.

The explanation turns out to center on low-level kernel memory management

on newer multiprocessor machines. In traditional symmetric multiprocess-

ing (SMP) — also known as Uniform Memory Access (UMA) — architectures
consisting of a single processor with multiple cores, each core has equal access

to the available memory. By contrast, Non-Uniform Memory Access (NUMA)
architectures (of which the AMD Opteron was one of the first) divide the memory
between each processor (processor, not core). Each processor can still access the
entire range of system memory, but some regions of memory will be closer — and
hence lower latency — than others.

To quantify this, on a NUMA machine with two processors and 32 GB of RAM, each
processor has 16 GB of local RAM. Processes prefer to use this local RAM because

of the lower latency, but, of course, they may still use the nonlocal RAM if necessary.
(However, this does not mean that each processor is limited to accessing 16 GB of
memory!)

The problems start when a single process requires more memory than what is local
to the processor on which it is running. In these situations, some version of the
Linux 2.6 kernel decides it would be better to swap out to disk than suffer the slight
performance hit of accessing this nonlocal memory. The result is swapping, despite
there being lots of free memory.

continues

214 | CHAPTER8 TUNING MYSQL

continued

Some administrators have attempted to solve this problem by simply turning off
swap space, but this is certainly not recommended. Although you generally want
to strive to avoid significant swapping at all costs, swap spaces provide a useful
safeguard if there is a temporary spike in memory usage. Without that swap space,
the kernel OOM (out of memory) killer would simply kick on and start killing
processes to free up memory. In this situation, swapping is probably the lesser evil.

A better solution is to launch MySQL with the ~-memlock option, which uses the
underlying kernel function mlockall to lock a process in memory, preventing it from
being swapped. Numerous bugs have been reported in mlockall, however, which
may cause stability problems — a lot depends on your distribution and kernel.

Another partial solution is to change the swappiness of the system with the
following:

echo 0 > /proc/sys/vm/swappiness

Remember, though, that this doesn’t prevent swapping. It merely discourages it.

Finally, you can also use the numact1 tool to configure how Linux treats memory on
NUMA architectures. Adding the following entry to mysqld safe causes MySQL
to launch with interleaved memory (that is, the memory used for MySQL will be
spread out evenly, reducing the likelihood that the memory local to a particular
processor will become full):

cmd="/usr/bin/numactl --interleave all $Scmd"

Managing the Buffer Pool
InnoDB uses a modified LRU for the buffer pool, based on an MIS.

With the 1nnopB buffer pool, the default division is for the cold list (containing less frequently
accessed items) to occupy 37 percent of the pool size, with the hot list (frequently accessed items)
taking the remaining space. Should you want, though, you can change this value with the innodb_
old blocks pct configuration option, which accepts values in the range 5 to 95.

For applications that occasionally access large tables, it often make sense to reduce innodb_old_
blocks_pct, to prevent this less commonly accessed data from being cached so heavily. Conversely,
for small, frequently accessed tables, raising innodb old blocks pct increases the likelihood that
this data will be kept in memory for future use.

As with other MIS algorithms, new pages are inserted at the top of the cold list, making them prime
candidates for promotion to the hot list. Occasionally, though, this behavior is not wanted because
it may cause a page that is accessed a couple of times in short succession, and then never again to be
promoted. In fact, during a table scan, blocks are accessed several times in short succession, so even
one SQL query may be enough to promote the data to the hot list.

Tuning InnoDB | 215

InnoDB provides a way to control this behavior via innodb_old blocks_time. This configura-
tion option controls the number of milliseconds that must elapse before a newly added page can be
promoted to the hot list. The default value is zero, but raising this to a relatively small value (such
as 500 milliseconds) can go a long way to preventing this “problem.” (However, this MIS insertion
strategy isn’t always undesirable behavior.)

Inspecting the Buffer Pool

The primary means to monitor the buffer pool is via the InnobB monitor
(show engine innodb status), and the following snippet shows some sample output:

Total memory allocated 160972800; in additional pool allocated 0
Dictionary memory allocated 99761

Buffer pool size 9599

Free buffers 0

Database pages 15549

0ld database pages 5720

Modified db pages 0

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 7042, not young 263971

0.12 youngs/s, 5.02 non-youngs/s

Pages read 49210, created 10, written 1538

0.93 reads/s, 0.00 creates/s, 0.00 writes/s

Buffer pool hit rate 984 / 1000, young-making rate 2 / 1000 not 88 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s

LRU len: 15549, unzip_LRU len: 1556

I/0 sum[44]:cur[0], unzip sum[29] :cur[0]

Of particular interest are the following fields:

>

>

Database pages — This is the number of pages (by default 16,000) in the buffer pool.

01d database pages — This is the number of pages in the cold list. Subtracting this value
from Database pages gives the number of pages in the hot list.

pPages made young— This is the number of pages that have been promoted from the cold
list to the hot list.

pPages made not young— This is the number of pages that have stayed in the cold list
without being promoted.

youngs (not-youngs) /s — This shows the rate (in seconds) at which pages in the cold list
have or have not been promoted to the hot list.

As you have seen, the promotion of pages from the cold to hot list is sometimes undesirable, espe-
cially in situations where the promoted pages are unlikely to be accessed regularly. This information
can give you an insight into this. As always, though, it’s generally the rate of change (youngs/s and
non-youngs/s) that you should be most interested in, rather than absolute figures. A low number

216 | CHAPTER8 TUNING MYSQL

of youngs/s shows that few pages are promoted to the hot list. In an application that regularly
accesses the same data, this would suggest that innodb_old blocks_time be lowered. Conversely,
a high number of youngs/s on applications that perform frequent large scans would suggest that
innodb old blocks time be raised.

In addition to taking into consideration the general behavior of your application (for example, is
there any benefit to modifying the behavior of a hot list promotion?), it can be beneficial to look at
these statistics during any regular irregular activity, such as the daily generation of reports. (In such
situations, you probably don’t want a high youngs/s rate.)

Using Multiple Buffer Pools

On busy systems with large buffer pools, there will typically be many threads accessing data simul-
taneously from the buffer pool, and this contention can be a bottleneck. Starting with MySQL ver-
sion 5.5, InnoDB enables multiple buffer pools to be created. Each is managed independently and
maintains its own LRU and mutual exclusion (mutex). Cached data is randomly assigned to the
pools, however, so the database administrator has no control over how the data is divided.

NOTE You’ll learn more about mutexes later in this chapter.

The innodb buffer pool instances configuration option is used to control this and takes a value
between 1 (the default) and 64. Because the use of multiple pools is intended only for high-end sys-
tems, this option has no effect when innodb buffer pool size is lower than 1 GB.

Insert Buffering

A subset of the buffer pool, the insert buffer is used to cache changes made to secondary indexes.
Werite queries on a table often result in secondary indexes becoming unordered, and re-ordering
them can be I/O-intensive (unless the affected pages are already in the buffer pool). By caching these
changes, they can be grouped together and executed when the affected pages are next loaded into
the buffer pool.

This buffer can dramatically reduce disk I/O in applications that perform many write queries on
tables. However, because it is part of the buffer pool, it also reduces the amount of memory avail-
able for data page caching. For this reason, if memory is in short supply, it may make sense to dis-
able insert buffering — especially for data that has few secondary indexes.

The innodb change buffering configuration option controls whether such changes are buffered.
Starting with MySQL version 5.5, this option also enables you to control what will be buffered.
Following are accepted values for innodb change buffering:

> A1l — Caches inserts, deletes, and purges (physical deletion). This is the default value.
> None — Disables the insert buffer.

> Inserts — Caches insert operations only.

Tuning InnoDB | 217

> Dpeletes — Caches delete operations.
» Changes — Caches both inserts and deletes.

> purges — Caches purges only.

Adaptive Hashing

Adaptive hashing is a feature of InnoDB designed to improve performance on machines with large
amounts of physical memory.

For tables that almost fit fully into memory, hash indexes provide a faster means of lookup than the
default B-tree indexes. With adaptive hashing enabled, MySQL monitors index-based queries and
built in-memory hash tables on those indexes that are frequently accessed.

In many cases, this does improve performance. But it’s worth remembering that these hashes require
maintenance, just like any other index. This results in locking when the hashes are written to, and
on multiprocessor machines (where innodb thread concurrency is higher), deadlock can occur.

If you do choose to enable adaptive hashing, look out for frequent Holds Adaptive Hash Latch
messages in the transactions section of the TnnoDB monitor.

Adaptive hashing can be enabled/disabled via the ini setting innodb adaptive hash index.

Working with File Formats and Structures

As with most other storage engines (MEMORY being the most notable exception), data in InnoDB data-
bases is held on disk, and this underlying storage can have an effect on performance. In this section,
you learn how InnoDB arranges files on disk, and how the structure of these files impacts the speed
of searching on primary and secondary indexes.

Mutliple Tablespaces

InnoDB has traditionally used a single file to hold all data in all databases. This is in contrast to
MyTISAM’s use of a directory for each database, containing three files for each table (format, index,
data). However, multiple tablespaces are now also supported, allowing each table to occupy its own
file. The innodb file per table directive can be used in my.cnf to control this.

The primary advantage here is flexibility over where table files are stored. For example, you may
want to split them across disks for performance, or simply because of their size. The performance
gain is often over-estimated, though, and the most likely reason that you’d want to enable multiple
tablespaces is to allow table compression (which you’ll learn more about shortly).

Multiple tablespaces can actually be detrimental to performance because of increased disk I/O and an
increase in the number of file descriptors used. InnoDB uses £sync () to flush data files after writes.
Unlike the preferred fdatasync (), £sync () also causes meta data such as the last modification

time to be updated, increasing (albeit only slightly) the amount of data written. In addition, InnobB
cannot group writes occurring across multiple tablespaces, leading to an increase in £sync () calls.
Coupled with the increased disk activity caused by using £sync () over fdatasync (), this can cause a

218 | CHAPTERS8 TUNING MYSQL

noticeable performance drop. For this reason, you should generally avoid multiple tablespaces unless
they are required (for example, for compression).

File Formats

InnoDB version 1.0 introduced an alternative file format named Barracuda. (The existing format
has since been named antelope.) Although there are a handful of small changes behind the scenes,
the primary concern here, of course, is with possible performance improvements. Mostly, there is
little difference between Antelope and Barracuda, but there are two new features to InnoDB for
which the Barracuda format must be used: compression and variable-length columns. Both of these
topics will be covered in detail shortly. The innodb file format ini directive is used to control
the format used when creating or altering a table.

Data Structure

InnoDB stores data in a B-tree, using the primary index as the key. This results in excellent per-
formance for lookups on a table’s primary key, but weaker performance when searching against
secondary keys. For fixed-length columns, the data is stored directly under the node. But variable-
length columns (such as varchar) — which may be too large to fit in a B-tree page — pose a prob-
lem. With the antelope format, the first 768 bytes of variable-length columns are stored in the
B-tree, and any remaining data is stored in a separate overflow page.

By storing the first 768 bytes in the B-tree, you remove the need for overflow pages to be used (and,
hence, cut disk 1/0, too) for data smaller than this size. However, too many variable-length columns
can cause the B-tree to fill more heavily with data than indexes, reducing its efficiency.

The Barracuda format offers some improvement on this situation. When ROW FORMAT=DYNAMIC
(or ROW_FORMAT=COMPRESSED) is used, variable-length columns more than 768 bytes are stored fully
off-page, which is naturally more efficient that splitting the data across two locations.

Memory Allocation

InnoDB was initially developed at a time when multicore processors were starting to enter the main-
stream market. The default memory allocation libraries of many operating systems were not tuned
for multiple cores, and the InnoDB developers made the decision to implement their own memory
allocation routines.

The situation has changed since then, and a handful of high-performance memory allocation libraries
are now available that surpass the performance of InnobB’s own library. As such, you will probably
want to use one of these, rather than InnoDB’s.

The ini setting innodb_use sys malloc controls whether InnoDB uses its own library, or the under-
lying operating system’s library. Setting this value to 1 (the default) causes the library of the operating
system to be used. Note that enabling this limits InnoDB’s built-in memory-tracking statistics, which
decreases the verbosity of the memory section of the InnoDB monitor’s output.

Tuning InnoDB | 219

MEMORY ALLOCATION IMPLEMENTATIONS

In Linux, the default C library is glibc, which uses ptmalloc2 (itself an
enhancement of dimalloc — the pt stands for per-thread) for memory allocation.
Numerous alternatives exist, and although they were often written with Linux in
mind, they mostly work across Windows and UNIX, too.

> TcMalloc (thread-cache malloc) is Google’s implementation. It claims to be
much faster than ptmalloc, while also reducing lock contention (a problem
under multicore machines) via the use of spin locks. Despite this, it tends to
use more memory than the likes of ptmalloc2.

> JEMalloc (named after Jason Evans, the author) is used on Facebook and in
Firefox. It is also the default malloc under FreeBSD. Implementations are
available for OS X, Solaris, and Windows; and performance is considered
similar to that of TcMalloc.

> Nedmalloc claims to be faster than any other malloc implementation and is
primarily targeted at Windows; although it will happily run on most UNIX
derivatives, too.

Memory allocation isn’t just about InnoDB, or even MySQL, and is one of the most
under-appreciated aspects of system performance in general. Switching to an alter-
native malloc implementation is painless, can be done on a per-application basis,
and usually results in a significant performance improvement.

Threading

InnoDB makes extensive use of the threading capabilities of the underlying operating system, allow-
ing it to scale well on multicore systems. Some threads are used to service user requests, whereas
others run in the background to perform housekeeping. The maximum number of threads used can
be raised and lowered, and there are both advantages and disadvantages to this.

In the past, it was often necessary to limit the number of concurrent threads because the high levels
of context switching would eat away at performance. However, increases in the scalability of both
operating systems and ITnnoDB on multicore architectures have decreased this need, and InnoDB gen-
erally runs fine with no limit on the number of concurrent threads. Should you want to set a limit,
however, it is controlled by innodb_thread concurrency, the default being zero (no limit).

Disk 1/0

Given that disk IO is the major bottleneck in many systems, it’s not surprising that the Tnnops devel-
opers have devoted considerable time to optimizing performance in this area. When you learn more
about threading in the later section, “Background Threads,” you’ll see how flushing dirty pages (that
is, pages of memory that have been modified and must be written back to disk) can cause spikes in
disk activity, and you’ll discover the ways in which TnnoDB attempts to solve this. But, for the moment
let’s concentrate on the most significant feature of disk I/O handling — the read-ahead mechanism.

220 | CHAPTER8 TUNING MYSQL

read-ahead Requests

read-ahead requests involve prefetching data from disk if usage patterns suggest that it may soon
be needed. In TnnoDB, memory pages are grouped in extents, where an extent consists of 64 con-
secutive pages. If more than a certain number of pages from an extent exists in the buffer cache,
MySQL preloads the remaining pages in the extent.

In the past, TnnobB supported two methods of read-aheaad:

> Random read-ahead — Here, the decision of whether to prefetch remaining pages was
based solely on the number of pages from the extent already in the buffer.

> Linear read-ahead — Here, the decision is based on the number of sequential pages that
have been read.

In many cases however, random read-aheads actually reduced performance, and they were dropped
in InnoDB version 1.0.4.

So, that leaves linear read-aheads, which can be controlled via the innodb read ahead
threshold ini directive. This variable controls the number of sequential pages in an extent that
must be accessed (and be in the buffer cache) to trigger a read-ahead for the remaining pages.
(The default is 56.) When the last page of a sequence falls at the end of an extent, InnobB will also
read in the whole of the next extent.

Although it may be tempting to set a low threshold, this, of course, increases disk activity, and could
prove counter-productive, because there will likely be a high level of “waste.” One useful metric to
look at is the number of pages prefetched and the number of pages that were subsequently evicted
from the buffer pool without having been accessed. You can do this like so:

mysgl> show status like '%ahead%';

o e D +
| Variable name | value |
et e P Hmmm---- +
| Innodb buffer pool read ahead | 4602 |
| Innodb buffer pool read ahead evicted | 682 |
oo Hmmm-o- +

Here, out of 4,602 pages prefetched, 682 were later evicted from the buffer cache without having
been used — so, approximately 15 percent. Trying to dictate rules over what constitutes an accept-
able eviction rate is misguided, but because the general aim is to keep this figure lower, it gives you
a basis for monitoring any changes made to innodb_read ahead threshold. Also, any changes to
the operation of the buffer cache (such as changing the size or innodb _o1d_blocks time) have an
impact on the eviction rate.

Similar metrics can be obtained from the InnobB monitor, this time in the form of read-aheads and
evictions per second (since the monitor was last queried):

Pages read ahead 15.08/s, evicted without access 2.66/s

Tuning InnoDB | 221

Background Threads

Previous versions of ITnnoDB used a single background thread for reading and writing to disk, but
starting with TnnoDB version 1.0.4, this number is now configurable. Each thread can handle up to
256 pending requests, and a maximum of 64 threads may be configured. Two ini settings are pro-
vided, each of which accept values in the range 1 to 64, and default to 4. They are innodb_read_
io_threads (maximum number of read threads) and innodb_write io threads

(maximum number of write threads).

Before rushing to increase these limits, remember that they will not increase bandwidth on indi-
vidual disks; although they will potentially help to alleviate bottlenecks in high-load environments,
where data is spread across multiple disks.

Then Pending reads and Pending writes columns of the TnnoDB monitor’s output can help you judge
if the thread concurrency would benefit from being raised. Recalling that each thread can queue up to
256 requests, if you see more than 256 x number of threads pending reads or writes, this will clearly
cause a bottleneck, and a gradual increase in the number of read/write threads would be beneficial.

Adaptive Flushing

In earlier versions of TnnoDB, the flushing of dirty pages from the buffer occurred when the percent-
age of dirty pages exceeded a preconfigured value (innodb_max_dirty pages_pct). This had the
tendency to cause spikes in disk I/O, and an adaptive flushing mechanism was introduced in ITnnobB
version 1.0.4.

With adaptive flushing, TnnoDB attempts to calculate the rate at which flushing needs to occur,
based on the number of dirty pages and the rate at which they have historically been flushed. This
allows the master thread to perform flushing at a much more constant rate, eliminating these spikes
in disk usage. Adaptive flushing — which is enabled by default — can be controlled using the
boolean innodb adaptive flushing ini directive.

Disk Bandwidth

Although adaptive hashing will indirectly attempt to calculate the disk I/0 throughput, it can occa-
sionally be useful to override this. innodb_io capacity enables you to specify the number of I/O
operations per second that the disk subsystem can handle. The default is 200, and accepted values
are from 100 (the previous default) upward.

NOTE Setting this parameter incorrectly can cause significant problems. In most
cases, it should be left at the default, allowing TnnoDB to calculate the available
bandwidth itself and adapt to varying workloads.

Purging
The purging of data back to disk has traditionally been performed by the master thread in TnnoDB.

From InnoDB version 1.1 (MySQL version 5.5) onward, the option now exists for this to be carried
out by a separate thread: innodb purge threads. The default of 0 disables the use of a separate

222

| CHAPTER8 TUNING MYSQL

thread, whereas a value of 1 enables it. Note that this setting applies only to garbage collection
(in particular, removing unneeded entries from the undo log — innodb write io threads still
controls threading when writing dirty pages out to disk).

In theory, a separate thread should improve performance. But in many situations, it simply shifts
the bottleneck from one place (queue in the thread) to another (disk contention). Still, this option is
worth knowing about, particularly for high-end systems.

Mutexes

In a multithread environment, care must be taken when threads try to simultaneously access the
same resource. In general, concurrent reading of a resource isn’t a problem. But when writing to a
resource, care must be taken to ensure that multiple threads don’t attempt to write at the same time.
In many cases, you also want to prevent read requests when writing is taking place.

InnoDB (and MySQL, in general) implements this through extensive use of mutual exclusion
(mutex) locks, and, not surprisingly, write locks are often the source of bottlenecks (because
they generally also prevent other threads from reading the resource). In addition to this, the
process of initializing and destroying locks introduces some overhead, which, in some cases,
can be significant.

This section focuses on the technique of spin locking and how this relates to mutexes.

Inspecting Mutexes

Mutexes in use by InnoDB can be viewed using SHOW ENGINE INNODB MUTEX to produce output
similar to the following snippet:

4mmmmm— - mm m e e e e e e e Hmmmmmmmm e +
| Type | Name | Status |
e e e S e e +
| InnoDB | /../../storage/innobase/fil/£fi10fil.c:1313 | os _waits=111 |
| InnoDB | ../../../storage/innobase/srv/srv0srv.c:886 | os waits=12183 |
| InnoDB | ../../../storage/innobase/thr/thr0loc.c:227 | os_waits=1 |
| InnoDB | ../../../storage/innobase/mem/memOpool.c:206 | os _waits=10 |

Previous versions of MySQL displayed more verbose output, including counts on spin locks and the
number of times a mutex had been requested. From MySQL version 5.0.33 onward, this extra infor-
mation is displayed only if MySQL is compiled with uNIv_DEBUG enabled. You’ll learn more about
the os_waits column in a minute.

MySQL version 5.0.33 also hides entries relating to the buffer pool, or where os_waits is zero. The
intention here is to clean up the output, which would often run to many thousands of lines. Removal
of buffer pool mutexes is a prime candidate in this effort because they are unlikely to be the cause of
bottlenecks. (Each 16 KB block of the buffer pool has its own mutex.)

Spin Locks

If a thread fails to acquire a lock, the usual procedure would be for it to sleep for a short period
before trying again. However, mutexes in InnoDB are often short-lived, and it can be more efficient

Tuning InnoDB | 223

for the thread to repeatedly poll the mutex in the hope that it will soon become free. If the lock is
not freed within a short time, the thread sleeps.

The name spin lock (also referred to as a spin loop) comes from the polling technique. When an
InnoDB thread enters this state, the code loops through a tight set of instructions. This prevents the
operating system’s task manager from rescheduling the task (that is, causing it to sleep). The down-
side, of course, is that this loop can eat away at system resources, especially if the loop delay is too
low. Modern CPUs tend to implement a PAUSE instruction, however, and TnnobB will use this where
possible to reduce resource usage.

The period between polling is controlled by innodb_spin_wait_delay, which takes a value
between zero and 232-1. The default is 6, while a value of zero disables polling.

The os_waits column of the SHOW ENGINE INNODB MUTEX output shows the number of times that
InnoDB failed to acquire a lock through polling, and fell back on the operating system’s thread sleep-
ing. Rapidly increasing values here (remember that you’re usually interested in the rate of increase,
rather than the absolute figure) could signify that the mutex is causing a bottleneck, and it may be
worth experimenting with raising innodb_spin wait delay in the hope that less threads need to
be sent to sleep.

Compression

Earlier in this chapter, you learned that the ARCHIVE and MyTSaM engines support table compression.
Although compression increases CPU usage (because pages must be compressed and decompressed
as they are written or read from disk), it cuts down on the amount of data that must be transferred
to and from disk. This is generally a good compromise (because disk I/O is so often the bottle-
neck) — especially for read-heavy applications. Unfortunately, MyISAM’s compression support can

be used only for read-only tables, whereas ARCHIVE is something of a specialist engine, making it
unsuitable for general-purpose use.

The good news is that InnoDB also supports compression (of both tables and indexes), and for the
most part, it is transparent, not limiting the functionality of the database. In fact, the only real
restriction on compression is that you must configure InnoDB to use the Barracuda file format
(the default), rather than the newer Antelope format.

The compression algorithm is based on z1ib (LZ77) and is applied to both table data and

indexes — a significant measure, given that table indexes can often be large. It’s also worth noting
that, where possible, MySQL keeps a copy of a compressed page in the InnobB buffer pool in both
compressed and uncompressed form. When the pool becomes full, an LRU algorithm is once again
used to decide what to evict.

The twist is that the decision to evict compressed versus uncompressed pages is based on the status
of the server. If the server appears to be I[/O-bound, uncompressed pages will be the first to go
(freeing up more space in which to cache pages, thus reducing disk I/0). Conversely, if the server
appears to be CPU-bound, MySQL favors the eviction of compressed pages in an attempt to reduce
CPU usage. In general, this means that compression is particularly suited to machines that have
adequate CPU and plenty of memory, but relatively poor disk 1/0.

224 | CHAPTER8 TUNING MYSQL

Enabling Compression

Compression is enabled on a per-table basis, by passing additional attributes to the CREATE/
ALTER TABLE statements. But first, you must enable support for compression in my . cnf, as shown here:

innodb file per table = ON
innodb file format = Barracuda

The KEY BLOCK_SIZE attribute is used to control the size of compressed blocks, and, therefore, the
amount of compression to apply. Permitted values are 1, 2, 4, 8, and 16 (KB), but because the default
size for uncompressed InnoDB blocks is 16 KB anyway, setting a KEY BLOCK SIZE of 16 offers little
compression. Generally, smaller values are preferred because they result in greater compression.
However, if the compressed page size is too small to hold a complete record, errors occur

(42000: Row size too large). For that reason, KEY BLOCK SIzEs of 1 and 2 KB are rarely used.
Because the maximum size of an InnoDB record is 8 KB, a KEY BLock SIZE of 8 KB is a safe com-
promise and is the value most commonly used.

ALTER TABLE test KEY BLOCK SIZE=8 ROW_FORMAT=COMPRESSED;

When the KEY BLOCK SIZE is specified, ROW FORMAT=COMPRESSED is assumed and can be omitted. If
no KEY BLOCK SIZE is given, it defaults to 8 KB.

Monitoring Compression

The primary means for inspecting compression statistics is via the INNODB_cMP table in the
information schema database. This table holds counters for the number of compression/
decompression operations, and the time spent on each, as shown here:

mysgl> select * from information schema.INNODB CMP;

| size | _ops | ops ok | _time | _ops | _time |

In this example, all compressed tables are using a KEY BLOCK SIZE of 8, so there is no data to show
other page sizes. The remaining columns are as follows:

> compression ops — This is the number of page compressions attempted.

compression_ops_ ok — This is the number of successful page compressions.

>

> compress_time — This is the total time spent on compression (in seconds).
> uncompress_ops — This is the number of page uncompressions performed.
>

uncompress_time — This is the total time spent uncompressing pages (in seconds).

Working with the Query Cache | 225

Because compression and uncompression are mostly CPU-based operations, relatively high
values here suggest additional CPU cores would benefit performance. However, a high number
of compress/uncompress operations could also indicate a shortage of memory in the buffer pool,
causing pages to be written back to disk.

What about the ratio of compress_ops tO compress_ops_ok, and Why would these two values not
be identical? With a kEy_Brock_s1zE of 8 KB, MySQL will attempt to compress each 16 KB block
(the size of uncompressed blocks in TnnobB) into 8 KB blocks. If this cannot be achieved, the data

must be reorganized and recompressed, resulting in multiple compression operations. The result is

an increase in compress_ops but not compress_ops_ok.

Ideally, compress_ops and compress_ops_ok should be identical, but a small difference is quite
common and not a cause for undue alarm. However, reorganization of the data wastes CPU cycles,
and you should generally strive for a successful percentage in the high 90s (compress_ops_ok/
compress_ops X 100). If the ratio is lower than this, switching block sizes may help. Or you may
want to be more selective about which tables are compressed.

As always, comparing ratios does not tell the full story, and you can also learn something by
comparing the absolute values of the columns in the INNODB_cmMP table. A large number of compres-
sion operations indicates that tables are updated frequently, forcing content to be recompressed and
written out. In these situations, disabling compression on the affected table may improve overall
performance. Or you can experiment with a higher compression block size. In general, compression
is much more effective when the compressed tables are light on writes and heavy on reads.

So far, you’ve seen how the two major storage engines compare, along with general tuning tips for
MySQL. In the next section, you’ll meet the query cache, MySQUL’s built-in caching mechanism.
When used correctly, the query cache can be a huge benefit, cutting load on the server and lowering
query times. But to get the most from it, you’ll first need to understand how it works.

WORKING WITH THE QUERY CACHE

One of the most important features of MySQL (from a performance perspective) is the query cache.
First introduced in version 4.0.1, this is a built-in feature that can be used to cache SELECT queries
and their responses, resulting in significant performance boosts for frequently run queries. It’s not
without its problems, though, and this section looks at advantages and disadvantages of using the
cache, along with ways to monitor and manage it.

Understanding How the Query Cache Works

The query cache intercepts incoming SELECT queries and compares them against the list of queries
in its cache. If it finds a match, the cached response is returned. If not, the query is executed as nor-
mal, and the response is stored in the cache (usually, but there are exceptions). The result is that pre-
viously seen queries can be fetched directly from the cache, saving MySQL considerable work. Let’s
look at an example:

226

| CHAPTER8 TUNING MYSQL

mysgl> SELECT username FROM user GROUP BY usergroupid LIMIT 0,3;

b +
| username |
R +
| Unknown |
| ian |
| dave |
bmmmmmm oo +

3 rows in set (2.25 sec)

mysgl> SELECT username FROM user GROUP BY usergroupid LIMIT 0,3;

oo +
| username |
Hmmmmm oo +
| Unknown |
| ian |
| dave |
oo +

3 rows in set (0.00 sec)

The first time this query was run, the cache was unprimed, and MySQL took 2.25 seconds to return
the result. The second time around, the query cache delivered the response, and execution time was
virtual insignificant.

As mentioned, MySQL will cache only SELECT queries. Specifically, it checks (in a case-insensitive
manner) if the query begins with the string "SELECT". It used to be that any leading spaces or com-
ments in SELECT queries would fool MySQL into not caching, but this is now (as of MySQL version

5.0) no longer an issue. It’s still worth remembering, though, in case you find yourself using an older
version of MySQL.

A closely related gotcha is that the query cache will return a result from the cache only if the SELECT
query is identical to a previously cached sELECT. Using the earlier example, let’s see what happens if
FROM is changed to from:

mysgl> SELECT username from user GROUP BY usergroupid LIMIT 0, 3;

bommmmmmmooe +
| username |
R EEEEEEE T +
| Unknown |
| ian |
| dave |
bommmmmmmoee +

3 rows in set (1.43 sec)

Although the execution time is less than the original 2.25 seconds, this can be attributed to other
factors (such as table caching, disk contention, and so on), and isn’t the result of query caching.

This behavior isn’t surprising. With any other language, you wouldn’t expect the two strings that
differed like this to be considered identical, and MySQL is no different. It’s worth remembering,
though, especially in dynamically constructed queries, where variations in the amount of whitespace
often occur and aren’t usually considered an issue.

Working with the Query Cache | 227

Configuring the Query Cache

The first step in configuring the query cache is to check if MySQL has been compiled with query
cache support, as shown here:

mysgl> SHOW VARIABLES LIKE 'have query cache';

e e +
| Variable name | value |
fmmm oo e +
| have gquery cache | YES |
R EEEREE LR e +

1 row in set (0.00 sec)

This says nothing about whether the cache is enabled, but simply that your copy of MySQL has
query cache support built in. To check if the cache is enabled and running, you must check for
nonzero settings for both query cache_type (which governs the type of caching used) and
query_cache_size (which controls the size). A zero-sized cache means the cache is effectively
disabled. Following is an example:

mysql> SHOW VARIABLES LIKE 'query cache type';

e fommm - +
| Variable name | value |
oo m oo oo +
| query cache type | ON

B LT e +

e R +
| Variable name | value |
R EEEEEEEEEE TR R EEEEE T +
| query cache size | 33554432 |
Fom e Fommmmm - +

In this example, you can see that the cache is oN and has a maximum size of 32 MB. Both of these
can be configured via my . cnf, along with a number of other options. Let’s take a look at some of
these options.

query_cache_size

Given how useful the query cache can be, it seems logical to set query cache size as large as
memory permits. Unfortunately, this can actually be counterproductive. With a large cache, MySQL
ends up spending a significant amount of time simply sorting and maintaining the cache.

How large is too large? There’s no simple answer. The average size of cached queries is one factor

(a handful of large queries are easier to manage than many smaller ones), as is how well utilized the
query cache is. If your web application can make extensive use of the query cache, you’ll be willing
for MySQL to spend more time on cache management than on an application that can seldom utilize
the query cache.

228 | CHAPTER8 TUNING MYSQL

query_cache_type

Using query_cache_type, you can set one of two types of query cache. The most common (equiva-
lent to setting this variable to 1) is a cache-by-default approach, where all SELECT queries will be
cached, unless you specifically ask MySQL not to cache them by starting the query SELECT SQL_NO
CACHE. A value of 2 causes an on-demand method of caching, with queries being considered only as
candidates for caching if they begin with SELECT sQ1, CACHE.

This poses the question, “Why would you 7ot want to cache?” As you shall see soon, there are actu-
ally several good reasons.

query_cache_limit

You use query cache limit to set the maximum size for cached queries, with results over this size
not being cached. The justification here is that you probably don’t want a single, huge query filling
up the cache. However, if you find that your query cache is under-performing, it may be that you
have a lot of large queries that are too large to be cached. In that case, raising this value (the default
is 1 MB) should help.

query_cache_wlock_invalidate

The query cache_wlock_invalidate option causes the locking of a table used for writing to inval-
idate all query cache entries relating to the table. You’ll learn more about this in a minute.

query_cache_min_res_unit

MySQL allocates memory to the query cache on demand, in small chunks. Because the size of a
result set is not known in advance (because the results of a query are fed into the cache), MySQL
keeps allocating chunks of memory as needed. Allocating memory is somewhat expensive, and you
can use query cache min res unit to increase performance a little by increasing the size of these
chunks (hence, reducing the number of calls).

You needn’t worry about the tail end of the query resulting in the waste of an entire block of memory
because MySQL prunes the last block down to the required size after the response is complete.
However, there is the related problem of fragmentation — something you would be all too familiar
with if you were a Microsoft Windows user in the 1990s when disk fragmentation was a regular issue.

With the query cache, this results in small regions of memory that are effectively wasted because
they are not big enough to hold a cached result. Although this can be a problem on any MySQL
server, it is a particular concern when memory is allocated in large chunks (that is, when query
cache min_res_unit is increased). For this reason, blindly raising this value isn’t a good idea.
Shortly, you’ll see how to measure the amount of fragmentation, and how to decide on a suitable
size for query cache min res unit.

Inspecting the Cache

Your best hope to set suitable values for the cache size, limit, and memory units is to inspect the
cache during normal day-to-day running. It goes without saying that this is site-specific and should
be done in conditions as close to the real world as possible.

Working with the Query Cache | 229

A handful of cache stats can be obtained from MySQL using the sHow STATUS command, as

shown here:

mysgl> SHOW STATUS LIKE 'Qcache%';

| Qcache free blocks |
| Qcache free memory |
| Qcache_hits |
| Qcache inserts |
| Qcache lowmem prunes |
| Qcache not_cached |
| Qcache queries in cache |
| QOcache total blocks |

1991 |
6847496 |
726951573 |
68370986 |
11224754 |
2995801 |
3665 |
12205 |

The names of these variables should be self-explanatory but following are some brief descriptions:

> Qcache free blocks — This shows the number of free memory blocks in the cache.

Qcache free memory — This shows the amount of free memory.

Qcache_hits — This shows how many hits there have been on the cache.

>
>
> Qcache_inserts — This shows the number of queries inserted into the cache.
>

Qcache_lowmem prunes — This lists the number of entries that were removed from the
cache because of a lack of memory.

\

Qcache_not_cached — This lists the number of queries that were not cached, perhaps

because of a lack of memory, or because they simply weren’t cacheable.

Qcache_queries_in_cache — This is the number of queries in the cache.

Qcache total blocks — This is the total number of memory blocks in the cache.

In addition, the following counters are helpful:

mysgl> SHOW GLOBAL STATUS LIKE 'com select';

R EEE T T T +o------- +
| Variable name | Value |
R EEEEEEEEE R Hmmmm oo +
| Com select | 71940007 |
aRREE T LR $--- - +

230 | CHAPTER8 TUNING MYSQL

mysgl> SHOW GLOBAL STATUS LIKE 'com update';

mysgl> SHOW GLOBAL STATUS LIKE 'com delete';
Fommm e fommmm - +
| Variable name | Value |

These show the number of SELECTS, INSERTS, UPDATES, and DELETEs performed.

All variables are reset when MySQL is started, so they may not provide an accurate summary
until MySQL has been running for some time (anywhere between a few hours to a couple of days,
depending on how busy your sites are).

Armed with this data, you can begin to analyze how your cache is performing.

Cache Size

The most obvious thing to check first is how full your cache is, as shown by Qcache free memory
blocks. If the cache is full, you can consider increasing its size (via query cache size, but see the
earlier warning about making the cache too big). Conversely, if little is cached, you can save some
memory by decreasing the size. (It would be worth exploring why the cache is under-utilized, too. Is
it because your highly efficient client-side code is taking the strain off MySQL, or are too many of
your queries noncacheable?)

Cache Hit Rate

com_select is incremented only when a SELECT query is actually performed — not when a SELECT

query is answered by the cache. Thus, you can compare com select to Qcache hits to determine

the extent to which the cache is utilized. The following equation gives you the percentage of SELECT
queries that were handled by the cache:

(gcache hits /(gcache hits + com select)) * 100

The figures here yield a healthy hit rate of 91 percent.

There’s no pat answer for what sort of hit rate you should be striving for because this equation
doesn’t take into consideration the level of saving. Even a 25 percent hit rate may offer substantial
performance gains, if the queries that are cached are particularly intensive ones. Again, ratios (in
this case, the ratio of cache hits over com_selects) can be a somewhat over-simplification, and you
should think carefully before attaching too much significance to them.

Invalidation

What happens if the data in your tables changes? Will MySQL continue to serve the now stale data
from the query cache?

Working with the Query Cache | 231

Although this is how some caches operate, it’s not the case with MySQL. Any actions that cause
the structure or contents of a table to be altered (for example, UPDATE, DELETE, and so on) cause all
entries in the cache that reference that table to be immediately invalidated. Often, this is overkill,
but that’s the way MySQL does it.

Invalidation is one of the main causes of poor cache performance. Consider a busy web forum where
posts are held in a single database table. MySQL will be receiving many SELECT queries on this table
as users browse the forum and read posts. It may seem advantageous to cache as many of these que-
ries possible, but as soon as someone submits an individual post, MySQL receives an INSERT query
on the table, and suddenly every cache entry referencing that table has become invalid.

If the post table contains a counter field to indicate how many times a particular post has been
viewed, the situation is even worse. This time, merely viewing the post is enough to send an UPDATE
query, invalidating the cache. Most likely, the web code will perform a SELECT to retrieve the post,
immediately followed by an UPDATE to increment the counter, and the query will be in the cache for
only a fraction of a second. When you take into account the cost of cache management, this scenario
actually ends up worse than no caching at all!

One way to diagnose high levels of invalidation is to look at Qcache inserts (the number of queries
inserted into the cache) — in particular, comparing this to Qcache _queries_in cache, Qcache
lowmem prune and com_select. In the earlier example (which, incidentally, was taken from a live
server that had been running for approximately 3 months), 68,370,986 queries had been inserted
into the cache. Of these, 11,224,754 had been removed because of lack of memory. At the time, an
inspection of the counters revealed that there were 3,665 queries in the cache. That leaves 57,142,567
(68,370,986 — 11,224,754 — 3,665) queries that were removed from the cache because of invalidation.

Although these figures look bleak, they don’t tell the full story. In situations in which many queries
spend only a short amount of time in the cache before being invalidated, performance can suffer.
But if the same percentage of queries is invalidated after, say, 12 hours in the cache, you’d probably
be quite happy with this. It all depends on how long the query stays in the cache.

At the beginning of this section, you learned that the query cache wlock_ invalidate setting
has the power to cause cache invalidation when a table is locked for writing. Does this mean you
can prevent invalidation altogether by turning this setting off? Sadly, the answer is “no” because
write-lock invalidation is somewhat more subtle than this. Invalidation always occurs when a table
is written to. query cache write_ lock simply offers some control over the point at which the
invalidation occurs.

With the option turned off, cache entries will be invalidated after the INSERT or UPDATE has com-
pleted. With the option turned on, they become invalid as soon as the table is locked for writing. It’s
generally best to leave this option disabled. Table locking is enough of a nuisance as it is, without
compounding it.

Fragmentation and query_cache_min_res_unit

As previously mentioned, increasing the query cache min res_unit size is something of a double-
edged sword — speeding up the process of memory allocation but increasing the risk of fragmenta-
tion. Using the Qcache_* statistics, though, you can make a reasonably well-informed estimate as to
a suitable size.

232

| CHAPTER8 TUNING MYSQL

Subtracting Qcache free memory from the query cache size (as set in my.cnf) gives you the
amount of memory in use by the query cache. If you then divide this figure by the number of queries
in the cache (Qcache queries _in_cache), you have an average size for each query. Let’s try it on
some sample data:

SHOW GLOBAL VARIABLES LIKE 'query cache size';

R EEREEE LR R EEEEE +
| Variable name | Value |
e T Fommmmmmo-- +
| query cache size | 33554432 |
oo mmmmmmmmm oo fomm e m - +

(33554432 - 6847496) , 3665 = 8968

So, on average, each query takes up just more than 8 KB of space in the cache. Perhaps you should
be increasing your value of query cache min res unit from the 4 KB default.

The problem here is that this figure is only an average. It could be the case that the vast majority of
queries fit nicely into the default 4 KB block size, and that a handful of large queries are skewing
the average up. If this were the case, raising min res unit would be a mistake. Perhaps, instead,
you should be lowering query cache limit to prevent these huge queries from being cached — not
because of concern over the performance penalty of allocating memory in small blocks, but because
you may not want them taking up precious cache space. It depends on how often you expect a cache
hit on these large queries.

Despite these caveats, the calculations suggest that raising query cache min res unit to a little
more than 8 KB would certainly be worth trying. However, only with knowledge of the queries
being executed can you make an educated decision.

The reason for being cautious about raising query cache min res unit is that it will likely cause
an increase in fragmentation. You can gauge the level of fragmentation by looking at the ratio of
free blocks to total blocks:

(Qcache free blocks / Qcache total blocks) * 100

This example data gives a fairly respectable figure of 16 percent. Values of approximately 10 percent
to 20 percent are common and are not a cause for undue alarm.

When high levels of fragmentation exist, the FLUSH query cache command can be used to
defragment the cache. Despite the slightly misleading name, this does not remove entries from the
cache — if you ever want to do that, use RESET query cache.

The Downsides of Query Caching

As already hinted, the query cache is far from perfect, and there may be situations in which best per-
formance can be achieved by turning it off.

One source of problems is the additional overhead imposed by enabling the cache. For each incom-
ing SELECT query, MySQL must first check the cache for a match. If none is found, the query is
executed as normal, and, if the query is cachable, the result is then inserted into the cache. Although
this overhead is fairly low, and, in most cases, an acceptable penalty for using the cache, it is waste-
ful in situations in which cache hits are low.

Working with the Query Cache | 233

This leads to the next big problem: invalidation. You’ve already learned that writing to a table
causes cache entries that reference the table to be invalidated. When this happens, the cache is tem-
porarily locked, and nothing can read from it. So, not only does MySQL waste time with house-
keeping, it makes every other query wait until it has finished.

Caching Modes

An ideal situation would be one in which you simply didn’t cache queries that you knew (or sus-
pected) would be quickly invalidated. If you have the query cache type set at 1 (cache everything
by default), you can disable caching on a per-query basis by adding SQL.__ NO_CACHE to the query:

SELECT SQL NO CACHE foo FROM bar

Or if you choose to disable caching by default (by setting query cache type to 2), caching can be
enabled on a per-query basis with the following;:

SELECT SQL CACHE foo FROM bar

Armed with this, you can now sift through your web code, deciding on a case-by-case basis whether
to cache. Remember, though, the aim is not to prevent invalidations completely but merely to pre-
vent situations in which invalidation occurs so quickly that caching is pointless — and this is some-
what subjective.

Nondeterministic Queries

Another shortcoming of the query cache (actually, it’s not a shortcoming — it makes perfect sense) is
that nondeterministic queries cannot be cached. Prime examples of these are the RAND (), Now (), and
CURRENT DATE () functions — any query using these will not be cached.

You can often get around this by performing the function in your scripting language instead. For
example, consider the following PHP snippet:

$rl = mysqgl query("SELECT * FROM users WHERE registered = CURRENT DATE()");
This query won’t be cached, but if you rewrite it to the following, it will be cached by MySQL.:
$rl = mysqgl query("SELECT * FROM users WHERE registered = '" . date("Y-m-d") . '");

For queries that use RAND (), there probably isn’t much you can do. You could fetch the entire data
set and then choose entries from it at random. But this is unlikely to give an overall performance
boost, unless your query is particularly complex. (In which case, the savings from caching might just
outweigh the cost of fetching the entire data set and selecting random entries from it.) Even then, the
data set might exceed query cache limit.

On the subject of time and date stamps, can you spot the reason why it would probably be pointless
to change a query such as the following (again, with PHP as the scripting language)?

$rl = mysqgl query("SELECT wusername FROM users WHERE
account_expires < NOW()");

234

| CHAPTER8 TUNING MYSQL

You could change this query to the following:

$rl = mysgl query("SELECT username FROM users WHERE
account expires < '" . date("Y-m-d H:i:s") . "'");

Although MySQL will cache the latter, the precision of the date stamp means that if you execute the
query again, a second later, the date stamp will have changed, and the query won’t match the previ-
ously cached one. You end up filling the cache with queries that you know will never be executed
again.

Sometimes situations like these can be avoided by rethinking the wHERE clause a little. (In this
example, lower the precision of the date stamp so that if the code is run a short while later, the
data stamp is still the same.) Failing that, you can use SQL_NO_CACHE or SQI_CACHE to avoid
pointless caching.

You’ve seen how powerful the query cache can be when used properly, but there is also a lot to
discover about SQL itself (or at least the MySQL implementation of SQL). In the next section,
you’ll learn how indexing can be used to speed up queries by several orders of magnitude,

and how tools such as ExPLAIN and the slow query log can be used to find bottlenecks in your
database queries.

OPTIMIZING SQL

So far, this discussion has focused on tuning the MySQL application. You’ve learned how MySQL
and individual storage engines interact with the underlying operating system, and how system
administrators can ensure harmony between the operating system and MySQL.

Let’s now focus on the second key area of MySQL performance tuning: the queries. Again, there
is often a huge scope for improvement, but as a system administrator, the changes aren’t always
so easy to implement. Rather than simply tweaking a few buffer sizes in my.cnf, you may edit or
rewrite large portions of badly written applications to change the way in which they interact with
MySQL.

EXPLAIN Explained

MySQL’s ExPLAIN command offers insight into how MySQL executes queries, and is invaluable
when trying to diagnose why a query runs slowly, or not as expected. To use it, simply prepend
EXPLAIN to the beginning of a SELECT query, as shown here:

mysgl> EXPLAIN SELECT * FROM wp users WHERE user login LIKE 'pete%'\G
kkkkhhkkhhhhhkhhdhhhhhdhhhhdkdd] 1Ow *FFdhhkkkdhhhhhdhhhrdkdhhrrhdrk
id: 1
select_type: SIMPLE
table: wp_users
type: range
possible keys: user login key
key: user login key
key len: 180

Optimizing SQL | 235

ref: NULL
rows: 1
Extra: Using where

The output columns are as follows:

> id— This is the ID of the SELECT query. If the query contains subqueries, each will have a
unique ID.

\

select_type — For simple select queries (that is, those not using UNTON or subqueries), this
will always be sSIMPLE.

table — This is the table being operated on.

type — This is the join type.

possible keys — This is a list of indexes that MySQL has found to choose from.
key — This is the actual index that MySQL decided to use.

key len — This is the length of the key being used.

Y Y Y VY Y Y

ref — This is either the name of the columns that MySQL compares to the index given in
key, or to denote that a constant is being searched for.

\/

rows — This is the number of rows retrieved for examination.
Extra — This provides additional information about how MySQL handles the query.

Some of these columns are important enough to warrant a more detailed discussion. Let’s start with
select type.

select_type

Aside from SIMPLE, there are eight other possible values for this column:
> prRIMARY — This is the main SELECT query in statements containing subqueries.
> uNION — This shows SELECT queries in a UNION other than the first SELECT.

> DEPENDENT UNION — In UNIONs, this shows SELECT statements (other than the first) that are
dependent on the main query.

UNTION RESULT — This is the result of a UNTON.
> SUBQUERY — This shows any SELECT statements that are part of a subquery.

DEPENDENT SUBQUERY — This shows SELECT statements in a subquery that are dependent
on the main query.

DERIVED — This shows that the table is derived from a subquery.
UNCACHEABLE SUBQUERY — This shows that the results of the subquery cannot be cached

and, hence, must be re-evaluated each time (for each row of the main query).

SIMPLE select types are the most common, but the others do crop up regularly in more compli-
cated queries.

236 | CHAPTERS8 TUNING MYSQL

type

The next column of special note is the type (of join), of which there are a dozen possible values.
The type (of join) used can have a big effect on performance, and when debugging a slow query, it’s
always worth checking that MySQL uses the type of join you would expect. Use of the word “join”
is a little confusing here and refers to MySQL’s method of executing queries — it doesn’t imply that
multiple tables are joined together in the SQL sense.

Following are the join types (listed in order from best performance to worst performance):

>

system — The table is an in-memory system table containing just one row, so there is little
work to be done.

const — This is used when a PRIMARY or UNIQUE is compared to a constant value, resulting
on only one row (or no rows) being returned. Following is an example:

SELECT * FROM users WHERE ID=3

This assumes that the ID column is unique.

eq ref — This occurs in join queries when a unique non-null index (or primary index)
matches a single row of the second table, for each result row of the first table. Consider the
following example:

SELECT * FROM tl, t2 WHERE tl.indexed column = t2.column
In this situation, eq_ref can (and will) be used for t1. eq ref only when using the equality
operator (=).

ref — Almost identical to eq_ref, a ref access type occurs when multiple matches occur
on the table. This usually occurs because the index is not unique (and does not contain null
values). Because multiple rows are returned, this join type isn’t as desirable as eq_ref.

ref or null — This is identical to ref, except null values occur in the index.
full text — The join occurs on a full text index (MyIsam only).

index merge — Multiple indexes can be merged and used. (You’ll learn more about this
later in the “Indexing” section.)

unique_subquery — This is similar to ref but for unique indexes in subqueries.

index_subquery — This is identical to unique_subgquery but for nonunique indexes in
subqueries.

range — This indicates that a range of rows will be returned, such as the following:
SELECT * FROM products WHERE price > 100;

This is still an improvement on a plain index join because the number of rows is limited.

index — A full scan of the index is required. This is the default when none of the previously
listed join types are suitable.

Optimizing SQL | 237

» AL — This requires a full scan of the data in the table and happens when searching against
an unindexed column. In these situations, performance is usually poor (worsening dramati-
cally as the size of the table increases).

That’s a lot of different join types, but the majority of the time, you’ll encounter only eq_ref, ref,
range, and index. A11 join types are particularly poor performers but are usually easily fixed
through appropriate indexing.

Extra

As previously mentioned, the Extra column provides additional information about the query. As
of this writing, 25 different values can appear in this column. Rather than provide an exhaustive
list of these, let’s concentrate on the most important ones. You can find the complete list in the
online MySQL documentation (http://dev.mysql.com/doc/refman/5.6/en/
explain-output.html).

> Using where — The presence of a WHERE clause is limiting the number of rows matched.
Usually, this is what you want, rather than MySQL scanning all rows in the table.

> Using filesort — This is something of a misnomer because it doesn’t imply the use of
files. Rather, it occurs when a sort on a nonindexed column is performed. You’ll learn more
about ORDER BY and GROUP BY optimization in the upcoming section, “Indexing.”

> Using index — This occurs when only the data from indexed columns is required. In these
situations, the query can be answered solely by searching the index, with no need to search
the row (or for MyI1sam, the data file).

> Using temporary — A temporary table is used to hold the results. Typically, this is needed
when performing a GROUP BY and ORDER BY. Temporary tables aren’t a problem by them-
selves, but if a temporary table is written to disk (for example, because it is too big for
memory), performance will suffer.

As you can see, the EXPLAIN command can be an incredibly useful tool.

The Slow Query Log

MySQL offers the capability to log all queries that take longer than a user-defined number of sec-
onds to run, and this log can be invaluable when debugging slow applications. Even when you’re not
aware of any particular slowdown, it can be useful to leave the slow query log enabled, and periodi-
cally review it — you just might be surprised.

Enabling the Log
The my . cnf configuration options are as follows:
long query time = 5

slow_query log = 1
slow query log file = /var/log/mysgl/slow-queries.log

http://dev.mysql.com/doc/refman/5.6/en/explain-output.html
http://dev.mysql.com/doc/refman/5.6/en/explain-output.html

238 | CHAPTERS8 TUNING MYSQL

This logs any query taking more than 5 seconds to execute to /var/log/mysql/slow-queries
.1log. (Note that you may first need to create and set appropriate ownerships on this file.) It’s worth
noting that query execution time does not include the time taken to acquire table locks. If a query
regularly runs slowly because of a high level of locking, it will not be logged.

Optionally, you can also restrict the slow query log to those queries that cause more than a certain
number of rows to be examined, as shown here:

min_examined row limit = 500

NOTE This feature was introduced in MySQL version 5.5.

Inspecting the Slow Query Log

An example entry for a real-world slow query log follows. In addition to the query, you see informa-
tion on the user that executed it, the date-time stamp, the time taken for the query to run, and the
number of rows examined.

Time: 110422 4:56:28
User@Host: forums[forums] @ localhost []
Query time: 10.119974 Lock time: 0.000065 Rows sent: 1 Rows_examined: 1191
SET timestamp=1303444588;
SELECT COUNT (*) AS posts
FROM post AS post
WHERE threadid = 83035 AND visible =1
AND dateline <= 1194968540;

It’s worth remembering that an entry in the slow query log does not mean that the query is inherently
slow, merely that it executed slowly on this particular occasion. This could be caused by other factors,
such as the number of concurrent clients running queries against the database, another client running a
particularly CPU-intensive query, high load on the server caused by the generation of backups, or even
because MySQL’s caches have not been primed (for example, because MySQL hasn’t been running long).

Whenever you spot a slow query, you should generally repeat the query at the MySQL CLI — having
first inspected the operating system and MySQL’s process lists (SHOW PROCESSLIST) — before decid-
ing if it is a cause for concern.

mysqgldumpslow

For all but the smallest slow query logs, manually reviewing the log file can be tedious. Fortunately,
MySQL ships with a useful tool that can analyze such logs. mysqldumpslow counts the number of
occurrences of each query in the log, allowing you to see at a glance the worst offenders.

Queries Not Using Indexes

Indexes (as you’ll soon see) play such an important part in MySQL, that an option exists to cause
any queries that don’t use indexes to be written to the slow query log.

log-queries-not-using-indexes = 1

Optimizing SQL | 239

Actually, that’s not entirely true. With this option enabled, MySQL actually logs any queries that
cause all rows in the table to be retrieved. Mostly, this is a result of no suitable index being found,
but occasionally it is because the query actually returns all rows of the table. This is a subtle point,
but worth remembering.

Indexing

Probably the single biggest way to improve the performance of SELECT queries is through the use

of appropriate indexing. (Note the use of the word “appropriate.” As you’ll see later, in the section,
“When Not to Index,” indexing everything in sight is counter-productive.) Much like a book, where
an index saves you from looking through every page of the book, indexes on columns saves MySQL
from examining every record in a table. Just as the index of a book tells you the page to go to, a
database index tells MySQL the position of the data on the disk to jump to.

The simplest way to create an index on an existing table is through the alter command, as
shown here:

alter table regions add index(country) ;

This adds an index on the country column of the regions table. You can view the existing indexes
with describe, as shown here:

mysgl> describe regions;

R e et e e T tmmmm o Ho---- oo R R L e +
| Field | Type | Null | Key | Default | Extra
R R L e e et R bt B e e +
| regionId | int(10) unsigned | NO | PRI | NULL | auto_increment |
| country | char(2) | NO | MUL | |

| name | varchar (64) | No | | \

| district | varchar(64) | NO | | |

B R Hommmmmm oo et oo tmmmmm oo Hommmmmo oo +

The xey field of the output shows the index type (if any). For the country index, it’s MUL (multiple),
meaning that multiple occurrences of the same value are permitted — that is, the index does not
require that values in this column be unique. By contrast, the existing index on regionID is PRI
(primary), a special type that enforces uniqueness on data in the column. You’ll learn more about
primary indexes in a minute.

Following are other possible index types:

> UNI (unique) — This requires that all values in the column be unique. For columns that
always hold unique values (such as the Social Security number of an employee), using UNT
over MUL offers a performance increase.

> FUL (full-text) — This is a MyISam-specific index type, allowing for fast string matching
using MATCH or AGAINST.

Specifying the index type is as simple as adding it to the previous alter query:

alter table regions add index uni (country) ;

240 | CHAPTER8 TUNING MYSQL

Primary Indexes

The primary index is special. Only one primary index may exist in a table, and the column indexed
must contain unique values. The most common technique is to create an auto-incrementing inte-
ger column (regionid in the example) and assign a primary key to that, or use a Universal Unique
Identifier (UUID). But you’re free to not create a primary key at all if you want.

In MyTsaM, indexes are stored in a B-tree structure in a separate file (with the .MYT extension in
MySQL’s data directory). This causes a slight performance overhead because MySQL must first scan
the index and then scan the data to the offset given in the index. This is minor overhead, though,
and is usually easily compensated for by the improvement in performance provided by using indexes.

With TnnoDB, the primary key is stored alongside secondary keys. So, if the table contains secondary
keys, it pays to keep the primary index small — preferably an integer.

Clustered Indexes

InnoDB internally uses clustered indexes, which exist in the same page as the data they reference.
This makes lookups on the clustered index fast because the disk heads are already in the correct
location. (Compare this with Mmy1sam, where the disk must first seek to the entry in the index file,
and then to the entry in the data file.)

Only one clustered index is permitted for a table, and TnnopB defaults to using the primary key.
If no primary key is set on the table, the first unique index is used. If there are no unique indexes,
InnoDB creates a hidden, auto-incrementing numeric column and assigns a primary key to this.

All other indexes in TnnoDB tables are nonclustered, secondary indexes. These indexes contain
the primary index column for the row, allowing InnoDB to then look up this primary index. This
two-step process is similar to how MyIsam handles indexes but is slightly slower. This is the rea-
son why there is a gap in performance between primary and secondary lookups in TnnopB (and
why the primary key is of special importance). In MyIsau, there is no difference in performance
between different index types, and the primary key holds no particular importance.

Which Columns to Index?

In general, you want to place indexes on columns that are frequently used for SELECT, GROUP, ORDER,
and join. Specifically, MySQL uses indexes (where they exist) in the following situations:

> Comparison operators (=, >, <, >=, <=, IF NULL, and BETWEEN)
LIKE clauses that do not begin with a wildcard
Table joins

ORDER BY and GROUP BY

Y VYV VY

MAX () and MIN ()
Thus, all the following queries would make use of any index that exists on the mycolumn column:

SELECT * FROM mytable WHERE mycolumn=5
SELECT * FROM mytable WHERE mycolumn >5 AND mycolumn < 10
SELECT * FROM mytable WHERE mycolumn LIKE 'something%';

Optimizing SQL | 241

SELECT * FROM mytable, myothertable WHERE mytable.mycolumn = myothertable.userID
SELECT * FROM mytable ORDER BY mycolumn DESC
SELECT MIN (mycolumn) FROM mytable

If MySQL decides that using an index will probably result in more than a certain percentage of the
table being returned (currently approximately 30 percent, but the exact value has varied between
releases), it will ignore the index and perform a full table scan because this linear disk access will be
faster than repeatedly seeking to different points of the data.

HEAP tables are also handled slightly differently, and indexes won’t be used for ORDER BY clauses, or
comparisons that don’t use the equality operator.

Let’s return to the regions table of the earlier example. This was actually part of a real estate search
portal and mapped various locations around the world to the country they belonged to. The table
listing each property included a regionId column, corresponding to an entry in the regions table.

Given that joining the two tables on the regionId will likely be such a common task, it makes per-
fect sense that the regionID column of region be indexed. But what about the other three columns
in this table? If the application enables the end user to view all properties in a particular country or
region, it makes sense to index these columns, too. Let’s use EXPLAIN to show how MySQL would
handle a SELECT against one of these columns, both with and without indexes.

mysgl> explain select regionId from regions where country="UK"\G
khkkkkkkkkhhkkhkhhhkkhdhhkkhkdkdk] pow Frhkkkkkhhhkkhhhhrhhhhhrhdhhx
id: 1
select type: SIMPLE
table: regions
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 170
Extra: Using where

Without an index on country, MySQL must scan all 170 rows of the table. Now, add an index and
rerun the query:

mysgl> alter table regions add index(country) ;
mysgl> explain select regionId from regions where country="UK"\G
LR R EE SRR R EEEEEEEEEEEEEEEE S 1. TOW **kkkkkkkhxhhdhhkhhhkhkhhhxhrd
id: 1
select _type: SIMPLE

table: regions

type: ref
possible keys: country

key: country

key len: 67
ref: const
rows: 19

Extra: Using where

This time, MySQL can immediately ignore the 151 rows where the country is not "ux".

242 | CHAPTER8 TUNING MYSQL

One slightly lesser-known feature of indexes is that MySQL uses only a maximum of one per table
in most cases. Consider the following example:

mysgl> alter table regions add index (region);
mysgl> explain SELECT regionId FROM regions WHERE country="UK" AND
region="North East"\G

khhkkkkhhhhhkhhdhhhhdhdhhhrkdhdr T

TOW ***k*xkkkkkkkhkhkhkhkhkhrhrhrkx

id: 1
select type: SIMPLE
table: regions
type: ref
possible keys: region,country
key: region
key len: 67
ref: const
rows: 4
Extra: Using where

The possible_keys column shows that MySQL has correctly identified that both the region and
country columns contain indexes, but that it ultimately chose to use the index on region. The
reason lies in the number of rows left to examine. MySQL calculated that using the region index
would result in 4 rows to scan, and using the country index would have resulted in 19. As you
would expect, only one row of the table matches both country="Uk" and region="North East",
and scanning 4 rows to find this match is a lot faster than scanning 19.

MySQL version 5 introduced changes that enable multiple keys to be used in some circumstances.
When range scans are used on multiple indexed columns, MySQL scans using the indexes of each
and then merge the results. This is the index_merge method mentioned previously:

mysql> explain SELECT regionId FROM regions WHERE country="UK"

or region="North East"\G

khkkkkkhkhkkhhhhkkhhdhkkkkddx] pow *hrkdkkhkhkrkhddhkkhddhrhhdhhxsk

id: 1
select_type: SIMPLE
table: regions
type: index merge
possible keys: region,country
key: country,region
key len: 67,67
ref: NULL
rows: 13
Extra: Using union(country,region); Using where

NOTE Both indexes are listed in the key column, and the Extra information
shows that a union was used.

Optimizing SQL | 243

Composite Indexes

The solution to the problem of searching on multiple indexes in a table can be solved through the
use of composite indexes (also referred to as multiple column indexes). As the name suggests, these
are indexes that span two or more columns, or column prefixes.

Composite indexes are ideally suited for situations in which SELECT queries will regularly be per-
formed against a particular combination of columns. Going back to the real estate example, you can
see that most queries will either specify country, or country and region in the WHERE clause. So, a
composite index on country and region seems obvious. The syntax is simply as follows:

ALTER TABLE regions ADD INDEX countryregion (country, region);

(Of course, you can call the index whatever you like.)

Rerunning the earlier query, you can see that MySQL now finds three possible indexes to use and
chooses the newly created composite index:

mysgl> explain select regionId FROM regions WHERE country="UK"
and region="North East"\G
khkkkkkkkkhkkkhhhkkhdhhkhkdkdk] pow Fhhkkkkkhhhkhdhhhhkhhdhhrhdhhx
id: 1
select_type: SIMPLE
table: regions
type: ref
possible keys: region,country,countryregion
key: countryregion
key len: 134
ref: const,const
rows: 3
Extra: Using where

Does this mean you can now remove the indexes on region and country because both exist in the
composite index? Let’s try the following:

mysgl> ALTER TABLE regions DROP INDEX country;
mysgl> ALTER TABLE regions DROP INDEX region;

mysgl> explain SELECT regionId FROM regions WHERE country="UK"\G
khkkkkkkkkhkkhkhhkhkkhdhhkkdkdk] pow Frhkkkkkhhhkhhhhrhhdhhrhdhhx

id: 1
select type: SIMPLE
table: regions
type: ref
possible keys: countryregion
key: countryregion
key len: 67
ref: const
rows: 9
Extra: Using where

244 | CHAPTER8 TUNING MYSQL

mysgl> explain SELECT regionId FROM regions WHERE region="North East"\G
LR ER SRR EEEEEEEEEEEEEEEEEES] l TOW LR R EEE R EEE R EEEEEEEEEEEEEEEE]
id: 1
select_type: SIMPLE
table: regions

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 17

Extra: Using where

Unfortunately, things didn’t go as hoped. Selecting on country still ran as expected, but selecting on
region failed to utilize the countryregion index.

The reason centers on the order of the columns in the index. In this example, country was put

first, followed by region. This allows MySQL to utilize the index when searching on country, or
country and region, but not just on region. In this example, this actually makes perfect sense.
Sometimes you’ll want to search on just country; other times, you’ll want to search on country and
region. But you are unlikely to want to search on just region.

Sometimes things aren’t this clear-cut. Don’t be afraid to duplicate columns across composite and
noncomposite indexes if the situation warrants it. But remember to think carefully about the order
of columns in a composite index, and remember that indexes create overhead.

Prefix Indexes

Indexes take up disk space, and it is preferable to keep index sizes as small as possible because it
reduces disk seek times and 1/0, and allows more of the index to fit in the key buffer. MySQL sup-
ports prefix indexes (not to be confused with partial indexes — a feature not supported by MySQL),
in which only the beginning or end of a column’s value is indexed (with the former being the most
common). Prefix indexes can greatly reduce the size of an index but can also limit their effectiveness,
and care must often be taken to find a happy middle ground.

The ideal length for a prefix is one that keeps the index size low but still maintains enough unique-
ness to limit the number of rows matched. For a column with a UNTQUE index on it, it isn’t always
possible (or preferable) to maintain that uniqueness in the prefix, and the index type may need to be
changed to MULTIPLE.

Consider a table containing information on books. There are columns for the book’s title, author,
publisher, and publication date. Say, you will often be searching on title, so you add an index on
this column. But rather than indexing the whole column (which could take up a lot of space, given
the number of characters in many book titles), what if you just index the first x number of charac-
ters? This will almost certainly decrease the level of uniqueness but will also reduce the index size
considerably.

For this example, load in a list of 31,416 book titles from Project Gutenberg (www.gutenberg.org).

http://www.gutenberg.org

Optimizing SQL | 245

mysqgl> select count (*) from books;

t--mmmmmm - +
| count (*) |
tommmm - +
| 31416 |
R +

Now, count the number of distinct titles to get an idea of the current level of uniqueness.

mysgl> SELECT COUNT (DISTINCT (title)) FROM books;

R +
| COUNT (DISTINCT (title)) |
tom oo s oo +
| 30510 |
o e e m oo +

You can calculate the cardinality by dividing the total number of unique entries by the total number

of rows. In this case, you get a value of 0.97 (the maximum value, of course, will be 1), indicating a
high level of uniqueness.

What if you index just the first five characters of the title?

mysgl> SELECT COUNT (DISTINCT (left(title,5))) FROM books;

e +
| COUNT (DISTINCT (left(title,5))) |
oo +
| 8376 |
oo e e s oo oo — oo +

This causes the cardinality to drop to 0.266 (8,376/3,1416), indicating a significant drop in
uniqueness. This isn’t too surprising. After all, lots of books will start with the same five characters.
Table 8-1 shows the results with other key lengths.

TABLE 8-1: Results with Varying Key Lengths

KEY LENGTH DISTINCT VALUES CARDINALITY

1 41 0.001
5 8,376 0.266
10 19,555 0.622
15 25,660 0.817
20 27,582 0.878
25 28,436 0.905

30 29,010 0.923

246 | CHAPTER8 TUNING MYSQL

From this, the optimal prefix length looks to be approximately 10 to 15 characters. Values more
than 15 give only a modest increase in uniqueness, whereas for key sizes less than 10, there is a
sharp drop-off in cardinality, causing more rows to match — which means more work for MySQL
in examining those rows and more disk I/O as they are read in.

The best index length is clearly highly dependent on the nature of the data, and may even change as
the data itself changes, requiring you to regularly monitor the health of the index.

Covering Indexes

Earlier in this chapter, you learned about the two steps involved when performing a SELECT against
an indexed column in MyTsaMm. First, MySQL scans the index to obtain the row pointer, and then

it scans the data file to the position given in the pointer. (Of course, much of this data will hope-
fully already be in memory.) However, if you’ve asked for only columns that exist in the index, this
second step can be avoided, giving a significant boost in performance.

Covering indexes are just a special case of a composite index, in which the index contains all
the columns that you need. Rather than creating a composite index to include columns you’ll be
searching on, you create it with the specific aim to eliminate scans of the data file — even if this
means including columns that you have no need to search on. So, although covering indexes and
composite indexes are ultimately the same thing, the motivation behind creating them is what
creates the distinction.

Now, return to the real estate example. Most of the time, you want to SELECT the regionId for a
particular combination of region and country, as shown here:

SELECT regionId FROM regions WHERE country="UK" or region="North East"

By creating a composite index on regionId, country, and region, all the data that MySQL needs is
in the index file, and there is no need to query the data file.

The use of covering indexes can cause a dramatic increase in performance, but, of course, there

are downsides. The most notable is an increase in the size of the index file, and larger index files
mean more disk I/O and less caching in memory. Depending on the columns being indexed, the use
of a covering index could easily double or triple the size of the index file. Naturally, large covering
indexes take longer to update, too, which can slow down UPDATE, DELETE, and INSERT queries.

Finally, covering indexes are less of an advantage in InnoDB, where primary indexes are stored on
the same page as the data, and the two-step approach of MyIsaMm is not needed.

When Not to Index

At first glance, it seems as if indexes are a win-win situation. Certainly there are plenty of situations
in which an index on a column will never be used, but is an unused index doing any harm?

The first problem with indexes is that they slow down INSERT and UPDATE queries. Each time the
data in an indexed column is modified, the index must be updated. For the majority of web applica-
tions, where tables are read from much more than they are written to, this isn’t a problem. But for
write-heavy tables containing large amounts of data, it can cause a noticeable slowdown.

Optimizing SQL | 247

In addition to this, indexes take up disk space, and although the cost of storage is low, larger num-
bers of indexes take longer to scan through.

There are also some situations in which indexes aren’t used — for example, in MySQL versions prior
to 5.0, only one index would ever be used per table.

None of these problems are reasons not to use indexing where appropriate, because the benefits far
outweigh the drawbacks — but they are enough to make over-indexing something to be avoided.

Index and Table Management

MySQL maintains statistics on various properties of tables and indexes, such as the number of rows
and sizes of indexes. These figures are used for (among other things) estimating the optimal query
executing path, but they can become quite distorted after heavy writes.

The ANALYZE TABLE table name statement can be used to regenerate these statistics, and it makes
sense to regularly run this on tables that are write-heavy. On My1sam, this causes the whole table to
be locked. With TnnopB, only row-level locking is used, but it’s also less important because InnoDB’s
table stats are never 100 percent accurate anyway — and MySQL knows this.

Closely related to the ANALYZE TABLE statement is OPTIMIZE TABLE table name, which is used
to defragment tables. Table fragmentation is most common after deleting large numbers of rows.
Although MySQL will attempt to gradually plug these holes with subsequent INSERTSs, the gappy
nature of the data in the meantime will result in increased disk reads, thus reducing performance.
Defragmenting the table causes the data to be repacked tightly, eliminating these gaps.

In addition, running OPTIMIZE TABLE on MyISAM tables causes all indexes to be sorted and rebuilt,
which can enhance performance when querying them. Unfortunately, InnoDB indexes can’t yet be
re-sorted because of their structure (something that was discussed earlier in this chapter).

As with ANALYZE TABLE, optimizing causes table-level locking in My1sam and row-level locking in
InnoDB. But it’s still worthwhile optimizing on a regular basis, especially for tables that are written
to frequently (or after performing batch deletions).

With my1saMm tables, rows are physically ordered chronologically (1nnobB always orders by primary
key), but by using ALTER TABLE, you can ask MySQL to re-order a table by a different column. This
can improve performance in situations in which you will regularly be searching or sorting on that
column. The syntax is simply as follows:

ALTER TABLE table name ORDER BY column name

NOTE Remember that, on large tables, this could take some time.

Query Execution and Optimization

For a query to be executed by MySQL, numerous steps, such as syntax checks and permissions’
checks, must be performed. The two steps that are of particular interest to use are optimization and

248 | CHAPTER8 TUNING MYSQL

generation of the parse tree. It is at this latter stage that MySQL attempts to determine the most effi-
cient method to execute the query before ultimately generating a Query Execution Path (QEP).

MySQL tokenizes the query and builds from these tokens a tree-like structure (the parse tree)
detailing all the possible execution paths that may be taken. It is then the job of the optimizer to
determine the most efficient path to take.

The size of the parse tree increases exponentially as the number of tables in the query increases, and
it could potentially take hours for MySQL to calculate the cost of each potential path. Thus, the
first step of the optimizer is to apply a number of heuristics to eliminate obviously slow paths. These
hard-coded rules are general techniques that MySQL knows can improve performance in the vast
majority of cases (but occasionally it does get things wrong), and includes re-ordering joins, using
covering indexes, and early termination (for example, when a LIMIT clause is used).

Query Cost

At this stage, the parse tree will hopefully have been pruned substantially. For the remaining branches,
MySQL will attempt to determine the cost of each path before settling on the cheapest. Terms like
“best” and “cheapest” can be a little ambiguous. In this situation, MySQL defines them by the number
of 4 KB data pages (and by extension, therefore roughly the number of rows) that it estimates must be
read to fulfill the query. Thus, a path that causes fewer pages to be read is “cheaper.”

Of course, this logic isn’t always true. It doesn’t take into account that sequential page reads will
generally be a lot faster than random page reads (thus, it would probably be faster to read four
sequential pages than three nonsequential pages), and it assumes that all page reads are from disk.
In practice, some pages will likely be cached in memory.

To estimate the cost of the various paths, MySQL looks at statistics for the tables, such as the num-
ber of rows, the length and number of keys, and key distributions. Based on these, a numeric query
cost is calculated for each path. You can see the calculated query cost for a given query by examin-
ing the 1ast_query cost variable immediately after executing a query:

mysqgl> SELECT SQL NO CACHE * FROM regions WHERE region="North East";

mysgl> SHOW STATUS LIKE 'last query cost';

R EEEEEEE TR EEEREE T +
| Variable name | Value |
e T EEEE T +
| Last query cost | 2.799000 |
oo mmmmmmm oo fommm o +

This provides a useful metric to use when creating indexes or rewriting queries. For example,
if you remove the region index from the table and rerun the query, you get a query cost of
5.832594 — twice as expensive as when the index was in place. Despite this, the cost is still
relatively low — for joins across large tables, it’s not uncommon to see costs in the tens or
hundreds of thousands.

mysgl> select SQL NO CACHE propref, addr FROM property JOIN regions ON
property.regionld=regions.regionId WHERE regions.region="North East";

Optimizing SQL | 249

mysgl> show status like 'last query cost';

Hommmmmmm oo Hommmm oo +
| Variable name | Value |
T 4mmmmm oo +
| Last _query cost | 25073.649391 |
o mm oo Hommm oo +

A second problem with estimating the query cost is that the statistics aren’t always that accurate.
For example, although MyIsam keeps an exact count of the number of rows in a table, InnoDB
has only a rough idea (unless, of course, you perform a count query). Key distributions are rarely
perfectly uniform either. Consider an index of employee surnames — in most English language
countries, there will be a lot more beginning with “S” than “Z.”

Tips for SQL Efficiency

The remainder of this section focuses on tips for writing better (or, perhaps, more efficient) SQL.

Bulk Writes

In some situations, it’s common to perform bulk UPDATE/DELETE/INSERTs on a periodic basis — for
example, pruning log entries on a nightly basis, or loading in data from a comma-separated value
(CSV) file. The presence of indexed columns can make this process painfully slow because the
indexes will be updated after every query. And as the indexes grow bigger, they take longer to
update — especially if they are too large to fit in memory.

Ideally, you’d like to tell MySQL to delay updating the indexes until you finish the batch operation.
You can do this by temporarily disabling indexes on the table like so:

ALTER TABLE table name DISABLE KEYS;
After you finish writing, indexes can be re-enabled using the following:
ALTER TABLE table name ENABLE KEYS;

The cost to update the indexes following a bulk query should not be significantly higher than fol-
lowing a single write query.

The disadvantage to this technique is that unique indexes can’t be disabled because checks must
be performed after each write to ensure the data in the indexed column is unique. Despite this,
temporarily disabling keys can still be useful in reducing the number of indexes updated after
each write.

With 1nnoDB, an additional trick you can use is to temporarily disable autocommit mode. With
autocommit enabled (the default), each write to a table causes a log entry to be written to disk,
immediately followed by a flush — so you don’t even benefit from I/O buffering at the OS level. Use
the following to turn autocommit off:

SET autocommit=0;

After performing the batch write, you then issue the coMMIT statement to flush the log entries to disk.

250

| CHAPTER8 TUNING MYSQL

In a similar vein, if foreign key constraints are used on an InnoDB table, these can temporarily be
disabled while performing batch operations. The syntax is simply as follows:

SET foreign key checks=0;
*perform batch writes *
SET foreign key checks=1;

Again, this can speed up batch INSERTs significantly by stopping MySQL from checking foreign
keys after each INSERT.

Usually, INSERT queries have the same priority as other queries in MySQL. When a client issues an
INSERT, MySQL queues it up and returns a response to the client after it has been processed. In the
case of batch INSERTs, priority generally isn’t an issue — you usually aren’t in a particular hurry for
the INSERTSs to complete. If anything, you'd probably prefer these queries to have a lower priority, to
minimize disruption to other clients.

You can achieve this by using a modified form of the INSERT syntax including the DELAYED
keyword:

INSERT DELAYED INTO table

This causes two things to happen. First, control is immediately returned to the client, allowing it
to execute further queries (presumably more INSERTs). Second, MySQL queues up the INSERTS in
memory with a lower priority and executes them only when the table is not in use by any other cli-
ents. In practice, this tends to result in the INSERTs being grouped together and written in clumps,
further improving performance.

In addition, you may also want to tune the bulk insert buffer size variable (the default is 8
MB), which controls the size of this buffer for MyTsam tables. It is allocated per client, so care must
be taken not to exhaust system memory.

The downside to delayed INSERTs is that you cannot be sure when the queries will eventually be
executed. On a busy table, it could take some time. During the time that the queries are in memory
waiting to be executed, they are somewhat volatile, too. If MySQL is restarted or the structure of the
table altered, these queries will be lost. Delayed INSERTS are also a little slower than regular INSERTS,
making the latter preferable if activity on the table is low enough not to warrant delayed INSERTSs.

Yet another trick to improve INSERT performance is through the use of multiple-row INSERT state-
ments, as shown here:

INSERT INTO table VALUES ("Smith", " Peter") , (" Roberts", "Stefanie");

Although this is no faster to execute for MySQL, it does reduce the amount of data transmitted.

Normalization

Normalization is a staple of computer science books, especially when dealing with relational data-
base systems such as MySQL. The main goal is to eliminate (or at least reduce) data redundancy,
thereby reducing the possibility of inconsistencies. (If data is duplicated in multiple places, care must
be taken to update each copy.)

Optimizing SQL | 251

Although normalization leads to elegant data structures, you aren’t taking an exam in computer
science, and consideration must be given to performance. In some situations, duplicating data
or merging columns into a single table (the so called Spreadsheet Syndrome) is the right thing to
do, and you shouldn’t be afraid to go against what the textbooks say if it leads to better perfor-

mance. The general rule is to normalize as much as possible and then denormalize as performance
dictates — sound advice.

Joins

Badly written joins have the potential to be painfully slow, and when analyzing a slow query log,
you often find that joins are the most common (and expensive) entries.

Unless there is a compelling reason not to, it’s almost always a good idea to index columns used in
joins. The benefit can be exponential.

In the following example, the two tables both have approximately 26,000 rows, and neither of the
two joined columns have indexes on them. You can use the query cost metric to gauge relative per-
formance. (You could instead have looked at the number of rows examined or the execution time,
but the query cost is the most accurate.)

mysgl> select SQL NO CACHE count (*) from vacancies,vacancy2industry WHERE
vacancy2industry.VAC VacancyID=vacancies.VAC_ID;

e +
| count (*) |
Fommmmmmm - +
| 26207 |
R +

1 row in set (41.43 sec)

mysgl> show status like 'last query cost';

Fommmm e Fomm e +
| Variable name | Value |
tommm s Fommmm oo +
| Last _query cost | 143290315.390895 |
Fommmm s tommmm e +

A query cost of more than 143 million is a far cry from the value of 2.79 seen for the simple SELECT
earlier in this chapter, and a 41-second execution time is unacceptable for a web application. Let’s
trythequeryagahlhavhugaddﬂianindex(nlvacancyzindustry.VAC_VacancyID:

mysgl> show status like 'last query cost';

252 | CHAPTER8 TUNING MYSQL

Better, but now add an index on vacancies.VAC_ID, too:

mysql> show status like 'last query cost';
Fmmm e e i +
| Variable name | Value |
tommm e tommmmm oo +
| Last_query cost | 32862.859059 |

That’s much better. Although the numbers are still fairly high, this is a huge difference — the
indexed version of the query is 1,000 times faster. It’s not difficult to see why optimizing one join
query can do more for performance than optimizing a dozen SELECTSs.

It also helps MySQL if the columns joined are of the same type and length. Thus, joining a

varchar (32) with a varchar (16) is better than a varchar (32) with an int. But varchar (32)
with varchar (32) is even better. This is one situation in which it makes sense to go against the rule
to keep column lengths as short as possible. Don’t be afraid to experiment with increasing the size of
a frequently joined column to match that of the second column.

NOTE Incidentally, joins on integers are more efficient than on text columns.
Unless you need negative values, go for unsigned integers.

Only SELECT What You Need

SELECT * is the lazy way to read data from MySQL, and there are a couple of good reasons to
explicitly list column names instead.

First, there’s the danger than any changes to the number of columns in the table will break
web code — especially if the code is structured to expect columns in a particular order.

Second, in many cases, you don’t need all the columns. Requesting them simply means more data
being transferred between the server and client, more memory used for send buffers, and more
memory used by the web code to hold the results. Carefully selecting which columns are actually

needed also increases the opportunity for covering indexes to be used, which can be a huge boost to
read performance.

DELETE versus TRUNCATE

When you want to delete all the rows from a table, TRUNCATE table name is generally a better
(much faster) choice than DELETE, but there are a few other subtle differences. For example,
TRUNCATE also causes auto_increment counters to be reset, and, in many ways, TRUNCATE can be
thought of as a shortcut for DROP table/CREATE table.

DNS Lookups

Remote connections to a MySQL server typically involve DNS lookups because MySQL attempts
to establish whether the hostname of the client matches any of the access masks in the grants table.

Optimizing SQL | 253

Naturally, the latency that this introduces is largely dependent on the responsiveness of the resolving
DNS server being queries.

You can cut out this step by adding skip-name-resolve to my.cnf, which causes MySQL not to
perform a PTR record lookup on the IP address of the connecting client. But be aware that access
masks in the grants table now need to use IP addresses rather than hostnames.

Actually, this isn’t as big an advantage as it may first seem. MySQL has a built-in cache for DNS
lookups, capable (by default) of holding 128 entries. (If you want to increase it further, you need

to recompile MySQL.) Typical MySQL usage patterns involve a relatively small number of clients
making frequent connections (for example, a pool of web servers). So, the vast majority of the time,
DNS responses will be cached in memory anyway.

SQL_SMALL_RESULT and SQL_BIG_RESULT

These two SELECT options provide hints to MySQL on how to handle the data returned by the
query, and are particularly suited for use with GROUP BY or DISTINCT.

For queries that return a large amount of data, sor, B1¢ RESULT tells MySQL not to bother trying
to hold the result in memory (which it normally would), and instead use a disk-based temporary
table. Conversely so1,_sMALL_RESULT asks MySQL to hold the results in memory, which is a lot
faster than disk-based tables.

In most situations, SQI,_SMALIL_RESULT isn’t necessary because in-memory temporary tables are
what MySQL will use by default anyway, only falling back on disk-based tables if the result set is
too large. By specifying SQL._BIG RESULT, you save MySQL the effort of fitting a large result set in
memory, failing, and using a disk-based table. The savings here are only modest, though.

More worrisome is the incorrect use of these options. If you specify SQL. BIG RESULT on a query
that actually returns a modest amount of data, you lose the performance boost of having the results
returned directly from memory. Similarly, if SOI. SMALL RESULT is used on a query that returns lots
of data, you confuse MySQL into attempting to store the results in memory.

Given the modest savings offered by these options, and the potential for them to be used incorrectly,
a lot of care must be taken. Only use sQL._BIG RESULT when you’re sure the result will be big — and
don’t bother with sQL_SMALL RESULT.

Prepared Statements

In MySQL and many other database management systems (DBMSs), prepared statements offer a
more efficient way to execute similar statements repeatedly. Unlike standard queries, in which the
complete statement to execute is sent to the server in one go, prepared statements consist of two steps.

In the first step, a template statement is sent in which placeholders (question marks) are used in
place of one or more values. MySQL parses, compiles, and optimizes the query, but without actually
executing it.

The template can be executed at a later date by passing values for the placeholder variables to the
server. This step may be repeated as many times as necessary.

254 | CHAPTER8 TUNING MYSQL

From a performance perspective, the main advantage here is that the parsing, compiling, and
optimizing need only be performed once, reducing MySQL’s workload. Prepared statements
are also popular because they reduce the possibilities of SQL injection attacks.

In PHP, both the mysqli and PDO MySQL extensions support prepared statements (the mysql
extension does not). Here’s an example using mysqli:

Sstatement = Smysqgli->prepare ("INSERT INTO preferences (option, value) VALUES (?,?)");
Now bind and execute. The first paramter to bind param is the
bind type; in this case two strings.

$statment->bind param("ss","favorite color", "orange");
$statement-s>execute() ;
$statment->bind param("ss","cats or dogs?", "dogs");

Sstatement->execute () ;

Because prepared statements involve an extra round trip to the server, using them to execute a single
query is more costly than the traditional method, and there is little to be gained when you are only
executing a handful of queries. As the number of queries executed increases, the benefits of prepared
statements become more apparent.

With write queries, the method outlined earlier in the section, “Bulk Writes,” is often a better
solution.

SUMMARY

MySQL performance tuning covers a vast area. As well as tuning MySQL, there is a huge range of
options available for individual storage engines. It’s worth being clear on which tuning options are
properties of MySQL, and which are properties of engines.

The two main storage engines are MyISAM and InnoDB. MyISAM was the default for many years and
offers fast lookups on indexed columns. In recent years, though, TnnopB has overtaken Mmy1sam and
is now the default engine in MySQL. InnoDB offers fast lookups on primary keys (but less so on
secondaries because of the way keys are stored in file), and handles high levels of concurrency better.
It also supports transactions, something missing in MyISAM.

Indexing is an important aspect of tuning, and careful indexing can offer a huge speed boost to
queries. A good understanding of how MySQL parses and executes queries is needed first, though,
and tools such as ExPLAIN and the MySQL query profiler are invaluable here.

MySQL also offers its own built-in query cache, which can drastically reduce CPU usage. The query
cache is not without its drawbacks, though, and you must understand both the situations in which
invalidations occur, and the impact of nondeterministic functions (such as RAND) in queries.

So far you’ve seen how to tune MySQL and the two major storage engines (MyISAM and InnoDB)

for a single-server setup. As your network grows, and a single MySQL instance is no longer enough,
issues of scaling and load balancing arise. In Chapter 9, you’ll see how MySQL can scale horizon-
tally using concepts such as replication, partitioning, and sharding.

MySQL in the Network

WHAT’S IN THIS CHAPTER?

Setting up and managing MySQL replication
Discovering advanced features of replication
Partitioning data in MySQL

Setting up sharding

Y Y Y Y Y

Discovering alternatives to MySQL

Many websites start with the web server and MySQL sharing a single server. This works for a
while, but (hopefully) there comes a time when a single server just isn’t powerful enough. The
next step (particularly on database-heavy sites) is usually to put MySQL on its own server.
Separating these two distinct functional areas is easy, and often requires little more than
changing the MySQL connection string in the web code. As the site continues to grow, more
CPU and RAM are thrown at the database server.

This “monolithic monster” approach to MySQL actually works surprisingly well and is a long-
term solution for many websites. Continuing advances in CPU and RAM capabilities mean
that even if a high-end server is reaching saturation point now, something bigger and better
will soon be available.

Simply throwing CPU and memory at a single machine has diminishing returns, however. You
aren’t increasing the data transfer rates from disk or from memory, or decreasing disk seek
times, and so on. Sure, you can update these parts of the system, too (although the rate of
advance in memory speed and disk speed is not nearly so fast), but you still end up with a
system where the bottlenecks are more pronounced than ever.

256 | CHAPTER9 MYSQLIN THE NETWORK

NOTE I[t’s also worth remembering that core speeds can be just as important as
the number of cores. A nonthreaded process (that runs on a single CPU core) is
no faster on a 16-core machine than a 1-core machine — although it may need to
wait longer to be executed.

So, although a single MySQL beast can go a long way, eventually there will be the need to move
away to a multiserver setup. This chapter looks at the options available after you outgrow a
monolithic monster.

The first topic examined in this chapter is replication, which is a built-in feature of MySQL that is
commonly used to scale across multiple servers. Replication isn’t without its drawbacks, though,
and youw’ll also see how partitioning and sharding can be used to achieve better effects. Sharding
is a particularly important and powerful concept, and is a topic you’ll meet again in Chapter 10,
“Utilizing NoSQL Solutions.”

Finally, in this chapter, you’ll also discover MySQL Proxy, a highly scriptable application that can
be used to load balance and create other advanced topologies. The chapter concludes with a look at
some of the most popular alternatives to MySQL, including the various forks and branches that are
available.

USING REPLICATION

Although creating a pool of web servers is a relatively straightforward procedure (even though
sessions can be a nuisance), multiserver MySQL setups require a little more, though, because of their
read-write nature. How do you ensure that each server is in sync with the others? What happens if
two servers modify data simultaneously?

For a long time, the only practical option was MySQL’s built-in replication. There are other options
now (such as clustering), but replication is still one of the most popular methods, which works
reasonably well. This section discusses the pros and cons of replication, the possible uses (it’s not
just for load balancing), and the myriad of possible topologies.

The Basics

Replication uses a master-slave configuration. In the most basic setups, a single server acts as the
master, with one or more slaves syncing their content from this master. Both master and slaves
can perform read queries, but because of the one-way nature of the replication, write queries must
be performed only on the master. If a write is performed on a slave, it never propagates to the
master (or to any other slaves). Figure 9-1 illustrates this basic setup.

Using Replication

257

Master

Writes go
Changes to the master’s

data are synced to the
slaves
]] %’ Reads go

Client
(for example, a web server)

N

to slave

FIGURE 9-1

The most obvious drawback to this topology is that writes are still centralized on a single server.
You’ll see ways to work around this (to some extent) in the upcoming section, “Advanced

Topologies,” but because most Linux, Apache, MySQL, and PHP (LAMP) applications are read-heavy

(80 percent reads and 20 percent writes is an often quoted figure — but this ratio can vary hugely
depending on the application), this often isn’t a huge problem — at least not under moderate loads.

NOTE [n MySQL, the binary log is a log of events that result in changes to the
dataset — for example, changes to table structures, adding/deleting rows, and so
on. This log can be used to recover corrupt tables, or for the purposes of replica-
tion. The relay log is created by replication slaves to hold binary log events that
have been received from the master.

How does the mechanism of replication actually work? You can think of it in terms of the following

three steps:
1. The master writes events to its binary log (which must first be enabled).

2. AnI/O slave thread on the slave copies events from the master’s binary log to the slave’s
relay log.

3. A SQL slave thread replays events from the relay log.

If the slave also has binary logging enabled, a fourth step involves the slave writing the replayed
events to its own binary log.

Setting Up Replication

Setting up replication won’t be examined in great detail here because the web is already awash with

tutorials on setting up replication. But, briefly, the process is as follows.

The following three options must be added to the my . cnf file on the master:

log-bin = /var/log/mysqgl/mysgl-bin.log
binlog-do-db=my database
server-id=1

258

| CHAPTER9 MYSQL IN THE NETWORK

The first line specifies the location of the binary log, whereas the second contains a comma-separated
list of databases to replicate. It’s generally preferable to select individual databases to replicate, rather
than to have MySQL replicate everything because you usually want to keep the access permissions
stored in the MySQL database private. The third line specifies an arbitrary numeric ID for the server,
which must be unique (that is, not used by any other slaves or masters in the setup).

At the master MySQL’s command-line interface (CLI), you create a user with the replication
privilege. The slave connects as this user to sync from the master’s binary log.

GRANT REPLICATION SLAVE ON my database.* TO 'slave user'@'slave.example.com'
IDENTIFIED BY 'my password';
FLUSH PRIVILEGES;

Next, you flush and lock the tables in the database, and make a note of the master’s current position
in the binary log.

USE my database;
FLUSH TABLES WITH READ LOCK;
SHOW MASTER STATUS;

R LT R ittt e it R e L T +
| File | Position | Binlog Do DB | Binlog Ignore DB |
R e L e R R Hommmmmmo oo R LR +
| mysqgl-bin.001026 | 1031 | my database |

o mmmm oo B R Hommmmmooo o mm oo +

1 row in set (0.08 sec)
Locking the tables prevents any write operations that would cause the position in the binary log to
change.
On the slave, you add the following to the my. cnf file, adjusting as appropriate:

server-id=2
After restarting the slave, you must copy data across from the master so that both servers are in sync
and ready to start replication. There are two choices here:

> Take a dump of the data from the master (using mysgldump), and then copy it across and
import into the slave.

» Use the LOAD DATA FROM MASTER command at the slave’s CLI.

The latter choice is deprecated, however, and causes long periods of locking on the master (as well
as not supporting InnobB). So, you should instead use mysqldump (or mysglhotcopy).

For large tables, it’s generally faster to pipe the output of mysqldump directly to the slave server, as
shown here:

mysgldump my database| mysgl -h slave ip address -u username -ppassword my database

After the slave is up-to-date with the master, you can tell it the position and name of the master’s
binary log, at which point it should start replicating, and then start up the slave thread, as shown
here:

Using Replication | 259

SLAVE STOP;

CHANGE MASTER TO MASTER HOST='192.168.1.10', MASTER USER='slave user',
MASTER PASSWORD='my password', MASTER LOG FILE='mysql-bin.001025',
MASTER LOG POS=1031;

SLAVE START;

Any write operations performed on the master should now replicate across to the slave. You can
repeat this process to create additional slaves, if necessary, but remember to give each slave a unique

server-id.

Understanding Replication Lag

One drawback of replication is that it offers no guarantees that slaves will be up-to-date with the
master. In perfect conditions, a query executed on the master will be replicated to the slaves in a
fraction of a second. But it’s not uncommon to see a lag of a few seconds on even moderately busy
servers. In more extreme situations, slaves can be hours, or even days, behind their master.

Replication lag can occur for a number of reasons. Occasional spikes can be the result of other pro-
cesses (such as a backup script) running on the slave, or a particularly heavy burst of write activity
(perhaps caused by a cron script) on the master, or even network congestion. These spikes tend to
sort themselves out. But if you notice that slaves are taking a long time to recover from such spikes,
it’s likely an indication that the slave is close to saturation. Don’t ignore this early warning sign.

For more persistent lag, it’s likely that the slave simply isn’t powerful enough. Remember that

the slave replays every write query performed on the master, as well as answering queries for
clients — so it needs to be of similar power to the master. The only way around this is to upgrade
the hardware or use filtering to reduce the amount of data replicated.

Assuming that your hardware is powerful enough, your web application still must appreciate and
cater to the fact that lag may occur. For example, if users edit their profile (causing a write to the
master), it may be a few moments before the changes are visible (that is, available to be read from

a slave). Most of the time, this delay is less than a couple of seconds. But, occasionally, it could be
longer. Better to warn users that changes are not instantaneous, rather than leaving them unsure of
whether the changes were actually saved.

Monitoring and Maintenance

Unfortunately, setting up replication isn’t the end of the story. It requires frequent monitoring to
ensure that everything runs smoothly. MySQL provides a couple of useful commands for this.

Executing SHOW SLAVE STATUS on each slave provides a lot of information on the status of the
replication, as shown here:

mysgl> SHOW SLAVE STATUS\G
LR R EEE R EEEEEEEEEEEEEEEEEE S 1. TOW **kkkkkkkhxhhdhhkhhhhkhkhxdxd
Slave IO State: Waiting for master to send event
Master Host: 192.168.1.10
Master User: root
Master Port: 3306
Connect_Retry: 60
Master Log File: mysqgl-bin.000012

260 | CHAPTER9 MYSQL IN THE NETWORK

Read Master Log Pos: 438
Relay Log File: slavel-relay-bin.000143
Relay Log Pos: 47
Relay Master Log File: mysql-bin.000012
Slave IO _Running: Yes
Slave SQL Running: Yes
Replicate Do DB:
Replicate_Ignore DB:
Replicate Do Table:
Replicate Ignore Table:
Replicate Wild Do Table:
Replicate Wild Ignore Table:
Last_Errno: 0
Last_Error:
Skip Counter: 0
Exec_Master Log Pos: 438
Relay Log Space: 1875
Until Condition: None
Until Log File:
Until Log Pos: 0
Master SSL Allowed: No
Master SSL CA File:
Master SSL CA Path:
Master SSL Cert:
Master SSL Cipher:
Master SSL_Key:
Seconds_Behind Master: 0
Master SSL Verify Server Cert: No
Last_IO Errno: 0
Last_IO_Error:
Last_SQL Errno: 0
Last_ SQL Error:
Replicate Ignore Server Ids: 0

Slave IO State gives details of the status of the slave thread. The most common status,
Waiting for master to send event, indicates that the slave’s relay log is up-to-date with the
master, which is the preferable state to be in. There are more than a dozen other possible states
though, some of which indicate an error.

Particularly useful is Seconds_Behind Master, which shows by how much replication is lagging.
This might not be zero, even if Slave I0 State reports Waiting for master to send event

because this indicates only that the relay log is up-to-date. Events from the relay log still must be

replayed. This would be a clear indication that the slave is struggling to cope with the volume of

writes sent by the master.

SQL Errors

Also worth watching are Last_SQL_Errno and Last_SQL_Error. If the slave chokes on any SQL
queries, the most recent error will be stored in these fields. These types of errors cause replication to
halt, requiring manual intervention to fix, so they are a serious problem. But how do they happen?
Surely, if a SQL query has executed fine on the master, it will execute okay on the slave, right?

Using Replication | 261

The most common reasons for SQL errors are because of writes carried out on the slave, or because
the master and slave run different versions of MySQL. But there are numerous other situations in
which replication can break, including corruption of binary or relay logs, or crashes on the master
or slave. It’s a sad fact that most database administrators will battle with replication errors at least
once in their careers.

When errors do occur, you have a few options. If you’re confident that the error can safely be
ignored, you can skip the problem query by stopping the slave thread, instructing MySQL to skip
the query, and then restarting the slave thread. Following is an example:

SLAVE STOP;
SET GLOBAL SQL SLAVE SKIP COUNTER = 1;
SLAVE START;

Errors like these have a habit of snowballing, though. So, unless you are sure that the error can
safely be ignored, skipping it may simply lead to more errors in the future as the slave’s data
becomes even more out-of-sync with the master’s data.

Usually, though, the only way to recover from an error (and be satisfied that the problem is com-
pletely solved) is to resync from the master. This isn’t an attractive prospect, but it’s a better long-
term solution than battling with an out-of-sync slave. Resyncing involves copying over a dump from
the master and setting the slave to the correct position of the master’s binary log — much like
setting up replication from scratch. But because of table locking and the possible size of the
database, it can still be a problem on live servers.

You can do a few things to lessen the likelihood of SQL errors — or at least limit the damage
caused. For starters,, you can set the slaves to read-only using the read only option in my.cnf.
Users with the sUPER privilege can still carry out write operations, and replication can still run
correctly, but standard users will be prevented from writing to tables.

Because many errors are caused by the master crashing (with the most recent binary log events

not yet having been flushed to disk), you can use sync_binlog=1 in my.cnf on the master to force
MySQL to flush events to disk after a transaction. This isn’t ideal because you lose the performance
benefit from caching these writes. But, in many cases, the extra degree of safety makes this a must.

Finally, you can also use skip-slave-start (again in my.cnf) on slaves to prevent them from auto-
matically starting replication when MySQL is started. This is particularly useful after a crash, when
you may want to manually repair tables first. If replication starts automatically, any table corruption
may not be immediately apparent, and may manifest itself only further down the line — by which
stage the slave is so out-of-sync that you have no option but to resync from the master.

Monitoring Lag

As previously discussed, lag is an unfortunate consequence of replication, and web applications
that connect to a replicating MySQL server pool must sometimes accommodate for at least a small
amount of lag. When replication is lagging by more than a few seconds, or for long periods, this
generally calls for attention, though, because it can be a sign that the slave is close to its maximum
capacity.

262 | CHAPTER9 MYSQL IN THE NETWORK

You’ve already seen that the output of SHOW SLAVE STATUS gives you the number of seconds by
which the slave is lagging, but this isn’t entirely accurate, and will be zero if replication isn’t even
running. Instead, the preferred method to monitor lag is to write a simple monitoring script that
writes data to a temporary table on the master, and then checks the slave for this data. If it takes
more than x number of seconds for the data to propagate across, a warning generates. Such a script
could easily be incorporated into a monitoring/stats tool like munin or nagios to plot trends in the
lag, and raise varying levels of alarm, depending on the extent of the lag.

You can even use a script like this as the basis for a routine to turn away read requests to a heavily
lagged slave, preventing clients from seeing stale data, and giving the slave a chance to catch up. The
danger here is that this would result in more traffic to the other slaves, which could, in turn, cause
them to lag and be temporarily removed from the pool. This effect would snowball until there was
just one slave left (presumably the script would be intelligent enough not to remove a lagging slave if
it were the only slave left in the pool), attempting to handle the work of many slaves. In the section,
“Complementing MySQL,” later in this chapter, you learn how to use MySQL Proxy to balance
requests across a pool of MySQL slaves, even taking into account the load on each.

The Single Master, Multiple Slave Model in Practice

So far, this discussion has focused on one replication topology (although it is by far the most com-
mon) — a single master replicating to multiple slaves, with each slave holding an identical copy of
the data to the master. How would you go about using this topology in practice?

If your web code uses a database abstraction class for connecting, it should be possible to modify
the class so that all write queries go to the master (just look for strings like 'UPDATE', ' INSERT',
and so on, in the SQL before sending it off for execution), and some or all read queries go through a
slave. (Depending on the nature of the application and your hardware, you may have the luxury of
sending the most important read requests to the master, eliminating the possibility of lag.)

There are a few methods of selecting which slave to use, assuming all carry identical data, but the
most common is round-robin DNS. Create a DNS entry such as slave.example.com and have it
resolve to multiple IP addresses. Clients (for example, web servers) can pick a random IP address
from the list returned.

Unfortunately, this kind of load balancing is quite crude and fails to take into account that some
slaves may be more powerful than others, or under more load than the others. In the upcoming
section, “Complementing MySQL,” you learn how MySQL Proxy can be used for more advanced
load balancing.

Types of Replication

MySQL offers two types of replication. Statement-based replication (SBR) has existed since MySQL
version 3 and is usually what people mean when they refer to replication. Row-based replication
(RBR) was added in MySQL version 5.1 and deals with some of the shortcomings of SBR. Let’s look
at the differences between them.

SBR revolves around SQL statements. Each write statement executed on the master is stored in the
master’s binary log and eventually re-executed on each slave. This works well in most cases and has

Using Replication | 263

the advantage of generating low volumes of data — so, log files are small, and network transfer
is low.

Unfortunately, there are some types of queries that don’t replicate well with SBR. For example, the
nondeterministic nature of a query, such as the following, means that the 10 rows deleted on the
slave may not be the same 10 rows deleted on the master:

DELETE FROM test LIMIT 0,10

The outcome of this query cannot be predicted in advance, and will likely return different results
each time it is executed.

Examples of other functions that are unsafe include LOAD FILE (), SLEEP (), UUID(), and USER ().
To confuse matters a little more, RAND () and Now () are SBR-safe.

RBR solves these problems; although it introduces problems of its own. With RBR, it is the changes
to the data itself that are recorded and replicated, not the SQL query. This is much safer than SBR
but comes at the cost of increased network traffic and log sizes.

If deciding between these two alternative methods seems like a tough choice, the good news is that
MySQL also supports a mixed-format replication, in which both modes are used. With mixed log-
ging, MySQL switches between the two formats as the situation demands. This pretty much means
that SBR will be used the majority of the time, but MySQL will switch to RBR if it encounters a
query that would be unsafe with SBR.

The replication mode can be set in my . cnf using the binlog-format directive. Accepted values are
STATEMENT, ROW, or MIXED, and the default is STATEMENT. Following is an example:

binlog-format = "STATEMENT"

More on Filtering

You’ve learned that MySQL enables you to replicate on a per-database basis, but there’s more to

it than that. For starters, you have the option of whether to carry out the filtering at the master or
at the slave. You can filter at the master by using the following. (To filter multiple databases, repeat
these statements.)

binlog-do-db=mydatabase
binlog-ignore-db=anotherdatabase

These rules control whether the event is logged to the master’s binary log, so filtering in this
fashion has a direct result on the amount of traffic flowing from the master to the slaves.
However, this method of filtering is also the most dangerous because it breaks on queries that
don’t use the currently selected database. As an example, what happens if the following queries
are executed on the master?

USE testdb;
UPDATE anotherdatabase.anothertable SET x=1;

264 | CHAPTER9 MYSQLIN THE NETWORK

Surprisingly, MySQL considers the second query to be acting on the currently selected database —
testdb — and, as a result, may or may not log it, depending on the binlog*db settings. Such unex-
pected behavior could easily lead to data becoming out-of-sync on the slave. So, unless you can be sure
that situations like this won’t arise, it’s best not to use filtering at the master, despite its benefits.

The alternative to filtering at the master is, naturally, to filter at the slave. Filtering rules at

the slave all take the form replicate*. Earlier in this chapter, you saw how to incorporate
replicate-do-db in the my.cnf file of the slave to initially set up replication, and this is comple-
mented by replicate-ignore-db. Because database names may legally contain commas,

neither of these options allows you to give a comma-separated list of databases. Instead, the
configuration statements must be duplicated, one for each database.

Filtering at the slave also gives you more control over exactly what is replicated. Whereas
filtering at the master limits you to listing which databases can and cannot be logged,

filtering at the slave lets you specify individual tables to replicate or ignore (for example,
replicate-do-table=mydatabase.mytable and replicate-ignore-table=mydatabase
.mytable) and even lets you use wildcards (for example, replicate-wild-do-table=
mydatabase.my% and replicate-wild-ignore-table=mydatabase.my%). Filtering at the slave
also gets around the current database quirk that you encountered with binlog*db.

Advanced Topologies

There are a number of problems with the single-master, multiple-slave topology that has been
discussed thus far:

> Because each slave must replay every write query executed on the master, each slave already
has significant overhead.

> Adding extra slaves slightly increases work for the master. If slaves are at different points
in the master’s binary log, this increases the chances that the data will already have been
flushed from memory, increasing disk I/O on the master.

> Each additional slave increases network traffic.
Although this setup helps to scale read requests, it does nothing to improve writes.

> Each slave maintains its own private query cache, resulting in inefficient caching — the
same query might be cached across multiple servers.

Future versions of MySQL may well implement the query cache as a plug-in, capable of spanning
multiple nodes to create a single, centralized cache. Until then, you can either accept that query
caching will be inefficient, or implement your own global cache using something like memcache.

NOTE You learn more about memcache in Chapter 10.

Functional Separation

You can solve some of the shortcomings of the previous model by assigning different functions to
each slave.

Using Replication | 265

Consider an online dating site. Rather than having a pool of identical (in terms of content) slaves for
the web servers to choose from, you could use one slave for searching profiles, another for sending
and retrieving messages, and another for viewing member profiles.

As shown in Figure 9-2, this layout has a number of benefits. It makes better use of the query
cache on each slave and avoids queries potentially being cached across multiple nodes. (It also
provides the capability to disable the query cache on slaves where you know it will be of little
use.) It enables you to be selective over which tables are replicated to each slave, potentially
cutting down on network congestion (actually, as discussed earlier, only master-side filtering cuts
down on network traffic, but, in the upcoming section, “Replication Performance,” you learn
how you can achieve slave-side replication without the additional traffic) and easing load on

the slaves.

44390

to relevant slave

Client
(for example, a web server)

Search Profiles Messages
FIGURE 9-2

Unfortunately, the distinction between tables isn’t usually clear-cut. For example, retrieving
and listing a user’s message box probably won’t rely solely on the Messages table. Most likely,
messages are stored with the sender’s numeric membership number, and you’d need to join
against the Profile table to retrieve the sender’s name (and possible age, location, and photo,
too — the latter may involve joining to an additional Photos table). There are a few work-
arounds for this:

> Rather than replicating single tables, replicate as many tables as might be used to satisfy the
query. For the message box, this would mean also replicating the tables containing basic
user information (username and the like), primary photo, profile, and so on.

> Denormalize the data so that joins are not required. For example, add extra columns to the
Messages table to hold the username, age, location, and photo.

> Use federated tables to span multiple servers. (This isn’t reccommended because it introduces
further interserver dependencies.)

> Perform the parts of the join query at the application level. For example, retrieve the
sender’s numeric ID from the Messages table, and then query the Profiles slave for
the user’s profile information.

266 | CHAPTER9 MYSQLIN THE NETWORK

If the tables lend themselves to fairly clear distinctions in functionality, the first method (replicating
many tables) is the preferred solution. But if you must duplicate a significant number of tables across
each server, the advantages of this method start to diminish.

The denormalization technique might seem to go against everything you’ve learned about database
design, but it can be a practical solution. It can increase the number of writes, however, because
some data must be updated in multiple places — and writes are usually the main problem because
they are more difficult to scale.

Finally, decomposing the join and running each query separately at the application level has the
drawback of being linear in nature, and, hence, slower. You must run one query, wait for the result,
issue another query, wait for the result, and repeat the process.

Figure 9-3 shows an improvement on this model. This time, the Messages server is separate from
the rest of the replication setup, and handles both reads and writes to the Messages table.

Master
Writes on tables

other than Messages
\ Client

(for example, a web server)

/
Reads and writes on the

Messages table go directly
Search Profiles Messages to the Messages server

FIGURE 9-3

NOTE This discussion focuses on the private messaging feature of the fictitious
site, but these principles could easily apply to other areas, too

This topology helps to lessen write activity on the master — always a good thing, with this being
the main source of bottlenecks — but it makes things awkward if you must join against other tables
when querying the Messages server. You can denormalize or decompose the join in the web applica-
tion, but there’s another option, too.

Figure 9-4 shows a modification to the setup in which the Messages server replicates the profiles

table from the master, enabling you to perform joins across the Messages and Profiles tables. The
Messages slave is still the authority for the Messages table, and the Messages table doesn’t need to

exist on the master.

Using Replication | 267

Master
Writes on tables

other than Messages
\ — Client

(for example, a web server)

y:ofiles table
Reads and writes on the

H Messages table go directly
to the Messages server

Il

[

Search Profiles Messages
FIGURE 9-4

Pyramid/Tree Structure

As the number of slaves directly attached to the master increases,
so does the load on the master — something you want to avoid,
given that resources on the master are precious. One way around
this is to use a pyramid structure, as shown in Figure 9-5. Here,
you connect a small number of slaves to the master, and each of
these slaves, in turn, acts as a master for other slaves.

Server A is both a slave to the main master and a master to serv-
ers B, C, and D (refer to Figure 9-5). Only one branch of the
pyramid is shown, but, in practice, the other primary slaves
could all have secondary slaves attached to them. In theory, a
third level of slaves could also be introduced (B, C, and D each 5’ 2’

[T

have a number of slaves attached to them), but it would be a = = ’
large application that needed this number of slaves. ‘—‘B ‘—‘C ‘—‘D

Configuring a node as both a master and a slave is actually fairly FIGURE 9-5
straightforward, and uses nothing more than the configuration

options and methodology provided earlier. The node copies

events from its master’s binary log into its own relay log. These events are then replayed,
and — because binary logging is enabled — are then written to the node’s binary log. This
binary log is, in turn, read by each slave that copies it into its relay log.

There are two main disadvantages to this model, both coming as a result of the additional chain(s)
in the replication. First, there is the danger of one of the intermediate servers crashing, breaking the
replication chain. Second, there is a great opportunity for replication lag because events must propa-
gate down the tree before they reach the bottom level. The chances of lag increase as the number of
intermediates (or the load on the intermediates) increases.

NOTE Most likely, you would use only the bottom level of slaves for client
queries (for example, B, C, and D) because the intermediate levels would have
their work cut out acting as both slaves and masters.

268

| CHAPTER9 MYSQLIN THE NETWORK

Blackhole and Intermediate Masters Master

Intermediate

. . . Master
One of MySQL’s more esoteric storage engines is

the Blackhole engine, a sort of glorified /dev/
null. Any data written to a table using this engine
is simply discarded silently, whereas any read que-
ries against the table return no results.

The Blackhole engine is useful in replication

setups because, although SQL statements will be FIGURE 9-6
logged (in the binary log), there is no work associ-

ated with executing the query. This makes the Blackhole engine perfectly suited for intermediate
masters (such as in the pyramid topology just discussed) because it greatly cuts down on overhead.
Chances are that with an intermediate master such as this (sometimes also called a distribution
master), you can connect all your slaves directly to it, as shown in Figure 9-6.

This proves to be a good topology for several reasons:
> The master needs to replicate only to the intermediate master, cutting down load on the master.

> Because the intermediate master uses the Blackhole engine, there is less load on it. Thus, the
hardware demands aren’t so high, and more slaves can connect directly to the intermediate.

> By using slave-side replication filtering on the intermediate master, you can cut traffic
between the intermediate master and the slaves.

This last point is worth reading again and is the solution hinted at over the last few pages. Although
this won’t reduce traffic between the master and the intermediate master, it means that the binary
log on to the intermediate feels the effect of the slave-side replication filters, and, thus, traffic
between the intermediate and its slaves is reduced.

Setting an intermediate master to use the Blackhole engines is as simple as running ALTER TABLE
on each table, and changing the engine to Blackhole. Remember, though, that any new tables
created on the master do not automatically use the Blackhole engine when they propagate to the
intermediate. You can get around this to some extent by specifying the following in my . cnf:

default-storage-engine = blackhole

This causes the newly created table to use the Blackhole engine, unless the engine is specifically
given in the CREATE TABLE command. In this situation, there isn’t much you can do other than
being vigilant.

Master-Master Replication

So far, all the discussed topologies have used a single
master with multiple slaves. Although a slave may
have only one master, there are still numerous pos- Master A
sible topologies in which multiple masters exist. In
such setups, each server acts as both a master and
a slave, syncing its contents to the other server(s).
Figure 9-7 illustrates a basic setup.

Master B

FIGURE 9-7

Using Replication | 269

Any writes to Master A are replicated across to Master B, whereas any writes on Master B are rep-
licated over to Master A. MySQL has the intelligence not to then replicate the query back to the
originating server.

Many administrators are attracted to this model by its apparent advantages. Because write queries
are usually the big bottleneck in master-slave setups, it seems to make sense that you can distrib-
ute the load by having two active masters. Unfortunately, this isn’t the case. Each master still must
execute the same number of write queries, regardless of which node they were sent to. If Master A
receives a write query, it executes it directly, whereas if the query executes on Master B, it replays on
Master A a few moments later anyway.

Master-master replication is also quite error-prone, and can be extremely difficult to fix, should the
two servers become out-of-sync. As an example, consider what happens if both masters execute an
update on the same table simultaneously. This could lead to a situation in which each master holds a
different view of the table, yet no replication errors are generated.

When replication errors do occur in a master-master setup, they make resyncing the two servers

a nightmarish task. In standard master-slave replication, you’d simply discard the slave’s data and
take a fresh copy from the master. But in master-master replication, both servers may have data that
has yet to be replicated to the other. There’s no easy solution to this, other than manually inspecting
the data and attempting to merge changes by hand.

For these reasons, the master-master structure is generally best avoided unless you have special
requirements. But there is a variation on this structure that is rather useful.

Active-Passive Master-Master Replication

The active-passive master-master replication topology is almost identical to the master-master topol-
ogy but with one crucial difference. You direct writes only to one of the servers. The other server
takes on a passive role, replaying events from the active master but generating no events.

The advantage of this model (and what distinguishes it from a simple master-slave setup) is that you can
swap which server is the active one whenever you want. For example, if you want to take Master A down
for a hardware upgrade, you simply divert all write traffic to Master B, and then shut Master A down
(having first checked, of course, that it has no events waiting to be replicated to Master B). When Master
A comes back online, it can catch up with Master B. You can then either switch writes back to

Master A or leave them at Master B. The ease with which you can swap the roles of each master makes
this an excellent model for high availability — if one server crashes, you can simply fail over to the other.

Of course, it’s not quite that straightforward. Even if downtime on the currently active master was
scheduled, it would still be inconvenient to change your web code (and probably various cron jobs,
too) to point to the other master.

Using DNS records is one possibility. You could create writes.examples.com and have it resolve to
whichever server is currently the active master. A monitoring script could even automatically update
the DNS record if one server went down. The problem here is that DNS changes can be slow to
propagate. Even if you set a very low Time-to-Live (TTL) on the DNS records, not all intermediate
caches will honor these times (more so if the times are very low).

Rather, a better solution is to use a virtual IP address, which can be swapped between the two serv-
ers. Each server will have one IP address that is always bound to it. But a third IP address will also
be present, and will be bound to whichever server is the current master.

270

| CHAPTER9 MYSQL IN THE NETWORK

It may seem wasteful to have a second master in a passive role, essentially doing nothing the major-
ity of the time other than replicating events from the active master. If you have trouble financially
justifying a passive master, remember that it also offers an excellent way to generate MySQL dumps
without locking the master. The passive master could also double up as a slave, handling some of the
read queries on the setup.

Just make sure your code can cope with situations in which the passive master is down, or takes on
the role of active master. (In which case, it may not handle the additional read queries.) Given these
extra complications, it’s preferable to keep the passive master essentially idle if possible.

Speaking of slaves, how do they fit into a master-master replication system? Because a slave can have
only one master, this slave subsystem (be it a single slave, group of slaves, or intermediate master)
can be connected to only one of the two masters. In the case of a distribution master, you could just
manually re-point it at whichever master was currently the active one.

Apart from requiring manual intervention (which you’d like to avoid), this would also be cumber-
some if many slaves were connected directly to the master. Again, the answer is virtual IP addresses.
The same solution that you can use for directing write web traffic to the active master can also be
used to direct the slaves to the correct master.

Replication Performance

Despite being intended to improve performance, many replication setups introduce their own per-
formance issues. Let’s look at some of the most common areas in which bottlenecks occur, and what
(if anything) you can do about them.

Network Performance

The amount of network traffic generated by a replication setup is largely dependent on the number
of slaves, the type of replication (RBR or SBR), and the volume of writes. With SBR, the size and
number of queries is the controlling factor, whereas with RBR it’s the number of rows affected.
Naturally, SBR tends to use more bandwidth than RBR.

It’s generally preferable to connect masters and slaves together over a private, switched network.
This eliminates the possibility of spikes in nonreplication traffic slowing down replication traffic
and vice versa.

In cases in which a low number of slaves exists, you can even connect each to the master directly
with an Ethernet crossover cable, further reducing latency by removing the need for a network
switch. As the number of slaves increases, this quickly becomes impractical, though, because each
will require its own network interface card (NIC) on the master.

Bandwidth and latency are rarely an issue when nodes of a replication setup connect over a local
private network, but it’s a different story if they connect over the Internet. Network conditions can
be variable, and there isn’t usually much you can do about it. For situations like these, MySQL pro-
vides the slave compressed protocol configuration option for use on the slave. When enabled
(default is disabled), this boolean variable causes the data stream to be compressed, generally cut-
ting bandwidth usage by at least half. Of course, this compression doesn’t come for free and causes
a small increase in CPU usage on both the master and slave. It’s for that reason that you should not
use compression on local network setups.

Using Replication | 271

If you feel adventurous, you could shun MySQL’s compression option and set up a secure shell (SSH)
tunnel. Expect similar levels of savings but with the added benefit of encryption — always a good
thing for data passing through a public network.

Slave Performance

Earlier in this chapter, you learned that slaves generally need to be of similar hardware specifications
to the master because they must be powerful enough to replay all the write queries executed on the
master. There’s actually a bit more to it than that.

On a master with multiple CPU cores, several queries could run simultaneously via different threads.
The effect of the binary log is to serialize these into a linear stream of queries, with the result that
when the queries replay back on the slave, they are done so one at a time. (MySQL uses only one
slave replication thread.) It’s not difficult to see how a single core on the slave could struggle to keep
up with the master, and this is another example of how core speed can be just as important as the
number of cores. (A slave would likely be better off with 2 X 3 GHz cores than 4 X 2 GHz cores.)

There isn’t a great deal you can do about this problem, other than be aware of it. It can help to explain
some replication oddities. (“Why is the slave lagging while CPU usage is only moderate?”) Slave-side
replication filtering can also help here by reducing the number of queries that the slave needs to execute.

The Binary Log

Enabling binary logging (as is required for the master) in MySQL adds a little overhead to the sys-
tem. But its usefulness in data integrity means that it can often be prudent to enable it on servers
that aren’t acting as masters, too. The reason binary logging doesn’t add much overhead is that
MySQL usually leaves it to the operating system to decide when to flush the writes to disk. But this
is also rather dangerous because a server crash can cause any log events still in the buffer to be lost.

MySQL provides the sync_binlog variable that can override this behavior. Setting a value of zero
disables syncing (MySQL leaves it to the operating system), whereas a positive integer value dictates
how regularly the binary log should be synced to disk. A value of 1 means after every transaction, a
value of 2 means after every two transactions, and so on.

Naturally, 1 is the safest setting, but it can also be a performance killer. The reason is not data
throughput but the seek time involved as the disk moves its head to the end of the binary log

each time (assuming other disk I/O causes the head to seek to other locations between writes). With
seek times on high-end disks of approximately 3 milliseconds, this limits you to a theoretical maximum
of perhaps 300 transaction writes per second — and that’s before you even add on other disk activity.

There are various possible workarounds for this problem, of which the following four are the most
common:

> Disable sync_binlog or set it to a high value (one that balances performance against
safety). This risks corruption of the binary log, should the server crash.

> Place the binary log on its own hard disk. Providing that nothing else is accessing the
disk, this cuts out the seek time involved in syncing the binary log because the disk head is
already in the correct position at the end of the binary log.

> Many high-end RAID controllers now include a small amount of battery backed-up mem-
ory used for buffering disk writes. Writing to this cache is several orders of magnitude faster

272 | CHAPTER9 MYSQLIN THE NETWORK

than writing directly to the disk and has the added benefit that because the memory has a
battery back-up, if the server crashes, the data won’t be lost.

> Use a solid-state device (SSD) such as flash memory. Although seek time is meaningless in
this context, there is still an associated access time — but it’s usually lower than for a con-
ventional hard disk.

Of these solutions, battery backed-up memory on the disk is by far the best. But using a second disk
exclusively for the binary log is a cheaper, workable solution.

BATTERY BACKED-UP MEMORY

Hard disks typically have a small amount of onboard memory that is used to buf-

fer disk writes. In this way, the disk can return an oK to the operating system almost
immediately, allowing execution to return to the application that performed the write.
Ultimately, the disk’s write buffer (not to be confused with write buffering that may
occur at the operating system level, in system memory) will be flushed to the disk. But
if a power failure occurs before this happens, the data will be lost. This is particularly
dangerous because the operating system will be under the impression that the data
was written to the physical disk (because the disk controller returned an ok).

One solution is to disable the disk’s write buffer, but this tends to cause a significant
drop in write performance. Instead, many RAID controllers (and a few disk control-
lers) use a lithium-ion battery that can supply power to the write cache for a few
hours or so if a power failure occurs. When power is restored, the write cache will
still be intact and can be flushed to disk by the RAID controller as usual.

These battery backed-up units (also referred to as battery backed-up memory,
battery backed-up write caches, and so on) have long been the preferred option for
enterprise-level systems, and their relatively modest cost makes them highly wanted
additions. However, they are generally found only in RAID controllers, and it can

be difficult to find a standard SATA disk with battery backed-up write caches.

Their biggest drawback is the reliability of the battery. Batteries have a nasty habit to
gradually discharge over time, and regular checking of the battery is needed — a pro-
cess that can be physically tricky because it requires the removal of any casing first.

Some battery backed-up units perform their own battery checking, a process that
can range from simply checking the battery level and topping it up, to performing

a full discharge/recharge cycle (because regularly topping up a rechargeable battery
can greatly reduce its capacity). This usually occurs automatically every few months,
and while this is happening, the write cache will be disabled, resulting in a signifi-
cant drop in performance.

Many system administrators have been puzzled by this unexpected drop in disk
throughput. The most practical solution is simply to disable auto-learning in the
controller and perform it manually at off-peak times via a cron job (for example,
using the Megacli tool).

Partitioning | 273

Miscellaneous Features of Replication

Before closing the discussion of replication, let’s address a couple of miscellaneous points.

Backups

One common use of replication is to set up a slave to be used for the sole purpose to take backups
from it. Generating backups from MySQL is a common dilemma. It can be slow, pushing the load
up on the server, and causing table or row-level locking, depending on the storage engine used.

With a dedicated backup slave, you can dump data from the databases whenever you like without
worrying about locking or load on the master. Although taking a large snapshot of the data will
likely cause the slave to lag, this is quite harmless (because nothing else is using the slave), and the
slave should soon catch up when the backup finishes.

Using Different Engines and Indexes on Slaves

You’ve already seen how an intermediate or distribution master typically uses the Blackhole engine
on tables to cut down on overhead, and there’s nothing to stop you from extending this logic and
using different engines on the slaves. For example, you might use InnoDB for a given table on the
master, but use MyTsamM on the slave because you intend to do lots of lookups on secondary indexes.
In this way, you benefit from faster writing on the master, but faster lookups on the slave.

It’s usually always a case of wanting to use InnoDB on the master but MyIsaMm (or perhaps one of the
specialist engines) on the slave — rather than the other way around. One of the most common rea-
sons is to provide full-text search capabilities — something that 1nnoDB lacks. This is by no means
the only solution to the full-text issue, though, as you’ll see in the “Full-Text Searching” section
later in this chapter, when you learn about Sphinx.

Similarly, you can also index different columns on the master than the slave (simply by using
ALTER TABLE on the slave). Most likely you’d want to index columns only on the master that are
used in the WHERE clause of UPDATE queries, whereas on the slave you could be more relaxed and
index more liberally. This would speed up write queries on the master (fewer indexes to update),
whereas still offer appropriate indexing for read queries. Remember, though, that more indexes on
the slave slows down the execution of replayed events from the master — which is already some-
thing of a bottleneck.

As you have seen, replication is not a simple subject, and it can result in quite complex topologies.
While it is perhaps the most common way to scale MySQL, it has significant limitations, and
there are numerous other ways to scale out. In the next section, you’ll meet one of these
alternatives — partitioning.

PARTITIONING

In MySQL, partitioning has a precise meaning and shouldn’t be confused with the more general
concept of partitioning seen in strategies such as sharding (which you learn about later in this chap-
ter in the section, “Sharding”). Although the latter is sometimes referred to as “partitioning,” you
can be pedantic and stick to the precise meaning.

274 | CHAPTER9 MYSQLIN THE NETWORK

MySQL’s implementation of partitioning enables the rows in a table to be transparently split across
multiple disk partitions (horizontal partitioning). Note the word “transparently.” Although the table
definition must describe the partitioning that is to be applied, all subsequent queries against the
table run as normal. Partitioning is purely a strategy for the physical storage of data, and clients nei-
ther know nor care about the underlying way in which the data is stored.

One of the most common reasons for partitioning is to accommodate large datasets, which would
not otherwise fit on a single disk. However, there are numerous performance benefits, too. Some of
these benefits could also be reaped with the use of RAID, and you’ll see a comparison of the pros
and cons of partitioning versus RAID later in this section, as well exactly what partitioning can and
can’t help with.

Creating Partitions

Let’s start by reviewing the basics of creating partitions. The syntax is simply as follows:
PARTITION BY <partition type> (<partition expressions)
This can be appended to CREATE TABLE or ALTER TABLE statements, as shown here:
CREATE TABLE test (foo varchar(8)) ENGINE=MyISAM PARTITION BY <type> (<expression>)

<type> refers to the partitioning type or the partitioning function used to determine how data
should be split across partitions. Four types of partitioning are currently supported:

> HASH
> KEY

» LIST
> RANGE

Let’s take a closer look at each of these.
HASH
Following is an example of using the HASH type:
PARTITION BY HASH (my column) PARTITIONS 6.

With this type, MySQL creates a numeric ID by hashing the given column’s value. It then calculates
the modulus (note that the number of partitions to use has been specified) to determine which parti-
tion to place the row in. For example, a value of 20 would go in partition 2 because mod(20,6) = 2.

A common use of partitioning is to divide rows by date, and you can easily operate on a DATETIME
column, as shown here:

PARTITION BY HASH (YEAR(my dt column)) PARTITONS 10;

Note that the value given to HASH must be a positive integer (be it an unsigned int column, or an
expression that returns a positive integer).

Partitioning | 275

One of the most compelling reasons to use the HASH type is that it ensures even distribution of rows
over the partitions, and (unlike some of the other types) it is fairly simple to set up and maintain.
You simply tell MySQL how many partitions you want, and let MySQL figure out how best to parti-
tion each row.

NOTE As of MYSQL version 5.5, linear hashing is also supported. This uses an
alternative hashing algorithm based on powers of 2, which is much faster (an
effect that is more noticeable with large tables). Unfortunately, this algorithm
also causes a much less uniform distribution of rows, and the size of individual
partitions will vary considerably.

KEY

Following is an example of using the KEY type:
PARTITION BY KEY (keyname) PARTITIONS 4.

Although similar to HASH, XEY has the advantage that the column passed to XEY does not need to
be a positive integer. MySQL can use its own internal hashing function, guaranteed to generate a
numeric value. This is the primary reason for choosing the KEY type.

LIST

Following is an example of using the LIST type:

PARTITION BY LIST (my_column) (
PARTITION p0O VALUES IN (1,2,5,9),
PARTITION pl VALUES IN (3,8,10),
PARTITION p3 VALUES IN (4,6,7,11)

With the LIST type, you assign particular column values to each partition. In this example, any row
that has a value of 8 for my column will be placed in partition p1; any row with value 9 will go in
partition po. Note that, as with HASH, values must be numeric.

Unlike the previous HASH and KEY types (where MySQL decided in which partitions to place data),
LIST gives you the power to specify exactly where you want certain rows to be stored. This can be
useful for performance, but with this power comes extra responsibility, too. In this example, if you
attempt to write a record with a value of 12 for my _column, MySQL throws an error because you
haven’t specified in which partition to store such values.

RANGE
Following is an example of using the RANGE type:
PARTITION BY RANGE (my_column) (

PARTITION pO VALUES LESS THAN (1000),
PARTITION pl VALUES LESS THAN (2000),

276 | CHAPTER9 MYSQL IN THE NETWORK

PARTITION p3 VALUES LESS THAN (3000),

PARTITION p4 VALUES LESS THAN MAXVALUE

Here, you specify how to split the data based on ranges. If my column has a value less than 1000,
the row goes in po. For values between 1000 and 1999, (inclusive) the row goes in p1, and so on.
Again, only non-negative integers are permitted.

The final partition definition, p4, uses MAXVALUE. This serves as a catch-all and picks up any values
of 3000 or higher.

Deciding How to Partition

With four main partition types, and with each being similar, the question obviously arises as to
which is best. As you might expect, there is no simple answer to this, and it largely depends on the
type of data — and the ways in which you access the data.

Sometimes the data lends itself well to a particular method — L.1ST for discrete numeric values or
RANGE for ranges of values. Other times, the choices are already made for you — for strings, KEY is
the only available type.

Partition Pruning

One of the biggest performance advantages in a partitioned table occurs when MySQL uses pruning.
Rather than scan every partition to satisfy a query, MySQL can immediately ignore some partitions
based on its knowledge of the partition structure.

Pruning typically occurs when you use a SELECT with a WHERE clause that references the column on
which the table is partitioned. Following is an example:

PARTITION BY RANGE (my_column) (
PARTITION p0 VALUES LESS THAN (1000),
PARTITION pl VALUES LESS THAN (2000),
PARTITION p3 VALUES LESS THAN (3000),
PARTITION p4 VALUES LESS THAN MAXVALUE

)

SELECT * FROM my_ table WHERE my column < 500

In a query like this, MySQL looks at the partition structure, realizes that only po contains matches,
and doesn’t bother to scan the remaining partitions. This performance gain is particularly pronounced
when the table’s index is too large to fit into memory because it cuts down on costly disk activity.

Of course, this logic works only when you use a SELECT against the partitioned column, so decid-
ing which column to partition on often boils down to the question, “Which column will T use most
often in WHERE clauses?” Through a careful choice of a column, you can maximize the potential for
pruning.

Again, EXPLAIN is helpful to confirm that queries are executed in the way that you intend them to
be. If you query on a column other than the partitioned one, you see that all partitions are scanned,
as shown here:

Partitioning | 277

mysgl> EXPLAIN PARTITIONS SELECT * FROM test WHERE foo0=4585\G

R R EE SRR R SR EEEEEEEEEEEEEE S 1. TOW LR E RS EEEEEEEEEEEEEEEEEEEES]
id: 1
select _type: SIMPLE
table: test
partitions: p0,pl,p3,p4

However, if you search on the partitioned column, EXPLAIN reflects the pruning that can take place.

mysgl> EXPLAIN PARTITIONS SELECT * FROM test WHERE my column=4585\G
Kkkkhkhkhkhhkkhkhhkhhkhkkhhkhhkhkdhk]| TOW *rkkhkkkhkkhkhkhhkhkkhkhhkhkkk*

id: 1
select type: SIMPLE
table: test
partitions: p4

Incidentally, when MySQL scans multiple partitions, it still does so linearly. Future versions of
MySQL can hopefully implement some degree of parallel scanning, which is a big boost to perfor-
mance when partitions are stored on different physical disks.

Physical Storage of Partitions

Earlier, you learned that one performance advantage of partitioning is the capability to store differ-
ent partitions on different disks. However, this is not the default behavior.

With my1saMm tables, each partition will be stored in the data directory using filenames of the struc-
ture mytable#P#p0 (where po is the partition number). For each Mmy1saM partition, there will be a
.MYD and .MYT file.

With 1nnoDB, the situation is a little more complicated. Only when innodb file per tableis
enabled can each partition reside in its own file (using the same naming convention as MyISAM parti-
tions but with the .idb suffix).

Setting the data directory (and in the case of My1saMm, the index directory) for each partition can be
achieved like so:

PARTITION BY RANGE (my column) (
PARTITION p0 VALUES LESS THAN (1000),
DATA DIRECTORY="/diskl/data/",
INDEX DIRECTORY="/disk2/index/",
PARTITION pl VALUES LESS THAN (2000),
DATA DIRECTORY="/disk3/data/",
INDEX DIRECTORY="/disk4/index/",
PARTITION p3 VALUES LESS THAN (3000),
DATA DIRECTORY="/disk5/data/",
INDEX DIRECTORY="/diské6/index/",
PARTITION p4 VALUES LESS THAN MAXVALUE
DATA DIRECTORY="/disk7/data/",
INDEX DIRECTORY="/disk8/index/",

278

| CHAPTER9 MYSQLIN THE NETWORK

This snippet sets each file on a different physical disk, but there’s no reason why multiple indexes
or data files (or a combination of the two) cannot live on the same disk. If increased performance is
the goal (as opposed to splitting because of size), and disks are at a premium, it may make sense to
group infrequently accessed partitions on the same disk, allowing regularly accessed partitions

to reside on their own separate disk. A suitable partitioning expression can help to separate older,
less frequently used data into its own partition(s).

Partition Management

This discussion could easily spend many pages examining the processes of removing, merging, and
adding partitions, changing partitioning types and expressions, and so on. But such information is
readily available online (most notably from MySQL’s online docs), so let’s concentrate on manage-
ment directly related to performance.

In Chapter 8, “Tuning MySQL,” you learned how repairing and analyzing tables can help to keep
MySQLU’s internal table statistics (which are often used when determining the optimal query
execution plan, or QEP) up-to-date — especially important when the table is write-heavy.

A slightly different syntax is used when operating on partitioned tables:

ALTER TABLE tl OPTIMIZE PARTITION pO, pl;
ALTER TABLE tl REPAIR PARTITION pO,pl;
ALTER TABLE tl CHECK PARTITION pO, pl;

In each case, you must specify the partition on which to operate. This can be a single partition, a
comma-separated list, or the keyword ALL (for all partitions).

Partitioning is also incompatible with mysqlcheck and myisamchk, so checking and repairing of
tables must be performed via the MySQL CLI.

Pros and Cons of Partitioning

In general, partitioning is an aid to performance, but the extent can vary greatly. Partitioning is
particularly suited to large data sets where the index would be too large to fit into memory, and to
data access patterns where pruning can be used. If neither of these conditions is present, the main
benefit can occur from reduced disk contention by splitting partitions across multiple physical disks.
But because you generally want data to be buffered in memory as much as possible, disk activity will
already hopefully be low.

Partitioning also introduces some slight overhead. For example, when a row is inserted, MySQL
must determine in which partition to store it. Some partitioning types are faster than others

(as noted, linear hashing is particularly fast for inserting data) at particular tasks, and the choice of
type should, therefore, reflect whether the table is mostly read or mostly write, or a combination

of the two.

NOTE Incidentally, in a master-slave replication setup, it’s perfectly acceptable
to use different partitioning rules on each server. Thus, you might use HASH on
the master (faster inserts) but RANGE on the slaves (faster lookups).

Sharding | 279

Another consideration with partitioning is that if the table has a primary (or unique) key, columns
used in the partitioning expression must use this key. For example, the following example is not
permitted:

CREATE TABLE tablel (
cl INT NOT NULL,
c2 DATE NOT NULL,
c3 INT NOT NULL,
c4 INT NOT NULL,
PRIMARY KEY (cl)

)
PARTITION BY HASH(c4)
PARTITIONS 4;

Instead, you would need to use the following;:

CREATE TABLE tablel (
cl INT NOT NULL,
c2 DATE NOT NULL,
c3 INT NOT NULL,
c4 INT NOT NULL,
PRIMARY KEY (cl,c4)
)
PARTITION BY HASH (c4)
PARTITIONS 4;

In some cases, you might need to artificially remove keys or add indexed columns to achieve the
wanted partitioning structure.

Partitioning is certainly a useful weapon in any performance-conscious database administrator’s
arsenal, but it must be used wisely, and big gains can occur only under certain conditions. In the
next section you’ll meet sharding, a far more powerful method of partitioning data, which solves
many of the shortcomings of partitioning.

SHARDING

So far, none of the multiserver MySQL setups examined in this chapter have done much to scale write
performance, so, although the techniques discussed thus far are still useful, they are only useful up to
a certain point. Depending on the size and estimated growth of your platform, replication and scaling
up may be feasible long-term or mid-term solutions. But for large sites, something more is needed.

Sharding is the most common solution to the problem of scaling writes. Sharding is an example

of data partitioning and is similar in concept to the MySQL partitioning discussed earlier in this
chapter. Just as with partitioning, sharding involves splitting larger tables into smaller parts (called
shards), but that is where the similarities end. Although partitions are transparent to clients,

each shard exists as a separate table and must be referenced as such. Also, the handling of shards is
not automatic as it is with partitions.

Although it requires significantly more work to set up, sharding is a better long-term solution
than any of the methods mentioned previously. However, there’s no point in adding unnecessary

280 | CHAPTER9 MYSQLIN THE NETWORK

complexity for the sake of it, so before embarking on sharding, think carefully about whether you
actually do need it.

Let’s look at an example. Consider the posts table of a busy online forum. The table contains col-
umns for the post text, the date stamp, the user ID for who made the post, the thread that the post
belongs to, and the forum in which the thread belongs. Because of the write-heavy nature of this
table, contention soon becomes an issue, and you must find a way to scale writes.

Rather than store the posts in a single table, you can split the table into several shards. This process
is as simple as creating extra tables, and then manually copying the existing rows across. As with
partitioning, you must decide on the criteria for splitting, and, in this example, the forum ID seems
like a good candidate. So, you create tables named posts_1, posts_2, posts_3, and so on, and then
copy over any rows where the forum ID is 1 into posts_1, any rows where the forum ID is 2 into
posts_2, and so on.

Next, you tell your application that whenever a user creates a post in forum ID x, you write it to the
table posts_x. Similarly, when you want to view an individual post, a thread, or a list of threads in
a given forum, you use the relevant table for that forum.

As you can see, setting up a system like this could require substantial rewriting of the application.
However, placing different shards on different servers provides a powerful and flexible way in which
to distribute writes across multiple machines.

Lookup Tables

With the possibility that shards may not (and, in fact, almost certainly won’t) all exist on the same
server, it becomes impractical to hard-code the application to simply look for a table based on a
naming convention (for example, posts_x). Instead, you also need a way to determine the hostname
or IP address of the server on which the shard resides, the login details, and perhaps the name of the
database and table.

The usual way to implement this is through a lookup table, which could be either a MySQL table or
perhaps a memcache object. Table 9-1 shows an example.

TABLE 9-1: Sample Lookup Table

FORUM ID SERVER IP SERVER USERNAME SERVER PASSWORD SERVER DATABASE
1 192.168.0.1 wwwuser gDRhux8thu forum_posts
2 192.168.0.2 wwwuser 94Sa89zvVxj forum_posts
3 192.168.0.3 web Fa9q9alK2a forum posts
4 192.168.0.4 forums bv62RNJuUT forum posts
5 192.168.0.4 forums bv62RNJuT forum_posts
6 192.168.0.4 fourms bv62RNJUT forum_posts

Sharding | 281

In many cases, the login details and database names will be standardized, and you can get away
with simply specifying the forum ID and IP/hostname on which the shard resides, thus reducing the
size of the table.

The next time the application needs to access a post, it uses the lookup table to determine the
MySQL server to connect to on which the required shard is located.

Fixed Sharding

Lookup tables are an example of dynamic sharding. The application has no hard-coded knowledge
about where and how shards are stored, and must rely on an external map.

You could avoid the need for a lookup table (and, thus, remove some latency and memory require-
ments, and perhaps a single point of failure) by explicitly telling the application how to handle
shards — which is fixed sharding. For example, you could use the modulus of the forum ID to divide
the data into a predefined number of shards, or you could use hashing.

This method is a lot less flexible. You lose the fine-grained control that a lookup table offers for size
and location of shards. For those reasons, dynamic sharding is usually the way to go.

Shard Sizes and Distribution

Although it may be tempting at first to aim for one shard per server, this soon becomes impracti-
cal. What happens if the shard becomes too big? (That is, the write traffic for the individual shard
becomes too high for the server to cope with.) Conversely, if you have too many shards, the lookup
table becomes big, requiring more memory and taking longer to search.

The forum posts example works quite well in this respect. You might expect the number of forums
to be in the range of 10 to 100. With 100 shards, you could start by placing them across two serv-
ers, each with 50 shards, and then perhaps moving to 25 on each of four servers as the forum grows.
This assumes each shard receives the same amount of activity though, which is unlikely to be the
case. So, you could just as easily assign a couple of heavily accessed shards to one server and a few
dozen infrequently accessed shards to another. With a lookup table, you have a huge amount of
flexibility.

Sharding Keys and Accessibility

In sharding parlance, the key is the column on which you split the data. (In the forum example, this
was the forum ID column.) Choosing a suitable key is critical for sharding to be a workable solu-
tion, and deciding on a key usually starts with an analysis of how the data is typically queried.

In the forum example, the forum ID seems like a sensible choice. The majority of queries fetch lists
of threads in a given forum or fetch posts inside an individual thread (which, in turn, belong to a
given forum). You can easily determine which shard contains the data and query it.

But what if you want to view all the posts made by a given user? Because you’ve sharded by forum
ID, the user’s posts are probably scattered across multiple shards, meaning that you must query each
shard one at a time. Because of the linear nature of this, it can be a performance killer.

282 | CHAPTER9 MYSQL IN THE NETWORK

Of course, you could get around this by sharding on the user ID, allowing you to quickly retrieve
all of a user’s posts from a single shard. But this would then make life difficult when you want to
retrieve all the posts in a given thread, or all the threads in a given forum.

The best compromise here is to shard by the key that is likely to give the most benefit (in this exam-
ple, you’d anticipate a lot more queries based on the forum ID than on the user ID), and then look
for ways to mitigate some of the performance penalties associated with querying multiple shards.

Most of the performance problems (in PHP applications anyway) arise because of the linear nature
of querying each shard. Although PHP doesn’t actually have the capability to issue multiple data-
base queries in parallel, other languages do (such as C and Java). One solution is a helper application
that can issue the queries in parallel, merge the results, and return them to PHP. In the later section,
“Full-Text Searching,” you learn how Sphinx can be used for this.

Another solution is to implement additional lookup tables. For example, you could map the post ID
to the ID of the user who created it and the forum ID that it belongs to. Although such a table could
grow big (making it a burden to cache in memory), it would allow you to easily discover which
shards contained posts by a given user. This would save you having to query every shard, but youd
still need to query each matching shard one at a time. For a prolific user, you may still need to query
a lot of shards.

Rather than face the dilemma of which key to shard on, you could opt to keep two copies of the
data, with each copy sharded by a different key. This would allow you to easily perform lookups
based on the forum ID or user ID. Unfortunately, it would also double the number of queries associ-
ated with writing to the table, so this isn’t usually a practical option.

Yet another solution is through the use of federated tables (in which a table on a remote MySQL
server is represented as a local table). These tend to offer poor performance though, so they aren’t
recommended.

Aggressive caching is usually the best workaround, falling back on querying multiple shards if the
cache does not contain the results. This is far from perfect, though, and it can often feel as if shard-
ing causes more problems than it solves. Despite that, it is still the preferred way to scale writes.

Cross-Shard Joins

One of the most disruptive aspects of sharding is that it severely limits your capability to join across
tables. Using the forum posts example, the post shards contain the user ID of each post’s author. To
display a thread, you probably want to display some basic information alongside each post, such as
the user’s nickname, avatar, join date, and so on. If the posts’ shard sits on a different server than the
user table, you can’t do a join on the two (at least not without using federated tables, which don’t
offer good performance).

Again, there’s no clean solution, but following are a few possibilities:

> Decompose the join, and run the queries separately. That is, fetch the posts from the shard,
and then perform a second query to fetch user information for each post author. This hurts
performance, but not necessarily drastically.

Complementing MySQL | 283

> Denormalize the posts’ table. Add additional columns to hold the username, avatar, and so
on. This is attractive but could substantially increase the size of the data, wasting precious
space in memory and increasing disk I/O. It depends how much extra data you need to add.

> Store a copy of the user table on each shard node so that you can still join as normal. You
could use replication to ensure that each node has an up-to-date copy of the user table. This
is a good solution if the table is relatively small or infrequently updated. (And compared
to the posts’ table, both would be true.) But this would be impossible if you also decide to
shard the user table.

Application Modifications

Sharding can require extensive rewriting of existing applications to make them shard-aware. Using a
database abstraction class can help enormously, though, because it provides the opportunity to filter
and rewrite queries before they are passed to MySQL.

For example, instead of rewriting every piece of code that queries the posts’ table, you can modify
the database abstraction class to catch such queries, and rewrite them to use the appropriate shard
(or group of shards, if necessary). This is by no means a trivial task, but it’s infinitely preferable to
auditing every database query in the application.

COMPLEMENTING MYSQL

So far, the multiserver setups examined here have used only MySQL. But there are a number of com-
plementary technologies that can provide useful specialist services such as caching, load balancing,
and fail-over. By far, the most popular is MySQL Proxy, and this is what this section focuses on,
before briefly reviewing some popular third-party stats/tuning scripts.

MySQL Proxy

MySQL Proxy is an incredibly useful piece of middleware that sits between MySQL servers and
clients. Although this introduces a little extra latency into requests (and a single point of failure),
it provides the capability to intercept requests (and responses) and to modify or redirect them. The
possibilities are endless because of MySQL Proxy’s powerful built-in scripting language.

Figure 9-8 shows a basic topology with MySQL Proxy sitting in the middle.

MySQL
Proxy

MySQL
Server

Client

FIGURE 9-8

284 | CHAPTER9 MYSQLIN THE NETWORK

In step 1, the client connects to the proxy and issues a SQL query. After performing any actions on
the request, the query is then forwarded to the MySQL server (step 2), which returns its response
to the proxy (step 3). At this point, MySQL Proxy has the opportunity to perform actions on the
response before returning it to the client (step 4). The whole process is transparent to the client,

which thinks it is connecting to and querying the MySQL server directly.

Common uses for a MySQL Proxy include the load balancing of queries among multiple slaves, log-
ging and generating statistics, splitting reads and writes to separate servers (for replication), imple-
menting sharding, rewriting queries generated by a closed-source application, and filtering queries
for security. You can concentrate on the performance-related capabilities.

NOTE Development of MySQL Proxy is moving rapidly, and it pays to use
the latest release. If you use a Linux/UNIX distribution that uses a package
repository system, check to see that it carries the latest version. If not, you can
download it from MySQL Proxy’s Launchpad site (https://launchpad.net/

mysql -proxy/+download).

Load Balancing
Let’s look at a simple example (Figure 9-9) that requires no scripting: basic load balancing between

multiple replication slaves. Earlier in this chapter, you learned how load balancing could be achieved
by round-robin DNS (or other means by which the client picks a slave at random), with the client
(such as a web server) connecting directly to the slave. However, in this example, the client needs

no knowledge of the pool of slaves. It simply connects to the proxy and lets it do the legwork. The

proxy picks a random slave from a predefined list and sends the query to it.

=
—i| Master
i Replication
MySQL Slave Slave Slave
Proxy
O /
Client % /
| S—
| m—
| m—

FIGURE 9-9

https://launchpad.net/mysql-proxy/+download
https://launchpad.net/mysql-proxy/+download

Complementing MySQL | 285

Setting up this kind of load balancing is trivial with MySQL Proxy. You simply supply a list of
IP:port combinations at the command line when starting the daemon, as shown here:

mysql-proxy --proxy-backend-addresses=serverA:3306 --proxy-backend-
addresses=serverB:3306 --proxy-backend-addresses=serverC:3306

MySQL Proxy listens on TCP/4040 by default. This can easily be changed (for example, to the
default MySQL port of TCP/3306) using the proxy-address option. (Also you’ll probably want to
launch the proxy in daemon mode using daemon, run it as an unprivileged user with user, and set it
to restart if it crashes with keepalive.)

Alternatively, you can put everything in a configuration file and specify the path to it when starting
MySQL Proxy, as shown here:

cat /etc/mysql/mysqgl-proxy.conf

[mysqgl-proxy]
proxy-backend-addresses=serverA:3306
proxy-backend-addresses=serverB:3306
proxy-backend-addresses=serverC:3306
keepalive
daemon
user=nobody

mysql-proxy -defaults-file=/etc/mysql/mysql-proxy.conf

Load balancing with MySQL Proxy has another major advantage over methods in which the cli-
ent itself picks a slave at random (be it via DNS, or from a predefined list of slaves). It can detect

if a slave is down and remove it from the pool for a short period of time. This detection is still
fairly crude, however, and isn’t proactive. The proxy will discover only that a slave is down when it
attempts to forward a query to it and is unable to connect. But it will at least forward the query to
another slave instead.

Despite these features, MySQL Proxy isn’t the perfect solution here. Aside from the latency intro-
duced (the official documentation suggests approximately 400 milliseconds in the proxy, but there
will also be network latency to factor in), you also add a single point of failure (SpoF) to the net-
work. If the proxy goes down, all your read queries stop.

Scripting with Lua

MySQL Proxy can be scripted via its Lua support. Lua is a relatively new scripting language, similar
to the likes of Perl or C in syntax, and designed to be easy to learn. Certainly, if you’re familiar with
other scripting languages, you should have no problem picking it up.

A handful of hook points are provided, allowing scripts to execute user-defined functions at key
points in the request cycle. For example, you can hook into connect _server to modify MySQL
Proxy’s behavior when a client connects or read query result to modify a query’s results.

With a few dozen lines of Lua, you can write a load balancer. Rudy Rucker has done just this
(http://forge.mysql.com/tools/tool.php?id=259). Although Rucker’s example script offers
little more than simply starting the proxy with multiple proxy-backend-addresses options, it

http://forge.mysql.com/tools/tool.php?id=259

286 | CHAPTER9 MYSQL IN THE NETWORK

provides an excellent starting point to create a more advanced load balancer. For example, you
could give each back-end server a weight depending on its power, or redirect to different back-end
servers based on which table/database is accessed.

A more advanced Lua script could even query multiple shards on different servers and combine the
results, effectively hiding from the client that sharding was taking place. The only limit here is your
imagination (and time).

Splitting Reads and Writes

A newer feature in MySQL Proxy is the capability to split reads and writes, sending them to dif-
ferent servers. This has the potential to make replication a lot easier for applications to implement
because you would no longer have to rewrite code to send writes to the master and reads to the
slaves. You simply send the query to a single address (that of MySQL Proxy) and let the proxy figure
out where to route the queries.

NOTE As of this writing, this feature is still in beta and is probably unsuitable
for use on production servers. But, hopefully, it will mature as time goes on to
become a core part of MySQL Proxy.

Alternatives

MySQL Proxy is undoubtedly the leader in its class, but there are alternatives (of which Spock Proxy
looks the most exciting). It’s also worth pausing to think if MySQL Proxy will be necessary in your
topology. Rewriting queries and results tends to be a fairly specialist requirement, and the primary
use for MySQL Proxy is to load balance across multiple replication slaves. As you have seen, though,
balancing across slaves is far from perfect, and often you’ll opt for a topology where each slave has a
distinct role (to better utilize query caching) or a sharded setup.

Aside from a little extra latency, the main drawback to MySQL Proxy is that it is a single point of
failure. If MySQL Proxy goes down, all read queries are affected. Possible ways to mitigate this
include running two MySQL Proxy machines and then either balancing traffic across them or using
a hot spare that comes online and assumes the primary proxy’s IP address if the primary goes
offline.

MySQL Tools

A range of useful tools are available for analyzing and monitoring MySQL. This section introduces
you to some of the most popular ones. These include tools for monitoring which queries are taking
the longest to run, and showing which steps of query execution are taking the longest. The discus-

sion also provides tips on tuning the various buffers and caches.

Monitoring

Mtop (http://mtop.sourceforge.net/) is to MySQL what top is to UNIX — an ncurses-based
tool that enables you to see at a glance which queries are taking the most time to run. Mtop also
provides detailed statistics and can explain or kill individual queries (or groups of queries), making

http://mtop.sourceforge.net/

Complementing MySQL | 287

it as much of a management tools as it is a monitor. Packaged with Mtop is Mkill, a tool for killing
long-running queries that come from a particular user or host, or match a given regular expression
(regex).

Innotop (http://code.google.com/p/innotop/) is perhaps the best of the top-like MySQL
monitoring applications. As its name suggests, it is geared toward InnoDB and offers a huge array

of monitoring modes, from replication and transactions, to deadlocks and disk I/O. Tnnotop takes the
pain out of inspecting MySQL and InnoDB stats and is an invaluable tool for any database administrator.

MySQL Query Profiler

New to MySQL 5 is the query profiler, a built-in tool for showing where MySQL spends its time.
You already learned about ExPLAIN in Chapter 8, and combined together the two give you a power-
ful way to debug MySQL performance problems.

The query profiler is enabled on a per-session basis and logs stats for each query subsequently exe-
cuted. You can then view these stats using the new SHOW PROFILES syntax, as shown here:

mysgl> SET profiling=1;
Query OK, 0 rows affected (0.00 sec)

mysgl> select count (*) from jos users where username like '$test%';

mysql> SHOW PROFILES;

R EEEEEEE T R EEGEEEE T e et e e +
| Query ID | Duration | Query |
Hmmmmmmmoo- R EEEERE T e et +
| 1 | 0.56869400 | select count (*) from jos users where username like |
| | | 'Stest%! |
Hmmmmmmmoo Hommmm oo et et +

1 row in set (0.00 sec)

By default, the query profiler stores the 15 most recent queries in memory, and you can view the
most recent using SHOW PROFILE — or SHOW PROFILE FOR QUERY n for an earlier query (where n is
the Query ID):

mysgl> show profile;

oo m oo m—mmommmooo oo Fommmmmm- o +
| Status | Duration |
B il t---------- +
| starting | 0.000017 |
| checking query cache for query | 0.000046 |
| Opening tables | 0.000009 |
| System lock | 0.000006 |
| Table lock | 0.000019 |
| init | 0.000020 |
| optimizing | 0.000009 |
| statistics | 0.000011 |
| preparing | 0.000009 |
| executing | 0.000005 |
| Sending data | 0.568485 |
| end | 0.000010 |

http://code.google.com/p/innotop/

288 | CHAPTER9 MYSQL IN THE NETWORK

| query end | 0.000003 |
| freeing items | 0.000033 |
| storing result in query cache | 0.000006 |
| logging slow query | 0.000003 |
| cleaning up | 0.000003 |
oo Rt +

The profiling step names should all be self-explanatory, and they enable you to see where MySQL
spends its time. You can determine whether there are issues with locking, or perhaps the table

cache is full, and I/O bottlenecks are causing delays in opening the table and reading the data. The
Sending data step does not refer to the process to transfer data across the wire from server to client,
but rather to the whole process to run the query and return the data. Hopefully, future versions of
the query profiler will break this step down to provide more useful information.

You can also see the effect of the query cache in action (assuming it is enabled) by immediately re-
executing the query and profiling it, as shown here:

et e e T T Fommmmmmo - +
| Status | Duration |
et e e T B e +
| starting | 0.000017 |
| checking query cache for query | 0.000007 |
| checking privileges on cached | 0.000004 |
| sending cached result to clien | 0.000007 |
| logging slow query | 0.000003 |
| cleaning up | 0.000004 |
et T T Fommmmmmo - +

This time, you see fewer steps as a direct result of a hit on the query cache.

You can get more information from the profiler by using the syntax
SHOW PROFILE <types> [for query nl, where type is one of ALL, BLOCK IO, CONTEXT SWITCHES,
CPU, IPC, MEMORY (as of version 5.6, not currently implemented), PAGE FAULTS, SOURCE, or SWAP.

Following is a snippet of the profile of the original query using the ALL type. For brevity, this just
shows one row, and the data has been formatted vertically using the \G switch.

khkkkkkkhkkkhdhhkkkhhhkkkkddx 7] pow **xdkdkkkrkkdhrhhddhrhhdhkkkk

Status: Sending data
Duration: 0.733316
CPU _user: 0.304019
CPU_system: 0.176011
Context_voluntary: 436
Context involuntary: 94
Block ops_in: 47904
Block ops out: 32
Messages_sent: 0
Messages_received: 0
Page faults major*: 0
Page faults minor: 389
Swaps: 0
Source_function: unknown function
Source file: ../../sql/sql select
Source line: 2317

Complementing MySQL | 289

You can see some degree of context switching (but nothing too serious), and some disk activity —
mostly reading in from disk (Block ops_in). Presumably, the data is not in memory.

NOTE Page faults (referred to as hard faults in Windows) are not as serious as
they sound. Minor faults occur when a page has been loaded in memory but has
not been marked as such in the memory management unit (MMU). The kernel
remedies this by simply marking the page as loaded in the MMU. By contrast,

a major fault occurs when MySQL attempts to access a page that hasn’t yet
been loaded into memory. The kernel remedies this by reading in the page from
disk (and, if memory is low, possibly writing out a page to disk to free up some
space). This makes major faults much more expensive, but they are still a vital
part of memory management.

Performance

The MySQL Performance Tuning Primer Script (http://day32.com/MySQL/tuning-primer.sh)
parses MySQL’s status counters and generates a report with recommendations for improvement.
Following is an example excerpt of a report:

KEY BUFFER

Current MyISAM index space = 1 G

Current key buffer size = 1000 M

Key cache miss rate is 1 : 310206

Key buffer fill ratio = 44.00 %

Your key buffer size seems to be too high.
Perhaps you can use these resources elsewhere

QUERY CACHE

Query cache is enabled

Current query cache size 32 M

Current query cache used = 22 M

Current query cache limit = 1 M

Current Query cache Memory fill ratio = 71.76 %

Current query cache min res unit = 4 K

Query Cache is 21 % fragmented

Run "FLUSH QUERY CACHE" periodically to defragment the query cache memory

If you have many small queries lower 'query cache min res unit' to reduce
fragmentation.

MySQL won't cache query results that are larger than query cache limit in size

SORT OPERATIONS

Current sort_buffer size = 2 M
Current read rnd buffer size = 256 K
Sort buffer seems to be fine

JOINS

Current join buffer size = 132.00 K

You have had 3513200 queries where a join could not use an index properly
You have had 40 joins without keys that check for key usage after each row

http://day32.com/MySQL/tuning-primer.sh

290 | CHAPTER9 MYSQL IN THE NETWORK

You should enable "log-queries-not-using-indexes"

Then look for non indexed joins in the slow query log.

If you are unable to optimize your queries you may want to increase your
join buffer size to accommodate larger joins in one pass.

Although all this information can be readily calculated by a savvy database administrator by look-
ing at the output of SHOW STATUS and SHOW VARIABLES, there’s no denying that the Tuning Primer
Script provides a very useful at-a-glance summary of performance. The suggestions it gives form
useful pointers for the less-experienced administrator.

NOTE Remember that these suggestions are just that and tend to assume that the
machine is a dedicated MySQL server.

If you prefer to view the raw statistics and make your own conclusions, mysglreport (http://
hackmysql .com/mysqglreport) offers an alternative to wading through the output of sHow STATUS.
The output is intentionally minimalistic but provides a wealth of information, as this snippet shows:

__ SELECT and Sort

Scan 35.17M 3.5/s %SELECT: 9.77
Range 86.37M 8.5/s 23.99
Full join 3.51M 0.3/s 0.98
Range check 40 0.0/s 0.00
Full rng join 12.98k 0.0/s 0.00
Sort scan 4.55M 0.4/s
Sort range 96.97M 9.5/s
Sort mrg pass 35.11k 0.0/s

___ Query Cache
Memory usage 23.89M of 32.00M %Used: 74.66
Block Fragmnt 18.35%

Hits 635.49M 62.4/s
Inserts 347.26M 34.1/s
Insrt:Prune 7.09:1 29.3/s
Hit:Insert 1.83:1

Table Locks

Waited 1.27M 0.1/s $%Total: 0.14
Immediate 932.19M 91.5/s

___ Tables

Open 6000 of 6000 %Cache: 100.00
Opened 311.54k 0.0/s

Finally, Percona Toolkit (http://www.percona.com/software/percona-toolkit/), which is
based on Maatkit, contains many command-line tools for automating various aspects of database
monitoring and administration. Inside the kit are tools for killing queries based on regexes,
analyzing logs, monitoring and manipulating replication, monitoring disk I/O, and, of course, for
generating stats.

http://hackmysql.com/mysqlreport
http://hackmysql.com/mysqlreport
http://www.percona.com/software/percona-toolkit/

Complementing MySQL | 291

Backups

A discussion of MySQL backup strategies could easily fill a whole chapter because not only do you
need to consider the creation of the backups themselves, but also the recovery process — for example,
determining how quickly they can be reloaded into the system, how easily they can be manipulated if
you only need to recover a single table, and so on. The focus here is mostly on performance, and the
discussion certainly does not represent a well-rounded, comprehensive backup strategy.

File Backups

The obvious way to create backups of MySQL databases would be to copy the files from the MySQL
data directory (for example, /var/1ib/mysql) — the frm, MYI, and MYD files for MySQL, and the
ib* files for InnoDB. It should be apparent that doing this on a live server is not reliable because it’s
unlikely that contents of these files will be in sync with the data held in memory.

Shutting down MySQL and then taking a copy of the files is one option, but, of course, this results
in the database being down for the duration, making it impractical in many situations. Even if
MySQL must be turned off only for a few minutes, it will start back up with empty caches and may
take several hours to “warm up” and reach optimal performance.

For my15aM tables, a compromise is to leave MySQL running and execute

FLUSH TABLES WITH READ LOCK prior to copying the files. This flushes the data to disk and prevents
clients from issuing any writes, making it safe to copy the files. After the backup has been taken, the
tables can be unlocked with uNLOCK TABLES.

This is certainly preferable to shutting down the server, and the caches will still be warm, but it can
take some time to flush the tables — especially if there are any long-running queries (it may even be
necessary to kill these, simply to minimize the length of time for which the tables are locked) — and
tables will be read-only.

This method is unreliable for InnoDB tables, however. Because of InnoDB’s extensive use of back-
ground threads, even flushing the tables does not guarantee that they are completely in sync.

SQL Backups

The alternative to file-based backups is to export the data from MySQL in a format that can be
re-imported at a later date. Usually, this means exporting as SQL.

mysgldump (shipped with MySQL) is generally used for this and (by default) dumps the schema for
each table, along with a series of SQL INSERTs to repopulate them. mysqgldump is flexible and power-
ful, and is the basis of many MySQL backup scripts. It can back up all databases, individual data-
bases, individual tables, and (because it supports WHERE) can be used to back up only selected rows
of a table. To restore, the dump file can simply be piped to MySQL.

This has several obvious advantages over backing up raw binary files. The dump file can be manipu-
lated prior to being re-inserted (for example, if you don’t want to to-reimport it all), is engine-
independent (and, with a little work, MySQL version-independent), is less prone to corruption, and
can easily be compared (for example, via diff) to previous backups. mysqgldump is also InnoDB-safe.

mysqgdump isn’t without its problems, though. The processes to dump and restore the data are both
CPU-intensive and can take a significant amount of time. (When restoring, MySQL must re-execute

292 | CHAPTER9 MYSQL IN THE NETWORK

every statement contained in the dump file.) mysqldump also issues FLUSH TABLES WITH READ LOCK,
making it no better than copying raw files. If anything, the locks remain in place longer because
dumping is significantly slower.

Also, remember to spend some time thinking about the practicalities of re-importing. Although it’s
certainly easiest to run mysqgldump with the A switch (causing it to dump all databases), a single,
huge dump file containing every database is often impractical to work with, and would likely be
too big to open in a text editor. Most of the backup tools built around mysqldump can generate a
list of databases and tables, and then dump each one to a separate file, making it easy to selectively
re-import.

CSV Backups

Although you might automatically associate mysgqldump with SQL dumps, it can also be used to
create dumps in other formats such as XML or comma-separated value (CSV). Although CSV dumps
are no quicker to create, they have a significant advantage over SQL dumps. They can be imported
using LOAD DATA INFILE, which is usually a lot faster.

MySQL even ships with a tool, mysqlimport, which provides a command-line interface to
LOAD DATA INFILE. Starting with MySQL version 5.1, mysglimport supports the use of multiple
threads (via the use-threads= command-line option), which further improves performance.

To generate CSV dumps, call mysgldump with the tab option. For each table, a schema will also be
generated, which must be imported in the usual way.

Incremental Backups

Creating incremental backups is generally thought of as a nonstarter with MySQL, but there are a
couple of techniques that can achieve this.

You can use mysgldump’s WHERE support, for example, to select rows based on a timestamp column.
(Although, for a large table, it might make more sense to archive off older data into a separate table,
which could be backed up less often.)

A more complicated method involves backing up the server’s binary logs and allowing events to be
replayed back to MySQL (in much the same way as a replication slave takes a copy of the master’s
binary log and replays it). Naturally, it’s impractical to keep every binary log, so this technique is
most commonly used with full backups generated by another method (for example, mysgldump). In
emergencies, you can import the most recent dump and then replay the binary logs from that point.

After taking a copy of the binary logs, you can issue FLUSH LOGS to cause MySQL to start using a
new log file. This ensures that the binary logs start and end at points corresponding to when you
make the backups. For InnoDB tables, the transaction log may also be backed up and replayed in a
similar fashion.

Backing Up from a Slave

Another popular method to create backups is to set up a replication slave specifically for this.
(Although, of course, it can double up as a general-purpose slave for read queries.) A slave on its
own isn’t a backup solution, though. If a DROP or DELETE query were executed on the master, it
would propagate instantly to the slave. But a slave does have the advantage that you can usually take

Complementing MySQL | 293

it offline (or lock the tables) for a longer period of time. After you unlock the tables, the slave simply
catches up with the master in its own time.

This is such a useful method to minimize the downtime associated with backing up that many
people choose to run a slave on the same machine as the master, solely for the purpose to take back-
ups from it. However, this method isn’t without its disadvantages. Because the slave must re-execute
every query received from the master, this results in substantially more load on a single-server setup.
If you want to use a slave for backups, it’s best to run it on another host.

LVM Snapshots

A final method to create MySQL backups (and other types of backups for that matter) is to use the
copy-on-write feature of some storage systems, of which Logical Volume Management (LVM) is the
most popular under Linux.

LVM acts as a virtualization layer between the physical media and Linux, enabling you to create
partitions that can span multiple physical disks and can be extended or reduced relatively easily.
The Linux implementation of LVM also supports the concept of snapshots, whereby you can create
an almost instantaneous copy of a partition (resulting in no downtime) and then archive it at your
leisure.

The reason why LVM is so quick to create snapshots is that it doesn’t actually make a physical copy
of the data elsewhere on the disk. Rather, it implements copy-on-write. Any subsequent writes

to the partition you are snapshotting are then made in two places — to the original partition and to
a copy-on-write table (which can be thought of as a change log). At any time, LVM can create the
illusion of having made a full backup of the partition by overlaying the copy-on-write table with
the partition as it currently exists.

This cleverness is also the source of LVM’s biggest drawback though (at least from a performance
perspective), because the existence of a snapshot results in writing twice as much data to the disk.
Not only that, but the copy-on-write table will be located on a different part of the disk, caus-
ing lots of disk seeking. Of course, this happens only for the duration of the snapshot’s existence,
so your aim should still be to create an archive from the snapshot and then remove it as soon as
possible.

NOTE Most of the major operating systems (including the FreeBSD, Windows,
OSX, and Solaris) support LVM, but it isn’t the only copy-on-write system
around. ZFES is a popular choice for Solaris, FreeBSD, OS X, and Linux (via
FUSE), whereas BTRES is another Linux-only option. On Windows, Shadow
Copy (which requires NTES) provides similar features.

So far, this discussion has concentrated solely on the official MySQL. However, given the permis-
sive licensing on MySQL, there’s nothing to stop third parties from writing patches or branching off
their own versions. Many times, the motivation is to provide better performance, and in the next
section, you learn about some of these alternatives.

294 | CHAPTER9 MYSQL IN THE NETWORK

ALTERNATIVES TO MYSQL

Although MySQL is popular, well regarded, and a cornerstone of many websites, it isn’t always the
best tool for the job. There’s no shortage of competing technologies ranging from performance-
enhancing MySQL patches to caching mechanisms to lightweight key/value databases (for situations
in which a full relational database is not needed). This section looks at some of the most popular
alternatives, along with promising new additions.

MySQL Forks and Branches

It’s easy to get caught up in semantics when describing the various MySQL offshoots that exist.
Some are little more than a collection of patches compiled into MySQL, whereas others are heavily
modified versions incorporating new storage engines. Whether individual projects are best described
as forks, branches, patches, or something else is debatable. But the one thing all these have in com-
mon is that they are mostly drop-in replacements for the standard MySQL and can be used without
the need to drastically (if at all) rewrite existing applications.

Why would you need these offshoots? MySQL is already famed for its performance, but in large
applications, it’s inevitable that opinions will differ on how best development should proceed.
Performance is only one of many factors for the MySQL developers, and the offshoots exam-
ined here are mostly geared toward providing better performance (sometimes at the expense of
functionality).

MariaDB

With some uncertainty over MySQL’s future licensing, the aim of MariaDB (http://www.mariadb
.org) is to provide a fully compatible general public license (GPL) alternative to MySQL. MariaDB
is usually described as a branch and aims to be fully compatible with MySQL — the project is even
overseen by the original author of MySQL, Michael Widenius.

Aside from its GPL nature, MariaDB includes a host of small performance improvements, including
the following:

> Changes to fsync () behavior on the binary log increase the rate at which changes can be
committed (which is often a bottleneck with replication) and lessen the chances of data loss
on crashes.

> It provides a segmented key cache. By splitting the key cache into pieces (the exact number,
if configurable), problems of lock contention are reduced.

> It provides progress reports when altering, checking, and repairing tables, and adding/
dropping indexes.

It provides better query optimization, in particular for subqueries.
> It provides improved thread pooling and handling.

Another main feature of MariaDB is the Aria storage engine (but the two are independent of each
other, and Aria could just as easily be used in MySQL), which aims to be a crash-proof alternative
to MyTsaM. Over time, the goals of Aria have widened, and it now supports transactions (to some

http://www.mariadb.org
http://www.mariadb.org

Alternatives to MySQL | 295

degree) and is ACID-compliant. Even though these features are still in progress, the crash-proof
nature of Aria is enough to make it a worthy contender to MyIsSaM.

Drizzle

Although MariaDB is a branch of MySQL that can act as a drop-in replacement, Drizzle
(http://drizzle.org) is better described as a fork and contains significant recoding. As such,
although Drizzle is largely compatible with MySQL, it makes no guarantees of this and will almost
certainly continue to diverge from MySQL over time.

Drizzle is built around a microkernel architecture, with most of the noncore functionality (including
logging, the query cache, and authentication) supplied by plug-ins. This modular structure results

in a slim server. Drizzle is specifically designed for high concurrency and is optimized for multicore
machines with large amounts of memory. (Not so long ago, this was an area in which MySQL had
problems.)

Following are the main differences between Drizzle and MySQL.:
> Drizzle supports only MyIsam for temporary tables.

> Many data types from MySQL are no longer valid. These include TINYINT, SMALLINT,
MEDIUMINT, BIT, TIME, and YEAR.

Partitioning is not supported.
> Drizzle provides its own replication plug-in, based around Google Protocol Buffers.

It’s perhaps best to think of Drizzle as a SQL92-compliant SQL server, rather than as a MySQL
fork. This emphasizes that it is mostly in the MySQL-specific extensions that Drizzle differs from
MySQL, and helps remind you that MySQL is not the same thing as SQL. Incidentally, if MariaDB’s
parentage seems hard to beat, it’s worth nothing that the likes of Brian Aker, Google, Sun, and Intel
have all been involved with Drizzle development.

OurDelta

OurDelta (http://ourdelta.org) provides custom builds of MySQL and MariaDB, compiled
with a handful of community-contributed patches. These range from Percona’s xtraDB storage
engine (more on this in a minute) to contributions by Facebook and Google. Some patches are

performance-oriented, whereas others (perhaps the most useful) provide enhanced logging

and diagnostics — for example, millisecond precision in the processlist.

OurDelta also provide repositories for Debian, Ubuntu, RHEL, and CentOS, making installation a
breeze on such systems.

Percona Server

Percona (http://www.percona.com/software/percona-server) describes its server as a drop-
in replacement for MySQL, making it much more like MariaDB than Drizzle for compatibility.
But whereas MariaDB has a fairly broad scope, Percona Server concentrates on performance and
enhanced diagnostics.

http://drizzle.org
http://ourdelta.org
http://www.percona.com/software/percona-server

296

| CHAPTER9 MYSQL IN THE NETWORK

For diagnostics and statistics, some of the features of Percona Server include per table/index/user
counters, detailed mutex statistics, and enhanced QEP profiling. Performance features include more
fine-grained locking, TnnobB buffer pool preloading, better read-ahead support, and special support
for solid-state devices such as flash storage.

Percona also develops the xtraDB storage engine (part of Percona Server, but it can also be down-
loaded separately and used on MySQL, MariaDB, or Drizzle). This is an InnoDB fork that boasts
excellent performance, particularly on busy, high-end systems. Features include better diagnostics
(via SHOW ENGINE INNODB STATUS), as well as improved CPU and I/O scaling.

Which to Pick?

With so many MySQL offshoots, which should you choose? Or is it best to stick with the tried-and-
tested MySQL? Because performance is of primary interest here, it’s almost certainly worth explor-
ing the alternatives.

If you have an application that sticks closely to the SQL92 standards without using any/many
MySQL-specific features, Drizzle is probably the most exciting option. It isn’t a drop-in replacement
for MySQL though, so be prepared to spend some time learning the radical changes that it intro-
duces, and possibly recoding some of your SQL queries.

If you need 100 percent MySQL compatibility, Percona Server, OurDelta, or MariaDB are all excel-
lent options. MariaDB tends to be more focused toward improving MyTSaAM (via the Aria engine),
whereas the Percona team focuses on InnoDB (via XtrabB). Of course, because Aria and XtraDB are
not tied in to MariaDB or Percona Server, you’re free to mix and match.

Full-Text Searching

Despite ITnnoDB (and, in particular, Xt rabB) having the performance edge in a lot of cases, many
users stay with MyTIsaM because it has a feature not present in other engines: full-text searching.

Just to recap, full-text searching is implemented in MySQL via the FULLTEXT index type. It has
numerous performance and accuracy benefits over searching with LIKE or REGEXP, such as bool-
ean searching, ranking of results, and stemming. These features make it highly attractive for use in
online searches. But because it is only available in My1sam, there is a big gap for alternatives that can
be used with other engines such as InnoDB.

There are a few options, however. For example, you have already seen how MyIsam can be used on
a replication slave, whereas TnnoDB is used on the master (and perhaps other slaves, too). If the
data to be searched is easily separated from other tables, and is reasonably static in nature, there is
also the option to simply leave it as MyTsam — or duplicate the contents of an InnoDB table into a
MyTIsaM table for the purposes of full-text searching. Too often, though, searches run against
multiple tables, and keeping them (or copies of them) as MyIsaM is impractical.

Full-Text Tuning

Even if using MyISAM is not a problem, full-text searching is far from perfect from a performance
perspective. Before delving into alternatives to full-text, let’s look at some of the available tuning
options.

Alternatives to MySQL | 297

FULLTEXT indexes can easily grow large — usually they are used on TEXT, MEDTUMTEXT, Or LONGTEXT
columns. In the interest of accuracy and keeping the index to a reasonable size, MySQL enables

the minimum and maximum word lengths to be defined (of these, the minimum is usually the most
important) via the cnf settings, ft min word len and ft max word len. Changing the minimum
word length can have a dramatic impact on index size. (And as you’ve seen, keeping indexes small
pays off.) So, whenever possible, you should increase this from the default of three characters.

MySQL also uses a list of stop words — words to be ignored when creating FULLTEXT indexes. The
default list contains the usual filler words, including and, the, this, that, and so on. (For the full
list, check storage/myisam/ft_static.c in the MySQL source.) Although the purpose of the stop
word list is primarily to improve the relevance of search results, it also helps to keep the index size
down. If you plan to use FULLTEXT indexes on text that contains a lot of jargon, foreign language
words, or unusual words that appear so often as to be irrelevant in search results, a custom list of
stop words can be specified via ft_stopword file in my.cnf. As with the maximum/minimum
word lengths, all FULLTEXT indexes must be rebuilt after any changes are made.

Unfortunately, FULLTEXT indexes are still somewhat slow, even taking into account these tuning
opportunities. One problem is that, like any other index, MySQL must update the index whenever
data in the table is modified. For large datasets this can be slow, and often it’s overkill. Many times,
searches just need reasonably up-to-date data, and being a few minutes stale is perfectly acceptable.

Sphinx

Having established that there is a need for a better alternative to FULLTEXT indexes, let’s look at the
most popular solution to the problem.

Sphinx is a third-party, standalone search engine that works particularly well with MySQL. It’s
blazingly fast and supports its own subset of SQL (named SphinxQL) — so you can query it directly
in much the same way as you would query MySQL. APIs are also available for most of the popular
programming languages.

The following sections provide information that you need to know to start with Sphinx, but inten-
tionally speed through much of the basics to spend more time on some of the more advanced
features.

Indexes

Querying is always done directly against Sphinx, which maintains its own indexes. Querying
Sphinx does not involve MySQL and works even if mysqgld is not running. MySQL is often used

as a data source, however, and Sphinx can be instructed (often via a cron job) to pull data from a
MySQL table and index it — but it can pull data from other databases (or even from XML) equally
well.

So, Sphinx maintains its own indexes, and you periodically update these by telling Sphinx to pull
data from MySQL. Various types of indexing are possible, but Sphinx goes for a method that
maximizes search speed. The downside is that updating such indexes can be painfully slow, so it is
impractical to update/rebuild them for data that is regularly updated (for example, on a social net-
working site, where posts are made almost continually).

298 | CHAPTER9 MYSQLIN THE NETWORK

Instead, Sphinx supports the use of delta indexes — that is, it starts by indexing all the existing
data into a master index, and then, for the periodic updates, it writes any new data to a much
smaller second index file. This is much faster and enables you to update more frequently (say, every
10 minutes). On a less-frequent basis (say once per day), Sphinx can then merge the delta into the
main index, or do a full index rebuild from scratch.

NOTE Incidentally, Sphinx also supports real-time (RT) indexes that can be
updated on-the-fly without the need for periodic cron jobs. These have the
advantage that new data is immediately available for searching, but they don’t
offer as good performance as standard indexes. Thus, these are generally not
preferred — in most situations, it’s acceptable that new data does not appear in
searches instantly.

Data Sources

How do you tell Sphinx from where to pull the data, and, equally important, how do you distin-
guish “new” data when updating the delta index? The answer lies in the data sources defined in the
Sphinx configuration file, which tells it the MySQL connection details (hostname, port, username,
and password) and the query to run to retrieve the data. Following is an example:

source comments

{

type = mysqgl

sql_host = localhost

sqgl_user = sphinxuser

sqgl_pass = dfWH49hs8

sqgl_db = blog

sql sock = /var/run/mysqgld/mysgld.sock

sql_port = 3306

sqgl_query = SELECT comment body, comment title, user id, \

comment date, post id FROM comments

}

index comments

{

source = comments
path /var/data/sphinx/comments

}

This defines a source named comments and the SQL to execute when retrieving data from this
source. In the second section, Sphinx is instructed to also create an index named comments based on
the comments source.

Running this SQL on a large table could potentially cause problems with locking or spikes in
resource usage. So, Sphinx also supports the use of ranges where data is fetched chunk by chunk, as
shown here:

Alternatives to MySQL | 299

sqgl_range step = 1024

sqgl_ranged throttle = 3000

sqgl query range = SELECT MIN(id), MAX(id) FROM comments

sql_query = SELECT comment body, comment title, user id, post id, \

comment date FROM comments WHERE id>=$start AND id <= $end

Now, when Sphinx builds the index, it first fetches the maximum and minimum values for the id
column. It then fetches comments in chunks of 1,024 with a 3,000-millisecond pause in between.

As previously explained, it’s undesirable (and often impractical) to rebuild the index from scratch
when rows have been added to the database table, and Sphinx supports the use of delta indexes. To
define the delta index, you just set up similar index and source declarations in the config file but
use a SQL query that returns only recently added data. In many cases, rows have a date stamp col-
umn that you can use, or in other situations you can make a note (in another table) of the value of
an auto-incrementing column. Following is an example:

sqgl_query = SELECT comment body, comment title, user id, post id, \
comment date FROM comments WHERE id>= (SELECT cur_id FROM counter)

Attributes

Although the previous configuration snippet can be used as the basis for searching comments on

a blog, it lacks the flexibility of enabling you to search only on specific fields. To do this, you need
attributes. By adding the following lines to the configuration (inside the source section), you create
attributes on the user_id, post_id, and comment date:

sql_attr uint = user id
sqgl attr uint = post_id
sql_attr timestamp = comment_ date

Shortly, you’ll learn how these attributes can then be used for sorting, filtering, and grouping results.
For the physical storage of attributes, Sphinx offers two choices:

> They can be stored inline with the indexed data (which resides in a . spd file). This solves
the disk-seeking problem (because the attributes will be right next to the index data on disk)
but greatly increases the size of the file (because the attribute values will be duplicated for
each entry). (There are similarities here with the way MyIsam and InnoDB store indexes.)

> They can be stored separately in a . spa file. However, storing in a separate file is something
of a performance killer because the disk needs to seek between the .spa and .spd files. For
this reason, Sphinx always holds a copy of . spa files in RAM — which may cause problems
for large attributes.

All things considered, external attributes are generally the best, unless RAM is at a premium.

Generating Indexes

Creation of index files is done via the indexer binary, part of the standard Sphinx distribution. For
example, to index myindex, the syntax is as simple as this:

indexer myindex

300 | CHAPTER9 MYSQL IN THE NETWORK

The configuration file may also be specified at the command line using -c, and -all can be used
instead of an index name to tell Sphinx to build every index listed in the config file. If you use delta
indexes, you must list the index names manually, rather than relying on -a11.

A particularly useful option when rebuilding indexes is - -rotate, which replaces the old index only
after the new one has been rebuilt and sends Sphinx a SIGHUP, causing it to start serving from the
new file. Without this option, indexer operates on the live version of the file, causing it to be inac-
cessible for the entire duration of the re-indexing process.

When using delta indexes, there are two choices:

> Merge the delta into the main index on a regular basis because if the delta index grows too
large, it defeats the purpose.

> Simply rebuild the main index from scratch periodically.
The latter method is preferred because sometimes the nature of the data means that it can be tricky to
ensure that all changes are captured when creating the delta. For example, in the blog comments exam-

ple, it’s easy to determine newly added comments to index, but what about edits to existing comments?
Rebuilding completely, say, once a day, is a foolproof method to ensure that all changes are indexed.

Still, if you do want to merge indexes, the syntax is as follows:

indexer --merge main delta --rotate

Starting Sphinx and Searching

You’ve now created a configuration file and indexed your data. The next step is to start the Sphinx
search daemon, searchd. This can be as simple as executing searchd, which then forks into the
background. But following are a few useful command-line options:

» --console — This stops Sphinx from forking into the background and causes it to dump its
logs to the console.

--iostats — This causes disk activity to be logged on a per-query basis.

> __cpustats — CPU usage stats will be logged for each query.

To perform a search, Sphinx offers a choice of two interfaces. As previously mentioned, Sphinx
implements basic SQL and can also speak the MySQL protocol — so you can just connect to it
(for example, via the MySQL CLI) as if it were a MySQL server. However, first you must add

a listener to the configuration file, as shown here:

listen = localhost:9306:mysgl4l

Another method is to access Sphinx via its native API, implementations of which exist for all the
common languages (including PHP, Java, Perl, Python, Ruby, and C++). Without getting too bogged
down in the details of the API (which are well documented on the Sphinx website), a basic PHP
snippet might look as follows:

require ("sphinxapi.php");
$cl = new SphinxClient ();

Alternatives to MySQL | 301

$cl->SetMatchMode (SPH_MATCH_ANY) ;
Sres = $cl->Query('linux');
print_r($res);

This displays records where any of the fields contain the string ' 1inux'. Of course, this isn’t flexi-
ble. What if you want to just search on a string appearing in the title? Or what if you want to search
on a particular user ID? You’d get results if the number appeared in any of the fields. The answer
lies in the attributes previously mentioned. With attributes in place, you can further filter results
(think of them as similar to an SQL WHERE clause), as shown here:

$cl->SetMatchMode (SPH_MATCH_ANY) ;
$cl->SetFilter('user id', array(4));
Sres = $Scl->Query('linux');
print_r($res);

This time, you get results only where a field contains '1inux' and the user idis 4 (assuming you
had previously defined user_id as an attribute in the Sphinx configuration file).

You can also use attributes for sorting and grouping, as shown here:

$cl->SetMatchMode (SPH_MATCH_ANY) ;
$cl->SetFilter('user_id', array(4));

$cl->SetSortMode (SPH SORT ATTR DESC, "comment date");
Sres = $Scl->Query('linux');

print r(Sres);

This produces the same results as before, but this time, sorted by comment date (newest first).

It’s worth pointing out that Sphinx returns only a list of IDs of matching rows. You still must fetch
the row from the MySQL table.

SphinxSE

Recent versions of Sphinx now also support a third way to perform searches. SphinxSE is a storage
engine for MySQL that enables the MySQL server to communicate with searchd, issuing queries
and receiving results. This has the potential to further blur the distinction in some people’s minds
between MySQL and Sphinx, so let’s clarify that previous sentence. SphinxsE is not a storage
engine in the traditional sense — no data is actually stored in tables created with this engine type. It
is merely an interface through which to access Sphinx.

Accessing Sphinx in this way has many advantages. For starters, it’s a more familiar method for
many users. You can send queries and retrieve results in a similar way to other MySQL tables. This
removes the need to rewrite queries to use the Sphinx API and makes Sphinx usable in languages
where a port of the API doesn’t exist. It also enables you to perform joins against other tables.

To create a SphinxSE table, you use the usual ENGINE= syntax. In this case, though, you must
include details of the Sphinx back end to connect to and the index name to use, as shown here:

CREATE TABLE tl

(
id INTEGER UNSIGNED NOT NULL,
weight INTEGER NOT NULL,

302 | CHAPTER9 MYSQL IN THE NETWORK

query VARCHAR (255) NOT NULL,
INDEX (query)
) ENGINE=SPHINX CONNECTION="sphinx://localhost:9312/comments";

Note the column names. The first three columns in the table must be of the name and type shown.
You can add additional columns for attributes, provided their names match the corresponding
attribute names.

Rewriting the earlier search query to use SphinxsE results in the following:
SELECT * FROM tl WHERE query='linux;mode=any';

Of course, this just searches for '1inux' in any column. To limit the results to the user_id 4, you
add the attribute clause to the query, preceded by a colon, as shown here:

SELECT * FROM tl WHERE query='test it;mode=any:user id=4';

Parallel Querying and Distributed Indexes

One downside of Sphinx (which isn’t immediately obvious) is that it utilizes only a single CPU core.
All things being equal, running Sphinx on an eight-core machine produces no greater performance
than running it on a quad core. However, Sphinx does support distributed indexes, and with a little
magic, you can execute queries across multiple cores, or even multiple servers.

A distributed index is one in which several sources are defined. The sources will be queries by
Sphinx in parallel, and the results merged. The official documentation is currently a little vague on
this, so let’s look at a skeleton configuration:

source srcl

{

sql query =SELECT comment body, comment title, user id, post_ id,
comment date FROM comments WHERE id MOD 4 = 0

}

source src2
sql query =SELECT comment body, comment title, user id, post_ id,
comment date FROM comments WHERE id MOD 4 = 1

}

source src3

{

sql query =SELECT comment body, comment title, user id, post_ id,
comment date FROM comments WHERE id MOD 4 = 2

}

source srcé

{

sgql_query =SELECT comment body, comment title, user id, post_id,
comment_date FROM comments WHERE id MOD 4 = 3

Alternatives to MySQL | 303

}

index dist

{
type = distributed
local = srcO
agent = localhost:9312:srcl
agent = localhost:9312:src2
agent = localhost:9312:src3

}

As usual, you define source and index blocks. But notice the use of the modulus of the comment

ID in the SQL queries (not dissimilar to the way the modulus is used in MySQL partitioning). This
example goes for four sources, so it uses MOD 4 to ensure that each source gets one-quarter of the
table rows. The index section then sets the first source as 1ocal and adds subsequent sources via
the agent option. This example points them at the locally running Sphinx server, but you could just
as easily specify a remote host : port

If you now run a query against the dist index, each of these four sources will be searched in par-
allel and the results aggregated. In this example, each source is local, and Sphinx runs each in a
separate thread (on a separate CPU core). The result should be much faster execution of the query,
especially with large indexes.

Newer versions of Sphinx now include support for multiple local distributed indexes, meaning that
you can simplify (slightly) the index configuration block to the following;:

index dist

{
type = distributed
local = srcoO

local = srcl
local = src2
local = src3

}

The advantage here is that you save some overhead on networking (because you now no longer use
agent to connect to Sphinx over TCP), but it’s a slim savings.

By default, Sphinx still won’t search the indexes in parallel. But by using the new dist threads
option, you can control the maximum number of threads (and, therefore, the maximum number of
distributed indexes that will be searched in parallel) for a query, as shown here:

dist threads = 4

If you use distributed indexes in this way, it generally makes sense to set dist_threads to the num-
ber of CPU cores present.

Load Balancing

Setting sources as remote provides the opportunity to load balance Sphinx across several servers,
but this isn’t a particularly common setup. Sphinx generally forms only a small part of a site (that
is, the search feature), and because it offers such good performance, there is usually no need to split
load across several servers. Such a setup also causes each node to be a point of failure. If any one of
the servers goes down, the whole search is broken.

304 | CHAPTER9 MYSQLIN THE NETWORK

The situations in which searching across multiple machines in parallel offers a significant perfor-
mance gain are generally limited to large indexes — halving the execution time of a 1-second query
is a lot more beneficial than halving the execution time of a 100-millisecond query. It is more com-
mon to require some form of redundancy or load balancing, and you can do this simply by setting
up additional Sphinx servers with duplicate content. You can then either put a load-balancing proxy
in front of them (for example, HAProxy) or randomly select a server at the application level.

Performance Tuning

Performance tuning tends not to be a big issue with Sphinx in the way that it can be with, say,
MySQL. This is partly because Sphinx is already geared toward performance. But with Sphinx tend-
ing to play a fairly specialized role in sites, it also tends not to be the focus of attention. There are,
however, a number of optimization steps you can take, both in the configuration and implementa-
tion of Sphinx.

Stop Words

As with MySQL FULLTEXT indexes, Sphinx supports the use of stop words (that is, commonly used
words that should not be indexed because their frequency makes searching for them pointless).
Unlike MySQL, though, Sphinx does not have a built-in default word list, so unless this option is
specifically set, no stop words are used.

Aside from improving the accuracy of results, use of stop words can greatly reduce index sizes,
resulting in less disk I/0, less CPU work, and faster results. The format of the stop words file is sim-
ply plain text with one word per line. You can tell Sphinx the location of the file using the following
configuration option:

stopwords = /usr/local/share/stopwords.txt

Partial Matching

Partial word matching is a useful feature. But if you don’t need it, leave it disabled — it increases
index sizes and is also rather CPU-intensive. If you do need it, Sphinx supports two mutually exclu-
sive types: prefix and infix. Prefix only matches at the beginning of words, whereas infix matches at
any position (including the beginning). Of the two, prefix is less CPU-intensive and doesn’t inflate
the size of indexes so much.

Sphinx also enables you to configure the minimum string length for matches, rather like ft_min
word_len in MySQL. For the same reasons as with ft_min_word len in MySQL, it makes sense
to set this as high as possible — almost always 3 or higher. The configuration options for partial

matching are as follows:

min_infix len = 3
infix fields = coll, col2

Or you can use the following:

prefix fields = coll, col2
min prefix len = 3

Alternatives to MySQL | 305

In each case, you supply a comma-separated list of database columns on which to enable partial
matching.

On-Disk Dictionaries

The ondisk_dict configuration option controls whether each index’s dictionary file (.spi) is
precached in memory or left on disk. The default, o, is to cache in memory, and this is usually the
optimal setting — it reduces disk I/O and greatly improves access times.

Occasionally, though, it can make sense to enable this option. Typical situations are when mem-
ory is scarce, or the dictionary file is particularly large (for example, because prefixes/infixes are
enabled). Enabling ondisk dict results in an additional disk read (and seek) for each keyword in a

query.
Binary Logging

Generally, real-time (RT) indexes that can updated on-the-fly offer poorer performance, and
they are best avoided. But if you do use RT indexes, it’s often advisable to enable binary logging.
(Updates to RT indexes are stored in RAM, so a crash would result in lost data.)

The binlog_ flush directive controls how binary log events are flushed to disk and has three pos-
sible values:

> 0 — Logs are flushed and synced every second.
> 1 — Logs are flushed and synced after every transaction.
> 2 — (Default) Logs are flushed after every transaction but only synced every second.
As with MySQL, flushing binary logs can cause a significant drop in performance. If you must use

RT indexes and need binary logging (sometimes it’s acceptable not to), consider battery backed-up
RAID memory, as mentioned earlier in this chapter during the discussion of the MySQL binary log.

Pre-Opening Index Files

The preopen directive controls whether Sphinx opens all index files at startup:
preopen = 1

By default, this is zero (disabled), meaning that index files are opened only when a search needs
them, resulting in a little extra overhead. Enabling this option removes the overhead, so it’s generally
worth doing. The only exception is when there are large numbers (thousands) of index files. In this
situation, Sphinx may run out of file descriptors if it opens them all at once.

Controlling the Maximum Number of Matches

A query that returns a huge number of results hogs both CPU and RAM, and is usually unwanted.
(Most end users care only about the first few pages of results in a search.) max_matches controls the
maximum number of matches returned and can be set to a modest value (the default is 1,000) to
ensure that a single query doesn’t put unnecessary strain on the server.

306 | CHAPTER9 MYSQL IN THE NETWORK

Read Buffers

Sphinx makes use of two read buffers during searches — one for the document list and one for the
hit list. read_buffer controls both of these, with higher values hopefully decreasing disk I/O and
the expense of RAM. The default is 256 KB.

Multiprocessing Modes

Sphinx supports a number of Multi-Process Modules (MPMs) (via the workers configuration
option) that control how it handles concurrent requests. Following are the available methods:

> none — Requests will be handled linearly, one by one.

> fork — (Default) A child is forked for each request.

> prefork — A handful of worker processes are forked at startup.
>

threads — A new thread is created for each request.

These options will be familiar to anyone who has configured Apache (as discussed in Chapter 7,
“Working with Web Servers”), and the pros and cons are broadly the same. Although forking is the
default in Sphinx, the act of forking a child uses resources (most noticeably CPU time), and choosing
the prefork method is generally the best option, especially when Sphinx will be serving many small
queries (which would cause lots of forking).

The threaded MPM is also an option. It offers slightly better performance, but carries the disadvan-
tage that if searchd crashes, all threads will die. (With the other methods, each process is isolated
from the others.)

Disk or CPU?

Bottlenecks in Sphinx tend to be caused by either disk I/O or CPU load, and determining which
can impact the performance tuning measures that are taken. As previously mentioned, searchd can
be started with the --iostats or --cpustats, and these can shed useful light on where Sphinx is
struggling. For example, if searches are slow, despite relatively modest disk and CPU usage, you
may want to consider distributed indexes. If disk I/O is high, make sure attributes are stored
externally — they are held in RAM, which cuts down on disk seeks.

Other Full-Text Engines

Although Sphinx is one of the most popular open source engines for full-text-like search capabili-
ties, it is far from the only one.

Another popular choice is Lucene (http://lucene.apache.org/), a Java search engine from
Apache. Lucene is simply a Java library, but there are various full distributions written on top of

it. The most popular is Solr, (http://lucene.apache.org/solr/, also written in Java), which is
a fully standalone application that uses Lucene at its core. Although solr tends not to offer such a
blistering performance as Sphinx, it does have a number of more advanced features, including repli-
cation, automatic warming of caches, and partial index updates. Lucene has a plug-in architecture,
making it more extensible than Sphinx.

http://lucene.apache.org/
http://lucene.apache.org/solr/

Alternatives to MySQL | 307

A newer arrival, elasticsearch (http://www.elasticsearch.org/), is also built on top

of Lucene and has succeeded in wooing many users from solr. The main attraction of
elasticsearch is its distributed nature, making it easy to scale out. For example, indexes

are automatically sharded across multiple nodes, with management of the shards all taken care
of behind the scenes. Replication can also be added painlessly.

Numerous other search engines exist, but they tend to deviate more from the original goal of a
simple replacement for MySQL’s FULLTEXT indexes.

Other RDBMSs

While MySQL is one of the most popular relational database management systems (RDBMSs), it
is by no means the only one. This chapter concludes with a brief look at two of the most relational
database management systems (RDBMSs), popular alternatives, both of which are based on SQL,
and are sometimes more suitable than MySQL.

SQLite

Through its extensive use in applications on embedded platforms (along with some high-profile desk-
top applications such as Firefox, Google Chrome, and Skype), SQLite is easily the most widely used
SQL engine, far outweighing MySQL. As its name suggests, it is a lightweight SQL implementation
(weighing in at a few hundred kilobytes), implemented as a C library that can be linked in to other
applications. SQLite represents a radical departure from the standard client-server architecture seen in
most other RDBMSs. This makes SQLite easy to deploy, but can it compete with the heavier RDBMSs?

SQLite stores everything in files, so the major bottleneck tends to be when accessing these

files — particularly when writing because the file must be locked. As a result, read queries

(for example, SELECT) are generally fast, but write queries are handled linearly and can be signifi-
cantly slower than when using MySQL.

SQLite is often thought of as a SQL engine best used for local development and unfit for use on
enterprise web servers. But this is rather unfair. For many websites (where reads generally far out-
weigh writes), SQLite is a perfectly acceptable solution with a pleasantly low CPU and memory
footprint. For write-heavy sites, however, SQLite probably isn’t the best tool for the job. In addi-
tion, SQLite lacks many of the performance tuning and scaling capabilities offered by the likes of
MySQL.

PostgreSQL

MySQDL’s main competitor in the RDBMS world is PostgreSQL (often referred to simply as Postgres).
Like MySQL, it is widely used, has a large support community, and has the stability of a mature,
maintained application. In the past, Postgres also had two major advantages over MySQL. It scaled
better on mutlicore machines, and it had better support for transactions. Both MySQL and InnoDB
have come a long way since those days, however, and these arguments are now redundant.

Still, there are plenty of other arguments in favor of Postgres. It has better support for triggers and
user-defined functions, has a more flexible authentication model (based around plug-ins, allowing
for authentication against LDAP, Kerberos, PAM, and so on), and has support for parallel querying
and multiversioning.

http://www.elasticsearch.org/

308 | CHAPTER9 MYSQL IN THE NETWORK

Postgres is highly configurable, and it would be impossible to do justice to a discussion of perfor-
mance and optimization in less than 100 pages. For that reason, Postgres is not examined in detail
here. However, you are encouraged to learn more about Postgres before automatically choosing
MySQL as a back end.

Ultimately, the choice between MySQL and Postgres is a personal preference, but MySQL certainly
has the edge for performance.

SUMMARY

When your database outgrows a single-server setup, a huge range of options are available for scal-
ing. Replication is one of the most popular, and the topologies available are limited only by your
imagination. The overheads of replication (both on the network and each node) can be significant,
and care must be taken when using replication.

Partitioning and sharding are alternative approaches to horizontal scaling. MySQL supports par-
titioning natively, but sharding must be managed manually. Sharding is usually the best option for
scaling (with replication, if necessary). However, performing joins becomes problematic, and you’ll
often find that you must restructure your tables (to reduce normalization) or rewrite code to work
with a sharded setup.

The excellent MySQL Proxy is a piece of middleware that you can use to proxy SQL queries and
rewrite them on-the-fly. Although it introduces a single point of failure, some situations occur in
which MySQL Proxy is invaluable.

A number of forks and branches of MySQL provide additional functionality or enhanced per-
formance. Some (such as Percona) focus on improving InnoDB, whereas others include enhanced
MyISAM implementations. If you are a heavy MySQL user, these forks are definitely worth
considering.

Full-text searching is a commonly used feature of MySQL but is only available in the MyTsaM engine.
For those who prefer InnobDB (or find MySQL’s full-text searching to be rather resource-intensive),
an alternative is needed. Although there are various full-text search engines available, Sphinx is
probably the most popular, which can be integrated into MySQL relatively easily. With Sphinx, full-
text searching does not need to be the big performance bottleneck that it so often is.

The previous two chapters have revolved around MySQL, which has been something of a corner-
stone of web development since the late 1990s. In recent years, however, a new way of thinking
has emerged. Rather than big, bulky RDBMSs, many sites (driven by the need to be capable of
being easily scaled) are moving away toward lightweight databases that offer higher performance
at the expense of simpler relationships between data. In Chapter 10, you learn all about the excit-
ing new world of NoSQL.

10

Utilizing NoSQL Solutions

WHAT’S IN THIS CHAPTER?

> Discovering a wealth of high-performance alternatives to heavy
database servers

> Creating a super-fast distributed key-value store with memcache
» Using MongoDB for fast access to more complex data types

» Scaling MongoDB across dozens of nodes

In recent years, NoSQL has become a buzzword, and there are dozens of popular projects
that fall under this somewhat broad term. Essentially, NoSQL is a covering term for a range
of storage solutions that eschew relational models in favor of a more back-to-basics approach.
They have been hailed by some as the solution to scalability problems in traditional relational
database management systems (RDBMSs).

Although RDBMSs such as MySQL are invaluable in some situations (think of how useful
ACID compliance is for handling online financial transactions), in many cases, they are
overkill. You don’t need the full power of a relational database simply to select, say, a list of
configuration options from a single table. NoSQL solutions fill this gap, offering lightweight
data storage with a range of features. Some are simple in memory key-value stores, whereas
others provide built-in scaling, support for joins, and some degree of ACID compliance.

Unfortunately, NoSQL has been a classic example of the so-called “hype cycle.” Early hype
around NoSQL promised that it would be a silver bullet for data storage that would spell the
end of relational databases. This led to frenzied adoption, even in situations in which it wasn’t
particularly suited. This, in turn, led to a backlash because NoSQL’s weaknesses gradually
became apparent. It is only now that the hype has subsided that NoSQL is starting to be
re-evaluated as a highly useful tool that can live side-by-side with MySQL.

310 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Because NoSQL is such a broad term, defining exactly what it is can be difficult, but there are a few
general features:

> Most solutions are nonrelational and do not offer the capability to join tables.

> Most solutions offer loose table schema, unlike MySQL, where column names and types
must be defined in advance.

> A simplified architecture leads to lower latency and higher levels of concurrency.

> Solutions are typically easier to scale than with MySQL.
Although it may seem that the lack of join support is a major drawback in migrating from SQL to
NoSQL, it’s worth remembering that many vertical scaling solutions for MySQL (such as sharding
and functional separation) force joins to be forsaken anyway. In these situations, you are losing a

lot of the value of using a relational database (but still have the overhead), and NoSQL can be an
attractive alternative. Reports of MySQL’s death have been greatly exaggerated.

In this chapter, you learn about two of the most popular NoSQL solutions, which occupy opposite
ends of the spectrum. At one end is memcache, a lightweight in-memory store. At the other end is
MongoDB, a more traditional database system with the power to scale well. This chapter concludes
with a round-up of some of the most popular alternatives.

NOSQL FLAVORS

There are three broad classes of NoSQL, each of which has its pros and cons:
> Key-value stores
> Multidimension stores

> Document stores

Let’s take a closer look at each.

Key-Value Stores

Key-value stores tend to be the most basic class of NoSQL and are commonly used in web
infrastructures for content caching. Examples include memcache/membase, Voldermort, and Redis.
They offer fast lookups (usually via a hash table), but the data has no schema, which makes them
unsuitable for storing more complex objects or relationships.

Multidimension Stores

Multidimension stores are a step up from the basic key-value stores, offering more complex

data relationships. Data is structured and is stored in rows and columns — not unlike traditional
relational databases. Such systems tend to be more difficult to implement than key-value stores
and are not as fast — but they do offer a lot more flexibility. Examples include Apache Cassandra,
Hbase, Google’s BigTable, and Amazon Dynamo.

memcache | 311

Document Stores

Document databases such as MongoDB and CouchDB offer a semi-structured store, often with
support for nested data. Key values are often used to hold data formatted in XML or JavaScript
Object Notation (JSON) (which may, in turn, consist of key-value data). These stores are intended
more as database replacements than caches and do not offer the blazing performance of key-value
stores. (Although performance is still generally good.)

NOTE Before examining some of the most popular NoSQL solutions, a word of
warning is in order. As with sharding, there’s the danger of thinking that because
the likes of Facebook, Twitter, or Digg use NoSQL, you also must use it. The
rationale is that because the big players use a technology, it must be the right
thing to do, and you should also do it. Remember, though, that these sites have
specific needs — and high levels of traffic. If you have more modest sites, stop
and think. Is a full-scale migration away from MySQL to NoSQL necessary, or
would NoSQL work better as a means to complement MySQL? MySQL scaling
can go a surprisingly long way.

Now, let’s begin wading through the wide range of solutions that fall under the NoSQL banner.
Later in this chapter, in the section “MongoDB,” you’ll meet a popular alternative to MySQL that
offers many of the features of a traditional RDBMS, and has been designed from the ground up
with performance and scalability in mind. But let’s start by looking at memcache, a much simpler
in-memory cache that is widely used alongside MySQL as a means of offloading simple queries.

MEMCACHE

memcache was originally developed in 2003 (the same year in which NoSQL frenzy began), and
quickly became an important part of many websites. It was never intended to be a replacement for
MySQL (unlike some NoSQL applications) but complements it nicely and has found widespread use
as a means to reduce load on databases.

memcache is a network-aware cache that stores key-value data in RAM. As such, it isn’t persistent
storage, and if the machine that it runs on crashes, the data is lost. But this generally isn’t a problem
because memcache is mostly used for caching data that is also stored in a more permanent location
(for example, in a MySQL database).

The typical way to deploy memcache is as a side cache, sitting alongside MySQL rather than in front
of it. Clients utilize it like so:

1. The client (for example, some PHP web code) needs to retrieve some data from the database.
2. The client first connects to the memcache server and attempts to retrieve the data.

3. If the data is found in the memcache cache, it is returned to the client.

312

| CHAPTER10 UTILIZING NOSQL SOLUTIONS

4. If the data is not found in the cache, the client falls back to querying the database. It then
writes the returned data to memcache so that it is available for future queries. Falling back
on the database is an essential step because the transient nature of memcache means that you
can never be sure a given piece of data will be in the cache.

This is significantly different from the way in which many caches transparently cache data.
With memcache, you must explicitly query and populate the cache. Although this means extra
client-side coding, it provides the power to decide what to cache and what not to, as well as the
caching duration.

Compare this with the MySQL query cache, where even queries that you do not want cached
(perhaps because they are rarely executed, or will be invalidated almost immediately) are stored
(unless you explicitly override with sQL._No_CACHE), and invalidation prevents you from storing
stale data.

Installing and Running

memcache runs as a daemon (memcached). By default, it listens on ports TCP and UDP 11211, and
over a socket on UNIX. It’s generally advisable to run it as a nonprivileged user, but remember that
any memory limits imposed on this user (check with ulimit under UNIX) also apply to memcache.
On 32-bit systems, a single memcached instance won’t use more than 4 GB of memory.

Starting memcached is as simple as the following:
memcached -u nobody -m 128 -d

This launches it as a daemon (-d) running as the user nobody (-u nobody), and sets the maximum
cache size to 128 MB (-m 128). This memory won’t be allocated immediately, but you should ensure
that it is still available — swapping to disk destroys performance.

Among the array of command-line options, a few are worthy of more coverage:

> -M — By default, memcache silently removes older items from the cache when it becomes
full. With this option, it returns an error instead.

» -k — This locks down the paged memory at startup, causing it to be reserved. (The normal
behavior is to allocate memory as needed.) This can improve performance a little and
prevents other applications from taking the memory.

» -c — This is the maximum number of simultaneous connections (default 1,024). This can
be raised for extremely busy memcached instances, but remember that this also raises CPU
and memory usage.

> -b— This is the request backlog size (default 1,024). If the maximum number of
connections is reached, new connections will be queued. If the queue becomes full,
further connections will be rejected. Although it’s tempting to raise this limit to prevent
connections from being refused, this will increase request latency. A need to increase the
size of the backlog queue is probably a sign that load should be split across multiple
memcached servers.

memcache | 313

Client APIs

Although memcached speaks a text-based protocol and can be directly communicated with over a
socket (be it TCP, UDP, or a UNIX socket), it’s more common to access it via one of the many
APIs available. APIs exist for C/C++, PHP, Java, Python, and Ruby. In fact, in many cases, several
alternative API implementations exist for a given language.

Let’s concentrate on the PHP APIs, and perhaps this is a good time to clarify the slightly confusing
naming conventions. memcache is the name of the project, and memcached is the name of the
memcache daemon (following the standard UNIX naming convention).

PHP offers two implementations: memcache and memcached (both available as PECL extensions).
Although this might seem to imply that one is a client and the other a memcache server, this is

not the case — both are client APIs. PECL/memcache is the original implementation from 2004,
whereas PECL/memcached is a more feature-rich implementation from 2009. You should use PECL/
memcached.

Let’s look at an example that doesn’t use memcache:
$rl = mysqgl query ("SELECT foo FROM bar WHERE baz=1") ;
list ($foo) = mysgl fetch row($rl);
print $foo;

To lighten load on the database, you can incorporate memcache like so:

Scache = new Memcached;
Scache->addServer('192.168.0.1',11211) ;

if ($foo = S$cache->get ('bazl')) {
print "Found in cache: $foo";
} else {

$rl = mysgl query("SELECT foo FROM bar WHERE baz=1");

list ($foo) = mysgl fetch row($rl);

$cache->put ("bazl", $foo, MEMCACHE COMPRESSED, 180); ## data is compressed
and expires after 180 seconds

print " Pulled from database then written to cache";

}

Running this code twice should cause the data to be pulled from the database the first time, and
then from the cache on subsequent occasions.

NOTE Although you could use anything for the key name, it makes sense to use
a logical naming structure to prevent accidental duplicates. This example uses
the column name and value from the MySQL query, and this approach generally
works quite well. For example, a common use might be to cache the selection of
a user’s name, e-mail address, and various preferences from a table based on a
numeric user ID. In that case, you might call the key "userid" (for example,
"useridl”, "userid2", "userid3", and so on).

314 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

With power, though, comes responsibility, and it generally isn’t a good idea to start caching
everything in sight. Some data is so dynamic that it simply isn’t suitable for caching. (Although, in
many cases, you can still see some benefit from using a short caching time.) However, with large
datasets, the process of serializing and deserializing the data (memcache stores data serialized) can
add significant CPU overhead on the client. Also, remember that the cache is only a finite size, and
priority must sometimes be given to smaller, more frequently accessed objects.

The method of querying memcache and then falling back on MySQL also adds latency in situations
in which memcache does not hold the data. If you know that memcache is unlikely to hold the result,
you may be better off querying MySQL straightaway.

You must also give some thought to the type of query being cached and the reason for caching it.

If your MySQL server is ticking along nicely under only modest load, the real benefit comes from
caching queries that take a long time to execute. Caching a simple SELECT on an indexed column
probably won’t speed things up for the end user. (It’ll most likely be in the MySQL query cache
anyway.) On the other hand, if your MySQL server is under heavy load, and your primary aim is to
reduce the number of queries (even light ones), more aggressive caching would certainly help.

memcache versus MySQL Query Cache

Speaking of the MySQL query cache, is memcache more effective than this? If you’re talking solely
about access times, there isn’t much difference between them. Fetching data from memcache isn’t
usually significantly faster than fetching data that is in the MySQL query cache. But this is missing
the point a little because scalability and efficiency are often more pressing concerns.

The big problem with the MySQL query cache is invalidation, or rather the lack of control over it.
As previously discussed in Chapter 8, “Tuning MySQL,” writing to a table causes all entries in the
MySQL query cache that reference that table to be invalidated, even if the actual result in the cache
would not have changed. With memcache, you have control over how long data is cached for — if
you want to serve stale data, it won’t stop you. Also, because memcache doesn’t do as much house-
keeping as the MySQL query cache (for example, invalidation and checking SQL syntax isn’t actu-
ally part of the query cache but is still a step when accessing it), there tends to be less locking and
overhead, resulting in faster access.

Although the MySQL query cache is limited to caching the results of individual MySQL queries,
memcache can be used to cache anything (within reason). In many cases, you can improve
performance even more by executing your SQL queries, processing the data, and then storing this
in memcache.

For example, consider a blog. Typically, there’d be a comments section on each page below the
article. Your code for rendering the comments would probably involve fetching all the comments
associated with the article ID. Most likely, each comment would have an author ID, so you'd do a
JOIN on the users table to fetch the username, user’s website URL, and perhaps avatar. You’d then
read the database results row by row, substituting the variables into an HTML template fragment.

If you cache the data returned from MySQL as a single object, this isn’t a great deal different from
the MySQL query cache — although it’s still an improvement. But you can go one step further.
What if you cache the HTML fragment containing the nicely formatted comments section? The next
time you read the data from the cache, you don’t need to mess around with reading the template into

memcache | 315

a variable, replacing placeholders with values for variables, and concatenating each fragment
into one — you have the formatted HTML already there. As you can see, with careful thought,
memcache can greatly outshine the MySQL query cache.

Finally, the MySQL query cache runs per-MySQL instance. memcache can be accessed globally. The
MySQL query cache is by no means useless, but memcache has the upper hand.

memcache versus MySQL MEMORY Engine

The MySQL query cache may be no match for memcache, but what about MySQL’s MEMORY stor-
age engine? Recall from the discussion in Chapter 8 that this provides similar in-memory storage.
A common use for the MEMORY engine is to hold temporary session data (where it doesn’t matter oo
much if the data is lost — users are simply forced to log back in). Would using memcache for session
data actually be any better?

As it turns out, the answer is “yes.” The MEMORY engine has a number of limitations — only certain
data types are supported, scaling is tricky, and only table-level locking is supported — which puts a
limit on concurrency. memcache has none of these limitations and is certainly the superior solution
for large-scale requirements.

Deploying memcache

Many administrators rush into using memcache without appreciating that it will invariably lead to
memory being taken away from other processes. As you know, many operating system kernels like
to use free memory as much as possible for buffering and caching disk 170, so even if user-land
applications are not consuming significant memory, you may still be causing degradation of the I/O
subsystem.

This effect is at its worst on single-server setups, where Apache, MySQL, and PHP are all competing
for RAM. If memcache is used in such a setup, care must be taken not to squander cache memory,
but only cache objects where there is a clear overall advantage. Otherwise, you could well be weak-
ening the performance of (particularly) MySQL.

On multiserver setups and when memory isn’t in such short supply, you can usually find a machine
somewhere on the network that has a few hundred spare megabytes on which to run memcache.
Database servers aren’t usually a good choice (because they are memory-intensive). Web servers and/
or PHP servers are often chosen because they tend to run tasks that are more CPU-intensive than
memory-intensive.

Rarely is it necessary to use a dedicated machine for memcache. (Adding an extra memory stick to
an existing server usually does the trick.) But if you do, go for a modest CPU with plenty of RAM,
situated as few hops as possible from the clients. It would be even better to use a pool of memcache
servers.

Multiserver Setups

Because of the temporary nature of data stored in memcache (it would be a mistake to use it for stor-
ing anything more critical), the focus in multiserver memcache setups is on distributing load, rather
than providing redundancy. A pool of memcache servers works out rather well, enabling you to set

316 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

up nodes wherever you have a little bit of free memory. But it is fundamentally different from, say,
a MySQL replication setup where nodes talk to each other. With memcache, each instance operates
independently and has no knowledge of its role in a larger pool.

Instead, distribution of queries across the pool is handled automatically by the memcache client.
The client hashes the key, takes the modulus, and uses this to decide which memcache server to
send the request to. It’s a technique similar to the way in which MySQL decides where to place
rows in a partitioned table.

The problem here is that any change to the number of servers causes keys to be mapped to different
servers. For example, if your key hashes to a value of 58 and you have four memcache servers in

the pool, the query will be sent to server 3 (58 mod 4 = 2). If you add a fifth server, the query ends
up going to server 4 (58 mod 5 = 3). All of a sudden, your queries are sent to servers that don’t have
the answer — or, worse still, have stale data (from an earlier change to the number of servers in the
pool).

The answer to this problem lies in consistent hashing. Although the theory of this lies beyond the
scope of this book, the effect is to greatly minimize the amount of remapping when servers are
added or removed. Because hashing is implemented in the client library, hashing methods can
(and do) vary from one API to another. But in PHP, consistent hashing can be enabled by setting
the ini directive memcached.hash_strategy="consistent".

Native consistent hashing is a relatively new feature of the PHP memcache/memcached extensions.
Prior to that, 1ibketama was the most commonly used library for consistent hashing, and it still has
some advantages over the default PHP method:

> libketama uses the Message Digest 5 (MDSJ) algorithm for hashing. Although this isn’t
ideal, it’s an improvement on the Cyclic Redundancy Check 32 (CRC32) algorithm used by
PHP, and offers better distribution of keys across servers. PHP now supports the Fowler-
Noll-Vo 1a (FNV-1a) algorithm also, which, again, is an improvement on CRC32. The ini
directive memcache.hash_function controls which method is used.

> In environments in which memcache is accessed through different APIs, using a standard
hashing library means that each API can map a given key to the same server, enabling them
to read each other’s data.

Incidentally, 1ibketama can also work wonders with MySQL slaves. Rather than picking a slave at
random to handle a query, you can choose a server based on a hash of the query. Because identical
queries always go to the same slave, this increases the chances of a hit from the MySQL query cache
and stops the same query from being held in multiple query caches.

Utilizing a pool of memcache servers is as simple as adding them to the client, as shown here:

Scache = new Memcached;

$cache->addServer('192.168.0.1"',11211) ;
Scache->addServer ('192.168.0.2"',11211) ;
$cache->addServer('192.168.0.3"',11211) ;

The hard work of mapping keys to servers is taken care of by the APL.

memcache | 317

Assigning a weight to a server is an important part of any load-balancing system, and memcache
supports this concept when adding servers, as shown here:

Scache->addServer('192.168.0.1',11211, true, 1);
Scache->addServer('192.168.0.1',11211, true, 3);

Another option is to control whether persistent connections are used (the default is true), while yet
another is to set the number of buckets.

multigets and Parallelization

memcache is not MySQL, and you shouldn’t use it as such. This may seem obvious, but it’s a point
worth remembering when storing and retrieving data from it. If rendering a page requires the
execution of 10 SQL queries, storing the result of each of these 10 queries separately in memcache is
usually the wrong thing to do. Instead, you should aggregate the results as much as possible, carry
out post-query compiling (such as substituting the data into a template), and then store the results
(often HTML fragments) in memcache.

However, sometimes the nature of the site means that you can precompile certain sections, but
others are too dynamic. Condensing everything into a single memcache object isn’t desirable, and
you need to issue multiple requests.

The obvious way to tackle this would be to issue the requests in a linear fashion, one after the other.
Network latencies and TCP overhead soon add up here, though, and memcache offers a better
solution: using multigets and multisets.

As the names imply, these enable you to get and set multiple objects in a single request. Following is
an example:

$results_array = $Scache->get (array('keyl', 'key2', 'key3'));

This has a big effect on latency — but there’s more. Many of the memcache client APIs also
support parallelization. If the requested keys are held on different nodes, the requests will be sent
in parallel, and the results aggregated by the client. In practice, this doesn’t usually have a huge
impact on overall performance. memcache nodes are typically fast enough that sending 10 queries
to a single node is no slower than sending 1 query to 10 nodes, and you should try to keep the
number of keys required low anyway. Parallelization is usually only a significant help when

large numbers of keys are fetched and set.

Cache Maintenance and MySQL UDFs

When you add an object to memcache, there’s a certain amount of guesswork involved in setting the
expiration time. Imagine your site is raising money for charity, and you want to show the amount
raised so far at the top of each page. Clearly, it won’t matter much if this data is a little bit stale;

so after running some SQL to calculate the total so far, you cache the result in memcache with a
10-minute expiration time.

This works fine if you receive a regular stream of donations, but what if donations are more
sporadic — say, two or three per day? Recalculating the total money raised every 5 minutes is

318 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

overkill, but caching the total for, say, 8 hours leads to data being too stale. Wouldn’t it be great if
MySQL could say to memcache, “I’ve just added a row to the table listing donations made. Your data
will be stale now, so please discard it.” Or, better yet, “Your data will be stale now. Here’s the new
total raised.” This way, you have a total that is never stale (even if a little bit of staleness is acceptable,
no staleness is still preferable), but that is never dropped from the cache unless it changes.

The good news is that MySQL can, indeed, do this through the use of User Defined Functions
(UDFs) and triggers. You set a trigger to run when the table is written to and use a UDF to cause
MySQL to issue a set () directly on the memcache server(s).

Do you need this complexity? In the donations example, you could probably just as easily have
modified your web code so that when the database table is written to, the memcache object is also
updated. This isn’t always practical, though. Updates may be coming from multiple sources, some
of them perhaps even external, where you have no control over the code. In some situations, updates
via MySQL UDFs are the most appropriate solution.

NOTE The latest UDFs are available from https://launchpad.net/
memcached-udfs, and you can find documentation on installing and setting
up the functions on the MySQL website (http://dev.mysql .com/doc/
refman/5.6/en/ha-memcached-interfaces-mysqludf.html).

Monitoring Performance

Telling how full the memcache servers are, how many objects have been flushed because of lack of
space, the hit ratio, and so on, are invaluable pieces of information.

Each memcache server keeps quite detailed stats, which can be accessed in a number of ways. The
simplest is to telnet into the daemon and issue the stats command, as shown here:

$ telnet 0 11211

Trying 0.0.0.0...

Connected to 0.

Escape character is '*]'.
stats

STAT pid 9545

STAT uptime 7956383

STAT time 1312417995

STAT version 1.4.5

STAT pointer size 32

STAT rusage_user 2714.693657
STAT rusage_system 8373.123287
STAT curr_connections 10

STAT total connections 35934023
STAT connection_structures 190
STAT cmd get 650171241

STAT cmd_set 69561685

STAT cmd_flush 0

STAT get_hits 649644851

https://launchpad.net/
http://dev.mysql.com/doc/refman/5.6/en/ha-memcached-interfaces-mysqludf.html
http://dev.mysql.com/doc/refman/5.6/en/ha-memcached-interfaces-mysqludf.html

memcache | 319

STAT get_misses 526390

STAT delete misses 0

STAT delete hits 0

STAT incr _misses 0

STAT incr hits 0

STAT decr misses 0

STAT decr hits 0

STAT cas_misses 0

STAT cas_hits 0

STAT cas_badval 0

STAT auth cmds 0

STAT auth_errors 0

STAT bytes read 30381363330
STAT bytes_written 3607591597981
STAT limit maxbytes 67108864
STAT accepting conns 1

STAT listen_disabled num 0
STAT threads 4

STAT conn_yields 0

STAT bytes 116262

STAT curr_items 36

STAT total items 691337
STAT evictions 0

STAT reclaimed 0

The names of most of these stats should be fairly self-explanatory. Of particular interest in these
stats are get_hits, get misses, and evictions. A high ratio of cache misses to hits may also
imply that the cache is full, but remember that this ratio will vary over time. If the memcache server
has not been running for long, you would expect a relatively high number of misses. Evictions imply
that the cache is full, and older objects are removed to make way for newer ones.

Even more detailed stats are available for each item held in the cache by issuing stats items,
stats slab, Or stats sizes.

NOTE Although these stats can also be accessed through the APIs, talking to
memcache directly over telnet is incredibly useful to perform quick checks, or
when you write monitoring scripts. You can find full details of the memcache
protocolathttp://code.sixapart.com/svn/memcached/trunk/server/doc/
protocol. txt.

memcache Performance and Internals

For the most part, memcache performs efficiently, but it’s worth looking under the hood to gain a
better understanding of how it works, with a goal of troubleshooting problems when they arise.

Threading

At the core of memcache is the hash table containing the cached data. Perhaps surprisingly, manag-
ing and setting/getting values from the hash are relatively light on the CPU usage. Most of the CPU
cycles actually go on parsing requests and formatting responses.

http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt
http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt

320 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Global locking is used on the hash table, so this aspect of memcache is single-threaded. (This may
change in the future.) However, the rest of memcache is multithreaded, and you can control the
number of threads used with the -t command line option to the daemon. The default is 4 threads,
but it makes sense to raise this value to the number of CPU cores present on the system. Raising the
number of threads higher than this won’t produce any benefits but may well cause a degradation in
performance (because of increased context switching and lock contention).

Binary Protocol

memcache supports both a binary and an ASCII protocol, and, given that request parsing uses a
significant number of CPU cycles, it may be worth switching to the binary protocol (the default is
usually ASCII, but this is client API-dependent) on busy servers. Not all client APIs support the
binary protocol, but those based on 1ibmemcached do. These include PECL/memcached (but not
PECL/memcache), pylibme (Python), fauna (Ruby), and caffiene (Ruby).

Following is an example of how to enable binary protocol in PECL/memcached:

$cache->setOption (Memcached: :OPT_BINARY PROTOCOL, true) ;

UDP Sockets

memcache supports both TCP and User Datagram Protocol (UDP) (as well as UNIX sockets, but
this is only applicable if both client and server are on the same machine). Is there any advantage
to using UDP to cut down on network overhead and CPU cycles? The answer is surprisingly “not
usually” — just the opposite, in fact. Aside from the nonreliable nature of UDP (which may not be
a huge concern over an internal network), on lightly busy memcache servers, it will also be more
CPU-intensive.

The reason for this is that, with only one UDP socket in existence, all threads must constantly
monitor it. When a request comes in, all threads wake up and attempt to read the socket. Only
one thread will be successful, and the rest will either go back to sleep, or read any other requests
waiting in the socket buffer. This constant waking and sleeping pushes up CPU load, and is really
only advantageous if the server is busy enough that there will usually be requests waiting in the
buffer. Unless the server is really busy, stick with TCP.

Memory Allocation

Early versions of memcache used malloc () and free () for allocating and freeing memory, but this
tends to be inefficient. The result is fragmentation, and finding contingent blocks of memory of the
required size ends up taking longer.

Instead, more recent versions of memcache use a built-in slab allocator. This assigns memory in
blocks of varying sizes, and these blocks are re-assigned when they become empty. memcache will
attempt to use the most appropriately sized slab to hold an object, but this isn’t always possible. So,
there is more waste than with the malloc/free approach.

Overall, though, slab allocation is the superior method when performance is more important than
efficiency of memory management.

memcache | 321

membase — memcache with Persistent Storage

One of the most common questions from new memcache users is whether the cache supports
persistent storage — and if not, why not? This is missing the point a little. memcache is, by nature,
a temporary store and was never designed to be anything else. It was inevitable, though, that hybrid
products would be developed in an attempt to merge the high performance of memcache with the
persistent, disk-based storage found in databases.

An early implementation was MemcacheDB, but development appears to have been discontinued
on that product. The current front-runner is membase. membase is probably best described as a fork
of memcache because it is essentially memcache plus persistent storage. As such, it is fully compat-
ible with memcache and can be accessed using the same client APIs. The persistent storage aspect is
mostly kept hidden from the client. The client will see it as simply another memcache server — so,
there’s no need to change any client code.

Persistent Storage

Behind the scenes, though, things are a bit more complicated. When data is added or modified,

the in-memory data is updated immediately, and the change is placed in a queue to be written to
disk. Control is passed back to the client, and a separate thread periodically processes the queue,
writing the changes out to disk. Although this introduces a small chance of inconsistencies

(for example, if the client believes the data has been written to persistent storage, but a server crash
occurs before the queue can be processed), the queue is processed frequently enough to limit this
likelihood. It is still a great performance boost for clients. Incidentally, membase uses SQLite as the
back end for storing data.

So far, so good, but what happens when the data set is larger than the available memory? membase
uses the same strategy as memcache when new data is added. If the memory cache is full, older
(LRU) items are evicted. If a client later requests an object that has been evicted, membase simply
reads it back into memory and returns the data to the client.

In fact, membase has two memory thresholds when deciding when the cache is “full”: mem low
wat and mem_high_wat. As the cache fills with data, mem low wat is passed, and mem high wat
eventually is reached. When this happens, a background process begins removing items from the
cache (after first ensuring that they are not still waiting to be written to disk) until mem low wat is
reached. In this way, membase attempts to ensure that there will always be a small amount of free
memory for new data.

Writing to disk is naturally a lot slower than writing to memory, and, in theory, you could end

up in a situation in which mem_high wat is reached, and new data is sent to membase faster

than it can be written to disk. In these situations, membase returns a temporary error to the client,
indicating that it should try again shortly. Lowering mem low wat can help prevent this scenario
from arising but also results in more disk activity in general. So, this is best avoided unless
absolutely necessary.

322 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Buckets and Rebalancing

memcache’s hashing function ensures that data is spread evenly over all nodes in multiserver
setups. Unfortunately, this fails to take into account that some nodes in the pool may have more
memory than others. The usual workaround with memcache is to run multiple nodes on

servers with lots of memory. For example, rather than having node A running on server X with
a 1 GB cache, and node B running on server Y with a 512 MB cache, you run two 512 MB
nodes on server X and one 512 MB node on server Y. Although rather hackish, this results in
an efficient use of memory.

membase goes one step better, providing automatic management (including rebalancing) of data
across multiple nodes. It does this through the use of virtual buckets. Rather than mapping

data keys to servers (as memcache does), membase maps them to buckets. A lookup table then tells
membase on which node a given bucket currently resides. This introduces an extra step for the
client because it must now perform a lookup after hashing the key. Because membase aims to be
100 percent compatible with memcache, this is a problem. But there is a solution.

Moxi

Eventually, bucket-aware client APIs should emerge, but until that time, membase provides an
embedded proxy named Moxi. The purpose of Moxi is to reroute lookups to the correct server.
The client now does not need to look up the server on which a given bucket resides. It simply
sends the lookup to membase, which performs the lookup internally and reroutes the request if
the data is not held on the local node.

A result of this is that you need to specify only one membase server in your client code — Moxi
handles the rest. This simplifies your web code and means that if membase servers are added or
removed, no changes to your code are needed.

Moxi is about more than just rerouting requests, though. It is at the core of the management channel
used by membase to communicate between instances. When a node fails, the first Moxi to detect this
pushes a message out over the management channel to all other membase instances, informing them
of the failure. Moxi also provides a small hot cache for frequently accessed resources (as if membase
weren’t already fast enough).

Replication and Failover

membase offers peer-to-peer replication (that is, all nodes are equal, and there is not the
one-way flow of data seen in master-slave setups) in which buckets are duplicated across
multiple nodes. (The number of replicated copies of the data is configurable, up to a limit of
three.) This offers some degree of safety against individual nodes failing and is all handled
transparently — no need to set up replication users, manually sync data across nodes, or worry
about broken replication.

membase Web Console

As a system administrator, you’re probably used to configuring and managing services via the
console and tend to be a little distrustful of flashy web-based GUIs. After all, aren’t those GUIs

memcache | 323

for inexperienced users who don’t like getting their hands dirty? The membase GUI challenges this
stereotype, offering a refreshingly easy way to set up and manage a membase cluster, guiding the
administrator through the installation (which is painless), and then providing a console for monitor-
ing and managing the live cluster.

Figure 10-1 shows the second step of the installation process.

CREATE DEFAULT BUCKET Step 2014

Bucket Settings

Bucket Name: default

!H
i Bucket Type: O Memcached

® Membase

Memory Size

Cluster quota (4.84 GB)

Per Node RAM Quota: 4961 MB | J
Other Buckets [0 B) This Bucke! (4.84 GB) Free [0 B)

Total bucket size = 4961 MB (4961 MB x 1 node)

Replication

Enable Replication 1 [V | Number of replica (backup) copies

=

FIGURE 10-1

NOTE membase also supports memcache buckets if you don’t want to have
replication and redundancy. memcache buckets are recommended for when the
system will be used for caching database queries. membase is recommended for
when the system will be used instead of a traditional database.

When installed, you can use the web console to view stats on cache usage and the health of the
system, as shown in Figure 10-2. You can even set up e-mail alerts when nodes fail-over, as shown
in Figure 10-3.

324 CHAPTER 10 UTILIZING NOSQL SOLUTIONS

Cluster
Total Allocated (4.84 GB) Total in Cluster (4.84 GB)
|
RAM Overview
In Use (25.7 MB) Unused (4.81 GB) Unallocated {0 B)
Usable Free Space (194 GB) Total Gluster Storage (453 GB)

Disk Overview L

1
In Use (194 MB) Other Data (258 GB) Free (194 GE)

Buckets (1 bucket active)

Operations |per second Disk felches per second
1
08 . . : 08
08 + + 08
04 04
0z 02
0 o
10:40pm 10:45pm 10:50pm 10:40pm 10:45pm 10:50pm
Servers

Servers Failed Over: 0

. Servers Down: 0

Active Servers: 1

Servers Pending Rebalance: 0

FIGURE 10-2

Enable email alerts
Email Server Settings

Host: localhost Port: | 25
Username:

Password:

Email Settings

Senderemail: membase@localhost

Fecipients: root@localhost

| TestMail | using the settings above

Available Alerts

Nede was auto-failovered

Maximum number of auto-failovered nodes was reached

Nede wasn't auto-failovered as other nodes are down at the same time

Nede wasnt auto-failovered as the cluster was too small (less than 3 nodes)

FIGURE 10-3

MongoDB | 325

Remember, though, that membase is a decentralized system with no hierarchy of masters and slaves.
The web console is accessible from every membase node, and each is as equally in charge as the
others.

memcache is one of the most popular NoSQL solutions, and falls at one extreme of the NoSQL
scale — it is a very basic store, with no persistent storage. Although membase addresses some

of these limitations, the nature of its key-value store makes it unsuitable for mapping more complex
data types. In the following section, you learn about MongoDB, a NoSQL database that offers
many of the features of a traditional RDBMS, but was built from the ground up with scalability
and performance in mind.

MONGODB

memcache is a lightweight key-value store, a long way removed from MySQL. At the other end of
the NoSQL spectrum is MongoDB, a document-oriented database with many features similar to
traditional RMDBs. Given MongoDB’s size and rich set of features, this discussion won’t offer a
complete guide to its use. Instead, the discussion begins with a brief overview of MongoDB for new
users and then dives straight into a discussion of performance aspects, which will be more suited to
intermediate or advanced users.

NOTE I[n this discussion, the names MongoDB and Mongo will be used inter-
changeably. Chapter 9, “MySQL in the Network,” provides more detail on many
of the concepts used to describe MongoDB, including indexes, locking, sharding,
and replication.

Getting to Know MongoDB

MongoDB uses the familiar client-server model. Mongod is the name of the server, a network-aware
daemon that you can connect to over TCP or via a UNIX socket. Mongo ships with its own

client, and if you’re familiar with the stock MySQL command-line client, you’ll feel right at home.
Naturally, there are also APIs for all the popular programming languages.

Whereas MySQL uses the concepts of tables, rows, and fields, Mongo revolves around documents.
A document is composed of fields, not unlike the way in which an RDBMS row consists of columns.
These are binary JSON (BSON) objects of arbitrary size, which can be thought of as roughly
analogous to rows of an RDBMS table. A group of documents make up a collection, and a group

of collections make up a database.

Table 10-1 illustrates the similarities between MySQL and MongoDB.

326 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

TABLE 10-1: Comparing MySQL and MongoDB

MYSQL TERM MONGODB TERM
Database Database

Table Collection

Row Document
Column Field

Join Embedding/linking

Drawing attention to the similarities between MySQL and MongoDB is purely to help you find
your footing with Mongo by relating this new terminology to something that you’re already
familiar with. However, don’t be fooled into thinking that Mongo documents are identical

to MySQL rows — there are some fundamental differences.

One such difference is that documents do not have a predefined list of fields. When you create a
table in MySQL, you define the columns that should exist in it. With Mongo, you can have as
many or as few fields as you want. This makes it much easier to model data that does not have
consistent fields. Imagine trying to do this in MySQL. (The usefulness of this feature is sometimes
over-emphasized, though — in practice, most data consists of consistent fields, and small variations
in fields are easy enough to accommodate in traditional RDBMs.) As a result, there’s no need to
explicitly create databases, collections, or fields — just use them, and they will be created
automatically. This is an important concept, so let’s reiterate it. In Mongo, fields are a property

of the document and are independent of other documents in the collection.

The Mongo Shell

As with MySQL, Mongo ships with its own command-line client; although plenty of other

clients are available. The client is named mongo, and executes JavaScript — it’s actually based on the
SpiderMonkey JavaScript engine used in Firefox. (See Chapter 6, “JavaScript, the Document Object
Model, and Ajax,” for more details on SpiderMonkey.) By default, the client will attempt to connect
to 28017/TCP (mongod’s default port) on the localhost, but you can easily override this. Following is
an example:

$ mongo
MongoDB shell version: 2.0.2
connecting to: test

> db.foo.save({ "name" : "Oscar" , "species" : "hamster", "weight"
"154", "fur color" : "charcoal" });

> db.foo.save({ "name" : "Jasper" , "species" : "dwarf hamster",
"weight" : 47, "fur color" : "white" });

> db.foo.save({ "name" : "Dasiy" , "species" : "cat", "weight"
2000, "fur color" : "black" });

> db.foo.save({ "name" : "Stef" , "species" : "human", "height"

158, "weight" : 112, "hair color" : "black" });

MongoDB | 327

This code connects to the mongo shell and issues four insert commands. Note that the database or
collection hasn’t been formally created, nor have any fields been defined. The data is simply added.
Also, note the variation in fields. For human, an extra column for "height" has been added, and
"hair color" is used rather than "fur color".

With this sample data in place, you can now search it, as shown here:

> db.foo.find({"species" : "dwarf hamster"});
{ " id" : ObjectId("4f20666b7e657e5d56c29£f60"), "name" : "Jasper",
"species" : "dwarf hamster", "weight" : 47, "fur color" : "white" }

Because you didn’t specify an index field, Mongo kindly added one for you. This can be thought of
as similar to primary keys in MySQL — every collection needs an _id, and it must be unique for
each document.

One powerful feature of Mongo is its support for nested data structures, and a field can itself be an
array. Let’s rewrite the original insert queries to list the foods that each animal eats (for clarity, the
other fields have been taken out).

> db.foo.save ({ "name" : Oscar" , "foods : ["carrot", "grape", "apple"] });
> db.foo.save ({ "name" : "Jasper" , "foods" : ["carrot", "grape",
"human fingers"] });
> db.foo.save ({ "name" : "Daisy" , "foods" : ["tuna", "chicken", " mouse"] });
> db.foo.save({ "name" : "Stef" , " foods" : [" salad", " rice pudding",

"pizza"]l });

You can now easily search for any animal that likes "carrot:

> db.foo.find ({foods : "carrot"});

{ " id" : ObjectId("4£211f1420229f6e98652b15"), "name" : "Oscar",
"foods" : ["carrot", "grape", "apple"] }

{ " id" : ObjectId("4£f211£1420229f6e98652b16"), "name" : "Jasper",
"foods" : ["carrot", "grape", "human fingers"] }

NOTE It’s perbaps worth pausing to consider how you would do something
similar in MySQL. Although there’s nothing to stop you from serializing the
array of foods and storing them in a MySQL column, the preferred way would be
to normalize the data to some degree. In a second table, you would list the food
type along with the ID of the animal that ate it.

Drivers

To use Mongo in your applications, an API or driver is needed. Although numerous drivers are
available for PHP, the standard is called Mongo, which is available via PECL. Rewriting the previous
search query in the object-oriented syntax of the PHP Mongo driver yields the following:

Sr = new Mongo () ;
Sdatabase = Sr->test;
Scollection = Sdatabase->foo;

328 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Scursor = Scollection->find(array('species' => 'dwarf hamster'));

foreach ($Scursor as $row) {
var_dump (Srow) ;
}

Naturally, drivers are available for most other popular languages, too, including C/C++, Perl,
Python, and Ruby.

MongoDB Performance

The last few pages have served as a brief introduction to MongoDB. If you were unfamiliar with
it, hopefully this has whetted your appetite, and provided enough information for you to decide
whether Mongo is something you want to explore in more detail. There are plenty of excellent
Mongo resources available — in particular, the official website (www.mongodb . org) and the freely
available The Little MongoDB Book (a free e-book written by Karl Seguin).

The remainder of this section focuses on specific performance aspects of Mongo and assumes that
you already have a decent understanding of how to use Mongo in applications. It doesn’t assume
that you’re a wizard, but rather that you’re comfortable with the core functionality — adding/
removing/searching, as well as the concepts of collections, documents, and fields.

Indexing

Indexes in Mongo work much like they do in MySQL. You can add them to fields, and they improve
lookup performance when you search on these fields.

To create an index on the previous animals collection example, use the following:
db.foo.ensurelndex ({species:1});

The 1 here means to create the index in ascending order, whereas -1 would mean descending. For
single indexes like this, the direction is unimportant, but after you get to compound indexes, it can
matter.

ensureIndex optionally takes the following four additional parameters:

> background — Run the index creation in the background (for example,
db.foo.ensureIndex ({species:1}, {background: true}) ;).

> dropDups — If any documents contain identical values for the index field, drop all but the
first occurrence.

> unique — Mongo won’t allow a document to be inserted if the indexed field matches an
existing index. If the document doesn’t contain the indexed field, this is treated as a null
value. So, with unique indexes, only one document is permitted not to contain the indexed

field.

> gparse — In situations in which many of the documents do not contain the indexed field,
using sparse indexes stops these nonmatching documents from appearing in the index, thus
saving space.

http://www.mongodb.org

MongoDB | 329

From a performance perspective, background creation is perhaps the most interesting operation.
Usually, indexes are created in the foreground, but this causes read/write access on the whole
database to block for the duration. By telling Mongo to generate an index in the background, you
can avoid this locking.

There’s no such thing as a free lunch, though. Background indexing takes longer, and may still
impact performance to some degree, even if it isn’t causing locking. In addition, the algorithm that
background indexing uses makes heavy use of RAM. If the newly created index is bigger than the
amount of available memory, background creation will be slow.

Compound indexes are also supported with the following syntax:
db.foo.ensureIndex ({x:1, y:1, z:1});

As with MySQL, order is important. In this example, the index will be useable if you are querying
on fields x, x and y, or x and y and z — but not y, z, or y and z. Compound indexes are useful, but
think carefully about the ordering.

The usual caveats about indexes also apply here. When data is added, deleted, or updated,
indexes must be modified. So, on collections that are write-heavy, the overhead of maintaining
the indexes may well outweigh the benefits.

Mongo uses B-trees for indexes, too. An interesting side-effect of this is that index values have an
impact on performance. If entries are inserted into the B-tree at random locations, this increases
disk seeks, and the whole index must be restructured each time. If you simply append entries to

the right side of the B-tree each time, no further work must be done. This has an impact when you
choose unique IDs. For example, it would be better for performance to choose an ascending numeric
value (such as a UNIX timestamp) than, say, a hash of another field.

Blindly adding indexes creates unnecessary overhead, so ensure that an index will actually be useful
before adding it. As with MySQL, Mongo works most efficiently when all indexes fit into memory.
So, on large collections, it may be necessary to rethink your indexing strategy to keep the size down.
The index size for a given collection can be obtained via db. foo.totalIndexSize ().

In particular, be aware of indexes that offer low selectivity and do not efficiently narrow down the docu-
ments to search. For example, if a field has a binary yes/no state, adding an index would likely still leave
a large number of documents to scan. Creating a compound including the field is one possible solution.

Mongo will use only one index on a query. So, if you search on multiple fields, multiple indexes are
of no benefit. Either choose the most suitable field to index (think selectivity and field size), or create
a compound index.

Explaining Queries

When diagnosing a slow query, the explain () method can be invaluable and provides a breakdown
of documents scanned, indexes used, and locking. Here’s how explain () looks for a query on the
sample animals collection with no indexes in place:

> db.foo.find({"species" : "dwarf hamster"}).explain();

{

"cursor" : "BasicCursor",
"nscanned" : 4,

330

| CHAPTER10 UTILIZING NOSQL SOLUTIONS

}

"nscannedObjects" : 4,
lln" : 1’

"millis" : 34,
"nYields" : 0,

"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : {

}

The meaning of these fields follows:

>

Y Y Y VY Y

\

cursor — This is the cursor used for the scan — BasicCursor when the collection is
scanned directly, and BtreeCursor when an index is used.

nscanned — This is the number of items scanned, including indexes and documents.
nscannedObjects — This is the number of documents scanned.

n — This is the number of matching documents.

millis — This tells how many milliseconds the query took to run.

nYields — This is the number of times that the query was interrupted to allow writes to
execute.

nChunkSkips — During automatic sharding, skipped chunks indicate that data is actively
being moved from one node to another.

isMultikKey — This indicates whether a multikey (that is, compound) index was used.

indexonly — This will be set to true if a query can be answered simply from the index
(that is, a covering index).

indexBounds — If an index is used, this shows the name of the index and the key searched
for in it.

Let’s add an index to the species field and rerun explain ():

> db.foo.ensureIndex ({species:1});

> db.foo.find({"species" : "dwarf hamster"}).explain();
{

"cursor" : "BtreeCursor species 1",

"nscanned" : 1,

"nscannedObjects" : 1,

"m" .1,

"millis"™ : O,

"'nYields" : 0,

"nChunkSkips" : 0,

"isMultiKey" : false,

"indexOnly" : false,

"indexBounds" : {

"species" : [

MongoDB | 331

"dwarf hamster",
"dwarf hamster"

}

This time, the cursor field tells you that an index was used — an ascending index on the species field
(species_1), to be precise. Only one row was scanned this time, and the execution time appears to
be lower; although, clearly, zero milliseconds can’t be right (most likely it is a result of the time
having been rounded down).

Profiling and Slow Queries

Through its profiling system, Mongo enables you to log queries for all operations, or those taking
longer than a certain number of milliseconds. This can be enabled via the Mongo shell, as shown
here:

> db.setProfilingLevel (1,20) ;
Or you can enable this at the command line when launching mongod, as shown here:

mongod --profile=1 --slowms=15

Three profile levels are supported:

> o disables logging.
> 1 enables logging of slow queries.
>

2 enables logging of all queries.

When profile=1 is chosen, the slow query time (in milliseconds) may also be specified. Otherwise,
it defaults to 100 milliseconds, which is more than high enough — in practice, though, a lower
value is usually desirable.

Log entries are stored in the profile collection (a capped collection) of the system database and
can be accessed like so:

> db.system.profile.find () ;

{ "tg" ISODate("2012-01-31T22:41:57.330Z"), "op" : "insert", "ns"
"test.foobar", "millis" 89, "client" "127.0.0.1", "user" nu

{ "ts" : ISODate("2012-01-31T22:41:57.348Z"), "op" : "insert", "ns"
"test.foobar", "millis" 64, "client" "127.0.0.1", "user" nn

{ "ts" ISODate("2012-01-31T22:41:57.357Z"), "op" : "insert", "ns"
"test.foobar", "millis" 37, "client™" "127.0.0.1", "user" no

Along with a timestamp, you see the operation type (insert), the namespace being operated on

(test.foobar), and the time that the query took.

332

| CHAPTER10 UTILIZING NOSQL SOLUTIONS

Usually you want to be more specific, though — for example, to show queries on a particular
database or collection, or those taking over a certain time to run. The following shows queries
taking longer than 10 milliseconds to run:

db.system.profile.find({ millis : { $gt : 10 } });

Any queries you run on the profile collection will also be logged. If you inspect the log now, sorted
by most recent first, the previous £ind query will now be shown:

> db.system.profile.find () .sort ({$natural:-1});

{ "ts" : ISODate("2012-01-31T22:42:12.229Z"), "op" : '"query", "ns"
"test.system.profile", "query" : { }, "nscanned" : 40, "nreturned"
40, "responseLength" : 3900, "millis" : 23, "client" : "127.0.0.1",
nyser" : "n }

In the case of read operations (that is, queries), additional information is shown. nscanned shows
the number of documents that were scanned, nreturned the number that matched (and were
returned), whereas responseLength is the size (in bytes) of the response. (For brevity only the first
line of output is shown, but there were another 19 lines.)

There’s a lot that you can learn from the profiler. At its most basic level, it provides an idea of
the average query response time, and whether particular queries are problematic. If the
responseLength is large, this equates to a large amount of data being sent to the client, which
will obviously slow things down. If the number of documents scanned is significantly higher than
the number returned, this indicates that Mongo must do a lot of searching to return a modest
number of matches. This is a strong indication that an index of the searched column would be
beneficial.

Locking and Concurrency

In Mongo, locks are implemented globally. Thus, a write lock can cause all databases to

be locked — not just the current database or collection. This contrasts with the table- and row-level
locking offered by MySQL’s MyTsam and InnoDB. Collection-level locking is currently being worked
on, but until then, the only real solution if you are affected by this global locking is to spread out
databases across multiple mongod instances on the same host.

Despite this, concurrency in Mongo is usually good, partly because Mongo uses a method

to periodically yield the locks on slow-running queries so that other queries may run. This makes
perfect sense in many cases. You’re usually quite happy for a long write query to be interrupted
so that (usually) short-running read queries can execute.

Aside from periodic yielding of locks, Mongo can also yield when a minor page fault is detected.
This effectively interrupts the query because the operating system must read the data into memory
from disk, and Mongo uses this time to allow other read queries to run.

The Process List

Just as MySQL gives you the ability to view a list of currently running processes via
show processlist, Mongo offers db.currentOp () ; for the same purpose:

MongoDB | 333

> db.currentOp () ;

"inprog" : [
"opid" : 44024,
"active" : true,
"lockType" : "write",
"waitingForLock" : false,
"secs_running" : 0,
“op" B "insert",
"nsg" : "test.foobar",
||queryu . {

¥

"client" : "127.0.0.1:44084",
"desc" : "conn",

"threadId" : "0x7fdbé6c7f6710",
"connectionId" : 2,
"numYields" : 0

}

This example shows a single connection from a local client. The client has a write lock (LockType)
and performs an insert (op) on the foobar collection in the test database (ns, namespace). active
indicates whether the query is queued, whereas query holds the query being executed in the case of
reads.

You can also kill queries using db.ki110p (123), where 123 is the op ID. A value of conn in the
desc field indicates that the query is a standard client query. Other values indicate system queries
(for example, replication, sharding, or indexing), and you probably don’t want to kill these.

Data Integrity, Journaling, and Single-Server Durability

One frequent criticism of Mongo is that it does not offer single-server durability — that is,
performance is given a higher priority than the integrity of data. This isn’t quite true. Mongo
does offer some degree of single-server durability. It’s just that it isn’t the primary focus and must
explicitly be enabled. Even then, though, it is not as powerful as, say, the InnoDB transaction log.

NOTE 1[n their defense, the Mongo developers have a number of reasons for this
apparent Achilles’ heel, which you may read about at http: //blog.mongodb
.org/post /381927266 /what-about-durability.

Mongo is designed for scalability, and the expectation is that it will usually run inside a replication

cluster. In that situation, the data is stored on multiple nodes, and the failure of one node is not seri-
ous. Providing a high degree of data integrity also carries a significant performance price associated
with the TnnoDB transaction log and the use of memory in disk controllers to buffer disk writes. The
bottom line is that Mongo would not offer the blazing performance that it does if single-server data

http://blog.mongodb.org/post/381927266/what-about-durability
http://blog.mongodb.org/post/381927266/what-about-durability

334 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

integrity were a necessity. There’s nothing inherently wrong with this, but you should just be aware
of it.

One reason for Mongo’s speed when writing data is that it immediately returns control to the
client, without waiting until the status of the write can be determined (for example, failure or
success). Data is not synced to disk immediately either, and it may be several seconds before the
data is finally committed. Both of these factors can make benchmarking somewhat difficult

(and other people’s benchmarks grossly inaccurate) because data may still be written to disk after
the benchmarking finishes. If you call getLastError () after issuing a write, this will cause the
data to be synced to disk because this is necessary to determine if any errors occurred.

You can control how often Mongo £syncs to disk using the --syncdelay option when launching
mongod. This currently defaults to 60 seconds. But this potentially means up to 60 seconds of data
being lost following a crash, and this is too high for many situations. On the other hand, syncing,
say, every second, is going to hurt performance and may well be unnecessary the majority of the
time. You need to sync only following an important write. On a mostly read setup, using fsync
every x seconds is an unnecessary overhead.

There is a solution to this problem, however. You can manually ask Mongo to fsync as and when
needed. To do this, you would use the following shell commands:

use admin
db.runCommand ({fsync:1}) ;

Naturally, you can also £sync in your web code via the mongo driver. Of course, this could mean
substantial rewrites to existing code, but if a database abstraction layer is used, the changes should
be minimal.

Syncing isn’t the only solution, though. Mongo version 1.7.5 introduced write-ahead journaling;
although, it was not enabled by default until version 1.9.2. With journaling, operations are
written to the log prior to being executed, and if a crash occurs, the journal can be replayed.

In many ways, this is similar to the MySQL binary log. If the server crashes, on restart, Mongo
automatically replays the journal prior to accepting client connections.

Journal files are stored under the journal subdirectory of the data directory. In some cases, they will
be pre-allocated — so don’t be too surprised if a journal file is unexpectedly large.

On 32-bit systems, journaling is disabled by default because of overhead, but on 64-bit architec-
tures, it is now enabled by default.

Backups

Another advantage of journaling is that it makes backing up data easier. On storage systems,

such as the Logical Volume Manager (LVM) or the Z filesystem (zfs), all you must do is take a
snapshot of everything under the data path. Remember, though, that it’s not safe to do this on other
filesystems — the data files mostly likely will not be in sync, and corruption will occur.

The other route for backups is via mongodump, a command-line application that generates hot
backups of Mongo databases in a binary format. The data can subsequently be imported using
mongorestore.

MongoDB | 335

db.serverStatus()

Mongo exposes a wealth of information about the current state of the system via the
db.serverStatus () command. The full output is too long to show here, but following are
some of the most important parts.

Consider the following example:

"globalLock" : {
"totalTime" : 130507162615,
"lockTime" : 312085,
"ratio"™ : 0.000002391324688597054,

"currentQueue" : {
"total" : O,
"readers" : 0,
"writers" : 0

b

Recall that Mongo uses global locking when inserting data (unlike the table- or row-level locking
offered by MySQL’s My1saM and InnoDB). These counters show how long the server has been up,
how much of this time has been spent with the global lock in place, and the ratio of these two
numbers. Although Mongo’s strategy of yielding locks on long-running queries helps to lessen the
problems caused by high levels of global locking, a high lock ratio is still a cause for concern and
will impact both reads and writes. One of the most common causes is a shortage of RAM, which
causes the system to start paging.

The currentQueue counters indicate how many operations are queued up waiting for locks
(total, read locks, write locks, respectively).

"connections" : {
"current" : 7,
"available" : 812

b

Naturally, if your current number of connections is regularly approaching the available limit,
there is the possibility of clients being turned away. Reaching this limit is much less of a problem
than it is in MySQL, and you rarely need to increase the limit.

Consider the following example:

"indexCounters" : {
"btree" : {
"accesses" : 1478,
"hits" : 1473,
"misses" : 5,
"missRatio" : 0

}

The first value shown in this example is the number of times that an index has been accessed.
Elsewhere in the stats is a section named opcounters that shows how many inserts, queries,

336 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

updates, and deletes have been performed. It can be useful to compare these figures to see how many
queries have been hitting indexes. Although there are sometimes valid reasons for not indexing,
you’d generally want to see most of your queries utilizing an index.

The hits and misses counters refer to whether the index was found in memory.

As discussed earlier, you can instruct Mongo to fsync data to disk every few seconds, or only
when instructed. The following counters show the number of flushes, the total time it has taken,
the average time, and the most recent time. High times here would indicate either large volumes of
data written out or high levels of contention on the disks.

"backgroundFlushing" : {
"flushes" : 2175,
"total ms" : 83,
"average ms" : 0.03816091954022988,
"last ms" : 0,

When committing to the journal (if journaling is enabled), operations are written in groups to
improve performance. By default, the gap between these commits is 100 milliseconds; although it
can be changed at start up (- -journalCommitInterval <time in ms>). Consider the following
example:

"dur" : {

"commits" : 30,

"journaledMB" : O,

"writeToDataFilesMB" : 0,

"earlyCommits" : O,

"timeMs" : {
"dt" : 3072,
"prepLogBuffer" : 0,
"writeToJournal" : 0,
"writeToDataFiles" : 0,
"remapPrivateView" : 0

}

In this example, commits shows the number of commits that were performed in this interval,
whereas journaledMB shows the number of megabytes of data written again during this interval.
Note that although Mongo usually honors journalCommitInterval, if a large amount of data
must be written, it commits before the interval has passed — this is reflected in an increase in
earlyCommits, whereas timeMs.dt shows the time interval used for the most recent set of stats.

The remaining timeMs fields show the time spent preparing to write to the journal
(prepLogBuffer), writing to the journal (writeToJournal), writing to data files after the journaling
has completed (writeTobDataFiles), and remapping any affected memory regions. Again, high
values for these first three are a good indication of disk bottlenecks.

mongostat

An alternative tool for gathering statistics is mongostat, which produces a vmstat-like output, with
a new line of output appended every second.

MongoDB | 337

$ mongostat
connected to: 127.0.0.1

insert query update delete getmore command flushes mapped vsize res faults
locked % idx miss % qgr|gw ar|aw netIn netOut conn time
0 0 0 0 0 1 0 208m 626m 32m 0
0 0 0o 0o 62b 1k 1 19:23:32
0 0 0 0 0 1 0 208m 626m 32m 0
0 0 o|o oo 62b 1k 1 19:23:33
0 0 0 0 0 1 0 208m 626m 32m 0
0 0 0o 0o 62b 1k 1 19:23:34

NOTE Although less information is contained in the output, it’s easier to read
than the output of db.serverStatus () and is more suitable for watching a live
server.

The column names should mostly be self-explanatory. The first six columns show counters for the
types of query executed, whereas flushes lists how many f£syncs have been performed in the last
second (since the previous line of output). mapped, vsize, and res relate to memory usage — the
amount of mapped memory, the virtual size of the mongod process, and its residual size.

locked is the percentage of the time that a global lock has been in place (again, over the last
second), whereas idx miss gives the percentage of B-tree misses — identical to the missRatio seen
in the output of db.serverstatus ().

The next two columns give the query backlog for reads and writes, and the number of clients
performing reads/writes. This is followed by the volume of network traffic flowing in and out, and
the number of client connections. If the server is part of a replication set, an additional two columns
show the replica set name and the node’s role (for example, master, slave, secondary, and so on).

One useful feature of mongostat is the - -autodiscover option, which causes it to search for other
nodes in the cluster and query them for stats. Each update of the mongostat output then contains
one line for each node discovered.

Schema Design and Joins

In a traditional relational database, the “right” way to organize data is in the third normal form
(3NF). This is certainly the most aesthetically pleasing structure, but it typically results in the

need to join across many tables, which is something you can’t do in Mongo. (You might often
deviate from 3NF in traditional databases, too, for performance reasons.) Mongo isn’t a traditional
RDBMS, though, and you must rethink what you’ve learned about database structures. Rather than
simply looking at the data and deciding how it should be structured, you should look at how the
data will be accessed.

In some ways, the lack of support for joins is a good thing. It forces developers to create scalable
structures that can later be sharded more easily. If you’ve ever attempted to shard an existing
MySQL-based application, you know that this can involve rewriting lots of code. With Mongo,
there isn’t the potential to go down this scalability dead end.

338

| CHAPTER10 UTILIZING NOSQL SOLUTIONS

Of course, you can still implement joins in a primitive, client-side fashion. Imagine a video-sharing
site such as YouTube. In a classic RDBMS, each video would probably exist as a row in a table,
with a column for the user ID of the owner, while another table would store the list of categories
to which this video belonged. To display a video, youd link against the user and categories tables
so that you could list the owner’s username, show his or her location, show the categories to which
the video belonged, and so on.

In Mongo, you’d need to break this down into three steps:

1. Send a query to retrieve the required columns from the videos collection (owner ID, video
duration, video title, and so on).

2. Use the user ID obtained from the first query to fetch the owner’s username, location, and
so on.

3. Perform a query on the categories collection, matching on the video’s ID.

Sending these extra queries increases latency a bit, and, in some cases, can cause a substantial
increase in network traffic. So, although this method isn’t “wrong,” it’s not optimal either. Using
client-side joins in this way also shows that you are still thinking like an RDBMS programmer — it’s
not the Mongo way to do things.

What if you were to store the owner’s username and location as fields in the videos collection
(as well as in the users collection)? Denormalizing tricks like this make updates more difficult.
(If a user changes username, you must update entries in the videos collection.) However,
denormalization removes the need for joins and makes things easier to scale. There’s no right or
wrong way to do things here, and decisions like this must be made on a per-case basis.

Mongo also offers two features that can reduce the need for joins: linking and embedding. Linking
is achieved using the DBRef mechanism in which you store a reference to a document in another
collection. This necessitates a follow-up query, and most of the time, DBRefs simply aren’t needed,
because you can simply perform the join manually.

Much more interesting is the capability to embed documents inside others. For example, using the
video-sharing example, you could embed each video owner’s user document inside a video docu-
ment. This provides quick access to data relating to the video’s owner, at the expense of disk space.
Mongo makes it easy to scan and update embedded documents, and this is generally the best option
for performance.

Another consideration when designing schema is the way in which documents are physically stored
on disk. Imagine a collection containing ten10 documents, each 1 KB in size. Mongo ensures that
each document will always be stored sequentially, so the disk will not need to seek multiple times to
read a single document. However, reading in all the documents will likely require seeking to te1l0On
different locations (unless two documents just happen to have been placed next to each other on

disk).

Data is loaded into memory in 4-KB blocks (the default page size), so if you want to read all te10n
documents into memory, each document takes up a 4-KB block, and you end up using 40 KB of
memory, not 10 KB. However, if each document was placed sequentially on disk, the 10 KB of data
would fit into three pages, and you’d only need 12 KB of memory. Because you’ve already seen that

MongoDB | 339

an individual document will be stored sequentially on disk, you can achieve the wanted effect by
embedding the 10 documents inside another document — a process known as document bundling.
This can significantly cut disk seeks and memory usage under certain circumstances.

Document bundling has the most impact for documents that are small because the minimum unit of
currency is a 4-KB page of memory. As the size of the document increases, the percentage gain from
using bundling decreases. Also, bundling assumes that you actually want to read all the embedded
documents into memory, which isn’t always the case. This technique is only helpful if your working
set is too large to fit into memory; otherwise, there is nothing to be gained.

Replication

Replication is a big topic in the world of MongoDB, and although it has many similarities with
MySQL, it is substantially more involved. Actually, earlier versions of Mongo did use a fairly primi-
tive master-slave replication model, which was similar to MySQL’s, but this has been superseded by
a more advanced method called replica sets.

In Mongo, a replication group is called a replica set, and may contain between 3 and 12 members.
At any time, only one node will be the primary, with the others (usually) acting as secondaries and
slaving the primary’s contents. Reads can go to any node, whereas writes naturally must go to the

primary.

Replication Internals and the Oplog

The process to replicate from one node to another is similar to MySQL’s use of replay logs. On the
primary node, all write events are executed by Mongo, and then written to the oplog, which is a
capped collection in the 1ocal database. Each secondary node listens to the primary’s oplog and
copies events over to its own oplog. A separate thread on the secondary then replays events from its
own oplog.

As a result of the oplog being a capped collection, only a limited amount of history is stored,
and there is always the danger that a secondary node will fall so far behind that the primary has
removed entries from the oplog that the secondary has not yet replicated. If this happens,
replication to the secondary node stops, and manual intervention is required.

The usual cause of replication lag in Mongo is network latency, but for a particularly write-heavy
application, lack of server power can also be an issue. In the former case, you simply must ensure
that the oplog is large enough to accommodate this, whereas in the latter, more powerful hardware
is the only option.

In addition, it is preferable that the oplog be large enough that you can reboot a secondary server
without the current oplog events having been rotated out by the time it comes back online. This
way, when you need to carry out operating system or hardware upgrades, the Mongo secondary
server can still catch up with its primary server when you bring it back online.

There’s no way you can create hard-and-fast rules on how big the oplog collection should be,
though, because it depends on how Mongo is used. For a write-heavy application, the oplog may
fill up so quickly that you can’t tolerate more than 10 seconds of latency — anything more and old
log entries will be rotated out before secondary servers have read them. Conversely, a read-heavy

340 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

application may generate so little write traffic that the oplog holds several hours’ worth of
operations.

In reality, most applications lie somewhere in between and may suffer from occasional spurts of
heavy write activity. In this case, the oplog would be more than large enough most of the time but
could occasionally be too small.

The good news is that a large oplog doesn’t have a particular impact on performance, so it’s safe to
err on the size of caution and make it big. For example, the following shows the use of a 10 GB cap:

mongod --oplogSize 10240

Setting Up Replication

Configuring a replica set in Mongo is relatively simple. First, you start up each mongod instance with
the - -replset option, as shown here:

mongod --replSet <setname>

In this example, setname is an arbitrary name of your choosing for the set. On the first server, you
then initiate the set and add the hostnames of other nodes in the set, as shown here:

> rs.initiate()
> rs.add("rl.example.com") ;
> rs.add("r2.example.com") ;

Various configuration options may be passed to rs.add, including priority and whether the node is
to act as an arbiter (used when a new primary node must be selected) . Following is an example:

> rs.add("rl.example.com", arbiterOnly: true);

If you start with an empty data set, this is all that needs to be done. For existing data, you must load
in a copy of the data into each node using mongodump and mongorestore.

Using Replication Nodes

In a replication setup, you generally write to the primary node and distribute reads over the second-
ary nodes. Unless you have a particularly elegant means to provide the information dynamically,
this means hard-coding the addresses of the primary and master servers into the application’s
configuration, and then rewriting certain queries so that they go to a secondary server.

Mongo uses a much more flexible method that enables it to dynamically query nodes for their status,
and discover the existence of other nodes in the set. In your code, you supply a list of host : port
pairs to the driver, which then connects to each (ideally in parallel) and sends an ismaster ()
command. As well as returning the node’s status (whether it sees itself as a primary, secondary, or
neither), it also returns a list of all other hosts in the replica set. In this way, the Mongo driver can
learn the topology of the set without you explicitly listing every member.

This auto-discovery adds some unfortunate latency to the queries, and some drivers implement
short-term caching. This in itself can be a source of problems if the primary server goes down and

MongoDB | 341

a new one is elected — the last thing you want to do is send write queries to a secondary server.
Fortunately, when a new primary is elected, this is usually because the old primary is not respond-
ing, so it will not accept any writes anyway. In addition, you can use connection pooling in some
drivers (for example, PHP’s) to reduce the latency involved in connecting to each node.

After the driver has discovered which node is a primary and which are secondary, you can simply
execute your queries, and they will automatically be routed to the primary. Alternatively, you can
request that queries go to a slave by setting the s1aveokay option. Exact details on how to do this
vary from driver to driver. But, in PHP, you can set it on a per-query basis, for a particular
database/collection, or for the whole connection. Following is an example:

Sr->foo->bar->find () ->slaveOkay () ;

The PHP driver determines which slave to use based on ping time. A health check is sent every 5
seconds, and the secondary node with the lowest ping time will be the preferred one. Remember that
Mongo uses eventual consistency, and if data is written to the primary node, there may be a short
delay before it propagates to all slaves. Thus, in some cases, using a secondary node for read queries
1s not appropriate.

Failover: Elections, Voting, and Arbiters

One of the many great features of replica sets is the support for automatic failover. Each node routinely
sends a heartbeat message to the others in the set, and if a secondary node detects that the primary
node is down, it forces an election. During an election, each node votes on the node it believes should
be the new primary. This is mainly based on which server is the most up-to-date with replicating from
the primary, but it also takes into account any custom priority you have set on nodes.

One consequence of this democratic approach is that occasionally there will be voting ties. (That is,
no node receives a majority vote.) Mongo makes allowances for this through the concept of arbiters.
These are nodes in the replica set that don’t hold any data (that is, don’t participate in replication)
and are used solely for breaking voting deadlocks. An arbiter is needed only when there are an even
number of replication nodes (because an odd number of voters can’t result in a tie), and arbiters are
light enough that you can run them on the same machine as a replication node. For a given replica
set, you generally need only one arbiter (at most), and there is no additional benefit to running
multiple arbiters.

To add an arbiter, simply start up a replica set member in the usual way (by starting mongod with
the --replicaset <name> command-line option), and then tell the primary node to treat it as an
arbiter. Following is an example:

> rs.addArb ("serverl.example.com:27017") ;

Priority
Mongo version 2.0 introduced the capability to set priorities on each node in a replica set. If the
primary goes down, and a replacement must be found, Mongo favors the most up-to-date server.
If several servers are up-to-date, the one with the highest priority will be chosen. A consequence
of this is that the primary node may change again at a later date if a server with higher priority

342 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

subsequently becomes less lagged. For example, you would use the following to change the priority
of the first node to 2:

> config.members[1] .priority = 2;

Setting priority has several uses. For example, if you have a set of three replica servers, two in the
same data center and one on the other side of the world being used for taking backups, you prob-
ably don’t want the latter to ever become primary. You can do that by giving it a priority of zero.
Similarly, priority can be used to ensure that the most powerful servers are favored as primaries.

Propagation and Eventual Consistency

Recall that write operations in Mongo immediately return control back to the client, without saying
anything about whether the write was a success (or had even been attempted yet). In the majority

of cases, the write will be successful but will be queued for a short period of time before being
committed to disk.

In replication setups, you have additional considerations. The write may have been committed to
disk on the primary, but what about secondaries? You know that they will eventually receive and
commit the write (depending on any replication lag and use of £sync), but sometimes that isn’t good
enough.

Earlier in this chapter, you learned that getLastError () forces Mongo to commit a write to disk.
(That’s the only way it can return whether an error occurred.) The syntax can be extended for
replica sets, as shown here:

db.runCommand ({ getlasterror : 1 , w : 2 });

The w parameter tells Mongo that the operation must have been written to at least two nodes before
getLastError will return. One node will be the current one (primary), whereas the other will be a
secondary. In the case of sensitive data, this should provide some reassurance that it will not be lost.

As shown here, w also supports the majority keyword, which causes getLastError to return when
the majority of secondaries receive the operation:

db.runCommand ({ getlasterror : 1 , w : "majority" });

This usually provides a satisfactory level of comfort. Ensuring that every node has the data is unnec-
essary and costly because the speed at which the command returns is effectively governed by the
slowest secondary in the set. When all the nodes are in the same data center, this isn’t too bad. But
for a secondary on another continent, this could cause some annoying latency. Thus, a timeout value
is also supported, as shown here:

db.runCommand ({ getlasterror : 1 , w : "majority", wtimeout : 3000 });

In this example, Mongo waits for the majority of servers to receive the write and returns a timeout if
this has not happened within 3 seconds.

MongoDB | 343

Sharding

Given that Mongo was designed from the outset to provide high-performance, multinode data
storage, it’s not surprising that it features particularly strong support for sharding. With automatic
rebalancing, built-in lookup tables and routing, and support for parallel querying, Mongo simplifies
many of the obstacles encountered with sharding in MySQL.

The main reason for sharding is to scale write queries (scaling reads is easy), but there are also a
number of other (lesser) reasons:

> For large amounts of data, it may be that a single server doesn’t offer enough disk capacity
to hold everything. (Although, given the size of modern hard disks, this isn’t going to
happen often.)

> When searching large collections, sharding can also improve performance by querying each
shard in parallel and then aggregating the results.

> Sharding increases the overall amount of memory available in the cluster, meaning that
more data can be cached in RAM, thus improving read performance.

Chunks and Shards

In MySQL, each range of key values is referred to as a shard and exists on its own separate physical
server. Thus, keys a-j might exist on one shard, k-t on another shard, and u-z on another. Each of
these ranges directly translates to a particular MySQL server.

With Mongo, the basic unit of currency is the chunk. A chunk contains a range of key values
(for example, k through t) but is not tied to a particular physical server. Rather, it can be moved
across servers (which are referred to as shards) as necessary. Chunks are fairly small in size, and
each shard usually contains many chunks.

So, in addition to a slight change in nomenclature, Mongo also introduces an extra degree of
granularity. This is a significant improvement over MySQL’s mode, in which ranges are tied to a
physical server.

Choosing a Shard Key

Sharding is performed on a per-collection basis, enabling you to mix and match. Large collections
can be sharded, whereas smaller ones continue to operate on a single server.

As always, you should give some thought to the shard key, and you must ensure that it has a high
degree of cardinality. For example, there would be no point to shard a user collection based on
gender because this would produce only two shards. When your application outgrew two shards,
you’d be stuck. Similarly, if you were to shard based on a user’s surname, you could end up with
quite an uneven distribution of data — there are a lot more Smiths and Joneses in the world than
Stallmans or Torvalds. An easy solution is to shard based on two fields — for example, first name
and surname. This usually results in a much better distribution of data.

Another consideration is how and where data will be written. Imagine a logging collection. It may
seem logical to shard by a timestamp, particularly if you often run queries on this field (for example,

344 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

generating reports for particular time periods). But this inevitably causes all writes to go to a single
shard (containing the chunk covering the current time range). Shards containing older time ranges
will not receive any writes.

This is fine if you shard because a single server doesn’t have enough disk space, or because you want
a subset of the data to be held in memory for performance. But if your aim is to distribute reads

and writes, this method fails. The same is true for any ascending key, such as an auto-incrementing
counter, where you are always writing to the “end” of the range. Writes end up being concentrated
on a single server, resulting in a hotspot.

When choosing a sharding key, you should also give some thought as to how you will be querying
the data. If you shard on an e-mail address field, it makes it easy to subsequently pull up the record
for a particular user. Mongo knows on which shard this will exist and can send the query to the
appropriate server. By contrast, if you then attempt to pull up a list of all users with a particular
surname, Mongo would have no choice other than to query each server. Fortunately, this is done in
parallel, which eliminates a lot of the performance penalty. But it still results in an increase in
network traffic and makes your query as slow as the slowest node.

In many ways, choosing the sharding key is the most difficult part of setting up sharding, and
careful thought should be given to the key. It can make a significant difference in how scalable
the application will be, and the wrong key can cause serious headaches further down the line. The
choice of key is application-specific, but indexed fields are usually the first candidates to consider.

mongos and Configuration Servers

In a MySQL sharding setup, you must add an extra step of logic to your application code. First,
you must keep track of which shards reside on which servers. (You can either hard-code this lookup
table in your application’s configuration file or store it in, say, memcache.) Every time your applica-
tion performs a query, it must consult this table to determine to which servers to send the query. If
you want to query servers in parallel, you often must jump through additional hoops.

In Mongo, all this is taken care of automatically through the use of two additional services: mongos
and configuration servers. When the application code issues a query, it sends it to mongos, which
then decides which shard nodes to forward the query on to. mongos then returns the result to the
application.

If multiple servers must be queried, mongos sends the queries in parallel, collates the results, and
then returns them to the application. In this way the application is unaware that sharding is even
happening, and thinks it is simply communicating with a single Mongo server. These mongos servers
are light enough that they can be run on existing servers. One option is to run a mongos process on
each shard server, but you could equally well run then on top of each application server. The latter
should result in slightly lower latency.

mongos processes know where to route queries because they pull their logic from the second new
addition to the infrastructure — configuration servers. These are similarly lightweight services that
contain information on the sharding layout — specifically, which chunks reside on which servers.

For example, all users with e-mail addresses beginning a—h reside in chunk W, which is stored on
server X. All users with addresses beginning i—p live in chunk Y on server Z. When a mongos pro-
cess starts, it pulls this information from the configuration server, and if the mapping subsequently

MongoDB | 345

changes (for example, Mongo rebalances a chunk to another node), the configuration server pushes
the change to each mongos process.

The configuration servers are kept in sync with each other using replication, but they automatically
use their own internal implementation, and you should definitely not set them up as a replica set.

Figure 10-4 shows a minimum setup for sharding. One or more application servers send requests to
one or more mongos servers, which, in turn, route the requests on to the appropriate Mongo node.
Three configuration servers keep the mongos processes in sync with the location of the shards.

Configuration Servers

\/

Application Servers Mongo Nodes
FIGURE 10-4

As already mentioned, though, the configuration and mongos servers are light enough that you’d
probably just run them on top of the application servers — one of each on each application server.
As shown in Figure 10-5, this simplifies your setup and reduces the number of machines needed.

v

Application Servers Mongo Nodes
+ mongos + conf

FIGURE 10-5

346 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Setting Up Sharding

Now that you have a topology in mind, you can begin configuring the servers. Let’s assume an
empty collection because this is simpler than sharding an existing collection.

With each mongod server up and running in the usual manner, you can connect to one instance

and run the addshard command to add the hostname of each shard. (It’s preferable to use host-
names rather than IP addresses in case you ever move your mongod daemons to different machines.)
Following is an example:

> db.runCommand ({ addshard : "shardl.example.com" });
> db.runCommand ({ addshard : "shard2.example.com" });
> db.runCommand ({ addshard : "shard3.example.com" });

You can confirm that the shards have been added by using 1istshards, as shown here:
> db.runCommand ({ listshards : 1 });

Next, you must enable sharding for the relevant database and collection, and, in the latter case, also
specifying the shard key, as shown here:

> db.runCommand ({ enablesharding : "foo" });
> db.runCommand ({ shardcollection : "foo.users", key : {username : 1} })

At this point, mongod operates in a sharded setup, but you still must set up mongos and configura-
tion servers so that clients can access the correct shard.

To start a configuration server, launch mongod with the ~configsvr option, as shown here:
mongod -configsvr

The MongoDB developers recommend using three configuration servers in a live environment.

For mongos servers, pass the --configdb command-line option, followed by a comma-separated list
of configuration servers, as shown here:

mongos --configdb configl.example.com,config2.example.com,config3.example.com

At this point, the sharding setup should be fully operational, and clients can be configured to send
their queries to any of the running mongos daemons.

Chunks and Balancing

You check the status of the sharding setup like so:

> db.printShardingStatus() ;
--- Sharding Status ---

sharding version: { " _id" : 1, "version" : 3 }
shards:
{ " id" : "shard0000", "host" : "sl.example.com:10000" }
{ " id" : "shard0001", ‘"host" : "s2.example.com:10000" }
databases:

{ " id" : "admin", “partitioned" : false, ‘'primary" : "config" }

MongoDB | 347

{ " id" : "foo", ‘'partitioned" : true, 'primary" : "shard0000" }
foo.users chunks:
shard0000 1
{ "name" : { $minKey : 1 } } -->> { "name"
{ $maxKey : 1 } } on : shardoooo { "t" : 1000,
n{n . 0 }

From the output, you can see that there are two sharding servers (s1.example.comand s2.example
.com). Of the two databases that exist, admin is not sharded ("partitioned" : false), whereas foo is.

The remainder of the output shows how the chunks have been allocated. At the moment, there’s
only one chunk (the collection has little data in it), and it resides on shardoooo. The final line shows
the key range contained in this chunk. As you might expect, it contains the full range (minkey to
maxKey). In case you’re wondering, the t and 1 fields are internal versioning fields — t is incre-
mented when a chunk is moved to another shard (this causes i to be reset also), and i is incremented
when a chunk is split.

If you continue adding data to the collection, multiple chunks will eventually be created — by
default, Mongo keeps chunks at approximately 64 MB.

foo.users chunks:

shard0000 6

{ "name" : { $minKey : 1 } } -->> { "name" : "02e74£10" } on : shard0000 {
"Moo 1000, "iM i 1}

{ "name" : "02e74f11" } -->> { "name" : "35f4a8d4" } on : shard0000 {
"W i 1000, "iv : 9)

{ "name" : "35f4a8d5" } -->> { "name" : "812b4ba2" } on : shard0000 {
"g" . 1000, "i" : 10 }

{ "name" : "812bd4ba3" } -->> { "name" : "c4ca4238" } on : shard0000 {
"ero: 1000, "iv o 7)

{ "name" : "c4ca4239" } -->> { "name" : "fe9fc289" } on : shard0000 {
"EM : 1000, "iv : 8)

{ "name" : "fe9fc290" } -->> { "name" : { $maxKey : 1 } } on : shard0000 {
"EMo: 1000, "iv o: 4)

At this point, you now have six chunks, but they still all reside on the same shard server. In fact,
Mongo won’t start rebalancing until one server has eight more chunks than the other. At that point,
it moves chunks around until the difference between servers is down to two chunks. Let’s add some
more data:

shard0000 9

{ "name" : { $minKey : 1 } } -->> { "name" : "02e74f10" } on : shard0000 {
memo: 1000, it o: 1}

{ "name" : "02e74f11" } -->> { "name" : "35f4a8d4" } on : shard0000 {
"t" . 1000, "i" : 9 }

{ "name" : "35f4a8d5" } -->> { "name" : "642e92ef" } on : shard0000 {
mgmo: 1000, "i" : 15 }

{ "name" : "642e92f0" } -->> { "name" : "812b4ba2" } on : shard0000 {
"g" . 1000, "i" : 16 }

{ "name" : "812b4ba3" } -->> { "name" : "9bf31c7f" } on : shard0000 {
"tr : 1000, "i" : 13 }

{ "name" : "9b£31c80" } -->> { "name" : "c4ca4238" } on : shard0000 {

"en i 1000, "iv ;14)
{ "name" : "c4ca4239" } -->> { "name" : "d9d4f495" } on : shard0000 {

348 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

"eno. 1000, "iv o 11)

{ "name" : "d9d4f496" } -->> { "name" : "fe9fc289" } on : shard0000 {
"gmo: 1000, "i" : 12 }

{ "name" : "fe9fc290" } -->> { "name" : { $maxKey : 1 } } on : shard0000 {
"Emo: 1000, "iv o o4}

Mongo now begins rebalancing, and if you check back a few moments later, you can see that the
first chunk has already been moved. Notice that t has been incremented to reflect this.

shard0001 1

shard0000 8

{ "name" : { $minKey : 1 } } -->> { "name" : "02e74£10" } on : shard0001 {
"gn o 2000, "i" : 0 }

{ "name" : "02e74£10" } -->> { "name" : "35f4a8d4" } on : shard0000 {
"gro. 2000, "i" @1 }

{ "name" : "35f4a8d4" } -->> { "name" : "642e92ef" } on : shard0000 {
"gmo: 1000, "i" : 15 }

{ "name" : "642e92ef" } -->> { "name" : "812b4ba2" } on : shard0000 {
"g" . 1000, "i" : 16 }

{ "name" : "812b4ba2" } -->> { "name" : "9bf31c7f" } on : shard0000 {
"gmo: 1000, "i" : 13 }

{ "name" : "9bf3lc7f" } -->> { "name" : "c4ca4238" } on : shard0000 {
ngno. 1000, "iv : 14)

{ "name" : "c4ca4238" } -->> { "name" : "d9d4f495" } on : shard0000 {
"g" . 1000, "i" : 11 }

{ "name" : "d9d4f495" } -->> { "name" : "fe9fc289" } on : shard0000 {
"ewo: 1000, it o2 1}

Rebalancing isn’t an instantaneous process because the 64-MB chunks must be copied across
servers. But eventually you reach a situation in which four chunks have been copied over to
shard0001, leaving five on shard0o000 (again, notice how t and i have changed):

shard0001 4

shard0000 5

{ "name" : { $minKey : 1 } } -->> { "name" : "02e74f10" } on : shard0001l {
"Eno: 2000, "i" ;0 }

{ "name" : "02e74£10" } -->> { "name" : "35f4a8d4" } on : shard0000 {
"gn o 2000, "i" : 0 }

{ "name" : "35f4a8d4" } -->> { "name" : "642e92ef" } on : shard0000 {
"g" . 2000, "i" : 0 }

{ "name" : "642e92ef" } -->> { "name" : "812b4ba2" } on : shard0000 {
"Emo: 2000, "i" ;0 }

{ "name" : "812b4ba2" } -->> { "name" : "9bf31c7f" } on : shard0000 {
"gmo: 1000, "i" : 13 }

{ "name" : "9bf31c7f" } -->> { "name" : "c4ca4238" } on : shard0000 {
"gmo: 1000, "i" : 14 }

{ "name" : "c4ca4238" } -->> { "name" : "d9d4f495" } on : shard0000 {
ngno: 1000, "iv o 11 }

{ "name" : "d9d4f495" } -->> { "name" : "fe9fc289" } on : shard0000 {
"g" . 1000, "i" : 1 }

Why 64-MB chunks? This number wasn’t chosen at random and has been the source of much
debate among Mongo developers. (In fact, earlier versions of Mongo used a much higher chunk
size.) On the one hand, you want chunks to be small enough that they can be moved from shard to

MongoDB | 349

shard relatively easily without putting too much strain on bandwidth or disk I/O. However, moving
chunks also means more work for Mongo — the lookup table held on the configuration servers must
be updated and the changes pushed to each mongos server. So, you also want chunks to be large
enough that they aren’t moved around too often.

If wanted, you can change the chunk size like so:

> use config
> db.settings.save({ id:"chunksize", value:128}); // 128MB

You’d probably want to experiment with this only if huge amounts of data were added, resulting in
the default 64-MB chunks being split/moved too often.

If the rebalancing of chunks causes too much of a strain on individual nodes or the network, you can
schedule rebalancing only between certain hours — in the following example, between 2 a.m. and 6 a.m.:

> use config;
> db.settings.update({ _id : "balancer" }, { $set : { activeWindow :
{ start : "2:00", stop : "6:00" } } }, true);

This is handy for stopping rebalancing from potentially impacting traffic during busy times. But you
must ensure that the amount of data added is sufficiently low so that the rebalancing can complete
within these times. In practice, this is usually only a concern if bandwidth is limited, the time
window is too small, or huge amounts of data are written each day.

Replicating Shards

Replication offers you security against nodes failing (and some degree of read scaling), whereas shard-
ing provides write scaling but no redundancy. It seems natural to combine the two together, and, in fact,
this is one of the most popular ways for setting up a Mongo cluster. Figure 10-6 shows the topology.

Configuration Servers

=

Application Servers Mongo Nodes
+ mongos + conf
FIGURE 10-6

350 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Although this initially looks quite intimidating, it is nothing more than a combination of the two
scaling techniques previously described. As before, the application servers connect to mongos
processes, which route queries to the appropriate shard. This time, though, each shard is actually a
replica set triplet. Again, these replica sets are no different from the examples presented earlier. You
can have as many nodes in the set as necessary (although the recommended minimum is three), and
you can still direct queries to either a master or a slave to help balance read queries — mongos takes
care of ensuring the queries go to the correct shard replica set.

The only difference in the sharding setup with this model is that you can tell Mongo that each shard
is a replica set. If the set were named foo, the syntax would now be as follows:

> db.runCommand ({ addshard : "foo/shard3.example.com" });

This enables the usual auto-discovery and query balancing to take place.

GridFS

Let’s move away from sharding and replication, and talk about another feature of Mongo: the
Grid Filesystem (GridFS). Storing user-uploaded content (such as avatars) is a common problem on
multiserver setups. You can use a network-aware filesystem such as Network File System (NFS) to
allow all web servers to access a common area to write uploads to, but NFS is slow. You could use
a cron job to periodically rsync files to across to a common area, but this would introduce a delay
between the file being uploaded and it being available globally (and could also cause spikes in CPU
and bandwidth).

One thing developers are taught to definitely not do is store files in MySQL (for example in a blob
column). MySQL is so often the bottleneck in a system that adding extra load to it like this is sui-
cide. It’s not what MySQL is designed for either, so access times can be relatively poor, and it can
poison your carefully configured caches and buffers. This also greatly increases the size of your
tables, making dumping and restoring much slower.

It’s perhaps surprising, then, that Mongo actually encourages you to store files in it, and even pro-
vides a way to do this via the GridFS. The observations about dumping and restoring slower still
stand, but storing files in this way has a number of benefits:

> You no longer need to worry about using a shared/network filesystem or syncing files across
multiple servers.

> If you use replication, you have a backup copy of the files on another server.

> You can store meta data (such as an MDS5 checksum, date, username, and so on) alongside
each file and search on these fields.

GridFS uses its own database, named fs, with two collections: chunks for chunks of the file, and
files for meta data associated with each file. Files are stored pretty much as regular documents
would be. But because there is a limit of 16 MB on the size of an individual document, in many
cases, Mongo would need to split the file into chunks spanning multiple documents. This is actually
advantageous. It means that the file is streamed back to the client in chunks, rather than Mongo
attempting to buffer the whole file in memory. It also allows you to jump to the midsections of files.

MongoDB | 351

So useful is this that, for GridFS, the chunk size actually defaults to 256 KB, significantly less than
the 16 MB maximum.

The files collection contains (at a minimum) the following fields:
> id — This unique ID for the file will be auto-generated if omitted.
Length — This is the size of the file (in bytes).
chunkSize — This is how big each chunk should be.
uploadDate — This is the date/time when the file was inserted into the database.

md5s — This is an MDS checksum of the file.

Y VY VY Y

Additional fields may be added if necessary. For example, it’s quite common to include the file’s
MIME type, a username, and perhaps a title or description.

The chunks collection consists of a unique ID field, a field containing the corresponding ID of the
file in the files collection, the chunk number, and the data. Chunk number is an incrementing
value that ensures the chunks of the file are returned in the correct order.

Although you could theoretically handle files as if they were any other kind of data — splitting them
into chunks and inserted into the collection — Mongo provides the command-line tool mongofiles
to take care of these finer points for you.

First, you write a file to GridFS, as shown here:

$ mongofiles put twitter.png

connected to: 127.0.0.1

added file: { _id: ObjectId('4£495177bdc23c5bel912771'), filename: "twitter.png",
chunkSize: 262144, uploadDate: new Date(1330229047751), md5:
"6ad40e7be284e362fa479eb522241306", length: 3319 }

done!

Next, you get a list of existing files:

$ mongofiles list
connected to: 127.0.0.1
twitter.png 3319

When you’re ready, you can fetch the file back, as shown here:

$ mongofiles get twitter.png
connected to: 127.0.0.1
done write to: twitter.png

Most Mongo drivers also provide methods for interacting with GridFS. For example, in PHP, the
following shows the most popular, MongoGridrs:

Sr = new Mongo () ;

Sdatabase = $Sr->foo;

$grid = $database->getGridFS() ;
print Sgrid-s>storeFile(

352

| CHAPTER10 UTILIZING NOSQL SOLUTIONS

"/tmp/upload.gif",
array ("metadata" => array(
"filename" => "upload.gif",
"mimeType" => "image/gif",
"uploadedBy" => "pgsmith"
)
"filename" = > "upload.gif"

)i

More often than not, you already have the file contents stored in a string and may want to write this
to GridFS. In this case, you use storeBytes rather than storeFile and pass the string as the first
parameter (rather than the filename).

GridFS and Nginx

Although GridFS neatly solves the problems of allowing multiple web servers to access contents
from a common location, be cautious about viewing it as a new toy and using it for holding all
static contents. Although performance is good, it’s still generally better to host static resources
on a traditional filesystem. (There are a few situations in which GridFS wins over traditional
filesystems — for example, there are less restrictions on permitted characters in filenames, and
traditional filesystems often struggle when faced with millions of files in the same directory.)

For user-uploaded content, GridFS is great, but having to execute some code to retrieve an image
each time is far from ideal. For example, if your users’ avatars were stored in GridFS, you might use
mark-up like this:

You’d then use a mod_rewrite rule to catch any requests for resources under /avatars/ and
redirect them to a server-side script. This script would pull the appropriate image from GridFS
and then echo out the content type and the data.

To the client, it would look like a standard request/response for an image. But behind the scenes, the
web server would need to do significantly more work than for a static resource.

The good news is that there exists for Nginx a module that enables it to talk directly to Mongo and
pull files from GridFS. This eliminates the overhead involved in executing a scripting language and
gives performance closer to the serving of static files. The module is aptly named nginx-gridfs and
is available from https://github.com/mdirolf/nginx-gridfs

NOTE Chapter 7, “Working with Web Servers,” provides a more complete dis-
cussion of Nginx.

GridFS-fuse

For those not using Nginx, a final method to access GridFS is via the FUSE kernel module, enabling
it to be mounted just like a regular filesystem. A GridFS wrapper for FUSE is available from
https://github.com/mikejs/gridfs-fuse.

https://github.com/mdirolf/nginx-gridfs
https://github.com/mikejs/gridfs-fuse

Other NoSQL Technologies | 353

Mongo versus MySQL

It’s easy to see why some commentators have suggested that Mongo should be the new “M” in
LAMP (which currently stands for Linux, Apache, MySQL, PHP). In so many ways Mongo seems
to outperform MySQL — whether it be its superior replication and sharding, or its blistering
performance — that you might question whether MySQL still has a place in modern web applications.

One of the biggest shortcomings of Mongo at the moment is its reliance on global locking, which
can dramatically slow down both reads and writes on write-heavy setups. This level of locking
makes even MyIsaM’s table-level locking seem unobtrusive in comparison. Work is currently
underway to implement more granular locking in MongoDB — probably at the collection

level — so, hopefully, this will not be an issue for too much longer. In the meantime, both sharding
and replication can help alleviate this problem.

Some Mongo advocates also fail to appreciate Mongo’s approach to durability. They perform some
crude benchmarking that shows how Mongo can make several orders of magnitude more writes

per second than MySQL, without realizing that these writes have not necessarily been committed
to disk. To achieve a similar level of data security to MySQL, you must enable both journaling and
periodic use of £sync, which both impact performance. (Remember that you don’t get any feedback
on whether the write was successful, unless you specifically ask for it — which, again, impacts
performance.) In practice, Mongo still outperforms MySQL, but the gap is now no longer as huge.

That’s not to say there’s anything wrong with Mongo’s approach to data durability, providing that
you understand the potentially volatile nature of the data. The biggest problem is not Mongo’s
behavior, but the users’ failure to understand it. Most people are happy with the idea that memcache
offers volatile storage, but many simply assume that writes in Mongo will be safe — and without a
couple of tweaks, they are not. Even then, if the slight chance of data loss can’t be tolerated at all
(for example, for financial transactions), Mongo is probably not the best choice.

This raises the next drawback: lack of transactions. Again, in many situations, this is acceptable,
and Mongo’s model is no worse than, say, My1sam. But if you deal with money, Mongo isn’t the right
tool for the job, and you’re much better off sticking with InnoDg.

With the exception of global locking (which seems like an issue that should have been addressed
much earlier), these points aren’t a criticism of MongoDB. It does what it claims to do well and has
never been pitched as a complete replacement for MySQL. Consider Mongo as an extra tool in your
arsenal, and use it when it makes sense to use it — not because of any NoSQL hype.

The number of new technologies falling under the NoSQL banner is huge. So far, you’ve seen two
of the most important ones. But, in the following section, you learn about some of the many other
options.

OTHER NOSQL TECHNOLOGIES

MongoDB and memcache are both at opposite ends of the spectrum, and there are a great number
of NoSQL offerings that fall somewhere in the middle. Mongo and memcache are two favorites.
(And space does not permit doing justice to all of the others.) But NoSQL is an exciting area, and
there are many other technologies that are gaining strong user bases. To round out this discussion of
NoSQL, let’s look at some of these offerings, and examine the relative pros and cons of each.

354 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Tokyo Cabinet and Tokyo Tyrant

Sponsored by the Japanese social networking site mixi, inc., Tokyo Cabinet is a multithreaded
database library (like SQLite) that is both fast and flexible. Tokyo Tyrant is the name given to the
accompanying network server that handles client connections and concurrency. Tokyo Tyrant has a
reputation for being fast and offers high levels of concurrency via an event-polling model (epoll).

Tokyo Cabinet offers a choice of underlying storage engines, of which the following are the four
most common:

> Hash table — This stores key-value pairs in a traditional hash structure.

> B-tree — Although this also uses key-value pairs, it allows them to be stored in a
user-defined order, making it possible to perform range and prefix matching.

> Fixed length — This simple array structure is used rather than a hash. Data is accessed by
specifying a numeric array key offset. This makes it a truly fast engine; although, it can be
somewhat impractical to work with.

> Table — This behaves like a traditional RDBMS engine with rows and columns. It supports
indexing and sorting but is also schema-less (like MongoDB). Locking occurs at the row
level.

Tokyo Cabinet has some support for transactions, and ACID compliance with write-ahead
logging is available. It also supports replication; although, no built-in sharding support is available.
(However, there’s nothing to stop you from rolling your own sharding solution.)

Although Tokyo Cabinet is an excellent persistent key-value store, it is not primarily a document
database like Mongo, and this is the weakest part of it. For modeling and querying more complex
data types, the likes of Mongo or MySQL are still better solutions.

As a key-value store, however, Tokyo Cabinet has numerous benefits over memcache and membase.
It uses a binary protocol for storage (generally more efficient than text-based), supports the
compression of data (either via gzip, bzip2, or a custom implementation), and has support for
Lua scripting, making it extensible.

Finally, Tokyo Cabinet also ships with its own full-text search system, Tokyo Distopia. although
Tokyo Cabinet is not as well known as memcache, it surpasses it in many ways.

CouchDB

CouchDB is another [SON-based document database, similar to Mongo. The most obvious
difference on the surface is that CouchDB uses a HTTP REST interface for querying it, and this will
always be several times slower than a binary over TCP/IP protocol. In the past, the data querying
method has also been rather different, revolving around MapReduce and views. In 2011, CouchDB
introduced UnQL as a general-purpose NoSQL querying language, providing a more traditional feel
to query execution.

CouchDB’s attitude to scale is also markedly different, with replication being used as a scaling
tool. (In MySQL, replication is seen as a partial solution to scaling, whereas Mongo prefers

Other NoSQL Technologies | 355

sharding for scaling and replication for durability.) CouchDB uses master-master replication,
and this introduces performance considerations because care must be taken to ensure that data
remains in sync. A multiversion concurrency control (MVCC) model is used, which solves many
of these problems — and also allows for high levels of simultaneous reads and writes. But this
comes at the cost of performance. So, although CouchDB is well suited to write-heavy applica-
tions or those that demand data integrity, it doesn’t offer the blistering speed seen in its main
rival, Mongo.

Project Voldemort

Voldemort is a persistent key-value store developed and used by LinkedIn. It features automatic
replication and partitioning (sharding), making it capable of scaling horizontally for both reads and
writes.

Voldemort is perhaps most like membase in that it combines the in-memory caching of memcache
with the persistent storage offered by membase. It should be remembered that Voldemort isn’t
intended as a cache, though, and lacks features such as automatic expiration of keys or an LRU
retention policy. (If a volatile cache is all that is needed, memcache is a better choice.) Rather,
Voldemort is a complete storage solution that supports complex objects as keys or values, and
versioning of data.

Amazon Dynamo and Google BigTable

Two import products in the NoSQL world are actually proprietary systems developed with only
limited availability to the public.

Dynamo is a distributed key-value store, developed by Amazon.com and used by parts of Amazon
Web Services (AWS). It is not available to the general public but forms a key part of Amazon’s
infrastructure. It uses sharding and replication, and puts an emphasis on fault tolerance.

Google’s BigTable is a three-dimensional store, with values referenced by a row key, column key,
and timestamp triplet — the latter allows for versioning and automatic expiration of data. It runs
on top of Google File System (GFS) and uses compression in some situations. It is designed to hold
millions of gigabytes of data across thousands of nodes and is a core part of many of Google’s
services.

Google offers some access to BigTable via its App Engine, and Amazon.com offers DynamoDB
(a NoSQL database built on Dynamo) as part of AWS. Other than that, neither of these technologies
is available to the public. So, why are they so important in the NoSQL world?

Both are relatively old for NoSQL — BigTable began life in 2004, and Dynamo in 2007 — and
both were developed by large companies (that could provide plenty of funding) with high-
performance demands. Although neither product is open source, Amazon.com and Google
have published plenty of papers on their inner workings, and this has inspired many others to
create open source NoSQL applications using similar concepts. As a result, many of the
popular open source NoSQL solutions on the market today have their roots indirectly in these
two offerings.

http://Amazon.com
http://Amazon.com
http://Amazon.com

356 | CHAPTER10 UTILIZING NOSQL SOLUTIONS

Riak

Riak has been designed heavily around Dynamo. Its main selling point is fault tolerance, and it can
withstand many nodes going down without any data becoming unavailable. As part of its emphasis
on reliability, it has no concept of master and secondary nodes (thus, no single points of failure)
and uses consistent hashing to partition data. As with most multidimensional stores, Riak is geared
toward storing huge volumes of data.

Cassandra

Developed by Facebook, Cassandra is a multidimensional key-value store inspired by both BigTable
and Dynamo and written in Java. It has the unusual characteristic that writes are much faster than
reads, making it well suited to write-heavy applications.

As with Riak, Cassandra uses a decentralized network model, with all nodes being equal
(no masters and slaves), and data replicated across multiple nodes for fault tolerance. It also
supports partitioning and offers two alternative models for distributing the data.

Redis

Another key-value store, Redis, is written in C and sponsored by VMWiare. It uses a strategy similar to
Mongo for durability and can operate entirely out of memory if performance is more important
than data integrity. Alternatively, Redis also supports periodic snapshotting (basically the equivalent
to using fsync in Mongo) and journaling. The primary selling point of Redis is its speed; although, to
achieve such fast read/writes, the working set should be small enough to fit into memory.

HBase

HBase is another BigTable-inspired database, supporting huge volumes of data, and with a particu-
lar emphasis on good performance for random read. It offers row-level locking, strong consistency
(HBase’s obvious main rival, Cassandra, uses eventual consistency), fault tolerance, data locality,
and native MapReduce support. HBase’s approach to scaling out is something of a hybrid method.
Although it uses the concept of masters and slaves, it does not depend on masters heavily and can
survive even if the master goes down.

SUMMARY

The days when data storage was a choice between flat text files or a bulky RDBMS are long gone,
and there is now a wealth of alternative solutions. Although typically grouped together under the
name of NoSQL, there is a huge variety in how they work. But one common theme is that they were
all designed for scalability in today’s modern web world.

memcache is one of the most popular NoSQL technologies. It offers a basic key-value store and
is perfect for situations in which an RDBMS like MySQL would be overkill. memcache is well
supported by scripting languages, such as PHP, Python, and Ruby, and can be scaled across
multiple nodes.

Summary | 357

It should be remembered that data in memcache is volatile and is not stored in persistent storage
(such as a hard disk). membase — an off-shoot of memcache — solves this, and introduces a more
intelligent way to scale across many nodes.

At the other end of the NoSQL spectrum is Mongo, a document store that offers many of the
features seen in traditional databases. Modeling data structures in real-world applications can be
tricky in MySQL, and Mongo excels in situations in which the structure of your data is dynamic.
It also offers good support for sharding and replication, which are essential when you appreciate
Mongo’s single-server durability model.

A lot of hype has surrounded NoSQL, with much of the hype claiming it marks the death of the
traditional RDBMS. Although it’s true that NoSQL has taken over from the likes of MySQL in
many environments, MySQL still has its place, and NoSQL should be viewed as another weapon in
your arsenal, rather than as a MySQL replacement.

Having spent the past three chapters looking at databases in various shapes and forms, it’s time

to look at other aspects of back-end performance. Many sites use Secure Sockets Layer (SSL), often
without realizing the hit this can have on performance. In Chapter 11, you discover the reasons that
SSL can be costly, and what you can do to minimize that cost.

11

Working with Secure Sockets
Layer (SSL)

WHAT'’S IN THIS CHAPTER?

» Caching SSL sessions with session IDs or session tickets
» Setting up an SSL endpoint in HAProxy, Nginx, or Apache

> Understanding the performance impacts of key and certificate sizes,
as well as cipher suites

> Looking toward the future

Secure Sockets Layer (SSL) is the encryption method used to securely transmit data over
HTTP, where it is often referred to as HTTPS. Widely used for e-commerce and webmail, the
extra overhead involved in setting up the secure channel and encrypting/decrypting data can
have an impact on performance — both on server load and responsiveness. In this chapter, you
learn how to combat this through a variety of techniques.

The discussion here clarifies the distinction between SSL and Transport Layer Security (TLS),
and helps you gauge how big of a performance penalty SSL incurs. You also learn about
performance-related aspects of SSL, such as key size and intermediate certificates, as well

as about enhancements such as session reuse, session tickets, and how these can work in
multiserver environments.

NOTE The terms “SSL” and “TLS” are often used interchangeably, but they are
not quite the same thing. The first public release of SSL was version 2.0 in 1995
and, in light of numerous security concerns, this was quickly followed by version
3.0in 1996. TLS didn’t appear until 1999 and was designed as a replacement for
SSL. Since then, there have been two revisions to TLS: version 1.1 in 2006 and
version 1.2 in 2008. So, although SSL has essentially been replaced by TLS, the
discussion in this chapter uses the term “SSL” to mean “SSL/TLS.”

360 | CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

SSL CACHING

The principle advantage of using SSL is session caching, which can significantly reduce CPU usage
and lower latency during HT TP requests. But to thoroughly understand session caching, it’s
important to first take a closer look at the SSL protocol.

Connections, Sessions, and Handshakes

Before HTTP requests can be sent over SSL, a
secure channel must first be established. This
involves the server sending the certificate (and the
browser validating it) an encryption protocol being
agreed on and keys being exchanged. Figure 11-1
shows an overview of the process.

Actually, there’s more going on here:

1.

4.

The initial hello from the client includes a
random number, as well as a list of encryp-
tion methods and SSL/TLS versions that
the client supports.

The response from the server specifies the
encryption method and SSL/TLS

version that are to be used (the server
having selected from the lists offered in
the first step), as well as the certificate.

The client verifies the signature on the
certificate supplied by the server. It then
encrypts the random number with the
server’s public key and sends this to

the server. Optionally, the client may
also include a copy of its own certificate,
if client authentication is being used.

The server sends back a “finish” message

1)

Hello

i

2)

Certificate

i

<

Key exchange

>

i

Ok, finished

i

FIGURE 11-1

<

(encrypted with the secret key). The client can now issue HTTP requests.

i]

=

=

]]

There’s a lot of CPU processing involved here, and the fact that two round trips are needed pushes
up latency — for communications across continents, where latency can be more than 100 millisec-
onds, you spend almost one-half a second simply on the SSL handshake.

Abbreviated Handshakes

To improve this situation, HTTPS allows an abbreviated handshake to be used in certain
situations. This eliminates two of the messages (which happen to be the most CPU-intensive two),
resulting in a two-step handshake. Figure 11-2 shows the abbreviated form.

SSL Caching | 361

To use abbreviated handshakes, one of two compet-
ing extensions must be used: session identifiers or Hello
session tickets.

il

Il

Session ldentifiers

Session identifiers (session IDs) have been around

since the inception of TLS and are the extension

most widely supported by browsers. Under this

scheme, the web server may optionally include a - <
="

|
O

Set cipher, finish =

session ID in its response to the client’s hello during
step 2 of a full handshake. This ID corresponds to
cached session data held locally by the server. FIGURE 11-2

The client caches this session ID and sends it in its

initial hello at the beginning of the subsequent

handshakes. If the server finds corresponding session data in its cache for this ID, it proceeds with
the abbreviated handshake; otherwise, a full handshake is used.

=11l

In addition to cutting down the number of steps in the handshake, session caching also reduces the
size of each step. For example, the server no longer needs to send a copy of its certificate because
the client has already accepted it previously. Likewise, the computationally expensive steps of
verifying the certificate and encrypting the random number using the server’s key are avoided.

Session Caching in Nginx

In Nginx, the settings include options to set the caching type and session lifetime.
ssl session cache off | none | builtin | shared:name:size

builtin uses the cache built into OpenSSL, but this means that it isn’t shared across worker
processes. It is better to use Nginx’s cache (shared), which is shared across workers. In this case,
you must also give the cache a name and a size. The Nginx documentation suggests a 1 MB cache
can hold approximately 4,000 sessions. Following is an example set for 5 MB:

ssl_session cache shared:mycache:5M

The lifetime for session data in the cache is controlled by ss1_session_timeout, as shown here
(for 1 hour):

ssl _session timeout 1h

With both of these options, it is strongly recommended that you place them in the http block of the
Nginx configuration file; although, they can also be used in server blocks.

Session Caching in Apache

When you use Apache’s mod_ss1, SSL session caching is disabled by default — which is
regrettable because many administrators aren’t aware of its existence in order to enable it. The
SSLSessionCache directive is used to control caching and supports three principle methods: none,

362

| CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

disk-based (via a DBM hash file), or in-memory. Naturally the latter is the preferred option because
it is implemented in shared memory. This makes the cache accessible globally, rather than being
confined to a particular Apache pre-fork process.

For shared memory caching, the syntax is as follows:
SSLSessionCache shm:/etc/apache/ssl cache(1024000)

The figure in parentheses is the wanted size of the cache (in bytes).

The lifetime for entries in the cache may also be set. The TLS specifications (RFC 5246) suggest
caching for no longer than 24 hours, but values this high may be pointless anyway because most
clients won’t cache the session ID at their end for this long. (For example, the caching times for
Microsoft Windows have varied considerably. Windows 2000 Service Pack 1 cached for 2 minutes,
whereas Windows 2000 Service Pack 2 and Windows XP cached for 10 hours.) As shown in the
following example, 1 hour (3,600 seconds) is a reasonable option but will naturally require a larger
cache size than if you go for a lifetime of a few minutes.

SSLSessionCacheTimeout 3600

Session Caching in stunnel
stunnel has built-in support for session caching, and it is enabled by default with a session lifetime
of 5 minutes. You can override this in the configuration file like so:

session = 1800 ## sets a session life of 30 minutes (1800 seconds)

The latest versions of stunnel also ships with support for a new feature, sessiond, a shared session
cache. The 1P:port of the sessiond server can now be specified in the stunnel configuration, as
shown here:

sessiond = 192.168.10.50:54321

This is a big advance for stunnel and helps it to keep up with the shared session caching offered by
Apache and Nginx.

Session Caching in stud

stud also offers session caching; although, the option is disabled by default. Use the -c <size>
command-line switch to enable the cache and set its size. The cache is shared across all stud worker
processes.

Session Tickets

Session identifiers have two fundamental weaknesses because of their reliance on server-side
caching:

> Caches take up valuable memory, and you can rarely afford to cache sessions for long
periods of time. (Instead, you must make a trade-off and lower the session lifetime to keep
the cache size down.)

SSL Caching | 363

> Caching is always problematic in a load-balanced setup. For SSL session caching, if you
don’t use an SSL terminator, each back-end web server maintains its own private session
cache. The only way to guarantee that a client will hit the same back-end server each time
(and, hence, do an abbreviated handshake) would be to use a session affinity balancing
technique.

Session tickets (which are an extension to TLS) solve these shortcomings by storing the session data
on the client side. There’s now no need for a server-side cache because the client caches instead.

In the first step of the SSL handshake (refer to Figure 11-1), the client advertises its support for
session tickets, and in the second step, the server acknowledges support (assuming both client

and server support session tickets, of course). In the final step of the full handshake, the server
issues a session ticket to the client containing encrypted session information — essentially the same
information that is stored server-side with session identifiers. The client stores this ticket locally and
presents it to the server during subsequent SSL handshakes. If the server is happy with the integrity
of the ticket, the abbreviated handshake is used.

NOTE Session tickets are still server-specific. A back-end web server will not
accept a ticket previously issued by another back-end server in the pool. So, you
still need to stick clients to the same back-end server.

Unfortunately, support for session tickets (both in browsers and web servers) is still poor. So, at the
moment, they aren’t a viable solution for cutting SSL latency and CPU overheads.

Distributed Session Caching

What if you want to use SSL session caching (via session identifiers), but don’t want the potential
bottleneck of an SSL terminator sitting in front of your load balancer? You can use source IP-based
load-balancing to ensure clients go to the same back-end server each time, but other balancing
techniques (such as cookie insertion) can’t be used because you’re working with encrypted HTTP
packets.

The ideal solution would be to use a global cache for the session data, and then, no matter which
back-end server the client hit, the session data will be available. In addition, you won’t be forced to
use source IP-based load-balancing. Happily, both Apache and Nginx support distributed/shared/
global (pick whichever name you like) session caching — that is, to some extent.

Nginx

Although Nginx doesn’t natively support distributed SSL session caches, a third-party patch is avail-
able from https://github.com/mpalmer/Nginx to provide shared caching via memcache. Unlike
modules, patches must be applied to the Nginx source code before compiling, and they are usually
version-specific. So, there’s no guarantee that this patch will work with the latest version of Nginx.

Also, calls to memcache are performed synchronously, which causes a significant performance
penalty. There isn’t much that can be done about this (it’s a weakness in the design of OpenSSL), but
it’s certainly enough to question whether to implement distributed session caching in Nginx.

https://github.com/mpalmer/Nginx

364 | CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

Apache and mod_gnutls

Shared session caching has been added to mod_ss1, but, as of this writing, is currently only available
in the development branch. If you want to go down this route, you’ll either need to build mod_ss1
from source, or try an alpha release of Apache version 2.3.

However, the preferred route at the moment is to abandon mod_ss1 in favor of mod_gnutls. This
alternative SSL module has a number of nice features, including Server Name Indication and session
tickets, and also supports distributed session caching via memcache. Because mod_gnut1ls will be
new to many administrators, let’s take a brief look at how to install and configure it under Linux.

The first thing to be aware of is that mod_gnut1s doesn’t use OpenSSL. It uses GnuTLS, so this
must be installed first. (Look for 1ibgnutls in your distribution’s packages.) After downloading the
latest mod_gnutls (from http://www.outoforder.cc/downloads/mod_gnutls/), you should
compile it according to the installation file instructions. The resulting module can then be copied to
the Apache modules directory, as shown here:

cp src/.libs/libmod gnutls.so /usr/lib/apache2/modules/

Two key files have also been created, and these must be copied into Apache’s configuration
directory, as shown here:

cp data/dhfile /etc/apache2/conf/
cp data/rsafile /etc/apache2/conf/

Finally, you configure mod_gnutls in Apache, as shown here:

LoadModule gnutls module modules/libmod gnutls.so
AddType application/x-x509-ca-cert .crt

AddType application/x-pkcs7-crl .crl
GnuTLSEnable on

GnuTLSCertificateFile /etc/apache2/ssl/mydomain.crt
GnuTLSKeyFile /etc/apache2/ssl/mydomain.key

As you can see, configuration of mod_gnutls is similar to mod_ssl, albeit with different directive
names. To enable session caching in memcache, you use the following:

GnuTLSCache memcache 192.168.5.1:11211
GnuTLSCacheTimeout 3600

SSL TERMINATION AND ENDPOINTS

In Chapter 7, “Working with Web Servers,” you learned about the use of Nginx and HAProxy as
HTTP-aware load balancers. As noted in that discussion, encryption gets in the way because it stops
your balancer from inspecting the content of packets, and then balancing based on that content. For
example, the load balancer can’t see any cookies used for session affinity. You can accept this loss

of functionality and fall back on Layer 4 (that is, the transport layer of the OSI reference model)
balancing — and then store session data in something like memcache. Or you can make the

load balancer one endpoint of an SSL tunnel (the other end being the client, of course).

http://www.outoforder.cc/downloads/mod_gnutls/

SSL Termination and Endpoints | 365

Figure 11-3 illustrates the topology for a load balancer behind an SSL terminator. In this figure, the
SSL terminator is shown as a separate physical machine, but it’s perfectly feasible for it to run on
the same machine as the load balancer (resources permitting).

SSL HAProxy

Terminator Load Balancer
Client - = /

" HTTPS HTTP \ Pool of
= Web
Servers

FIGURE 11-3

If you prefer to use HAProxy for load-balancing, you’ll soon discover that HAProxy doesn’t support
SSL termination, and — judging from its author’s comments — probably never will.

Willy Tarreau (the author of HAProxy) is very much of the opinion that SSL termination is suicide
from a scalability point of view. He certainly has a point. Although it’s easy to add cheap back-end
servers, a load balancer is an expensive bottleneck, and using it as an SSL endpoint could have a big
impact on load. On the other hand, Google’s real-life observations (http://www.imperialviolet
.0rg/2010/06/25/overclocking-ssl.html) suggest that SSL is no longer a performance killer.

Because HAProxy can’t do SSL termination, you must put something in front of it that can. Your
choices are web servers such as Nginx and Apache or tunnels/proxies such as stunnel and stud.
Let’s take a closer look at these alternatives.

SSL Termination with Nginx

It may seem odd using Nginx as an SSL terminator alongside HAProxy when the former already
offers most of the features that you need. The main reasons for doing so are the more advanced
load-balancing techniques offered by HAProxy, along with the more sophisticated server health
checking. Still, if you need only moderately intelligent load-balancing, Nginx on its own is the
preferred solution because it means one less potential point of failure.

In Nginx, you can easily set up SSL termination as an SSL-aware proxy and instruct it to forward

the traffic on the backend(s) over HTTP (as opposed to HTTPS). Let’s take a look at an example
that shows how to enable SSL in Nginx.

The following configuration snippet balances any traffic that Nginx receives over three back-end

Servers:

upstream apachepool
server 192.168.0.100 weight=5;
server 192.168.0.101 weight=10;

http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html

366 | CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

server 192.168.0.102 weight=10;

}

server {
location / {
proxy pass http://apachepool;
}

}

After Nginx has been compiled with SSL support, enabling SSL is as simple as turning it on and
setting the path to the certificate and key, as shown here:

upstream apachepool {
server 192.168.0.100 weight=5;
server 192.168.0.101 weight=10;
server 192.168.0.102 weight=10;

}

server {
listen 443;
listen 80;
ssl on;
ssl certificate /etc/nginx/ssl/mysite.crt
ssl certificate key /etc/nginx/ssl/mysite.key

location / {
proxy pass http://apachepool;

}

The key here is the proxy pass statement that tells Nginx to proxy to the back-end servers over
HTTP. To simply balance the SSL traffic without terminating, you’d use https://apachepool
(and wouldn’t need the earlier SSL statements). For multiple SSL-enabled sites, you simply add
additional server blocks for each IP address.

SSL Termination with Apache

You can achieve SSL termination with Apache by using its reverse proxy feature. After mod_proxy
and mod_ss1 are enabled, the configuration is as follows:

SSLEngine On
SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key

SSLProxyEngine on
RewriteEngine On
RewriteRule */(.*)$ http://localhost:8080/%1 [P]

The [P] flag to the rewrite rule causes it to proxy to the given URL. In this case, HAProxy listens
on port 8080 of the same machine, but, if necessary, the Apache SSL terminator could be on its own
box in front of HAProxy.

http://apachepool
http://apachepool
https://apachepool

SSL Termination and Endpoints | 367

Despite that Apache offers relatively poor performance, it also offers plenty of scope for SSL
performance tuning — in particular, caching.

SSL Termination with stunnel

Whereas Nginx and Apache are full-featured web servers that can be used to provide SSL
termination, stunnel is specifically an SSL tunneling application. It’s highly versatile and can
be used to tunnel just about any protocol through a secure, encrypted channel.

Natively, stunnel doesn’t provide the x-Forwarded-For header that is so useful when proxying
web traffic. But a patch from the HAProxy website adds this. As such, you need to compile stunnel
from source.

NOTE Grab the latest stunnel source from ftp://ftp.stunnel.org/stunnel/
andtheX—Forwarded—Forjnﬂchf}Oﬂihttp://haproxy.1wt.eu/download/
patches/ for the corresponding version.

Patching is simply a matter of running the following from inside the stunnel source directory:
patch -pl < ../stunnel-4.44-xforwarded-for.diff

The standard configuration (make, make install route) can then be used. The final touches are
to create a user for stunnel to run as and set appropriate ownerships, as shown here:

useradd stunnel

touch /var/log/stunnel.log

chown stunnel:stunnel /var/log/stunnel.log
chown -R stunnel:stunnel /var/run/stunnel

chown -R stunnel:stunnel /usr/local/etc/stunnel

Configuring stunnel (by default via /usr/local/etc/stunnel/stunnel.conf) is straightforward.
After a few global options, you create a section for each IP address that you want to act as an SSL
endpoint. The following configuration block lists the certificate to use, the IP:port to listen on, and
the 1P:port to proxy on to (HAProxy, in this case):

cert=/etc/stunnel/stunnel .pem
setuid=stunnel

setgid=stunnel
pid=/var/run/stunnel/stunnel.pid
output = /var/log/stunnel.log

[https]
cert=/etc/stunnel/server.crt
key=/etc/stunnel/server.key
accept=1.2.3.4:443 ## Our external IP address
connect=127.0.0.1:80 ## Assuming HAProxy listening on 80/TCP on local machine
xforwardedfor=yes

ftp://ftp.stunnel.org/stunnel/
http://haproxy.1wt.eu/download/patches/
http://haproxy.1wt.eu/download/patches/

368 | CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

Now, you simply run the stunnel binary. HTTPS traffic hitting port 443/TCP of 1.2.3.4 will be

routed to HAProxy listening on port 80 — presumably you also want to listen for client traffic over
HTTP and send it straight to HAProxy.

stunnel doesn’t have much scope for performance tuning, but you can disable the Nagle algorithm
(used for reducing the number of packets needing to be sent) in both directions by adding the
following options to the global section:

socket=1:TCP_NODELAY=1
socket=r:TCP_NODELAY=1

In addition, it makes sense to compile stunnel without tcpwrappers support (. /configure—
disable-libwrap) because this feature is not needed in this situation.

SSL Termination with stud

stunnel uses a threaded model for handling client connections. Although this is certainly preferable
to the one-client-per-process approach, it still isn’t optimal. stud (https://github.com/bumptech/
stud) is a newer SSL tunneling daemon built around an event-driven model, running one process
per CPU core. As such, stud should scale better than stunnel. It even includes support for passing
the origin IP address to HAProxy without the need for any third-party patches.

There’s no configuration file for stud, so you just launch it with the appropriate command-line
options, as shown here:

stud --ssl -b 127.0.0.1,80 -f 1.2.3.4,443 -n 4 --write-proxy

Here, --ss1 enables SSL version 3. -b specifies the back-end server (HAProxy, in this case), and

- £ specifies the front-end (the public IP address on which to listen). Note that the IP address

and port are separated by a comma. The -n option enables you to set the number of worker
processes, which should be one per core. So, in this example, you would run on a quad core
machine. Finally, the - -write-proxy option sends a PROXY header (containing the client IP address)
to the back-end server at the beginning of each connection. HAProxy uses this to pass the client’s
IP address to the back-end web servers.

Options also exist for logging and running as an unprivileged user or inside a chroot jail — see the
man pages for full details.

SENDING INTERMEDIATE CERTIFICATES

It isn’t just the number of round trips in the handshake that causes a slowdown when using SSL. The
amount of data being transferred also has an impact. And it isn’t just about bandwidth. The TCP
congestion windows mean that, in the early stages of a connection, even small amounts of data can
increase latency because of the need for the client to acknowledge (through ack) the data.

Step 2 of the SSL handshake involves the server sending its certificate to the client. Many certificate
issuers use intermediates (that is, the end certificate has been signed against an intermediate
certificate, not a root certificate), though, so it may not just be the end certificate that is sent to

https://github.com/bumptech/stud
https://github.com/bumptech/stud

Selecting Cipher Suites | 369

the client — one or more intermediate certificates may need to be sent, too. Finding an issuer that
doesn’t use intermediates is probably overkill, but it does make sense to avoid issuers that require
more than one intermediate.

What happens if you don’t configure the intermediate certificate in the web server? This will cut
the amount of data that is sent, and will actually probably still work in many browsers, but it also
results in worse performance. In this situation, many browsers have the intelligence to attempt to
fetch the intermediate certificate directly (from the issuer’s website), but this causes another HTTPS
request (and DNS look-up first), so performance is worse overall. It flies in the face of standards,
too, and could easily break in future browsers.

DETERMINING KEY SIZES

Closely related to the issue of sending intermediate certificates is the issue of key sizes. These days,
most issuers refuse to accept certificate signing requests (CSRs) generated using RSA keys smaller
than 1,024 bits — it simply isn’t deemed secure enough any longer. So, the usual choices are 2,048
or 4,096. It may seem obvious to go with 4,096 bits — the more security the better, right?

The answer is “yes” and “no.” If you’re in a line of business that demands the utmost security, a
large key size is best. But for the average e-commerce site, 2,048 bits is more than adequate.

Current guidelines suggest that computational power won’t have advanced enough to make cracking
2,048-bit keys feasible until at least the year 2030. Because most web masters purchase their SSL
certificates for 1 or 2 years, this shouldn’t be a concern when purchasing a certificate at the moment.

So, the extra security offered by 4,096-bit keys is overkill in most situations. But what a 4,096-bit
key does do is increase the size of the SSL certificate sent is step 2 of the SSL handshake, and the
keys exchanged in step 3.

Larger keys also mean more work when encrypting and decrypting data (both client- and server-
side). Operations using a 4,096-bit key are approximately five times slower than with a 2,048-bit
key. And the performance hit isn’t just during the handshake. It happens for every HTTPS packet.
This may not have much effect client-side, but for a server handling hundreds of SSL requests per
second, it can make a huge difference in performance. As you’ll see next, the choice of a cipher suite
can also have a significant impact on performance.

SELECTING CIPHER SUITES

Unless you’re particularly security conscious, the cipher suite’s listing of encryption methods
supported by a web server may be unfamiliar territory. Cipher suites are about more than just
encryption of the data stream. Recall that keys must be exchanged, message digests created, and
random (well, pseudo-random) numbers generated during the handshake. A cipher suite defines
the algorithms used for all these.

In Apache, ssLciphersuite is used to list (in order of preference) the cipher suites that the web
server is willing to speak. When a client connects and advertises its list of support suites, the
web server picks the best (highest ranking) match from its list.

370 | CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

Things quickly become complicated because of the sheer number of possible combinations of algo-
rithms. Some combinations are considered insecure, some are only available if OpenSSL has been
compiled with particular options, and others are disabled by default because of legal restrictions on
strong encryption. To complicate matters further, SSL even allows for renegotiation where initial
communications are established via one cipher suite, which is then used to upgrade to a stronger
method.

The default cipher string in Apache version 2.2 looks like this:
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH: +MEDIUM: +LOW: +SSLv2 : +EXP

In addition to allowing you to explicitly set the algorithms to use, numerous aliases are supported
to simplify the string. The example given here starts by enabling all algorithms (aLL), and then
excludes Diffie-Helman key exchanges (ADH). Next, the example gives preference to RC4 cipher
encoding with RSA authentication and key exchange. What follows are the HIGH, MEDTUM, and Low
aliases, support for SSL version 2, and, finally, all export ciphers (ExP).

In practice, this isn’t a great default. SSL version 2 has security flaws, and low-strength ciphers give
a false sense of security. The default cipher string on Debian’s Apache2 package is as follows:

SSLCipherSuite HIGH:MEDIUM: !ADH

In other words, it allows any high- or medium-strength cipher, but never allows ADH.

What does this all have to do with performance? As might be expected, there is a significant
difference in performance between algorithms.

When using the HIGH alias, the first algorithm in the list is currently AES-256, which is
approximately three times slower than RC4. Although AES-256 is certainly more secure, RC4 is
still considered “good enough” if implemented correctly. So, for the average e-commerce site, RC4
is still a perfectly acceptable option. Google even uses RC4 plus SHA1 for SSL, and endorsements
don’t come much bigger than that.

A suitable cipher string to make this the default would be as follows:

SSLCipherSuite RC4-SHA:ALL:!ADH:!EXP:!LOW:!MD5: !SSLV2: !NULL

NOTE For security, various weak methods have been explicitly disabled.

The final thing to do is force your first choice on the client, rather than letting the client choose its
preferred method:

SSLHonorCipherOrder on

With this directive enabled, the server’s preferences are given priority over the client’s.

The Future of SSL | 371

Having looked in detail at configuration options that can affect performance, let’s take a brief look
at hardware considerations

INVESTING IN HARDWARE ACCELERATION

Dedicated SSL-processing hardware is available, usually in the form of a PCI card. However,
because of the price, it’s often just as economical to invest in more CPU power.

In recent years, both Intel and AMD have started producing chips that support Advanced
Encryption Standard (AES) instructions (AES-NI), with the aim to make AES encryption/
decryption significantly faster. As of this writing, this feature is limited to the AMD Bulldozer,
as well as the Intel Westmere and Sandy Bridge processors. It should be stressed that only some
members of these families support AES-NI.

Of course, to use these new AES instructions, software must be aware of their existence. The latest
versions of OpenSSL support AES-NI, and patches are available for some earlier versions.

If you have a CPU that supports AES-NI, RC4-SHA may not be the fastest option after all.
AES-256 is probably still overkill, though, and a good trade-off is to use AES-128, giving the
benefit of AES-NI without the expense of 256-bit keys.

SSLCipherSuite AES-128:RC4-SHA:ALL:!ADH:!EXP: !LOW:!MD5:!SSLV2: |NULL

THE FUTURE OF SSL

A number of SSL-related technologies and extensions are currently in the development pipeline.
Some have been around for a few years now and are gradually gaining popularity. Others are still
experimental but will likely become important within the new few years.

Part of the reason for slow adoption of these extensions is that many require changes in both the
client and server. So, although it’s easy to hack your web server to support the latest extension, it’s
not much use if you need to wait a few years for web browsers to start implementing the extensions.

The following technologies are still new enough not to have widespread support yet, but are also
mature enough for you to be confident that they aren’t just a flash in the pan. In years to come, they
will likely become important parts of SSL setups, so it’s certainly worth becoming acquainted with
them now.

OCSP Stapling

When a browser connects to a website over SSL, there is usually a need to check that the certificate
has not been revoked. The standard way to do this is via the Online Certificate Status Protocol
(OCSP), in which the client issues an OCSP request to the certificate issuers. Of course, this
necessitates that the client perform an additional DNS lookup and send a query to the issuer, so
performance suffers.

372 | CHAPTER11 WORKING WITH SECURE SOCKETS LAYER (SSL)

With OCSP stapling, the web server provides an OCSP response guaranteeing the validity of the
certificate. The response is included with the certificate in step 2 of the SSL handshake. Although it
may seem insecure allowing the server to guarantee its own certificate, the OCSP response is signed
by the issuer, offering the assurance that it has not been tampered with.

There are advantages and disadvantages to OCSP stapling. It saves the client the expense to send an
additional query to the issuer (which would probably involve a DNS look-up, too). It also improves
client privacy — with the traditional method, the issuer could learn the client’s browsing habits by
tracking for which certificates a status request is being made.

The downside of stapling is that it increases the amount of data sent during the SSL handshake.
You’ve already learned about certificate sizes and intermediate certificates, and how they affect the
TCP congestion window. The presence of an OCSP response is likely to exacerbate this. It’s worth
noting, too, that stapling has no benefit server-side. It’s only a performance boost for the client.

As of this writing, Apache version 2.3 supports stapling, but Nginx does not.

False Start

Developed by Google for its Chrome browser, False Start is a client-side modification that speeds up
the SSL handshake.

Recall the final two steps of the full SSL handshake — the client sends its key along with a finish
message (step 3), and then waits for the server to acknowledge this with its own “finish” message
(step 4). Only then does the client send its HT TP request.

False Start recognizes that it is largely unnecessary for the client to wait for the server’s “finish”
message before sending a request. Instead, the client can send a request after step 3 — in this way,
you eliminate the latency of one trip.

According to Google’s figures (http://blog.chromium.org/2011/05/
ssl-falsestart-performance-results.html), less than one-half a percent of web servers have
trouble handling False Start, and Google maintains a blacklist of affected sites. The blacklist is
publically available and used by Firefox’s implementation of False Start (although it is disabled by
default).

SUMMARY

SSL inevitably has a performance impact on both client and server. There is a lot that can be done to
improve performance, however, and it doesn’t need to be a serious drain on resources.

On multiserver setups, using an SSL endpoint in front of the load balancer is popular for two
reasons:

> It lets the load balancer to work with unencrypted HTTP traffic, allowing for balancing
based on packet contents.

> It provides the most efficient option for caching SSL sessions.

http://blog.chromium.org/2011/05/ssl-falsestart-performance-results.html
http://blog.chromium.org/2011/05/ssl-falsestart-performance-results.html

Summary | 373

The downside to using an endpoint is that it can easily become a bottleneck. Think carefully before
introducing what could become a serious barrier to scalability.

The alternative is to allow each back-end server to handle SSL, but this makes caching of sessions
more tricky. Apache, Nginx, and stunnel support distributed caching via memcache, but this can
reduce performance, too, because of the nonasynchronous nature of the memcache GETS/SETs.

Some CPUs support AES-NI instructions, which provide a significant boost for AES encryption. If
you use such CPUs, consider AES-128 over AES-256 — it’s secure enough and a lot faster. For CPUs
that don’t support AES-NI, RC4 is a lot faster than AES.

In Chapter 12, you learn about how to optimize PHP to enhance performance.

12

Optimizing PHP

WHAT’S IN THIS CHAPTER?

Using opcode caching to speed up execution
Handling PHP sessions

Profiling bottlenecks with xhprof

Y Y VY Y

Optimizing your PHP code

With so many different programming languages and development frameworks in use on the
modern web, it would be impossible to even attempt to do them justice trying to completely
cover them in a single book. Since PHP has easily become the most popular web scripting
language in UNIX/Linux environments, it’s worth delving a bit deeper into how the language
affects performance.

The downside to the popularity of back-end scripting is, of course, higher performance over-
heads. Although PHP scripts are typically fairly lightweight, they are still a lot slower to serve
up than static HTML documents. In the case of heavier scripts, there can be a significant
performance hit — both for the client (in the form of higher latency in requests), and for the
server (in the form of higher resource usage, and a lower limit on the number of concurrent
requests). In this chapter, you learn about a variety of ways in which PHP performance can be
improved, both in how the operating system executes it, and in the language itself.

This chapter starts with a look at PHP modules and extensions — how too many extensions
can adversely affect performance, as well as situations in which it can be worth writing your
own. After that, you learn about opcode caching, a powerful technique that can overcome
many of the limitations of an interpreted language. You also learn about why Alternative PHP
Cache (APC) is rapidly becoming the standard in this field.

Sessions are widely used in PHP, but introduce their own performance considerations —
particularly in load-balanced environments, where a means to share session data across

376 | CHAPTER12 OPTIMIZING PHP

back-end servers is sometimes needed. In this chapter, you discover various solutions to these
problems, including the use of memcache to store session data.

The remainder of the chapter examines considerations of the language itself (regular expressions,
loops, including files, and so on), and how to profile your code to discover where the bottlenecks are
occurring.

EXTENSIONS AND COMPILING

With many applications, there is significant scope for optimization at the installation stage when
decisions are made on which modules to compile in or enable. PHP is no different, and in this
section, you learn how PHP handles extensions, and the effect that they can have on performance.

Removing Unneeded Extensions

The PHP source code comes bundled with more than 80 extensions that provide additional
functionality, ranging from image manipulation to XML parsing to database interaction. When
compiling PHP, you have the option of building extensions statically into the PHP binary, or as
shared modules that can be loaded at run time.

From a performance point of view, the primary advantage of using shared extensions is that only
one instance of the module must be loaded into memory, and can be shared across multiple PHP
instances. This can cut memory usage substantially. Aside from that, shared extensions are also
more convenient, because they can easily be loaded or unloaded via php.ini. Static extensions
must be built into PHP at compile time, making it more awkward to change which extensions are

enabled.

The one disadvantage to compiling in extensions is that there is a little extra overhead involved in
dynamically loading shared extensions. Generally, though, the advantages of shared extensions
(on memory usage) far outweigh this.

People often give the vague reason that removing unrequired extensions is to reduce bloat. But

what precisely does this mean? In Chapter 7, “Working with Web Servers,” you learned about
Apache’s prefork Multi-Process Module (MPM) and how the worker MPM isn’t suitable for use
with PHP. You also learned how the memory footprint of each Apache thread has a direct influence
on the maximum concurrency you can support. Thus, your goal is to keep the Resident Set Size (RSS)
usage as low as possible for each Apache thread.

Running the PHP Apache module has a significant impact on memory usage. Although each thread
in a PHP-free Apache setup may have a typical RSS of 4 MB or 5 MB, enabling 1ibphps.so with
most of the bundled extensions can easily shoot this up to more than 50 MB. In some ways, this is a
worst-case scenario, but there are plenty of system administrators who use apt-get or yum install
for every available PHP package, simply to avoid the inconvenience of PHP moaning at a later date
that a particular extension isn’t installed. So, there’s potentially a lot to be gained from keeping PHP
lean, and you should disable any modules that you don’t currently need.

Table 12-1 shows the size of some of the most common modules in a PHP version 5.3 installation.

Extensions and Compiling | 377

TABLE 12-1: PHP Module Sizes

EXTENSION SIZE (KB)
apc.so 655
curl.so 62
ffmpeg.so 35
gd.so 94
imagick.so 328
imap.so 86
mysgli.so 107
mysqgl.so 42
sasl.so 15
tidy.so 42

As you can see, there’s quite a difference in sizes, with the heaviest taking up more than one-half
a megabyte. This isn’t the full story, though, because these modules are invariably linked to other
libraries. As an example, consider curl:

$ 1dd curl.so
linux-gate.so.l => (0xfff£fe000)
libcurl.so.4 => /usr/lib/libcurl.so.4 (0xb7£75000)
libc.so.6 => /1lib/i686/cmov/libc.so.6 (0xb7e€2£000)
libidn.so.11 => /usr/lib/libidn.so.11 (0xb7d£d000)
libssh2.s0.1 => /usr/lib/libssh2.so0.1 (0xb7ddc000)
liblber-2.4.s0.2 => /usr/lib/liblber-2.4.s0.2 (0xb7dd0000)
libldap r-2.4.s0.2 => /usr/lib/libldap r-2.4.s0.2 (0xb7d8b000)
librt.so.1 => /1ib/i686/cmov/librt.so.1 (0xb7d82000)
libgssapi krb5.so0.2 => /usr/lib/libgssapi krb5.so0.2 (0xb7d52000)
libssl.s0.0.9.8 => /usr/lib/i686/cmov/libssl.s0.0.9.8 (0xb7d408000)
libcrypto.so.0.9.8 => /usr/lib/i686/cmov/libcrypto.so.0.9.8 (0xb7bb0000)
libz.so0.1 => /usr/lib/libz.so.1 (0xb7b9c000)
/1ib/1ld-1linux.so.2 (0x80000000)
libgcrypt.so.1l => /usr/lib/libgcrypt.so.1l (0xb7b28000)
libresolv.so0.2 => /1lib/i686/cmov/libresolv.so.2 (0xb7b13000)
libsasl2.so0.2 => /usr/lib/libsasl2.so0.2 (0xb7afc000)
libgnutls.s0.26 => /usr/lib/libgnutls.so.26 (0xb7a64000)
libpthread.so.0 => /1ib/1686/cmov/libpthread.so.0 (0xb7a4b000)
libkrb5.s0.3 => /usr/lib/libkrb5.s0.3 (0xb7999000)
libk5crypto.so.3 => /usr/lib/libk5crypto.so.3 (0xb7975000)
libcom err.so.2 => /lib/libcom err.so.2 (0xb7972000)
libkrb5support.so.0 => /usr/lib/libkrb5support.so.0 (0xb796b000)
libdl.so0.2 => /1ib/i686/cmov/1libdl.so.2 (0xb7967000)
libkeyutils.so.l => /lib/libkeyutils.so.l (0xb7964000)
libgpg-error.so.0 => /usr/lib/libgpg-error.so.0 (0xb795£000)
libtasnl.so.3 => /usr/lib/libtasnl.so.3 (0xb794f000)

378 | CHAPTER12 OPTIMIZING PHP

On Linux, the 1dd command displays a list of shared libraries linked in to a binary. So, in addition
to the memory footprint of curl.so, there is the footprint of each of these libraries to consider.
(For example, 1ibcurl.so.4 is 359 KB on this particular machine.)

Things aren’t as simple as just adding up the size of each of these libraries, however. The whole
point of a shared library is that only one instance must be loaded into memory because it can be
shared across multiple processes. So, in this example, the additional footprint of curl.so might
be zero if each of these shared libraries has already been loaded into memory by another process
(be it another PHP process, or a completely unrelated application).

Common libraries such as 1ibcrypto and 1ibssl will almost certainly already be in memory,
whereas more esoteric ones such as 1ibxdmep. so (which provides interaction with the X Display
Manager and is linked in to gd. so on Linux) probably won’t be. All this means that determining
the memory footprint of a particular PHP extension is no simple matter. Actually, it’s somewhat
ambiguous as to how you even define the memory footprint.

Unless you are overly obsessive about memory usage, avoid the headache of attempting to calculate
a module’s memory usage, and go down the simple route of just disabling modules that you don’t
need.

One source of frustration is that some extensions may be needed only occasionally, and, yet,

by enabling them, they will be running for every Apache thread. A classic example would be a
CAPTCHA image on a contact form. You might not need gd. so at all on the rest of the site, yet you
need to enable it so that you can generate some unreadable text on a patterned background for a
contact form.

PHP used to allow you to load extensions at run time via the d1 () function. However, for stability
reasons, as of PHP version 5.3, this has been disabled in the Common Gateway Interface (CGI) and
Apache scheduling application programming interfaces (SAPIs). (It will still work via the command-
line client.) Hopefully, this feature will return in the future.

If you use a version of PHP supplied with your distribution, chances are that, although most of the
extensions have been compiled as shared modules, some have not. Thus, for full control, it is neces-
sary to compile PHP from source.

Writing Your Own PHP Extensions

PHP extensions have all the usual benefits of being written in a compiled language (C) — they are
faster to execute and have a lower memory footprint; and there is a much lower delay before they
begin executing. That’s why extra features like GD or MySQL support are built as extensions rather
than PHP libraries.

Given the advantage of an extension over a script, there’s something to be said for recoding all or
parts of your PHP application as a PHP extension in C. At first, this seems to defeat the whole point
of using a high-level language like PHP (flexibility, ease of use, and rapid development). Why not
just write the application completely in C, and run it as a CGI, without the need for PHP?

In practice, a happy ground exists somewhere in the middle. Certain intensive functions could
be moved into an extension (because these will have the greatest potential for gain), keeping the
majority of the application as PHP code.

Extensions and Compiling | 379

This argument about the performance of compiled versus interpreted languages isn’t entirely accu-
rate, though. As you’ll see later in this chapter, a popular method to boost the performance of PHP
scripts is through an opcode cache — basically, it stores the PHP script in a semi-compiled form,
reducing the performance hit of interpreting the script. Because of this, the performance of PHP
scripts can be much closer to that of a compiled language such as C, and the benefits of moving
code into a PHP extension aren’t so clear-cut. Actually, it may not prove to be worth your time and
money to do this, especially because the gains may be quite modest.

Custom PHP extensions are by no means pointless, but they are definitely something to consider
only after you have exhausted the possibilities described in this chapter.

Compiling

Aside from giving you complete control over installed modules, compiling PHP from the source
also enables you to implement the usual compile-time performance options (such as CPU-specific
features and higher levels of optimization). For example, with GCC under Linux, the -03 switch is
commonly used to produce a higher level of optimization.

A particularly useful configuration flag is --disable-all, which disables the extensions that are
usually enabled by default. You can selectively re-enable them later in the list of . /configure
options. Remember that, for Apache, you must compile --with-apxs, whereas for FastCGI

(for example, when using PHP with Nginx) you must build in CGI support (enabled by default).

Following are two particularly useful options:

> --enable-inline-optimiziation — This causes the C compiler (for example, GCC under
Linux) to use function inlining when compiling the PHP binary. Note that this applies
only to PHP — it emphatically does not cause function inlining to be used when your PHP
scripts are parsed and compiled.

> --disable-debug — This causes PHP to be built without debugging symbols. Actually, the
default these days is not to compile in debugging symbols anyway (rather, you must explic-
itly enable them using - -enable-debug), so this option is redundant.

INLINING

Inlining, a technique familiar to C programmers, is a compile-time strategy that
involves replacing function calls with the body of the function. Consider the
following code:

for ($x=0; $x<=100; S$x++) {
Ssqr = getsquare ($x) ;
}

function getsquare ($x) {
return ($x * $x);
}

continues

380

CHAPTER 12 OPTIMIZING PHP

continued

Each time getsquare is called, there is overhead involved. Variables are pushed
and popped from the stack, execution jumps to a different region of memory, the
function’s return value is passed back to the caller via the stack, and so on. With
inlining, the compiler removes this overhead by rewriting the code to something

like this:

for ($x=0; $x<=100; $x++) {
$sqr = (Sx * $x);
}

In this example, inlining actually reduces the size of the code, but in most situations,
there will be an increase — imagine if the getsquare function was much larger and
called from dozens of different points in the code.

So, the downside is extra work for the compiler and an increase in the code size.
The benefit is faster execution of the resulting code.

COMPILER FLAGS

As with any other C application, compiler flags (CFLAGS) can often be used to
improve performance. On x86 UNIX/Linux, setting the -prefer-non-pic flag
causes non-position-independent code to be built, which produces a noticeable
increase in performance. Position-independent code (PIC) refers to code that can
be executed, regardless of its absolute address in memory. It is commonly used for
shared libraries, but is slower than non-PIC code. Similarly, the -march flag can be
used to specify your CPU architecture, allowing additional processor-specific
optimizations to take place.

As usual, it’s also standard to compile with the -03 level of optimization, which
can potentially improve performance. The overall build process on Linux may look
something like this:

export CFLAGS="-march=opteron -prefer-non-pic -03"
./configure --enable-inline-optimization

make

sudo make install

sudo strip /usr/lib/apache2/modules/libphps5.so

“r Ur r Ur r

The final step strips any additional debugging symbols from 1ibphps . so, resulting
in a smaller binary. (Just don’t hope to diagnose any crashes with gdb.)

Opcode Caching | 381

By now, you should have a good idea of how best to install and configure PHP on your system.
In the next section, you discover perhaps the single most effective means of boosting PHP
performance — opcode caching.

OPCODE CACHING

Scripted languages such as PHP, Python, and Perl are easy to deploy. You simply write and run. This
is in contrast to languages like C, where you must go through the additional step of compiling your
code before you can run it. This convenience comes at a cost, though, and interpreted languages are
never as fast as compiled ones.

In PHP, execution happens in two steps:
1. The lexical parser compiles the script into opcode (sometimes also referred to as bytecode).

2. The Zend engine at the heart of PHP executes the opcode.

This happens every time the script is executed. Recompiling code like this is rather wasteful of
resources, and one of the most popular and efficient methods to improve PHP performance is
through the use of opcode caches.

In addition to caching the compiled opcode for future use, these caches often also perform
optimization of the PHP code prior to compiling. Although, on its own, optimization would

hurt performance overall (what you gain through optimized code, you lose in the overhead involved
in performing the optimization), when coupled with opcode caching, this provides an additional
performance boost.

Variations of Opcode Caches

Unfortunately, opcode caches have historically been the subject of much bigotry, and the Internet is
full of users who insist that cache X is several orders of magnitude better than cache Y. Often, these
claims are backed up by half-baked statistics, and it doesn’t take long to find an alternative bench-
mark that shows cache Y is, actually, several orders of magnitude better than cache X. This is one
area in which benchmarks are even less meaningful than normal.

The opcode landscape has changed quite a bit in the last few years, though. So, rather than being
too preoccupied with benchmarks, it may be better to think in terms of which opcode caches are
actually still maintained.

For a long time, the big three were XCache (written by the author of lighttpd), Turck MMCache,
and eAccelerator (itself a fork of MMCache). eAccelerator has been a personal favorite of the author,
but neither it nor MMCache are maintained any longer. In addition, there is a new rival in town in
the shape of Alternative PHP Cache (APC). Although APC is not quite as fast as the competition
(vet), it has the weight of the PHP team behind it and is set to become the primary opcode cache for
PHP. Thus, this is the recommended cache,, so let’s take a closer look at it.

382 | CHAPTER12 OPTIMIZING PHP

Getting to Know APC

In the near future, APC will be bundled with PHP as an extension. But until that time, the standard
way to install it is via PECL (pecl install apc). Alternatively, your distribution may provide a
php-pecl package, but, as previously noted, it’s much better to compile PHP from source.

Depending on how you install, entries may be added to php.ini to load and configure APC, or a
separate configuration file may be created (most likely under /etc/phps/conf.d/). Or you may
need to do it yourself.

A minimum configuration such as the following would simply load the APC extension:
extension=apc.so

However, you will almost certainly want to set some of the many options available.

Memory Management

The first decision is whether to use shared memory (shm) or mapped memory (mmap), and likely this
decision has already been made for you. If PECL has compiled APC with --enable-mmap, your
system supports mmap, and this is the method that will be used. If not, the older shm method will be
used. There isn’t a huge difference in performance between the two. shm is more portable, but mmap
is slightly more efficient with memory management.

Regardless of the memory method used, apc.shm_size controls the size of the each memory seg-
ment, whereas apc.shm_segments controls the number of segments. With mmap (the default under
Linux), apc.shm_segments has no effect. The default cache size is 32 MB, which is a reasonable
default for the moment. If you’re using shm, larger values may require first raising the shared
memory size, as shown here:

cat /proc/sys/kernel/shmmax
33554432 ## 32 MB
sysctl -w kernel.shmmax=67108864

Optimization

As previously mentioned, some opcodes also support optimization of the code prior to compiling

and caching. APC is one of these, but optimization is still marked as “experimental” and may not
produce significant speed increases. This option was removed in APC version 3 but may return in
the future.

Time-To-Live (TTL)

Left to its own accord, APC will happily continue to add entries to the cache until it becomes full.
At that point, no new entries will be added, but potentially stale content will remain. Like all good
caches of a finite size, APC utilizes a Time-To-Live (TTL) to set the maximum lifetime for cache

Opcode Caching | 383

entries. When this limit is reached, expired entries will be purged from the cache if space is needed
for new entries. This option is controlled by apc.ttl and defaults to zero. If a TTL of zero is set,
the whole cache will be purged if it becomes full.

An hour or two is a reasonable default for the TTL, but a lot depends on available system memory
and the number of scripts that may potentially be cached. For example, with a large number of
scripts, it may be impractical to set aside enough memory to cache them all, and a lower TTL may
be needed to keep the cache size down. In most cases, though, it’s better to increase the size of the
cache to hold as much as is reasonably possible.

The other issue with cache TTL is that entries can become stale — even if your script is edited, PHP
will still continue to use the cached version. APC gets around this by issuing a stat () on the file
and checking the mt ime each time it is about to request the compiled version from the cache. If the
file on the filesystem is more recent than the timestamp on the compiled version, the cache entry is
expired.

The first problem here is that the mt ime isn’t always a reliable indication that the file has changed.
Tools such as rsync and svn may modify a file’s mt ime, even if the content hasn’t changed. Thus,
you end up purging entries from the cache when it was unnecessary.

APC can be configured to also check a file’s ctime, as shown here:

apc.stat =1 ## standard mtime check
apc.stat_ctime = 1 ## also check ctime

This isn’t ideal either, but for a different reason. Running stat () on every PHP script prior to
executing is a drag on disk performance, especially when the vast majority of the time, the script
won’t have been changed. You can set both of these stat settings to zero to disable stat () checks,
but if you subsequently alter a file, you must clear the entire cache (at present there’s no way to
delete a single entry) — either by executing apc_clear cache or restarting Apache. Despite this,
disabling stat () is still definitely the preferred option on production servers.

Locking
APC supports the following four locking methods:
> File locks — These are the most stable but offer poor performance.
> IPC semaphores — These are faster than file locks and well supported.

> Pthread mutex — These are only available in Linux version 2.6 onward but offer a much
greater performance gain.

> Spin locks — These offer the best performance of all but are still considered experimental.
If you feel brave, spin locks can be enabled when configuring APC with --enable-apc-spinlocks.

In most cases, pthread mutexes are best, though, which are the default when building APC through
PECL on Linux version 2.6.

384 | CHAPTER12 OPTIMIZING PHP

One situation in which locking comes into play (and in which lock performance can have a big
impact) is when there is a flood of requests for an uncached resource — perhaps because the server
has just come online, or the resource has been modified and purged from the cache. Either way, you
encounter a situation in which multiple PHP processes simultaneously compile the script and then
attempt to insert it into the cache — a process known as slamming.

Earlier versions of APC dealt with slamming via the apc.slam defense setting. This value told
PHP not to bother caching a script that it had just compiled (but was not in the cache) a certain
percentage of the time. The rationale here was that it was likely that other PHP processes could
also be attempting to insert the opcode into the cache. By setting a value of, say, 80 percent,
only one in five processes would attempt to insert into the cache, reducing the severity of the
slamming.

Of course, if the server isn’t busy, the likelihood of two processes compiling the same script at the
same time is low, and this defense simply delays the caching, so it isn’t an ideal solution. Instead,
the preferred solution now is by enabling apc.write lock. This causes the first PHP process to
handle an uncached script to set a lock, preventing other processes from caching it.

Sample apc.ini

Now that you are familiar with the most important runtime configuration options for APC, let’s
look at a configuration file that should serve as a good starting point in the majority of cases:

extension=apc.so
apc.enabled = 1
apc.stat = 0
apc.stat_ctime = 0

apc.slam defense = 0
apc.write lock = 1
apc.ttl = 7200
apc.optimization = 0

APC Caching Strategies

Memory is always a scarce resource, and, invariably, you discover that there isn’t enough room
to cache as much as you would like. You’ve already learned about the TTL setting (which is
used to control the size of the cache by automatically expiring items), but there are other
considerations, too.

As shown in Figure 12-1, fragmentation occurs when items are removed from the middle of the
cache, leaving a gap that is either not big enough to hold another item, or that holds an item but
leaves a small gap.

Opcode Caching | 385

ltem X ltemY Item Z

Iltem Y expires from the cache,
leaving a region of free memory
between items X and Z.

ltem X Iltem Z

Iltem W is inserted into the gap, but this
still leaves a small region of memory not
big enough to hold another item.

ltem X ltem W ltem Z

FIGURE 12-1

The more frequently you expire items from the cache (that is, the lower the TTL), the more likely
fragmentation is to occur.

The solution to this problem is simply to increase the size of the cache, such that even when
fragmentation does occur, there is still plenty of room. It may not be an elegant solution, but it is the
only one that you have.

With the knowledge that the cache is only a finite size, it might be worth thinking about what you
cache. APC caches everything by default, but it may be worth concentrating on only the most
frequently used code. After all, there is little to be gained from caching an admin-only script that
may be run only once or twice a day.

APC has two settings that provide control over exactly what is cached:
> apc.cache by default — This controls whether to cache by default.
> apc.filters — This lets you supply a comma-separated list of regexes to control what is

cached and what isn’t.

If cached by default is set to zero, the regexes in apc.filters can be prepended with a +, indi-
cating that any file matching the pattern should be cached. Conversely, if cache by default is set
to one, the regexes can be prepended with a -, telling APC not to cache any matches.

So, if you want to cache everything except the contents of the /admin directory and a particularly
large script, you could use the following:

apc.cache by default = 1
apc.filters = "-/var/www/html/largescript.php, -/var/www/html/admin/.*"

386

| CHAPTER12 OPTIMIZING PHP

Or if you want to cache only the contents of a particular directory, you could use the following:

apc.cache by default = 0
apc.filters = "+/var/www/html/some dir/.*"

Remember, though, that the filter will match the exact filename passed to include or require, which
may be a relative path.

Monitoring the Cache

APC comes bundled with a PHP script, apc . php, which provides a web interface for monitoring and
administration of the cache. If you have the PHP GD module enabled, you’ll also get some nice pie
charts showing cache usage and the hit-to-miss ratio.

The control panel also provides a complete list of every script in the cache, along with its size, the
number of hits it has received, and the access and creation times. This information can be invaluable
when deciding whether to exclude certain files or directories from the cache to save space.

An option to clear the cache is also provided, but this should be used as a last resort because there
will be a significant spike in CPU usage.

Using APC as a Generic Cache

APC can also be used as a generic in-memory cache, much like memcache. Using APC in this way
has the benefit of no latency being incurred when connecting to memcache (which may be running
on a different machine) and simplified server administration because there is one less service to
manage.

The APC documentation (http://www.php.net/manual/en/book.apc.php) lists several functions
that you can use in your PHP code to set and fetch arbitrary data from APC. Naturally, this data
will persist across requests, which can make it a great way to avoid repeated database calls. The
following code writes a variable called foo (with a value of bar) to the cache and sets the TTL to

1 hour (3,600 seconds):

apc_add("foo", "bar", 3600);
You can later retrieve the value of foo like so:

$foo = apc fetch("foo");
print s$foo;

Similar functions exist for deleting stored data, checking if a key exists, and incrementing/
decrementing a value.

Does this mean that memcache is redundant? Certainly, APC is faster than memcache, but it cannot
be used in a distributed environment like memcache and can’t be used for permanent storage (like
membase). Remember that, in an Apache setup with 1ibphp, restarting Apache will cause the cache
to be purged, so the data in APC can be more volatile than memcache. Thus, memcache certainly
isn’t redundant, but one option would be to use a two-tier caching system with APC as a smaller,
local cache, which is certainly worth exploring.

http://www.php.net/manual/en/book.apc.php

Opcode Caching | 387

Warming the Cache

Whether you choose to use APC as an opcode cache, or as a generic memory cache (or both), it can
be useful to preload data into the cache to avoid the heavy CPU usage incurred by a high ratio of
cache misses. On a busy site, bringing a server back into the pool with an empty cache can often
bring it to its knees.

If you’re using HAProxy, ramping can be used to gradually bring the server back into the pool,
slowly increasing the weight so that it is not swamped with connections until the cache has had a
chance to warm up. Alternatively, APC has a couple of tricks of its own.

You can use apc_compile file() to ask APC to parse and compile a file and store the opcode in
the cache. In this way, you could write a priming script that calls apc_compile file() for your
most accessed PHP scripts. By running the script before you bring the server back into the pool, you
can be confident that your cache is suitably primed. As an alternative, you could write a simple wget
or curl script to request certain pages over HTTP, thus also priming the cache.

APC also includes functions that allow you to read and write the entire contents of the cache, mak-
ing it possible to dump the cache to disk and then subsequently re-importing it. This might be useful
if you must restart Apache but don’t want to lose the contents of the cache. Following is an example:

apc_bin dumpfile (null, null,"/tmp/apcdump.data");

The first two arguments to apc_bin_dumpfile are an array of files and user variables to dump.
(You can leave these blank to dump all of them.) The final argument is the filename to write to.

Importing this binary data back in is as simple as the following:
apc bin loadfile("/tmp/apcdump.data") ;

You could even incorporate this call into the Apache init script so that issuing an Apache restart
will cause APC to dump to disk before then importing after Apache has restarted.

Using APC with FastCGl

So far, this discussion has assumed that PHP is being run on top of Apache via mod_php (1ibphp5),
but this is far from the most optimal method for performance. Rather, many administrators choose
to run a lightweight web server such as Nginx with PHP requests being passed to a pool of FastCGI
daemons.

Over the years, PHP has supported several methods of running as a CGI, including fcgi and
FastCGI, and these methods have not worked well with APC. Rather than sharing the cache mem-
ory between all processes, each PHP process would have its own private cache. With each process
being long-lived, there is still ample opportunity for caching, but if new processes are spawned

(to cope with an increase in load), they will start with an empty cache. The whole arrangement isn’t
memory-efficient anyway.

The good news is that the default FastCGI implementation in PHP is now PHP-FPM (FastCGI
Process Manager) which does allow the APC cache to be shared across all PHP processes.

388 | CHAPTER12 OPTIMIZING PHP

Of course, one fundamental restriction on PHP’s efficiency is because it is an interpreted language.
However, in the next section, you learn how work by Facebook and others has brought the
possibility of compiling PHP one step closer.

COMPILING PHP

Given that interpreted languages are inherently slower than compiled ones, the thought of compiling
PHP into an executable format is a tempting one. To some extent, this is what opcode caching

does — it stores your PHP code after it has been compiled into bytecode and allows this to be
reused. Bytecode still isn’t as fast as native machine code, though (because it must still be interpreted).
A true compiled program would offer significant advantages.

Despite the potential gains, PHP compilation isn’t an area that has gained widespread interest. Over
the years, there have been numerous attempts to create a PHP compiler, and although some have
been reasonably successful, none have gone on to widespread usage.

phc

One of the most interesting entries into this compiler arena was phc, a well thought-out compiler,
which sadly appears to have fizzled out. A lot of work went into making phc compatible with
dynamic constructs (such as eval () statements, variables with dynamic names, and so on) — a
particular source of problems for any PHP compiler. Extensive testing was carried out on existing
PHP extensions and third-party code. So, although phc no longer appears to be in active develop-
ment, it is well worth a look, as long as you appreciate the fact that you may be investing time in a
project that has no future.

Phalanger

For Windows users, the Phalanger compiler offers PHP compilation, in some sense of the word.
Phalanger does not generate native (machine) code. Rather, it compiles the PHP into common
intermediate language (CIL) bytecode, which can then be just in time (JIT) compiled by the .NET
framework. This probably isn’t quite what you’d expect from a PHP compiler, and little is done in
the way of optimization. Obviously, it’s also only suitable for .NET developers on Windows, so this
discussion won’t go into further detail.

HipHop

HipHop is Facebook’s (open source) answer to this problem — a compiler that takes a PHP script,
converts it to C++, and then compiles this into an executable — either with or without its own built-
in web server. Thus, HipHop can act as a complete replacement for the traditional setup of a web
server and PHP. In this topology, Nginx is often used as a front-end load balancer, providing some
of the features missing from HipHop’s fairly basic HT TP features.

How fast is HipHop? Facebook reported a 50 percent drop in CPU usage, which is a significant
starting point, which will doubtlessly improve even more in the future. Although human-written
C++ has the potential to be much faster than this, it should be remembered that automatically

Sessions | 389

translating PHP to C++ can be a tricky business, particularly because of PHP’s weak typecasting
of variables. This is still one of those situations in which human judgment can win over a
computer.

Getting existing code to compile in HipHop is not a trivial matter either and often requires
some degree of rewriting. For example, HipHop has no support for PHP’s eval () or the mysqgli
extension. These limitations mean that HipHop is currently only suitable for large sites that

can justify investing the time needed to make it work. For smaller sites, techniques such as
opcode caching (and caching in general) can produce greater gains and should be the first line
of attack.

As you have seen, opcode caching is a very powerful means of boosting the performance of PHP,
and the APC extension is rapidly becoming the default choice. There are still plenty of other things
that can aid performance, however, and in the next section, you learn about the negative effects of
sessions, and how they can be reduced.

SESSIONS

Sessions tend to be used extensively in PHP as a means of keeping state, but they can be a source
of performance issues — particularly when multiple web servers are involved. In Chapter 7, you
learned about the issue of session affinity and the various solutions that exist. Let’s recap briefly.

Storing Sessions

By default, PHP stores session data in files (usually somewhere like /tmp or /var/1lib/php/).
Although not perfect, this offers acceptable performance on moderately busy sites. The problems
start when you run a pool of web servers behind a load-balancing proxy. With file-based sessions,
you must ensure that each request from a particular client always goes to the same back-end server
— if the requests hit a different server, the session file won’t be there.

The solution to this is to use sticky sessions (also known as session affinity). Here, the load balancer
will use various techniques (looking at the client’s IP address, setting a cookie, and so on) to ensure
that the client always goes to the same back-end server. This isn’t perfect either, though. It’s more
work for the load balancer and stops you from using other balancing algorithms to ensure an even
distribution of load across the back-end servers.

At this stage, some administrators look into using network filesystem (NFS) to provide a centralized

filesystem to hold the session files. However, NFS performance is poor, and this route is something
of a dead-end.

As a result, it’s usually best to move away from storing session data in the filesystem. MySQL

is often the next choice, and, at first, it seems to be an attractive alternative. Chances are that
you’re already running MySQL, and PHP can easily be configured to use it for holding sessions.
Again, it works reasonably well, but performance suffers on busy sites, and with MySQL so
often being a bottleneck, you don’t want to be burdening it with a large number of additional
queries.

390 | CHAPTER12 OPTIMIZING PHP

Storing Sessions in memcache/membase

A favorite solution is to use memcache as a decentralized session store. Again, PHP has built-in sup-
port for this, and using memcache is as simple as setting the following options in php.ini:

session.save handler = memcache
session.save path = "tcp://192.168.0.100:11211"

NOTE [ncidentally, if you're thinking that MySQL’s MEMORY engine would be
just as good, you may want to refer back to the discussion in the section, “mem-
cache versus MySOL MEMORY Engine,” in Chapter 10, “Utilizing NoSOL
Solutions.”

The main drawback to using memcache is that you don’t have persistence. If memcache goes down,
you lose your session data. Sometimes this is a minor inconvenience to your users and just requires
them to log back in. But on an e-commerce site, it may result in customers losing the content of their
shopping carts, which will not endear them to shopping with you in future.

Using Shared Memory or tmpfs

If only one web server is used (or, at least, just one web server that needs access to session
data — there could be another web server handling static content), you can store session data in
memory. This speeds up access and cuts down on disk I/O.

One option is to use PHP’s built-in shared memory-based session storage module, MM.
Alternatively you can continue to store session data in files but write them to a RAM disk.

In /etc/fstab, add the following:

tmpfs /var/lib/php5 tmpfs size=128M,atime 0 0
Then, issue the following:

mount /var/lib/php5

For a single web server, this makes more sense than using memcache (be it locally or over the
network). Even with multiple web servers, you can still use this technique with sticky sessions to
eliminate a global memcache instance from being a single point of failure.

There are two downsides to this method:

> It’s not persistent. It’s nice to have web servers that you can swap out at your leisure
(for example, to reboot or perform upgrades on), but if you do this, you lose the
session data.

> It’s eating up precious memory, and depending on your session length and the amount of
data stored, this could be significant.

Sessions | 391

Overall, the memcache/membase solution is preferred because it removes the need for session affinity,
offers persistence, and allows less-frequently accessed session data to be pushed out to disk. There’s
no point in holding session data in memory for a few hours if the user is long gone.

Session AutoStart

PHP offers the option (via session.auto_start) to automatically start sessions on each page,
saving you from manually calling session start (). While this might seem like rather a useful
feature, it’s usually better not to enable it. As you’ve seen, there is a performance penalty associated
with starting or resuming a session, and there are often instances where you need sessions on some
pages, but not all. By only calling session start () on pages where it is really needed, you can
minimize this performance hit.

Sessions and Caching

If a session is running, PHP may automatically add headers to prevent caching. These comprise a
Expires headerdatedinthe[ﬁmt,Cache—Control: no—cache,and.Pragma: no-cache. In other-
wise static pages, where session data is not used, this is somewhat inconvenient.

This caching behavior can be controlled via the session.cache limiter and session.cache
expire settings, which control which cache control headers are sent, and when they expire.

Table 12-2 shows the four possible values for session.cache limiter, along with the HTTP
headers that they cause to be sent (where xxx represents the value set in session.cache expire).

TABLE 12-2: Values for session.cache_limiter and HTTP Headers
VALUE HTTP HEADERS
public Expires: xxx
Cache-Control: public, max-age=xxx
Last-Modified: <date when session was last saved>
private no expires Cache-Control: private, max-age=xxxX, pre-check=xxx
Last-Modified: <date when session was last saved>
private Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: private, max-age=xxx, pre-check=xxx
Last-Modified: <date when session was last saved>
nocache Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate,
post-check=0, pre-check=0

Pragma: no-cache

392 | CHAPTER12 OPTIMIZING PHP

While session performance is not as big an issue as many of the other topics covered in this chapter,
you have still seen several ways in which there is scope for optimizations to be made.

So far, the focus of this chapter has primarily been on optimizing PHP as an application — best
practices for installing and configuring how it interacts with the operating system. But this is only
half the story, and in the following section, you learn how careful programming of the language
itself also plays its part in performance.

EFFICIENT PHP PROGRAMMING

Thus far in this chapter, you have learned about server-level aspects of PHP performance —
extensions, compiling, and caching. Let’s now take a look at the language itself and ways in
which you can write more streamlined code.

Minor Optimizations

There are dozens of small ways in which you can make your PHP code more efficient. But the gains
can be so small as to make them virtually insignificant, and the danger is that you end up focusing
on these trivial things rather than seeing the bigger picture.

For example, using single quotes is generally faster than using double quotes — the reason being
that variables inside double-quoted strings are expanded, so there is extra work involved in parsing
a double-quoted string. The gain is tiny, though — less than 1 percent.

Another trivial tip is that echo "foo", $bar, "baz" is faster than echo "foo" . $bar . "baz".
Again, the gain is less than 1 percent, making it almost pointless.

In some situations, echo is faster than print, but the gain is approximately 0.1 percent, and this
rule doesn’t even always hold true.

Major Optimizations

That’s not to say that all code optimization is pointless. There are plenty of things you can do that
make a significant difference in speed, particularly when dealing with loops, because changes here
can have an impact on the speed of every iteration of the loops.

Loops

Following is a classic example seen a lot in the wild:

for ($i = 0; $i < count($x); $i++) {
do something
}

The problem here is that count () is called for every iteration, and although the cost of an individual
count () is tiny, it can build up into something significant for large arrays.

The solution is to call count before the loop, as shown here:

Efficient PHP Programming | 393

Sy = count ($x) ;

for ($i = 0; $1i < $y; $i++) {
do something

}

No doubt, the reason for the popularity of the first method is that it looks cleaner and more concise.
(And it eliminates the need to create a new variable.) But the second method is actually the most
efficient.

NOTE Incidentally, while and do-while loops are a little faster than for loops
(approximately 25 percent faster, if benchmarks are to be believed).

Regular Expressions

Regular expressions (regexes) are costly, so it makes sense to avoid using them whenever possible.
For example, in many situations, str_replace is just as suitable as preg replace. (Incidentally,
the PCRE regex functions — those beginning preg * — are faster than the default POSIX regexes.)
Regexes are often used for input validation, too (for example, to filter out any nonalphanumerics
from a string). But PHP already has some useful functions for doing this — ctype alnum,
ctype_alpha and so on — and these are much more efficient.

When you do need to use a regex, care must be taken. Although a little contrived, it’s not too dif-
ficult to come up with expressions that use exponentially more CPU time for each additional charac-
ter in the matching string. Although regexes that take minutes or hours to run are extreme, it’s quite
easy to lose one-half a second or so on a complex regex simply through not writing it efficiently.

Including Files
It’s common to see include files in PHP like so:

include "file.php";

However, this is not optimal for performance because it causes PHP to search the current directory
and each include path until £ile.php is found. Running strace shows what is going on:

cd /var/www/html
strace php -r 'include "foo.php";'

lstat ("/var/www/html/./foo.php", 0x7£££7d2b7680) = -1 ENOENT

(No such file or directory)

lstat ("/usr/share/php/foo.php", 0x7fff£7d2b7680) = -1 ENOENT

(No such file or directory)

lstat ("/usr/share/pear/foo.php", {st mode=S IFREG|0644, st size=4, ...}) = 0

First, PHP looks in the current working directory, and then it searches the include paths. On the
third attempt, it finds foo.php under /usr/share/pear/.

394 | CHAPTER12 OPTIMIZING PHP

These extra 1stats aren’t usually a killer, but they are unwanted (especially because disk 1/O is usu-
ally a bottleneck), and will grow in number for every extra path in include path. The solution is
to include path info in the include (). Even a relative path will work (useful for including files that
exist in the same directory), as shown here:

include "/usr/share/pear/foo.php";
include "./foo.php";

realpath

PHP 5.1 introduced the caching of paths in an attempt to alleviate this problem. The realpath
cache is a per-thread cache that stores the location in which an include file was found when abso-
lute paths are not given.

Thus, in the first include () example, when PHP finds foo.php in /usr/share/pear/foo. php, it
caches this information. Subsequent attempts to include "foo.php" will then automatically use /usr/
share/pear/foo.php, rather than causing PHP to search each directory listed in include path

NOTE Howeuver, the cache is not used if PHP is running in safe mode, or with
open_basedir restrictions.

The cache is stored in memory and is only a finite size — by default, 16 KB. This is usually too small
for large amounts of code, but it can easily be changed via the realpath_cache size ini setting,
as shown here:

realpath cache size=64K

To best judge how big the cache should be, PHP provides two functions that allow you to view the
size and contents of the cache:

var_dump(realpath cache size());
var_dump (realpath cache get());

Note that because the cache is held in memory, it isn’t persistent across PHP processes. If you run
PHP as an Apache module, each Apache thread has its own private realpath cache, which persists
for the lifetime of the thread (as defined through MaxRequestsPerchild, unless there are too many
spare child processes). If you run PHP as FastCGI, the cache is again private to each PHP thread.
Naturally, this weakens the effectiveness of the realpath cache, but it is still a welcome addition to
PHP.

If the cache is close to being full, you should probably look at increasing it. But keep in mind that
when PHP runs as an Apache module, there could be several hundred instances of the cache, which
could potentially add up to a lot of memory.

Efficient PHP Programming | 395

Another trick you can use to increase the efficiency of the cache is to raise the TTL on entries. By
default, this is 120 seconds, which is low for a production server, where paths will rarely be chang-
ing. Consider raising this to at least an hour in php. ini, as shown here:

realpath cache ttl=3600

Again, depending on how PHP runs, individual threads may not typically last long enough for there
to be any gain in raising the TTL further.

The drawback of the realpath cache (and of using a high TTL) is that PHP won’t see any changes
on the filesystem immediately. For example, if you move one of your include files to a new location,
PHP still looks for it in the old place and throws an error. This doesn’t tend to happen much on pro-
duction servers, and restarting Apache or the FastCGI PHP threads can solve it. Alternatively, you
can call clearstatcache () to purge the cache — but remember, it clears only the cache of the PHP
thread on which it runs.

include versus require

A related subject is whether to use include () or require (), or even include once () Or require
once (). The main differences are that require () throws a fatal error if the file cannot be found
(while include () just generates a warning). include_once () and require once () stop you from
accidentally including a file multiple times.

In terms of performance, there is no clear winner, and different benchmarks have shown contradic-
tory results; although, you should expect the * once functions to be a little slower. Certainly, any
real gain is tiny, and your choice should instead be governed by other factors (such as the way they
handle files that don’t exist).

Garbage Collection

In Chapter 6, “JavaScript, the Document Object Model, and Ajax,” you saw how JavaScript uses
garbage collection to reclaim unused memory. As with JavaScript, circular references can occur in
PHP, too, and PHP uses a very similar garbage collection method to combat the problem.

In PHP version 5.3 onward, by default, garbage collection only kicks in when the root table (basi-
cally a list of all variables in existence) reaches a certain level — the default being 10,000 entries.
(This threshold can be altered by modifying gc_root _buffer max entries in zend/zend gc.c in
the PHP source code, and then recompiling.) For small scripts, this means that garbage collection
may not run at all. But you can trigger it manually if you want by calling gc_collect cycles().
In the case of small scripts, this usually simply isn't necessary. For long-running (but small) scripts,
there may be some benefit.

The downside to garbage collection is the additional CPU work involved. If garbage collection leads
to significant freeing of memory, this overhead is worth it. But for smaller scripts, the memory gains
will be slim, and the extra CPU work often produces no overall benefit.

396 | CHAPTER12 OPTIMIZING PHP

Autoloading Classes

PHP version 5 introduced autoloading of classes, a feature whereby classes can be automatically
loaded as needed. The obvious benefit is that it saves you from manually including each class at the
top of your code. For example, consider the following:

require once("lib/foo.php") ;
require once ("lib/bar.php") ;
require once ("lib/baz.php");

Rather that using this code, you can create an autoload function to carry out the leg work, as
shown here:

function _ autoload($class) {
require once("lib/" . sclass . ".php");
}

Now, when you come to use the class, PHP will automatically load it (if it has not already been
loaded).

$x = new fool();

Is there any performance benefit to using this method? Potentially, there is. By only loading classes
at the point at which a new instance is created, you save the overhead of loading classes that poten-
tially aren’t used in your code. Many developers are guilty of simply copying and pasting in a block
of include/require statements, without stopping to think if each class is actually needed in this
particular script.

Persistent MySQL Connections

The various PHP MySQL extensions offer the capability to create persistent connections to the
database server. With persistent connections, when a script finishes executing, the connection
to the database is not automatically closed, but remains open in a pool. Subsequent processes
can then reuse these already open connections.

In theory, this sounds great, because it should eliminate the overhead and latency involved in open-
ing and closing connections. In practice, however, the gains are actually rather slim.

When connecting to a MySQL instance running on the same machine as the web server, a UNIX
socket is normally used rather than a TCP connection. In this situation, the overhead is tiny anyway,
and the benefit of persistent connections is negligible.

With a preforking Apache server, the pool of persistent connections is local to each process. If a new
process is forked, it starts with an empty pool. Thus, in many cases, the benefits of persistent con-
nections cannot be realized.

Finally, using persistent connections involves extra self-discipline. You must remember to remove
any temporary tables, unlock any locked tables, unset session variables, and so on — activities that
would normally be handled automatically when the connection was closed.

Efficient PHP Programming | 397

Overall, there tends to be little practical advantage to using persistent connections.

Caching HTML Output

There are many ways to perform caching of content — through HTTP headers, reverse proxies, or
caching modules in the web server. Yet another option is to perform caching of dynamically gener-
ated content by using PHP.

This method isn’t as efficient as, say, one of Apache’s caching modules (which can serve up a
resource directly from the cache, without the need to evoke PHP). But it is a lot more flexible. You
can cache whole pages or just fragments, set different cache periods on different resources, and so on.

Let’s look at a quick example that illustrates how you might implement your basic caching
mechanism:

print "<h2>Users Currently Online</h2>";
$rl = mysqgl query("SELECT username, id FROM users where online=1");
while ($res = mysql fetch array($rl)) {

print "";

print Sres['username'];

print "</as
";

}

This code simply pulls a list of online users from the database and prints them in a list (along with a
link to each user’s profile).

Does this information need to be generated on each page load? It probably does not. In many cases,
it is quite acceptable for it to be a few minutes stale. So, you can generate the list, cache it, and then
(for the next few minutes anyway) serve subsequent requests from the cache, as shown here:

print "<h2>Users Currently Online</h2>";
Smaxage = 300; ## Cache for 5 minutes
if (filemtime("./cache/online.txt") < (time() - S$maxage)) {

$rl = mysqgl query ("SELECT username, id FROM users where online=1");
while (Sres = mysql fetch array($rl)) {

Susers _html .= "";
Susers_html .= $res['username'];
$users html .= "
";

}

file put contents("./cache/online.txt", Susers html) ;

} else {
Susers html = file get contents("./cache/online.txt");
!

In this example, the cached HTML fragment is stored in . /cache/online.txt. First, you check the last
modified time of the file. If it is longer than 5 minutes ago, you query MySQL and then write the data to
the file. Otherwise, you load the contents of the file directly into the $users htm 1 string.

398 | CHAPTER12 OPTIMIZING PHP

There are a few problems with this method. Although you’ve eliminated the MySQL query (and a
little bit of work concatenating strings), you now must read and write a file, and query its last modi-
fied time. With a relatively lightweight SQL query, the benefits will probably be slim (especially

if the nature of the query means that it will likely be served from the MySQL query cache). But

for heavy SQL queries — or computationally expensive PHP code — the benefits are greater, and
increasingly outweigh the overhead of the file operations.

Of course, you can also do some of this work outside of PHP via a cron job. For example, you could
use a stand-alone PHP script that fetches the list of online users every 5 minutes and then writes it to
a file. The PHP code in the web page can then just read the contents of this file, without needing to
check its mtime, saving a little bit of overhead.

As you’ve already seen, APC allows the programmer to cache variables, so another option is to store
your HTML fragments in APC, cutting out the need to read from a file on disk. This method isn’t
practical for large fragments, however.

Another downside to the example previously given is that it doesn’t perform any sort of file locking.
If one PHP process attempts to read the file as another is writing to it, or two processes attempt to
write at the same time, things will get messy. Things are starting to get more complicated, but rather
than re-inventing the wheel, there are a number of PEAR and PECL modules for performing such
caching.

A favorite is Cache_Lite (available through PEAR) designed to be small and fast, and to handle
high levels of concurrency (via file locking). The result is a module that is easy to use and takes the
pain out of manually implementing caching. Check out the PEAR website for more details.

Even armed with a handful of tips on which features of the PHP language have the potential to be
inefficient, your code can still sometimes run surprisingly slow. A crude way to diagnose such
problems is by scattering your code with calls to microtime () to determine which blocks are
taking the longest to run. Fortunately, there are much more powerful means of finding bottlenecks.
In the following section, you learn about xhprof, a popular profiling tool that can show exactly
where your code is spending its time.

PROFILING WITH XHPROF

xhprof is a function-level profiler developed by Facebook and available through PECL. It provides
a detailed breakdown of the memory usage and CPU times for each function call, allowing you to
see where your code is spending most of its time. This section briefly describes installation and then
shows xhprof in action.

Installing

As of this writing, automatic installation via pecl was broken, but installation is still easy enough:

pecl download channel://pecl.php.net/xhprof-0.9.2
tar -zxvf xhprof-0.9.2.tgz

cd xhprof-0.9.2/extension

phpize

Profiling with xhprof | 399

./configure
make
make install

You can then load the xhprof . so extension in the usual way. The xhprof package also contains
two directories: xhprof_1ib and xhprof html. Place these in your web root.

A Simple Example

Earlier in this chapter, you learned how inefficient the following is because it causes count () to be
called for each iteration of the loop:

for ($i = 0; $i < count($x); $i++) {
Let’s use xhprof to confirm this.

<?php

$x = array();

for ($i = 0; $i < 100000; $i++) { $x[si] = si; }
xhprof enable (XHPROF FLAGS CPU + XHPROF FLAGS MEMORY) ;

$y = 0;
for ($i = 0; $i <= count($x); $i++) {
Sy++;

}

S$xhprof data = xhprof disable();

$XHPROF ROOT = "/var/www/xhprof";
include once $XHPROF_ROOT . "/xhprof lib/utils/xhprof lib.php";
include once $XHPROF ROOT . "/xhprof lib/utils/xhprof runs.php";

$xhprof runs = new XHProfRuns Default () ;

$run_id = $xhprof runs->save_run($xhprof data, "xhprof testing");

echo "Done, go here: /xhprof/xhprof html/index.php?run={$run id}"
"&source:xhprof_testing\n";

?>

In this example, you create an array with 100,000 items. Then you enable xhprof and ask it to
track CPU and memory usage. Next, you include the code you want to profile, iterating through the
array. Finally, you disable xhprof (you’re finished with profiling), and save the details.

Heading over to the URL outputted, you can view the report, as shown in Figure 12-2. The table
confirms the suspicions — 100,003 calls were made to count (), and the whole block of code took
136 microseconds to run.

400 | CHAPTER12 OPTIMIZING PHP

Overall Summary
Total Incl. Wall Time 136,605
(microsec): microsecs
136,010
microsecs
Total Incl. MemUse (bytes): 2,816 hytes
Total Incl. PeakMemUse
(bytes):
Number of Function Calls: 100,005

Total Incl. CPU (microsecs):

2,784 bytes

. Incl. Wall Time Excl. Wall Time Incl. CPU
Function Name Calls Calls% T CTOReE Iwall% i) EWall% (EErEEEED)
main 1 0.0% 135,605 100.0% 136,046 99.6% 135,010
count 100,003 100.0% 558 0.4% 558 0.4% 54,005
xhprof disable 1 0.0% 1 0.0% 1 0.0% o]

FIGURE 12-2

Let’s try rewriting the loop:
Scount = count ($x) ;

for ($i = 0; $i <= $count; $i++) {

}

Figure 12-3 shows the output.

Overall Summary
Total Incl. Wall Time (microsec): 4,687 microsecs
Total Incl. CPU (microsecs): 4,001 microsecs
Total Incl. MemUse (bytes): 2,960 bytes
Total Incl. PeakMemUse (bytes): 2,928 bytes
Number of Function Calls: 3

Function Name Calls Calls% Cl-Wall Time v, Excl. Wall Time gy, 6, Incl. CPU

gmlcrosecl !mlCI"OSeC! !mlcrosecs!
main() 1 33.3% 4,687 100.0% 4,669 99.6% 4,001
count 1 33.3% 17 0.4% 17 04% 0
xhorof disable 1 33.3% 1 0.0% 1 0.0% 0

FIGURE 12-3

Although memory usage is pretty much the same, the number of function calls has dropped (as you

would expect), and overall execution time is down to approximately 4 microseconds — a significant
improvement. Of course, it’s not often you need to iterate through an array of 100,000 elements, so

this is a somewhat artificial example. But it illustrates how useful xhprof can be in diagnosing these
sorts of problems.

Summary | 401

Don’t Use PHP

One of the best ways to improve the performance of PHP is not to use it. Even a lean, highly opti-
mized PHP page takes more memory and CPU, and takes longer to serve than a static HTML file.
Creating a new page and automatically giving it the .php extension is something that many develop-
ers are guilty of, but it’s worth taking a step back and thinking whether.ntml might not be more
appropriate. Will you actually be using any PHP scripting in the page?

Even for pages that do need PHP, the content is still often fairly static. You might use it to include a
common footer, header, and navigation menu, or to pull some paragraphs of text from the database.
In these situations, the content is the same each time (except for when you manually update the
include files or database), and having PHP execute the same code on each page load is unnecessary.

Pages with only modest PHP usually can benefit a lot by being generated offline as pure HTML
documents. Consider a site that uses PHP solely to include a common header and footer. Rather than
publish these PHP files, you can execute them at the command line, piping the output to an .html
file. Providing you take care to ensure that the links use the correct extensions, the static version

of the site functions identically to the PHP version, but is faster. Of course, if you edit your header/
footer templates, you must rebuild these static pages. But if the whole process is scripted, then this is
a minor inconvenience.

With a bit of thought, you can extend this logic to more complicated sites. Given how popular it is
to offer personalized content to logged-in users, the opportunities to pregenerate the whole page are
becoming increasingly rare. But you can still often pregenerate parts.

For example, if the homepage of a site shows a list of currently logged-in users, this information
rarely needs to be 100 percent accurate. You can cut out some PHP and database work by using a
cron to execute the code for fetching the list of logged-in users, dumping it to a file, and then including
this via PHP (or writing it directly to your homepage template). The possibilities here are endless.

SUMMARY

Server-side, an opcode cache, is virtually essential and is usually the single most important thing
that can be done to improve PHP performance. Sessions can also hurt performance and should be
used only when necessary.

Removing unnecessary modules from PHP can dramatically reduce its memory footprint, allowing
greater levels of concurrency, whereas compiling PHP from a source can also reap many rewards —
not least of which is the ability to compile specifically for your processor type.

It’s easy to get bogged down in debates on whether echo () is faster than print (), but, in practice,
many “tips” like this have only a tiny effect on speed. Instead, you should concentrate on areas in
which the biggest gains are to be made. Regular expressions are a common problem, as are loops
(because any inefficiency inside the loop is multiplied by the number of iterations of the loop). Profiling
with a tool like xhprof can be an excellent way to discover where the bottlenecks are in a script.

No matter how efficient your PHP code, it will always be several orders of magnitude more expensive
than serving up static HTML documents. Many simple sites can be built as static HTML documents,
using a scripting language like PHP to construct the pages in advance.

PART Il
Appendixes

» APPENDIX A: TCP Performance
» APPENDIX B: Designing for Mobile Platforms

» APPENDIX C: Compression

TCP Performance

A good knowledge of the TCP/IP protocol suite is essential to gain full understanding of
network performance. Although a full examination of this suite is a bit outside the scope of
this book, this appendix briefly reviews the transmission control protocol (TCP) from the
perspective of the three-way handshake, interpreting the output of netstat, and a couple of
techniques that you can use to improve TCP performance.

This is not a definitive guide — whole books have been written on the subject — but it should
hopefully serve as a starting point for those wanting to learn more.

THE THREE-WAY HANDSHAKE

When reviewing waterfall views of web browsers that are loading sites, you can see how, for
many resources, there is a delay during which the client establishes a TCP connection to the
web server. (This doesn’t happen for all resource requests because connections that are already
open are reused if both sides support keepalive.) Figure A-1 shows this region indicated by
an arrow on the first request for google. com.

http:r/ wmw google .com

1. www . google.com -

2. ww,google.con - chrome—48.phg 163 ms

3. uww.google.com - logodu.phg [

4. www.google.com. . .OnSHOpWkSASOTH-_wOA

A. ssl.gstatic.com - j_eBafacad.png ‘
B, oww,google.con - nay_logold?.png ﬁ
7. uww.google.com - favicon.ico i

FIGURE A-1

So, what exactly is going on in this time frame? TCP is a reliable, connection-based proto-
col, and before data can flow, a connection must be established. This is done by means of the
three-way handshake.

http://google.com

406 | APPENDIXA TCP PERFORMANCE

A lot happens during this handshake — for example, timestamps and
sequence numbers are set (so that if packets arrive in the wrong order,
they can be re-assembled correctly). However, all you actually need to
know is that this is a three-step process, as shown in Figure A-2:

1. The client sends a packet with the synchronization (syn) flag set.

2. The server responds with a synchronization acknowledgment

(SYN-ACK).
3. The client responds by sending its own acknowledgment -
(ACK). gy (111

o , _ FIGUREA2
The connection is now established, and data can flow. For HTTP, this

means a request can be issued.

On the Internet (which uses the Internet Protocol, or IP; as the underlying delivery method), each
packet has a 40-byte overhead — 20 bytes for IP (at least for IPv4 — eventually the Internet will

switch to the new IPv6) and 20 bytes for TCP. The packets have no payload, so their size is small.
As such, bandwidth isn’t usually a factor in the time it takes to perform the handshake.

However, latency is a factor. If the latency between the client and server is one-half a second, it will
be 1.5 seconds before the connection has been established and a HTTP request can be issued. If
the HTTP resource requested is small, the overhead of opening the TCP connection can easily be
greater than the time spent requesting and receiving the resource (especially if a DNS lookup must
be performed). For that reason, it isn’t always wise to trick the browser into opening up lots of con-
nections (for example, by hosting resources on multiple subdomains).

Aside from network latency, another consideration is the time it takes the operating system on both
the client and server to process and respond to the packets in the three-way handshake. Almost
always, any delays occur on the server side. The reason is that the server is typically processing

a high volume of packets (possibly hundreds per second), and each of these requires a little bit of
RAM and CPU time.

To avoid swamping the network with connection requests, the network stack of the operating sys-
tem typically queues requests. When viewing waterfall graphs for your site, if you see large delays
in connections established (and also the time to first byte, or TTFB), check your server’s network
latency (using a tool like ping). Also, if it is swamped with connections, the netstat tool is useful
for checking latency.

Some operating systems, such as Linux, are highly configurable in how the network stack behaves.
But the defaults are usually good, and you need to exercise care if you decide to adjust them — it
could make matters a lot worse.

The following is a section of the output of netstat running on a busy Linux web server:

tecp 0 0 192.168.0.1:80 10.4.3.2:2417 SYN_RECV
tecp 0 0 192.168.0.1:80 10.4.3.2:2424 SYN RECV
tecp 0 0 192.168.0.1:80 10.4.3.2:2425 SYN_RECV
tecp 0 0 192.168.0.1:80 10.4.3.2:2421 SYN_RECV

The Three-Way Handshake | 407

tcp 0 0 192.168.0.1:80 10.4.3.2:2422 SYN RECV
tcp 0 0 192.168.0.1:80 10.55.2.145:53922 SYN_ RECV
tcp 0 0 192.168.0.1:80 10.4.3.2:2419 SYN RECV
tecp 0 0 192.168.0.1:80 10.55.2.145:53923 SYN_RECV
tcp 0 0 192.168.0.1:80 10.4.3.2:2423 SYN RECV
tcp 0 0 192.168.0.1:80 10.4.3.2:2426 SYN_RECV
tecp 0 0 192.168.0.1:80 10.4.3.2:2420 SYN_RECV
tecp 0 0 192.168.0.1:80 10.4.3.2:2418 SYN_ RECV
tcp 0 0 127.0.0.1:46948 127.0.0.1:11211 TIME WAIT
tecp 0 0 192.168.0.2:80 10.143.231.33:42890 FIN _WAIT2
tcp 0 0 192.168.0.2:80 10.4.3.2:2413 FIN WAIT2
tcp 0 0 192.168.0.1:80 10.19.4.2:2475 TIME WAIT
tecp 0 0 192.168.0.1:80 10.244.200.74:3675 TIME WAIT
tcp 0 0 192.168.0.1:80 10.0.4.181:25617 FIN WAIT2
tcp 0 0 192.168.0.1:80 10.8.144.134:51776 FIN WAIT2
tecp 0 0 127.0.0.1:47155 127.0.0.1:11211 TIME WAIT
tcp 0 0 192.168.0.1:80 10.143.231.33:38277 TIME WAIT
tecp 0 0 127.0.0.1:47041 127.0.0.1:11211 TIME WAIT
tecp 0 0 192.168.0.2:80 10.99.43.2:39957 TIME WAIT
tecp 0 0 127.0.0.1:46951 127.0.0.1:11211 TIME WAIT
tecp 0 0 127.0.0.1:47030 127.0.0.1:11211 TIME WAIT
tcp 0 0 192.168.0.1:80 10.99.5.5:52704 ESTABLISHED
tecp 0 0 127.0.0.1:47055 127.0.0.1:11211 TIME WAIT
tcp 0 0 192.168.0.1:80 10.122.4.1:2151 FIN WAIT2
tcp 0 0 192.168.0.1:80 10.23.5.204:50740 TIME WAIT
tecp 0 0 192.168.0.2:80 10.1.142.194:2692 ESTABLISHED
tcp 0 0 192.168.0.2:80 10.0.44.29:43449 ESTABLISHED

Here, you can see the status for each connection. For example, syN_RECV indicates that a sYN has
been received as part of the three-way handshake. TIME wWAIT indicates a connection is in the pro-
cess of being shut down. Consult the netstat man pages for a complete list of socket status.

When a TCP connection has been established, ack flags are still used — this time to acknowledge
receipt of packets from the other party. For example, if a web server returns a resource to a client,
the resource will likely be split across several packets. (The maximum size of a TCP packet is 64 KB,
but the underlying layers also impose restrictions — Ethernet, for example, sets a maximum size of
1,500 bytes.)

For each packet that the client receives, it sends an acknowledgment (aAck) back to the server. This is
part of what makes TCP a reliable protocol. If an Ack isn’t received within a certain amount of time,
the sender assumes that the packet is lost and resends it.

If the sender waited for each packet to be acknowledged before it sent the next one, things would
move slowly. Instead, sending windows are used. These define the maximum amount of data that
the sender is willing to send without receiving an Ack from the recipient. When this limit is reached,
the sender will hold off sending any more until some of the data has been acknowledged.

This is great for overcoming the effects of latency. In many cases, the sender can just keep pumping
out data, knowing (at least hoping) that the recipient will eventually acknowledge. This does cause
problems on unreliable networks, though, because there’s a greater chance of packet loss, and a
greater chance that the sender must retransmit some (or all) of the data.

408 | APPENDIXA TCP PERFORMANCE

The network stack of the operating system defines a default size for this sending window, but it can
also be renegotiated during the TCP session. For example, if the server sends out data faster than the
client can acknowledge it, the client can ask for the window to be reduced.

TCP PERFORMANCE

You can improve TCP performance in many ways. Let’s take a quick look at a couple of the most
common.

Nagle’s Algorithm

As mentioned, each TCP packet (flowing over an IP network) has a 40-byte header. If the payload
of the packet is small, this overhead can be significant. The classic example is a telnet session. Each
time the user presses a key, a packet is sent to the server. The payload of the packet is tiny, but it still
has the 40-byte overhead. Now, imagine that the user can type five characters per second. That’s
200 bytes per second of overhead, and just a few bytes per second of actual data.

In the 1980s, John Nagle was the first person to document this problem, and his solution was that
the sender should wait for the other party to acknowledge the data before it sent any more. In effect,
this gives the sender a chance to buffer data first, resulting in a larger payload and a lower percent-
age of overhead. Using Nagle’s algorithm, if there are no packets waiting to be acknowledged, new
data will be sent immediately. If there are packets waiting to be acknowledged, new data will be
buffered by the sender until either earlier data has been acknowledged, or the maximum packet size
is reached.

This is great for saving bandwidth, but it increases latency. It is actually counter-productive to over-
all performance on web servers. Some web servers provide a means to alleviate this performance
problem. For example, Nginx provides an option (tcp_nodelay) you can use to disable the Nagle
algorithm if wanted.

TCP_NOPUSH and TCP_CORK

On Linux, the TCcP_CORK option achieves a similar result as the Nagle algorithm. It buffers partial
frames (for up to a maximum of 200 milliseconds) before sending them out, giving the operating
system a chance to group them together. Again, this cuts down on bandwidth (because of less header
overhead), at the expense of an increase in latency. FreeBSD offers a similar option, TCP_NOPUSH,
but this has been plagued by bugs in the past.

You’ll sometimes encounter server applications that allow TCP_NOPUSH/TCP_CORK to be enabled or
disabled. tcp nopush in Nginx is a prime example. With Nginx, the effect will be to attempt to
send the entire HTTP response inside a single packet if this is enabled.

In general, TcP NOPUSH/TCP CORK should not be enabled if your want to reduce latency as much as
possible.

Designing for Mobile Platforms

For a long time, desktop PCs accounted for the vast majority of the traffic that a typical
website was likely to receive. It was relatively safe to simply ignore mobile users — they
made up a tiny percentage of the market and accepted that most sites would not display
correctly on their devices. All this is changing, though, and the mobile users currently make
up approximately 8 percent of the market — a figure that is rising every year. The days when
mobile users were a minority who could be ignored are long gone.

In this appendix, you learn about a variety of methods for detecting mobile devices and
serving up custom content to them. In this way, you can ensure that users on devices with
lower bandwidth or smaller screens still experience a fast, usable interface.

UNDERSTANDING MOBILE PLATFORMS

It’s worth defining exactly what is meant by mobile platforms. Once upon a time, it was easy
to distinguish these platforms. Cell phones had a screen of approximately 2 inches, whereas
PCs had a screen of approximately 15 or 17 inches. However, today, a huge range of devices
fall somewhere in between — laptops, netbooks, tablets, smartphones, PDAs — all with
varying screen sizes, and (perhaps just as important) different resolutions. Simply designing

a mobile version of your site for users who have a cell phone with a 2-inch display fails to
accommodate those with, say, a netbook with a 7-inch display.

410 | APPENDIXB DESIGNING FOR MOBILE PLATFORMS

Table B-1 shows some of the most common mobile platforms, along with their screen sizes and dis-
play resolution(s).

TABLE B-1: Common Mobile Platforms

PLATFORM SCREEN DIMENSIONS (INCHES) RESOLUTION (PIXELS)
Netbook 5-12 varies

iPad (first and second generation) 9.7 1024 x 768
iPad (third generation) 9.7 2048 X 1536
iPhone (first three generations) Varies 320 x 480
35

iPhone (fourth generation) 3.5 640 x 960
iPhone (fifth generation) 4.0 640 X 1136
BlackBerry Bold 9000 2.8 480 x 320
Samsung Galaxy Tab 10.1 101 1280 x 800
Nokia N810 41 800 x 480

A less-appreciated consideration when designing a website for mobile devices is bandwidth. These
devices are often connected over higher-latency networks, and many service providers charge by
the gigabyte. Not only should you accommodate lower screen resolutions, but you should also aim
to reduce the size of resources. For example, this means that simply scaling down an image via the
width and height img attributes to fit mobile devices isn’t a good idea — opt instead to serve a
low-resolution version of the image.

In the next section, learn about a variety of methods to achieve this, including the use of JavaScript,
server-side detection, and CSS3.

RESPONSIVE CONTENT

Responsive content (of which responsive images are a subset) is a somewhat fancy term for a
technique that you may already use to some degree — delivering different content to different users
based on characteristics of their display capabilities. Technically, this could probably apply to things
like gzip content compression (because it is based on whether the client advertises support), but it
almost always refers to differentiating mobile users from desktop users, and feeding them
appropriate content.

A number of techniques have been developed for this, but not all are completely satisfactory.
Usually, a combination of techniques produces the best results. Let’s take a look at some of the most
popular.

Responsive Content | 411

Getting Browser Display Capabilities with JavaScript

Using JavaScript, you can obtain the browser’s resolution and color depth — a good starting point
to decide on the image dimensions/resolutions to use. You can then use this information to rewrite
the URLs in image tags.

In the following code, if the screen resolution is 400 pixels or less in either direction, you iterate
through each image tag and prepend /smal1/ to the beginning of the URL. Then you simply must
make smaller versions of each image and place them in the /small directory. The technique could
be expanded to give more fine-grained control than simply using normal or small — perhaps one
set of images for smartphones and another for tablets.

if ((screen.width<=400) || (screen.height<=400)) ({
var images = document.getElementsByTagName ('img') ;
for (var i:O;i<images.length;i++){
images[i] .src = '/small/' . images|[i].src;
}

}

This code must be executed before the browser begins downloading images from the page, so it
must go in the document head, and be executed when a DOM ready event fires. Even then, modern
browsers are now so aggressive at fetching content (which is usually a good thing) that you can’t
guarantee that this code will execute before images start being requested. In a worst-case scenario,
the browser might end up requesting both the small and normal copies of an image, which defeats the
purpose to reduce data transfer. Of course, this technique also relies on the browser supporting
JavaScript.

In this example, the normal-sized images are used by default (in the img tags). What if you start
by assuming small and then upgrading to large if the screen resolution is above a certain size? This
way, mobile browsers still get the smaller images even if they don’t support JavaScript. You still
inconvenience desktop users who have no JavaScript support. (They’ll just see the small images.)
But the percentage of desktop PC browsers not supporting JavaScript (or with JavaScript disabled)
should be a lot lower than the percentage of mobile devices with no JavaScript.

Finally, it would be only desktop PC users who were affected by the possibility of two copies of the
image being requested — and generally they are on faster connections.

Server-Side Detection of Capabilities

Rather than relying on JavaScript, you could also attempt to perform client detection on the server —
for example, by looking at the Useragent string in requests. You might reference your image like so:

Then, in 1ogo.php, you can add some logic to read the Useragent and send the appropriate image.
You could either maintain several copies of the image at different dimensions/resolutions, or resize
the image on-the-fly (for example, via GD).

Both methods have their pros and cons. It’s tedious to generate and maintain multiple copies of an
image, but this method does provide the best control. For example, you may decide that a combination
of cropping and resizing works best on small screens. Resizing on-the-fly is the easiest solution but is
much more CPU-intensive.

412 | APPENDIXB DESIGNING FOR MOBILE PLATFORMS

Either way, there are two additional downsides to this method:

> Using PHP introduces additional overhead. Usually, you’d want to serve images from a
lightweight, static file server.

> Returning different content from an identical URL could potentially cause serious caching
problems. Imagine two clients on the same Internet Service Provider (ISP), behind a
transparent, caching proxy provided by the ISP. Client A, which uses a smartphone,
requests an image. Your code spots the smartphone and returns a low-resolution version
of the image. The response is cached by the ISP’s proxy. When Client B, a regular user of
a desktop PC, later requests the image, the ISP’s proxy sees that it already has the resource
cached, and returns this instead. The desktop user sees an image intended only for
smartphones. This all happens because the two URLs are identical.

Sending a 3xx redirect error to the appropriate resource is one way to combat the second problem.
But be careful of browsers caching the redirect, and remember that this will incur the penalty of an
extra HTTP request.

Server-side detection also has the drawback of being less reliable than client-side detection. Using
JavaScript, you can accurately obtain the user’s display resolution. With a server-side solution, you
must make assumptions based on the Useragent. To do this, you must build a basic database that
maps UserAgent to the appropriate capabilities — not a particularly appealing task, given the range
of devices out there.

Luckily, help is at hand. WURFL (http://wurfl.sourceforge.net) is an AGPL-licensed XML file
containing the Useragents and capabilities of thousands of mobile devices. Using the PHP API sup-
plied with it, you can easily query the screen resolution of a given client, as shown here:

include once './inc/wurfl config standard.php';

$requestingDevice = $wurflManager->getDeviceForHttpRequest ($ SERVER) ;
Resolution Width: <?php echo $requestingDevice->getCapability

('resolution width'); ?>

Resolution Height: <?php echo $requestingDevice->getCapability
('resolution height'); ?>

A Combined Approach

Neither the client-side nor server-side approach is perfect. The client-side approach relies on
JavaScript being present and causes potential race conditions. (Can JavaScript update the path in the
img tags before the browser begins fetching them?) The server-side approach interferes with caching,
is less reliable, and causes higher server load.

However, you can combine the two approaches to create an effective compromise. The logic goes

like this:

1. On the initial page request, JavaScript is used on the client side to set a cookie containing
the client’s screen resolution.

2. Because this cookie will be sent only for subsequent requests, you use WURFL (or similar)
to perform server-side detection if the cookie isn’t present. This detection could be carried
out in either your PHP code or via mod_rewrite.

3. If the cookie is present, you send out an HTML document containing appropriate image
tags (for example, src="/images/tablet/logo.png").

http://wurfl.sourceforge.net

Responsive Content | 413

With this approach, you use only server-side detection for the initial page request, before the
JavaScript has had a chance to return a (hopefully) more accurate response. And because you rewrite
the image tags in the back-end scripting language before sending the HTML document to the client,
you don’t need to worry about caching problems.

CSS3 Media Queries

Most front-end developers are familiar with the CSS2 feature that allows different style sheets to

be used for different media types (for example, one style sheet to use when displaying the document
in a browser, and another to use when printing the document). CSS3 takes this one step further
with the introduction of media queries — individual rules (or groups of rules) that only take effect
under particular conditions. In the following example, the font size will be set at 80% if the display is
600px or less in width:

@media screen and (max-width: 600px) {
.myclass {
font-size:80%;
}
}

Of course, this is only the tip of the iceberg, and a lot more is possible with more complex CSS rules.
A common use for media queries is to hide side bars or extra columns for low-resolution displays.
You can even use media queries inside <1ink> tags to selectively load entire style sheets.

In following example, a different style sheet is used, depending on whether the display is aligned in
portrait or landscape mode, something that can easily be changed on many mobile devices:

<link rel="stylesheet" media="all and (orientation:portrait)"
href="portrait.css">

<link rel="stylesheet" media="all and (orientation:landscape)"
href="landscape.css">

Determining Connection Speed

Screen size is only one factor in the equation, and it could be argued that connection speed is equally
important. This applies to users of desktop PCs with dial-up connections, too. But how do you
determine the user’s connection speed? You could look for strings like ppp or dialup in the client’s
hostname — these are usually reliable indicators of a client on a dial-up modem. But then it’s not
safe to assume that the lack of such strings in the hostname means that the client has a fast
connection — even broadband users can be hampered by high latency and low bandwidth.

The most reliable way to determine the client’s latency and bandwidth is to measure it directly — by
timing how long it takes the client to retrieve a file — and even this is far from perfect. If the file is
too big, you waste the user’s bandwidth. If the file is too small, the results can be inaccurate.

This is also one of those techniques that is not good for the initial page request. A bandwidth test
like this would need to run in the background after the initial page had been loaded. By that stage,
most of the static resources should already be in the browser’s cache, making the results of the test
pointless. So, although serving different content for those on a slow connection is an admirable goal,
it’s not a realistic one at the moment.

414 | APPENDIXB DESIGNING FOR MOBILE PLATFORMS

JAVASCRIPT AND CSS COMPATIBILITY

It’s tempting to think that mobile browsers are divided into two categories: those that support JavaScript,
and those that don’t. The truth is less appealing. Most mobile browsers do support JavaScript, but
to varying degrees. Inconsistencies can even be present between identical browsers on different
platforms (in the same way that Internet Explorer on a Mac can behave differently than Internet
Explorer on a Windows machine).

The same is also true of CSS. For example, Opera Mobile on a Nokia E66 supports font-size: 150%.
Opera Mobile on an HTC Touch Diamond doesn’t. It’s a compatibility minefield and is

reminiscent of the state of desktop web browsers in the late 1990s. The best advice is to keep things
as simple as possible.

The ever-useful quirksmode.org has a compatibility table (http://www.quirksmode.org/
m/table.html) for both JavaScript and CSS, illustrating some of the differences. Be aware,
though, that this page dates from 2010, and the landscape is changing fast. At the least it illustrates
how subtle the differences between devices can be.

CACHING IN MOBILE DEVICES

The topic of how mobile browsers cache content is a minefield. Not only does it vary from browser
to browser, it can also change significantly between the same browser running on different
platforms, and even different versions of the same platform.

It has been widely documented that Safari on early versions of the iPhone would not cache
individual resources bigger than 25 KB and had an overall cache size of approximately 500 KB to
1,000 KB. That was in 2008, and things have changed since then. However, the overall message is
still the same. You can’t rely on a mobile browser to cache large resources, and the cache is only a
finite size. This is something often forgotten when working with desktop browsers, which generally
have large caches. (Internet Explorer 9, for example, uses a maximum cache size of 250 MB.) With
a cache size measured in kilobytes, there’s a good chance that your resources will have been kicked
out to make way for fresher content.

The situation is better in the iPhone 4, which now has a 100 MB browser cache (much bigger than
other mobile devices, incidentally). There’s a “but,” though. This is an in-memory cache, so it does
not persist across device reboots, or even browser restarts. This isn’t quite as bad as it sounds.
Although it’s common for desktop users to close their browsers when they’ve finished, the behavior
on iPhone tends to be to keep the browser process running in the background, but minimized. So,
browser restarts on an iPhone don’t happen as frequently as you might first think.

The same lack of persistence is present in iPads too, but the situation is better in Android (both
smartphone and tablet) and Blackberry devices. They generally have a persistent cache equal to the
size of the memory cache.

http://www.quirksmode.org/m/table.html
http://www.quirksmode.org/m/table.html
http://quirksmode.org

Caching in Mobile Devices | 415

Although mobile devices are often guilty of not caching enough, the opposite appears to be true for
the iPhone 5, with developers finding that POST requests are often being cached by default. (They
should not be cached, unless explicitly permitted via an Expires or Cache-Control header.)

What is the lesson you learn from all this? Don’t rely on a mobile device to perform caching. If you
have a bulky website but shrug your shoulders and think it doesn’t matter because your far-future
Expires headers will mean there is only a performance hit on the first page load, think again. You
should probably design the mobile version of your site under the assumption that no caching will
take place (and that any caching that does occur is a bonus).

Compression

Compression has been a recurring theme in this book, for image formats (such as ¢1F and
PNG), command-line compression tools (such as bzip2 and gzip), and HTTP compression
through gzip and deflate. Despite this diversity in how compression is used, the majority of
implementations actually employ the same underlying algorithms. This appendix provides a
brief examination of the most common compression methods.

THE LZW FAMILY

The origins of the widely used LZW family of compression algorithms have their roots in two
papers written by Abraham Lempel and Jacob Ziv in 1977 and 1978. These papers defined the
LZ77 and LZ78 algorithms, two contrasting approaches to achieve compression by spotting
repeating patterns.

LZ77

LZ77 looks for patterns of repeating data in previously seen input and replaces the data with
a reference to the first instance of the pattern. The reference takes the form of a length-offset
pair, indicating the length of the pattern, and it’s offset (from the current position). Consider
the following stream of data:

ABCDEFXYZABCD
The second instance of ABCD can be replaced with a length-offset pair, like so:
ABCDEFXYZ (4, 9)

Here, the number 4 indicates the length of the pattern, and the number 9 indicates the offset
(nine characters back from the current position).

418 | APPENDIXC COMPRESSION

Sliding Window

In many cases, it would be impractical for LZ77 to search the whole stream of previous data for
matches. It could potentially be hundreds of megabytes, and the CPU and memory overhead would
be huge.

Instead, a sliding window is used, with LZ77 searching only the most recently seen data. The size

of this window varies from implementation to implementation, but is generally measured in kilo-
bytes — deflate, for example, uses a 32 KB window. A larger window means a greater opportunity
for LZ77 to find matches in previously seen data. However, it also increases the CPU and memory
usage — and, hence, also the time — for compressing and uncompressing.

Performance

Although LZ77 is easy to implement, the compression levels achieved are generally rather

mediocre — partly because of the limited size of the sliding history window. You can sometimes take
advantage of the knowledge that LZ77 will search back only so far for matches. For example, in some
situations, you can re-arrange data in your CSS or JavaScript files so that similar strings of text appear
close together. Even so, LZ77 compression isn’t brilliant, and it is most often combined with entropy
encoding algorithms such as Huffman (which you will learn more about later in this appendix).

LZ78

LZ78 works in a similar way to LZ77, replacing multiple occurrences of patterns. However, whereas
LZ77 uses a length-offset pair, LZ78 uses a dictionary. The dictionary is dynamically created based
on the input data.

For example, consider the following example data:
ABCDEFXYZABCD

Table C-1 shows what a basic dictionary might look like. (Dictionary entries are stored in reverse
order, but this has been ignored here for simplicity.)

TABLE C-1: Sample Dictionary

INDEX DICTIONARY ENTRY

0 A
1 B
2 C
3 D
4 E
5 F

The LZW Family | 419

7 Y

8 z

9 AB
10 BC
1 CD
12 DE
13 EF
14 FX
15 XY
16 ZA
17 ABC
18 BCD

Repeating strings are replaced with a two-part codeword giving the index of the matching string
and the first nonmatching symbol to occur after the string. Thus, the example string could be
converted to the following:

(24,E) (20,2) (17,D)

This is somewhat of an oversimplification because a complete dictionary hasn’t been constructed,
but it shows the general principles involved. The main performance concern with LZ78 is the size of
the dictionary because it could potentially grow to take up all available memory. (Even for this small
test string, the number of ways in which it can be tokenized is large.)

All LZ78 implementations limit the size of the dictionary in some way — either by freezing it when
it reaches a certain size, removing the least recently used entries, or even erasing it completely. The
UNIX tool compress adopts the latter approach and erases the dictionary if it detects that the com-
pression level has dropped below a certain ratio. (The assumption is that the dictionary entries must
be poor.) Also, because longer tokens (which are the most wanted) appear later in the dictionary,
they are more likely to have been excluded because of lack of space.

Doesn’t a large dictionary vastly increase the size of the compressed data, eliminating any saving
from the compression? Actually, it does not. One of the cool features of LZ78 is that the dictionary
does not need to be sent in the header of the compressed data — the dictionary can be reconstructed
simply by analyzing the compressed stream.

LZW

In 1984, Terry Welch published a paper describing an enhanced version of the LZ78 algorithm
named LZW. Among the changes, LZW uses a more rigid dictionary format. The first 256 entries
are used for the standard ASCII table, with the remaining entries populated dynamically with

420 | APPENDIXC COMPRESSION

strings appearing in the data. LZW uses 12-bit codes, giving a maximum of 4,096 dictionary
entries. As with LZ77, because the dictionary is (mostly) populated dynamically, the compression
ratio tends to start off poorly, but increases as more and more data is compressed, with typical com-
pression levels for text of approximately 50 percent.

LZW was the first LZ-derivative to be widely used. (The UNIX compress tool is a notable exam-
ple.) But it also became famous for less positive reasons, including its licensing restrictions.

Although LZ77 and LZ88 were license-free, LZW had been patented in 1983 (the holding company
eventually becoming Unisys), a fact unknown to CompuServ when it created the GIF image format
(which is built around LZW) in 1987. Unisys became aware of this patent infringement in 1993 and
began negotiations for licensing. In fairness, the licensing fees were modes, and only applied to big
companies — end web developers were not affected. But there was a huge public outcry, and the
search was on for a license-free alternative. The result was pnG.

Although the patents on LZW expired several years ago, the likes of LZ77 plus Huffman encoding
(which you will learn more about shortly) provide better levels of compression. As a result, there is
little impetus to use LZW any longer.

NOTE Incidentally, the US patent on GIF expired in 2003 (in other countries it
was 2004), so the GIF format is now completely free to use.

LZ Derivatives

Various other dictionary-based encoding schemes exist, based on the original LZ77 and LZ88
papers. Although none of these are as omnipresent as LZW, let’s take a brief look at a few of them.

Lempel-Ziv-Markov Chain Algorithm (LZMA)

Based on LZ77, LZMA uses a much bigger dictionary (up to 4 GB), along with a range encoder to
keep its size down, and generally offers good compression levels. It is used in 7-Zip (7z).

Statistical LZ

Statistical LZ is based on LZ78 but uses statistical analysis to determine the most appropriate (that
is, most frequently occurring) data to store in the dictionary. This keeps the size of the dictionary
down, resulting in faster decompression with lower CPU and memory usage. The flip side is that
compression takes longer. But this often isn’t a concern, and the overall compression ratio is
generally better than other LZ derivatives.

Statistical LZ has found a use in compressing ringtones on cell phones — a situation in which
compression speed is not important, but compression ratio and decompression speed are.

Lempel-Ziv Ross Williams (LZRW)

The LZRW subfamily of LZ77 variants focuses on increasing compression speed by placing tokens
in a hash table. Referencing this table is faster than specifying a length-offset pair. The LZRW
families were published during the early 1990s — a time when memory and CPU were a fraction of

Huffman Encoding | 421

what is standard today — and LZRW concentrates on efficient use of resources, rather than optimal
compression.

These days, the situation has reversed. Memory and CPU are generally plentiful, and higher com-
pression is wanted. As a result, the LZRW family is no longer in common usage, except in specialist,
low-resource situations.

Although the LZ family offers reasonable levels of compression, the most popular implementa-

tions combine it with some form of entropy encoding (that is, assigning codes to symbols) to fur-
ther increase the compression ratio. As you learn in the next section, the most commonly used is
Huffman encoding, which traces its roots back to a paper published in 1952 by David Huffman.

HUFFMAN ENCODING

The basic idea behind Huffman encoding is to encode the input data, replacing it with a series of
symbols. At first, this may sound rather like LZ88, but the implementation is quite different. Rather
than using a dictionary, Huffman encoding uses a binary tree that is constructed by analyzing the
input data. The tree is arranged so that more frequently used characters are higher up the tree, and,
hence, can be referenced by a shorter symbol.

The first step, therefore, is to order the characters in the input by frequency. Consider the following
example stream:

ABCDEFXYZABABCABDECA

The frequency of each character is as shown in Table C-2.

TABLE C-2: Character Frequency

CHARACTER FREQUENCY

A 5
B 4
C 3
D 2
E 2
F 1
X 1
Y 1

N
N

422

| APPENDIXC COMPRESSION

A priority queue is then created, with the least frequently iTal T T2T213]a4

occurring characters placed first, as shown in Figure C-1. For

clarity, the frequency is shown above each character. ZIY|X|FlE|DP|C]B]A

To see how the binary tree is constructed, you start at the left ~ FIGUREC

and create two child nodes from the first two characters in the
queue, as shown in Figure C-2. In the parent node (which would otherwise be empty), you see the
new priority.

This tree fragment is then reinserted into the queue. Its priority is the sum of the priority (frequency)
of the two characters that it comprises, as shown in Figure C-3.

111 212 (3] 4

5

X|F|2|E|D|C|B]|A
/ N\ /N
E M E

FIGURE C-2 FIGURE C-3

The process is then repeated for the next two leftmost elements, resulting in the structure shown in
Figure C-4.

These two nodes are joined together (their parent now having a priority of 4), and are re-inserted
into the queue, as shown in Figure C-35.

m
O
O| w
o | >
>

[E[pleB]a]

B B 2]
/ Y\ SN N
E M K E E M K E

FIGURE C-4 FIGURE C-5

<]

./

The process continues until the final two items in the queue have been joined, at which point you
end up with a complete tree, as shown in Figure C-6.

Huffman Encoding | 423

B
B S E
W W

B B FB E
¥ W
E = E 2]
v N\ N\ v N\
H B E MM E

FIGURE C-6

Because each node of the tree has at most two descendants, you can reference any node of the tree as
a series of zeros and ones, describing the path that must be taken (starting from the top of the tree)
to reach the desired nodes. Figure C-7 illustrates this (with the frequency counts removed because
they don’t play a final part in the tree).

0 [:] 1
W
Y\ Y\
J, B
0 & m

N\ v\ VN
B E OME E

FIGURE C-7

By convention, 0 means follow the branch to the left, and 1 means follow the branch to the right.
Thus, the character “E” could be represented by the sequence 0000 and the character “A” by the
sequence 01. The original string could thus be encoded as follows:

01110010001000010111010100110000111011100101110001000000101

Although this seems a lot longer than the original string, remember that you’re dealing with binary
data here. Although this example has used characters of the alphabet for simplicity, the binary rep-
resentation of the unencoded string would actually be longer. With 8 bits used for a single character,
it would be 160 bits long. Compared with the 49 bits for the encoded version, this is a significant
savings.

424 | APPENDIXC COMPRESSION

This savings occurs for two reasons:

> The tree is structured so that more frequently occurring characters can be referenced by a
shorter path (at the expense of less frequently accessed characters represented by a longer
path).

> In this example, the entropy is fairly low — only eight unique characters occur in the input
data.

If the input data contained all the characters of the ASCII set (256), using a fixed (or randomly gen-
erated) binary tree to represent the data wouldn’t offer any savings. The real power occurs because
the tree is optimized and contains characters that actually appear only in the input stream.

Incidentally, you may be wondering how a decoder knows that (in this example) 01 represents “A”?
Couldn’t 01 be the start of the path for another character? In this binary stream, how does the
decoder know where one path sequence ends and another starts?

As it turns out, another property of the binary tree is that such ambiguities simply can’t occur. In
Figure C-7, you can see that no other path begins 01. The same is true for every other sequence.
Each character occurs at the end of a branch and has no children below it.

Decoding, therefore, is simple and just involves walking the tree. Unlike LZ78 (where the dictionary
structure can be deduced from the compressed data), the binary tree cannot be dynamically con-
structed by the decoder and must be included in the header of the compressed data. This adds some
slight overhead, but unless the encoded data is small, it is minimal enough not to be a problem.

COMPRESSION IMPLEMENTATIONS

Huffman encoding and the LZ family are by far the most popular compression methods in use. (Of
course, this discussion does not address lossy compression methods such as JPEG because they con-
stitute a whole different story.) To conclude this discussion, let’s look at some of the most commonly
used Huffman and LZ implementations. Knowing the underlying compression methods used by
these implementations is helpful to understand how best to optimize them.

deflate was originally created for PKZIP but is now a staple of the open source world. It uses
LZ77 (with a 32 KB sliding window) followed by Huffman encoding, supporting either static or
dynamically created Huffman binary trees. Details of which tree method to use are stored in a

header block.

PKZIP also introduced an enhanced version, deflate64, which uses a 64 KB sliding window. This
leads to slightly higher levels of compression but is not in widespread use because of its proprietary
nature. The main implementations are PKZIP and 7-Zip (which is part of the reason why 7-Zip gen-
erally offers slightly better compression than its competitors).

You’ll most commonly encounter the standard (32 KB window) deflate in gzip, z1ib, PKZIP, and
7-Zip.

deflate is an algorithm. z1ib is a commonly used C library that implements this algorithm. gzip is
an end application that uses z1ib. So, gzip implements deflate compression via the z1ib library.
It’s also worth noting that data compressed with deflate will not be identical to data compressed

Compression Implementations | 425

with gzip. The gzip format defines a header (consisting of a timestamp, version number, and other
optional fields) and a footer (containing a CRC32 checksum and the length of the original, uncom-
pressed data) sandwiching the deflated body. Thus, gzip can simply be thought of as “deflate
with headers and checksums.”

Confusion between the differences of deflate and gzip is one of the reasons why some web brows-
ers had trouble coping with compressed HTTP content in the past — they either expected gzip
headers in a deflate stream or failed to realize headers would exist in a gzip stream. Naturally,
purely deflated content results in the smallest overall size, but the headers added by gzip are still
fairly modest and can be useful for integrity checking.

As previously mentioned, the z1ib library is ubiquitous and forms the heart of PNG compression, via
libpng. z1ib also crops up in rsync, OpenSSH, and even the Linux kernel.

NOTE [n case you're wondering, bzip2 (“the other” UNIX compression tool)
uses the Burrows-Wheeler Transform (BWT), which is a different technique but
does generally offer better compression than gzip/zlib/deflate.

INDEX

" (quotation marks), HTML
attributes, 64-65

2 (question mark), placeholders,
253

* (carrot), regular expressions, 126

$ (dollar sign), regular expressions,
126

3xx, 412

301, 33-34

302 Found, 34

303 See Other, 34

Accept-Encoding, 41, 42, 44, 45

access logs, 146

ACK, 368, 407

ACLs. See Access Control Lists

active-passive master-master,
269-270

ActiveX, 4

adaptive flushing, 221

adaptive hashing, 217, 221

Adobe Photoshop, 82

Advanced Encryption Standard
(AES), 371

advpng, 84

AGAINST, 239

ATO. See Asynchronous I/0

AJAX, 136-138, 326

ALL, 237

-all, 300

Allow From, 148

AllowOverride None, 149

alpha transparency, 78

alt, 66

ALTER TABLE, 247,273

Alternative PHP Cache (APC), 375,

381-388
Amazon, 47, 117, 310, 355
ANALYZE TABLE, 247
Animated Portable Network
Graphics
(apNG), 109
Antelope, 218,223
antivirus software, 44
any, 166
aol.com, 4,21
Apache, 141-158
cache, 150-155, 361-362
Cache-Control:
max-age, 29
concurrency, 145-146
content, 155-158
DirectoryIndex, 149
DNS lookups, 148
dynamic shared object
(DSO), 142
Expires, 29
FastCGlI (fegi), 167-168
.htaccess, 149
init, 387
logging, 146-148
MaxClients, 137, 143, 144,
145-146
mod_cache, 150
mod_deflate, 46, 155-157
mod_disk_cache, 150
mod_fcgid, 167-168
mod_file_cache, 153
mod_gnutls, 364
mod_gzip, 46
mod_mem-cache, 152

mod_memcache_cache, 153

mod_php, 167
mod_gos, 137
mod_rewrite, 157
mod_status, 153-155
modules, 142
Multi-Purpose Models
(MPMs), 142-144
multiserver setups, 169-172
Nginx, 172
NoSQL, 310
parallel downloads, 18-19
performance, 148-150
PHP, 144, 164-168, 376
proxies, 170-172
Redirect, 33
scheduling application
programming interfaces
(SClIs), 378
Secure Sockets Layer (SSL),
155, 366-367
SendBufferSize, 149-150
SSLCipherSuite, 369-370
symlinks, 149
apachepool, 177
APC. See Alternative PHP Cache
apc_bin dumpfile, 387
apc.cache by default, 385
apc_compile file(), 387
apc.filters, 385
apc.slam.defense, 384
apc.write lock, 384
APNG. See Animated Portable
Network Graphics
+append, 99
-append, 99
Application Layer, 6
appsession, 185-186
apt-get, 376

427

http://aol.com

arbiters — CGI

arbiters, 341
ARCHIVE, 198
<area>, 90
Aria, 294-295
async, 128

Asynchronous I/0 (AIO), 161-162

attributes
Boolean, 66
HTMI minification, 64-65
Sphinx, 299
autoloading classes, 396
Average, 79

, HTML minification, 65

-b, memcache, 312

background, 106, 328

background threads, 221

background-image, 91-92

background-position, 91-92

backups, 273, 291-293, 334

balance, 187

bandwidth, 221, 270, 349

$bar, 392

Barracuda, 218,223

baseline, JPEG, 75

battery backed-up memory, 272

baz, 392

BigTable, 310, 355

Bina, Eric, 4

binary JSON (BSON), 325

binary logs, 271-272,292, 305

binary protocol, memcache, 320

binary transparency, 78

binlog*db, 264

binlog flush, 305

BIT, 295

bKGD, 77

Blackhole, 268,273

block, 93

Boolean attributes, HTML
minification, 66

boolean innodb_adaptive_
flushing ini, 221

border-level cache proxies, 25

box shadows, 106-107

BSON. See binary JSON

428

B-tree, 198, 218, 329, 354
buffer. See also cache

insert, 216-217

output, 49-50

per-session, 204-205

pools, 214-216

read, 306
bulk writes, 249-250
bulk_insert_ buffer size, 250
Burrows-Wheeler Transform (BWT),

425

bzip2, 47

-c, 300, 312
cache, 23-37. See also Alternative
PHP Cache; memcache
Apache, 150-155, 361-362
cold, 209
covering indexes, 246
FastCGI (fegi), 166-167
hot, 209
HTTP, 9-10, 32-34
InnoDB, 212-217
key, 205-210
Least Recently Used (LRU), 199
mobile platforms, 414-415
MySQL, 198-204
queries, 194, 225-234
Nginx, 180, 361
PHP, 381-388, 391-392,
397-398
reverse proxies, 397
Secure Sockets Layer (SSL),
360-364
stale content, 30-31
types, 23-25
warm, 209, 387
web browsers, 23-25
CACHE INDEX, 209
Cache-Control, 9, 31-32
Cache-Control :max-age, 28, 29
Cache-Control :max-
age=<seconds>, 31
Cache-Control:
must-revalidate, 32
Cache-Control:no-cache, 32

Cache-Control:no-store, 32
Cache-Control:private, 31
Cache-Control:
proxy-revalidate, 32
Cache-Control:s-maxage=
<seconds>, 31
CachelIgnoreQueryString On, 152
Cache Lite, 398
Canonical Name (CNAME), 30
cascading style sheets (CSS), 4,
91-93
background, 106
box shadows, 106-107
cache, 30
data URIs, 104
default values, 104
expressions, 101-102
external files, 100
@font-face, 107
<head>, 100
Internet Explorer (IE), 5
@import, 100
inheritance, 104
inlining, 65, 100
linear gradients, 108
<links>, 100
minification, 59-63
minifiers, 60-62
mobile platforms, 413, 414
mouse-over techniques, 104
performance, 99-110
PHP, 51
properties, 102-103
rounded corners, 105
selectors, 100-101
sprites, 91-99
text shadows, 106
transformations, 108-109
Cassandra, 310, 356
Cello, 3
certificates
intermediate, 368-369
Online Certificate Status
Protocol (OCSP), 371-372
certificate signing requests (CSRs),
369
CFLAGS. See compiler flags
CGI. See Common Gateway
Interface

check — do while

check, 190
CcHRM, 77
Chrome, 36, 44, 109, 114
chunks, 343, 346-349
Chunked Transfer Encoding
(CTE), 49
chunkSize, 310
CIL. See common intermediate
language
cipher suites, 369-371
circular references, 121-122
class, 93
classes, autoloading, 396
clearstatcache (), 395
CLI. See command-line interface
closing tags, 66
Closure Compiler, 56-58
CNAME. See Canonical Name
cold cache, 209
collections, 325
color, 78, 81, 97
columns, 240-242, 273
command-line interface (CLI), 67,
195, 258
comma-separated value (CSV), 249,
292,305
comments, 54, 64
comments, 298
commits, 336
Common Gateway Interface (CGI),
163, 378
common intermediate language
(CIL), 388
compiler flags (CFLAGS), 380
compiler, PHP, 379-381,
388-389
composite indexes, 243-244
compress, 42
compression, 417-425. See also
content compression
GIF, 72
HTTP, 425
InnoDB, 223-225
JPEG, 80-84
lossless, 72, 80
lossy, 72
MySQL, network performance,
271
Nginx, 162-163

Shared Directory Compression
for HTTP (SDCH), 47-48
zone, 82-84
compress_ops, 224-225
compress_ops_ok, 224-225
compress_time, 224
com_select, 230
concurrency, 145-146, 160-161, 332
MVCC, 355
concurrent_ insert, MyISAM, 210
conditional logging, 147
--configdb, 346
configuration servers, MongoDB
sharding,
344-345
connection handling layer, MySQL,
194
connection speed, mobile platforms,
413
connect_server, 285
--console, 300
const, 236
content
negotiation, Apache, 157-158
stale, 30-31
web browsers, 10-21
content compression, 39-52
Apache, 155-158
CSS minification, 62-63
disadvantages, 45
how it works, 41-49
methods, 42-48
PHP, 49-51
Transfer Encoding (TE), 48-49
users, 39-41
web browsers, 43—-44
Content Encoding, 48
Content-Encoding, 41
Content-Length, 42, 48—-49
Content-Type, 8, 156
cookies, 45, 185-186, 412
CouchDB, 354-355
count (), 392
covering indexes, 246
--cpustats, 300, 306
cron, 99, 298
cross-shard joins, 282-283
CSRs. See certificate signing requests
CSS. See cascading style sheets

CSS Sprite Generator, 98

CSSMin, 63

CSSTidy, 61

CSV. See comma-separated value

CTE. See Chunked Transfer
Encoding

ctype_alnum, 393

ctype_alpha, 393

cursor, 330

Cyclic Redundancy Check 32
(CRC32), 316

Data Link layer, 6

data URIs, 85, 104

db.currentOp (), 332-333

db.serverStatus (), 335-336

DCT. See Discrete Cosine Transform

default values, CSS, 104

defaults, 184-187

defer, 128

deflate, 42,43-44,73,79, 80,

424-425

deflate64, 424

DeflateBufferSize <bytess>, 156

DeflateCompressionLevel, 156

DeflateMemLevel <ints, 156

DeflateWindowSize <ints>, 156

delay_key write, 211

DELETE, 19§, 230, 246, 249
concurrent_insert, 210
TRUNCATE, 252

denial-of-service (DoS), 20, 185

Deny From, 148

DEPENDENT SUBQUERY, 235

DEPENDENT UNION, 235

DERIVED, 235

diff, 291

DirectoryIndex, 149

--disable-debug, 379

Discrete Cosine Transform

(DCT), 81

distributed indexes, 302-303

distribution master, 268

div, 92,102

<divs, 102

do while, 393

429

doctype — gettimeofday

doctype. See Document Type
Declaration
documents
HTML, 11
MongoDB, 325
Document Object Model (DOM),
115-122
CSS selectors, 102
Google Closure, 57
JavaScript, 111, 115
mobile platforms, 411
MongoDB, 326
rendering, 111
web workers, 136
document stores, 311
Document Type Declaration (DTD,
doctype), 64
domain name service (DNS), 34-37
kernel.org, 10
lookups, 11, 36
Apache, 148
MySQL, 252-253
Online Certificate Status
Protocol (OCSP),
371-372
parallel downloads, 18
TCP, 406
Time-To-Live (TTL), 269
DoS. See denial-of-service
downloads, 10-21, 128-130
Drizzle, 295
dropDups, 328
DTD. See Document Type
Declaration
dynamic sharding, 281
dynamic shared object (DSO), 142
Dynamo, 310, 355

eAccelerator, 381

eBay, 117

echo "foo", 392

ECMAScript, 112

elasticsearch, 307

elections, 341

, 65

--enable-apc-spinlocks,
383-384

430

--enable-inline-optimization,
379

endpoints, 364-368

env, 34

error logs, 146

ErrorLog, 148

errors, SQL, 260-261

Erwise, 3

European Computer Manufacturers
Association (ECMA), 112

eval, 58

eval (), 125,388

Evans, Jason, 219

event bubbling, 119

event delegation, 119-120

evictions, 319

exec (), 127

execution engine, MySQL, 194

EXI, 48

expiration policies, cache, 30

Expires, 28,29, 87

ExpiresByType, 30

EXPLAIN, 234-237,276

explain(), 329-331

expressions. See also regular
expressions

CSS, 101-102
ExtendedStatus On, 155
Extra, 235,237

failover, 322, 341

fail timeout, 178

fall, 190

False Start, 372

FastCGI (fegi), 164-168, 387-388

fastcgi_buffers, 166

fastcgi_max_temp file size,
166

favicon.ico, 85-87

fdatasynd (), 217

federated tables, 282

feedback, JavaScript, 129-130

file backups, MySQL, 291

file descriptors, 201-202

file locks, 383-384

file systems

Grid Filesystem (GridFS),
350-352
Network File System (NFES),
350, 389
Z filesystem (zfs), 334
File Transport Protocol (FTP), 6
filters, 78-79, 263-264
Firefox, 4-5, 7,43, 107, 113-114
DNS, 35, 36
MongoDB, 326
Fireworks, 82
fixed sharding, 282
Flash, 30
flash memory, 272
FLUSH TABLES, 199
FLUSH TABLES WITH READ LOCK,
291
flushing, adaptive, 221
@font-face, 107
foo, 34
for, 393
fork, 306
Fowler-Noll-Vo 1a (FNV-1a), 316
fragmentation, 231-232
free(), 320
fsync, 334, 342
fsync (), 217,294
FTP. See File Transport Protocol
FUL, 239
FULLTEXT, 296-297
full text, 236
full-text searching, 296-307
Sphinx, 297-306
tuning, 296-297
FUSE, 352

garbage collection, 121, 395

gc_collect cycles(), 395

gc_root_buffer max entries,
395

Gecko, 109

GET, 25-28, 136, 167

get_hits, 319

getLastError (), 342

get misses, 319

gettimeofday (), 155

http://kernel.org

GIF — indexes

GIF. See Graphics Interchange
Format
GIFSicle, 85
glibc, 219
global, 183-184
@@GLOBAL, 208
global variables, 56, 124-125
GNU Image Manipulation Program
(GIMP), 74, 82
Google, 37, 94, 117, 219. See also
Chrome
BigTable, 310, 355
Closure Compiler, 56-58
graphics. See also images; specific
formats
waterfall, 10
graphical user interface (GUI), 3,
322-325
Graphics Interchange Format (GIF),
71,72,
80, 96, 109
favicon.ico, 86
progressive rendering, 76
Grid Filesystem (GridFS), 350-352
GROUP BY, 204, 237, 240
gzip, 45, 46-47, 424-425
LZ77, 42
minification, 53, 59
Nginx, 160, 162-163
web browsers, 43-44

H.245, 6
handshakes, 360-364, 405-408
HAProxy
defaults, 184-187
global, 183-184
listen, 187-191
Nginx, 181-191
hardware acceleration, 371
hardware load balancers, 173
HASH, 274-275, 278
hashing, 174, 354
adaptive, 217, 221
indexes, MEMORY, 198
memcache, 322
PHP, 316
Upstream Hash, 179

HBase, 310, 356
hdr (name), 188
HEAD, 167
<head>, 100
HEAP tables, 241
height, 88-89
HipHop, 388-389
HIST, 77
Holds Adaptive Hash Latch,
217
horizontal CSS sprites, 95
horizontal partitions, 274
HostnameLookups, 148
hot cache, 209
hotspots, <areas, 90
.htaccess, 149
htcacheclean, 152
HTML, 11, 63-68, 99
cache, 30
DNS prefetching, 36
meta tags, 31
PHP cache, 397-398
test.html, 8
web pages, 10
htmlcompressor, 67-68
HTMLMinifier, 67-68
HTTP Live Headers, 7, 156
HTTP REST, 354
HTTPS, 176, 359, 360-364
Huffman encoding, 79, 421-424
hype cycle, 309
HyperText Transfer Protocol
(HTTP), 5-10, 20-21, 359, 406
cache, 9-10, 32-34
Cache-Control: max-age, 28
compression, 42, 47-48, 425
Chunked Transfer Encoding
(CTE), 49
Expires, 28
requests, 86—87, 88, 96, 137,
185
Shared Directory Compression
for HTTP (SDCH), 47-48
transparent proxies, 25

<i>, 65
ICo, 86

ICT. See Information
Communication Technology
id, 152,235
_id, 310
identity, 42
IDS. See Intrusion Detection System
IE. See Internet Explorer
if/else, 56
If-Modified-Since, 25,28
iframes, 129
ignore persist, 186
images, 71-110. See also specific
formats
conditional logging, 147
CSS sprites, 91-99
data URIs, 85
favicon.ico, 85-87
formats, 71-74
height, 88-89
interlacing, 75-77
lazy loading, 87-88
maps, 89-91, 93
optimization, 74-91
progressive rendering, 75-77
repeating, 94-99
src, 88-89
width, 88-89
image/gif, 8
images/gif, 29
, 88, 93
@import, 100
include, 393-394
include (), 395
incremental backups, 292
index, 236
indexes
columns, 240-242, 273
composite, 243-244
covering, 246
distributed, 302-303
hashing, 198
InnoDB, 247
Key, 239
management, 247
MongoDB, 328-329
MyISAM, 247
MySQL, 239-247
partial, 244

431

indexes — join_buffer_size

indexes (continued)
prefix, 244-246
preloading, 207
replication, 273
SELECT, 239
Sphinx, 297-301
tables, 242
indexBounds, 330
index merge, 236
indexOnly, 330
index_subquery, 236
infix, 304
Information Communication
Technology (ICT), 112
information_ schema, 224
inheritance, CSS, 104
ini set (), 50
init, 195, 387
inlining, 56, 65, 100, 134,
379-380
InnoDB
adaptive hashing, 217
backups, 291
buffer pool, 214-216
cache, 212-217
compression, 223-225
data structure, 218
file formats, 218
full-text searching, 296
indexes, 247
insert buffer, 216-217
1/0, 219-222
memory, 218-219
monitoring, 211-212
mutex, 222-223
partition storage, 277
replication, 273
spin locks, 222-223
tablespaces, 217-218
threading, 291
transactions, 196-197
tuning, 211-225
innodb_buffer pool_ instances,
216
innodb_buffer pool size, 212,
216
innodb change buffering, 216
INNODB_CMP, 224

432

innodb file format ini, 218
innodb_file per table, 217
innodb_flush method, 213
innodb_io capacity, 221
innodb_max_dirty pages_pct,
221
innodb old blocks pct, 214
innodb_old blocks_time, 220
innodb purge threads, 221-222
innodb_read_ahead_ threshold,
220
innodb spin wait delay, 223
innodb_thread concurrency,
217,291
innodb use sys malloc, 218
innodb write io threads, 222
Innotop, 287
INSERT, 230, 246, 291
bulk writes, 249, 250
MyISaM, 195,196
insert buffer, 216-217
inter, 190
interframe transparency, 80
interlacing, images, 75-77
intermediate cache, 24-25, 31-32
intermediate certificates, 368-369
intermediate masters, 268
Internet Explorer (IE), 4, 16, 35, 85,
107, 112
content compression, 43
CSS, 5
favicon.ico, 87
just in time (JIT), 114
PNG, 73
Scalable Vector Graphics
(SVG), 74
Internet Protocol (IP), 5, 10, 164,
171, 269
Apache, 148
load-balancing, 174-175
parallel downloads, 18
Internet Service Providers (ISPs), 23,
24-25, 35,412
Intrusion Detection System (IDS), 20
1/0, 217, 246, 306
asynchronous 1/0 (AIO),
161-162
InnoDB, 219-222,223

MongoDB sharding, 349

Nginx, 161-162
IonMonkey, 114, 300, 306
isMultiKey, 330

JagerMonkey, 113

Java, 4,67

JavaScript, 111-115
AJAX, 137
async, 128
cache, 30
defer, 128
downloads, 128-130
eval (), 125
event bubbling, 119
feedback, 129-130
garbage collection, 121
global variables, 124-125
gzip, 45
iframes, 129
inlining, 65, 134
loading, 127-128
local variables, 124-125
loops, 122-124
merging, 130-133
minification, 54-59
mobile platforms, 411, 414
mod_deflate, 155-156
MongoDB, 326
Node.js, 169
optimizing, 122-136
PHP, 51
regular expressions, 126-127
script, 129
splitting, 133-134
unobtrusive, 120-121
web workers, 134-136

JavaScript Object Notation (JSON),

311, 354

binary JSON (BSON), 325

JEMalloc, 219

JIT. See just in time

join, 240

joins, 251-252,282-283,

337-339
join buffer size, 204-205

Joint Photographic Experts Group — memcache

Joint Photographic Experts Group
(JPEG), 71, 72, 75-76, 80-84, 86

journaledMB, 336

journaling, 333-334

JPEG. See Joint Photographic
Experts Group

JPEG 2000, 110

JPEGTran, 85

JQuery, 138

JScript, 112

JSON. See JavaScript Object
Notation

just in time (JIT), 114, 115, 388

-k, memcache, 312

Keep-Alive, 13-14, 20, 48,
186-187

kernel.org, 10

KEY, 275

Key, 239

key, 235

key cache, 205-210

KEY BLOCK_SIZE, 224,225

key buffer_size, 205

key cache_age_threshold, 210

key cache block size, 207-208

key cache division limit, 210

key len, 235

Key read requests, 206

Key reads, 206

key-value stores, 310, 311

LAN. See local area network

Last-Modified, 25-26, 28

Last_SQL_Errno, 260

Last_SQL Error, 260

lazy loading, 87-88

1dd, 378

Least Recently Used (LRU), 24, 199,
210

leastconn, 187

Lempel-Ziv Ross Williams (LZRW),
420-421

Lempel-Ziv Welch (LZW), 42,
62-63,71,72,80
compression, 417-421
horizontal, 95
Lempel-Ziv-Markov algorithm
(LZMA), 420
Length, 310
lexical parser, 381
libcrypto, 378
libketama, 316
libpng.zlib, 425
libssl, 378
lighttpd, 168-169
LIKE, 296
LIMIT, 204
linear gradients, CSS, 108
<link>, 100
Linux, 183, 219, 375, 378, 425
LIST, 275
listen, 187-191
ListenBacklog, 146
LiveScript, 112
LOAD DATA FROM MASTER, 258
load balancing
MongoDB sharding, 346-349
MySQL Proxy, 284-285
Nginx, 163, 173-191
Sphinx, 303-304
SSL, 364-368
local area network (LAN), 25, 185
local variables, 56, 124-125
localhost, 147
Location, 171
locks, 222-223, 332, 383-384
logging
Apache, 146-148
binary logs, 271-272, 292, 305
slow query log, 237-238,
331-332
Logical Volume Management
(LVM), 293, 334
logresolve, 148
LONGTEXT, 297
lookup. See also domain name
service
tables, 280-281
loops, 122-124, 392-393
lossless compression, 72, 80

lossy compression, 72

low priority updates, 211

LRU. See Least Recently Used

Lua, 285-286

Lucene, 306

Lynx, 3, 44

LZ77,42,79, 417-418

LZ78, 418-419

LZMA. See Lempel-Ziv-Markov
algorithm

LZRW. See Lempel-Ziv Ross
Williams

LZW. See Lempel-Ziv Welch

-M, memcache, 312
malloc, 219
malloc (), 204, 320
mapped memory (mmap), 204, 382
MariaDB, 294-295
master, 256-257, 262,268, 273
master-master, 268-270
MATCH, 239
MAX (), 240
MaxClients, 137, 143, 144, 145-146
maxconn, 183
max_fails, 178
max_heap table size, 197
max matches, 305
maxqueue, 189
MaxRequestsPerChild, 143, 152,
394
MaxSpareServers, 143
MDS. See Message Digest 5
mds, 310
Media Access Control (MAC), 6
MEDIUMINT, 295
MEDIUMTEXT, 297
membase, 310, 321-325, 390
memcache, 310
Alternative PHP Cache (APC),
386
binary protocol, 320
client APIs, 313-314
deploying, 315
hashing, 322
key-value stores, 311

433

http://kernel.org

memcache — my.cnf

memcache (continued)
membase, 321-325
memory, 320
multigets, 316
multiserver setups, 315-317
multisets, 316
MySQL, 314-315
Nginx, 363
NoSQL, 311-325
parallelization, 316
performance, 318-320
persistent storage, 321
PHP, 390
threading, 319-320
User-Defined Functions (UDFs),
317-318
User Datagram Protocol (UDP),
320
virtual buckets, 322
-memlock, 214
memory
Alternative PHP Cache (APC),
382
battery backed-up memory, 272
Document Object Model
(DOM), 121-122
flash, 272
InnoDB, 218-219
memcache, 320
mmap, 382
Non-Uniform Memory Access
(NUMA), 213
out of memory (OOM), 214
pages, 163
shm, 382, 390-391
Uniform Memory Access
(UMA), 213
MEMORY, 197-198, 315
Message Digest 5 (MDS), 316
meta tags, 31
microtime (), 398
MidasWWW, 3
Midpoint Insertion Strategy (MIS),
210
millis, 330
MIME. See Multipurpose Internet
Mail Extension
MIN (), 240

434

minification, 53-69
CSS, 59-63
HTML, 63-68
JavaScript, 54-59
minifiers, 53, 58, 60-62
MinSpareServers, 143
Mkill, 287
mlockall, 214
mmap. See mapped memory
MNG. See Multiple-Image Network
Graphics
mobile platforms, 409-415
cache, 414-415
cookies, 412
CSS, 413, 414
Document Object Model
(DOM), 411
Internet Service Providers
(ISPs), 412
JavaScript, 411, 414
PHP, 412
mod_cache, 150
mod_deflate, 46, 155-157
mod_disk cache, 150
mod_expires, 28-30
mod_fcgid, 167-168
mod_file_cache, 153
mod_gnutls, 364
mod_gzip, 46, 51
modifiers, regular expressions, 126
mod_mem_cache, 152
mod_memcache_cache, 153
mod_php, 144, 167
mod_gos, 137
mod_rewrite, 33-34, 157, 412
mod_status, 153-155
modules
Apache, 142
Nginx, 163-164
PHP, 377
MongoDB
arbiters, 341
backups, 334
concurrency, 332
data integrity, 333-334
db.serverStatus (), 335-336
drivers, 327-328
elections, 341

explain(), 329-331
failover, 341
indexes, 328-329
joins, 337-339
journaling, 333-334
locks, 332
MySQL, 326, 353
NoSQL, 325-353
performance, 328-339
priorities, 341-342
processlist, 332-333
profiling, 331-332
queries, 329-332
replication, 339-342, 349-350
schema, 337-339
sharding, 343-353
shell, 326-327
single-server durability,
333-334
slow query log, 331-332
voting, 341
mongodump, 334
mongorestore, 334
mongostat, 336-337
monitoring lag, 261-262
Mosaic, 4
mouse-over techniques, 104
Moved Permanently. See 301
Moxi, 322
-moz-box-shadow, 107
Mozilla Foundation, 4
Mtop, 286-287
multidimension stores, 310
multigets, 316
MULTIPLE, 244
Multiple-Image Network Graphics
(MnG), 109
Multi-Process Models (MPMs),
142-144,
306, 376
Multipurpose Internet Mail
Extension (MIME), 8, 29, 30,
155, 351
multisets, 316
multiversion concurrency control
(MVCCQC), 355
mutual exclusion (mutex), 222-223
my.cnf, 253, 261, 264

my_column — nreturned

my column, 275-276
MyISAM, 195-196,205-211
bulk insert_buffer size,

250
FLUSH TABLES WITH READ
LOCK, 291

full-text searching, 296
indexes, 247
partition storage, 277
replication, 273
myisampack, 196
mysgdump, 291-292
MySQL
alternatives, 294-307
ARCHIVE, 198
backups, 291-293
comma-separated value
(CSV), 292
file, 291
incremental, 292
bulk writes, 249-250
command-line interface (CLI),
195,258
complements, 283-293
connection handling layer, 194
DNS lookups, 252-253
execution engine, 194
EXPLAIN, 234-237
FULLTEXT, 296-297
indexes, 239-247
init, 195
joins, 251-252
Logical Volume Management
(LVM), snapshots, 293
MEMORY, 197-198, 315
MongoDB, 326, 353
monitoring, 286-287
networks, 255-308
compression, 271
replication, 256-273
SQL errors, 260-261
normalization, 250-251
optimizer, 194
parser, 194
partitions, 273-279
performance, 289-290
per-session buffers, 204-205
possible keys, 242

prepared statements, 253-254
query cache, 194, 225-234,
314-315
query cost, 248-249
query optimization, 247-248
query profiler, 287-289
SELECT *,252
sharding, 279-283
slave backups, 292-293
slow query log, 237-238
SQL backups, 291-292
stop words, 297
storage engines, 195-197
table cache, 198-202
thread cache, 202-204
tokens, 248
tools, 286-293
tuning, 193-254
User-Defined Functions (UDFs),
317-318
MySQL Proxy, 283-286
mysgld safe, 214
mysgldumpslow, 238
mysglimport, 292

Nagle’s algorithm, 408
nbproc, 183
nChunkSkips, 330
Nedmalloc, 219
NetBios, 6
Netscape Navigator, 4, 43, 112, 156
netstat, 407
networks. See MySQL
Network Address Translation
(NAT), 173
Network File System (NFS), 350,
389
network interface card (NIC), 270
Network Layer, 6
Nginx, 158-191
Apache, 172
cache, 361
CGI, 163
compression, 162-163
concurrency, 160-161
configuration, 159-160

gzip, 160, 162-163
HAProxy, 181-191
1/0, 161-162
Internet Protocol (IP), 164
load balancing, 163, 173-191
memcache, 363
modules, 163-164
multiserver setups, 169-172
PHP, 164-168
processor affinity, 160
proxies, 170-172
sendfile, 161
server-side includes (SSIs), 163
Secure Sockets Layer (SSL),
160, 164, 175-176, 365-366
Stub Status, 164
tcp_nodelay, 161
tcp nopush, 161
worker connections,
160-161
worker processes, 160
NIC. See network interface card
Nitro Extreme. See SquirrelFish
nobody, 312
nocache, 391
Node.js, 169
nondeterministic queries, 233-234
Non-Uniform Memory Access
(NUMA), 213
non-youngs/s, 215-216
normalization, MySQL, 250-251
NoSQL, 309-357
Amazon Dynamo, 310, 355
Cassandra, 310, 356
CouchDB, 354-355
document stores, 311
Google BigTable, 310, 355
HBase, 310, 356
key-value stores, 310
memcache, 311-325
MongoDB, 325-353
multidimension stores, 310
Redis, 356
Riak, 356
Tokyo Cabinet, 354
Tokyo Tyrant, 354
Voldemort, 310, 355
nreturned, 332

435

nscanned — prefix indexes

nscanned, 330
nscannedObjects, 330
nYields, 330

ob_gzhandler, 50-51

observe, 191

O _DIRECT, 161, 213

01d database pages, 21§

ondisk dict, 305

Online Certificate Status Protocol
(OCSP), 371-372

opcode, PHP, 381-388

Open Systems Interconnection
(OSI), 6

open files limit, 201-202

OpenSSH, 425

OpenSSL, 361

Opera, 395, 44, 109, 114-115

oplog, 339-340

OPTIMIZE TABLE, 247

option forceclose, 187

option httpclose, 187

option http-pretend-keepalive,
187

ORDER BY, 204, 237, 240

OurDelta, 295

out of memory (OOM), 214

output buffering, 49-50

output compression, 50

<p>, 102

Paeth Predictor, 79

pages, 10, 163

Pages made not young, 215
Pages made young, 215
palette, 72

parallel downloads, 14-21
parallel queries, 302-303
parallelization, 316

parse trees, 248

parsers, 194, 381

partial indexes, 244

partial matching, Sphinx, 304-305
partitions, 273-279

436

Drizzle, 295
PHP Extension Community Library
(PECL), 313, 327, 382
peerdist, 48
Percona, 290, 295-296
performance
Apache, 148-150
CSS, 99-110
DNS lookups, 36
gzip, 46-47
LZ77, 418
memcache, 318-320
MongoDB, 328-339
MySQL, 289-290
networks, 270-271
replication, 270-272
slaves, 271
Sphinx, 304-306
TCP, 405-408
Performance Tuning Primary
Script, 289
periodic yielding, 332
per-session buffers, 204-205
persistent connections, 13-14,
396-398
persistent storage, 321
Phalanger, 388
phc, 388
PHP
Apache, 144, 164-168, 376
autoloading classes, 396
cache, 391-392
HTML, 397-398
opcode, 381-388
Common Gateway Interface
(CGI), 378
compiler, 379-381, 388-389
content compression, 49-51
efficient programming,
392-394
extensions, 376-379
FastCGI (fegi), 165-166,
387-388
garbage collection, 395
hashing, 316
include, 393-394
include (), 395
inlining, 379-380

loops, 392-393
membase, 390
memcache, 313, 390
mobile platforms, 412
modules, 377
MongoDB, 327
Multi-Purpose Models (MMPs),
376
Network File System (NFS),
389
Nginx, 164-168
non-use of, 401
optimization, 375-401
parser, 381
persistent connections, 396-398
prepared statements, 254
realpath, 394-395
regular expressions, 393
require (), 395
sessions, 389-392
session.auto_start, 391
sharding, 282
T9, 48
xhprof, 398-400
PHP_ FCGI_CHILDREN, 165
pHYs, 77
Physical layer, 6
ping, 406
piping logs, 147-148
PKZIP, 424
PNG. See Portable Network Graphics
pngcrush, 84
PNGOUT, 84
Portable Network Graphics (PNG),
72,77-80
CSS sprites, 96
deflate, 73,79
favicon.ico, 86
interlacing, 76
MNG, 109
position-independent code (PIC), 380
possible keys, 235,242
POST, 136, 167
PostgreSQL, 307-308
<pres>, 64
preemptive loading, 138
prefetching, 36-37
prefix indexes, 244-246

prefix — roundrobin

prefix, partial matching, 304
prefork, 143-144, 306
preopen, 305
prepared statements, 253-254
prepLogBuffer, 336
Presentation Layer, 6
PRIMARY, 235§
privacy, 24
private, 391
private no expires, 391
processlist, 332-333
processor affinity, 160
profiling, MongoDB, 331-332
progressive rendering, 75-77
properties
CSS, 102-103
re-ordering, 63
Prototype, 138
proxies. See also HAProxy; MySQL
Proxy;
reverse proxies
Apache, 170-172
Internet Protocol (IP), 171
Nginx, 170-172, 177-180
parallel downloads, 20
transparent, 23, 25
proxy redirect, 171
pruning, partitions, 276-277
public, 391

Qcache free blocks, 229
Qcache free memory, 229, 232
Qcache hits, 229
Qcache inserts, 229
Qcache lowmen prune, 229
Qcache not_cached, 229
Qcache gqueries in cache, 229
Qcache total blocks, 229
QEP. See Query Execution Path
queries
MongoDB, 329-332
MySQL
cache, 194, 225-234,
314-315
cost, 248-249
optimization, 247-248

profiler, 287-289
nondeterministic, 233-234
parallel, 302-303
slow query log, 237-238,

331-332
strings, intermediate cache, 31
Query Execution Path (QEP), 248,
296
query cache limit, 228,233
query_ cache_min_res_unit, 228,
231-232
query cache size, 227,232
query cache type, 227,228,233
query cache wlock invalidate,
228
query_cache_write_lock, 231
queue, Document Object Model
(DOM), 119
q-values, 42

RAID, 272,274

RANGE, 275-276, 278

range, 236

RBR. See row-based replication

RDBMS. See relational database
management system

RDP. See Remote Desktop Protocol

rdp-cookie, 188

read buffers, 306

read-ahead, 220

read_buffer size, 204

read_query result, 285

read_rnd buffer size, 204

realpath, 394-395

real-time (RT), 298, 305

Redirect, 33

Redis, 310, 356

redundant headers, 77

ref, 235,236

reflow, 117-119

ref or null, 236

REGEXP, 296

RegExp, 126

regional compression. See zone
compression

regular expressions, 126-127, 393

relational database management
system (RDBMS), 193,
326
Remote Desktop Protocol (RDP),
188
remoteapache, 148
render tree, 117-118
rendering, 11-12, 111
repaint, 117-119
replicatedo-db, 264
replicate-ignore-db, 264
replication
active-passive master-master,
269-270
backups, 273
Drizzle, 295
filters, 263-264
lag, 259
master-master, 268-269
membase, 322
MongoDB, 339-342, 349-350
monitoring and maintenance,
259-260
monitoring lag, 261-262
MySQL networks, 256-273
partitions, 278
performance, 270-272
single master, multiple slaves,
262
types, 262-263
--replSet, 340
request latency, 144
request-learn, 186
require (), 395
responseLength, 332
responsive content, 410-413
reverse proxies, 142, 170-171, 177,
366
cache, 397
web servers, 23,25
RGB, 73, 80
RGBA, 73
Riak, 356
RIOT, 84
rise, 191
--rotate, 300
rounded corners, 105

roundrobin, 187

437

round-robin algorithm — Sphinx

round-robin algorithm, 174

row-based replication (RBR),
262-263,270

ROW_FORMAT, 218

rows, 235

rpaf, 172

rsync, 425

RT. See real-time

Safari, 44, 115
sBIT, 77
SBR. See statement-based replication
Scalable Vector Graphics (SVG),
73-74
SCGI. See Simple CGI
scheduling application programming
interfaces (SAPIs), 378
schema, MongoDB, 337-339
script, 129
SDCH. See Shared Dictionary
Compression for HTTP
searchd, 300
Seconds_Behind Master, 260
Secure Shell (SSH), 6, 271
OpenSSH, 425
Secure Sockets Layer (SSL), 359-373
acceleration, 175-176
Apache, 155, 366-367
cache, 360-364
cipher suites, 369-371
endpoints, 364-368
False Start, 372
future, 371
handshakes, 360-364
hardware acceleration, 371
HTTP, 359
intermediate certificates,
368-369
key size, 369
load-balancing, 364-368
Nginx, 160, 164, 175-176,
365-366
Online Certification Status
Protocol (OCSP), 371-372
OpenSSL, 361
session identifiers, 361-362
session tickets, 362-363

438

termination, 175-176, 364-368
SELECT, 195, 240, 243, 246
com_select, 230
concurrent_insert, 210
indexes, 239
MySQL query cache, 225-226,
230,232
SELECT *,252
selectors, CSS, 60, 100-101
select_type, 235
semaphores, 383-384
SendBufferSize, 149-150
sendfile, 161
sending windows, 407
server-side includes (SSIs), 163
sessions, 389-392
sticky, 174, 179
session affinity, 174, 179, 185-186
session identifiers, 361-362
Session Layer, 6
session tickets, 362-363
session.auto_start, 391
session.cache expire, 391
session.cache limiter, 391
sessionid, 152
SET SESSION, 204
7-Zip, 46-47
SFX. See SquirrelFish
sharding
MongoDB, 343-353
MySQL, 279-283
Shared Dictionary Compression for
HTTP (SDCH), 47-48
shared memory (shm), 382, 390-391
SHOW ENGINE INNODB MUTEX, 222,
223
show engine innodb status, 215
SHOW PROFILE, 287-288
SHOW SLAVE STATUS, 259-260, 262
SHOW STATUS, 290
SHOW VARIABLES, 290
showalert, 57
showalert (), 57
Simple CGI (SCGI), 163
Simple Message Transport Protocol
(SMTP), 6
Simple Network Management
Protocol
(SNMP), 174

Sina.com, 117
single master, multiple slaves, 262,
264-267
single-server durability, 333-334
skip-name-resolve, 253
skip-slave-start, 261
slamming, 384
slaves, 273
backups, MySQL, 292-293
network performance, 270
single master, multiple slaves,
262
SQL networks, 256-257
slave compressed protocol, 270
Slave IO State, 260
slaveOkay, 341
sliding window, LZ77, 418
slow query log, 237-238, 331-332
slow starts, 187
slowstart, 191
SMALLINT, 295
SMP. See symmetric multiprocessing
SMTP. See Simple Message
Transport Protocol
snapshots, LVM, 293
SNMP. See Simple Network
Management Protocol
SOCKS, 6
software load balancers, 173
solid-state device (SSD), 272
sort_buffer size, 204
source, 187
Sparse, 328
spatial compression. See zone
compression
Sphinx
attributes, 299
binary logs, 305
cron, 298
data sources, 298-299
distributed indexes, 302-303
full-text searching, 297-306
indexes, 297-301
1/0, 306
load-balancing, 303-304
max_matches, 305
Multi-Purpose Models (MMPs),
306
ondisk dict, 30S

http://Sina.com

SphinxSE - transparency

parallel queries, 302-303
partial matching, 304-305
performance, 304-306
preopen, 305
read buffers, 306
real time (RT), 298, 305
stop words, 304
SphinxSE, 301-302
spin locks, 222-223, 383-384
splicing, TCP, Linux kernel, 183
sPLT, 77
Spock Proxy, 286
Spreadsheet Syndrome, 251
sprites. See cascading style sheets
SpriteMe, 98
SQL
backups, 291-292
errors, 260-261
SQL injection attacks, 254
SQL_BIG_RESULT, 253
SQL_CACHE, 234
SQLite, 307
SQL_NO_CACHE, 233, 234
SQL SMALL RESULT, 253
SquirrelFish, 115
src, 88-89
SSD. See solid-state device
SSH. See Secure Shell
SSIs. See server-side includes
SSL. See Secure Sockets Layer
SSLCipherSuite, 369-370
stale content, 30-31
StartServers, 143, 144
statement-based replication (SBR),
262-263,
270
static file server, 180
static-rr, 187
statistical LZ, 420
stats, 318-319
sticky sessions, 174, 179
stop words, 297, 304
storage engines, MySQL, 195-197
storeBytes, 352
storeFile, 352
, 65
str_replace, 393
Stub Status, 164
stud, 362, 368

stunnel, 362, 367-368

style sheets, 11. See also cascading
style sheets

Sub, 79

SUBQUERY, 235

SVG. See Scalable Vector Graphics

swappiness, 214

symlinks, 149

symmetric multiprocessing (SMP),
213

SYN flood, 20

sync_binlog, 271

--syncdelay, 334

SYN_RECV, 407

syslog, 148

syslog-ng, 148

system, 236

table, 235
tables
cache, MySQL, 198-202
federated, 282
HEAP, 241
Huffman encoding, 79
indexes, 242
lookup, 280-281
management, 247
Tokyo Cabinet, 354
table definition cache,
200-201
table open cache, 199-200
tablespaces, 217-218
Tagged Image File Format (TIFF), 72
TCMalloc, 219
TCP. See transmission control
protocol
TCP_CORK, 408
TCP_NODELAY, 161
tcp_nodelay, 161
TCP_NOPUSH, 161, 408
tcp_nopush, 161
TE. See Transfer Encoding
termination, SSL, 175-176, 364-368
test (), 127
test.html, 8
TEXT, 297
text shadows, 106

third normal form (3NF), 337
thread_cache_size, 203
threading
background, 221
cache, MySQL, 202-204
InnoDB, 291
memcache, 319-320
threads, 306
Threads_cached, 203
Threads_connected, 203
Threads_running, 203
3NF. See third normal form
three-way handshake, 405-408
TIFF. See Tagged Image File
Format
TIME, 295
tIME, 77
timeMs, 336
timeout check, 185
timeout client, 185
timeout connect, 185
timeout http-keep-alive,
185
timeout http-request, 185
timeout queue, 185
timeout server, 185
timeouts, HAProxy defaults,
184-185
Time-To-Live (TTL), 35, 36, 269,
382-383
Tiny HTTPD (thttpd), 169
TINYINT, 295
title, 66
TLS. See Transport Layer Security
tne.rcvbuf.client, 184
tokens, MySQL, 248
Tokyo Cabinet, 354
Tokyo Tyrant, 354
TraceMonkey, 113
traffic shaping, 176
transactions, 196-197
Transfer Encoding (TE), 48-49
transformations, 108-109
transmission control protocol (TCP),
5, 10,
405-408
memcache, 312
splicing, Linux kernel, 183
transparency, 78, 80

439

transparent proxies —- WYSIWYG

transparent proxies, 23, 25
Transport Layer, 6
Transport Layer Security (TLS), 359
TRUNCATE, 252

TTFB, 406

TTL. See Time-To-Live
tune, 184

tune.bufsize, 183
tune.chksize, 183
tune.maxaccept, 184
tune.maxpollevents, 184
tune.maxrewrite, 184
tune.rcvbuf.server, 184
tune.sndbuf.client, 184
Turck MMCache, 381
type, 235, 236-237

-u nobody, 312

UDFs. See User Defined Functions

UDP. See User Datagram Protocol

UNCACHEABLE SUBQUERY, 235

uncompress_ops, 224

uncompress_time, 224

UNI, 239

Uniform Memory Access (UMA),

213

UNION, 235

UNION RESULT, 235

UNIQUE, 244

unique, 328

unique_ subgquery, 236

UNIV DEBUG, 222

UNIX, 42, 54, 99, 375

UNLOCK TABLES, 291

unobtrusive JavaScript, 120-121

UnQL, 354

Up, 79

UPDATE, 246, 249, 273
concurrent insert, 210
MyISaM, 195
MySQL query cache, 230

uploadDate, 310

upstream, 177

Upstream Hash, 179

upstream fair, 179

uri, 188

440

URIs, data, 85, 104

url param, 188

UseCanonicalNames, 152

User Datagram Protocol (UDP), 6,
36,312, 320

User Defined Functions (UDFs),
317-318

UserAgent, 411, 412

Using filesort, 237

Using index, 237

Using temporary, 237

Using where, 237

us.png, 11

var, 56

varchar, 218
variables, 56, 124-125
Vary, 9

vertical CSS sprites, 95
virtual buckets, 322
virtual hosting, 9
Voldemort, 310, 355
voting, MongoDB, 341

w, MongoDB, 342
W3C. See World Wide Web
Consortium
Waiting for master to send
event, 260
warm cache, 209, 387
waterfall graphics, 10
web browsers, 3-21. See also specific
browsers
Accept-Encoding, 45
cache, 23-25
DNS, 35
content, 10-21
compression, 43-44
deflate, 43-44
downloads, 10-21
favicon.ico, 86
gzip, 43-44
history of, 3-5

HTTP, 5-10
JavaScript, 112-115
Keep-Alive, 13-14
linear gradients, 108
Nginx, 158-191
parallel downloads, 14-21
persistent connections,
13-14
queue, Document Object Model
(DOM), 119
rendering, 11-12
Scalable Vector Graphics
(SVG), 74
web console, 322-325
web pages, 10
web servers, 141-192. See also
Apache
AJAX, 137
lighttpd, 168-169
Node.js, 169
reverse proxies, 23, 25
thttpd, 169
web workers, JavaScript,

134-136
-webkit-box-shadow, 107
-webkit-gradient, 108
weight, 189
weighted compression. See zone

compression
what-you-see-is-what-you-get

(WYSIWYG),

133
WHERE, 237, 273,276,291
while, 393
whitespace, 54, 55-56, 61, 64
white-space, 64
width, 88-89
Wikipedia, 21
Wordpress.com, 117
worker connections, 160-161
worker processes, 160
World Wide Web Consortium

(W3C), 48, 72
writeToDataFiles, 336
writeToJournal, 336
WURFL, 412
WYSIWYG. See what-you-

see-is-what-you-get

http://Wordpress.com

XCache — zone compression

XCache, 381

XCF, 82

xhprof, 398-400
XHTML, 63
XML, 48, 73-74, 311
XMLHt tpRequest, 136-137
XtraDB, 296

Yahoo, 55-56

YCbCr, 80

YEAR, 295

youngs/s, 215-216
YUI Compressor, 55-56
yum install, 376

Z filesystem (zfs), 334

Zend, 381

z1ib, 50-51, 79, 156,223, 424
zone compression, 82—-84

441

Try Safari Books Online FREE
for 15 days and take 15% off
for up to 6 Months®

Gain unlimited subscription access to thousands of books and videos.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

® Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

® Hundreds of expert-led instructional videos on
today's hottest topics

e Sample code to help accelerate a wide variety of
software projects

® Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

® Rough Cuts pre-published manuscripts

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and
is valid for the first 6 consecutive monthly billing cycles.
Safari Library is not available in all countries.

S a fa rl An Imprint of ®WILEY

Books Online Now you know.

http://www.safaribooksonline.com/wrox

Programmer to Programmer”

Connect with Wrox.

Participate

User Group Program

Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox

Become a member and take advantage of all
the benefits

Wrox on Ewiktker

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferences
and user group events

Contact Us.

We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

	Professional Website Performance: Optimizing the Front End and the Back End
	Copyright
	About The Author
	About The Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Why Speed Is Important
	Tools of the Trade
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need To Use This Book
	Conventions
	Errata
	P2P.Wrox.Com

	Part I: Front End
	Chapter 1: A Refresher on Web Browsers
	A Brief History of Web Browsers
	Netscape Loses Its Dominance
	The Growth of Firefox
	The Present

	Inside HTTP
	The HyperText Transfer Protocol
	HTTP Versions
	Support for Virtual Hosting
	Caching

	How Browsers Download and Render Content
	Rendering
	Persistent Connections and Keep- Alive
	Parallel Downloading

	Summary

	Chapter 2: Utilizing Client-Side Caching
	Understanding the Types of Caching
	Caching by Browsers
	Intermediate Caches
	Reverse Proxies

	Controlling Caching
	Conditional GETs
	Utilizing Cache-Control and Expires Headers
	Choosing Expiration Policies
	Coping with Stale Content
	How Not to Cache

	Dealing with Intermediate Caches
	Cache-Control Revisited

	Caching HTTP Responses
	The Shift in Browser Behavior
	Using Alternative 3xx Codes

	DNS Caching and Prefetching
	The DNS Resolution Process
	DNS Caching by the Browser
	How DNS Lookups Affect Performance
	DNS Prefetching
	Controlling Prefetching

	Summary

	Chapter 3: Content Compression
	Who Uses Compression
	Understanding How Compression Works
	Compression Methods
	Other Compression Methods
	Transfer Encoding

	Compression in PHP
	Compressing PHP-Generated Pages
	Compressing Other Resources

	Summary

	Chapter 4: Keeping the Size Down with Minification
	JavaScript Minification
	YUI Compressor
	Google Closure
	Comparison of JavaScript Minifiers

	CSS Minification
	Use Shorthand
	Grouping Selectors
	CSS Minifiers
	Improving Compression

	HTML Minification
	HTML Minification Techniques
	HTML Minification Tools

	Summary

	Chapter 5: Optimizing Web Graphics and CSS
	Understanding Image Formats
	JPEG
	GIF
	PNG
	SVG

	Optimizing Images
	Image Editing Software
	Choosing the Right Format
	Interlacing and Progressive Rendering
	PNG Optimization
	GIF Optimization
	JPEG Compression
	Image Optimization Software
	Data URIs
	Favicons
	Using Lazy Loading
	Avoiding Empty src attributes
	Using Image Maps

	CSS Sprites
	Sprite Strategies
	Repeating Images

	CSS Performance
	CSS in the Document Head
	Inline versus External
	Link versus @import
	Redundant Selectors
	CSS Expressions
	Selector Performance
	Using Shorthand Properties
	Inheritance and Default Values
	Doing More with CSS

	Looking Forward
	MNG
	APNG
	JPEG 2000

	Summary

	Chapter 6: JavaScript, The Document Object Model, and Ajax
	JavaScript, JScript, and ECMAScript
	A Brief History of JavaScript
	JavaScript Engines

	The Document Object Model
	Manipulating the DOM
	Reflowing and Repainting
	Browser Queuing
	Event Delegation
	Unobtrusive JavaScript
	Memory Management

	Getting the Most from JavaScript
	Language Constructs
	Loading JavaScript
	Nonblocking of JavaScript Downloads
	Merging, Splitting, and Inlining
	Web Workers

	Ajax
	XMLHttpRequest
	Using Ajax for Nonblocking of JavaScript
	Server Responsiveness
	Using Preemptive Loading
	Ajax Frameworks

	Summary

	Part II: Back End
	Chapter 7: Working with Web Servers
	Apache
	Working with Modules
	Deciding on Concurrency
	Improving Logging
	Miscellaneous Performance Considerations
	Examining Caching Options
	Using Content Compression

	Looking Beyond Apache
	Nginx
	Nginx, Apache, and PHP
	The Best of the Rest

	Multiserver Setups with Nginx and Apache
	Nginx as a Reverse Proxy to Apache
	Proxy Options
	Nginx and Apache Side by Side

	Load Balancers
	Hardware versus Software
	Load Balancer Features
	Using Multiple Back-End Servers
	HAProxy

	Summary

	Chapter 8: Tuning MySQL
	Looking Inside MySQL
	Understanding the Storage Engines
	MyISAM
	InnoDB
	MEMORY
	ARCHIVE

	Tuning MySQL
	Table Cache
	Thread Caching
	Per-Session Buffers

	Tuning MyISAM
	Key Cache
	Miscellaneous Tuning Options

	Tuning InnoDB
	Monitoring InnoDB
	Working with Buffers and Caches
	Working with File Formats and Structures
	Memory Allocation
	Threading
	Disk I/O
	Mutexes
	Compression

	Working with the Query Cache
	Understanding How the Query Cache Works
	Configuring the Query Cache
	Inspecting the Cache
	The Downsides of Query Caching

	Optimizing SQL
	EXPLAIN Explained
	The Slow Query Log
	Indexing
	Query Execution and Optimization
	Query Cost
	Tips for SQL Efficiency

	Summary

	Chapter 9: MySQL in the Network
	Using Replication
	The Basics
	Advanced Topologies
	Replication Performance
	Miscellaneous Features of Replication

	Partitioning
	Creating Partitions
	Deciding How to Partition
	Partition Pruning
	Physical Storage of Partitions
	Partition Management
	Pros and Cons of Partitioning

	Sharding
	Lookup Tables
	Fixed Sharding
	Shard Sizes and Distribution
	Sharding Keys and Accessibility
	Cross-Shard Joins
	Application Modifications

	Complementing MySQL
	MySQL Proxy
	MySQL Tools

	Alternatives to MySQL
	MySQL Forks and Branches
	Full-Text Searching
	Other RDBMSs

	Summary

	Chapter 10: Utilizing NoSQL Solutions
	NoSQL Flavors
	Key-Value Stores
	Multidimension Stores
	Document Stores

	memcache
	Installing and Running
	membase — memcache with Persistent Storage

	MongoDB
	Getting to Know MongoDB
	MongoDB Performance
	Replication
	Sharding

	Other NoSQL Technologies
	Tokyo Cabinet and Tokyo Tyrant
	CouchDB
	Project Voldemort
	Amazon Dynamo and Google BigTable
	Riak
	Cassandra
	Redis
	HBase

	Summary

	Chapter 11: Working with Secure Sockets Layer (SSL)
	SSL Caching
	Connections, Sessions, and Handshakes
	Abbreviated Handshakes

	SSL Termination and Endpoints
	SSL Termination with Nginx
	SSL Termination with Apache
	SSL Termination with stunnel
	SSL Termination with stud

	Sending Intermediate Certificates
	Determining Key Sizes
	Selecting Cipher Suites
	Investing in Hardware Acceleration
	The Future of SSL
	OCSP Stapling
	False Start

	Summary

	Chapter 12: Optimizing PHP
	Extensions and Compiling
	Removing Unneeded Extensions
	Writing Your Own PHP Extensions
	Compiling

	Opcode Caching
	Variations of Opcode Caches
	Getting to Know APC
	Memory Management
	Optimization
	Time-To-Live (TTL)
	Locking
	Sample apc.ini
	APC Caching Strategies
	Monitoring the Cache
	Using APC as a Generic Cache
	Warming the Cache
	Using APC with FastCGI

	Compiling PHP
	phc
	Phalanger
	HipHop

	Sessions
	Storing Sessions
	Storing Sessions in memcache/membase
	Using Shared Memory or tmpfs
	Session AutoStart
	Sessions and Caching
	Efficient PHP Programming

	Minor Optimizations
	Major Optimizations
	Garbage Collection
	Autoloading Classes
	Persistent MySQL Connections

	Profiling with xhprof
	Installing
	A Simple Example
	Don't Use PHP

	Summary

	Part III: Appendixes
	Appendix A: TCP Performance
	The Three-Way Handshake
	TCP Performance
	Nagle's Algorithm
	TCP_NOPUSH and TCP_CORK

	Appendix B: Designing for Mobile Platforms
	Understanding Mobile Platforms
	Responsive Content
	Getting Browser Display Capabilities with JavaScript
	Server-Side Detection of Capabilities
	A Combined Approach
	CSS3 Media Queries
	Determining Connection Speed

	JavaScript and CSS Compatibility
	Caching in Mobile Devices

	Appendix C: Compression
	The LZW Family
	LZ77
	LZ78
	LZW
	LZ Derivatives

	Huffman Encoding
	Compression Implementations

	Index
	Advertisement

