
Pro HTML5 with
CSS, JavaScript,
and Multimedia

Complete Website Development
and Best Practices
—
Mark J. Collins

Pro HTML5 with
CSS, JavaScript, and

Multimedia
Complete Website Development

and Best Practices

Mark J. Collins

Pro HTML5 with CSS, JavaScript, and Multimedia: Complete Website Development and Best Practices

Mark J. Collins 				

ISBN-13 (pbk): 978-1-4842-2462-5			 ISBN-13 (electronic): 978-1-4842-2463-2
DOI 10.1007/978-1-4842-2463-2

Library of Congress Control Number: 2017935969

Copyright © 2017 by Mark J. Collins

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Todd Green
Development Editor: Laura Berendson
Technical Reviewer: Gaurav Mishra
Coordinating Editor: Jill Balzano
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484224625. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484224625
http://www.apress.com/source-code

To my beautiful and precious wife, Donna. Thank you for sharing your life with me.

v

Contents at a Glance

About the Author��xxv

About the Technical Reviewer��xxvii

Acknowledgments���xxix

Introduction���xxxi

■■Part I: HTML5 Technologies��� 1

■■Chapter 1: Hypertext Markup Language��� 3

■■Chapter 2: Cascading Style Sheets��� 15

■■Chapter 3: JavaScript Essentials�� 29

■■Part II: HTML�� 57

■■Chapter 4: Structural HTML Elements�� 59

■■Chapter 5: Phrasing HTML Elements�� 81

■■Chapter 6: Table HTML Elements�� 103

■■Chapter 7: Embedded HTML Elements�� 115

■■Chapter 8: HTML Form Elements�� 131

■■Part III: CSS��� 161

■■Chapter 9: CSS Selectors�� 163

■■Chapter 10: Positioning Content��� 175

■■Chapter 11: Text Styles��� 199

■■Chapter 12: Borders and Backgrounds�� 219

■ Contents at a Glance

vi

■■Chapter 13: Styling Tables�� 245

■■Chapter 14: Flexbox�� 271

■■Chapter 15: Animation and Transforms�� 287

■■Part IV: JavaScript��� 305

■■Chapter 16: Browser Environment��� 307

■■Chapter 17: Window Object�� 323

■■Chapter 18: DOM Elements��� 339

■■Chapter 19: Dynamic Styling�� 351

■■Chapter 20: Events��� 365

■■Part V: Advanced Applications�� 375

■■Chapter 21: Audio and Video�� 377

■■Chapter 22: Scalable Vector Graphics�� 389

■■Chapter 23: Canvas�� 409

■■Chapter 24: Drag and Drop��� 439

■■Chapter 25: Indexed DB�� 467

■■Chapter 26: Geolocation and Mapping��� 495

■■Appendix A: AJAX��� 513

■■Appendix B: Drag and Drop Source Code��� 517

■■Appendix C: References�� 525

Index�� 551

vii

Contents

About the Author��xxv

About the Technical Reviewer��xxvii

Acknowledgments���xxix

Introduction���xxxi

■■Part I: HTML5 Technologies��� 1

■■Chapter 1: Hypertext Markup Language��� 3

HTML Document�� 3

Elements�� 4

DOCTYPE�� 4

Attributes��� 5

Miscellaneous Structure Rules�� 5

Html Element��� 6

Head Element�� 6

Title Element�� 6

Meta Element�� 7

Script Element��� 8

Link Element�� 9

Style Element��� 11

Base Element��� 12

Summary��� 13

■■Chapter 2: Cascading Style Sheets��� 15

Styling Guidelines�� 15

Organizing Content�� 15

■ Contents

viii

Applying Styles�� 16

CSS3 Specifications�� 17

CSS Concepts�� 17

Selectors�� 17

Declarations��� 18

Units�� 19

Precedence��� 21

Style Sheet Sources�� 22

Specificity Rule�� 22

Important Keyword�� 23

Box Model��� 23

Vendor Prefixes��� 24

Style Attribute�� 25

Summary��� 26

■■Chapter 3: JavaScript Essentials�� 29

Introducing JavaScript�� 29

Objects��� 29

Constructors�� 30

Prototypes��� 32

Inheritance�� 32

Using Prototypes��� 33

Using Create�� 35

Using the Class Keyword��� 36

Overriding Members�� 37

Properties�� 37

Arrays�� 38

Attributes��� 39

Special Types��� 40

■ Contents

ix

Miscellaneous Topics�� 40

Comparison Operators��� 40

Variable Scope��� 41

Strict Mode�� 42

Functions��� 43

Context�� 45

Immediately-Invoked Functions�� 46

Namespaces�� 47

Exceptions��� 48

Promises�� 49

Array Methods��� 50

Accessing Elements�� 50

Outputting an Array�� 51

Manipulating Elements�� 51

Searching�� 53

Creating Subsets��� 54

Processing��� 55

Summary��� 56

■■Part II: HTML�� 57

■■Chapter 4: Structural HTML Elements�� 59

Content Categories�� 59

Sectioning Content�� 60

Section��� 60

Article�� 60

Aside�� 61

Nav�� 61

Address�� 61

Outlines��� 62

Explicit Sections�� 62

Document Headings�� 64

Header and Footer��� 65

■ Contents

x

Planning the Page Layout�� 66

Sectioning Roots��� 67

Blockquote��� 67

Details�� 67

Figure�� 68

Grouping Elements�� 69

Paragraph�� 69

Horizontal Rule�� 69

Preformatted��� 69

Main��� 70

Division�� 71

Listing Elements�� 71

List��� 71

Description List�� 73

Inline Frames��� 76

Deprecated Elements�� 77

hgroup��� 77

dir�� 77

frame and frameset��� 77

Summary��� 77

■■Chapter 5: Phrasing HTML Elements�� 81

Highlighting Text�� 81

Importance (strong)��� 82

Emphasis (em)��� 82

Relevance (mark)��� 82

Alternative Voice (i)�� 83

Small (small)�� 84

Strikethrough (s)�� 84

Stylistically Offset (b)��� 85

Unarticulated (u)�� 86

Element Review��� 87

■ Contents

xi

Other Semantic Phrasing�� 87

Code, Sample, Keyboard, and Variable��� 88

Abbreviations and Definitions�� 89

Subscripts and Superscripts��� 90

Time��� 91

Edits�� 91

Quoting�� 92

Span�� 94

Adding Carriage Returns��� 94

Line Break��� 94

Word Break Opportunity�� 95

Hyphens��� 96

Bidirectional Text��� 97

Text Direction��� 97

Flow Direction�� 97

Tightly Wrapping�� 99

Using Isolation��� 99

Overriding the Direction��� 100

Ruby�� 100

Summary��� 101

■■Chapter 6: Table HTML Elements�� 103

Simple Table�� 103

Column and Row Headings��� 104

Column Groups�� 105

Table Heading and Footer�� 107

Spanning Cells�� 108

Summary��� 113

■ Contents

xii

■■Chapter 7: Embedded HTML Elements�� 115

Anchor��� 115

Images��� 116

Multiple Sources�� 117

Image Map��� 120

Audio��� 122

Using the Native Controls�� 123

File Formats��� 124

Video��� 125

Tracks�� 127

HTML5 Plug-Ins��� 129

Summary��� 130

■■Chapter 8: HTML Form Elements�� 131

Overview��� 131

Form Element�� 132

Form Action��� 132

Form Method��� 133

Additional Attributes�� 134

Input Elements�� 134

Textual Form Data�� 134

Selection Elements�� 139

Miscellaneous Types�� 143

Date and Time Data��� 148

Other Visual Elements��� 153

Labels�� 153

Output Element�� 153

Meter Element��� 154

Progress Element�� 156

Button Types�� 156

■ Contents

xiii

Organizing a Form��� 157

Validation��� 158

Summary��� 159

■■Part III: CSS��� 161

■■Chapter 9: CSS Selectors�� 163

Selector Overview��� 163

Element Selectors��� 164

Class Selectors�� 164

ID Selectors��� 164

Attribute Selectors��� 164

Pseudo-Class Selectors��� 165

Pseudo-Elements�� 167

Using Combinators�� 168

Combining Element and Class Selectors��� 168

Pseudo-Selectors�� 169

Combinator Operators��� 169

The Not Selector�� 170

Group Operator�� 170

Resolving Conflicts�� 171

Media Queries��� 171

Media Attributes�� 171

Using Media Queries�� 172

Summary��� 173

■■Chapter 10: Positioning Content��� 175

Display��� 175

Defining Sizes��� 177

Absolute Size��� 177

Relative Size�� 179

Setting Maximum Values��� 179

■ Contents

xiv

Content-Based��� 180

IE Work Around�� 182

Min-Content Example�� 182

Box Sizing�� 183

Float�� 185

Clearing Floats��� 187

Containing Floats��� 189

Inline Block�� 191

Position��� 192

Relative Positioning��� 193

Absolute Positioning�� 195

Fixed Positioning��� 196

Z-Index�� 196

Centering Content��� 198

Summary��� 198

■■Chapter 11: Text Styles��� 199

Fonts��� 199

Obtaining Fonts��� 199

Font Families��� 201

Font Settings��� 202

Shorthand Notation�� 208

Text Formatting��� 209

Horizontal Alignment��� 209

Indent�� 209

Overflow�� 209

Quotes��� 210

Shadow�� 211

Capitalization��� 212

Spacing and Alignment��� 212

Basic Spacing�� 212

■ Contents

xv

Handling Whitespace��� 213

Vertical Alignment��� 214

Break��� 216

Word Wrap��� 216

Page Break�� 217

Cursor�� 217

Summary��� 218

■■Chapter 12: Borders and Backgrounds�� 219

Borders�� 219

Basic Styles��� 219

Individual Edges�� 221

Radius�� 223

Using Images��� 225

Gradients��� 230

Box Shadows��� 233

Outlines��� 235

Backgrounds��� 236

Image Attributes�� 236

Clipping�� 238

Background Shorthand�� 239

Examples��� 239

Summary��� 243

■■Chapter 13: Styling Tables�� 245

Styling Tables�� 245

Basic Table Styling��� 247

Additional Table Styling��� 253

Creating Tables with CSS�� 258

Display Attribute�� 258

CSS Table Demonstration�� 259

Applications��� 261

■ Contents

xvi

Styling Lists��� 268

Type��� 269

Image��� 269

Position�� 270

Shorthand�� 270

Summary��� 270

■■Chapter 14: Flexbox�� 271

Container Configuration�� 271

Flex Direction��� 271

Flex Wrap��� 273

Justification��� 274

Aligning Items�� 276

Item Configuration��� 277

Grow and Shrink�� 278

Order�� 282

Overriding Alignment��� 283

Vertical Example�� 284

Summary��� 285

■■Chapter 15: Animation and Transforms�� 287

Animation�� 287

Keyframes��� 287

Configuring Animations��� 288

Cubic Bézier��� 291

Transitions��� 293

Transforms�� 296

Translation��� 296

Rotation��� 297

Scale�� 297

Skew�� 298

■ Contents

xvii

Demonstration��� 299

3D Transforms��� 300

Summary��� 303

■■Part IV: JavaScript��� 305

■■Chapter 16: Browser Environment��� 307

Browser Object Model��� 307

Screen��� 308

Location��� 309

History��� 310

Navigator��� 312

Window Object�� 313

Console�� 314

Cache��� 317

Browser Interface Elements�� 320

Timers�� 320

Summary��� 321

■■Chapter 17: Window Object�� 323

Create a Window��� 323

Pop-Up Blocker�� 324

Reusing the Window�� 326

Configuration Parameter��� 326

Manipulating Windows�� 328

Modal Dialog Windows�� 331

Standard Pop-Up Dialogs�� 332

Custom Modal Dialogs��� 333

Frames�� 336

Simple Example��� 336

Accessing Frames��� 337

Using Sandbox��� 338

Summary��� 338

■ Contents

xviii

■■Chapter 18: DOM Elements��� 339

Document Object Model�� 339

Element Inheritance�� 340

Simple Demonstration��� 341

Basic DOM Manipulation��� 341

Finding Elements��� 342

Creating Elements��� 342

Moving Elements��� 343

Modifying Elements��� 344

Related Elements�� 346

Using jQuery�� 346

Fundamentals�� 347

Manipulating DOM Elements��� 348

Summary��� 350

■■Chapter 19: Dynamic Styling�� 351

Changing Style Sheets�� 351

Enabling Style Sheets�� 351

Choosing a Style Sheet�� 353

Alternate Style Sheets��� 354

Using Style Elements��� 355

Modifying Rules��� 357

Modifying Classes��� 359

Modifying Inline Styles�� 360

Using CSSStyleDeclaration�� 360

Setting Style Properties��� 361

Using setAttribute�� 362

Computed Style��� 362

Summary��� 363

■ Contents

xix

■■Chapter 20: Events��� 365

Initial Example��� 365

Event Registration��� 366

Event Propagation �� 367

Unregistering Events��� 370

Event Interface�� 371

Common Event Properties��� 371

Canceling Events��� 372

Exploring Events�� 372

Summary��� 373

■■Part V: Advanced Applications�� 375

■■Chapter 21: Audio and Video�� 377

Overview��� 377

Custom Audio Controls�� 378

Supporting Play and Pause�� 379

Supporting Progress and Seek�� 381

Controlling the Volume�� 382

Adjusting the Style�� 383

Changing the Audio Source��� 384

Custom Video Controls�� 385

Summary��� 387

■■Chapter 22: Scalable Vector Graphics�� 389

Introducing SVG��� 389

Adding Some Simple Shapes�� 389

Adding Styles��� 391

Using SVG Image Files�� 392

Creating an SVG Image�� 392

Using an SVG Background��� 393

■ Contents

xx

Creating an Interactive Map�� 393

Using Path Elements�� 394

Implementing the Initial Map��� 397

Styling the State Elements�� 399

Using Basic Fill Colors��� 399

Using Gradient Fills�� 400

Using a Background Image�� 402

Altering Styles with JavaScript�� 403

Adding Animation�� 405

Summary��� 408

■■Chapter 23: Canvas�� 409

Creating a Chess Board��� 409

Drawing Rectangles�� 410

Using Gradients��� 412

Using Images��� 413

Adding Simple Animation�� 420

Modeling the Solar System��� 423

Using Paths�� 423

Drawing Arcs��� 424

Using Transformations��� 424

Saving the Context State��� 426

Drawing the Solar System��� 427

Applying Scaling�� 432

Clipping a Canvas�� 433

Understanding Compositing�� 434

Summary��� 438

■■Chapter 24: Drag and Drop��� 439

Understanding Drag and Drop��� 439

Handling Events��� 439

■ Contents

xxi

Using the Data Transfer Object�� 441

Enabling Draggable Elements�� 442

Creating the Checkers Application�� 443

Creating the Project��� 443

Drawing the Checkers Board��� 444

Adding Drag-and-Drop Support��� 447

Allowing a Drop��� 447

Performing the Custom Drop Action�� 448

Providing Visual Feedback��� 450

Enforcing the Game Rules��� 453

Verifying a Move�� 453

Promoting to King�� 457

Moving in Turn��� 460

Using Advanced Features�� 464

Changing the Drag Image�� 464

Dragging Between Windows�� 465

Summary��� 466

■■Chapter 25: Indexed DB�� 467

Introducing Indexed DB��� 467

Using Object Stores��� 468

Defining the Database��� 469

Processing Asynchronously��� 470

Using Transactions��� 471

Creating the Application�� 471

Creating the Web Project��� 471

Drawing the Canvas��� 472

Configuring the Pieces�� 474

Creating the Database��� 476

Opening the Database��� 476

Defining the Database Structure��� 477

■ Contents

xxii

Drawing the Pieces��� 480

Using a Cursor��� 481

Retrieving a Single Object��� 482

Testing the Application�� 483

Moving the Pieces��� 485

Defining the Moves�� 485

Converting the Position��� 487

Making a Move�� 487

Obtaining the Object Key��� 489

Performing the Update�� 489

Starting the Animation��� 490

Tracking the Captured Pieces�� 491

Summary��� 493

■■Chapter 26: Geolocation and Mapping��� 495

Understanding Geolocation��� 495

Surveying Geolocation Technologies��� 495

Using Geolocation Data��� 496

Using the Geolocation API��� 496

Creating the Web Project��� 496

Using the Geolocation Object��� 497

Displaying the Location��� 499

Using Mapping Platforms�� 501

Creating a Bing Maps Account�� 501

Adding a Map��� 503

Adding Pushpins�� 507

Summary��� 511

■■Appendix A: AJAX��� 513

Making a Request��� 513

Handing the Response�� 514

Summary��� 515

■ Contents

xxiii

■■Appendix B: Drag and Drop Source Code��� 517

■■Appendix C: References�� 525

Part 2��� 525

HTML Elements�� 525

Global Attributes�� 528

Self-Closing Tags��� 529

Input Types�� 530

Part 3��� 532

Color Units��� 532

Distance Units – Absolute�� 532

Distance Units – Relative��� 533

Angle Units�� 533

Time Units�� 533

CSS Property List��� 534

Part 4��� 539

Array Methods��� 539

Window Members�� 541

Navigator Members��� 544

Console Methods��� 545

Element Inheritance�� 546

Index�� 551

xxv

About the Author

Mark J. Collins has been developing software solutions for 35 years. Some
of the key technology areas of his career include COM, .NET, SQL Server,
and SharePoint. He has built numerous enterprise-class applications
in a variety of industries. He currently serves as an application and data
architect for multiple organizations. You can see more info on his website,
www.TheCreativePeople.com. For questions and comments, contact Mark
at markc@thecreativepeople.com.

http://www.thecreativepeople.com/
markc@thecreativepeople.com

xxvii

About the Technical Reviewer

Gaurav Mishra is an expert in User interface Development and UX Design
with more than 10 years of experience. He provides workshops and
training in UI development, UX Design, and Drupal. Gaurav has played a
key role in the success of many organizations and likes to build products
and services from scratch. Gaurav lives in New Delhi, India, and likes
to spend his leisure time with his baby Yuvika and wife Neeti. He likes
all genres of music, from Indian classical to club music. Gaurav can be
reached at mr.gauravmishr@gmail.com and also tweets at @gauravmishr.

mr.gauravmishr@gmail.com

xxix

Acknowledgments

First and foremost, I acknowledge my Lord and Savior, Jesus Christ. The divine and eternal perspective on
life, which can only be found in You, is an anchor, steadfast and sure. I humbly conclude that Your hand has
guided me, often carrying me, through every endeavor, great and small. I submit that nothing of any value or
significance is possible without You.

I want to say a very big thank you to my beautiful wife, Donna. I can honestly say that I would not be
who I am if it were not for what you have sown into my life. I am truly blessed to be able to share my life with
you. Thank you for your loving support and for making life fun!

Next, I’d like to thank all the people at Apress who made this book possible and for all their hard
work that turned it into the finished product you see now; this is truly a team effort. Jill, thanks for keeping
everything rolling smoothly and for being patient with all the work; Gaurav, thank you for your input and
critique, helping to improve the quality and accuracy of this book; and to all the other contributors at Apress,
thanks for overseeing the many details. Everyone at Apress has made writing this book a pleasure.

xxxi

Introduction

My goal in writing this book is to provide everything you need to know to be proficient in creating
professional quality web applications that take advantage of all the great features in HTML5. I also wanted
this to be equally helpful for both novices and seasoned professionals. I’ll let you be the ultimate judge of
how well I fulfilled those goals.

There is a tremendous amount of information presented in this book, and I knew that organizing it
would be my top priority. The overall HTML5 umbrella encompasses HTML, CSS, and JavaScript; these can
be thought of as the three legs of a tripod upon which your web application will depend. The first section of
this book provides an introductory chapter on each one of these technologies. I recommend starting with
these chapters, especially if you’re relatively new to web development. Sections 2, 3, and 4 cover each of
these three areas in more detail. The last section provides demonstrations of some advanced topics such as
canvas, SVG, drag and drop, and indexed DB.

Thanks to some really helpful websites provided by Mozilla, W3 Schools, and many other organizations
and individuals, there is an overwhelming amount of material readily available. This book is designed to
augment these resources by focusing primarily on concepts. If you understand the basic principles, you can
more readily, and effectively, apply the details of a particular feature. In keeping with my first goal, however,
there are a lot of details provided as well. I have included reference materials in Appendix C to keep the
narrative more readable.

There is an impressive set of frameworks available such as jQuery, Angular, Bootstrap, and Knockout.
If you are doing any serious web development, you will want to use one or more of these. These frameworks
don’t provide any capability that you couldn’t create yourself using the techniques I will be demonstrating.
They will, however, make your job a whole lot easier if you choose them, and use them, wisely. In this book,
however, I will focus only on the native capabilities of the web technologies and will not use any of these
frameworks.

You can download the source code for each chapter from www.apress.com. Except for the last section,
the amount of code is kept relatively short so you can enter it yourself as you follow along. However, the final
code for each chapter is provided in the download for your convenience. In some cases, I may demonstrate
two or three ways of accomplishing the same thing. The downloaded code will sometimes have portions of
code commented out in these cases.

The technology that I’ll be explaining is not platform or vendor dependent. The sample web pages that
I’ll be demonstrating should work on most major browsers. The files that you’ll be editing – HTML, CSS,
and JavaScript – are just simple text files that can be written with any text editor. Using a tool designed for
web development will make your job easier by providing intellisense and context-sensitive formatting.
I used Microsoft’s WebMatrix to create the samples for this book. WebMatrix is free and easy to install and
use. However, Microsoft is dropping support for WebMatrix in November 2017, offering a free, open source
version of Visual Studio instead. That might be a bit of a pill to swallow unless you happen to already be in
the Microsoft camp. There are plenty of alternatives. Your favorite browser probably provides basic editing
capabilities as well.

http://www.apress.com/

■ Introduction

xxxii

Finally, as with most technologies, the landscape is constantly changing. I have carefully chosen
to describe the capabilities that are supported by the majority of platforms and avoided those that have
limited availability. By the time you are reading this book, things may have changed and you may find some
information outdated. You may have to do your own research for a specific feature. I trust, however, with the
foundations demonstrated in this book, you will be well able to leverage the HTML5 technologies, even as
they evolve over time.

I wish you every success as you master all the wonderful facets of developing web applications. Never
stop learning!

PART I

HTML5 Technologies

The term HTML5 encompasses a broad spectrum of technologies that together provide a compelling
platform for building great web applications. These can be organized into three areas:

•	 1) HTML – the web content, including markup instructions.

•	 2) CSS – the styling rules that define how the content is presented.

•	 3) JavaScript – provides client-side scripting and advanced capabilities.

Part 1 contains a chapter for each of these areas that introduces the fundamental concepts that
you will need to understand in order to apply the material in the rest of the book. This section is a
must-read for anyone relatively new to web development.

Each chapter also provides a broad coverage of the technology so, even if you are fairly
experienced, you will likely find some tidbits that you weren’t aware of or may have forgotten.
I suggest every reader at least skim through these chapters. You may need to come back to review
these chapters as you work through some of the more advanced chapters.

3© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_1

CHAPTER 1

Hypertext Markup Language

In this chapter I’ll explore the first leg of the HTML5 triad, which is the actual content that will be rendered in
a web page. In the next two chapters I’ll explain how this content can be styled using CSS and introduce the
JavaScript language. But we’ll start with the content.

■■ Note  I almost referred to this as raw content, but that would be an inaccurate description. A properly
formed HTML document has a great deal of structure and organization.

Recall your earlier school days when your teacher returned your homework with red marks on it.
Misspelled words, bad grammar, or other such mistakes would be circled or highlighted. You might call that
a marked-up document, and generally the more marks, the worse the grade would be.

Similarly, a markup language is used to call out parts of the document and provide instructions or
background information. The difference, however, is the audience. You may be good at reading HTML,
and you certainly will be after reading this book, but you are not the intended recipient. The markup is
provided to the browser as instructions for how this should be rendered. As such, this markup itself must be
syntactically precise.

■■ Tip  HTML5 is a relatively mature standard, or more accurately, a set of standards that is managed by the
World Wide Web Consortium (W3C). For example, the overall HTML syntax is defined in https://www.w3.org/
TR/html5/syntax.html. Much of the material in this book can be gleaned from these specifications, and
I encourage that you look at some of them and be aware that they exist. These standards can be modified, or
more likely extended, over time and these specifications are the definitive authority.

HTML Document
HTML is generally produced and consumed as a document. We may talk about snippets of HTML but in
most cases, a web site will respond to a request with a complete HTML document, which is then parsed by
the client and rendered on a device.

As a brief introduction into HTML syntax, let’s look at a very simple HTML document. Listing 1-1
includes an HTML document version of Hello World.

https://www.w3.org/TR/html5/syntax.html
https://www.w3.org/TR/html5/syntax.html

Chapter 1 ■ Hypertext Markup Language

4

Listing 1-1.  Simple HTML5 Document

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>HTML5 Sample Document</title>
 </head>
 <body>
 Hello World!
 </body>
</html>

Elements
Let’s break this down a bit and look at the structure used for this document. These basic concepts are used
for all of the remaining content that you’ll write. The document is comprised of several HTML elements that
are nested in a hierarchical fashion.

Like other markup languages, tags are used to annotate content with useful information. An HTML
element generally follows this structure:

<tag attribute="value" ... > content </tag>

For example, the document title, “My First HTML5 Document” is identified by the opening and closing
tags, <title> and </title>. In most cases each element has an open and close tag that are identical except
the close tag is preceded by a “/” character. Sometimes the terms element and tag are used interchangeably;
to be precise, however, an element is comprised of an opening and closing tag and the content that is found
between these tags.

Elements will often contain other elements. Notice in the sample document that the html element
contains a head and a body element. The head element also contains a meta and a title element. For better
readability, this nested hierarchy is illustrated by indenting child elements.

DOCTYPE
The DOCTYPE element is an oddity and doesn’t fit any of the standard element formats. There is a bit of
history behind it as well. In the early days of web development (think IE4 and Netscape), web pages were
developed against how the current browsers were implemented. As the HTML specifications evolved and
matured, new browsers developed against the updated specifications would not work with the older web
pages. The DOCTYPE element was introduced so each page could specify the version of the specification
that it was written against. The browser would need to interpret this and provide the necessary backward
compatibility.

I won’t go into all the gory details, but as you can probably imagine, this was a big mess, for both
browser vendors and web developers alike. Fortunately, with HTML5 the DOCTYPE can be essentially
ignored. Just set it to html:

<!DOCTYPE html>

Chapter 1 ■ Hypertext Markup Language

5

Attributes
An opening tag can include one or more attributes and there are two examples of this in the sample
document. Later in this chapter I will explain the different attributes that can be used. Attributes are used to
provide details about an element. The html element, for example, contains lang="en", which informs the
browser that the content is written in English. The browser may use this to offer to translate the content if
English is not the current language.

There is a set of attributes called global attributes that can be used on any HTML element. A complete
list of these is provided with other reference material in Appendix C. The most common ones that you’ll
use are id and class. The id attribute defines a unique key for an element; it must be unique within the
entire HTML document. This is often used when accessing an element in JavaScript. The class attribute
is sometimes called the CSS class, because it is often used for applying styles to an element. Unlike id,
the class attribute is a non-unique key; a single value is applied to elements that need to have identical
formatting.

In addition to the global attributes, each element type may support other attributes. Notice that the
meta element includes a charset attribute:

<meta charset="utf-8" />

The charset attribute specifies the type of character-set encoding that this page uses. You should always
define the character set; however, this is particularly important if your page needs to display nonstandard
characters.

There are some Boolean attributes that do not need a value; their existence indicates a true value and
their absence means false. For example, a check box has a checked attribute if checked and this attribute is
removed if not checked. You may see something like checked="checked", especially in dynamic HTML that
is generated by server-side code. However, the browser will ignore the value and you only need to include
the attribute; no value is needed.

Miscellaneous Structure Rules
Notice that the meta element does not have a closing tag. There are a few elements that do not have to use a
closing tag, which are referred to as self-closing tags. It may be somewhat obvious, but these elements cannot
have any content since the content is placed between the opening and closing tags. The “/” character at
the end of the tag is technically optional, but the general consensus is that it should be included and some
HTML validators will flag this as a warning if it’s not there.

Keep in mind that whitespace characters such as tabs, carriage returns, and extra spaces are ignored by
the browser. You can left-align all of the text and the rendered HTML will be identical. You could even put
the entire document on a single line if you really wanted to. But the general convention and best practice is
to format the HTML like it is shown here.

I want to make one additional comment before moving on: all of this structure is optional. In fact, if you
entered the following as your entire HTML document, it would render the exact same content in the browser.

Hello World!

■■ Caution  Browsers are generally very good at using default configurations when details are omitted from
the document. However, I assume that you’re reading this book because you want to create professional-quality
web applications. These additional elements provide important information, and you should be in the habit of
producing well-formed documents to make your pages as useful as possible.

Chapter 1 ■ Hypertext Markup Language

6

HTML tags are case insensitive. The general convention is to use all lowercase tags and I’ll be doing that
throughout this book. But you could use <HEAD> or <Head> and it would be just as valid.

Html Element
So, as you’ve already seen, the html element is the root node: the starting point of your document. There’s
not much to say about it. The html element can contain one head element and one body element. In addition
to the global attributes, it also supports the manifest attribute.

<html manifest="www.mywebsite.com/cache.appcache">

The manifest attribute is used to define the application cache. The value of this attribute is the URL or
address of the cache manifest, which is a text file that lists the resources that should be cached. This can be
an absolute or relative URL. When these resources are cached on the client, your page will load correctly
even when disconnected from the Internet. Caching these resources can also make your page load faster and
reduce the load on the web server.

■■ Tip  The standard extension for the manifest file is .appcache. It is important that this file be provided
by the web server with the correct MIME type, which is text/cache-manifest. This is configured differently
depending on the type of web server you are using. For more information, look at the information provided in
this article: http://www.html5rocks.com/en/tutorials/appcache/beginner/.

Head Element
There’s not any real content in the head element; that’s what the body element is for. In Chapters 4–8 I will
explain all of the various elements that are used to define the body content. But for the remainder of this
chapter, we’ll explore the head element.

Now let’s look at the elements that can be included inside the head element. You’ve already seen the
title and meta elements, which I’ll cover in a little more detail. There are a few other useful elements that
belong here as well.

Title Element
The title element specifies the title of this page. This shows up in a couple of places:

•	 In the browser title bar or tab (see Figure 1-1)

•	 Search engines will usually include this in the search results

•	 When adding a page to your favorites or bookmark, the title is used as the name
(see Figure 1-2)

http://www.html5rocks.com/en/tutorials/appcache/beginner/
http://dx.doi.org/10.1007/978-1-4842-2463-2_4
http://dx.doi.org/10.1007/978-1-4842-2463-2_8

Chapter 1 ■ Hypertext Markup Language

7

Although somewhat obvious, you can only have one title element in your document. If you choose to
ignore this rule, the browser will usually display the first title element and ignore the rest.

Meta Element
The meta element is an abbreviation for metadata, which is data that describes other data. In this case, the
meta element describes the contents of the HTML document. The head element can include any number of
meta elements, each providing a single data point using the name/value pair construct. For example:

<meta name="author" content="Mark J Collins" />
<meta name="description" content="Sample HTML document" />
<meta http-equiv="refresh" content="45" />

The value portion of the name/value pair is specified in the content attribute; however, the name
portion is either defined in the name attribute or the http-equiv attribute, depending on the type of data
being set. The name attribute is used for metadata that describes the content of the HTML document. The
most common values for the name attribute are application-name, author, description, and keywords.
These are all fairly self-explanatory. For keywords, the content attribute will contain a comma-separated list
of keywords.

The http-equiv attribute is used to simulate an http response header. The more common values are
these:

•	 content-type - the content attribute will specify a content type, typically text/html
and a character set. For example, content = "text/html; charset=UTF-8".

•	 default-style - use this to specify the default style sheet.

•	 refresh - you can force the page to automatically refresh after a certain interval,
which is specified, in seconds, in the content attribute.

Figure 1-1.  Displaying the title in the browser tab

Figure 1-2.  Using the title in the bookmark

Chapter 1 ■ Hypertext Markup Language

8

As demonstrated in the sample document, the character set can also be specified using the shortened
notation: <meta charset="utf-8" />.

■■ Note  There are a lot of other meta names that you can use. If you’re interested, check out the article
at http://www.html-5.com/metatags. This site organizes these into logical groups such as search engine
optimization (SEO), mobile devices, etc., and provides details on each one.

Script Element
The script element is used to load JavaScript in your page. In order to use a function, you must either
define it or load an external script file that contains the function. Either can be done in the script element.
To define JavaScript directly, include it in between the opening and closing tags like this:

<script type="text/javascript">
 function doSomething() {
 alert("Hello World!");
 }
</script>

The type attribute is optional and will default to text/javascript if not specified. This was required in
HTML4 and you’ll see it included quite often.

It is generally considered best practice to put JavaScript into a separate external file. One big advantage
of doing that is to share the same script across multiple pages. To reference an external file, use the src
attribute and do not include any content between the opening and closing tags. If you need to load multiple
files, include each one in a separate script element. For example:

<script src="../scripts/sample.js" type="text/javascript"></script>
<script src="../scripts/demo.js" type="text/javascript"></script>

Normally, as the browser is parsing an HTML document, when a script element is encountered, the
script is loaded and executed before continuing to parse the rest of the document. For external files, you
can use the async or defer attributes to change this behavior. Both of these are Boolean attributes. If the
async attribute is specified, the file is loaded and executed in parallel, while the parsing process continues.
Alternatively, if the defer attribute is used, the script will be executed only after the page has been fully
parsed.

<script src="../scripts/demo.js" defer ></script>

■■ Caution  You should use the defer attribute if the script has code that executes immediately, which
references any of the HTML elements. If it executes before the document is parsed, the script might fail
because the elements are not yet available.

http://www.html-5.com/metatags

Chapter 1 ■ Hypertext Markup Language

9

Link Element
The link element is used to reference additional external resources, which can be grouped into two
categories. First, links are used to load resources that are used to render the source document – the most
common of these being cascading style sheets. The second category is links to other related documents. The
reader may choose to navigate to these documents but they are not needed to render the current page.

The link element uses a self-closing tag, and the linked resource is specified entirely through attributes.
This is done through the href attribute that defines the address of the resource and the rel attribute. The
rel attribute, an abbreviation for relationship, indicates the relationship between the source document and
the linked resource.

Here are some typical link elements:

<link rel="stylesheet" type="text/css" href="Sample.css" />
<link rel="icon" type="image/x-icon" href="HTMLBadge.ico" />
<link rel="alternate" type="text/plain" href="TextPage.txt" />

This loads a CSS file named Sample.css and an icon file named HTMLBadge.ico. Notice the type
attribute indicates the format of the file. For style sheets, this is optional since text/css is the assumed type.
For others, such as the icon file, this is needed since a .png or .bmp file could be used as well. The last link
references a text-only version of the page.

I will explain style sheets in the next chapter. The icon file is displayed in the browser tab as shown in
Figure 1-3. It will also be used in other places such as bookmarks or favorites and also the history list.

Figure 1-3.  Displaying the specified icon in the browser

■■ Note  The link element can be used to reference many different types of resources for a lot of different
reasons. Unfortunately, the term relationship does not always convey the best meaning of this attribute. For
some of the most common values such as stylesheet and icon, this may be better interpreted as the type of
resource rather than a relationship. For some, such as first, next, and alternate, relationship is indeed the
proper term to use. However, for the sake of consistency, the rel attribute is used for all linked resources.

Tables 1-1 and 1-2 list the current rel values that are generally supported in the link element. There are
other values that have been deprecated but may still be supported for some time. In addition, there are some
that have been proposed but have not been adopted yet, as of this writing. The values listed here are the ones
you should be using for new documents. The official specification for these can be found at https://www.
w3.org/TR/html5/links.html#linkTypes.

https://www.w3.org/TR/html5/links.html#linkTypes
https://www.w3.org/TR/html5/links.html#linkTypes

Chapter 1 ■ Hypertext Markup Language

10

Table 1-1.  Resource-type relationships

Rel Description

icon Loads an icon used by the page as previously explained. With this relationship, a sizes
attribute is supported to allow the desired size to be used, since an icon file often contains
multiple sizes. The type attribute is expected to be an image file type such as “image/x-icon”
or "image/png".

prefetch Informs the browser that the external resource may be needed later and should be loaded
when possible.

preload Tells the browser that the related resource will be needed by the current document and
should be loaded as soon as possible.

stylesheet Loads a cascading style sheet; the type is optional and assumed to be text/css.

Table 1-2.  Reference-type relationships

Rel Description

alternate References an alternate form of the source document. This can be used in different ways,
which is explained in more detail later.

author References a resource that provides information about the author of the source document.
This is often a mailto reference such as href=mailto://markc@thecreativepeople.com",
which will send an email to the author. It could also be a link to a web page that includes
details about the author.

help References a page that provides help information about the current web page.

next Used to reference the next document in a series.

license Specifies a link to a page that provides licensing details.

pingback Provides a link to a pingback service. This is used to notify a page when a link has been made
to it from another page. This is primarily used on blogs and social media sites. See https://
www.w3.org/wiki/Pingback for more details of this technology.

prev A link to the previous document in a series.

search The referenced document can be used for searching within the current document or web site.

■■ Note  The rel attribute can also be used in anchor (a) elements and area elements. This will be covered
in Chapter 7. There are other rel values that can be used in these elements that are not supported in link
elements. The values listed here are only the ones supported in a link element.

The alternate relationship link has many ways it can be used, but they all follow the basic concept of
linking to another resource that provides an alternate form of the source document. There are basically two
types of alternate documents:

•	 Type - the link references the current document in a different format. Use the type
attribute to specify the type of the alternate document such as type="application/
pdf". A common use of this is to provide the document as a subscription feed
such as ATOM. In this case, the type attribute is specified as type="application/
atom+xml".

https://www.w3.org/wiki/Pingback
https://www.w3.org/wiki/Pingback
http://dx.doi.org/10.1007/978-1-4842-2463-2_7

Chapter 1 ■ Hypertext Markup Language

11

•	 Language - the link references a translation of the current document into a different
language. To do this, use the hreflang attribute to specify the language of the
referenced document. For example, hreflang="es".

Both of these variations can be combined in a single link element. For example, if the French version of
the current document is provided as a PDF document, use type="application/pdf" hreflang="fr".

The next and prev links are used to link documents that are part of a series: if you have an article, for
example, that is published in three parts. The first and second document should provide a link to the next
part using the next relationship. Likewise, the second and third documents should provide a reference to the
previous document using the prev relationship. The previous relationship is still supported in many cases
and works the same as prev. Some older values such as first, last, and up are now obsolete.

■■ Tip  As I stated earlier, there is no actual content in the head element, although arguably the title element
could be considered content. The purpose of the head element is to provide metadata about the document. This
is also true of the link elements; adding them to the head element will not generate hyperlinks on your page
that a user can navigate with. If you want an actual hyperlink, you’ll need add an anchor element in the body.
Providing the link element is similar to providing a title page in a book; no one generally reads it but it’s a good
practice to provide these details. It’s even more important in an online document as search engines rely on
these details.

The preload and prefetch relationships are similar. Both are hints to the browser that a resource
should be loaded so it is available when needed. The difference is primarily in the urgency. The preload
relationship indicates that the resource should be loaded early in the overall page rendering process. It
will be needed by the current document so the instruction to the browser is to load it as soon as you can.
In contrast, prefetch is used when the resource may be needed later, possibly in a subsequent page. The
resource should be loaded but this should not slow down the current page load.

Style Element
The specific style attributes of an element such as color or size can be specified explicitly on the element,
which is referred to as inline styles. The more common, and preferred, method however, is to define a set of
rules that are used to determine the specific style attributes that are applied to the entire document. The next
chapter will describe how these rules are implemented.

These rules are either included in an external style sheet (and referenced through the link element), or
they are defined in a style element. In this regard, the style element is somewhat analogous to the script
element, except it includes CSS content instead of JavaScript.

■■ Tip  There is one big difference between the style element and the script element. The script element
is used for including JavaScript either in the content of the script element, or by referencing an external file
with the src attribute. When including styles, you use the style element to define styles; however, the link
element is used to load an external file. Another difference is that a link element can only be used inside
a head element; a style element can be used in either a head or body element, although this is not widely
supported yet.

Chapter 1 ■ Hypertext Markup Language

12

A very simple style element might look like this:

<style>
 html {
 color: red;
 }
</style>

This will set the color attribute to red for every element that is inside an html element, which as I’ve
explained, is the root element for the entire document. This means that all of the content in the document
will be red.

The style element supports the media attribute, which allows you to include a media query. A media
query is a Boolean expression that can conditionally apply a set of styles. The styles are applied only if the
expression evaluates to true. Media queries were originally intended to allow the same document to be
formatted differently when rendered in print form. For example, the following style is applied only when
printing a document:

<style media="print">
 html {
 color: black;
 }
</style>

However, media queries have been enhanced significantly giving you the ability to adjust the styles
based on many different factors. One of the more common uses of this is in creating a responsive design
where the format and layout of the page automatically adjusts depending on the screen resolution. Media
queries will be covered in more detail in Chapter 9.

■■ Note  Usually style elements are placed in the head element. The only exception to this is when the
scoped attribute is used. The scoped attribute indicates that the style should apply to only the parent element
and all its descendants. As of this writing, the scoped attribute is only supported by Firefox browsers.

Base Element
The base element is used to define the base URL that should be used for all other references in the
document. This allows you to use relative URLs everywhere else. This saves a bit of typing but also makes it
easy if you need to change the base address. The base element supports two specific attributes: href, which
defines the base URL; and target, which specifies the default behavior when a link is selected.
A base element might look like this:

<base href="www.thecreativepeople.com/html5" target="_self" />

■■ Caution  The base element should be the first child of the head element, or at least come before any link
elements so the base address will be applied to subsequent link elements.

http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 1 ■ Hypertext Markup Language

13

As you can see, the base element uses a self-closing tag. Setting the target attribute to _self indicates
that the link should be opened in the same window and tab as the current page. This can be overridden by
assigning a different target in a specific link. The supported values for the target attribute are these:

•	 _blank - opens in a new window or tab

•	 _self - opens in the current window or tab (this is the default value if no target is
specified)

•	 _parent - opens in the parent frame

•	 _top - opens in the topmost frame

■■ Caution  The frameset and frame elements are not supported in HTML5 so the _parent and _top values
are not applicable unless you are using an iframe. For details about browsing contexts, see the specification at
https://www.w3.org/TR/html5/browsers.html#windows.

Summary
In this chapter I explained the basic syntax for creating the HTML document, often referred to as the
markup. I also covered the details that can be included in the head element. Section 2 of this book will
describe the elements that are available for the actual content of the document.

The next chapter will introduce Cascading Style Sheets (CSS) and how you can style the markup.
Keeping the styling separate from the content will help you build a more maintainable web page.

As we work through this book in section 2, each chapter will build upon the web page created in the
previous chapter. In this chapter, the focus was on the head element. Listing 1-2 shows a resulting sample
web page based on the material presented in this chapter.

Listing 1-2.  Sample HTML document

<!DOCTYPE html>

<html lang="en" manifest="sample.appcache">
 <head>
 <meta charset="utf-8" />
 <meta name="author" content="Mark J Collins" />
 <meta name="description" content="Sample HTML document" />
 <title>HTML5 Sample</title>
 <link rel="icon" type="image/x-icon" href="HTMLBadge.ico" />
 <link rel="alternate" type="application/pdf" href="MainPage.pdf" />
 <link rel="author" href="mailto:markc@thecreativepeople.com" />
 <link rel="author" type="text/html" href="http://www.thecreativepeople.com" />
 <style>
 html {
 color: red;
 }
 </style>
 <style media="print">

https://www.w3.org/TR/html5/browsers.html#windows

Chapter 1 ■ Hypertext Markup Language

14

 html {
 color: black;
 }
 </style>
 </head>
 <body>
 <h1>
 Hello World!
 </h1>
 </body>
</html>

As expected, the resulting web page, shown in Figure 1-4, has minimal content, although the title and
icon are displayed in the browser tab.

Figure 1-4.  The final web page for Chapter 1

The complete solution, including the icon file, is available in the source code download. In the next
chapter, we’ll replace the style elements with external style sheets.

http://dx.doi.org/10.1007/978-1-4842-2463-2_1

15© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_2

CHAPTER 2

Cascading Style Sheets

In this chapter I’ll introduce the second leg of HTML development: the cascading style sheet. When creating
an HTML document, it’s always a good idea to separate the actual content from the styling rules. There are
several reasons for this.

•	 Separation of concerns - This is often a good logical separation of responsibilities
(and skill sets); a writer is good with words while a graphic designer knows how to
apply fonts, colors, and layout to make an article visually appealing. That’s not to say
that a single person can’t do both, but you’ll usually find a person is better at one
than the other.

•	 Consistency - Applying a standard set of styles across varying content will usually
result in a more consistent look and feel.

•	 Reusability - An article can be re-purposed across multiple sites by simply applying
different styles to the identical content.

•	 Maintainability - Content tends to be a lot more stable, while styles tend to come and go.
You can give a web page an updated look without having to update the actual content.

Styling Guidelines
So how do you achieve this rich styling that is defined independently from the content? There are two parts
to this solution. The process starts with well-organized content that is also properly annotated to provide
contextual information. Then you must define a set of rules that specify how the appropriate style attributes
should be applied to the desired set of elements.

Organizing Content
While there should not be any explicit formatting in the content, it is appropriate and desirable to identify
text that should have special treatment. For example, a word or phrase that should be emphasized should be
placed in an emphasis element. Likewise, when you want to make a strong emphasis about something, put it
in a strong element like this:

<p>This needs to be emphasized, don't forget it!</p>

You may already know that the default style of an emphasis element is to italicize the font and a strong
element is usually bolded. However, and this is the key point here, you’re not using an emphasis element
because you want the text in italics; instead, you’re indicating that the text needs emphasis. The person
creating the style sheet will determine how that emphasis should be made. They may choose to use a
different font or color, instead of using italics.

Chapter 2 ■ Cascading Style Sheets

16

■■ Tip  Keep in mind that your style sheet may not be the only thing reading your content. A screen reader
such as a Braille output device or text-to-speech software may interpret your emphasis and strong elements.
Hopefully this will drive home the point that the contextual information provided in your content may be used in
ways not yet imagined.

Another important point here is that the elements like emphasis and strong should be used
consistently. I will cover all of the semantic elements that are available to you in Chapters 4–9. You should
know what each of them is for and when to use them. Ultimately, deciding between emphasis and a strong
emphasis is going to boil down to a judgement call. You will need to develop some guidelines so everyone
knows when each is appropriate.

Applying Styles
Once you have a well-formed and amply annotated content, you can apply the desired styling. A style sheet
consists of a set of rules. A rule is sometimes referred to as a rule set or rule block. A rule is comprised of a
selector that defines a set of elements that the rule should be applied to, and one or more declarations. Each
declaration sets the value of a single attribute. The general form of a rule is:

selector { declaration; declaration; ...}

A declaration includes a property and value separated by a colon, for example color:red, sets the color
attribute of the element to red. The parts of a rule are shown in Figure 2-1; the selector is p, which selects all
of the paragraph elements, and the declarations set the font-size and color attributes.

As with HTML, white spaces are ignored in CSS so this is often written as:

p {
 font-size:10px;
 color:red;
}

There is some debate as to the “best” way to format these rules; there are no right or wrong answers.
However, I will follow this style as it seems to be the most prevalent.

Unlike HTML, CSS is not inherently hierarchical, so rules are not indented to show relationship with
other rules.

Figure 2-1.  The parts of a CSS rule

http://dx.doi.org/10.1007/978-1-4842-2463-2_4
http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 2 ■ Cascading Style Sheets

17

■■ Tip  Here’s a presentation made by Natalie Downe some years ago with a lot of suggestions for writing
good CSS (http://clearleft.s3.amazonaws.com/2008/cssSystems_notes_small.pdf). Some of it is a little
out of date but most of it is still very applicable today. I’d recommend skimming through it; it’s a fairly easy
read. But most of all, I hope some of her passion for CSS rubs off. Writing good software is as much art as it is
science. I can teach you the science… the art is not as easily learned.

CSS3 Specifications
Like HTML, CSS capabilities are defined by an evolving set of specifications. The current published
recommendation is CSS 2.1, and the next version being drafted is referred to as CSS3. However, CSS3 has
been broken down into more than 50 “modules” with a separate specification for each. As of this writing,
some of these modules have become official W3C Recommendations (REC); however, many are in Proposed
Recommendation (PR) or Candidate Recommendation (CR) status. The W3C encourages the use of any of
these specifications. There are still quite a lot that are in Working Draft (WD) status, which are not yet ready
for general adoption.

■■ Tip  Since the status of each CSS module is ever-changing, for complete information about the current
status of each, see the article at www.w3.org/Style/CSS/current-work.

So, the actual CSS3 “specification” is very much a moving target at the moment, and browser support
for these specifications will also vary. However, there are already a number of cool features that are generally
available, and I will demonstrate these in Chapters 9-15.

CSS Concepts
In the remainder of this chapter I will introduce the basic concept of how style sheets work. In Chapters 9–15,
I will cover each of these in more detail.

Selectors
Selectors are very powerful, especially with the many improvements in CSS3, but can take some effort to
master them. I will briefly explain them here and then in great detail in Chapter 9. One of the most common
selectors is the element selector. In its simplest form, you specify the type of element that the declaration
should apply to. For example:

em {
 font-style: italic;
}
strong {
 font-weight: bold;
}

http://clearleft.s3.amazonaws.com/2008/cssSystems_notes_small.pdf
http://www.w3.org/Style/CSS/current-work
http://dx.doi.org/10.1007/978-1-4842-2463-2_9
http://dx.doi.org/10.1007/978-1-4842-2463-2_9
http://dx.doi.org/10.1007/978-1-4842-2463-2_15
http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 2 ■ Cascading Style Sheets

18

Using this rule, all content in an emphasis element will use an italic font type. Likewise, a bold font will
be used for all strong elements. As I mentioned earlier, these are the default styles for these elements. The
browser has its own internal style sheet that defines these default styles. So even if you don’t supply any style
rules, the content is rendered in a reasonable fashion using the default rules.

Selectors generally cascade so the body selector will select all body elements as well as all elements
that are inside a body element. Selectors can also be combined in various ways. The comma separator, for
example, is used as a logical OR operator. So h1, h2, h3 will select all elements that are inside either an h1
element or an h2 element or an h3 element. Similarly, the space separator is a logical AND operator. So h1 p
will select all elements that are both inside an h1 element and a p element.

Declarations
Selectors determine what elements a rule is applied to, but the declarations specify the style attributes that
are applied to the selected elements. In many cases, each declaration sets the value of a single attribute. The
name and value are separated by a color and the declaration is terminated with a semicolon; for example:
color:red;. There is a seemingly endless number of style attributes that you can set, and I will demonstrate
these in Chapters 10–15.

CSS supports shortcuts that allow you to specify multiple attributes in a single declaration. The margin
attribute is a good example of this. The margin attribute specifies the amount of space between an element
and its neighbors. The space above, below, to the left, and to the right can be specified independently. To set
these all to 5 pixels you can use the following declarations:

margin-top: 5px;
margin-right: 5px;
margin-bottom: 5px;
margin-left: 5px;

CSS also allows you to set all four values in a single shortcut declaration:

margin: 5px 5px 5px 5px;

The four values in the declaration specify the top, right, bottom, and left margin values.

■■ Tip  The order of the values is important here since the values are not named but rather assumed based on
order. To help remember the correct order, think of a clock. The day starts at midnight (top) and then continues
in clockwise fashion to 3 (right) then to 6 (bottom) and finally to 9 (left).

The shortcut can be further shortened, however. If the right value is not provided it will be set as the
same value of the left margin. Similarly, the bottom margin will use the same value as the top. So this can be
also set like this:

margin: 5px 5px;

Here, only the top and right values are specified; the bottom is set to the same value as the top and the
left is set to the same value as the right. Finally, since all values are the same, you can also use the simplest
shortcut:

margin: 5px;

http://dx.doi.org/10.1007/978-1-4842-2463-2_10
http://dx.doi.org/10.1007/978-1-4842-2463-2_15

Chapter 2 ■ Cascading Style Sheets

19

Units
In my previous examples, I have set the font size, color, and margin using some arbitrary units. Let’s look at
the most common units that are available.

Distance Units
The distance unit, sometimes called length or size, is used in many declarations and supports several types
of units. The basic absolute units are inches (in), centimeters (cm), millimeters (mm), and 1/4 millimeters (q).
Not much needs to be said about these; everyone knows what inches and centimeters are. However, their
typographical cousins, picas (pc), points (pt), and pixels (px), seems to be much more prevalent. In 1 inch
there are 6 picas, 72 points, or 96 pixels.

■■ Caution  The unit pixel (px) does not equate to a device pixel, unless the resolution of your device just
happens to be 96 dpi (dots per inch). To avoid the confusion, the term is called “visual angle unit” in the WC3
documentation. However, this unit is still commonly known as pixels. Its definition is 1/96 of an inch; be aware
that the actual number of device pixels may be different.

One fundamental drawback to using these absolute units is that they seldom have any relevance to
real-world dimensions. The actual size on one screen can be very different from another, depending on the
device resolution. The absolute units are more useful when printing as the physical size is more accurately
rendered. The relative units are recommended for normal screen presentation. There are two types of
relative dimensions: font-relative and viewport-relative.

The font-relative units are relative to a font size, usually of the current font. These units are font size
(em), character height (ex), zero width (ch), and root font size (rem). The term “em” comes from the field of
typography, where the font size was once defined as the width of a capital “M”. The font size is now defined
as the height of the font, including the space above and below it. The em unit is equivalent to the font size. If
the font size is 12px, for example, then 1em = 12px.

■■ Tip  The em space character ( ) creates a space that is 1em wide. Likewise, the em dash character
(—) creates a dash (hyphen) the size of 1em. Interestingly, the en space character ( ), creates a
space = 1/2em.

The ex unit is defined as the height of the lowercase “x” character. In similar fashion, the ch unit is
defined as the width of the zero “0” character. There are some special rules that are used when a particular
font does not include an “x” or “0” character. If there is no practical way of otherwise defining ex or ch units,
the value of 1/2em is used.

The em, ex, and ch units are all defined based on the current font. In a typical HTML document, different
font sizes are used, and the font-relative units will adjust accordingly, depending on the font currently being
used. The value of em in a h1 element, for example, will typically be larger than a paragraph (p) element. In
contrast, the rem unit is based on the font size of the root element, which as I stated in the previous chapter
is usually the html element. So the rem unit will always be the same everywhere in the document. So, if you
want something to be sized based on the current font, use em (or ex or ch), but if the size should be constant,
use rem.

Chapter 2 ■ Cascading Style Sheets

20

The viewport-relative units are viewport width (vw), viewport height (vh), viewport minimum (vmin),
and viewport maximum (vmax). These units represent 1% of the applicable viewport dimension. For
example, if the viewport of the device (or browser window) is 600 pixels wide by 400 pixels high, 1vw = 6px
and 1vh = 4px. The vmin unit is based on the smallest viewport dimension, in this case it is 400 pixels,
so 1vmin = 4px. It doesn’t matter how the viewport is oriented. Similarly, vmax is based on the largest
dimension so 1vmax = 6px.

■■ Tip  While not actually a “unit,” a distance dimension can also be specified as a percentage, such as
width: 20%;. When defined this way, the width is expressed as a percentage of the containing element. In
contrast, vw and vh are a percentage of initial containing block, which is the total window size.

Color Units
The color attribute is defined by the value of the individual red, green, and blue components. The standard
form is to specify each component as a hexadecimal value from 0 to xFF. The color is defined by a 6-digit
number where the first two digits define the red component, the next two digits define the green component,
and the last two digits define the blue component. When specified in this way, the hexadecimal number is
preceded by the hash symbol (“#”). For example, black is defined as #000000 and white is #FFFFFF.

There are several alternative ways to specify a color attribute. The first is to use only a single digit for
each component. For example, white would be defined as #FFF. When expressed in this format, the 2-digit
form is derived by replicating the single digit. So #567 is converted to #556677.

For those who prefer to enter these as decimal values, the rgb() function can be used. The rgb()
function takes 3 parameters, which are the red, green, and blue components expressed as decimal
values between 0 and 255. (255 is the decimal equivalent of xFF.) Using this format, white is specified as
rgb(255,255,255). To make this even easier, you can specify a percentage of the maximum value. Using this
approach, white is defined as rgb(100%,100%,100%).

■■ Tip  There is also an rgba() function that includes a fourth parameter called alpha, where you can specify
the opacity. The alpha value can be between 0 and 1. A value of 1 means completely opaque and a value of 0 is
completely transparent.

There are sixteen keywords that define specific color values such as red, blue, and black. You can use
one of these instead of specifying the RGB values. These keywords are listed in the reference material in
Appendix C, along with the RGB equivalent of each. In addition to these, CSS3 defines quite a few extended
color keywords that are supported by many browsers. You can find the complete list at https://www.
w3.org/TR/css3-color/#svg-color.

The use of RGB to define colors started when the first color cathode-ray tubes (CRTs) were introduced.
CRTs had three colors that it was able to display: red, green, and blue. The intensity of each of these three
colors could be varied for each dot or pixel on the screen. Consequently, the notion of using RGB terminology
was based on the existing hardware capabilities. While we may need to end up with RGB values to render a
particular color, using hue, saturation, and lightness (HSL) is a more intuitive way of expressing a color.

The hue is expressed as an angle. Picture a color wheel with red at 0°, green at 120°, and blue at 240°.
The colors in between are relative compositions of the adjoining colors. Saturation indicates how intense
the color and is expressed as a percentage with 100% being full saturation and 0% being gray. Lightness is
also expressed as a percentage where 100% is white and 0% is black. A typical value would be 50%. As you

https://www.w3.org/TR/css3-color/
https://www.w3.org/TR/css3-color/

Chapter 2 ■ Cascading Style Sheets

21

increase the lightness, the color gets washed out and starts looking white. As the lightness fades, the color
looks darker and eventually black.

To define a color in terms of hue, saturation, and lightness, use the hsl() function. A solid red color
would be expressed as hsl(0,100%,50%). The first parameter is assumed to be specified in degrees so no
units are necessary. You can also use the hsla() function that includes the alpha parameter for specifying
the opacity.

■■ Note  The W3C specification on units can be found at https://www.w3.org/TR/css3-values. For more
details on color units, see https://www.w3.org/TR/css3-color.

Keywords
There are a few keywords that you can use as “units” in most style declarations. These are auto, inherit,
initial, revert, and unset.

•	 inherit - the inherit keyword indicates that the property should use the value
of its parent element. Most properties are inherited by default so setting the value
to inherit doesn’t actually change anything; it would inherit the parent’s value
anyway. Adding it may improve the documentation of the author’s intent. You may
want to create a rule that uses inherit to override the value of another rule.

•	 initial - the initial keyword is used to set a property back to the initial default
setting. In many cases, this is the browser’s default value. For example, the default
color is usually black so color: initial; will set the color to black. As of this
writing, this is not supported by any version of Internet Explorer.

•	 auto - The auto value is a bit tricky and its behavior will change depending on where
it is used. For example, setting the padding: auto; will automatically adjust the left
and right padding to center the content. Setting height: auto; will cause the height
to grow to fit the content inside.

•	 revert - The revert keyword specifies that the browser should ignore any author
styles and use the browser default values. It is not supported by many browsers, as of
this writing.

•	 unset - the unset keyword is a combination of inherit and initial. Basically, it
works like inherit for all inheritable properties and like initial for the remaining
properties. Like revert, the unset keyword is not supported by some browsers.

Precedence
Selectors return sets of elements and these sets can overlap. The result is that multiple rules can be applied
to the same element. If one rule sets the font size, another sets the color, and a third sets the background,
then there is no conflict. However, if one sets the color to red and another sets the color to green, what will
happen? Here’s where the precedence rules are applied.

https://www.w3.org/TR/css3-values
https://www.w3.org/TR/css3-color

Chapter 2 ■ Cascading Style Sheets

22

Style Sheet Sources
First of all, there are three sources of style sheets:

•	 Author: These are the style sheets created by the web developer and what you
normally think of when referring to a style sheet.

•	 User: A user can also create a style to control how web pages are displayed for them
specifically.

•	 User Agent: A user agent (web browser) will have a default style sheet. For example,
if you create a document with no style rules, the browser will display the content
using a default font family and size. These are actually defined in a style sheet that is
specific to the browser.

When rendering a page, the browser has to process styles from all of these sources to determine the
appropriate style for each element. When there are conflicting rules, the author style sheet takes precedence
over the user style sheet, which takes precedence over the user agent styles (browser defaults).

■■ Tip  You might find it useful to look at the default browser style sheets. They are generally available
although you might have to do some searching to find them. For example, you can use this link to see the style
sheet used by Chrome: http://trac.webkit.org/browser/trunk/Source/WebCore/css/html.css

Specificity Rule
In addition, consider that even within a set of author style sheets there may be conflicting declarations. For
example, a style sheet may include the following:

p {
 color: black;
}

header p {
 color: red;
}

A p element within a header element is selected by both rules, so which one is used? In this case, the
specificity rule applies, which states that the more specific selector is used, which is the header p selector.
With all the selectors that are available, determining which one is more specific is not as straightforward as
you might think. ID selectors are considered more specific than class or attribute selectors, which are more
specific than element selectors.

When applying the specificity rule logic, the browser will analyze each selector and give it a score based
on the type of selector is used. This score is represented as a set of four values:

	 1.	 The number of inline styles (elements that include the style attribute)

	 2.	 The number of ID selectors

	 3.	 The number class, attributes, or pseudo-class selectors

	 4.	 The number of element selectors

http://trac.webkit.org/browser/trunk/Source/WebCore/css/html.css

Chapter 2 ■ Cascading Style Sheets

23

The analysis compares the first value and only goes on to the next value when there is a tie. So if one
selector includes an ID selector and the other doesn’t, no further analysis is needed. The one with the ID
selector wins. Finally, if all 4 values are the same, the tie is broken by taking the rule that appears last.

■■ Tip  Understanding these precedence rules is important because conflicts will occur and you’ll need to
know how to deal with them. However, you should plan your style sheets to avoid conflicts.

Important Keyword
The one sort of “ace-in-the-hole” is the !important keyword. If this is used in a style rule, this trumps all
other rules. You can add the !important keyword like this:

p {
 color: red !important;
}

Keep in mind that the !important keyword is applied in the declaration, not the rule. It only applies to a
single declaration and must be repeated on each declaration that you want it applied to.

If two conflicting rules both have the !important keyword, then the precedence is determined based on
the rules I already mentioned. However, when it comes to the source of the style sheet, they are applied in
reverse order. The important rules in the user style sheet override important rules in the author style sheet.
This has an important application (no pun intended). This allows the user to override the author styles for
certain properties. For example, someone who is visually impaired may need to increase the font size. The
!important tag will ensure that this style does not get overridden.

■■ Caution  You might be tempted to use the important keyword to make a quick fix and override a cascaded
style rule. With all the precedence rules that I just described, you shouldn’t need to do this. I recommend using
this as a last resort. Overuse of the !important keyword can make your style sheets difficult to maintain.

Box Model
Each element in the document takes up a certain amount of space, which depends on the content of that
element. In addition, factors such as padding and margin affect this. Padding is the space between the
content and the element’s border. The margin is the space between the border and adjacent elements. This
is illustrated in Figure 2-2.

Chapter 2 ■ Cascading Style Sheets

24

I explained the margin attribute earlier. In the same way, you can specify the padding with the padding
declaration. Padding and margin are very similar; the primary difference is that the padding is inside the
border.

When determining the space used, remember to include the border width. For example, if the padding
is set to 10px, the margin set to 5px, and the border-width set to 3px, the space used (in addition to the
actual element content) will be (2 * 10) + (2 * 5) + (2 * 3) = 36px.

Vendor Prefixes
Oh, the joys of living on the edge! As with other areas of HTML5, browser vendors will have varying support
for the CSS specifications. In many cases, however, these vendors implement new properties before
they become part of the official recommendation. In fact, much of what is being included in the CSS3
specification has already been available from one or more browsers.

When a browser vendor adds a new feature that is not part of the CSS3 recommendation, the property
is given a vendor-specific prefix to indicate this is a nonstandard feature. If this becomes part of the
recommendation, the prefix is eventually dropped. To take advantage of some of the newer properties, you
may need to use the vendor-specific properties, and since you want your page to work on all vendors, you’ll
need to add all of them. For example, to specify the border radius, in addition to the standard border-radius
property, you may need to set all of the vendor-specific properties as well like this:

header
{
 -moz-border-radius: 25px;
 -webkit-border-radius: 25px;
 -ms-border-radius: 25px;
 border-radius: 25px;
}

Table 2-1 lists the most common prefixes. There are others, but this table covers the vast majority of
browsers.

Figure 2-2.  The box model

Chapter 2 ■ Cascading Style Sheets

25

You can’t blindly assume that all vendor-prefixed properties have the same name as the standard
property, with the prefix added, although that is true most of the time. Here is a good article that lists many
of the vendor-specific properties: http://peter.sh/experiments/vendor-prefixed-css-property-
overview. Unfortunately, this page has not been updated for a while and may be out of date. If you find that
a standard property doesn’t work in a particular browser, you may need to do some research to see whether
there is a prefixed property available from their developer’s site. For example, use this link for Webkit
extensions: https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Webkit_Extensions.

■■ Caution  You should always list the standard property last so it will override the vendor-specific version.
Some browsers will support both, and while most of the time the implementation is identical, sometimes the
vendor-specific version behaves differently.

Style Attribute
The style attribute is not part of a style sheet but is used for a similar purpose so I will explain it here. The
style attribute is one of the global attributes that is supported by every element. It allows you to set one or
more declarations on a single element. While a normal style rule includes a selector that determines which
elements the rule applies to, since the style attribute is included in an element, no selector is needed. Using
a style attribute is referred to as inline styles. A sample element using inline styles might look like this:

<p style="font-size: 1.5rem; color: hsla(175, 80%, 60%, .8);">
 Hello World!
</p>

■■ Tip  In the above example I used the rem unit that I explained earlier, so the font will be 50% larger than
the root font size. The color is defined by a hue of 175°, which is somewhere between green and blue, a
saturation of 80%, a lightness of 60%, and an opacity of 80%.

Just like other attributes, the value is specified inside double quotes. The value consists of one or
more declarations. These are formatted just like declarations in a style sheet would be: a name/value pair
separated by a colon and terminated with a semicolon. You can set any property in a style attribute that you
could with an external style sheet.

Table 2-1.  Vendor Prefixes

Prefix Browser Vendor

-moz- Firefox

-webkit- Chrome, Safari, Opera

-ms- Internet Explorer

http://peter.sh/experiments/vendor-prefixed-css-property-overview
http://peter.sh/experiments/vendor-prefixed-css-property-overview
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Webkit_Extensions

Chapter 2 ■ Cascading Style Sheets

26

■■ Caution  I saved the style attribute for last because I’m hoping that you never use it. By including inline
styles, you no longer have a separation of content and style. If you later decide that the blue-green font
doesn’t look good, you can’t fix it with merely a CSS change. Remember, inline styles take precedence over
any CSS-based rule.

Summary
In this chapter, I explained some of the basic concepts used when creating style sheets. We’ll apply this by
creating a couple of external style sheets that you can include in your web page.

First, we’ll start with a very simple style sheet shown in Listing 2-1. This is in a file named Initial.css.

Listing 2-1.  The Initial.css file

/* Make sure the non-content elements are hidden */
head, title, meta, script, link, style, base {
 display: none;
}

/* Default styling for emphasis and strong elements */
em {
 font-style: italic;
}
strong {
 font-weight: bold;
}

/* Style the text */
body>h1 {
 font-size: 1.5rem;
 color: hsla(175, 80%, 60%, .8);
}

The first rule makes sure that the non-content elements that you learned about in Chapter 1 are not
displayed. The browser default style sheet will set these anyway. The second rule sets the attributes for the
emphasis and strong elements as I discussed earlier. Again, these are the default styles. The last rule sets the
font size and color of the text using the rem and hsla units that I explained in this chapter.

Next we’ll create a second CSS file that will be used for print mode. The file, shown in Listing 2-2 is
named Print.css.

Listing 2-2.  The Print.css file

body>h1 {
 color: black;
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_1

Chapter 2 ■ Cascading Style Sheets

27

body {
 border: 1px solid;
 border-color: black;
 border-radius: 25px;
 padding: 24px;
}

This has two rules: the first sets the color to black and the second adds a border around the entire
document.

Finally, modify the MainPage.html file and replace the two style elements with the following link
elements. This will reference the new CSS files instead of specifying the style rules in the HTML document.

<link rel="stylesheet" href="Initial.css" />
<link rel="stylesheet" href="Print.css" media="print" />

The Initial.css was referenced without any media attribute so it will apply to both screen and print
modes. The Print.css file will only be used in print mode. Notice that both files use a body>h1 selector,
which have an equal specificity since they are identical. This relies on the behavior that rules that are defined
later override previous rules.

The Initial.css file includes a font-size declaration and the Print.css file does not, so the
font-size will apply to both screen and print modes. Only the color attribute is overridden in print mode.

Now display the web page and you should see the “Hello World!” text in a blue-green font. Then print
the document from the browser. The output should look similar to Figure 2-3 depending on the browser
you’re using.

Notice the title (specified in the title element) is shown at the top of the page.

■■ Note  Each browser handles print mode differently. Some left-justify the title, some put the URL at the top
of the page, some include the page number, and some show the print date.

The next chapter will introduce the third main area of this book, JavaScript. This chapter will explain the
concepts of the JavaScript language, which is the foundation for the topics explained in sections 4 and 5.

Figure 2-3.  The printed version of the HTML document

29© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_3

CHAPTER 3

JavaScript Essentials

In this chapter I’ll explain the third leg of HTML5 development: JavaScript. In Chapters 16–20 I will
demonstrate the many things that you can do with JavaScript within your HTML5 web pages. But in this
chapter I must first explain the language itself.

Introducing JavaScript
There’s a lot of content here as the JavaScript language is quite powerful. It may seem a bit awkward at first,
especially to someone whose background is in compiled languages such as C++ or C#. But it’s not hard to
learn; I will explain these fundamental concepts here and then you’ll apply this in the later chapters.

Objects
The main building block in JavaScript is an object. An object is a collection of elements; each element can
either be a property or a method. A property holds a single data value, and a method will perform some
action that is defined as a function. Another way of stating this is that a property is simply a variable (note
the var keyword) that is defined on an object. Likewise, a method is a function that is defined on an object.

The easiest way to create an object is by specifying the members through a set of name/value pairs like this:

var myObject = {
 color: "Red",
 count: 5
};

■■ Note  You may be familiar with formatting data in JavaScript Object Notation (JSON). That’s exactly what
this is and where JSON came from.

You can also define methods using this notation, like this:

var myObject = {
 color: "Red",
 count: 5,
 log: function () {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
 }
};

http://dx.doi.org/10.1007/978-1-4842-2463-2_16
http://dx.doi.org/10.1007/978-1-4842-2463-2_20

Chapter 3 ■ JavaScript Essentials

30

Creating an object in this way is sometimes referred to as object literal notation. The object, named
myObject contains two properties, color and count and one function, log(). You can then access the
properties and functions using the dot notation like this:

window.alert(myObject.color);
myObject.log();

■■ Tip  This code demonstrates two popular ways of debugging. Calling the alert() function on the window
object will display a modal dialog containing the text passed into the function. Calling the log() function on the
console object will write the specified text to the browser console that you can access through the developer
tools provided by the browser. Note that window and console are objects with properties and functions. They
will be explained in detail in Chapters 16 and 17.

Another way to create an object is to use an object constructor. This uses the new keyword and invokes
the default constructor. The following code would create the exact same object:

var redObject = new Object();
redObject.color = "Red";
redObject.count = 5;
redObject.log = function() {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
}

If you need a simple object, primarily for storing data, the JSON style may be slightly more intuitive
and more compact. However, for function-oriented objects, the constructor style provides much more
capabilities, which is what I will explain shortly.

If you needed a second instance to count your green items, for example, just repeat the code like this:

var greenObject = new Object();
greenObject.color = "Green";
greenObject.count = 7;
greenObject.log = function() {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
}

You can then use both objects in your code, for example:

if (greenObject.count > redObject.count) {
 console.log("You have more green items than red item");
}

Constructors
Notice that you have to define the log() method in both objects. If you’re familiar with class-based
languages such as C#, this might seem a bit odd. A class is used as a template from which to create each
instance of the class. When you use a class to create an object, the definition of all of the properties and
methods is copied from the class.

http://dx.doi.org/10.1007/978-1-4842-2463-2_16
http://dx.doi.org/10.1007/978-1-4842-2463-2_17

Chapter 3 ■ JavaScript Essentials

31

However, JavaScript does not use classes. Instead you can reuse an object definition by creating a
constructor function. In the previous example you used the generic constructor, Object(), which creates an
empty object. However, you could define a custom constructor like this:

function Item(){
 this.color = undefined;
 this.count = 0;
 this.log = function() {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
 };
}

A constructor is a function that is used to instantiate an object. This one creates a property named color
but does not define it. It also creates a property called count and initializes it to zero. The log() method is
also defined and uses these two properties. Now you can create an object using this prototype by calling the
Item() constructor:

var redObject = new Item();
redObject.color = "Red";
redObject.count = 5;

You’ll need to set the property values for this instance but not the methods. You can then use it like
the other objects created earlier. Adding this to the script will write the color and count properties to the
console, just like before:

redObject.log();

Like any other function, a constructor can take parameters, and this is often used to initialize the
properties. For example, you can rewrite your constructor to take a color and a count parameter:

function Item(color, count){
 this.color = color;
 this.count = count;
 this.log = function () {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
 };
}

Then create the greenObject variable like this:

var greenObject = new Item("Green", 7);

You cannot have multiple constructors with the same name. For example, you cannot define an Item()
constructor and an Item(color, count) constructor. If you do, the second definition will replace the first.
However, the parameters are optional so you can define a constructor that takes two parameters but you
can then call it with no parameters. If you plan to use it this way, the constructor should deal with undefined
parameters, such as providing default values like this:

function Item(color, count){
 this.color = color;
 this.count = count;

Chapter 3 ■ JavaScript Essentials

32

 // Handle missing parameters
 if (color == undefined){this.color = "Black";}
 if (count == undefined){this.count = 0;}

 this.log = function () {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
 };
}

Prototypes
All objects have a prototype. A prototype is a model or blueprint from which actual objects are instantiated.
What if you needed an additional property? You can add a property to an existing object like this:

greenObject.isAvailable = true;

This would add the isAvailable property to the greenObject only; however, if you add this to the
Item prototype then the new property would be available for all instances. You can modify the prototype by
accessing it with the prototype property of the constructor function:

Item.prototype.isAvailable = true;

This defines the new property on the prototype and initializes it to true. Now all objects created with the
Item() constructor will have the isAvailable property:

var blueObject = new Item("Blue", 3);
if (blueObject.isAvailable){
 console.log("The blue object is available");
}

You can add methods to a prototype in the same way:

Item.prototype.add = function(n){this.count += n;};

Inheritance
Let’s dive in a little deeper. Consider the following JavaScript:

var blueObject = new Item("Blue", 3);
console.log(blueObject);

This creates a blueObject using the Item() constructor and outputs the result to the console. The
console window, after expanding the entries some, will look like Figure 3-1.

Chapter 3 ■ JavaScript Essentials

33

The values of the color and count properties are displayed and the log() method is listed as expected.
Notice the __proto__ property, which is defined as type Object. This is the prototype property. If you
expand this, you’ll see the isAvailable property and the add() method listed as well as the Item()
constructor.

■■ Tip  You can add properties and methods to an object by simply defining them like o.newProperty = 5;.
You can also add them to a prototype by defining them on the constructor prototype like Item.prototype.
newProperty = 5;. Adding them to the object only affects that object, but adding them to the prototype makes
the new property available to objects using that constructor.

As I stated at the beginning of the chapter, an object is a collection of properties and/or methods. These
are referred to as its own members. The term own indicates the members are directly owned by the object
and not inherited. Each object also has a prototype, which is also an object and has its own members as well.

When accessing a member from an object, like o.someProperty, JavaScript will first look for the
someProperty in the o object’s own member collection. If not found there, the search will then look in the
object’s prototype.

Using Prototypes
JavaScript supports inheritance using an approach known as prototypal inheritance. The means that
a prototype, being an object itself, will also have a prototype property. This, of course, can also have a
prototype, and so on. This is referred to as the prototype chain.

Notice there is another __proto__ property listed as a member of the Item prototype. This is the Object
prototype that all objects are derived from. If you expand this in the console window, you’ll find numerous
methods listed such as the Object() constructor that you used earlier and the toString() method. But it
does not have a __proto__ property; this is the end of the prototype chain.

■■ Tip  In some browsers, such as IE, the __proto__ property of the Object prototype is listed with a null
value. This is actually more accurate; all objects have a prototype property, but it will be null if there is no
further inheritance.

Figure 3-1.  Displaying the objects in the console window

Chapter 3 ■ JavaScript Essentials

34

With this in mind, you can establish inheritance by simply assigning the prototype property to the
parent class constructor. Suppose you wanted a new object SpecialItem, to inherit from Item. Create the
SpecialItem() constructor:

function SpecialItem(name) {
 this.name = name;
 this.describe = function() {
 console.log(this.name + ": color=" + this.color);
 };
}

This creates a name property that is initialized by the constructor. It also creates a describe() method
that writes the name as well as the color properties to the console. To set up the inheritance, set the
prototype property like this:

// Setup the inheritance using prototypal inheritance
SpecialItem.prototype = new Item();

Because the color and count properties were not specified in the constructor, the default values were
used. You can fix that by adding color and count parameters in the SpecialItem() constructor and pass
these to the Item() constructor. Modify the SpecialItem() constructor by adding the code in bold:

function SpecialItem(name, color, count) {
 Item.call(this, color, count);
 this.name = name;
 this.describe = function () {
 console.log(this.name + ": color=" + this.color);
 };
}

This uses the parent object’s call() method, which I will explain later in this chapter. When you
create an object using the SpecialItem() constructor, you can then access both the log() method and the
describe() method. To verify this, add the following code:

var special = new SpecialItem("Widget", "Purple", 4);
special.log();
special.describe();
console.log(special);

The console window will look similar to Figure 3-2.

Chapter 3 ■ JavaScript Essentials

35

Using Create
There is another technique for implementing inheritance, which is called classical inheritance. It uses the
Object.create() function to set up the relationship between the parent and child objects.

To use this approach, you need to define the child object’s prototype using the create() method. For
example, replace the previous statement that set the SpecialItem.prototype with the following code:

// Setup the inheritance using classical inheritance
SpecialItem.prototype = Object.create(Item.prototype);
SpecialItem.prototype.constructor = SpecialItem;

You can test the new implementation of SpecialItem() using the same code as before:

var special = new SpecialItem("Widget", "Purple", 4);
special.log();
special.describe();
console.log(special);

The new object will function like it did before, but the way the elements are inherited is different. Notice
that most of the properties and methods are shown in the child class instead of the parent prototype as
shown in Figure 3-3.

Figure 3-2.  Testing the specialItem() constructor

Chapter 3 ■ JavaScript Essentials

36

Using the Class Keyword
The ECMAScript version 6 introduced some new keywords, which makes inheritance in JavaScript more
palatable for developers who are familiar with class-based inheritance. These include class, constructor,
extends, and super. The underlying implementation of this approach is identical to the previous one using
the Object.create() method. It uses some new keywords and minor syntax changes but accomplishes the
same thing.

■■ Caution  While support is growing fast, not all browsers support all of the ECMAScript version 6 features.
Here’s a link that shows what features are currently available: http://kangax.github.io/compat-table/es6

The complete implementation of the Item() and SpecialItem() functions is shown in Listing 3-1.

Listing 3-1.  Demonstrating the class keyword

class Item {
 constructor(color, count) {
 this.color = color;
 this.count = count;
 this.log = function () {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
 };
 }
}

class SpecialItem extends Item {
 constructor(name, color, count) {
 super(color, count);
 this.name = name;
 this.describe = function () {

Figure 3-3.  The SpecialItem object using classical inheritance

http://kangax.github.io/compat-table/es6

Chapter 3 ■ JavaScript Essentials

37

 console.log(this.name + ": color=" + this.color);
 }
 }
};

To keep the solution equivalent between each approach, add the following code to define the
isAvailable and add() members. This is the exact same code used earlier.

Item.prototype.isAvailable = true;
Item.prototype.add = function(n){this.count += n;};

While this code uses the new class keyword, it is defining the same constructor functions created
earlier. The extends keyword defines the parent constructor name and the super keyword replaces the
Item.call(this); statement that calls the parent constructor.

To test this, use the same calls as before. After running this, the console window will be identical to the
one shown in Figure 3-3.

var special = new SpecialItem("Widget", "Purple", 4);
special.log();
special.describe();
console.log(special);

■■ Caution  When calling an inherited method, the value of this will be the object being invoked, which is
not necessarily the same object where the method is defined. In the previous example, when calling special.
log(), this points to the SpecialItem object, even though the log() method was defined on the Item()
constructor. This is important to remember when a child class overrides any of its parent’s members.

Overriding Members
Regardless of which syntax is used to implement inheritance, the way overridden members are handled is
the same. As I mentioned earlier, each object has a collection of members, which are called own properties
(or members). There are no restrictions on having own members with the same names as the members in
the inherited object.

When accessing a property or invoking a method, JavaScript will first look for an own member with the
name specified. If not found there, it will search up the prototype chain. For methods, this works much like
you probably expect it to. If the method is defined in the child object, the child’s implementation will be
used. If not, the parent’s method will be called.

For properties, if the same name exists in both the parent and child objects, there will be two instances
that can have separate values. Which one is used will depend on the scope, which I will explain later.

Properties
I glossed over the concept of properties rather quickly because I wanted to first focus on objects, prototypes,
and inheritance. But let me back up a little and explain properties in more detail.

Chapter 3 ■ JavaScript Essentials

38

As you have already seen, properties can be one of the simple data types (string, number, and Boolean).
You don’t explicitly declare the data type; instead, it is inferred based on the value it is assigned. The data
type can change as new values are assigned. For example:

var test = "Some string";
test = 5;
test = true;

This code first creates a string and then changes it to a number and finally, to a Boolean. To verify the
data type actually changes, you can run the following code:

var test = "Some string";
console.log(test + ': ' + isNaN(test));
test = 5;
console.log(test + ': ' + isNaN(test));

The isNaN() function returns true if the value passed in is not a number data type. If you ran this, you
would see something like this in the console:

Some string: true
5: false

Arrays
An array in JavaScript is simply a collection of properties. The array itself has a name and can be a member
of an object or a variable. The items in the array are accessed by a numerical index. An array is created using
a literal notation, for example:

var colors = ["red", "green", "blue", "yellow", "purple", "orange"];

You can also create an empty array and add items to it using the push() method:

var colors = [];
colors.push("red");
colors.push("green");

To access an item in an array you specify its index. For example, colors[0] will return the string “red.”
The length property indicates how many elements there are in an array. Since the index is 0-based, the
length property will always reference the element after the last one. So you can also add to the end of an
array by using the following:

colors[colors.length] = "blue";

■■ Tip  Items in an array are accessed through a numerical index starting with 0. Arrays do not support named
indices or keys. If you need to access an item by name, you should create it as a named property or variable
instead of an array element.

Chapter 3 ■ JavaScript Essentials

39

An array can contain elements of different types. It is perfectly acceptable to include numbers, strings,
and object references in a single array. That may not be logically correct depending on how you will be using
the array, but JavaScript does not prevent you from doing it.

You can iterate through the elements of an array using a for loop:

for (var i=0; i < colors.length; i++) {
 console.log(colors[i]);
}

Attributes
All properties have a set of attributes that can be read and updated. These attributes are the following:

•	 value - the value of the property; this is the default property.

•	 writable - set to true if the property can be updated.

•	 enumerable - set to true if this property should be included when enumerating the
object members.

•	 configurable - set to true if the property can be deleted and if the attributes can be
modified.

You can access the property descriptor using the getOwnPropertyDescriptor() method. The property
descriptor is a set of named values that specify the values of these attributes. For example, consider the
following:

function Item(color, count){
 this.color = color;
 this.count = count;
}

var redObject = new Item("Red", 5);
console.log(Object.getOwnPropertyDescriptor(redObject, "color"));

This will output the attributes of the color property of the redObject. The console would look like this:

Object {value: "Red", writable: true, enumerable: true, configurable: true}

The getOwnPropertyDescriptor() method takes two parameters: the first is the object that contains
the property; the second is the name of the property. It returns a property descriptor.

You can update these attributes using the Object.defineProperty() method. The first two parameters
of this method are an object and the name of a property, just like with the getOwnPropertyDescriptor()
method. You then pass in a property descriptor for the third parameter. You only need to specify the values
that you want changed. For example, if you want the color property to be read-only, call this:

Object.defineProperty(redObject, "color", { writable: false });

You can also use the defineProperty() method to create new properties, which gives you the ability to
set these attributes when the property is first created. If you pass in a name of a property that does not exist,
a new one will be created. The code shown in bold adds the size property in the Item() constructor:

Chapter 3 ■ JavaScript Essentials

40

function Item(color, count){
 this.color = color;
 this.count = count;

 Object.defineProperty(this, "size",
 {value: 7, writable: true, enumerable: false, configurable: "true"});

}

You can also determine if a property is enumerable by calling its propertyIsEnumerable() method.

Special Types
In addition to the three simple types, there are also two special data types: null and undefined. The null
data type is typically used when property is an object reference but the object has not been created yet (or
the reference has not been set). You can set a property to null by using the null keyword (test = null;).

The undefined data type indicates that the value has not been defined. Consider the following:

var x = null;
var y;
console.log(typeof x);
console.log(typeof y);

The variable x has been set to null and the typeof operator will return “object.” In contrast, the y
variable has not been defined and the typeof operator will return “undefined.”

You can use numbers for property names; however, you’ll access the property using square brackets like
you would an array index. For example:

var myEnum = {1: "Red", 2: "Green", 3: "Blue"};
console.log(myEnum[2]);

Miscellaneous Topics
There are a few behaviors of JavaScript that are peculiar to JavaScript, or at least not well understood by
someone new to JavaScript. I will describe them here briefly.

Comparison Operators
JavaScript supports the typical comparison operators such as less than, greater than, etc. I won’t go into
much detail as this is mostly self-explanatory. Mozilla has a good article on this topic (https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators) if you want to
explore further.

However, there is one area that I need to elaborate on. JavaScript distinguishes between equality and
equivalence. For example, the number 12 and the string “12” are considered equivalent but they are not
equal. Equivalence, in this context, means that if the two objects were converted to the same data type they
would have the same value. Equality means that the two objects have both the same type and value. This is
sometimes referred to as strict equality.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators

Chapter 3 ■ JavaScript Essentials

41

The standard operators such as equal (==), less than (<), greater than or equal (>=), use the concept of
equivalence. To test for strict equality, JavaScript provides the === and !== operators. For example, a === b
will compare objects a and b using strict equality. In the same way you can use !== to test for inequality.

■■ Tip  I’m using the terms equivalence and equality as they convey a more accurate picture of these
concepts. However, you will often see the term “equality” to refer to equivalence and “strict equality” to
mean equality. The === and !== operators are a relatively new addition to JavaScript. Prior to that, all of the
comparison operators were based on equivalence and we used the equal operator (==) and called it equal. Now
we have an operator that really does mean equal (===).

Variable Scope
A variable’s scope determines where it can be accessed. If a variable is declared outside of a function body it
will have global scope, which simply means that all functions will have access to it. Further, a single instance
is shared by all; if one function modifies its value, it will have the new value wherever it is used. Also, the
variable will be available until the browser is closed.

Variables declared inside a function are considered to have local scope. The variable is only available to
the code within the function. The variable is no longer available once the function returns. Every time the
function is called, a new instance of the variable is created so values are not shared between calls. Function
parameters always have local scope.

The final type of scope, block scope, restricts access to a variable to the block that it was declared in.
A block is defined by the curly braces {} that surround it, such as in an if or for statement. Block scope is
a relatively new feature in JavaScript (introduced with ECMA Script version 6). Because JavaScript did not
initially support block scope, variables declared in an if statement, for example, were available to the entire
function. If JavaScript suddenly started to enforce block scope, existing applications would fail.

Instead, block scope is selectively applied by using the let keyword instead of var. Consider the
following function definition:

function testScope(){
 var localScope = 5;
 if (localScope > 3){
 var localScope2 = 7;
 let blockScope = 4;
 console.log(localScope2 + blockScope); // logs 11
 }
 console.log(localScope2); // logs 7
 console.log(blockScope); // this will fail
}

testScope();

The localScope variable is declared using the traditional var keyword and it is available outside of the if
block. However, the blockScope variable was declared with the let keyword and it is not. Regardless, none of
the local-scoped or block-scoped variables are available to code outside of the testScope() function.

The tricky part about variable scope is when multiple variables are declared with the same name.
This will not generate an error but you may not get the result you were expecting. For example, look at the
following code:

Chapter 3 ■ JavaScript Essentials

42

var x = 1; // global scope

function testX(x1){
 var x = 2; // local scope
 console.log("original x value passed in: " + x1);
 console.log("local-scoped x: " + x);
}

testX(x);
console.log("global-scoped x: " + x);

A variable named x is created both in both the global scope and local scope. These are actually two
different objects and each has their own value. The value of the global-scoped object is passed into the
function and is available within the function as the x1 parameter.

The function declares a variable named x; this is a new object, unrelated to the first one, except they
have the same name. Any code that references x will use the local object; it is not possible for the function
to access the global-scoped variable. This is referred to as hiding the object. Setting the value of x within the
function changes only the local variable. When this code is executed, the following will be written to the
console.

original x value passed in: 1
local-scoped x: 2
global-scoped x: 1

■■ Caution  If you use a variable inside a function without declaring it with either the var or let keyword,
it will be created as a global-scoped variable. For example, if you add the statement x=5; in a function, the x
variable will be global. You should use always declare a variable using var or let so your intentions are clear.

Strict Mode
When using strict mode, undeclared variables are not allowed and will cause an error. Otherwise, if not in
strict mode, JavaScript will declare the variable for you. While this may seem like a good idea, it can lead to
unexpected results. For example, consider the following code:

var myIntervalCounter = 0;

for (var i=0; i < 10; i++)
{
 if (i % 2 == 0) { myInterbalCounter = i * 2; }
}

console.log(myIntervalCounter);

Notice the myIntervalCounter variable was misspelled in the for loop. When not in strict mode, a
second variable will be created and its value set instead of updating the original variable. The intended
variable does not ever get set and its value remains 0.

Chapter 3 ■ JavaScript Essentials

43

You can turn on strict mode by adding the following to the top of the script:

"use strict";

This will turn on strict mode for the entire file. Alternatively, you can apply it to specific functions by
adding this to the first line of the function definition. In strict mode, the previous code will generate an error
as shown in Figure 3-4.

■■ Tip  There are several other nuances to strict mode such as not allowing you to name a variable using
a reserved keyword. Mozilla has a good article that explains exactly what strict mode does at https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode.

Functions
We’ve looked at functions earlier, using a function to create an object. A function is also an object and
can be added as object members just like properties. This satisfies the object-oriented requirement of
encapsulation.

A function can also be defined just like any other type of variable. So a function can be defined in global
scope (outside of a function body) but it can also be defined within another function. Consider the following
code:

var functionA = function(){
 var x = 1;
 var functionB = function(){
 var y = 2;
 var functionC = function(){
 var z = 3;
 console.log(x+y+z);
 }
 }
}

Here functionA() declares functionB() in local scope, which in turn creates functionC() also in local
scope. This is referred to as lexical scope, when you define a function within another function.

Each function defines a new scope. The functionA() is in the global scope. Between the curly braces
a new local scope is defined; let’s call it scope A and it contains the variable x and functionB(). Inside the
curly braces of functionB() another scope if defined; we’ll call it scope B. It contains the variable y and
functionC(). Similarly, inside functionC() there is a third local scope that contains the variable z.

At this point, nothing is calling any of the functions; you’re simply defining them. Only functionA() has
global scope and it is the only function you can call. Let’s rewrite this with some function calls so we can see
this in action. The inner function, functionB() can call functionC() because it is scoped within functionB().
Similarly, functionA() can call functionB(). Because functionA() is global scope, you can call it directly.

Figure 3-4.  Strict mode error

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 3 ■ JavaScript Essentials

44

var functionA = function(){
 var x = 1;
 var functionB = function(){
 var y = 2;
 var functionC = function(){
 var z = 3;
 console.log(x+y+z);
 }
 functionC();
 }
 functionB();
}

functionA();

Notice that functionC() has access to the local-scoped variables in functionA() and functionB().
This is known as closure. Closure happens when an inner function accesses variables in its outer (enclosing)
functions. An inner function also has access to the local-scoped functions as well variables. So functionC()
could call functionB(). It could also call functionA() as this is global scoped. But if it does either, in this
case, you’ll end up in an infinite loop.

■■ Note  Keep in mind that functionA() cannot call functionC(). A function has access to its local scope as
well and anything backwards in the scope chain; but it cannot access anything that is further down the chain.

So you can’t call functionC() directly. Or can you? Actually, you can call it if a reference to it is
returned; this is a common use of closure. Only functionB() has access to functionC() but a function is an
object just like any other variable and can be provided to the caller as a return value. I’ll rewrite this slightly
to demonstrate this.

var functionA = function(){
 var x = 1;
 var functionB = function(){
 var y = 2;
 var functionC = function(){
 var z = 3;
 console.log(x+y+z);
 }
 return functionC;
 }
 return functionB();
}

var closure = functionA();
closure();

Inside of functionB(), instead of calling functionC(), the function is returned. Notice there are no
parentheses in the return statement. This is simply returning the variable named functionC, which happens
to be a function, without actually executing it. Inside functionA() it does call functionB() and returns the
value returned by functionB(), which is the reference to functionC().

Chapter 3 ■ JavaScript Essentials

45

Calling functionA() simply returns a function reference that is stored in the closure variable. The closure
variable now has a reference to functionC(). Anytime you want to call functionC(), just call closure().

Context
The this keyword refers to the current execution context, but sometimes it’s not clear what this is. It’s like
going to a restaurant and telling your server that “you want some more of this.” Hopefully you’ve indicated
what this is or you may not get what you expected. JavaScript can be a bit like that.

The this keyword refers to a single object. Inside a function, for example, this refers to the object that
invoked the function. In a typical object with properties and methods, inside a method, this usually points to
the containing object. For example:

var myObject = {
 color: "Red",
 count: 5,
 log: function () {
 console.log("Quantity: " + this.count + ", Color: " + this.color);
 }
};

Here the log() function uses this.count to access a property in the containing object. However, and
this is a really important point, the value of this is not defined until the function is called… and the value is
normally set as the object that invoked the function, although this can be overridden. So, in this example,
we’re expecting the log() function to be called by something like myObject.log();, in which case myObject
will be the invoking object.

If you use a function as a callback, such as an event handler, the invoking object will likely not be the
containing object. For example, if the function handles the onclick event for a button, the invoking object
will be the button.

The call() function allows you to call a function and specify the this value. I’ll demonstrate this with
the following code:

function Vehicle(weight, cost) {
 this.weight = weight;
 this.cost = cost;
}

function Truck(weight, cost, axles, length) {
 Vehicle.call(this, weight, cost)
 this.axles = axles;
 this.length = length;
}

var tonka = new Truck(5, 25, 3, 15);
console.log(tonka);

You might recognize the Vehicle() function; it’s a typical way of creating an object and is usually
invoked with a statement like:

var v = new Vehicle(5, 25);

Chapter 3 ■ JavaScript Essentials

46

That would create an object with two properties (weight and cost) and initialize them with the values
supplied. The Truck() function is similar, initializing the axles and length properties. Notice, however, the
first line of the function:

Vehicle.call(this, weight, cost);

This uses the call() function to invoke Vehicle(), passing in the current this value, which is a
reference to the Truck object. When the Vehicle() function is invoked this way, the weight and cost
properties are added to the Truck object instead of the Vehicle object. Sending the new tonka variable to
the console log will verify this. You should see the following:

Truck {weight: 5, cost: 25, axles: 3, length: 15}

Notice that there were three parameters passed in the call() function. The first is used as the this
value inside the function. The remaining ones are passed along to the function being invoked. The apply()
function works exactly the same way as the call() function, except the extra parameters are passed in as an
array. The following lines of code will accomplish the same thing:

Vehicle.call(this, weight, cost);
// or
Vehicle.apply(this, [weight, cost]);

You can use either; it’s just a matter of preference. However, the apply() can be used with a variable
parameter list. You can build the array dynamically and then pass it to apply() as the second parameter.

Both the call() and apply() function invoke the functions they are called on. So, when you execute
Vehicle.call(...), the Vehicle() function is invoked. What if you just wanted to set up the call but not
actually invoke it? An example is if you’re setting up a callback function to be executed when the click event
occurs. This might look like this:

myButton.click(myHandler);

As I mentioned earlier, when myHandler() is called, this will be the button object. If you wanted a
different this value, you can’t use call() or apply() because you’re not calling the handler yet; you’re just
setting up the call for when the event is raised. To do this use the bind() function like this:

myButton.click(myHandler.bind(newThis));

Now, when the event occurs, the myHandler() function will be called and its this value will be the
value passed in, newThis. You can pass additional parameters to the function by listing them after the this
reference, just like with the call() function.

Immediately-Invoked Functions
Normally when you define a function in JavaScript you simply define it; it is not yet invoked. If you want it to
run you have to then call it. For example:

var myFunction = function() {
 doSomething();
}

Chapter 3 ■ JavaScript Essentials

47

Now, if you want to call it, you would then need to add a statement like myFunction();. Alternatively, you
could define the function as an immediately-invoked function expression (IIFE), which is pronounced “iffy.”

You can turn a function into an IFFE by putting it inside a set of parentheses and then adding an open
and close parenthesis, like this:

 (function() {
 doSomething();
})();

If this is defined in the global scope, the doSomething() function will be executed as soon as the script is
parsed.

Namespaces
In JavaScript all objects in the global scope need to have unique names to avoid name collisions. Keep
in mind that all scripts running on a browser share the global scope. So even if your code is free of any
collisions, other third-party scripts also have objects in the global scope. If you put all of your objects in the
global scope, there’s a much greater chance of a collision of using the same names as other objects. To write
good defensive code, you should organize your code using namespaces.

A namespace is a technique for organizing code in a hierarchical fashion. An object’s fully qualified
name includes the path in the hierarchy where it is defined. So even if you have two classes both named
Item, if they are found in different paths (namespaces), their fully qualified names are unique.

While JavaScript does not support a namespace keyword, the concept of namespaces can be easily
implemented with nested objects. The basic principle here is to create a single object in the global scope,
and then add everything else as members of the global object. For example, the following code creates a
single object in global scope and then creates some nested objects to define a hierarchy.

var mySample = {}; // global object

// Define the namespace hierarchy
mySample.things = {};
mySample.things.helpers = {};
mySample.otherThings = {};

// Add stuff to the namespaces
mySample.things.count = 0;
mySample.things.helpers.logger = function (msg) {
 console.log(msg);
}

Now if your code was split across multiple files or you needed this code in multiple places, you would
need to make sure the objects were not created twice. You can accomplish this by using the OR operator:

this.mySample = this.mySample || {};

An undefined object will return a falsy value so the OR operator will proceed to the next part of the
statement, which will create the object. If the object had already been created, this would return true and the
remaining code would be skipped.

All of your code then uses objects within the mySample object so it’s pretty important that this object be
created before any other code executes. The easiest way to do this is to include it in an IIFE at the top of your
script, so let’s rewrite that as an IIFE:

Chapter 3 ■ JavaScript Essentials

48

 (function () {
 window.mySample = window.mySample || {};

 // Add some other nodes in the hierarchy
 window.mySample.things = window.mySample.things || {};
 window.mySample.things.helpers = window.mySample.things.helpers || {};
 window.mySample.otherThings = window.mySample.otherThings || {};

 // Setup a shortcut
 window.helpers = window.mySample.things.helpers;

 // Now add some members
 window.mySample.things.count = window.mySample.things.count || 0;
 window.mySample.things.helpers.logger = function (msg) {
 console.log(msg);
 }
})();

Notice that the var keyword is removed and replaced with the window object; this refers to global scope.
By defining mySample on the window object, you make it available everywhere.

Finally, I snuck in a shortcut so I can use shorter references to the namespaces. You can access the
logger() method by following the namespace hierarchy (mySample, things, helpers). But you can also
access it directly from the helpers shortcut:

mySample.things.helpers.logger("some text");
helpers.logger("some more text");

■■ Tip  There are other ways to implement the concept of namespaces. For some examples of these
variations, check out the article at https://addyosmani.com/blog/essential-js-namespacing. This also
assumes there are no other global objects named mySample or helpers. You might want to prefix these names
with something like your company name or acronym to ensure uniqueness.

Exceptions
JavaScript supports a try/catch/finally pattern that is similar to what you’ll find in other languages such as C#.
Code that can potentially fail should be put into a try block. If an exception is raised within the try block, the
catch block will be executed. The finally block is always executed, whether an error occurs or not.

You can also generate an exception in your code using the throw() function. This allows you to put
the error handling in the catch block and keep your main code cleaner. Here is a simple example of these
constructs:

try {
 var x = 5;
 var y = 0;
 if (y == 0) {
 throw("Can't divide by zero")
 }

https://addyosmani.com/blog/essential-js-namespacing

Chapter 3 ■ JavaScript Essentials

49

 console.log(x/y);
}
catch(e) {
 console.log("Error: " + e);
}
finally {
 console.log("Finally block executed");
}

The finally block is a great place to put any necessary clean-up code that needs to run even when an
error occurs. Both the catch and finally blocks are optional but you need to have at least one of them.

Promises
A promise is a standardized way of dealing with asynchronous function calls. In practice, it is simply a
callback function with two parameters: one function to be called on success and a second to be called on a
failure. A promise can be in one of three states:

•	 Pending - the operation has not completed

•	 Fulfilled - the operation completed successfully

•	 Rejected - an error occurred during processing

Sometimes fulfilled and rejected are collectively referred to as settled. Let’s look at a simple example that
uses a promise. The getNumber() function waits 2 seconds and then generates a random number between 0
and 100. If you requested an even number and the random number is even, the function returns success.

function getNumber(bEven) {
 return new Promise(function (fulfill, reject) {
 // perform some long running task
 window.setTimeout(
 function () {
 var i = Math.round((Math.random() * 100),0);
 if ((i % 2 != 0 && bEven) ||
 (i % 2 == 0 && !bEven)) {
 reject(i);
 }
 else {
 fulfill(i);
 }
 }, 2000);
 });
}

The getNumber() function returns a Promise object, which is a function with two parameters. The work
is done inside this inner function. Because the code is inside the getNumber() function, it has access to its
variables such as the bEven parameter. The fulfill() and reject() function references are passed into the
inner function and one of the two is called when the inner function completes.

Chapter 3 ■ JavaScript Essentials

50

To invoke this code, add the following:

var p = getNumber(true);

p.then
 (
 function (i) { console.log("Promise fulfilled, i = " + i); },
 function (i) { console.log("Promise rejected, i = " + i); }
);

console.log("Promise made...");

This calls the getNumber() function requesting an even number. This returns immediately with a
Promise object. The then() member of the Promise object is then called, passing in two anonymous
function. The first will be called upon success and the second on failure. At this point, the getNumber()
function has not completed; it is in a pending state. One of the anonymous callback functions is then
executed by the Promise object.

You can also catch the error callback instead of passing it in to the Promise object. For example, this will
accomplish the same thing:

p.then
 (
 function (i) { console.log("Promise fulfilled, i = " + i);}
)
.catch
 (
 function (i) { console.log("Promise rejected, i = " + i); }
);

Array Methods
There is quite a lot of built-in functionality when working with arrays. I will explain the more common
methods here and a complete list is provided in the reference section in Appendix C.

Accessing Elements
As I mentioned earlier, the simplest way to populate an array is using the literal notation. For example, this
will create an array with six string elements:

var arr = ["red", "green", "blue", "yellow", "orange", "purple"];

The first element has an index of 0 and index of the remaining elements is assigned sequentially.
Elements are accessed by their index. To get the value of the second element, use arr[1];, which will return
the string “green.” You can update a value by setting it directly like arr[2] = "azure";. This will replace the
“blue” element with “azure.” You can also delete an element using the delete keyword: delete arr[3];. This
will delete the value at index 3 (“yellow”) but leave an empty element in the array.

JavaScript is very forgiving when it comes to out-of-bound errors. For example, in the above array, there
are six elements, each referenced by index 0-5. Calling arr[8]; will not cause an error, instead it will return
undefined. Likewise, you can call arr[8] = "brown"; and the array will grow automatically to hold nine
elements, the ninth having the value “brown.” This will leave some holes in the array; arr[6] and arr[7] will
be undefined, but arr[8]; will return “brown.”

Chapter 3 ■ JavaScript Essentials

51

There are two methods for adding a new element: unshift() adds an element to the beginning of the
array, and push() adds an element to the end of the array:

arr.unshift("white");
arr.push("black");

After executing this, “white” will be at the beginning of the list and “black” will be at the end. The
original six elements will be in between in their original order. Both of these methods return the new size of
the array after adding the element. You can also get the size through the length property:

var numberOfElements = arr.length;

There are also corresponding methods to remove the first and last elements. The pop() method returns
the last element and also removes it from the array. Likewise, the shift() method returns the first element
while simultaneously removing it from the array.

The shift() and unshift() methods get their names from needing to adjust the element indices. The
first element in an array has an index of 0. When adding a new element as the beginning, it will be at index
0, which means the index of each of the existing elements needs to incremented, or shifted up. Likewise,
removing the first elements requires the indices to be shifted down.

■■ Tip  You can implement the functionality of a stack by using the push() and pop() methods. A stack uses
Last In, First Out (LIFO) meaning the last element added is the first to be removed. Use push() to add an element
to the end and then pop() will remove the element last added. To implement a queue, which uses First In First
Out (FIFO), use unshift() to add new elements and use pop() to remove the oldest element in the queue.

Outputting an Array
The valueOf() method will return the array as a collection of values. This is the default method of an array
object; this method is called if you access an array without calling one of its methods.

Also, you can easily output the content of an array as a set of comma-separated values by calling the
toString() method. If you need to output the elements with a different separator string, use the join()
method. This takes a single parameter that specifies the string that will be placed between each element.
If you don’t pass any parameter to the join() method, it will use the comma character. For example, if you
have an array named arr, the following four statements will output its contents: the first two as a collection
of strings, the last two as a single string with comma-separated values.

console.log(arr);
console.log(arr.valueOf());
console.log(arr.toString());
console.log(arr.join());

Manipulating Elements
There are several methods available for manipulating arrays, which I’ll briefly explain here. Some of these
methods modify the existing array while others do not but return a new array. Pay close attention to this detail.

Chapter 3 ■ JavaScript Essentials

52

The concat() method combines two or more arrays and returns the elements in a new array. The
existing arrays are not modified. The concat() method is called on the first array and the additional arrays
are passed as parameters. For example,

var arr1 = ["a", "b", "c"];
var arr2 = ["x", "y", "z"];
var combined = arr1.concat(arr2);

The resulting array, combined, will have a, b, c, x, y, and z elements. If you need to combine more than
two arrays, just pass the other arrays as additional parameters.

Use the slice() method to create a new array that contains a subset of an existing array without
changing the existing array. Pass in a starting and ending index to specify which elements to return. Note
that the starting index is inclusive but the ending index is not. So calling arr.slice(2, 4); will return
elements 2 and 3. The end parameter is optional; if omitted all elements from the starting index are returned.

You can also use negative values when calling slice, which will count from the right. For example arr.
slice(-3, -1); will return the next-to-last element and the one just before it. This syntax might not seem
very intuitive; however, it’s easier to understand if you think of adding the array length to these parameters.
For example, the following two statements will return the exact same results:

arr.slice(-3, -1);
arr.slice(arr.length-3, arr.length-1);

■■ Tip  If you want to get the last n elements, use -n for the first parameter and length as the second
parameter. For example, to get the last 5 elements, use arr.slice(-5, length);.

The splice() method performs both a removal of elements within an array as well as inserting new
elements at a specified location. The first parameter specifies the index where the removal starts and
also where the new items are inserted. The second parameter indicates how many elements should be
removed. Enter 0 if you do not want to remove any elements. To insert elements, include them as additional
parameters.

You can use the splice() method to just remove elements, and you can use it to only insert elements,
and you can use it to do both. For example:

arr.splice(2, 1); // removes one element at index 2
arr.splice(2, 0, "teal", "pink"); // adds two elements at index 2
arr.splice(2, 1, "teal", "pink"); // removes 1 element and inserts 2

■■ Caution  The splice() method returns an array that contains the elements that were removed. In this
way, it works just like the slice() method. In fact, arr.splice(2,1); and arr.slice(2,1); will return the
same results. However, unlike slice(), the splice() method modifies the array that it is called on. Calling
slice() will leave the original array unchanged, but calling splice() will remove the items from the array. Of
course if you use splice() to insert elements, the array will be updated as well.

The sort() method modifies the existing array. It takes an optional parameter that specifies a callback
function to be used in the sorting process. If not supplied, the sort() method will convert each element to a
string, if necessary, and then sort the strings alphabetically. Consider the following code:

Chapter 3 ■ JavaScript Essentials

53

var numbers = [1, 33, 7, 12, 5];
numbers.sort();

After executing the sort() method, the elements will be [1, 12, 33, 5, 7], which is probably not what you
want. To correct this, you need to supply a comparison function. This function is passed to two parameters,
which will be two elements of the array. It should return 0 if the elements are equal (in terms of how they
should be sorted), -1 if the first element should be sort before the second, or 1 if the first element should be
sorted after the second.

The following code defines a numericSort() function and passes it to the sort() method. After calling
this, the elements will then be sorted in numeric order [1, 5, 7, 12, 33].

function numericSort(a, b){
 if(isNaN(a) || isNaN(b)) return 0; // Can't compare if not numeric
 if(a == b) return 0;
 if(a < b) return -1;
 if(a > b) return 1;
}

var numbers = [1, 33, 7, 12, 5];
numbers.sort(numericSort);

The reverse() method modifies the existing array by reversing the order of its elements. It does not take
any parameters and it returns the modified array. The following code will output the elements as [3, 2, 1].

var numbers = [1, 2, 3];
numbers.reverse();
console.log(numbers);

Searching
The array object provides several methods for finding an element in an array. The indexOf() method returns
the index of the first occurrence of the specified element. For example, arr.indexOf("red"); will return the
first element whose value is “red.” Similarly, arr.lastIndexOf("red"); will return the last occurrence.

Both of these methods perform the search using strict equality, which means that if you are looking for
“12” and the array contains the number 12, it will not find it. The indexOf() method starts at the beginning
of the array and searches forward until it finds the first match. The lastIndexOf() methods starts from the
end of the array and scans backwards.

Both methods support a fromIndex parameter that specifies where the search should start from. If
not specified, the search starts at the beginning (or the end for lastIndexOf()). Negative values are also
supported, which indicate the search should start from this number of elements from the end of the array.
If a negative number is used to define the starting position of the search, the search is still forward for
indexOf() and backwards for lastIndexOf().

var arr = ["red", "green", "blue", "yellow", "blue", "purple"];
arr.indexOf("blue"); // return 2
arr.lastIndexOf("blue"); // returns 4
arr.indexOf("blue", 3); // returns 4
arr.lastIndexOf("blue", -3); // returns 2

Chapter 3 ■ JavaScript Essentials

54

The find() and findIndex() methods will search for an element in the array using a callback function
that you define. This will allow you full control of the search logic. The find() method returns the element
and findIndex() returns the index of the element. Both of these methods iterate through the elements in the
array, executing the specified callback function. The search stops when the callback function returns true,
and the current element, or its index, is returned.

The callback function can have three input parameters, although only the first one is required:

•	 element - the current array element being evaluated

•	 index - the index of the current element

•	 array - the array object that is being searched in

For example, if you want to find the first primary color from the array, implement the callback function as:

function isPrimary(color, index, array) {
 if (color == "red" || color == "blue" || color == "yellow"){
 return true;
 }
 return false;
}

Then call the find() method, passing in the isPrimary() function:

console.log(arr.find(isPrimary));

Both the find() and findIndex() methods support a second, optional parameter. This allows the caller
to define the value of this when the callback function is invoked.

Creating Subsets
The filter() function does not modify the array but returns a new array, which is a subset of the original
array. To implement the filtering logic, you must specify a callback function that will be called for each
element in the array. The function returns true if the element should be included in the subset or false if not.

The callback function works just like the one used by the find() method. In fact, you can use the same
function for both:

var subset = arr.filter(isPrimary);
console.log(subset);

This will not affect the existing array but will return a new array containing [“red,” “blue,” “yellow,” “blue”].
The map() method will create a new array that contains an element for every element in the original

array. It iterates through the elements in the array, calling the specified callback function. This function will
return a new element that is some sort of transformation of the original. For example, you might want to
convert an array of strings to be uppercase.

To test this using the previous numbers array, we can implement the isOdd() function:

function isOdd(element, index, array){
 if (isNaN(element)) {return false;}
 if (element % 2 != 0) {return true;}
 return false;
}

Chapter 3 ■ JavaScript Essentials

55

This returns a Boolean value; true if the number is odd and false if not. When you pass this to the map()
method, you’ll get back a new array of Boolean values:

var boolArray = numbers.map(isOdd);
console.log(boolArray);

The every() and some() methods are similar to the find() and filter() methods in that you provide
a callback function that returns a Boolean, which is called on each element in the array. The find() method
returns the first element where the function returns true, and the filter() method returns all elements
where the function returns true.

The every() method returns true if the function returns true for every element in the array. The some()
method returns true if the function returns true for any (some) of the elements in the array. To test this out,
try the following:

console.log(numbers.some(isOdd)); // returns true
console.log(numbers.every(isOdd)); // returns false

Processing
There are several useful methods that you can call to implement some processing across the elements of an
array. Let’s start with the simplest, forEach().

The forEach() method will iterate through all of the elements in the array, calling the specified
function. You must define the function that will be executed and the function is passed as a parameter to
the forEach() method. Like the other callback functions we’ve looked at, this function has one required
parameter, which is the specific element that it is being executed on. In addition, there are two optional
parameters, the index of the element and the array being processed. The function might look like this:

function process(item, index, array) {
 console.log("[" + index + "]: " + item + ", in array ", array.toString());
}

Then to call the forEach() method, add the following:

arr.forEach(process);

The console entries should look like this:

[0]: white, in array white,red,green,blue,yellow,orange,purple,black
[1]: red, in array white,red,green,blue,yellow,orange,purple,black
[2]: green, in array white,red,green,blue,yellow,orange,purple,black
[3]: blue, in array white,red,green,blue,yellow,orange,purple,black
[4]: yellow, in array white,red,green,blue,yellow,orange,purple,black
[5]: orange, in array white,red,green,blue,yellow,orange,purple,black
[6]: purple, in array white,red,green,blue,yellow,orange,purple,black
[7]: black, in array white,red,green,blue,yellow,orange,purple,black

The reduce() method and its reduceRight() counterpart convert the array into a single value. The best
way to explain this how this method works is to describe a specific use case. For example, you have an array
of numeric values and you want to get the sum of these values. To do this, you’ll need to iterate through all of
the elements accumulating the element values.

Chapter 3 ■ JavaScript Essentials

56

Like the forEach() method, you’ll need to supply a function to the reduce() method. This has two
required parameters. The first parameter is an accumulator that holds the interim results as of the last
element processed, or an initial value if this is the first element. The second parameter is the element that
the function is being called for. This function also has the same two optional parameters as the forEach()
method, which are the index and the array reference. This function combines the current element to the
accumulator and returns the results. Here’s how you would implement the summation use case:

function sumArray(total, item, index, array) {
 return total + item;
}

var arr = [1, 3, 5, 2, 8, 1];
console.log(numbers);
var sum = arr.reduce(sumArray, 0);
console.log(sum);

Notice that the reduce() method includes a second parameter, which is the initial value of the
accumulator. So the total parameter will have a value of 0 on the first call to the sumArray() function.

The reduceRight() does the same thing as reduce(), except the elements are iterated in reverse order,
starting from the end of the array. When the order does not matter, as is the case with summing the values,
reduce() or reduceRight() will produce identical results.

Summary
I’ve covered a lot of material in this chapter. While certainly not a comprehensive coverage of every feature,
this provides a good introduction of the basics that you’ll need to know. If you’re fairly new to JavaScript,
I recommend working through the SampleScript.js file in the download code and make sure you
understand what the code is doing.

In Chapters 16–20, you’ll use JavaScript extensively to enhance your HTML5 application. The advanced
chapters, 21–26 will also make significant use of these JavaScript features.

In the next chapter, I’ll demonstrate the HTML elements used to provide structure to your HTML
document.

http://dx.doi.org/10.1007/978-1-4842-2463-2_16
http://dx.doi.org/10.1007/978-1-4842-2463-2_20

PART II

HTML

In this section, I’ll explain the HTML elements that are available and how and when to use them.
I covered a few of them in Chapter 1: those used for providing document structure and metadata.
Now, I’ll get into the real meat of the HTML elements.

HTML5 is all about semantics; you’ll read that over and over again in this section. The choice of
which element to use is an important one. It conveys the meaning or purpose of the content.
In the next five chapters, I will try to drive home why each element should be used. And, of course,
I’ll provide demonstrations and examples of how they are used.

Each of the five chapters in this section, describe a set of elements that are organized as follows:

•	 4) Structural elements, such as header, footer, section, aside, and div.
These create a skeleton that will support the remaining content.

•	 5) Text elements – there is a large set of elements that contain primarily text
content, and each provides a specific semantic meaning.

•	 6) Table elements – these elements are used to arrange tabular data that
logically belongs in rows and columns.

•	 7) Embedded elements, such as img, audio, and video.

•	 8) Form elements, including input, button, label, and other elements used
to create data entry forms.

http://dx.doi.org/10.1007/978-1-4842-2463-2_1

59© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_4

CHAPTER 4

Structural HTML Elements

I briefly introduced the basic HTML syntax in Chapter 1 and then explained the information inside the head
element. There is no displayable content in the head element; the data there is intended for applications to
use such as browsers, screen readers, or search engines. Now we turn our attention to the body element; this
is where the content goes.

Content Categories
There are over 100 elements defined in HTML5. I’ve explained a few of them in Chapter 1 and over the next 5
chapters I’ll demonstrate the remaining ones. Elements are organized into content categories and there are
general rules, based on these categories, which define where an element can be used and what it can contain.
An element can be in more than one category and there are a few elements that don’t belong in any category.

•	 Metadata - These were explained in Chapter 1; they have no real content but provide
metadata about the HTML document and information to applications that will
process the document.

•	 Sectioning - These elements are used to organize a page into sections, and are also
used to construct a document outline.

•	 Heading - These elements are used within sections to define the title and subtitles of
a section.

•	 Embedded - Embedded elements are used to insert non-HTML content, such as
images, within the document. These will be described in Chapter 7.

•	 Interactive - These elements provide for user interaction. A button or an input field
are common examples of this.

•	 Form - Form elements are used for capturing user input and are further divided into
several subcategories. I will explain these in Chapter 8.

•	 Phrasing - These elements are used to mark up text, or rather phrases, which are
combined to form paragraphs. These elements will be demonstrated in Chapter 5.

•	 Flow - The vast majority of elements will fall into this category. These are elements
that have actual content such as text or some embedded content like images or
video. The term “flow” is used because these elements take up space and generally
flow from one element to the next, across, or down the page.

The reference material in Appendix C includes an alphabetical list of all of the HTML5 elements that
indicates which categories each is in.

http://dx.doi.org/10.1007/978-1-4842-2463-2_1
http://dx.doi.org/10.1007/978-1-4842-2463-2_1
http://dx.doi.org/10.1007/978-1-4842-2463-2_1
http://dx.doi.org/10.1007/978-1-4842-2463-2_7
http://dx.doi.org/10.1007/978-1-4842-2463-2_8
http://dx.doi.org/10.1007/978-1-4842-2463-2_5

Chapter 4 ■ Structural HTML Elements

60

■■ Note  Most of the elements that are not in any content category are used only as child elements for a
specific element. For example, the table element is in the flow category, but the child elements such as tr and
td are not assigned a category as they are only used within a table.

This chapter will explain the use of sectioning and header elements to organize your HTML document.

Sectioning Content
It’s a good idea to organize your HTML document into logical sections, especially for larger documents. Prior
to HTML5 the division (div) element was used to group content and they can be nested like this:

<div>
 <div>
 <div>
 </div>
 </div>
</div>

Unfortunately, a div can be used to group content for a lot of different reasons, which are not obvious
to the reader. HTML5 introduces several new elements that provide more specific semantic groupings. Each
of these elements are used to group content into a larger unit. Each one, however, groups the content for
a different reason. You could accomplish the grouping with the generic div element; the reason to use the
more specific element is to make it clear why the group is being made. So pay close attention to the specific
purpose of each element and use the correct one depending on what you’re trying to accomplish.

Section
The section element is used to organize content into logical sections. Think back to an essay you may have
written for a school assignment where you’d have an introduction, three main points, and a conclusion.
Each of these would be represented in HTML as a section. Also, section elements can be nested just like
div elements. If each of your main points have subpoints, you can use a section for each subpoint.

There are two guiding principles in choosing your section elements. First, sections should be topical;
you’re organizing content based on the material being presented. Second, sections should flow linearly.
For example, the introduction flows into the first main point, and so on. The antithesis of this will be more
apparent when I discuss the aside element.

Article
An article element is used to group content that can stand on its own. This is typically used when the
content is being reused. If you pick up your local Sunday newspaper and read your favorite comic strip, you
may not be aware of this, but the same comic strip is included in newspapers all over the world. The same
concept is true of web sites, where syndicated content is included in multiple pages. These should be placed
in an article element because the content is independent of the rest of the page.

However, one of the most common uses of the article element is on blogs. Each post on a blog is
generally stand-alone content and is often grouped into an article element. Also, comments that are
posted to a blog are also typically placed in an article element.

Chapter 4 ■ Structural HTML Elements

61

You can use an article element anywhere you would use a section element, if the content is
independent and reusable. An article, especially a larger one, will often use the section element to
organize the article topically as I described previously. Also, an article element can include other article
elements, as would be the case with a blog post including comments.

Aside
An aside element is used to group content that does not belong in the normal flow of your document. This
could be supporting information provided for reference purposes, or perhaps information about the author.
It could also be unrelated information such as advertising space or a calendar of events.

The aside element is often presented as a sidebar so it doesn’t interrupt the flow of the other content.
However, the CSS will determine that; the job of a content author is to indicate that a group of content is not
part of the normal content flow. And this is done with the aside element.

Nav
The nav element is used to group a set of links. A typical example is where you have some sort of menu on
the page to jump to internal bookmarks or other related pages. Another example is where you provide links
for more information or related material.

You don’t have to put every link into a nav element. But if you do have content that is comprised
primarily of links, put this in a nav element. This will indicate that this section of content provides
navigation.

Address
The address element is not included in the sectioning content. I am describing it here because it is used
to provide contact information for either the entire document or for a specific article. To use it for a single
article it should be placed somewhere inside the article element. If it applied to the document, it must be
inside the body element; this is often placed in the footer element.

■■ Tip  The address element is intended for providing contact information related to a document or article.
This can include an email address, URL, phone number, mailing address, or any other method of communicating
with the author. It may have been better named contact because that is what it should be used for. You should
not use it to describe an address unless the address is provided as contact information.

Here is an example of including an address element in a footer:

<footer>
 <p>Closing content</p>
 <address>
 <p>Provided by
 Mark J. Collins
 </p>
 <p>For more information
 visit his website
 </p>
 </address>
</footer>

Chapter 4 ■ Structural HTML Elements

62

The default style for an address element is to display the text in italics. The default styling of this footer
will look like Figure 4-1.

Outlines
There is a notion in the HTML5 specifications regarding document outlines that is referred to as the outline
algorithm. The body element, which is the root element for your content, creates a topmost node in the
document outline. Adding any of the sectioning elements, section, article, aside, or nav, will create a new
section in the outline. Embedding additional sectioning elements will add more nodes to the outline. The
idea here is that by simply nesting sectioning elements, an explicit outline is created for your document.

Explicit Sections
Let’s test this out by creating an HTML document with some nested sections. Creating an outline without
any labels is not very interesting. So we’ll add an h1 element within each section to give it a name. A sample
document is shown in Listing 4-1.

Listing 4-1.  Creating a document outline using sections

<body>
 <h1>My Sample Page</h1>
 <nav>
 <h1>Navigation</h1>
 </nav>
 <section>
 <h1>Top-level</h1>
 <section>
 <h1>Main content</h1>
 <section>
 <h1>Featured content</h1>
 </section>
 <section>
 <h1>Articles</h1>
 <article>
 <h1>Article 1</h1>
 </article>
 </section>
 </section>
 <aside>
 <h1>Related content</h1>

Figure 4-1.  The default address style

Chapter 4 ■ Structural HTML Elements

63

 <section>
 <h1>HTML Reference</h1>
 </section>
 <section>
 <h1>Book list</h1>
 <article>
 <h1>Book 1</h1>
 </article>
 </section>
 </aside>
 </section>
</body>

If you render this in a browser using only the default styles, the page would look like Figure 4-2.

Notice the font for each of the labels is different, even though the same h1 element was used for all of
them. The style is automatically updated based on where the element is in the document outline.

Figure 4-2.  Sample document with default styles

Chapter 4 ■ Structural HTML Elements

64

■■ Note  The aside element is below the main section rather than to the side. The alignment of the sections
will be controlled through CSS. I will explain this in Chapter 13.

To further illustrate this, there is a handy web page that will read your HTML document and display
the outline for it. You can find the site at https://gsnedders.html5.org/outliner. Paste in your HTML
document and click the “Outline this” button. The outline that is displayed will be similar to Figure 4-3.

Document Headings
HTML5 supports document heading elements. In addition to the h1 element that I used in this example,
there are also h2, h3, h4, h5, and h6 elements. Each of these is used to indicate that the heading belongs at the
specified level in the document outline. The default styling of the h1–h6 elements is the same that was used
with the explicit outline document.

Prior to HTML5, the sectioning elements did not exist. However, using the h1–h6 elements, you could
provide implicit sections. If the previous heading used an h2 element and the current heading uses h3, a new
section is implicitly defined. Similarly, going from h3 to h2 closes the current section.

To create a document with a similar outline, you can create implicit sections using the h1–h6 elements.
Instead of using an h1 element everywhere, you would use a different element to indicate its level in the
hierarchy. The following HTML will generate the exact same outline (and output in the browser):

<body>
 <h1>My Sample Page</h1>
 <h2>Navigation</h2>
 <h2>Top-level</h2>
 <h3>Main content</h3>
 <h4>Featured content</h4>
 <h4>Articles</h4>

Figure 4-3.  Viewing the document outline

http://dx.doi.org/10.1007/978-1-4842-2463-2_13
https://gsnedders.html5.org/outliner

Chapter 4 ■ Structural HTML Elements

65

 <h5>Article 1</h5>
 <h3>Related content</h3>
 <h4>HTML Reference</h4>
 <h4>Book list</h4>
 <h5>Book 1</h5>
</body>

The official W3C recommendation, however, is to not rely on the outlining of the sectioning elements.
Figure 4-4 shows the warning displayed in the W3C documentation (http://www.w3.org/TR/html5/
sections.html).

You should definitely use the sectioning elements to organize your HTML document into sections. This
warning is recommending that you also use the corresponding h1–h6 element depending on the document
hierarchy where this is feasible.

The article element is appropriate for reusable content. In this case, the content is usually not in the
same file as the main HTML document. It may be read from a database, provided in some sort of content
feed, or extracted from a separate file. It will probably have no knowledge of the document outline in which
it will be inserted. The article should start at the h1 level, and include additional sectioning elements as
needed. When the article is included in a document, the actual outline level will be adjusted depending on
the current level where it is inserted.

■■ Note  The specific algorithm for creating an outline is explained in the W3C recommendation, which you
can find at this address: http://www.w3.org/TR/html5/sections.html#outlines

Header and Footer
While organizing your page, you should also consider adding a header element at the top and a footer
element at the bottom. These elements allow you to group introductory or concluding content for a section
of the document.

Unlike the sectioning elements such as article or section, the header and footer elements do not
create a new section in the document outline. Rather they are used to group content for the section that they
are placed in. You will typically use a header and a footer element in the body element to define the page
header and footer. They can also be placed inside a child section such as a section element. In this case,
they will group introductory content for the section only.

Figure 4-4.  Warning about outline algorithm

http://www.w3.org/TR/html5/sections.html
http://www.w3.org/TR/html5/sections.html
http://www.w3.org/TR/html5/sections.html#outlines

Chapter 4 ■ Structural HTML Elements

66

Planning the Page Layout
Before creating a new web page, it’s a good idea to sketch out the basic page structure. This will help you
visualize the overall layout and see how the elements are nested together.

The page that I will demonstrate in this chapter will use header and nav elements at the top and a
footer element at the bottom. The main area in the middle will use a section element and have two
side-by-side areas, each with a series of article tags. The larger area will be enclosed within another
section element and provide the primary content, which is organized into article elements. The smaller
area, on the right, will use an aside element and will contain a section element. This will contain a series of
article elements that will present related information. Figure 4-5 illustrates the page layout.

■■ Note  This diagram shows spaces between each of the elements to make it easier to understand. In the
actual web page, in most cases this space is removed by setting the margin attribute to 0.

Figure 4-5.  Planning the page layout

Chapter 4 ■ Structural HTML Elements

67

Sectioning Roots
There are a few HTML elements that are called sectioning roots, which have their own outline that does not
contribute to the outline of the rest of the document. The body element is one of these elements, although
this is arguably a special case; the outline of the body element is the document’s outline. The other elements
in this category include blockquote, details, fieldset, figure, and td. I’ll explain the fieldset element in
Chapter 8 and the td element in Chapter 6.

Blockquote
The blockquote element is used when you need to include a long quotation in a document. The contents of
the quote are placed inside the blockquote element and can consist of multiple elements including header
text, paragraphs, and embedded content. A simple quotation might look like this:

<blockquote cite="www.apress.com">
 <h1>Quotation</h1>
 <p>This is a quotation</p>
</blockquote>

The header text (h1–h6) will define sections within the quotation, but these will not be part of the
document outline. You can verify this yourself by adding a blockquote element to your document and
running it through the outlining tool I mentioned earlier.

In addition to the global attributes, the blockquote element supports the cite attribute. Use this to
identify the URL of the source of the quote or a resource containing information about the quote.

■■ Tip  The cite attribute provides details about the quote but it is not displayed, at least not normally. The
browser could use this information but it’s basically provided as metadata. To display the source or a citation
you should use the cite element, which will be explained in the next chapter.

Details
The details element allows you to create collapsible sections of content. Inside the details element you
can include an optional summary element that will contain the content that is displayed when the element is
collapsed. If no summary element is used, the collapsed text will be “Details.”

The remaining content of the details element will be hidden when collapsed. The initial state of the
details element will be collapsed. If you want the contents to be displayed when the page is loaded, add the
open Boolean attribute.

<details open>
 <summary>This is the collapsed text</summary>
 <h1>Details</h1>
 <p>These are collapsable details</p>
</details>

Again, like the other sectioning root elements, you can include h1–h6 elements in the details element,
which will define an outline for the details. However, these sections are not included in the document outline.

http://dx.doi.org/10.1007/978-1-4842-2463-2_8
http://dx.doi.org/10.1007/978-1-4842-2463-2_6

Chapter 4 ■ Structural HTML Elements

68

■■ Caution  As of this writing, the details element is not supported by Internet Explorer or Edge and is not
fully supported by Firefox.

Figure
The figure element is used to group content that is self-contained and can be logically moved to a different
location without affecting the main flow of the document. A unique feature of the figure element is the
ability to include a caption within the content.

A figure element is typically used to group an image or some other embedded content along with a
caption. It can also be used to group text, such as a code listing along with a caption.

To add a caption, include the figcaption element within the figure element. The figcaption element
must be the first or last child element in the figure element. The caption will be above the content if the
figcaption element is the first child element. Otherwise, it will be below the content.

Here’s a simple example of a figure that includes an embedded image. This is rendered in Chrome as
shown in Figure 4-6.

<figure>
 <h1>Figure</h1>

 <figcaption>Official HTML5 Logo</figcaption>
</figure>

Figure 4-6.  Using figure/figcaption elements

Chapter 4 ■ Structural HTML Elements

69

Grouping Elements
The preceding section described the elements used for organizing an HTML document into smaller sections
and those elements related to the document outline. Now I’ll explain the remaining grouping elements.
These elements are used for primarily semantic purposes and do not affect the outline.

Paragraph
The paragraph (p) element is used to define a paragraph, which is a section of text that contains a single
thought or idea. It is normally visually distinct from other paragraphs. For example, in this book the first line
of most paragraphs is indented so that paragraphs stand out. The default style of the p element will set the
margin so there is some extra white space between paragraphs.

The p element is probably one of the most overused elements. I can’t stress this enough - the element
that is chosen should be based on its semantic meaning. A paragraph is a distinct portion of a document that
contains a single thought or idea. If that describes the content you are adding, use a p element. If not, keep
looking. The next chapter will describe the phrasing elements and one of these may be more appropriate.

If you use the appropriate element, the default styling will usually make sense as well. But you’re not
selecting the element based on the style that it is given. The styles can be easily changed through CSS as long
as the appropriate elements are consistently used.

Horizontal Rule
In HTML4, the hr element was used to create a horizontal rule, or line. Since HTML5 provides more
semantic definition to its elements, this has been redefined as a thematic break. This is usually placed
between paragraphs when there is a change of topic.

The hr element is still rendered as a horizontal line for backward compatibility. Of course this can be
modified through CSS. There is no content within the hr element and the closing tag is not needed. Add an
hr element like this:

<p>paragraph 1</p>
<hr />
<p>paragraph 2</p>

Preformatted
Content placed inside a preformatted (pre) element will be rendered just like it is entered, including white
space. As I explained in Chapter 1, white space, including carriage returns, tabs, and extra spaces, are
normally ignored by the browser. Use the pre element to tell the browser to include them. The default style
will use a fixed-spaced font, which also aids in preserving the format.

■■ Note  The pre element is one of the rare exceptions where its use is not primarily for semantic reasons.

The pre element is used to include content that is already formatted and you want to maintain that
format. Including a snippet of code is a good example. Another common use of the pre element is when
including poetry. For example:

http://dx.doi.org/10.1007/978-1-4842-2463-2_1

Chapter 4 ■ Structural HTML Elements

70

<pre>I heard the bells on Christmas Day
Their old, familiar carols play,
 And wild and sweet
 The words repeat
Of peace on earth, good-will to men!</pre>
<cite>Henry Wadsworth Longfellow - 1863, public domain</cite>

This is rendered in the browser as shown in Figure 4-7.

Try replacing the pre element with a standard paragraph (p) element. The content will be displayed on
one line, wrapping as necessary based on the page width.

■■ Note  One bit of trivia here, but this poem was written by Henry Wadsworth Longfellow during the
American Civil War. After recently losing his wife, he then learned that his son Charles was wounded in battle. It
was during the Christmas season and hearing the church bells playing carols he began to wonder if there really
was any peace or goodwill. This poem reflects the author’s struggle with this, concluding in the end, that as
long as the church bells keep playing, there was still hope.

Main
The main element is used to indicate that its contents present the primary purpose or topic of the document.
This identifies the core, the central theme of the document. As such, the main element cannot be inside an
article, aside, footer, header, or nav elements, since these are used for ancillary content. Also you can
only have one main element per document, which should be fairly obvious. The content in the main element
should be unique to the document and not shared by other documents.

Of course, the main element can be divided into sections as appropriate. Although there is no restriction
on including an article, aside, or nav element within a main element, this is generally considered poor
form. An article contains reusable or stand-alone material so it will seldom be unique to the document. An
aside element is used for content that is not part of the main flow and is likely not part of the central theme
that the main element is reserved for. However, if the content of aside or article elements satisfies the
criteria of a main element, you can use them as well.

There is no default styling for a main element; its use is purely semantic. Using it helps applications such
as screen readers or search engines go straight to the core content of your document.

Figure 4-7.  Using the pre element

Chapter 4 ■ Structural HTML Elements

71

Division
I saved the div element for last. As I mentioned earlier, prior to HTML5, the div element was used for
all types of groupings. Now we have new elements to use for specific purposes: topically (section),
independent or reusable content (article), outside of normal flow (aside), and navigation (nav). There
are also several elements that are available for semantic grouping such as the main, figure, and blockquote
elements. The div element is used for all other grouping reasons.

One common use of the div element is to apply styles to all of its child elements. Most style attributes
are inherited from the parent element. So setting an attribute on a div element will propagate down to all the
elements within the div. For example, you may need to hide or show some content based on user input or the
state of the web page. By putting all of this content in a single div, you can simply update the div attributes.

Listing Elements
Now we’ll look elements that are used for listing contents, such as a bulleted list. However, lists in HTML5
are not limited to just a series of bullets or numbered items. Any time you have a list of things, even if the
“things” are large blocks of content, you should consider creating them inside one of these list elements.
Again, it’s all about semantics; placing content in a list makes it clear that you are enumerating a list.

List
HTML5 supports both an ordered list using the ol element as well as an unordered list using the ul element.
They work pretty much the same except for a few additional attributes that are available with an ordered list.

With either list, the order of the elements is fixed and defined by the order that the items are included in
the list. The appropriate type is chosen based on semantics. If the order of the list is not meaningful, use the
unordered list. For example, if you’re listing some popular sports such as Football, Baseball, and Basketball,
use an unordered list. In contrast, if you are specifying the top three most popular sports, you might want to
list them in order of popularity. In this case the order is meaningful and you should use an ordered list.

The default style of an unordered list is to prefix each item with a bullet of some type and the same
bullet is used for all of the items. For an ordered list, the default style will use a number, and the numbers will
be assigned sequentially.

The items within a list (either ordered or unordered) are represented by a list item (li) element. The
only elements that can be included inside either a ul or ol element are li elements. However, you can put
any flow element inside an li element. Listing 4-2 demonstrates a simple unordered list and an ordered list.
With default styling, this will be rendered as shown in Figure 4-8.

Listing 4-2.  Sample unordered and ordered lists

<h2>Book Topics</h2>

 HTML
 CSS
 JavaScript

<h2>HTML Chapters</h2>
<ol start="4">
 Structural Elements
 Text Elements
 Table Elements
 Embedded Elements
 Form Elements

Chapter 4 ■ Structural HTML Elements

72

As I mentioned, the ordered list supports a few additional attributes. The most common one is the
start attribute, which I used in the previous example. In this example, I’m listing the chapters of this book
that cover the HTML elements. The first three chapters contained introductory material so the first chapter
on HTML is this chapter, Chapter 4. The start attribute indicates the number to use for the first li element;
in this case 4. If omitted, the numbering will start with 1.

The reversed attribute is a Boolean attribute that is used to assign the numbers in reverse order. You
would use this, for example, if you were listing the top three most popular sports and wanted to leave the
most popular for last. The numbering would be in reverse order, 3, 2, 1. If you do not specify the start
attribute, the number of the first item is set so that the last element will be 1. If you put ten items in a list and
specify the reversed attribute with no start attribute, the items will be numbered from 10 to 1. If you do
specify start along with reversed, the first item will use whatever was specified in the start attribute and
the rest will go down from there, so you could end up with negative numbers.

■■ Tip  The reversed attribute does not change the order of the li elements. They are always rendered in the
order they are included in the list. The reversed attribute only affects the numbering of the items.

The type attribute specifies what type of “numbering” to use. Here are the supported values:

•	 1 - Use numbers (this is the default value if not specified)

•	 A - Use uppercase letters (e.g., A, B, C, D)

•	 a - Use lowercase letters

•	 I - Use Roman numerals with uppercase letters (e.g., I, II, III, IV)

•	 i - Use lowercase Roman numerals

The start attribute is always numeric regardless of what value is specified for type. It will be converted
to the appropriate type representation. For example, if you specify 4 and the type is I, the first element will
use IV.

Figure 4-8.  Sample unordered and ordered list

http://dx.doi.org/10.1007/978-1-4842-2463-2_4

Chapter 4 ■ Structural HTML Elements

73

■■ Caution  Letters or Roman numerals do not support zero or negative numbers. If these values are needed,
they will be displayed as numbers. For example, if you have five items in the list and specify the ol element as
<ol start="3" type="a" reversed>, the numbering will be c, b, a, 0, -1.

You can use a list to present a series of links such as a menu. For example:

<nav>
 <h1>Navigation</h1>

 Home
 Apress
 My Site

</nav>

This will display a bulleted list of links. However, with CSS you can render this in a variety of ways
including buttons or horizontally arrayed links. I will demonstrate this in Chapter 13.

Description List
The description list (dl) element is used define a list of terms. It is implemented as a set of name/value pairs.
It is often used to create a glossary. In this case the names are the terms being defined and the values are
the definition or description of those terms. You can put series of term (dt) elements and description (dd)
elements inside the dl element.

For example, a simple dl element might be used like this:

<dl>
 <dt>Term1</dt>
 <dd>Definition</dd>
 <dt>Term2</dt>
 <dd>Definition</dd>
</dl>

■■ Note  In HTML4, the dl element was called a definition list and was intended to define a list of terms. The
syntax has not changed in HTML5, but the name was changed to description list to convey a broader use of the
element. In HTML5 it is used to provide a grouping of term/description pairs.

Listing 4-3 illustrates how this pattern can be used to list a series of books along with a description of
each. Figure 4-9 shows how this would be displayed in a browser using only default formatting.

http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 4 ■ Structural HTML Elements

74

Listing 4-3.  Using dl, dt, and dd elements

<dl>
 <dt>Beginning WF</dt>
 <dd>
Indexed by feature so you can find answers easily and written in an accessible style,
Beginning WF shows how Microsoft's Workflow Foundation (WF) technology can be used in a wide
variety of applications.
 </dd>
 <dt>Office 2010 Workflow</dt>
 <dd>
Workflow is the glue that binds information worker processes, users, and artifacts—
without it, information workers are just islands of data and potential. Office 2010 Workflow
walks you through implementing workflow solutions.
 </dd>
 <dt>Pro Access 2010 Development</dt>
 <dd>
Pro Access 2010 Development is a fundamental resource for developing business
applications that take advantage of the features of Access 2010. You'll learn how to build
database applications, create Web-based databases, develop macros and VBA tools for Access
applications, integrate Access with SharePoint, and much more.
 </dd>
</dl>

However, you’re not restricted to this one-to-one mapping. Another use of the dl element is to list
groups of things with a group header. You accomplish this by using the dt element as the group header and
the dd elements as the group members. For example, Listing 4-4 contains the starting lineup for the New
York Yankees, organized by position categories. Figure 4-10 shows the default rendering of this content.

Figure 4-9.  Rendering a description list

Chapter 4 ■ Structural HTML Elements

75

Listing 4-4.  Using multiple description elements for each term

<h2>New York Yankees Starting Lineup</h2>
<dl>
 <dt>Infielders</dt>
 <dd>Teixeira, 1B</dd>
 <dd>Castro, 2B</dd>
 <dd>Gregorius, SS</dd>
 <dd>Torreyes, 3B</dd>
 <dd>McCann, C</dd>
 <dt>Outfielders</dt>
 <dd>Hicks, LF</dd>
 <dd>Ellsbury, CF</dd>
 <dd>Ackley, RF</dd>
 <dt>Designated Hitter</dt>
 <dd>Rodriguez, DH</dd>
 <dt>Pitchers</dt>
 <dd>Gausman, R</dd>
 <dd>Wilson, R</dd>
 <dd>Tillman, R</dd>
 <dd>Price, L</dd>
 <dd>Porcello, R</dd>
</dl>

Figure 4-10.  The New York Yankees Starting Lineup

Chapter 4 ■ Structural HTML Elements

76

The other possibility is to have multiple terms refer to the same description. You can do this as well but
you need to keep the like terms together. For example:

<dl>
 <dt>Hicks, LF</dt>
 <dt>Ellsbury, CF</dt>
 <dt>Ackley, RF</dt>
 <dd>Outfielders - the positions in baseball that are played in the grassy area behind
the diamond, known as the outfield. These positions include the Left Fielder, Center
Fielder, and Right Fielder.</dd>
</dl>

The term element is intended to be relatively short such as a word or phrase. There are specific
limitations as what kind of elements can be included in a dt element. You cannot use a header, footer,
or any sectioning content inside a dt element. Even at that, there’s nothing to prevent you from including
paragraphs of content inside a dt element. That is inappropriate, however, when you consider the semantic
rules. A dl element is used to describe a list of terms, and a paragraph of text is not a term.

There are no such restrictions on the definition element. You can place any flow content inside a dd
element, including sectioning and embedded content.

Inline Frames
The iframe element is used to embed another web page within the current document. I’ll explain it here
briefly, and we’ll look at it more closely in Chapter 17. You can include an iframe with markup like this:

<iframe src="http://www.apress.com" width="100%" height="400">
 <p>Your browser does not support iframes</p>
</iframe>

The content inside the iframe element will be rendered only if the iframe element is not supported by
the browser. The iframe element supports several attributes that you can use to configure how the element
is rendered and what options it will allow.

•	 allowfullscreen - If this Boolean attribute is specified, scripts within the embedded
page may switch to fullscreen mode using the requestFullScreen() method call.

•	 height - The height of the iframe element in pixels or a percentage of the parent
page.

•	 name - The name attribute can be used when providing a link to the iframe from
within the parent document.

•	 sandbox - This can be used to restrict what can be done in the embedded page. This
will be covered in Chapter 17.

•	 src - This is used to specify the URL of the page that should be embedded.

•	 srcdoc - If specified and supported, the srcdoc attribute will override the value of
the src attribute. This is normally used in conjunction with the sandbox attribute.

•	 width - The width of the iframe element in pixels or a percentage of the parent page.

http://dx.doi.org/10.1007/978-1-4842-2463-2_17
http://dx.doi.org/10.1007/978-1-4842-2463-2_17

Chapter 4 ■ Structural HTML Elements

77

Deprecated Elements
Some grouping elements have been dropped from the HTML5 specification. I will describe them here
briefly. These are likely to be supported for some time to ensure backward compatibility. However, you
should not use these for any new development.

hgroup
The hgroup element was used to group the h1–h6 elements and hide all but the first one from the document
outline. If you wanted a title for a section as well as a subtitle, for example, you might use an h1 element for
the title and h2 for the subtitle. However, the h2 element would start a new section in the document outline.
Putting them both into an hgroup element would create only a single section, using the h1 title.

Instead of using a hgroup element, the recommendation is to put the title and subtitle(s) into a header
element. The title should be in an h1–h6 element to define the section and be added to the document
outline. The remaining header content such as subtitles or taglines should be placed in p or span tags and
then styled appropriately using CSS. For more information and examples, see the W3C specification at
http://www.w3.org/TR/html5/common-idioms.html#sub-head.

dir
The directory list (dir) element was used to present a directory listing. The items within this list are included in
an li element. The dir element has been deprecated in HTML5. You should use the unordered list (ul) instead.

frame and frameset
The frame and frameset elements were used to organize a page into sections. This includes both logical
sections as well as page layout. The logical sectioning is now accomplished using the sectioning content that
I described earlier such as section, aside, and article. The layout is configured through CSS, which I will
demonstrate in Chapter 13.

Summary
In this chapter I demonstrated all of the HTML elements that are used to organize content. These provide
semantics meaning to the content groupings.

A document is organized using sectioning content to define the larger sections of the document. These
along with the heading elements (h1–h6) define the document outline. The header and footer elements are
used to identify introductory and concluding content both at the document level as well as within a section.
Sectioning roots including blockquote, details, and figure elements have their own sections that do not
affect the document outline.

There are several other grouping elements that do not affect the outline but provide semantic grouping
at a lower level. These include the main, paragraph (p), horizontal rule (hr), and division (div) elements.
The preformatted (pre) element is used primarily to preserve the formatting of the content, rather than for
semantic reasons. Finally, ordered lists (ol), unordered lists (ul), and description lists (dl) provide ways to
present a list of things.

By using these elements, you provide semantic details about your content, which will make it easier to
apply consistent styling rules. Even without any custom CSS, the document begins to take “shape” as the
default styling renders the content consistently with the semantic purposes of each element.

The HTML document shown in Listing 4-5 demonstrates all of the techniques described in this chapter.
This is also available in the source code download. In the next chapter, I’ll start to put some actual content
onto this structure. I’ll explain the various elements that will provide semantic meaning to the textual content.

http://www.w3.org/TR/html5/common-idioms.html#sub-head
http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 4 ■ Structural HTML Elements

78

Listing 4-5.  The complete HTML document for Chapter 4

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="author" content="Mark J Collins" />
 <meta name="description" content="Sample HTML document" />
 <title>HTML5 Sample</title>
 <link rel="stylesheet" href="Initial.css" />
 <link rel="stylesheet" href="Print.css" media="print" />
 <link rel="icon" type="image/x-icon" href="HTMLBadge.ico" />
 <link rel="alternate" type="application/pdf" href="MainPage.pdf" />
 <link rel="author" href="mailto:markc@thecreativepeople.com" />
 <link rel="author" type="text/html" href="http://www.thecreativepeople.com" />
 </head>
 <body>
 <h1>My Sample Page</h1>
 <header>
 <p>Heading</p>
 </header>
 <nav>
 <h1>Navigation</h1>

 Home
 Apress
 My Site

 </nav>
 <section>
 <h1>Top-level</h1>
 <section>
 <h2>New York Yankees Starting Lineup</h2>
 <details>
 <summary>This content is collapsed</summary>
 <dl>
 <dt>Infielders</dt>
 <dd>Teixeira, 1B</dd>
 <dd>Castro, 2B</dd>
 <dd>Gregorius, SS</dd>
 <dd>Torreyes, 3B</dd>
 <dd>McCann, C</dd>
 <dt>Outfielders</dt>
 <dd>Hicks, LF</dd>
 <dd>Ellsbury, CF</dd>
 <dd>Ackley, RF</dd>
 <dt>Designated Hitter</dt>
 <dd>Rodriguez, DH</dd>
 <dt>Pitchers</dt>
 <dd>Gausman, R</dd>
 <dd>Wilson, R</dd>
 <dd>Tillman, R</dd>

http://dx.doi.org/10.1007/978-1-4842-2463-2_4

Chapter 4 ■ Structural HTML Elements

79

 <dd>Price, L</dd>
 <dd>Porcello, R</dd>
 </dl>
 <dl>
 <dt>Hicks, LF</dt>
 <dt>Ellsbury, CF</dt>
 <dt>Ackley, RF</dt>
 <dd>Outfielders - the positions in baseball that are played in the
grassy area behind the diamond, known as the outfield. These positions include the Left
Fielder, Center Fielder, and Right Fielder.</dd>
 </dl>
 </details>
 <main>
 <h1>Main content</h1>
 <section>
 <h1>Featured content</h1>
 <blockquote cite="www.apress.com">
 <h1>Quotation</h1>
 <p>This is a quotation</p>
 </blockquote>
 <p>paragraph 1</p>
 <hr />
 <p>paragraph 2</p>
 </section>
 </main>
 <section>
 <h1>Articles</h1>
 <article>
 <h1>Article 1</h1>
 <pre>I heard the bells on Christmas Day
Their old, familiar carols play,
 And wild and sweet
 The words repeat
Of peace on earth, good-will to men!</pre>
 <cite>Henry Wadsworth Longfellow - 1863, public domain</cite>
 <figure>
 <h1>Figure</h1>

 <figcaption>Official HTML5 Logo</figcaption>
 </figure>
 </article>
 </section>
 </section>
 <aside>
 <h1>Related content</h1>
 <section>
 <h1>HTML Reference</h1>
 <h2>Book Topics</h2>

 HTML
 CSS
 JavaScript

Chapter 4 ■ Structural HTML Elements

80

 <h2>HTML Chapters</h2>
 <ol start="3" type="I" reversed>
 Structural Elements
 Text Elements
 Table Elements
 Embedded Elements
 Form Elements

 </section>
 <section>
 <h1>Book list</h1>
 <dl>
 <dt>Beginning WF</dt>
 <dd>Indexed by feature so you can find answers easily and written in
an accessible style, Beginning WF shows how Microsoft's Workflow Foundation (WF) technology
can be used in a wide variety of applications.</dd>
 <dt>Office 2010 Workflow</dt>
 <dd>Workflow is the glue that binds information worker processes,
users, and artifacts—without it, information workers are just islands of data and potential.
Office 2010 Workflow walks you through implementing workflow solutions.</dd>
 <dt>Pro Access 2010 Development</dt>
 <dd>Pro Access 2010 Development is a fundamental resource for
developing business applications that take advantage of the features of Access 2010. You'll
learn how to build database applications, create Web-based databases, develop macros and VBA
tools for Access applications, integrate Access with SharePoint, and much more.</dd>
 </dl>
 <article>
 <h1>Book 1</h1>
 <iframe src="http://www.apress.com" width="100%" height="400">
 <p>Your browser does not support iframes</p>
 </iframe>
 </article>
 </section>
 </aside>
 </section>
 <footer>
 <p>Closing content</p>
 <address>
 <p>Provided by
 Mark J. Collins
 </p>
 <p>For more information
 visit his website
 </p>
 </address>
 </footer>
 </body>
</html>

81© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_5

CHAPTER 5

Phrasing HTML Elements

In the previous chapter we looked at the elements that are used to organize an HTML document into
sections and lower-level groupings. Each of these elements is used for a specific semantic purpose. In this
chapter I’ll demonstrate the HTML elements that are used to mark up the actual text content. When creating
your content, these should also be chosen for semantic reasons.

■■ Note  Embedded elements such as images (img), audio, video, and canvas are also considered phrasing
content. However, these will be covered by themselves in Chapter 7.

Highlighting Text

■■ Caution  In HTML4 there were several elements that were purely presentational, that is, they were used
solely to define how they were to be rendered. These include bold (b), italic (i), underline (u), and strikethrough
(s or strike). As HTML5 is all about semantics, these have been replaced with more semantic-based elements.
The strike element has been removed from HTML5. The b, i, u, and s elements have been given new names
and semantic definitions to go with them.

HTML5 provides several elements that are used to provide stylistic emphasis to a section of text. Each of
these has a semantic purpose for using it; some are more specific while others are a little more generic. I will
explain each of them and their intended use. You should always use the most specific element that fits your
situation and use a more generic one only when a more specific element in not appropriate.

■■ Note  I will call these elements by a name that describes their intended use, rather than the actual HTML
tag that is used to create it. This may seem a little confusing to readers who are already familiar with tags such
as b, i, em, and strong. However, I’m trying to drive home the appropriate usage of each and in most cases, the
tags do not communicate that very well, if at all.

http://dx.doi.org/10.1007/978-1-4842-2463-2_7

Chapter 5 ■ Phrasing HTML Elements

82

Importance (strong)
The W3C reference says “The strong element represents a span of text with strong importance.” The key
word here is importance. The strong element is used to indicate the text has a higher importance than the
surrounding text. This could be a word, phrase, sentence, or even paragraph that is critical.

You can also nest the strong element to indicate extra importance. For example:

 Warning! Be sure to extinguish all fires!

This identifies important words within an important sentence.

Emphasis (em)
In everyday speech, emphasis is often used to alter the meaning of a sentence. Consider the sentence, “Boys
like chocolate donuts,” and how the meaning changes when different words are emphasized. For example,
“Boys like chocolate donuts” adds the implication that girls don’t. Similarly, “Boys like chocolate donuts” will
leave you wondering what chocolate items they don’t like.

The above paragraph is a perfect illustration of how the emphasis (em) element should be used. Text
placed within an em element should be read with emphasis. Even though you may not be reading the text out
loud, in your mind you’re still hearing the emphasis and catching the nuances implied by it.

Another good example is when introducing new terms or concepts. You may have already noticed that,
in this book, whenever a new term is introduced it is given emphasis. It’s like I’m talking to you and the first
time I use a new word I say it a little louder, perhaps with a slight pause before and after it, because I want
you to hear it. I’ll then follow this with an explanation of what the term means. The emphasis helps you tie
the new term with the definition that follows.

Relevance (mark)
The relevance element (mark) is used to indicate text that is particularly relevant in the current context.
Here’s what the specification states:

The mark element represents a run of text in one document marked or highlighted for
reference purposes, due to its relevance in another context.

The idea here is that you’re including content from another source and adding emphasis that was not
there originally because of its relevance in the current context. The key point here, and what differentiates
this from the importance and emphasis elements, is that the emphasis was not in the original content. It is
being added later, because of its relevance in the current context.

There are two common applications of this. First, you can use the relevance element to highlight a
portion of a quote that is particularly relevant to the current usage. For example:

<p>
 "Read my lips: <mark>no new taxes</mark>", declared presidential candidate George H. W. Bush
 in 1988. However, the 1990 budget agreement increased taxes in several areas.
</p>

The default styling will set the background color to yellow as shown in Figure 5-1.

Chapter 5 ■ Phrasing HTML Elements

83

A second common use of the relevance element is when displaying search results. It is used to highlight
words or phrases that were included in the specified search criteria. For example, if someone was searching
for the text “HTML” and the page displays articles containing that text. In this case you might want to
highlight every place the HTML text appears. The relevance (mark) element is used to accomplish this.

■■ Tip  Remember, the relevance (mark) element is used to highlight text that is being quoted from another
source, where the emphasis was not in the original content. Don’t use it to emphasize original text; instead use
one of the other elements such as importance or emphasis.

Alternative Voice (i)
The i element was used to indicate italic presentation in HTML4 but in HTML5 has been given semantic
meaning. This is how the W3C reference describes it:

The i element represents a span of text offset from its surrounding content without
conveying any extra emphasis or importance, and for which the conventional typographic
presentation is italic text; for example, a taxonomic designation, a technical term, an
idiomatic phrase from another language, a thought, or a ship name.

Essentially, the i element should be used when the text needs to be styled differently from the
surrounding text but you don’t need to imply any greater importance or emphasis. Unfortunately, that is not
very specific and tends to overlap with the b element that I’ll describe shortly.

However, the specification goes on to provide examples where the i element is appropriate. These
scenarios can be summarized as using an alternate voice and I think this helps to understand when this
element is appropriate.

If the text is quoting someone speaking and you want to interject a thought in the middle, use this, for
example:

<p>
 "Class, pay attention!" <i>I wonder if they're even listening to me.</i> "Who's ready
 for tomorrow's exam?"
</p>

The thought is a different voice because it’s in their head instead of coming out of their mouth. Another
example is when someone is speaking in English and they quote a foreign word or phrase. It is a different
voice from the rest of the text because it is in a different language.

<p>
 "This needs some... <i>je ne sais quoi</i>."
</p>

Figure 5-1.  Using the relevance element to highlight text

Chapter 5 ■ Phrasing HTML Elements

84

Another application of this concept is when a technical term is used. Here the voice changes because it
goes from everyday English to terminology that has limited familiarity.

<p>
 "He's not really bald, he just has a severe shortage of <i>folliculus pili</i> on his
head."
</p>

In all of these examples, the text is identified by the alternate voice (i) element, to indicate a change in
voice or mood: whether it is changing from one language to another, from spoken words to unspoken, or from
everyday speech to technical jargon. The default style will render this in italic as demonstrated in Figure 5-2.

Small (small)
Ever heard the expression, “read the small print”? This generally refers to the legalese that is important,
although sometimes overlooked. HTML5 defines the small element where you can put this type of content.
The small element is intended for short runs of text that provide details that are typically outside of the
primary content.

Use the small element for copyright information, disclaimers, or other legal information. You can also
use it for including disclosures, licensing details, or for attributing material to its source. Don’t use the small
element for large blocks of content that is outside of the main document flow. Use the aside element for this
purpose.

■■ Note  In HTML4, the small element was used to make the font smaller. This has been repurposed in HTML
to provide semantic meaning, specifically for legal details. Don’t use the small element just to make the font
smaller. This should be done in CSS.

The small element does not imply any lesser importance. In fact, the details in a small element are
often very important. If the content is legal details that are outside of the main flow, put it in a small element.
If it is also important information, put it inside an importance (strong) element as well.

Strikethrough (s)
The strikethrough element (s) is used to indicate content that is no longer relevant or accurate. The terms
relevant and accurate come from the HTML5 specification and are the key concepts you should consider
when deciding if the strikethrough element is the semantically correct one to use.

Figure 5-2.  The rendering of alternate voice elements

Chapter 5 ■ Phrasing HTML Elements

85

■■ Caution  In HTML4 both s and strike elements were supported to render text with a strikethrough font.
However, in HTML5 the strike element is obsolete.

In most situations, if you have inaccurate information you would just simply correct it; irrelevant data
would be removed or replaced. However, if you want to highlight that a change has been made, you can
leave the old text but wrap it in a strikethrough element like this:

<p>
 For a limited time only <s>$9.95</s> $7.99 will get you a...
</p>

In this case, the $9.95 price is no longer accurate; the price has been updated to $7.99. However, the
previous price is being displayed to demonstrate the price reduction.

■■ Tip  Do not use the strikethrough element to indicate text that has been deleted. The deleted (del) and
inserted (ins) element are used for this purpose and I will explain them later in this chapter.

Suppose you had a page that listed the date and time of all of the home games for a particular sports
team. Each of these might be a link to a page where you could reserve seats for the game. You can then
put all of the games that are in the past or that have sold out inside a strikethrough element. You leave
these games listed as that could be useful information, but they are not relevant for the current purpose of
reserving seats.

In the examples I’ve given, the content inside the strikethrough element has been text and the default
style will render this with the strikethrough font. However, the strikethrough element is used for its semantic
meaning, and as such, it applies equally well to other types of content such as images, audio/video, and
input controls. You’ll have to define how an inaccurate or irrelevant image should be rendered in the CSS,
but it is certainly semantically valid to include it in HTML inside a strikethrough element.

Stylistically Offset (b)
The old bold element (b) from HTML4 has been redefined in HTML5 as stylistically offset content without
conveying importance. I’m calling it by the wonderfully clear name of stylistically offset. Here is how the
HTML5 specification defines it:

The b element represents a span of text to which attention is being drawn for utilitarian
purposes without conveying any extra importance and with no implication of an alternate
voice or mood, such as key words in a document abstract, product names in a review,
actionable words in interactive text-driven software, or an article lede.

In other words, you should use this element when the text needs to stand out in some way and none of
the other elements that I’ve previously described are appropriate. It’s not important, requires any emphasis,
or reflects an alternate voice or mood. However, you want to draw attention to this text for some other reason.

The specification goes on to list some examples where the stylistically offset element should be used:

•	 Keywords

•	 Product names

Chapter 5 ■ Phrasing HTML Elements

86

•	 Actionable words

•	 Article lead (opening paragraph)

Since this element is purposely generic, it’s a good idea to include a class attribute that indicates why
this element needs to stand out. This not only clarifies the semantic meaning but also enables the CSS to
style these differently depending on why it is being used. For example:

<p>
 The text highlighting elements include <b class="keyword">importance,
 <b class="keyword">emphasis, and <b class="keyword">alternate voice.
</p>

■■ Tip  The stylistically offset element (b) is the most generic element that should only be used when none of
the more specific elements are appropriate.

Unarticulated (u)
The underline (u) element was used in HTML4 to specify text that should be underlined. Apart from being
purely presentational like the b and i elements, the u element was also avoided because underlined text
is often mistaken for a hyperlink. However, the u element has been included in HTML5 with the semantic
meaning of unarticulated content.

The specification is not very clear about when this element should be used, citing only two
examples: misspelled words and Chinese proper names. The actual definition from the specification is
“an unarticulated, though explicitly rendered, non-textual annotation.” Essentially, this is saying to use
the unarticulated element when you need to annotate text (format it differently) but there is not another
element that clearly defines your reason for doing so.

The specification goes on to say that there is probably a different element that is more appropriate:

In most cases, another element is likely to be more appropriate: for marking stress emphasis,
the em element should be used; for marking key words or phrases either the b element or
the mark element should be used, depending on the context; for marking book titles, the
cite element should be used; for labeling text with explicit textual annotations, the ruby
element should be used; for technical terms, taxonomic designation, transliteration, a
thought, or for labeling ship names in Western texts, the i element should be used.

In other words, use this as a last resort. So when should you use the unarticulated element? Let’s look
at the two examples given. When indicating a misspelled word, the standard convention is to underline it.
Similarly, underlining Chinese proper names is a standard practice. In Western languages, a proper noun
is indicated by capitalizing the first character. In Chinese, however, the method of indicating a proper
noun is to underline it. So, if you’re including Chinese content, proper nouns should be included in the
unarticulated element.

For both of the stated examples, you have text that should be annotated in some way; none of the
other elements have an appropriate semantic meaning, and the accepted convention is to underline them.
However, in general, you can use the unarticulated element whenever none of the more specific elements
are appropriate.

Chapter 5 ■ Phrasing HTML Elements

87

As with the stylistically offset (b) element, you should include a class attribute to indicate the reason
why the text is being annotated, since the element by itself does not make that clear. For example, this
content highlights spelling, grammar, and word usage errors in the text:

<p>
 Please be sure to <u class="spelling">chek</u> <u class="usage">four</u> spelling
 <u class="grammar">mistake</u>.
</p>

You could use the class attribute in CSS to change the color of the underline. For example, you could
use a red underline for spelling mistakes and use green for the grammar errors.

■■ Tip  If you want to simply underline some text without indicating the semantic meaning of being an
unarticulated notation, put the text in a span tag and use CSS to apply the underline style.

Element Review
I’m writing this book in English and presumably most of you are reasonably fluent in reading English.
However, HTML is used to render any language in the world. These semantic concepts such as importance
and emphasis are universal, but the way they are physically represented on a web page can vary from one
language or culture to another. This is another reason why content authors should focus on the semantic
meanings of these elements and not on their default representations.

•	 importance - - key point or critical concept that should not be missed

•	 emphasis - - read with emphasis, something that is pronounced differently

•	 relevance - <mark> - text that is highlighted for reference purposes

•	 alternative voice - <i> - foreign word, technical terms, etc.

•	 small - <small> - short runs of legal details outside of the main flow

•	 strikethrough - <s> - no longer accurate or relevant

•	 stylistically offset - - keywords or other phrases that need to stand out

•	 unarticulated - <u> - indicates spelling or grammatical errors, proper nouns, or
family names

■■ Tip  The W3C provides a short but useful article that explains when and how the more generic elements, b
and i, should be used. It can be found at http://www.w3.org/International/questions/qa-b-and-i-tags.
I recommend reading through this and the examples are quite helpful.

Other Semantic Phrasing
HTML5 provides several elements that have a very specific purpose. If these fit the content that you’re
adding, use them to provide the appropriate semantic information.

http://www.w3.org/International/questions/qa-b-and-i-tags

Chapter 5 ■ Phrasing HTML Elements

88

Code, Sample, Keyboard, and Variable
If you are documenting a computer application, the code, keyboard (kbd), and sample (samp) elements are helpful
in distinguishing these types of content. The variable (var) element is also useful in this and other scenarios, such
as including formulas. These are all inline phrasing elements that do not usually span paragraphs.

The code element represents a portion of some type of computer code, typically source code or some
type of computer script. It can also be used for a file name, a database table, or a server name. Basically the
code element is used for any text that is recognizable by a computer program.

■■ Tip  There is no explicit mechanism for indicating the computer language of the source code. The
recommendation, however, is to use the class attribute and prefix the value with language-. For example:
<code class="language-javascript">Item.prototype.isAvailable = true;</code>.

The next two elements, keyboard and sample, are poorly named, in my opinion. The keyboard element
identifies content that is input into a computer, such as keyboard input. Inversely, the sample element is
used to indicate content that is some sort of computer output, such as a prompt on a screen or text that is
written to a console window or log file. The specification sometimes refers to this as sample output, which is
where the name samp is derived from.

The key point here is that kbd is used for input and samp is used for output. They could also be used in a
code element as they are recognizable by a computer program. However, kbd and samp are more specific and
should be preferred over code when appropriate.

If the code snippet is longer than one line, you should include the code element inside a preformatted
(pre) element. As I explained in the previous chapter, the preformatted element maintains the white space
characters and renders the content exactly how it was entered.

Inside a code snippet, the variable element can be used to identify variables. This can be used to make
the code more readable. The default styling of the variable element is to use an italic font.

The following HTML includes a snippet of JavaScript code. The default rendering is shown in Figure 5-3.

<pre>
 <code class="language-javascript">
this.log = function () {
 console.log("Quantity: " + <var>this.count</var> + ", Color: " + <var>this.color</var>);
};
 </code>
</pre>

■■ Tip  The keyboard and sample elements are used for semantic purposes; to indicate the content is input or
output to/from a computer program. It is possible to nest them as well. For example, if part of the output is input
that is echoed to the screen. In this case, the input should be inside a keyboard element, while the entire output
is inside a sample element.

Figure 5-3.  Using the code, pre, and var elements

Chapter 5 ■ Phrasing HTML Elements

89

The variable element can also be used in other contexts as well. For example:

<p>
 The area of a rectangle with length <var>l</var> and width <var>w</var> is
 <var>l</var> * <var>w</var>.
</p>

Abbreviations and Definitions
The abbreviation (abbr) element is used to include the expanded version of an abbreviation or acronym.
The abbreviated form is provided as the content of the element (between the opening and closing tags). The
title property contains the full version of the abbreviation, which is not displayed until the mouse is moved
over the abbreviation.

For example, this code uses the term HTML in an abbreviation element and is rendered as shown in
Figure 5-4.

<p>
 The use of <abbr title="Hypertext Markup Language">HTML</abbr> has contributed greatly to
 the popularity of web-based applications.

</p>

The title property is optional. Without a title property, the abbreviation element simply indicates
that the enclosed text is an abbreviation or acronym. This could be useful, especially if you want to apply a
different style. If you specify the title property, it should contain only the expanded version. The sentence
should read correctly if the abbreviation was replaced with the expanded version.

The defining instance (dfn) element is used to identify a term that is being defined. Put the term inside
the defining instance element and the actual definition outside of it, typically after it. For example, the
following code indicates that the term HTML is being defined.

<p>
 <dfn>HTML</dfn> is a standardized way of adding semantic information to support rich
 formatting of content.
</p>

The W3C specification states that if a dfn element is used, the nearest parent element must contain the
definition of the term inside the dfn element. In this example, the paragraph element containing the dfn
element also contains the definition of the term.

The default styling of the defining instance element is to show the text in italics. In this book, the first
time a term is used, it is shown in italics and followed by its definition. The defining instance element
provides the semantic framework for this technique.

Figure 5-4.  Displaying an abbreviation

Chapter 5 ■ Phrasing HTML Elements

90

Just like the abbreviation element, you can also include a title attribute, which will be displayed when
the mouse is placed over the element. Also, if you want to be able to reference this definition when the term
is used later in the document, include an id attribute. For example, this markup demonstrates using both
the title and id attributes. There is a link in the second paragraph where the HTML term is used that will
go back to the initial definition.

<p>
 <dfn id="htmlDef" title="HyperText Markup Language">HTML</dfn> is a standardized way of
 adding semantic information to support rich formatting of content.

</p>
<p>
 Learning HTML is certainly worthwhile and rewarding.
</p>

When the term being defined is also an abbreviation or acronym, you can combine both the
abbreviation and defining instance elements like this:

<p>
 <dfn><abbr title="Hypertext Markup Language">HTML</abbr></dfn> is a standardized way of
 adding semantic information to support rich formatting of content.
</p>

You can accomplish the hover text expansion of the abbreviation by simply including the title
attribute in the defining instance element. However, using the abbreviation element provides the semantic
meaning, making it clear that the title is the expanded version of the abbreviation.

Subscripts and Superscripts
Use the subscript (sub) element if you need to show text as subscript. This will render the character(s)
slightly lower than the other characters. Similarly, use the superscript (sup) element to render the text
higher. For example, the following code is rendered as displayed in Figure 5-5.

<p>
 H₂O is the chemical formula for water.

 e=mc² is the formula for mass-energy equivalence.
</p>

■■ Caution  The use of the subscript and superscript elements should not be used for purely presentational
reasons. They should only be used when their absence would change the meaning of the content. For example,
e=mc2 without the superscript has a different meaning; the character 2 in superscript means the variable should be
squared. Similarly, in some languages, superscripting or subscripting characters can change the meaning of a word.

Figure 5-5.  Using subscripts and superscripts

Chapter 5 ■ Phrasing HTML Elements

91

The subscript element can also be used as part of a variable (var) element, which I demonstrated
previously.

Time
The time element allows you to provide semantic meaning around text that refers to a point in time. You can
then use the datetime attribute to include a machine readable version as well. For example:

<p>
 Your follow-up appointment will be a week from <time datetime="2016-06-28">Tuesday</time>.
</p>

The datetime attribute is not displayed; it is provided only for scripts and other applications that may
need to access this information. If you want the actual date displayed, put it in the content portion of the
time element.

The datetime attribute can contain a specific date as demonstrated in this example. It can also specify
the time as well as the date, or just a time by itself. There are quite a few different ways of formatting the
datetime attribute. The W3C specification provides lot of details with examples, which can be found at
http://www.w3.org/TR/html5/text-level-semantics.html#the-time-element .

Edits
If you want to show changes that have been made to a document, you can include them in insert (ins) and
delete (del) elements. Put the content that has been removed from the original version in a delete element
and put the added content in an insert (ins) element. If text has changed, put the original version in a delete
element and the new version in an insert element.

For example, this HTML indicates how the original draft of the Declaration of Independence was edited
before the final version was published.

<p>
 We hold these truths to be
 <del cite="https://www.loc.gov/exhibits/declara/ruffdrft.html" datetime="1776-06-
28">sacred
 & undeniable;<ins>self-evident,</ins> that all men are created equal &
 independant, that from that equal creation they derive rights inherent &
 inalienable<ins>they are endowed by their Creator with certain unalienable
 Rights</ins>, among which are the preservation of life, & liberty, & the pursuit
 of happiness;<ins>that among these are Life, Liberty and the pursuit of
 Happiness.</ins>
</p>

The default styling of these elements is to underline the new text and strike through the deleted text as
shown in in Figure 5-6.

http://www.w3.org/TR/html5/text-level-semantics.html

Chapter 5 ■ Phrasing HTML Elements

92

In addition to the global attributes, both the insert and delete elements support two specific attributes:

•	 cite - Use this attribute to indicate the source of the change. If used, this is expected
to be a reference to an online resource. This is not displayed but could be used by
search engines as well as scripts.

•	 datetime - This indicates the date/time when the change was made. The standard
format is YYYY-MM-DDThh:mm:ss(time zone).

■■ Tip  Of course, you can always change the default styling through CSS and through JavaScript. For
example, you could provide an option on the page to show only the final version. To do that, set the style to
display: none for delete elements and use the standard styling for the insert elements. And you can show the
original version by hiding the insert elements and using the standard style for the delete elements.

Quoting
In the previous chapter I introduced the blockquote element as a structural element that contains a
large quotation and other elements related to it. Now I’ll explain the recommended techniques for using
quotations, including the blockquote, inline quote (q), and citation (cite) elements.

Use the inline quote (q) element when you want to include a short quote inside the current sentence or
paragraph. For example:

<p>
 As Abraham Lincoln once said, <q>Whatever you are, be a good one</q>.
</p>

An inline quote does not start a new paragraph, rather the content flows from the previous element
just like any other phrasing element such as strong or emphasis. Also, an inline quote should not span
paragraphs.

In contrast, the blockquote element defines a new section just like a div or the more semantic elements
such as aside and section. It can contain multiple paragraphs as well as other elements including heading
text and footers. For example, this HTML is rendered as shown in Figure 5-7.

<blockquote>
 <h1>Gettysburg Address</h1>
 <p>
 Four score and seven years ago our fathers brought forth, upon this continent, a new
 nation, conceived in Liberty, and dedicated to the proposition that all men are
 created equal.
 </p>

Figure 5-6.  Illustration of default edit rendering

Chapter 5 ■ Phrasing HTML Elements

93

 <p>
   Now we are engaged in a great civil war, testing whether that nation, or any nation so
 conceived, and so dedicated, can long endure. We are met here on a great battlefield
 of that war. We have come to dedicate a portion of it, as a final resting place for
 those who here gave their lives that that nation might live. It is altogether fitting
 and proper that we should do this.
 </p>
 <footer>
 <small>Abraham Lincoln, 1864</small>
 </footer>
 <cite>

 Gettysburg Address

 </cite>
</blockquote>

All quotations should be cited to give credit to the source. Since an inline quote cannot include other
elements except other phrasing element, the citation is entered using the cite attribute that was explained earlier.
The value of the cite attribute should be a URL to a location providing more information about the quote. This
information is not usually displayed by the browser. To provide a visual citation, you’ll need to include additional
text outside of the inline quote element, such as “As Abraham Lincoln once said” in this example.

For block quotes, the citation is made through the cite element. The name of the quoted source,
for example, Gettysburg Address, should be inside the cite element. If you want to include a link as well,
include an anchor (a) tag for that purpose. By putting this inside the cite element, the semantic meaning of
the link becomes more obvious.

■■ Tip  Since a blockquote is a flow element, you can include just about anything in it. For example, you can
include an image, or an audio or video clip. If you wanted to include a picture of the Mona Lisa, putting it in a
blockquote element makes it clear that you are quoting someone else’s work. Also include a cite element in
the blockquote to name the work, “Mona Lisa,” and add other content to indicate it was painted by Leonardo
da Vinci, circa 1506.

Figure 5-7.  Default rendering of a block quote

Chapter 5 ■ Phrasing HTML Elements

94

Span
The span element is a generic container that provides no semantic meaning. However, you can use attributes
on the span element to indicate the semantic information. The class attribute is the most commonly used
attribute for this purpose, but there are others such as lang and dir that may useful as well.

Consider the following HTML:

<p>
 The primary colors are red, blue,
 and yellow.
</p>

The span element has no semantic meaning; it also has no default styling. Without any CSS rules, this
span element in this content has no affect. However, you could use CSS to change the font color or perhaps
the background color of these portions of text.

Adding Carriage Returns
There are a few techniques that are available for adding white space in your document. These can force, or
suggest, line breaks within the text.

Line Break
The line break element (br) inserts a carriage return within your text. Recall from the previous chapter that
browsers ignore white space characters in HTML. If you need text to start on a new line, insert a line break
element before the text or after the previous text. For example:

<p>
 Fourscore and seven years ago,

 our fathers brought forth to this continent

 a new nation, conceived in liberty

 and dedicated to the proposition

 that all men are created equal.

</p>

The line break element is an empty element, meaning that it has no content between the opening and
closing tags. In fact, HTML5 does not distinguish between an opening tag (
) and a closing tag (</br>). If
you entered

One
 Two </br> Three

each word would be rendered on a separate line because both the opening and closing tags would
generate a line break. HTML5 is pretty lenient, allowing
, </br>,
, and
 as all valid syntax. I
will be using the
 formatting convention consistently for all self-closing tags throughout this book.

■■ Caution  Don’t use the line break element merely to add vertical spacing between elements. This should
be done using CSS styles. The line break element should only be used when you need to force text to a new
line. A good example of this is when formatting an address block.

Chapter 5 ■ Phrasing HTML Elements

95

Word Break Opportunity
The browser will automatically wrap text to fit within the horizontal space defined for an element. There
are several ways to control the rules used to wrap text and I’ll cover that in Chapter 10. Wrapping normally
occurs where there is white space or punctuation between words. However, if you have a rather long word,
this may not work as well as you would like.

If you don’t allow words to be broken, you may end up with a lot of white space on one line as the long
word must start the next line. Worse, if the word by itself won’t fit, it will spill over the allotted area. If you
allow words to be broken, it may break at an undesirable place.

The word break opportunity element (wbr) is used to indicate where a word could be broken if the
wrapping logic needed to. For example, consider the following HTML:

<p style="width: 70px; word-wrap: break-word">
 Supercalifragilisticexpialidocious

 --

 Super<wbr />cali<wbr />fragilistic<wbr />expiali<wbr />docious
</p>

The inline style sets the width for the paragraph to 70 pixels and then enables the word wrapping to
break words, if necessary. The longest word in the English language, supercalifragilisticexpialidocious, is
then included twice. The second instance contains the wbr element at logical places, where wrapping would
still make the word readable. This is rendered as shown in Figure 5-8. As you can see, the second instance
wraps in more logical places.

■■ Note  OK, maybe supercalifragilisticexpialidocious is not a real word. But it is listed in both Webster’s and
Oxford dictionaries. Variants of the nonsense word have been around for a while. This particular version was
made famous in Disney’s 1964 movie, Mary Poppins.

You will likely never have to break a word as long as this. However, one useful application of this is when
displaying a URL, which can be rather long and does not usually include any white space characters. You can
place the word break opportunity element in carefully chosen places so if the URL needs to be wrapped, it
will still render it in a reasonable fashion.

Figure 5-8.  Demonstrating the word break opportunity element

http://dx.doi.org/10.1007/978-1-4842-2463-2_10

Chapter 5 ■ Phrasing HTML Elements

96

Hyphens
The word break opportunity element identifies logical places where a word can be broken and wrapped to
the next line, if necessary. You can also accomplish this using a hyphen or a soft hyphen.

A hyphen character (-) will be displayed even if the word does not need to be wrapped. However, a soft
hyphen is an invisible character inserted in a word. It is entered as ­. Both hyphens and soft hyphens
will also tell the browser where a break can occur. A soft hyphen is only displayed if the word is actually
wrapped at that location.

■■ Tip  You can also specify a soft hyphen using the Unicode notation, ­.

To try this out, let’s change our sample HTML to include a third instance of
supercalifragilisticexpialidocious, using soft hyphens instead.

<p style="width: 70px; word-wrap: break-word">
 Supercalifragilisticexpialidocious

 --

 Super<wbr />cali<wbr />fragilistic<wbr />expiali<wbr />docious

 --

 Super­cali­fragilistic­expiali­docious
</p>

When rendered this will look like Figure 5-9.

Figure 5-9.  Using soft hyphens

Chapter 5 ■ Phrasing HTML Elements

97

When wrapping a URL, you don’t want to include hyphens because when the lines are assembled
together you’ll end up with extra characters, making the URL incorrect. In this case, use the word break
opportunity element. However, for a word like supercalifragilisticexpialidocious, you should use a soft
hyphen (­) because you’ll want a hyphen displayed to indicate that the word continues on the next line.

Bidirectional Text
In some languages, such as Hebrew and Arabic, the text flows from right-to-left. Browsers are generally pretty
good about dealing with right-to-left languages. Simply setting the dir attribute on the html element to rtl will
render things correctly, for the most part. There are, of course, situations that you’ll need to deal with, and to
do that you must first understand the Unicode Bidirectional (bidi) algorithm, which I’ll explain now.

Text Direction
A string is simply an array of characters. The logical order refers to how they are sequenced in memory. For
example, the Hebrew word for happy contains four characters:

	 1.	 ַא

	 2.	 ְׁש

	 3.	 ֵר

	 4.	 י

This is the logical order. However, because Hebrew is a right-to-left language, the visual order, or how it
is rendered is:

אשֵרי

■■ Note  In fact, if you paste these characters, one at a time, into Microsoft Word, or even Notepad, the order
will be reversed automatically. After pasting the characters, try navigating with the left and right arrows and
you’ll see that it does some interesting things. The Home key moves the cursor to the right of the word, and the
right arrow key actually moves left.

Each Unicode character has a direction property that indicates the ordering (left-to-right or right-to-left). As
you type characters, the cursor automatically moves past the current character (to the right of it) indicating where
the next character will go. If you are using a character set for a right-to-left language, as you type, the cursor will
move to the left of the character. This happens automatically based on the characters that are being entered.

However, while using a right-to-left character set, if you enter a number, the cursor will go to the right
of it. This is because numbers are always left-to-right, even when included in a right-to-left language. This is
why the bidirectional term is used. Within a block of text, there is a mixture of left-to-right and right-to-left.
Each section is referred to a directional run, which is a string of text that flows in a single direction.

Flow Direction
Generally, each portion of inline content flows from left-to-right because this is the default direction. The
direction is set using the dir attribute, which is a global attribute that can be placed on any element. If the
entire page is using a right-to-left language, set the direction on the html element:

<html dir="rtl">

Chapter 5 ■ Phrasing HTML Elements

98

If only a portion of the text is right-to-left, set the dir attribute on the appropriate containing element such
as a div, p, or span tag. The dir attribute is inherited from the parent element, and the default value for the
html element, if not specified otherwise, is ltr. In the bidi algorithm, this is referred to as the base direction.

Spaces and punctuation characters are considered neutral, since they can be used in both left-to-right and
right-to-left languages. If one or more neutral characters are between two characters of the same direction, they
will be assumed to have the same direction and will be included in the same directional run. Neutral characters
between runs of different directions will use the base direction. This means that they will be included in one
of the direction runs, whichever one has the same direction as the base direction. Likewise, neutral characters
at the beginning or end of a block of text will also use the base direction. If that matches the direction of the
adjoining run, they will be included; otherwise they will be in their own directional run.

For example, consider the following markup. Figure 5-10 illustrates each of the directional runs.

<p>
 In Hebrew, this אַשְׁרֵי means happy.
</p>

The short, thicker underlines in Figure 5-5 indicate content where the direction is determined by the
base direction. If this is ltr, these characters will also be ltr and there will be three directional runs, with
only the four Hebrew characters being in a separate run.

However, if the base direction is rtl, there will be four directional runs since the period at the end of
the sentence will be rtl and must be in its own run. Each of these directional runs will also flow from right-
to-left. So reading from left-to-right as we are used to, there would be a period, followed by “means happy,”
followed by a Hebrew word, and finally “In Hebrew, this.”

Numeric characters are weakly typed and are handled a little differently. A string of numeric characters
is always rendered left-to-right; however, they are considered part of the direction run of the previous text,
even if that is right-to-left. For example, consider the following:

<p>
 !123 אַשְׁרֵי 456!

</p>

The 456 text will be rendered left-to-right but will be considered part of the Hebrew text direction run,
which is right-to-left. The 456 text will come after the Hebrew text, which means that it will be to the left of it.
The 123 text will be in its own left-to-right directional run, which means if the base direction is ltr, it will be
to the left of 456. This paragraph will be rendered as !123 456אְַׁשֵר י!

If the base direction is rtl, however, all the directional runs will be right-to-left. Each span will be
rendered in reverse order (from our left-to-right perspective), with the Hebrew text in the middle and the 123
text to its right and 456 to its left.

Figure 5-10.  Illustration of directional runs

Chapter 5 ■ Phrasing HTML Elements

99

Tightly Wrapping
Now that I have explained what the bidi algorithm does, let’s look at some ways to manipulate it to ensure
we get what we’re expecting. The first approach is to tightly wrap each phrase. This means that each part
of the text that could use a different direction is in its own element and the dir attribute is used on each to
explicitly set the direction.

For example, the previous HTML with the 123 and 456 phrases presented an unexpected issue when the
base direction was ltr. I had already put each phrase in its own span element for illustration purposes. To fix
the issue, you just need to set the dir attribute like this:

<p>
 !123 אַשְֹרֵי 456!
</p>

Now the text will be rendered as expected in both left-to-right as well as right-to-left modes.

■■ Tip  You don’t have to use a span element when tightly wrapping directional phrases. If that text is already
in a separate element for semantic reasons, you can add the dir attribute to the existing element.

Using Isolation
Sometimes you need to insert dynamic text that comes from a database or from user input and you don’t
know the direction of the text. In this case, put the dynamic text inside a bidirectional isolation (bdi) element
like this:

<p>
 The user entered <mark><bdi>user input</bdi></mark> on this form.
</p>

If the dynamic text is already in its own element, nest the bdi element inside of it as shown in the
previous example. The bdi element defaults the dir attribute to auto. This allows the direction of the
dynamic text to be determined based on its contents. It also tells the browser to ignore the direction of this
text when rendering the adjoining text. This is done by setting the CSS attribute unicode-bidi: isolate on
this element.

■■ Note  You can accomplish this yourself without using the bdi element by setting dir="auto" and applying
the CSS unicode-bidi: isolate rule. However, using the bdi element provides the semantic meaning and is
the best way to do this.

Whenever you use the dir attribute on an element, the unicode-bidi: isolate rule is automatically
applied. The tightly wrapping approach described earlier is also establishing the isolation. Also, the previous
issue with the 123 and 456 text could also be solved by simply placing the right-to-left text inside a bdi element:

!123 <bdi>אַשְׁרֵי</bdi> 456!

Chapter 5 ■ Phrasing HTML Elements

100

Overriding the Direction
You can also override the text direction by using the bidirectional override (bdo) element. For example:

<p>
 <bdo>אַשְׁרֵי</bdo>

 <bdo dir="rtl">Supercalifragilisticexpialidocious</bdo>
</p>

In the first line, the dir attribute was not set and will be inherited from the parent element. In the
second line, the dir attribute is explicitly set to rtl so the word will be spelled backward, regardless of the
previous base direction.

If the base direction is the default, ltr, this will be rendered as shown in Figure 5-11.

■■ Caution  There is seldom any valid reason for using the bdo element, except just for fun. You may be
curious to see what supercalifragilisticexpialidocious looks like spelled backward. For someone who reads
Hebrew, the preceding example looks just as odd.

In all other elements, the dir attribute defines the flow direction of its child elements. The bdo element
is a special case; when the dir attribute is used in the bdo element it affects the text direction.

■■ Tip  For more information regarding bidirectional text, the W3C provides several useful articles, which you
can find at http://www.w3.org/International/tutorials/bidi-xhtml.

Ruby
The ruby element is used to annotate content with small text, which is known as ruby annotations. Ruby
annotations are used in East Asian typography, primarily for Japanese, Chinese, and Korean languages, to
aid in pronunciation. The content that is being annotated is included within the ruby element.

Also inside a ruby element are one or more rt elements. These are the actual annotations. Ruby
annotations get their name from a typography term for a very small font (typically 5.5 points). This text is
usually displayed above the main content. If there are more than one, additional annotations are displayed
to the side.

The following content displays some common currency symbols and annotates them with their name
and currency code:

Figure 5-11.  Overriding the text direction

http://www.w3.org/International/tutorials/bidi-xhtml

Chapter 5 ■ Phrasing HTML Elements

101

<p>
 <ruby>$<rp>(</rp><rt>Dollar</rt><rt>USD</rt><rp>)</rp></ruby>

 <ruby>€<rt>Euro</rt><rt>EUR</rt></ruby>

 <ruby>£<rt>Pound Sterling<rt>GBP</ruby>

 <ruby>¥<rt>Japanese Yen</rt><rt>YEN</rt></ruby>

</p>

The rt element does not require a closing tag if it is followed by another rt element, an rp element, or
the closing ruby tag. To demonstrate this, the code above for the Pound symbol does not use end tags.

If a browser does not support ruby, the annotations are simply displayed inline, following the main
content. For fallback functionality, you should wrap them with parentheses to make is clear that the
annotations are not part of the main content flow. To do that, use the rp element. The rp element is hidden
when ruby is supported. The entry for USD currency demonstrates the use of rp elements.

This previous HTML is rendered as shown in Figure 5-12 (I have zoomed in quite a bit in this screenshot
as the annotations use very small font).

■■ Tip  These ruby annotations are similar to the abbr and small elements that I described earlier in this
chapter. While you can certainly use ruby annotations in other scenarios, they were intended primarily for East
Asian languages. For other scenarios consider using the abbr or small instead. For some background on ruby,
see the article at http://html5doctor.com/ruby-rt-rp-element.

Summary
Make a careful choice when selecting an element to use when including content in your HTML document.
Sure, you can put everything in a paragraph or span tag and it will “work.” But each element provides
semantic meaning to your content. This will ultimately make your document more maintainable, and when
it comes time to write the CSS, you’ll be glad you did.

In the next chapter, I will demonstrate how to organize tabular data in an HTML document. Putting
content into rows and columns is a great way to present certain types of data.

Figure 5-12.  Rendering ruby annotations

http://html5doctor.com/ruby-rt-rp-element

103© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_6

CHAPTER 6

Table HTML Elements

In this chapter, I’ll show you how to organize contents into a table of rows and columns. There are a lot
of scenarios where you need to display a list of things, and tables are the perfect solution. In Chapter 4, I
demonstrated using ordered and unordered list (ol, ul) elements. These support multiple rows but only a
single column, however. If you need to organize a row into multiple columns, tables are the way to go.

■■ Caution  Tables should only be used when presenting tabular data, such as a phone list, or team standings. Do
not use tables to define the layout of multiple sections of a document. For example, if you want an aside element to
be aligned to the right of the main section, use CSS instead of tables. I’ll explain how to do this in Chapter 13.

Simple Table
I’ll start with a very simple table that has three rows and three columns. Use the table element to define a
table. Inside the table element, use the table row (tr) element to define each row. Within each row, use the
table cell (td) element to define contents of each cell within the row. For example, the HTML in Listing 6-1
will be rendered as shown in Figure 6-1.

Listing 6-1.  Creating a simple table

<table>
 <tr>
 <td>One</td>
 <td>Two</td>
 <td>Three</td>
 </tr>
 <tr>
 <td>Four</td>
 <td>Five</td>
 <td>Six</td>
 </tr>
 <tr>
 <td>Seven</td>
 <td>Eight</td>
 <td>Nine</td>
 </tr>
</table>

http://dx.doi.org/10.1007/978-1-4842-2463-2_4
http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 6 ■ Table HTML Elements

104

■■ Note  HTML4 supported a number of attributes on the table, tr, and td elements such as border,
bgcolor, width, and align that were used for defining the table format. In HTML5, these have all been
deprecated in favor of using CSS for this purpose. In Chapter 13, I will explain how to style tables using the
capabilities in CSS.

If you want to include a caption for the table, add a caption element as the first child element with the
table element (before the first row). For example:

<table>
 <caption>Simple Table</caption>
 <tr>

Even though the caption is before the row details, using CSS you can place the caption, visually,
anywhere relative to the actual table.

Column and Row Headings
If you want to place a column or row heading in one of the cells, you should use a table header cell (th) element
instead of the td element. The default styling of the table header cell element is to make the text bold. More
importantly, using this element provides the semantic information that its contents describe a set of cells.

When using the table header cell element, you should specify its scope attribute. This defines the set of
cells that the header content describes. For column headings, use scope="col" and for row headings, use
scope="row". The other possible values are colgroup and rowgroup, which I’ll explain later in this chapter.
The scope attribute does not affect how the content is rendered in most browsers. However, this information
may be useful in certain applications such as screen readers.

Listing 6-2 demonstrates a table that uses column and row headings. The table lists three numbers
(2, 3, and 4) along with the squared and cubed values of these numbers. The first row contains the column
headings, and the first cell in each row includes the row heading. This is rendered as shown in Figure 6-2.

Listing 6-2.  Using column and row headings

<table>
 <caption>Squares and Cubes</caption>
 <tr>
 <td></td> <!-- empty cell -->
 <th scope="col">Number</th>
 <th scope="col">Squared</th>
 <th scope="col">Cubed</th>
 </tr>
 <tr>
 <th scope="row">Two</th>
 <td>2</td>

Figure 6-1.  A simple table

http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 6 ■ Table HTML Elements

105

 <td>4</td>
 <td>8</td>
 </tr>
 <tr>
 <th scope="row">Three</th>
 <td>3</td>
 <td>9</td>
 <td>27</td>
 </tr>
 <tr>
 <th scope="row">Four</th>
 <td>4</td>
 <td>16</td>
 <td>64</td>
 </tr>
</table>

■■ Tip  Notice the empty cell in the first row. Even though there is no content in this cell, it must be defined to
keep the other cells aligned properly. You should have the same number of cells in each row. If a cell is omitted
from a row, the last cell in the row will be empty.

Column Groups
By using the table header cell element for headings and table cell element for normal content, you can easily
style them differently. However, you may want to style some columns of normal cells differently from other
columns. For example, in the previous example, you might want the Squared and Cubed columns to be
formatted differently than the Number column. You can do that by including those columns in a column
group (colgroup) element and then apply styles to the column group element.

There are two ways to use the column group element. First, use the span attribute to specify how many
columns the group will include. Columns are assigned to groups sequentially. If the first group spans two
columns, it will contain the first two columns. If the next group spans a single column, it will be the third
column in the table. To put the last two columns from the previous example in their own group, just add the
following bolded code before the first row:

<table>
 <caption>Squares and Cubes</caption>
 <colgroup span="1"></colgroup>
 <colgroup span="1"></colgroup>
 <colgroup span="2" style="background-color: #b6ff00"></colgroup>
 <tr>

Figure 6-2.  Using column and row headings

Chapter 6 ■ Table HTML Elements

106

The first two groups span one column each: the row headings and the Number column. The default
value for the span attribute is 1 so you could also omit the span attribute on these column group elements.
The last group spans the remaining two columns, which are the Squared and Cubed values. I have added
a style attribute on this group so you can see how the group can be used, but this should normally be
handled in CSS. With these additions, the table is now rendered as shown in Figure 6-3.

The other approach is to use column (col) elements within the column group element instead of
using the span attribute. Include a column element in the group for each column that should be included.
Columns are assigned sequentially just like they were with the first approach. You also can use the span
attribute on the column element.

■■ Caution  In a column group (colgroup) element, you cannot include both a span attribute and one or more
column (col) elements. You can use either approach but not both in the same group.

To demonstrate the second approach, the following bolded code can replace the previous column
group elements. In this example, I’m putting the first two columns in one group instead of separate groups.
In the first group, there are two column elements to indicate there are two columns in this group. In the
second group, a single column element is used with a span attribute to indicate that two columns are
included.

<table>
 <caption>Squares and Cubes</caption>
 <colgroup>
 <col style="background-color: #f00"/>
 <col />
 </colgroup>
 <colgroup style="background-color: #b6ff00" >
 <col span="2" />
 </colgroup>
 <tr>

One advantage of the second approach is that you can define styles on both the column and column
group elements. You can apply a style to a group of columns through the column group element or to a
specific column using the column element as demonstrated in the previous example. This table is rendered
with a red background on the first column as shown in Figure 6-4.

Figure 6-3.  Adding column groups with styling

Chapter 6 ■ Table HTML Elements

107

If you have defined column groups using either approach, you can use them when defining the scope
of a table head cell (th) element. Setting the scope attribute to colgroup will indicate that the heading text
applies to the columns in the current column group.

Table Heading and Footer
Quite often a table will have one or more rows with column headings at the top, followed by rows of data and
then one or more rows of summary data at the bottom. You can implement this using the elements already
discussed. As HTML5 is all about semantics, additional elements are available to distinguish rows that belong
in the header or footer from rows that form the main body of the table. In general, it’s a good idea to provide as
much information in the HTML as possible. This will also allow more options later when applying the styles.

You should put the column headings, if any, in a table head (thead) element. If there is summary
information, these rows should be inside a table footer (tfoot) element. The remaining rows that form the
main part of the table should be in a table body (tbody) element. A simple example is shown in Listing 6-3.

Listing 6-3.  A table with header and footer

<table>
 <caption>Scoreboard</caption>
 <thead>
 <tr>
 <th>Inning</th>
 <th>Runs</th>
 <th>Hits</th>
 <th>Errors</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>1</td><td>0</td><td>1</td><td>0</td></tr>
 <tr><td>2</td><td>2</td><td>5</td><td>0</td></tr>
 <tr><td>3</td><td>0</td><td>1</td><td>1</td></tr>
 <tr><td>4</td><td>0</td><td>0</td><td>0</td></tr>
 <tr><td>5</td><td>1</td><td>2</td><td>0</td></tr>
 <tr><td>6</td><td>0</td><td>1</td><td>0</td></tr>
 <tr><td>7</td><td>0</td><td>0</td><td>0</td></tr>
 <tr><td>8</td><td>1</td><td>3</td><td>1</td></tr>
 <tr><td>9</td><td>1</td><td>2</td><td>0</td></tr>
 </tbody>
 <tfoot>
 <tr><td>Final</td><td>5</td><td>15</td><td>2</td></tr>
 </tfoot>
</table>

Figure 6-4.  Using both col and colgroup elements

Chapter 6 ■ Table HTML Elements

108

■■ Caution  In HTML4 the table footer element needed to be specified before any body elements. In HTML5
this restriction has been removed so you can put the footer after the body where it logically belongs. Regardless
of where the footer element is placed, however, it will be rendered at the end of the table. For this reason,
including multiple table footer elements does not make any sense. This does not cause an error, but all footer
elements will be combined at the bottom of the table.

The table head, body, and footer elements, by themselves, do not affect the way the table is rendered.
With the default styling, this sample table is formatted as shown in Figure 6-5. All three of these elements are
optional, and you can include any combination of them.

Figure 6-5.  Using a table head and footer element

The rows within a head, body or footer element are considered a row group. When defining the scope
attribute of a table head cell element, using the rowgroup value indicates that the heading text applies to the
current row group.

You can have multiple table body sections within a table. This is especially useful if you have a large
table and want to divide it into sections. You can also have multiple table head elements so you can place
different heading text before each body element. As I mentioned earlier, there will only be one footer
element and it will be at the end of the table.

Spanning Cells
When working with tables in HTML5, you can make a single cell out of several adjoining cells. This works
much like merging cells in a spreadsheet. The cells of an HTML table are comprised by the table cell (td) and
table head cell (th) elements as I explained earlier. Each one of these elements occupies a single cell in the
table grid. However, both of these elements support the colspan and rowspan attributes. The default value of
both attributes is 1, so each element takes up exactly one space.

Chapter 6 ■ Table HTML Elements

109

Suppose you have a table with five columns. Each table row element would contain a total of five table
cell or table head cell elements (td and th elements can be used interchangeably). If you set the colspan
attribute on one of these elements to 2, it would occupy the space of two cells and you would only need four
elements in that row. This is illustrated in Figure 6-6.

The first row contains five elements. However, in the second row there are only four elements because
one element occupies two cells. This is similar to how the span attribute works in the column group or
column element that I explained earlier.

The rowspan attribute works the same way except that the cell is expanded to include the cells below it
instead of to the right. Of course, you can include both the colspan and rowspan attributes. In this case, the
merged cell will be both wider and taller as illustrated in Figure 6-7.

This introduces some interesting side effects on the subsequent row elements. In the table shown in
Figure 6-7, the second row has only four elements because one element takes up two cells. In the third row,
however, cells 2 and 3 were already allocated to the merged cell in the previous row. There are only three
available cells left so the third row will only add three elements. The same is true for the fourth row.

Now let’s apply this concept to construct the Periodic Table of the Elements. You’ve probably seen a
version of this if you’ve ever taken a basic Chemistry class. It lists all of the elements in a table. The columns
and rows have special meanings that have to do with their atomic structure. For example, all of the elements
in the last column are knows as noble gases; the column to its left contain all of the halogen elements.
Because of this table layout, there will be gaps in the grid, especially in the first few rows. While we could just
create a lot of empty cells, instead we’ll merge these empty cells into a single cell.

Figure 6-6.  Using the colspan attribute

Figure 6-7.  Using the colspan and rowspan attributes

Chapter 6 ■ Table HTML Elements

110

A portion of the HTML for this table is shown in Listing 6-4. I have removed the last four rows of the
table for brevity. The downloaded code will have the complete source. The complete table has eighteen
columns, seven rows of data, and two header rows.

Listing 6-4.  Source for Periodic Table

<table id="Periodic">
 <caption>Periodic Table of the Elements</caption>
 <tr>
 <th>I</th>
 <th>II</th>
 <th colspan="10" rowspan="4"></th>
 <th>III</th>
 <th>IV</th>
 <th>V</th>
 <th>VI</th>
 <th>VII</th>
 <th>VIII</th>
 </tr>
 <tr>
 <th>1</th>
 <th>2</th>
 <!-- Skipping 10 cells-->
 <th>13</th>
 <th>14</th>
 <th>15</th>
 <th>16</th>
 <th>17</th>
 <th>18</th>
 </tr>
 <tr>
 <td>H</td>
 <th></th> <!-- empty cell -->
 <!-- Skipping 10 cells-->
 <th colspan="5"></th>
 <td>He</td>
 </tr>
 <tr>
 <td>Li</td>
 <td>Be</td>
 <!-- Skipping 10 cells-->
 <td>B</td>
 <td>C</td>
 <td>N</td>
 <td>O</td>
 <td>F</td>
 <td>Ne</td>
 </tr>
 <tr>

Chapter 6 ■ Table HTML Elements

111

 <td>Na</td>
 <td>Mg</td>
 <th>3</th>
 <th>4</th>
 <th>5</th>
 <th>6</th>
 <th>7</th>
 <th>8</th>
 <th>9</th>
 <th>10</th>
 <th>11</th>
 <th>12</th>
 <td>Al</td>
 <td>Si</td>
 <td>P</td>
 <td>S</td>
 <td>Cl</td>
 <td>Ar</td>
 </tr>
 <!-- Last four rows omitted for brevity -->
</table>

The first row has an element that spans ten columns and four rows. In the three subsequent rows, I
have included a comment to show where the skipped cells are. The space for these is taken up by the large
merged cell. I am using the table head cell (th) element for all of the heading data as well as the empty cells
in the first four rows.

I will explain how to use CSS to format a table in Chapter 13. However, for now, in order to make this
table look familiar, I’ll we’ll add some really simple CSS. Because there are so many elements, adding inline
styling is not practical. In the head element I’ll add the following style element:

<style>
 #Periodic td {
 width: 35px;
 border: 1px solid black;
 padding: 1px;
 margin: 1px;
 text-align: center;
 }
</style>

This selector will find all table cell elements that are within an element with the id of “Periodic,” which
is the id assigned to this table element. The declarations set the width of each element as well as centering
the text and adding a border. The periodic table will be rendered as shown in Figure 6-8.

http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 6 ■ Table HTML Elements

112

To be able to see the merged cells, add the following CSS rule shown in bold to the style element. This
will put a border around the table head cell elements as well as setting a background color.

<style>
 #Periodic td {
 width: 35px;
 border: 1px solid black;
 padding: 1px;
 margin: 1px;
 text-align: center;
 }
 #Periodic th {
 border: 1px solid black;
 background-color: #0ff;
 padding: 1px;
 margin: 1px;
 text-align: center;
 }
</style>

Now the table will be rendered as shown in Figure 6-9.

Figure 6-9.  Styling the table head elements

Figure 6-8.  The Periodic Table of the Elements

Chapter 6 ■ Table HTML Elements

113

Notice the large block in the middle of the table. It is four rows high and ten columns wide. There is a
border around the entire area because this is being treated as a single cell.

Summary
In this chapter I explained how to use the table element to present tabular data. A table consists of rows that
are represented by the table row (tr) element. Each row contains a collection of table cells (td) and/or table
head cell (th) elements. Columns are not explicitly defined but are inferred based on the existence of td or
th elements. For example, the first element of each row is considered the first column.

You can define columns using the colgroup and/or col element. This does not actually create or define
any table cells but allows you to apply styles to a specific column or group of columns. You can also group
table rows into a header (thead), body (tbody), and footer (tfoot) elements for semantic purposes.

Finally, you can merge cells into a single cell by using the colspan and rowspan attributes. Since the
merged cell will take up more space, you will need fewer elements in a row that contains a merged cell.
Using the rowspan attribute is particularly interesting, requiring you to skip cells in subsequent rows. I
recommend you add comments to your table to indicate skipped cells.

In the next chapter, I’ll explain how to included embedded content, such as images, in your document.
I’ll also demonstrate using the native audio and video elements.

115© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_7

CHAPTER 7

Embedded HTML Elements

In this chapter I’ll demonstrate the embedded elements that are available in an HTML5 document. The
content I have examined so far, which is mostly text, was provided in the HTML document. However, with
embedded elements, the content is provided by an external file such as an image or a video clip. The HTML
document provides a reference to that file through one of the embedded elements. I will first demonstrate
the anchor element that is used to provide a hyperlink to other resources. Then I’ll explain the three
most common embedded elements: images (img), audio, and video; most of this chapter will explain the
capabilities of these three elements.

Both audio and video elements are also considered interactive elements because a user will often
manipulate them through the UI. For example, they may want to play, pause, rewind, or adjust the volume.
I’ll describe the native controls for these interactions in this chapter. In Chapter 21 I’ll demonstrate how to
implement your own custom controls using JavaScript.

HTML5 also supports the embedded (embed) and object elements that allow you to reference custom
plug-ins that will render this content. The other embedded elements, scalar-vector graphics (svg) and
canvas, require their own chapter to fully describe, which I will do in Chapters 22 and 23 respectively.

Anchor
The anchor (a) element is not technically categorized as embedded content. I’m including it here because
it doesn’t fit well in any other chapter. However, the understanding of anchor elements (and navigating to
other resources in general) is needed for this and future chapters.

The anchor element is used to turn content into a hyperlink. The content inside the anchor element can
be any type of flow or phrasing context except interactive content. The anchor element supports the href
attribute, which defines the URL that the link will navigate to. For example:

 Apress

The content inside the element, “Apress” in this case, will be rendered and when that content is clicked,
the browser will render the URL specified in the href attribute. Textual content inside an anchor element is
normally underlined. The content inside the anchor element could also be an image as I will explain later in
this chapter.

http://dx.doi.org/10.1007/978-1-4842-2463-2_21
http://dx.doi.org/10.1007/978-1-4842-2463-2_22
http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 7 ■ Embedded HTML Elements

116

The href attribute can also provide a link to a specific element on the current page. For example, setting
href="#Chapter5" will scroll the current document so the element that has the id attribute set to Chapter5
will be in view. Also, the linked resource does not have to be a web resource. The first part of a URL specifies
the protocol (e.g., http:) but there are other types of resources that you can link to. Here are some of the
more common types that are used:

•	 http: - web resource

•	 ftp: - file transfer

•	 mailto: - send an email

•	 tel: - dial a phone number (particularly useful for mobile devices)

•	 file: - open a file

The target attribute is used to specify where the linked resource should be displayed. The attribute
value indicates the browsing context that should be used. I explained browsing contexts in Chapter 4. There
are several values that can be used, but the most commonly used are _self (which is the default value) and
_blank. Using _self, or not specifying the target attribute, will cause the linked resource to be displayed
in the current context. Generally, this means that the browser will navigate away from the current page and
load a new one. If you specify _blank, the linked resource will be displayed in a new tab or window.

If the linked resource is a file that should be downloaded rather than rendered by the browser,
use the download attribute. Include the default name that the file should be saved as: for example,
download="MyPicture.png". When the user clicks the link, the file save dialog will display and this filename
will be set as the default. The / and \ characters are not allowed so you cannot default the file path, however.

There are several other attributes that can be included, which provide purely semantic information
about the linked resource:

•	 hreflang - indicates the language of the linked resource

•	 rel - defines the relationship with the linked resource (see Chapter 1 for
more information)

•	 type - indicates the MIME type of the resource

Images
The most commonly used embedded elements are images. In our visually oriented world, you can scarcely
find a web page without images; a lot of web pages are mostly images (or video). The image element has
no content, that is, content between the open and closing tags. In fact, it is one of the self-closing tags that I
listed in Chapter 1. These are sometimes referred to as empty elements since their “content” is configured
solely through its attributes.

The image element is formatted like this:

The image has two required attributes, src and alt. The src attribute specifies the URL of the image file
that is being referenced. Provide a textual description of the image in the alt attribute. This will be displayed
if the image cannot be downloaded or the file format is not supported. Non-visual browsers such as screen
readers will also use this information.

There are several file formats that images can be stored in. The differences in these formats are
primarily due to how the data is compressed and the number of colors that are supported. Each format
works better for some scenarios. The reality is that we will continue to have multiple formats, and the
HTML5 specification does not specify which file formats must be supported.

http://dx.doi.org/10.1007/978-1-4842-2463-2_4
http://dx.doi.org/10.1007/978-1-4842-2463-2_1
http://dx.doi.org/10.1007/978-1-4842-2463-2_1

Chapter 7 ■ Embedded HTML Elements

117

■■ Tip  If you stick to the top three formats, – JPEG, GIF, and PNG – you should be safe for the foreseeable
future. These are support by all browsers and should be around for a long time. TIFF and BMP are also fairly
well supported but not considered web friendly because their relative file size will slow downloads. Here is
a good article that describes all five file types and where they are best suited: http://1stwebdesigner.
com/image-file-types. Here is another article with similar information from a photographer’s perspective:
http://users.wfu.edu/matthews/misc/graphics/formats/formats.html.

The image element also supports the height and width attributes. If used, the units must be set in
pixels; these cannot be set using relative units. If not supplied, the intrinsic dimension of the image file
will be used. One advantage to specifying these attributes is that the space can be allocated prior to the
download completing. If not specified, the page layout may change once the images become available.

Multiple Sources
The image element includes the srcset and sizes attributes that allow you to specify a set of image files
with information about them so the browser can choose the most appropriate one to download and render.
I’ll explain these attributes by demonstrating the use cases they were intended to solve.

Pixel Ratio Selection
On a typical mobile or tablet device, you will usually have a lot more pixels in the same amount of space. For
example, my 24” flat screen monitor has a resolution of 1920 x 1200 pixels. My 5” Lumia phone has nearly as
many, 1280 x 720. The monitor has a pixel density of 93 pixels/inch (PPI); the phone is 294 PPI, roughly three
times the pixel density.

Considering this, you may want to provide one or more scaled-down versions of the same image
depending on the pixel density. This is done using the srcset attribute and providing a comma-separated
list of image sources along with an x descriptor. A 1x descriptor corresponds to the typical desktop
resolution; a 2x descriptor is for devices with twice the pixel density. For example, the following defines two
additional versions of the image file:

<img src="Media/HTML5.jpg" alt="The HTML5 Badge logo"
 srcset="Media/HTML5_2.jpg 2x, Media/HTML5_3.jpg 3x"/>

You should still include the src attribute in case the browser doesn’t support the srcset attribute. Also,
the image in the src attribute will have the 1x descriptor by default, so you don’t need to include a 1x option
in the srcset attribute.

■■ Tip  When you are specifying multiple files in the image element, you need to provide multiple file versions
in your web site. However, the browser will pick only one to download. Not only do these solutions improve the
user experience, they should also improve performance.

http://1stwebdesigner.com/image-file-types
http://1stwebdesigner.com/image-file-types
http://users.wfu.edu/matthews/misc/graphics/formats/formats.html

Chapter 7 ■ Embedded HTML Elements

118

Viewport Selection
Suppose you had an image that you wanted to span the entire width of the screen (or window). You can
accomplish that in CSS by setting the width to 100%. If you have a very wide screen, like my 24” monitor, the
image will be stretched as necessary to fit. The image can also be stretched vertically to maintain the aspect
ratio, or the height can be fixed and the image will be distorted. Neither of these options may be what you’re
expecting.

To help deal with this scenario, you can use a combination of the srcset and the sizes attribute to
specify a different image file based on the width of the viewport. The viewport is simply the visible area of a
web page. On a mobile device this is the size of the device; on a desktop, this is controlled by the size of the
window that the browser is running in.

To address this use case, from an author’s perspective, the solution is quite simple actually. You tell the
browser how wide each of the images are and tell the browser how much space, width wise, it should use.
The browser figures out from this, which file to download. In all of these decisions, we’re only addressing the
width of the image and the width of the viewport.

The first part is to define the width of each image. To do that, you’ll use the srcset attribute but
instead of an x descriptor, you’ll use a w descriptor. If the image is 300 pixels wide, for example, set the
descriptor to 300w.

srcset="Media/HTML5.jpg 300w, Media/HTML5_2.jpg 150w"

When using the w descriptor, the src attribute is ignored by browsers that support the srcset attribute.
With the x descriptor, the src attribute has a default value of 1x, but there is no such default for the w
descriptor. You should still supply the src attribute, but it is only used by older browsers that do not support
srcset attribute.

Now for the second part, let me provide a little background here. The browser will know, eventually,
how wide the image should be, after the document has been parsed, the CSS file(s) downloaded, and all of
the CSS rules applied. However, to speed up the rendering process, the images are preloaded, before the
CSS is applied. So the browser will need some hints as to which files to download and this is where the sizes
attribute comes in.

The sizes attribute is a hint that specifies the expected width of the rendered image. I explained in
Chapter 2 how the distance units can be specified in both fixed units, such as pixels or relative units. The
sizes attribute can be supplied with any of these. Although, specifying this relative to the viewport width is
most useful in this scenario. If the image will take the full width, for example, set sizes="100vw"; if it’s only
half of the width, set it to 50vw.

If the web page is organized into columns, the number of columns may be determined by the viewport
site. On a large screen, you may have four columns, in which case the sizes attribute would be 25vw. But as
the viewport shrinks, the number of columns may drop to three and then two and eventually one. To support
this, the value of the sizes attribute needs to change based on the viewport.

Now you may already be wondering why the sizes attribute is plural. It actually supports a comma-
separated list, allowing you to specify multiple values. Each value can be qualified using a media query
to indicate when the value should be used. I will explain media queries in more detail in Chapter 9. The
following sets the sizes attribute to either 25%, 33%, 50%, or 100% depending on the width of the viewport:

sizes="(max-width: 600px) 25vw, (max-width: 400px) 33vw, (max-width: 200px) 50vw, 100vw"/>

If the viewport is at least 600 pixels wide, there will be four columns so the sizes is set to 25vw. As the
viewport gets smaller, the number of columns decreases, and the relative size of a single image increases.

Another useful application of this is to select an appropriate image based on the device size. For
example, suppose you want to show Arnold Friberg’s famous painting The Prayer at Valley Forge. On a
widescreen device, you would want to show the entire painting shown in Figure 7-1.

http://dx.doi.org/10.1007/978-1-4842-2463-2_2
http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 7 ■ Embedded HTML Elements

119

However, if your web page is being rendered on a mobile device in portrait mode, you might want to
display a cropped version of it like the one shown in Figure 7-2.

Figure 7-1.  Arnold Friberg's The Prayer at Valley Forge

Figure 7-2.  A cropped version

Chapter 7 ■ Embedded HTML Elements

120

You can accomplish this using the srcset attribute like this:

<figure>
 <img src="Media/G_Wash_Wide.jpg" alt="The Prayer at Valley Forge"
 srcset="Media/G_Wash_Narrow.jpg 422w, Media/G_Wash_Wide.jpg 885w"
 width="100%"/>
 <footer><small>Copyright©Friberg Fine Art</small></footer>
 <figcaption>Arnold Friberg's The Prayer at Valley Forge</figcaption>
</figure>

■■ Note A new picture element is being proposed to further assist with the image file selection. As of this
writing it is only supported by the Chrome browser so I’m not covering it in this book. But if you’re interested,
you may want to follow this feature. Here is a link to the current specification: https://html.spec.whatwg.
org/multipage/embedded-content.html#the-picture-element.

Image Map
You can easily turn an image into a hyperlink by placing inside an anchor tag like this:

You insert an image for the content instead of text. Clicking anywhere on the image will navigate to the
address in the href attribute. If the image cannot be loaded, the text in the alt attribute will be displayed as
the hyperlink.

However, if you want to follow the link only when a specific part of the image is clicked you’ll need to set
up an image map. You can also define multiple areas on a single image, each navigating to a different link. To
demonstrate this, I have created an image that contains a red square, a green circle, and a blue triangle. The
image is 50 pixels high and 150 pixels wide and is shown in Figure 7-3.

Figure 7-3.  A sample image with three shapes

The image map (map) element can be placed anywhere in the HTML document, before or after the
image that uses it. You set the name attribute and reference it by this name when using it in an image. You can
create multiple maps but they each need a unique name.

The map element contains one or more area elements. Each area element defines an area of the image
and the href that is followed when this area is clicked. Here is the map element that will define a link for each
of the shapes shown in Figure 7-3.

https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element
https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element

Chapter 7 ■ Embedded HTML Elements

121

<map name="shapeMap">
 <area shape="rect" coords="0,0,50,50" alt="square" title="Square"
 href="https://en.wikipedia.org/wiki/Square" />
 <area shape="circle" coords="75,25,25" alt="circle" title="Circle"
 href="https://en.wikipedia.org/wiki/Circle" />
 <area shape="poly" coords="101,50,126,0,150,50" alt="triangle" title="Triangle"
 href="https://en.wikipedia.org/wiki/Triangle" />
</map>

The area is defined by a shape attribute and a set of coordinates that are in a comma-separated list in
the coords attribute. There are three supported shapes: rectangle (rect), circle, and polygon (poly). For
rectangles, there should be four values in the coords attribute; the x and y coordinates of the upper-left corner
and the x and y coordinates of the lower-right corner. There should be three values for a circle; the x and y
coordinates of the center and the radius. For polygons, the coords attribute will have a variable number of pairs
of values. Each pair specifies the x and y coordinates of a point; the set of points define the polygon. In this
example, there are three points: the lower-left corner, the top of the triangle, and the lower-right corner.

■■ Tip  You can define an area with no href attribute. This is referred to as a dead area: an area that is not
clickable. Also, if you want to define an area that covers the entire image, set the shape="default" and do not
specify the coords attribute.

The area element also supports the target, rel, and download attributes that work just like other
hyperlinks. The alt attribute is used as the hyperlink text if the image cannot be displayed. You can also
specify the title attribute. This is displayed as hover text when the mouse is over the clickable area as
demonstrated in Figure 7-4.

Triangle

Figure 7-4.  Displaying hover text

To link the map to an image, you need to set the usemap attribute on the image element. The value of
this attribute will be the name of the map element prefixed with a hashtag. For example:

■■ Tip  This example is somewhat contrived to demonstrate the image map capability. If you really wanted to
link to a page based on the shape that was clicked, it would be preferable to create a separate image for each
shape and include them in their own anchor tag.

Chapter 7 ■ Embedded HTML Elements

122

Audio
The audio element in HTML5 makes it extremely easy to embed audio to your HTML document. This
is made even easier now that the major browsers have now settled on standard file formats. I like to put
embedded files such as audio and video clips into a separate folder in my web applications. That provides
a clean separation between the HTML files that I develop and maintain from the content that is not created
through HTML. I have created a Media folder in my web project and put all embedded content there.

■■ Note  If you’re using the source code download, the actual audio files have been removed to avoid any
copyright infringements. To try out the sample in the rest of this chapter you’ll need at least one audio clip. You
should be able to get an audio clip by ripping an audio CD. The video file that is included with the download is
licensed through the Creative Commons Attribution license, which allows free reuse and distribution.

Adding audio is as simple as adding an audio element and setting the src attribute to the location of the
audio clip. For example:

<audio src="Media/Linus and Lucy.mp3" >
 <p>HTML5 audio is not supported on your browser</p>
</audio>

The content between the open and closing tags is only used when the audio element is not supported
or the file cannot be loaded or played. There are several Boolean attributes that can be used with the audio
element:

•	 preload - if exists, the audio content is preloaded when the page is rendered

•	 autoplay - if exists, the audio clip is started as soon as the content has been loaded

•	 muted - when set, the audio is muted; no sound is generated

•	 loop - if set, the audio clip will automatically start back at the beginning when it is
finished

•	 controls - if exists, the native controls are provided to the user to interact with the
audio clip

If you add the autoplay attribute, the music will start as soon as the page is loaded. However, there
are no controls to stop it from playing. As of this writing, Chrome, Firefox, and Opera include an icon in the
browser tab to indicate that an audio clip is playing. Firefox and Opera allow you to click on this icon to mute
or unmute the sound. For example, the Firefox tab icon is shown in Figure 7-5.

Figure 7-5.  Displaying the audio icon in the tab

The audio element supports the volume attribute where you can preset the volume level when playing
the audio clip. This is specified as a number between 0 and 1, with the default value being 1. Essentially, 1
means the volume should be 100% of the volume the device is set to.

Chapter 7 ■ Embedded HTML Elements

123

Using the Native Controls
In terms of the UI, there are basically three options:

•	 No controls: The audio plays, but there are no controls available to the user. The clip
can be started automatically when the page is loaded using the autoplay attribute.
You can also start, pause, and stop the audio clip using JavaScript.

•	 Native controls: The browser provides the native controls for the user to play, pause,
and stop the audio clip and control the volume.

•	 Custom controls: The page provides custom controls that interact with the audio
element through JavaScript.

To enable the native controls, simply add the controls attribute like this:

<audio src="Media/Linus and Lucy.mp3" autoplay controls>

The native controls should appear in Internet Explorer like the image shown in Figure 7-6. In the Edge
browser they look similar but smaller.

Figure 7-6.  Displaying the native audio controls in Internet Explorer

In Opera and Chrome, the controls look like Figure 7-7.

Figure 7-7.  The audio controls in Opera

Figure 7-8.  The audio controls in Firefox

In Firefox, the controls look like Figure 7-8.

Figure 7-9.  The audio control in Safari

In Safari, the audio controls look like Figure 7-9.

Chapter 7 ■ Embedded HTML Elements

124

■■ Tip S afari on Windows 7 requires that QuickTime be installed in order to support the audio element. You
can download it from this site: https://support.apple.com/kb/DL837?locale=en_US. You may need to
reboot your PC after installing QuickTime before Safari will be able to work.

As you can see, the controls are styled differently in each browser. With native controls you have little
control over how the audio controls are displayed. You can change the width by setting the style attribute,
which will stretch the progress bar. Extending the height beyond the normal height will only add white space
on top of the control. In IE, decreasing the height, however, will shrink the control; in Chrome, it will clip it.

File Formats
In HTML5 you can specify multiple sources for an audio clip. This allows you to provide an audio clip
in different file formats, letting the browser choose the format that it supports. While all major browsers
support the audio element, they don’t all support the same audio formats. However, most current browsers
now support MP3, as well as MP4 for videos.

■■ Tip  I’m providing this information to explain the capability provided in HTML5. However, you should rarely
need to use this. In the early days of HTML5, this was an important feature as browsers did not all support the
same file types. Fortunately, all major browsers now support MP3 audio and MP4 video.

The audio element allows you to specify multiple sources, and the browser will iterate through the
sources until it finds one that it supports. Instead of using a src attribute, you can provide one or more
source elements within the audio element, like this:

<audio autoplay controls>
 <source src="Media/Linus and Lucy.ogg" />
 <source src="Media/Linus and Lucy.mp3" />
 <p>HTML5 audio is not supported on your browser</p>
</audio>

The browser will use the first source that it supports, so if it matters to you, you should list the preferred
file first. For example, Chrome supports both MP3 and Vorbis formats. If you prefer that the MP3 file be used,
you should list it before the .ogg file.

While just listing the sources like this will work, the browser must download the file and open it to see
whether it is able to play it. It’s not very efficient to download a fairly large file only to find out it can’t be
used. You should also include the type attribute, which specifies the type of resource this is. The browser
can then determine whether the file is supported by looking at the markup. The type attribute specifies the
MIME format like this:

<source src="Media/Linus and Lucy.ogg" type="audio/ogg" />
<source src="Media/Linus and Lucy.mp3" type="audio/mp3" />

You can also specify the codecs in the type attribute like this:

<source src="Media/Linus and Lucy.ogg" type='audio/ogg; codecs="vorbis"'/>

https://support.apple.com/kb/DL837?locale=en_US

Chapter 7 ■ Embedded HTML Elements

125

This will help the browser choose a compatible media file more efficiently. Notice that the codecs values
are included within double quotes, so you’ll need to use single quotes around the type attribute value.

■■ Tip  Here’s a handy page that tests browser support for the audio and video elements: http://hpr.
dogphilosophy.net/test/. It also provides an overview of the support for various browsers.

Video
For this section, I’ll be using a demo video that is provided with the download source code. This is a trailer
from the Big Buck Bunny movie. This video is provided by Creative Commons and is freely redistributable
(copyright 2008, Blender Foundation / www.bigbuckbunny.org). You can certainly use your own video,
however, if you prefer. It should be in MP4 format to be compatible with all major browsers.

The video element is nearly identical to the audio element. You can provide fallback content inside the
element, which is only displayed when the video element or the file type is not supported. Simply set the src
attribute to the URL of the video file like this:

<video src="Media/BigBuckBunny.mp4" autoplay>
 <p> HTML5 video is not supported on your browser</p>
</video>

The autoplay attribute will start the video when the page loads, but without the native controls, you
won’t be able to pause or restart the clip. However, if you right-click on the video you’ll get a menu of options
to interact with the video, including showing the native controls. The options you will have might vary
from one browser to another. The menu in Chrome is shown in Figure 7-10. Firefox also lets you adjust the
playback speed, as well as pausing, muting, and switching to full-screen mode.

Figure 7-10.  Video menu in Chrome

Adding the controls attribute will provide the controls that are similar to the audio clip as
demonstrated in Figure 7-11. The controls are usually hidden unless the mouse is hovering over the video
element.

http://hpr.dogphilosophy.net/test/
http://hpr.dogphilosophy.net/test/
http://www.bigbuckbunny.org/

Chapter 7 ■ Embedded HTML Elements

126

The video element also allows you to specify multiple sources through the source element just like with
the audio element. You should not need to use that feature, if you provide the video in an MP4 format.

The poster attribute is supported by the video element (but not the audio element). Before the video
is started, you can use the poster attribute to specify the image that is displayed. If this is not specified, the
browser will usually open the video and display the first frame. To add a poster, just include the image in
your project and reference it in the poster attribute. You would not usually set the autoplay attribute when
using a poster as the poster would never be seen.

There’s one thing to be careful about, however. If you define a poster, the initial size of the video
element will be the size of the poster image. If this is not the same as the video, the size will change when the
video starts playing. You should either ensure the image is the same size as the video or explicitly size the
video element, which will stretch (or shrink) the poster image to fit.

Here’s an example of using a poster image. This is rendered in Firefox as shown in Figure 7-12. Notice
that the poster is dimed and the play button is shown in the center of the video.

<video src="Media/BigBuckBunny.mp4" controls
 poster="Media/BBB_Poster.png" width="852" height="480">
 <p> HTML5 video is not supported on your browser</p>
</video>

Figure 7-11.  Displaying a video with native controls

Chapter 7 ■ Embedded HTML Elements

127

Tracks
Both the audio and video elements support the track element, which is used to provide text-based contents
that are time-synchronized with the media clip. For example, you can display the lyrics to a song while the
audio is playing. For videos, you might want to include closed captioning or subtitles.

The track element is an empty element; it uses a self-closing tag and is configured solely through its
attributes. The track element can only be used inside an audio or video element. If you’re using the source
element to provide multiple file types, the track element should come after the source elements.

The kind attribute specifies the purpose of the track details. The allowed values are:

•	 captions - used for closed captioning, the track provides a transcription of the
spoken words as well as pertinent sounds effects such as “laughing” or “phone
ringing,” etc. This is used for hearing impaired users or when the audio is muted.

•	 chapters - for longer clips, this provides chapter titles when a user if navigating
through the media file.

•	 descriptions - a textual description of the content of the audio or video file. Used
for visually impaired users or when the video is not available.

•	 metadata - provides data to be used by scripts; this is not normally displayed to the
user.

•	 subtitles - this is the default value, if the kind attribute is not specified. Subtitles
provide a translation of the spoken text in a different language. This can also provide
additional information such as the date and location of an event being portrayed.

Figure 7-12.  Displaying a video poster in Firefox

Chapter 7 ■ Embedded HTML Elements

128

The src attribute is required and it specifies the URL of the file that contains the track details. This is
usually a WebVTT file but other formats may be supported as well. This file contains a series of cues, each
of which has a start and end time (relative to the start of the file) and the text that should be displayed
during this interval. The time element is specified in hours, minutes, seconds, and milliseconds, for
example, “00:02:15:420,” which is 2 minutes, 15 seconds, and 420 ms into the clip. A sample WebVTT file is
shown in Listing 7-1.

Listing 7-1.  bbb.vtt, a sample track file

WEBVTT - For Big Buck Bunny trailer.

NOTE This is for demonstrational purposes

00:00:09.231 --> 00:00:11.121
- [Bunny looks around]

00:00:15.712 --> 00:00:16.892
- [Rodents snickering]

00:00:25.528 --> 00:00:27.631
- [Squirrel takes aim]

Mozilla has some helpful examples of WebVTT files that can be found at https://developer.mozilla.
org/en-US/docs/Web/API/Web_Video_Text_Tracks_Format. Track files can be created in other formats as
well. The following article provides more details on optional formats: http://www.miracletutorials.com/
how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/.

■■ Caution T rack files must be provided through a web server such as Apache or IIS. You can’t simply access
the WebVTT files from a local file folder like you can with HTML documents. You may need to also define the
MIME type of text/ttt.

The srclang attribute specifies the language of the text content. This attribute is required if the kind
attribute is set to subtitles. The label attribute defines the text that is displayed when the user is selecting
the appropriate track. To add a track to the Big Buck Bunny video, add the track element like this:

<video src="Media/BigBuckBunny.mp4" controls
 poster="Media/BBB_Poster.png" width="852" height="480">
 <track kind="captions" src="bbb.vtt" srclang="en" label="English" />
 <p> HTML5 video is not supported on your browser</p>
</video>

Since the video element includes a track element that contains captions, the native controls will
include an extra button that enables the user to control the captioning. The label attribute is displayed in
the closed captioning menu as demonstrated in Figure 7-13. If you had included multiple track elements,
this allows the user to choose from the available tracks.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Video_Text_Tracks_Format
https://developer.mozilla.org/en-US/docs/Web/API/Web_Video_Text_Tracks_Format
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/

Chapter 7 ■ Embedded HTML Elements

129

■■ Tip  There’s a simple demo on using tracks to implement subtitles that was developed by Google. You can
try it out at http://html5-demos.appspot.com/static/video/track/index.html. This uses a webm video
format, which is not supported by all browsers, particularly IE or Edge. Open this in Chrome to view the demo.

HTML5 Plug-Ins
So far, I have explained how images, audio, and video can be embedded in an HTML document using the
appropriate elements. This type of content is so prevalent that specific elements are provided to access the
built-in capability of the browsers. In this final section, I’ll cover how you can embed just about anything
using the object element.

The object element is a generic container for any external content. The actual type of object is defined
by the type attribute, which is provided as a MIME type. For example, if you’re embedding a flash video,
use application/x-shockwave-flash; if you’re embedding a PDF file, use application/pdf. Of course, the
browser may need an appropriate plug-in to be able to render the content, but using the object element
provides a standard way of working with custom embedded content.

The object element has two required attributes: the type attribute that I’ve already mentioned and
the data attribute that specifies the URL to the embedded content. The data attribute defines the external
resource and the type attribute specifies what application (or plug-in) should be used to render the content.
You can also specify the height and width attributes to allocate the desired space for this content.

For example, to embed a PDF file in the HTML document, add the following, which will be rendered as
demonstrated in Figure 7-14.

<object data="MainPage.pdf" type="application/pdf" width="850" height="200">
 MainPage
</object>

Figure 7-13.  The closed-caption menu in the Edge browser

Figure 7-14.  Embedding a PDF document

http://html5-demos.appspot.com/static/video/track/index.html

Chapter 7 ■ Embedded HTML Elements

130

Notice the alternate content inside the object element. This is a hyperlink to the same PDF file. If the
object element is not supported or the particular type is not supported, the user will see a link to the file
instead of the embedded file. If you’re using a custom plug-in, you might want to put instructions on how to
install the plug-in here. If the plug-in is not installed, they’ll see those instructions instead of the embedded
content.

The object element also allows you to pass parameters to the plug-in using the param element. The
param element has two attributes, name and value. You use the param element to provide a set of name/value
pairs. The param element uses a self-closing tag, can only be used inside an object element, and should
come before any fallback content. For example:

<object data="some file" type="application/some plug in">
 <param name="paramName" value="paramValue" />
 <p>fallback content</p>
</object>

■■ Tip N ot all plug-ins will support parameters using the param element. Case in point, passing options to
the PDF viewer need to be included in the URL. For example, using data="MainPage.pdf#zoom=50 will set the
initial zoom to 50%. You’ll need to check on the plug-in you’re using to see what features it supports.

HTML5 also supports the embedded (embed) element, which is similar to the object element. The
embed element was supported in HTML4 while the object element is relatively new. A number of articles
suggest that the embed element has been deprecated, but as of this writing, it is still included in the HTML5
specification. However, the general consensus is that the object element is preferred over embed.

The embed element is an empty element, meaning that it uses a self-closing tag. This also means that it
does not support fallback content or param elements. Other than that, is works much like the object element
except the URL to the resource is provided in the src attribute. You can embed a PDF document using the
embed element like this:

<embed src="MainPage.pdf" type="application/pdf" width="850" height="150"/>

Summary
In this chapter, I explained how to embed external content into an HTML5 document. The primary types
of embedded content are images, audio, and video and HTML5 supports specific elements for each of
these types. You can provide multiple image files and let the browser choose the most appropriate one to
download and render based on the device characteristics. You can also define clickable areas on an image
that can be used as links.

The major browsers have all standardized on MP3 for audio and MP4 for video, making it pretty easy
to include either in an HTML document. For both audio and video, you can also include time-synchronized
text that will appear as subtitles, captions, or other details.

For other types of embedded content, the object element provides a standardized way of including it.
This may require custom browser plug-ins but the object element is a consistent way for referencing them.
You can also provide fallback content for when the plug-in is not supported.

In the next chapter, I’ll demonstrate the HTML elements that support user input. Whether you’re
creating a full-blown input form, or just a simple search field, these elements provide the ability for a user to
interact with your web page.

131© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_8

CHAPTER 8

HTML Form Elements

In traditional web applications, a form is a web page or a part of one that contains places for a user to enter
information. Once the data has been entered, the form is then submitted to the server, along with the input
data. This is processed by the server, and the new page is returned and rendered by the client.

In this chapter I’ll explain how to create forms in HTML5. I’ll also demonstrate the HTML elements that
are typically associated with forms, such as the label, input, and button elements. Many of these elements
can also be used in an HTML5 document without actually being on a form.

Overview
When you navigate to a web page in a browser, the URL of the page is sent to the appropriate web server as
an HTTP request (or HTTPS if using a secure transport). The web server responds with an HTML document
that is rendered by the browser. This is illustrated in Figure 8-1.

Figure 8-1.  Client/Server Architecture

If the web page contains a form, when the form is submitted, another HTTP request is sent to the server.
The request contains a URL just like the first one, but also includes the data from the input fields. This data
can either be included in the body of the request or in the URL itself as query string parameters. I’ll explain
this later in the chapter. The response is either a new web page or an update to the existing one.

Chapter 8 ■ HTML Form Elements

132

Form Element
Submitting input data through these server requests is a fundamental capability of web sites and HTML. The
form element is used to group one or more input elements for the purpose of sending this information to a
web server. You can also configure where (and how) the data is submitted in the form element.

A form element will contain one or more input elements, which are the fields where the user can enter
data. A form will usually also contain label elements, which are simple text blocks that describe the input
elements. A simple form is defined like this:

<form action="" method="get">
 <label for="iFirstName">First Name:</label>
 <input id="iFirstName" type="text" />
 <label for="iLastName">Last Name:</label>
 <input id="iLastName" type="text" />
 <input type="submit" value="Submit" />
</form>

This form contains two input fields (first and last name) and a label element for each one. The final
input element has type="submit", which will render this as a button, by default. More importantly, when
this button is clicked, the form will be submitted to the server. This form is rendered as shown in Figure 8-2.

Figure 8-2.  A simple form rendering

■■ Tip  As I demonstrated in this sample form, input elements are associated with a form by placing them
inside the form element. However, you can also include an input element in a form by referencing it using the
form attribute. This allows you put an input element anywhere in the document and set its form attribute to the
id attribute of a form element. The input value will be submitted when the form is submitted.

Form Action
If you enter data into these fields and click the submit button, an HTML request similar to this will be sent:

http://localhost:5266/?FirstName=Mark&LastName=Collins

You’ll also probably notice a flicker as the page is refreshed. The web server will respond to this request
with a new HTML document. The action attribute specifies the URL of the request. Since this was left blank,
the address of the current page is used. In my case, this is http://localhost:5266. So the same page is
returned and re-rendered by the browser.

In many cases, the action attribute will specify a different page. Suppose, for example, the initial page
provided a form to enter search criteria. Upon submitting this data, you would them want to return a result
page, based on the user input. The action attribute in this case would be the address of the results page.
When the initial form is submitted, you’re actually requesting the results page to be rendered and providing
the search details as part of the request.

Chapter 8 ■ HTML Form Elements

133

In other scenarios, you’ll want the existing page to be rendered. More accurately, you want it to be
re-rendered based on the information that was just entered. This is referred to as a postback. This is where
a web page submits a request to have itself refreshed from the server, usually passing data to the server. For
example, if you present a series of questions on a page, but the answer of one question may make some
other questions non-applicable. Once the question is answered, a simple postback can re-render the page
with only the applicable questions.

■■ Note  In current web designs postbacks are generally frowned upon as a round trip to the server and
re-rendering an entire page can be slow. If this example, it would be better to handle this in JavaScript on the
client.

Form Method
So by now you’re probably figured out, correctly, that the form element is all about defining the HTTP
request when the form is submitted. I’ve already explained the action attribute, which specifies the URL
that the request is sent to. The method attribute indicates which HTTP verb should be used. Only two are
supported currently: GET and POST.

The GET verb does not support a message body so all of the form data must be passed in the URL as I’ve
already demonstrated. If you set the method attribute to post, the form data will be in the body of the request.
To demonstrate that, I have intercepted the request using Fiddler and the raw request is shown below:

POST http://localhost:5266/ HTTP/1.1
Host: localhost:5266
Connection: keep-alive
Content-Length: 31
Cache-Control: max-age=0
Origin: http://localhost:5266
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/51.0.2704.103 Safari/537.36
Content-Type: application/x-www-form-urlencoded
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Referer: http://localhost:5266/
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8

FirstName=Mark&LastName=Collins

The first line indicates the URL being requested and the subsequent lines list all of the headers included
with the HTTP request. Some of these headers can be adjusted using additional attributes, which I will
explain later. The last line is the body of the message and includes the form data.

Chapter 8 ■ HTML Form Elements

134

■■ Tip  Representational State Transfer (REST) is an architectural style for communicating with web sites and
web services. In a RESTful application, the HTTP verb is an important part of the request. You can use the exact
same URL with different verbs and get very different results. In my opinion, it’s very unfortunate that the other
verbs such as PUT and DELETE are not supported by HTML5. There has been some movement to add these but
it seems to lack any traction. If you’re interested, check out this article: http://programmers.stackexchange.
com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms

Additional Attributes
The enctype attribute is available to control how the data should be formatted; however, there are not a lot
of options here. The default value is application/x-www-form-urlencoded, which is a long way of saying
that the input data is URL encoded. Essentially, spaces and special characters are encoded to satisfy URL
formatting rules. If the method attribute is get, this is the only option you can use. In fact, the enctype
attribute is only allowed when the method attribute is set to post.

If you’re using the post method, URL encoding is still available and is the default option. Notice the
message body in the previous example is formatted exactly as it was when passed in the URL. There are
two other options available as well. When using text/plain, spaces are converted to “+” but other special
characters are not encoded. The other option is multipart/form-data. Again, the name is not very intuitive,
but this value must be used when uploading one or more files in the request.

You can use the accept-charset to specify the character sets that the server will support. If not
specified, the character set of the document will be used (see Chapter 1 for details). Since this is user-entered
data, you may need to support additional character set(s) depending on the expected audience. You can
include multiple sets by separating them with spaces. For example, accept-charset="UTF-8 ISO-8859-1"
includes the two most common character sets. The browser will choose one based on what sets it supports.

Client-side validation of the input fields is performed by the browser when the form is submitted. I will
explain this validation later. However, you can disable validation by including the novalidate attribute in
the form element. This is a Boolean attribute.

Input Elements
The most interesting part of a form are the input elements, which the user interacts with to enter
information into the form. HTML5 defines an impressive set of input types to choose from. They all use the
same input element but are distinguished by the type attribute that is assigned. The available types are
listed in the reference data in Appendix C.

Textual Form Data
Much of the form data that is entered will be textual; however there are several elements and element types
that deal with special types of text. These have some common functionality so I will describe them as a
group.

http://programmers.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://programmers.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://dx.doi.org/10.1007/978-1-4842-2463-2_1

Chapter 8 ■ HTML Form Elements

135

Text Values
There are several input types that are basically text boxes that provide data validation based on the specified
type attribute. These types are:

•	 text - this is the default if the type attribute is not specified. If line breaks are
entered into the text field, they will be removed before the form is submitted. Use the
textarea element if you want multiple lines. The single line constraint also applies
the remaining text value types.

•	 email - this works like a normal text field except there is built-in validation to verify
the format of the text conforms to a standard email address. Keep in mind that this
only validates the format; this does not ensure that this is an actual, valid email
address, or even verify that the domain exists. You can also include the multiple
attribute to allow more than one email address to be entered.

•	 password - this simply displays the entered characters as asterisks or some other
method of obscuring the input. This is only a UI feature; the data still exists in the
form as clear text and will be sent that way when the form is submitted.

•	 search - this type doesn’t function differently from a normal text type but there may
be styling differences applied to search fields. You can add the autosave attribute so
the data entered can be used in an auto complete list in other pages.

•	 tel - use this for entering phone numbers; however, it is used for semantic
purposes only. It provides no built-in validation due to the wide variety of formats
used internationally. You can provide your own validation rule using the pattern
attribute.

•	 url - like the email type, this validates that the enter text is a well-formed URL. It
does not verify that the resource actually exists. A well-formed URL includes the
protocol so apress.com or even www.apress.com are not valid URLs, however,
http://www.apress.com is valid.

Textarea
The textarea element is a separate HTML element, not a type of input element. However, it functions much
like an input element with type text, except it allows CR/LF characters. It supports a few specific attributes,
including:

•	 cols - specifies the number of characters that should be displayed on a single line,
similar to the size attribute described later.

•	 rows - specifies the number of rows that should be visible. The actual data can have
more rows than that but the user will need to scroll to see them.

•	 wrap - specifies how the text should be wrapped; the allows values are hard and soft.
The default value is soft, which means that the text is only wrapped when the data
contains a CR/LF character. The user may need to scroll horizontally to see all of the
data. The value of hard indicates that the text is always wrapped to fit in the width of
the element.

http://www.apress.com/
http://www.apress.com/

Chapter 8 ■ HTML Form Elements

136

Each of the text-based input elements and the textarea element support several common attributes.
These attributes are:

•	 inputmode - for email, password, text, or url – this can be provided as a hint as
to which keyboard to display. This is important for touch-enabled devices where
a keyboard is displayed for user input. The supported values are verbatim, latin,
latin-name, latin-prose, full-width-latin, kana, katakana. The other supported
types (email, numeric, tel, or url) should be set using the appropriate type attribute
rather than using inputmode, however, they are supported here as well.

•	 maxlength - specifies the maximum number of characters that can be entered into
the field.

•	 minlength - specifies the minimum number of characters required for this field.

•	 pattern - this specifies a regular expression that is used to validate the input data.
Some of the text value types have built-in validation logic. Using the pattern
attribute will provide additional validation. This attribute is not supported on the
textarea element.

•	 placeholder - text that is placed inside the element where the actual input is keyed,
which explains what data is expected in the field. It’s a hint about the format of the
data, often being a sample of the expected input. For example, if the field is expecting
a phone number, the placeholder may contain a phone number formatted the way
the form is expecting it. The placeholder text is only shown when the field is empty
and is hidden when the field is selected or as soon as the first character is typed.

•	 size - specifies the physical size of the input element entered as a number of
characters. The default value, if size not specified, is 20. This means that the element
should be large enough to display at least 20 characters. This is guideline, not an
absolute requirement, however, as characters can have different widths. If you were
to enter twenty W’s, they may not all fit. For example, I tested this in Chrome and
I could enter 64 lowercase i’s but only 13 uppercase W’s in a default sized input
element. Note, this is different from the maxlength attribute, which limits the
number of characters in the data. You could set the size attribute to 10 and roughly
10 characters would be visible. The maxlength attribute can be set to a much higher
value, but not all of the characters would be visible. For textarea elements this
attribute is not supported; use the cols and rows attributes instead.

•	 spellcheck - a Boolean attribute that indicates if the input data should have the
spelling and grammar checked.

Autofill
Autofill is a really handy feature where the browser can fill the input field based on previous entries that
were made. As you type, the list is filtered to only show the entries matching the characters entered so
far. Generally, after only typing a character or two, the choice can be made without further typing. The
autocomplete attribute determines if this feature is used and controls the available selections.

The autofill feature can be turned on or off at either the form or field level. If the autocomplete attribute
is set to off on the form element, it will be off for all fields unless explicitly turned on in one or more input
elements. Similarly, it can be set to on in the form element, and it will be on for all fields unless set to off in
the input element.

Chapter 8 ■ HTML Form Elements

137

However, simply turning on autofill is not enough information. If I’m entering an email address, for
example, I don’t want to see names, addresses, or phone numbers showing up in the autofill list. Instead of
setting the autocomplete attribute to the value on, you should set it to a specific autofill detail token, email
in this case. Then the autofill list will only include values that were entered in other fields that had the same
autofill detail token.

There is a fairly long list of autofill detail tokens that have been defined including the individual parts
of a phone number, address, or payment information, along with many other types of information. Rather
than repeating all of the information here, it’s best to just consult the specification, which can be found at
https://html.spec.whatwg.org/multipage/forms.html#autofill. This will also give you the most up-to-
date information.

You can also supply a custom autofill list using the datalist element. A datalist element contains
a set of option elements. You can then assign the datalist to an input element using the list attribute.
Whatever values you have included in the datalist will now be included in your autofill suggestions. Here’s
a simple example:

<datalist id="sports">
 <option value="Baseball" />
 <option value="Basketball" />
 <option value="Hockey" />
 <option value="Football" />
</datalist>
<label for="iSport">Favorite Sport:</label>
<input type="text" id="iSport" name="Sport" list="sports" />

The datalist element contains four values that are the names of four popular sports. A datalist is
referenced by its id attribute and I’ve specified sports as its id. Then in the input element I’ve added the
list attribute: list="sports".

A text box with a prefilled datalist is not the same thing as a drop-down list that you create with
the select element, which I’ll explain later. The user is not limited to only those choices; they can type
in anything they want. This just makes it a little easier if one of the more common values are needed. The
suggestions are automatically filtered as you type. After entering the letter “b,” for example, only Baseball and
Basketball will be left to choose from. Also, if autocomplete is enabled, additional entries will be added to
the suggested list based on a previous entry. For example, I had entered tennis earlier and now the text box
looks like Figure 8-3.

Figure 8-3.  Using a prefilled datalist

https://html.spec.whatwg.org/multipage/forms.html#autofill

Chapter 8 ■ HTML Form Elements

138

Attributes
Before I continue describing the remaining input types I want to cover the other attributes supported by
the input element that are mostly available for all types. (There are a couple that have a few restrictions).
This will give you a complete view of the textual elements.

•	 name - When a form is submitted, the input fields are sent to the server as a set of
name/value pairs, either in the body of the message or in the URL as I demonstrated
earlier. The name portion comes from the name attribute and the value comes from
the value attribute, which I’ll explain next. If the name attribute is not supplied, the
data will not be sent to the server.

•	 value - As I said, the value attribute provides the data that is passed to the server.
When you enter data into an input element, such as a text box, this is stored in the
value attribute of that element. This value attribute is displayed in the input field
and submitted when the form is submitted. You can also set the value attribute in
the HTML, which will prefill the field with the specified value. The value attribute is
required for checkbox and radio types but is optional on all other types. For button
types, the value attribute provides the display text on the button.

•	 disabled - This is a Boolean attribute that will, when true, disable any user
interaction with the input element. Also, disabled fields are not submitted with the
form data.

•	 readonly - a Boolean attribute that prevents the user from changing the value of an
input element. This is subtly different from the disabled attribute, where the user
can interact with the element but can’t change the value. Elements marked readonly
are also submitted when the form is submitted. However, the readonly attribute
is ignored by several input types, including checkbox, color, file, hidden, radio,
range, or one of the button types (button, image, reset, submit).

•	 required - a Boolean attribute that indicates the user must enter (or select) a value
for this element. Page validation will enforce this setting when the form is submitted.
You can apply styling for required or optional elements using the pseudo classes,
:optional and :required. I’ll cover these in Chapter 9. The required attribute is not
allowed on a hidden type or one of the button types.

•	 autofocus - a Boolean attribute that indicates the input element should have the
focus when the page is loaded. Only one element can have this attribute set and this
attribute is not allowed on the hidden type, which I’ll explain later.

There are a few more attributes that are specific to certain input types. I’ll explain these while I’m
demonstrating those types.

Review
For a quick review of the textual input types, here is snippet of HTML that demonstrates many of them:

<input type="email" name="Email" size="100"
 placeholder="enter 1 or more email addresses" multiple required />
<input type="password" name="Password" maxlength="12" minlength="6" size="12" />
<input type="search" name="Search" placeholder="search criteria..." autofocus />
<input type="tel" name="Phone" placeholder="(800) 555-1212"
 pattern="^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}$" />

http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 8 ■ HTML Form Elements

139

<input type="url" name="Website" placeholder="http://www.apress.com" size="50" />
<input type="text" value="Read-only text" readonly name="ReadOnly" />
<input type="text" value="Disabled text" disabled />
<label for="iComments">Comments:</label>
<textarea id="iComments" rows="3" cols="50" wrap="hard" maxlength="250" name="Comments">
</textarea>

On the email field, this sets the size to 100 to make it large enough to hold an email address or two.
This also has the multiple attribute to allow for more than one to be entered. The password field uses
the minlength and maxlength attribute to provide client-side length validations. The phone number field
includes a regex pattern that supports U.S. phone numbers. A placeholder attribute also provides a hint for
how the number should be formatted.

This includes both a disabled and a read-only textbox so you can see the difference in how they work.
For both of these the value is set using the value attribute since it cannot be entered on the form. You
can highlight the text on the read-only field and copy it, put you can’t on the disabled field. Finally, the
comments field uses a textarea element that shows three rows of text. This has a maximum length of 250
characters.

If you add these input elements to the initial form shown at the beginning of this chapter, it would look
something like Figure 8-4.

Figure 8-4.  Adding sample text fields

Figure 8-5.  Displaying a validation error

The cursor should be in the search box since this element had the autofocus attribute. When you
submit the form, if any of the validations fail, the form will display an error as demonstrated in Figure 8-5.

Selection Elements
There are several constructs that allow you to present a fixed set of choices on a form. Checkboxes and radio
buttons can be created using the type attribute of the input element. Drop-down lists are created using the
select and option elements.

Chapter 8 ■ HTML Form Elements

140

Checkbox
Checkboxes are used when representing a Boolean value such as “Available?” or “Can call?” A true value is
checked and a false value is unchecked. A checkbox is created by using an input element with the type set
to checkbox.

You can also use checkboxes when you want to allow multiple selections from a set of choices. For
example, if you’re ordering a pizza and selecting toppings, you might want to list all of the available items
such as Mushrooms, Sausage, Olives, etc. with a checkbox next to each. Technically, each of these is a
separate field with a Boolean value: Do you want mushrooms? Do you want sausage?

To indicate that a checkbox has been checked, use the Boolean checked attribute. If this attribute exists,
the box is checked; otherwise it in not. When the form is submitted, only checked elements are included
with the form data and the value attribute determines what is actually submitted. If you want the data to be
CanCall=true, then set the name attribute to CanCall and the value attribute to true. In the pizza example,
you can set the name attribute on all of the checkboxes to Topping and set the value attribute to Mushrooms,
Sausage, or Olives. When the form is submitted, you’ll have a Topping field submitted for each one that was
checked, with its corresponding value.

■■ Tip  Checkboxes are either checked or unchecked; there is no indeterminate value. HTML5 does not support
a tri-state checkbox (checked, unchecked, not specified), although there are some JavaScript solutions that will
provide this capability. For example, see http://jquer.in/jquery-plugins-for-html5-forms/tristate/

The input element does not display any text. The name and value attributes are only used when
submitting data. You can use a label element for each input element or simply embed content around the
checkboxes. For example, the selected toppings can be presented like this:

<p>Toppings:
 <input type="checkbox" name="Topping" value="Mushrooms" />Mushrooms?
 <input type="checkbox" name="Topping" value="Sausage" />Sausage?
 <input type="checkbox" name="Topping" value="Olives" />Olives?
</p>

The required property, when used on an input element with type="checkbox," indicates that the
box must be checked before the form can be submitted. You would want to do this where the user needs to
acknowledge something, such as terms and conditions, before proceeding.

Radio
You create a radio button by using an input element and setting the type attribute to radio. A radio button
works very much like a checkbox: the checked attribute indicates if it was selected; only checked values are
submitted; and the value attribute specifies the text that should be submitted.

The main difference is that radio buttons are usually provided as a group of buttons and only one radio
button in a group can be selected. When a radio button is checked, the checked attribute in all of the other
elements in the group is removed. A radio button group is determined by the name attribute. All elements
with the same name attribute value are considered in the same group.

http://jquer.in/jquery-plugins-for-html5-forms/tristate/

Chapter 8 ■ HTML Form Elements

141

Back to our pizza example. Suppose you offered three types of crust: thin, thick, and deep dish. You
can add three radio buttons all with the name attribute set to Crust. Each one would have a different value,
Thin, Thick, or DeepDish. When the form is submitted, if the Thick option was selected, for example, the
field would be posted as Crust="Thick." You can define additional text around the radio button just like for
checkboxes:

<p>Crust:
 <input type="radio" name="Crust" value="Thin" />Thin
 <input type="radio" name="Crust" value="Thick" />Thick
 <input type="radio" name="Crust" value="DeepDish" />Deep Dish
</p>

You can default a selection by adding a checked attribute on one of them. If you want to require a
selection, add the required attribute to one of the radio buttons; it doesn’t matter which one has the
attribute. Adding the required attribute to more than one has no effect. If the required attribute is present,
the browser will not submit the form until one of the radio buttons is checked as demonstrated in Figure 8-6.

Figure 8-6.  Validating the required radio button

Drop-Down Lists
With the last two input types, all of the options are always shown. With checkboxes, multiple selections can
be made; with radio buttons only one per group can be selected. With a drop-down list however, only the
selected option is shown until the user clicks the drop-down and then the available choices are displayed.

Use the select element to create a drop-down list. Within the select element, include an option
element for each of the available choices. Set the name attribute on the select element to specify the field
name that will be posted when the form is submitted. Use the value attribute on the option element to
indicate the field value that will be submitted when that option is selected.

The option elements can be organized into groups by nesting them inside an optgroup element.
This is used for purely visual purposes and has no effect on the data that is submitted or the selecting and
unselecting of options. The optgroup element is helpful when there is a relatively long list of options. The
optgroup element has a label attribute that is required. This is where you specify the group text that is
displayed before the options. Options in an optgroup element are also indented.

By default, the first option will be selected and submitted when the form is submitted. You can choose
a different option to be the default choice by adding the selected attribute to the desired option element.
Only one option should have the selected attribute; if more than one has the selected attribute, all but the
last one are ignored.

Chapter 8 ■ HTML Form Elements

142

You unselect an option by selecting a different one. There’s no way to unselect an option so that none
are selected. To work around this, you can include an unselected option that has a value attribute set to an
empty string. You would typically give this a display string such as Please select. If this option was chosen,
an empty string is posted to the server. You can add the required attribute on the select element to require
some other option (that has a non-empty value attribute) is chosen.

A drop-down list with groups can be created like this. This will be rendered as shown in Figure 8-7.

<p>Addons:
 <select name="Addons" required>
 <option value="">Please select...</option>
 <option value="None">Pizza only</option>
 <optgroup label="Addons">
 <option value="Wings">Side of Buffalo Wings</option>
 <option value="GarlicBread">Add Garlic Bread</option>
 </optgroup>
 </select>
</p>

Figure 8-7.  A select option with grouping

In this example, the initial option has an empty value attribute and the select element has the
required attribute. The user will need to make a choice in this drop-down before submitting the form.

Multi-Select Lists
The select element allows you to choose more than one option if you add the multiple attribute. With the
multiple attribute, the UI changes significantly. This is no longer a drop-down list with only the selected
option displayed. Instead, this is more like a simple list where all of the options are shown. You can control
how may options are visible by setting the size attribute. If there are more options than that, the user can
scroll through the list to see them.

To select multiple options, you need to hold down the Ctrl key while clicking the desired options. You
can also select one option, hold down the Shift key, and select another. This will select all of the options
between the two. Clicking an option without either the Ctrl or Shift keys will unselect all options first.

To demonstrate this, let’s reimplement the Toppings field using a multi-select list box like this. After
selecting a couple of options, this will be rendered as demonstrated in Figure 8-8.

<select name="Toppings" multiple size="4">
 <option label="Mushrooms?" value="Mushrooms" />
 <option label="Sausage?" value="Sausage" />
 <option label="Olives?" value="Olives" />
</select>

Chapter 8 ■ HTML Form Elements

143

■■ Note  The size attribute is also supported for a drop-down list (where the multiple attribute is not
included). This will show the specified number of options all the time. However, from a UI perspective this rarely
makes sense to do so.

When the form is submitted, the data that is posted will be identical to the initial implementation using
checkboxes. The name attribute defines the field name that is used, and the value attribute specifies the
string that is posted. A separate field is submitted for each option that is selected.

Miscellaneous Types
There are several miscellaneous input types that are used for special purposes. Each has specific attributes
to control the unique aspects of these elements.

Number
The number input type is fairly straightforward. It acts much like a textbox except that it only allows numeric
input. It will allow decimal values to be entered but does not enforce any particular formatting or type of
number, such as whole numbers only. If you need that, you can use the pattern attribute as described
earlier.

Use can use the min and max attributes to specify the allowed range for this field. The browser will
ensure the number entered is within this range. Most browsers also provide up and down arrows that can be
used to increment or decrement the current value. This only works with whole numbers and won’t help if
decimal values are expected.

Here is a typical implementation of a numeric input field:

<p>Number of utensils:
 <input type="number" min="1" max="4" value="1" name="Utensils" />
</p>

Color
The color input type will display a sample of the selected color. When this is clicked, the browser will display
a color picker like the one shown in Figure 8-9.

Figure 8-8.  Using a multi-select list box

Chapter 8 ■ HTML Form Elements

144

The selected color will be provided in RGB notation when the form is submitted. For example, the color
green is specified as #00ff00. However, if this is URL encoded, the hashtag is replaced with %23.

■■ Caution A s of this writing, only Chrome, Firefox, and Opera support the color input type.

File
Selecting one or more files is easy with the file input type. Add the multiple attribute if you want to allow
more than one file to be selected. You can also provide a hint to the type of file that is needed by using the
accepts attribute. This takes a comma-separated list of MIME type such as text/css. You can use a wildcard
such as one of the following popular values:

•	 text/* - text files

•	 image/* - images files

•	 audio/* - audio files

•	 video/* - video files

Figure 8-9.  A sample color picker

Chapter 8 ■ HTML Form Elements

145

You can also list one or more file extensions, for example, accepts=".jpg, .gif". Here is a simple
example with two input fields. The first can select a single audio file: the second one or more images with
.jpg or .png extensions:

<p>Select file(s) to upload:
 <input type="file" name="music" accept="audio/*" />
 <input type="file" name="pictures" multiple accept=".jpg, .png" />
</p>

■■ Caution T he accepts attribute is useful for guiding the user to select an appropriate file type. However,
they can easily override this and select a different type of file. The server-side code should always validate that
the file is the correct type.

Figures 8-10 and 8-11 demonstrate the input buttons and the file dialog used in Chrome and Firefox,
respectively.

Figure 8-10.  A file input and dialog in Chrome

Chapter 8 ■ HTML Form Elements

146

As you can see, the format and specific functionality may very but the basic capability is consistent.

Range
The range input type is also known as the “imprecise number-input control” in the W3C specification. It
is generally used when the specific value is not as important as its relative value along some sort of scale.
Ultimately however, this input type will have a numeric value. The UI is presented as a slider, which the user
can drag, and a value will be determined based on its position.

A range input type has a min and max attribute that defines the value at the ends of the slider. When at
the left end of the scale (or bottom), it will have the value specified by the min attribute. The max attribute
must be greater than the min attribute, but either or both could be negative.

You can also specify the step attribute, which defines the stops along the slider. For example, setting the
step attribute to 10 will only allow you to stop at intervals of 10. The default value is 1, which will ensure the
user can only select whole numbers. If you set the value to any, there will be no preset stops and the user can
stop anywhere.

■■ Caution  Be careful when setting step="any" because the value will be a floating-point number such
as 44.9814126394052 (I just happened to get this value when testing). As this is known as the “imprecise
number-input control,” that is probably more detail than you want. If you need finer granularity than 1, use can
use decimal values, such as .1 for the step attribute.

Figure 8-11.  A file input and dialog in Firefox

Chapter 8 ■ HTML Form Elements

147

You can display tick marks above the slider to indicate where the stops are. To do that, however, you
have to define them using a datalist element. Add an option element with a value attribute for each place
where a tick mark should be. Then reference the datalist in the input element using the list attribute. For
example:

<datalist id="SurveyStops">
 <option value="0" />
 <option value="10" />
 <option value="20" />
 <option value="30" />
 <option value="40" />
 <option value="50" />
</datalist>
<p>How satisfied were you with the ordering process?
 <input type="range" name="Survey" min="0" max="50" step="10" list="SurveyStops" />
</p>

The UI varies greatly between browser implementation. For example, the rendering of this markup for
Chrome, Firefox, IE, and Opera is shown in Figures 8-12, 8-13, 8-14, and 8-15, respectively.

Figure 8-12.  The range input type in Chrome

Figure 8-13.  The range input type in Firefox

Figure 8-14.  The range input type in IE

Figure 8-15.  The range input type in Opera

Because the stops and the tick marks are defined independently, they don’t have to be the same. You
could have stops at intervals of 5 but tick marks at intervals of 10. Of course they can be completely out-of-
sync, such as tick marks every 7 and step set to 10. However, this would be confusing to the user and should
be avoided.

As of this writing, Firefox does not support the tick marks as you can see from Figure 8-13. Also, in IE 11,
if you don’t specify the tick marks through a datalist element, it will automatically display them using the
step attribute. In both IE and Edge, the selected numeric value is displayed above the slider while the user
has clicked on the input field.

Chapter 8 ■ HTML Form Elements

148

Hidden Input
The input element also supports the hidden type. This, as you might expect, has no UI; the user cannot see
or modify its value. However, it is submitted along with the other elements when the form is submitted. This
allows you to include some hard-coded content in the data that is submitted. Suppose, for example, that you
had several forms that submit to the same server address. You could include which page was used in the
hidden input field. To do this, simply set the value attribute in the markup.

Another more probable application of this is to capture data collected in JavaScript. For example, you
could use JavaScript to get the user’s location and include that in the form data. In this case, the value
attribute is set through JavaScript.

Date and Time Data
The HTML5 specification defines a number of input types related to date/time values. There are five that
are supported by most major browsers, Firefox being the most significant exception. These are also not
supported by IE but they do work in the Edge browser. If not supported, these input elements will be
displayed as a simple text box. You should include the placeholder attribute to indicate the format that is
expected. The placeholder is ignored in browsers that support the input type.

The five types are:

•	 date - a date without any time portion

•	 datetime-local - a date and a time; the time being the local time (of the browser) -
there is no support for universal time or time zones

•	 time - a local time; again no time zone support

•	 month - a single specific year and month

•	 week - a single specific week, expressed as year and week number (1-53)

■■ Note  Yes, there are only 52 weeks in a year, normally. However, 52 * 7 is only 364 days, so every year there
is an extra day, and every four years, roughly, there will be two extra days. So every five or six years, we get a
53rd week.

Each of these types allow a min and max attribute to define the boundaries of the allowed input values.
However, the browser support for these attributes is mixed. They are not supported by any browsers for the
month and week types. For the other three types they are honored, for the most part, but not consistently.
However, you should always provide additional client or server-side validation and not rely on the browser.
You should define these attributes as appropriate because where they are supported, the browser provides a
better user experience.

The step attribute is also defined for these types. However, this is only supported, currently, for the time
and datetime-local types. The UI generally provides up/down arrows to allow the user to scroll through
allowed values. The specification is not clear how the step attribute is to be used. The browsers that support
this use it primarily for the seconds. For example, if you set step="15", clicking the up arrow will increment
the selected time by 15 seconds.

As with other input types, you can set the initial value by adding the value attribute. If not specified,
the field will generally use the current date (or time). This may be affected by the min and max attributes. For
example, if the min attribute is in the future, this will usually be the initial value. The initial value only affects
the date picker and the scrolling feature. The actual value of the field will be null until a value is entered by
the user (unless provided in the markup).

Chapter 8 ■ HTML Form Elements

149

The following markup will create one of each of the supported types:

<p>
 Date:
 <input type="date" name="Date" min="2016-08-06" max="2016-08-11"
 placeholder="mm/dd/yy" />
 Date/Time:
 <input type="datetime-local" name="DateTime" step="30"
 placeholder="mm/dd/yy hh:mm:ss AM" />
 Time:
 <input type="time" name="Time" min="10:00:00" max="17:00:00" step="15"
 placeholder="hh:mm:ss AM" />
 Month:
 <input type="month" name="Month" min="2016-01-01" max="2017-12-31"
 placeholder="yyyy-mm" />
 Week:
 <input type="week" name="Week" min="2016-01-01" max="2017-12-31"
 placeholder="yyyy-W##" />
</p>

The UI presented by each of the browsers varies widely. The date picker in Chrome and Opera is
probably the most natural. It shows a monthly calendar that you can scroll through. Since I used the min
and max attributes to set a date range of August 6-11, all the other dates are grayed out as demonstrated in
Figure 8-16. The month scrolling is also disabled since they are outside of the allowed range.

Figure 8-16.  The date picker in Chrome

Most browsers support a scrolling feature to select the individual date/time elements. In the datetime-
local type, for example, there are seven parts: month, day, year, hour, minute, second, AM/PM as shown in
Figure 8-17. You can click each of these and then use the up/down arrows to select a value for that part. I set
the step attribute to 30 so there are only two values when scrolling through the seconds, 0 and 30. If the min
and max attributes are set, the scrolling feature will generally honor this. For example, scrolling up when at
the maximum date will change the value to the minimum.

Chapter 8 ■ HTML Form Elements

150

Figure 8-17.  The datetime-local input type in Chrome

As of this writing, only the Edge browser supports a time picker. To see the time picker, click anywhere
on the time field or on the time portion of the datetime-local field. The UI is a bit different for a desktop
browser but similar to what you would expect on a mobile device. The hour, minute, second, and AM/PM
values are displayed in columns. You hover in one of the columns and scroll that column using the mouse
wheel as shown in Figure 8-18.

Figure 8-18.  The time picker in Edge

As you can see from Figure 8-18, the available hours are restricted to only 10 and 11 because of the min
attribute was set to 10:00 a.m. To select a value past noon, change the AM/PM column to PM and you’ll
see hours 12-5 since the max attribute was set to 5:00 p.m. If you select the 5 hour, the only available minute
value is 00.

The date picker in Edge works the same way. You can scroll through the month, day, and year columns
individually to select the desired date. This also honors the min and max attributes as demonstrated in
Figure 8-19.

Chapter 8 ■ HTML Form Elements

151

The biggest disadvantage of the Edge date picker is that is doesn’t show the day of week. If you want to
select next Monday, for example, you would have to know the specific date. With Chrome’s date picker, you
can easily see that since it shows the monthly calendar.

Safari does not provide any date or time pickers. Also, you can’t select an individual portion and scroll
to select its values. There is a scroll feature but it is for the entire field. For a date type, this will scroll one day
at a time. For the datetime-local or time types, it will scroll one second at a time, unless you set the step
attribute.

When using the week input type, you’re selecting a year and the week number (1-53). The UI in Chrome
and Opera shows a monthly calendar where you can select a specific week. The actual week number is also
displayed as well as shown in Figure 8-20.

Figure 8-19.  The date picker in Edge

Chapter 8 ■ HTML Form Elements

152

Figure 8-21.  The week picker in Edge

Figure 8-20.  The week picker in Chrome

In Edge, only the year and week number are displayed (see Figure 8-21)

Chapter 8 ■ HTML Form Elements

153

Other Visual Elements
There are several elements that provide visual information to the form rather than accepting input from the
user. You have undoubtedly seen the label element as it is used on almost every form. The others, output,
meter, and progress have more specialized usages but can be quite helpful.

Labels
I introduced the label element at the beginning of this chapter without saying much about it. You need to
add captions to the fields in a form so the user will know what needs to be entered into each. However, as
I’ve demonstrated through much of this chapter, you can include content within a form, without using the
label element. Since HTML5 is all about semantics, content that is a caption (or label) should be called a
label by placing it in a label element.

The label element should be associated with the input element that it describes and there are two
ways to do that. My personal preference is to simply embed the input element inside the label element. The
other option is to use the for attribute of the label element. The for attribute specifies the id of the input
type. Of course, this requires you to assign a unique id to the input element. Both of these techniques are
shown here:

<p>Deliver to:

 <label>
 Address:
 <input type="text" size="30" name="Address" />
 </label>
 <label>
 ZipCode:
 <input type="text" maxlength="5" size="5" name="Zip" />
 </label>
 <label for="telephone">Phone #:</label>
 <input type="tel" id="telephone" name="Phone" />
</p>

There is one advantage for using linked label elements (beyond better semantics). If you click a label
element, the associated input element will be given the focus and the user can start entering data into it.
In the previous example, if you click the Deliver to: text, nothing happens. But if you click the Address:,
ZipCode:, or Phone #: text, the associated input element is selected.

Output Element
If forms have inputs then it seems reasonable that they can also have outputs, right? Well, prior to HTML5
that answer was no, but now we have the output element. This is used for calculated data that is generally
based on the user’s input but is not entered directly. For example, after choosing all of the pizza options, you
would want to display the total amount due. This is precisely what the output element is for.

When the page is first loaded, you will probably not know the value of the output element. You can
either use a default value like 0, or add the hidden attribute so it will not be displayed. Once the necessary
inputs have been entered, you can perform the calculation on the client side and update the output
element. In our pizza order example, however, you will probably need to submit the form to the server and
the postback response will have set the contents of the output element.

Chapter 8 ■ HTML Form Elements

154

You should add a label for the calculated value and you can nest this inside a label element like this:

<p>
 <label>Total due:
 <output id="total" name="Total">$0.00</output>
 </label>
</p>

The output element supports a for attribute where you can specify the input elements that were
used to calculate this value. The id of each input element should be included in the for attribute,
separated by a space.

Meter Element
The meter element is similar to the range element that I described earlier in that is displays a value, not as
a specific number, but by its location along a scale. The value of a meter element cannot be changed by the
user, however.

The meter element is analogous to the temperature gauge in a car. I don’t really care if the
temperature is 205° or 210°, I just want to know that it’s OK. I was driving to work one day, and after
driving for a while happened to notice that the temperature gauge was in the cool area. I thought that was
interesting but was not too alarmed. Sometime later I saw that it was showing the engine was running
hotter than normal; I thought that was even more interesting. Before long, it was off the scale and I knew I
was in trouble. As you might have guessed, I had a stuck thermostat. At first it was stuck open and then it
was stuck closed. The gauge told me everything I needed by presenting the value as simply cool, normal,
hot, or pull over now!

The meter element works the same way. You specify the min and max attributes, which define the scale,
and the value attribute is then displayed somewhere along that continuum. Like the temperature gauge, you
can define ranges within that scale to indicate where the optimal values are. The meter element supports the
low, high, and optimum attributes that define these ranges.

This can be a bit tricky to sort out, however, because the optimal range could be at the low or high end
of the scale, or somewhere in the middle. How you set these attributes changes depending on each scenario.
Figure 8-22 demonstrates each scenario and indicates how the attributes should be set for each.

Chapter 8 ■ HTML Form Elements

155

To test this out, the following markup will create three meter elements for each scenario, setting the
value attribute on each to test all three ranges. The resulting content as rendered in Chrome is shown in
Figure 8-23.

<p>Meter examples:

 <meter min="0" max="100" low="33" high="65" optimum="66" value="25"></meter>
 <meter min="0" max="100" low="33" high="65" optimum="66" value="50"></meter>
 <meter min="0" max="100" low="33" high="65" optimum="66" value="75"></meter>
 Optimal: high

 <meter min="0" max="100" low="34" high="66" optimum="33" value="25"></meter>
 <meter min="0" max="100" low="34" high="66" optimum="33" value="50"></meter>
 <meter min="0" max="100" low="34" high="66" optimum="33" value="75"></meter>
 Optimal: low

 <meter min="0" max="100" low="32" high="66" optimum="33" value="25"></meter>
 <meter min="0" max="100" low="32" high="66" optimum="33" value="50"></meter>
 <meter min="0" max="100" low="32" high="66" optimum="33" value="75"></meter>
 Optimal: medium

</p>

Figure 8-22.  Defining the optimal range

Figure 8-23.  The meter element in Chrome

Chapter 8 ■ HTML Form Elements

156

You can provide fallback content inside the meter element, which will be displayed if the browser
doesn’t support the meter element.

Progress Element
The progress element is similar to the meter element except you don’t have the low, high, and optimum
attributes. It also has a very specific semantic purpose - to display progress. You might want to show progress
on a single form, for example. Suppose there were seven input fields. You could add a progress element
with a min attribute set to 0 and a max attribute set to 7. As each input field is entered, the client-side code
could increment the value of the progress element by one. This gives the user a visual sense of how much
work is left.

Another example that is perhaps more useful, is when there are multiple forms that must be submitted.
If you’re applying for a job, for example, there could be different forms to enter such as education,
experience, contact details, etc. Providing a progress element on each form provides visual feedback on
where they are in the overall process.

A simple progress element is created like this. This is rendered in Firefox as shown in Figure 8-24.

<p>Progress example:
 <progress min="0" max="7" value="3">
 Your browser does not support the progress element! Value is 3 of 7.
 </progress>
</p>

Figure 8-24.  The progress bar in Firefox

Figure 8-25.  The progress bar in Safari

You should include fallback text if the information in the element is important in case the browser
doesn’t support it. For example, since Safari does not support the progress element, this is rendered as
shown in Figure 8-25.

Button Types
In a typical form you will have content that provides information to the user, input elements where users
enter information, and buttons that initiate actions. I’ve already demonstrated a submit button using an
input element with the type attribute set to submit. There are actually two ways to create form buttons; the
first, as I’ve already demonstrated, is to use the input element with an appropriate type (there are four types
that will generate a button). The second approach is to use the button element, which also supports the type
attribute and there are three different types that are essentially equivalent to the input types.

Chapter 8 ■ HTML Form Elements

157

The input element supports the following button types:

•	 submit - when clicked, this will submit the form.

•	 reset - when clicked, this will clear the input elements and return the form to its
original values.

•	 image - functions like the submit type but supports a src attribute to specify an
image to be used for the button.

•	 button - this creates a button with no default action. You can use this to implement
custom actions using JavaScript.

The button element supports the following type values:

•	 submit - submits a form, just like the submit input type.

•	 reset - resets a form, just like the reset input type.

•	 button - a button with no defined action, just like the button input type.

Using the input types has been the long-time standard for web forms, the button element being
somewhat newer. There were some issues with older browsers not handling the button element properly but
this is not a significant consideration anymore.

The input element as I explained earlier, has no content. The text of the button is set through the value
attribute and the src attribute can be used to specify an image (for the image type only). However, the
button element does have content inside it so you have more flexibility; you can use any type of phrasing
content. For this reason, there is no need for a separate image type with the button element; all button
elements can include images. Also, since the button element uses regular content (not through attributes),
you have more styling options, including the ::before and ::after pseudo elements.

Changing the input element to a button element has no effect on the page:

<!--<input type="submit" value="Submit" />-->
<button type="submit">Submit</button>

Organizing a Form
A well laid-out form will have groups of related information organized into logical sections. In our pizza
order, for example, the user will pick the crust, choose the toppings, select additional side dishes, enter the
delivery details, etc. Grouping the various input elements along these lines will make the ordering process
easier to follow.

This is certainly true with checkboxes and especially radio buttons. In our crust example, there were
three radio buttons, each selecting a different type of crust. By setting the name attribute to the same value on
all of them, the browser can automatically deselect the others when one is selected. But the name attribute is
not visible to the user, and there is no visual clue that these three input elements go together.

The fieldset element is used to provide the visual grouping of these input elements. It will cause a box
to be drawn around the input elements. You can also include a legend element inside the fieldset element
to define the text that is displayed with the box. For example, the toppings and crust selections from our
previous example, can use the fieldset and legend elements like this:

<fieldset>
 <legend>Toppings:</legend>
 <input type="checkbox" name="Topping" value="Mushrooms" />Mushrooms?
 <input type="checkbox" name="Topping" value="Sausage" />Sausage?

Chapter 8 ■ HTML Form Elements

158

 <input type="checkbox" name="Topping" value="Olives" />Olives?
</fieldset>
<fieldset>
 <legend>Crust:</legend>
 <input type="radio" name="Crust" value="Thin" required />Thin
 <input type="radio" name="Crust" value="Thick" />Thick
 <input type="radio" name="Crust" value="DeepDish" />Deep Dish
</fieldset>

The page is then rendered as shown in Figure 8-26.

Figure 8-26.  Using fieldset and legend elements

The fieldset element supports a disabled attribute. If this is included, all the input elements within
the fieldset will be disabled.

■■ Caution  The fieldset element supports a name attribute; this does not replace the name attribute on the
individual input elements. The name attribute on the input element is used when submitting the form and is
also used in grouping radio buttons.

Validation
You should always provide server-side validation when a form is submitted and not rely on the client-side
validation. However, that is outside the scope of this book. You should also provide as much client-side
validation as practical. Finding validation errors on the client side will generally provide a better user
experience.

The first step is to use the most appropriate input type. You can use a standard textbox for every input
field, but using a more specific one will often enable some built-in validation. For example, using a date
picker is much better that having to verify a valid date string was entered.

The next step is to define all applicable constraint validation. For example, you can set the maxlength
attribute on all textual input types. If your database column only holds 30 characters, you should set the
maxlength attribute on the input element to 30 to prevent truncation errors. Where applicable, use the
pattern attribute to ensure the data is valid. If you have a field that should not have any spaces in it, set the
pattern attribute to check that before the form is submitted.

Provide hints in the placeholder attribute so the user knows what is expected. This will not ensure the
data is entered this way, but it will help clarify the field format to the user and will likely minimize validation
errors. Use the required attribute to specify which fields must be filled in. In addition to providing validation
when submitted, you can also style these fields to make it clear to the user that they are required.

Chapter 8 ■ HTML Form Elements

159

■■ Tip  Mozilla provides a good article on client-side form validation: https://developer.mozilla.org/en-
US/docs/Web/Guide/HTML/Forms/Data_form_validation. I recommend reviewing this and applying any of
the techniques that are applicable. Some of these require JavaScript and I will cover some of them in Section 4.

Summary
In this chapter I explained how forms are submitted and the input element that is used to collect this
information. The same input element is used for almost every type of information. The type attribute is
used to indicate the specific data input and validation that should be used. These types are listed in the
reference information in Appendix C.

In this chapter I explained the capabilities that are provided by most major browsers. There are a few
that have somewhat limited support, as of this writing, which I have pointed out. You should be able to
use everything I have demonstrated with confidence that most of your users will have a good experience.
Check with sites such as html5test.com, to see the latest browser support, as new capabilities are released
periodically.

This concludes the section on HTML markup elements. The next section, which includes Chapters 9–15,
will explore the capabilities of CSS that allow you to style the content. The next chapter will demonstrate the
CSS selectors that define the elements a style rule is applied to.

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Data_form_validation
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Data_form_validation
http://dx.doi.org/10.1007/978-1-4842-2463-2_9
http://dx.doi.org/10.1007/978-1-4842-2463-2_15

PART III

CSS

Once you have the HTML content created, you’ll use CSS to define the style rules used to format
the content. As you’ll see, there is a lot that you can do with CSS. This is actually the longest of the
three sections because of the variety of features available to dramatically alter the presentation of the
HTML document.

This section contains the following chapters:

•	 9) Selectors – each CSS rule includes a selector that determines which
elements it should be applied to; this chapter describes the capabilities that
exist to build these selectors.

•	 10) Layout and positioning – this chapter explains how elements are
positioned relative to the other elements and the various methods available
for controlling their arrangement.

•	 11) Text – this chapter demonstrates how to select the font and the font
characteristics, text alignment, and spacing, as well as numerous special
effects, including shadows and decorations.

•	 12) Borders and background – this chapter shows you how colors, images,
gradients, and various styles can be used to configure the background and
borders of elements.

•	 13) Tables – this chapter covers both styling tabular data as well as using
table constructs to arrange non-tabular elements.

•	 14) Flex – this chapter demonstrates how the flexbox model is used to define
dynamic page layouts.

•	 15) Animation – this chapter explains how you can create animations using
CSS as well as transformation and transitions.

163© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_9

CHAPTER 9

CSS Selectors

In Chapter 2 I presented an overview of how HTML is styled using cascading style sheets. A style sheet is a
set of styling rules, and each rule consists of a selector and one or more declarations. A selector determines
what elements the rule should apply to; the declaration specifies a style attribute that is being set. In this
chapter I will demonstrate the capabilities that are available when constructing the selectors. The remaining
chapters in this section will explain all the wonderful things you can do with CSS once you’ve selected the
appropriate elements.

For a quick review, if you wanted all the paragraph elements to use a green 12px font, the style rule
would look like this:

p {
 color:green;
 font-size:12px;
}

The first part, p, is the selector. This simply selects all paragraph (p) elements. There are two
declarations inside the curly braces: one sets the color attribute, the other sets the font-size.

Selector Overview
A selector will choose zero or more elements from the HTML document based on some aspect of the
elements. There are six types of selectors, each one using different information in the element to make the
selection. These selector types are:

•	 Element selectors (sometimes called type selectors)

•	 Class selectors

•	 ID selectors

•	 Attribute selectors

•	 Pseudo-class selectors

•	 Pseudo-elements

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 9 ■ CSS Selectors

164

Element Selectors
The first one that I just showed you is an element selector, which is also known as a type selector. To use this,
simply specify the element type such as p, h1, input, ol, div, and so on. In the previous section of this book, I
demonstrated all of the available HTML elements.

As I stressed numerous times, choosing the appropriate element provides rich semantic information.
If you have been careful to choose the elements correctly and consistently, you will have a great advantage
when applying styles. These context-specific elements communicate their purpose more clearly and
therefore make it more likely that consistent formatting will be applied to all content.

Class Selectors
Of course, it would be naïve to think that all styling could be done through element selectors alone. You will
likely have content that needs to have unique styles applied. This is where the class selector comes in.

All HTML elements support the class attribute; it’s one of the global attributes. The class attribute can
contain a space-separated list of classes. For example:

<p class="featured new">some text...</p>

This element has two classes, featured and new. The class selector allows you to select elements with
a specific class attribute. For this reason, the class attribute is often referred to as the CSS class. A class
selector is created by prefixing the class name with a dot (.) like this:

.featured {
 background-color:yellow;
}

This will apply the background-color attribute for all elements that have the featured class. The class
selector looks for whole words that match the selector value.

ID Selectors
An ID selector works just like a class selector except that it uses the id attribute instead of class and you
prefix it with a hash symbol (#) like this:

#Submit {
 color:blue;
}

An ID selector specifies a single element based on its unique ID, so, by definition, the style will not be
reused. It is better to define styles based on elements or classes so similar elements can be styled the same way.
ID selectors should be used sparingly and only for unique situations where the style does not need to be reused.

Attribute Selectors
Attribute selectors give you a great deal of flexibility, allowing you to select elements based on any of the
element’s attributes. These are specified as [attribute=value] like this:

 [class="book"] {
 background-color:yellow;
}

Chapter 9 ■ CSS Selectors

165

This is functionally equivalent to using the .book class selector; however, the attribute selector allows
you to perform the match using only portions of the attribute’s value. To do that, prefix the equal sign (=)
with one of the following:

•	 ~ (for example, [class~="book"]): The attribute value must include the word
indicated by the selector value (for example, class="some book titles"). This is
exactly how the class selector works.

•	 | (for example, [class|="book"]): The attribute value must begin with a word that
matches the selector value (for example, class="book titles")

•	 ^= (for example, [class^="book"]): The attribute value must begin with the selector
value (for example, class="books")

•	 $ (for example, [class$="book"]): The attribute value must end with the selector
value (for example, class="checkbook")

•	 * (for example, [class*="book"]): The attribute value must contain the selector
value (for example, class="overbooked")

You can specify the attribute without a value, which will return all elements that have the attribute.
A good example of this is the [href] selector, which will select all elements that have the href attribute,
regardless of its value. You can also include an element selector before an attribute selector to further restrict
the selected elements. For example, this will return all img elements whose src attribute begin with https:

img[src^="https"] {
 color:blue;
}

This example is combining an element selector with an attribute selector. When combined like that,
they form a logical AND operation. It will select elements that are images AND the src attribute begins with
https. Similarly, you can combine multiple attribute selectors such as:

 [src^="https][target="_self"] {
}

This will further restrict the selected elements to only this that have the _self target.

Pseudo-Class Selectors
Pseudo-classes are like regular class attributes except they are added automatically by the browser instead
of set in the HTML markup. Pseudo-classes are prefixed with a colon (:). Many of these are dynamically
applied depending on the state of the elements. Consider a hyperlink, for example. If the link has already
been navigated, the link is usually displayed with a different color. This is achieved using a CSS rule like this,
which will change the color of all elements that have the :visited pseudo-class.

:visited {
 color: blue;
}

Chapter 9 ■ CSS Selectors

166

Here is the complete list of pseudo-classes:

•	 :active - Selects the link that has just been clicked.

•	 :checked - Selects elements that are checked (applies to checkboxes).

•	 :default - Selects the default element on a form, usually the submit button.

•	 :disabled - Selects elements that are currently disabled (typically used for input elements.)

•	 :empty - Selects elements that have no children (elements that include text are not
selected).

•	 :enabled - Selects elements that are enabled (typically used for input elements).

•	 :first-child - Selects the elements that are the first child of its immediate parent.

•	 <tag>:first-of-type - Selects the elements that is the first of the specified type
within its parent.

•	 :focus - Selects the element that currently has the focus.

•	 :hover - Selects the element that the mouse is currently hovering over.

•	 :in-range - Selects input elements that have values within the specified range.

•	 :indeterminate - Selects radio buttons where none in a group have been selected.
This will also select checkboxes that have the indeterminate state (this must be set
through JavaScript).

•	 :invalid - Selects input elements that do not have a valid value.

•	 :lang(value) - Selects the elements that have a lang attribute that start with the
specified value.

•	 :last-child - Selects the elements that are the last child within its parent.

•	 <tag>:last-of-type - Selects the elements that are the last of the specified type
within its parent.

•	 :link - Selects all unvisited links.

•	 :nth-child(n) - Selects the elements that are the nth child within its parent.

•	 :nth-last-child(n) - Selects the elements that are the nth child within its parent,
counting in reverse.

•	 <tag>:nth-last-of-type(n) - Selects the nth child of the specified type within its
parent, counting in reverse.

•	 <tag>:nth-of-type(n) - Selects the nth child of the specified type within its parent.

•	 :only-child - Selects the elements that are the only child element of its parent.

•	 <tag>:only-of-type - Selects the elements that are the only sibling of the specified
type within its parent.

•	 :optional - Selects input elements that are not required (that is, do not have the
required attribute).

•	 :out-of-range - selects input elements whose value is outside of the allowed range.

•	 :read-only - Selects input elements that have the readonly attribute.

Chapter 9 ■ CSS Selectors

167

•	 :read-write - Selects input elements that do not have the readonly attribute.

•	 :required - Selects input elements that have the required attribute.

•	 :root - Selects the root element of the document.

•	 :target - Selects the elements with a target attribute where the target is the active
element.

•	 :valid - Selects input elements that have a valid value.

•	 :visited - Selects all visited links.

■■ Caution T here are four pseudo-classes that can be used with an anchor (a) element (:link, :visited,
:hover, and :active). If you use more than one, they should appear in this order in the style rules. For example,
:hover must come after :link and :visited if they are used. Likewise, :active must come after :hover.
You can use this simple mnemonic to help you remember the correct order: LoVe HAte.

The nth-child(n) selector counts all child elements of the parent, while the nth-of-type(n) counts
only child elements of the specified type. The distinction here is subtle but important. The same is true with
the only-child and only-of-type selectors.

■■ Tip T here’s a really useful article that explains the pseudo-classes with examples that you can find at
https://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-

elements/. Take a look at this if you would like more information and a demonstration of how these work.

Pseudo-Elements
While pseudo-classes provide a mechanism for selecting elements, pseudo-elements actually return new,
virtual elements that you can style without actually being part of the DOM. These are either empty elements
or a portion of an existing element.

Pseudo-elements start with a double colon (::) to distinguish them from pseudo-classes. These are the
pseudo-elements that are available:

•	 ::after - this creates an empty element just after the selected elements.

•	 ::before - this creates an empty element just before the selected elements.

•	 ::first-letter: Selects the first character of every selected element.

•	 ::first-line: Selects the first line of every selected element. The first line is the
portion of text up to the point where the text wraps to the next line.

•	 ::selection : Returns the portion of an element that is selected by the user.

■■ Note T he double-colon syntax was introduced with CSS3; prior to that, a single colon was used for both
pseudo-classes and pseudo-elements. For backward compatibility, most browsers will allow a single colon
for either.

https://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/
https://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/

Chapter 9 ■ CSS Selectors

168

You can add the ::before or ::after qualifiers to a selector to insert content in the document before or
after the selected elements. Use the content: keyword to specify the content and include any desired style
commands (the style applies only to the inserted content). For example, to add “Important!” before each
p tag that immediately follows a header tag, use the following rule. This will also style the "Important!" text
with a bold, red font.

header+p:before {
 content:"Important! ";
 font-weight:bold;
 color:red;
}

■■ Caution  Content that is inserted using the ::after or ::before pseudo-elements is generated by CSS
and is not part of the DOM. There are a couple of side effects that you should be aware of. First, the text cannot
be selected – if you were to copy and paste content from the web page, the extra generated content would be
omitted. Second, some screen readers don't support it so the text will not be read. Don't use these for critical
information as there are cases when it won't be available.

There are some restrictions on what style attribute can be set using the ::first-letter and ::first-
line pseudo-elements. Essentially, you can use any of the font or background attributes. With the ::first-
letter pseudo-element you can also include margin, padding, and border attributes.

Also, these pseudo-elements are only supported when block layout is used. I will explain the layout
options in Chapter 10.

Using Combinators
The different types of selectors that I just described can also be combined to perform more complex selections.

Combining Element and Class Selectors
You can combine element and class selectors by simply appending the class selectors. For example, this will
select all paragraph elements that have the featured class:

p.featured {
}

Using the same syntax, you can also combine multiple class selectors. These will be processed with the
logical AND operator. For example, this selects all paragraph elements that have both the featured and new
classes:

p.featured.new {
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_10

Chapter 9 ■ CSS Selectors

169

Pseudo-Selectors
Pseudo-class selectors are often combined with an element selector, for example:

a:visited {
}

This selects all anchor tags that have been visited already. In this case, the pseudo-class further refines
the element selector. They can also be combined with a class selector such as:

.featured:focus {
}

However, pseudo-classes can also stand on their own. A common example of this is the :default
pseudo-class, which selects the default element, which is typically the submit button on a form:

:default {
}

However, pseudo-elements will always modify either an element or class selector. These don’t actually
select an element; they either return a portion of a selected element or a new empty element before or after
the selected element. Therefore, they must be preceded with some sort of actual selector.

Combinator Operators
You can combine selectors to specify certain element hierarchies. By combining elements with one of the
following combinators, you can create a more complex selector:

•	 Group , (for example p, h1): A logical OR operator, selects all p elements as well as
all h1 elements.

•	 Descendant space (for example, header p): Selects the second element when it
is inside the first element. For example, if you want all p elements that are inside
a header element, use header p. The header element does not have to be the
immediate parent, just somewhere in the node’s ancestry.

•	 Child > (for example header>p): Selects the second element when the first element
is the immediate parent. The header>p selector returns all p elements whose
immediate parent is a header element.

•	 Adjacent Sibling + (for example header+p): Selects the second element when the
first element is the preceding sibling of the second element.

•	 Follows ~ (for example p~header): Selects the second element when it follows the
first element (not necessarily immediately).

To illustrate the last two, if your document looks like the following, the h1+p selector will not return any
element, but both h2+p and h1~p will both return the p element:

<h1>Some header</h1>
<h2>Some sub-header</h2>
<p>Some text</p>

Chapter 9 ■ CSS Selectors

170

The asterisk (*) is used as the universal selector; it is basically a wildcard that will match all elements.
Combining it with other selectors generally has no affect. However, it can be useful when combining
operators. Consider the following selector:

h2 * p {
}

Notice the space before and after the asterisk; they are descendant operators. Using just h2* by itself
will select all elements that are a descendant of an h2 element. Adding another descendant operator will
select elements that are a descendant of a descendant. This, will return all paragraph elements that are a
grandchild (or later descendant) of an h2 element.

■■ Tip  Spaces between selectors and operators are ignored. So header>p and header > p are equivalent.
However, it important to remember that a space between selectors (including the universal selector, *) indicates
the descendant operator. So h2 * p contains three selectors, each combined with the descendant operator.

Similarly, using h2>*>p will return all paragraph elements that are grandchildren of an h2 element.
Only grandchildren are selected because the > combinator is specific to a child relationship, not a general
descendant like the space combinator.

The Not Selector
You can also prefix any selector with :not to return all the elements not selected. However, the selector
cannot start with :not; you must start with another selector. For example, this selects all elements in the
body except header elements:

body:not(header) {
 color:purple;
}

Group Operator
If you want to apply the same declarations to more than one element type, you can group them like this:

p, h1, h2
{
 color:green;
 font-size:12px;
}

The comma (,) character serves as a logical OR operation, for example, “all elements of type p OR h1 OR
h2”. You can also combine complex selectors in a logical OR relationship by separating them with commas.
Each selector can be any of the more complex types. For example, this is also a valid selector:

header+p, .book, a:visited {
}

It will return all elements that are either a paragraph element that immediately follows a header
element, an element with the book class, or a visited anchor element.

Chapter 9 ■ CSS Selectors

171

Resolving Conflicts
With all of this ability to write complex selectors, it is inevitable that two or more rules will specify conflicting
styles. Having a well-organized HTML document with appropriate element usage will certainly help. Along
the same lines, applying consistent and well-named class attributes will also minimize conflicts.

To troubleshoot issues that do arise, you’ll need to understand how the CSS rules are applied. The order
that styles are applied is based on where they are defined. The rule specificity is also a significant factor.
I covered both of these topics in Chapter 2.

Media Queries
CSS 2.1 introduced the media keyword, allowing you to define a printer-friendly style sheet. For example,
you can use something like this:

<link rel="stylesheet" href="Initial.css" />
<link rel="stylesheet" href="Print.css" media="print" />

You can then define one style sheet for browsers (screen) and a different style sheet for the print version
of your web page. Alternatively, you can embed media-specific style rules within a single style sheet. For
example, this will change the font size when printed:

@media print
{
 h1, h2, h3
 {
 font-size: 14px;
 }
}

■■ Tip T here are other media types that are supported including aural, braille, handheld, projection,
tty, and tv. As you can see, the media type was initially used to represent the type of device that is rendering
the page. Also, the all type is supported but is also implied if no media type is specified. Styles with the all
type are applied for every device.

Media Attributes
With CSS3, this has been enhanced significantly to allow you to query various attributes to determine the
appropriate styles. For example, you can apply a style when the width of the window is 600px or smaller like this:

@media (max-width:600px)
{
 h1
 {
 font-size: 12px;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 9 ■ CSS Selectors

172

The features that can be selected in a media query are as follows:

•	 width

•	 height

•	 device-width

•	 device-height

•	 orientation

•	 aspect-ratio

•	 device-aspect-ratio

•	 color (0 if monochrome or number of bits used to specify a color)

•	 color-index (number of colors available)

•	 monochrome (0 if color, or number of bits for grayscale)

•	 resolution (specified in dpi or dpcm)

•	 scan (for TV, specifies scanning mode)

•	 grid (1 if a grid device such as TTY display, 0 if bitmap)

Most of these support min- and max- prefixes, which means you don’t have to use a greater-than or
lesser-than operator. For example, if you wanted a style for windows between 500px and 700px, inclusive,
you would specify this as follows:

@media screen and (min-width: 500px) and (max-width: 700px)

Notice in this example I also included the screen media type. In this case, this style is ignored for all
other types such as print.

■■ Tip  For a complete definition on each of these features, see the W3 specification at www.w3.org/TR/css3-
mediaqueries/#media1.

Using Media Queries
There is a lot that you can do with media queries to dynamically style your web page. For example, you could
use the color and monochrome features to apply more appropriate styles when displayed on a monochrome
device. The color feature returns the number of colors supported, so (min-color: 2) will select all color
devices. You can also use (orientation: portrait) and (orientation: landscape) to arrange the
elements based on the device’s orientation.

One of the most common use of media queries is to determine the width of the window. As the width of
the window shrinks, the styles will gradually adjust to accommodate the size while retaining as much of the
original layout as possible. This is known as a responsive web design.

A typical approach is to plan for three different styles: large, medium, and small. The large style is
probably how the site is initially designed for desktop users. There may be sidebars and multiple columns
of content. The medium style will keep the same basic layout but start to shrink areas as needed. A useful
technique is to use relative sizing so as the window shrinks, each element gradually shrinks as well. The
small style will be used for handheld devices, and you’ll generally keep the layout to a single column. Since
the page will tend to be longer now, links to bookmarks on the page become more important.

http://www.w3.org/TR/css3-mediaqueries/#media1
http://www.w3.org/TR/css3-mediaqueries/#media1

Chapter 9 ■ CSS Selectors

173

Summary
In this chapter, I have explained the various ways to select elements from your HTML document. Element
selectors will be of great use, especially if the HTML was marked up consistently with the appropriate
elements. Class selectors will give you even finer control of how styles are applied. The pseudo-class and
pseudo-element selectors provide an impressive suite of capabilities, allowing dynamic styling of your
document.

Each of these selectors can be combined using several combinators that allow you to select elements
based on where they are in the document relative to other elements. The grouping combinator allows you to
apply a set of declarations to multiple selectors.

Finally, you can use media queries to adjust your styles based on the device that is being used. This will
enable you to build a responsive web page that renders well on any device.

In the next chapter, I’ll demonstrate the CSS techniques available for controlling the layout and
positioning the content.

175© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_10

CHAPTER 10

Positioning Content

In Chapter 2 I explained the basic box model, and in this chapter I’ll demonstrate how each “box” is
positioned relative to the other content on the page. Each HTML element takes up a certain amount of
space, which is defined as a rectangle; it has a height and a width. In addition, the padding, border, and
margin contributes to the space that must be allocated.

So an HTML document can be thought of a series of boxes. In Chapter 4 I explained the structural
elements that define the larger boxes, such as the header, section, and article elements. These define
the structure of your document. Within these you’ll place smaller elements such as paragraph and image
elements. And within the paragraph elements you include lots of small boxes using the phrasing elements
I described in Chapter 5, such as strong, emphasis, and span elements.

In the previous chapters I told you not to worry about how all of this content would be arranged. The
focus of the HTML document is to organize the content in a logical fashion, in a - this belongs to that - line of
reasoning. Now it’s time to worry! There are several concepts that you need to understand to effectively lay
out the content of an HTML document, which I will explain in this chapter.

Display
The most fundamental attribute regarding layout in CSS is the display attribute. There are two basic
options: block and inline. There are other supported values, which I’ll explain later. But for now, I’ll focus
on these two (and the none option).

•	 block - the element uses the entire width of its parent element. Additional blocked
elements are then stacked vertically, just below the previous element.

•	 inline - the element is arranged horizontally. Each inline element is placed to the
right of the previous elements (assuming left-to-right direction is used). If there is
not enough room for the element, some or all of the element content is wrapped to
the next row.

•	 none - the element is not rendered at all. Not only is the content hidden, but it
doesn’t take up any space on the screen.

Browsers do a great job defaulting CSS properties so elements are rendered in a reasonable fashion
without needing to add any CSS rules. Each element has a default value for the display attribute, for
example. The structural elements such as section, article, and div are all block elements (by default).
Phrasing content such as strong and emphasis are inline elements. The paragraph element, being the
notable exception, is a blocked element because a paragraph normally takes up the entire width of a page
or section.

http://dx.doi.org/10.1007/978-1-4842-2463-2_2
http://dx.doi.org/10.1007/978-1-4842-2463-2_4
http://dx.doi.org/10.1007/978-1-4842-2463-2_5

Chapter 10 ■ Positioning Content

176

The following HTML provides a simple demonstration of this. This contains five div elements and five
span elements with simple text content.

<div>div 1</div>
<div>div 2</div>
<div>div 3</div>
<div>div 4</div>
<div>div 5</div>
span 1 - blah blah
span 2 - blah blah
span 3 - blah blah
span 4 - blah blah
span 5 - blah blah

To make the layout easier to visualize, I’ll add the following CSS rule. This will put a thin border around
each div or span element and a small space between the borders.

div, span {
 border: 1px solid black;
 margin: 1px;
}

This will be rendered as shown in Figure 10-1.

Figure 10-1.  Default display alignment

Figure 10-2.  Using inline formatting

You can see that the div elements are stacked vertically, while the span elements are arranged
horizontally. Of course, you can override the default settings. Adding display: inline; to the CSS rule, will
cause both elements to be arranged horizontally as shown in Figure 10-2.

Chapter 10 ■ Positioning Content

177

■■ Tip R egarding the display: none; setting, as I mentioned this causes the page to be rendered as if
the element were not there. Alternatively, you could set the visibility attribute to hidden (visibility:
hidden;), which would also hide the content, but it would leave an empty space on the page where the element
would be shown if it were not hidden. There are important applications of both approaches and it’s important to
know how each works.

A block element takes up the entire width of its container. In the previous example, this was the width of
the browser window. If nested inside another element, it will only use the space available within its parent.
To demonstrate that, this markup creates three div elements inside a parent element:

<div class="container">container
 <div>div a</div>
 <div>div b</div>
 <div>div c</div>
</div>

Notice that I’ve given the parent element a class attribute. This will allow me to set its width attribute
using a class selector like this:

.container {
 width: 150px;
}

These div elements are then rendered as shown in Figure 10-3.

Figure 10-3.  Including div elements in a parent div

Defining Sizes
There are numerous ways to define the size of an element and there are consequences with each of these
methods.

Absolute Size
In the previous example, I set the width attribute, giving it an absolute width of 150 pixels. You can also set
the height attribute as well. This will force that much space to be allocated whether it is needed or not, and
whether it is available or not – the latter being somewhat more problematic.

Chapter 10 ■ Positioning Content

178

If the space is not available, the element will overrun its container. If the outer container is the browser
window and the element size exceeds the window size, a scroll bar will appear so you can scroll to see the
missing content. While horizontal scrolling should be avoided, this is not terribly bad, as the content is still
viewable.

Consider, however, if the container is just a portion of the document and there is other content around
it. To demonstrate what happens, in the previous example, we can set the height attribute also, like this:

.container {
 width: 150px;
 height: 100px;
}

This fixes the height at 100px. There is a little extra space in the container. However, if you add a couple
more div elements inside this container and some additional content afterwards, you’ll see the overrun
issue, which is shown in Figure 10-4. In the screenshot I have zoomed in to make it easier to see.

<div class="container">container
 <div>div a</div>
 <div>div b</div>
 <div>div c</div>
 <div>div d</div>
 <div>div e</div>
</div>
<div>More content</div>

Figure 10-4.  Demonstrating the overrun issue

Part of div d and all of div e is outside of the container element and superimposed on top of the more
content div. Hopefully by now you see the fallacy of setting absolute sizes, especially when setting the
height. This really boxes you in (pun intended) and makes your page susceptible to numerous scenarios that
can break the layout. Consider, for example, if the page is translated and the translation uses more characters
than the original text. Also, if the user-specified CSS increases the font size, your layout could break.

Chapter 10 ■ Positioning Content

179

Relative Size
I mentioned briefly in Chapter 2 that distance units can also be expressed as a percentage. Instead of
specifying the width as a fixed size, say 300px, you can specify it as a percentage. This will be a percentage of
the element’s immediate parent:

.container {
 width: 70%;
}

Using relative sizing is helpful when creating responsive web pages as the size will automatically adjust
based on the available space.

Setting Maximum Values
If you’re primarily dealing with text, defining the width of a container is useful to constrain the area that will
contain the text. The text will be wrapped as needed to fit within the specified area. However, if the available
space is less than that, the content will overrun this area as I illustrated previously.

A simple improvement to deal with this is to use the max-width attribute instead of width. Replace both
declarations in the CSS rule with max-width:

.container {
 max-width: 300px;
}

By removing the height attribute, the vertical overrun is solved. By replacing width with max-width,
if the window size is reduced, the container will shrink as needed to fit into the current window. To better
demonstrate these, let put some additional text in these div elements. Replace the container div and all of
its child elements with the following content. Each element will be wrapped, as necessary, to fit into a 300px
div as shown in Figure 10-5.

<div class="container">container
 <div>Fourscore and 20 years ago,</div>
 <div>our fathers brought forth to this continent</div>
 <div>a new nation, conceived in liberty</div>
 <div>and dedicated to the proposition</div>
 <div>that all men are created equal</div>
 <div>Now we are engaged in a great civil war, testing where that nation, or any</div>
 <div>nation, so conceived, so dedicated, can long endure.</div>
</div>

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 10 ■ Positioning Content

180

Content-Based
There are two settings that you can use to define the width of an element based on its contents:

•	 min-content - uses the smallest possible area that will fit the content after taking
advantage of all of the wrapping opportunities.

•	 max-content - uses the smallest space needed without wrapping any content.

To demonstrate this, set the height and width attributes using max-content. This will be rendered in
most browsers as shown in Figure 10-6. The width of the container will be based on the width of the widest
element inside it. The height is based on the total size of all child elements.

.container {
 width: -moz-max-content;
 height: -moz-max-content;
 width: max-content;
 height: max-content;
}

■■ Note  Firefox requires the prefixed versions, as of this writing.

Figure 10-5.  Wrapping using the max-width attribute

Chapter 10 ■ Positioning Content

181

If you use min-content instead of max-content, the content will be rendered as shown in Figure 10-7.
The width is now based on the largest non-wrappable content, which happens to be the word “proposition.”
If there were other types of content such as images, the widest one would determine the container width.

Figure 10-6.  Using max-content

Figure 10-7.  Using min-content

Chapter 10 ■ Positioning Content

182

IE Work Around
Neither IE nor Edge support the min-content and max-content attributes, as of this writing. However, there
is a workaround using the custom -ms-grid attribute. You have to first place the container inside another
parent element (grandparent, actually) and then apply the properties to the grandparent. So the HTML will
look like this:

<div class="grandParent">
 <div class="container">container
 <div>Fourscore and 20 years ago,</div>
 <div>our fathers brought forth to this continent</div>
 ...
 </div>
</div>

I set the class attribute so it can be styled using this additional rule:

.grandParent {
 border: none;
 margin: 0px;
 display: -ms-grid;
 -ms-grid-columns: max-content;
}

The new grandparent div, is only used to assign the styling attributes; we don’t want an extra box
drawn. So the border and margin attributes are cleared. Then the display attribute is set to -ms-grid and
the custom -ms-grid-columns attribute is set. Because these are prefixed attributes or values, they are
ignored by all other browsers except IE and Edge.

With these changes in place, the page will be rendered in all other browsers just like it was before.
However, IE9 and above and Edge browsers will also display the content the same way. You can also use
min-content instead of max-content and the size of the container will be based on the word “proposition.”

Min-Content Example
The previous example is somewhat contrived to demonstrate how min-content and max-content work. The
min-content attribute is most useful when you have a mixture of content such as images and text. Text can
be wrapped to fit almost any size container but images cannot. To demonstrate a more useful example, I’ll
use a figure element with a rather long caption. Here is the markup:

<figure>

 <figcaption>
 The HTML5 badge is a well-recognized symbol in the web design community.
 </figcaption>
</figure>

The figure element has two child elements, an image and a caption. I explained this in Chapter 4 as the
preferred method including a caption with an image.

By default, this uses block layout so the caption will be below the image and will take the entire width of
its container, the figure element. The figure element is also a block element so it takes up the entire width of
the window. If the window is wide enough, the rather long caption will be displayed on a single line.

http://dx.doi.org/10.1007/978-1-4842-2463-2_4

Chapter 10 ■ Positioning Content

183

Ideally, you would like the caption to be wrapped as needed so it stays under the image. Here’s where
the min-content attribute is really helpful. Adding the following CSS rule will do exactly that.

figure {
 border: 1px solid black;
 margin: 1px;
 width: -moz-max-content;
 width: min-content;
}

This also sets the border and margin so you can more easily visualize the layout. This is rendered in
most browsers as shown in Figure 10-8.

Figure 10-8.  Using min-content in a figure

Box Sizing
As I explained in Chapter 2, the space allocated to an element also includes the padding, border, and
margin in addition to the actual element content. It’s important to remember that the size settings that I’ve
explained so far apply only to the actual content. The actual space used can be more than that, sometimes
significantly more, depending on these other settings.

This can lead to problems when you’re trying to align elements that have different attributes. To
demonstrate this, consider the following markup:

<section>
 <article class="bigBorder">I am really padded!</article>
 <article class="smallBorder">Me, not so much.</article>
</section>

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 10 ■ Positioning Content

184

The section element contains two article elements with some simple text content. Each article has
different class attributes. Now apply the following CSS rules:

article {
 width: 300px;
 height: 60px;
 margin: 1px;
}
.bigBorder {
 padding: 30px;
 border: 10px solid olive;
}
.smallBorder {
 padding: 5px;
 border: 2px solid olive;
}

First, this sets the article element to have a fixed size, 300px by 60px. Then it applies different padding
and border settings using class selectors. The content is rendered as shown in Figure 10-9.

Figure 10-9.  Different size elements

The result may be somewhat surprising, considering that both elements were set to the same size. Well,
they actually are the same size, but the padding and border around them is different. You can address this by
compensating for the extra padding and border and set the first element to a smaller width (66px smaller to
be exact).

However, there is an easier way due to the new box-sizing attribute. This attribute specifies how the
height and width attributes are applied. The default value, content-box, indicates the size applies only to
the actual element content. Alternatively, you can set it to border-box, and the size attribute will apply after
the padding and border have been added. We can fix this up by adding the following CSS rule:

* {
 box-sizing: border-box;
}

Chapter 10 ■ Positioning Content

185

Remember from Chapter 9 that the asterisk is the universal selector, meaning that this applies to every
element. With this rule, all sizing attributes will include the padding and border. With this adjustment, the
content is now rendered as shown in Figure 10-10.

Figure 10-10.  Elements sized identically

■■ Note  There are a few other width settings that have been defined but the browser support for these is
sketchy. This Mozilla site provides more information if you want to try them: https://developer.mozilla.
org/en-US/docs/Web/CSS/width

Float
The float attribute is used to cause block content to be aligned to either the left or right edges of its
containing element. For example, adding float: left; to an element will cause it to be left-aligned.
Subsequent content in the container is then wrapped around the floating content. For example, this markup
has a div element followed by a paragraph of text content.

<header>
 <div>div</div>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod ...</p>
</header>

Adding the following CSS rule will add some space around the div element and cause it to be floated to
the left, allowing the text to wrap around it. This is rendered as shown in Figure 10-11.

header>div {
 padding: 25px;
 float: left;
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_9
https://developer.mozilla.org/en-US/docs/Web/CSS/width
https://developer.mozilla.org/en-US/docs/Web/CSS/width

Chapter 10 ■ Positioning Content

186

Remember that block content normally takes up the entire width of its container. Setting the float
attribute on an element allows subsequent content to be positioned as if it were inline. Additional elements
will be positioned to the right of the floated content. If they also have float: left, subsequent content will
continue to be positioned to the right. To demonstrate that I’ll add a few more div elements The previous
CSS rule will set these all to float:left and this will be rendered as shown in Figure 10-12.

<header>
 <div>div 1</div>
 <div>div 2</div>
 <div>div 3</div>
 <div>div 4</div>
 <div>div 5</div>
 <div>div 6</div>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod ...</p>
</header>

Figure 10-12.  Multiple floated div elements

Figure 10-11.  Using float: left

■■ Tip  Using float: right; will align the content to the right side of the container. Subsequent floated
blocks will be positioned to the left of the first block. This will essentially render them in reverse order.

Chapter 10 ■ Positioning Content

187

Figure 10-13.  Demonstrating floated and non-floated content

Clearing Floats
The float attribute also affects how subsequent content is positioned. The floated element is aligned to
the left or right, but also, subsequent content can continue inline instead of starting a new row like normal
blocked content. To illustrate that, the following markup creates four div elements and using inline styling to
explicitly set the float attribute.

<section>
 <div style="float: left; padding: 25px">div 1</div>
 <div style="padding: 25px">div 2</div>
 <div style="float: right; padding: 25px">div 3</div>
 <div style="padding: 25px">div 4</div>
</section>

The first element is floated to the left. The second element is not floated but continues on the same row
because the previous element is floated. Because this element is not floated, it takes up the remainder of the
current row. The third element is floated to the right and the final element is positioned to the left and takes
up the remainder of the row. This is shown in Figure 10-13.

If you wanted to cancel the effect of a previous float on a subsequent element, use the clear attribute.
This does not affect how the previous element is positioned but it neutralizes the float effect on the
subsequent element. The clear attribute can be set to left, right, or both. So you can remove the effect of
all previous floats or just left or right floats. To demonstrate this, I’ll add the clear attribute to the previous
markup, which is rendered as shown in Figure 10-14.

<section>
 <div style="float: left; padding: 25px">div 1</div>
 <div style="clear: left; padding: 25px">div 2</div>
 <div style="float: right; padding: 25px">div 3</div>
 <div style="clear: right; padding: 25px">div 4</div>
</section>

Chapter 10 ■ Positioning Content

188

The first div is aligned to the left as expected. The second div is positioned on the next row, taking up
the entire row like normal blocked content.

For a little more complicated example, I’ll use the :nth-of-type selector to make the odd elements float
left and the even elements float right. I’ll also use the clear attribute to remove the effect on previous floats.
This will cause the left- and right-aligned div elements to be stacked vertically instead of flowing inline. This
also sets the background-color on the container element to demonstrate another issue that I will address
next.

header {
 background-color: #f3f3f3;
}
header>div {
 padding: 25px;
}
header>div:nth-of-type(odd) {
 float: left;
 clear: left;
}
header>div:nth-of-type(even) {
 float: right;
 clear: right;
}

This removes the float: left; declaration from the header>div selector and creates new selectors
using the :nth-of-type pseudo-class that was described in Chapter 9. These use the even and odd keywords.
This is rendered as shown in Figure 10-15.

Figure 10-14.  Using the clear attribute

http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 10 ■ Positioning Content

189

Figure 10-15.  Using left and right floats

Containing Floats
Figure 10-15 demonstrates a common problem with floats. Basically, the floated content is not considered
when calculating the height of a container. To see this more clearly, I’ll remove the text using the following
CSS rule, which sets the display attribute to none.

header>p {
 display: none;
}

When this is rendered, you’ll see the odd div elements on the left and the even on the right with no text
in between. If you inspect the header element using the browsers tools, you’ll see that the element’s height
is set to 0 as illustrated in Figure 10-16.

Figure 10-16.  Inspecting the header element in Chrome

Chapter 10 ■ Positioning Content

190

I set a gray background color for the header element, and since the div elements are inside the header
element, I expect them to have a gray background. However, since the computed height of the header
element is 0, there is no gray area. Similarly, in Figure 10-15, you can see that only part of the div elements
have a gray background because the text is not as large as the floated content.

At first glance this might seem like a bug in the browser; the size of a parent element is not considering
its child elements. However, there is an important reason for this behavior. Floated content is intended to
be able to span multiple blocks. For example, the layout shown in Figure 10-17 has three div elements with
textual content. The floated content spans two of these.

Figure 10-17.  Floated content spanning blocks

If the size of the first div includes the floated content, then the second div would not start until after the
floated content, leaving a lot of empty space. In our scenario, when we want the floated content included in
the size calculation; there are at least two common solutions to accomplish this.

Setting Overflow
The simplest solution, although perhaps not that intuitive, is to use the overflow attribute. This specifies
how the browser should handle the situation when the contents of an element exceed the area of its
container. The overflow attribute supports the following values:

•	 visible - this is the default value and indicates that the overflow content should be
displayed without affecting the container. As I showed, the container height was zero
but all of its contents were displayed anyway.

•	 hidden - the content is clipped so any content outside of the container is not visible.

•	 scroll - Horizontal and vertical scroll bars are always created even if the content fits
inside the container.

•	 auto - Scroll bars are created only when the content overflows the container;
otherwise they are suppressed.

Chapter 10 ■ Positioning Content

191

In this scenario, however, with any value other than visible, the browser will calculate the size of
the container taking into account the floated content. This solves the issue with the background color not
covering all of the div elements. Using scroll, you will also get scroll bars, which is probably not what you
want. I recommend using overflow: auto; for any container that has floated content to resolve this issue.

Using a Pseudo-Element
Another solution for this is to use the ::after pseudo-element to create additional content after the
container and use the clear attribute on this content. For example, adding this CSS rule, will add content
after the floated content.

header::after {
 content: "";
 display: block;
 clear: both;
}

The content declaration, which is required, is set to an empty string so this doesn’t add any actual
content. However, the pseudo-element will have the clear: both; declaration. This causes the content to
“appear” after the floated content but still be part of the container. This also forces the floated content to be
included in the container size.

Inline Block
In the beginning of the chapter I told you that there were two basic values for the display attribute: block
and inline, and I demonstrated how these work. There are actually quite a few available values for the
display attribute. Most of these are related to tables, which I’ll cover in Chapter 13. But I’ll explain the
inline-block value here.

So block elements, as I’ve explained, use the entire width of their parent element and each block
element creates a new row. In contrast, inline elements use only the horizontal space needed and
subsequent elements continue on the existing row, wrapping to the next when necessary.

There are some limitations when using inline elements, such as not being able to set the height and
width attributes. In some of the previous examples, where there was a row of boxes, these had to be created
as block content and use the float attribute to allow them to flow horizontally.

The following markup creates six div elements inside a navigation element:

<nav>
 <div>div a</div>
 <div>div b</div>
 <div>div c</div>
 <div>div d</div>
 <div>div e</div>
 <div>div f</div>
</nav>

http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 10 ■ Positioning Content

192

By default, each div element would be displayed as blocked content and be on a separate row. However,
we can use inline-block to allow these to flow on a single row (or wrap, if necessary). This is applied
through a CSS rule like this:

nav>div {
 display: inline-block;
 width: 75px;
 height: 25px;
 vertical-align: bottom;
 clear: both;
}

This also sets the height and width of the div elements. The clear attribute is needed to clear the float
from the previous example. (If you’re using floats, you will find yourself using clear a lot as well).

The CSS rule also sets the vertical-align property so all the bottom edges of the elements will be
aligned. Since these are all the same size, alignment is not really an issue. To make this more interesting,
I’ll adjust the height on some of the elements using this CSS rule, which will make every other one larger.
The result is shown in Figure 10-18.

nav>div:nth-of-type(even) {
 height: 35px;
}

Figure 10-18.  Using inline-block with alignment

Position
So far, all of the elements we have worked with in this chapter have been positioned statically. This is
the default behavior where elements flow from one to the next using either block or inline layout. This is
defined by setting position: static; but since this is the default value it’s not necessary to actually add
this to your CSS.

There are several values for the position attribute and I’ll explain each of these:

•	 static - this is the default value; the content is positioned based on its location in
the document and the flow properties that are assigned.

•	 relative - the element position is offset from where its normal flow position
would be.

•	 absolute - the element is positioned at a specific location; no space is allocated for it.

•	 fixed - the element is positioned relative to the viewport; its position on the screen
does not change when the document is scrolled.

Chapter 10 ■ Positioning Content

193

■■ Tip N on-statically positioned content is sometimes referred to as positioned content. That’s not a very
insightful term as all content is positioned; it just differs in how it is positioned. However, if you see that term, it
generally applies to content that uses either the relative, absolute, or fixed position values.

Relative Positioning
With relative positioning, the content is positioned just like with static positioning except it is then offset
from its original, calculated position. The shifting of the element does not affect the position of other
elements. The space assigned to the element based on its original position is still honored. This will usually
lead to some overlapping content as well as blank spaces.

After setting the position attribute to relative, you can then specify the offset using the top, bottom,
left, or right attributes. If you want the element shifted down, set the top attribute to the distance that it
should be adjusted. Similarly, to shift the position up, use the bottom attribute. To shift the element to the
right, use the left attribute. This may seem backward at first, but it is similar to increasing the left margin,
which will push the element to the right.

■■ Tip S etting the top attribute to a positive value will shift the element down; using a negative value will
shift the element up. So top: -20px; and bottom: 20px; are equivalent. Likewise, setting the left attribute
to a negative value accomplishes the same thing as setting the right property to a positive value.

To demonstrate relative positioning, I’ll use the following markup, which creates four div elements.

<header>
 <div class="square red">div 1</div>
 <div class="square yellow">div 2</div>
 <div class="square blue">div 3</div>
 <div class="square green">div 4</div>
</header>

I’ll also set the background color for each of these squares using the following CSS rules. (In case you’re
wondering about my choice of colors here, I’m purposely using lighter colors because they show up better in
print, especially when using greyscale for black and white printing).

.red {
 background-color: pink;
}
.yellow {
 background-color: yellow;
}
.blue {
 background-color: cyan;
}
.green {
 background-color: chartreuse;
}

Chapter 10 ■ Positioning Content

194

Each of the div elements has the square class assigned and each has a different color class as well. The
positioning is then accomplished using a pair of class selectors:

header>div.square {
 padding: 0px;
 float: left;
 clear: none;
 width: 100px;
 height: 100px;
}

.blue {
 position: relative;
 top: 20px;
 left: 20px;
}

I’m adding the markup and CSS rules for this example to the same files used for the previous examples
where I already had a header>div selector. This new selector, header>div.square, is more specific and will
therefore override any conflicting declarations. I explained the specificity rules in Chapter 2. The previous
declarations set the padding, float, and clear attributes; however, I want these new square div elements to
be styled differently so these specific declarations are overridden.

■■ Tip N otice that this is setting clear: none; and that is the default value for this attribute. Sometimes you
have to set default values when you’re overriding a less-specific rule.

The blue class selector sets the relative position and specifies the offset amount. Only one of the
div elements has this class so only the div with the blue class will be offset. The is rendered as shown in
Figure 10-19.

Figure 10-19.  Demonstrating relative positioning

Notice that there is now extra space near the top and left edges of the blue div and the blue div overlaps
the green div. Also notice that the background for the header element does not cover all of the blue div. As
I said, the offset is performed on the element with making any adjustments to the other elements. All the
other content is positioned based on the element’s original position, before the offset was applied.

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 10 ■ Positioning Content

195

■■ Tip I f you want to shift an element and have the new position honored as well as the original in the
normal (static) content flow, use the margin attribute instead. This adds extra space to the element giving an
appearance of being shifted. However, the remaining content is adjusted based on the new increase in size of
the element.

Absolute Positioning
Absolute positioning is similar to relative positioning except the element is completely removed from the
content flow. The original position is not honored; it’s like the element was never there. It uses the same
top, bottom, left, and right attributes to specify the position. However, the tricky part of using absolute
positioning is determining the positioning context.

To be clear, both the relative or absolute values for position attribute will position the element
relative to something. With both, you specify an offset using the top, bottom, left, or right attributes.
Setting position: relative; will position the element relative to its original position. Using position:
absolute; will position the element relative to its positioning context.

A positioning context is created whenever relative or absolute positioning is used. When absolute
positioning is used, the browser will look through the element’s ancestry to find the nearest ancestor that
has the position attribute set to either absolute or relative. If none is found, the document is used as the
default positioning context.

To demonstrate this, I’ll add the following CSS rule:

header {
 position: relative;
}

This will make every header element a positioning context. Notice, however, that I did not specify an offset.
This will not affect the header element; it will be positioned as if static positioning was used. However, if any
of its children use absolute positioning, they will be positioned based on the location of the header element.

With the header change in place, I’ll then create the blue class selector. The blue div should now be
positioned based on the header element, the top edge is 10 pixels above it and the right edge is 50 pixels
from the right edge of the header, as shown in Figure 10-20.

.blue {
 position: absolute;
 top: -10px;
 right: 50px;
}

Figure 10-20.  Absolution positioning based on parent position

Chapter 10 ■ Positioning Content

196

Fixed Positioning
Fixed positioning is identical to absolute positioning except that the positioning context is always the
viewport. The content will always stay in the same place on the screen regardless of how the document is
scrolled – horizontally or vertically. To demonstrate this, I’ll change the position of the blue div by replacing
the previous CSS rule with this:

.blue {
 position: fixed;
 top: 50px;
 left: 0px;
}

The top or bottom attribute is required; otherwise the content will not be displayed. In this example, I
set it so the top edge of the content will start 50px from the top of the window. The left or right attributes
are optional; if omitted, left: 0px; will be used. This is rendered as shown in Figure 10-21.

Figure 10-21.  Using fixed positioning

Z-Index
The x-axis refers to the horizontal direction on a page and the y-axis is the vertical direction. As web pages
are 2-dimensional, there is not really z-axis, although this is used to describe how overlapping content
is stacked on top of other content. The z-index property then, defines the stacking order, in a manner of
speaking. The content with the highest z-index will be on top.

Chapter 10 ■ Positioning Content

197

With statically positioned content, you don’t have to be concerned with the z-index. In fact, the
z-index only applies to non-statically positioned content. However, with the other position values,
relative, absolute, and fixed, you will need to consider the “stacking order.”

The z-index has a default value of 0. So if everything has the same z-index, how does the browser know
which to put on top? There are a couple of rules that are followed.

First, all non-statically positioned content will be on top of the other content. Go back and look at
Figures 10-19, 10-20, and 10-21 and notice that the blue div is always on top of the others. If you don’t
want that behavior, set the z-index to -1 and that content will appear underneath the statically positioned
content.

Secondly, content that comes later in the document will be on top of the previous content. To test this
out, I’ll add the following rule to make the green div used fixed positioning:

.green {
 position: fixed;
 top: 70px;
 left: 20px;
}

The green div will now be fixed near the blue div but will appear on top of it since it comes after it in
the document, as demonstrated in Figure 10-22. You can try the same thing with the yellow div and you’ll
see that it will be under the blue div, since it comes before it.

Figure 10-22.  Displaying two fixed elements

When determining the display order, the browser uses stacking contexts. A stacking context is created
at the document level, for all statically positioned content. Whenever relative, absolute, or fixed positioning
is used, a new stacking context is created. All the child elements within this element use the same stacking
context.

Child elements can also use one of the positioning values and create a new stacking context. This can
cause some confusion because these contexts are hierarchical. For example, suppose there are two stacking
contexts, the first with a z-index of 1 and a the second with a z-index of 2. Then you add a child element
with relative positioning inside the first stacking context and set its z-index to 3. However, everything in the
second context (z-index of 2) will be on top of the first (z-index of 1). The subcontext (z-index of 3) only
affects the ordering of elements in the first context.

Chapter 10 ■ Positioning Content

198

■■ Caution S etting the opacity attribute to less than 1 will also create a new stacking context. Child
elements that then create a new stacking context will actually be subcontexts and the ordering may not happen
as expected. There’s an article that explains this in more detail if you’re interested: https://philipwalton.
com/articles/what-no-one-told-you-about-z-index.

Centering Content
Before we leave this chapter on positioning, I need to explain a simple trick for centering content. The
margin attribute defines the space between an element and the elements next to it. If this is set to auto, the
left and right margins will be calculated to center the content within its parent elements.

To try this out, I’ll create a single div element with the class attribute set to center:

<div class="center"></div>

Then I’ll use the following CSS rule to center it. This will set the width and height attributes as well as
the background color.

.center {
 width: 100px;
 height: 30px;
 background-color: teal;
 margin: 0 auto;
}

The margin is set to 0 auto, which will cause the div to be centered horizontally.

Summary
In this chapter I covered a number of topics that control how content is positioned within an HTML
document. There are a lot of options available when laying out the content and this is one of the trickiest
concepts in CSS. When deciding how to arrange your content, consider these techniques and choose the
one that fits best:

•	 Block layout - takes up the entire width of its parent and always starts a new row.

•	 Inline layout - designed to flow horizontally from one element to another.

•	 Specifying size - using absolute, relative, or max sizes and setting the size based on content.

•	 Box sizing - automatically considers padding and border in sizing.

•	 Floats - float content left or right and let other content wrap around.

•	 Inline block - allows normally blocked content to flow horizontally.

•	 Relative position - offset content from its calculated position.

•	 Absolute or fixed positioning - positioned independent of the DOM.

•	 Centering - using the margin attribute.

In the next chapter, I’ll explain the CSS features that you can use to format primarily textual content.

https://philipwalton.com/articles/what-no-one-told-you-about-z-index
https://philipwalton.com/articles/what-no-one-told-you-about-z-index

199© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_11

CHAPTER 11

Text Styles

In this Chapter I’ll demonstrate the CSS attributes that are available for styling the text portions of an HTML
document. I’ll start with choosing the font and the various font characteristics and then the text formatting
capabilities that you can use. I’ll cover spacing and alignment and ways to control line and page breaks. I’ll also
explain a few miscellaneous topics such as color, opacity, and cursor, which are not specific to text formatting.

Fonts
The most basic factor when formatting text is choosing the font. There is a seemingly endless collection of
available fonts, and a simple change in the font can have a dramatic effect on your web page. A font is a set of
symbols, known as glyphs in typography, which are mapped to a character set. The browser will display the
letter “A,” for example, based on what glyph it is mapped to in the current font.

Obtaining Fonts
There are three ways that a browser can get a font definition so it can be rendered.

Web-Safe Fonts
The first is known as web-safe fonts, which is somewhat of a misnomer. All operating systems have built-in
fonts; in order to display text on a screen a font is needed to map each character code to a glyph. The
browsers can use any of these built-in fonts. The problem, however, is that operating systems do not all
support the same set of fonts. A web-safe font is one that is generally supported by most devices. This is more
art than science and there are no fonts that have 100% support across every OS. There are a few such as Arial,
Verdana, Times New Roman, and Courier New that are pretty safe bets. There is an article at http://www.
cssfontstack.com/ that shows the font availability for Windows and Mac (unfortunately, it does not show
Android or iOS coverage).

Web Fonts
As you can probably tell, with web-safe fonts, your choices are somewhat limited. The second approach,
which significantly increases your options, is to use web fonts. A web font is downloaded by the browser just
like other resources such as CSS and image files. There are two drawbacks to this approach:

•	 Older browsers don’t support web fonts; however, that only effects a small and
shrinking population of users.

http://www.cssfontstack.com/
http://www.cssfontstack.com/

Chapter 11 ■ Text Styles

200

•	 The additional download can slow the page’s load time, especially if you’re using
several web fonts. These are generally cached by the browser so only the initial load
is normally affected.

If you’re interested in using web fonts, go to https://fonts.google.com/. As of this writing, this site
provides 808 font families and an impressive UI for previewing and selecting a font. After selecting a font, the
site provides instructions on how to include it in your HTML document. To include a web font, you can use a
link element like this:

<link href="https://fonts.googleapis.com/css?family=Cabin" rel="stylesheet">

Alternatively, you can use the @import rule to include the font in the CSS file like this:

@import url(//fonts.googleapis.com/css?family=Cabin);

Either way accomplishes the same thing. Using a link element puts this in the markup and the @import
rule is done in the CSS. I recommend using @import so that all styling changes are contained in the CSS file.
If you later decide to change the font, you should be able to do that without modifying the HTML markup.

The CSS font stack site previously referenced also provides a nice UI for selecting fonts as well as
configuring the CSS and previewing the font definitions. This references the same fonts.googleapis.com
site for the actual font resources.

Custom Fonts
The third approach is to embed your own font definitions in the CSS file. Just like with images, there are
several formats for defining a font. True Type Fonts (TTF) have been around for about 30 years now and
this along with Open Type Fonts (OTF) are the standard for installing fonts on a desktop computer. These
formats are also supported by the major web browsers. However, the Web Open Font Format (WOFF) is the
W3C recommendation and is also supported by most browsers. Also WOFF 2.0 is growing in popularity and
support.

Creating a font definition is beyond the scope of this book. However, once you have created or
purchased a font definition file, you can copy it to your web server. You then need to reference it in the CSS
file using the @font-face rule. Just like with audio and video files, you can supply multiple file formats so the
browser can choose one based on its supported types. To provide support for TTF, WOFF, and WOFF2.0, for
example, include a rule like this. Of course, you’ll need to provide each of these file formats on your server.

@font-face {
 font-family: 'CustomFont';
 src: url('custom.ttf') format('truetype'),
 url('custom.woff') format('woff'),
 url('custom.woff2') format('woff2');
}

There are other sites that provide fonts such as https://www.fontsquirrel.com/ and http://www.
fontex.org/. Both of these sites provide a font file download that you’ll need to host on your web server and
reference as a custom font.

https://fonts.google.com/
https://www.fontsquirrel.com/
http://www.fontex.org/
http://www.fontex.org/

Chapter 11 ■ Text Styles

201

Font Families
Fonts are identified by the term family. The terms Arial, Courier New, and Times New Roman are font
families. When defining a custom font in the previous example, the font-family attribute was assigned
and this is how the CSS will later select it. There are also a set of generic font families, an example of each is
shown in Figure 11-1:

•	 cursive - fonts in this family resemble cursive writing rather than printed text.
Sometimes the characters connect from one to another giving the suggestion of
being handwritten.

•	 fantasy - these fonts are more ornamental and have decorations or nonstandard
character representations.

•	 monospace - monospaced characters all have the same width.

•	 sans-serif - sans means “without” and a serif is an additional stroke, often a
tapered end. So sans-serif fonts do not have these extra marks and are usually more
plain looking.

•	 serif - these are the more traditional fonts, especially in printed text. This is what
you’re reading right now.

Figure 11-1.  Sample generic font families

So the browser has a set of fonts available to it, whether native OS fonts, linked web fonts, or embedded
custom fonts. You can select which one to use with the font-family attribute like this:

p {
 font-family: Cabin;
}

Chapter 11 ■ Text Styles

202

However, since you cannot guarantee that every browser will support this font, you should provide
some additional options as a fallback. This is referred to as a font stack. You can specify more than one family
by separating them with commas. For example:

p {
 font-family: Cabin, Verdana, sans-serif;
}

The browser will process these in order so list your first choice first. You should always end with a
generic font, so you will least get something similar to what you intended. The previous example uses a
typical approach, which is to put the custom or web font first, followed by a web-safe font that is similar,
and lastly a generic font family. You can test this out by changing Cabin to Cabin1 and then Verdana to
Verdana1. With each change notice that the font is different but still similar to the first choice.

■■ Caution  If the font family contains punctuation or numbers, such as Modern No. 20, you’ll need to put
quotes around the name.

Font Settings
Choosing the font family is just the beginning, however. There are other attributes such as size, weight, and
style that will configure the font more precisely. There are quite a few advanced features as well that give you
more control to handle special cases.

Style
The font-style attribute is used to select italic font. There are three possible values: normal (the default),
italic, and oblique. Oblique means slanted or leaning. The oblique keyword is not very well supported
and will usually provide the same effect as italic.

Size
Historically, the font size was measured as the width of the letter “M”; however, it now represents the height
of the uppercase letters. Of course, in non-Western character sets this definition may not be applied exactly.
There are a surprisingly large number of options when it comes to setting the size of a font. Its value is a
distance unit, and I explained all of the units that can be used to define distances in Chapter 2. These units
are also summarized in the reference material in Appendix C.

Designers, however, are encouraged to avoid using absolute sizes such as 12px. If a user needs to
increase the font size for accessibility reasons, they will not be able to adjust these absolute sizes. Using
relative sizing also helps when designing a page, especially when dealing with responsive solutions. For
these reasons, there are several ways to set the font size, in addition to the standard distance units.

There are a set of keywords defined that the browser will map to physical units based on the user’s
font settings:

•	 xx-small

•	 x-small

•	 small

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 11 ■ Text Styles

203

•	 medium

•	 large

•	 x-large

•	 xx-large

These allow you to set your font size while still allowing the user to increase or decrease this as needed.
There are also two keywords that will set the font size relative to the parent element’s font size:

•	 smaller

•	 larger

These will adjust the font size by approximately the same amount that separates the previous keywords.
For example, if the parent element uses small, using larger will be roughly equivalent to choosing medium.
You can also express the font size as a percentage of the parent element’s font size. Setting font-size:
120%; will make the font 20% larger than the parent element’s font.

Some of the distance units that I described in Chapter 2 are relative units. The em unit, for example, is
based on the current font size and rem is based on the font size of the root element. There are also viewport-
relative units such as vh, which is 1% of the viewport height.

■■ Tip T here’s a good article at https://css-tricks.com/almanac/properties/f/font-size/ that
provides examples of the various sizing approaches.

Weight
The font-weight attribute is used to set a bold font and it supports the two values, normal (default) and
bold. However, you can also set this to one of the specific values: 100, 200, 300, 400, 500, 600, 700, 800, or 900.
Most fonts will support a normal and bold type face but they may not support all 9 weight versions. For those
that only support normal and bold, values 100 - 500 will map to normal and 600 - 900 will be bold. For those
that do support the more precise values, the normal keyword will map to a value of 400 and bold maps to 700.

There are also relative keywords that set the font weight relative to the parent element’s font. Using
lighter will make the font weight lighter than its parent and bolder will do the opposite. To demonstrate
the relative values for both size and weight, consider the following markup:

<p class="relative">
 This is going to be big, big, big.
</p>

This text includes a strong element nested inside another strong element. I explained in Chapter 5 that
this has semantic meaning, that this text is really important. To style this, the following CSS rules take this
meaning into account.

.relative {
 font-family: Arial;
 font-size: medium;
}
strong {
 font-size: larger;
 font-weight: bolder;
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_2
https://css-tricks.com/almanac/properties/f/font-size/
http://dx.doi.org/10.1007/978-1-4842-2463-2_5

Chapter 11 ■ Text Styles

204

The first rule simply chooses the font and sets the font size to medium. The next rule uses the relative
values for size and weight, larger and bolder. Implemented this way, the nested strong element will have
the larger and bolder values applied twice. The result is shown in Figure 11-2.

Figure 11-2.  Demonstrating relative size and weight

Color
The font color is set with the color attribute. I explained the various color units in Chapter 2, and they are
also summarized in the reference material in Appendix C. You can also set the opacity attribute, assigning
a number from 0 to 1, with 1 meaning completely opaque and 0 being transparent. You can also set both the
color and opacity attributes using either the rgba() or hsla() functions.

Kerning
Generally, each character occupies a spaced defined by a rectangle. With proportionally spaced fonts, the
width is different for each character. However, some characters are really more like triangles; the capital A
and V are the most outstanding examples. If these two characters are together, for example VA, using the
rectangular model, there will appear to be extra space between them. Another example is a period or comma
next to a top-heavy character like T or Y.

Kerning is a feature that removes this space so that the spacing between characters is more consistent.
This is controlled by the font-kerning attribute. This supports the following values:

•	 auto - this is the default value and allows the browser to determine when this should
be used. In most cases, kerning will be on; however, for smaller font sizes the browser
will usually turn it off.

•	 normal - this will force kerning to be always on.

•	 none - this will turn kerning off.

The best way to explain the effects of kerning is with a demonstration. The following markup includes
two paragraphs with the same characters; the first includes the kerning class and the second has the
noKerning class.

<p class="kerning">T,VAY. - with kerning</p>
<p class="noKerning">T,VAY. - w/o kerning</p>

Then the following CSS rules will assign a large serif font to both paragraphs and set the font-kerning
attribute based on the class attribute. This will be rendered as shown in Figure 11-3.

.kerning, .noKerning {
 font-family: serif;
 font-size: 48px;
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 11 ■ Text Styles

205

.kerning {
 font-kerning: normal;
}
.noKerning {
 font-kerning: none;
}

Figure 11-3.  Demonstrating kerning

Notice when kerning is on, the rectangles of the V, A, and Y characters overlap. Also, the period and
comma are closer to the T and Y characters.

Stretch
The font size describes the height of a font, not the width. Some fonts provide multiple versions with
different character widths. Wider fonts are referred to as stretched and narrow fonts are called condensed.
You can use the font-stretch attribute to control the width. The following values are defined:

•	 ultra-condensed

•	 extra-condensed

•	 condensed

•	 semi-condensed

•	 normal

•	 semi-expanded

•	 expanded

•	 extra-expanded

•	 ultra-expanded

A particular font may not support all of these options, and the browser will choose an available width
that is closest to the requested value. This attribute has no effect on fonts that only provide one width. For a
demonstration, the following markup has two paragraphs: one with the stretched class and one with the
condensed class. The CSS that follows chooses the Arial font and applies the font-stretch attribute to these
two classes. The result is shown in Figure 11-4.

Chapter 11 ■ Text Styles

206

<p class="stretched">stretched</p>
<p class="condensed">condensed</p>

.stretched, .condensed {
 font-family: arial;
 font-size: 48px;
}
.stretched {
 font-stretch: extra-expanded;
}
.condensed {
 font-stretch: extra-condensed;
}

Figure 11-4.  Demonstrating font-stretch

Variant Capitals
The font-variant-caps attribute allows you to use capital glyphs for lowercase characters. This feature is
not supported by IE or Edge browsers. It is also limited by the font capabilities. This attribute supports the
following values:

•	 all-petite-caps - both lower and uppercase characters will use the petite capital
glyphs, if supported. If not, the small capital glyphs will be used for both.

•	 all-small-caps - both lower and uppercase characters will use the small capital
glyphs.

•	 normal - this is the default value and will disable the use of the capital glyphs.

•	 petite-caps - only the lowercase characters will use the petite glyphs; if not
supported, the small capital glyphs will be used instead.

•	 small-caps - the small capital glyphs will be used for the lowercase characters;
uppercase characters will use the normal glyphs.

•	 titling-caps - uses special glyphs for both lower and uppercase characters, which
are design to not appear too bold when a long run of text uses the capital glyphs. If
these are not supported, this attribute is ignored.

•	 unicase - uses the small capital glyphs with the uppercase characters only. This will
cause the uppercase characters to be the same size as the lowercase characters.

Chapter 11 ■ Text Styles

207

For a quick demonstration, the following markup has a paragraph with the smallCaps class and the
CSS sets the font-variant-caps attribute to small-caps. This is rendered in most browsers as shown in
Figure 11-5.

<p class="smallCaps">Using Small Capitals</p>

.smallCaps {
 font-size: x-large;
 font-variant-caps: small-caps;
}

Figure 11-5.  Demonstrating small capitals

Figure 11-6.  Demonstrating diagonal fractions

Numeric
The font-variant-numeric attribute provides the ability to control how certain numerical content is
rendered. For example, ordinal numbers such as 1st, 2nd, and 3rd can be displayed with a superscript.
Likewise, fractions can be rendered as diagonal (½) or as stacked. This attribute is not currently supported
by IE, Edge, or Safari. Also, this requires that the font support these specials glyphs.

I found the diagonal fractions seem to work fairly consistently, but the other features did not work most
of the time. Mozilla has a good explanation of the options that are defined by the W3C recommendation at
https://developer.mozilla.org/en-US/docs/Web/CSS/font-variant-numeric if you want to investigate
further.

The diagonal fractions can be demonstrated with the following markup and CSS. This is rendered as
shown in Figure 11-6.

<p class="diagonal">1/2 2/3 3/4 4/5</p>

.diagonal {
 font-family: Verdana;
 font-size: xx-large;
 font-variant-numeric: diagonal-fractions;
}

Feature Settings
The font-feature-settings attribute provides low-level access to control advanced features of a particular
font. It can be used to modify OpenType font features by setting font-specific configuration values. It should
be used only when the desired effect cannot be achieved through one of the other attributes. There is a good
write-up of this at https://css-tricks.com/almanac/properties/f/font-feature-settings/. However,
check to see what features the font you’re using will support.

https://developer.mozilla.org/en-US/docs/Web/CSS/font-variant-numeric
https://css-tricks.com/almanac/properties/f/font-feature-settings/

Chapter 11 ■ Text Styles

208

Shorthand Notation
I explained in Chapter 2 that you can often set multiple attributes with a single declaration using a shortcut
notation. The font attribute is a good example of this. Using a single declaration, you can set the following
attributes

•	 font-family

•	 font-size

•	 font-weight

•	 font-style

•	 font-stretch

•	 font-variant

•	 line-height (explained later in this chapter)

There are a few restrictions, however. The font-family and font-size are required; the others are
optional. The font-family attribute must be listed last. If the font-weight, font-style, or font-variant
attributes are specified, they must come before font-size. If any of these rules are violated, the entire
declaration is ignored. The line-height attribute, if specified, must come immediately after the font-size
attribute and the two should be separated by a slash (/) character.

■■ Caution T he font-stretch attribute is relatively new and may not be supported by some browsers. If not
supported and it is included in a shorthand notation, the entire declaration will be ignored. For this reason, you
should not include font-stretch but this should be specified separately.

When using the shorthand notation, there are a few defined keywords that you can use to set all of the
font attributes to match the font used by the OS. These are the supported font values:

•	 caption

•	 icon

•	 menu

•	 message-box

•	 small-caption

•	 status-bar

For example, setting font: icon; will use a font that matches the desktop icons.

■■ Tip  Google provides a nice overview of fonts in this article: https://developers.google.com/fonts/
docs/getting_started. This also demonstrates some advanced techniques such as font effects. Many of
these are only supported by the Chrome browser so beware of that; but it's still useful information.

http://dx.doi.org/10.1007/978-1-4842-2463-2_2
https://developers.google.com/fonts/docs/getting_started
https://developers.google.com/fonts/docs/getting_started

Chapter 11 ■ Text Styles

209

Text Formatting
There are also CSS attributes that you can use to control how the text is formatted, such as alignment and
indentation. You can also decorate the text with shadows and other effects.

Horizontal Alignment
The text-align attribute defines how the text is aligned horizontally within its block. The primary values are
left, right, center, and justify, which work just like you would expect. There are two new values, start
and end, which are not yet supported by Edge. The start value is the same as left for left-to-right language,
but is right-aligned in right-to-left languages. If justify is used, the text-justify attribute specifies the
method of justification. The default method is to add spaces between words. There is very little support for
the text-justify attribute currently.

Indent
The text-indent attribute specifies how the first line of a block should be indented (or out-dented). This
is entered as a distance in either absolute or relative units. A negative value indicates the first line is out-
dented. A percentage can also be used, which will be the percentage of the containing block’s width.

Overflow
Text can overflow its horizontal space if it is not able to wrap to the next line. I’ll explain the wrapping
attributes later in this chapter. When that happens, and the overflow attribute is not set to visible, the
portion of text that does not fit will be hidden. The text-overflow specifies how the browser should handle
this scenario. There are two keywords that can be used, clip and ellipsis. The clip value simply clips the
text but the ellipsis value will include an ellipsis (…) inside the block, indicating that there is more text that
cannot be displayed. This will also reduce the amount of text that can be displayed.

■■ Note T his W3C specification for this attribute provides for either one or two parameters. If a single
parameter is specified it indicates what to do on the right side of the block. If two parameters are specified, they
specify the left and right side, respectively. Currently, however, only Firefox supports the two-value version.

For a demonstration, the following markup includes a rather long word. The CSS rule then sets a fixed
width and sets overflow to hidden. Finally, text-overflow: ellipsis; is used to indicate an ellipsis should
be displayed. This is rendered as shown in Figure 11-7.

<p class="overflow">Supercalifragilisticexpialidocious</p>

.overflow {
 font-size: large;
 border: 1px solid black;
 width: 150px;
 overflow: hidden;
 text-overflow: ellipsis;
}

Chapter 11 ■ Text Styles

210

Quotes
Quotation marks are automatically created by the browser in a couple of scenarios. The most common is
when the quote (q) element is used. The browser also detects when there are nested quote elements, for
example:

<q>What do you mean <q>I can't believe he said <q>No</q></q>?</q>

In this case it will put double quotation marks around the outer quote and single quotation marks on
the inner quotes. This will be displayed as: “What do you mean ’I can’t believe he said ’No“?”. However, you
can control what characters are used for the quotation marks using the quotes attribute. For example, the
following CSS rule will tell the browser to use the curly braces for outer quotes and square brackets for inner
quotes. There are four string values supplied with the quotes attribute; the first two are used for the outer
quotation marks and the next two are used for the inner quotation marks.

* {
 quotes: "{" "}" "[" "]"
}

The other scenario where quotation marks are entered is when the ::before and ::after pseudo-
element are used. To demonstrate this, the following markup contains a paragraph with an embedded
quote:

<p class="quote">He said, <q>Eureka!</q></p>

Then, these CSS rules use the pseudo-elements to add quotation marks before and after the text. As
I explained in Chapter 9, the content attribute is used to specify what content should be appended or
prepended to the selected element. In this case, it is set to the open-quote and close-quote keywords.

.quote::before {
 content: open-quote;
}
.quote::after {
 content: close-quote;
}

With these CSS rules in place, both examples are rendered as shown in Figure 11-8.

Figure 11-8.  Demonstrating the quotes attribute

Figure 11-7.  Setting the text-overflow attribute

http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 11 ■ Text Styles

211

Notice that the quotation marks around Eureka! are using the inner marks. Because quotation marks
were added by the pseudo-elements; the browser treated the quote element as if it were nested inside an
outer quote. In the pseudo-elements, if you used the no-open-quote and no-close-quote keywords instead,
no outer quotation marks would be rendered, but the quote element would still be treated as if nested as
used the inner marks.

Shadow
To provide an interesting effect you can add shadows to your text using the text-shadow attribute. This takes
a color value and three distance values. The color value can be either the first or last value. It is technically
optional; however, for maximum support, you should always include it. Some browsers, such as Safari, will
not display the shadow if the color is not specified. Most browsers will default the color to the text color.

The three distance values are the x offset, y offset, and blur radius, and they must be supplied in this
order. The blur radius defines how far the original text image is spread out. The larger the blur radius, the
wider and lighter the shadow will be. This is optional and will default to 0. The x and y offset values are
required and indicate the position of the shadow relative to the text. Positive values will be shifted right and
down; negative values are shifted left and up.

To demonstrate the various effects of text shadows, the following markup contains three paragraphs
with the same text and different class values. A different CSS rule is defined for each class with different
values for the text-shadow attribute. This is rendered as shown in Figure 11-9.

<p class="shadow">This text has shadows</p>
<p class="background">This text has shadows</p>
<p class="blurred">This text has shadows</p>

.shadow {
 font-size: xx-large;
 text-shadow: 10px 5px 1px gray;
}
.background {
 font-size: xx-large;
 text-shadow: 0px 0px 5px gray;
}
.blurred {
 font-size: xx-large;
 text-shadow: 10px 5px 10px gray;
}

Figure 11-9.  Demonstrating text shadows

Chapter 11 ■ Text Styles

212

Capitalization
The text-transform attribute can be used to force the capitalization of text. This only effects how characters
are rendered in the browser; in the DOM the text retains its original value. The text-transform attribute
supports the following values:

•	 capitalize - the first letter of every word is converted to uppercase. Be aware,
however, this does not support title casing where words such as “a” or “the” in the
middle of a title are not capitalized.

•	 uppercase - all characters are changed to uppercase.

•	 lowercase - all characters are changed to lowercase.

•	 none - no changes are made (use this to override a previous rule).

■■ Caution  Some languages have unique capitalization rules and browser support will vary in this regard.
There are cases where these are handled properly and some in which they are not.

Spacing and Alignment
You can control the spacing of text in your HTML document using CSS attributes. You can also define
how whitespace characters in your content should be handled by the browser. Vertical alignment of inline
elements can be accomplished through the vertical-align attribute.

Basic Spacing
There are three simple CSS attributes that allow you to control the space between letters, words, and lines.
These don’t need much explanation so I’ll describe them briefly

•	 letter-spacing - a positive value will create additional space between characters
and a negative value will remove space that can causing overlapping. All distance
units except percentages are allowed, including absolute values such as pixels and
relative units such as em, rem, and vw. The default value is normal, which allows the
font to perform standard spacing, including justification.

•	 word-spacing - affects the spacing between words and inline elements. Any distance
unit is allowed; however, only Firefox supports percentages. Values can be absolute
or relative but negative values are not supported. The default value is normal.

•	 line-height - specifies the vertical space used for each line of text. The default value
is normal, which is roughly 20% more than the font size. The line-height can be
specified as a number, like 1.2, or a percentage like 120%, which is multiplied by the
font size or a distance unit such as 20px or 3em. Avoid absolute distance units as this
can produce unexpected results. The line-height attribute can also be set using the
font shorthand notation, which I explained earlier.

Chapter 11 ■ Text Styles

213

Handling Whitespace
In Chapter 1 I said that whitespace characters are generally ignored and that is the default behavior unless
the content is inside a pre element. However, you can change the way whitespace characters are handled
with the white-space attribute. It supports the following values:

•	 normal - this is the default value. Sequences of whitespace characters are collapsed
to a single space and newline characters are treated as a space. Text is only wrapped
as needed to fill the block.

•	 nowrap - whitespaces are collapsed just like with normal ones but text is never
wrapped.

•	 pre - this functions just like the pre element; it preserves the whitespace characters
and text is wrapped only at newline characters.

•	 pre-wrap - functions like the pre value except text is also wrapped as necessary to fill
the block.

•	 pre-line - whitespace characters are collapsed like the normal value except text is
wrapped at newline characters as well as when necessary to fill the block.

To demonstrate this, I’ll use the poem by Henry Wadsworth Longfellow that I introduced in Chapter 4.
This time, it will be inside a normal paragraph element instead of a preformatted element, but I can achieve
the same effect using CSS.

<p class="whitespace">I heard the bells on Christmas Day
Their old, familiar carols play,
 And wild and sweet
 The words repeat
Of peace on earth, good-will to men!</p>

With only the default styles applied, this text would be on a single line, or wrapped where necessary,
depending on the width of the window. However, the following CSS rule will treat this a preformatted text, as
shown in Figure 11-10.

.whitespace {
 font-family: monospace;
 white-space: pre;
}

Figure 11-10.  Handling preformatted text in CSS

http://dx.doi.org/10.1007/978-1-4842-2463-2_1
http://dx.doi.org/10.1007/978-1-4842-2463-2_4

Chapter 11 ■ Text Styles

214

Vertical Alignment
Vertical alignment can be tricky. The vertical-align attribute is used for this but its behavior is not always
intuitive. It works great for table cells, which I will cover in Chapter 13. For other content, it only works for
inline and inline-block elements. For inline content (including inline-block), the following values are
defined:

•	 baseline - the baseline of the element is aligned with the baseline of the parent element.

•	 bottom - the bottom of the element is aligned with the bottom of the current line.

•	 middle - this one is a little different than you might expect; the middle of the element
is aligned with the baseline of the parent plus half of the height of the parent’s
lowercase x character.

•	 sub - the baseline is aligned with the subscript baseline of the parent element.

•	 super - the baseline is aligned with the superscript baseline of the parent element.

•	 text-bottom - the bottom of the element is aligned with the bottom of the parent
element.

•	 text-top - the top of the element is aligned with the top of the parent element.

•	 top - the top of the element is aligned with the top of the current line.

•	 You can also enter a distance unit using either absolute or relative units, which will adjust
the baseline of this element with the baseline of the parent. A percentage can also be
used, which will be multiplied by the line height. Negative values are allowed as well.

Except for the top and bottom values, the alignment is based on the parent element. To demonstrate
this, I’ll use the following markup that places two span elements inside a paragraph element.

<p id="Align">
 X
 Large
 Small
 X
</p>

The paragraph is the parent element and I have included an “X” before and after the span elements so
you can visualize the location of the parent that the span elements are being aligned to. I’ll then create three
CSS rules. The first simply defines the font of the parent element.

#Align {
 font-family: Verdana;
 font-size: 36px;
}
.large {
 font-size: 48px;
 vertical-align: text-bottom;
}
.small {
 font-size: 24px;
 vertical-align: text-top;
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 11 ■ Text Styles

215

The next two rules set the font size for the span element and sets the vertical-align attribute. The
large font is aligned to the bottom and the small font is aligned to the top. The result is shown in Figure 11-11.

Figure 11-11.  Demonstrating vertical alignment

You might have noticed that the text doesn’t quite line up like you would expect. This is because of the
way the browser computes the baseline and other factors that are used to perform the alignment. If you want to
look into this further, there is a good article at http://christopheraue.net/2014/03/05/vertical-align/.

For a second example, I’ll align a fixed-size div element next to a text element. Here is the markup; there
are two div elements with the align class. Inside of each there is an empty div with the box class and a span
element with some text.

<div class="align">
 <div class="solid box"></div>
 Solid Box
</div>

<div class="align">
 <div class="outline box"></div>
 Outline Box
</div>

To style this, the following CSS rules will cause the first inner div to have a solid square and the second
an outlined square. Both the box div and the span element have the vertical-align attribute set to middle.
This is rendered as shown in Figure 11-12.

.align {
 display: inline-block;
 font-size: 48px;
}
.box {
 display: inline-block;
 height: 10px;
 width: 10px;
 border: 1px solid black;
 vertical-align: middle;
}
.solid {
 background-color: black;
}
.align>span {
 vertical-align: middle;
}

http://christopheraue.net/2014/03/05/vertical-align/

Chapter 11 ■ Text Styles

216

Break
There are CSS attributes that you can use to control when line and page breaks should occur. Page breaks are
primarily used when printing a document.

Word Wrap
The overflow-wrap attribute determines where line breaks can be inserted to wrap text to fit the width of
its container. The normal value indicates that breaks can only be inserted between words, at word-break
opportunity (wbr) elements, or at hard or soft hyphens. These were explained in Chapter 5. The break-word
value indicates that a word can be broken at any arbitrary point in order to fit into the allowed space.

■■ Caution T he word-wrap attribute is supported by most browsers but has been replaced with overflow-wrap.
The word-wrap attribute will likely be supported for a long time, but you should use overflow-wrap instead.

There is an additional word-break attribute that is similar to overflow-wrap. It supports a normal and
break-all values that are roughly equivalent to the normal and break-word attributes of overflow-wrap.
The word-break attribute also supports a keep-all value that applies primarily to Chinese, Japanese, and
Korean languages. There are some slight differences in how overflow-wrap: break-word; and word-break:
break-all; behave between different browsers and contexts. Unless you’re working with these specific
languages, I would stick with the overflow-wrap attribute.

When a line break is inserted in the middle of a word, you might want to also include a hyphen at the
end of the line to indicate that the word continues. The hyphens attribute controls when this occurs and
supports the following values:

•	 none - hyphens are never used when breaking a word.

•	 manual - a hyphen is used only when either a hard or soft hyphen character exists
where the word was broken.

•	 auto - the default value. This works like manual except that a hyphen may also be
added when determined by a language-specific resource that indicates when a
hyphen is appropriate. This, of course, relies on language specific support, which is
currently very limited. In most cases, this will function like manual.

Figure 11-12.  Aligning a box with text

http://dx.doi.org/10.1007/978-1-4842-2463-2_5

Chapter 11 ■ Text Styles

217

Page Break
When rendering an HTML to be printed, you can control how page breaks are generated. There are three
attributes that you can apply:

•	 page-break-after - identifies the rules to be applied at the end of the element.

•	 page-break-before - specifies any page break rules that should be applied before
the element.

•	 page-break-inside - indicates if page break should be allowed inside of the
element.

For each of these attributes, the default value is auto, which doesn’t define any rules; the browser will
generally break to a new page at the bottom of a page. The page-break-inside attribute supports one other
value, avoid. Use this to prevent a page break in the middle of a particular element. For example, if you don’t
want to break in the middle of header element, create the following rule:

header {
 page-break-inside: avoid;
}

The other two attributes, page-break-before and page-break-after, support the following values, in
addition to auto and avoid:

•	 always - a page break should always be made before (or after) the element.

•	 left - works like always except it may generate either one or two page breaks to
force the next page to be a left-hand page.

•	 right - just like left except the next page will be a right-hand page.

You can use the page-break-before attribute to force a new page for each h1 element, for example. You
could do the same for each section or article element depending on how the document is structured.

■■ Caution T hese page break attributes are being replaced with generic break attributes. For example,
page-break-after will be replaced with break-after. However, as of this writing, there is no support for the
new attributes.

Cursor
The shape of the cursor provides important feedback as the mouse is moved over the web page. For
example, when hovering over a link, the cursor normally changes to a hand with a pointing finger. It’s really
easy to set the cursor shape by using the cursor attribute and selecting one of the predefined keywords. For
example,

a {
 cursor: pointer;
}

Chapter 11 ■ Text Styles

218

Rather than listing all of the options here, I’ll refer you to the following Mozilla article that lists all of
them with sample images: https://developer.mozilla.org/en-US/docs/Web/CSS/cursor. You can also
hover your mouse over them to see exactly what they will look like in your OS. The cursor is controlled by the
OS and the actual shape will vary depending on which OS you are using.

You can also define your own cursors by specifying a URL to an image file. When using a custom cursor,
you should also include a predefined keyword as a fallback in case the image file is not supported. Multiple
cursors may be defined like this:

a {
 cursor: url(custom.png), url(fallback.cur), crosshair;
}

Summary
In this chapter I explained how to use both web-safe fonts and web fonts and how to configure the various
aspects that can be controlled through CSS. There are quite a few CSS attributes that give you great control
over how text is arranged. In the next chapter, I’ll demonstrate how to use borders and backgrounds to
enhance the content in your HTML document.

https://developer.mozilla.org/en-US/docs/Web/CSS/cursor

219© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_12

CHAPTER 12

Borders and Backgrounds

Borders
In some of the examples in previous chapters, I added a border around elements to help visualize the space
allocated to them. I used a CSS rule like this:

border: 1px solid black;

This uses shorthand notation that sets the three primary aspects of a border: width, style, and color.
This is equivalent to setting each of the attributes separately:

border-width: 1px;
border-style: solid;
border-color: black;

Basic Styles
There are eight border styles, which are demonstrated in Figure 12-1. All the major browsers support these,
although the implementation varies with each one.

Figure 12-1.  The basic border styles

Chapter 12 ■ Borders and Backgrounds

220

To create this demonstration, I used the following markup that creates eight div elements, each with a
box class attribute and a specific class for each of the eight styles.

<section>
 <div class="box solid">solid</div>
 <div class="box double">double</div>
 <div class="box dashed">dashed</div>
 <div class="box dotted">dotted</div>
 <div class="box inset">inset</div>
 <div class="box outset">outset</div>
 <div class="box ridge">ridge</div>
 <div class="box groove">groove</div>
</section>

To make this easier to see, I used the following style rules to give these elements a fixed size, set a
background color, and center the text.

section {
 background-color: lightyellow;
}

.box {
 display: inline-block;
 width: 100px;
 height: 50px;
 margin: 10px;
 background-color: lightblue;
 text-align: center;
 line-height: 50px;
}

The following rules then sets only the border style using a class selector; the width and color are not
specified, allowing the browser to use default values.

.solid { border-style: solid; }

.double { border-style: double; }

.dashed { border-style: dashed; }

.dotted { border-style: dotted; }

.inset { border-style: inset; }

.outset { border-style: outset; }

.ridge { border-style: ridge; }

.groove { border-style: groove; }

The default width is 3px and the default color, for the simple styles, is black. The last four styles,
however, use multiple colors to achieve a 3D effect. To make this a little more obvious, I’ll make the border
wider by adding this to the box selector. The result is shown in Figure 12-2.

border-width: 12px;

Chapter 12 ■ Borders and Backgrounds

221

You can also adjust the color like this:

border-color: green;

For the first four styles, since these use a solid color, the border-color attribute works just like you
would expect it to. However, the 3D styles use a combination of light and dark to create a shadow effect.
When you specify the color, most browsers will honor this color for the light portion, and use black for the
shadow areas. For example, Chrome will render this as shown in Figure 12-3.

Figure 12-2.  Using a wider border

Figure 12-3.  Using 3D and color in Chrome

In my opinion, this diminishes the 3D effect and does not look very realistic. In contrast, Firefox uses a
light and dark shade of the specified color and has a much better effect as shown in Figure 12-4.

Figure 12-4.  Using 3D and color in Firefox

Individual Edges
Each of these attributes: border-style, border-width, and border-color are actually shorthand properties
as well. You can specify the attribute for each edge independently. For example:

.solid {
 border-top-width: 3px;
 border-right-width: 6px;
 border-bottom-width: 9px;
 border-left-width: 12px;
}

Chapter 12 ■ Borders and Backgrounds

222

There is also a shorthand for each edge, allowing you to specify the width, style, and color with a single
declaration like this:

.double {
 border-top: 3px solid red;
 border-right: 6px dashed blue;
 border-bottom: 9px dotted green;
 border-left: 12px double orange;
}

■■ Caution  Just because you can, doesn't mean you should. The CSS syntax gives you a lot of flexibility to
control the border attributes. However, as a general design principle, a border should be consistent around all
of the edges. Look at Figure 12-5 to see how bad this looks when mixing border properties. Certainly the 3D
effects will completely fail if you don't apply them consistently.

Figure 12-5.  Mixing border attributes

Figure 12-6.  Using only a top and bottom border

To demonstrate a more appropriate use of individual border attributes, I’ll create a new paragraph
element and apply the following CSS rule:

<p class="standOut">Make this stand out!</p>

.standOut {
 border-top: 2px solid black;
 border-bottom: 2px solid black;
 display: inline-block;
 text-align: center;
 font-size: xx-large;
}

I set only the top and bottom edges with a solid border, which will add a line above and below the text
as shown in Figure 12-6.

Chapter 12 ■ Borders and Backgrounds

223

Radius
You can easily create rounded corners by setting the border-radius attribute. For example, to set all four
corners to be curved with a 5px radius, use the following:

border-radius: 5px;

Again, this is actually a shorthand property; you can also set individual values. However, the radius
applies to corners rather than edges, so the individual attributes are as follows:

•	 border-top-left-radius

•	 border-top-right-radius

•	 border-bottom-right-radius

•	 border-bottom-left-radius

You can also specify multiple values with a single border-radius declaration. As I’ve shown, passing a
single value will adjust all four corners. If you pass two values, the first will apply to the top-left and bottom-
right corners and the second to the top-right and bottom-left corners. If you pass three values, the first will
apply to the top-left corner, the second to the top-right and bottom-left corners, and the third to the bottom-
right. If you pass four values, each will apply to a different corner, starting with the top left and proceeding in
clockwise order.

To demonstrate this, I’ll add the following declaration to the box class selector. This will set the top-left
and bottom-right corners to have a larger radius than the other two corners. This is rendered as shown in
Figure 12-7.

border-radius: 20px 10px;

Figure 12-7.  Applying different corner radii

There are actually two radii for each corner: one in the horizontal direction and one vertical. This is
illustrated in Figure 12-8.

Chapter 12 ■ Borders and Backgrounds

224

If a single value is supplied, as in the previous example, it will be used for both the x and y radii. In this
case, the border shape is a circle. The syntax for entering two values is to separate them with a “/” character.
For example:

border-radius: 5px / 10px;

If you are specifying different radii for each corner, specify the x values first, then add the “/”, and then
enter the y values. You can supply 1-4 values for the x radius and 1-4 values for the y radius. You don’t have
to use the same number of values for both x and y. For example, you can supply a single value for x and four
values for y; or vice versa. By way of illustration, the following set of declarations are equivalent:

border-radius: 20px 10px 5px / 5px 10px;

is equivalent to:

border-top-left-radius: 20px / 5px;
border-top-right-radius: 10px / 10px;
border-bottom-right-radius: 5px / 5px;
border-bottom-left-radius: 10px / 10px;

In the previous example, the radius was specified as an absolute length; however, you can also provide
this as a percentage of the element. One particularly interesting application of this is to set the radii like this,
which is rendered as shown in Figure 12-9.

border-radius: 50% / 50%;

Figure 12-8.  Explaining elliptical corners

Chapter 12 ■ Borders and Backgrounds

225

Figure 12-9.  Using elliptical borders

Using Images
In addition to the eight standard border styles, you can also use an image to give you virtually unlimited
flexibility. The image file is specified using the border-image-source attribute:

border-image-source: url(pattern.png);

Slicing
An image file will have a fixed size but the element that you are bordering may shrink and grow
depending on content. You may also apply the image border to elements that have varying shapes and
sizes. To deal with this effectively, and avoid distorting the image, the image file is sliced into pieces and
reassembled. The border image is sliced into nine regions using the specified offset values as illustrated
in Figure 12-10.

Chapter 12 ■ Borders and Backgrounds

226

These offsets are specified using the border-image-slice attribute, providing the top, right, bottom,
and left values:

border-image-slice: 20 25 30 35;

The values are specified as numbers with no units; these will be interpreted as pixels for bitmapped
images and coordinates for raster images (such as SVG). You can also specify these values as percentages,
which will indicate the portion of the overall image width (or height). In typical CSS fashion, you can supply
fewer than four values as well. A single value will be used for all four offsets. If two values are provided, the
first will be used for the top and bottom and the second for left and right. If three values are supplied, the
first will be the top offset, the second will be the left and right, and the third will be the bottom. You can
also include the keyword fill anywhere in the value list. If omitted, the center portion of the image will be
discarded. If fill is specified, the center will be used as a background.

Allocating
Now that you have your eight (or nine) pieces, you define how they are used to create a border. The first
step is to allocate space for the border. The simplest way to do that is to define a normal solid border with a
transparent color. For example:

border: 35px solid transparent;

Figure 12-10.  Slicing a border image

Chapter 12 ■ Borders and Backgrounds

227

This does not add a visible border, but will define a space that is 35 pixels wide around the existing
element. The subsequent border attributes will then be applied to this space. The alternative is to use the
border-image-width attribute:

border-image-width: 35px;

This will also allocate a space that is 35 pixels wide but with one very important difference. The border
attribute will allocate space outside of the element. If the element was a square 100 pixels wide, for example,
adding the border will increase the total space used to 170 pixels. However, the border-image-width
attribute will allocate the space inside the element. The same 100-pixel square will now only have 30 pixels
available to render the actual content. You can adjust for this by using the border-image-outset attribute.

border-image-outset: 35px;

This will shift the position of each edge toward the outside; the left edge will shift to the left the distance
specified, the right edge will shift to the right, etc. Now the actual content of the element will have the
original 100-pixel square. However, this introduces another issue; the border-image-outset attribute does
not allocate additional space in the DOM; the positioning of the neighboring elements is not changed
causing a potential overflow condition. This can be resolved by increasing the margin. So you would need
the following declarations:

border-image-width: 35px;
border-image-outset: 35px;
margin: 35px;

■■ Tip  For simplicity, I'm passing a single value for each of these attributes to define the width, outset, and
margin, which will use the same distance for all four edges. You could also specify, two, three, or four values
that would be applied as previously described.

As I said, using the border attribute is the simplest approach. In either case, however, you now have a
35-pixel wide strip around the element that will be used to display the image pieces.

Assembling
So back to the eight or nine image pieces; these are now assembled into the allocated space. Figure 12-10
illustrates how the image file is sliced into areas. A similar process also happens to the element that you are
now bordering. The width of the narrow strips along the edges is defined by the border width, 35px in the
current example. The length of the top and bottom strips is determined by the element width. Likewise, the
length of the left and right edges is determined by the height of the element. The corner sections are defined
by the border width: in this case a 35-pixel square.

The corresponding slices from the image file are then scaled to fit the spaces of the border. The corners
are pretty straightforward. In fact, if you set the offset for the slicing to be the same as the border width, no
scaling is needed; the corners are not distorted at all. The edges, however, will often require considerable
scaling, especially when you adding a border to elements of different sizes. There are several options to
address this using the border-image-repeat attribute.

•	 stretch - the pieces from the image file are stretched or shrunk as needed to fit the
border. This is often only needed in one direction, if the slice offset and border width
are the same.

Chapter 12 ■ Borders and Backgrounds

228

•	 repeat - the piece is repeated as many times as needed to fill the space, often
clipping a partial copy for the last instance.

•	 round - the pieces are repeated like the repeat option, but only a whole number is
used and the individual pieces are scaled to fit the space. This prevents a partial copy
from being rendered.

To demonstrate this, I’m using an image file that has an animal print pattern (I think this is a jaguar),
which will be used for the border. The markup will create a simple div element:

<div class="pattern"></div>

The CSS rule will set a fixed width and height and then define a 35-pixel border. I’m also using 35 for the
slice offset so the corners will not be scaled. Regardless of the size of the actual element, the edge pieces will
only be scaled in one direction. If the image were stretched, it would be somewhat obvious because of the
pattern being used, so I’m using the repeat option. The final CSS rule follows and the element is rendered as
shown in Figure 12-11.

.pattern {
 width: 350px;
 height: 250px;
 margin: 10px;
 border: 35px solid transparent;
 border-image-source: url(pattern.png);
 border-image-slice: 35;
 border-image-repeat: repeat;
}

Figure 12-11.  A image border using repeat

Chapter 12 ■ Borders and Backgrounds

229

If you look closely at the border, you can see where it has been spliced together because of the repeat
option. However, because of the general randomness of the pattern this is not very obvious unless you zoom
in. This illustrates the trade-off between the stretch, repeat, and round options. Certain images stretch well
and some repeat well.

■■ Caution  Image borders do not support rounded corners. If you apply the border-radius attribute to your
border, the element will have rounded corners but the actual visible border around it will have square corners.

For an additional demonstration, I will put a border around an image. The image is a famous painting
of George Washington, which I used in Chapter 7. The border uses an image of a picture frame. Here is the
markup and CSS rule to accomplish this.

img {
 margin: 10px;
 width: 350px;
 border: 34px solid transparent;
 border-image-source: url("frame.jpg");
 border-image-slice: 34;
 border-image-repeat: stretch;
}

The CSS is similar to the first example; I’m only specifying the width of the image element so the painting
will retain its original aspect ratio. The border configuration is basically the same except I’m using the stretch
option. The corners are not scaled at all since I’m using 34px for both the slice offset and border with. The
edges are mostly straight lines so stretching them along that dimension will not appear distorted. This also
avoids the splicing of pieces, which would be more visible with this image. The result is shown in Figure 12-12.

Figure 12-12.  Using the stretch option

http://dx.doi.org/10.1007/978-1-4842-2463-2_7

Chapter 12 ■ Borders and Backgrounds

230

Gradients
For a final border option, you can also use a color gradient. A gradient allows the color to gradually change
over an area. They are often used for a background, which I will demonstrate later in this chapter. They can
be applied to a border as well. There are two types of gradients:

•	 linear - the color changes from one edge (or corner) to the opposite.

•	 radial - the color changes as you move outward from the center.

The result of a gradient is essentially an image. It’s not a resource that is downloaded; however, it can
be used any place in CSS where an image is expected. To use a gradient border, you’ll need to define the
gradient as the value for the border-image-source attribute.

Linear Gradients
A linear gradient, as you might expect, is defined by a line, called the gradient line, which passes through the
center of the element. This is illustrated in Figure 12-13. The gradient line is defined as an angle measured in
clockwise direction from the vertical axis; the gradient line in Figure 12-13 is roughly 130°. The direction of
the line is important; if you wanted the starting point to be on the right, add 180° to the angle.

Figure 12-13.  Defining a linear gradient

The gradient line can also be specified using the to keyword. After the to keyword you then specify one
of the sides (top, right, bottom, or left). So to right would create horizontal gradient going from left to
right. If you want the gradient to go from corner to corner, specify the ending corner as a pair of sides. For
example, to bottom left the gradient will start at the opposite corner, top right and end at the bottom-left
corner. The pair of sides can be in either order.

Chapter 12 ■ Borders and Backgrounds

231

The color is specified at points along this line. At a minimum, the color at the start and end points
is required. You can also specify one or more color stops, which are defined as a percentage of the total
distance between the start and endpoints. Between these specified points, the color changes gradually. For
a simple demonstration, the following markup creates an empty div element and the CSS rule defines the
border as a linear gradient.

<div class="linear"></div>

.linear {
 width: 350px;
 height: 150px;
 margin: 10px;
 border: 35px solid yellow;
 border-image: linear-gradient(130deg, red, yellow 20%, green 80%, blue);
 border-image-slice: 1;
}

This creates a linear gradient that changes gradually from red, yellow, green, and blue. However, since
the two color stops were close to the starting and ending point, most of the color will be between yellow
and green, with a little bit of red at the start and a little bit of blue at the end. This is rendered as shown in
Figure 12-14.

Figure 12-14.  Using a linear gradient for a border

■■ Caution  Some browsers may not support gradients, so you should have a fallback to set a solid color.
(Currently, Safari does not support border gradients). Instead of setting the solid border to transparent as
in the previous examples, set it to a color, which will be used if the gradient can't be used. Also, the border-
image-slice attribute is required but you can set this to 1. Since gradients automatically grow and shrink
based on the size of the element, there is no need to actually slice the image and reassemble.

Chapter 12 ■ Borders and Backgrounds

232

Radial Gradients
A radial gradient starts from its center point and the color changes uniformly as it moves outward. This is
illustrated in Figure 12-15. The final shape at the end of the gradient can either be a circle or an ellipse. Like
linear gradients, you must specify the starting and ending color and you can also define one or more color
stops in between.

Figure 12-15.  Radial gradients

To define a radial gradient, you specify the following details:

•	 Final shape - this can either be circle or ellipse; the default is ellipse.

•	 Extent - the final size of the gradient is determined by one of the following keywords:
(farthest-corner, farthest-side, closest-corner, closest-side).

•	 Starting position - the default, if omitted, is the center of the element. This is
specified as an offset from the top-left corner.

•	 Color stops - 0% indicates the starting point and 100% the ending shape.

Chapter 12 ■ Borders and Backgrounds

233

Figure 12-16.  A border with a radial gradient

For a demonstration, the following markup creates an empty div element and the CSS rules defines a
radial gradient to be used with it. This is rendered as shown in Figure 12-16.

<div class="radial"></div>

.radial {
 width: 350px;
 height: 150px;
 margin: 20px;
 border: 35px solid yellow;
 border-image: radial-gradient(ellipse farthest-corner at 175px 0px, yellow 0%, orange
75%, green 100%);
 border-image-slice: 1;
}

Box Shadows
In the last chapter I explained how to configure text shadows. You can accomplish similar effects on almost
any element using the box-shadow attribute. This attributes accepts a number of values; some are required
but many are optional. If supplied, the values should be in this order:

•	 inset - (optional) If this value is not included, the shadow will be drawn outside of
the element as if the element was above the surrounding area. If inset is specified,
the shadow is drawn inside the element, as if the element were sunken below its
surroundings.

•	 x offset - (required) the horizontal offset of the shadow; negative values will cause the
shadow to be to the left of the element.

•	 y offset - (required) the vertical offset of the shadow; negative values will cause the
shadow to be above the element.

Chapter 12 ■ Borders and Backgrounds

234

•	 blur radius - (optional) specifies how much the shadow diffuses beyond its original
size. A larger size will cause a larger, but lighter shadow. Defaults to 0 if not supplied;
negative values are not allowed.

•	 spread radius - (optional) defines the relative size of the shadow. The default value is
0, which means the shadow is the identical size of the element. A negative value will
make the shadow smaller and a positive value larger.

•	 color - (technically optional but should be supplied for maximum support) defines
the color of the shadow using any color unit.

The shadow is essentially a new element that sits just below the original element in the z order. Its size
and position is relative to the original element. To compute the size and position of the shadow, the original
element’s shape is shifted based on the x and y offset values. It is then stretched or shrunk as specified by the
spread radius. This is illustrated in Figure 12-17. The shadow has a solid fill background using the specified
color. If a blur radius is defined, the edges are then stretch beyond the specified size with a blur effect.

Figure 12-17.  Computing the shadow position and size

There are two common uses of box shadows. One is to make an element appear to come off the
page. This is accomplished by shifting the shadow slightly, typically down and to the right as illustrated in
Figure 12-18. This is accomplished with the following declaration:

box-shadow: 10px 10px 5px black;

Chapter 12 ■ Borders and Backgrounds

235

Figure 12-18.  Making an element come off the page

The other technique is to soften the lines of the element by adding a blur effect on all sides as shown in
Figure 12-19. This is done through this declaration, which keeps the same size and position as the original,
leaving only the blur visible:

box-shadow: 0px 0px 15px black;

Figure 12-19.  Adding a blur around an element

■■ Note  If a border radius is used, the shadow will also have rounded corners. It follows the same shape as
the original element.

Outlines
An outline is a box drawn around an element, like a border. The important difference is that it does not take
up any space; it is drawn on top of the space allocated to the existing elements. Because of this, outlines are
often used with pseudo-classes such as :hover, since the box can be added or removed without affecting the
layout of the page. When defining an outline, you can specify the following attributes:

•	 outline-color

•	 outline-style

•	 outline-width

These attributes can be set individually or with the outline shorthand notation, just like a border is
defined. The supported style values are the same eight values supported for border styles (solid, double,
dashed, dotted, inset, outset, ridge, and groove). You can also use the value none, which will cause the
outline to be hidden.

Chapter 12 ■ Borders and Backgrounds

236

In addition, the outline-offset attribute adds padding between the element and the outline. For
example, adding this will shift the outline 5 pixels in all directions. This cannot be done with the outline
shorthand.

outline-offset: 5px;

■■ Caution  The outline-offset attribute is not currently supported in IE or Edge.

The following markup creates a div element and the CSS rule adds an outline to it, which is rendered as
shown in Figure 12-20.

<div class="outline">This is an outline</div>

.outline {
 outline: 1px solid black;
 outline-offset: 5px;
}

Figure 12-20.  Demonstrating an outline

■■ Note  The wider the border, the more space the outline will use. It doesn't adjust the position of the
elements but superimposes the box on the existing space. The box is always outside of the element that is
being outlined so it won't affect the element, but it can overflow the neighboring elements.

Backgrounds
There are basically two options for setting a background to an element; a color or an image. To use a color
simply set the background-color attribute using any of the color units explained in Chapter 2. These are also
summarized in the reference material in Appendix C. When using images there are a few more attributes
that control how the image is displayed.

Image Attributes
A background image can be specified for an element using the background-image attribute. This is pretty
straightforward; just specify the URL for the image file to be used. You can specify multiple images that are
stacked on top of each other in the order specified. However, there are a few other attributes that affect how
the image is rendered.

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 12 ■ Borders and Backgrounds

237

Attachment
The background-attachment attribute defines how the image is positioned and supports the following
values:

•	 fixed - the image stays fixed relative to the window; scrolling the window has no
effect on the background image.

•	 local - the image is fixed relative to the element’s content. If you scroll the contents,
the background image will scroll with it.

•	 scroll - (this is the default value) the image is fixed relative to the element. It will
move with the element but if the contents within the element are scrolled, the
background is not.

Also, since multiple images can be specified, multiple values for the background-attachment attribute
can be specified as well. Each one is separated with a comma and applied to the corresponding image in the
order specified.

Origin
For local and scroll options, the background-origin attribute defines the containing rectangle for the
image. The following values are supported:

•	 border-box - the background extends to the outside edge of the element’s border.

•	 content-box - the background only covers the actual element content area (does not
include the padding and border).

•	 padding-box - the background includes the element content and the padding but
not the border.

Repeat
The background-repeat attribute specifies if and how a background image should be repeated to fill the
necessary space. The image can be repeated in both the horizontal and vertical directions and you can
provide two different values to the background-repeat attribute. The first value applies to the horizontal
behavior and the second is used for vertical repeat. The following values are allowed:

•	 no-repeat - the image is not repeated, possibly leaving areas not covered by the
image.

•	 repeat - (default) the image is repeated as often as necessary, with the last repeat
often being clipped.

•	 round - repeats the image but only whole images are displayed. The displayed
images are then stretched uniformly to fill in any remaining gaps.

•	 space - repeat only whole images similar to the round option. However, instead of
stretching the images to fill the gap, it leaves a uniform spacing between them. The
first and last images are pinned to the left and right edges (or bottom and top) and
the spaces are between the images.

Chapter 12 ■ Borders and Backgrounds

238

There is also a shorthand where both the horizontal and vertical behaviors can be specified with a
single value. If a single value of no-repeat, repeat, round, or space is used, it will be applied for both the
horizontal and vertical values. In addition, repeat-x indicates the repeat option is used for horizontal but
no-repeat for vertical. Likewise, repeat-y indicates the opposite.

■■ Caution  As of this writing, the round and space values are not supported by Firefox or Safari.

Position
The background-position attribute is used to specify where the image is positioned relative to its origin. The
default value is 0 0, indicating the top-left corner. The position can be specified with one of the following
keywords: top, right, bottom, left, or center. It can also be specified as a pair of distance values, either
relative or absolute, separated with a space. If multiple images are used, multiple positions can be specified
as well; these should be separated by a comma.

Size
The size of the image is indicated through the background-size attribute. The size can be specified with one
of the following keywords:

•	 contain - the image is scaled as large as possible while still maintaining the original
aspect ratio. This generally means that in one dimension or the other, there will be
blank space around the image. It is normally centered unless this is overridden by
the background-position attribute.

•	 cover - the image is scaled as large as possible, maintaining the aspect ratio.
However, in order to cover the small dimension, the image is often clipped in the
other dimension.

Alternatively, you can specify a single distance value, either relative or absolute, which will define
the width of the background. In this case, the height will be set to auto. You can also specify two values,
separated by a space: the first defining the width and the second defining the height. The keyword auto can
be used with either the single or double value entry. This specifies that this dimension is set based on the
intrinsic image size or as needed to maintain the aspect ratio. If there are multiple images, multiple sizes can
be supplied as well, separated by a comma.

Clipping
The background-clip attribute specifies where the background should be clipped. This attribute allows
you to control whether the background should extend over the padding and border area of an element.
The following values are supported:

•	 border-box - the background extends to the outside edge of the element’s border.

•	 content-box - the background only covers the actual element content area (does not
include the padding and border).

•	 padding-box - the background includes the element content and the padding but
not the border.

Chapter 12 ■ Borders and Backgrounds

239

■■ Note  These values are identical to the background-origin attribute and in fact the background-clip
works much like the background-origin. To be clear, background-origin determines the positioning of
the image, that is, which rectangle is the image aligned with. The background-clip attribute determines the
rectangle where the background ends, either for a color or an image background.

Background Shorthand
It’s a fairly common practice to specify several of the background attributes in a single declaration using the
background shorthand notation. The following attributes can be set in the background shorthand:

•	 background-image

•	 background-position

•	 background-size

•	 background-repeat

•	 background-attachment

•	 background-origin

•	 background-clip

•	 background-color

All of these are optional. Generally, the order doesn’t matter except background-size must come
directly after background-position, if both are used, and they should be separated with a slash (/). The
other attributes are separated by a space.

I mentioned several times that you can define multiple images in a background, which are referred to
as layers. When using the shorthand, you should specify all the desired attributes for one layer, then add a
comma, and then specify the attributes for the next layer. The attributes for a single layer are declared together
and each layer is separated by a comma. The background-color attribute can only be set on the final layer.

When using the background shorthand, any attributes that are not specified will be set to the default
value. If you specify a background attribute, background-position for example, in one declaration and then
set another using the shorthand, the previous setting for background-position will be undone and revert
back to the default value. For example, consider the following. The background will not be centered because
the shorthand only supplied the color attribute; the position was reverted to the default value.

div {
 background-position: center;
 background: red;
}

Examples
For a quick demonstration, I’ll go back to the border samples at the beginning of the chapter and replace the
background color with an image using the background shortcut. The CSS rule now looks like this:

section {
 /*background-color: lightyellow;*/
 background: url(smiley.png) scroll space;
}

Chapter 12 ■ Borders and Backgrounds

240

Figure 12-21.  Using a repeated background image

I used scroll for the background-attachment because I wanted the image fixed to the containing
element. Since the image is relatively small I need it to repeat in both directions; however, I don’t want any
faces clipped leaving only half of a face. The round value would accomplish this but would distort the images
by stretching them to fill in the gaps. The space value is the appropriate choice for the background-repeat
option. This is rendered as shown in Figure 12-21.

To demonstrate using a gradient, I’ll replace this with a linear gradient, which is set using the
background-image attribute. In this example, I’m using the direction keywords instead on an angle to define
the gradient line. This is rendered as shown in Figure 12-22.

section {
 /*background-color: lightyellow;*/
 /*background: url(smiley.png) scroll space;*/
 background-image: linear-gradient(to right bottom, #FFF, #0EE);
}

Chapter 12 ■ Borders and Backgrounds

241

When framing a picture, a mat is often used to provide a border between the picture and the actual
frame. You can accomplish the same effect in CSS by combining the background and border attributes. I’ll
show how this is done using the George Washing painting. I’ll add padding and a background color to the
previous CSS rule that I demonstrated earlier. The result is shown in Figure 12-23.

img {
 margin: 10px;
 width: 350px;
 border: 34px solid transparent;
 border-image-source: url("frame.jpg");
 border-image-slice: 34;
 border-image-repeat: stretch;
 padding: 30px;
 background-color: silver;
}

Figure 12-22.  Using a background gradient

Chapter 12 ■ Borders and Backgrounds

242

■■ Tip  If you wanted to create multiple mats, you could accomplish that by putting the image element inside
a div element. Set the background of image to be the inner mat and the background of the div to be the outer
mat. Then put the border around the div instead of the image.

For a final demonstration, I’ll add a fixed background image to the body element:

body {
 background: url(smiley.png) fixed no-repeat center;
}

This will use the same smiley face image but make it fixed to the window. When you scroll, the
background image does not move with the content. The no-repeat value sets the background-repeat
attribute so only a single instance will be displayed. The center value sets the background-position
attribute and causes the image to be centered, in this case centered on the window. The result is shown in
Figure 12-24.

Figure 12-23.  Adding a mat to a picture

Chapter 12 ■ Borders and Backgrounds

243

This works like the display: fixed; attribute that I explained in Chapter 10. The difference, however,
is that since the background image is behind the foreground elements in the z-order, some or all of the
image may be hidden.

■■ Tip  When using a fixed background image, it doesn't matter which element it is assigned to since its
position is based on the window, not the element. However, if you added this to a div or paragraph element, for
example, a separate image would be displayed for each one. They would all be in the same place so it would
not change how the page appears, but it is certainly less efficient to have multiple images to render. Since there
can only be one body element, this is the logical place to put fixed background images.

Summary
In this chapter I explained numerous techniques for enhancing your web page using various types of
borders and backgrounds. There are similarities between the two, primarily that they can both be defined
with a color, an image, or a gradient. Both are also just below the element in the z-order. Borders take up
space in the document while backgrounds do not. I also explained how box shadows and outlines can be
used. These are different from borders although they can have a similar effect.

There are a lot of attributes that can be used and many of these can be expressed using shorthand
notation. Borders, in particular, have a significant number of attributes because each edge can be defined
separately. However, a shorthand can be used to define all of the attributes of a single edge. Similarly, a
shorthand can be used to set a single attribute on all of the edges.

Using images for a border can achieve some very interesting effects but require an understanding of
how the browser uses them. The image is sliced into parts and each part is applied to a different part of
the border. The attributes give you control on how each part is stretched or repeated, as necessary, to fill
the space.

Gradients are used to gradually change the color along a particular direction. Linear gradients change
the color from one edge or corner to the opposite. Radial gradients change color from the center moving
outward. You define the beginning and ending color, and can also define specific color stops along the
gradient.

In the next chapter I will explain how tables can be used to arrange and format content.

Figure 12-24.  Using a fixed background image

http://dx.doi.org/10.1007/978-1-4842-2463-2_10

245© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_13

CHAPTER 13

Styling Tables

In this chapter I will explain two different topics that are largely unrelated except that they both involve
tables. First, I will demonstrate how to use CSS to format a table element. In Chapter 6 I described all of the
various HTML elements that are used to construct a table such as table, table row (tr), table header cell
(th), and table cell (td). Now I’ll show you the CSS attributes that are available to arrange these elements,
visually. The second topic is to explain how you can use CSS to turn non-tabular data into table-like
elements so you can use similar styling techniques.

Styling Tables
I explained the markup elements used to create a table in Chapter 6. You can refer back to that chapter
for more details; however, as a quick review, the following table uses most of the common table elements.
This provides a summary of the pieces used in the game of Chess. I will be using this table to demonstrate
most of the styling options. The markup is shown in Listing 13-1 and the resulting table is rendered as
shown in Figure 13-1.

Listing 13-1.  A simple HTML table

<table>
 <caption>Chess Pieces</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Qty</th>
 <th>Points</th>
 <th>Symbol</th>
 <th>Movement</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>King</th><td>1</td><td>n/a</td>
 <td></td>
 <td>1 space in any direction</td>
 </tr>

http://dx.doi.org/10.1007/978-1-4842-2463-2_6
http://dx.doi.org/10.1007/978-1-4842-2463-2_6

Chapter 13 ■ Styling Tables

246

 <tr>
 <th>Queen</th><td>1</td><td>10</td>
 <td></td>
 <td>any number of spaces in any direction</td>
 </tr>
 <tr>
 <th>Rook</th><td>2</td><td>5</td>
 <td></td>
 <td>any number if spaces forward, backwards, or sideways</td>
 </tr>
 <tr>
 <th>Bishop</th><td>2</td><td>3</td>
 <td></td>
 <td>any number of spaces diagonally</td>
 </tr>
 <tr>
 <th>Knight</th><td>2</td><td>3</td>
 <td></td>
 <td>2 spaces up or down and 1 space sideways OR 1 space up or down and 2 spaces
 sideways; can jump pieces</td>
 </tr>
 <tr>
 <th>Pawn</th><td>8</td><td>1</td>
 <td></td>
 <td>generally 1 space forward; first move can be 2 spaces forward;
 captures 1 space forward diagonally</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th>Totals</th><td>16</td><td>40</td><td></td><td></td>
 </tr>
 </tfoot>
</table>

Chapter 13 ■ Styling Tables

247

Basic Table Styling
You can see from Figure 13-1 that we have some work to do as this looks awful. However, applying some
simple border, padding, and alignment attributes will do wonders.

Borders
There are four elements that you can place a border around: the entire table (table), the caption (caption),
and the cells (th and td). The table row (tr) element is a container element but does not have any visible
content of its own. Likewise, thead, tbody, and tfoot are also containers and have no visible content. You
can apply styles to these elements and they would be inherited by the child elements. However, border
properties are not inherited for good reason. I will come back to row borders later but for now, we’ll start
with the table and cells. The following CSS rules will add a thick border around the table and a thin border
around the cells. This is rendered as shown in Figure 13-2.

table {
 border: 3px solid black;
}

th, td {
 border: 1px solid black;
}

Figure 13-1.  The initial, unstyled table

Chapter 13 ■ Styling Tables

248

So now each cell has a border around it; however, the browser has put a space between the borders.
This is controlled by the border-spacing attribute, which has a default value of 2px. You can increase this
if you want more space or set it to 0 to remove the space entirely. If I add the following to the table selector,
the result is shown in Figure 13-3.

border-spacing: 0;

Figure 13-3.  Removing the border space

Figure 13-2.  Add a border to the table and cells

The spaces are gone but the borders are thicker now. They’re not actually thicker, but since they are
touching, the width of each is combined. If this is not the effect you want, instead of removing the space
between the border, you can use the border-collapse attribute to make adjoining cells share a common
border. This supports the following values:

•	 separate - (default) the borders between adjoining cells are drawn separately. The
amount of space between them is controlled by the border-spacing property as I’ve
previously explained. This invokes the browser’s separated borders model.

•	 collapsed - two adjoining borders are collapsed into a single shared border. This is
referred to as the collapsing border model.

Chapter 13 ■ Styling Tables

249

What happens when adjoining borders have different style attributes: which one is used? The W3C
Recommendation provide simple and clear guidelines:

The following rules determine which border style “wins” in case of a conflict:

	 1.	 Borders with the ‘border-style’ of ‘hidden’ take precedence over all other
conflicting borders. Any border with this value suppresses all borders at this
location.

	 2.	 Borders with a style of ‘none’ have the lowest priority. Only if the border
properties of all the elements meeting at this edge are ‘none’ will the border be
omitted (but note that ‘none’ is the default value for the border style.)

	 3.	 If none of the styles are ‘hidden’ and at least one of them is not ‘none’, then
narrow borders are discarded in favor of wider ones. If several have the same
‘border-width’ then styles are preferred in this order: ‘double’, ‘solid’, ‘dashed’,
‘dotted’, ‘ridge’, ‘outset’, ‘groove’, and the lowest: ‘inset’.

	 4.	 If border styles differ only in color, then a style set on a cell wins over one on
a row, which wins over a row group, column, column group and, lastly, table.
When two elements of the same type conflict, then the one further to the left
(if the table’s ‘direction’ is ‘ ltr’; right, if it is ‘rtl’) and further to the top wins.

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1), paragraph 17.6.2.1, Border conflict
resolution

Replacing the border-spacing attribute with the following declaration will cause the table to be
rendered as shown in Figure 13-4.

border-collapse: collapse;

Figure 13-4.  Using the border-collapse attribute

Empty Cells
If you’re using the separated borders model, you can control what happens to an empty cell using the
empty-cells attribute. This has two values: show and hide, with show being the default. Obviously, if the cell
is empty there is no content to display. However, the border can still be drawn around the cell and whatever
background is used can be shown as well.

http://www.w3.org/TR/CSS2/box.html
http://www.w3.org/TR/CSS2/box.html

Chapter 13 ■ Styling Tables

250

If this value is set to show, the border and background will be shown; this will appear as an empty cell. If
the empty-cells attribute is set to hide, the border and background will be hidden. This will appear as if the
cell did not exist.

■■ Note T he empty-cells attribute only works if the separated borders model is used. If you're using the
collapsing border model, this attribute is ignored.

Row Borders
Now let’s see about adding a row border. As I said, you can’t add a border to a row, only the cells within the
row. However, as I explained in the last chapter, you can set the border edges individually. For example, you
can set a border only for the top and bottom edges. Then you’ll need to set the left edge for the first cell and
the right edge for the last cell. To illustrate this technique, replace the entire CSS with the following rules to
create a border around the rows, not the individual cells.

table {
 border: 3px solid black;
 border-collapse: collapse;
}

th, td {
 border-top: 1px solid black;
 border-bottom: 1px solid black;
}

table th:first-child, table td:first-child {
 border-left: 1px solid black;
}

table th:last-child, table td:last-child {
 border-right: 1px solid black;
}

The first rule creates a thick border around the entire table and includes the border-collapse
attribute. The next rule creates a thin top and bottom border around all of the cells (th and td). The last
two rules use the :first-child and :last-child pseudo-classes to set the left and right borders. This is
rendered as shown in Figure 13-5.

Chapter 13 ■ Styling Tables

251

Figure 13-5.  Creating row borders

Personally, I don’t think this looks good for this particular table so I will revert back to the previous CSS
for the remaining demonstrations.

Padding and Alignment
I won’t say much about padding as I’ve explained this in the previous chapter. However, one of the issues
with the default style is that the borders are too close to the contents. You easily fix this by setting the
padding on all of the visible elements using the following rule.

th, td, caption {
 padding: 5px;
}

■■ Caution Y ou might be tempted to simply set the padding on the table element; however, the padding
attribute is not inherited. So, you'll need to set it on each element.

I explained the alignment attributes in Chapter 11, which also apply to tables. By default, the table header
cell (th) elements are centered both horizontally and vertically. The table cell (td) elements are centered
vertically but left justified. As a general rule of thumb, text should be left justified and numbers are right
justified. While perhaps not as universally accepted, I recommend that images be centered. Certainly, in
this table, the images would look better centered. Notice the pawn is smaller than the rest and it appears
misaligned.

http://dx.doi.org/10.1007/978-1-4842-2463-2_11

Chapter 13 ■ Styling Tables

252

Table cells are grouped into rows; there is no such container for columns. Column 2, for example, is just
the second cell of each row. To set the alignment of a column, we can use the :nth-of-type pseudo-selector
that I explained in Chapter 9. The following rules will set make the Qty and Points columns right justified,
and the Symbol column will be centered.

td:nth-of-type(1) { /*Qty*/
 text-align: right;
 }

td:nth-of-type(2) { /*Points*/
 text-align: right;
 }

td:nth-of-type(3) { /*Symbol*/
 text-align: center;
 }

The :nth-of-type selector only counts elements of the specified type: the table cell, in this case. It will
skip the Name column since this is a header (th) element. The resulting table is shown in Figure 13-6.

Figure 13-6.  Adjusting padding and alignment

http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 13 ■ Styling Tables

253

Caption
Notice that the caption, visually, is outside of the table, by default, just above the table. Even though the
caption element is nested inside the table element, in terms of the table layout it is not part of the table.
To change the style of the caption you’ll need to style it separately. To keep the caption consistent with the table
you can add the following CSS rule. This will give the same size border and amount of padding as the table.

table caption {
 border: 3px solid black;
}

However, the bottom border will be adjacent to the top border of the table, creating a line that is twice as
wide as the other borders. The border-collapse attribute won’t help in this scenario because the caption is
not a table element. Instead, I’ll make the width of the bottom edge 0, since it can use the table’s top border
as its bottom border. The final CSS rule will look like this, and it is rendered as shown in Figure 13-7.

table caption {
 /*border: 3px solid black;*/
 border-style: solid;
 border-color: black;
 border-width: 3px 3px 0px 3px;
}

Figure 13-7.  Styling the caption

With the caption-side attribute, you can move this, although the only supported values are top and
bottom. If you choose to move it to below the table, set caption-side: bottom; and don’t forget to also fix
the border because now you’ll need the top edge to be 0 width instead of the bottom.

Additional Table Styling
We now have a decent-looking table; however, I will demonstrate a few more techniques, such as
backgrounds and highlighting, that you can use to improve the table layout.

Chapter 13 ■ Styling Tables

254

Background
You can set a background color, image, or gradient on any of the table elements. I explained how each of
these can be used in the previous chapter so I won’t say much about them here. My typical approach is to
provide either a background color or gradient to the header cells. You can do this with a simple CSS rule like
this; the result is shown in Figure 13-8.

th {
 background-color: #DDB;
 background: linear-gradient(to bottom right, #FFF 0%, #DDB 100%);
}

Figure 13-8.  Adding a gradient to the header cells

Notice, however, that the gradient starts over again with each cell. The top-left corner of every header
cell is white. You might actually prefer that, but you might rather have the gradient flow evenly across the
whole header row (or column). You can accomplish that by applying the gradient to the entire table, and
then clearing the background for the other cells, like this:

table {
 background-color: #DDB;
 background: linear-gradient(to bottom right, #F4F4F0 0%, #DDB 100%);
}

td {
 background-color: white;
 background-image: none;
}

Since the gradient is spread over a larger area, I changed the beginning color to be slightly darker to
keep it from looking too washed out in the first few cells. The resulting table is shown in Figure 13-9.

Chapter 13 ■ Styling Tables

255

■■ Tip  I am setting both the background-color and background-image in case the browser doesn't
support gradients. The border-image attribute is defined last, which will overwrite the color setting if both are
supported. This is a good practice to follow.

Zebra Striping
Another simple technique using the :nth-of-type pseudo-selector is to alternate the background color of
each row. This is known as zebra striping. This easily done with the following CSS rule.

tr:nth-of-type(even)>td {
 background-color: #F4F4F0;
}

This returns every even row since the keyword even is used instead of a specific row number. You
could also use the odd keyword. However, we don’t want to apply the background to the entire row, since
the header cell (th) is part of the gradient applied earlier. The > operator is used to indicate only immediate
children, and combined with the td element selector, it will return only the table cell elements on the even
rows. The result is shown in Figure 13-10.

Figure 13-9.  The revised header gradient

Chapter 13 ■ Styling Tables

256

For one miscellaneous update, I’ll increase the font size of the caption using the following rule. As with
the rest of the text in this table, you can change all of the font attributes as well. Refer to Chapter 11 for the
options available.

caption {
 font-size: xx-large;
}

Highlighting
You can easily highlight a row by adjusting the background color. This will work much like the zebra striping
except you select a single row. Also, in the striping example we didn’t update the header cell; in this example,
I’ll update the header cell as well. However, setting the background on a row has no effect, you need to set
the background on the row child elements, the table cells (td) and table header cells (th). The following CSS
rule will accomplish this:

tr:nth-child(3)>th, tr:nth-child(3)>td {
 background-color: yellow;
}

Figure 13-10.  Using zebra striping

http://dx.doi.org/10.1007/978-1-4842-2463-2_11

Chapter 13 ■ Styling Tables

257

You can also highlight a column using a similar technique. Again, you’ll need to combine two selectors:
one for the header cells and one for the other cells. The resulting table is shown in Figure 13-11.

th:nth-child(3), table td:nth-child(3) {
 background-color: yellow;
}

Figure 13-11.  Highlighting a row and a column

■■ Tip  Notice that it is actually the fourth row that was highlighted if you count the header. If you look at the
markup, the table element has three children: a thead, tbody, and a tfoot element. The head and foot each
have a single child, a tr element. The body has six child tr elements. The tr:nth-child(3) selector will return
any row that happens to be the third child of its immediate parent. Since the body rows have a different parent,
the numbering starts back at 1. Also, I'm using :nth-child instead of :nth-of-type since I know that all the
siblings are rows. In this case :nth-child and :nth-of-type produce the same result. I recommend using
:nth-of-type in most cases as it will still work if other element types are later added.

Chapter 13 ■ Styling Tables

258

■■ Note  The individual elements within a table are stacked on top of each other, and it's important to know
the order of that stack, especially when using multiple backgrounds. The order is fairly intuitive: the table
element is on the bottom, on top of that lie the caption, thead, tbody, and tfoot elements. After that, the row
(tr) elements are placed and then finally, the cells (th and td). In most cases, only the caption and cells are
actually visible. However, if you are playing around with opacity, the other backgrounds can be exposed.

Creating Tables with CSS
If you’ve searched the Web for articles on HTML tables, you’ve likely encountered some lively debate
regarding the use of HTML table elements. Some people state that you should never use them – that this
should be done in CSS. Opponents of this view push back and say that HTML is where this belongs, not CSS.
This might give you the notion that HTML tables and CSS tables (as the two views are sometimes referred
to) are two different techniques for accomplishing the same thing. But this is not true; these techniques were
intended to solve completely different problems.

Tabular data such as team standings, stock positions, or a list of contact details, should be in tables.
For example, if you are displaying stock positions and have four pieces of information for each stock: stock
symbol, yesterday’s closing position, percent gain or loss, and volume traded. Each piece of data such as
$35.87, 0.51%, or 1.4 million, has no meaning unless you can associate these to the stock that they belong to.
It’s only when individual pieces of data (cells) are grouped together (rows) that they can have any meaning.
This is what HTML tables should be used for. Another way to look at it is that there is no other logical way
to organize these data points. If you tried grouping all the stock symbols together and then all of the closing
positions, it wouldn’t make any sense. There is inherent structure in the data, which should be captured in
the HTML markup.

On the other hand, if you’re trying to lay out a web page, perhaps with a set of links on the left side and
related articles on the right side, for example, this is not tabular data. This is a job for CSS. The easiest way
to distinguish between the two scenarios is to ask is this the only logical way to structure the content. In this
case, no, there are lots of ways this could be done. You could put the links across the top of the page, and
perhaps the article could be on the left.

Doing this in CSS also makes it a lot easier to adjust the layout when you need to render the page on
different devices. Accessibility is another important reason to not use tables for layout. Screen readers, for
example, read the HTML, and if you put non-tabular data into tables, the presentation of your site can be
very confusing.

Display Attribute
First of all, you need to understand that the table elements work the way they do solely because of the value
assigned to the display attribute. In Chapter 10, we looked at a couple of values for the display attribute,
primarily block and inline. There are quite a few more values and they are mostly related to tables. Each
of the table elements that I explained in Chapter 6 is assigned one of these values as its default display
attribute. In fact, it is the specific display value that makes table elements work like they do. Table 13-1 lists
each of the elements and the default display value assigned to it.

http://dx.doi.org/10.1007/978-1-4842-2463-2_10
http://dx.doi.org/10.1007/978-1-4842-2463-2_6

Chapter 13 ■ Styling Tables

259

CSS Table Demonstration
You can accomplish the same layout with non-tabular elements by simply applying the correct value for the
display attribute. To demonstrate this, I’ll re-create the same table that was used at the beginning of the
chapter using only simple HTML elements such as div and p elements. This uses the class attribute to make
it easier to select the appropriate entities later. This is shown in Listing 13-2.

Listing 13-2.  Using non-tabular elements

<div class="table">
 <div class="head row">
 <h3>Name</h3>
 <h3>Qty</h3>
 <h3>Points</h3>
 <h3>Symbol</h3>
 <h3>Movement</h3>
 </div>
 <div class="body row">
 <h3>King</h3><p>1</p><p>n/a</p>
 <p></p>
 <p>1 space in any direction</p>
 </div>
 <div class="body row">
 <h3>Queen</h3><p>1</p><p>10</p>
 <p>
 <p>any number of spaces in any direction</p>
 </div>
 <div class="body row">
 <h3>Rook</h3><p>2</p><p>5</p>
 <p></p>
 <p>any number if spaces forward, backwards, or sideways</p>
 </div>

Table 13-1.  Table Display Attributes

HTML Element Default Display Attribute

table table

tr table-row

th, td table-cell

thead table-header-group

tbody table-row-group

tfoot table-footer-group

col table-column

colgroup table-column-group

caption table-caption

Chapter 13 ■ Styling Tables

260

 <div class="body row">
 <h3>Bishop</h3><p>2</p><p>3</p>
 <p></p>
 <p>any number of spaces diagonally</p>
 </div>
 <div class="body row">
 <h3>Knight</h3><p>2</p><p>3</p>
 <p></p>
 <p>2 spaces up or down and 1 space sideways OR 1 space up or down and 2 spaces
 sideways; can jump pieces</p>
 </div>
 <div class="body row">
 <h3>Pawn</h3><p>8</p><p>1</p>
 <p></p>
 <p>generally 1 space forward; first move can be 2 spaces forward;
 captures 1 space forward diagonally</p>
 </div>
 <div class="foot row">
 <h3>Totals</h3><p>16</p><p>40</p><p></p><p></p>
 </div>
</div>

To style this using table layout, the entire CSS is provided in Listing 13-3. The display attributes are
shown in bold. The rest of the CSS declarations are applying the same styles that we did in the previous
example. The selectors are different because we’re using different elements but conceptually, this is identical
to the previous CSS. This will render the table exactly the same as the previous examples.

Listing 13-3.  Using tabular layout

/* Simulate table layout on non-table elements */
.table {
 display: table;
 border: 3px solid black;
 border-collapse: collapse;
 background-color: #DDB;
 background: linear-gradient(to bottom right, #F4F4F0 0%, #DDB 100%);
}
.row {
 display: table-row;
}
.row>h3, .row>p {
 display: table-cell;
 border: 1px solid black;
 padding: 5px;
 vertical-align: middle;
}
.row img {
 display: table-cell;
 vertical-align: middle;
 margin: 0 auto;
}

Chapter 13 ■ Styling Tables

261

/* Alignment */
.row>h3 {
 text-align: center;
 font-size: medium;
}
.row>p:nth-child(2) { /*Qty*/
 text-align: right;
 }
.row>p:nth-child(3) { /*Points*/
 text-align: right;
 }

/* Background and zebra striping */
.body>p, .foot>p {
 background-color: white;
 background-image: none;
}
.body:nth-child(odd)>p, .body:nth-child(odd)>img {
 background-color: #F4F4F0;
}

/* Highlighting */
.row:nth-child(4)>h3, .row:nth-child(4)>p {
 background-color: yellow;
}
.row>h3:nth-child(3), .row>p:nth-child(3) {
 background-color: yellow;
}

■■ Caution I created this to demonstrate that there’s nothing special about the table elements other than their
default styles. You can use table layouts on any HTML elements. However, you should never actually build a
table this way. Tabular data should be put into table elements.

Applications
Knowing that you can use table-style layout on any HTML elements, I’ll show a couple of scenarios where
this can be really useful.

Aligning Elements
Using table layout can help if you have two or more elements that you want to be aligned when rendered on
a page. Suppose, for example, that you have a small image and some text and you want them side by side,
vertically aligned. This simple HTML markup creates a div with an image and a paragraph element.

<div class="centering">
 <div></div>
 <p>Fourscore and seven years ago, our fathers brought forth to this continent
 a new nation...</p>
</div>

Chapter 13 ■ Styling Tables

262

The first attempt to style this will use display: inline; so the image and text are on the same line. This
also fixes the image size. The result is shown in Figure 13-12.

.centering div, .centering p {
 display: inline;
}
.centering img {
 width: 50px;
}

Figure 13-12.  Initial styling attempt

Figure 13-13.  Alignment corrected with tables

This is not exactly what I had intended. Let’s employ table layout with a simple change to the CSS.
I’ll change to display: table-cell; that will put the image and the text in their own cell. The cells are
automatically aligned; all that’s left to do is configure the alignment within the cell. The result is shown in
Figure 13-13.

.centering div, .centering p {
 /*display: inline;*/
 display: table-cell;
 text-align: left;
 vertical-align: middle;
}

Using table layouts can greatly simply the alignment of elements because the table cells provide
structure. Each element is placed in a cell and aligned within the cell. Another great application of this is
when styling input forms. A form will have a collection of input fields such as text boxes, radio buttons, and
checkboxes as well as labels, buttons, and other content. It is generally a good idea to align these in some
way and using table layout is a common and effective approach.

Page Layout
For a final example, I’ll use tables to organize the overall page layout. A typical web page will have a header
and footer, often a set of navigation links, and sometimes a sidebar. I’ll add those around the existing table
that I have been using throughout this chapter. The additional elements are shown in Listing 13-4.

Chapter 13 ■ Styling Tables

263

Listing 13-4.  Adding the remaining page elements

<body>
 <header>
 <h1>Chapter 13 - Styling Tables</h1>
 </header>
 <section>
 <nav role="navigation">

 One
 Two
 Three
 Four

 </nav>
 <main>
 <table>

... insert the existing table here ...

 </table>
 </main>
 <aside>
 <h1>Check out these titles</h1>

 Beginning Workflow 4.0
 Office Workflow 2010
 Project Management with SharePoint 2010
 Pro Access 2010
 Office 365 Development
 HTML5 with Visual Studio 2015

 </aside>
 </section>
 <footer>
 Professional HTML5 - Apress
 </footer>
</body>

I will organize these in a fairly common three-column layout that is illustrated in Figure 13-14. I have
indicated in each section how the display attribute will be set to achieve the desired layout.

Chapter 13 ■ Styling Tables

264

The section element is sandwiched between the header and footer elements and will be set up as a
table. Its child elements, the nav, main, and aside elements are set up as cells within that table. The following
CSS rules apply this table layout along with some basic formatting.

section {
 display: table;
 table-layout: fixed;
}
nav, main, aside {
 display: table-cell;
}
nav {
 min-width: 150px;
}
aside {
 width: 25%;
 text-align: center;
}

Figure 13-14.  The overall page structure

Chapter 13 ■ Styling Tables

265

This also sets the table-layout attribute to fixed. Its default value is auto, which means that the
table cells are sized to fit the content. In this mode, the browser has to do a lot of work because it has to first
determine which row is the longest, and then format the remaining rows using this size. By setting this to
fixed, this auto-size logic is disabled and you can set the sizes manually. The nav element is set to 150 pixels
and the aside element is 25% of the window width. The remaining area in the middle is assigned to the main
element and will grow and shrink based on the width of the window.

In the markup, I’m using an unordered list (ul) element to represent the items in the nav and aside
elements. I’m using the following CSS rules to format these as tables.

ul {
 display: table;
}
li {
 display: table-row;
 height: 50px;
 text-align: left;
 vertical-align: middle;
}

In this example, the unordered list element is set up as a table, and the list item as a row object. With
these changes in place, the content is now structured as expected, albeit a little plain looking – like the initial
table at the beginning of this chapter. To make this more visually appealing I’ll add the following CSS rules.
The resulting page layout is shown in Figure 13-15.

header, footer {
 border: 1px solid black;
 border-radius: 6px;
 background-color: #F4F4F0;
 text-align: center;
 padding: 5px;
}
nav, aside {
 border: 1px solid black;
 border-radius: 6px;
 background-color: #F0F0F0;
}
aside article:nth-child(even) {
 background-color: #fafbbf;
}
aside {
 padding: 5px;
 font-family: Verdana;
 font-size: small;
}

Chapter 13 ■ Styling Tables

266

Responsive Layout
The page elements used the standard, semantical header, nav, main, aside, and footer elements. They are
only rendered as a table because that’s how we chose to configure them in CSS. We could have just as easily
decided to arrange them differently. I’ll now show you how to use media queries, which I explained in
Chapter 2, to dynamically alter the layout of your page based on its size.

For this page I’ll set the threshold at 700px. For a simple example, I’ll put the CSS rules that set up
the table layout into a media query. The media query and the conditional rules within it are shown in
Listing 13-5.

Figure 13-15.  The final page layout

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 13 ■ Styling Tables

267

Listing 13-5.  Using a media query

@media (min-width: 700px) {
 section {
 display: table;
 table-layout: fixed;
 }

 nav, main, aside {
 display: table-cell;
 }

 nav {
 min-width: 150px;
 }
 aside {
 width: 25%;
 text-align: center;
 }
 ul {
 display: table;
 }
 li {
 display: table-row;
 height: 50px;
 text-align: left;
 vertical-align: middle;
 }
}

Now if you shrink the window to smaller than 700pixels, the table layout is gone as shown in
Figure 13-16.

Chapter 13 ■ Styling Tables

268

Styling Lists
As a final side topic, there are styling options available for list items. A list item typical has a marker next to it
such as a dot or a number. Through CSS attributes you can control the style and position of the marker.

■■ Note L ist item elements (li) also have a default display attribute, which is set to list-item. The attribute
is what causes the browser to add the marker beside the element. In the previous example, this was changed
to table-row in the wide screen mode. Notice that the markers are gone. In the narrow mode, however, the
default attribute is used and the markers are displayed.

Figure 13-16.  Removing table layout

Chapter 13 ■ Styling Tables

269

Type
The list-style-type attribute defines the marker that is used. Here are the standard values that are
supported:

•	 none - no marker

•	 disc - a solid circle (default value for unordered lists)

•	 circle - a hollow circle

•	 square - a solid filled square

•	 decimal - sequential integers (1, 2, 3…, default for ordered lists)

•	 decimal-leading-zero - same as decimal but leading zeros are added

•	 lower-alpha - sequential letters (a, b, c…)

•	 upper-alpha - sequential uppercase letters (A, B, C…)

•	 lower-roman - roman numerals (i, ii, iii…)

•	 upper-roman - uppercase roman numerals (I, II, III…)

The first four options (none, disc, circle, and square) are used for unordered lists (ul). The remainder
are used only for ordered lists (ol). To be clear, if you use any of the first four options, such as disc, on an
ordered list, each list item will have that same marker. The purpose of an ordered list is so the browser can
sequentially number them; thus you would have effectively turned it into an unordered list. Conversely, if
you use a value like decimal on an unordered list, the items will be sequentially numbered and you now
have an ordered list. The only real difference between the ul and ol elements is the default value given to the
list-style-type attribute, disc, and decimal, respectively.

For ordered lists, you can also control the marker used by assigning the type attribute in the HTML
markup, which I explained in Chapter 4. It supports the values 1, a, A, I, and I, which correspond to the
decimal, lower-alpha, upper-alpha, lower-roman, and upper-roman values of the list-style-type
attribute in CSS. Note, however, that the style applied in CSS will override markup setting.

■■ Note T here are several others that are generally supported such as lower-latin and lower-greek.
In addition, there are lots of other languages defined with minimal browser support.

Image
If none of these styles are suitable, you can define your own by setting the list-style-image attribute.
There are no options for defining the size of the rendered image, so make sure to use an image that has
intrinsic dimensions that will work with your content. The following CSS rule will use the pawn.png image as
the marker. This is rendered as shown in Figure 13-17.

ul {
 list-style-image: url("pawn.png");
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_4

Chapter 13 ■ Styling Tables

270

■■ Tip  When using custom images, you should also specify the list-style-type attribute as well.
This should come before the list-style-image declaration. This will be used as a fallback if the image
cannot be loaded for some reason.

Position
With the list-style-position attribute you can decide if the marker should be inside the containing block.
If the value inside is specified, the marker is aligned with the block and the item is indented to make room
for the marker. If you specify outside, the list item is aligned with the block and the marker will be outside of
the block.

Shorthand
As with many other CSS attributes, there is a shorthand that enables you to specify all of the list item
attributes in a single declaration. The three values – type, image, and position can be provided in any order
and separated by a space. For example:

list-style: url("pawn.png") outside square;

Summary
In this chapter I demonstrated how a table can be styled using CSS. You can easily turn a rather unattractive
table into a visually appealing presentation, with a few simple rules. Beyond that, you can apply table layout
techniques to other, non-tabular data by changing the display attribute.

A common use of this is to lay out a web page as table elements, while retaining the original semantic
elements. Because this layout is performed in CSS, you can use media queries to apply alternate formats
depending on the device characteristics.

I also demonstrated how list items can be styled using the supported CSS attributes. Also, using tables
to lay out list items is a popular approach.

Figure 13-17.  Using a custom image for the list item

271© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_14

CHAPTER 14

Flexbox

In this chapter I’ll explain yet another value for the display attribute: flex. This is a very flexible (pun intended)
way of laying out elements. Conceptually, this is pretty straightforward although the terminology can be
confusing, primarily because of its flexibility. When using flex, you need a container element that has child
items inside it. There are separate attributes that are configured on the container and the items.
It is supported by IE11 and above as well as all major browsers, although there are some issues with Safari.
If you must support these browsers, you will need to provide a fallback solution. However, I believe this will
become the preferred approach, especially when supporting responsive web pages.

The terminology is direction agnostic; you won’t see any values such as height, width, horizontal, or
vertical. Even the flex-direction attribute uses the values row and column. One of the challenges of using
flex is that you need to translate the terms. For example, if I refer to an element’s height and width, you
immediately know what I’m referring to. If I talk about its main size, you’ll need to translate based on the
flex-direction.

Container Configuration
I’ll start by explaining the attributes that can be specified on the container. The first, of course, is the display
attribute, which should be set to flex.

.container {
 display: -webkit-flex;
 display: flex;
}

■■ Caution  To support Safari, you’ll need to use the -webkit prefix.

Flex Direction
The most important attribute is the flex-direction, which establishes the framework for the remaining
attributes. It is applied to the container element and supports the following values:

•	 row - (default) the items are laid out horizontally. The actual direction is determined
by the direction attribute, either ltr or rtl. If ltr mode is being used, the items
will flow from left to right.

•	 row-reverse - the items are laid out horizontally in the opposite direction of the
direction attribute.

Chapter 14 ■ Flexbox

272

•	 column - the items are arranged vertically, from top to bottom.

•	 column-reverse - the items are arranged vertically from bottom to top.

Figure 14-1 illustrates the meaning of the terminology when flex-direction: row; is used, assuming
ltr mode.

Figure 14-1.  Illustrating flexbox terminology

Many of the subsequent term are configured based on values that are derived from the flex-direction.
The main axis, for example, is the axis of the flex-direction, horizontal in this case and the cross axis is
vertical. The main start and main end define the beginning and ending edges of the container element. This
is the left and right edges in this example. Similarly, the cross start and cross end define the container edges
along the other dimension – top and bottom in this case. The size of an item within the container is not
identified by the width and height, rather they are specified by the main size and cross size values.

For a specific flex-direction, all of these values translate into familiar values such as vertical, left,
bottom, and width. When you’re first learning to use flex, it may be easier to think of these in more familiar
terms. However, be aware that with a different flex-direction the meaning of these terms change. This is
illustrated in Figure 14-2, which demonstrates these values when flex-direction: column; is used.

Chapter 14 ■ Flexbox

273

Flex Wrap
When the flex-direction is row (or row-reverse) the items in the container flow horizontally much like
using display:inline; and when the width of the container is filled, the subsequent items wrap to the next
row. The flex-wrap attribute controls if and how this is done. There are three possible values:

•	 nowrap - (default) The items do not wrap but are displayed in a single row
(or column).

•	 wrap - The items will wrap to the next row or column using the same direction as
the initial.

•	 wrap-reverse - The items wrap to the next row or column but do so in reverse order.

The wrap and wrap-reverse options are illustrated in Figure 14-3.

Figure 14-2.  Terms used when flex direction is column

Chapter 14 ■ Flexbox

274

When using flex-direction: row-reverse; the wrapping works the same way except the directions
are reversed. When using flex-direction: column; the items will flow from top to bottom. If wrap-reverse
is specified, they will then flow from bottom to top after wrapping to the next column. The third row or
column will use the initial direction.

You can specify both the flex-direction and the flex-wrap attribute with the flex-flow attribute.
This expects two values: one for each attribute, which are separated with a space. The default value is row
nowrap.

Justification
The justify-content attribute determines how items are arranged within a single row (or column) along
the main axis (I’ll also explain justification along the cross axis later). There are five available options that are
illustrated in Figure 14-4.

Figure 14-3.  Demonstrating the wrapping options

Chapter 14 ■ Flexbox

275

The flex-start value indicates that the items are justified to the main start edge. Similarly, flex-end
aligns the item against the main end edge. When using flex-direction: row; these are translated to left
aligned and right aligned as shown in Figure 14-4. However, with row-reverse, the main start and main
end edges are reversed. Likewise, if column is used for the flex-direction, these become the top and
bottom edges.

The space-between option aligns the first item to the main start edge and the last item to the main end
edge. The spacing between the items is then adjusted so they are evenly spaced apart. The space-around
option is similar, except that an equal space is inserted before the first item and after the last item.

The resulting rows (or columns) of content can also be justified along the cross axis using the
align-content attribute. The available options are similar to justify-content, except there is a sixth
option: stretch. These are illustrated in Figure 14-5.

Figure 14-4.  Justification along the main axis

Chapter 14 ■ Flexbox

276

The flex-start and flex-end options justify the content against the cross start or cross end edges. If
the flex-direction is row or row-reverse, these are the top and bottom edges, respectively, as illustrated
in Figure 14-5. For column or column-reverse, these become the left and right edges. The stretch option
works like the space-between option, except that the items are then stretched along the cross axis to fill the
gaps between the rows (or columns).

■■ Tip  You’ll need to remember that the justify-content attribute justifies the items along the main axis,
while the align-content attribute justifies the rows (or columns) along the cross axis. The names themselves
do not help much here, so make a mental note: justify-content: main axis, align-content: cross axis.

Aligning Items
In all of my illustrations thus far, all of the items had the same cross size. When using flex-direction:
row; this translates to the height of the item. If they were different sizes, then you’ll need to decide how they
should be aligned. The align-items attribute provides five options, which are shown in Figure 14-6. I just
explained the align-content attribute, which aligns rows (or columns) within the container. In contrast,
the align-items attribute defines how items are arranged within a single row (or column). Both adjust the
alignment along the cross axis.

Figure 14-5.  Justification along the cross axis

Chapter 14 ■ Flexbox

277

Again, the flex-start and flex-end options align the items against the cross start and cross end edges,
respectively. The center option will center the items along the cross axis. The baseline option aligns the
items so their baselines are at the same position within the row.

■■ Tip  The term baseline came from the print world where characters were aligned along a baseline. This is
not necessarily the bottom of the text, but is the invisible line that most characters sit on. The baseline provides
a visual guide to placing characters so the line appears straight. In CSS, this concept is even more complicated
because we’re not just dealing with text. If you want to delve into this subject, here is a good article: http://
www.smashingmagazine.com/2012/12/17/css-baseline-the-good-the-bad-and-the-ugly.

Item Configuration
So far, I have explained how to configure the container, or parent, which provides the overall structure
of how the items are arranged. You can also configure the items to provide fine-tuned control of their
alignment.

Figure 14-6.  Aligning items in a row

http://www.smashingmagazine.com/2012/12/17/css-baseline-the-good-the-bad-and-the-ugly
http://www.smashingmagazine.com/2012/12/17/css-baseline-the-good-the-bad-and-the-ugly

Chapter 14 ■ Flexbox

278

Grow and Shrink
The items in a flex container can grow or shrink to accommodate the size of the container. This is very
important, especially with responsive designs. To configure how this works, there are three facets that you
need to work with:

•	 Basis - the optimum size of the item; by default, this is its intrinsic size.

•	 Grow - how should this item grow when there is additional space.

•	 Shrink - how should this item shrink when this is not enough space.

■■ Note  The terms basis, grow, and shrink only apply to the main axis.

The amount of growth and shrink of an element is set using the flex-grow and flex-shrink attributes.
These are numerical values without any units. The browser calculates the amount of space to add based
on the ratio of the item’s growth to the total growth. For example, if you had three items with the flex-grow
attribute set to 1, 2, and 3, the total growth would be 6. In this case, the first item would be given 1/6 of the
extra space, the second 2/6, and the third, 3/6. The flex-shrink attribute works the same way except it is
used to remove space when necessary.

The flex-grow and flex-shrink attributes are never used simultaneously. The flex-grow attribute
is only used when there is extra space and flex-shrink only applies when there is not enough space.
Obviously, both cannot be true at the same time. Also, negative values are not allowed for either attribute.
A value of zero indicates that the item should not grow (or shrink).

The flex-basis attribute defines the base size of the item. This is a distance unit and can be specified
as an absolute value or one of the relative units. The auto value, which is the default value, uses the item’s
intrinsic size for the basis.

For convenience, you can set all three values – grow, shrink, and basis with the flex shorthand. Make
sure to set the three values in that order: grow, shrink, and basis. There are also some special values that you
can use to set all three attributes:

•	 flex: auto; - sets the grow and shrink to 1 and the basis to auto.

•	 flex: none; - sets the grow and shrink values to 0 and basis to auto. The item will
use its intrinsic size and will not grow or shrink.

Demonstration
The concept of basis is often misunderstood. Consider the previous example with three items having
flex-grow set to 1, 2, and 3. Some would assume that the second item is always twice as large as the first,
and the third is three times the size. However, this is not true, in most cases; only the extra space, beyond its
base size, follows this ratio. An example here will help clarify this.

The following markup creates a section element with four child elements: two paragraph elements, a
div element and an image. Each of the child elements has a class attribute so we can more easily configure
them with CSS.

<div class="std1"></div>
<section>
 <p class="i1">Fourscore and seven years ago, our fathers brought forth to this continent,
 a new nation</p>

Chapter 14 ■ Flexbox

279

 <div class="i3">
 <div class="std2"></div>
 </div>
 <p class="i4">This is some text</p>
</section>

This also creates a couple of extra div elements that I will set as a fixed size to provide a frame of
reference to help visualize the growth (and shrink) behavior. The entire CSS is shown in Listing 14-1.

Listing 14-1.  CSS for Flex Demo

/* include the border in the sizing values */
* {
 box-sizing: border-box;
}
.std1 {
 height: 30px;
 width: 350px;
 border: 1px solid black;
 background-color: lightblue;
}
.std2 {
 height: 30px;
 width: 50px;
 border: none;
 background-color: lightblue;
}
section {
 display: flex;
 flex-wrap: nowrap;
 justify-content: flex-start;
 align-content: flex-start;
 align-items: stretch;
}

/* Put a border around the children*/
section>* {
 border: 1px solid black;
 margin: 0;
}

.i1 {
 flex: 1 3 350px;
}

/* Not needed, this is the default for images */
.i2 {
 flex: none;
}

Chapter 14 ■ Flexbox

280

.i3 {
 height: 75px;
 background-color: lightyellow;
 flex: 2 0 50px;
}
.i4 {
 flex: 3 1 auto;
}

Most of the CSS rules are there to help set up the demo; I highlighted the declarations that are specific
to flex. The container sets the display: flex; attribute and the rest of the attributes are set to the default
values and can be omitted. The first item has a base size of 350px. I also set the empty div element with
the std1 class to have the same size. Similarly, in the third item, I embedded an empty div element with
the std2 class. This has a fixed size of 50px, which is the same as the base size of the third item. The last
paragraph element does not have an explicit basis so it will use the intrinsic size, which is essentially an
element just wide enough to fit all of this text without wrapping.

For the image, I set the flex attribute to none, which is the default values for images. Images, by default,
do not grow or shrink. For the div element, I set the grow to 2 and the shrink to 0; this element will grow but
not shrink. For the two paragraph elements, I set different values for grow and shrink to demonstrate how
these work.

If you render this in a browser and size the width of the window to be just large enough to fit the base
sizes of each child element, it will look like Figure 14-7.

Figure 14-8.  Demonstrating the growth behavior

Figure 14-7.  The flex elements with the exact base size

The two fixed div elements that provide a reference size are shown in blue. As you can see, the child
elements have the exact size of their basis. Also, the text of the last child just barely fits without wrapping.
If you then expand the window, the image is unchanged, as expected, but the other three child elements
grow proportionally to the flex-grow attribute. This is illustrated in Figure 14-8.

Chapter 14 ■ Flexbox

281

When the container is larger than the sum of the item base size, the grow calculation is used. In this
case, the actual size allocated to each item can be expressed with the following formula:

Base size + Extra space * (Grow / sum of Grow values)

Calculating Shrink
If you make the window smaller than the base size, the image and the empty div element do not shrink, but
the two paragraph elements do. With a smaller window, the page looks like Figure 14-9.

Figure 14-9.  Demonstrating the shrink behavior

I set the flex-shrink attribute to 3 on the first paragraph and 1 on the last paragraph; however, as you
can see in Figure 14-9, the amount of shrink in the first paragraph is more than three times the shrink of the
last paragraph. For some reason, the shrink calculation works differently than the grow calculation. It takes
into account the base value of the item. When the container is smaller than the total base size, the shrink
calculation is used on each item, which can be expressed in the following formula:

Base size - Overflow size * (Shrink * Base Size / sum of (Shrink * Base size))

So let’s work this out, starting with the final sum. There are two items with a non-zero shrink value.
The intrinsic size for the last paragraph is approximately 110 pixels. The sum of both is 3 * 350 + 1 * 110 = 1160.
Now the ratios: the first item will be 3 * 350 / 1160 = ~90% and the last paragraph is 1 * 110 / 1160 = ~10%.
So only 10% of the amount of the overflow size is removed from the last paragraph. Knowing this, you can
adjust the shrink value to account for this. For example, if you want them to shrink at the same rate, in this
case, set the shrink value on the first paragraph to roughly .35 to accomplish this.

Uniform Growth
I started out with the more complex case to see how the basis affects both the growth and shrink of the items.
However, for a simpler application you can set the basis to zero for all of the items. If the basis is zero, the
shrink value doesn’t apply either; the item can only grow. To support this, the flex attribute allows a single
numeric value, which is applied as the flex-grow attribute. This shorthand also sets the flex-shrink and
flex-basis attributes to zero.

Chapter 14 ■ Flexbox

282

To demonstrate this, I’ll modify the previous CSS to use this shortcut:

.i1 {
 /*flex: 1 3 350px;
 flex: 1 .35 350px;*/
 flex: 3;
}
.i3 {
 height: 75px;
 background-color: lightyellow;
 /*flex: 2 0 50px;*/
 flex: 1;
}
.i4 {
 /*flex: 3 1 auto;*/
 flex: 2;
}

In this example the div element has a grow value of 1 and the paragraphs are set to 3 and 2, respectively.
The first paragraph will be three times the size of the div element and the last paragraph twice. However,
there is one exception, because the div element has a child element with a fixed width, it won’t shrink
smaller than that. This is demonstrated in Figure 14-10.

Figure 14-10.  Shrinking beyond the intrinsic size

The base size of the div element is still zero for the growth calculation. Notice that the last paragraph is
2/3 as wide as the first paragraph because the grow values were set to 2 and 3, respectively. Regardless of the
size of the container, these two elements will always maintain this ratio.

Order
By default, items are rendered in the order they exist in the document. With flex items, you can set their
order property to explicitly define their order. If not specified, the order value is zero and all items with the
same order are displayed based on their order in the document. Negative values are allowed.

Chapter 14 ■ Flexbox

283

This is a really useful feature, especially with responsive web pages. Allowing the order to be controlled
by CSS means that they can be adjusted based on media queries. For example, you can set the order to move
some particular content to the bottom of the page when a small device is being used.

■■ Tip  You don’t have to set the order attribute on all of the items. For example, if you want a particular item
to be displayed first, set its order to -1 and leave the remaining with their initial value. All the other items will
have a value of 0, so this item will come first.

Overriding Alignment
I previously explained how the align-items attribute on the container controls the cross axis alignment of
items with a row (or column). This attribute applies to all of the flex items in the container. However, you can
override this on individual items by setting is align-self attribute. This supports the same six values as the
align-items attribute. For a simple example, the following CSS sets this attribute on the first paragraph and
the div element. The result is shown in Figure 14-11.

.i1 {
 /*flex: 1 3 350px;
 flex: 1 .35 350px;*/
 flex: 3;
 align-self: flex-end;
}
.i3 {
 height: 75px;
 background-color: lightyellow;
 /*flex: 2 0 50px;*/
 flex: 1;
 align-self: center;
}

Figure 14-11.  Using the align-self attribute

Chapter 14 ■ Flexbox

284

Vertical Example
For a simple example using a vertical main axis, I’ll set up a typical page layout with a fixed size header and
footer. The body will be allowed to grow to fit the existing content. The markup is as follows:

<section class="vertical">
 <header>Header</header>
 <footer>Footer</footer>
 <main>
 <p>Lorem ipsum dolor...</p>
 </main>
</section>

This section element contains a header, footer, and main element. I put the footer element before the
main element to demonstrate the order attribute. To format this, the following CSS is used:

.vertical {
 display: flex;
 flex-direction: column;
}
header, footer {
 text-align: center;
 background-color: lightgreen;
 flex: 0 0 35px;
}
main {
 flex: auto;
}
footer {
 order: 3;
}

This sets the flex-direction to column so the main axis is now vertical. The item will grow and shrink
vertically. The header and footer and not allowed to grow or shrink and have the basis set to 35 pixels. In
contrast, the main element has flex: auto; to allow growing and shrinking and the basis is determined by
the intrinsic size of its contents. The order attribute of the footer is set to 3 so the footer will come last. This
is rendered as shown in Figure 14-12.

Chapter 14 ■ Flexbox

285

Summary
In this chapter I have explained how to use a flexbox to arrange items in a flexible layout. The basic idea is to
define predictive rules for arranging HTML elements and then let the browser apply these rules based on the
current window size. You configure attributes on the container as well as the items within it.

On the container, you define the direction that the items flow as they are rendered within it. The
attributes and terms are direction agnostic, such as start and end instead of top or bottom, so you may have
to perform some translation when thinking through a solution. The container properties also enable you to
specify how the rows or columns of items are aligned.

On the items, you specify how the items should grow or shrink along the main axis depending on the
available space. You can override the alignment along the cross axis. You can also set the order that an item
should be displayed, giving you the ability to adjust the order in CSS. This allows you to relocate elements
using media queries depending on the device characteristics.

In the next chapter, I will demonstrate how to use animation and transforms to add some interest and
pizzazz to your web page.

Figure 14-12.  A vertical example

287© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_15

CHAPTER 15

Animation and Transforms

Animation
Animation looks really impressive but is actually quite trivial to implement. An animation is simply
modifying one or more attributes over time. This used to require writing JavaScript to set up a timer and then
manipulate the attributes with each timer event. Now you can accomplish that with only CSS.

Keyframes
In CSS, the first step in creating animation is to define the keyframes. Each keyframe specifies a set of CSS
attributes at a specific point in time. This is roughly analogous to an animated movie that is a set pictures,
called frames, which are displayed in rapid succession, giving the impression that the pictures are moving.
Fortunately, we don’t have to supply 30 or 60 frames per second like most videos.

Using keyframes is similar to defining a gradient, which I explained in Chapter 12. You need to define
at least the beginning and ending frames, and the browser will provide a gradual transition between them.
However, you can define additional frames to control the progress of the animation. An animation has a
specified duration and each keyframe is assigned to a specific point along that duration, which is expressed
as a percentage. The initial frame is at 0% and the final frame is at 100%.

Keyframes are sometimes referred to as at-rules. They resemble normal CSS rules except a percentage
is used as the selector. Inside each frame, you can specify any number of CSS attributes. A simple keyframe
might look like this:

@keyframes colors {
 0% {
 background-color: yellow;
 }
 100% {
 background-color: blue;
 }
}

At the beginning of the animation, the background color is yellow, and by the end of it, the color is
gradually changed to blue. You can add more frames as well. Suppose you wanted the color to change from
red, to yellow, to blue, and then back to red. The keyframe would be specified like this:

@keyframes colors {
 0%, 100% {
 background-color: red;

http://dx.doi.org/10.1007/978-1-4842-2463-2_12

Chapter 15 ■ Animation and Transforms

288

 }
 33% {
 background-color: yellow;
 }
 66% {
 background-color: blue;
 }
}

Notice that both the initial and final frames have the same value, so they can be specified with the same
frame, separating the percentages by a comma, which, in CSS selector syntax, is the logical OR operator.
Also, 0% and 100% can be represented with the from and to aliases, respectively. So, the first set of keyframes
could also be specified as:

@keyframes colors {
 from {
 background-color: yellow;
 }
 to {
 background-color: blue;
 }
}

Configuring Animations
An animation is applied to one or more elements. For example, the previous keyframes modifies the
background-color attribute. This needs to be applied to an element, and then its background color will be
changed by the animation. To provide a simple demo, I’ll use an empty div element:

<div class="circle"></div>

To provide a little more interest, I’ll turn this into a red circle with the following CSS rule:

.circle {
 width: 300px;
 height: 300px;
 margin: 10px 0 0 0;
 border-radius: 50%;
 background-color: red;
}

This creates a div element whose height is equal to its width. Setting the radius to 50% will turn this
square into a circle. Finally, to animate the background color, the following rule is used:

.circle {
 animation: colors 5s;
}

This uses the animation shorthand to specify the two required attributes. This first indicates the name
of the keyframe to use, which was created earlier. The second specifies the duration of the animation, 5
seconds in this case. When the page loads, the circle will start out red but gradually change to yellow, then
blue, and back to red.

Chapter 15 ■ Animation and Transforms

289

Animation Attributes
There are eight attributes that can be used to configure the animation. I alluded to the first two; here is the
complete set with their available options:

•	 -name - the name of the keyframe that defines the attributes to be set and their
relative timing.

•	 -duration - (default 0s) the total time that a single execution will take to complete.

•	 -timing-function - (default ease) indicates how the transition occurs between
frames. There are a lot of options here, and Mozilla has a good article that describes
each of these options in detail at https://developer.mozilla.org/en-US/docs/
Web/CSS/timing-function. The following common values are supported:

•	 linear - the transition is uniform between frames

•	 ease-in - the transition starts slow at the beginning

•	 ease-out - the transition slows down at the end

•	 ease-in-out - the transition is slower both at the beginning and the end

•	 ease - similar to ease-in-out but the slowdown at the beginning is less than at
the end

•	 -delay - (default 0s) the duration of pause between when the page is loaded and
when the animation should start.

•	 -iteration-count - (default 1) how many times the animation should be performed;
set to infinite if the animation runs continually.

•	 -direction - (default normal) indicates if the animation runs forward or backwards
through the keyframes. The following values are supported:

•	 normal - the animation goes through the keyframes in order from 0% to 100%;
if the execution is repeated, it will start back at the beginning.

•	 alternate - the animation goes from 0% to 100% on the initial execution but the
subsequent execution will go backwards. The odd executions are forward and
the even executions are in reverse.

•	 reverse - the animation executes backwards from 100% to 0%; subsequent
executions are also backwards.

•	 alternate-reverse - the initial execution is in reverse, from 100% to 0% but
the next execution goes forward. All odd executions are in reverse and the even
executions are forward.

•	 -fill-mode - (default none) specifies how the keyframe attribute should be applied
before and after the animation. Note that actual initial frame is controlled by the
animation-direction attribute; the final frame is also dependent on how many
iterations are executed when the alternate direction is used. The following values
are supported:

•	 none - the before and after values are not affected by the animation.

•	 forwards - the target elements will retain the value of the last keyframe after the
animation is completed.

https://developer.mozilla.org/en-US/docs/Web/CSS/timing-function
https://developer.mozilla.org/en-US/docs/Web/CSS/timing-function

Chapter 15 ■ Animation and Transforms

290

•	 backwards - if there is a delay in starting the animation, the target element will
use the initial keyframe values.

•	 both - the behavior of both forwards and backwards values are applied.

•	 -play-state - (default running) indicates if the animation is currently running or
paused.

■■ Tip T ime units can be specified in either seconds or milliseconds. The s or ms suffix is required, otherwise
the value will be treated as a numeric value. Spaces between the value and unit are not allowed.

Animation Shorthand
As I said, all eight attributes can be set using the animation shorthand. They are technically all optional and
have a default value if omitted. However, without specifying the animation-name and animation-duration,
you cannot animate anything.

The attributes in the shorthand are separated by a space and can be specified in any order, except for a
few details that you’ll need to be aware of. There are two time values, animation-duration and animation-
delay. The first time value will be assigned to the animation-duration, and the second, if supplied, will be
used for the animation-delay.

There are four attributes that have a preset list of supported values, which do not overlap: animation-
timing-function, animation-direction, animation-fill-mode, and animation-play-state. These can
be supplied in any order as the browser can determined by the value that attributes to assign it to. Any
unrecognized value will be assigned to the animation-name attribute.

Some care must be taken if you wanted to give your keyframe a name that is one of the attribute values,
such as reverse. You must specify the corresponding attribute, in this example, the animation-direction,
first before the animation-name. If you wanted the direction to be reverse, you will need to include the value
reverse twice; the first one will be used for animation-direction and the second for the animation-name
attribute. You cannot let the browser set a default value. If you wanted the default, normal, you would need
to explicitly include normal before reverse.

Multiple Animations
You can define more than one animation on the same target element. For instance, one animation can
move an element and another one can change its color. These are applied independently. If you’re using
the animation shorthand, specify all of the desired attributes for the first animation and then the second
animation and so on. A comma is used to separate the attributes of each animation. For example, this will
apply two animations to all elements with the circle class:

.circle {
 animation: colors 5s 3, otherKey 2s 4s alternate;
}

Chapter 15 ■ Animation and Transforms

291

If you’re setting the individual attributes, you include an attribute value for each animation, which are
separated by a comma. Specify the values in the same order for each attribute. The first value for attribute-
name will go with the first value for attribute-direction, and so on. To demonstrate, the previous
animation can be specified as follows:

.circle {
 animation-name: colors, otherKey;
 animation-duration: 5s, 2s;
 animation-iteration-count: 3;
 animation-delay: 0s, 4s;
 animation-direction: normal, alternate;
}

Notice for animation-iteration-count, only one value was specified, which will apply to the first
animation. For attribute-delay and attribute-direction, the default value was needed so the second
value can be applied to the second animation.

■■ Caution N ot all CSS attributes can be animated. Here is article that lists all of the attributes that can be
animated: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties. The non-
animatable attributes are mostly those than cannot be gradually changed over time, such as font-family.

Cubic Bézier
As I said, animation is simply adjusting one or more attributes over time. In the simplest case, you define
the beginning and ending values and the browser will interpolate the values in between. The animation-
timing-function attribute determines the function that is used to perform the interpolation. There are
several common values that I already mentioned such as ease-in and linear.

The most straightforward of these is a linear function. Suppose you had an animation with a duration
of 5 seconds, which modifies the margin-left attribute. The beginning value is 0 and the ending value is
250px. With a linear function, every second will change the margin by 50px. So after 1 second it is 50px,
after 2 seconds it is 100px, and so on. With the ease-in function, the animation starts slower and speeds up.
After 1 second, the left margin may only be at 30px, for example.

These values such as ease-in are merely predefined Bézier curves. A Bézier curve uses a mathematical
formula to compute the value of one axis as a function of the other axis. In particular, the timing function
uses a cubic Bézier, which uses four points to define the formula. The specific attribute value, margin-left,
in this case, is computed at every point along a 5-second duration. Figure 15-1 shows a cubic Bézier that
illustrates this.

Point P0 is the beginning point that represents the initial (0%) attribute value and the beginning of the
duration. Point P3 is the endpoint at the 100% attribute value. The graph is always scaled so that these points
are at 0,0 and 1,1, respectively. Points P1 and P2 define the curve of the line connecting P0 and P3.

The cubic Bézier in Figure 15-1 is defined by the values of P1 and P2, which are .8, .25 and .75 and 1.3.
This is specified in CSS as:

animation-timing-function: cubic-bezier(0.80, 0.25, 0.75, 1.30);

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties

Chapter 15 ■ Animation and Transforms

292

In this case, the animation starts out slow, like ease-in, but at the end, actually overshoots the desired
end value and has to come back before completing the animation.

■■ Tip  If you want to play with cubic Béziers, check out the website at http://cubic-bezier.com.
This allows you to graphically adjust the curve showing the values of P1 and P2 for you to enter into your CSS.
Another useful site is at http://easings.net.

Figure 15-1.  Cubic Bézier

http://cubic-bezier.com/
http://easings.net/

Chapter 15 ■ Animation and Transforms

293

To demonstrate this, I’ll create another empty div element:

<div class="bounce"></div>

For some simple styling, I used the following CSS rule:

.bounce {
 width: 100px;
 height: 35px;
 margin-left: 300px;
 border-radius: 10px;
 background-color: lightblue;
}

This creates a small rectangle with rounded corners. The animation is then configured with the
following rule:

@keyframes bounce {
 from {
 margin-left: 0;
 }
 to {
 margin-left: 300px;
 }
}

.bounce {
 animation: 3s cubic-bezier(0.80, 0.25, 0.75, 1.30) bounce;
}

This will cause the div element to move across the page, slowly at first, and then after passing its final
position, have to reverse and come back a little.

Transitions
When a CSS property is changed during runtime, that is after the page is loaded, you can use a transition
to make a smoother change rather than an abrupt one. For example, you can change the background color
of an element when the mouse is over it by using the :hover pseudo-class. Normally, that change happens
immediately as soon as the mouse is over the element. However, you can define a transition so that change is
more gradual.

Transitions are very similar to animations and use some of the same techniques. The primary difference
is that you do not define keyframes in a transition; a transition only deals with the beginning and ending
state of the target element. This is like having a keyframe that only defines the 0% and 100% values.

The other big difference is that a transition, unlike an animation, does not define the beginning and
ending states; these are defined outside of the transition. The beginning and ending states are typically
defined in CSS. For example, the background-color is a CSS attribute that is applied to the element through
a CSS rule. A second rule, using the :hover pseudo-class, applies a different background-color. These two
rules define the beginning and ending states. The transition can then be added to manipulate the change
from one rule to another, to make it a smooth transition rather than an immediate one.

Chapter 15 ■ Animation and Transforms

294

An example will help demonstrate this. The following markup creates an empty div element. Then a
CSS rules defines its height and width along with the border and background color. The next rule modifies
the height and width when the mouse is over the element.

<div class="tran"></div>

.tran {
 width: 200px;
 height: 100px;
 background-color: lightyellow;
 border: 1px solid black;
}
.tran:hover {
 width: 420px;
 height: 150px;
}

If you try this, you’ll see that the size jumps to the larger size when you move the mouse over it. Now you
can define how that transition occurs. There are four CSS attributes that can be applied:

•	 transition-property - (default all) specifies the property that the transition should
be applied to.

•	 transition-duration - (default 0s) the length of time to complete the transition.

•	 transition-delay - (default 0s) the amount of time before the transition starts.

•	 transition-timing-function - (default ease) - the function that specifies how the
transition is made over time. This works just like the animation-timing-function
attribute and supports the same values.

Now, I’ll use these attributes to make this a smooth transition by adding the following CSS rule. I’m
using the same cubic Bézier function that I used with the previous animation.

.tran {
 transition-property: width;
 transition-duration: 3s;
 transition-delay: 0s;
 transition-timing-function: cubic-bezier(0.80, 0.25, 0.75, 1.30);
}

Now when you hover over the element, the width will change gradually. Notice the slight bounce effect
as the width extends beyond the end state and has to come back slightly. The height, however, changed
immediately because the transition only applied to the width attribute. You can use the all keyword for the
transition-property attribute so the transition will apply to all changing attributes.

You can also define different transition attributes for each target attribute. If you wanted the height
transition, for example, to be a quicker transition, you can define its transition separately. To accomplish
this, supply multiple values to each attribute separated by commas:

transition-property: width, height;
transition-duration: 3s, 1s;

Chapter 15 ■ Animation and Transforms

295

This will make the width transition take 3 seconds but the height transition will only take 1 second.
The transition-property attribute defines the number of transitions. In this case, since two values were
supplied, there will be two transitions. The remaining properties can have the same number of values, which
are applied in order, so the 3s duration applies to the width attribute and the 1s duration applies to the
height attribute. If fewer values are supplied, the values that are provided will be repeated as necessary so
there will be a value for each value provided to the transition-property attribute. Since the transition-
delay attribute only has a single value, it will be repeated so a 0s delay will be used for both the width and
height attribute. If there are more values supplied than there are for the transition-property attribute, the
extra values are ignored.

I applied the transition to the .tran class selector so it will affect both the transition to the hover state
as well as the transition back to the initial state. Notice that if you move the mouse away from the element,
it uses a gradual transition back to the initial state. If I had applied the change to the .tran:hover selector,
the transition to the hover state would be gradual but when you remove the mouse, the transition back is
immediate. You can take advantage of this behavior to provide different transitions. For example, you could
have a faster transition back to the initial state.

To accomplish this, I’ll define a slower transition in the .tran selector and override the duration in the
.tran:hover selector to make it longer.

.tran {
 width: 200px;
 height: 100px;
 background-color: lightyellow;
 border: 1px solid black;
 transition-property: width, height;
 transition-duration: 1s;
 transition-delay: 0s;
 transition-timing-function: cubic-bezier(0.80, 0.25, 0.75, 1.30);
}
.tran:hover {
 width: 420px;
 height: 150px;
 transition-duration: 3s, 1s;
}

■■ Tip T o demonstrate a transition, I am using the :hover pseudo-class to force an attribute change.
However, transitions apply to any attribute change regardless of how it was invoked. In the next section I will
explain how you can manipulate both HTML and CSS through JavaScript. If you modify an attribute through
client-side scripting, any transition applied to it in CSS will be invoked.

You can also use the transition shorthand to supply all four values in a single declaration. You can
supply these in any order; however, like the animation attribute, the first time value will be used as the
duration and the second as the delay. If any values are omitted, the default values, which I indicated
previously, will be used. For example, this transition will apply to all properties with a 3-second duration
using the ease-in timing function. The delay, since it is not specified, will be 0s.

transition: all 3s ease-in;

Chapter 15 ■ Animation and Transforms

296

If you want to define different transitions, you can use the transition shorthand and separate each with
a comma.

transition: width 3s 0s ease-in, height 1s;

As with other shorthand attributes, any values that are not supplied will use the default values. In this
example, for the height attribute, the default ease timing function will be used since it was not specified.
When defining multiple transitions, using the individual attributes may be a little easier since a single value
will apply to all as I explained previously.

Transforms
You can use the transform attribute to modify how an element is rendered by adjusting its coordinate
system. When using the transform attribute, you must specify one of the transformation functions, which
can be grouped into the following categories:

•	 Translation - the element is shifted either horizontally, vertically, or both. The
element retains its original size and shape but is moved to a different position.

•	 Rotation - the element is rotated about one or more axis. As with translation, it
maintains its original size and shape.

•	 Scale - the element is stretched or shrunk along one or more axis. This will change
the size and possibly the aspect ratio of the element.

•	 Skew - the element is twisted or distorted. For example, a rectangle can become a
parallelogram.

Applying a transform to an element changes how and where it is rendered on the page. However, this
does not affect the placement of its neighboring elements. This can result in overflow conditions where
elements are on top of each other.

Translation
Translation is probably the simplest of the transforms. There are three functions that are supported:

•	 translateX() - moves the element horizontally by the specified distance

•	 translateY() - move the element vertically

•	 translate() - accepts two values, one for X and one for Y, and moves the element
both horizontally and vertically.

If only one value is specified when calling the translate() function, it will be used to translate the
element horizontally. A positive value moves the element to the right (or down); a negative value to the left
(or up). The following declaration will move the element up and to the right:

transform: translate(30px, -10px);

Chapter 15 ■ Animation and Transforms

297

Rotation
When rotating an element, you need to first decide on which axis it should pivot. The X-axis is a horizontal
line. Rotating an element on the X-axis means that the top of the element would either get closer to you or
further from you, while the bottom would do the opposite. Think of flipping a page by pulling the bottom of
the paper up, revealing the next sheet, like you would a calendar. This is sometime called a military flip. The
Y-axis is a vertical line and rotating along the Y-axis is similar to turning the page of a book. The Z-axis comes
out of the page.

There are four functions available relating to rotation:

•	 rotateX()

•	 rotateY()

•	 rotateZ()

•	 rotate()

The first three are pretty self-explanatory, and they rotate the element along the corresponding axis
by the specified angle, which is passed in as a parameter. The rotate() function does the same thing as
rotateZ(). It is provided since the vast majority of the time you will use the Z-axis and this is a sort of
shortcut notation.

■■ Caution  Unless you’re using 3D transformations, which I’ll explain later, rotating along the X- or Y-axis is
not very useful. On a two-dimensional system, rotating along the X-axis simply makes the shape shorter and
rotating along the Y-axis makes the element narrower. However, rotating 180 degrees (or 1/2 turn) will flip the
element. Most of the time, you will rotate along the Z-axis.

When rotating an element, you also need to decide the point on which it is rotated. By default, this
will be the center of an element. However, you can use the transform-origin attribute to change this.
This accepts three values, which specify the X, Y, and Z offsets. The default value is 50% 50% 0, which is the
horizontal and vertical center of the element. You can supply absolute or relative values for each and they
are expected in that order (X, Y, Z). If only two values are supplied, these will be used as the X and Y values.

There are also some keywords that can be used, including left, right, top, bottom, and center. For
example, specifying top right, will rotate the element around the point defined by its top-right corner. The
keywords can be entered in any order as the browser can determine which value it applies to. The center
keyword specifies both X and Y values and is equivalent to the default value (50% 50% 0).

Scale
The scaling functions are fairly straightforward. There is a scaleX() and a scale(Y) function that will grow
or shrink the item along the X- or Y-axis, respectively. If you want to scale in both directions the scale()
functions accept two values to define the horizontal and vertical scaling. A value of 1 indicates no scaling;
values greater than 1 will make the element larger. A value less than one will make the element smaller.
Specifying 0.5, for example, will make the element half of its original size for the specified dimension.

The transform-origin attribute affects how the scaling is done, or more accurately how the resulting
shape is positioned, relative to the original element. If you leave the default value of center, the element
will expand in both directions, leaving the center of the new shape exactly where the center of the original
element was. If you set this to top left, for example, the top-left corner will remain fixed and the element
will expand down and to the right.

Chapter 15 ■ Animation and Transforms

298

A negative value will invert the element along the opposite axis. For example, using scaleY(-1) will flip
the element vertically (along the horizontal axis). So the following functions will accomplish the same thing:

transform: rotateX(.5turn);
transform: scaleY(-1);

A value of -1 will simply invert it; a value of -2 will invert it and double its size.

Skew
Skewing an element, especially in two dimensions can be a bit tricky to understand. Let’s start with a single
dimension. Picture a rectangle that is fixed on one side and the opposite side is pulled down, causing the
whole element to twist. This would be considered skewed and can be accomplished with the skewY()
function as illustrated in Figure 15-2. The skewY() function will shift, or skew, the non-fixed size in the
vertical dimension. The amount of skew is specified as an angle. The skewX() function will move the non-
fixed edge horizontally.

Figure 15-2.  Illustrating skewing

■■ Note  In these examples, I’m assuming the left or top edge is fixed. However, this is controlled by the
transform-origin attribute, just like with the rotate and scale functions. Changing this does not affect the
resulting shape but will change how the element is positioned.

The skew() function allows you to specify both an X and Y value. Skewing in both directions is
illustrated in Figure 15-3. This combines the effect of both types of skewing.

Chapter 15 ■ Animation and Transforms

299

Demonstration
The following will demonstrate all of these transformations. The markup creates four empty div element
with class attributes so they can be easily selected.

<div class="transform translate">translate</div>
<div class="transform rotate">rotate</div>
<div class="transform scale">scale</div>
<div class="transform skew">skew</div>

The CSS first applies some basic styling for all of these div element and then applies the different
transforms for each. The result is shown in Figure 15-4.

.transform {
 margin: 25px;
 height: 50px;
 width: 100px;
 border: 1px solid black;
 background-color: lightblue;
}
.translate {
 transform: translate(30px, -10px);
}
.rotate {
 transform: rotate(15deg);
 transform-origin: bottom left;
}
.scale {
 transform: scale(1.5, .9);
 transform-origin: bottom left;
}
.skew {
 transform: skew(20deg, 15deg);
 transform-origin: top left;
}

Figure 15-3.  Skewing in two dimensions

Chapter 15 ■ Animation and Transforms

300

Notice that all of these effects apply not only to the shape of the element but also its contents. The text,
for example, is also scaled or skewed.

3D Transforms
Three-dimensional transforms attempt to simulate a 3-dimensional object on a 2-dimensional page. To
do that you have to configure some additional information so that the browser knows how to perform the
transformation. The additional attributes are the perspective and perspective-origin. To understand
how these are used, let me explain some basic drawing techniques.

If you have a 3-dimensional object such as a box and want to draw it on a 2-dimensional piece of
paper, the simplest approach is to use a vanishing point. This is done by drawing one side of the box and
then define a vanishing point somewhere away from the rectangle. Then draw an imaginary line from
each of the corners to that point. A portion of these lines will form the edges of the box. Finally, the back of
the box is found by creating a parallel rectangle that intersects these vanishing lines. This is illustrated in
Figure 15-5.

Figure 15-4.  The effects of each transform

Chapter 15 ■ Animation and Transforms

301

You can probably envision how that moving the vanishing point, and dragging the lines with it, will
create a different perspective of the same box. This is what these additional attributes allow you to do. The
perspective attribute defines the distance from the original image to the vanishing point. The greater the
distance, the subtler the 3D effect.

The perspective-origin attribute defines on which side of the image the vanishing point is. In
Figure 15-5, the vanishing point is to the top right. This creates the effect of looking down on the box from
above and from the right of it. The perspective-origin takes both X and Y values that are expressed as
percentages, from 0% to 100%. There are some predefined values as well. For example, 0% 0% can also be
entered as left bottom, and 100% 100% is right top. The single value of center is the same as 50% 50% and
indicates that vanishing point is directly behind the image.

These perspective details need to be defined on a container element, and not the element that is being
transformed. Also, if you want the browser to perform a 3D transform, you need to set the transform-style
attribute. The default value for this attribute is flat, which will perform a simple 2D transform. You need to
set this to perserve-3d instead.

To demonstrate this, I’ll create a div element as the container and put an image inside of it. The div
element uses the rotate3D class to make it easier to select.

<div class="rotate3D">

</div>

Figure 15-5.  Demonstrating a vanishing point

Chapter 15 ■ Animation and Transforms

302

To aid in the demonstration, I will use a transition so the rotation happens slowly and you can more
easily see the 3D effect. The following CSS rules will accomplish this.

.rotate3D {
 margin: 100px;
 transform-style: preserve-3d;
 perspective: 360px;
 perspective-origin: left;
}
img {
 transition: all 5s linear;
}
img:hover {
 transform: rotateY(180deg);
}

On the container, I set the three transform attributes, transform-style, perspective, and
perspective-origin. These attributes are always defined on the container element. On the image element,
I defined a 5 second transition on all modified attributes using the linear timing function. Finally, on
the :hover pseudo-class I used the same transform attribute that I described earlier with the rotateY()
function.

When you hover the mouse over the image, it should slowly rotate with a 3D effect as demonstrated in
Figure 15-6.

Figure 15-6.  Demonstrating a 3D transform

Chapter 15 ■ Animation and Transforms

303

When rotating elements, you might not want to see their backsides, no pun intended. In this example,
seeing the back of the phone booth is not a problem. Actually, we’re not seeing the back, but rather of the
front turned around. You can make the element invisible when turned around by using the backface-
visibility attribute to hidden. It’s default value is visible. If the back of the box has a different picture, for
example, you wouldn’t want to show the front image when the box is turned around.

Summary
In this chapter I demonstrated techniques for creating animations. An animation is simply modifying one
or more CSS attributes over the duration of the animation. The browser will perform the interpolation so
you don’t have to define every frame. For a simple animation you can just define the beginning and ending
frames.

The gradual change over time is controlled by the timing function, which is defined by a cubic Bézier
curve. This is defined by the X and Y coordinates of two points. This provides a lot of flexibility for controlling
the actual transition. However, there are also some predefined curves such as linear and ease-in.

A transition is similar to an animation but is invoked when a CSS attribute is changed. The transition
does not change the attribute but rather defines the gradual transition when the value is changed. CSS
transitions are also invoked when the property is changed through client-side scripting.

Transforms are functions that will adjust the size, shape, or position of an element. These functions
fall into one of four categories (translation, rotation, scaling, and skewing). These transforms can apply to
either the X, Y, or Z axes. A 3D transform can also be done but requires a few more attributes to be set such as
perspective and transform-style.

The next chapter will start a new section regarding JavaScript. This will start with looking at the browser
environment and the facilities that are available to your page scripts.

PART IV

JavaScript

Using JavaScript in your web application opens up seemingly endless possibilities, making web
pages much more dynamic and interactive. I gave a pretty thorough overview of the JavaScript
language in Chapter 3. In this section, I’ll demonstrate how JavaScript can be used in a web
environment. The topics I’ll cover are the following:

•	 16) Browser environment – this chapter explores the resources available
from the Browser Object Model, including the Screen, Location, History,
Navigator, Console, and other resources, using timers, and various caching
options such as session storage and cookies.

•	 17) Window object – this chapter demonstrates how to create and
manipulate a window, including various dialogs and frames.

•	 18) DOM manipulation – this chapter explains how to find, create, modify,
and move the HTML elements that you learned about in Part 2, through
JavaScript.

•	 19) Dynamic styling – In this chapter, you’ll use JavaScript to dynamically
alter the style rules of the web page using several different techniques.

•	 20) Events – these are the lifeblood of an interactive application. In this
chapter, you’ll learn how to register for an event and then use the event
object to respond appropriately.

http://dx.doi.org/10.1007/978-1-4842-2463-2_3

307© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_16

CHAPTER 16

Browser Environment

In Chapter 3 I explained the mechanics of the JavaScript language. In the remaining chapters of this book,
I’ll demonstrate how to embed JavaScript in your HTML document. You will be using JavaScript extensively
so you might want to review Chapter 3 if this is fairly new to you. In the next two chapters, I’ll explain the
operating environment that the web page will be hosted in. The browser provides quite a lot of functionality
that can be manipulated through JavaScript.

Browser Object Model
The facilities provided by the browser, starting with the window object, are informally referred to as the
Browser Object Model (BOM). There is no official standard defining this, however. Fortunately, the major
browser vendors all provide essentially the same properties and methods.

■■ Caution  I will describe the features that are generally available in most modern browsers and reasonably
safe for you to use. However, you should not assume that everything I mention is available in every browser.
Test your code on a lot of browsers, and be sure to provide fallback options for critical functionality.

The window object, which can be found in the global namespace, is the starting point for accessing
the browser facilities. It represents a single window or tab. If you have multiple tabs open, there will be a
separate instance of the window object for each tab, as well as one for the overall window. Also, if you open a
dialog box, a separate window instance will be used for that as well. I will explain how to work with multiple
windows and frames in Chapter 17. For now, I’ll start with a simple case, with a single window/tab.

In addition to the many properties and functions available on the window object, there are several child
objects that provide specific functionality. The main ones are shown in Figure 16-1, and I will describe each
of these individually. The document object represents the HTML document that is being rendered in the
window. Chapters 18 and 19 will deal exclusively with manipulating this through JavaScript so I won’t say
much about it here.

http://dx.doi.org/10.1007/978-1-4842-2463-2_3
http://dx.doi.org/10.1007/978-1-4842-2463-2_3
http://dx.doi.org/10.1007/978-1-4842-2463-2_17
http://dx.doi.org/10.1007/978-1-4842-2463-2_18
http://dx.doi.org/10.1007/978-1-4842-2463-2_19

Chapter 16 ■ Browser Environment

308

■■ Tip  While these objects are all child objects of the window, they are also available in the global namespace.
If you access the screen or document property, for example, from the global namespace, it will return the object
associated with the current window or tab.

Before describing the window object itself, I’ll start with demonstrating these primary child objects.

Screen
The screen object provides details about the device that the browser is running on. The simplest way to
see what it contains is to try it out. If you go to your browser’s console and type window.screen, you’ll see
something similar to Figure 16-2.

Figure 16-1.  Primary browser objects

Figure 16-2.  Displaying the screen object

Chapter 16 ■ Browser Environment

309

As you can see, I’m using a monitor with a resolution of 1920 x 1200 and a color depth of 24. These
properties are all read-only as you can’t change the device characteristics. This information can be used by
your web page. For example, if you were to launch a new window or pop-up dialog, the device characteristics
may influence the size and location of the new window.

If you look at the screen object in multiple browsers, however, you’ll notice that they provide a slightly
different set of properties. Here’s the basic set the you can pretty much count on:

•	 height - Total height of the device (in pixels)

•	 width - Total width of the device (in pixels)

•	 availHeight - Amount of vertical space not used by the OS (such as for a taskbar)

•	 availWidth - Amount of horizontal space available

•	 colorDepth - the number of bits used to specify the color

•	 pixelDepth - this is the same as colorDepth

The device orientation has not standardized; For Firefox and Edge, the prefixed properties,
mozOrientation and msOrientation, respectively, can be used. For Chrome, orientation is provided as an
object and you can access it’s type property (screen.orientation.type). However, since you can get the
height and width, you can easily determine the orientation.

Location
The location object provides the web address of the document that is loaded in the window. It is also linked
to the document object so it can be accessed through either window.location or document.location, or
simply location as I explained previously. It contains individual properties for each part of the URL:

•	 protocol

•	 hostname

•	 port

•	 pathname

•	 search - one or more query string parameters preceded with a question
mark (?)

•	 hash - a hashtag (#) followed by a fragment identifier

There are a few additional properties that are provided for convenience:

•	 href - provides the full URL

•	 host - includes the hostname and port

•	 origin - includes the protocol, hostname, and port

The ToString() method will return the href property so you can get the full URL by simply referencing
the location object. For example, the following code will generate the pop-up shown in Figure 16-3:

alert(location);

Chapter 16 ■ Browser Environment

310

Like the screen object, the location object is generally read-only. The one big exception, is that you
can use the location object to navigate to another page, using the assign() method. You could also just
assign a URL value to the location object, so either of the following will accomplish the same thing:

location.assign("http://www.google.com");
location = "http://www.google.com";

You can also modify one of the URL components instead of the entire URL. A useful example is to
modify the query string parameters in the search property. If the user changes their search criteria, you can
simply update the search property and a new request will be sent to the server.

Instead of using the assign() method, you can use the replace() method, which works the same way
except that the current page will not be saved in the history, which I will explain next. The location object
also supports the reload() method, which will refresh the current window. The reload() method accepts a
Boolean parameter, and if true is passed, the page is refreshed from the server. If this is false, or no parameter
is supplied, the browser may refresh the page using its local cache.

History
The history object tracks the pages that were loaded in a single window. This is not the complete browsing
history with the sites that were visited yesterday or last week, nor is it aware of pages loaded in other
windows or tabs. It is used to support the back button, allowing you to go back to the previous page.

The history object has a length property the indicates how many entries are in the history. This will
include the current page so there will always be at least one. You can navigate to the previous page by calling
the back() method. Similarly, you can move to the next page using the forward() method. This works the
same way as if the user had clicked the back or forward buttons on the browser. The history object also
supports a generic go() function, where the direction and number of pages is specified by an integer value.
Using go(-1) is equivalent to back() and go(1) is equivalent to forward(). However, you can use the go()
method to skip multiple pages, such as go(-2), which will go back two pages in the history.

■■ Note  If an out-of-range scenario happens, such as calling forward() when on the most recent page, the
call is ignored and has no effect.

The history object also supports the pushState() and replaceState() methods that you can use to
manipulate the history stack. Calling pushState() will add another history element as if you had actually
navigated to a new page (such as using the location.assign() method). The replaceState() method
updates the existing history element with the data provided. However, neither method actually navigates to
a new page.

Figure 16-3.  Displaying the URL

Chapter 16 ■ Browser Environment

311

Both methods support three parameters:

•	 state - a JSON string containing any serializable data that you want to store here.

•	 title - this is currently ignored; you can enter an empty string or a short title
describing the page.

•	 url - the address that will be stored in the history and used for navigating back or
forward.

Using the pushState() and replaceState() members, as their name implies, allows you to associate
state information with the history. If someone navigated away from your page and then used the back button
to go back, your page could take advantage of the state data. Suppose for example, that your page performed
a customer lookup and retrieved details about the user. This data can be stored in the history state so when
they navigate back to your page, the data can be obtained without performing another lookup.

There are two ways to obtain the state data. First, you can listen for the popstate event, which is fired
when navigating through the history. The popstate event is only fired when the current and new URLs are
for the same document. So if the user navigates to a completely different site and then navigates back to
your page, no event is fired. Also, Chrome only fires the event when navigating back; it is not fired when
navigating forward.

Fortunately, you can also obtain the current state data by simply getting it from the history object using
the state property. The code in Listing 16-1 demonstrates these state methods and properties.

Listing 16-1.  Demonstrating the history state

window.onpopstate = function (e) {
 console.log("popstate - url: " + location + ", state: " + JSON.stringify(e.state));
}

console.log("0-length: " + history.length + ", state: " + JSON.stringify(history.state));
history.replaceState({id: 1}, "", location);
history.pushState({id: 2}, "", location);
history.pushState({id: 3}, "", location);
console.log("1-length: " + history.length + ", state: " + JSON.stringify(history.state));
history.go(-1);
history.go(-1);
history.go(1);
history.go(1);
console.log("2-length: " + history.length + ", state: " + JSON.stringify(history.state));

This code first implements the popstate event by simply writing the details to the console. The code
then uses the replaceState() method to set the state on the current history element. The pushState()
method is then used to add two more history entries. Notice that the location object is passed in as the third
parameter. This will specify the current value for the URL so no change is being made; only the state is being
updated. This code also logs the history length and the current state before any changes are made, after
the new history entries are added, and after the navigation is done. The results from the console window are
shown in Figure 16-4.

Chapter 16 ■ Browser Environment

312

The history length is initially 2, because when I started the browser it loaded the default home page
and I then entered the URL for my test site. As expected, the initial state is null. After calling pushState()
twice, the length was 4. Each time the go() method was called, the popstate event fired and the state was
updated to reflect the new current entry.

Navigator
Like the screen object, the navigator object provides information about the device that the browser is
running on. The screen object is limited to details of the device display such as size and color depth. In
contrast, the navigator object supports a pretty long list of properties and methods. I’m not going to explain
all of them here; however they are listed with a short description in the reference materials in Appendix C.

One increasing useful property of the navigator object is geolocation. This uses the device hardware
to determine the current position of the device using either Global Positioning System (GPS), cellular
triangularization, Wi-Fi information, or IP lookup depending on the capabilities of the device. I will cover
this in detail in Chapter 26.

User Agent
The navigator object includes several properties that indicate the operating system and browser details,
including:

•	 appCodeName

•	 appName

•	 appVersion

•	 platform

•	 product

•	 userAgent

Figure 16-4.  Console in Firefox

http://dx.doi.org/10.1007/978-1-4842-2463-2_26

Chapter 16 ■ Browser Environment

313

Most of this information is inaccurate and difficult to make any good use out of it. For example, I’m
running Chrome, Firefox, and Edge on Windows 10, and all three have the same values for appCodeName,
appName, and product (Mozilla, Netscape, and Gecko, respectively). The userAgent property is a string that
contains most of the information from the other properties. However, this is a bit cryptic. For example, here
are the userAgent strings for the three browsers I just mentioned:

•	 Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36

•	 Mozilla/5.0 (Windows NT 10.0; WOW64; rv:49.0) Gecko/20100101
Firefox/49.0

•	 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36 Edge/14.14393

One of the reasons for this debacle, is that web developers have made the mistake (and continue to
do so) of writing logic in their code based on the browser instead of using feature detection; if Chrome do
this or else if Firefox do that. So, new browsers set the userAgent property to look like other browsers so the
application will take advantage of the browser features.

■■ Tip  If you want to glean some useful information from the userAgent, I recommend using a parser that
someone else has written. There are several to choose from. Just google “parse user agent.”

Battery
The battery property returns a BatteryManager object, which provides the following properties:

•	 charging (true if the device is pulled in and charging).

•	 chargingTime (the number of seconds remaining until fully charged).

•	 dischargingTime (the number of seconds until the battery is completely
discharged).

•	 level (a valued from 0 to 1 indicating the current charge level).

You can also listen for events that fire when these values change. These events are called
chargingchange, chargingtimechange, on dischargingtimechange, and levelchange.

Window Object
Now let’s look at the window object and explore the functionality that it exposes. There is a long list of both
properties and methods that are available, and I have listed the standard ones in the reference materials in
Appendix C. There are also a large number of events that you can subscribe to and these are listed as well.
However, I will explain events in Chapter 20.

http://dx.doi.org/10.1007/978-1-4842-2463-2_20

Chapter 16 ■ Browser Environment

314

Console
The browser console is usually found as part of the developer tools and is a handy resource that allows you
to inspect the value of properties and to run ad-hoc JavaScript commands. The console also includes a log
where you can write debugging information from your application, which I have already demonstrated. The
window object also provides a console object that you use to interact with the console programmatically. As
with many of the other objects provided by the window object, the console is also in the global namespace so
you can access it with window.console or simply console.

The methods supported by the console object are listed and described in the reference materials in
Appendix C. I won’t describe all of them here, but I will explain a few of the more useful features.

String Substitution
Many of the console methods including log(), error(), info(), and warn() support string substitution.
You can embed one or more percent signs (%) into the text as a placeholder and then provide an additional
parameter for each placeholder. Next to the % symbol, you need to also specify one of the following format
characters:

•	 s - string

•	 d or i - numeric

•	 f - floating point

•	 o - object

■■ Caution  Firefox also supports qualifying the numeric and floating-point formats to specify the number of
digits. As of this writing, this is not supported by most other browsers and can causing incorrect formatting in
some browsers, including Edge.

For a quick demonstration, the following will output four values with the specified format:

console.info("Formatting: %i, %f, %s, %o", 22.651, Math.PI, "text", screen);

This will be displayed in the Edge browser as shown in Figure 16-5 and in Chrome as shown in
Figure 16-6. Notice the blue circle with an “i” in it to indicate this is an informational entry.

Figure 16-5.  An informational log entry in Edge

Chapter 16 ■ Browser Environment

315

Profiling
Most browsers provide developer tools that include utilities for evaluating performance. These can be
quite powerful and help you see where your application can be tuned to improve responsiveness. This is
beyond the scope of this book but I want to give you a couple of links to help you get started. Here’s a good
explanation of Chrome’s Timeline tool: https://developers.google.com/web/tools/chrome-devtools/
evaluate-performance/timeline-tool. In addition, Firefox has a Performance tool that is demonstrated
in a series of articles starting with this one: https://developer.mozilla.org/en-US/docs/Tools/
Performance.

The console object provides facilities for integrating with these performance tools. For example, the
profile() method will start a new profile. You can place this call just before code that you want to evaluate.
Then call the profileEnd() method to stop the profile and output the results. Google provides a good article
that describes these various console functions with tips on how to use them: https://developers.google.
com/web/tools/chrome-devtools/console/console-reference.

The time() and timeEnd() method can be used to gather some simple metrics. These methods act like
a stopwatch. If you want to know how long a function takes to complete, just wrap these around the function.
For example, the following code iterates through a loop 1,000 times and records the total time taken to
complete.

console.time("Stopwatch");
var j = 1;
for (var i = 0; i < 1000; i++) {
 j += j + i;
}
console.info("j = %i", j);
console.timeEnd("Stopwatch");

Performance
On a somewhat related topic, the window object includes a performance property that provides access to
the Web Performance API. This API has two properties, navigation and timing that provide details of how
the page was loaded and various timing metrics. If you enter window.performance.timing in the browser
console, you can see a collection of timing details as shown in Figure 16-7. These values are the computed as
the number of milliseconds from a specific point in time.

Figure 16-6.  An informational log entry in Chrome

https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
https://developer.mozilla.org/en-US/docs/Tools/Performance
https://developer.mozilla.org/en-US/docs/Tools/Performance
https://developers.google.com/web/tools/chrome-devtools/console/console-reference
https://developers.google.com/web/tools/chrome-devtools/console/console-reference

Chapter 16 ■ Browser Environment

316

This API also provides a now() method that will return the number of milliseconds using the same
reference point. The API also provides a mark() method that you can use to add a custom performance
entry.

Grouping Log Entries
You can also group log entries by using the group() method. After the log entries are added, call the
groupEnd() method to close the group. For a simple demonstration, the following code logs three entries
inside a group. This is seen in the Firefox console as shown in Figure 16-8.

console.group("Logging a group of records...");
console.log("Log entry #1");
console.log("Log entry #2");
console.log("Log entry #3");
console.groupEnd();

Figure 16-7.  Performance timing details

Chapter 16 ■ Browser Environment

317

Instead of using the group() method, you could use the groupCollapsed() method. This works exactly
the same way as the group() method except that the group is collapsed in the console and the user must
expand it to see the three log entries.

Cache
Being able to store data on the client has several important applications, including performance and
improved user experience. For a long time, this was done exclusively through cookies but HTML introduces
localStorage and sessionStorage to address some of the drawback of cookies.

Cookies
Cookies allow you to store small amounts of data on the client. They are actually part of the document object,
but I will explain them here along with the other storage mechanisms. All of the cookies for a document
are provided as a single string, which is available through the document.cookie property. The cookies are
separated by a semicolon and each cookie has the form <name>=<value>. For example, if there were three
cookies names Test1, Test2, and Test3, the cookie string might look like this:

Test1=Test cookie #1; Test2=Test cookie #2; Test3=Test cookie #3

■■ Tip  One important aspect of cookies is that they are included with every server request. This makes this
client-side data available to the server. The server can also set the value of the cookies.

To add a cookie you assign its value using the same document.cookie property. However, you can only
set a single cookie value at a time. For example:

document.cookie = "Test1=Test value";

This will either create a new cookie with the name “Test1” or update an existing cookie if one by the
same name already exists. This will not affect any other cookies that were already defined. However, getting
the document.cookie property will return all cookies as I previously explained. To get a specific cookie, you’ll
need to parse the cookies value looking for the desired cookie. To remove a cookie, you need to update its
value to an empty string.

Figure 16-8.  Display a log group in Firefox

Chapter 16 ■ Browser Environment

318

When creating a cookie, you can also include some other properties by including them after the cookie
value. These are the supported attributes:

•	 domain= - specifies the domain that has access to this cookie; if not specified this
defaults to the domain of the document.

•	 expires= - indicates when the cookie should expire; if not specified, the cookie will
expire when the session is closed. This must be formatted as a UTC string; use the
toUTCString() method to assist with formatting.

•	 max-age= - another way of specifying when the cookie expires; specify the number of
seconds before the cookie expires.

•	 path= - specifies the location where the cookie should be stored.

•	 secure - indicates that the cookie should only be sent when https is used.

For example, to set the expiration date, create a new cookie like this:

document.cookie = "Test=Test cookie; expires=Sun, 30 Oct 2016 12:00:00 UTC";

Working with cookies is somewhat tedious, and I suggest that you create (or borrow) some helper
functions to simplify accessing them. The code in Listing 16-2 creates three functions that create, remove,
and get a cookie. The remaining code then uses these functions, writing the results to the console.

Listing 16-2.  Using Cookies

function storeCookie(key, value, duration) {
 var expDate = new Date();
 expDate.setTime(expDate.getTime() + duration * 86400000);
 document.cookie = key + "=" + value + ";expires=" + expDate.toUTCString();
}

function removeCookie(key) {
 storeCookie(key, "", 0);
}

function getCookie(key) {
 var cookies = document.cookie.split(';');
 for(var i=0; i<cookies.length; i++) {
 if (cookies[i].trim().indexOf(key + "=") == 0) {
 return cookies[i].trim().substring(key.length + 1);
 }
 }
 return null;
}

storeCookie("Test1", "Test cookie #1", 5);
storeCookie("Test2", "Test cookie #2", 5);
storeCookie("Test3", "Test cookie #3", 5);

console.log(document.cookie);
console.log("Test2:", getCookie("Test2"));
removeCookie("Test2");
console.log("Test2:", getCookie("Test2"));
console.log(document.cookie);

Chapter 16 ■ Browser Environment

319

The results in the console log is shown in Figure 16-9. After adding three cookies, they are all returned
in the cookies property. The getCookie() function returned the specified cookie but then after the cookie
was removed, the function returned null. Also, the cookie property only returns two cookies after one was
removed.

Storage
HTML5 defines two new storage mechanisms for client-side caching, localStorage and sessionStorage.
Both are properties of the window object and they return a Storage object. The only difference between the
two is the duration that the data is available. The sessionStorage is cleared when the browser is closed
whereas the localStorage is kept indefinitely.

The Storage object holds a set of key/value pairs both of which must be strings. You can store any data
in the Storage object that can be serialized. You add an item by calling the setItem() methods passing in
both a key and a string value. If the specified key exists, its value will be updated; otherwise a new item is
added to storage. You can retrieve an item by calling getItem() passing in the key of the desired item. If the
specified key is not found, getItem() will return null.

■■ Caution  Always check for exceptions when calling setItem() as exceptions can occur. The setItem()
will throw an exception if the cache is full. Also, in some browsers it will throw an exception when in private
mode.

If you want to remove an item from storage, call the removeItem() method passing in the key of the
item. You can also remove all items by calling the clear() method. The Storage methods are demonstrated
in the following code:

var cache = window.sessionStorage;
cache.clear();
cache.setItem("key1", "This is my saved data");
console.log("Saved data: " + cache.getItem("key1"));
cache.removeItem("key1");
console.log("Saved data: " + cache.getItem("key1"));

There are size limits for both local and session storage that vary by browser and operating system. Here
is a page that will test your specific browser and verify the storage limits: http://dev-test.nemikor.com/
web-storage/support-test/. But generally, you should have around 5MB.

Figure 16-9.  Displaying the cookie results

http://dev-test.nemikor.com/web-storage/support-test/
http://dev-test.nemikor.com/web-storage/support-test/

Chapter 16 ■ Browser Environment

320

Browser Interface Elements
The browser provides several UI components, such as a menu, toolbar, and status bar, that the user can use
to interact with and control the browser’s behavior. Each of these components support the BarProp interface
that exposes a single property, visible. JavaScript can access these components to determine if a particular
element is available to the users. The following window properties are supported:

•	 locationbar - displays the URL of the current document.

•	 menubar - any type of menu provided by the browser.

•	 personalbar - provides user preferences, bookmarks, favorites, etc.

•	 scrollbar - either a vertical or horizontal scrollbar.

•	 statusbar - provide status of the current page of the currently selected element
on the page. This may include download status of a resource or the URL a link is
pointing to.

•	 toolbar - component containing UI-based commands such as the back button or
refresh button.

You cannot hide or show these UI components, but you can determine if they are currently visible. To
see if the menu is visible, for example, call the following:

if (window.menubar.visible) {
 console.log("Menu is visible");
}

Timers
The window object provides two types of timers:

•	 setTimeout() - calls the specified function after a specified amount of time.

•	 setInterval() - calls the specified function after a specified amount of time and
continues to call that function using the same interval.

Both methods return a handle that you can use to cancel the timer. This is particularly important
for setInterval() as it will keep calling the function until it is canceled. To cancel the timer, use the
corresponding method, clearTimeout() or clearInterval() passing the return value of the set method.

To see this in action, here is a simple demonstration:

function logMessage() {
 console.log("The timer went off!");
}

var timer = setTimeout(logMessage, 2000);

// Don't call this or the timer will never fire
//clearTimeout(timer);

I purposely commented out the call to clearTimeout() so the timer would eventually expire. About 2
seconds after the page loads, you should see a new entry in the console log.

Chapter 16 ■ Browser Environment

321

Summary
In this chapter I covered a wide range of topics related to the browser environment and the features that
are available. There is a lot of information available that you can use to influence the behavior of your
application. The window object is the starting point and provides access to these capabilities. The primary
child objects are:

•	 screen - Provide details of the display device.

•	 location - Provide details of the current web address and can be used to navigate to
other pages.

•	 history - Used to support the back button and can be manipulated to change the
behavior of the back button. You can also include state information that is available
when navigating back to a previous page.

•	 navigator - provides details about the device including hardware, operating system,
and browser information. It also provides the geolocation object.

The window object provides some useful features such as the console log as well as profiling and
performance metrics. You can also store client-side data through cookies as well as local and session storage.
Timers are also available through the window object. There is a lot of functionality that I did not cover in
detail but is provided in the reference material.

In the next chapter I will explain more about the window itself, including dialog boxes, frames and
multi-tab applications.

323© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_17

CHAPTER 17

Window Object

In this chapter I will explain how you can create and manipulate windows with JavaScript. I will start by
opening a pop-up window and demonstrate how to control its size and position as well as other attributes.
I’ll show how you can use methods on the window object to move and resize a window. I also provide an
example that simulates a modal dialog using HTML, CSS, and JavaScript. Finally, I will briefly explain how to
use an inline frame to embed content from another source.

Create a Window
I’ll start by opening a new window using JavaScript on an existing window. Then I’ll demonstrate the ways
the new window can be manipulated through JavaScript. A new window is easily created by calling the
window.open() method. This has two required parameters: a name for the window and the web address for
its document.

■■ Note  The window object provides methods for modifying properties such as its size and location. However,
as a security measure, you can only adjust windows that were created through JavaScript. So, you cannot
change the initial window that was created by the browser. However, you can create a new window using the
open() method and then manipulate it though JavaScript, which is what I’ll be doing here.

In my web project, I have a very simple HTML document named MainPage.html with the following
markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 17 - Windows</title>
 <script src="SampleScript.js"></script>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

Chapter 17 ■ Window Object

324

For the new window I also have PopUp.html and PopUp2.html files that are essentially the same
as the initial document with a slight variation on the title and paragraph elements so you can tell them
apart. The pop-up document also references a different script file, PopUp.js, which is initially empty. The
SampleScript.js file initially has the following JavaScript code:

"use strict";

window.name = "Chapter17";
var popup = window.open("PopUp.html", "popup");

A window created through the open() method will have its name property set by the second parameter.
However, windows created through the browser do not, so this script sets the name property. It then creates a
new window using the PopUp.html document.

Pop-Up Blocker
When you try this out, unless you have your Pop-Up Blocker disabled, you probably received some sort of
warning like the one shown in Figure 17-1, which is from the Chrome browser. Pop-ups are generally pretty
annoying and can pose a security threat so all modern browsers can block pop-ups. In most cases, this is the
default setting.

I recommend that you click the Manage pop-up blocking or equivalent link and selectively allow some
pop-ups. If you disable blocking completely, you leave you browser susceptible. However, most of the
demos in this chapter won’t work if pop-ups are not enabled. In the pop-up exception dialog, you can enter
localhost as shown in Figure 17-2.

Figure 17-1.  Pop-up warning in Chrome

Chapter 17 ■ Window Object

325

Each browser has a different interface for reporting blocked pop-ups and for managing which pop-ups
are allowed. For example, the warning in Firefox is shown in Figure 17-3 and the warning in Opera is shown
in Figure 17-4.

Figure 17-2.  Configuring pop-up exceptions in Chrome

Figure 17-3.  The pop-up blocker in Firefox

Figure 17-4.  The pop-up blocker in Opera

Chapter 17 ■ Window Object

326

Once you have disabled the pop-up blocker, you’ll need to refresh the page so the script runs again. You
should see another tab as shown in Figure 17-5.

Reusing the Window
When creating a window through JavaScript you must give it a name, which is the second parameter passed
to the open() method. If you try to open another window using the same name, it will use the existing
window but replace the contents with the new URL. To try this out, go to the initial tab and open the console
window. Then type the following command:

window.open("PopUp2.html", "popup");

Because the name is the same, “popup,” the same window will be used, but it will load the specified
document, PopUp2.html.

The open() method will also return a window object and, in my example, is stored in the popup variable.
You can use that to manipulate the window and I will demonstrate that later in this chapter.

Configuration Parameter
The open() method also accepts a third parameter that contains a configuration string, which is sometimes
referred to as the window features string. If you don’t provide this parameter or the parameter is an
empty string, the new window will be created as a new tab in the existing browser window, as I previously
demonstrated. However, supplying any value, even a single space will cause a separate window to be
created.

■■ Tip  The window feature string is only used when the window is first created. If you use the open() method
to replace its contents, this parameter is ignored and the existing window features are maintained.

This window features string contains a collection of name/value pairs that are separated by commas,
and each defines a feature of the new window. There is a long list of features that can be specified in this
string. I have organized them into logical groups.

■■ Note  The specification states that there should be no whitespace between each name/value pair, only a
comma. However, my experience is that spaces between each value are ignored.

Figure 17-5.  Opening a second tab

Chapter 17 ■ Window Object

327

Position and Size
The following values related to the new window’s position or size are supported, which are fairly self-
explanatory:

•	 left

•	 top

•	 height

•	 width

•	 outerHeight

•	 outerWidth

The left and top values indicate the position of the new window and specify the number of pixels from
the left and top edges of the display. The height and width values specify the area available for the actual
content of the document. The outerHeight and outerWidth values include the space for content as well as
the title area, menu, toolbar, etc. If both are specified, the outer values will take precedence.

To demonstrate this, close the second tab and go to the console window of the initial page. Then enter
the following command:

window.open("PopUp.html", "popup", "height=300,width=400,top=400,left=150");

■■ Caution  Browser support for these features is not consistent. Chrome, IE, and Edge do not support the
outerHeight and outerWidth features. Opera does, but if you use them, the top and left features are ignored
and the window is aligned with the top-left corner of the initial window. Chrome requires the height and width
features; if not supplied, the whole string is ignored, Edge does not support the top and left features; the new
window is always about 20 pixels down and to the right of the initial window.

Chrome Features
The next set of features is related to the UI components of the browser, which is often referred to as the
chrome, not to be confused with the Chrome browser. If none of these features are set, the default behavior
in most browsers is to include the title bar and location area only; however IE does not include the location
by default.

The specification defines the following values. As of this writing, only Firefox and Edge support these,
however.

•	 location

•	 menubar

•	 personalbar

•	 status

•	 titlebar

•	 toolbar

Chapter 17 ■ Window Object

328

These are Boolean values and do not require a specified value; their existence indicates the feature is
requested and their absence indicates the opposite. Setting their value to no, such as menubar=no will also
disable the feature. To test this, from either Firefox or IE, close the pop-up and enter the following command
in the console of the initial window.

window.open("PopUp.html", "popup",
 "height=300,width=400,top=400,left=150,location,menubar,status,toolbar");

■■ Caution  The behavior of these flags varies by browser. For example, in IE as I mentioned, the location area
is not displayed by default but you can include it by adding location to the window feature string. However,
adding the location will suppress the titlebar. In Firefox, if you add the menubar, the new window uses tabs and
the page title is in the tab, not the title area.

Window Features
There are additional features that define the window behavior. There is very little support for these so I’ll
simply list them here as they might be supported later.

•	 alwaysLowered - puts the new window under the existing one in the z order.

•	 alwaysRaised - puts the new window above the existing window in the z order.

•	 close - set to no to disable the close icon.

•	 dependent - a dependent window is automatically closed when its parent window is
closed.

•	 minimizable - disables the minimize icon.

•	 fullscreen - puts the new window in fullscreen mode.

•	 resizable - enables the window to be resized; this is on by default.

•	 scrollbars - set this to no to disable scrollbars. By default, scrollbars are included
when the content doesn’t fit into the allocated space.

Manipulating Windows
After creating a new window, you can use the window properties and methods to view and adjust its size,
position, and scroll properties.

Properties
The current position and size of a window can be obtained from the window object. The open() method
returns the window object that represents the new window. The initial window can use this to find out where
the window is. You can also determine the current scroll position of the window. The following properties
are available.

•	 innerHeight - height of the space available for content.

•	 innerWidth - width of the space available for content.

•	 outerHeight - total height of the window including the browser UI elements.

Chapter 17 ■ Window Object

329

•	 outerWidth - total width of the window including the browser UI elements.

•	 screenX - the distance between the left edge of the device and the left edge of the
window.

•	 screenY - the distance between the top edge of the device and the top edge of the
window.

•	 scrollX - the number of pixels that the document has been scrolled horizontally.

•	 scrollY - the number of pixels that the document has been scrolled vertically.

Methods
These properties are all read-only; however, they can be manipulated through a set of methods that are
provided on the window object. The following methods are available:

•	 moveBy() - Move the window by the specified number of pixels; both the horizontal
and vertical shifts are specified. Set one to zero if no movement in that direction is
desired. A negative value will move the window up or to the left.

•	 moveTo() - Move the window so the top-left corner is at the specified position.

•	 resizeBy() - Increase the window size by the amount specified; both a horizontal
and vertical increase is specified. Set to negative if the dimension should shrink. The
top and left edges remain in the same place.

•	 resizeTo() - Specify the new window size. The top and left edges remain in the
same place.

•	 scrollBy() - Scroll by the specified number of pixels; both the horizontal and
vertical values can be specified.

•	 scrollByLines() - Scroll the document vertically by the specified number of lines.

•	 scrollByPages() - Scroll the document vertically the number of specified pages.

•	 scrollTo() - Scroll to the specified horizontal and vertical positions.

•	 sizeToContent() - Change the window size to fit the existing content.

Demonstration
To demonstrate these capabilities, I first added a large image to the PopUp2.html file by adding the line in
bold. This enables you to see the scrolling behavior as well as the sizeToContent() method.

<body>
 <p>Hello PopUp 2!</p>

</body>

Chapter 17 ■ Window Object

330

I then replaced the SampleScript.js with the code shown in Listing 17-1.

Listing 17-1.  Rewriting the SampleScript.js to test window manipulation

"use strict";

window.name = "Chapter17";
var popup = window.open("PopUp2.html", "popup", "height=300,width=400,left=400,top=150,locat
ion,toolbar,menubar,scrollbars");

var i = 1;
var timer = window.setInterval(adjustWindow, 2000);

function adjustWindow() {

 if (i > 9) {
 clearInterval(timer);
 }
 else {
 console.log("outerH: %i, outerW: %i, innerH: %i, innerW: %i, screenX: %i, screenY: %i,
 scrollX: %i, scrollY: %i",
 popup.outerHeight, popup.outerWidth, popup.innerHeight, popup.innerWidth,
 popup.screenX, popup.screenY, popup.scrollX, popup.scrollY);
 }

 switch (i) {
 case 1:
 popup.scrollBy(50, 30);
 break;
 case 2:
 popup.moveBy(50, 50);
 break;
 case 3:
 popup.moveTo(200, 100);
 break;
 case 4:
 popup.resizeBy(50, 50);
 break;
 case 5:
 popup.resizeTo(700, 500);
 break;
 case 6:
 popup.scrollByLines(5);
 break;
 case 7:
 popup.scrollByPages(1);
 break;

Chapter 17 ■ Window Object

331

 case 8:
 popup.sizeToContent();
 break;
 case 9:
 popup.close();
 break;
 }
 i++;
}

The adjustWindow() function is called repeatedly, every 2 seconds, by using the setInterval()
method that I explained in the previous chapter. Each time it is called it uses a different method to adjust
either the size, position, or scroll of the pop-up window. On each iteration, the current window attributes
are written to the console log. The last time it is called the pop-up window is closed by calling the close()
method. When completed, the console log will look similar to Figure 17-6.

Focus
You can programmatically change which window has the focus. When a new window is opened, it will
normally have the focus. If you want to open a new window to display some information but the user is still
interacting with the initial window, you should call the focus() method on the initial window after the new
window is opened. This will keep the main window in focus.

The window also supports the blur() method. The name may seem odd at first, but the opposite of
being focused is to be blurred. Calling the blur() method will remove the focus from the window and the
focus will be on which ever window is next in the z order.

Modal Dialog Windows
So far, the windows I have created have been modeless, meaning that the user can interact with other
windows as well. In contrast a modal window gets the focus and disables the rest of the application until the
window is closed. Now, I’ll show you how to create modal dialog boxes.

Figure 17-6.  Results in the console log

Chapter 17 ■ Window Object

332

Standard Pop-Up Dialogs
Before I explain the more generic modal dialog boxes, I want to first point out that there are three standard
modal dialog boxes available through JavaScript. They are quick and easy to use, but they are not very attractive
and impossible to style. The first one is the alert box, which I showed you back in Chapter 3. This simply
displays a text message with an OK button that will close the dialog box. The second is the confirmation box,
which displays a text message but has both an OK and a Cancel button. This also returns true if OK is clicked or
false if Cancel was clicked. The last is the prompt box, which displays a text message and a text field for entering
a value. The entered value is returned. The following code demonstrates all three dialog boxes

window.alert("This is an alert box.\nThis is a second line");

if (window.confirm("Is it OK to proceed?")) {
 var answer = window.prompt("How many pets do you have?", 0);
 console.log("%i pets were entered.", answer);
}
else {
 console.log("Confirmation failed");
}

The alert() method demonstrates how you can include a line brake using the \n escape sequence.
This is also supported on the other two pop-up dialogs. The confirm() method is nested inside an if
statement. If the user clicks the Cancel button, the following code is skipped and a message is written to the
console log. The prompt() method takes two parameters. The first is the text that is displayed in the dialog
and the second is the default value, which is optional. The dialog boxes that are displayed in Firefox are
shown in Figures 17-7, 17-8, and 17-9. Each browser formats these dialog boxes differently.

Figure 17-7.  The alert box in Firefox

Figure 17-8.  The confirmation box in Firefox

http://dx.doi.org/10.1007/978-1-4842-2463-2_3

Chapter 17 ■ Window Object

333

Custom Modal Dialogs
Creating a true modal dialog box in HTML/JavaScript is challenging. There have been a couple of methods
kicking around for some time now, openDialog() and showModalDialog(). However due to security
vulnerabilities and various implementation issues, these have been deprecated. In fact, this capability has
been completely removed from several browsers. You should definitely not use either of these methods for
any new applications.

The HTML5 specification has defined a new dialog element that has the promise of simplifying modal
dialogs. However, as of this writing there is almost no support for it. There are some jQuery solutions as well
as other polyfills that can be employed that are outside of the scope of this book.

I will demonstrate a fairly simple way to approximate a modal dialog box using only native HTML, CSS,
and JavaScript that is sometimes referred to as a glass pane approach. The basic idea is to overlay the entire
window with a transparent, or semitransparent element, referred to as a glass. This is like putting a sheet
of glass over a painting; while you can see the painting underneath the glass, you can’t actually touch the
painting. The actual dialog box and its elements are then placed on top of the glass. You can interact with the
dialog box but not the rest of the page. From the user’s perspective, this behaves just like a modal dialog box.

■■ Tip  To accomplish this I will need to give you a sneak peek into the next two chapters. You will need to
manipulate the DOM elements and their styles through JavaScript.

The HTML for the glass overlay and the dialog elements are included in the main HTML document but
they remain hidden until you want to open the dialog. Here is the markup that you’ll need.

<body>
 <p>Hello World!</p>
 <button onclick="showDialog()">Show Dialog</button>
 <div id="glass" class="glass">
 <div class="dialog">
 <h3>Prompt</h3>
 <p>How many pets do you have?</p>
 <input type="number" value="0" id="numPets" />
 <button id="dialogOK" type="Submit" onclick="OK()">OK</button>
 </div>
 </div>
</body>

Figure 17-9.  The prompt box in Firefox

Chapter 17 ■ Window Object

334

I have added a button that will show the dialog box; its click event will call the showDialog() function
that needs to be implemented. The rest of the markup creates the glass, which is a simple div element.
Inside the div element is another div element that contains the actual dialog box content. This includes a
header element for the title, a paragraph element containing the prompt, an input element that accepts the
user input, and a button to submit the entry. The button will call the OK() function when clicked.

The glass and dialog are styled with the following two CSS rules:

.glass {
 position: fixed;
 left: 0;
 top: 0;
 background-color: rgba(225,225,225,.7);
 height: 100vh;
 width: 100vw;
 z-index: 100;
}

.dialog {
 height: 125px;
 width: 220px;
 margin: 0 auto;
 padding: 15px;
 border: 1px solid black;
 background-color: white;
}

The glass uses position: fixed, which as I explained in Chapter 10, will keep the element fixed relative
to the window. By setting left and top to 0 and height and width to 100vh and 100vw, respectively, this
element will take up the entire area of the window. The z-index is set to 100 to ensure that this element is on
top of everything else.

You can adjust the background based on your preference; I set it to a gray background with 30%
transparency. This will make it clear that the other controls around the dialog box are not available. You can
use a completely transparent background as well. This will make the other elements appear normally, but
the user still can’t interact with them. You could also use a completely opaque background to hide the other
elements. These choices are purely visual and have no effect on how the page functions.

The formatting of the dialog is pretty straightforward, using a fixed size and centering it horizontally
using the margin: 0 auto; declaration. I did not add any other formatting to pretty it up, but you can add
more declarations as desired.

The JavaScript needed to pull all of this together is shown in Listing 17-2.

Listing 17-2.  The dialog implementation

// Holds the result from the dialog box
var result = 0;

function showDialog() {
 var dialog = document.getElementById("glass");
 dialog.style.visibility = "visible";
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_10

Chapter 17 ■ Window Object

335

function closeDialog() {
 var dialog = document.getElementById("glass");
 dialog.style.visibility = "hidden";

}
function OK() {
 var input = document.getElementById("numPets");
 result = input.value;
 closeDialog();

 console.log("#Pets: " + result);
}

// Make sure the dialog starts closed
closeDialog();

The first two functions, showDialog() and closeDialog(), get the glass element and the set is
visibility attributed to either visible or hidden. The OK() function, which is called by the submit button,
gets the value from the input element and stores it in the result variable. It also calls the closeDialog()
function. After defining these functions, the closeDialog() function is called to ensure the glass is hidden
when the page is first loaded. When the Show Dialog button is clicked, the page will look like Figure 17-10.

Figure 17-10.  The modal dialog box

Chapter 17 ■ Window Object

336

Frames
You can include an inline frame (iframe) element to embed content from another HTML document. For
example, if you want to include a video on your page that is hosted on another site, such as YouTube, an
iframe is just what you need. I explained inline frames briefly in Chapter 4.

■■ Caution  Prior to HTML5 the frame element was used to organize parts of a page such as header
or sidebar. Each was a window in its own right with a separate document and could be sized and moved
independently of the other frames. This was a difficult pattern to work with. With HTML5 the frame element
has been deprecated in favor of the sectioning elements that I explained in Chapter 4. Inline frames were kept,
however. They provide the ability to embed another document while still anchored within the parent document.
If you’re familiar with frames, don’t try to implement the frame approach using inline frames; use the sectioning
elements and style with CSS.

Simple Example
An inline frame is embedded by using an iframe element, setting its src attribute to the location of the
document that should be included in it. For example:

<iframe src="http://www.apress.com"></iframe>

Like other elements, you can style it with CSS. The following rule sets the width to 95%, allowing some
room for the border. It also sets the height and applies a blue border. The result is shown in Figure 17-11.

iframe {
 width: 95vw;
 height: 300px;
 border: 3px solid blue;
 margin-top: 5px;
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_4
http://dx.doi.org/10.1007/978-1-4842-2463-2_4

Chapter 17 ■ Window Object

337

The inline frame element supports several attributes that you can set in the markup.

•	 allowfullscreen - include this if you want the embedded window to be able to
switch to fullscreen mode.

•	 height - the height of the element in pixels.

•	 name - the name of the frame; this can be used to create a link to this element.

•	 sandbox - this is used to specify restrictions on the window, which I’ll describe later.

•	 src - the URL of the document to be loaded in the frame.

•	 srcdoc - used in conjunction with the sandbox attribute.

•	 width - the width of the element in pixels.

Accessing Frames
As I mentioned, the frame is actually another window and operates independently from the parent window.
This includes styles, which do not cascade down to content inside a frame. These child windows are
available in JavaScript through the window object, which has a frames property. For example, you can see
how many frames there are by calling window.frames.length, or access the first frame by calling window.
frames[0]. The later returns a window object that represents the frame. However, if you try to access any of its
properties you’ll get a cross-origin error as demonstrated in Figure 17-12.

Figure 17-11.  Using a simple iframe

Chapter 17 ■ Window Object

338

Similarly, JavaScript in the embedded frame can access the outer window by calling window.parent.
Of course, you’ll get the same error if the two windows have different origins.

Using Sandbox
As I’m sure you can imagine, embedding someone else’s web page inside your own can open up some
vulnerabilities. To minimize this risk, you can create the inline frame and specify the sandbox attribute,
which will enforce a number of restrictions on the embedded window. To use sandbox mode, add
sandbox="" to the iframe element:

<iframe src=http://www.apress.com sandbox=""></iframe>

You can also selectively allow some of these features by listing them inside the value of the sandbox
attribute. You can disable multiple restrictions by including a space-separated list of values. The following
values have been defined, although not all browsers support all of them.

•	 allow-forms

•	 allow-modals

•	 allow-orientation-lock

•	 allow-pointer-lock

•	 allow-popups

•	 allow-popups-to-escape-sandbox

•	 allow-presentation

•	 allow-same-origin

•	 allow-scripts

•	 allow-top-navigation

Summary
In this Chapter I explained the properties and methods on the window object that allow you to create and
manipulate windows. Creating a pop-up window is easy but this needs to be allowed by the pop-up blocker.
Only windows that are created through JavaScript can be manipulated through JavaScript. I demonstrated
the standard modal dialog boxes and how to create a custom model dialog through HTML, CSS, and
JavaScript. I also explained how to use an inline frame and briefly covered the options that are available for
minimizing risk.

In the next chapter, I’ll show you how to manipulate the DOM using JavaScript. This will provide a lot of
flexibility and give you tools to improve the functionality of your web page.

Figure 17-12.  Displaying a cross-origin exception

339© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_18

CHAPTER 18

DOM Elements

An HTML document is a specialized XML document and, like all XML documents, is comprised of a
hierarchy of node elements. Each node can have a parent node and zero or more child nodes. In previous
chapters, you created these nodes through some type of HTML editor or possibly a simple text editor. In this
chapter, I will show you how you can read and manipulate these nodes through JavaScript.

Document Object Model
For a quick review, here is a very simple HTML document. It contains a head element that contains four
child elements: a meta, title, link, and script element. It also contains a body element that has a single
paragraph element. The word “Hello” is inside a strong element.

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 18 - DOM Elements</title>
 <link rel="stylesheet" href="Sample.css" />
 <script src="SampleScript.js" defer></script>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

Each of these elements is a node in the document. This is illustrated in Figure 18-1.

Chapter 18 ■ DOM Elements

340

As I mentioned in Chapter 16, the window object contains a document property that gives you access to
the HTML document. To demonstrate this, if you go to the browser console and type window.document.
childNodes, an array of nodes will be listed, with two elements: !DOCTYPE and html.

Element Inheritance
In Figure 18-1, for each node, I indicated the HTML element name as well as the object type that represents
that element in JavaScript. Because each element has a different behavior, the object type that represents
it must be different as well. There is quite a long list of these object types as you might imagine. While not
every HTML element has a specialized class in JavaScript, many do.

Fortunately, these object types use inheritance so a common set of base objects are implemented by
most elements. The link element, for example, is represented by the HTMLLinkElement object. The object
inherits properties and methods from the HTMLElement object, as do all of the other HTML element objects
such as script, p, and strong. The HTMLLinkElement object provides additional capability that is unique to
link elements. Figure 18-2 illustrates the inheritance hierarchy of some of the more common objects.

Figure 18-1.  A simple HTML document

Figure 18-2.  The inheritance hierarchy

http://dx.doi.org/10.1007/978-1-4842-2463-2_16

Chapter 18 ■ DOM Elements

341

■■ Tip  All of the JavaScript objects that represent HTML elements are derived from the HTMLElement
object. I did not show them in the diagram because there are dozens of them. However, the reference
material in Appendix C includes a table that lists all of the HTML elements and the JavaScript object that
represents it.

The EventTarget object provides the properties and methods needed to receive and handle events.
The Node object provides the ability to have a parent and zero or more child nodes as well as methods for
traversing and modifying them. The Element object adds more capability for manipulating elements within
the overall document. One of the more important capabilities of the Element object is to view and update the
attributes on an element. The HTMLElement object extends this further, providing capability such as defining
the language and assigning styles.

Simple Demonstration
Before getting into the details, for a quick demonstration, I’ll remove the contents of the body element from
the HTML file and create this using JavaScript. The HTML markup will have an empty body element. The
SampleScript.js file that is referenced in the head element and includes the populateBody() function. I'll
explain each of these method calls in more detail later.

function populateBody() {
 var body = document.getElementsByTagName("body")[0];
 var paragraph = document.createElement("p");
 paragraph.innerHTML = "Hello World!";
 body.appendChild(paragraph);
}

populateBody();

The first call gets the body element using the getElementsByTagName() method. This returns an
array of all the elements in the document of that type. Since there should only be one body element, it
simply takes the first instance. The next call creates a paragraph element by calling the createElement()
method, specifying the element type. This returns an HTMLParagraphElement object. The contents of the
paragraph element are set by updating the innerHTML property. Finally, the paragraph is inserted into the
body element by calling the appendChild() method. Now, to invoke this function, simply call it inside the
SampleScript.js file.

Basic DOM Manipulation
This simple example demonstrates the four basic operations that you’ll use to manipulate the DOM:

•	 finding one or more elements

•	 creating a new element

•	 positioning an element

•	 modifying an element

Chapter 18 ■ DOM Elements

342

Finding Elements
Generally, the first step in manipulating the DOM is to find the element that you need to access. In the
previous example, I had to get the body element so I could modify its content. There are several methods
available for this depending on what data you’re using to search on.

The simplest method is to retrieve the element based on its id attribute. Since the id attribute must be
unique within a document, this will return zero or one elements. If no matching element is found, a null is
returned.

var element = document.getElementById(id);

The next two methods return an array of elements that match either the element type or the class
attribute. The first of these was used in the initial demonstration:

var elementArray = document.getElementsByTagName(name);
var elementArray = document.getElementsByClassName(names);

The latter of these allows you to provide a space-separated list of class names. If multiple names are
supplied, only elements that have all of the specified class names will be returned. If there are no matching
elements found, both of these methods will return an empty array.

In Chapter 9, I explained the capabilities of CSS selectors. You can leverage this functionality in
JavaScript using the querySelector() and querySelectorAll() method. With both of these methods, you
pass in a selector that is just like the selectors used in CSS. The querySelectorAll() method returns all
matching elements, while the querySelector() method only returns the first one. You can use complex
selectors, for example:

var elementArray = document.querySelectorAll("header+p, .book, p:first-child");

■■ Tip  In these examples, I’m calling the search methods on the document object. This will perform the
search across the entire document. These methods are also supported by all of the elements, so you could call
them from one of the child nodes. This will perform the search starting from the element on which it is called.
This will ignore its parent and siblings.

Creating Elements
As I already demonstrated, you create a new element by using the createElement() method, passing in the
element type, such as div, p, or span. The new element is provided in the return value. The actual object type
that is returned will vary depending on the element type that was specified.

In addition to element nodes, a document also has text nodes. Text nodes contain the content between
the opening and closing tags of an element. For example, to create a paragraph element and set its content:

var p = document.createElement("p");
var text = document.createTextNode("This is a test");
p.appendChild(text);

http://dx.doi.org/10.1007/978-1-4842-2463-2_9

Chapter 18 ■ DOM Elements

343

If you inspect the document after the JavaScript has been executed, you will see the element defined
like this:

<p>This is a test</p>

You can accomplish the same thing by setting the textContent property. For example:

p.textContent = "This is a test";

You can also set the innerHTML property like I did in the initial example. When using the innerHTML
property the contents of the element can include child elements. In the first example, part of the text was
inside a strong element. When setting the innerHTML property, its contents are replaced with the specified
document fragment. In contrast, the createTextNode() method only updates the content of the element
with text. If you try to embed elements in the string passed to it, they will be treated as literal text.

■■ Caution  There are security implications when setting the innerHTML property. To avoid cross-site scripting
attacks, script elements are ignored if included in the innerHTML property. You should still be careful when
setting the innerHTML property. Don’t insert user input into the DOM using the innerHTML property. Use the
textContent property instead.

Moving Elements
Creating an element, or a text node, merely creates the node; it doesn’t put it anywhere. For it to be included
in the document, you need to add it, either as the document’s root node or a child element of an existing
node. A document can only have one root node and, unless you are completely building the document in
JavaScript, you will likely be adding the new element to an existing node.

To do that, the appendChild() method was used in the initial example. You need to first find the element
that you want to add the new element to. The appendChild() method will then make the new element a
child node of that element. The method is called on the parent element and the child element is passed as a
parameter. The child node, the node being added, is also returned by the appendChild() method.

var child = parentNode.appendChild(childNode);

If the parent node already has child elements, the new one will come after the existing children. If that’s
not where you want it, you can call the insertBefore() method instead. This works like appendChild()
except there is an extra parameter to specify the sibling that the new element should come before.

var child = parentNode.insertBefore(childNode, sibling);

You call the insertBefore() method on the parent node and the first parameter is the element being
added. If you pass a null for the sibling, the element will be added as the last child; this is equivalent to
calling the appendChild() method.

Chapter 18 ■ DOM Elements

344

■■ Tip  Since there is an insertBefore() method, you might be expecting an insertAfter() method as
well. But no, this is not provided. However, this can be accomplished easily enough by using the nextSibling
property: parentNode.insertBefore(childNode, sibling.nextSibling). The Node object, from which
all HTML elements inherit, provides a nextSibling property. Inserting after an element is the same thing as
inserting before the element’s next sibling. If the element happens to be the last child, its nextSibling property
will be null and the insertBefore() method will add the new element as the last child.

You can also remove an element using the removeChild() method. Like the appendChild() and the
insertBefore() methods, the removeChild() method is called on the parent node, and the element to be
removed is passed in as a parameter. The element still exists, but it is no longer part of the document. Like
the other methods, the removed element is returned by the method call.

var removedElement = parentNode.removeChild(childNode);

If you want to move an element, you can use the removeChild() method to delete it from its original
location and then use appendChild() or insertBefore() to move it to a new location.

■■ Note  It may seem odd to need the parent element to remove a node but that’s how it works. You can
easily get the parent by using the element’s parentNode property. So, if you have the element that you want
removed, call element.parentNode.removeChild(element).

Lastly, you can replace an existing element with another element using the replaceChild() method.
It works much like the other methods; it is called on the parent element. It takes two parameters: the first is
the element that should be added and the second is the element that should be removed. The new element
is added in the same location as the removed element. The element that was removed is returned by the
method call.

var removedElement = parentNode.replaceChild(newElement, existingElement);

Modifying Elements
Most HTML elements consist of its contents (the text between the opening and closing tags) as well as the
attributes that are specified in the opening tag. Some elements such as images don’t have any content and
are defined solely by their attributes. As I’ve already explained, the element’s content can be set using either:

•	 Creating a text node and appending it to the element

•	 Setting the textContent property

•	 Setting the innerHTML property

Chapter 18 ■ DOM Elements

345

To manipulate the attributes, each element has an attributes property that contains all the attributes
that have been defined on that element. This is a collection of name/value pairs. You can see if a particular
attribute has been specified by calling the hasAttribute() method, passing in the name of the attribute.
You can also add attributes to this collection or modify existing ones. The following code demonstrates how
to access the attributes property. It will write the attributes of the first link element to the console. The
output is shown in Figure 18-3.

var link = document.getElementsByTagName("link")[0];
var attr = link.attributes;
for (var i=0; i < attr.length; i++) {
 console.log(attr[i].name + "='" + attr[i].value + "'");
}

Figure 18-3.  Displaying the element attributes

However, the attributes are also available as individual properties. You can simply get or assign a value
to these properties directly. The HTMLElement object supports all of the global attributes such as id and
class. To illustrate this, I’ll modify the previous sample to set the id, class, and lang attributes. These will
then be included in the attributes property as shown in Figure 18-4.

var link = document.getElementsByTagName("link")[0];
link.id = "myID";
link.className = "myClass";
link.lang = "en";
var attr = link.attributes;
for (var i=0; i < attr.length; i++) {
 console.log(attr[i].name + "='" + attr[i].value + "'");
}

Figure 18-4.  Displaying the additional attributes

Chapter 18 ■ DOM Elements

346

■■ Caution  The property name may be different from the attribute name. In this case, class is a reserved
word in JavaScript, so the property is called className.

Other specialized objects such as HTMLImageElement inherit the global attributes from HTMElement and
provide additional properties specific to that element. For example, HTMLImageElement exposes the alt, src,
and srcset attributes.

Related Elements
As I mentioned, each element is a node in the document and can have a parent node (all nodes have a
parent except the root node). A node can also have zero or more child nodes. After you have obtained an
element from the document, there are several properties that you can use to navigate to related elements.
The following properties are available:

•	 parentNode - the node’s immediate parent; null for the root node only

•	 children - an HTMLCollection object that contains all of the node’s immediate
children

•	 firstChild - the first element in the children collection

•	 lastChild - the last element in the children collection

•	 previousSibling - an element that has the same immediate parent as the current
node and comes just before the current node in the parent’s children collection. This
is null if the current element is the parent’s first child node.

•	 nextSibling - the element that has the same parent as the current node and comes just
after the current node. This will be null if the current element is its parent’s last child.

■■ Tip  There are literally hundreds of properties, methods, and events available on the objects that represent
the HTML elements. I have explained the more commonly used features but this is not an exhaustive set.
Mozilla has a really good API reference that I recommend if you’re looking for more details. I would start here:
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement. This article describes the members of
the HTMLElement object and has links to other objects

Using jQuery

■■ Note  In this book, I have focused on native HTML, CSS, and JavaScript capabilities. However, there are
a lot of libraries and frameworks that extend this functionality. Of course, they come with their own set of
advantages and shortcomings. If you are doing any serious web development you will want to consider one or
more of these, but I have carefully avoided them in this book. However, when it comes to DOM manipulation,
jQuery has become a de facto standard.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement

Chapter 18 ■ DOM Elements

347

In Chapter 3, I explained how to define a namespace to keep variables out of the global namespace. If you
define a function such as log() in your namespace called MyNamespace, you then execute it by specifying the
namespace along with the function name. This avoids any possible conflicts with other scripts that may also
define a log() function.

MyNamespace.log("Hello World");

In jQuery, all of the members are defined in a namespace, which happens to be named “$.” Whenever
you see a $. or $(). you’ll know that a jQuery member is being used.

Fundamentals
Using jQuery is pretty easy to use, but there are some basics that you’ll need to understand.

Selecting Elements
The basic pattern to all jQuery operations is to select something and then do something with it. The syntax
looks like this:

$(selector).action();

The selector will return zero or more elements. The specified action is then performed on each of
the elements in this set. The selector can be any valid CSS selector, which were described in Chapter 9.
jQuery also supports additional capabilities. Here’s an article that lists all of the selectors with samples and
documentation: http://codylindley.com/jqueryselectors/.

You can split the selection and action into two separate calls. For example:

var $elements = $(selector);
$elements.action();

This is especially useful if you have multiple actions to perform on the set of elements as it avoids
having to perform the selection again. Keep in mind, however, that the results from the selector are static;
they are not updated if there are changes to the document. To reflect the most recent state, you’ll need to
re-execute the selector.

You can also pass in an object to the selector, instead of a selector string. The most common example is
using the document object. For example, this will assign the anonymous function to be executed when the
document is ready:

$(document).ready(function(){... add code here ...});

jQuery provides a number of index-related selectors that select elements based on the relative order
with their parent object. The index is zero-based so :eq(0) is equivalent to using the first() method. You
can also use :lt(), :gt(), :even(), and :odd(). If you specify a negative value for :eq(), :lt(), or :gt(),
the index is counted from the end rather than the beginning. So :eq(-1) is equivalent to last().

http://dx.doi.org/10.1007/978-1-4842-2463-2_3
http://dx.doi.org/10.1007/978-1-4842-2463-2_9
http://codylindley.com/jqueryselectors/

Chapter 18 ■ DOM Elements

348

jQuery Object
It’s important to keep in mind that the objects returned from a jQuery selector are jQuery objects, not the
native DOM objects such as HTMLElement. The native object is wrapped by a jQuery object and supports the
methods that I will demonstrate later. If you need the native object, call the get() method on the jQuery
object.

The methods provided by the jQuery object will have similar functionality as the native objects but they
will have different names. You’ll need to keep track of what type of object you’re working with because they
have a different set of properties and methods. A common practice is to prefix all jQuery variables with a “$”
character. This should not be confused with the $ namespace, however.

Also, the object returned from a jQuery selector is an object, not an array of objects. It is similar to an
array in that it has a length property and a first() method, for example. But it has a lot more capabilities as
well. For a complete list, see the article at http://api.jquery.com/.

All of the jQuery methods return a jQuery object that supports a collection of elements. Even the
first() method returns a jQuery object that has a collection of one element. The get() method will return
the native DOM object from a jQuery object; however, you must supply the index. For example, to get an
HTMLElement object that represents the body element, use this:

var body = $("body").get(0);

Manipulating DOM Elements
jQuery doesn’t have a createElement() equivalent function, although you can create elements inline when
calling some of the other jQuery methods, which I’ll demonstrate shortly. You can create a native object
using createElement() and then use jQuery to add it to the document.

To add an element to the document, use the append() method. The selector will determine which
element(s) the new element is added to. This is roughly equivalent to the appendChild() function. If the
selector returns multiple elements, however, a clone of the new element will be added to each one. Like the
appendChild() method, append() adds the new element as a child element of the selected element, as the
last child element, after any existing elements. If you wanted to insert the element before the existing child
elements, use prepend(), instead.

Both append() and prepend() accept a variety of input types. You can pass in a native DOM object, such
as HTMLElement or a jQuery object containing one or more elements. You can also provide multiple comma-
separated parameters, or an array parameter if you want to add multiple elements. You could also specify
an HTML string. For example, passing in “<p></p>” will create a new paragraph element. The HTML string
can include more complex HTML with embedded child elements. This is similar to setting the innerHTML
property. However, the elements defined by the HTML string are appended (or prepended) to the existing
child element, instead of replacing them.

With both the append() and prepend() methods, the selector determines the target element(s), where
the elements will be inserted, and the parameter specifies the element(s) to be added. jQuery also provides
appendTo() and prependTo() that accomplishes the same result with a different syntax. With these methods,
the selector determines the elements to be added and the parameter specifies the target element.

The html() method replaces the innerHTML property with the HTML script that is passed in. If the
selector matches multiple elements, they will all be updated. If no parameter is passed it, it will not update
the element but rather return the existing HTML string, including any child elements. If the selector matches
multiple elements, only the innerHTML of the first element will be returned.

http://api.jquery.com/

Chapter 18 ■ DOM Elements

349

All of these methods add the new content as child elements to the specified parent. jQuery also provides
the before() and after() methods that add the content as siblings to the specified target. The before()
method is similar to the insertBefore() method, except that you don’t need to specify the parent. The new
element is inserted just before the target as its sibling. Similarly, the after() method inserts the element just
after the target.

With the before() and after() methods, the selector determines the target where the new
elements should be added, and the parameter specifies the element to be added. The parameter can be
any of the values described with the append() method. jQuery also provides the insertBefore() and
insertAfter() methods, These accomplish the same result as before() and after() but have their
syntax reversed like the appendTo() method. The selector determines the elements to be added and the
parameter specifies the target.

The wrap() method is used to insert an element as the parent object of the targets specified by the
selector. If you had some image elements in your document, you could nest each of them inside a new div
element, for example. The selector would find the image elements and the parameter would specify the new
elements that are placed inside:

$("img").wrap("<div class='image'></div>");

In contrast, the unwrap() method removes the immediate parent from the element returned by the
selector. This will undo the effect of calling the wrap() method.

With the wrap() method, each selected element is wrapped with a new parent element. The wrapAll()
method will wrap all selected elements in a single parent element. If there are unmatched elements in
between the matching elements, they will not be included in the new parent but will follow immediately
after.

The wrapInner() methods works like the wrap() method except only the content is wrapped instead of
the entire element. For example, you could add a strong element around the contents of a paragraph tag. If
the original HTML was:

<p class="myClass">Hello World</p>

You could call the wrapInner() method like this:

$("p").wrapInner("");

The resulting HTML would be:

<p class="myClass">Hello World</p>

Elements can be removed from the document through either the remove() or detach() methods. With
both methods, the elements returned by the selector are removed. However, the detach() method will
return the set of removed elements so they can added be added back later. Use detach() when you want to
move the elements to a different location. The empty() method will remove all of the child elements from
the elements that are returned by the selector.

You can also replace elements using the replaceWith() method. The selector specifies the elements
that should be removed. For each one, the elements passed to the method are inserted in its place. Like the
detach() methods, the set of removed elements is returned. The replaceAll() has the syntax reversed; the
selector specifies the elements that are to be added, and the parameter identifies the elements that are to be
replaced.

Chapter 18 ■ DOM Elements

350

Summary
In this chapter, I explained the methods available to manipulate the DOM elements using JavaScript. There
are several methods that you can use to find one or more elements, depending on how you need to perform
the search. The most flexible method is the querySelectorAll() method that enables you to use any of the
supported CSS selectors. After creating an element, you then need to call one of several methods to insert
it into the document. You need to specify the parent element when adding an element to the document.
You can also remove elements. There are methods available for extracting and setting the attributes of an
element. However, in most cases you can simply access the attribute as a property of the element.

I briefly described how to use jQuery to manipulate the document. The jQuery library provides an
easier and more feature-rich approach to DOM manipulation. You should consider using jQuery if you need
to access and modify the document elements.

In the next chapter, I’ll show you how to use similar techniques to manipulate the styling of the
document elements.

351© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_19

CHAPTER 19

Dynamic Styling

In the previous chapter, I explained how you can dynamically change the HTML content using JavaScript.
There are methods available to create new DOM elements as well as to rearrange or modify the existing
elements. Similar capability exists for modifying the styling of those elements. In this chapter, I will describe
four techniques that you can use to dynamically change the style rules using JavaScript:

•	 replacing style sheets

•	 changing the style rules

•	 modifying the CSS classes

•	 adjusting inline styles

These scenarios provide increasingly finer control of the styles applied to the document, starting with
replacing an entire style sheet and finishing with updating the style of a single element.

Changing Style Sheets
The first approach I’ll explain is to replace the entire style sheet. This technique is useful if you want to
support several themes, for example. Each style sheet would contain a set of rules that present a particular
look to the web page. A specific style sheet is then applied based on user preferences, user input, or some
other rule. You should put the common rules into a separate style sheet that is always used. The thematic
elements are put into separate style sheets that can be applied dynamically.

■■ Tip  You can add new external style sheets to the document by creating a link element as I explained in
the previous chapter. You can also create a new style element to create an internal style sheet.

Enabling Style Sheets
The style sheets that are available can be accessed through the document.styleSheets property. This
returns a collection of the style sheets that have been loaded. After adding a style sheet to the HTML
document with the link element, it can be viewed in the console as shown in Figure 19-1:

<link rel="stylesheet" href="Sample.css" title="Shared" />

Chapter 19 ■ Dynamic Styling

352

The stylesheets collection has a length of 1 since there is only one style sheet loaded. The link
element includes the title attribute and this is available on the CSSStyleSheet object.

Most of the properties on this object are read-only; however, you can change the disabled property. To
demonstrate that, I’ll add a button on the page to toggle the disabled property. Here is the complete HTML
document.

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 19 - Dynamic Styling</title>
 <link rel="stylesheet" href="Sample.css" title="Shared" />
 <script src="SampleScript.js" defer></script>
 </head>
 <body>
 <p>Hello World!</p>
 <button onclick="toggleSS()">Toggle</button>
 </body>
</html>

The Sample.css file has a single style rule that uses a larger font:

p {
 font-size: xx-large;
}

Figure 19-1.  Viewing the style sheet properties

Chapter 19 ■ Dynamic Styling

353

The toggleSS() function is implemented in the SampleScript.js file:

"use strict";

function toggleSS() {
 for (var i = 0; i < document.styleSheets.length; i++) {
 if (document.styleSheets[i].title == "Shared") {
 document.styleSheets[i].disabled = !document.styleSheets[i].disabled;
 break;
 }
 }
}

This function iterates through all of the style sheets and if the title is "Shared," it toggles the disabled
property.

Choosing a Style Sheet
We can apply this approach to dynamically choose a style sheet. The document will load several style
sheets and then will enable one and disable the others based on user input. For this example, I’ll use three
more style sheets, each setting a different color. The page will have buttons to select a color, which calls a
JavaScript function to enable/disable the appropriate style sheets.

The new style sheets each have a single rule to set the color attribute, like this:

p {
 color: red;
}

I’ll add the new style sheets with the following link elements inside the head element. I’m not using the
title attribute and I’ll explain why later in the chapter.

<link rel="stylesheet" href="Red.css" />
<link rel="stylesheet" href="Green.css" />
<link rel="stylesheet" href="Blue.css" />

I’ll also add four buttons that can be used to select the corresponding style sheets.

<button onclick="disableAll()">Black</button>
<button onclick="enable('Red')" style="color: red">Red</button>
<button onclick="enable('Green')" style="color: green">Green</button>
<button onclick="enable('Blue')" style="color: blue">Blue</button>

The first button calls the disableAll() function, which will disable all three style sheets. In this case,
the content will use the default black font. The other buttons call the enable() function that will enable the
specified style sheet and disable the others. We’ll need to add these two methods to the SampleScript.js file:

function disableAll() {
 for (var i = 0; i < document.styleSheets.length; i++) {
 if (document.styleSheets[i].title != "Shared") {
 document.styleSheets[i].disabled = true;
 }
 }
}

Chapter 19 ■ Dynamic Styling

354

function enable(color) {
 for (var i = 0; i < document.styleSheets.length; i++) {
 if (document.styleSheets[i].href.includes(color)) {
 document.styleSheets[i].disabled = false;
 }
 else if (document.styleSheets[i].title != "Shared") {
 document.styleSheets[i].disabled = true;
 }
 }
}

To find the corresponding style sheet, the enable() function uses the href property and checks to see
if the specified color is part of the URL. Both functions will ignore the shared style sheet. The style sheets are
all enabled by default, so Blue.css, being loaded last will be applied. If you want the black font to be used,
initially, you can call the disableAll() function when the page is loaded.

■■ Tip  IE doesn’t support the includes() method. There are a few easy polyfills that you can use instead.
See this article for details: http://stackoverflow.com/questions/31221341/ie-does-not-support-
includes-method.

Alternate Style Sheets
As I’ve demonstrated, you can enable or disable style sheets using JavaScript. However, some browsers
provide native support for this approach using alternate stylesheets. This is controlled through the rel and
title attributes of the link element. Elements that don’t have a title attribute are always applied to the
document. These are referred to as persistent style sheets. As I’ve shown, however, they can be disabled
through JavaScript.

Style sheet links that have a title attribute are dynamic and can be enabled or disabled through user
actions. If the rel attribute does not include the alternate keyword, the style is known as the preferred style;
it is enabled by default. You can only have one preferred style; if there are more than that, only one will be
applied. Preferred styles are enabled by default but are disabled if an alternate style is selected. If the rel
attribute includes the alternate keyword, the style is called an alternate style. Alternate styles are disabled
by default. These rules are summarized in Table 19-1.

Table 19-1.  Style sheet types

Type Has Title Alternate Comments

Persistent no no These style sheets are always applied.

Preferred yes no Applied by default; disabled if alternate selected.

Alternate yes yes Disabled by default.

http://stackoverflow.com/questions/31221341/ie-does-not-support-includes-method
http://stackoverflow.com/questions/31221341/ie-does-not-support-includes-method

Chapter 19 ■ Dynamic Styling

355

Based on these rules, the correct way to add the style sheets for the previous example would be as
follows. The Sample.css is always applied and has no title attribute. The Red.css, Green.css, and Blue.
css are alternate stylesheets; they have a title and the alternate keyword.

<link rel="stylesheet" href="Sample.css" />
<link rel="alternate stylesheet" href="Red.css" title="Red"/>
<link rel="alternate stylesheet" href="Green.css" title="Green"/>
<link rel="alternate stylesheet" href="Blue.css" title="Blue"/>

With no JavaScript, these styles can be selectively enabled through the browser. For example, in Firefox,
an alternate style can be selected from the View menu as shown in Figure 19-2.

If you wanted the green style to be enabled by default, for example, remove the alternate keyword,
rel="stylesheet". It will be enabled when the page is loaded, but will be disabled when the red or blue
style is selected.

■■ Caution  Chrome and Opera do not support alternate style sheets. There is no UI to select one of the
alternate styles. Also, if more than one link element has the title attribute, only the first will be enabled.
The others cannot be enabled, even with JavaScript. In the JavaScript example, the style sheets were added
without the title attribute so it would work in Chrome.

Using Style Elements
In the previous examples, I used external style sheets that were included through the link element. You can
also use internal style sheets that are embedded in a style element; these are also available through the
document.styleSheets property. Of course, these will not have the href property so you’ll need identify
them through the title attribute.

Figure 19-2.  Selecting an alternate style sheet in Firefox

Chapter 19 ■ Dynamic Styling

356

You can replace the link elements that include the Red.css, Green.css, and Blue.css with the
following style elements.

<style title="Red">
 p { color: red;}
</style>
<style title="Green">
 p { color: green;}
</style>
<style title="Blue">
 p { color: blue;}
</style>

In Firefox, the same UI to select alternate styles works equally well with internal style sheets. The View
menu shows the same Red, Green, and Blue options based on the title attribute in the style elements.

The JavaScript functions, however, will need to look at the title property instead of the href property.
Listing 19-1 shows an implementation of these functions that will support either, depending which
properties are present.

Listing 19-1.  Final JavaScript for alternate styles

"use strict";

function toggleSS() {
 for (var i = 0; i < document.styleSheets.length; i++) {
 if ((document.styleSheets[i].href &&
 document.styleSheets[i].href.includes("Sample")) ||
 document.styleSheets[i].title == "Shared") {
 document.styleSheets[i].disabled = !document.styleSheets[i].disabled;
 break;
 }
 }
}

function disableAll() {
 for (var i = 0; i < document.styleSheets.length; i++) {
 if (!(document.styleSheets[i].href &&
 document.styleSheets[i].href.includes("Sample")) &&
 document.styleSheets[i].title != "Shared") {
 document.styleSheets[i].disabled = true;
 }
 }
}

function enable(color) {
 for (var i = 0; i < document.styleSheets.length; i++) {
 if ((document.styleSheets[i].href &&
 document.styleSheets[i].href.includes(color)) ||
 document.styleSheets[i].title == color) {
 document.styleSheets[i].disabled = false;
 }

Chapter 19 ■ Dynamic Styling

357

 else if (!(document.styleSheets[i].href &&
 document.styleSheets[i].href.includes("Sample")) &&
 document.styleSheets[i].title != "Shared") {
 document.styleSheets[i].disabled = true;
 }
 }
}

disableAll();

■■ Caution  The Chrome limitation that I mentioned previously applies to the style elements as well.
And since there is no href property to use instead of the title, this will not work in Chrome or Opera. To
work around this, you would need to use the id attribute on the style element and select them using the
getElementById() method, which I described in the previous chapter.

Modifying Rules
In the previous section, I demonstrated how to dynamically apply an entire style sheet, which is a set of
preconfigured style rules. You can also modify the rules on an existing style sheet. Use this option if you need
to make minor adjustments.

To view the existing rules, go back to the document.styleSheets property. Each style sheet has a
cssRules property that enumerates the rules included in the style sheet. This is a collection of CSSStyleRule
objects as illustrated by Figure 19-3.

Each CSSStyleRule object is assigned a sequential index. As I explained in Chapter 2, the order that
rules are included can affect how conflicts are resolved. The index is also important because you’ll need this
to remove a rule.

Figure 19-3.  Viewing the style rules

http://dx.doi.org/10.1007/978-1-4842-2463-2_2

Chapter 19 ■ Dynamic Styling

358

For a simple demonstration, I’ll add the following JavaScript code. The newRuleIndex variable will store
the index of the newly added rule, which adds a thin, black border. The toggleRule() function will either
add a new rule if this is not set, or use the variable to remove the rule.

var newRuleIndex = -1;

function toggleRule() {
 if (newRuleIndex == -1) {
 newRuleIndex = document.styleSheets[0].insertRule("p {border: 1px solid black;}", 1)
 }
 else {
 document.styleSheets[0].deleteRule(newRuleIndex);
 newRuleIndex = -1;
 }
}

I’m taking some shortcuts here, simply adding the rule to the first style sheet. You may need to first
select the style sheet that you want to modify. Finally, we’ll need a button on the page to call this function.
When the button is clicked, the border is added as shown in Figure 19-4.

<button onclick="toggleRule()">Border</button>

■■ Note  This adds a new rule to the first style sheet, which is Sample.css. This also has the larger font rule.
If you click the Toggle button, the entire style sheet is disabled, which will remove both the larger font and the
border. Even though the style sheet is disabled, clicking the Border button will modify the style sheet; it just
won’t affect the page until it is enabled.

Modifying a style sheet through the insertRule() or deleteRule() methods does not affect the original
source document. For internal styles, the HTML document is not affected by these changes, nor are the
CSS files for external style sheets. If the page is refreshed, the styles will revert to their original state until the
JavaScript is rerun to modify them.

Figure 19-4.  Adding a border

Chapter 19 ■ Dynamic Styling

359

Modifying Classes
The last scenario modified the rules in a stylesheet, which depending on the change, can affect multiple
elements in the document. However, in many cases you simply need to make an existing rule apply to a
specific element in certain situations. The pseudo-classes are a good example of this. Pseudo-classes such
as :enabled, :selected, or :hover allow you to apply a style rule under certain dynamic conditions. These
conditions, however, are limited.

If a suitable pseudo-class is not available, you can create a style rule that uses a class selector. Then you
can dynamically apply the appropriate class as needed using JavaScript. To try this out, I’ll first add a rule
with a class selector to the Sample.css file. This will set the opacity to 50%.

.special {
 opacity: .5;
}

Every element has a classList property that contains the list of classes that have been assigned to the
element. It supports four methods that you can use to manipulate this list:

•	 contains() - returns a Boolean value indicating if the class exists.

•	 add() - adds a new class.

•	 remove() - removes the specified class.

•	 toggle() - adds the class if it doesn’t exist or removes it if it does.

The following JavaScript function demonstrates all of these methods. It will check to see if the class
exists and either adds or removes it.

function toggleClass() {
 var paragraph = document.querySelector("p");
 if (paragraph) {
 if (paragraph.classList.contains("special")) {
 paragraph.classList.remove("special");
 }
 else {
 paragraph.classList.add("special");
 }

 // This could also be done with the following
 //paragraph.classList.toggle("special");
 }
}

■■ Tip  This can all be done by simply calling the toggle() method, but I’m implementing it this way to
demonstrate the other methods.

Finally, I’ll add a button to call this function:

<button onclick="toggleClass()">Opacity</button>

Chapter 19 ■ Dynamic Styling

360

Each element also supports the className property. This is a string that contains a space-separated
list of classes, just like you would see in the class attribute in the markup. You can manipulate this string
directly, if you prefer, but the classList property is easier to work with.

The one exception, however, is if you want to remove all of the classes. Rather than enumerating the
classList property, simply set the className property to an empty string:

paragraph.className = "";

Modifying Inline Styles
The previous scenario only affects a single element. However, adding or removing a class can apply or
remove multiple style rules, as well as multiple declarations on each of those rules. In this final scenario,
I’ll show you how to apply inline styles to a single element. Generally, applying inline styles is a bad idea
because you lose the ability to adjust the style with a CSS change. But there can be times when you need to
and don’t want to make CSS changes that can break other elements.

Using CSSStyleDeclaration
The style attribute is available on all HTML elements and can be accessed from JavaScript through the
style property. It is represented in JavaScript by the CSSStyleDeclaration object, which is a collection of
name/value pairs. Style declarations can be modified on this object through the following methods.

•	 setProperty() - adds a declaration; takes two required parameters, property and
value, and an optional priority parameter that can be either blank or the "important"
keyword.

•	 getPropertyValue() - the property name is passed as a parameter and the
corresponding value is returned.

•	 getPropertyPriority() - returns "important" if the specified property has the
important keyword.

•	 cssText - returns all of the declarations on this style, formatted as it would be in a
CSS document.

•	 removeProperty() - removes the specified property.

For a quick demonstration, the following solution will update the background color. First, I’ll add a
button that will call the toggleBackground() function when the button is clicked:

<button onclick="toggleBackground()">Background</button>

The toggleBackground() function gets the first paragraph element using the querySelector() method.
It checks the length property of the style property, which indicates how many declarations have already
been set of this object. If there are none, the background-color attribute is added; otherwise it is removed.

function toggleBackground() {
 var p = document.querySelector("p");
 console.log("Initial style = " + p.style.cssText);

 if (p.style.length == 0) {
 p.style.setProperty("background-color", "yellow", "important");

Chapter 19 ■ Dynamic Styling

361

 console.log("Value: " + p.style.getPropertyValue("background-color"));
 console.log("Priority: " + p.style.getPropertyPriority("background-color"));
 }
 else {
 p.style.removeProperty("background-color");
 }
 console.log("Updated style = " + p.style.cssText);
}

This code also writes some entries to the console log. After clicking the Background button, the console
log should look like Figure 19-5.

Setting Style Properties
The CSSStyleDeclaration object has a property for every CSS property and you can simply get or set these
properties. For example:

var p = document.querySelector("p");
p.style.fontStyle = "italic";
p.style.fontSize = "xx-small";

console.log("Current color is " + p.style.color);

The name of the property in JavaScript is the same as the CSS property except that all hyphens are
removed and the first character of the next word is made uppercase. So, font-size becomes fontSize in
JavaScript.

You also need to be careful regarding reserved words in JavaScript such as float. The property names
for these will be prefixed with "css." To set the float value, for example, use cssFloat.

■■ Tip  The CSSStyleRule object, as I explained earlier, represents a style rule. I demonstrated how a new
rule can be added by specifying the CSS entry for it. The CSSStyleRule object also has a style property that
can be manipulated through these methods, just like other style properties.

Figure 19-5.  The console output

Chapter 19 ■ Dynamic Styling

362

Using setAttribute
A third way to set the style properties is through the setAttribute() method. You can set the value of any
HTML attribute through this method. It takes two parameters: the name of an attribute and the value you
want it set to. For example, the style attribute can be set like this:

var p = document.querySelector("p");
p.setAttribute("style", "font-style:italic; font-size:xx-small;");

■■ Caution  When setting a specific style property such as style.color, only that property is affected.
However, using the setAttribute() method will replace the entire existing inline style rules with whatever you
provide in the second parameter. Any existing value for the style attribute is overwritten.

Computed Style
As I’ve explained before, the styles that are applied to an element come from various sources such as
external and internal style sheets and inline style properties. Each style rule affects elements based on the
selector and there can be multiple rules that apply to a particular element. Some of these rules are applied
dynamically such as with pseudo-classes.

However, at any given point in time, there is a fixed set of style property values that have been computed
for an element. You can get this information in JavaScript by calling the window.getComputedStyle()
method and passing in the element in question. For example, if you run this in the console, you will see the
properties and their values as illustrated in Figure 19-6:

var p = document.querySelector("p");
window.getComputedStyle();

Figure 19-6.  Displaying the computed styles

■■ Tip  The style property of an element will only return the inline styles. If you want to see the net effect of
all of the style sheets and inline styles, use the getComputedStyle() method.

Chapter 19 ■ Dynamic Styling

363

Summary
In this chapter, I explained four basic approaches for adjusting the styles in JavaScript. These techniques
range from replacing the entire style sheet to modifying a single property on an element. I also gave some
examples of scenarios where these approaches are useful. You have a lot of capability for dynamically
configuring the style rules. The first step however, is to decide what you want to accomplish and then which
approach is the best fit.

In the next chapter, I will demonstrate how to use events in JavaScript to implement functional logic to
respond to user- and system-initiated events.

365© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_20

CHAPTER 20

Events

Events are an integral part of most web pages: they allow you to take an action when something happens.
The “something happens” is called an event, and there are dozens of them that have been defined in the web
standard (see http://www.w3.org/TR/DOM-Level-3-Events/#events-module). The “an action” is called an
event handler, which is just a simple JavaScript function.

Initial Example
I'll start with a simple example and then describe the pieces. A basic HTML document is shown in
Listing 20-1.

Listing 20-1.  The initial HTML document

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 20 - Events</title>
 <link rel="stylesheet" href="Sample.css" />
 <script src="SampleScript.js" defer></script>
 </head>
 <body>
 <section>
 <div id="div1">
 <div id="div2">
 <p>Some text</p>
 <p>Some more text</p>
 </div>
 </div>
 </section>
 </body>
</html>

http://www.w3.org/TR/DOM-Level-3-Events/

Chapter 20 ■ Events

366

This document has two paragraph elements inside a pair of nested div elements. To help visualize the
area used by these elements, I'll put a border around the div elements and use a background color on the
paragraph elements. I'll also use padding and margin to put some space between them.

div {
 border: 1px solid black;
 padding: 10px;
}

p {
 margin: 5px;
 background-color: yellow;
}

To set up the event logic, the event handler is a function called someAction() that simply raises an
alert. To configure this handler, the script gets the inner div element and then calls the addEventListener()
method, assigning the handler to the click event. The addEventListener() method is available on all
HTML elements and has two required parameters: the name of the event and a reference to the function
that will be called when the event occurs. The EventTarget object implements the addEventListener()
methods and as I explained in Chapter 18, is the base object that all elements are derived from.

"use strict";

function someAction() {
 alert("Taking some action...");
}

var div = document.getElementById("div2");
div.addEventListener("click", someAction);

If you click inside the inner div element, you'll see the alert box as shown in Figure 20-1.

Event Registration
Event registration is the process of linking three things together: an event to an event handler for a specific
DOM element. It is saying that 1) this element responds to 2) this event by executing 3) this handler. The
addEventListener() method is the preferred way to accomplish this. There are other ways to do this,
however.

Figure 20-1.  Responding to an event

http://dx.doi.org/10.1007/978-1-4842-2463-2_18

Chapter 20 ■ Events

367

One approach, known as inline registration, is to include the registration in the markup. For example:

<div id="div2" onclick="someAction()">

While this technique has been around for decades and is still used fairly frequently, this should be
avoided. This includes JavaScript code inside your HTML document, an obvious violation of separation of
concerns.

Another approach is to assign the event handler to an event property of the DOM element. Each DOM
element has a property for each event that it supports. These event properties hold a reference to the event
handler for the corresponding event. For example, the onclick property can store a reference to an event
handler that will be called when the click event occurs. We can rewrite the initial demonstration like this:

//div.addEventListener("click", someAction);
div.onclick = someAction;

This approach, sometimes referred to as the traditional method, is the safest and most universally
supported event registration method. It has been around since the Netscape days and is supported by IE4
and later, as well as all modern browsers.

■■ Caution  The event properties, such as onclick, expect a function reference. Don't add the parenthesis
after the function name as this will cause the function to be executed, and the return value will be registered as
the event handler.

One issue with the both the inline and traditional approaches is that you can only have a single event
handler per event for each element. If you try to register a second event handler, if will replace the first one.
For example, if you have two JavaScript libraries that use a different event handler for their own purposes,
they cannot coexist if the traditional approach is used.

A third approach, which is supported only by Internet Explorer uses the an attachEvent() method
that is similar to addEventListener(). IE did not support the addEventListener() method until version 9,
so if you need to support IE8 and earlier, you'll need to use attachEvent() (or the traditional method) as a
polyfill.

■■ Tip  The addEventListener() method (as well as attachEvent() in IE) will allow you to assign multiple
event handlers for the same event.

Event Propagation
When registering an event listener, a handler function is assigned on a specific element for particular
event. The previous example listened for the click event on the inner div element. However, you can
click anywhere in the div element, including on either of the two paragraph elements, and the alert will be
displayed. This works because of the way events are propagated.

The paragraph elements are part of the content of the inner div, so it makes sense that clicking on them
is treated as if the div was clicked. In the same way, the inner div is part of the outer div, the outer div is part
of the section, and so on. What would happen if the event was registered on the document or window object?
As you might expect, a click on any of its descendants would execute the event handler.

Chapter 20 ■ Events

368

When an event occurs, such as a mouse click, it is first sent to the window object. It is then propagated
downward through the document hierarchy until it reaches the element that was actually clicked, which is
called the target. Lastly, it is propagated back through the same objects in reverse, until it reaches the window
object. This is illustrated in Figure 20-2.

In our initial example, a total of 16 events were raised: 8 on the way down and 8 on the way back up.
However, we only registered a single event handler so 15 of these were ignored.

Propagating the events downward is called the capturing phase and going back up the chain is referred
to as the bubbling phase. This terminology may not be very helpful although, since bubbles tend to rise to
the top; you can remember that the bubbling phase goes up.

The addEventListener() method supports a third parameter that you can use to specify if you want
to listen for the capture event or the bubble event. Pass a true value to listen for the capture event. Omit the
third parameter or pass in false to listen for the bubble event.

To demonstrate this behavior, I'll replace the previous JavaScript with the code shown in Listing 20-2.
This defines a pair of variables to record the number of times a capture or bubble event was handled. It then
defines two event handlers that simply increment these counters. The event is first raised on the window
object and it also ends on the window object. I'll use two special event handlers for the window object. The
clearCount() function will be called on the capture event and will clear the counters. The reportCounts()
function will be called on the bubble event and will raise an alert with the value of the counters.

Figure 20-2.  Event propagation

Chapter 20 ■ Events

369

Listing 20-2.  Record event counts

var captureCount = 0;
var bubbleCount = 0;

function incrementCapture() {
 captureCount++;
}
function incrementBubble() {
 bubbleCount++;
}
function clearCounts() { // called on window capture
 captureCount = 1; // include this event in the count
 bubbleCount = 0;
}
function reportCounts() { // called on window bubble
 bubbleCount++; // include this event in the count
 alert("Capture: " + captureCount + ", Bubble: " + bubbleCount);
}

var elements = document.querySelectorAll("*");
for (var i = 0; i < elements.length; i++) {
 elements[i].addEventListener("click", incrementCapture, true);
 elements[i].addEventListener("click", incrementBubble, false);
}

document.addEventListener("click", incrementCapture, true);
document.addEventListener("click", incrementBubble, false);

window.addEventListener("click", clearCounts, true);
window.addEventListener("click", reportCounts, false);

To set up the event handlers, I used the querySelectorAll() method that I described in Chapter 18.
This uses the all selector (*) and will return all of the HTML elements. This includes the html element and
all of its descendants. It does not return the window or document objects, so I added these event handlers
separately.

With these event handlers wired up, if you click on one of the paragraph elements, you'll see an alert
like the one shown in Figure 20-3. As I described in Figure 20-2, there will be eight capture events and eight
bubble events handled, as the event is propagated down and up the element hierarchy.

Figure 20-3.  Reporting the event counts

http://dx.doi.org/10.1007/978-1-4842-2463-2_18

Chapter 20 ■ Events

370

If you click on the inner div (but not on the paragraph element) there will be only seven events
handled. Likewise, if you click the outer div, there will be only six events handled. The section and body
elements do not take up any space of their own so you can't click on them. If you click anywhere on the page,
but not in the outer div element, there will be three events handled. The event handlers assigned to the
window, document, and html objects will be called.

■■ Note  The addEventListener() method is the only way to register for the capture events. The other
techniques that I mentioned previously can only register the bubble events.

If you just need to know when a button is clicked, for instance, it doesn't really matter whether you
listen for the capture event or the bubble event. However, if you have multiple handlers assigned to different
elements, having these two options can be useful. For example, if you have different handlers on both a
parent and a child element, when using a capture event, the parent's handler will be executed first. This
order is reversed when listening for the bubble event.

Event handlers are executed serially; the current event handler must complete before the next one is
called. If you have multiple event handlers on the same element, they are also executed serially, in the order
that they were registered.

Unregistering Events
You can remove an event handler, although the process will be different, depending on how the event
handler was originally registered. If you used addEventListener() (or attachEvent()), multiple event
handlers can be assigned to a single element. In order to remove the correct one, you need to specify all of
the same information that was used to register the event handler.

For example, the following code will remove the handler that was set up in the previous example. Notice
the parameters are exactly the same as was used when registering the event handler

function removeHandlers() {
 var div = document.getElementById("div2");
 div.removeEventListener("click", someAction, false);
}

In order for this to work, all four pieces of information must match the original registration details:

•	 The element the event was registered on.

•	 The event type.

•	 The handler function that was registered.

•	 The flag indicating if this was registered on the capture or bubbling phase.

If you used the attachEvent() method to register the event handler, use the detachEvent() method to
remove it. This works just like removeEventListener() except there is no capture/bubbling flag.

The other registration methods don't allow multiple event handlers, so removing them is a simpler
process. Just set the appropriate event property to null. For example:

div.onclick = null;

Chapter 20 ■ Events

371

Event Interface
When an event occurs and a corresponding listener has been registered, the assigned event handler will be
called. I've explained that in some detail. Another very important aspect about event handling is the event
itself. When an event happens, an event object is created that contains details of the event and this is passed
to the event handler(s). If a mouse button was clicked, for example, you might want to know what element
was clicked on or which button was used.

Common Event Properties
Your event handler can access this event object by declaring a function parameter. You can name the
parameter anything you want, although the accepted convention is to use e. For example:

function someAction(e) {
...
}

There is a base Event object that provides some common properties and methods. However there are
dozens of derived objects that provide specialized information depending on the type of event. The primary
shared properties are:

•	 type - the type of event; this is helpful if you have a single event handler for multiple
events. For example, you might have a handler to respond to both mouseup and
mousedown events.

•	 target - the element that triggered the event.

•	 currentTarget - the element that event handler was registered on.

I'll go back to the initial example with just a single event handler. Instead of creating an alert, I'll change
it to log some details about the event. The console will look like Figure 20-4.

function someAction(e) {
 console.log(e.type);
 console.log(e.target);
 console.log(e.currentTarget);
 //alert("Taking some action...");
}

Figure 20-4.  Displaying event details in the console

Chapter 20 ■ Events

372

The event type is click, as expected. I clicked the first paragraph element and the event target
confirms this. The currentTarget property is the inner div element where the event handler was registered.

Canceling Events
There are several methods that are common to all events. These are used to modify how events are handled.
These methods are called on the event object.

•	 stopPropagation()

•	 stopImmediatePropagation()

•	 preventDefault()

I described earlier how an event is propagated from the window object down to the target and back up
to the window object. However, if you call the stopPropagation() method on the event object, no further
propagation will occur. If you handle an event during the capture phase and stop propagation, the remaining
capture and all of the bubble events will be suppressed.

The stopImmediatePropagation() method also stops the propagation as I just described but also
performs an additional step; it prevents any other handlers on the current element from being executed. To
illustrate this behavior, assume you had registered three event handlers on the inner div element (from the
previous example) for the click event in the bubbling phase. When the event finally propagated to the div
element, all three event handlers would be executed, one at a time, in the order they were registered. If the
first event handle called the stopImmediatePropagation() method, the other two handlers would not be
called. However, if the stopPropagation() method was called instead, the other two event handlers would
be executed. In both cases, no further propagation to other elements would occur, however.

The browser performs a default action in response to some events. For example, if you click on a link,
the browser will navigate to that URL or if you right-click on certain elements, a context menu will appear.
However, your custom events will be executed before the default browser action is taken. If you want to
disable the default action, the event handler can call the preventDefault() method on the event object. If
you wanted to block a link under certain situations, for instance, you can set up a custom handler to respond
to the click event. The custom handler can then call preventDefault() if the link should not be used.

Exploring Events
Now that you understand the fundamentals of event processing, you can use any of the events that are
supported. They all work the same way. The difference between each event boils down to just two things:

•	 When is the event raised? I've used the click event in all the examples in this
chapter. It is raised when a mouse button is clicked. All the other events are raised
under certain conditions such as when a key is pressed, the window is resized, the
network access has been lost, etc.

•	 What event details are provided? An event object is provided to all event handlers
and I've explained some of the common properties and methods available. Most
events will provide additional details in the event object; the details will vary based
on the event. The event object for a keypress event, for instance, should indicate
which key was pressed.

I'm not going to list all of the available events here; there are hundreds of them. However, this article
by Mozilla provides a pretty good overview, organizing events into categories and including links for more
details: https://developer.mozilla.org/en-US/docs/Web/Events

https://developer.mozilla.org/en-US/docs/Web/Events

Chapter 20 ■ Events

373

Each event will provide a specific event object although related events will often use the same interface.
For example, the MouseEvent interface is provided on most of the mouse events, such as click, dblclick,
and mousedown. There is a hierarchy of event interfaces. The MouseEvent is derived from UIEvent, which is, in
turn, derived from Event.

■■ Tip  You can also create your own custom events. This is outside the scope of this book, but if you’re
interested, check out this article: https://developer.mozilla.org/en-US/docs/Web/Guide/Events/
Creating_and_triggering_events

Summary
In this chapter I demonstrated how you can use event handlers to respond to user input or system-initiated
events. You need to register an event handler, which ties three things together:

•	 the event

•	 the event handler

•	 the DOM element

When the specified event is raised for the specified element, the registered handler is executed.
The preferred method of registering an event handler is to use the addEventListener() method.

There are other legacy methods supported as well but these do not include all the functionality of
addEventListener().

When an event occurs on an element, referred to as the target, the event is raised on all of the objects
in the DOM hierarchy. The event starts at the window object and trickles down to the target in the capturing
phase. It then bubbles up back through the chain until it reaches the window object again.

In the next section of this book, I will provide example solutions that demonstrate some of the advanced
capabilities of HTML5. We'll start with custom embedding of audio and video elements.

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

PART V

Advanced Applications

This section is different from the rest of the book, being a little more hands-on. Each chapter uses a
series of exercises that takes you step by step to complete a solution. For some of these exercises you
will need some files from the source code download that is available at www.apress.com. There are
some image and media files that I can’t include in the text. There are also some large blocks of code
that are tedious and time consuming to type, and I’ve provided these to save you some time.

For each project, you can either work through the code on your own as you read the text, or just
open the final solution from the download and follow along in the book. If you choose the latter,
spend a few minutes to make sure you understand what the code is doing.

The solutions that you will create are these:

•	 21) Creating custom audio and video controls.

•	 22) Using Scalar Vector Graphics (SVG) to build an interactive map of the
United States.

•	 23) Simulating a game of Chess using canvas. You’ll also use canvas to create
a simple model of the solar system and demonstrate compositing.

•	 24) Use the Drag and Drop (DnD) API to implement the game of Checkers.

•	 25) Rewrite the Chess simulation using IndexedDB, storing the moves and
the status of each piece in a client-side database.

•	 26) Use Geolocation to find the current position and map this using the Bing
Mapping API along with pushpins to identify related locations.

http://www.apress.com/

377© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_21

CHAPTER 21

Audio and Video

In Chapter 7, I introduced the audio and video elements and demonstrated how they could be embedded
into your HTML document using the native controls provided by the browser. In this chapter, you’ll use your
own controls that are wired up to the audio and video elements through JavaScript. All of the DOM elements
and events are available in JavaScript, so it’s a fairly straightforward process to create your own controls to
work with the audio or video element. However, there are several facets that you’ll need to control, so it’s not
a trivial exercise.

Overview
There are three areas that you’ll need to address:

•	 Play/Pause

•	 Displaying progress and fast-forwarding/rewinding

•	 Adjust volume/mute

I’ll start by creating custom controls for audio, but as you’ll see, the process for video is essentially the
same. You will need to respond to events from both the UI controls as well as the audio element. You’ll start
by adding all the necessary controls to the page. Then I’ll show you how to implement the event handlers
that are needed for each area. The input elements that you’ll use to control the audio element are as follows:

•	 Play/Pause button: The label will toggle between “Play” and “Pause” depending on
the state of the audio element.

•	 Seek: This is a range control (introduced in Chapter 8) that will serve both to show
the progress and allow the user to seek a specific location.

•	 Duration: This is a span element that displays both the current location and the total
duration of the audio file.

•	 Mute button: The label will toggle between “Mute” and “Unmute.”

•	 Volume: This is another range control that is used to specify the volume level.

The audio events that you’ll provide handlers for include the following:

•	 play: Raised when the audio is started

•	 pause: Raised when the audio is paused

•	 ended: Raised when the audio has completed

http://dx.doi.org/10.1007/978-1-4842-2463-2_7
http://dx.doi.org/10.1007/978-1-4842-2463-2_8

Chapter 21 ■ Audio and Video

378

•	 timeupdate: Raised periodically as the audio clip is played

•	 durationchange: Raised when the duration changes, which occurs when the file is
loaded

•	 volumnechange: Raised when the volume level changes or the mute property has
changed

Custom Audio Controls
You’ll start by creating an HTML document that has an audio element. Then you’ll add input elements that
will be used to control the audio.

EXERCISE 21-1. CREATING THE MARKUP

1.	� Create an HTML document with a single audio element. You’ll need to provide
your own audio file so the src attribute will be different from what is shown here.
This also has the controls attribute so the native controls will be used but you’ll
remove that later. The page, in Chrome, will look like Figure 21-1.

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 21 - Audio and Video</title>
 <link rel="stylesheet" href="Sample.css" />
 <script src="SampleScript.js" defer></script>
 </head>
 <body>
 <audio id="audio" src="Media/Linus and Lucy.mp3" controls >
 <p>HTML5 audio is not supported on your browser</p>
 </audio>
 </body>
</html>

Figure 21-1.  The initial audio element

Chapter 21 ■ Audio and Video

379

2.	 Now you’ll remove the controls attribute from the audio element and add your
own controls as follows. The new controls are standard input elements and are in a
separate div element.

<div id="audioControls">
 <input type="button" value="Play" id="play" />
 <input type="range" id="audioSeek" />

 <input type="button" id="mute" value="Mute" />
 <input type="range" id="volume" min="0" max="1" step="any" />
</div>

There are two range controls; the first one will show the progress as the audio clip is played. The user
can also use this to rewind or fast-forward to a new place in the file. The min and max attributes will be
set in JavaScript based on the length of the audio file. The second range control is used to adjust the
volume. The min and max attributes are set to 0 and 1, respectively. A volume of 1 indicates 100% and
the actual value should be between 0 and 1.

There are also two buttons; the first serves as both the Play and Pause buttons. The label will change
depending on the current state of the audio element. The second button toggles the mute flag. Again, its
label will change depending on if the audio is currently muted. There is a span element in the middle of
these controls that has no content, initially. This will display the length of the file and the current position.

Supporting Play and Pause
With all the elements on the page, it’s time to start writing some JavaScript. This first exercise will wire up the
Play button and perform the initial configuration of the range control.

EXERCISE 21-2. SUPPORTING PLAY AND PAUSE

1.	 Create a new JavaScript file named SampleScript.js. Since the audio element
will be referenced in numerous places, you’ll declare a variable to store it. This will
avoid the need to search through the DOM every time it is used.

"use strict";

var audio = document.getElementById("audio");

2.	 You’ll need an event handler to set up the initial duration value. The setupSeek()
method is called in response to the durationchange event on the audio element.
When the page is first loaded, it doesn’t know how long the audio clip is until
the file is opened and the metadata is loaded. As soon as the metadata has been
loaded, the duration can be determined, and the event is raised. The duration
property is expressed in seconds. The setupSeek() function uses the duration
property to set the max attribute of the audioSeek range control. It is also used to
set the initial value of the span element. Notice that the Math.round() function is
called to round this value to the nearest integer (second).

Chapter 21 ■ Audio and Video

380

function setupSeek() {
 var seek = document.getElementById("audioSeek");
 seek.min = 0;
 seek.max = Math.round(audio.duration);
 seek.value = 0;
 var duration = document.getElementById("duration");
 duration.innerHTML = "0/" + Math.round(audio.duration);
}

3.	 The togglePlay() method is called when the user clicks the Play button. If the
current state of the audio element is paused or ended, it calls the play() function.
Otherwise, it calls the pause() method.

function togglePlay() {
 if (audio.paused || audio.ended) {
 audio.play();
 }
 else {
 audio.pause();
 }
}

4.	 The updatePlayPause() method is registered on the audio element for both the
play and pause events. It sets the label of the Play button to reflect the state of the
audio element. If the audio is currently playing, the text is changed to “Pause” since
that will be the result if the button is clicked. Otherwise, the text is set to “Play.”

function updatePlayPause() {
 var play = document.getElementById("play");
 if (audio.paused || audio.ended) {
 play.value = "Play";
 }
 else {
 play.value = "Pause";
 }
}

■■ Tip T he togglePlay() function responds to the Play button being clicked, and the updatePlayPause() function
responds to the audio element being started or paused. When the button is clicked, the togglePlay() method will
change the state of the audio element. This state change will raise either a play or pause event, which are both
handled by the updatePlayPause() function. This is done this way because it is possible that the audio can be
played or paused through means other than clicking the Play button. For example, if you left the controls attribute,
you would have both the native controls as well as the custom controls. Responding to the play and pause events
ensures the button label is always correct regardless of how the audio element is manipulated.

Chapter 21 ■ Audio and Video

381

5.	 Finally, the endAudio() function is registered with the audio element in response
to the ended event, which is raised when the audio has finished playing. This
performs some synchronization including setting the button label and initializing the
range and span controls.

function endAudio() {
 document.getElementById("play").value = "Play";
 document.getElementById("audioSeek").value = 0;
 �document.getElementById("duration").innerHTML = "0/" + Math.round

(audio.duration);
}

6.	 Now you’ll need to register the event handlers using the following code:

// Wire-up the event handlers
audio.addEventListener("durationchange", setupSeek, false);
document.getElementById("play").addEventListener("click", togglePlay, false);
audio.addEventListener("play", updatePlayPause, false);
audio.addEventListener("pause", updatePlayPause, false);
audio.addEventListener("ended", endAudio, false);

Supporting Progress and Seek
We’ll want to be able to use the slider to move to a different position in the audio file. The next exercise will
configure this to both report the current position as well as to change the position.

EXERCISE 21-3. PROGRESS AND SEEK

1.	 Just like with the Play button, there is one event handler, seekAudio(), which
responds to the input element and a separate event handler, updateSeek(), which
responds to the audio element. The seekAudio() function is called when the user
moves the slider on the range control. It simply sets the currentTime property
using the value selected by the range control.

function seekAudio() {
 var seek = document.getElementById("audioSeek");
 audio.currentTime = seek.value;
}

2.	 The updateSeek() function is called when the ontimeupdate event is raised by the
audio element. This updates the range control to reflect the current position within
the file. It also updates the span control to show the actual position (in seconds).
Again, the currentTime property is rounded to the nearest integer.

function updateSeek() {
 var seek = document.getElementById("audioSeek");
 seek.value = Math.round(audio.currentTime);
 var duration = document.getElementById("duration");

Chapter 21 ■ Audio and Video

382

 duration.innerHTML = Math.round(audio.currentTime) + "/" +
 Math.round(audio.duration);
}

3.	 Now you’ll need to register the event handlers using the following code:

document.getElementById("audioSeek").addEventListener
("change", seekAudio, false);
audio.addEventListener("timeupdate", updateSeek, false);

Controlling the Volume
This exercise will set up the controls to adjust the volume, including the Mute button.

EXERCISE 21-4. CONTROLLING THE VOLUME

1.	 As its name suggests, the toggleMute() function toggles the muted property of
the audio element. When this is changed, the volumechange event is raised by the
audio element.

function toggleMute() {
 audio.muted = !audio.muted;
}

2.	 The updateMute() function responds to the volumechange event and sets the
button label according to the current value of the muted property. Again, doing it
this way ensures the button label is correct.

function updateMute() {
 var mute = document.getElementById("mute");
 if (audio.muted) {
 mute.value = "Unmute";
 }
 else {
 mute.value = "Mute";
 }
}

3.	 Finally, the setVolume() function is called when the user moves the slider on the
second range control. It sets the volume property of the audio element to whatever
was selected on the range control.

function setVolume() {
 var volume = document.getElementById("volume");
 audio.volume = volume.value;
}

Chapter 21 ■ Audio and Video

383

4.	 Register the event handlers as follows:

document.getElementById("mute").addEventListener("click",
toggleMute, false);
audio.addEventListener("volumechange", updateMute, false);
document.getElementById("volume").addEventListener("change",
setVolume, false);

■■ Note T he volume property has a value between 0 and 1. You could think of this as 0 percent and 100
percent. When you defined the range control, the min attribute was set to 0 and max was set to 1, so the scale
is correct. You can simply set the volume property using the range value. If you want to display the actual value
of the volume property, just convert it to a percentage.

Adjusting the Style
Now you’re ready to try your custom controls. Save your changes and browse to your page. The page should
look similar to Figure 21-2.

The styling here is pretty boring; a little CSS will help. Add the following CSS rules to change the size of
the buttons and the range controls. The result is shown in Figure 21-3.

input[type="button"] {
 width: 75px;
 background-color: lightblue;
 border-radius: 5px;
}
#audioSeek {
 width: 300px;
}
#volume {
 width: 50px;
}

Figure 21-2.  The custom audio controls

Chapter 21 ■ Audio and Video

384

■■ Tip  Changing the style of a range control is possible but requires using vendor prefixes and is different
for every browser. If you’re interested, here’s an article with some details: http://brennaobrien.com/
blog/2014/05/style-input-type-range-in-every-browser.html.

Changing the Audio Source
In this example, the audio source was defined in the markup. However, you can easily control this using
JavaScript. If you’re using a single src attribute as you did initially, you just need to change this attribute
to reference a different file. However, if you’re using multiple source elements, you’ll need to update all of
these and then call the load() method.

EXERCISE 21-5. CHANGING THE AUDIO SOURCE

1.	 To try this, add a button that will change the source to a second audio clip and play
that one instead. Here’s the markup to add a new button to the page:

<div>
 <input type="button" value="Track2" id="track2" />
</div>

2.	 Add the following event handler that will be executed when the button is clicked.

function nextFile() {
 audio.src = "Media/Sample.mp3";
 //audio.load(); needed if there are multiple sources
 audio.play();
}

3.	 Register the event handler with the Next button

document.getElementById("track2").addEventListener("click",
nextFile, false);

Figure 21-3.  The style controls

http://brennaobrien.com/blog/2014/05/style-input-type-range-in-every-browser.html
http://brennaobrien.com/blog/2014/05/style-input-type-range-in-every-browser.html

Chapter 21 ■ Audio and Video

385

■■ Note I explained how to set up multiple sources in Chapter 7. This was important back in the day when you
needed two or more audio files to support multiple browsers. A single MP3 file is now supported by all major
browsers. If there are multiple sources, you’ll need to update all of them and then call the load() method. If
you’re using a single source, you don’t need to call load().

Custom Video Controls
Creating custom video controls is identical to audio controls. You need to provide the ability to play and
pause the video, adjust the volume, and move to a particular point in the file. I’ll add the same video
element from Chapter 7.

<video src="Media/BigBuckBunny.mp4" id="video"
 poster="Media/BBB_Poster.png" width="852" height="480">
 <p> HTML5 video is not supported on your browser</p>
</video>

Since the implementation is nearly identical as the audio controls, the JavaScript is shown in its entirety
in Listing 21-1. The functions are equivalent to their audio counterparts.

Listing 21-1.  Implementing custom video controls

var video = document.getElementById("video");

function setupSeekVideo() {
 var seek = document.getElementById("videoSeek");
 seek.min = 0;
 seek.max = Math.round(video.duration);
 seek.value = 0;
 var duration = document.getElementById("durationVideo");
 duration.innerHTML = "0/" + Math.round(video.duration);
}

function togglePlayVideo() {
 if (video.paused || video.ended) {
 video.play();
 }
 else {
 video.pause();
 }
}

http://dx.doi.org/10.1007/978-1-4842-2463-2_7
http://dx.doi.org/10.1007/978-1-4842-2463-2_7

Chapter 21 ■ Audio and Video

386

function updatePlayPauseVideo() {
 var play = document.getElementById("playVideo");
 if (video.paused || video.ended) {
 play.value = "Play";
 }
 else {
 play.value = "Pause";
 }
}

function endVideo() {
 document.getElementById("playVideo").value = "Play";
 document.getElementById("videoSeek").value = 0;
 document.getElementById("durationVideo").innerHTML = "0/"
 + Math.round(video.duration);
}

// Wire-up the event handlers
video.addEventListener("durationchange", setupSeekVideo, false);
document.getElementById("playVideo").addEventListener("click", togglePlayVideo, false);
video.addEventListener("play", updatePlayPauseVideo, false);
video.addEventListener("pause", updatePlayPauseVideo, false);
video.addEventListener("ended", endVideo, false);

// Support progress and seek
function seekVideo() {
 var seek = document.getElementById("videoSeek");
 video.currentTime = seek.value;
}

function updateSeekVideo() {
 var seek = document.getElementById("videoSeek");
 seek.value = Math.round(video.currentTime);
 var duration = document.getElementById("durationVideo");
 duration.innerHTML = Math.round(video.currentTime) + "/"
 + Math.round(video.duration);
}

document.getElementById("videoSeek").addEventListener("change", seekVideo, false);
video.addEventListener("timeupdate", updateSeekVideo, false);

// Support volume and mute
function toggleMuteVideo() {
 video.muted = !video.muted;
}

function updateMuteVideo() {
 var mute = document.getElementById("muteVideo");
 if (video.muted) {
 mute.value = "Unmute";
 }

Chapter 21 ■ Audio and Video

387

 else {
 mute.value = "Mute";
 }
}

function setVolumeVideo() {
 var volume = document.getElementById("volumeVideo");
 video.volume = volume.value;
}

document.getElementById("muteVideo").addEventListener("click", toggleMuteVideo, false);
video.addEventListener("volumechange", updateMuteVideo, false);
document.getElementById("volumeVideo").addEventListener("change", setVolumeVideo, false);

■■ Note  The audio and video elements are represented in JavaScript by the HTMLAudioElement and
HTMLVideoElement objects, respectively. Both of these are derived from HTMLMediaElement.

Summary
In the previous chapter I explained how to use events in JavaScript. You can see, from the examples in this
chapter, just how important events are. Whether responding to user actions or system notifications, all of the
logic was implemented in event handlers. In this chapter, the event handlers were used to primarily sync the
UI elements with the audio or video elements they were controlling.

The current state of the audio or video is available through properties such as duration, currentTime,
and volume. Some of these properties, including currentTime and volume can be set as well, allowing you to
adjust them based on user input. To create your own custom controls, you just need to wire up the necessary
event handlers so changes in the state of the audio or video are reflected in the UI elements, and vice versa.

In the next chapter, you’ll use Scalable Vector Graphics (SVG) to create some impressing graphic
applications. SVG is a technique for drawing graphics that scales without any loss of image quality. One of
the really useful features of SVG is that the drawing elements can be styled using CSS.

389© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_22

CHAPTER 22

Scalable Vector Graphics

In this chapter, I’ll show you how to use Scalable Vector Graphics (SVG) in an HTML5 web application.
There are a lot of really cool things that you can do with SVG. I’ve picked out a fun demonstration that can be
easily applied to many business applications. But first, let me give you an introduction to what SVG is.

Most people think of a graphic element as some form of bitmap, with an array of rows and columns
of pixels, and each pixel is assigned a specific color. In contrast, however, vector graphics express an
image as a collection of formulas. For example, draw a circle with a center at point x,y and a radius r. More
complex images are defined as a collection of graphic elements including circles, lines, and paths. While
the rendering engine will ultimately determine the specific pixels that need to be set, the image definition
is based on a formula. This fundamental difference provides two significant advantages to using vector
graphics.

First, as its name suggests, vector graphics are scalable. If you want to expand the size of the image, the
rendering engine simply recalculates the formula based on the new size and there is no loss of clarity. If you
zoom in on a bitmap image, you’ll quickly start to see graininess and the image becomes blurry.

Second, each element in the image can be manipulated independently. If there are several circles in the
image, for example, you can highlight one by simply changing the color of that image. Since vector graphics
are formula based, you can easily adjust the formula to modify the image. What makes this particularly
useful is that these elements can be styled using CSS, employing the powerful selectors and formatting
capabilities that I showed you in previous chapters.

Introducing SVG
You’ll begin by creating a page that uses simple geometric shapes to draw a picture. Then you’ll apply styles
to these shapes using CSS. I’ll show you how to save these markup elements in an .svg image file. This image
file can be used just like other image files such as .jpg and .png files.

Adding Some Simple Shapes
To demonstrate how an svg element works, you’ll add some simple shapes such as circles, rectangles, and
lines. Most images can be expressed as a collection of geometrical shapes, as I will demonstrate here.

Chapter 22 ■ Scalable Vector Graphics

390

EXERCISE 22-1. BUILDING A SNOWMAN

1.	 Insert the following svg element in the body of your HTML document:

<svg xmlns:svg="http://www.w3.org/2000/svg" version="1.1"
 width="100px" height="230px"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
</svg>

■■ Note T he width and height attributes define the element’s intrinsic dimensions. With most browsers, if the
width and height are not specified, the image will be clipped to some default size.

2.	 Inside the svg element, add the following elements. These are just simple shapes,
mostly circle elements with a rectangle (rect), line, and polygon.

<circle class="body" cx="50" cy="171" r="40" />
<circle class="body" cx="50" cy="103" r="30" />
<circle class="body" cx="50" cy="50" r="25" />
<line class="hat" x1="30" y1="25" x2="70" y2="25" />
<rect class="hat" x="40" y="10" width="20" height="15" />
<circle class="button" cx="50" cy="82" r="4" />
<circle class="button" cx="50" cy="100" r="4" />
<circle class="button" cx="50" cy="118" r="4" />
<circle class="eye" cx="42" cy="42" r="4" />
<circle class="eye" cx="58" cy="42" r="4" />
<polygon class="nose" points="45,60 45,50 60,55" />

A circle is expressed as a center point, cx and cy and a radius, r. A line is specified as a beginning
point, x1 and y1; and an endpoint, x2 and y2. A rectangle (rect) element is described by the top-left
corner location, x and y; a width; and a height. A polygon is defined by a set of points in the form of
x1,y1 x2,y2 x3,y3. You can specify any number of points. It is rendered by drawing a line segment
between each of these points and a line segment from the last point, back to the first point.

3.	 Save your changes and view your web page in a browser. The page should l
ook like Figure 22-1.

Chapter 22 ■ Scalable Vector Graphics

391

Adding Styles
The default style for these elements is a solid black fill, and because some of these shapes are on top of each
other, several are not currently visible. Notice that you assigned a class attribute to each element. Now
you’ll apply styles for these elements using a class selector.

	 1.	 Add the following rules to the CSS file. Save these changes and refresh the
browser to view the updated web page, which should look like Figure 22-2.

.body {
 fill: white;
 stroke: gray;
 stroke-width: 1px;
}

.hat {
 fill: black;
 stroke: black;
 stroke-width: 3px;
}

.button {
 fill: black;
}

.eye {
 fill: black;
}

.nose {
 fill: orange;
}

Figure 22-1.  The initial SVG image without styling

Chapter 22 ■ Scalable Vector Graphics

392

Using SVG Image Files
In addition to embedding an svg element, you can save this as a stand-alone image file with an .svg
extension. This file can then be used just like other graphic images. I’ll show you how to create a stand-alone
SVG image and then use it on a page.

Creating an SVG Image
I’ll first show you how to create a stand-alone .svg file; you'll use it later as a background image. This will
also demonstrate the scalability of SVG images.

EXERCISE 22-2. CREATING AN SVG IMAGE

1.	 Create a new file in your web application called snowman.svg.

2.	 Enter the following markup instructions:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

3.	 Copy and paste the entire svg element from the previous HTML document.

4.	 You'll need the style rules in the same file as the svg element. To do that, add a
style element inside the svg element. Copy the style rules from the CSS file to the
style element.

The snowman.svg file should have the DOCTYPE entry indicating this is an SVG file and an svg element.
The CSS rules will be inside the style element, which is inside the svg element.

5.	 To test your image, open the snowman.svg file from your desktop. This should
launch a browser and display the snowman image.

Figure 22-2.  The SVG image with styling applied

Chapter 22 ■ Scalable Vector Graphics

393

Using an SVG Background
Now you have an image file that you can use just like other images. To demonstrate this, you’ll use the
snowman.svg file as the background image for the initial web page.

	 1.	 In the initial CSS file, add the following style rule:

body {
 background-image: url(snowman.svg);
 background-size: cover;
}

	 2.	 This uses the new snowman.svg image and configures it to expand to fit the
window. After refreshing your browser, in addition to the small image, you
should also see a larger version of your image, as shown in Figure 22-3. Notice
that there is no loss of image quality when expanding the size of the image.

Figure 22-3.  The page with the snowman background

Creating an Interactive Map
Drawing pictures of snowmen may be fun, but let’s move on to some more practical uses of SVG. You
will create a map of the United States with each state represented by a separate SVG path element, which
I’ll explain later. The path definitions will be stored in a separate JavaScript file. Once you have the map
displayed, I’ll show you some CSS tricks to style the map using both static and dynamic styles. Finally, you’ll
add some animation to add a little flair to your web page.

Chapter 22 ■ Scalable Vector Graphics

394

Using Path Elements
The path element is the most versatile of all SVG elements. It is a collection of “move to,” “line to,” and
various “curve to” commands. The shape is drawn by following the path commands. Each command starts
from the current position and either moves to a new position or draws a line to the next position. Here’s an
example:

•	 Move to 25, 50.

•	 Draw a line to 50, 50.

•	 Draw a line to 50, 25.

•	 Draw an arc to 25, 50.

This is expressed as follows:

<path d="M25,50 L50,50 L50,25 A25,25 0 0,0 25,50 z" />

The “move to” and “line to” commands are pretty straightforward. The “arc to” command, as well as all
the other curve commands, is more complicated because you need to provide additional control points that
describe how the curve should be drawn. Each command uses a single letter, as shown in Table 22-1.

Table 22-1.  The Available Path Commands

Command Abbr. Description

Move to M Moves to the specified position

Line to L Draws a line to the specified position

Horizontal line to H Draws a horizontal line to the specified x coordinate

Vertical line to V Draws a vertical line to the specified y coordinate

Arc to A Draws an arc to the specified position

Curve to C Draws a cubic Bézier curve

Shorthand curve to S Draws a simplified cubic Bézier curve

Quadratic curve to Q Draws a quadratic Bézier curve

Shorthand quadratic curve to T Draws a simplified quadratic Bézier curve

Close path Z Closes the figure by drawing a line to the starting position

For each of these commands, an uppercase letter is used when absolute coordinates are used. You
can also specify relative coordinates and use a lowercase letter to indicate the values that are relative to the
current position. For more information about constructing a path element, see the article at http://www.
w3.org/TR/SVG/paths.html#PathData.

As you can probably envision, drawing a complex shape like the state of Alaska will take a lot of
commands. You won’t want to edit this by hand. Fortunately, there are tools available to help build a path
definition. For example, a free web-based tool is available at http://code.google.com/p/svg-edit. Just for
grins, Listing 22-1 shows the path element for Alaska.

http://www.w3.org/TR/SVG/paths.html#PathData
http://www.w3.org/TR/SVG/paths.html#PathData
http://code.google.com/p/svg-edit

Chapter 22 ■ Scalable Vector Graphics

395

Listing 22-1.  The Path Element Definition for Alaska

<path d="M 158.07671,453.67502 L 157.75339,539.03215 L 159.36999,540.00211 L
162.44156,540.16377 L 163.8965,539.03215 L 166.48308,539.03215 L 166.64475,541.94205 L
173.59618,548.73182 L 174.08117,551.3184 L 177.47605,549.37846 L 178.1227,549.2168 L
178.44602,546.14524 L 179.90096,544.52863 L 181.0326,544.36697 L 182.97253,542.91201 L
186.04409,545.01361 L 186.69074,547.92352 L 188.63067,549.05514 L 189.7623,551.48006 L
193.64218,553.25833 L 197.03706,559.2398 L 199.78529,563.11966 L 202.04855,565.86791 L
203.50351,569.58611 L 208.515,571.36439 L 213.68817,573.46598 L 214.65813,577.83084 L
215.14311,580.9024 L 214.17315,584.29729 L 212.39487,586.56054 L 210.77826,585.75224 L
209.32331,582.68067 L 206.57507,581.22573 L 204.7968,580.09409 L 203.98849,580.9024 L
205.44344,583.65065 L 205.6051,587.36885 L 204.47347,587.85383 L 202.53354,585.9139 L
200.43195,584.62061 L 200.91693,586.23722 L 202.21021,588.0155 L 201.40191,588.8238 C
201.40191,588.8238 200.59361,588.50048 200.10863,587.85383 C 199.62363,587.20719
198.00703,584.45895 198.00703,584.45895 L 197.03706,582.19569 C 197.03706,582.19569
196.71374,583.48898 196.06709,583.16565 C 195.42044,582.84233 194.7738,581.71071
194.7738,581.71071 L 196.55207,579.77077 L 195.09712,578.31582 L 195.09712,573.30432 L
194.28882,573.30432 L 193.48052,576.6992 L 192.34888,577.1842 L 191.37892,573.46598 L
190.73227,569.74777 L 189.92396,569.26279 L 190.24729,574.92094 L 190.24729,576.05256 L
188.79233,574.75928 L 185.23579,568.77781 L 183.13419,568.29283 L 182.48755,564.57462 L
180.87094,561.66472 L 179.25432,560.53308 L 179.25432,558.26983 L 181.35592,556.97654 L
180.87094,556.65322 L 178.28436,557.29986 L 174.88947,554.87495 L 172.30289,551.96504 L
167.45306,549.37846 L 163.41152,546.79188 L 164.70482,543.55866 L 164.70482,541.94205 L
162.92654,543.55866 L 160.01664,544.69029 L 156.29843,543.55866 L 150.64028,541.13375 L
145.14381,541.13375 L 144.49717,541.61873 L 138.03072,537.73885 L 135.92912,537.41553 L
133.18088,531.59573 L 129.62433,531.91905 L 126.06778,533.374 L 126.55277,537.90052 L
127.68439,534.99062 L 128.65437,535.31394 L 127.19941,539.67879 L 130.43263,536.93055 L
131.07928,538.54716 L 127.19941,542.91201 L 125.90612,542.58869 L 125.42114,540.64875 L
124.12785,539.84045 L 122.83456,540.97208 L 120.08632,539.19381 L 117.01475,541.29541 L
115.23649,543.397 L 111.8416,545.4986 L 107.15342,545.33693 L 106.66844,543.23534 L
110.38664,542.58869 L 110.38664,541.29541 L 108.12338,540.64875 L 109.09336,538.22384 L
111.35661,534.34397 L 111.35661,532.5657 L 111.51827,531.75739 L 115.88313,529.49413 L
116.85309,530.78742 L 119.60134,530.78742 L 118.30805,528.20085 L 114.58983,527.87752 L
109.57834,530.62576 L 107.15342,534.02064 L 105.37515,536.60723 L 104.24352,538.87049 L
100.04033,540.32543 L 96.96876,542.91201 L 96.645439,544.52863 L 98.908696,545.4986 L
99.717009,547.60018 L 96.96876,550.83341 L 90.502321,555.03661 L 82.742574,559.2398 L
80.640977,560.37142 L 75.306159,561.50306 L 69.971333,563.76631 L 71.749608,565.0596 L
70.294654,566.51455 L 69.809672,567.64618 L 67.061434,566.67621 L 63.828214,566.83787 L
63.019902,569.10113 L 62.049939,569.10113 L 62.37326,566.67621 L 58.816709,567.96951 L
55.90681,568.93947 L 52.511924,567.64618 L 49.602023,569.58611 L 46.368799,569.58611 L
44.267202,570.87941 L 42.65059,571.68771 L 40.548995,571.36439 L 37.962415,570.23276 L
35.699158,570.87941 L 34.729191,571.84937 L 33.112578,570.71775 L 33.112578,568.77781 L
36.184142,567.48452 L 42.488929,568.13117 L 46.853782,566.51455 L 48.955378,564.41296 L
51.86528,563.76631 L 53.643553,562.958 L 56.391794,563.11966 L 58.008406,564.41296 L
58.978369,564.08964 L 61.241626,561.3414 L 64.313196,560.37142 L 67.708076,559.72478 L
69.00137,559.40146 L 69.648012,559.88644 L 70.456324,559.88644 L 71.749608,556.16823 L
75.791141,554.71329 L 77.731077,550.99508 L 79.994336,546.46856 L 81.610951,545.01361 L
81.934272,542.42703 L 80.317657,543.72032 L 76.922764,544.36697 L 76.276122,541.94205 L
74.982838,541.61873 L 74.012865,542.58869 L 73.851205,545.4986 L 72.39625,545.33693 L

Chapter 22 ■ Scalable Vector Graphics

396

70.941306,539.51713 L 69.648012,540.81041 L 68.516388,540.32543 L 68.193068,538.3855 L
64.151535,538.54716 L 62.049939,539.67879 L 59.463361,539.35547 L 60.918305,537.90052 L
61.403286,535.31394 L 60.756645,533.374 L 62.211599,532.40404 L 63.504883,532.24238 L
62.858241,530.4641 L 62.858241,526.09925 L 61.888278,525.12928 L 61.079966,526.58423 L
54.936843,526.58423 L 53.481892,525.29094 L 52.835247,521.41108 L 50.733651,517.85452 L
50.733651,516.88456 L 52.835247,516.07625 L 52.996908,513.97465 L 54.128536,512.84303 L
53.320231,512.35805 L 52.026941,512.84303 L 50.895313,510.09479 L 51.86528,505.08328 L
56.391794,501.85007 L 58.978369,500.23345 L 60.918305,496.51525 L 63.666554,495.22195 L
66.253132,496.35359 L 66.576453,498.77851 L 69.00137,498.45517 L 72.23459,496.03026 L
73.851205,496.67691 L 74.821167,497.32355 L 76.437782,497.32355 L 78.701041,496.03026 L
79.509354,491.6654 C 79.509354,491.6654 79.832675,488.75551 80.479317,488.27052 C
81.125959,487.78554 81.44928,487.30056 81.44928,487.30056 L 80.317657,485.36062 L
77.731077,486.16893 L 74.497847,486.97723 L 72.557911,486.49225 L 69.00137,484.71397 L
63.989875,484.55231 L 60.433324,480.83411 L 60.918305,476.95424 L 61.564957,474.52932 L
59.463361,472.75105 L 57.523423,469.03283 L 58.008406,468.22453 L 64.798177,467.73955 L
66.899773,467.73955 L 67.869736,468.70951 L 68.516388,468.70951 L 68.354728,467.0929 L
72.23459,466.44626 L 74.821167,466.76958 L 76.276122,467.90121 L 74.821167,470.00281 L
74.336186,471.45775 L 77.084435,473.07437 L 82.095932,474.85264 L 83.874208,473.88268 L
81.610951,469.51783 L 80.640977,466.2846 L 81.610951,465.47629 L 78.21606,463.53636 L
77.731077,462.40472 L 78.21606,460.78812 L 77.407756,456.90825 L 74.497847,452.22007 L
72.072929,448.01688 L 74.982838,446.07694 L 78.21606,446.07694 L 79.994336,446.72359 L
84.197528,446.56193 L 87.915733,443.00539 L 89.047366,439.93382 L 92.765578,437.5089 L
94.382182,438.47887 L 97.130421,437.83222 L 100.84863,435.73062 L 101.98027,435.56896 L
102.95023,436.37728 L 107.47674,436.21561 L 110.22498,433.14405 L 111.35661,433.14405 L
114.91316,435.56896 L 116.85309,437.67056 L 116.36811,438.80219 L 117.01475,439.93382 L
118.63137,438.31721 L 122.51124,438.64053 L 122.83456,442.35873 L 124.7745,443.81369 L
131.88759,444.46033 L 138.19238,448.66352 L 139.64732,447.69356 L 144.82049,450.28014 L
146.92208,449.6335 L 148.86202,448.82518 L 153.71185,450.76512 L 158.07671,453.67502 z M
42.973913,482.61238 L 45.075509,487.9472 L 44.913847,488.91717 L 42.003945,488.59384 L
40.225672,484.55231 L 38.447399,483.09737 L 36.02248,483.09737 L 35.86082,480.51078 L
37.639093,478.08586 L 38.770722,480.51078 L 40.225672,481.96573 L 42.973913,482.61238 z M
40.387333,516.07625 L 44.105542,516.88456 L 47.823749,517.85452 L 48.632056,518.8245 L
47.015444,522.5427 L 43.94388,522.38104 L 40.548995,518.8245 L 40.387333,516.07625 z M
19.694697,502.01173 L 20.826327,504.5983 L 21.957955,506.21492 L 20.826327,507.02322 L
18.72473,503.95166 L 18.72473,502.01173 L 19.694697,502.01173 z M 5.9534943,575.0826 L
9.3483796,572.81934 L 12.743265,571.84937 L 15.329845,572.17269 L 15.814828,573.7893 L
17.754763,574.27429 L 19.694697,572.33436 L 19.371375,570.71775 L 22.119616,570.0711 L
25.029518,572.65768 L 23.897889,574.43595 L 19.533037,575.56758 L 16.784795,575.0826 L
13.066588,573.95097 L 8.7017347,575.40592 L 7.0851227,575.72924 L 5.9534943,575.0826 z M
54.936843,570.55609 L 56.553455,572.49602 L 58.655048,570.87941 L 57.2001,569.58611 L
54.936843,570.55609 z M 57.846745,573.62764 L 58.978369,571.36439 L 61.079966,571.68771 L
60.271663,573.62764 L 57.846745,573.62764 z M 81.44928,571.68771 L 82.904234,573.46598 L
83.874208,572.33436 L 83.065895,570.39442 L 81.44928,571.68771 z M 90.17899,559.2398 L
91.310623,565.0596 L 94.220522,565.86791 L 99.232017,562.958 L 103.59687,560.37142 L
101.98027,557.94651 L 102.46525,555.52159 L 100.36365,556.81488 L 97.453752,556.00657 L
99.070357,554.87495 L 101.01029,555.68325 L 104.89016,553.90497 L 105.37515,552.45003 L
102.95023,551.64172 L 103.75853,549.70178 L 101.01029,551.64172 L 96.322118,555.19827 L
91.472284,558.10817 L 90.17899,559.2398 z M 132.53423,539.35547 L 134.95915,537.90052 L
133.98918,536.12224 L 132.21091,537.09221 L 132.53423,539.35547 z" />

Chapter 22 ■ Scalable Vector Graphics

397

■■ Tip T his data, as well as the data for all the other states, was downloaded from http://en.wikipedia.
org/wiki/File:Blank_US_Map.svg. You can find a lot of similar material by going to http://commons.
wikimedia.org and entering svg map in the search criteria.

Implementing the Initial Map
You’ll start by creating the initial map with only basic styles applied. The paths are defined in a States.js
file that you can download from www.apress.com. You'll create a new HTML document that will display the
map and the actual path DOM elements will be created with JavaScript.

EXERCISE 22-3. CREATING THE INITIAL MAP

1.	 Create a new HTML document with the following markup. This is similar to the
previous page; notice, however, that the height and width are different because this
will have a different intrinsic size.

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 22 - US Map</title>
 <link rel="stylesheet" href="Map.css" />
 <script src="States.js" defer></script>
 <script src="Map.js" defer></script>
 </head>
 <body>
 <svg xmlns:svg="http://www.w3.org/2000/svg" version="1.1"
 width="959px" height="593px"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 id="map">
 </svg>
 </body>
</html>

2.	 Download the States.js file from www.apress.com. This defines a variable named
States, which is an array of objects. Each object has a StateCode, StateName, and
Path property.

http://en.wikipedia.org/wiki/File:Blank_US_Map.svg
http://en.wikipedia.org/wiki/File:Blank_US_Map.svg
http://commons.wikimedia.org/
http://commons.wikimedia.org/
http://www.apress.com/
http://www.apress.com/

Chapter 22 ■ Scalable Vector Graphics

398

3.	 Create a Map.js file and use the following code for its implementation. This gets
the svg element and adds the path elements as children. The StateCode is used
for the id and the StateName is used for the class attribute.

var map = document.getElementById("map");

for (var i=0; i<States.length; i++) {
 var path = document.createElementNS("http://www.w3.org/2000/svg", "path");
 path.id = States[i].StateCode;
 path.setAttribute("class", States[i].StateName)
 path.setAttribute("d", States[i].Path);
 map.appendChild(path);
}

■■ Note B ecause the path element is not part of the standard HTML namespace, you must use the
createElementNS() method and specify the svg namespace.

4.	 Create the Map.css file and enter the following rule. This will change the fill color
so the state outlines will be visible.

path {
 stroke: black;
 fill: khaki;
}

5.	 Save your change and display the Map.html file in a browser. The map should look
like Figure 22-4.

Figure 22-4.  The initial map

Chapter 22 ■ Scalable Vector Graphics

399

Styling the State Elements
Now that all the mechanical work is done, you can have some fun styling the path elements. As I
demonstrated earlier with the snowman image, each element can be styled using CSS. You can also style
them dynamically using JavaScript. I will show you how to use solid-color fills, gradients, and background
images to format each element.

Using Basic Fill Colors

■■ Note T hroughout this chapter you will be using colors to style each state differently. In the print version
of this book, some of these colors might not display well when converted to grayscale. You will want to work
through the exercise or download the project to see the results of the styles being applied.

You’ll start by adding some simple fill rules. Using a simple element selector, you already set the stroke
color to black and the fill color to khaki. Now, to add some variety and to demonstrate using attribute
selectors, you’ll change the fill color based on the state code.

EXERCISE 22-4. ADDING BASIC FILL COLORS

The id attribute contains the two-letter state code, and the class attribute contains the state name.
Using the first letter of the id attribute, you’ll set the fill color as follows:

•	 A: Red

•	 N: Yellow

•	 M: Green

•	 C: Blue

•	 O: Purple

•	 I: Orange

1.	 Enter the following style rules to the Map.css file.

path[id^="A"] {
 fill: red;
}
path[id^="N"] {
 fill: yellow;
}
path[id^="M"] {
 fill: green;
}
path[id^="C"] {
fill: blue;
}

Chapter 22 ■ Scalable Vector Graphics

400

path[id^="O"] {
 fill: purple;
}
path[id^="I"] {
 fill: orange;
}

2.	 Refresh your browser, and the map should now look like Figure 22-5.

Figure 22-5.  The map with some basic styling

3.	 As you’re moving the mouse around the map, it would be nice to highlight the state
that the mouse is currently pointing to. Add the following rule to the Map.css file:

path:hover {
 opacity: .5;
}

Using Gradient Fills
You can use gradient fills with SVG elements, but they are implemented differently than typical HTML
elements. You first have to define the gradient in the HTML markup and then reference it using a URL.

Chapter 22 ■ Scalable Vector Graphics

401

EXERCISE 22-5. ADDING A GRADIENT FILL

1.	 Add the following defs element to the HTML document, inside the svg element:

<defs>
 <linearGradient id="blueGradient"
 x1="0%" y1="0%"
 x2="100%" y2="100%"
 spreadMethod="pad">
 <stop offset="0%" stop-color="#ffffff" stop-opacity="1"/>
 <stop offset="50%" stop-color="#6699cc" stop-opacity="1"/>
 <stop offset="100%" stop-color="#4466aa" stop-opacity="1"/>
 </linearGradient>
</defs>

The defs element is used to define something that can be referred to later in the document. It doesn’t
do anything until it is actually referenced. Here you are defining a linearGradient element and giving
it the id blueGradient. You will reference it using the id attribute.

The attributes are different from the gradients you used in Chapter 12 but accomplish basically the
same thing. The x1, y1, x2, and y2 attributes define a vector that specifies the direction of the gradient.
In this case, it will start from the top-left corner and go to the bottom-right corner. This specifies three
color values that define the gradient color at the beginning, midpoint, and end.

2.	 Now add the following rule at the end to the Map.css file. This will use the new
gradient for the state of Wyoming.

path[id="WY"] {
 fill: url(#blueGradient);
}

3.	 Refresh the browser, and you should see a gradient fill for Wyoming, as shown in
Figure 22-6.

Figure 22-6.  Using a gradient fill

http://dx.doi.org/10.1007/978-1-4842-2463-2_12

Chapter 22 ■ Scalable Vector Graphics

402

Using a Background Image
You can also use an image file for the shape background. You will need to first define this as a pattern in the
defs element and then reference it just like you did with the gradient. For this exercise, you’ll use an image
of the state flag of Texas and make this the background for that state.

EXERCISE 22-6. USING A BACKGROUND IMAGE

1.	 In the source code download for Chapter 22 there is a TX_Flag.jpg file; download
this file.

2.	 Add the following code to the defs element in the HTML document that you created
earlier. This will define the background image and specifies that the pattern should
use the TX_Flag.jpg image file and stretch it to 377 x 226 pixels. This will make it
large enough to cover the path element without needing to repeat.

<pattern id="TXflag" patternUnits="objectBoundingBox" width="1"
height="1">
 <image xlink:href="TX_Flag.jpg" x="0" y="0"
 width="377" height="226" />
</pattern>

3.	 Add the following rule to the Map.css file, which will use the new pattern for the
state of Texas.

path[id="TX"] {
 fill: url(#TXflag);
}

4.	 Save your changes and refresh the browser. You should see the background image,
as shown in Figure 22-7.

Figure 22-7.  Using a background image

http://dx.doi.org/10.1007/978-1-4842-2463-2_22

Chapter 22 ■ Scalable Vector Graphics

403

Since this is a chapter on SVG, I felt a little funny about using a bitmap image. You can see the degraded
image quality when the image is stretched. The state flag of Texas is one of the easiest to draw with SVG,
but I wanted to demonstrate that bitmapped images can be used within an SVG definition. But just for
the record, Listing 22-2 shows the flag expressed in SVG (this was downloaded from the same Wikimedia
Commons site I mentioned earlier and reformatted slightly).

Listing 22-2.  The Texas State Flag in SVG

<rect width="1080" height="720" fill="#fff"/>
<rect y="360" width="1080" height="360" fill="#bf0a30"/>
<rect width="360" height="720" fill="#002868"/>
<g transform="translate(180,360)" fill="#fff">
 <g id="c">
 <path id="t" d="M 0,-135 v 135 h 67.5"
 transform="rotate(18 0,-135)"/>
 <use xlink:href="#t" transform="scale(-1,1)"/>
 </g>
 <use xlink:href="#c" transform="rotate(72)"/>
 <use xlink:href="#c" transform="rotate(144)"/>
 <use xlink:href="#c" transform="rotate(216)"/>
 <use xlink:href="#c" transform="rotate(288)"/>
</g>

Notice that the group element, g, is used to define a single path. This is rotated with five different angles
to create a five-pointed star.

Altering Styles with JavaScript
One of the primary uses of this kind of application is to dynamically style each element based on some
external data. For example, you might want to highlight states where you have sales locations. Or perhaps
you want to set the colors based on some type of demographic such as population. So far, you have used only
static styles, but you can just as easily set the styles using JavaScript.

In this example, you will first set the fill attribute on all path elements to khaki using JavaScript. This
will replace the CSS property that sets the default color. This code will then set the fill color of the path
element for Virginia. In a real application, you would normally define the style based on external data.

This exercise will also show you how to use JavaScript to respond to the mouseover and mouseout events.
You will replace the path:hover rule and accomplish this using these event handlers.

EXERCISE 22-7. ADJUSTING STYLES USING JAVASCRIPT

1.	 Add the following function to the Map.js script:

function adjustStates() {
 var paths = document.getElementsByTagName("path");
 for (var i = 0; i < paths.length; i++) {
 paths[i].setAttribute("fill", "khaki");
 }

 var path = document.getElementById("VA");
 path.setAttribute("fill", "teal");
}

Chapter 22 ■ Scalable Vector Graphics

404

2.	 Call the adjustStates() method from the Map.js script.

adjustStates();

3.	 In the Map.css file, remove the default khaki fill like this:

path {
stroke: black;
/*fill: khaki; */
}

4.	 Refresh the browser, and Virginia should no longer use the default color, as shown
in Figure 22-8.

Figure 22-8.  Virginia styled with JavaScript

5.	 Now you’ll also use JavaScript to implement the hover style. You can use the
event.target property to get the path element that triggered the event. You can
then determine the state code by accessing its id attribute. Add the following
methods to the Map.js script:

function hoverState(e) {
 var event = e || window.event;
 var state = event.target.getAttribute("id");
 var path = document.getElementById(state);
 path.setAttribute("fill-opacity", "0.5");
}

function unhoverState(e) {
 var event = e || window.event;
 var state = event.target.getAttribute("id");
 var path = document.getElementById(state);
 path.setAttribute("fill-opacity", "1.0");
}

6.	 Then bind the mouseover and mouseout event handlers by adding the code shown
in bold to the adjustStates() function. This uses the addEventListener()
method to bind hoverState() and unhoverState() event handlers to each path
element.

Chapter 22 ■ Scalable Vector Graphics

405

function adjustStates() {
 var paths = document.getElementsByTagName("path");
 for (var i = 0; i < paths.length; i++) {
 paths[i].setAttributeNS(null, "fill", "khaki");

 paths[i].addEventListener("mouseover", hoverState, true);
 paths[i].addEventListener("mouseout", unhoverState, true);
 }

 var path = document.getElementById("VA");
 path.setAttributeNS(null, "fill", "teal");
}

■■ Caution I n Internet Explorer, the event object is not passed to the event handler. Instead, it is made
available through the global window.event property. The event handlers can be coded to work with either
model by setting the event variable like this: var event = e || window.event. This will use the object passed
in, if available, and if not, it will use the global window.event object. For this to work, however, you must
register the event handlers by using the addEventListener() method. You cannot simply set the mouseover
attribute.

7.	 Remove the path:hover style rule like this:

/*path:hover {
 opacity: .5;
}*/

8.	 Save your changes and refresh the browser. As you move the mouse around, the
states should highlight just like they did with the path:hover style.

Adding Animation
A typical application of a map like this will allow the user to select a region and have something happen as
a result of that selection. The page will display some information based on the item that was selected. To
demonstrate that, you’ll add some animation when the user clicks a state.

The CSS animation that I showed you in Chapter 15 does not work on SVG elements. Instead, you’ll
implement the animation using JavaScript. When a state is selected, you’ll first make a copy of the selected
element. Then you’ll use a timer to gradually change its rotation angle. You need to make a copy so that as
the image rotates, it doesn’t leave a hole in the map. Also, the new element will be on top of all the others, so
you don’t have to worry about it being hidden by the other elements.

Once the copy of the element has completed its animation, you’ll remove it from the document. Then
you’ll display an alert showing the state code and state name of the path that was selected.

http://dx.doi.org/10.1007/978-1-4842-2463-2_15

Chapter 22 ■ Scalable Vector Graphics

406

EXERCISE 22-8. ADDING ANIMATION

1.	 Because this uses a 3D transform, you’ll need to set some of the transform
properties on the path elements. Add the following rule to the Map.css file:

path {
 transform-style: preserve-3d;
 perspective: 200px;
}

2.	 Then add the code shown in Listing 22-3 to the Map.js script.

Listing 22-3.  Adding Functions to Support Animation

// Setup some global variables
var timer;
var stateCode;
var stateName;
var animate;
var angle;

function selectState(e) {
 var event = e || window.event;

 // Get the state code and state name
 stateCode = event.target.getAttribute("id");
 stateName = event.target.getAttribute("class");

 // Get the selected path element and then make a copy of it
 var path = document.getElementById(stateCode);
 animate = path.cloneNode(false);

 // Set some display properties and add the copy to the document
 animate.setAttribute("fill-opacity", "1.0");
 animate.setAttribute("stroke-width", "3");
 document.getElementById("map").appendChild(animate);

 angle = 0;

 // Setup a timer to run every 10 msec
 timer = setInterval(function () { animateState(); }, 10);
}

Chapter 22 ■ Scalable Vector Graphics

407

function animateState() {
 angle += 1;

 // If we’ve rotated 360 degress, stop the timer, destroy the copy
 // of the element, and show an alert
 if (angle > 360) {
 clearInterval(timer);
 animate.setAttribute("visibility", "hidden");
 var old = document.getElementById("map").removeChild(animate);

 alert(stateCode + " - " + stateName);

 return;
 }

 // Change the image rotation
 animate.style.transform = "rotateY(" + Math.round(angle) + "deg)";
}

The selectState() function gets the state code and state name from the selected path element.
It then gets the path element and uses its cloneNode() method to make a copy of it. Because the
mouse is currently over the selected path, it will have the opacity set to 50%. So, this code changes
the opacity of the copy to 100%. It also sets the stroke width to give this element a wider border.
The copy is then added to the document, and a timer is started to cause the animation.

Every 10 milliseconds, the animateState() function is called, which increments the angle and redraws
the image. If the rotation has reached 360 degrees, this method cancels the timer and removes the
copy of the path element. It also raises an alert to display the state code and state name.

3.	 Add another event handler by adding the code shown in bold to the
adjustStates() function. This will call the selectState() method when the user
clicks a path element.

function adjustStates() {
 var paths = document.getElementsByTagName("path");
 for (var i = 0; i < paths.length; i++) {
 paths[i].setAttribute("fill", "khaki");

 paths[i].addEventListener("mouseover", hoverState, true);
 paths[i].addEventListener("mouseout", unhoverState, true);
 paths[i].addEventListener("click", selectState, true);
 }

 var path = document.getElementById("VA");
 path.setAttribute("fill", "teal");
}

4.	 Refresh the browser and click a state, and you should see it fly off the page, as
shown in Figure 22-9.

Chapter 22 ■ Scalable Vector Graphics

408

Summary
In this chapter, I introduced SVG with a couple of fairly simple applications. An SVG image consists of
multiple elements, which can be simple elements such as lines, circles, and rectangles or more complex
options such as polygons and paths. The key feature of SVG is that each individual element can be styled
independently both statically and dynamically. This enables much greater control and interaction. Also,
because the image is based on an expression, the images can be scaled without affecting the image quality.

In the exercises in this chapter, you did the following:

•	 Designed an image using simple geometric shapes

•	 Created a stand-alone .svg image file

•	 Displayed a map as a collection of path elements

•	 Styled the path elements using a variety of selectors

•	 Implemented animation on an SVG element

In the next chapter, I’ll show you how to use the canvas element, which is a very different approach to
graphical content in HTML5.

Figure 22-9.  Animating the selected state

5.	 The image will then fly back into place, and an alert will appear, as shown in
Figure 22-10.

Figure 22-10.  The alert showing the name of the selected state

409© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_23

CHAPTER 23

Canvas

In this chapter, I’ll show you how to use the canvas element in HTML5 to create some fun graphics. As you’ll
see, it is very different from SVG, which you explored in the previous chapter. I will discuss the differences
in more detail later, but the main thing you’ll notice is that canvas is completely implemented in JavaScript.
The only part that is in the markup is a simple element definition like this:

<canvas id="myCanvas" width="400" height="400">
 Canvas is not supported on this browser
</canvas>

Instead, you’ll define the content by calling the various drawing methods using JavaScript. Just like with
the audio and video elements, the markup within the canvas element is used when the browser does not
support canvas. You can use this to provide the appropriate fallback content.

Through the exercises in the chapter, you will create three different canvas implementations that,
collectively, will demonstrate the capability of canvas. You will create the following:

•	 A chess board with moving chess pieces

•	 A simple model of the solar system

•	 A page that demonstrates the various ways shapes can be composited

Of course, you can use your imagination to apply these principles in any number of fun and compelling
graphical applications.

Creating a Chess Board
In the first application, you’ll draw a chess board, which is just a series of squares with alternating colors.
I’ll show you how to use a gradient to make the board a little more interesting. You’ll use image files to draw
the chess pieces in the appropriate squares. Finally, you’ll apply a little bit of animation to move the pieces
around the board. This will give you a good sense of how basic drawing techniques are used before getting
into more advanced topics.

The canvas element is appropriately named because it provides an area that you can use to draw on.
When you create a canvas element, you define its size using the height and width attributes. You can specify
other attributes through markup or CSS to specify the margin, padding, and border. These attributes affect
where the element is positioned within the page. However, you cannot modify any of the content within the
element. The canvas element itself simply defines a blank area on which you can create your masterpiece.

When you create a canvas element in HTML, you will generally assign an id attribute so you can
access it in JavaScript using the getElementById() method. You don’t have to; you can access it using the
getElementsByTagName() method or use the new query selectors I described in Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-2463-2_18

Chapter 23 ■ Canvas

410

Once you have the canvas element, you’ll then get its drawing context by calling getContext().
You must specify which context to use. The context specifies a set of API functions and drawing capabilities.
The only one that is generally available is 2d, and we will be using that exclusively in this chapter.

■■ Note  The other possible context is not 3d as you might expect; it’s WebGL or, in some browsers,
experimental-webgl. This is not quite ready for prime time and it is very different from the 2d context.

Drawing Rectangles
Unlike SVG, the only shape that you can draw directly is a rectangle. You can draw more complex shapes
using paths, which I’ll explain later. There are three methods that you can use to draw rectangles.

•	 clearRect(): Clears the specified rectangle

•	 strokeRect(): Draws a border around the specified rectangle with no fill

•	 fillRect(): Draws a filled-in rectangle

Each of these methods takes four parameters. The first two define the x and y coordinates of the top-left
corner of the rectangle. The last two parameters specify the width and height, respectively. The drawing
context has the strokeStyle and fillStyle properties that control how the border or fill will be drawn. You
set these before drawing the rectangle. Once set, all subsequent shapes are drawn with these properties until
you change the properties.

■■ Tip  Just like SVG, in canvas, the top-left corner of the canvas element has the x and y coordinates of 0, 0.

To demonstrate drawing rectangles, you’ll start by drawing the chess board, which contains eight rows
of eight squares each.

EXERCISE 23-1. DRAWING A SIMPLE CHESS BOARD

1.	 Create a new web page called Chess.html, using the basic markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 23 - Chess</title>
 <script src="Chess.js" defer></script>
 </head>
 <body>
 </body>
</html>

Chapter 23 ■ Canvas

411

2.	 Add a canvas element by inserting the following markup in the body element:

<canvas id="board" width ="600" height ="600">
 Not supported
</canvas>

3.	 Then create a Chess.js script file using the following code.

"use strict";

// Get the canvas context
var chessCanvas = document.getElementById("board");
var chessContext = chessCanvas.getContext("2d");

4.	 Add a function to draw the chessboard to the Chess.js file and then call this
function using the following code.

// Draw the chess board
function drawBoard() {

 chessContext.clearRect(0, 0, 600, 600);

 chessContext.fillStyle = "red";
 chessContext.strokeStyle = "red";

 // Draw the alternating squares
 for (var x = 0; x < 8; x++) {
 for (var y = 0; y < 8; y++) {
 if ((x + y) % 2) {
 chessContext.fillRect(75 * x, 75 * y, 75, 75);
 }
 }
 }

 // Add a border around the entire board
 chessContext.strokeRect(0, 0, 600, 600);
}

drawBoard();

The drawBoard() function first clears the area on which it will be drawing. It then uses nested for
loops to draw the squares. The fillStyle and strokeStyle attributes are both set to red; by default
these are both black. Notice that it draws only the red squares. Since the entire area was cleared first,
any area not drawn on will be white. This code uses nested for loops to iterate through the eight rows
and eight columns. The red squares are the ones where the sum of the row and the column is odd. For
even-numbered rows (0, 2, 4, and 6), the odd columns (1, 3, 5, and 7) will be red. For odd-numbered
rows, the even-numbered columns will be red. To clean up the edge squares, a red border is drawn
around the entire board.

Chapter 23 ■ Canvas

412

5.	 Save your changes and display the Chess.html page in a browser. The page should
look like Figure 23-1.

Figure 23-1.  The initial chessboard

Using Gradients
You can also use a gradient to fill a shape instead of a solid color. To do that, you must first create a gradient
object using the drawing context’s createLinearGradient() method. This method takes four parameters,
which are the x and y coordinates of the beginning and ending points of the gradient. This allows you to
specify whether the gradient should go from top to bottom, left to right, or corner to corner. The gradient is
computed across the entire canvas. You cannot define gradients for individual elements.

You must then define the color stops. Each color stop defines a position along the gradient and a color.
At a minimum, you’ll need color stops at 0 and 1, which define the beginning and ending colors. You can
also add color stops in between these if you want to control the transition. For example, if you want to define
the color at the halfway point, use 0.5.

Finally, you’ll use this gradient to specify the fillStyle property. To try it, add the following code
shown in bold:

function drawBoard() {

 chessContext.clearRect(0, 0, 600, 600);

 var gradient = chessContext.createLinearGradient(0, 600, 600, 0);
 gradient.addColorStop(0.0, "#D50005");
 gradient.addColorStop(0.5, "#E27883");
 gradient.addColorStop(1.0, "#FFDDDD");

 chessContext.fillStyle = gradient;
 chessContext.strokeStyle = "red";

Chapter 23 ■ Canvas

413

Save your changes and refresh the browser. The page should now look like Figure 23-2. Notice that the
color transitions across the canvas, not across each square.

Figure 23-2.  The board using a gradient fill

Using Images
Now you’re ready to add the chess pieces, which will be drawn using image files. It is really easy to add an
image to a canvas. You create an Image object, set its src property as the location of the image file, and then
call the drawing context’s drawImage() method like this:

var myImage = new Image();
myImage.src = "images/sample.jpg";
context.drawImage(myImage, 0,0, 50, 100);

The first parameter of the drawImage() method specifies the image that will be drawn. This can be an
Image object, as I’ve shown here. Alternatively, you can also specify an img, video, or canvas element that is
already on the page. The next two parameters specify the x and y locations of the top-left corner of the image.
The fourth and fifth parameters are optional and specify the width and height, respectively, that the image
will be scaled to fit into. If you don’t specify these parameters, the image will be drawn using its intrinsic size.

The drawImage() method also allows you to supply four additional parameters. These are used to
specify only the portion of the image that should be displayed on the canvas. These additional parameters
include an x coordinate and a y coordinate that specify the top-left corner, as well as a width and height
to define the specified portion. Use the last four parameters if you want only a portion of the image to be
drawn. If these are omitted, the entire image will be displayed.

In this application you will be drawing 32 pieces using 12 different images. Also, later in this chapter
you will be adding code to move the pieces around. To facilitate this, you’ll add some structure to your
application. You will define a class that will store attributes about a chess piece such as the image to use and
its location on the board. Then you’ll implement a generic drawing function that uses the details from these
attributes.

Chapter 23 ■ Canvas

414

EXERCISE 23-2. DRAWING CHESS PIECES

1.	 Create a new folder in your web application, called Images, to store the image files.

2.	 The images for the chess pieces are included in the source code download file.
You’ll find these in the Chapter23\Images folder. Drag all 12 files to your Images
folder.

3.	 Add the following variable declarations to the beginning of Chess.js file (just
after the chessCanvas and chessContext variables). This will define a variable to
reference an Image object for each of the 12 image files. It will also define an array
that you will be using to store the 32 chess pieces.

// Define the chess piece images
var imgPawn = new Image();
var imgRook = new Image();
var imgKnight = new Image();
var imgBishop = new Image();
var imgQueen = new Image();
var imgKing = new Image();
var imgPawnW = new Image();
var imgRookW = new Image();
var imgKnightW = new Image();
var imgBishopW = new Image();
var imgQueenW = new Image();
var imgKingW = new Image();

// Define an array to store 32 pieces
var pieces = new Array(32);

4.	 Add the loadImages() function to the Chess.js file.

function loadImages() {
 imgPawn.src = "Images/pawn.png";
 imgRook.src = "Images/rook.png";
 imgKnight.src = "Images/knight.png";
 imgBishop.src = "Images/bishop.png";
 imgQueen.src = "Images/queen.png";
 imgKing.src = "Images/king.png";
 imgPawnW.src = "Images/wpawn.png";
 imgRookW.src = "Images/wrook.png";
 imgKnightW.src = "Images/wknight.png";
 imgBishopW.src = "Images/wbishop.png";
 imgQueenW.src = "Images/wqueen.png";
 imgKingW.src = "Images/wking.png";
}

Chapter 23 ■ Canvas

415

5.	 Now you’re ready to define the chess pieces. You’ll use an object definition that will
store the properties needed to draw the chess piece. The image property contains
a reference to the appropriate Image object. The x and y properties specify the
square that the piece is in, from 0 to 7, left to right and top to bottom. The height
and width properties indicate the size of the image, which will vary depending on
the type of piece. The killed property is used to indicate whether the piece has
been captured. Captured images are not displayed. Add the following code to the
Chess.js:

// Define a class to store the piece properties
function ChessPiece() {
 this.image = null;
 this.x = 0;
 this.y = 0;
 this.height = 0;
 this.width = 0;
 this.killed = false;
}

6.	 Add the following functions to the Chess.js file. This implements the drawPiece()
function that draws a single chess piece based on the class properties. It also
implements a drawAllPieces() function that will draw each of the pieces defined
in the pieces array.

// Draw a chess piece
function drawPiece(p) {
 if (!p.killed)
 chessContext.drawImage(p.image,
 (75 - p.width) / 2 + (75 * p.x),
 73 - p.height + (75 * p.y),
 p.width,
 p.height);
}

// Draw all of the chess pieces
function drawAllPieces() {
 for (var i = 0; i < 32; i++) {
 if (pieces[i] != null) {
 drawPiece(pieces[i]);
 }
 }
}

7.	 Now you need to create 32 instances of the ChessPiece class and specify all of the
appropriate properties. Add the createPieces() function shown in Listing 23-1.
This function creates the instances of the ChessPiece class, storing them in the
pieces array, and sets the properties of each one.

Chapter 23 ■ Canvas

416

■■ Tip S ince this is rather long and tedious, I made this function available in the source code download as a
separate file. If you prefer, instead of typing the function from Listing 23-1, you can find the createPieces.js
file in the Chapter23 folder and drag this to your web project. Then add this reference in the head element:

<script src="createPieces.js" defer></script>

Listing 23-1.  Implementing the createPieces() Function

function createPieces() {
 var piece;

 // Black pawns
 for (var i = 0; i < 8; i++) {
 piece = new ChessPiece();
 piece.image = imgPawn,
 piece.x = i;
 piece.y = 1;
 piece.height = 50;
 piece.width = 28;

 pieces[i] = piece;
 }

 // Black rooks
 piece = new ChessPiece();
 piece.image = imgRook;
 piece.x = 0;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[8] = piece;

 piece = new ChessPiece();
 piece.image = imgRook;
 piece.x = 7;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[9] = piece;

 // Black knights
 piece = new ChessPiece();
 piece.image = imgKnight;
 piece.x = 1;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[10] = piece;

Chapter 23 ■ Canvas

417

 piece = new ChessPiece();
 piece.image = imgKnight;
 piece.x = 6;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[11] = piece;

 // Black bishops
 piece = new ChessPiece();
 piece.image = imgBishop;
 piece.x = 2;
 piece.y = 0;
 piece.height = 65;
 piece.width = 30;
 pieces[12] = piece;

 piece = new ChessPiece();
 piece.image = imgBishop;
 piece.x = 5;
 piece.y = 0;
 piece.height = 65;
 piece.width = 30;
 pieces[13] = piece;

 // Black queen
 piece = new ChessPiece();
 piece.image = imgQueen;
 piece.x = 3;
 piece.y = 0;
 piece.height = 70;
 piece.width = 32;
 pieces[14] = piece;

 // Black king
 piece = new ChessPiece();
 piece.image = imgKing;
 piece.x = 4;
 piece.y = 0;
 piece.height = 70;
 piece.width = 28;
 pieces[15] = piece;

 // White pawns
 for (var i = 0; i < 8; i++) {
 piece = new ChessPiece();
 piece.image = imgPawnW,
 piece.x = i;
 piece.y = 6;
 piece.height = 50;
 piece.width = 28;

 pieces[16 + i] = piece;
 }

Chapter 23 ■ Canvas

418

 // White rooks
 piece = new ChessPiece();
 piece.image = imgRookW;
 piece.x = 0;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[24] = piece;

 piece = new ChessPiece();
 piece.image = imgRookW;
 piece.x = 7;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[25] = piece;

 // White knights
 piece = new ChessPiece();
 piece.image = imgKnightW;
 piece.x = 1;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[26] = piece;

 piece = new ChessPiece();
 piece.image = imgKnightW;
 piece.x = 6;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[27] = piece;

 // White bishops
 piece = new ChessPiece();
 piece.image = imgBishopW;
 piece.x = 2;
 piece.y = 7;
 piece.height = 65;
 piece.width = 30;
 pieces[28] = piece;

 piece = new ChessPiece();
 piece.image = imgBishopW;
 piece.x = 5;
 piece.y = 7;
 piece.height = 65;
 piece.width = 30;
 pieces[29] = piece;

Chapter 23 ■ Canvas

419

 // White queen
 piece = new ChessPiece();
 piece.image = imgQueenW;
 piece.x = 3;
 piece.y = 7;
 piece.height = 70;
 piece.width = 32;
 pieces[30] = piece;

 // White king
 piece = new ChessPiece();
 piece.image = imgKingW;
 piece.x = 4;
 piece.y = 7;
 piece.height = 70;
 piece.width = 28;
 pieces[31] = piece;
}

8.	 Modify the drawBoard() function to also call drawAllPieces() after the board has
been drawn.

// Add a border around the entire board
chessContext.strokeRect(0, 0, 600, 600);

 drawAllPieces();
}

9.	 Finally, replace the call to drawBoard() function in the Chess.js file with the
following code. This will call the loadImages() and createPieces() functions and
wait 1 second before calling drawBoard().

loadImages();
createPieces();

setTimeout(drawBoard, 1000);

10.	 Save your changes and refresh the browser. You should now see the chess pieces,
as shown in Figure 23-3.

Chapter 23 ■ Canvas

420

■■ Note  When you create an Image object and set its src property, the specified image file is downloaded
asynchronously. It’s possible that the file has not been loaded before the drawImage() function is called. If
this happens, the image is not displayed. The 1-second delay is a simple solution to this problem. You could
implement the onload event handler for each Image object, which is called when the image has been loaded.
This is a bit complicated since you’ll need to wait for all 12 images to be loaded.

Adding Simple Animation
To demonstrate simple animation using canvas, you’ll move the pieces around. The function that draws
each piece computes the location based on the square that the piece is in. To move a piece, you just need to
update the x or y property and then redraw it.

When you redraw a piece in its new location, it is still visible in the old location as well. Also, if you were
to capture a piece by moving a piece in the same square as another, you would end up with two pieces in the
same square. You could implement some complex logic to clear the square and redraw a red or white square
before moving the piece. However, for this demonstration, you will simply clear the entire canvas and redraw
the board and all of the pieces.

To implement the automation, you’ll create a makeNextMove() function. This will adjust the x and y
positions of a chess piece and then redraw the board and all of the pieces. You’ll use the setInterval()
function to call this repeatedly so the pieces will move in succession.

Figure 23-3.  The chess board with the pieces displayed

Chapter 23 ■ Canvas

421

EXERCISE 23-3. ANIMATING THE CHESS PIECES

1.	 Add the following variables shown in bold near the beginning of the
Chess.js file:

// Define an array to store 32 pieces
var pieces = new Array(32);
var moveNumber = -1;
var timer;

2.	 Implement the makeNextMove() function in the Chess.js file using the following
code. This code “moves” a piece by adjusting its x and y properties. It keeps track
of the move number and uses this to adjust the appropriate piece. The seventh
move captures a piece and sets its killed property. Since this ends the animation,
the seventh move also uses the clearTimer() function so no more timer events
will occur. After each move, the board and all the pieces are redrawn. After the
seventh move, this function also uses the fillText() method, which is used to
write text to the canvas.

function makeNextMove() {
 function inner() {
 if (moveNumber === 1) {
 pieces[20].y--;
 }
 if (moveNumber === 2) {
 pieces[4].y += 2;
 }
 if (moveNumber === 3) {
 pieces[29].y = 4;
 pieces[29].x = 2;
 }
 if (moveNumber === 4) {
 pieces[6].y++;
 }
 if (moveNumber === 5) {
 pieces[30].x = 5;
 pieces[30].y = 5;
 }
 if (moveNumber === 6) {
 pieces[7].y++;
 }
 if (moveNumber === 7) {
 pieces[30].x = 5;
 pieces[30].y = 1;
 pieces[5].killed = true;
 clearInterval(timer);
 }

Chapter 23 ■ Canvas

422

 moveNumber++;

 drawBoard();
 drawAllPieces();

 if (moveNumber > 7) {
 chessContext.font = "30pt Arial";
 chessContext.fillStyle = "black";
 chessContext.fillText("Checkmate!", 200, 220);
 }
 }

 return inner;
}

3.	 Add the following code to the Chess.js file. This will call the makeNextMove()
function every 2 seconds.

timer = setInterval(makeNextMove(), 2000);

4.	 Save your changes and refresh the browser. After a series of moves, the page
should look like Figure 23-4.

Figure 23-4.  The completed chess board

Chapter 23 ■ Canvas

423

■■ Note T he makeNextMove() function uses an often misunderstood feature of JavaScript called closure,
which was covered in Chapter 3. This function defines another function called inner(), which does the actual
work. The inner() function is then returned. The makeNextMove() function will be called by the window object
when the timer expires. However, all of the variables that it uses, such as the array of chess pieces, will be out
of scope. The inner() function will be able to access these variables, so this works around the scope issue.

Modeling the Solar System
For the next canvas, you’ll draw a moving model of the solar system. For the sake of time, you’ll show only
the earth, sun, and moon. This implementation will take advantage of these two important features of
canvas:

•	 Paths

•	 Transformations

Using Paths
As I mentioned earlier, the only simple shape that canvas supports is the rectangle, which you used in the
previous example. For all other shapes you must define a path. The basic approach to defining paths in
canvas is similar to SVG. You use a move command to set the starting point and then some combination of
line and curve commands to draw a shape.

In canvas, you always start with a beginPath() command. After calling the desired drawing commands,
the path is completed by calling either stroke() to draw an outline of the shape or fill() to fill in the
shape. The shape is not actually drawn to the canvas until either stroke() or fill() is called. If you call
beginPath() again, before completing the current shape (with a call to stroke() or fill()), the canvas will
ignore the previous uncompleted commands. The same strokeStyle and fillStyle properties that you
used with rectangles also define the color of the path.

The actual drawing commands are as follows:

•	 moveTo()

•	 lineTo()

•	 arcTo()

•	 bezierCurveTo()

•	 quadraticCurveTo()

In addition, these functions can be used for drawing:

•	 closePath(): This performs a lineTo() command from the current position to
the starting position to close in the shape. If you use the fill() command, the
closePath() function is automatically called if you’re not currently at the starting
position.

•	 arc(): This draws an arc at the specified location; you don’t have to move there first.
However, this is still treated as a path; you need to first call beginPath(), and the arc
is not actually drawn until you call either stroke() or fill().

http://dx.doi.org/10.1007/978-1-4842-2463-2_3

Chapter 23 ■ Canvas

424

Drawing Arcs
The arc() command is one that you’ll likely use a lot and will be important in this example. The arc()
command takes the following parameters:

arc(x, y, radius, start, end, counterclockwise)

The first two parameters specify the x and y coordinates of the center point. The third parameter
specifies the radius. The fourth and fifth parameters determine the starting and ending points of the arc.
These are specified as an angle from the x-axis. The 0° angle is the right side of the circle; a 90° angle would
be the bottom edge of the circle. The angles are specified in radians, however, not degrees.

Unless you’re drawing a full circle, the direction of the arc is important. For example, if you drew an
arc from 0° to 90°, the arc would be 1/4 of a circle, from the right side to the bottom. However, using the
same endpoints but drawing in a counterclockwise direction, that arc would be 3/4 of the circle. The final
parameter, if true, indicates that the arc should be drawn in a counterclockwise direction. This parameter is
optional. If you don’t specify it, it will draw the arc in a clockwise direction.

Using Transformations
At first, transformations in canvas may seem a bit confusing, but they can be quite helpful once you
understand how they work. First, transformations have no effect on what has already been drawn on the
canvas. Instead, transformations modify the grid system that will be used to draw subsequent shapes. I will
demonstrate three types of transformations in this chapter.

•	 Translating

•	 Rotating

•	 Scaling

As I mentioned earlier, a canvas element uses a grid system where the origin is at the top-left corner
of the canvas. So, a point at 100, 50 will be 100 pixels to the right and 50 pixels down from that corner.
Transformations simply adjust the grid system. For example, the following command will shift the origin 100
pixels to the right and 50 pixels down:

context.translate (100, 50);

This is illustrated in Figure 23-5.

Chapter 23 ■ Canvas

425

Now when you move to 10, 20, since this is relative to the new origin, the actual position (relative to the
canvas), will be 110, 70. You might be wondering why you would want to do this. Well, suppose you were
drawing a picture of the U.S. flag, which has 50 stars on it. A five-pointed star is a fairly complex shape to
draw, which will require a number of drawing commands. Once you have drawn the first star, you’ll need to
repeat the process 49 more times, each time using different values.

By simply translating the context to the right a little, you can repeat the same commands using the same
values. But now the star will be in a different location. Granted, you could accomplish the same thing by
creating a drawStar() function that accepted x, y parameters. Then call this 50 times, passing in different
values. However, once you get used to using transformation, you will find this easier, especially with the
other types such as rotation.

The rotate transformation doesn’t move the origin; instead, it rotates the x- and y-axes by the
specified amount. A positive amount is used for a clockwise rotation, and a negative value is used to rotate
counterclockwise. Figure 23-6 demonstrates how a rotate transformation works.

Figure 23-5.  Translating the context origin

Chapter 23 ■ Canvas

426

■■ Note  I indicated the rotation angle as 30° since that is what most people are familiar with. However, the
rotate() command expects the value in radians. If your geometry is a little rusty, a full circle is 360° or 2π
radians. In JavaScript, you can use the Math.PI property to get the value of π (Pi). For example, 30° is 1/12
of a full circle, so you can write this as (Math.PI*2/12). In general, radians are calculated as degrees *
(Math.PI/180).

You can use multiple transformations. For example, you can translate the origin and then rotate the x-
or y-axis. You can also rotate the grid some more and translate again. Each transformation is always relative
to the current position and orientation.

Saving the Context State
The state of a drawing context includes the various properties such as fillStyle and strokeStyle that
you have already used. It also includes the accumulation of all transformations that have been applied. If
you start using multiple transformations, getting back to the original state may be difficult. Fortunately, the
drawing context provides the ability to save and then restore the state of the context.

The current state is saved by calling the save() function. Saving the state pushes the current state onto
a stack. Calling the restore() function pops the most recently saved state off the stack and makes that the
current state. This is illustrated in Figure 23-7.

Figure 23-6.  Rotating the drawing context’s grid

Chapter 23 ■ Canvas

427

You should generally save the state before doing any transformations, especially complex ones. When
you have finished drawing whatever elements needed the transformation, you can restore the state to the
way it was. Remember, changing the state by setting the fillStyle or performing a transformation does not
affect what has already been drawn.

Drawing the Solar System
With these features at your disposal, let’s draw a simple model of the solar system.

EXERCISE 23-4. MODELING THE SOLAR SYSTEM

1.	 Create a new web page, Solar.html, using the basic markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 23 - Solar System</title>
 <script src="Solar.js" defer></script>
 </head>
 <body>
 </body>
</html>

2.	 Add the canvas element inside the body element.

<canvas id="solarSystem" width="450" height="400">
 Not supported
</canvas>

Figure 23-7.  Saving and restoring the drawing context state

Chapter 23 ■ Canvas

428

3.	 Add a new Solar.js script using the following code. This code gets the canvas
element and then obtains the 2d drawing context, just like the previous example.

"use strict";

// Get the canvas context
var solarCanvas = document.getElementById("solarSystem");
var solarContext = solarCanvas.getContext("2d");

4.	 Add the animateSS() function to the Solar.js file using the following code.

function animateSS() {
 var ss = document.getElementById('solarSystem')
 var ssContext = ss.getContext('2d');

 // Clear the canvas and draw the background
 ssContext.clearRect(0, 0, 450, 400);
 ssContext.fillStyle = "#2F1D92";
 ssContext.fillRect(0, 0, 450, 400);

 ssContext.save();

 // Draw the sun
 ssContext.translate(220, 200);
 ssContext.fillStyle = "yellow";
 ssContext.beginPath();
 ssContext.arc(0, 0, 15, 0, Math.PI * 2, true);
 ssContext.fill();

 // Draw the earth orbit
 ssContext.strokeStyle = "black";
 ssContext.beginPath();
 ssContext.arc(0, 0, 150, 0, Math.PI * 2);
 ssContext.stroke();

 ssContext.restore()
}

The animateSS() function is what does the real work. It clears the entire area and then fills it with
dark blue. The rest of the code relies on transformations, so it first saves the drawing context and then
restores it when finished.

This animateSS() function uses the translate() function to move the origin to the approximate
midpoint of the canvas. The sun and the earth orbits are drawn using the arc() function. Notice the
center point for both is 0, 0 since the context’s origin is now in the middle of the canvas. Also, notice the
start angle is 0 and the end angle is specified as Math.PI * 2. In radians, this is a full circle or 360°.
The arc for the sun is filled in, and the orbit is not.

Chapter 23 ■ Canvas

429

5.	 Call the setInterval() function to call the animateSS() function every 100
milliseconds.

setInterval(animateSS, 100);

6.	 Display the page in the browser. So far, the drawing is not very interesting; it’s a
sun with an orbit drawn around it, as shown in Figure 23-8.

Now you’ll draw the earth and animate it around the orbit. Normally the earth will revolve around the
sun once every 365.24 days, but we’ll speed this up a bit and complete the trip in 60 seconds. To
determine where to put the earth each time the canvas is redrawn, you must calculate the number of
seconds. The amount of rotation per second is calculated as Math.PI *2 / 60. Multiply this value by
the number of seconds to determine the angle where the earth should be.

7.	 Add the following code that is shown in bold. This code uses the rotate() function
to rotate the drawing context the appropriate angle. Since the arc for the earth orbit is
150px, this code then uses the translate() function to move the context 150 pixels
to the right so the earth can be drawn at the adjusted 0,0 coordinate. Notice that this
is combining two separate transforms, one to rotate based the earth position in its
orbit and one to translate the appropriate distance from the sun. The earth is then
drawn using a filled arc with a center point of 0,0, the new origin of the context.

// Draw the earth orbit
ssContext.strokeStyle = "black";
ssContext.beginPath();
ssContext.arc(0, 0, 150, 0, Math.PI * 2);
ssContext.stroke();

// Compute the current time in seconds (use the milliseconds
// to allow for fractional parts).
var now = new Date();
var seconds = ((now.getSeconds() * 1000) + now.getMilliseconds()) / 1000;

Figure 23-8.  The initial solar system drawing

Chapter 23 ■ Canvas

430

//---
// Earth
//---
// Rotate the context once every 60 seconds
var anglePerSecond = ((Math.PI * 2) / 60);
ssContext.rotate(anglePerSecond * seconds);
ssContext.translate(150, 0);

// Draw the earth
ssContext.fillStyle = "green";
ssContext.beginPath();
ssContext.arc(0, 0, 10, 0, Math.PI * 2, true);
ssContext.fill();

ssContext.restore()

8.	 Save your changes and refresh the browser. Now you should see the earth make its
way around the sun, as shown in Figure 23-9.

Figure 23-9.  Adding the earth to the drawing

Now you’ll show the moon revolving around the earth, which will demonstrate the real power of using
transformations. The specific position of the moon is based on two moving objects. While it’s certainly
possible to compute this using some complex formulas (scientists have been doing this for centuries)
with transformations, you don’t have to. The drawing context was rotated the appropriate angle based
on current time (number of seconds). It was then translated by the radius of the orbit, so the earth is
now at the origin of the context. It doesn’t really matter where the earth is; you can simply draw the
moon relative to the current origin.

Chapter 23 ■ Canvas

431

9.	 You will now draw the moon just like you drew the earth. Instead of the origin
being at the sun and rotating the earth around the sun, the origin is on the earth,
and you’ll rotate the moon around the earth. The moon will rotate around the
earth approximately once each month; in other words, it will complete about
12 revolutions for each earth orbit. So, you’ll need to rotate 12 times faster. The
anglePerSecond is now computed as 12 * ((Math.PI * 2) / 60). Add the
following code shown in bold.

// Draw the earth
ssContext.fillStyle = "green";
ssContext.beginPath();
ssContext.arc(0, -0, 10, 0, Math.PI * 2, true);
ssContext.fill();

//---
// Moon
//---
// Rotate the context 12 times for every earth revolution
anglePerSecond = 12 * ((Math.PI * 2) / 60);
ssContext.rotate(anglePerSecond * seconds);
ssContext.translate(0, 35);

// draw the moon
ssContext.fillStyle = "white";
ssContext.beginPath();
ssContext.arc(0, 0, 5, 0, Math.PI * 2, true);
ssContext.fill();

ssContext.restore()

■■ Note T here are about 12.368 lunar months per solar year. You can make your model more accurate by
using this figure instead of 12 in the preceding code.

10.	 Save your changes and refresh the browser. You should now see the moon rotating
around the earth, as shown in Figure 23-10.

Chapter 23 ■ Canvas

432

Applying Scaling
Before you finish this model, there’s one minor correction that you’ll make. The earth’s orbit is not actually
a perfect circle. This attribute is known as eccentricity. (If you’re curious about orbital eccentricity, check
out the article at http://en.wikipedia.org/wiki/Orbital_eccentricity). To model this in your drawing,
you’ll stretch the orbit, making it a little bit wider than it is tall. To do this, you’ll use scaling.

The scale() function performs the third type of transformation. This function takes two parameters
that specify the scaling along the x- and y-axes. A scale factor of 1 is the normal scale. A factor less than 1 will
compress the drawing, and a factor greater than 1 will stretch it. While the imperfection in the earth’s orbit is
extremely slight, you’ll exaggerate it here and use a scale factor of 1.1 for the x-axis.

Add the following code shown in bold just before the earth orbit is drawn:

// Draw the earth orbit
ssContext.scale(1.1, 1);
ssContext.strokeStyle = "black";

Refresh the browser; the page should look like Figure 23-11.

Figure 23-10.  Including the moon

http://en.wikipedia.org/wiki/Orbital_eccentricity

Chapter 23 ■ Canvas

433

You now have a slightly out-of-shape orbit. By simply changing the scale factor, all the various drawing
elements were adjusted proportionally. Also, after restoring the context, the scaling is restored to normal so
subsequent elements are drawn correctly.

■■ Note T he alignment in Figure 23-11 demonstrates a solar eclipse, where the moon passes between the
earth and the sun, casting a shadow over the earth.

Clipping a Canvas
I want to cover one more feature related to paths. Earlier I said that after you call beginPath() and then the
desired drawing functions, you can call either stroke() or fill(). There is one more function you can call
as well: clip(). The clip() function will use the path that you just defined and will not allow anything to be
drawn outside of that path. This doesn’t affect what has already been drawn, but any future shapes will be
restricted to the clipping area defined by this path.

To demonstrate this, you’ll go back to the chess board example and define a clipping path using an arc.
Go to the chess.js script and add the code shown in bold to the drawBoard() function.

var gradient = chessContext.createLinearGradient(0, 600, 600, 0);
gradient.addColorStop(0, "#D50005");
gradient.addColorStop(0.5, "#E27883");
gradient.addColorStop(1, "#FFDDDD");

// Clip the path
chessContext.beginPath();
chessContext.arc(300, 300, 300, 0, (Math.PI * 2), true);
chessContext.clip();

chessContext.fillStyle = gradient;
chessContext.strokeStyle = "red";

// Draw the alternating squares

Figure 23-11.  Adding scaling

Chapter 23 ■ Canvas

434

This defines a circle on the board, and anything outside of that circle will not be visible. Display the
Chess.html file in a browser, which should look like Figure 23-12.

■■ Note  If you define the clipping path after the board is drawn, the entire board will be drawn, but the pieces
will be cropped, so any part that is outside the clipping area will be hidden.

Understanding Compositing
With all the shapes you have drawn so far, the one drawn last overlaid, or hid, whatever preceded it. This
behavior is referred to as compositing. The default behavior, called source-over, is to draw the current shape
on top of whatever may already be on the canvas, as you’ve seen. The compositing terminology uses source
to refer to the shape being drawn and destination as the result of what was previously drawn. In addition to
source-over, there are 10 other behaviors that you can configure using the globalCompositeOperation
property. These are best explained by seeing a sample of each.

In this exercise, you will overlap a red square with a blue circle. You will do this 11 times, each time
using a different value for the globalCompositeOperation property. To make this work correctly, you’ll
create 11 canvas elements, drawing the same elements on each.

Figure 23-12.  The chess board with a clipping path

Chapter 23 ■ Canvas

435

EXERCISE 23-5. EXPLORING COMPOSITING

1.	 Create a new web page, Compositing.html, using the basic markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 23 - Compositing</title>
 <script src="Compositing.js" defer></script>
 <link rel="stylesheet" href="Compositing.css" />
 </head>
 <body>
 </body>
</html>

2.	 In the body element, create 11 new canvas elements using the following markup.

<div>
 <canvas id="composting1" width="120" height="120"></canvas>

source-over
</div>
<div>
 <canvas id="composting2" width="120" height="120"></canvas>

destination-over
</div>
<div>
 <canvas id="composting3" width="120" height="120"></canvas>

source-in
</div>
<div>
 <canvas id="composting4" width="120" height="120"></canvas>

destination-in
</div>
<div>
 <canvas id="composting5" width="120" height="120"></canvas>

source-out
</div>
<div>
 <canvas id="composting6" width="120" height="120"></canvas>

destination-out
</div>
<div>
 <canvas id="composting7" width="120" height="120"></canvas>

source-atop
</div>
<div>
 <canvas id="composting8" width="120" height="120"></canvas>

destination-atop
</div>

Chapter 23 ■ Canvas

436

<div>
 <canvas id="composting9" width="120" height="120"></canvas>

xor
</div>
<div>
 <canvas id="composting10" width="120" height="120"></canvas>

copy
</div>
<div>
 <canvas id="composting11" width="120" height="120"></canvas>

lighter
</div>

3.	 Create a Compositing.css file with the following style rule. This will format the
canvas elements into three columns so you can see all 11 examples on one screen.

body div {
 -webkit-column-count: 3;
 -moz-column-count: 3;
 column-count: 3;
}

4.	 Add the Compositing.js file with the following code.

"use strict";

for (var i = 1; i <= 11; i++) {
 var c = document.getElementById("composting" + i);
 var cContext = c.getContext("2d");

 cContext.fillStyle = "red";
 cContext.fillRect(10, 20, 80, 80);

 switch (i) {
 case 1: cContext.globalCompositeOperation = "source-over"; break;
 case 2: cContext.globalCompositeOperation = "destination-over"; break;
 case 3: cContext.globalCompositeOperation = "source-in"; break;
 case 4: cContext.globalCompositeOperation = "destination-in"; break;
 case 5: cContext.globalCompositeOperation = "source-out"; break;
 case 6: cContext.globalCompositeOperation = "destination-out"; break;
 case 7: cContext.globalCompositeOperation = "source-atop"; break;
 case 8: cContext.globalCompositeOperation = "destination-atop"; break;
 case 9: cContext.globalCompositeOperation = "xor"; break;
 case 10: cContext.globalCompositeOperation = "copy"; break;
 case 11: cContext.globalCompositeOperation = "lighter"; break;
 }

 cContext.fillStyle = "blue";
 cContext.beginPath();
 cContext.arc(65, 75, 40, 0, (Math.PI * 2), true);
 cContext.fill();
}

Chapter 23 ■ Canvas

437

This code uses a for loop to process all 11 canvas elements. It gets the corresponding element and
then obtains its drawing context. It adds a red square and then sets the globalCompositeOperation
property. Finally, it adds a blue circle, which is offset slightly from the position of the square.

5.	 Save your changes and open the Compositing.html file in a browser. The web
page should look like Figure 23-13.

Figure 23-13.  Demonstrating the compositing options

The compositing options are as follows:

•	 source-over: This is the default operation. The source element (the element being
added) is drawn on top of the destination (whatever is already in this location).

•	 destination-over: This is the opposite of source-over, where the source element is
added underneath the existing elements.

•	 source-in: Only the portion of the source object that is also in a destination element
is displayed. Note that none of the destination element is displayed; it is being used
like a clipping shape.

•	 destination-in: Only the portion of the destination object that is also in the source
element is displayed.

•	 source-out: Only the portion of the source element that does not overlap the
destination element is displayed.

Chapter 23 ■ Canvas

438

•	 destination-out: Only the portion of the destination element that does not overlap
the source element is displayed.

•	 source-atop: The source is displayed on top of the destination element, but the
entire shape is clipped by the destination element.

•	 destination-atop: The source is displayed beneath the destination element, but the
entire shape is clipped by the source element.

•	 xor: Only the portions of the source and destination elements that do not overlap are
displayed.

•	 copy: The name is misleading. This draws the source element and clears everything
else.

•	 lighter: This draws both the source and destination elements, and the overlapping
area is displayed in a lighter color. The actual color is determined by adding the color
values of the source and destination elements.

■■ Tip S ome of the names of these compositing options may not be very intuitive. I suggest that you keep
this figure handy to refer to later in case you don’t remember what copy does, for example.

Summary
In this chapter, you used the canvas element to create some graphical web pages. You used rectangles and
paths to draw shapes on the canvas. You also included images on your canvas. One of the really powerful
features of canvas is the ability to apply transformations. The appropriate use of transformations can really
simplify some complex drawing applications.

Canvas is fundamentally different from SVG. In SVG, each shape is a separate DOM node. This provides
two important features that you cannot do with canvas:

•	 Attach event handlers to individual shapes.

•	 Individual shapes can be manipulated. A good example of this is defining the :hover
pseudo-rule, which allows the shape’s attributes to be changed when the mouse is
hovered over it.

In contrast to SVG, canvas is pixel based, which means it is resolution dependent. Notice that all of the
drawing commands used pixel locations or sizes. When you draw a shape on a canvas element, the pixels of
that canvas are adjusted as appropriate and all that is remembered is the resulting pixel content.

Canvas will tend to be more efficient because of its raw pixel manipulation. SVG, on the other hand,
must perform a lot of rendering (and re-rendering). However, larger images with less dense content, such as
maps, will generally perform better in SVG.

In the next chapter, you will use the drag-and-drop capability to implement a game of Checkers.

439© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_24

CHAPTER 24

Drag and Drop

The ability to select an element and drag it to another location is an excellent example of a natural user
experience. I can still remember the early Apple computers where you could delete a file by dragging it onto
a trash can icon. This action, and hundreds more like it, is a key component of user experiences found on
desktop applications. Web applications, however, have lagged far behind in this arena. With the drag-and-
drop (DnD) API in HTML5, you’ll find web applications rapidly catching up.

In this chapter, you’ll build a web application that implements a checkers game, using the DnD API to
move the pieces around the board. I will first explain the concepts and how a DnD application is structured.
Then I’ll dive into the code, demonstrating the various aspects. I’ll finish up with some advanced features
including dragging between browser windows.

Understanding Drag and Drop
Before I get into building an application, I want to explain the basic concepts of the DnD API. This will help
you put this in context as you start to write code. I will first explain the events that are raised; it is important
to know when each is raised and on which object. Then you’ll look at the dataTransfer object, which you’ll
use to pass information from the object being dragged to each of the events and eventually to the drop
action. You can also use this to configure various aspects of the dragging operation. Finally, I’ll show you
how to make objects draggable.

Handling Events
As with its desktop counterpart, DnD is an event-based API. As the user selects an item, moves it, and drops
it, events are raised, allowing the application to control and respond to these actions. To effectively use this
API, you’ll need to know when these events are raised and on which element they are raised. At first, this
may seem confusing, but it’s pretty straightforward once you see this in perspective.

■■ Tip  I explained the fundamentals of using events in Chapter 20.

In a DnD operation, two elements are involved:

•	 The element that is being dragged, sometimes referred to as the source

•	 The element being dropped on, usually called the target

http://dx.doi.org/10.1007/978-1-4842-2463-2_20

Chapter 24 ■ Drag and Drop

440

You can think of this as the source being an arrow that is being dropped onto a target, as illustrated in
Figure 24-1.

During a DnD operation, events are fired on both elements, and I’ve indicated which events are raised
on each. On the source element, the dragstart, drag, and dragend events are comparable to the mousedown,
mousemove, and mouseup events in a Windows application. When you click an element and start to move the
mouse, the dragstart event is raised. This is immediately followed by the drag event, and the drag event
is also repeatedly raised with each move of the mouse. Finally, the dragend event is raised when the mouse
button is released.

The events on the target element are a little more interesting. As the mouse is moved around the page,
when it enters the area defined by an element, the dragenter event is raised on that element. As the mouse
continues to move, the dragover event is raised on the target element. If the mouse moves outside of that
element, the dragleave event is fired on the target element. Presumably, the mouse is now on a different
element, and a dragenter event is raised on that element. However, if the mouse button is released while
over the target element, instead of a dragleave event, the drop event will be raised.

Now let’s walk through a typical scenario and see the order of these events. This is illustrated in
Table 24-1.

Figure 24-1.  The source and target elements

Table 24-1.  Sequence of Events

Element Event Notes

Source dragstart Raised when the mouse is clicked and starts to move

Source drag Raised with each mouse move

Target dragenter Raised when the mouse enters the target element’s space

Target dragover Raised with each mouse move when the pointer is over the target

Source drag Continues to be raised as the mouse moves

Target dragleave Raised when the mouse is moved past the current target

Target dragenter Raised when mouse moves to a new target element

Target drop Raised when the mouse button is released

Source dragend Ends the drag-and-drop operation

Chapter 24 ■ Drag and Drop

441

Now that you understand the events that are used, you can implement a DnD operation by providing
appropriate handlers for each of these events.

Using the Data Transfer Object
There is one more DnD concept that you should understand. Simply dragging an element around a page
is not all that useful; what you’re really after is the data associated with the element. In the example I gave
earlier with dragging a file to the trash can, seeing the icon swallowed up by the trash may be fun to watch,
but the ultimate goal is to delete the file. In this case, you’re passing a file specification to the recycle bin so it
can perform the requested action in the file system.

Storing Data
In the DnD API, the dataTransfer object is used to store the data associated with the operation. The
dataTransfer object is usually initialized in the dragstart event handler. Recall that this event is raised
on the source element. The event handler can access the data from the source element and store it in the
dataTransfer object. This is then provided to all of the other event handlers so they can use it in their
specific processing. Ultimately, this is used by the drop event handler to take the appropriate action on
this data.

The dataTransfer object is provided as a property of the event object that is passed to each of the event
handlers. You use the setData() method to store data in the dataTransfer object. To indicate the type of
data, an appropriate MIME type needs to be supplied as well. For example, to add some simple text, call the
method like this:

e.dataTransfer.setData("text", "Hello, World!");

To access this data in a subsequent event, such as the drop event, use the getData() method like this:

var msg = e.dataTransfer.getData("text");

You’ll need to use the same MIME type when retrieving the data as was used when the data was stored.

■■ Caution N ot all browsers recognize all MIME types. In this example, you might expect text/plain to be
used. This works fine in Firefox and Opera but is not supported in Chrome or IE. However, if you use just text,
this will work on all of these browsers.

Using Drop Effects
Another purpose for the dataTransfer object is to provide feedback to the user as to the action that will
occur when the item is dropped. This is called the drop effect, and there are four possible values.

•	 copy: The selected element will be copied in the target location.

•	 move: The selected element will be moved to the target location.

•	 link: A link to the selected item will be created in the target location.

•	 none: The drop operation is not allowed.

Chapter 24 ■ Drag and Drop

442

When you start dragging an item, the cursor will change to indicate the drop effect that will occur when
the item is dropped on the current target. This is standard UI, and you can try this on most applications. For
example, using any text editor, select some text and then start dragging it. You should see the cursor change
to either a move cursor or a “not allowed” cursor depending on where you are trying to move it. If you hold
down the Ctrl key before moving it, you should see the copy cursor instead of the move cursor.

In the dragstart event handler, you can specify the drop effects that are allowed based on the source
element that is selected. You can specify more than one allowed effect by simply concatenating them
(for example, copyMove) or specify all effects like this:

e.dataTransfer.effectAllowed = "all"; // "copy", "link", "move", "copyLink", "linkMove",
"copyMove"

Then, in the dragover event, you’ll specify the drop effect that will occur if the source element is
dropped there. If that drop effect is one of the allowed effects, the cursor will change to indicate that drop
effect. If that effect is not allowed, however, the cursor will use the “not allowed” icon. If this is not a valid
location to accept the drop, set the drop effect to none like this:

if (validLocation) {
 e.dataTransfer.dropEffect = "move";
}
else {
 e.dataTransfer.dropEffect = "none";
}

Enabling Draggable Elements
So now you know you can disable the drop event on an element by setting the drop effect to none in the
dragover event. But how do you control which elements can be dragged to start with? The answer is simple:
just set the draggable attribute in the markup for the element. For example, to create a div that can be
dragged, enter the markup like this:

<div id="myDiv" draggable="true">
 <p>This div is draggable</p>
</div>

By default, images and links are draggable. Go to google.com and try dragging the Google logo. You
should see a somewhat muted copy of this image being dragged as you move the cursor.

If you drag this image onto a Firefox browser window, Firefox will navigate to this image. You’ve just
seen drag and drop in action. Because using drag and drop is such a natural way of working, browsers try to
accommodate this out of the box as best they can. For example, if you drag some text from a text editor that
appears to be a URL onto a browser, it will try to navigate to that address. If you drag an image file onto a
browser, it will either navigate to it or download it.

Sometimes the default action can cause issues with your custom code. I will show you in Exercise 24-3
how to disable this.

■■ Note  For more information on the DnD API, check out the W3C specification at http://dev.w3.org/
html5/spec/single-page.html#dnd.

http://dev.w3.org/html5/spec/single-page.html#dnd
http://dev.w3.org/html5/spec/single-page.html#dnd

Chapter 24 ■ Drag and Drop

443

Creating the Checkers Application
To demonstrate the DnD API, you’ll create a web application that displays a typical checkers board of
alternating red-and-white squares. You’ll use image files to represent the checkers and display them in their
initial starting position. Then you’ll create event handlers that will allow you to move a piece to a different
square. Finally, you’ll add logic to disable illegal moves.

■■ Tip T hroughout this chapter, you will be adding and modifying code in this project as you add features to
the application. If there is any question about where each change should be made, the final code is listed in
Appendix B, and it is also available with the source download.

Creating the Project
For this chapter, you'll create a single web page called Checkers.

EXERCISE 24-1. CREATING THE WEB PROJECT

1.	 Create an HTML file called Checkers.html and start with the typical markup.

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 24 - Checkers</title>
 <link rel="stylesheet" href="Checkers.css" />
 <script src="Checkers.js" defer></script>
 </head>
 <body>
 </body>
</html>

2.	 Create a new Checkers.js script file; you’ll add code to this as you work through
the exercises.

3.	 Create a new Checkers.css file to hold the style rules.

4.	 The source code download for this chapter includes an Images folder with
five images. Create an Images folder in your web project and copy all five
images there.

Chapter 24 ■ Drag and Drop

444

Drawing the Checkers Board
To draw the board, you’ll use a separate div element for each square. You’ll need 8 rows with 8 div elements
each. You could manually create 64 div elements in the HTML document. However, for efficiency, you'll
create them using JavaScript.

■■ Note  In the previous chapter, you drew a chess board using a canvas element. However, that won’t work
for this application because you need separate DOM elements for each square. You might be tempted to use
SVG to create the board since each rect element is a separate DOM element; however, the SVG elements do
not support the DnD API.

EXERCISE 24-2. DRAWING THE BOARD

1.	 Insert a div element in the body element; this will contain the checker board.

<body>
 <div id="board">
 </div>
</body>

2.	 Add the following implementation to the Checkers.js file.

"use strict";

function createBoard() {
 var board = document.getElementById("board");

 for (var y=0; y < 8; y++) {
 var row = document.createElement("div");
 row.className = "row";
 board.appendChild(row);

 for (var x=0; x < 8; x++) {
 var square = document.createElement("div");
 square.id = x.toFixed() + y.toString();
 if ((x + y) % 2) {
 square.className = "bblack";
 }
 else {
 square.className = "bwhite";
 }

Chapter 24 ■ Drag and Drop

445

 square.setAttribute("draggable", "false");
 row.appendChild(square);
 }
 }
}

createBoard();

This code uses two nested for loops to create the div elements. The first loop will create a div for the
row. Inside the second for loop, the id variable is computed by concatenating the x and y variables. The
class alternates between bwhite and bblack. For even-numbered rows, the even columns are black,
and the odd columns are white. This reverses for odd-numbered rows. The draggable attribute is set to
false because we don’t want squares being dragged, only pieces.

3.	 Now you’ll need to add some style rules to set the size and color of each square.
The rows use display: table-row and the squares use display: table-cell
(see Chapter 13 for details). Add the following style rules to the Checkers.css file.

.row {
 display: table-row;
 margin: 0;
 padding: 0;
}
.bblack, .bwhite {
 display: table-cell;
 border-color: #b93030;
 border-width: 1px;
 border-style: solid;
 width: 48px;
 height: 48px;
 margin: 0;
 padding: 0;
}
.bblack {
 background-color: #b93030;
}
.bwhite {
 background-color: #f7f7f7;
}

4.	 Save your changes and display the Checkers.html file in a browser. The page
should look like Figure 24-2.

http://dx.doi.org/10.1007/978-1-4842-2463-2_13

Chapter 24 ■ Drag and Drop

446

5.	 Now you’ll add the checkers by including an img element inside the appropriate
div elements. Add the code shown in bold to the createBoard() function.

else {
 square.className = "bwhite";
}

// If the square should have a piece in it...
if ((x + y) % 2 != 0 && y != 3 && y != 4) {
 var img = document.createElement("img");
 if (y < 3) {
 img.id = "w" +square.id;
 img.src = "Images/WhitePiece.png";
 }
 else {
 img.id = "b" + square.id;
 img.src = "Images/BlackPiece.png";
 }

 img.className = "piece";
 img.setAttribute("draggable", "true");
 square.appendChild(img);
}

square.setAttribute("draggable", "false");
row.appendChild(square);

To determine the appropriate squares, the first rule is that checkers are only on the black (or red in this
case) squares. So, the code uses the same (x + y) % 2 != 0 logic that was used to compute the
class attribute. Then, checkers are placed only on the top three and bottom three rows, so the code
excludes rows 3 and 4. If the row is less than 3, this will add a white checker and use a black checker
for the other rows. The code computes the id for the img element by prefixing the id of the square with
either w or b. Notice that the draggable attribute is set to true.

Figure 24-2.  The initial board

Chapter 24 ■ Drag and Drop

447

6.	 The class attribute for the img elements was set to piece. Now add the following
rule to the existing Checkers.css file, which will add padding so the checker will
be centered in the square.

.piece {
 margin-left: 4px;
 margin-top: 4px;
}

7.	 Refresh the browser, and you should now see the checkers, as demonstrated in
Figure 24-3.

Adding Drag-and-Drop Support
The img elements were added with the draggable attribute so you should be able to select one and drag it.
However, you’ll notice that none of the squares will accept the drop, and the cursor shows the “not allowed”
icon. If you want to try some default browser functionality, try dragging an image to the address bar; the
browser will navigate to the image’s URL. You will now add code that will enable a drop so you can start
moving the pieces. Then you’ll refine this code to ensure that only legal moves are allowed.

Allowing a Drop
You have draggable elements, and all you need to complete a drag-and-drop operation is an element that
will accept a drop. To do that, you’ll need an event handler for the dragover event that sets the drop effect.
By default the effectAllowed property is set to all so setting the drop effect to move, copy, or link will all be
valid settings.

Figure 24-3.  The initial checker board with checkers

Chapter 24 ■ Drag and Drop

448

EXERCISE 24-3. IMPLEMENTING THE DROP

1.	 Add the allowDrop() function to the Checkers.js script using the following code.
This code uses the querySelectorAll() function that I described in Chapter 16 to
get all of the black squares. It then iterates through the collection that is returned
and registers an event handler for the dragover event.

function allowDrop() {
 // Wire up the target events on all the black squares
 var squares = document.querySelectorAll('.bblack');
 var i = 0;
 while (i < squares.length) {
 var s = squares[i++];
 // Add the event listeners
 s.addEventListener('dragover', dragOver, false);
 }
}

2.	 Implement the dragover event handler using the following code. The dragover()
function calls the preventDefault() function to cancel the browser’s default
action. It then gets the dataTransfer object and sets the dropEffect property
to move.

// Handle the dragover event
function dragOver(e) {
 e.preventDefault();
 e.dataTransfer.dropEffect = "move";
}

3.	 Add the call to the allowDrop() function to the Checkers.js file.

allowDrop();

4.	 Refresh the browser and try dragging a checker. You should now get a move
cursor on all the black squares but a “not allowed” cursor on the white squares.
Try dropping the checker on an empty black square. Since you have not yet
implemented a drop event handler, the browser will execute its default drop action.
Depending on the browser, this may navigate to the image file.

Performing the Custom Drop Action
The default action is not what you’re looking for here, so you’ll need to implement the drop event hander
and provide your own logic. The drop event handler is where all the real work happens. This is where the file
is deleted if it’s a trash can. For this application, the drop action will create a new img element at the target
location and remove the previous image.

http://dx.doi.org/10.1007/978-1-4842-2463-2_16

Chapter 24 ■ Drag and Drop

449

To implement the drop, you’ll also need to provide the dragstart event handler. In the dragstart event
handler, you will store the id of the img element that is being dragged in the dataTransfer object. This will
be used by the drop event handler so it will know which element to remove.

	 1.	 Add the following function to the Checkers.js script, which will be used as the
dragstart event handler. This code gets the id of the source element (remember
the dragstart event is raised on the source element), which is the selected
checker image. This id is stored in the dataTransfer object. This function also
specifies that the allowed effects should be move since you’ll be moving this
image.

// Handle the dragstart event
function dragStart(e) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text", e.target.id);
}

	 2.	 To provide the drop event handler, add the following code to the Checkers.js
script.

// Handle the drop event
function drop(e) {
 e.stopPropagation();
 e.preventDefault();

 // Get the img element that is being dragged
 var droppedID = e.dataTransfer.getData("text");
 var droppedPiece = document.getElementById(droppedID);

 // Create a new img on the target location
 var newPiece = document.createElement("img");
 newPiece.src = droppedPiece.src;
 newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
 newPiece.draggable = true;
 newPiece.classList.add("piece");
 newPiece.addEventListener("dragstart", dragStart, false);
 e.target.appendChild(newPiece);

 // Remove the previous image
 droppedPiece.parentNode.removeChild(droppedPiece);
}

This code first calls the stopPropagation() function to keep this event from bubbling up to the parent
element. It also calls preventDefault() to cancel the browser’s default action. It then gets the id from the
dataTransfer object and uses this to access the img element. This function then creates a new img element
and sets all the necessary properties and adds the necessary event handlers. As I explained, the drop event

Chapter 24 ■ Drag and Drop

450

is raised on the target element, which is the element being dropped on. The id for the new img element is
computed using the id of the new location, which is obtained from the target property of the event object.
The ID prefix (b or w) is copied from the existing img element. Finally, this code removes the existing img
element.

	 3.	 Now you’ll need to wire up the event handlers. To do that, add the following code
shown in bold to the allowDrop() function.

var squares = document.querySelectorAll('.bblack');
var i = 0;
while (i < squares.length) {
 var s = squares[i++];
 // Add the event listeners
 s.addEventListener('dragover', dragOver, false);
 s.addEventListener('drop', drop, false);
}

// Wire up the source events on all of the images
i = 0;
var pieces = document.querySelectorAll('img');
while (i < pieces.length) {
 var p = pieces[i++];
 p.addEventListener('dragstart', dragStart, false);
}

The drop event handler is added to the squares since these are the target elements. The dragstart event
must be added to the img elements. This code gets all of the img elements using the querySelectorAll()
function.

	 4.	 Restart the browser; you should be able to drag a checker to any unoccupied red
square.

Providing Visual Feedback
When dragging an element, it’s a good idea to provide some visual feedback indicating the object that was
selected. By setting the dropEffect property in the dragover event handler, the cursor indicates if a drop is
allowed or not. However, you should do more than that. Both the source and target elements should stand
out visually so the user can easily see that if they release the mouse button, the piece will be moved from
here to there.

To do this, you’ll dynamically add a class attribute to the source and target elements. Then you can
style them with normal CSS style rules. For the source element, you’ll use the dragstart and dragend events
to add and then remove the class attribute. Likewise for target element, you’ll use the dragenter and
dragleave events.

Chapter 24 ■ Drag and Drop

451

EXERCISE 24-4. ADDING VISUAL FEEDBACK

1.	 You already have a dragstart event handler; add the following code in bold to the
dragStart() function. This will add the selected class to the element.

function dragStart(e) {
 e.dataTransfer.effectAllowed = "all";
 e.dataTransfer.setData("text/plain", e.target.id);
 e.target.classList.add("selected");
}

2.	 Add the dragEnd() function using the following code that will simply remove the
selected class when the drag operation has completed.

// Handle the dragend event
function dragEnd(e) {
 e.target.classList.remove("selected");
}

3.	 Add the dragEnter() and dragLeave() functions using the following code. This
adds the drop class to the element and then removes it.

// Handle the dragenter event
function dragEnter(e) {
 e.target.classList.add('drop');
}

// Handle the dragleave event
function dragLeave(e) {
 e.target.classList.remove("drop");
}

4.	 Since you’ve added three new event handlers, you’ll need to add code to register
the event listeners. Add the code shown in bold to the allowDrop() function.

var squares = document.querySelectorAll('.bblack');
var i = 0;
while (i < squares.length){
 var s = squares[i++];
 // Add the event listeners
 s.addEventListener('dragover', dragOver, false);
 s.addEventListener('drop', drop, false);
 s.addEventListener('dragenter', dragEnter, false);
 s.addEventListener('dragleave', dragLeave, false);
}

Chapter 24 ■ Drag and Drop

452

i = 0;
var pieces = document.querySelectorAll('img');
while (i < pieces.length){
 var p = pieces[i++];
 p.addEventListener('dragstart', dragStart, false);
 p.addEventListener('dragend', dragEnd, false);
}

5.	 Now you’ll need to make a couple of changes to the drop event handler. You added
the drop class to the target element in the dragenter event and then removed
it in the dragleave event. However, if they drop the image, the dragleave event
is not raised. You’ll also need to remove the drop class in the drop event as well.
Also, when creating a new img element, you’ll need to wire up the dragend event
handler.

6.	 Add the code shown in bold.

// Create a new img on the target location
var newPiece = document.createElement("img");
newPiece.src = droppedPiece.src;
newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
newPiece.draggable = true;
newPiece.classList.add("piece");
newPiece.addEventListener("dragstart", dragStart, false);
newPiece.addEventListener("dragend", dragEnd, false);
e.target.appendChild(newPiece);

// Remove the previous image
droppedPiece.parentNode.removeChild(droppedPiece);

// Remove the drop effect from the target element
e.target.classList.remove('drop');

7.	 Finally, you’ll need to define the CSS rules for the drop and selected values. I’ve
chosen to set the opacity attribute, but you could just as easily add a border,
change the background color, or implement any number of effects to achieve the
desired purpose. Add the following rules to the Checkers.css file:

.bblack.drop {
 opacity: 0.5;
}
.piece.selected {
 opacity: 0.5;
}

8.	 Refresh the browser and try dragging an image to a red square; you should see the
expected visual feedback, as shown in Figure 24-4.

Chapter 24 ■ Drag and Drop

453

Enforcing the Game Rules
You’ve probably noticed that you can move a piece to any red square. The current implementation doesn’t
enforce any rules to ensure a legal move is being made. You’ll now add that logic. This will be needed by the
following events:

•	 dragover: To set the dropEffect to none for illegal moves

•	 dragenter: To change the style only for valid drop locations

•	 drop: To perform the move only if it’s a legal move

You’ll implement an isValidMove() function that will evaluate the attempted move and return false
if this is an illegal move. Then you’ll call this function in each of these three event handlers.

Verifying a Move
Fortunately, the rules in checkers are fairly simple. Because the dragover event handler is not added to the
white squares, dropping a piece there is already disabled, which further simplifies the work needed. The
following are the rules that you’ll enforce:

•	 You cannot move to a square already occupied.

•	 Pieces can move only forward.

•	 Pieces can move only one space diagonally or two spaces (diagonally) if jumping an
occupied square.

•	 You can jump only a piece of a different color.

•	 A jumped piece must be removed from the board.

■■ Note  You’ll later add logic to handle promoting a piece to a king.

Figure 24-4.  Displaying the drag-and-drop visual feedback

Chapter 24 ■ Drag and Drop

454

EXERCISE 24-5. ENFORCING THE RULES

1.	 Implement the isValidMove() function by adding the following code to the
Checkers.js script.

function isValidMove(source, target, drop) {
 // Get the piece prefix and location
 var startPos = source.id.substr(1, 2);
 var prefix = source.id.substr(0, 1);

 // Get the drop location, strip off the prefix, if any
 var endPos = target.id;
 if (endPos.length > 2) {
 endPos = endPos.substr(1, 2);
 }

 // You can't drop on the existing location
 if (startPos === endPos) {
 return false;
 }

 // You can't drop on occupied square
 if (target.childElementCount != 0) {
 return false;
 }

 // Compute the x and y coordinates
 var xStart = parseInt(startPos.substr(0, 1));
 var yStart = parseInt(startPos.substr(1, 1));
 var xEnd = parseInt(endPos.substr(0, 1));
 var yEnd = parseInt(endPos.substr(1, 1));

 switch (prefix) {
 // For white pieces...
 case "w":
 if (yEnd <= yStart)
 return false; // Can't move backwards
 break;

 // For black pieces...
 case "b":
 if (yEnd >= yStart)
 return false; // Can't move backwards
 break;
 }

 // These rule apply to all pieces
 if (yStart === yEnd || xStart === xEnd)
 return false; // Move must be diagonal

Chapter 24 ■ Drag and Drop

455

 // Can't move more than two spaces
 if (Math.abs(yEnd - yStart) > 2 || Math.abs(xEnd - xStart) > 2)
 return false;

 // If moving two spaces, find the square that is jumped
 if (Math.abs(xEnd - xStart) === 2) {
 var pos = ((xStart + xEnd) / 2).toString() +
 ((yStart + yEnd) / 2).toString();
 var div = document.getElementById(pos);
 if (div.childElementCount === 0)
 return false; // Can't jump an empty square
 var img = div.children[0];
 if (img.id.substr(0, 1).toLowerCase() === prefix.toLowerCase())
 return false; // Can't jump a piece of the same color

 // If this function is called from the drop event
 // Remove the jumped piece
 if (drop) {
 div.removeChild(img);
 }
 }

 return true;
}

The parameters to the isValidMove() function include the source and target elements. Remember,
the source is an img element, and its id attribute is a combination of the color (w or b) and the x and y
coordinates. The target is a div element, and its id attribute is just the x and y coordinates. I’ve added
lots of comments to this code, so it should be fairly self-explanatory, but I will point out a few of the
more interesting points.

•	 To determine whether a square is occupied, you can simply check the
childElementCount property. This will be 0 for empty squares.

•	 For white pieces, moving forward means the y coordinate is increasing, but for black
pieces the opposite is true. To handle this, the function uses a switch statement to
apply a different rule for each.

•	 If the piece is moving two spaces, then the function needs to check the square that is
being jumped. Its location is determined by averaging the starting and ending positions.

•	 If the square is occupied, then the code checks to see whether the piece is the same
color. The code first gets the child element, which will be the img on that square. The
color is determined by the prefix of the id attribute. The code converts the prefix to
lowercase before comparing. I’ll explain that later.

•	 If a piece of a different color is being jumped, then you’ll remove it since the code
already has the img element. However, you want to do this only if this method is called
from the drop event, which is specified by the third parameter to this function. The
other two events (dragOver and dragEnter) use this method to validate the move but
don’t actually make the move, and they will pass false for the third parameter.

Chapter 24 ■ Drag and Drop

456

2.	 Now you’ll need to change dragover event to validate the move before setting the
dropEffect. Replace the existing implementation of the dragOver() function with
the following code. The new code gets the id of the img that is being dragged from
the dataTransfer object and then uses the id to get the element. This is passed
in to the isValidMove() function along with the target element, which is obtained
from the event object (e.target). The dropEffect is set to move only if this is a
valid move.

function dragOver(e) {
 e.preventDefault();

 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text");
 var dragPiece = document.getElementById(dragID);

 // Work around - if we can't get the dataTransfer, don't
 // disable the move yet, the drop event will catch this
 if (dragPiece) {
 if (e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.dataTransfer.dropEffect = "move";
 }
 else {
 e.dataTransfer.dropEffect = "none";
 }
 }
}

■■ Caution A s of this writing, Chrome, IE, and Opera won’t allow you to access the dataTransfer object
in the dragEnter and dragOver events. This does work, however, in the drop event. The work around in the
dragOver event is to allow the move if the source object is not available. The game will still work because the
drop event will ignore any invalid moves, but the user experience is not ideal. The dragEnter event is used to
apply the drop class for styling purposes, and this will not work as well. For the rest of this chapter, I will be
using Firefox to test the application.

3.	 Replace the implementation of the dragEnter() function with the following code.
This code is essentially the same as the dragOver() function, except it adds the
drop class to the element instead of setting the dropEffect.

function dragEnter(e) {
 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text");
 var dragPiece = document.getElementById(dragID);

Chapter 24 ■ Drag and Drop

457

 if (dragPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.target.classList.add('drop');
 }
}

4.	 For the drop() function, wrap the code that performs the drop inside an if
statement that validates the move by adding the code shown in bold. This time, the
code is passing true for the third parameter to the isValidMove() function.

if (droppedPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(droppedPiece, e.target, true)) {
 // Create a new img on the target location
 var newPiece = document.createElement("img");
 newPiece.src = droppedPiece.src;
 newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
 newPiece.draggable = true;
 newPiece.classList.add("piece");
 newPiece.addEventListener("dragstart", dragStart, false);
 newPiece.addEventListener("dragend", dragEnd, false);
 e.target.appendChild(newPiece);

 // Remove the previous image
 droppedPiece.parentNode.removeChild(droppedPiece);

 // Remove the drop effect from the target element
 e.target.classList.remove('drop');
}

5.	 With these changes now in place, try running the application. You should be allowed
to make only legal moves. If you jump a checker, it should be removed from the
board.

Promoting to King
In checkers, when a piece moves all the way to the last row, it is promoted to a king. A king works just like a
regular piece except that it can move backward. You’ll now add code to check whether a piece needs to be
promoted. To promote a piece, you’ll change the image that is displayed to indicate it is a king. You’ll also
change the prefix, making it a capital B or W. Then you can allow different rules for kings.

You’ll put all this logic in a single function called kingMe(), and you’ll call this every time a drop occurs.
If the piece is already a king or if it’s not on the last row, the function just returns. Otherwise, it performs the
promotion.

Chapter 24 ■ Drag and Drop

458

EXERCISE 24-6. ADDING PROMOTION

1.	 Add the kingMe() function to the Checkers.js script.

function kingMe(piece) {

 // If we're already a king, just return
 if (piece.id.substr(0, 1) === "W" || piece.id.substr(0, 1) === "B")
 return;

 var newPiece;

 // If this is a white piece on the 7th row
 if (piece.id.substr(0, 1) === "w" && piece.id.substr(2, 1) === "7") {
 newPiece = document.createElement("img");
 newPiece.src = "Images/WhiteKing.png";
 newPiece.id = "W" + piece.id.substr(1, 2);
 }

 // If this is a black piece on the 0th row
 if (piece.id.substr(0, 1) === "b" && piece.id.substr(2, 1) === "0") {
 var newPiece = document.createElement("img");
 newPiece.src = "Images/BlackKing.png";
 newPiece.id = "B" + piece.id.substr(1, 2);
 }

 // If a new piece was created, set its properties and events
 if (newPiece) {
 newPiece.draggable = true;
 newPiece.classList.add("piece");

 newPiece.addEventListener('dragstart', dragStart, false);
 newPiece.addEventListener('dragend', dragEnd, false);

 var parent = piece.parentNode;
 parent.removeChild(piece);
 parent.appendChild(newPiece);
 }
}

The kingMe() function simply returns if the id prefix is either B or W, which indicates this is already
a king. It then checks to see whether this is a white piece on row 7 or a black piece on row 0. If so,
a new img element is created with the appropriate src and id properties. If a new img was created,
the function then sets all of the properties and events, removes the existing img element from the div
element, and adds the new one.

Chapter 24 ■ Drag and Drop

459

2.	 Modify the drop() function to call the kingMe() function after a drop has been
performed by adding the line shown in bold.

// Remove the previous image
droppedPiece.parentNode.removeChild(droppedPiece);

// Remove the drop effect from the target element
e.target.classList.remove('drop');

// See if the piece needs to be promoted
kingMe(newPiece);

■■ Tip  When you implemented the isValidMove() function, the rule that prevents the piece from moving
backward applies only to b and w prefixes. Since a king has a capital B or W, this rule doesn’t apply so the king
can move backward. Also, when jumping a piece, the comparison was done after first converting to lowercase.
This will allow a white piece to jump either a black piece or a black king.

3.	 Try moving the pieces around until you move one to the last row. You should see the
image change to indicate this is now a king, as shown in Figure 24-5.

4.	 Once you have a king, try moving it backward and also try jumping pieces with it.

Figure 24-5.  The check board with a king

Chapter 24 ■ Drag and Drop

460

Moving in Turn
You’ve probably noticed that the application does not enforce each player alternating turns. You’ll
implement this logic now. After each move is made (drop event processed), you’ll set the draggable
attribute to false for all the pieces of the color that just moved. That will keep you from moving a piece of
the same color. However, there is one exception to this rule that will require a little extra work. If you jump a
piece, then that same piece can make another move as long as it is another jump.

You’ll start by implementing the general rule first. This will be performed by creating a new function
called enableNextPlayer(). This function will use the querySelectorAll() function to get all of the img
elements. The draggable attribute will be set to either true or false depending on the id prefix. Then you’ll
later add special logic that will handle the jump condition.

EXERCISE 24-7. TAKING TURNS

1.	 Add the enableNextPlayer() function to the Checkers.js script.

function enableNextPlayer(piece) {

 // Get all of the pieces
 var pieces = document.querySelectorAll('img');

 var i = 0;
 while (i < pieces.length) {
 var p = pieces[i++];

 // If this is the same color that just moved, disable dragging
 if (p.id.substr(0, 1).toUpperCase() ===
 piece.id.substr(0, 1).toUpperCase()) {
 p.draggable = false;
 }
 // Otherwise, enable dragging
 else {
 p.draggable = true;
 }
 }
}

2.	 At the end of the isValidMove() function, add the code shown in bold. This will
call the enableNextPlay() function when a drop is being performed.

 // Set the draggable attribute so the next player can take a turn
 if (drop) {
 enableNextPlayer(source);
 }
 return true;
}

Chapter 24 ■ Drag and Drop

461

■■ Note N ormally it might make more sense to put this call in the drop() function. However, only the
isValidMove() function knows that a jump occurred, and you’ll need to add the override logic here. This needs
to be after the general rule has been applied.

3.	 The drop() function creates a new img element and currently sets the draggable
attribute to true. Now you’ll need to make this conditional based on the
draggable attribute of the existing piece. Replace the existing line with the
following code shown in bold to the drop() function:

// Create a new img on the target location
var newPiece = document.createElement("img");
newPiece.src = droppedPiece.src;
newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;

newPiece.draggable = droppedPiece.draggable;

newPiece.classList.add("piece");
newPiece.addEventListener("dragstart", dragStart, false);
newPiece.addEventListener("dragend", dragEnd, false);
e.target.appendChild(newPiece);

4.	 Now you’ll need to change the dragStart event handler to ignore this event if the
element is not draggable. Add the following code shown in bold to the dragStart()
function:

function dragStart(e) {
 if (e.target.draggable) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text/plain", e.target.id);

 e.target.classList.add("selected");
 }
}

Now you’ll implement the special jump logic. If the piece just made a jump, you’ll set the draggable
attribute back to true so it will be allowed to make another move. However, you’ll also add the jumpOnly
class to the classList so you can enforce that the only move that it is allowed to make is another jump.

5.	 Add the code shown in bold to the isValidMove() function. This will look for
jumpOnly in the classList and set the jumpOnly flag accordingly.

var jumpOnly = false;
if (source.classList.contains("jumpOnly")) {
 jumpOnly = true;
}

// Compute the x and y coordinates
var xStart = parseInt(startPos.substr(0, 1));
var yStart = parseInt(startPos.substr(1, 1));

Chapter 24 ■ Drag and Drop

462

6.	 Now add the code shown in bold to the isValidMove() function. The first part adds
the rule to make sure a jump is being made if jumpOnly is true. The second part
sets the jumped flag to indicate that this move is making a jump.

// These rule apply to all pieces
if (yStart === yEnd || xStart === xEnd)
 return false; // Move must be diagonal

// Can't move more than two spaces
if (Math.abs(yEnd - yStart) > 2 || Math.abs(xEnd - xStart) > 2)
 return false;

// Only jumps are allowed
if (Math.abs(xEnd - xStart) === 1 && jumpOnly)
 return false;

var jumped = false;

// If moving two spaces, find the square that is jumped
if (Math.abs(xEnd - xStart) === 2) {
 var pos = ((xStart + xEnd) / 2).toString() +
 ((yStart + yEnd) / 2).toString();
 var div = document.getElementById(pos);
 if (div.childElementCount === 0)
 return false; // Can't jump an empty square
 var img = div.children[0];
 if (img.id.substr(0, 1).toLowerCase() === prefix.toLowerCase())
 return false; // Can't jump a piece of the same color

 // If this function is called from the drop event
 // Remove the jumped piece
 if (drop) {
 div.removeChild(img);
 jumped = true;
 }
}

7.	 At the end of the isValidMove() function, add the code shown in bold.
This will override the draggable attribute if a jump was made and add jumpOnly
to the classList.

if (drop) {
 enableNextPlayer(source);

 // If we jumped a piece, we're allowed to go again
 if (jumped) {
 source.draggable = true;
 source.classList.add("jumpOnly"); // But only for another jump
 }
}

Chapter 24 ■ Drag and Drop

463

■■ Note T he enableNextPlayer() function disabled all of the current player’s pieces and enabled the other
player’s. Then this code enabled the piece that just jumped. So, both are enabled; this piece could jump again or
the next player could make a move. Both are valid, so we need to allow them both.

8.	 Modify the drop() function to also add jumpOnly to the classList when creating
the new img element by adding the code shown in bold.

// Create a new img on the target location
var newPiece = document.createElement("img");
newPiece.src = droppedPiece.src;
newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;

newPiece.draggable = droppedPiece.draggable;

if (droppedPiece.draggable){
 newPiece.classList.add("jumpOnly");
}

newPiece.classList.add("piece");

9.	 Now you’ll need to clear jumpOnly from the classList when the next move is
completed. You’ll do that in the enableNextPlayer() function by adding the code
shown in bold.

function enableNextPlayer(piece) {

 // Get all of the pieces
 var pieces = document.querySelectorAll('img');

 var i = 0;
 while (i < pieces.length) {
 var p = pieces[i++];

 // If this is the same color that just moved, disable dragging
 if (p.id.substr(0, 1).toUpperCase() ===
 piece.id.substr(0, 1).toUpperCase()) {
 p.draggable = false;
 }
 // Otherwise, enable dragging
 else {
 p.draggable = true;
 }

 p.classList.remove("jumpOnly");
 }
}

10.	 Now test the application and make sure that each player must alternate turns. Also,
verify that you can make successive jumps.

Chapter 24 ■ Drag and Drop

464

■■ Note T he draggable attribute is set to true, initially, for both the white and black pieces so either color
can make the first move. If you wanted to specify which color went first, you would change the createBoard()
function that creates the initial img elements to set the draggable attribute to false for one color. I did some
research to see what color was supposed to go first but found mixed results. Some places indicated black goes
first and others said that the white goes first. Some, however, said it’s just a game, what difference does it
make? I decided to implement this logic, so either can go first.

Using Advanced Features
Before I finish this chapter, there are a couple of things I will discuss briefly. First, I’ll show you how to use a
custom drag image. Then, I’ll demonstrate dragging elements across browser windows.

Changing the Drag Image
When you drag an element, a copy of the element follows the cursor as you move it around the page. This is
referred to as the drag image. However, you can specify a different image to be used. This is done with the
setDragImage() method of the dataTransfer object.

There is a smiley face image in the Images folder. Add the code shown in bold to the dragStart()
function to use this as the drag image.

function dragStart(e) {
 if (e.target.draggable) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text", e.target.id);

 e.target.classList.add("selected");

 // Use a custom drag image
 var dragIcon = document.createElement("img");
 dragIcon.src = "Images/smiley.jpg";
 e.dataTransfer.setDragImage(dragIcon, 0, 0);
 }
}

Try the application, and as you move pieces, you should see the smiley face shown in Figure 24-6.

Chapter 24 ■ Drag and Drop

465

Dragging Between Windows
As I mentioned at the beginning of the chapter, there are separate events raised on the source element
and on the target element. It is possible that these elements can be in different browser windows or even
different applications. The process, however, works the same way.

To demonstrate this, open a second instance of the browser and navigate to the checkers application.
You should see two browser windows each showing the checker board. Select a checker on one window
and drag it to a square in the second window. You’ll notice that you can drop it only on squares relative to
its original location in the first window. When you drop it, the piece is moved to the drop location but is
removed from the second window, not the image you initially selected.

The key to cross-window dragging is the dataTransfer object. This is provided in the dragenter,
dragover, and dragleave events on the target object. It doesn’t really matter where the drag initiated; this
information is placed in the dataTransfer object and provided to any window that supports these events.
When the drop event received this information, it removed the img element at the location specified in the
dataTransfer object. Because the drop event was processed on the second window, the img element was
removed from the second window.

The drag and dragend events are raised on the source element. Whatever logic was written on these
event handlers is executed in the first window. Notice that the selected img element was muted during the
drag but went back to normal when the drop was executed. This is because the dragend event fired on the
source element clears the selected class.

When you control both sides of the operation as you do here, you can decide what data needs to be
transferred and implement both sets of event handlers. In many cases, you can control only one side of the
process. For example, a user could drag a file from Windows Explorer onto your web page. The dragstart,
drag, and dragend events (or their equivalents) are raised in the Windows Explorer application, which you
can’t control. However, the dragenter, dragover, dragleave, and drop events are all fired on your web
page. You can decide whether you will accept the drop based on the element it is being dropped on and the
contents of the dataTransfer object. You also control the process that occurs when the drop is completed.

Figure 24-6.  Changing the drag image

Chapter 24 ■ Drag and Drop

466

Summary
In this chapter, I explained all of the events that are raised as part of the DnD API and which elements they
are raised on. The source element receives the following events:

•	 dragstart: When the element is selected and the mouse is moved

•	 drag: Called continuously while the mouse is moved

•	 dragend: When the mouse button is released

The following events are raised on the target element:

•	 dragenter: When the mouse first enters the target’s space

•	 dragover: Continuously while the mouse is moved and over the target

•	 dragleave: When the mouse leaves the target’s space

•	 drop: When the mouse button is released

The dataTransfer object is used to pass information about the source element. This is provided in all of
the event handlers. It is used especially by the drop event handler to perform the necessary processing. This
also enables dragging across applications.

The dragover event handler sets the dropEffect, which controls the cursor that is used. Setting this to
None will cause the “not allowed” cursor to be used, signaling that the source cannot be dropped there.

To provide some visual feedback, the dragstart and dragend event handlers should modify the source
element to indicate that it is selected and being dragged. Likewise, the dragenter and dragleave event
handers should highlight the target element. This will provide an easy way for the user to see where the
selected element will be dropped.

The sample application that you created implemented some complex rules for determining which
elements could be dragged and where they could be dropped.

In the next chapter, I'll explain how to use the Indexed DB technology, which provides client-side
database-like functionality.

467© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_25

CHAPTER 25

Indexed DB

As browser capabilities have evolved, providing more and more functionality on the client device, the need
to store and manipulate data locally has increased as well. To address this need, the Indexed DB technology
has emerged. This is an API for storing and retrieving objects using keys and indices.

This chapter will demonstrate how to use Indexed DB to store and use data on the client. If you are used
to working with SQL databases, I will warn you, this is not a SQL database. It is quite powerful and useful
once you get the hang of it, but you’ll need to adjust your perspective and set aside your SQL experience as
you work through this chapter.

To explore the capabilities of Indexed DB, you will rewrite the chess board application that you created
using canvas in Chapter 23. As I explain each of the exercises, I will not go into much detail about canvas;
however, refer to Chapter 23 if you need more information. Your new version of the application will create
object stores to define the positions of each piece and then manipulate this data as the pieces are moved.

Introducing Indexed DB
Before I get started with the detailed demonstration, there are a few key points that I think will help you
better understand how Indexed DB works. Like other databases, the data is placed in a persistent data store.
In this case, it’s on the local hard drive. The data is permanent.

I will explain each of these entities in more detail, but I will first introduce them and their relationships.
A database consists of object stores. Each object store is a collection of objects, with each object identified
by a unique key. An object store can have one or more indices. Each index provides an alternate way of
identifying the key to an object store. This is illustrated in Figure 25-1.

http://dx.doi.org/10.1007/978-1-4842-2463-2_23
http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

468

Object stores are accessed through a transaction object. When creating the transaction, you must define
its scope. This indicates which object stores it will reference and whether it will be reading or writing data to
the database.

Using Object Stores
The primary storage unit is called an object store. This is aptly named because they are simply a collection
of objects that are referenced by a key. You can think of this as a set of name-value pairs, the value being an
object with a set of properties. You can use an inline key, where one of the object properties serves as the
key. For example, if the object has an id property with unique values, you can use that as the inline key. If
you use out-of-line keys, then you will specify a key when adding an object to the store. Alternatively, you
can use a key generator, where the object store will assign incremental key values for you. The following code
demonstrates these alternatives:

// Using an inline key
var typeStore = db.createObjectStore("pieceType", { keyPath: "id" });
typeStore.add(pieceType);

// Using an out-of-line key
var sampleStore = db.createObjectStore("sample", { });
sampleStore.add(sample, 5);

Figure 25-1.  The database entities

Chapter 25 ■ Indexed DB

469

// Using a key generator
var pieceStore = db.createObjectStore("piece", { autoIncrement: true });
pieceStore.add(piece);

As its name implies, you can also create an index on an object store; in fact, you can create as many
indices as you want. An index enables you to find a specific object or collection of objects quickly. An index
is a collection of name-value pairs, where the value is a key into the object store. For example, if you have a
customer object store and want to search by last name, you can create an index on the lastName property
of the object. The database will automatically create an entry in the index for each object in the store. This
entry will contain the last name and the corresponding key to that object. The following code demonstrates
how to use an index:

// Create an index on the lastName property
customerStore.createIndex("lastName", "id", { unique: true });

// Get the index
var index = customerStore.index("lastName");
index.get(lastName).onsuccess = function(); // get the object
index.getKey(lastName).onsuccess = function(); // get the key

The second parameter to the createIndex() function, id in this case, specifies the key path. This tells
the database engine how to extract the key from an object. For inline keys, this is the name of the property
used to define the unique key.

Indexed DB does not support relationships between object stores. You can’t enforce a foreign key
relationship, for example. You can certainly use foreign keys, where a property in one object store is a key
into another, as I will demonstrate later. However, the database does not enforce this constraint. Also, you
can’t perform joins between object stores.

Defining the Database
When you open a database, you need to implement three event handlers.

•	 onsuccess: The database is opened; do something with it.

•	 onerror: An error occurred, likely an access issue.

•	 onupgradeneeded: The database needs to be created or upgraded.

When opening a database, if it doesn’t exist, it will be created automatically; however, the
onupgradeneeded event will be raised. You must implement an event handler for this event, which will create
object stores and populate them with any default data. This is the only place where you are allowed to alter
the database structure. The important thing to remember is that the onupgradeneeded event is fired before
the onsuccess event.

The open() call also specifies a version number. If this is not the current version, the onupgradeneeded
event is raised in this scenario also. Your event handler needs to handle altering the structure to match the
version requested by the caller. You can query the database’s current version like this:

var request = dbEng.open("Sample", 2); // get version 2

request.onupgradeneeded = function (event) {
 alert("Configuring database - current version is " + e.oldVersion +
 ", requested version is " + e.newVersion);
}

Chapter 25 ■ Indexed DB

470

Based on the current version, the code may need to perform different actions.

Processing Asynchronously
A key aspect of Indexed DB that may take some getting used to is its asynchronous processing; almost all
database operations are done asynchronously. The general pattern is to call a method to perform a database
operation such as opening a database or retrieving a set of records (objects). This will return a request
object. You must then implement the onsuccess and onerror event handlers for that request object. If the
request was successful, the onsuccess handler is called, and the result of the method call is passed through
the event object.

For complex processing that requires several database calls, you’ll need to be careful to nest the event
handlers and consider when they are executed. For example, if you needed to make three database requests,
your code might look like this:

var request = dbCall1()
request.onsuccess = function (e1) {
 f1(e1.target.result);

 dbCall2().onsuccess = function (e2) {
 f3(e2.target.result, e1.target.result);

 dbCall3().onsuccess = function (e3) {
 f5(e3.target.result, e2.target.result, e1.target.result);
 }

 f4(e2.target.result);
 }

 f2(e1.target.result);
}

request.onerror = function(e) {
 alert("The call failed");
}

This code calls dbCall1(), dbCall2(), and dbCall3(), in that order, and they will be processed
sequentially. In other words, dbCall2() will not start until dbCall1() has completed, and only if it was
successful. Each call provides an onsuccess event handler, which makes the next call. If the first call fails, an
alert is raised. What may be unexpected is the order that the non-database calls are executed. The database
calls return immediately, and the event handler is called later, when the operation has completed. As soon
as the call to dbCall2() is made, the function returns, and f2() will be executed. Later, the dbCall2()
completes, its event handler is called, and f3() is executed.

■■ Tip  The onerror event is bubbled up the hierarchy. For example, an error that occurs on the request
object, if not handled, will be raised on the transaction object. If not handled there, it will be raised on the
database object. In many cases, you can use just a single event handler at the database level and handle all the
errors there.

Chapter 25 ■ Indexed DB

471

Because of the nesting approach, the event handler has access to the event object from previous calls.
For this reason, you should use unique names for the event parameter. This will avoid ambiguity. Also,
notice the use of closure to access these event objects. As I mentioned, f2() is called before f3(), so the
event handler for dbCall1(), which defines the e1 parameter, has completed and is no longer in scope by
the time the event handler for dbCall2() is executed. The closure feature of JavaScript allows the subsequent
event handlers to access this object. This is important because if you need to access all three object stores to
complete an operation, you will need to wait until all three have completed and then access all three results.

■■ Tip  To avoid closure, you could extract the properties that you need from the first two database calls and
store them in local variables (declared prior to the dbCall1() call). Then in the f5() call, you can use these
variables instead of the e1 and e2 event objects. This is just a matter of preference because either approach will
work fine.

Using Transactions
All data access, both reading and writing, is done within a transaction, so you must first create a transaction
object. When the transaction is created, you specify its scope, which is defined by the object stores it will
access. You also specify the mode (read-only or read-write). You can then obtain an object store from the
transaction and get or put data from/into the store like this:

var xact = db.transaction(["piece", "pieceType"], "readwrite");
var pieceStore = xact.objectStore("piece");

For read-write transactions, the data changes are not committed until the transaction completes.
The interesting question to ask is, “when does a transaction complete?” A transaction is complete when
there are no more outstanding requests for it. Remember, everything is request based. You make a request
and then implement an event handler to do something when it finishes. If that event handler issues
another request on that transaction, then the transaction stays alive. This is another important reason for
nesting the event handlers. If you end an event handler without issuing another request, the transaction
will complete, and all changes are committed. If you try to use the transaction after that, you will get a
TRANSACTION_INACTIVE_ERR error.

Another thing to remember is that read-write transactions cannot have overlapping scopes. If you
create a read-write transaction, you can create a second one as long as they don’t both include some of
the same object stores. If they have overlapping scopes, you must wait for the first transaction to complete
before creating the second one. Read-only transactions, however, can have overlapping scopes.

Creating the Application
You’ll start by creating a chess board using canvas and configuring images for the chess pieces like you did in
Chapter 23.

Creating the Web Project
You’ll start by creating an HTML document and a script file. You'll also need the images files for the chess
pieces.

http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

472

EXERCISE 25-1. CREATING THE WEB PROJECT

1.	 Create a new web page called Chess.html, using the basic markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 25 - Chess</title>
 <script src="Data.js" defer></script>
 <script src="Chess.js" defer></script>
 </head>
 <body>
 </body>
</html>

2.	 Then create a Chess.js script file using the following code.

"use strict";

3.	 Add a div element in the empty body element of the Chess.html file, using the
following markup:

<div>
 <canvas id="board" width ="600" height ="600">
 Not supported
 </canvas>
</div>

4.	 Add an Images folder in the web project.

5.	 The images for the chess pieces are included in the source code download file.
These are the same images used in Chapter 23. You’ll find these in the Chapter23\
Images folder. Drag all 12 files to the Images folder to your web project.

Drawing the Canvas
Now you’ll design the canvas element using JavaScript. The initial design will just draw an empty board,
and you’ll add the chess pieces later. Refer to Chapter 23 for more explanation about working with a canvas
element. Add the code from Listing 25-1 to the Chess.js script.

Listing 25-1.  Designing the Initial Canvas

// Get the canvas context
var chessCanvas = document.getElementById("board");
var chessContext = chessCanvas.getContext("2d");

http://dx.doi.org/10.1007/978-1-4842-2463-2_23
http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

473

drawBoard();

function drawBoard() {
 chessContext.clearRect(0, 0, 600, 600);

 var gradient = chessContext.createLinearGradient(0, 600, 600, 0);
 gradient.addColorStop(0, "#D50005");
 gradient.addColorStop(0.5, "#E27883");
 gradient.addColorStop(1, "#FFDDDD");

 chessContext.fillStyle = gradient;
 chessContext.strokeStyle = "red";

 // Draw the alternating squares
 for (var x = 0; x < 8; x++) {
 for (var y = 0; y < 8; y++) {
 if ((x + y) % 2) {
 chessContext.fillRect(75 * x, 75 * y, 75, 75);
 }
 }
 }

 // Add a border around the entire board
 chessContext.strokeRect(0, 0, 600, 600);
}

Display the Chess.html file in a browser, which should look like Figure 25-2.

Figure 25-2.  The initial (blank) chess board

Chapter 25 ■ Indexed DB

474

Configuring the Pieces
You will be using image files to represent the chess pieces. Before adding them to the canvas, you’ll need to
create an Image object for each one and specify its src attribute. You’ll also put these into an array to make it
easier to programmatically select the desired image.

In addition, you'll need to define the data that will be loaded into the object stores. The pieceTypes[]
array defines the properties needed to display each piece such as height and width. It also specifies the
corresponding index in the images[] array for both the black and white images. The pieces[] array contains
the same details used in the previous chapter such as row and column and defines the starting position for
each of the 32 pieces.

Add the code shown in Listing 25-2 to a new Data.js script file. This file is also provided in the source
code download so you can simply copy it to your web project instead of rekeying this data.

Listing 25-2.  Defining the static data

// Define the chess piece images
var imgPawn = new Image();
var imgRook = new Image();
var imgKnight = new Image();
var imgBishop = new Image();
var imgQueen = new Image();
var imgKing = new Image();
var imgPawnW = new Image();
var imgRookW = new Image();
var imgKnightW = new Image();
var imgBishopW = new Image();
var imgQueenW = new Image();
var imgKingW = new Image();

// Specify the source for each image
imgPawn.src = "images/pawn.png";
imgRook.src = "images/rook.png";
imgKnight.src = "images/knight.png";
imgBishop.src = "images/bishop.png";
imgQueen.src = "images/queen.png";
imgKing.src = "images/king.png";
imgPawnW.src = "images/wpawn.png";
imgRookW.src = "images/wrook.png";
imgKnightW.src = "images/wknight.png";
imgBishopW.src = "images/wbishop.png";
imgQueenW.src = "images/wqueen.png";
imgKingW.src = "images/wking.png";

// Define an array of Image objects
var images = [
 imgPawn ,
 imgRook ,
 imgKnight ,
 imgBishop ,
 imgQueen ,
 imgKing ,
 imgPawnW ,

Chapter 25 ■ Indexed DB

475

 imgRookW ,
 imgKnightW ,
 imgBishopW ,
 imgQueenW ,
 imgKingW
];

var pieceTypes = [
 { name: "pawn", height: "50", width: "28", blackImage: 0, whiteImage: 6 },
 { name: "rook", height: "60", width: "36", blackImage: 1, whiteImage: 7 },
 { name: "knight", height: "60", width: "36", blackImage: 2, whiteImage: 8 },
 { name: "bishop", height: "65", width: "30", blackImage: 3, whiteImage: 9 },
 { name: "queen", height: "70", width: "32", blackImage: 4, whiteImage: 10 },
 { name: "king", height: "70", width: "28", blackImage: 5, whiteImage: 11 }
];

var pieces = [
 { type: "pawn", color: "white", row: 6, column: 0, pos: "a2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 1, pos: "b2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 2, pos: "c2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 3, pos: "d2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 4, pos: "e2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 5, pos: "f2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 6, pos: "g2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 7, pos: "h2", killed: false },
 { type: "rook", color: "white", row: 7, column: 0, pos: "a1", killed: false },
 { type: "rook", color: "white", row: 7, column: 7, pos: "h1", killed: false },
 { type: "knight", color: "white", row: 7, column: 1, pos: "b12", killed: false },
 { type: "knight", color: "white", row: 7, column: 6, pos: "g1", killed: false },
 { type: "bishop", color: "white", row: 7, column: 2, pos: "c1", killed: false },
 { type: "bishop", color: "white", row: 7, column: 5, pos: "f1", killed: false },
 { type: "queen", color: "white", row: 7, column: 3, pos: "d1", killed: false },
 { type: "king", color: "white", row: 7, column: 4, pos: "e1", killed: false },
 { type: "pawn", color: "black", row: 1, column: 0, pos: "a7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 1, pos: "b7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 2, pos: "c7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 3, pos: "d7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 4, pos: "e7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 5, pos: "f7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 6, pos: "g7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 7, pos: "h7", killed: false },
 { type: "rook", color: "black", row: 0, column: 0, pos: "a8", killed: false },
 { type: "rook", color: "black", row: 0, column: 7, pos: "h8", killed: false },
 { type: "knight", color: "black", row: 0, column: 1, pos: "b8", killed: false },
 { type: "knight", color: "black", row: 0, column: 6, pos: "g8", killed: false },
 { type: "bishop", color: "black", row: 0, column: 2, pos: "c8", killed: false },
 { type: "bishop", color: "black", row: 0, column: 5, pos: "f8", killed: false },
 { type: "queen", color: "black", row: 0, column: 3, pos: "d8", killed: false },
 { type: "king", color: "black", row: 0, column: 4, pos: "e8", killed: false }
];

Chapter 25 ■ Indexed DB

476

Creating the Database
Now you’re ready to create and use a local Indexed DB database to configure and display the chess pieces.
Initially, the data will be loaded from static data, and you will simply display the starting position. Later you
will animate the pieces by updating their location in the object store.

You will need to populate the database with some data. For this application, you will just use the
data declared in the Data.js script and copy it to the object store. For other applications, this could be
downloaded from a server or entered from user input.

Opening the Database
Add the code shown in Listing 25-3 to the Chess.js script, just after the call to drawBoard() (and before the
implementation of the drawBoard() function).

Listing 25-3.  Opening the Database

var dbEng = window.indexedDB ||
 window.webkitIndexedDB || // Chrome
 window.mozIndexedDB || // Firefox
 window.msIndexedDB; // IE

var db; // This is a handle to the database

if (!dbEng)
 alert("IndexedDB is not supported on this browser");
else {
 var request = dbEng.open("Chess", 1);

 request.onsuccess = function (event) {
 db = event.target.result;
 }

 request.onerror = function (event) {
 alert("Please allow the browser to open the database");
 }

 request.onupgradeneeded = function (event) {
 configureDatabase(event);
 }
}

If you can’t access the indexedDB object, then the browser does not support it. For this demo you can
simply use alert() to notify the user and stop further processing.

Chapter 25 ■ Indexed DB

477

This code then uses the indexedDB object to open the Chess database, specifying that version should be
used. The open() method returns an IDBOpenDBRequest object, as I described earlier. You will attach three
event handlers for this request.

•	 onsuccess: This event handler simply saves the reference to the database. You will
add more logic here later. Notice that the database is obtained from the event.
target.result property, which is how all results are returned.

•	 onerror: The primary reason that the browser fails to open a database is that the
browser has the IndexedDB feature blocked. This can be disabled for security
reasons. In this case, the user is prompted to allow access. Alternatively, you could
choose to display the error message instead.

•	 onupgradeneeded: This is raised if the database does not exist or if the specified
version is not the current version. This calls the configureDatabase() function,
which you’ll implement now.

Defining the Database Structure
Add the code shown in Listing 25-4 to the Chess.js script to implement the configureDatabase() function.

Listing 25-4.  Defining the Database Structure

function configureDatabase(e) {
 alert("Configuring database - current version is " + e.oldVersion +
 ", requested version is " + e.newVersion);

 db = e.currentTarget.result;

 // Remove all existing data stores
 var storeList = db.objectStoreNames;
 for (var i = 0; i < storeList.length; i++) {
 db.deleteObjectStore(storeList[i]);
 }

 // Store the piece types
 var typeStore = db.createObjectStore
 ("pieceType", { keyPath: "name" });

 for (var i in pieceTypes){
 typeStore.add(pieceTypes[i]);
 }

 // Create the piece data store (you'll add
 // the data later)
 var pieceStore = db.createObjectStore
 ("piece", { autoIncrement: true });

 pieceStore.createIndex
 ("piecePosition", "pos", { unique: true });
}

Chapter 25 ■ Indexed DB

478

■■ Caution  The configureDatabase() function will be called if the database does not exist or if it is not the
current version. For version changes, you can get the current version by using the db.version property and
then make the necessary adjustments. Also, the event object passed to the onupgradeneeded event handler
will have the e.oldVersion and e.newVersion properties. To simplify things in this project, you’ll simply
remove all object stores and rebuild the database from scratch. This will wipe out all existing data. That is fine
for this example, but in most cases, you’ll need to preserve the data where possible.

The objectStoreNames property of the database object contains a list of the names of all the object
stores that have been created. To remove all the existing object stores, each of the names in this list is passed
to the deleteObjectStore() method.

Initially, you’ll create two data stores using the createObjectStore() method.

•	 pieceType: Contains an object for each type of piece such as pawn, rook, or king

•	 piece: Contains an object for each piece, 16 black and 16 white

Specifying the Object Key
When creating an object store, you must specify a name for the store when calling the createObjectStore()
method. You can also specify one or more optional parameters. Only two are supported.

•	 keypath: This is specified as a collection of property names. If you’re using a single
property, you can specify this as a string rather than a collection of strings. This
defines the object property (or properties) that will be used as the key. If no keypath
is specified, the key must be defined out-of-line using a key generator or providing
the key as explained later in this section.

•	 autoIncrement: If true, this indicates that the keys are sequentially assigned by the
object store.

Every object in a store must have a unique key. There are three ways to specify the key.

•	 Use the keypath parameter to specify one or more properties that define a unique
key. As objects are added, the keypath is used to generate a key based on the object’s
properties.

•	 Use a key generator. If autoIncrement is specified, the object store will assign a key
based on an internal counter.

•	 Provide the key value when adding the object. If you don’t specify a key path or use a
key generator, you must supply a key when adding an object to a store.

For the pieceType store you’ll use a keypath. The name property will specify the type such as pawn
or knight. This will be a unique value for each object. This is also the value that will be used to retrieve
an object, so this is a perfect candidate for a key path. After creating the object store, the data from the
pieceTypes[] array is then copied to the pieceType store.

■■ Note  While in the onupgradeneeded event handler, data can be added to an object store without explicitly
creating a transaction. There is an implicit transaction created in response to the onupgradeneeded event.

Chapter 25 ■ Indexed DB

479

Creating an Index
For the piece store there is no natural key available in the pieces data, so you’ll use a key generator. It will
generate unique keys, but the keys will have no real meaning; they’re just a synthetic key used to satisfy the
unique constraint. Initially when you’re drawing the board, you’ll retrieve all of the objects, so you don’t
need to know what the key is.

Later you’ll need to retrieve a piece so you can move it. You will find the desired piece based on its
position on the board. To facilitate that, you’ll add an index to the store based on the pos property. Since no
two pieces can occupy the same space, the pos property can be used as a unique index. By specifying this as
a unique index, you will get an error if you try to insert an object with the same position as an existing object.

■■ Caution  Since the pos property is unique, you might be tempted to use it as the key. However, since you
will be moving pieces, their position will change, and it’s considered a poor design pattern to use a key that
changes often. For Indexed DB, this is especially problematic since you can’t actually change a key; you must
delete the current object and then add it with the new key.

When creating an index, you must specify a keypath like this:

pieceStore.createIndex
 ("piecePosition", "pos", { unique: true });

In this case, the pos property is the keypath for this index. The keypath may include more than one
property, in which case the index will be based on the combination of the selected properties. When an
object store has an index, the index is automatically populated when an object is added to the store.

Resetting the Board
You created the piece object store but have not populated it yet. You’ll do that in a separate function.
To understand why, let me explain the database life cycle. The first time the web page is displayed, the
database is opened, and since it doesn’t exist, a new database will be created. This happens because the
onupgradeneeded event is raised, and you implemented this event handler to create the object stores. When
the page is displayed again (or simply refreshed), this step will be skipped since the database already exists.

Later, when you start moving the pieces around as well as deleting them, you’ll want to move them
back to their initial position when the page is reloaded. You can use this method to do that. You’ll now add
a resetBoard() function to the Chess.js script using the following code. This will be called not when the
database is created but when the page is loaded.

function resetBoard() {
 var xact = db.transaction(["piece"], "readwrite");
 var pieceStore = xact.objectStore("piece");
 var request = pieceStore.clear();
 request.onsuccess = function(event) {
 for (var i in pieces) {
 pieceStore.put(pieces[i]);
 }
 }
}

Chapter 25 ■ Indexed DB

480

This code creates a transaction using the read-write mode and specifies only the piece object store
since that is the only one you’ll need to access. Then the piece store is obtained from the transaction. The
clear() method is used to delete all the objects from the store. Finally, all the objects in the pieces[] array
are copied to the object store.

Now add the following code shown in bold to the onsuccess event handler. This will call the
resetBoard() function after the database has been opened.

■■ Note  The onupgradeneeded event is raised, and its event handler must complete before the onsuccess
event is raised. This ensures that the database has been properly configured before it is used.

var request = dbEng.open("Chess", 1);

request.onsuccess = function (event) {
 db = event.target.result;

 // Add the pieces to the board
 resetBoard();
}

■■ Tip  In the resetBoard() function, you called the put() method (repeatedly, 32 times). However, you did
not get any response objects or implement any event handlers. This code appears to be working synchronously.
Actually, these calls are processed asynchronously, and a response object is returned in both cases, but the
return value was ignored. You could implement both onsuccess and onerror event handlers for these requests.
In this case, you cheated a little. Since you don’t need the result value like you would when retrieving data, you
don’t have to handle the onsuccess event. Because these calls are within a transaction, subsequent use of
these object stores by a different transaction will be blocked until the updates are complete.

Drawing the Pieces
So far you have opened the database, configuring the object stores, if necessary. You have also populated
the piece store with the initial positions. Now you’re ready to draw the pieces. To do that you’ll implement a
drawAllPieces() function to iterate through all of the pieces and a drawPiece() function to display a single
image. These functions will be similar to the functions you created in Chapter 23 with the same names.
However, the data for these functions will be retrieved from the new database.

The drawAllPieces() function will use a cursor to process all the objects in the piece object store.
For each piece, this will extract the necessary properties and pass them to the drawPiece() function. The
drawPiece() function must then access the pieceType store to obtain the type properties such as height
and width and display the image in the appropriate location.

http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

481

Using a Cursor
When retrieving data from an object store, if you want to retrieve a single record using its key, use the get()
method, which I will describe next. You can also select one or more objects using an index, and I will explain
that later in this chapter. To get all the pieces, you’ll need to access the entire object store, which you’ll do
using a cursor.

After creating the transaction and obtaining the object store, you’ll call its openCursor() method. This
returns an IDBRequest object, and you’ll need to provide an onsuccess event handler for it. When the event
fires, it provides the first object only. You can obtain the next object by calling the continue() method. To
demonstrate this, add the function shown in Listing 25-5 to the Chess.js script.

Listing 25-5.  Drawing the Pieces

function drawAllPieces() {

 var xact = db.transaction(["piece", "pieceType"]);

 var pieceStore = xact.objectStore("piece");
 var cursor = pieceStore.openCursor();
 cursor.onsuccess = function (event) {
 var item = event.target.result;
 if (item) {
 if (!item.value.killed) {
 drawPiece(item.value.type,
 item.value.color,
 item.value.row,
 item.value.column,
 xact);
 }
 item.continue();
 }
 }
}

This code creates a transaction that will use both the piece and pieceType object stores. The mode is
not specified, and the default value is readonly. It then gets the piece object store and calls its openCursor()
method. The onsuccess event handler gets the first object from the event object (using event.target.
result). If the piece has not been captured, the drawPiece() function is called to display it, which you’ll
implement next. I’ll explain the killed property later. You pass in all the properties that it will need such as
type, color, row, and column. You’ll also pass in the transaction object so the drawPiece() function can use
the same transaction to access the pieceType store.

Calling the continue() method will cause the same event to be raised again, this time supplying the
next object in the event.target.result property. If there are no more objects, the result property will be
null. This is how you’ll know all the objects have been processed.

Chapter 25 ■ Indexed DB

482

The openCursor() method provides some basic capabilities to filter the objects that are returned. If no
parameters are supplied, it will return all the objects in the store. You can specify a key range using one of the
following:

•	 IDBKeyRange.only(): Specifies a single value and only records that match are
returned.

•	 IDBKeyRange.lowerBound(): Returns only key values greater than the value
specified. By default this is inclusive, so it will also return objects with keys that have
an exact match as well, but you can change this to only return values that are greater.

•	 IDBKeyRange.upperBound(): Works just like lowerBound() except it returns values
less than or equal to the value specified. I will demonstrate this later in the chapter.

•	 IDBKeyRange.bound(): Allows you to specify both a lower and upper bound. You can
also indicate whether either of these values is inclusive. The default value for these is
false, meaning not inclusive.

You can also pass a second parameter to the openCursor() function to specify the direction that the
records are returned. The supported values for this are defined in the IDBCursorDirection enum. The
possible values are as follows:

•	 next: Returns the next record in increasing key order (this is the default value)

•	 prev: Returns the previous record

•	 nextunique: Returns the next record that has a different key; this ignores duplicate
keys

•	 prevunique: Returns the previous record, ignoring duplicate keys

The following example will return objects where the key is greater than 3 and less than or equal to 7
and return them in descending order. The last two parameters when creating the key range indicate that
the lower bound is not inclusive but the upper bound is. When opening the cursor, the second parameter
specifies the reverse direction should be used.

var keyRange = IDBKeyRange.bound(3, 7, false, true);
store.openCursor(keyRange, IDBCursorDirection.prev);

Retrieving a Single Object
Now you’ll implement the drawPiece() function that will draw a single piece on the board. It must first
access the pieceType object store to get the image details. In this case, you’ll retrieve a single object using its
key. The key to the pieceType object store is the type property. Add the function shown in Listing 25-6 to the
Chess.js script.

Listing 25-6.  Drawing a Single Piece

function drawPiece(type, color, row, column, xact) {
 var typeStore = xact.objectStore("pieceType");
 var request = typeStore.get(type);
 request.onsuccess = function (event) {
 var img;

Chapter 25 ■ Indexed DB

483

 if (color === "black") {
 img = images[event.target.result.blackImage];
 }
 else {
 img = images[event.target.result.whiteImage];
 }

 chessContext.drawImage(img,
 (75 - event.target.result.width) / 2 + (75 * column),
 73 - event.target.result.height + (75 * row),
 event.target.result.width,
 event.target.result.height);
 }
}

This code uses the same transaction object, which is passed in. It obtains the pieceType object store
and then calls its get() method. The onsuccess event handler gets the necessary properties and calls the
canvas drawImage() method. Refer to Chapter 23 for more information about drawing images on a canvas.

Now add the call to drawAllPieces() in the onsuccess event handler for the open() call by adding the
code shown in bold.

request.onsuccess = function (event) {
 db = event.target.result;

 // Add the pieces to the board
 resetBoard();

 // Draw the pieces in their initial positions
 drawAllPieces();
}

Testing the Application
Now you’re ready to test the application, which will display the initial starting positions. Refresh the browser
and you should see an alert letting you know that the database is being configured, as shown in Figure 25-3.

Figure 25-3.  The alert showing the database is being configured

http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

484

When you run this application again, this configuration will not be necessary. The chess board should
look like Figure 25-4.

■■ Tip  If you want to remove the database from your machine, you can find the folder where they are stored
and delete the corresponding subfolder. In Firefox, on my machine, the path is C:\Users\Mark\AppData\
Roaming\Mozilla\Firefox\Profiles\p1i1rsab.default\storage\default. In this folder there is a
subfolder for each database. The subfolder name includes the protocol (http); domain name; and port, if
applicable. For my application, this is http+++localhost+25519. Delete this folder and restart the browser.
The page should reconfigure the database since it must create a new one. For Chrome, the file is found at:
C:\Users\Mark\AppData\Local\Google\Chrome\User Data\Default\IndexedDB

If you open the Chess.html file in Chrome, you can access this database through the developers’
tools. Select the Application link and then expand the IndexedDB item in the Storage section as shown in
Figure 25-5.

Figure 25-4.  The completed chess board with static positions

Chapter 25 ■ Indexed DB

485

Moving the Pieces
Now you’re ready to animate the board by moving the pieces. You’ll use the same canned moves that were
used in Chapter 23. A piece can be moved by simply updating its position and then redrawing the board.
There is one complication, however; if a move captures a piece, you need to remove it from the board. For
now, you’ll simply delete the object from the store, but I’ll show you a better way at the end of the chapter.

Defining the Moves
Since you’re so database savvy now, you’ll store the moves in the database as well. A move is defined by the
starting and ending positions. For example, “move the piece at e2 to e3.” You’ll number these moves from 1
to 7 so they will be applied in the correct order. You’ll need a new object store to hold the move details. To do
that, you’ll need to specify a new version, which will raise the onupgradeneeded event. Then you’ll add logic
the configureDatabase() function to create the new store.

Figure 25-5.  Viewing the database in Chrome

http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

486

EXERCISE 25-2. ADDING THE MOVES STORE

1.	 Add the following code to the beginning of the Chess.js script before the call to
the drawBoard() function.

var moves = [
 { id: 1, start: "e2", end: "e3" },
 { id: 2, start: "e7", end: "e5" },
 { id: 3, start: "f1", end: "c4" },
 { id: 4, start: "h7", end: "h6" },
 { id: 5, start: "d1", end: "f3" },
 { id: 6, start: "g7", end: "g6" },
 { id: 7, start: "f3", end: "f7" }
];

2.	 Add the following code shown in bold to the end of the configureDatabase() function.
This will create and populate the move store when the database is configured.

 pieceStore.createIndex
 ("piecePosition", "pos", { unique: true });

 // Store the moves
 var moveStore = db.createObjectStore
 ("move", { keyPath: "id" });

 for (var i in moves) {
 moveStore.add(moves[i]);
 }
}

3.	 On the open() call, change the version to 2 as shown in bold. This will cause the
onupgradeneeded event to be raised the next time the page is loaded.

if (!dbEng)
 alert("IndexedDB is not supported on this browser");
else {
 var request = dbEng.open("Chess", 2);

■■ Caution  In this example, the configureDatabase() function simply removes all the existing data stores
and then re-creates them. You could do this because you didn’t need to be concerned about maintaining
any of the existing data; it was reloaded using canned values. In many scenarios you will not be able to do
that. Instead, you’ll need to make specific changes based on the current version. For example, if version 5 is
requested and the current version is 2, you’ll need to add the version 3 changes and then the version 4 changes
and finally the version 5 changes. Keep this in mind when planning your structure changes.

Chapter 25 ■ Indexed DB

487

Converting the Position
The objects in the piece store have the row, column, and pos properties. The row and column properties
follow the same convention that was used in Chapter 23, where the top-left square is at 0,0. That is consistent
with how canvas works and simplifies the drawPiece() implementation. In contrast, the pos property uses
the notation widely used in chess where the columns (files) go from a to h as you move left to right. The
rows (ranks) go from 1 to 8 as you move from the bottom of the board to the top. Thus, a1 is the bottom-left
square.

Before you get into the heavy work of moving the pieces, you’ll create a function that will convert the
pos property into row and column properties. When a piece is moved to e3, for example, you’ll need to
convert e3 into the corresponding row and column coordinates, which would be 5 (row) and 4 (column). Add
the function shown in Listing 25-7 to the Chess.js script.

Listing 25-7.  Implementing the computeRowColumn() Function

function computeRowColumn(oStart, end) {
 oStart.pos = end;
 switch (end.substring(0, 1)) {
 case "a": oStart.column = 0; break;
 case "b": oStart.column = 1; break;
 case "c": oStart.column = 2; break;
 case "d": oStart.column = 3; break;
 case "e": oStart.column = 4; break;
 case "f": oStart.column = 5; break;
 case "g": oStart.column = 6; break;
 case "h": oStart.column = 7; break;
 }

 oStart.row = 8 - parseInt(end.substr(1, 1));
}

The oStart parameter is the object from the piece store that was found at the starting position (e2 in
our example). The end parameter is the ending position, e3, which is copied to the pos property since this
will be the piece’s new position.

This code then uses a switch statement to convert the a–h file notation into a 0–7 coordinate. This is
then stored in the column property. The row property is computed by taking the last digit from the position
and subtracting it from 8.

Making a Move
Just like you did in Chapter 23, you’ll use a timer to make the next move every two seconds. You’ll need
a timer variable so you can clear the timer when the animation is done. You’ll also need to keep track of
the current move. Add the two variables shown in bold to the Chess.js script just before the drawBoard()
method is called.

var moveNumber = 1;
var timer;

drawBoard();

http://dx.doi.org/10.1007/978-1-4842-2463-2_23
http://dx.doi.org/10.1007/978-1-4842-2463-2_23

Chapter 25 ■ Indexed DB

488

Moving a piece will require making up to five database calls:

	 1.	 Get the next object from the move store (this defines the start and end positions).

	 2.	 Get the object at the start position.

	 3.	 Get the object at the end position (there will be only one if the move is capturing
a piece).

	 4.	 Remove the object at the end position (this step will be needed only on some
moves).

	 5.	 Update the object at the start position (to move it to the end position).

These calls will all be made using the same transaction. As I demonstrated at the beginning of the
chapter, you’ll need to nest the onsuccess event handlers for each of these calls. Add the makeNextMove()
function shown in Listing 25-8 to the Chess.js script.

Listing 25-8.  Implementing the makeNextMove() Function

function makeNextMove() {

 var xact = db.transaction(["move", "piece"], "readwrite");
 var moveStore = xact.objectStore("move");

 moveStore.get(moveNumber).onsuccess = function (e1) {
 var startPos = e1.target.result.start;
 var endPos = e1.target.result.end;
 var startKey = null;
 var oStart = null;

 var pieceStore = xact.objectStore("piece");
 var index = pieceStore.index("piecePosition");

 index.getKey(startPos).onsuccess = function (e2) {
 startKey = e2.target.result;

 index.get(startPos).onsuccess = function (e3) {
 oStart = e3.target.result;

 // If there is a piece at the ending location, we'll
 // need to update it to prevent a duplicate pos index
 removePiece(endPos, oStart, startKey, pieceStore);
 }
 }
 }
}

This function creates a transaction that will access both the move and piece stores. The mode is set to
readwrite because the objects in the piece store will be modified. It then gets the move store and calls its
get() method specifying the current move, which is the key to the table. This will return a single object, and
the start and end positions are extracted from the result in the onsuccess event handler.

Chapter 25 ■ Indexed DB

489

■■ Tip  Notice that this code doesn’t explicitly define a request variable. Instead, the onsuccess event handler
is attached directly to the database call. In the previous examples, I declared a request variable and then
attached the event handler to it to help you see what was happening. However, attaching the event handler
directly to the method accomplishes the same thing but simplifies the code a little.

Obtaining the Object Key
For the piece store, you used a key generator, so the key is not part of the object. The code in the
makeNextMove() function will use the index based on the pos property to retrieve the object at the start position
(and also at the end position if there is a piece there). To update or delete an object, you will need its key.

When retrieving the piece object at the start position, this code first gets the piece store from the
transaction. It then gets the piecePosition index from the store. To get the key value, you’ll need to call
index.getKey() method, which returns the key for the requested start position. This is stored in the
startKey variable.

To get the desired object, you’ll call the index.get() method passing in the position to search for. This
returns the object at the requested start position and stores it in the oStart variable.

In both cases, the data is returned in the result property. Again, the event handlers that process the
results are nested.

With the necessary data obtained, the removePiece() method is called, passing in the following
parameters:

•	 end: The ending position of the piece being moved

•	 oStart: An object representing the piece being moved

•	 startID: The key to the oStart object

•	 pieceStore : The piece store that will be used to perform the update

Performing the Update
Now you’ll implement the removePiece() function. This is perhaps misnamed since it will remove a
piece only when necessary. Add the code shown in Listing 25-9 to the Chess.js script to implement the
removePiece() function:

Listing 25-9.  The removePiece() implementation

function removePiece(endPos, oStart, startKey, pieceStore) {
 var index = pieceStore.index("piecePosition");
 index.getKey(endPos).onsuccess = function (e4) {
 var endKey = e4.target.result;
 if (endKey) {
 pieceStore.delete(endKey).onsuccess = function (e5) {
 movePiece(oStart, startKey, endPos, pieceStore)
 }
 }
 else
 movePiece(oStart, startKey, endPos, pieceStore);
 }
}

Chapter 25 ■ Indexed DB

490

This code gets the key at the ending position. If there is a piece there, it calls the delete() method
to remove it and then calls the movePiece() function in the onsuccess handler for the delete() method.
Notice that it does not retrieve the object; only the key is needed to perform the delete. If there is no piece
there, it just calls the movePiece() function. When calling the movePiece() function, all the data it needs is
passed to it including the object, its key, the end position, and the object store that it will use.

Now you’ll implement the movePiece() function that will finally perform the actual update. To update
an object, you call the put() method. Unlike the add() method that you used earlier to add the pieces, the
put() method requires both the object and the key. If there is no object with the specified key, the object will
be added. Add the movePiece() method shown in Listing 25-10 to the end of the Chess.js script.

Listing 25-10.  Implementing the movePiece() Function

function movePiece(oStart, startID, end, pieceStore) {
 computeRowColumn(oStart, end);

 var startUpdateReq = pieceStore.put(oStart, startID);
 startUpdateReq.onsuccess = function (event) {

 moveNumber++;

 drawBoard();
 drawAllPieces();

 if (moveNumber > 7) {
 clearInterval(timer);
 chessContext.font = "30pt Arial";
 chessContext.fillStyle = "black";
 chessContext.fillText("Checkmate!", 200, 220);
 }
 }
}

This code first computes the row and column properties using the computeRowColumn() function that
you created earlier. It then updates the object. In the onsuccess event handler, it increments the moveNumber
variable and draws the board and all of the pieces using the existing functions. Finally, if this is the last move,
the timer is cleared and the “Checkmate!” text is drawn on the canvas.

Starting the Animation
The last step is to start the timer that will cause the makeNextMove() function to be called. You’ll do this in
the onsuccess event handler for the open() call. Add the code shown in bold:

var request = dbEng.open("Chess", 2);

request.onsuccess = function (event) {
 db = event.target.result;

 // Add the pieces to the board
 resetBoard();

 // Draw the pieces in their initial positions
 drawAllPieces();

Chapter 25 ■ Indexed DB

491

 // Start the animation
 timer = setInterval(makeNextMove, 2000);
}

Save your changes and refresh the browser. You should see the alert letting you know that the database
is being configured since you changed the database version. After a series of moves, you should see the
completed chess board shown in Figure 25-6.

Tracking the Captured Pieces
When capturing a piece, you simply deleted the object, and that works since the piece doesn’t need to be
displayed. However, if your application wants to keep track of the pieces that were captured, you might want
to keep the object in the store. Now I’ll show you how to change this to update the object instead of deleting
it. I also show you how to query this store to list the pieces that have been captured.

The first step is to change the removePiece() function. Instead of deleting the object at the end position,
you’ll update it and set the killed property. You’ll also need to change the pos property since there is a
unique index on this. Since the piece is not displayed, the position can be anything. To ensure it is unique,
you’ll prefix its unique ID with an X. Also, by prefixing these with an X, you’ll be able to query for them, as I’ll
explain later.

Comment out the delete() call and add the code shown in bold:

function removePiece(end, oStart, startID, pieceStore) {
 var index = pieceStore.index("piecePosition");
 index.getKey(end).onsuccess = function (e4) {
 var endKey = e4.target.result;

Figure 25-6.  The completed chess board

Chapter 25 ■ Indexed DB

492

 if (endKey) {
 //pieceStore.delete (endKey).onsuccess = function (e5) {
 // movePiece(oStart, startID, pieceStore);
 //}

 index.get(endPos).onsuccess = function (e5) {
 var oEnd = e5.target.result;
 oEnd.pos = 'x' + endKey;
 oEnd.killed = true;
 pieceStore.put(oEnd, endKey).onsuccess = function (e6) {
 movePiece(oStart, startKey, endPos, pieceStore);
 }
 }
 }
 else
 movePiece(oStart, startID, end, pieceStore);
 }
}

Now add the code shown in Listing 25-11 to the Chess.js script to implement the
displayCapturedPieces() function:

Listing 25-11.  The displayCapturedPieces() implementation

function displayCapturedPieces() {
 var xact = db.transaction(["piece"]);
 var textOut = "";

 var pieceStore = xact.objectStore("piece");
 var index = pieceStore.index("piecePosition");

 var keyRange = IDBKeyRange.lowerBound("x");
 var cursor = index.openCursor(keyRange);

 cursor.onsuccess = function (event) {
 var item = event.target.result;
 if (item) {
 textOut += " - " + item.value.color + " " +
 item.value.type + "\r\n";
 item.continue();
 }
 else if (textOut.length > 0)
 alert("The following pieces were captured:\r\n" + textOut);
 }
}

This code creates a read-only transaction using only the piece store. It then gets the store and its
piecePosition index. It defines a key range using a lower bound of x. This will only return objects that begin
with x or greater. Since the pieces on the board will have a position that starts with a through h, these will be
excluded. The code then iterates through the cursor and concatenates the piece details into a text string. The
result is displayed using an alert() function.

Chapter 25 ■ Indexed DB

493

■■ Caution  Be aware that the string comparisons in the key range are case sensitive. If you had used
an uppercase X, this would not have worked since a lowercase a comes after an uppercase X. The W3C
specification provides some details on how comparisons are supposed to work. For details, see the article at
www.w3.org/TR/IndexedDB/#key-construct.

Now you’ll need to call this function after the animation is completed. Add the following line of code to
the movePiece() function after the “Checkmate!” text is displayed:

displayCapturedPieces();

Save your changes and refresh the browser. After the animation has finished, you should see the alert
shown in Figure 25-7.

Summary
In this chapter, you took a crash course in Indexed DB. There is a lot that you can do with Indexed DB.
Because the data is on the client, you avoid round trips to the server. Through a fairly simple application,
you utilized most of the capabilities of this new technology. Probably the biggest challenge is to get used to
the asynchronous processing. The sample application provides lots of examples of nesting successive calls
through the onsuccess event handler. The following are some of the key concepts to remember:

•	 Create the database and create its structure by responding to the onupgradeneeded
event handler when the database is opened. Use the version to force an upgrade, if
necessary.

•	 Objects in a store must have a unique key, which can be defined either by a key path
for inline keys or by a key generator for out-of-line keys. You can also supply the key
manually when the object is added.

•	 All data access (read and write) must be done through a transaction object. When
creating the transaction, you must specify the scope, which is the list of object stores
that it will use as well as the type of access that is required.

Figure 25-7.  Listing the captured pieces

http://www.w3.org/TR/IndexedDB/#key-construct

Chapter 25 ■ Indexed DB

494

•	 You can add one or more indices to an object store. Each index maps a key path in
the object to the object’s key.

•	 Use a cursor to process multiple objects in an object store. The objects that are
selected can be filtered by specifying a key range.

•	 Add an object to the object store and update it later.

•	 Retrieve an object from an object store.

•	 Delete an object from an object store by specifying the object’s key.

•	 Obtain the key for an object by using the getKey() method of the index.

•	 Use the put() method of an object store to add or update an object. The put()
method requires both the object and the key. This will add the object if the specified
key is not found.

The next chapter will demonstrate how you can use geolocation and mapping in your web page.

495© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_26

CHAPTER 26

Geolocation and Mapping

This chapter will demonstrate two technologies that provide powerful features that enable you to easily
create some useful web sites. Geolocation provides a standardized API that is used to determine the client’s
location. Mapping technology adds the ability to display this location on a map along with other points of
interest. Together, these form a platform that has many useful applications.

In this chapter, you’ll use the geolocation API to find your current position. The accuracy of that
position will vary greatly depending on available hardware and the environment. However, HTML5 defines a
standard API that is used on all devices so you can provide device-independent solutions.

Just knowing your location in terms of latitude and longitude is not very helpful. To put this data to
use, you’ll use the Bing Maps API to display that location on a map. Then you can map additional points of
interest and see them in relation to your current location.

Understanding Geolocation
While not technically part of the HTML5 specification, the WC3 has defined a standard API for accessing
geolocation information, which is supported by all major current browser versions. The technology that
determines the location, however, varies greatly depending on the device capabilities and the client’s
environment.

Surveying Geolocation Technologies
Several technologies can be used to determine the current location, including the following:

•	 Global positioning system (GPS): GPS communicates with satellites to determine
the current location with extremely high accuracy, particularly in rural areas. Tall
buildings in an urban area can affect the accuracy, but in most cases GPS provides
good results. The biggest limitation is that this doesn’t work indoors well. To use
GPS, the device must have specific GPS hardware, but this is becoming increasingly
common on mobile devices.

•	 Wi-Fi positioning: Wi-Fi networks have a relatively short range and systems such as
Skyhook Wireless maintain a large database of Wi-Fi networks and their locations.
Simply being connected to a Wi-Fi network will give a pretty good idea of where you
are. Often, however, you may be within range of multiple networks, and the system
can use triangulation to determine the location with even greater accuracy. Of
course, this requires that you have a device that is Wi-Fi enabled, and it doesn’t work
in rural areas where there are no Wi-Fi networks.

Chapter 26 ■ Geolocation and Mapping

496

•	 Cell tower triangulation: This uses the same principle as Wi-Fi positioning except it
uses cellular telephone towers. It is not as accurate, however, because a cell tower
has a much larger range. Since all cell phones will have the ability to communicate
with cell towers, this technology has a broad application.

•	 IP block: Every device that connects to the Internet will have an IP address, which is
usually provided by the ISP. Each ISP will have a block of IP addresses that it can use,
which are typically assigned by geographical location. So, the IP address with which
you connect to the Internet can provide a general location, usually a metropolitan
area. There are several factors, however, that can yield incorrect results, such as
NAT’ed addresses.

Each of these technologies has different hardware requirements and provide varying levels of accuracy.
With the geolocation specification, you can easily request the current location from the browser and let
it determine the best way to supply that based on the current hardware and access to external sources
including satellites, cell towers, and Wi-Fi networks.

Using Geolocation Data
Most people think of geolocation as a device that provides turn-by-turn directions, but that is only one
application of this technology. Of course, this requires precise location that can be obtained only through
GPS. However, even when the current location is far less accurate, your web site can still make valuable use
of this information. Even if the location is determined only by the IP address, this will usually be sufficient to
set the default language, for example. You may need to allow the end user to override this, but most of your
audience will see the initial page in their native language.

When retrieving the current location, the geolocation service also returns the estimated accuracy. Your
application should use this to determine the features that will be provided. Suppose, for example, that you’re
creating a web page for the U.S. Postal Service that shows where the nearest post offices are. If the current
location is known with high accuracy, the web page can show a map and indicate the current location as
well as the nearby post offices. In addition, it could provide the estimated driving time to each.

However, if the location is known with lesser accuracy, the page could display a map that shows where
the post offices are in that general area. Presumably, the user will know where they are and can use this
information to determine the best location to use. However, if the accuracy is poor, the page should prompt
for a ZIP code and then display the nearest post offices based on the user input. So, depending on the
accuracy, the application can gracefully degrade the functionality.

Using the Geolocation API
To demonstrate how to use the geolocation API, you’ll create a simple web page that calls the API to
determine your current location. Initially, this data will be displayed on the web page as text. Later you’ll
display this location on a map.

Creating the Web Project
You’ll start by creating a web page that is set up much like the projects in the previous chapters.

Chapter 26 ■ Geolocation and Mapping

497

EXERCISE 26-1. CREATING THE WEB PROJECT

1.	 Create a new web page called Geolocation.html, using the basic markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 26 - Geolocation</title>
 <script src="Geolocation.js" defer></script>
 </head>
 <body>
 </body>
</html>

2.	 Then create a Geolocation.js script file using the following code.

"use strict";

3.	 Add a div element in the empty body element of the Geolocation.html file, using
the following markup:

<div>

</div>

Using the Geolocation Object
The geolocation API is provided by the geolocation object, which you can access through the navigator
object like this:

navigator.geolocation

If a falsy value is returned such as null or undefined, then geolocation is not supported on the current
browser. You can check for support using code like this:

if (!navigator.geolocation) {
 alert(“Geolocation is not supported”);
}
else
 // do something with geolocation

To get the current location, use the getCurrentPosition() function, which takes three parameters:

•	 A callback function that is executed when the call is successful

•	 An error callback function that is called when an error occurs

•	 A PositionOptions collection that contains zero or more options

Chapter 26 ■ Geolocation and Mapping

498

The last two parameters can be omitted. The following options are supported:

•	 maximumAge: The browser can cache previous positions and return this without
actually trying to determine the location. However, the maximumAge attribute
specifies how long (in milliseconds) a previous position can be reused without re-
querying the current location.

•	 timeout: The timeout attribute specifies how long the browser should wait for a
response from the geolocation object. This is also expressed in milliseconds.

•	 enableHighAccuracy: This is just a hint to the browser. If you don’t need greater
accuracy for a particular purpose, setting this to false may yield a faster response or
use less power, which is a consideration for mobile devices.

If the call was successful, the position is passed to the callback function that was specified. The
Position object includes a coords object that contains the following required properties:

•	 latitude (specified in degrees)

•	 longitude (specified in degrees)

•	 accuracy (specified in meters)

In addition, the following optional properties may be provided depending on the environment and the
available hardware. If these are not supported, they will be set to null. (The optional properties are typically
available only when GPS is used).

•	 altitude (specified in meters)

•	 altitudeAccuracy (specified in meters)

•	 heading (specified in degrees; north = 0, west = 90, and so on, NaN if stationary)

•	 speed (specified in meters/second, 0 if stationary)

These properties can be obtained by the callback function like this:

function successCallback(pos) {
 var lat = pos.coords.latitude;
 var long = pos.coords.longitude;
 var accuracy = pos.coords.accuracy + " meters";
}

If the call was not successful, the PositionError object is passed to the error callback function. This
object includes a code property and a message property. The error code will have one of three possible
values.

•	 1: PERMISSION_DENIED

•	 2: POSITION_UNAVAILABLE

•	 3: TIMEOUT

■■ Caution  Your application will get the location and simply display it (and later map it). However, your script
could easily pass this information back to the server, which is a potential privacy issue. Since the browser cannot
control what the client does with this information, for privacy reasons the browser may block the access to the
geolocation object. In this case, the PERMISSION_DENIED error code is returned. I will demonstrate this later.

Chapter 26 ■ Geolocation and Mapping

499

If the client is moving and you want to continuously monitor the current location, you could call
the getCurrentLocation() function repeatedly using a setInterval() function. To simplify this, the
geolocation object includes a watchPosition() function. This takes the same three parameters as the
getCurrentLocation() function (success callback, error callback, and options). The callback function is
then invoked whenever the position changes. The watchPosition() function returns a timer handle. You
can pass this handle to the clearWatch() function when you want to stop monitoring the position like this:

var handle = geolocation.watchPosition(callback);
...
geolocation.clearWatch(handle);

Displaying the Location
Now you’ll add code to your application to get the current location and display it. The web page has a span
element with an id of lbl. You’ll get the geolocation object and call its getCurrentLocation() function.
Both the success and error callback functions will display the appropriate results in the span element.

EXERCISE 26-2. DISPLAYING THE LOCATION

1.	 Add the following code to the Geolocation.js script.

var lbl = document.getElementById("lbl");
var latitude = 0;
var longitude = 0;

if (navigator.geolocation) {
 navigator.geolocation
 .getCurrentPosition(showLocation,
 errorHandler,
 {
 maximumAge: 100,
 timeout: 6000,
 enableHighAccuracy: true
 });
}
else {
 alert("Geolocation not suported");
}

function showLocation(pos) {
 // Save the coordinates for later
 latitude = pos.coords.latitude;
 longitude = pos.coords.logitude;

 lbl.innerHTML =
 "Your latitude: " + pos.coords.latitude +
 " and longitude: " + pos.coords.longitude +
 " (Accuracy of: " + pos.coords.accuracy + " meters)";
}

Chapter 26 ■ Geolocation and Mapping

500

function errorHandler(e) {
 if (e.code === 1) { // PERMISSION_DENIED
 lbl.innerHTML = "Permission denied. - " + e.message;
 } else if (e.code === 2) { //POSITION_UNAVAILABLE
 lbl.innerHTML = "Make sure your network connection is active and " +
 "try this again. - " + e.message;
 } else if (e.code === 3) { //TIMEOUT
 lbl.innerHTML = "A timeout ocurred; try again. - " + e.message;
 }
}

2.	 Display the Geolocation.html file in a browser. The first time a site tries to access
the geolocation object, you will get a prompt like the one shown in Figure 26-1.

■■ Note I ’m using the Edge browser for this demonstration. If you’re using a different browser, this prompt
may work a little differently.

3.	 To test the error handler, choose the “No” option. The page should display an error
message like the one shown in Figure 26-2.

4.	 Open the Geolocation.html file with a different browser. Your current location
should be displayed as shown in Figure 26-3.

Figure 26-1.  Prompting for geolocation access

Figure 26-2.  Displaying the access denied error

Figure 26-3.  Displaying the current location

Chapter 26 ■ Geolocation and Mapping

501

I’m using a normal LAN-connected machine without cell or GPS support, so it is using the IP address to
determine the location. Consequently, the accuracy estimate is 1.8km (just over a mile).

■■ Note  Geolocation works on all current browsers. However, if you try this application on an older browser
such as IE 8, you’ll see the alert that geolocation is not supported.

Using Mapping Platforms
Simply displaying the latitude and longitude is not interesting (or helpful). However, showing your location
relative to other points of interest is much more useful. And displaying them on a map with roads and other
reference points can really put this information to work. Fortunately, mapping technology has become so
sophisticated and accessible that this is really easy to do.

■■ Note  For the demonstration in this chapter, I will be using Bing Maps. There are other mapping platforms
available. If you’re interested, check out the article at http://en.wikipedia.org/wiki/Comparison_of_web_
map_services for an overview of the different mapping services.

Creating a Bing Maps Account
To use Bing Maps, you’ll need to first set up an account, which is free for developers. Once your account
is created, you’ll receive a key that you’ll need to include when accessing the mapping API. I will take you
through the process of setting up an account.

EXERCISE 26-3. CREATING A BING MAPS ACCOUNT

1.	 Go to the Bing Maps site at this address: www.microsoft.com/maps/create-a-
bing-maps-key.aspx.

2.	 You need to get a key that will allow you to access the mapping API. Go to the Basic
Key tab. A free, basic key is fine for working through these exercises. Click the Get
the Basic Key link near the bottom of the page.

3.	 In the next page, you’ll need to log in with a Windows Live ID. If you don’t have one,
click the Create button to create an account.

4.	 Once you have signed in, you should see the “Create account” page shown in
Figure 26-4.

http://en.wikipedia.org/wiki/Comparison_of_web_map_services
http://en.wikipedia.org/wiki/Comparison_of_web_map_services
http://www.microsoft.com/maps/create-a-bing-maps-key.aspx
http://www.microsoft.com/maps/create-a-bing-maps-key.aspx

Chapter 26 ■ Geolocation and Mapping

502

5.	 Enter an account name. This is just for you to identify it if you have multiple
accounts; testing is fine. The email address should default in from your Windows
Live account. Make sure you select the check box agreeing to the terms of use.
Click the Save button to create the account.

Figure 26-4.  The “Create account” page

Chapter 26 ■ Geolocation and Mapping

503

6.	 From the My account menu, select the “My keys” link. You probably won’t have any
existing keys shown and you will be presented with the Create key dialog. If not,
click the link to create a new key.

7.	 In the “Create key” page, enter an application name such as HTML5 Test. For
the URL, enter http://localhost and select Universal Windows App for the
application type, as shown in Figure 26-5. Click the Submit button.

■■ Note  Bing Maps monitors the use of your key. However, since you’re not actually deploying this to a public-
facing web site, this is not really applicable. If you are developing a commercial application, you can use a free
key for development purposes, but you will need to purchase a key for the live web site.

8.	 After the key has been generated, you should see it displayed on the page.
Save this because you will need it later.

Adding a Map
Now you’ll add a map to your web page. You’ll first add a div element to the page that will contain the map.
You’ll also need to add a reference to the script that is used to manipulate the map. Then you’ll display the
map, centering it on your current location.

Figure 26-5.  Creating a key

Chapter 26 ■ Geolocation and Mapping

504

EXERCISE 26-4. ADDING A MAP

1.	 Add the code shown in bold to the body element, which will add the div that the
map will be displayed in.

<body>
 <div>

 </div>
 <div id="map">
 </div>
</body>

2.	 Create a Geolocation.css style sheet with the following style rule, which will size
the div that will contain the map.

#map {
 width: 800px;
 height: 1000px;
 border: 1px solid black;
}

3.	 Add the following link element to the head element, which will reference the
Geolocation.css stylesheet.

<link rel="stylesheet" href="Geolocation.css" />

4.	 Add the following script element inside the head element. This will enable your
page to call the map API. This needs to come after the Geolocation.js script
element.

<script
 �src=http://www.bing.com/api/maps/mapcontrol?branch=release&callback=

DisplayMap
 async defer>
</script>

Chapter 26 ■ Geolocation and Mapping

505

This will load the mapping script asynchronously and then call the DisplayMap() function when it has
finished loading.

5.	 Add the DisplayMap() function to the Geolocation.js script using the following
code. You'll need to insert your API key that was obtained earlier in Exercise 26-3.

function DisplayMap() {
 var map = new Microsoft.Maps.Map(document.getElementById('map'),
 {
 credentials: '<use your key here>',
 center: new Microsoft.Maps.Location(latitude, longitude),
 mapTypeId: Microsoft.Maps.MapTypeId.aerial,
 zoom: 20
 });

The call to the Map() function takes two parameters; the first is the HTML element that will display
the map. This is the div element you set up earlier and is obtained by using the getElementById()
method. The second parameter is a JSON object with a series of options. The credentials field
contains your API key, the center field specifies center point of the map, which is the location returned
by the geolocation object. In addition, the mapTypeId specifies that the aerial view should be used and
zoom is set to 20.

6.	 Refresh the browser. Depending on your location, your page should look like
Figure 26-6. Notice the controls at the top-right corner of the page. You can use this
to zoom in or out and pan in any direction. You can also change the view to Road or
Streetside.

Chapter 26 ■ Geolocation and Mapping

506

When calling the Map() function to specify the center location, this code also set the zoom to 20.
Depending on your application, you may not want to zoom in that far initially. Try this code using 15 or
16 to see how that looks. Of course, the user can also adjust the zoom once the map is displayed.

Figure 26-6.  Displaying the initial map

Chapter 26 ■ Geolocation and Mapping

507

Adding Pushpins
Now you’ll display some pushpins on the map. To add a pushpin, you first create a Pushpin object, specifying
its location. Then add it to the map’s entities collection. First, you will add a default pushpin at the current
location. Later, you’ll add custom pushpins to indicate points of interest.

Add the following code shown in bold to the end of the DisplayMap() function:

function DisplayMap() {
 var map = new Microsoft.Maps.Map(document.getElementById('map'),
 {
 ...
 });

 var pushpin = new Microsoft.Maps.Pushpin(map.getCenter(), {
 color: 'orange',
 text: 'X',
 title: 'You are here'
 });
 map.entities.push(pushpin);
}

The Pushpin() method takes a location and a JSON object with options. For the location, I'm simply
using the getCenter() method to get the center point of the map, which was specified when the map was
loaded. I could also have created a location object like this:

new Microsoft.Maps.Location(latitude, longitude)

For the options, I'm setting the color to orange, putting an "X" on the pushpin and adding a "You are
here" label. Refresh the browser and you should see a pushpin indicating the current location, as shown in
Figure 26-7.

Figure 26-7.  Adding a pushpin in the current location

Chapter 26 ■ Geolocation and Mapping

508

One of the most common uses of maps in a web page is to show where there are nearby locations. For
example, you might have multiple store locations, and you’ll want to show where each one is. Or perhaps
you are in a police department and want to map out where certain crimes have been committed. You could
have a public transit system and want to show where all the bus or train stops are.

Each of these scenarios is basically the same; you have a collection of locations that you want to show
on a map. You can add as many locations as you want. For each, just create a pushpin object and add it to the
entities collection. If you have more than one location, you should make the pushpins look different so the
user can easily distinguish between them.

For this demonstration, you will indicate where there are nearby restrooms. Instead of a standard
pushpin, you will use an image with a familiar restroom icon. Normally you would query the server to get a
list of locations based on the where the client is. However, to simplify this exercise, these will be hard-coded.

■■ Caution  I am hard-coding the location of the restrooms, which are probably nowhere near where your
current location is. You can either provide different restroom locations that are near you or simply override your
current location to match mine. This will be consistent with the restroom locations.

EXERCISE 12-5. ADDING CUSTOM PUSHPINS

1.	 The source code download contains a restroom.gif image file. Drag this into your
web project.

2.	 Add the following declaration at the top of the existing Geolocation.js script. This
defines the locations of the restrooms.

var restrooms = [
 { lat: 37.810079, long: -122.410806 },
 { lat: 37.809579, long: -122.410206 },
 { lat: 37.811279, long: -122.410446 }
];

3.	 Add the following code to the DisplayMap() function just before creating the map
object. This will override your current location to be near where the restrooms are.

// Override these for testing purposes
latitude = 37.810579;
longitude = -122.410546;

Chapter 26 ■ Geolocation and Mapping

509

4.	 Add the following functions to the end of the Geolocation.js script. The
markRestrooms() function iterates through this array, calling the markRestroom()
function for each. The markRestroom() function adds a single pushpin. This first
creates an options collection that defines the image file to use as well as the size of
the image. This is passed in when creating the Pushpin object.

function markRestrooms(map) {
 for (var i in restrooms) {
 markRestroom(map, restrooms[i].lat, restrooms[i].long);
 }
}

function markRestroom(map, lat, long) {
 var pushpinOptions = { icon: '/images/restroom.gif', width: 35, height: 35 };
 var pushpin = new Microsoft.Maps.Pushpin
 (new Microsoft.Maps.Location(lat, long), pushpinOptions);
 map.entities.push(pushpin);
}

5.	 Add this function call at the end of the DisplayMap() function to display the
additional pushpins:

// Display the restroom locations
markRestrooms(map);

6.	 Refresh the browser and you should now see pushpins where the restrooms are
located, as shown in Figure 26-8.

Chapter 26 ■ Geolocation and Mapping

510

■■ Caution T his is purely fictional data. If you happen to be at San Francisco’s Pier 39 while reading this book,
don’t use this map to try to find a restroom.

There is a lot more that you can do with the mapping API. For example, you can display directions for
getting to a selected point of interest. You can even display where the traffic is currently heavy. Check
out the interactive SDK at http://www.bing.com/api/maps/sdk/mapcontrol/isdk. You can try each
feature, and the corresponding JavaScript code is displayed underneath the map.

Figure 26-8.  Adding the restroom pushpins

http://www.bing.com/api/maps/sdk/mapcontrol/isdk

Chapter 26 ■ Geolocation and Mapping

511

Summary
In this chapter, you combined the features of geolocation with Bing Maps to create a really useful web site.
Geolocation requests are processed asynchronously. After getting the geolocation object, you call its
getCurrentPosition() function and specify the success and error callback functions. The Position object
is passed to the callback function when the location has been retrieved. It contains the latitude, longitude,
and estimated accuracy. If the client has GPS capability, the Position object will also include the altitude,
speed, and direction.

Mapping platforms such as Bing Maps are really easy to use and integrate into your web page. In this
application, you displayed the map and centered in on the current location. You also added pushpins to
show where the nearby restrooms are.

513© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_27

APPENDIX A

AJAX

In traditional web applications (sometimes called the old way of doing things), a page is rendered, which the
user interacts with; perhaps they log in, enter some search criteria, or choose an option. This information
is then posted back to the server and a new page is returned and rendered on the browser. This, of course,
requires a server round trip as well as downloading and rendering a new page. However, there is another
way that is much more responsive. You can simply update the current page using the DOM manipulation
techniques I showed you in Chapter 18. However, you’ll need to get some data from the server to do that,
and this is where Ajax comes in. Another common use of Ajax is to download only a partial page initially.
While the user is reading the part that has been downloaded, Ajax is used in the background to load the
remainder of the page.

Ajax is an acronym that stands for Asynchronous JavaScript And Xml. Ajax is not so much a technology
but rather a design pattern that uses a collection of technologies. In a nutshell, Ajax is basically JavaScript
code running on the client that makes a server call to retrieve data. While making the call, a callback
function is registered to handle the response. When this technology was first developed, XML was the
expected format for the response, hence the name. However, the response does not have to be XML; today,
in most cases, it will be JSON or HTML.

The concept was first introduced in Internet Explorer 5 with an ActiveX object named XMLHTTP.
Other browsers followed suit with an XMLHttpRequest object that provides similar functionality. With IE7,
Microsoft also supports the XMLHttpRequest object.

■■ Note  Ajax is used for communicating with RESTful web services. To be able to use Ajax you’ll need to
understand the basics of RESTful web services such as HTTP verbs and request and response headers. If this
is new to you, I suggest reading this article: http://www.drdobbs.com/web-development/restful-web-
services-a-tutorial/240169069

Making a Request
To make a request you’ll need to create an instance of the XMLHttpRequest object. Then you’ll need to do the
following:

•	 Assign a callback function to handle the readystatechange event; I’ll cover this a bit later.

•	 Open the connection; you’ll need to specify the HTTP verb such as GET, POST, PUT, or
DELETE and the URL of the web service that you are calling.

•	 Set any request headers that are needed.

•	 Send the request.

http://dx.doi.org/10.1007/978-1-4842-2463-2_18
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

Appendix A ■ AJAX

514

For a simple GET request, the code might look like this:

var myRequest = new XMLHttpRequest();
myRequest.onreadystatechange = displayResults;
myRequest.open("GET", url);
myRequest.setRequestHeader("Content-Type", "application/json");
myRequest.send();

If using a POST or PUT verb, you would likely have data to pass in the body of the request. In this case, the
body is passed this in the send() method. For example:

myRequest.send(body);

■■ Caution  In general, Ajax calls can only be made to services in the same domain as the page they are called
from. If your page origin is http://someDomain.com, for example, you can only call services whose URL starts
with http://someDomain.com. There are ways around these restrictions that are beyond the scope of this book.
For more information, see the following article: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Access_control_CORS

Handing the Response
You may have noticed that there is a single callback function that will be called whenever the ready state
(or just state) of the request changes. The state will change when the response is received or when an error
occurs, so your callback function needs to handle both scenarios. There are five possible state values and the
function will be called whenever the state changes to any of them:

•	 0 - UNSENT

•	 1 - OPENED

•	 2 - HEADERS_RECEIVED

•	 3 - LOADING

•	 4 - DONE

In most cases, you won’t care about the interim states and only need to know when the request is
complete. You can use the constant XMLHttpRequest.DONE, which has the value 4. The callback function
will typically start with code like this to ignore all other state transitions.

if (myRequest.readyState === XMLHttpRequest.DONE) {
 ... do something
}

http://somedomain.com/
http://somedomain.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Appendix A ■ AJAX

515

You should also wrap this code in a try/catch block because some errors, such as network errors, will
generate an exception. The next thing that you’ll need to do is to check the status of the request. The ready
state just tells you that the request has completed; you still don’t know if it was successful. This is done by
checking the status property, like this:

switch(myRequest.status) {
 case 500: // server error
 ...
 break;
 case 404: // not found
 ...
 break;
 case 200: // success
 ...
 break;
}

■■ Tip  The status values that are returned are the standard HTTP status codes defined by the HTTP
specification (http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html). This Mozilla article provides a
more condensed version: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

Assuming you get a successful status, 200, you then need to extract the data from the response message.
The data will be in the responseText property and you’ll need to convert this depending on the format
you’re expecting. For example, if JSON is being returned, you can get the actual object like this:

var data = JSON.parse(myRequest.responseText);

Summary
You’ll generally use a function to send the request, and there will be a different function to handle the
response. The XMLHttpRequest object needs to be shared by both functions, so you’ll need to declare it
outside of the function scope. Putting it all together, a simple solution is shown in Listing A-1.

Listing A-1.  A simple Ajax example

var myRequest;
var responseData;

function getData() {
 myRequest = new XMLHttpRequest();
 myRequest.onreadystatechange = getResponse;
 myRequest.open("GET", "http://someDomain.com/resource");
 myRequest.setRequestHeader("Content-Type", "application/json");
 myRequest.send();
}

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Appendix A ■ AJAX

516

function getResponse() {
 try {
 if (myRequest.readyState === XMLHttpRequest.DONE) {
 switch(myRequest.status) {
 case 500:
 break;
 case 404:
 break;
 case 200:
 responseData = JSON.parse(myRequest.responseText);
 break;
 }
 }
 }
 catch(ex) {
 console.log("Ajax error: " + ex.Description);
 }
}

When the getData() function is called, assuming the request is successful, the responseData object will
hold the data returned from the server. Of course, you’ll probably need to do something with this data. To do
that, the getResponse() function should call another function that will use the data that was just extracted.

517© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_28

APPENDIX B

Drag and Drop Source Code

Listing B-1 contains the final JavaScript implementation for the Drag and Drop application that was
demonstrated in Chapter 24.

Listing B-1.  Chapter 24 source code

"use strict";

function createBoard() {
 var board = document.getElementById("board");

 for (var y=0; y < 8; y++) {
 var row = document.createElement("div");
 row.className = "row";
 board.appendChild(row);

 for (var x=0; x < 8; x++) {
 var square = document.createElement("div");
 square.id = x.toFixed() + y.toString();
 if ((x + y) % 2) {
 square.className = "bblack";
 }
 else {
 square.className = "bwhite";
 }

 // If the square should have a piece in it...
 if ((x + y) % 2 != 0 && y != 3 && y != 4) {
 var img = document.createElement("img");
 if (y < 3) {
 img.id = "w" +square.id;
 img.src = "Images/WhitePiece.png";
 }
 else {
 img.id = "b" + square.id;
 img.src = "Images/BlackPiece.png";
 }

http://dx.doi.org/10.1007/978-1-4842-2463-2_24
http://dx.doi.org/10.1007/978-1-4842-2463-2_24

Appendix B ■ Drag and Drop Source Code

518

 img.className = "piece";
 img.setAttribute("draggable", "true");
 square.appendChild(img);
 }

 square.setAttribute("draggable", "false");
 row.appendChild(square);
 }
 }
}

function allowDrop() {
 // Wire up the target events on all the black squares
 var squares = document.querySelectorAll('.bblack');
 var i = 0;
 while (i < squares.length) {
 var s = squares[i++];
 // Add the event listeners
 s.addEventListener('dragover', dragOver, false);
 s.addEventListener('drop', drop, false);
 s.addEventListener('dragenter', dragEnter, false);
 s.addEventListener('dragleave', dragLeave, false);
 }

 // Wire up the source events on all of the images
 i = 0;
 var pieces = document.querySelectorAll('img');
 while (i < pieces.length) {
 var p = pieces[i++];
 p.addEventListener('dragstart', dragStart, false);
 p.addEventListener('dragend', dragEnd, false);
 }
}

createBoard();
allowDrop();

// Handle the dragover event
function dragOver(e) {
 e.preventDefault();

 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text");
 var dragPiece = document.getElementById(dragID);

 // Work around - if we can't get the dataTransfer, don't
 // disable the move yet, the drop event will catch this
 if (dragPiece) {
 if (e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.dataTransfer.dropEffect = "move";
 }

Appendix B ■ Drag and Drop Source Code

519

 else {
 e.dataTransfer.dropEffect = "none";
 }
 }
}

// Handle the dragstart event
function dragStart(e) {
 if (e.target.draggable) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text", e.target.id);
 e.target.classList.add("selected");

 // Use a custom drag image
 var dragIcon = document.createElement("img");
 dragIcon.src = "Images/smiley.jpg";
 e.dataTransfer.setDragImage(dragIcon, 0, 0);
 }
}

// Handle the dragend event
function dragEnd(e) {
 e.target.classList.remove("selected");
}

// Handle the drop event
function drop(e) {
 e.stopPropagation();
 e.preventDefault();

 // Get the img element that is being dragged
 var droppedID = e.dataTransfer.getData("text");
 var droppedPiece = document.getElementById(droppedID);

 if (droppedPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(droppedPiece, e.target, true)) {
 // Create a new img on the target location
 var newPiece = document.createElement("img");
 newPiece.src = droppedPiece.src;
 newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
 newPiece.draggable = droppedPiece.draggable;

 if (droppedPiece.draggable){
 newPiece.classList.add("jumpOnly");
 }
 newPiece.classList.add("piece");

 newPiece.addEventListener("dragstart", dragStart, false);
 newPiece.addEventListener("dragend", dragEnd, false);
 e.target.appendChild(newPiece);

Appendix B ■ Drag and Drop Source Code

520

 // Remove the previous image
 droppedPiece.parentNode.removeChild(droppedPiece);

 // Remove the drop effect from the target element
 e.target.classList.remove('drop');

 // See if the piece needs to be promoted
 kingMe(newPiece);
 }
}

// Handle the dragenter event
function dragEnter(e) {
 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text");
 var dragPiece = document.getElementById(dragID);

 if (dragPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.target.classList.add('drop');
 }
}

// Handle the dragleave event
function dragLeave(e) {
 e.target.classList.remove("drop");
}

function isValidMove(source, target, drop) {
 // Get the piece prefix and location
 var startPos = source.id.substr(1, 2);
 var prefix = source.id.substr(0, 1);

 // Get the drop location, strip off the prefix, if any
 var endPos = target.id;
 if (endPos.length > 2) {
 endPos = endPos.substr(1, 2);
 }

 // You can't drop on the existing location
 if (startPos === endPos) {
 return false;
 }

 // You can't drop on occupied square
 if (target.childElementCount != 0) {
 return false;
 }

Appendix B ■ Drag and Drop Source Code

521

 var jumpOnly = false;
 if (source.classList.contains("jumpOnly")) {
 jumpOnly = true;
 }

 // Compute the x and y coordinates
 var xStart = parseInt(startPos.substr(0, 1));
 var yStart = parseInt(startPos.substr(1, 1));
 var xEnd = parseInt(endPos.substr(0, 1));
 var yEnd = parseInt(endPos.substr(1, 1));

 switch (prefix) {
 // For white pieces...
 case "w":
 if (yEnd <= yStart)
 return false; // Can't move backwards
 break;

 // For black pieces...
 case "b":
 if (yEnd >= yStart)
 return false; // Can't move backwards
 break;
 }

 // These rule apply to all pieces
 if (yStart === yEnd || xStart === xEnd)
 return false; // Move must be diagonal

 // Can't move more than two spaces
 if (Math.abs(yEnd - yStart) > 2 || Math.abs(xEnd - xStart) > 2)
 return false;

 // Only jumps are allowed
 if (Math.abs(xEnd - xStart) === 1 && jumpOnly)
 return false;

 var jumped = false;

 // If moving two spaces, find the square that is jumped
 if (Math.abs(xEnd - xStart) === 2) {
 var pos = ((xStart + xEnd) / 2).toString() +
 ((yStart + yEnd) / 2).toString();
 var div = document.getElementById(pos);
 if (div.childElementCount === 0)
 return false; // Can't jump an empty square
 var img = div.children[0];
 if (img.id.substr(0, 1).toLowerCase() === prefix.toLowerCase())
 return false; // Can't jump a piece of the same color

Appendix B ■ Drag and Drop Source Code

522

 // If this function is called from the drop event
 // Remove the jumped piece
 if (drop) {
 div.removeChild(img);
 jumped = true;
 }
 }

 // Set the draggable attribute so the next player can take a turn
 if (drop) {
 enableNextPlayer(source);

 // If we jumped a piece, we're allowed to go again
 if (jumped) {
 source.draggable = true;
 source.classList.add("jumpOnly"); // But only for another jump
 }
 }

 return true;
}

function kingMe(piece) {

 // If we're already a king, just return
 if (piece.id.substr(0, 1) === "W" || piece.id.substr(0, 1) === "B")
 return;

 var newPiece;

 // If this is a white piece on the 7th row
 if (piece.id.substr(0, 1) === "w" && piece.id.substr(2, 1) === "7") {
 newPiece = document.createElement("img");
 newPiece.src = "Images/WhiteKing.png";
 newPiece.id = "W" + piece.id.substr(1, 2);
 }

 // If this is a black piece on the 0th row
 if (piece.id.substr(0, 1) === "b" && piece.id.substr(2, 1) === "0") {
 var newPiece = document.createElement("img");
 newPiece.src = "Images/BlackKing.png";
 newPiece.id = "B" + piece.id.substr(1, 2);
 }

 // If a new piece was created, set its properties and events
 if (newPiece) {
 newPiece.draggable = true;
 newPiece.classList.add("piece");

Appendix B ■ Drag and Drop Source Code

523

 newPiece.addEventListener('dragstart', dragStart, false);
 newPiece.addEventListener('dragend', dragEnd, false);

 var parent = piece.parentNode;
 parent.removeChild(piece);
 parent.appendChild(newPiece);
 }
}

function enableNextPlayer(piece) {

 // Get all of the pieces
 var pieces = document.querySelectorAll('img');

 var i = 0;
 while (i < pieces.length) {
 var p = pieces[i++];

 // If this is the same color that just moved, disable dragging
 if (p.id.substr(0, 1).toUpperCase() ===
 piece.id.substr(0, 1).toUpperCase()) {
 p.draggable = false;
 }
 // Otherwise, enable dragging
 else {
 p.draggable = true;
 }

 p.classList.remove("jumpOnly");
 }
}

525© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2_29

APPENDIX C

References

Part 2
HTML Elements

Name Meta Sect Root Head Embed Inter Form Phrase Flow

a X X

abbr X X

address X

area X

article X X

aside X X

audio X X X

b X X

base X

bdi X

bdo X X

blockquote X X

body X

br X X

button X X X X

canvas X X X

caption

cite X X

code X X

col

colgroup

command X X

(continued)

Appendix C ■ References

526

Name Meta Sect Root Head Embed Inter Form Phrase Flow

data X

datalist X X

dd

del X X

details X X

dfn X X

div X

dl X

dt X

em X X

embed X X X X

fieldset X X X

figcapture

figure X X

footer X

form X

h1 X X

h1 X X

h3 X X

h4 X X

h5 X X

h6 X X

head

header X

hr X

html

i X X

iframe X X X X

img X X X X

input X X X X

ins X

kbd X X

keygen X X X X

label X X X X

legend X

(continued)

Appendix C ■ References

527

Name Meta Sect Root Head Embed Inter Form Phrase Flow

li

link X

main X

map X

mark X X

math X X X

menu X X

meta X

meter X X X

nav X X

noscript X

object X X X X X

ol X

optgroup

option

output X X X

p X

param

pre X

progress X X X

q X X

rp

rt

ruby X X

s X

samp X X

script X X X

section X X

select X X X X

small X X

source

span X X

strong X X

style X

sub X X

(continued)

Appendix C ■ References

528

Name Meta Sect Root Head Embed Inter Form Phrase Flow

summary

sup X X

svg X X X

table X

tbody

td X

template X

textarea X X X X

tfoot

th

thead

time X X

title X

tr

track

ul X

var X X

video X X X X

wbr X X

Global Attributes
These attributes are supported in all HTML elements

Common
•	 accesskey - use this to define keyboard shortcut to either activate or set the focus

on this element. The actual keyboard command that precedes this will depend on
the browser and operating system. For more information, check out this article:
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/
accesskey.

•	 id - a unique identifier, this is a string that cannot contain any space characters and
must be unique within the entire HTML document.

•	 tabindex - an integer specifying the order in which this element is navigated to when
using the tab command.

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey

Appendix C ■ References

529

Formatting
•	 class - a list of space-separated classifications, used primarily when applying styles.

•	 hidden - a Boolean attribute, if present ,indicating the element is not currently
visible.

•	 style - includes one or more CSS declarations to provide inline styling of an
element.

Text Attributes
•	 dir - indicates the text direction, ltr or rtl. The default is auto, which will be set

based on the character set of its contents as well as the inherited value. (See Chapter 5
for details).

•	 lang - indicates the language of the contents.

•	 spellcheck - a Boolean attribute, if present, indicates that spelling and grammar
validation should be performed on the text.

•	 translate - set to yes if the element's content should be translated when the page is
translated by the browser. Set to no if it should not be translated.

Drag and Drop
(see Chapter 24 for details)

•	 draggable

•	 dropzone

Other
•	 contenteditable - set to true or an empty string if the contents are editable; set to

false if not.

•	 contextmenu - indicates the id of a context menu (this has little browser support,
currently).

•	 data-* - these are custom attributes not used by the browser but useful in client-side
scripting.

•	 title - additional information about an element.

Self-Closing Tags
The following HTML5 elements are self-closing tags, which means that they do not have separate opening
and closing tags. This also means that apart from attributes, they have no content either, since the content
goes between the opening and closing tags. These are also known as empty or void elements.

•	 <area /> - a selectable area of an image

•	 <base /> - the root path of any relative path in the document

http://dx.doi.org/10.1007/978-1-4842-2463-2_5
http://dx.doi.org/10.1007/978-1-4842-2463-2_24

Appendix C ■ References

530

•	
 - a line break that renders like a carriage return

•	 <col /> - defines a column within a table

•	 <embed /> - embedded content

•	 <hr /> - horizontal rule, used to signify a topic change

•	 <iframe /> - embeds another web page inside the current document

•	 - an image or picture

•	 <input /> - an input field such as a text box or checkbox on a form

•	 <link /> - links an external or related resource

•	 <meta /> - provides metadata about the current document

•	 <param /> - a parameter within an object element

•	 <source /> - used to reference the source of a video or audio element

•	 <track /> - specifies the track of a video or audio element

•	 <wbr /> - a word break opportunity where a line break could be made

The “/” at the end of the self-closing tag is optional in HTML5 as is the space before the slash. However,
the slash is required for XHTML such as when the XML MIME type is used, which is generally rare. However,
I have seen applications that try to validate HTML by running it through a simple XML validator, which will
complain if you do not have the slash character.

There seems to be a fairly passionate debate in the web developer world about whether to include the
slash character or not. However, it seems those who argue against it do so primarily for readability sake,
which is really a matter of personal preference.

Input Types
A single input element is used for all types of data input from checkboxes to date pickers. The type attribute
defines how the input element will function. The supported types are listed here.

Type Description Comments

button A button, with no default action

checkbox A checkbox Use the checked attribute to default to
checked

color Selects a color The UI for selecting a color can vary
between browsers

date* Selects a date without any time
element

datetime-local* Selects a date as well as time No time zone is defined; this is the local
time of the browser

email A text box the accepts a valid
email address

Validation only looks at the format. Use
the multiple attribute if more than one
email can be entered

(continued)

Appendix C ■ References

531

Type Description Comments

file Selects a file from the client device The accept attribute specifies the file
types that are allowed. Use the multiple
attribute to select multiple files

hidden There is no UI but can have a value
that is submitted with the form

image A button that is displays an image Use the src attribute to define the
image to use

month* A date picker that selects only month
and year (no day)

number A text box that accepts a numeric
value

password The input is obscured such as
displaying an asterisk for each
character

radio Works like a checkbox except only
one in a group can be selected

range A slider that selects a relative value The min, max, and step attribute define
its functionality

reset A button that clears the input
fields back to their original, default
values

search A text box that is used to enter
search criteria

submit A button whose default action is
to submit the form

tel A text box that accepts a valid
telephone number

You must supply the formatting rules
through the pattern attribute

text A single line text box with no
additional validation

time* Specifies a time (hour, minute,
second)

url A text box for entering a valid URL Use the pattern attribute to define
formatting constraints

week* A date picker that selects year and
week (1-53)

*indicates that browser support may be limited. For details go to http://html5test.com/index.html

http://html5test.com/index.html

Appendix C ■ References

532

Part 3
Color Units

Keyword Hex Value Hex rgb rgb(%)

black #000000 #000 rgb(0,0,0) rgb(0%,0%,0%)

navy #000080 No equiv tgb(0,0.128) rgb(0%,0%,50%)

blue #0000FF #00F rgb(0,0,255) rgb(0%,0%,100%)

green #008000 No equiv rgb(0,128,0) rgb(0%,50%,0%)

teal #008080 No equiv rgb(0,128,128) rgb(0%,50%,50%)

lime #00FF00 #0F0 rgb(0,255,0) rgb(0%,100%,0%)

aqua #00FFFF #0FF rgb(0,255,255) rgb(0%,100%,100%)

maroon #800000 No equiv rgb(128,0,0) rgb(50%,0%,0%)

purple #800080 No equiv rgb(128,0,128) rgb(50%,0%,50%)

olive #808000 No equiv rgb(128,128,0) rgb(50%,50%,0%)

gray #808080 No equiv rgb(128,128,128) rgb(50%,50%,50%)

silver #C0C0C0 No equiv rgb(192,192,192) rgb(75%,75%,75%)

red #FF0000 #F00 rgb(255,0,0) rgb(100%,0%,0%)

fuchsia #FF00FF #F0F rgb(255,0,255) rgb(100%,0,100%)

yellow #FFFF00 #FF0 rgb(255,255,0) rgb(100%,100%,0%)

white #FFFFFF #FFF rgb(255,255,255) rgb(100%,100%,100%)

Distance Units – Absolute

Unit Definition

cm centimeters - there are 2.54 cm per inch

mm millimeters - 1/10 of a centimeter

q quarter of a millimeter - 1/40th of a centimeter

pc picas - there are 6 picas per inch

pt points - there are 72 points per inch

px pixels - there are 96 pixels per inch

in inches - 96 pixels, 72 points, or 6 picas

Appendix C ■ References

533

Distance Units – Relative

Unit Definition

em font size of the current element

ex height of the font of the current element

ch width of the "0" character of the current font

rem font size of the root element

vw 1% of the width of the viewport

vh 1% of the height of the viewport

vmin 1% of the smaller viewport dimension

vmax 1% of the larger viewport dimension

Angle Units

Unit Definition

deg degrees - there are 360° degrees in a circle

grad gradians (sometimes called gon or grade) - there
are 400 gradians in a circle

rad radians - there are 2π radians in a circle

turn turns - there is one turn in a circle

Time Units

Unit Definition

s seconds

ms milliseconds

Time units can be specified in either seconds or milliseconds. The s or ms suffix is required; otherwise
the value will be treated as a numeric value. Spaces between the value and unit are not allowed. Valid time
units are 3s, 1.5s, 100ms.

Appendix C ■ References

534

CSS Property List

Attribute Sub Chapter

align 14

-content

-items

-self

animation 15

-delay

-direction

-duration

-fill-mode

-iteration-count

-name

-play-state

backface-visibility 15

background 12

-attachment

-blend-mode

-clip

-color

-image

-origin

-position

-repeat

-size

border 12

-top/-bottom/-left/-right

-collapse 13

-color

-radius

-spacing 13

-style

-width

(continued)

Appendix C ■ References

535

Attribute Sub Chapter

border-image 12

-outset

-repeat

-slice

-source

-width

box-decoration-break*

box-shadow 12

break* 11

-after

-before

-inside

caption-side 13

clear 10

color 11

column*

-count

-fill

-gap

-rule

-rule-color

-rule-style

-rule-width

-span

-width

content 10

counter-increment

counter-reset

cue*

-after

-before

cursor 11

direction 11

display 10

elevation*

(continued)

Appendix C ■ References

536

Attribute Sub Chapter

empty-cells 13

filter*

flex 14

-basis

-direction

-flow

-grow

-shrink

-wrap

float 10

font 11

-family

-feature-setting

-kerning

-language-override*

-size

-size-adjust*

-stretch

-style

-synthesis*

-weight

font-variant 11

-alternatives*

-caps

-east-asian*

-ligatures*

-numeric

-position*

hanging-punctuation* 11

hyphens 11

image*

-orientation

-rendering

-resolution

justify-content 14

(continued)

Appendix C ■ References

537

Attribute Sub Chapter

layer-background

-color

-image

letter-spacing 11

line-break* 11

line-height 11

list-style 13

-image

-position

-type

margin 10

-top/-bottom/-left/-right

marks* 11

-after

-before

marker-offset*

max-height 10

max-width 10

min-height 10

min-width 10

nav

-down

-index

-left

-right

-up

object*

-fit

-position

opacity 11

order 14

orphans* 11

outline 12

-color

-offset

(continued)

Appendix C ■ References

538

Attribute Sub Chapter

-style

-width

overflow 10

overflow-wrap 11

padding 10

-top/-bottom/-left/-right

page-break 11

-after

-before

-inside

perspective 15

perspective-origin 15

position 10

quotes 11

resize

tab-size* 11

table-layout 13

text 11

-align

-align-last*

-autospace*

-combine-upright*

-decoration*

-decoration-color*

-decoration-line*

-decoration-style*

-indent

-justify*

-kashida-space*

-orientation*

-overflow

-shadow

-transform

-underline-position*

top/bottom/left/right 10

(continued)

Appendix C ■ References

539

Attribute Sub Chapter

transform 15

-origin

-style

transition 15

-delay

-duration

-property

-timing-function

unicode-bidi 11

vertical-align 11

visibility 10

white-space 11

windows 13

width 10

word-break 11

word-spacing 11

word-wrap 11

writing-mode 11

z-index 10

zoom

*these attributes have limited browser support

Part 4
Array Methods
These methods are available for array properties.

Method Example Description

concat var newArray = items.
concat(array1, array2, ...);

Returns a new array with the contents of both the
original array and the arrays passed as parameters.

copyWithin items.copyWithin(2, 4, 2); Copies elements in an array, to other elements in the
array. The first parameter specifies the index to copy to,
the second parameter specifies the index to copy from,
and the third parameter specifies the ending index.
So the elements between the 2nd and 3rd parameters
are copied to the index in the 1st parameter. The copy
overwrites the existing elements.

(continued)

Appendix C ■ References

540

Method Example Description

every var bool = items.
every(compareFunc);

Returns true if the specified compare function returns
true for every element in the array.

fill items.fill("x", 3, 2); Replaces the values of the specified elements with
the value in the first parameter. The 2nd and 3rd
parameters indicate the starting and ending indices.

filter var subset = items.
filter(compareFunc);

Executes the compare function against every element
in the array and returns the set of elements where the
compare function returns true.

find var item = items.
find(compareFunc);

Returns the first element in the array where the
specified compare function returns true.

findIndex var i = items.
findIndex(compareFunc);

Returns the index of the first element in the array where
the specified compare function returns true.

forEach items.forEach(function); Calls the specified function for each element in the
array.

indexOf var i = items.
findIndex(compareFunc, 2);

Returns the index of the first element in the array
where the specified compare function returns true. The
second parameter indicates which location in the array
to start the search (default is 0).

join items.join("; "); Outputs the elements into a string with each element
separated by the specified string.

lastIndex var i = items.
findIndex(compareFunc);

Returns the index of the first element in the array where
the specified compare function returns true.

map var newArray = items.
map(function);

Creates a new array that is the same size as the existing
array. Each element is created by calling the specified
function on the corresponding element in the original
array.

pop var item = items.pop(); Removes the last element from the array and returns it.

push var l = items.push("xyz"); Adds the specified element to the end of the array and
returns the new length.

reduce var v = items.
reduce(aggrFunc, initial);

Reduces the array to a single value by applying the
specified function to each element, starting with the
first element.

reduceRight var v = items.
reduceRight(aggrFunc,
initial);

Reduces the array to a single value by applying the
specified function to each element, starting with the
last element and going in reverse.

reverse items.reverse(); Sorts the elements alphabetically in reverse order.

shift var item = items.shift(); Removes the first element of the array and returns it.
The index of the remaining elements is shifted down
one so the second element (which is now the first) has
a zero index.

(continued)

Appendix C ■ References

541

Method Example Description

slice var subArray = items.
slice(2, 3);

Removes elements from an array and returns them
as a new array. The first parameter specifies where to
start, and the second parameter indicates how many
elements should be removed.

some var bool = items.
every(compareFunc);

Returns true if the specified compare function returns
true for at least one element in the array.

sort items.sort(); Sorts the items in the list alphabetically.

splice items.splice(2, 1, "x",
'y", "z");

First removes elements from the array based on the
first 2 parameters (the starting elements and the
number to be removed), then inserts the remaining
parameters into the array at that location. The index of
the subsequent elements is adjusted as needed.

toString items.toString(); Outputs each of the elements into a comma-separated
string.

unshift var l = items.unshift(“abc”); Adds the specified element to the beginning of the
array (as index 0) and shifts the remaining indices by
one. Returns the new length of the array.

valueOf var v = items.valueOf(); This is the default function. Returns a string containing
a comma-separated list of elements.

Window Members

Property Description

applicationCache Provides a list of the resources that have been cached for offline support.

console A place to write debugging messages and run ad hoc JavaScript commands.

crypto Returns a Crypto object that is used for hashing, encryption, or random number
generation. The specification is still in the early stages. For more details see the
specification at https://w3c.github.io/webcrypto/Overview.html.

devicePixelRatio Indicates the ratio between the device pixels and the device independent pixels.

dialogArguments For dialog windows, this provides the arguments that were passed in when the
window was opened.

document The HTML document loaded in this window.

frameElement If the window represents a frame, indicates the element that the frame is
embedded in.

frames Returns a collection of child frames inside the current window.

fullScreen Indicates if the window is using fullScreen mode.

history Returns the history object that is used for navigating back to a previous page.

innerHeight The height of the available area that the windows content can be displayed in.
This will include the space used by the horizontal scroll bar, if there is one.

(continued)

https://w3c.github.io/webcrypto/Overview.html

Appendix C ■ References

542

Property Description

innerWidth The width of the available area that the windows content can be displayed in.
This will include the space used by the vertical scroll bar, if there is one.

isSecureContext Returns true if the window is using a secure context.

length Returns the number of subframes in the window.

localStorage Provides a place to store data that will be available after the session ends.

location Returns the location object that provides details about the web address of the
current document.

locationbar Returns the BarProp interface for the web address UI control.

menubar Returns the BarProp interface for the menu UI control.

messageManager Returns the MessageManager object that is used to manage interprocess
communication. Requires elevated privileges to use.

name The name of the window.

navigator Returns the navigator object that provide details of the browser and device.

opener The window that opened the current window.

outerHeight The height of the window including browser elements such as toolbars and menus.

outerWidth The total width of the window including all UI elements.

parent Returns the current window's parent or the current window if it is the topmost window.

performance Returns the Performance object that provides utilities for monitor client-side
performance monitoring.

personalbar Returns the BarProp interface for the personalization UI control.

returnValue Used for dialog windows; contains the value to be returned to the calling function.

screen Returns the screen object that provides details about the device's display.

screenX The distance from the left edge of the device display and the left edge of the
browser window.

screenY The distance from the top edge of the device display and the top edge of the
browser window.

scrollbars Returns the BarProp interface for the scrollbar UI controls.

scrollX The distance that the document is currently scrolled horizontally.

scrollY The distance that the document is currently scrolled vertically.

self Returns a reference to the current window.

sessionStorage Used for storing application data that expired when the session ends.

speechSynthesis Returns the SpeechSynthesis object that is used to access the Web Speech API.

status The text that is displayed in the status bar of the browser. This property can be set,
causing the updated text to be displayed.

statusbar Returns the BarProp interface for the status bar UI control.

toolbar Returns the BarProp interface for the toolbar UI control.

top Returns the topmost window.

window Returns the current window.

(continued)

Appendix C ■ References

543

Method Description

alert() Displays a modal dialog with the specified message.

atob() Converts a base-64 encoded string into binary data.

blur() Removes the focus from the window.

btoa() Converts binary data into a base-64-encode string.

clearInterval() Cancels a repeated timer that was scheduled using the setInterval() method.

clearTimeout() Cancels a timer that was created using the setTimeout() method.

close() Closes the window.

confirm() Displays a modal confirmation dialog box.

dispatchEvent() Fires the specified event.

dump() Writes a message to the console.

find() Searches for the specified string within the document.

focus() Change the focus to this window.

getComputedStyle() Computed all of the CSS declaration that should be applied to the window.

getSelection() Returns a selection object that indicates the selected items.

matchMedia() Performs the specified media query and returns a Boolean result.

moveBy() Moves the window by the specified amount.

moveTo() Moves the window to the specified location.

open() Opens a new window/tab.

openDialog() Opens a new window as a dialog box.

postMessage() Sends a message to another window.

print() Opens the Print dialog box to allow the user to print the document.

prompt() Opens a dialog box and returns the user's input.

resizeBy() Resizes the window by the specified amount.

resizeTo() Changes the window size to the specified dimensions.

scroll() Scrolls the document to the specified location.

scrollBy() Scrolls the window by the specified amount.

scrollByLines() Scrolls the document by the specified number of lines.

scrollByPages() Scrolls the document by the specified number of pages.

scrollTo() Scrolls the document to a specific set of coordinates.

setCursor() Sets the cursor icon.

setInterval() Schedules a function to be executed repeatedly with a specified pause between
each execution.

setResizeable() Toggles whether the window can be resized.

setTimeout() Schedules a function to be executed after a specified interval.

showModalDialog() Displays a modal dialog box.

sizeToContent() Changes the size of the window to fit the current contents.

stop() Stops the window from loading.

updateCommands() Updates the state of the commands in the browser UI.

Appendix C ■ References

544

Navigator Members

Property Description

appCodeName Indicates the code name for the browser.

appName Indicates the name of the browser.

appVersion Indicates the version details of the browser.

battery provides details about the device’s battery; includes the following
properties: charging (true if the device is pulled in and charging),
chargingTime (the number of seconds remaining until fully charged),
dischargingTime (the number of seconds until the battery is
completely discharged), and level (a valued from 0 to 1 indicating
the current charge level). You can also listen for events that fire when
these values change.

cookieEnabled Indicates if the cookies are currently enabled.

geolocation Obtains positioning data from the device. This is demonstrated in
Chapter 26.

hardwareConcurrency Returns the number of logical CPUs used by the device.

language Indicates the preferred language of the user of the current language
set in the browser’s UI.

mediaDevices Returns an array of media devices that are available.

mimeTypes Returns an array of MIME types that are registered.

online A Boolean value indicating if the device is connected to a network.

oscpu Specifies the operating system used by the device.

platform Returns the platform that the browser was compiled with.

plugins Returns an array of plugins that are currently enabled.

product Indicates the name of the engine used by the browser.

serviceWorker Returns the ServiceWorkerContainer object that is used to manager
the ServiceWorker objects associated with the current document.

userAgent A string describing the user agent (browser).

Method Description

javaEnabled() returns true if the browser support JavaScript

registerContentHandler() registers as an available handler for a specific MIME type

registerProtocolHandler() registers as an available handler for a specific protocol

vibrate() causes the device to vibrate if the device supports it

http://dx.doi.org/10.1007/978-1-4842-2463-2_26

Appendix C ■ References

545

Console Methods

Method Description

assert() Writes an entry to the console log only if the first parameter is false. Use this
to log only under certain conditions such as a function returns an error. The
log entry also includes stack information.

clear() Removes all the entries from the console log.

count() Logs the number of times this line of code has been executed. If you pass a
label to the count() method, the label will be included in the log entry.

dir() Outputs an object to the console such that its members can be expanded or
collapsed in the log.

dirxml() Outputs the members of an object in either XML or JSON format.

error() Writes an entry to the console log to represent an error. This method
supports string substitution.

group() Writes an entry to the console log that starts a new group. Subsequent entry
to the log will be indented. Use the groupEnd() method to end the current
group. Groups can be nested.

groupCollapsed() Works just like the group() method except that the group is collapsed,
requiring the user to expand it to see the subsequent entries.

groupEnd() Closes the current group.

info() Write an informational message to the console log. This method supports
string substitution.

log() This method is used for general logging purposes. Other methods such as
error(), info(), and warn() imply a severity level, which log() does not.
This method supports string substitution.

profile() Starts the browser’s built-in profiling tool. The capabilities here will vary by
browser.

profileEnd() Stops the current profiler.

table() Displays data in the console as a table. The data must be either an object
or an array. If the data is an object, the property names and values are
displayed in tabular form. If the data is an array, a row will be displayed for
each entry in the array. If the contents of the array are objects, a separate
column will be used for each object property. You can also specify the
properties that should be included in the table.

time() Starts a stop watch. Use the timeEnd() method to stop it and log the
elapsed time.

timeEnd() Stops the specified stop watch.

timestamp() Adds a marker to the bowsers timeline or profiling tool.

trace() Logs the stack trace to the console.

warn() Writes a warning entry to the console log. This method supports string
substitution.

Appendix C ■ References

546

Element Inheritance

Name Inherits

a HTMLAnchorElement

abbr HTMLElement

address HTMLSpanElement

area HTMLAreaElement

article HTMLElement

aside HTMLElement

audio HTMLAudioElement

b HTMLSpanElement

base HTMLBaseElement

bdi HTMLElement

bdo HTMLSpanElement

blockquote HTMLQuoteElement

body HTMLBodyElement

br HTMLBRElement

button HTMLButtonElement

canvas HTMLCanvasElement

caption HTMLTableCaptionElement

cite HTMLSpanElement

code HTMLSpanElement

col HTMLTableColElement

colgroup HTMLTableColElement

command HTMLCommandElement

data HTMLDataElement

datalist HTMLDataListElement

dd HTMLElement

del HTMLModElement

details HTMLDetailsElement

dfn HTMLElement

div HTMLDivElement

dl HTMLDListElement

dt HTMLSpanElement

em HTMLSpanElement

embed HTMLEmbedElement

(continued)

Appendix C ■ References

547

Name Inherits

fieldset HTMLFieldSetElement

figcapture HTMLElement

figure HTMLElement

footer HTMLElement

form HTMLFormElement

h1 HTMLHeadingElement

h1 HTMLHeadingElement

h3 HTMLHeadingElement

h4 HTMLHeadingElement

h5 HTMLHeadingElement

h6 HTMLHeadingElement

head HTMLHeadElement

header HTMLElement

hr HTMLHRElement

html HTMLHtmlElement

i HTMLSpanElement

iframe HTMLIFrameElement

img HTMLImageElement

input HTMLInputElement

ins HTMLModElement

kbd HTMLElement

label HTMLLabelElement

legend HTMLLegendElement

li HTMLLIElement

link HTMLLinkElement

main HTMLElement

map HTMLMapElement

mark HTMLElement

menu HTMLMenuElement

meta HTMLMetaElement

meter HTMLMeterElement

nav HTMLElement

noscript HTMLElement

object HTMLObjectElement

(continued)

Appendix C ■ References

548

Name Inherits

ol HTMLOListElement

optgroup HTMLOptGroupElement

option HTMLOptionElement

output HTMLOutputElement

p HTMLParagraphElement

param HTMLParamElement

pre HTMLPreElement

progress HTMLProgressElement

q HTMLQuoteElement

rp HTMLElement

rt HTMLElement

ruby HTMLElement

s HTMLElement

samp HTMLElement

script HTMLScriptElement

section HTMLElement

select HTMLSelectElement

small HTMLElement

source HTMLSourceElement

span HTMLSpanElement

strong HTMLElement

style HTMLStyleElement

sub HTMLElement

summary HTMLElement

sup HTMLElement

svg SVGElement

table HTMLTableElement

tbody HTMLTableSectionElement

td HTMLTableDataCellElement

template HTMLTemplateElement

textarea HTMLTextAreaElement

tfoot HTMLTableSectionElement

th HTMLTableHeaderCellElement

thead HTMLTableSectionElement

(continued)

Appendix C ■ References

549

Name Inherits

time HTMLTimeElement

title HTMLTitleElement

tr HTMLTableRowElement

track HTMLTrackElement

u HTMLSpanElement

ul HTMLUListElement

var HTMLElement

video HTMLVideoElement

wbr HTMLElement

551© Mark J. Collins 2017
M. J. Collins, Pro HTML5 with CSS, JavaScript, and Multimedia, DOI 10.1007/978-1-4842-2463-2

�       � A
Anchor (a) element

download attribute, 116
href attribute, 115
linked resource, 116
target attribute, 116

AdjustWindow() function, 331
Ajax. See Asynchronous JavaScript And Xml (Ajax)
alert() function, 493
Animation, 161

attributes
delay, 289
direction, 289
duration, 289
fill-mode, 289
iteration-count, 289
name, 289
play-state, 290
timing-function, 289

configuration, 288
Cubic Bézier, 291, 293
keyframes, 287
multiple, 290
shorthand, 290

Application programming interface (API)
displaying location, 499–501
using geolocation object, 497–499
web project creation, 496–497

async attribute, 8
Asynchronous JavaScript And Xml (Ajax), 513

handling response, 514–515
request, making, 513
XMLHTTP, 513
XMLHttpRequest object, 513, 515

Attribute selectors, 164–165
Audio controls, 375
Audio elements

autoplay attribute, 123
Boolean attributes, 122
change source, 384

controls attribute, 378, 379
endAudio() function, 381
events, 377
file formats, 124
HTML document, 378
load() method, 384
Math.round() function, 379
native controls, 123–124
play and pause button, 379
progress and seek, 381
seekAudio() function, 381
setupSeek() method, 379
setVolume() function, 382
style adjustment, 383
toggleMute() function, 382
togglePlay() function, 380
updateMute() function, 382
updatePlayPause() method, 380
updateSeek() function, 381
volume attribute, 122
volume control, 382

autocomplete attribute, 136

�       � B
Backgrounds, 161, 236

clipping, 238
examples, 239–243
fixed background image, 243
gradient, 241
image attributes, 236

attachment, 237
origin, 237
position, 238
repeat, 237
size, 238

shorthand, 239
table styling, 254

Baseline, 277
Bing Mapping API, 375
Bing Maps account, 501, 503

Index

■ INDEX

552

block element, 175, 177
Block scope, 41
Blur() method, 331
Border-box background, 237–238
Borders, 161

basic styles, 219–221
box shadows, 233, 235
gradients

linear, 230–231
radial, 232–233

individual edges, 221–222
outlines, 235–236
radius, 223–224
table styling, 247–249
using images, 225

allocating, 226
assembling, 227, 229
slicing, 225–226

Box shadows, 233, 235
Browser environment, 305
Browser interface elements, 320
Browser object model (BOM), 305

document object, 307
history object, 310–312
location object, 309
navigator object, 312–313
screen object, 308–309
window object, 307

Button types
input element, 157
src attribute, 157
type attribute, 156

�       � C
Canvas element

chess board creation, 409
add animation, 420
draw rectangles, 410
getElementById() method, 409
getElementsByTagName() method, 409
height and width attributes, 409
using gradients, 412
using images, 413

clipping path, 433
composition

globalCompositeOperation property, 434
options, 437

solar system
arc() command, 424
beginPath() command, 423
drawing commands, 423
drawStar() function, 425
model drawing, 427

restore() function, 426
save() function, 426
scaling, 432
using paths, 423
using transformations, 424

Cascading style sheet (CSS)
basic concepts

color unit, 20
declarations, 18
distance unit, 19
keywords, 21
selectors, 17

box model, 23
Initial.css file, 26
precedence rules

!important keyword, 23
specificity rule, 22
style sheet sources, 22

Print.css file, 26
printed version, HTML document, 27
style attribute, 25
styling guidelines

applying styles, 16
content organization, 15–16
contextual information, 15
CSS3 specification, 17

styling rules, 15, 161
tables creation

applications, 261–267
display attribute, 258–259
non-tabular elements, 259–260
table demonstration, 259–261
tabular layout, 260–261

vendor prefixes, 24
Cathode-ray tubes (CRTs), 20
Cell tower triangulation, 496
charset attribute, 5
checked attribute, 5
Checkers application, DnD API, 443

checkers board, drawing, 444–446
web project creation, 443

Chess
simulation using IndexedDB, 375
using canvas, 375

Chrome features, 327–328
class attribute, 5
Classical inheritance, 35–36
Class selectors, 164
Client/server architecture, 131
Closure, 44
computeRowColumn() function, 490
concat() method, 52
configureDatabase()

function, 478, 485–486

■ INDEX

553

contain image, 238
content-box background, 237–238
Content, positioning, 175

absolute positioning, 195
centering content, 198
display, 175–176
fixed positioning, 196
float, 185–186

clearing, 187–188
containing, 189–191

inline block, 191–192
position, 192
relative positioning, 193–194
sizes

absolute size, 177–178
box sizing, 183–184
content-based, 180–181
IE work around, 182
Min-Content example, 182
relative size, 179
setting maximum values, 179

z-index, 196–197
Cookies

domain, 318
expire, 318
listing, 318–319
max-age, 318
path, 318
secure, 318

cover image, 238
createIndex() function, 469
createObjectStore() method, 478
CSS selectors, 161, 163

attribute selectors, 164–165
class selectors, 164
element selectors, 164
ID selectors, 164
media queries, 171–172
overview, 163
Pseudo-Class selectors, 165–167
pseudo-elements, 167–168
types, 163
using combinators, 168

combine element and class
selectors, 168

not selector, 170
operators, 169–170
Pseudo-class selectors, 169
resolving conflicts, 171

Cubic Bézier, 291, 293
cursive fonts, 201
Cursor, 217
Custom fonts, 200
Custom modal dialogs, 333–335

�       � D
Database structure

index creation, 479
resetting board, 479
specifying object key, 478

datalist element, 137
datetime attribute, 91
defer attribute, 8
defineProperty() method, 39
displayCapturedPieces() function, 492
DisplayMap() function, 507
document object, 307
Document object model (DOM)

elements, 339
elements creation, 342
find elements, 342
HTML document, 340
inheritance, 340
modify elements, 344
move elements, 343
populateBody() function, 341
related elements, 346
using jQuery

after() method, 349
append() method, 348
before() method, 349
createElement() method, 348
detach() method, 349
empty() method, 349
first() method, 348
get() method, 348
html() method, 348
prepend() method, 348
replaceAll() method, 349
replaceWith() method, 349
select elements, 347
wrap() method, 349

download attribute, 116
Drag-and-drop (DnD) API, 375, 439

advanced features
changing drag image, 464–465
dragging vs. windows, 465

checkers application, 443
checkers board, drawing, 444–446
web project creation, 443

data transfer object
storing data, 441
using drop effects, 441–442

enabling draggable elements, 442
enforcing game rules, 453

moving in turn, 460–464
promoting to king, 457–459
verifying move, 453, 455–457

■ INDEX

554

handling events, 439–440
dragend event, 440
dragenter event, 440
dragleave event, 440
sequence, 441
source and target elements, 440

support
allowing drop, 447–448
custom drop action, 448–450
visual feedback, 450–452

Drag and Drop source code, 517–523
drawBoard() function, 476
drawBoard() method, 487
drawPiece() function, 480, 482

�       � E
Element selectors, 164
Embedded elements, 57
Embedded HTML elements, 115

anchor, 115–116
audio

autoplay attribute, 123
Boolean attributes, 122
file formats, 124
using native controls, 123–124
volume attribute, 122

HTML5 plug-ins, 129
data attribute, 129
embed element, 130
object element, 129

images, 116
image map, 120–121
multiple sources, 117–118, 120
sizes attribute, 118
src attribute, 118
srcset attribute, 118

track
kind attribute, 127
label attribute, 128
src attribute, 128
srclang attribute, 128

video, 125–126
empty-cells attribute, 250
enableNextPlayer() function, 460, 463
enctype attribute, 134
Events

addEventListener() method, 366, 370
exploration, 372
HTML document, 365
interface

preventDefault() method, 372
properties, 371
stopImmediatePropagation() method, 372
stopPropagation() method, 372

propagation, 367
querySelectorAll() method, 369
registration, 366
unregistration, 370

�       � F
fantasy fonts, 201
Fill-mode, 289
Fixed background image, 243
Flex, 161

aligning items
align-content, 276
baseline option, 277
center option, 277

align-self attribute, 283
basis, 278
demonstration

base size, 280
CSS, 279–280
growth behavior, 280

direction, 271–272
display attribute, 271
end options, 276
grow(th), 278, 281
justify-content attribute, 274–275
order, 282
shrink calculation, 278, 281
special values, 278
vertical example, 284
wrap, 273–274

float attribute, 185–186
clearing, 187–188
containing, 189–190

pseudo-element, 191
setting overflow, 190–191

Font-relative units, 19
Fonts

custom, 200
families, 201
settings, 202

color, 204
feature, 207
kerning, 204
numeric, 207
size, 202–203
stretch, 205
style, 202
variant capitals, 206
weight, 203–204

shorthand notation, 208
web font, 199
web-safe, 199

Form elements, HTML, 57, 131
additional attributes, 134
button types, 156–157

Drag-and-drop (DnD) API (cont.)

■ INDEX

555

form action, 132
form method, 133
input element, 134

date and time data, 148–151
miscellaneous types, 143–144, 146–148
selection elements, 139–143
textual form data, 134–139

organizing form, 157–158
overview, 131–132
validation, 158
visual elements

labels, 153
meter element, 154, 156
output element, 153
progress element, 156

Frames, 287
access, 337–338
sandbox, 338
simple iframe, 336–337

�       � G
Geolocation, 495

API
creating web project, 496–497
displaying location, 499–501
using geolocation object, 497–499

data, 496
mapping platforms

adding map, 503–506
adding pushpins, 507–510
Bing Maps account, 501, 503

technologies, 495–496
GetCookie() function, 319
getCurrentLocation() function, 499
getCurrentPosition() function, 497, 511
getData() function, 516
getNumber() function, 49–50
getResponse() function, 516
Glass pane approach, 333–335
Global attributes, 5
Global positioning system (GPS), 495
Global scope, 41, 43
Glyphs, 199
Gradients, border, 230

linear, 230–231
radial, 232

Group log entries, 316–317

�       � H
history object

length property, 310
popstate event, 311
pushState() method, 310–311

replaceState() method, 310–311
state property, 311

Horizontal (hr) element, 69
href attribute, 115
hreflang attribute, 11
HTML5 plug-ins, 57, 333, 336

data attribute, 129
embed element, 130
object element, 129
plug-ins, 129
technologies, 1

Hue, saturation, and lightness (HSL), 20
Hypertext Markup Language (HTML)

document, 4
attributes, 5
DOCTYPE, 4
elements, 4
manifest attribute, 6
structure rules, 5

elements, 1, 57
final web page, 14
head element, 6

base element, 12, 13
linkelement (see Link element)
meta element, 7, 8
script element, 8
script element, 8
style element, 11
title element, 6, 7

sample web page, 13–14
syntax, 3

�       � I
id attribute, 5
ID selector, 164
Inline frame (iframe), 336–337
Images, embedded HTML elements, 116

image map, 120–121
multiple sources

pixel ratio selection, 117
viewport selection, 118, 120

sizes attribute, 118
src attribute, 118
srcset attribute, 118

Immediately-invoked function expression (IIFE), 47
Indexed DB, 467

application, 471
canvas, drawing, 472–473
configuring pieces, 474, 476
web project creation, 471–472

captured pieces, tracking, 491–493
database creation, 476

opening, 476
structure, 477–479

■ INDEX

556

database, defining, 469–470
database entities, 468
moving the pieces

converting position, 487
defining moves, 485–486
making move, 487–488
object key, 489
starting animation, 490–491
update, 489–490

object store, 468–469
overview, 467
pieces, drawing

retrieving single object, 482–483
testing application, 483–485
using cursor, 481–482

processing asynchronously, 470–471
using transactions, 471

Inline block, 191–192
inline element, 175
Input elements, 134

date and time data, 148–151
miscellaneous types, 143

color, 143–144
file, 144, 146
hidden input, 148
number, 143
range, 146–147

selection elements, 139
checkbox, 140
drop-down lists, 141
multiple-select lists, 142–143
radio, 140

textual form data, 134
attributes, 138
autofill, 136–137
review, 138–139
textarea element, 135–136
text values, 135

IP block, 496
isValidMove() function, 453, 459, 461–462

�       � J
JavaScript, 1, 305

array methods
accessing elements, 50
callback function, 54
every() and some() methods, 55
filter() function, 54
find() and findIndex()

methods, 54
forEach() method, 55
indexOf() method, 53
lastIndexOf() methods, 53

manipulation, elements, 51
map() method, 54
output, 51
reduce() method, 56

browser environment, 305
comparison operators, 40
constructors, 31
context

apply() function, 46
call() function, 45–46
exception, 48–49
immediately-invoked function, 47
log() function, 45
myHandler() function, 46
namespace, 47–48
promise, 49–50
single object, 45
Truck() function, 46
Vehicle() function, 45

DOM manipulation, 305
Drag and Drop source code, 517
dynamic styling, 305
events, 305
functions, 43
inheritance

class-based inheritance, 36–37
classical, 35–36
console window, 32–33
overridden members, 37
own members, 33
prototypal inheritance, 33–35

object
creation, 29
definition, 29
JSON style, 30
myObject, 30
object constructor, 30
object literal notation, 30

properties
array, 38
attributes, 39
data type verification, 38
null data type, 40
undefined data type, 40

prototype, 32
strict mode, 42
variable's scope, 41–42
window object, 305

�       � K
Kerning, 204–205
Keyframes, 287
keypath parameter, 478
kingMe() function, 457, 459

Indexed DB (cont.)

■ INDEX

557

�       � L
label element, 153
Layout and positioning, 161
length property, 38
Letter-spacing, 212
Lexical scope, 43
Line-height space, 212
Link element

document navigation, 9
href and rel attributes, 9
icon file, 9
load resources, 9
current rel values, 9
self-closing tag, 9

Local scope, 41
location object, 309

�       � M
makeNextMove() function, 488–490
Mapping platforms, 501

adding map, 503–506
adding pushpins, 507–510
Bing Maps account, 501, 503

margin attribute, 18
Margin effect, 23
mark element, 82
max-content attribute, 180–181
maximumAge attribute, 498
meta element, 7–8
meter element, 154–155
min-content attribute, 180–183
monospace fonts, 201
movePiece() function, 490, 493

�       � N
navigator object

battery, 313
user agent, 312–313

none element, 175
novalidate attribute, 134
Nowrap, 273–274
nth-child(n) selector, 167
numericSort() function, 53

�       � O
Object.defineProperty() method, 39
Object store, 468–469
onerror database, 469
onerror event handler, 477
onsuccess database, 469
onsuccess event handler, 477, 493

onupgradeneeded database, 469
onupgradeneeded event handler, 477, 493
Open() method, 328
openCursor() method, 481–482

�       � P
padding-box background, 237–238
Padding effect, 23
Page breaks

attributes, 217
hyphens attribute, 216
overflow-wrap attribute, 216
page-break-after attribute, 217
page-break-before attribute, 217
page-break-inside attribute, 217
word wrap, 216

placeholder attribute, 148
Pop-Up blocker, 324–325
Pototypal inheritance

describe() method, 34
object prototype, 33
prototype chain, 33
SpecialItem() constructor, 34, 35

progress element, 156
Property descriptor, 39
Pseudo-class Selectors, 165–167
Pseudo-elements, 167–168
Pushpin() method, 507
PushState() method, 311

�       � Q
querySelectorAll() function, 450, 460

�       � R
rel attribute, 9
Reload() method, 310
removePiece() function, 491
removePiece() method, 489
Replace() method, 310
replaceState() method, 310–311
Representational State Transfer (REST), 133
resetBoard() function, 479–480
Rotation functions, 296–297
Rule set/rule block, 16

�       � S
Sandbox, 338
sans-serif fonts, 201
Scalable vector graphics (SVG), 375

add shapes, 389
add styles, 391

■ INDEX

558

animation, 405
image files

background, 393
creation, 392

map creation
inital implementation, 397
path elements, 394

state elements, 399
style elements

background image, 402
fill colors, 399
gradient fills, 400
with Javascript, 403

Scale functions, 296–298
Screen object, 308–309
Selectors. See CSS selectors
Self-closing tags, 5
Semantic phrasing elements

abbreviations and definition
abbreviation (abbr) element, 89
defining instance (dfn) element, 89
display, 89
hover text expansion, 90
title attribute, 90
title property, 89
W3C specification, 89

adding carriage
line break element, 94
soft hyphen, 96
word beak opportunity, 95

bidirectional text
bidirectional isolation (bdi) element, 99
direction overriding, 100
flow direction, 98–99
text direction, 97–98
tightly wrapping, 99

code element, 88
edits

Declaration of Independence, 91
default rendering, 92
insert and delete element, 91
two specific attributes, 92

highlighting text, 81
alternative voice (i element), 83–84
element review, 87
emphasis, 82
relevance element (mark), 82
small element, 84
strikethrough element, 84–85
strong element, 82
stylistically offset, 85–86
unarticulated content, 86

JavaScript code snippet, 88
keyboard and sample, 88

quoting
block quote, rendering, 93
cite attribute, 93
inline quote (q) element, 92

ruby element, 101
span element, 94
subscript (sub) element, 90, 91
superscript (sup) element, 90
time element, 91
variable element, 89

serif fonts, 201
SetInterval() timers, 320
SetTimeout() timers, 320
Skew function, 296, 298–299
slice() method, 52
Slicing border images, 225–226
small element, 84
sort() method, 52
Space-around option, 275
Space-between option, 276
span attribute, 106
splice() method, 52
Standard pop-up dialogs, 332
Storage, 319–320
Stretch option, 276
strikethrough element, 84
strong element, 82
Structural HTML elements

content categories, 59
deprecated elements

directory list (dir) element, 77
frame and frameset elements, 77
hgroup element, 77
hgroup element, 77

description list (dl) element
display, default formatting, 73–74
dl, dt, and dd elements, 74
glossary, 73
multiple, each element, 75
New York Yankees Starting Lineup, 74–75

document outlines
creation, sections, 62
document heading elements, 64–65
header and footer, 65
outline algorithm, 62
sample, default style, 63
view, 64

grouping elements
div element, 71
horizontal (hr) element, 69
main element, 70
paragraph (p) element, 69
preformatted (pre) element, 69

inline frames, 76
planning, page layout, 66

Scalable vector graphics (SVG) (cont.)

■ INDEX

559

reversed attribute, 72
sample unordered and ordered lists, 71–72
sectioning content

address element, 61–62
article element, 60
aside element, 61
division (div) element, 60
nav element, 61
section element, 60

sectioning roots
blockquote element, 67
details element, 67
figure element, 68

start attribute, 72
techniques, 77, 79–80
type attribute, 72

style attribute, 25, 106
Style sheets

alternate, 354
choosing, 353
enable, 351
inline styles

setAttribute() method, 362
set properties, 361
using CSSStyleDeclaration, 360

link elements, 355
modify classes, 359
modify rules, 357
properties, 352
toggleSS() function, 353
types, 354
window.getComputedStyle() method, 363

StylingTables. See Tables, styling
Scalar-vector graphics (svg), 115

�       � T
Table elements, 57
Table HTML elements

column group (colgroup) element, 105
column and row headings, 104
heading and footer

format, default styling, 108
main body, 107
multiple table head elements, 108

simple table, 103–104
spanning cells

colspan attribute, 108–109
CSS, 111
Periodic Table of Elements, 109, 112
Periodic Table source, 110–111
rowspan attribute, 109
style element, 112
table head cell (th) element, 111

Tables, styling, 161
background, 254
borders, 247–249
caption, 253
CSS creation

applications, 261–263, 265–267
display attribute, 258–259
non-tabular elements, 259–260
table demonstration, 259–261
tabular layout, 260–261

empty cells, 249
highlighting, 256–257
padding and alignment, 251–252
row borders, 250–251
styling lists, 268

image, 269
position, 270
shorthand, 270
type, 269

zebra striping, 255–256
Tabular data, 258
target attribute, 116
textarea element, 135

cols, 135
inputmode, 136
maxlength, 136
minlength, 136
pattern, 136
placeholder, 136
rows, 135
size, 136
spellcheck, 136
wrap, 135

Text elements, 57
Text styles, 161

cursor, 217
fonts, 199

custom, 200
families, 201
settings, 202–207
shorthand notation, 208
web, 199
web-safe, 199

page breaks
attributes, 217
hyphens attribute, 216
overflow-wrap attribute, 216
page-break-after attribute, 217
page-break-before attribute, 217
page-break-inside attribute, 217
word wrap, 216

spacing and alignment, 212
handling whitespace, 213
vertical alignment, 214–216

■ INDEX

560

text formatting
capitalization, 212
horizontal alignment, 209
indent, 209
overflow, 209–210
quotes, 210–211
shadow, 211

text-transform attribute, 212
3D transforms, vanishing point

demonstrate, 301
perspective attribute, 301
perspective-origin attribute, 301–302

timeout attribute, 498
Timing-function, 289
ToString() method, 309
Table row (tr) element, 247
Track element, 127

kind attribute, 127
label attribute, 128
src attribute, 128
srclang attribute, 128

Transforms
demonstrate, 299–300
rotation, 297
scaling functions, 297–298
skew, 298–299
3D, 300–303
translation, 296

Transitions
animation and, 293
CSS attributes, 294

delay, 294
duration, 294
property, 294–295
timing-function, 294

shorthand, 296
tran class selector, 295

Translate() function, 296
Translation functions, 296
type attribute, 10, 135
Type selectors, 163

�       � U
Underline (u) element, 86

�       � V
Video controls, 375, 385
Video element

autoplay attribute, 125
controls attribute, 125
video element, 126

Viewport-relative units, 20
Visual elements

labels, 153
meter element, 154, 156
output element, 153
progress element, 156

�       � W, X, Y
Web fonts, 199
Web-safe fonts, 199
white-space attribute, 213
Wi-Fi positioning, 495
Window

chrome features, 327–328
configuration, 326–328
custom modal dialogs, 333–335
manipulating, 328–329, 331
pop-up blocker, 324–325
reusing, 326
standard pop-up dialogs, 332–333

Window object
browser interface elements, 320
Cache

cookies, 317–319
storage, 319–320

console, 314
group log entries, 316–317
performance, 315–316
profiling, 315
string substitution, 314–315

timers, 320
Word-spacing, 212
Wrap-reverse, 273–274

�       � Z
zebra striping, 255–256
z-index, 196–197

Text styles (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I:
HTML5 Technologies
	Chapter 1: Hypertext Markup Language
	HTML Document
	Elements
	DOCTYPE
	Attributes
	Miscellaneous Structure Rules
	Html Element

	Head Element
	Title Element
	Meta Element
	Script Element
	Link Element
	Style Element
	Base Element

	Summary

	Chapter 2: Cascading Style Sheets
	Styling Guidelines
	Organizing Content
	Applying Styles
	CSS3 Specifications

	CSS Concepts
	Selectors
	Declarations
	Units
	Distance Units
	Color Units
	Keywords

	Precedence
	Style Sheet Sources
	Specificity Rule
	Important Keyword

	Box Model
	Vendor Prefixes
	Style Attribute
	Summary

	Chapter 3: JavaScript Essentials
	Introducing JavaScript
	Objects
	Constructors
	Prototypes

	Inheritance
	Using Prototypes
	Using Create
	Using the Class Keyword
	Overriding Members

	Properties
	Arrays
	Attributes
	Special Types

	Miscellaneous Topics
	Comparison Operators
	Variable Scope
	Strict Mode
	Functions
	Context
	Immediately-Invoked Functions
	Namespaces
	Exceptions
	Promises

	Array Methods
	Accessing Elements
	Outputting an Array
	Manipulating Elements
	Searching
	Creating Subsets
	Processing

	Summary

	Part II:
HTML
	Chapter 4: Structural HTML Elements
	Content Categories
	Sectioning Content
	Section
	Article
	Aside
	Nav
	Address

	Outlines
	Explicit Sections
	Document Headings
	Header and Footer

	Planning the Page Layout
	Sectioning Roots
	Blockquote
	Details
	Figure

	Grouping Elements
	Paragraph
	Horizontal Rule
	Preformatted
	Main
	Division

	Listing Elements
	List
	Description List

	Inline Frames
	Deprecated Elements
	hgroup
	dir
	frame and frameset

	Summary

	Chapter 5: Phrasing HTML Elements
	Highlighting Text
	Importance (strong)
	Emphasis (em)
	Relevance (mark)
	Alternative Voice (i)
	Small (small)
	Strikethrough (s)
	Stylistically Offset (b)
	Unarticulated (u)
	Element Review

	Other Semantic Phrasing
	Code, Sample, Keyboard, and Variable
	Abbreviations and Definitions
	Subscripts and Superscripts
	Time

	Edits
	Quoting
	Span
	Adding Carriage Returns
	Line Break
	Word Break Opportunity
	Hyphens

	Bidirectional Text
	Text Direction
	Flow Direction
	Tightly Wrapping
	Using Isolation
	Overriding the Direction

	Ruby
	Summary

	Chapter 6: Table HTML Elements
	Simple Table
	Column and Row Headings
	Column Groups
	Table Heading and Footer
	Spanning Cells
	Summary

	Chapter 7: Embedded HTML Elements
	Anchor
	Images
	Multiple Sources
	Pixel Ratio Selection
	Viewport Selection

	Image Map

	Audio
	Using the Native Controls
	File Formats

	Video
	Tracks
	HTML5 Plug-Ins
	Summary

	Chapter 8: HTML Form Elements
	Overview
	Form Element
	Form Action
	Form Method
	Additional Attributes

	Input Elements
	Textual Form Data
	Text Values
	Textarea
	Autofill
	Attributes
	Review

	Selection Elements
	Checkbox
	Radio
	Drop-Down Lists
	Multi-Select Lists

	Miscellaneous Types
	Number
	Color
	File
	Range
	Hidden Input

	Date and Time Data

	Other Visual Elements
	Labels
	Output Element
	Meter Element
	Progress Element

	Button Types
	Organizing a Form
	Validation
	Summary

	Part III:
CSS
	Chapter 9: CSS Selectors
	Selector Overview
	Element Selectors
	Class Selectors
	ID Selectors
	Attribute Selectors
	Pseudo-Class Selectors
	Pseudo-Elements

	Using Combinators
	Combining Element and Class Selectors
	Pseudo-Selectors
	Combinator Operators
	The Not Selector
	Group Operator
	Resolving Conflicts

	Media Queries
	Media Attributes
	Using Media Queries

	Summary

	Chapter 10: Positioning Content
	Display
	Defining Sizes
	Absolute Size
	Relative Size
	Setting Maximum Values
	Content-Based
	IE Work Around
	Min-Content Example
	Box Sizing

	Float
	Clearing Floats
	Containing Floats
	Setting Overflow
	Using a Pseudo-Element

	Inline Block
	Position
	Relative Positioning
	Absolute Positioning
	Fixed Positioning

	Z-Index
	Centering Content
	Summary

	Chapter 11: Text Styles
	Fonts
	Obtaining Fonts
	Web-Safe Fonts
	Web Fonts
	Custom Fonts

	Font Families
	Font Settings
	Style
	Size
	Weight
	Color
	Kerning
	Stretch
	Variant Capitals
	Numeric
	Feature Settings

	Shorthand Notation

	Text Formatting
	Horizontal Alignment
	Indent
	Overflow
	Quotes
	Shadow
	Capitalization

	Spacing and Alignment
	Basic Spacing
	Handling Whitespace
	Vertical Alignment

	Break
	Word Wrap
	Page Break

	Cursor
	Summary

	Chapter 12: Borders and Backgrounds
	Borders
	Basic Styles
	Individual Edges
	Radius
	Using Images
	Slicing
	Allocating
	Assembling

	Gradients
	Linear Gradients
	Radial Gradients

	Box Shadows
	Outlines
	Backgrounds
	Image Attributes
	Attachment
	Origin
	Repeat
	Position
	Size

	Clipping
	Background Shorthand
	Examples

	Summary

	Chapter 13: Styling Tables
	Styling Tables
	Basic Table Styling
	Borders
	Empty Cells
	Row Borders
	Padding and Alignment
	Caption

	Additional Table Styling
	Background
	Zebra Striping
	Highlighting

	Creating Tables with CSS
	Display Attribute
	CSS Table Demonstration
	Applications
	Aligning Elements
	Page Layout
	Responsive Layout

	Styling Lists
	Type
	Image
	Position
	Shorthand

	Summary

	Chapter 14: Flexbox
	Container Configuration
	Flex Direction
	Flex Wrap
	Justification
	Aligning Items

	Item Configuration
	Grow and Shrink
	Demonstration
	Calculating Shrink
	Uniform Growth

	Order
	Overriding Alignment

	Vertical Example
	Summary

	Chapter 15: Animation and Transforms
	Animation
	Keyframes
	Configuring Animations
	Animation Attributes
	Animation Shorthand
	Multiple Animations

	Cubic Bézier

	Transitions
	Transforms
	Translation
	Rotation
	Scale
	Skew
	Demonstration
	3D Transforms

	Summary

	Part IV:
JavaScript
	Chapter 16: Browser Environment
	Browser Object Model
	Screen
	Location
	History
	Navigator
	User Agent
	Battery

	Window Object
	Console
	String Substitution
	Profiling
	Performance
	Grouping Log Entries

	Cache
	Cookies
	Storage

	Browser Interface Elements
	Timers

	Summary

	Chapter 17: Window Object
	Create a Window
	Pop-Up Blocker
	Reusing the Window
	Configuration Parameter
	Position and Size
	Chrome Features
	Window Features

	Manipulating Windows
	Properties
	Methods
	Demonstration
	Focus

	Modal Dialog Windows
	Standard Pop-Up Dialogs
	Custom Modal Dialogs

	Frames
	Simple Example
	Accessing Frames
	Using Sandbox

	Summary

	Chapter 18: DOM Elements
	Document Object Model
	Element Inheritance
	Simple Demonstration

	Basic DOM Manipulation
	Finding Elements
	Creating Elements
	Moving Elements
	Modifying Elements

	Related Elements
	Using jQuery
	Fundamentals
	Selecting Elements
	jQuery Object

	Manipulating DOM Elements

	Summary

	Chapter 19: Dynamic Styling
	Changing Style Sheets
	Enabling Style Sheets
	Choosing a Style Sheet
	Alternate Style Sheets
	Using Style Elements

	Modifying Rules
	Modifying Classes
	Modifying Inline Styles
	Using CSSStyleDeclaration
	Setting Style Properties
	Using setAttribute

	Computed Style
	Summary

	Chapter 20: Events
	Initial Example
	Event Registration

	Event Propagation
	Unregistering Events
	Event Interface
	Common Event Properties
	Canceling Events

	Exploring Events
	Summary

	Part V:
Advanced Applications
	Chapter 21: Audio and Video
	Overview
	Custom Audio Controls
	Supporting Play and Pause
	Supporting Progress and Seek
	Controlling the Volume
	Adjusting the Style
	Changing the Audio Source

	Custom Video Controls
	Summary

	Chapter 22: Scalable Vector Graphics
	Introducing SVG
	Adding Some Simple Shapes
	Adding Styles

	Using SVG Image Files
	Creating an SVG Image
	Using an SVG Background

	Creating an Interactive Map
	Using Path Elements
	Implementing the Initial Map

	Styling the State Elements
	Using Basic Fill Colors
	Using Gradient Fills
	Using a Background Image
	Altering Styles with JavaScript

	Adding Animation
	Summary

	Chapter 23: Canvas
	Creating a Chess Board
	Drawing Rectangles
	Using Gradients
	Using Images
	Adding Simple Animation

	Modeling the Solar System
	Using Paths
	Drawing Arcs
	Using Transformations
	Saving the Context State
	Drawing the Solar System
	Applying Scaling

	Clipping a Canvas
	Understanding Compositing
	Summary

	Chapter 24: Drag and Drop
	Understanding Drag and Drop
	Handling Events
	Using the Data Transfer Object
	Storing Data
	Using Drop Effects

	Enabling Draggable Elements

	Creating the Checkers Application
	Creating the Project
	Drawing the Checkers Board

	Adding Drag-and-Drop Support
	Allowing a Drop
	Performing the Custom Drop Action
	Providing Visual Feedback

	Enforcing the Game Rules
	Verifying a Move
	Promoting to King
	Moving in Turn

	Using Advanced Features
	Changing the Drag Image
	Dragging Between Windows

	Summary

	Chapter 25: Indexed DB
	Introducing Indexed DB
	Using Object Stores
	Defining the Database
	Processing Asynchronously
	Using Transactions

	Creating the Application
	Creating the Web Project
	Drawing the Canvas
	Configuring the Pieces

	Creating the Database
	Opening the Database
	Defining the Database Structure
	Specifying the Object Key
	Creating an Index
	Resetting the Board

	Drawing the Pieces
	Using a Cursor
	Retrieving a Single Object
	Testing the Application

	Moving the Pieces
	Defining the Moves
	Converting the Position
	Making a Move
	Obtaining the Object Key
	Performing the Update
	Starting the Animation

	Tracking the Captured Pieces
	Summary

	Chapter 26: Geolocation and Mapping
	Understanding Geolocation
	Surveying Geolocation Technologies
	Using Geolocation Data

	Using the Geolocation API
	Creating the Web Project
	Using the Geolocation Object
	Displaying the Location

	Using Mapping Platforms
	Creating a Bing Maps Account
	Adding a Map
	Adding Pushpins

	Summary

	Appendix A: AJAX
	Making a Request
	Handing the Response
	Summary

	Appendix B: Drag and Drop Source Code
	Appendix C: References
	Part 2
	HTML Elements
	Global Attributes
	Common
	Formatting
	Text Attributes
	Drag and Drop
	Other

	Self-Closing Tags
	Input Types

	Part 3
	Color Units
	Distance Units – Absolute
	Distance Units – Relative
	Angle Units
	Time Units
	CSS Property List

	Part 4
	Array Methods
	Window Members
	Navigator Members
	Console Methods
	Element Inheritance

	Index

