Quick answers to common problems

PHP jQuery
Cookbook

Over 60 simple but highly effective recipes to create interactive
web applications using PHP with jQuery

open source

Vijay Joshi [| it

PUBLISHING

PHP jQuery Cookbook

Over 60 simple but highly effective recipes to create
interactive web applications using PHP with jQuery

Vijay Joshi

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

PHP jQuery Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2010
Production Reference: 1081210

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849512-74-9

www . packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittaregmail . com)

Credits

Author
Vijay Joshi

Reviewers
Anis Ahmad

Md. Mahmud Ahsan
Joe Wu

Shameemah Kurzawa

Acquisition Editor
Chaitanya Apte

Development Editor
Neha Mallik

Technical Editors
Mohd. Sahil

Hithesh Uchil

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Ashwin Shetty

Project Coordinator
Michelle Quadros

Proofreader
Mario Cecere

Indexer
Hemangini Bari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Vijay Joshi is a programmer with over six years of experience on various platforms. He
discovered his passion for open source four years ago when he started playing with PHP on a
hobby project after completing his Masters in Computer Applications. Vijay is a professional
web developer now and prefers writing code ONLY in open source (but that does

not always happen, unfortunately!). He switches hats as needed—he is full-time lead
programmer at Philogy, independent consultant for a few selected companies where he
advises them on a variety of Internet-based initiatives, and still remains an active blogger
athttp://vijayjoshi.org.

Besides his work, he enjoys reading, trekking, and sometimes getting obsessed with fitness.

Writing a book is a long and complicated task which requires the support
and coordination of many people. | am thankful to the entire team at Packt,
especially Michelle, Chaitanya, and Neha for being so cooperative and
patient with me.

This book is dedicated to all open source developers, contributors, and
enthusiasts around the world who have made PHP and jQuery the leading
programming tools in their niche. A big thank you to you guys. | am feeling
both proud and excited to be able to contribute to the community that gave
me so much to learn.

On a personal note, | would like to thank my parents, my brother Ajay, and
Sheethal for their support and encouragement.

A special thanks to Ravindra Vikram Singh for helping me get started on
this project.

About the Reviewers

Md. Mahmud Ahsan graduated in Computer Science & Engineering from the International
Islamic University Chittagong (IIUC) in Bangladesh. He is a Zend Certified Engineer and

expert in developing web applications, Facebook applications, Mashup applications, and
iPhone-native applications. Besides his full time job, he blogs at http://thinkdiff .net
and writes articles on different technologies, especially Facebook applications development.
He lives in Bangladesh with his wife Jinat.

Currently, Mahmud works as a Software Engineer (remote developer) in i2we inc. (867 Avalon,
Lafayette, CA) where he develops social web applications using PHP, MySQL, JavaScript, Zend
Framework, Codelgniter, jQuery, and Mashup APIs. He also leads various small to medium
level projects.

Mahmud is also an Indie iPhone application developer and publishes his own applications at
http://ithinkdiff.net.

He was a technical reviewer of the Zend Framework 1.8 Web Application Development
book by Packt Publishing.

I'm very grateful to my father who bought a computer for me in 2001. Since
then, | have loved programming and working with various technologies.

Joe Wu is a full-time Senior PHP Web Developer, and has been in the industry since 2005.
He has worked on various projects of all sizes and is familiar with most of the open source
technologies surrounding PHP web development.

Joe is always enthusiastic about new and upcoming technologies and is keen to learn and
pick up new skill-sets wherever possible and utilize them in his current or future projects. He
is also keen to learn about new opportunities and innovative ideas out there, and believes
that the market is always wide open for new and upcoming innovations to improve our way
of living.

Aside from all the technological computer work, Joe is a professional badminton player and

manages to somehow fit a near full-time training schedule together with his full-time job. Joe's
best ranking of 59th in the world in singles and the attendance of the Commonwealth Games
Delhi 2010 means that he has equally as much experience in badminton and web developing.

Aside from all the endeavors, Joe also works for his own company (with his business partner)
to put his skills and experience to good use and to help anyone who needs assistance with
web development.

Wackyinnovation (www.wackyinnovation.com) promotes the concept of always moving
forward and coming up with and utilizing new technologies and ideas. Their always
enthusiastic and can-do attitude ensures jobs are done to perfection with an innovative
edge on their competitors.

Shameemah Kurzawa has been programming since she was at high school. Being
motivated to be a Systems Analyst, she pursued both undergraduate and postgraduate
studies in Business Information System and Software Engineering, respectively.

She has been working as a Web Developer/Analyst for the past five years, for a renowned
company SBS (Special Broadcasting Service) in Australia. Besides work, she enjoys spending
her time with her family (she is the mum of a little two year old baby boy) and enjoys travelling
as well as investigating new technologies.

I would like to thank my husband, my son, and the Packt Publishing team for
their support and understanding in reviewing this book.

www.PacktPub.com

Support files, eBooks, discount offers,
and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

@ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy & paste, print and bookmark content
» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Handling Events with jQuery 7
Introduction 7
Executing functions when page has loaded 8
Binding and unbinding elements 9
Adding events to elements that will be created later 14
Submitting a form with jQuery 16
Checking for missing images 18
Creating the select/unselect all checkboxes functionality 21
Capturing mouse events 25
Creating keyboard shortcuts 28
Displaying user selected text 31
Dragging elements on a page 36
Chapter 2: Combining PHP and jQuery 41
Introduction 41
Fetching data from PHP using jQuery 43
Creating a query string automatically for all form elements 47
Detecting an AJAX request in PHP 50
Sending data to PHP 52
Aborting AJAX requests 56
Creating an empty page and loading it in parts 59
Handling errors in AJAX requests 63
Preventing browser from caching AJAX requests 67
Loading JavaScript on demand to reduce page load time 68
Chapter 3: Working with XML Documents 73
Introduction 73
Loading XML from files and strings using SimpleXML 76

Accessing elements and attributes using SimpleXML 79

Table of Contents

Searching elements using XPath 83
Reading an XML using DOM extension 88
Creating an XML using DOM extension 92
Modifying an XML using DOM extension 94
Parsing XML with jQuery 98
Chapter 4: Working with JSON 103
Introduction 103
Creating JSON in PHP 105
Reading JSON in PHP 107
Catching JSON parsing errors 109
Accessing data from a JSON in jQuery 112
Chapter 5: Working with Forms 119
Introduction 119
Adding input fields dynamically in a form 120
Searching for user-inputted string in a page 123
Checking for empty fields using jQuery 127
Validating numbers using jQuery 131
Validating e-mail and website addresses using regular expressions 134
Displaying errors as user types: Performing live validation 138
Strengthening validation: validating again in PHP 143
Creating a voting system 149
Allowing HTML inside text areas and limiting HTML tags that can be used 154
Chapter 6: Adding Visual Effects to Forms 159
Introduction 159
Creating a Tic-Tac-Toe game with effects 160
Informing a user while an AJAX request is in progress 167
Creating expandable and collapsible boxes (accordion) 172
Fading an element after updating it 177
Floating box on demand 180
Updating items in a shopping cart 184
Chapter 7: Creating Cool Navigation Menus 193
Introduction 193
Creating a basic drop-down menu 194
Creating a menu that changes background on mouse-over 198
Creating an accordion style menu 200
Creating a floating menu 206
Creating an interface for tabbed navigation 211
Adding more tabs 216
Creating a wizard using tabs 221

Table of Contents

Chapter 8: Data Binding with PHP and jQuery 229
Introduction 229
Fetching data from a database and displaying it in a table format 230
Collecting data from a form and saving to a database 236
Filling chained combo boxes that depend upon each other 241
Checking username availability from database 247
Paginating data for large record sets 252
Adding auto-suggest functionality to a textbox 258
Creating a tag cloud 266

Chapter 9: Enhancing your Site with PHP and jQuery 273
Introduction 273
Sending cross-domain requests using server proxy 274
Making cross-domain requests with jQuery 280
Creating an endless scrolling page 286
Creating a jQuery plugin 291
Displaying RSS feeds with jQuery and PHP 296

Appendix: Firebug 301
Introduction 301
Inspecting elements 303
Editing HTML and CSS 305
Debugging JavaScript 307

Index 311

Preface

Nowadays, web applications are behaving more and more like desktop applications with
lesser page loads and more user interaction and effects. The Web has become faster and
applications such as Gmail and Facebook have given a new meaning to web applications.

PHP on the server side and jQuery on the client side (browser) are a killer combination for
developing interactive web applications. PHP is the leading language of choice among web
developers and jQuery is now used on more than one-third of the top 1000 sites on the
internet and is the most widely-used library.

One thing that PHP and jQuery have in common is that they are easy to learn. Once you know
the basics, you can promote yourself to the next level easily.

And this is what the book will do for you. It is like a toolbox having a myriad of tools inside.

It will allow you to write faster web applications, which feel like desktop applications, with

the help of PHP and jQuery. Whether you want to learn live validations, create plugins, drag
elements, create a menu, watch videos using YouTube API, or interact with the database, just
jump to the respective recipe for the solution. AJAX, a key feature of rich internet applications,
is also covered in detail.

You are not required to read this book from the beginning to the end. Each recipe is
independent and is like a "how to" or a mini application in itself. You can directly look
for a solution to a specific problem.

I hope you will find this book useful and that it will help you to take your skills to a higher level.

What this book covers

Chapter 1, Handling Events with jQuery, helps you understand jQuery's cross-browser event
handling methods. You will learn to work with keyboard and mouse events. Advance event
handling topics, such as dragging and keyboard shortcuts are also discussed.

Chapter 2, Combining PHP and jQuery, lists several ways of sending AJAX requests using
jQuery and also describes how PHP responds to such requests. This chapter also contains
recipes that deal with caching of AJAX requests and error handling during AJAX requests.

Preface

Chapter 3, Working with XML Documents, explains working with XML files in PHP as well as
jQuery. Recipes will describe how to read, write, and modify XMLs using DOM and SimpleXML
extensions of PHP. Parsing XML with jQuery is also discussed.

Chapter 4, Working with JSON, discusses JSON in detail. You will be shown how to read and
write JSON data in PHP, and also explore jQuery's inbuilt capabilities of parsing JSON.

Chapter 5, Working with Forms, deals with forms and form validations. You will learn how to
validate forms for different types of data with jQuery. This will cover validating empty fields,
numbers, e-mail addresses, web addresses, and much more. Server-side validation methods
will also be discussed to make validations more powerful.

Chapter 6, Adding Visual Effects to Forms, extends the previous chapter and provides recipes
for adding visual effects to forms. Recipes in this chapter allow you to create user-friendly
forms by adding effects, such as highlighting, fading, expandable boxes, and various others.

Chapter 7, Creating Cool Navigation Menus, describes the creation of different types of
menus, such as animated menus, accordions, and tabbed menus. Advanced techniques for
creating tabs are also covered that will guide you in adding and removing tabs on the fly.

Chapter 8, Data Binding with PHP and jQuery, explains, in detail, how a database can be used
along with PHP and jQuery. Examples included in this chapter will explain how to fetch data
from the database and use it in web forms.

Chapter 9, Enhancing your Site with PHP and jQuery, teaches you some advanced techniques
of PHP and jQuery. It will show how to overcome browser restrictions like

cross-domain requests. You will learn to create a jQuery plugin for custom use and an
endless scrolling page among other things.

Appendix, Firebug, explains the use of Firebug for debugging HTML and JavaScript in web
pages. You will learn how to edit HTML and change the appearance of pages on the browser
itself without switching to actual code files. You will be able to execute JavaScript directly from
Firebug and further understand debugging JavaScript using this add-on.

What you need for this book

You should have Apache (or another web server), PHP (version 5.0 or above), and MySQL
installed on your system to be able to run the examples in this book. You can install them
all at once using software such as WampServer or you can install them separately. jQuery
(version 1.3.2 or higher) will also be required.

In terms of technical proficiency, this book assumes that you have working knowledge of PHP,
jQuery, HTML, and CSS. You need to know only the basics of these, leave the rest to this book.

Preface

Who this book is for

This book is for PHP and jQuery developers who just know the basics of these two and want
to use PHP and jQuery together to create rich internet applications. It provides a large number
of examples in each chapter that will take you from being a basic developer to a pro by giving
step-by-step instructions for each task in developing web applications using PHP and jQuery.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The input button has also been attached
toaclick event."

A block of code is set as follows:

$('input:text') .bind(
{

focus: function()

{

$(this) .val('");

b

blur: function()

{

$(this) .val ('Enter some text');
1
13N

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Now click on the Create
New Element button a few times to create some DIV elements".

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

\1 You can download the example code files for all Packt books
~ you have purchased from your accountat http://www.
Q PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be viewed

by selecting your title from http://www.packtpub.com/support.

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Handling Events with
jQuery

In this chapter, we will cover:

» Executing functions when a page has loaded

» Binding and unbinding elements

» Adding events to elements that will be created later
» Submitting a form using jQuery

» Checking for missing images

» Creating a select/unselect all checkbox functionality
» Capturing mouse movements

» Creating keyboard shortcuts

» Displaying user-selected text

» Dragging elements on a page

Introduction

Events are actions that execute some JavaScript code for producing the desired result. They
can be either some sort of manipulation of a document or some internal calculations.

Since different browsers handle events differently, it takes a lot of effort to write JavaScript
code that is compatible with all browsers. This chapter will help you understand event
handling and explore related methods of jQuery that can make scripts compatible on different
browsers. You will learn to work with the keyboard and mouse events. Advanced event
handling topics like dragging and keyboard shortcuts are also discussed.

Handling Events with jQuery

Executing functions when page has loaded

AJAX applications make extensive use of JavaScript to manipulate the content and the look
and feel of web pages. Web pages should have the DOM loaded before any JavaScript code
tries to perform any such modification on it.

This recipe will explain how to execute the JavaScript after the content has been loaded and
the DOM s ready.

Getting ready

Get a copy of the latest version of the jQuery library.

How to do it...

1. Create a file and name it as domReady . html.

2. To run any JavaScript code only after the DOM has completely loaded, write it
between the curly braces of . ready () method:

<script type="text/javascript"s>
$ (document) .ready (function ()
// code written here will run only after the DOM has loaded

3N

</scripts>

jQuery ensures that code written inside .ready () gets executed only after the DOM is fully
loaded. This includes the complete document tree containing the HTML, stylesheets, and
other scripts. You can, therefore, manipulate the page, attach events, and do other stuff. Note
that . ready () does not wait for images to load. Images can be checked using the . 1oad ()
method, which is explained in a separate recipe in this chapter.

If .ready () is not used, the jQuery code does not wait for the whole document to load.
Instead it will execute as it is loaded in the browser. This can throw errors if the written code
tries to manipulate any HTML or CSS that has not been loaded yet.

.

Chapter 1

Passing a handler to .ready()

In the previous example code we used an anonymous function with . ready (). You can also
pass a handler instead of the anonymous function. It can be done as follows:

<script type="text/javascript"s>
$ (document) . ready (doSomething) ;
function doSomething ()

{

// write code here

}

</script>

Another method of using .ready()

Instead of writing the code in the above mentioned format, we can also use one of the below
described variations for finding out when the DOM is ready:

$ (function ()

{
13N

Or

$ (doSomething) ;
function doSomething()

{

// DOM is ready now

}

Multiple .ready() methods

If there are multiple script files in your application, you can have a . ready () for each of
them. jQuery will run all of these after DOM loads. An example scenario may be when you
are using some plugins on a page and each one of them has a separate . j s file.

Binding and unbinding elements

This recipe will demonstrate how you can attach events to DOM elements using the .bind ()
method and how to remove them using the .unbind () method.

Getting ready

Get a latest copy of the jQuery library to use with this recipe.

Handling Events with jQuery

How to do it...

Create a new file, in a directory named chapteril, and name it as binding.html.

Write the HTML markup to create some HTML elements. Create an unordered list
with the names of some countries. After that, create a select box containing names
of continents as options. Finally, create a button that will be used to remove the event
handler from the select box.

<html>
<head>
<title>Binding Elements</titlex>
<style type="text/css">
ul { background-color:#DCDCDC; list-style:none; margin:Opt;
padding:0pt; width:250px;}
1li { cursor:pointer; margin:10px 0px;}
</style>
</head>
<body>

India</1i>
<1i>USA</1i>
<1li>UK</1li>
France</1li>

<selects>
<option value="Africa">Africa</options>
<option value="Antarctica"sAntarctica</options>
<option value="Asia">Asia</option>
<option value="Australia">Australia</options>
<option value="Europe">Europe</options>
<option value="North America"s>North America</options>
<option value="South America">South America</options>
</select>

<input type="button" value="Unbind select box"/>
</body>
</html>

Chapter 1

It's time to add some jQuery magic. Attach a c1ick event handler to list items using
the .bind () method, which will set the background color of the clicked item to red.
Attach the change event handler to the select box, which will display the value of the
selected item. Finally, add a c1ick handler to the button. Clicking on the button will
remove the event handler from the select box.

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$S('input:text') .bind(

{

focus: function/()

{

$(this) .val('"');

b

blur: function()

{

$(this) .val ('Enter some text') ;

}
13N

S('li') .bind('click', function()

{

S (this) .css('background-color', 'red');

13N

S('select') .bind('change', function()

{

alert ('You selected: '+ $(this).val());

13N

$('input:button') .bind('click', function()

{

S('select') .unbind ('change') ;
1
1

</scripts>

s

Handling Events with jQuery

4. Runthe binding.html file in your browser and click on some items in the list. The
background color of each item clicked upon will change to red. Now select some
value from the select box and you will see an alert box that displays the selected
value as shown in the following screenshot:

") Binding Elements - Mozilla Firefox

B Binding Elements

File Edit ‘Wiew Hiskory Bookmarks Tools Help Related Links
Lt flocalhost: 805 1Aook fchapter Lbinding. bt P > € -G |9
S TechCrunch 5y Google Blogoscoped DGet It BSpriteMe DNotein Reader » 5. The Official Google Bl D [# Typg
Indha

TE
_ The page at http:/flocalhost:B0OB1 says: E
IAntarl:iica : Unhind select box

1 ‘ou selected: Antarctica
-

Clicking on the Unbind select box button will remove the change event handler here
and the selection of a value from the combo box will now do nothing.

jQuery uses the .bind () method to attach standard JavaScript events to elements. .bind ()
takes two parameters. The first parameter is the event type to attach. It is passed in string
format, and event types such as click, change, keyup, keydown, focus, blur, and so on
can be passed to it. The second parameter is the callback function, which will be executed
when the event fires.

In the previous code, we used .bind () for the list items to attach a c1ick handler. In
the callback function, $ (this) refers to the element that fired the event. We then use the
.css () method to change the background color of the element that is clicked upon.

Similarly, we attached the change event to the select box using the .bind () method. The
callback function will be called each time the value of the select box is changed.

The input button has also been attached to a c1ick event. Clicking on the button calls the
.unbind () method. This method accepts an event type name and removes that event from
the element. Our example code will remove the change event from the select box. Therefore,
changing the value of the select box will not display any further alerts.

Sk

Chapter 1

There's more...

Binding multiple events

Multiple events can also be attached using the .bind () method. The following code attaches
two events focus and blur to a textbox. Focusing on a textbox will empty it, whereas taking
the focus away from it will put some text in it.

S ('input:text') .bind(

{

focus: function()

{

$(this) .val('");

b

blur: function()

{

$(this) .val ('Enter some text');
3N

1
‘Q Note that this functionality was added in Version 1.4 of jQuery. So, make

sure that you have the correct version before running this code.

Shortcut method for binding

Instead of using .bind (), events can be attached directly by using shortcut event names
to elements. For example, $ (element) .click (function() { }) ; can be written
instead of using $ (element) .bind ('click', function() {).

Other events can be attached similarly.

Triggering events
Events can also be triggered from the code. For this we have to pass the event name without
any parameter.

$(elementl) .click (function()

{

S (element2) .keydown () ;

13N

The above code will execute the keydown event of element2 when element1 is clicked.

[}

Handling Events with jQuery

Common event types

Here is a list of some common events that can be passed to the bind () and
unbind () methods.

blur focus
load unload
scroll click
dblclick mousedown
mouseup mousemove
mouseover mouseout
change select
submit keydown
keypress keyup

Unbinding all events from an element

If no parameter is passed to the .unbind () method, it will remove all event handlers
associated with the specified element.

$ (element) .unbind () ;

Adding events to elements that will be

created later

The .bind () method attaches events to only those elements that exist on a page. If any new
elements are created that match the criteria for the .bind () method, they will not have any
event handlers.

How to do it...

1. Create a new file in the chapterl directory and name itas 1ive.html.
2. Write the HTML, which creates a button and a DIV on the page and styles them a bit.

<html>
<head>
<title>Attaching events elements </titlex>
<style type="text/css">
div { border: 1px solid black;cursor:pointer;width:200px;margi
n:10px; }
</style>
</head>
<body>
<input type="button" id="button" value="Create New Element"/>

Chapter 1

<div class="future">Already on page</divs>
</body>
</html>

Time to spice things up with jQuery. Attach a c1ick event to the button. This button
will create the new DIV elements and will insert them into the page. Now attach a
click event handler to the DIV using the 1ive () method. Clicking on the DIV will
change its CSS and HTML.
<script type="text/javascript" src="jquery.js"></scripts>
<script type="text/javascript"s>

$ (document) .ready (function ()

{
S ('#button') .click (function ()
{
$('body') .append ('<div class="future">I am a new
div</divs>"') ;
1)
S('div') .live('click', function()
{
$(this) .css({'color':'red', 'font-weight': 'bold"'})
.html ('You clicked me') ;
1)
1)
</script>

Run the 1ive.html file and click on the DIV. You will see that its HTML and CSS has
changed. Now click on the Create New Element button a few times to create some
DIV elements. Clicking on any of these DIV elements will change their appearances.
A typical screenshot after a few clicks will look similar to the following;:

&) Attaching events elements - Mozilla Firefox
/ B Attaching events elements q ;; !

Fle Edt Wiew History Bookmarks Tools Help RelatedLinks
http: fflocahiost: 2081 ook /chapter 1 live. html

TechCrunch Google Blogoscoped B Get Ik B Spricete a Mote in Re

Create New Element
LAJready on page

|‘£uu clicked me

|le clicked me

lIa.manewdw

|‘£uu clicked me

|le clicked me

|‘£uu clicked me

lIa.manewdiv

]

Handling Events with jQuery

The input button creates the new DIV elements and appends them to the body of a
document. The secret lies in the next function. We have used jQuery's 1ive () method to
attach an event on click of a DIV element. 1ive () behaves exactly like bind () for attaching
events with only one major difference. Where bind () can add events to only existing
elements on a page, 1ive () remembers the attached event for that selector and applies

it to matching elements even if they are created later and then inserted into a page.

Therefore, all new DIV elements that are created as a result of clicking on the Create New
Element button also respond to the c1ick event handler.

Removing event handlers with die()

The die () method is similar to the unbind () method. It is used to remove event handlers
that were attached using the 1ive () method. Similar to unbind (), die () also has
two variations.

If it is called with no parameters, all event handlers will be removed. Another variation accepts
an event type name that will remove that particular event:

S (element) .die() ;
The following is the code for other variations that will remove only the specified event handler.
S (element) .die('click!');

If an element has more than one event handler attached to it, the above code will remove only
the click event handler and will leave the others intact.

See also

» Binding and unbinding elements provides basic information about adding and
removing events from elements.

Submitting a form with jQuery

We know that submit buttons are used in HTML forms to submit data to a server. Apart from
submit buttons, JavaScript also provides a submit method that can be used to submit forms.

In this recipe, you will learn how to submit forms the jQuery way and will also learn how the
form submission can be controlled using the submit button.

Chapter 1

Getting ready

Get the jQuery library to use with this recipe.

How to do it...

1. Create a new file, name it as formSubmit .html and save it in the
chapterl directory.

2. Write the following code, which creates a form with an input button (not submit
button). Add some jQuery code that will be triggered on clicking the button and will
submit the form.
<html>

<head>
<title>Submitting forms</title>
</head>
<body>
<form id="myForm">
<input type="button" value="Submit Form" />
</form>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$('input:button') .click (function ()
{
$ ('#myForm') .submit () ;
3N
1)
</scripts>
</body>
</html>

3. Runthe formSubmit.html file and click on the input button. It will submit
the form.

In this example we attached the c1ick event handler to the input button. The event handler
function will execute when the button is clicked. On clicking the button, jQuery's submit ()
method is called on the form, which submits the form. All browsers have a native submit

method to submit the form programmatically. jQuery has wrapped this functionality into its
own submit () method.

[}

Handling Events with jQuery

There's more...

Controlling form submission

If a form has a submit button then we can control whether to submit the form or not. In this
case we will have to attach an event handler to the form. This event handler will be executed
when a submit button on that particular form is clicked.

S ('#myForm') .submit (function ()

{

return false;

3N

The above code will execute when a submit button on the form with ID myForm is clicked. If
false is returned by the handler function, the form will not be submitted. This can be pretty
handy for validating forms. The code for validating form values can be placed in the handler
function. If values are validated, true can be returned, which will submit the form. In case the
validation fails, false can be returned, which will not allow the form to be submitted.

Another option is to use preventDefault (). As the name indicates, preventDefault ()
prevents the default event from being executed. It is a property of the event object.

S ('"#myForm') .submit (function (event)

{

event .preventDefault ()

3N

See also

» Binding and unbinding elements explains how to add and remove events
from elements.

Checking for missing images

If you are displaying some images in the browser and unfortunately some of the images are
missing, the browser will either display a blank space or will display a placeholder with a cross
symbol. This surely looks ugly and you would definitely want to avoid it. Wouldn't it be good if
you had a method with which you could find missing images or those that failed to load?

After going through this recipe you will be able to detect missing images and replace them
with an image of your choice.

Chapter 1

Getting ready

Get three or four images from your computer. You will need these with this recipe. Also keep
the jQuery file handy. Create another image using a program like paint with text "Could not
load image" written on it. This will be the default placeholder for images that fail to load.

How to do it...

1. Create a new file in the chapterl directory and name it as error.html.

2. Place a DIV in the page, which will be filled with images. Also, write some CSS to style
the DIV and the images.

<html>
<head>

<title>Check missing images</title>

<style type="text/css">

div

{
border:1px solid black;
float:left;

img

{
width:180px;
height:200px;
margin:10px;

}

</style>

</head>
<body>
<div id="imageContainer"></div>
</body>
</html>

3. Write the jQuery code that creates an array of image names. Intentionally put some
random names of images that do not exist. Then fill the DIV by creating image tags
from this array. Next, bind the error () event handler to the image elements.

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var images= ['himalaya.png', 'chaukori.png', 'tree.png',
'noSuchimage.png', 'anotheNonExistentImage.png'l];
var html = '';
$.each(images, function (key, wvalue)

{

Handling Events with jQuery

html+= '';

3N

$ ('#imageContainer') .html (html) ;

$('img') .error (function ()
{
$(this) .replaceWith('<img src="missing.png"
alt="Could not load image">"');
1
P

</script>

4. Runthe error.html file in a browser. You will see that the last two images, which
do not exist, have been replaced by another image that says Could not load image.

) Check missing images - Mozilla Firefox !EH

B Check missing images

File Edit ‘Wiew History Bookmarks Tools Help Related Links
[tp:/focalhost:a0al/mock/ichapter errorhtl 0 B B € - C X *f coogle Pl -

5 TechCrunch 5y Google Blogoscoped [Get 1t [Spritete [Mote in Reader » 5y, The official Google Bl £~

Could not Could not
load load
Image Image

First we use jQuery's $.each () method to iterate in the array that holds image names and
fills the DIV by creating image tags.

Then there is an error () event handler attached to image tags. This gets executed when
the image fails to load or has a broken src attribute. The event handler for the error ()
method replaces the nonexistent image with another image of our choice. In our case we
replace it with an image that we have created and that says Could not load image.

=]

Chapter 1

See also

» Binding and unbinding elements, which explains the basics of adding events.

Creating the select/unselect all checkboxes

functionality

This is a frequently-used feature of web applications. A group of checkboxes exists on a page,
which can be controlled by a single checkbox. Clicking on the master checkbox selects all
checkboxes and unchecking it deselects all.

We will create the functionality to toggle checkboxes in this recipe. We will also learn how
to get values for checked elements using jQuery's selectors.

Getting ready

Make sure you have the jQuery library ready to be used.

How to do it...

1. Create a new file in the chapterl directory and name it as checkbox.html.

2. Let us design the page first. Create an unordered list and apply some CSS to it.
The first item in this list will be a checkbox that will work as a handle to toggle other
checkboxes. Then create other items in the list: names of books each having a
checkbox before it. All these checkboxes have the same class name toggle.
Create another list item consisting of a button that will be used to display the
selected books. Finally, create a last list item and assign an ID to it. We will use
it to display selected book names.

<html>
<head>
<title>Select/Unselect Checkboxes</title>
<style type="text/css">
ul { background-color:#DCDCDC; list-style:none; margin:Opt;
padding:0pt; width:350px; }
1li { padding:10px; }
</style>
</head>
<body>

<lis
<input type="checkbox" id="handle">
<label for="handle">

s

Handling Events with jQuery

Toggle All</label>

</1li>

<input type="checkbox" class="toggle"/>
<label>A Study in Scarlet</label>

</1li>

<input type="checkbox" class="toggle"/>
<label>The Sign of the Four</label>

</1li>

<input type="checkbox" class="toggle"/>
<label>The Adventures of Sherlock Holmes</labels>

</1li>

<input type="checkbox" class="toggle"/>
<label>The Valley of Fear</label>

</1li>

<input type="checkbox" class="toggle"/>
<label>His Last Bow</labels>

</1li>

<input type="button" id="getValue"

value="Get Selected Values"/>
<li id="selected"></1i>

</body>
</html>

3. Running the checkbox.html file in browser will display the following screen:

&) Select/Unselect Checkboxes - Mozilla Firefox
/ B Select/Unselect Checkboxes @

File Edt ‘iew History Bookmarks Tools Help Related Links

http: #flocalhost:2081,book /chapter 1 /checkbox. html
[} Toggle All Checkboxes
[T A Study in Scarlet
" The Sign of the Four
7 The Adventures of Sherdock Holmes
" The Valley of Fear

" His Last Bow

Get Selected Values |

=

Chapter 1

4. To bring this page to life include the jQuery library and attach event handlers to the
checkboxes. The first event handler will be attached to the first checkbox, which will
take care of selecting and deselecting all other checkboxes. The second one will be
attached to individual checkboxes. It will select/deselect the main handle depending
on whether all checkboxes are checked or not. The last event handler is for the
input button that will display the selected values beneath it.

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$ ('#handle') .click (function () {
if ($(this) .attr ('checked') == true)
S('.toggle') .attr('checked', 'true');

else
S('.toggle') .removeAttr ('checked') ;

13N

$('.toggle') .click (function () {
if ($('.toggle:checked') .length == $('.toggle') .length)
S ('#handle') .attr ('checked', 'true');

if ($('.toggle:checked') .length < $('.toggle') .length)
S ('#handle!') .removeAttr ('checked') ;

13N

$('#getValue') .click (function () {
var values = '';
if($('.toggle:checked') .length)
{
$('.toggle:checked') .each (function () {
valuesgs+= $(this) .next('label') . html() + ' ,';
1
$('#selected') .html ('Selected values are: ' + values);

}

else
$('#selected') .html ('Nothing selected') ;
1
1

</scripts>

s

Handling Events with jQuery

5. Now, refresh your browser and start playing with the checkboxes. Clicking on the
Toggle All checkbox will select and deselect all the checkboxes alternatively. Click on
the Get Selected Values button and a comma-separated list will appear below the
button displaying names of all selected books.

&) Select/Unselect Checkboxes - Mozilla Firefox
/B Select{Unselect Checkboxes 2
File Edit Wiew History Bookmarks Tools Help Related Links

http: flocalhost: 2081 ook fchapter 1/checkbox. html

™ Togele Al

V& Study in Scarlet

W T S el Fam

¥ The Adventires of Sherlock Holmes
¥ The Valley of Fear

" His Last Bow

Get Selected Values |

Zelected values are: & Study m Scarlet The
Adventures of Sherlock Holmes The Valley of Fear |

On clicking the Toggle All checkbox we check if it is selected or not. If it is selected, we
select all the other checkboxes having the class toggle using the class selector and set
their checked attribute to true, which selects all the checkboxes. On the other hand, if it
is not selected we remove the checked attribute from all checkboxes that makes all of
these deselected.

We will have to take care of another issue here. If all the checkboxes are selected and any
one of them is deselected, the handler checkbox should also get deselected. Similarly, if
all checkboxes are selected one by one, the handler checkbox should also get checked.
For this we attach another event handler to all the checkboxes having class toggle. The
.toggle: checked selector selects all those elements that have class toggle and those
which are also selected. If the length of the selected elements is equal to the total number
of checkboxes, we can conclude that all are selected and hence we select the handler
checkbox too.

If the number of selected elements is less than the total number of checkboxes then we
remove the checked attribute of the handler checkbox to deselect it.

=

Chapter 1

There's more...

Using selectors

In the previous example we used . toggle:checked to select all the checkboxes that have
class toggle and are checked. : is a selector that is used to filter a set of elements. Listed
below are examples that demonstrate how it can be used to filter elements.

S('div:first') .click (function()

{
//do something

I3
The above code will select the first DIV on the page and will add a c1ick event handler to it.
$(p:gt(2) ') .hide() ;

gt stands for greater than. It accepts a O-based index and matches elements that have an
index greater than the one specified. If a page has 5 p elements, the above example will hide
p numbers 3 and 4. Remember that the index is O-based.

You can read about all the selectors on the jQuery site at this URL:
http://api.jquery.com/category/selectors/.

Capturing mouse events

jQuery can be used to determine the position of the mouse pointer on screen. This recipe
explains the technique for getting the mouse pointer position on screen. You will learn how
to create a tooltip that will appear at current mouse pointer position on a particular element.

Getting ready

Keep the jQuery file ready to use with this recipe.

How to do it...

1. Open a new file in your text editor and save it in chapteril directory as mouse . html.

2. Create a DIV with the ID tip and display set to none. This DIV will be displayed as
tooltip. Create three more DIV elements and assign class hoverMe to the first and
the last DIV. Write CSS styles for the DIV elements. The DIV that will be displayed as
the tooltip must have position setto absolute.
<html>

<head>
<titles>Mouse Movements</titles>

=]

Handling Events with jQuery

=]

<style type="text/css">

div

{
border:1px solid black;
float:left;
width:200px;
height:200px;
margin:10px;
font-family:verdana,arial;
font-size:14px;

div#tip
{
position:absolute;
width:100px;
height:auto;
1
</style>
</head>
<body>

<div id="tip" style="display:none;">YaY! I am a tooltip</div>

<div class="hoverMe">Hover me for a tooltip.</divs>
<div>This div will not display a tooltip</div>
<div class="hoverMe">Hover me for a tooltip.</divs>

</body>
</html>

Write the jQuery code that will display the tooltip when hovering over the DIV with
class hoverMe. Two functions will be required for this. The first one will take care
of showing and hiding the tooltip on hover with fade effect. The second function will
actually set the position of tooltip and will move it as the mouse pointer moves.
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()
{
S ('.hoverMe') .hover (
function ()
{
S('#tip') .fadeIn('slow') ;
b
function ()

{

Chapter 1

S('#tip') .fadeOut ('slow') ;

1) s

$('.hoverMe') .mousemove (function (e)
{
var topPosition = e.pageY+5;
var leftPosition = e.pageX+5;
$('#tip') .css(

{
'top' : topPosition+ 'px',
'left' : leftPosition +'px'
1)
1)
1)
</script>

4. Open your browser and run the mouse . html file. Hovering over the first and last DIV
elements will display a tooltip with fade effect. The tooltip will also follow the mouse
pointer as it moves.

&) Mouse Movements - Mozilla Firefox

{ D Mouse Mavements =

File Edit Wew History EBookmarks Tools Help Related Links

http Aflocalhost: 8081 /book ichapter 1/mouse. htrml | 2 > > [

v TechCrunch 5y Google Blogoscoped D Get It D Spritefe D Mote in Reader » 5y The Official Google Bl... D [Type in Hindi]

Howver me for a tooltip. This div will not display a Howver me for a tooltip.
tooltip

s

avl lama
tooltip

We have used the hover () method on the DIV elements to show and hide the tooltip. This
method attaches two event handlers to the specified element. The first event handler gets
executed when the mouse pointer enters the element and the second one executes when
the mouse pointer leaves that element. We have used the fadeIn () method to display the
tooltip when a mouse pointer enters a DIV and the fadeout () method to hide the DIV as
soon as the mouse pointer leaves it.

e

Handling Events with jQuery

The most important thing now is to position the tooltip where the mouse pointer is. For this
we attached an event handler mousemove on the DIV. As the name indicates, the handler
function will execute when the mouse pointer is moving over the DIV. jQuery makes an event
object available to the handler function, using which we can get the current mouse pointer
position. The pageX property of the event gives us the cursor position relative to the left
corner of the document. Similarly, the pageY property gets the mouse pointer position
relative to the top of the window.

We have the mouse pointer coordinates with us now. We then assign the value of pageX and
pageY to the CSS properties 1eft and top of the tooltip DIV respectively.The value 5 has
been added to each value to avoid the cursor from hiding part of the tooltip.

Creating keyboard shortcuts

Keyboard navigation is common in window-based applications. This is very handy for those
who prefer keyboard controls over mouse controls. Keyboard shortcuts can also be created in
web applications but they are difficult to implement due to inconsistency among browsers.

We will create a simple example in this recipe that will give you the basic understanding of
implementing shortcut keys. You will be able to create your own shortcut keys for use in your
web applications.

Getting ready

Get the jQuery library to use with this recipe.

How to do it...

1. Create a new file named keyboard.html and save it in the chapter1 directory.

2. Inthe body of HTML create two DIV elements and in the <head> section write some
CSS to apply styles to these DIV elements.

<html>

<head>
<title>Keyboard Shortcuts</title>
<style type="text/css">
div{ border : 1lpx solid black;float:left;height:200px;

margin:10px; width:220px;}

</style>

</head>

<body>
<div>You can toggle this div using Alt+S</div>

=]

Chapter 1

<div>You can toggle this div using Alt+G </div>

<p style="clear:both;"> </p>
<p>Press Alt+B to toggle both divs</p>
</body>
</html>

Write the jQuery code that will create keyboard shortcuts to toggle these DIV
elements. The keydown event handler will be used to implement this behaviour.

It will check for the keys that are pressed and then take actions accordingly. Three
shortcuts will be created. Pressing Alt + S will toggle the first DIV. Alt + G will toggle
the second DIV. Pressing Alt + B will toggle both the DIV elements together.

Another handler keyup will be used to reset the required variables.
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
//remember that this is a global variable
var altPressed = false;
$ (document) .keydown (function (event)
{
if (event.which == 18)
altPressed = true;
if (altPressed)

{
switch (event.which)
{
case 83:
$('div:first') .slideToggle('slow') ;
return false;
break;
case 71:
$('div:1last') .slideToggle('slow') ;
return false;
break;
case 66:
S$('div') .slideToggle('slow') ;
return false;
break;

Handling Events with jQuery

$ (document) .keyup (function (event) ({
if (event.which == 18)
altPressed = false;
1)
1)

</script>

4. Open your browser and run the keyboard.html file. Try pressing the shortcuts that
we have just created. You will see that the DIV elements will toggle with a slide effect.

¥ Keyboard Shortcuts - Mozilla Firefox

File Edit “iew History Bookmarks Tools Help Belated Links

€1 - €@ % | [tewsiocahost8081 book/chapterl eyboard himl
J. |_] Keyboard Shortcuts | -

Tou can toggle this div using Alt+S Tou can toggle this div using Al+HG

Press AP to toggle both divs

In order to be able to create shortcut keys, first we need to find out which key was pressed.
Different browsers have their own methods of determining the value of the pressed key.
jQuery normalizes the way this information can be retrieved across browsers. An event object
is available to handler functions. This event object has a property which that gives the code
of the pressed key. Alt key has the value 18.

The keyboard shortcuts in this recipe use the combination of Alt and the other keys. We begin
by declaring a global variable altPressed with the value set to false. Then there are two
events attached to the page. keydown will execute when a key is in a pressed state and
keyup when a key is released. Whenever Alt is pressed the keydown event will set its value
to true. When released, it will be reset to false again by the keyup handler function.

Next comes the i f statement, which will evaluate to a true value if the Alt key is pressed. If
Alt is pressed and another key is pressed along with it, the switch case will check the key's
value and will execute the corresponding switch case.

NED

Chapter 1

The value for the S key is 83. So, pressing S along with Alt will select the first DIV and
will apply the s1ideToggle effect to it. Similarly, Alt + G will toggle the second DIV and
Alt + B will toggle both DIVs.

Note the return of false in each case of switch statement. Returning
false is necessary to override a browser's default behavior. If false is
s . . .
not returned, pressing the Alt key will activate the browser's menu.

There's more...

List of common key codes
A list of key codes can be found at http://goo.gl/v2Fk

See also

» Binding and unbinding elements in this chapter explains how to attach events
to elements.

Displaying user selected text

You must have seen the WYSIWYG (What You See Is What You Get) editors in web
applications, which allow you to select some text using the mouse or keyboard and then
format it (like making it bold, changing its color, and so on).

This recipe will teach you how to retrieve the text that is selected by a user and perform some
basic formatting on it.

Getting ready

Get the jQuery library ready.

How to do it...

1. Create afile named textSelect.html in your chapterl directory.

2. Create four buttons out of which the first three will be used to make the text bold,
italic, and underlined respectively. Then create a textarea with some text in it. And
finally, enter a paragraph that will be used to display the formatted HTML.

Handling Events with jQuery

=

The last button will get the value of textarea and will insert it in the paragraph.
<html>

<head>
<title>Manipulating user selected text</title>
<style type="text/css">
p { color:red;font-size:17px;width:670px; }
</style>
</head>
<body>
<input type="button" value="b" id="bold" class="button"s>
<input type="button" value="i" id="italics" class="button"s>
<input type="button" value="u" id="underline" class="button">
<input type="button" id="apply" value="Apply HTML">
<div>
<textarea id="selectable" rows="20" cols="80">I consider that
a man's brain originally is like a little empty attic, and
you have to stock it with such furniture as you choose. A
fool takes in all the lumber of every sort that he comes
cross, so that the knowledge which might be useful to him
gets crowded out, or at best is jumbled up with a lot of
other things, so that he has a difficulty in laying his
hands upon it.</textarea>

</div>
<p id="container"></p>
</body>

</html>

Include the jQuery library and write the JavaScript function that will get the start and
end positions of the selected text.

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">

function getPositions ()

{

var startPosition = endPosition = 0;

var element = document.getElementById('selectable');

if (document.selection)

{
//for Internet Explorer
var range = document.selection.createRange() ;
var drange = range.duplicate();
drange.moveToElementText (element) ;
drange.setEndPoint ("EndToEnd", range) ;
startPosition = drange.text.length - range.text.length;
endPosition = startPosition + range.text.length;

Chapter 1

else if (window.getSelection)
//For Firefox, Chrome, Safari etc
startPosition = element.selectionStart;
endPosition = element.selectionEnd;

}

return {'start': startPosition, 'end': endPosition};

}

4. Next, write the code for the Apply HTML button that will simply get the text from the
textarea and insert it in the paragraph.

$('#apply') .click (function ()
{
var html = $('#container') .html ($('#selectable') .val());

3N

5. Let's code the first three buttons now. We will bind the click event with the three
buttons. On the click of each button, the position of the selected text will be retrieved
and it will be enclosed within HTML tags depending on which button is clicked.

S('.button') .click (function()
{
var positions = getPositions();
if (positions.start == positions.end)

{

return false;
!
var tag = $(this).vall();
var textOnPage = $('#selectable') .vall();

var startString = textOnPage.substr (0, positions.start);

var targetString = textOnPage.substr (positions.start,
positions.end - positions.start) ;

var formattedString = "<" + tag +">" + targetString +
ll</ll + tag +||>||;

var endString = textOnPage.substr (positions.end) ;

S ('#selectable!') .text (startString + formattedString +
endString) ;

3N

s

Handling Events with jQuery

6. Save the code, start your browser and point it to the file. Select some text with your
mouse and click on any of the buttons. You will see that the selected text has been
enclosed with the corresponding HTML tags. If you click on the second button (u), the
selected text will be enclosed in <u> and </u> HTML tags.

Now click on the Apply HTML button. You will be able to see the formatted text of the
textarea in HTML format inside the paragraph, as seen in the following screenshot:

¥) Manipulating user selected text. - Mozilla Firefox

{ B Manipulating user selected text,
File Edit Wiew History Bookmarks Tools Help Related Links

B http: fflocalhost: 8081 /book /chapterd fextSelecthtml D R

b | i | ApplyHTML |

I consider that & man's brain originally is like a little empty attic, and you
hawve to stock it with such furniture as you choose. <usr<ixld fool takes in all the
lumber of every sort that he comes across</ir</u>, =Zo that the knowledge which
might ke useful to him gets crowded out, or at hest is jumbled up with a lot of
other things, so that he has a difficulty in laying his hands upon it.

I consider that a man's brain originally s like a little empty attic, and wou have to stock it with such
furniture as you choose. A fool fakes tn all the lumber af every sart that ke comes across, so that
the knowledge which might be useful to him gets crowded out, or at best 15 jumbled up with a lot
of other things, so that he has a difficulty in laying his hands upon it.

On click of a button, we first get the start and end positions of selected text using the
getPositions () function. Determining this value is a bit complex as different browsers
have different methods for handling selections. Internet Explorer uses document . selection,
which represents a subset of documents, whereas Mozilla and similar browsers use
window.getSelection.

IE has a range of objects using which we can determine what text was selected, and the

start and end positions of selection in original text. First we create a range object from the
selection. Then we create a clone of it using the duplicate method. After this, two functions
moveToElementText () and setEndPoint () are used on the duplicated range. These
methods align the values of original text and the selection.

Once this is done, we compare the values of the original and the duplicated range to find out
the start position. Then we add the length of the selection to the start position, which gives
us the end position marker.

S E

Chapter 1

For other browsers, getting positions is relatively simple. Start and end positions of selections
in textarea can be retrieved using .selectionStart and .selectionEnd properties.

Once we get both these values, we create an object in which we put both of these and return
the object to the calling function.

If the values of both these positions are equal, it means that no text is selected. In this case
we simply return from the function and do nothing.

Then we determine which button was clicked. The clicked button's value will be used to format
the selected text. After that, we store the value of textarea in a local variable textOnPage.

Now comes the part where the actual manipulation takes place. We break the textOnPage
variable into three parts. The first part contains the string from the beginning to the starting
position of the selection. The second part of the string is the actual selected text of textarea that
has to be formatted. We now enclose it in HTML tags (, <i>, or <u>) according to the button
clicked. The third and final part is from where the selection ends to the end of the string.

To get the resulting string we can now simply concatenate these three strings and place it
back into the textarea. The textarea will now have text that has the selected text enclosed
in HTML tags. To verify this, click on the Apply HTML button. This will take the text from the
textarea and insert it as HTML into the paragraph with ID container.

There's more...

Short method for getting selected text

Another method can be used to get the selected text from other elements, such as <divs,
<p>, and so on. This will not give any positions but simply the selected text. Note that this
method will not work for textareas for Mozilla and similar browsers but it will work in Internet
Explorer for textareas as well as other controls.

Use the following function to get the selected text:

function getSelectedText ()
var selectedText = '';
if (document.selection)
var range = document.selection.createRange() ;
selectedText = range.text;

}

else if (window.getSelection)

{

selectedText = window.getSelection() ;

}

return selectedText;

s

Handling Events with jQuery

Dragging elements on a page

There are many plugins based on JavaScript, jQuery, and other libraries, which let users
implement the dragging functionality. A user presses the mouse button on an element and
moves it without releasing it. The element gets dragged along with the mouse pointer. The
dragging stops once the mouse key is released.

After finishing this recipe, you will be able to implement a dragging feature for elements on
your own. This recipe will show you how to make elements on a page draggable.

Getting ready

Get the jQuery library to use with this recipe.

How to do it...

1. Create a new file in the chapterl directory and name it as drag.html.

2. Create some DIV elements and assign the dragMe class to customize their
appearance. This class will also be used to attach event handlers to the DIV.

<html>
<head>
<title>Dragging</title>
<style type="text/css">
.dragMe
{
background-color: #8FBC8F;
border:1px solid black;
color: #fff;
float:left;
font-family:verdana, arial;
font-size:14px;
font-weight:bold;
height:100px;
margin:10px;
text-align:center;
width:100px;
}
</style>
</head>
<body>

Chapter 1

<div class="dragMe">Drag Me</div>
<div class="dragMe">Drag Me too</divs>
</body>
</html>

&) Dragging - Mozilla Firefox
/ B Drragqing \@

File Edit Wiew Histary Bookmarks Tools Help Rela
bty Aflocalhiost: 3081 /book ichapter 1/drag.hitml

TechZrunch Google Blogoscoped B et It B Spritefe

In the jQuery code, declare variables that will hold the coordinates of DIV being
dragged and the mouse pointer. Proceed to attach event handlers for mouse
movement to elements with the dragMe class.

We have attached two event handlers. The first is mousedown, which will execute
while the mouse button is in a pressed state on the target DIV. This will get the
current left and top coordinates of the DIV being dragged and the mouse pointer.
Now bind the mousemove element to the current DIV. The dragElement function
will be called when the mouse moves while its button is pressed.

The function dragElement calculates new values for the top and left of the DIV by
determining mouse movements and the DIV's current position and applies these
properties to the DIV. This results in the movement of the DIV.

Finally, bind the mouseup event to the document, which will stop the dragging after
the mouse has been released.

<script type="text/javascript" src="jquery.js"></scripts>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var mousex = 0, mousey = 0;
var divLeft, divTop;
$('.dragMe') .mousedown (function (e)

{

Eis

Handling Events with jQuery

var offset = $(this) .offset();

divLeft = parselnt (offset.left,10);
divTop = parselnt (offset.top,10);
mousey = e.pagey;

mousex = e.pageX;

$(this) .bind ('mousemove',6dragElement) ;

1)

function dragElement (event)

{
var left = divLeft + (event.pageX - mousex) ;
var top = divTop + (event.pageY - mousey) ;
$(this) .css(

{

'top' : top + 'px',
'left' : left + 'px',
'position' : 'absolute'

3N
return false;
}

$ (document) .mouseup (function ()

{

$('.dragMe') .unbind ('mousemove') ;

I3F
3N

</script>

4. Open the browser and run the drag.html file. Both DIV elements would be
draggable by now. You will now be able to drag any of these DIV elements by
pressing the mouse button over them and moving them around.

Global variables mousex and mousey will be used to store the left and top positions for the
mouse pointer, and the divLeft and divTop variable will store the left and top coordinates
of the DIV. Then we attached two event handlers to the DIV with class dragMe. First is
mousedown, Which will execute when the mouse button is in a pressed state on the target
DIV. In this function get the left and top positions of the DIV being dragged and store them

in the divLeft and divTop variables respectively. Secondly, get the left and top values for
the current mouse pointer position from the event object and save them in the mousex and
mousey Vvariables. Now when the button is pressed, bind the mousemove element to current
DIV. The dragElement function will be called when the mouse pointer moves while its button
is pressed.

NED

Chapter 1

The dragElement function now calculates the new left and top values for the DIV being
dragged. To calculate the new value for left, take the left value for the DIV (divLeft) and add
the difference in the mouse position to it. The difference in mouse position can be calculated
by subtracting the previous left value for mouse pointer from the current left value. Similarly
calculate the new value for top.

After both these values are calculated, use the css () method to apply these values to the
DIV being dragged. Don't forget to set the position as absolute. Without absolute positioning
the DIV will not be able to move.

» Capturing mouse movements in this chapter explains the method of retrieving
mouse coordinates.

» Binding and unbinding elements in this chapter teaches the basics of event handling.

s

Combining PHP and
jQuery

In this chapter, we will cover:

» Fetching data from PHP using jQuery

» Creating a query string automatically for all form elements
» Detecting an AJAX request in PHP

» Sending data to PHP

» Aborting AJAX requests

» Creating an empty page and loading it in parts

» Handling errors in AJAX requests

» Preventing a browser from caching AJAX request

» Loading JavaScript on demand to reduce page load time

Introduction

You surely know how typical web applications work. You enter a URL in your browser and the
browser loads that page for you. If you are required to submit a form, you will fill it and the
browser sends the filled data to the server side for processing. During this time you wait for
the entire page to load. If you are on a slow connection, the wait is even longer.

Let me describe another typical scenario, a web page has two select boxes. The first select
box asks you to select the name of a country. You make your selection and the whole page
loads to populate the second select box with the names of the cities in that country. If by
mistake you made a wrong selection, fixing your mistake means another page load. Irritating
isn't it?

Combining PHP and jQuery

The point | am trying to make here is: why load the complete page every time? Why can't you
just select the country name and using some magic in the background be provided with the
city list without loading the complete page? Maybe you can fill some other fields if the request
is taking longer.

This is where AJAX fits. AJAX is short for Asynchronous JavaScript and XML. AJAX is a technique
through which client-side scripts can interact with the server-side scripts using standard HTTP
protocols. Data can be moved back and forth between a client and a server script without full
page reloads.

Let's find out the meaning of AJAX word by word.

» Asynchronous: Asynchronous means that requests are made in the background
eliminating the need for a full page load. They can also be sent in parallel, and in
the meantime the user can continue interacting with other elements on the page.
Users do not have to wait for AJAX requests to complete. Remember the previous
country-city example? Yes it can be done.

» JavaScript: JavaScript means that the request to the server originates from
JavaScript. Browsers have their own implementation of what is called an
XMLHt tpRequest object. It is not a standard but different browsers have
their own implementation for it.

» XML: AJAX requests can be made to any platform be it a PHP page or a Java page.
Therefore, to exchange any data between a client and server, there arises the need
for a common format that can be understood by both JavaScript and server-side
language. One such format is XML. Data can be transferred between both client
and server using XML format.

» The XML in AJAX does not necessarily mean XML only. Data can be exchanged in
other formats as well. It can be your custom format, text, HTML, or JSON too. Most
common formats today are HTML and JSON.

Since the XMLHt tpRequest implementation of browsers vary, jQuery has wrapped this
functionality providing us with an array of cross-browser methods to work with AJAX requests.

In this chapter, you will get to know multiple AJAX methods of jQuery to transfer data between
JavaScript and PHP. You will learn to create AJAX requests, send data to the PHP script, and
perform actions on the received data.

We will also go through error handling mechanisms provided by jQuery.

In this chapter, we will primarily work with HTML or text response. Since JSON and XML are
topics that need to be looked upon in detail, we will discuss both of these in separate chapters.

Chapter 2

Q all JavaScript files have been loaded. By putting them at the end of page, the

In all the recipes, we will add the jQuery file and other jQuery code just before
the body tag closes and not in the head section as you might have seen so
far. Placing the files in the head section blocks the rendering of a page until

HTML will be rendered without the browser blocking anything and DOM will be
ready. After the page is loaded, we can then add the JavaScript or jQuery files.
This will make your pages faster.

Fetching data from PHP using jQuery

This recipe will teach you the usage of jQuery's get method to retrieve data from a PHP
script. We will see a simple example where data will be fetched from the server using the
get method based on user selection from a form.

Getting ready

Create a directory named chapter2 in your web root. Put the jQuery library file in this
directory. Now create another folder inside and name it as Recipel. As a recipe can have
more than one file, it is better to keep them separate.

How to do it...

1.

Create a file index.html in the Recipel folder. Write the HTML code in it that will
create a combo box with some options.

<html>
<head>
<title>jQuery.get ()</title>
<style type="text/css">
ul{border:1px solid black; list-style:none;
margin:Opt;padding:0pt;float:left;
font-family:Verdana, Arial, Helvetica, sans-serif;
font-size:12px;width:300px; }
1li{padding:10px 5px;border-bottom:1px solid black;}
</style>
</head>
<body>
<form>
<p>
Show list of:
<select id="choice">
<option value="">select</options>
<option value="good">Good Guys</option>

&1

Combining PHP and jQuery

<option value="bad">Bad Guys</option>

</select>
</p>
<p id="result"></p>
</form>
</body>
</html>

2. Just before the body tag closes, include the jQuery file and write the code that will
attach a change event handler on the combo box. The handler function will get the
selected value from the combo box and will send an AJAX request to PHP using the
get method. On successful completion of the request, the response HTML will be
inserted into a paragraph present on the page.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()

{

$ ('#choice!') .change (function ()
{
if ($(this).val() = '")
{
$.get (
'data.php',
{ what: $(this).val() },
function (data)
{
S ('#result') .html (data) ;
13N
}
13N
13N

</script>

3. Let's code some PHP and respond to the AJAX request. Create a file called data.php
in the same directory. Write the code that will determine the parameter received from
the AJAX request. Depending on that parameter, PHP will create some HTML using an
array and will echo that HTML back to the browser.

<?php
if ($_GET['what'] == 'good')
{
Snames = array('Sherlock Holmes', 'John Watson',
'Hercule Poirot', 'Jane Marple');
echo getHTML ($names) ;

}

Chapter 2

else if($ GET['what'] == 'bad')
{
Snames = array('Professor Moriarty', 'Sebastian Moran',
'Charles Milverton', 'Von Bork', 'Count Sylvius');
echo getHTML ($names) ;
1
function getHTML ($names)
{
S$strResult = '<uls>';
for($i=0; S$i<count (Snames); S$Si++)
{
$strResult.= ''.$names[S$i].'</1li>"';
!
$strResult.= '</uls>';

return S$strResult;

}

?>

4. Runthe index.html file in your browser and select a value from the combo box.
jQuery will send the AJAX request, which will get the formatted HTML from PHP and
will display it in the browser.

&) jQuery.get() - Mozilla Firefox

09 icuery.get) \E o

Eile Edit ‘jew Hiskory Bookmarks Jools Help Related Links

bt flocalhost: 2081 ook fchapter2 Recipel/

Show hist of | Good Guys =

Sherlock Holmes

John Watson

Hercule Poirot

Jane Marple

Combining PHP and jQuery

When a value is selected from the combo box, the corresponding event handler executes.
After validating that the selected value is not blank, we send an AJAX request using the
$.get () method of jQuery.

This method sends an HTTP GET request to the PHP script. $.get () accepts four
parameters, which are described below. All parameters except the first one are optional:

» URL: This is the file name on the server where the request will be sent. It can be
the name of either a PHP file or an HTML page.

» Data: This parameter defines what data will be sent to the server. It can be either in
the form of a query string or a set of key-value pairs.

» Handler function: This handler function is executed when the request is successful,
that is, when the server roundtrip is complete.

» Data type: It can be HTML, XML, JSON, or script. If none is provided, jQuery tries to
make a guess itself.

Note that the URL should be from the same domain on which the
application is currently running. This is because browsers do not allow
s\l cross-domain AJAX requests due to security reasons.

-~
Q For example, if the page that is sending the request is
http://abc.com/, it can send AJAX requests only to files located on
http://abc.com/ oron its subdomains. Sending a request to other
domains like http://sometothersite.com/ is not allowed.

We specified the URL as data.php. We sent a key what and set its value to a selected value
of the combo box. Finally the callback function was defined. Since the method is GET, the data
that will be sent to the server will be appended to the URL.

Now the request is fired and reaches the PHP file data.php. Since it is a GET request, PHP's
Superglobal array $_GET will be populated with the received data. Depending on the value of
key what (which can be either good or bad), PHP creates an array $names that is passed to
the getHTML () function. This function creates an unordered list using the names from the
array and returns it to the browser.

Note the use of echo here. echo is used to output strings on a page. In this case the page
has been called through an AJAX request. Hence, the result is sent back to the function

that called it. jQuery receives the response and this is available to us as a parameter of the
success event handler. We insert the received HTML in a <p> element with the ID result.

=)

Chapter 2

See also

>

>

Sending data to PHP later in this chapter

Creating an empty page and loading it in parts

Creating a query string automatically for all
form elements

Getting ready

Create a new folder Recipe2 inside the chapter2 directory. Now create a file index.html
in the newly created directory.

How to do it...

1.

Open the index.html file for editing and create a form with some HTML elements,
such as textboxes, radio buttons, and check boxes.

<html>
<head>
<title>Serializing form values</title>
<style type="text/css">
ul{ border:1px solid black; list-style: none;
margin:Opt;padding:0pt;float:left;font-family:Verdana,
Arial, Helvetica, sans-serif;font-size:12px;width:400px;
}
1i{ padding:10px 5px;border-bottom:1lpx solid black;}
label{width:100px;text-align:right;
margin-right:10px;float:left;}
</style>
</head>
<body>
<form>

<lis<label>Email:</labels>
<input type="text" name="email"/>
<lis><label>Full Name</labels>
<input type="text" name="fullName"/>
<lis
<label>Sex</label>
<input type="radio" name="sex" value="M"/>Male
<input type="radio" name="sex" value="F"/>Female

@1

Combining PHP and jQuery

</1li>

<label>Country</label>
<select name="country">
<option value="IN">India</options>
<option value="UK">UK</options>
<option value="US">USA</options>
</select>
</1li>

<labelsNewsletter</labels>

<input type="checkbox" name="letter"/>Send me more
information</1li>

<input type="button" value="GO"/>
</1li>

</form>
</body>
</html>

2. Once again include the link to the jQuery file. After that add an event handler for the
input button that we have placed on the form. This button will use the serialize ()
method on the form and will alert the resulting query string.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>

$ (document) .ready (function ()

{

$('input:button') .click (function ()

{

alert ($('form:first') .serialize());

3N
3N

</script>

3. Open your browser and run the index.html file. Fill the form and click on the GO
button. The browser will display the values of form elements in a query string format,
as shown in the following screenshot:

=

Chapter 2

") Serializing form values - Mozilla Firefox

9 serializing Form values

Fil= Edit Wiew History Bookmarks Tools Help Related Links

[htp:/localhost: 8081 hook/chapter 2 Recipes/ I . 2- C X *§ cog

Email: viiay(@mailserver com
Full Hame [v/ijay Joshi

Sed @ male © Female

Country [|ndia +

Mewsletter [send me more inf

GOl L’

The page at http:/flocalhost: B0B1 says: E

email=vijay%=40malserver, comefull jay-+Joshi ountry=IM&letter=on

The serialize () method of jQuery turns form elements into query string format. Rather
than getting each value manually and creating a query string, this function can be very handy
when you want to send the values of all form elements as a part of AJAX requests. You can
use any of the methods like GET or POST to send this data to the server.

There's more...

serializeArray() method
Another useful function for getting values of form elements is serializeArray (). This
function turns all the elements into a JavaScript object.

var data = $('form:first') .serializeArray() ;

If the form has two textboxes named inputl and input2 and their values are valuel and
value2 respectively then the object will be created as shown below:

[
{ inputl: 'valuel' },
{ input2: 'value2' },

@]

Combining PHP and jQuery
Not all values are serialized

Remember that Submit buttons and File select elements are not serialized.

Name should be provided to elements

In order to successfully serialize elements do not forget to assign a name attribute to them.
If an element has been assigned an ID but not a name, it will not get serialized.

See also

» Fetching data from PHP using jQuery
» Sending data to PHP

Detecting an AJAX request in PHP

After going through this recipe you will be able to distinguish between AJAX requests and
simple HTTP requests in your PHP code.

Getting ready

Create a new directory named Recipe3 in the chapter2 directory. Inside it create an HTML
file named index.html and another PHP file check . php.

How to do it...

1. Openthe index.html file and create a button that will load a string from a PHP file
using the $.get () method.

<html>
<head>
<title>Detecting AJAX Requests</title>
</head>
<body>
<form>
<p>
<input type="button" value="Load Some data"/>
</p>
</form>
</body>
</html>

Chapter 2

Next, include jQuery and write the code for a c1ick event of the button. Clicking on
the button will simply send an AJAX request to check . php, which will return a string.
The response string will be appended to the page after the input button.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$('input:button') .click (function ()
{
$.get (
'check.php',
function(data)
{
$('input:button') .after (data) ;
P
P
13N

</scripts>

To validate that the request is indeed an AJAX request and not a direct one from the
browser, open the check . php file and write the following code:
<?php

if (isset ($_SERVER['HTTP X REQUESTED WITH']) && $_ SERVER['HTTP
X REQUESTED WITH'] == 'XMLHttpRequest')

{

echo 'YaY!!! Request successful.';

}

else

{

echo 'This is not an AJAX request. This page cannot be
accessed directly.';

}

?>

Run the index.html file in a browser and click on the Load Some Data button.
You will see the text YaY!!! Request successful. inserted after the button. Now
in another window enter the direct path to the check . php file. You will see the
following message:

This is not an AJAX request. This page cannot be accessed directly.

Combining PHP and jQuery

Browsers send HTTP headers with every request that goes to a server. To distinguish between
normal requests and AJAX requests, modern libraries send an additional header with AJAX
request. The header's name is X-Requested-With and its value is XMLHt tpRequest.

Superglobal $ SERVER contains the headers sent with the request. In the example, we have
checked whether the $ SERVER array has an entry for the HTTP_X REQUESTED WITH key
or not. If an entry is found and its value is XMLHt t pRequest, we can assume it is an AJAX
request. Depending upon the result of the if expression we display the resulting string

to the user.

There's more...

Don’'t rely on X-Requested-With alone

jQuery and most of the other modern libraries (such as Prototype and Dojo) send an
X-Requested-With header for the ease of the server. However, relying on this header
alone is not recommended.

This is due to the reason that HTTP headers can be easily spoofed. So a user can send a
request with this header that the code will assume to be an AJAX request but that won't be.

There are other ways through which you can ensure the request is legitimate but that is
beyond the scope of this book.

Sending data to PHP

GET and POST are the two most frequently used methods for accessing pages. In the first
recipe you learned to make requests using GET method.

This recipe will make use of jQuery's $.post () method to retrieve data from a PHP script.
We will see a simple example where we will fill some data in a form and the data will be sent
to PHP using the POST method. Sent data will be processed by PHP and then displayed in
the browser.

Getting ready

Create a new directory named Recipe4 under the chapter2 directory.

Chapter 2

How to do it...

1

Create a file named index.html in the newly created Recipe4 directory. In this
recipe, we will use the same form that we created in the second recipe (Creating
query string automatically for all form elements) of this chapter. So write the HTML
that will create a form with multiple controls.

<html>
<head>
<title>Sending data through post</titles>
<style type="text/css">
ul{ border:1px solid black; list-style:none;
margin:Opt;padding:0pt;float:left;
font-family:Verdana, Arial, Helvetica,
sans-serif;font-size:12px;width:400px; }
1li{padding:10px 5px;border-bottom:1px solid black;}
label{width:100px;text-align:right;margin-right:10px;
float:left;}
#response {display:none;}
</style>
</head>
<body>
<form>
<ul id="information">
<lis<label>Email:</labels>
<input type="text" name="email"/>
<lis><label>Full Name</labels>
<input type="text" name="fullName"/>

<label>Sex</label>
<input type="radio" name="sex" value="Male"
checked="checked"/>Male
<input type="radio" name="sex" value="Female"/>Female
</1li>

<label>Country</label>
<select name="country">
<option value="India">India</option>
<option value="UK">UK</options>
<option value="US">USA</options>
</select>
</1li>

<input type="button" value="GO" name="submit"/>
</1li>

<p id="response"></p>
</form>
</body>
</html>

Combining PHP and jQuery

2.

Include jQuery and after that attach an event handler for the button. Clicking on the
button will send an AJAX request to a PHP file using the HTTP POST method. Upon
successful completion of the request, the form will be made hidden and the response
received from PHP will be inserted into a paragraph.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$('input:button') .click (function ()

{

var data = $('form:first') .serialize();
$.post (

'process.php',

data,

function (data)
{
$('#information') .hide () ;
$ ('#response') .html (data) .show () ;
b
'html'
)
1
1

</scripts>

Since the request is made to a PHP file, first of all create a file named process.php
in the same directory as index.html. The code in this file will create a string using
the data filled in the form by the user. This string will be sent back to the browser

to notify the user of the values they entered.

<?php
SresponseString = 'Dear '.$ POST['fullName'].',6 Your contact
information has been saved.';
SresponseString.= 'You entered the following information: ';
SresponseString.= '
';
SresponseString.= 'E-mail: '.$ POST['email'l];
SresponseString.= '
';
SresponseString.= 'Sex: '.$ POST['sex'];
SresponseString.= '
';
SresponseString.= 'Country:</strongs> '.$_

POST ['country'];
header ('Content-type:text/html') ;

echo S$responseString;
?>!

=

Chapter 2

4. Run the file index.html in your browser and you will see the form with some fields.

Fill the value in fields and click on the GO button. You will see that the form will be
hidden and the entered values will be displayed in the form as follows:

Dear Ajay Joshi, Your contact information has been saved.You entered the
following information:

E-mail: test@test.com

Sex: Male

Country: India

We have registered a c1ick event handler for GO button. Clicking the button sends a POST
request to server using jQuery's $. post () method.

$.post () isalmost similarto $.get () except for a couple of differences. The first, and
obvious difference, is the method used which is POST for $.post () and GET for $.get ().
The second difference is that POST requests are not cached whereas GET requests are
cached by the browser. Therefore, the use of the cache option with POST request will have
no effect on the request.

Other than that, both $.get () and $.post () have the same signatures.

In our example the AJAX request goes to the process . php file with the serialized data from
the form. Since it is a POST request, PHP's s POST Superglobal is populated with form data.
We then extract the fields from this array and put them in a formatted string. After we have
built the string we echo it back to the browser.

On receiving a successful response, we hide the form and insert the received HTML
in a paragraph.

Alternative method for $.post()

$.post (), $.get(), and other shortcut methods can also be implemented using the
$.ajax () method. Given below is the $.post () implementation using $.ajax ().
We will see other usage of $.ajax () in the coming recipes.

S.ajax(

{

url: 'process.php',

method: 'post',

data: $('form:first').serialize(),
dataType: 'html',

success: function (response)

Combining PHP and jQuery
{

S('#information') .hide () ;

S ('#response') .html (response) ;

}
3N

Since $.ajax () gives more flexibility than $.post (), you can use it when you want to have
a specific error callback function for request.

See also

» Fetching data from PHP using jQuery explains the $.get () method in detail
» Creating a query string automatically for all form elements

» Handling errors in AJAX requests, which shows how to handle errors encountered
during AJAX requests

Aborting AJAX requests

Consider a case where a user is allowed to select a date on a page and an AJAX request is
made to the server to fetch some data against that date. If the request is under processing
and in the meantime the user selects another date and a new request is sent, the server now
has two requests pending.

Imagine what will happen to an application if there are multiple users repeating the same
behavior. Desirable behavior in this case will be to cancel the pending request and allow
only the current one.

This recipe will explain how to cancel any pending requests.

Getting ready

Create a new folder in chapter2 directory and name it as Recipe5s.

How to do it...

1. We will use the same markup that we created in the first recipe of this chapter. So
create a new file index.html and write the code to create an HTML page with a
combo box and two options. Also create a paragraph element on the page that will
display the received response.
<html>

<head>
<title>Aborting ajax requests</title>
<style type="text/css">

ul{border:lpx solid black; list-style:none;
margin:Opt;padding:0pt;float:left;
font-family:Verdana, Arial, Helvetica, sans-serif;
font-size:12px;width:300px; }

1li{padding:10px 5px;border-bottom:1px solid black;}

</style>

</head>
<body>
<form>
<p>
Show list of:
<select id="choice">
<option value="">select</options>
<option value="good">Good Guys</option>
<option value="bad">Bad Guys</option>

</select>
</p>
<p id="response"></p>
</form>
</body>

</html>

Now comes the jQuery code. Define a global variable and after that attach a

Chapter 2

n event

handler for the combo box. The handler function checks if an AJAX request to the

server is already pending or not. On finding a pending request it will abort th
request and a new request will be sent to the server.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var ajax;
$ ('#choice') .change (function ()
{
if (ajax)
{
ajax.abort () ;
}
ajax = $.get(
'wait.php',
{ what : $(this).val() },
function (response)

{

S ('#response') .html (response) ;

b

at

7}

Combining PHP and jQuery

'html'
)i
13N
13N

</script>

Finally comes the PHP part. Create a PHP file and name it as wait .php. Write the
same code from the recipe Fetching data from PHP using jQuery. The code will check
for the values received from the browser and will send a response accordingly. For
this example we will make PHP wait for 10 seconds before any response is sent to
the browser so that we are able to send multiple requests within 10 seconds.

<?php
sleep(10) ;
if ($_GET['what'] == 'good')
{
Snames = array('Sherlock Holmes', 'John Watson', 'Hercule
Poirot', 'Jane Marple');

echo getHTML ($names) ;

}

else if($ GET['what'] == 'bad')
{
Snames = array('Professor Moriarty', 'Sebastian Moran',
'Charles Milverton', 'Von Bork', 'Count Sylvius');

echo getHTML ($names) ;

}

function getHTML ($names)

{

S$strResult = '<uls>';
for($i=0; S$i<count (Snames); S$Si++)
{
$strResult.= ''.$names[S$i].'</1li>"';
!
$strResult.= '</uls>';

return S$strResult;

}

?>

Now run your browser and select a value from the combo box. PHP will send the
response after 10 seconds. Now select another value from the combo box. The
pending request will be aborted and the current request will be sent to the server.
The response received will be according to the currently selected value. No response
will be received for previous selection as the request was aborted.

Chapter 2

All AJAX methods of jQuery return an XMLHt t pRequest object when called. We have declared
a global variable ajax that will store this object. When a value is selected from the combo box,
the handler function checks if the variable ajax is defined or not. In case of the first selection
it will be undefined, hence nothing happens and the request is sent to the wait . php file. The
XMLHt tpRequest object created for sending this request is stored in variable ajax.

Now when a value of combo box is changed ajax will be holding the XMLHt t pRequest
object that was used to send the previous request. XMLHt tpRequest has an abort ()
method that cancels the current request. In our case the pending request to the server is
cancelled and a new request is made, which is again stored in the ajax variable.

Now onwards, changing a value of combo box within 10 seconds will cancel out a pending
request and will send a fresh one to the server.

See also

» Handling errors in AJAX requests

Creating an empty page and loading it

in parts

The larger a web page the more time a browser will take to download it. This may degrade the
user experience in case of slow connections or larger pages.

One approach that can be followed is to load only what is absolutely necessary for the user
and load the rest of the content when required. There are some sections on a page which
are rarely accessed. It will make page loads faster and user experience will improve.

In this recipe we will demonstrate this case with a simple example. We will create a single
HTML page and will allow the user to load its one section when required.

Getting ready

Create a folder named Recipe6 in chapter2 directory.

Combining PHP and jQuery

How to do it...

1. Create a new file and save it as index.html. This page will have three sections:
head, content, and footer. HTML for the footer will not be created; instead we will load
it dynamically. We have also applied some CSS in the head section to customize the
appearance of the page.
<html>

<head>

<title>Load page in parts</title>
<style type="text/css">
body { border:1px solid black;margin:0 auto;text-align:
center;width:700px; }
div { padding:10px;border:1lpx dotted black; }
#footer > a { font-size:12px;margin:50px; }
</style>
</head>
<body>
<div>
<div id="head"><h2>My new awesome page</h2></div>
<div id="content">

Aliquam quis massa at elit fermentum vestibulum.
Vestibulum id nunc et nulla placerat gravida. Praesent
sed purus ante. Vestibulum pulvinar tortor sed odio
accumsan a cursus magna pellentesque. In hac habitasse
platea dictumst. Cras viverra sodales sem in facilisis.
Nulla congue, risus eget gravida feugiat, nisi ante
laoreet est, ullamcorper hendrerit lacus velit eget urna.
Suspendisse rutrum lacus eget nulla semper sit amet
egestas tellus scelerisque. Maecenas at vulputate enim.

Etiam blandit magna iaculis tellus tincidunt vel ornare
diam.

</div>
<div id="footer"s
Show footer
</div>
</div>
</body>
</html>

&)

Chapter 2

E) Load page in parts - Mozilla Firefox
B Load page in parts \i [FA

File Edit View History EBookmarks Tools Help Related Links

http:/flocalhost: 8081 ook /chapter 2 Reciped,/ [> €« ¢ x 93

TechCrunch Google Blogoscoped B Get It B SpriteMe D Moke in Reader = The OFficial Google EI... B [# Twpe in Hindi] B Share on FriendFeed B TinyLIRL

My new awesome page

Aleuam qus massa at elit fermentum vestibulum. Vestibulum 1d nune et nulla placerat grawda. Praesent sed
putus ante, Vestibulum pulvinar tortor sed odio accumsan a cursus magna pellentescue. In hac habitasse
platea dictumst. Cras viverra sodales sem m facthsis. Nulla congue, nsus eget gramda feumat, mst ante laoreet
est, ullamcorper hendrerit lacus velit eget urna. Suspendisse rutnuim lacus eget nulla semper sit amet egestas
tellus scelenzaque. Maecenas at wolputate emm. Etam blandit magna iacubis tellus tmeidunt vel ornare diam

Shovw footer

2. Next, we will need to create a file where we will write HTML for the footer. Open a new
file and save it with the following markup as footer.html.

Linkl
Link2
Link3
Link4
Link5

3. To glue all the above things, switch back to index.html and write the jQuery code
for the Show footer link.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()

{

S ('#loadFooter') .click (function ()

{

S('#footer') .1load('footer.html') ;
3N
3N

</script>

[ei-

Combining PHP and jQuery

4. Open your browser and run the index.html file. Click on the Show footer link.
jQuery will load the HTML for the footer from the footer.html file and will
insert it inside the footer section.

&) Load page in parts - Mozilla Firefox

f B Load page in parts

Fle Edt \Miew History Bookmarks Tools Help Related Links

htp: Alocalhost:2081/book /chapter 2 Recipes/ ' > & Q| x _i'

& TechCrunch 5y Google Blogoscoped D Gek It D SpriteMe B Mote in Reader » 5y The Official Google Bl . B [Type in Hindi] B Share on FrisndFesd D TiryLIRL

My new awesome page

Aliguam quis massa at elit fermentum vestibulum, Vestibulum id nune et nulla placerat gravida. Praesent sed
purus ante. Vestibulum pulvinar torter sed odio accumsan a cursus magna pellentesque. In hac habitasse
platea dictumst. Cras wiverra sodales sem in facilisis. Mulla congue, risus eget gravida feugiat, nisi ante laoreet
est, ullamcorper hendrent lacus velit eget urna. Suspendisse rutrum lacus eget nulla semper sit amet sgestas
tellus scelerseque. Maecenas at vulputate erm. Etam blandit magna 1aculis tellus tncidunt vel ornare diam

Linkl Link2 Link3 Link4 Links

jQuery provides a method 1oad () that acts on HTML elements. It gets the data from the
server and inserts it into the HTML element or elements that called it. Load () takes three
parameters. The first parameter is the URL, from where data will be loaded, the second
parameter is the data that can be sent to the server. The third parameter is a callback
function which executes once data has loaded.

In the previous example, clicking the Show footer link calls the 10ad () method on element
with ID footer. It loads the footer.html file in which we wrote the markup for the footer.
After the file has loaded successfully its HTML is inserted into the footer.

Difference between load and get

Both these methods are similar except for the fact that 1oad is a method, which means it
acts on a set of elements specified by a selector. Once the request is complete, the HTML of
elements specified by the selectors is set. On the other hand $.get is a global method that
has an explicitly defined callback function.

Chapter 2

See also

>

>

>

Fetching data from PHP using jQuery
Sending data to PHP earlier in this chapter
Loading JavaScript on demand to reduce page load time, in this chapter

Handling errors in AJAX requests

Errors are inevitable. Period. Sometimes things are not in your control—like server
failures—and in this case you must have an error handling mechanism in place, which can
catch the errors and show them to the users. Throughout the recipes in this chapter we
have implemented callback functions that execute when a request is successful. It may
happen (and | promise you it will happen) that you typed a filename incorrectly or the server
encounters an error and you get an error rather than a successful response.

This recipe will explain how to deal with such situations in AJAX requests.

Getting ready

Create a folder Recipe?7 inside the chapter2 folder.

How to do it...

1.

Create a file named index.html in the Recipe7 folder. Define some CSS styles in it
and create an input box that will ask for a filename to load and a button. Also create
a paragraph where contents loaded in a file will be displayed.

<html>

<head>
<title>Error handling</title>
<style type="text/css">
ul{ border:1px solid black; list-style:none;margin:Opt;
padding:0pt;float:1left; font-family:Verdana,
Arial, Helvetica, sans-serif;font-size:12px;width:300px;
}
1i{ padding:10px 5px;border-bottom:1lpx solid black;}
span{ color:red;}
</style>
</head>
<body>
<label for="fileName">Enter file name to load: </labels>
<input type="text" id="fileName"/>
<input type="button" value="Load file"/>
<p id="result"></p>
</body>

</html>

Combining PHP and jQuery

2. Before the body tag closes, include jQuery and write code using the $.ajax ()
method that will fire an AJAX request to load the file specified by the user.
Define both success and error callbacks here.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$('input:button') .click (function ()
{
if(S('#fileName') .val() == '")
{
S ('#result') .html ('Please provide a file
name.</spans>"') ;
return;
}
$.ajax ({
url: S$('#fileName') .val(),
method: 'get',
success: function(data)

{

S ('#result') .html (data) ;

b

error : function()

{

$('#result') .html ('An error occured.</spans>');

3N

</scripts>

3. Create another HTML file and name it as books . html. In this file create an
unordered list of books, as follows:

A Study in Scarlet
</1li>

The Sign of Four
</1li>

The Adventures of Sherlock Holmes
</1li>

Chapter 2

The Memoirs of Sherlock Holmes
</1li>

The Hound of the Baskervilles
</1li>

The Return of Sherlock Holmes
</1li>

The Case-Book of Sherlock Holmes
</1li>

Launch your browser and run the index.html file. Enter books.html in the textbox
and click on the Load file button. jQuery will send an AJAX request and you will see a
nicely formatted list of books on your screen. Leaving the field blank and clicking on
the Load File button will display an error.

&) Error handling - Mozilla Firefox

B Etrar handling \\ b Y

File Edit Yew History Bookmarks Tools Help Related Links

http: /flocalhost: 8081 dook /chapter2 Recipe?

TechCrunch Google Blogoscoped B Get It B Spritete a Mote in Reader »
Enter file name to load: |b00ks.htm| Load file |

A Study in Scarlet

The Sign of Four

The adventures of Sherlock Holmes

The Memairs of Sherlock Holmes

The Hound of the Baskervilles

The Return of Sherlock Holmes

The Case-Book of Sherlock Holmes

]

Combining PHP and jQuery

5. Now enter the name of any non-existent file such as none.html or nofile.html.
Clicking on the Load file button will display an error.

&) Error handling - Mozilla Firefox

B Errar handling Lo

File Edit ‘iew History Bookmarks Tools Help Relaked Links

http:/flocalhost: 8081 /book /chapter 2 /Recipe?

S TechCrunch 5y Google Blagoscoped BGet It BSpriteMe BNote in Readsr =

Enter file name to load: Inone.html iLoad file:

An error ocoured,

In this example we used the low level AJAX implementation of jQuery. Other methods like
$.get (), $.post (), and so on are task-specific implementations of $.ajax (). As you just
saw $.get () is specific to GET requests whereas another method $.getScript () is used
only for loading scripts.

One of the many options of $.ajax () is the error callback. When a request fails due to some
reason like a missing file, timeout on server, or a server error this callback executes, whereas
higher-level implementations do not take any action in this case.

In the previous example, we have used the error callback to display an error message to the
user. We intentionally typed a filename that does not exist and jQuery passed the control
to the error callback.

Parameters passed to error callback

jQuery makes three parameters available to the error callback. These are the XMLHt tpRequest
object that was used to send a request, a string indicating the type of error, and an exception
(if any) from the JavaScript side.

The second parameter is a string that can be one of these: timeout, error, notmodified,
parsererror, or null.

Chapter 2

The ajaxError() method

Another method ajaxError () is available that can be attached to HTML elements. This
method will execute every time there is an error in AJAX request.

S ('#result') .ajaxError (function ()

{

$(this) .html ('An error occured.');

|3)

Place this code inside document . ready () and then remove the error callback from the
function's definition. Now enter an incorrect filename and click on the button. You will still see
an error.

. This method can be pretty useful when you have AJAX requests originating
& from multiple places in a page and you want a single placeholder for error
i messages. The error message will be displayed each time because it will be
executed regardless of where the request originated.

» Fetching data from PHP using jQuery

» Sending data to PHP

» Creating an empty page and loading it in parts

» Loading JavaScript on demand to reduce page load time

Preventing browser from caching AJAX

requests

In case of GET requests, browsers cache these requests and when the request is invoked
again they do not send the request to the server and instead serve it from the cache.

This recipe will explain how to force browsers to send the request to a server instead of
serving it from the cache.

How to do it...

1. While sending an AJAX request use the cache option to force no caching by the
browser. Setting the cache option to false does not let the browser cache any AJAX
requests and the data is loaded from the server each time the request is made.
$.ajax ({

url : 'someurl.php',
cache: false,
success: function (data)

Combining PHP and jQuery
{

//do something with received data

3N

On an AJAX request, the browser checks if a request to that URL is already in the browser
cache or not. If it is found in the cache, no request to the server is sent and response from
the cache is served.

jQuery provides a cache option that can be used to override this browser behavior. By default,
cache is set to true. When this option is set to false, jQuery appends an underscore key

(_) with a random numeric value to the URL. This makes the browser assume that each URL
is unique even when only the value of the underscore key is different. Hence, the browser
does not cache the request and it goes to the server each time.

There's more...

Only GET requests are cached

It is worth noting that only GET requests are cached by the browser and not POST requests.
Therefore, using the cache option with POST requests will have no effect. Every POST request
is a fresh request.

See also

» Fetching data from PHP using jQuery explains $.get () method for making
get requests

» Sending data to PHP explains the $.post () method for making POST requests

Loading JavaScript on demand to reduce

page load time

Think of a rich Internet application that makes heavy use of JavaScript to interact with the
user. Such a page typically consists of more than one JavaScript files, such as a file for
calendar control, another file for special effects, yet another plugin for your cool accordion,
and so on.

Chapter 2

This results in the increase of the page load time as browsers cannot download all of these
files simultaneously. The best solution for this is to load only absolutely necessary files at the
time of loading the page and load the other files when required.

This recipe will explain how JavaScript files can be loaded on demand.

Getting ready

Create a directory named Recipe9 in the chapter?2 folder.

How to do it...

1.

Create a file index.html in the chapter2 folder. Write the HTML to create a page
that will have a paragraph element and four buttons. The first button will be used to
load another JavaScript file and rest of the buttons will manipulate the paragraph.

<html>
<head>
<title>getScript example</titles
</head>
<body>
<p id="container">
This text will be replaced with new text.
</p>
<input type="button" class="loader" value="Load Script"/>
<input type="button" class="bold" value="Bold"/>
<input type="button" class="color" value="Change color"/>
<input type="button" class="change" value="Change text"/>
</scripts>
</body>
</html>

Before the body tag closes, include the jQuery library and add event handler for the
first button. On click of the button, jQuery will load a JavaScript file. On successful
loading of the JavaScript, a function named addEvents () will be called that will
add event handlers for all other buttons.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$('input:button:first') .click (function (aaa)

{

$.getScript ('new.js', function()

{

[}

Combining PHP and jQuery

alert ('Script loaded') ;
addEvents () ;
13N
13N

3N

</script>

3. Now create a new file in the same directory as index.html and name it as new.js.
Define the function addEvents () in it to add events for the four buttons.

function addEvents ()

{

S('.bold') .click (function/()

{

S ('#container') .css('font-weight', 'bold');

3N

S$('.color') .click (function()

{
$('#container') .css('color', 'red');

3N

$('.change') .click (function ()

{
$ ('#container') .html ('New html inserted') ;
3N
!

4. Open your browser and run the index.html file. Click on any of the buttons except

Load Script. You will find that nothing happens to the paragraph's content. Now click
on the Load Script button. An alert will appear notifying that script has been loaded.
Clicking on any of the last three buttons will now change the appearance of

the paragraph.

¥) getScript example - Mozilla Firefox
/ B getScript example \@

File Edit Wiew History Bookmarks Tools Help Related Links

http: fflocathost:B081,/book /chapter2 Recipes/

TechCrunch Google Blogoscoped B Get Ik B Spriteie B Moke in Reader »

|New himl inserted |

Load Script | Bald | Change color | Change text |

[

Chapter 2

Clicking on the Load Script button invokes the $.getScript () method of jQuery. This
function has two parameters: the file name to be loaded and a callback function that
executes when the file is successfully loaded.

It loads the specified JavaScript file asynchronously from the server. After a successful load,
all the variables and functions of that file are available in the global context. This means they
can be used by other JavaScript files too. A successful callback ensures that the file has been
loaded and, therefore, we can safely work with the variables or functions of that file.

In the previous example the function addEvents () is defined in the new. js file. This
function binds event handlers to our buttons. Since new. js is not available on the page,
these buttons do nothing. After the file is loaded, we call the addEvents () function, which
binds these buttons to respective events. Thus, these buttons become functional.

There's more...

Alternative method for getScript

The $.getScript () method is specifically for loading scripts only. It can be written using the
$.ajax () method too.

$S.ajax(
{
url: 'new.js',
dataType: 'script',
success: function()
{
alert ('Script loaded') ;
addEvents () ;
!
3N

The above code will also load the new. js file and execute it. Use this method if you need the
error callback too, which is not available with $.getScript ().

Also note the use of the dataType option here. We have provided its value as script. The
dataType parameter tells jQuery what type of data to expect from the server (which is script
in this case).

7}

Combining PHP and jQuery

See also

» Fetching data from PHP using jQuery explains get method for fetching data
» Sending data to PHP explains how to send data to PHP through jQuery
» Creating an empty page and load it in parts

Working with XML
Documents

In this chapter, we will cover:

» Loading XML from files and strings using SimpleXML
» Accessing elements and attributes using SimpleXML
» Searching elements using XPath

» Reading an XML using DOM extension

» Creating an XML using DOM extension

» Modifying an XML using DOM extension

» Parsing XML with jQuery

Introduction

Extensible Markup Language—also known as XML—is a structure for representation of data in
human readable format. Contrary to its name, it's actually not a language but a markup which
focuses on data and its structure. XML is a lot like HTML in syntax except that where HTML is
used for presentation of data, XML is used for storing and data interchange.

Moreover, all the tags in an XML are user-defined and can be formatted according to one's
will. But an XML must follow the specification recommended by W3C.

With a large increase in distributed applications over the Internet, XML is the most widely
used method of data interchange between applications. Web services use XML to carry and
exchange data between applications. Since XML is platform-independent and is stored in
string format, applications using different server-side technologies can communicate with
each other using XML.

Working with XML Documents

Consider the following XML document:

<?¥ml wer=sion="1.0" encoding="UTF-8" 2>
<wehsites:
<gitex
<namerFoogle</ narme>
<urlzhttp:ffgoogle. com</urls>
<informationrGoogle is a search engine</informations>
<faitex
<=iter
<name>Reddit </ name>
<urlrhttp:ffreddit.com</urls>
<information>Reddit is a social news wehsite</information>
</sitex
<fwehzites>

From the above document, we can infer that it is a list of websites containing data about the
name, URL, and some information about each website.

PHP has several classes and functions available for working with XML documents. You can
read, write, modify, and query documents easily using these functions.

In this chapter, we will discuss SimpleXML functions and DOMDocument class of PHP
for manipulating XML documents. You will learn how to read and modify XML files, using
SimpleXML as well as DOM API. We will also explore the XPath method, which makes
traversing documents a lot easier.

Note that an XML must be well-formed and valid before we can do
anything with it. There are many rules that define well-formedness of
XML out of which a few are given below:

» An XML document must have a single root element.
& » There cannot be special characters like <, >, and soon.
A
» Each XML tag must have a corresponding closing tag.

» Tags are case sensitive

To know more about validity of an XML, you can refer to this link:
http://en.wikipedia.org/wiki/XML#Schemas_and_validation

7

Chapter 3

For most of the recipes in this chapter, we will use an already created XML file. Create a new
file, save it as common . xml in the Chapter3 directory. Put the following contents in this file.

<?xml version="1.0"?>
<books>
<book index="1">
<name year="1892">The Adventures of Sherlock Holmes</names>
<story>
<title>A Scandal in Bohemia</title>
<quote>You see, but you do not observe. The distinction
is clear.</quote>
</story>
<story>
<title>The Red-headed League</title>
<quote>It is quite a three pipe problem, and I beg that you
won't speak to me for fifty minutes.</quotes>
</storys>
<story>
<title>The Man with the Twisted Lip</title>
<quote>It is, of course, a trifle, but there is nothing so
important as trifles.</quote>
</story>
</book>
<book index="2">
<name year="1927">The Case-book of Sherlock Holmes</name>
<story>
<title>The Adventure of the Three Gables</title>
<quote>I am not the law, but I represent justice so far as
my feeble powers go.</quotes>
</story>
<story>
<title>The Problem of Thor Bridge</titles
<quote>We must look for consistency. Where there is a want
of it we must suspect deception.</quotes>
</storys>
<story>
<title>The Adventure of Shoscombe 01d Place</titles
<quote>Dogs don't make mistakes.</quote>
</story>
</book>
<book index="3">
<name year="1893">The Memoirs of Sherlock Holmes</names>
<story>
<title>The Yellow Face</title>

(7]

Working with XML Documents

<quote>Any truth is better than indefinite doubt.</quote>
</story>
<story>

<title>The Stockbroker's Clerk</title>

<quote>Results without causes are much more impressive. </quote>
</story>
<story>

<title>The Final Problem</title>

<quote>If I were assured of your eventual destruction I would,

in the interests of the public, cheerfully accept my
own.</quote>

</story>
</book>
</books>

Loading XML from files and strings using

SimpleXML

True to its name, SimpleXML functions provide an easy way to access data from XML
documents. XML files or strings can be converted into objects, and data can be read
from them.

We will see how to load an XML from a file or string using SimpleXML functions. You will also
learn how to handle errors in XML documents.

Getting ready

Create a new directory named Chapter3. This chapter will contain sub-folders for each
recipe. So, create a folder named Recipel inside it.

How to do it...

1. Create a file named index.php in Recipel folder. In this file, write the PHP code
that will try to load the common . xm1 file. On loading it successfully, it will display a list
of book names. We have also used the libxml functions that will detect any error and
will show its detailed description on the screen.
<?php
libxml use internal errors(true);
$objXML = simplexml load file('../common.xml') ;

if (!SobjXML)

{

Serrors = libxml get errors() ;

7@

Chapter 3

foreach (Serrors as Serror)

{

echo Serror->message, '
';

}

else

{

foreach ($objXML->book as $book)

{

echo S$book->name.'
"';

}

?>
2. Open your browser and point it to the index . php file. Because we have already
validated the XML file, you will see the following output on the screen:
The Adventures of Sherlock Holmes
The Case-book of Sherlock Holmes
The Memaoirs of Sherlock Holmes
3. Let us corrupt the XML file now. For this, open the common . xm1 file and delete

any node name (like closing name tag of the first book). Save this file and reload
index.php on your browser. You will see a detailed error description on your screen:

¥ Mozilla Firefox

File Edit “iew Higtory Bookmarks Toolz Help Belated Links

EI - & X I |http:r’r‘lncalhust:aﬂﬁJbunk!EhapterBr’HecipﬂH

J LJ humiﬂncamnst__UE_GDdEIHecme1!I = |

Opening and ending tag mwmiswatch: namwe line 4 and book
expected '

Fremature end of data in tay books line 2

In the first line, passing a true value to the 1ibxml use internal errors function
will suppress any XML errors and will allow us to handle errors from the code itself. The
second line tries to load the specified XML using the simplexml load_ file function. If
the XML is loaded successfully, it is converted into a SimpleXMLElement object otherwise
a false value is returned.

(77}

Working with XML Documents

We then check for the return value. If it is false, we use the 1ibxml get errors()
function to get all the errors in the form of an array. This array contains objects of type
LibXMLError. Each of these objects has several properties. In the previous code, we iterated
over the errors array and echoed the message property of each object that contains a
detailed error message.

If there are no errors in XML, we get a SimpleXMLElement object that has all the XML
data loaded in it. We iterate over each book element using foreach and print the name
for each book.

There's more...

Parameters for simplexml_load._file
More parameters are available for the simplexml load file method, which are as follows:
» filename: This is the first parameter that is mandatory. It can be a path to a local
XML file or a URL.

» class_name: You can extend the SimpleXMLElement class. In that case, you can
specify that class name here and it will return the object of that class. This parameter
is optional.

» options: This third parameter allows you to specify libxml parameters for more
control over how the XML is handled while loading. This is also optional.

simplexml_load_string

Similar to simplexml load fileis simplexml load string, which also creates a
SimpleXMLElement on successful execution. If a valid XML string is passed to it we get a
SimpleXMLElement object or a false value otherwise.
SobjXML = simplexml load string('<?xml version="1.0"?><book><name>My
favourite book</names></book>') ;

The above code will return a SimpleXMLElement object with data loaded from the XML string.
The second and third parameters of this function are same as that of simplexml load file.

Using SimpleXMLElement to create an object
You can also use the constructor of the SimpleXMLElement class to create a new object.

SobjXML = new SimpleXMLElement ('<?xml version="1.0"?><book><name>My
favourite book</names></book>') ;

More info about SimpleXML and libxml

You can read about SimpleXML in more detail on the PHP site at http://php.net/
manual/en/book.simplexml . php and about libxml at http://php.net/manual/en/
book.libxml .php.

@

Chapter 3

See also

» Accessing elements and attributes using SimpleXML

» Searching elements using XPath

Accessing elements and attributes using

SimpleXML

This recipe will explain how we can get the values of the node and/or attributes from an XML
file using SimpleXML methods. We will write an example using our common . xm1 file that will
be used to get the publication year or list of stories in a selected book.

Getting ready

Create a folder for this recipe in the Chapter3 directory and name it as Recipe?2.

How to do it...

1. Create a new file named index.php in Recipe2 folder. In this file, create a select
box and create its options, which will be the names of books in the common . xm1
file. Next, create two buttons that will get the publication year and list of stories in
the selected book. Each of these buttons has an ID attribute that will be used to
distinguish between the clicked buttons. After that, create a paragraph element to
display the result.

<html>
<head><title>Accessing node and attribute values</titles></head>
<body>
<p>
<select id="bookList">
<option value="">select a book</options>
<?php
SObjXML = simplexml load file('../common.xml') ;

foreach ($objXML->book as $book)
{
echo '<option value="'.$book['index'].'">'.$book->name."
</options>"';

?>
</select>
<input type="button" id="year" value="Get Year of publication"/>
<input type="button" id="stories" value="Get story list"/>

(7]

Working with XML Documents

</p>

<p id="result"></p>
</body>
</html>

We will use jQuery to get the selected values from the form and send an AJAX request
to a file that will process the selected values and will send back the result accordingly.
For this, we will write some jQuery code, just before closing of <body> tag. Include
the jQuery library using the correct path, and then register event handlers for input
buttons. On click of a button, handler function will send an AJAX request to a PHP file
with values of the selected book and the clicked button. The received response will
be inserted into the paragraph with ID result.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()

{

$('input:button') .click (function ()

{

if (S ('#bookList') .val() != '")

{

$.get (
'process.php',
{ id: $('#bookList').val() , action: $(this).attr('id')

b
function (data)
{
$('#result') .html (data) ;
13K
}
13N
13N

</script>

Now, create the process.php file in the same directory. This file gets the values of
selected book and clicked button from the $_GET Superglobal. The common . xm1 file
is loaded and depending on the value of action and ID variables in $_GET array, the
books are iterated upon, and a response variable is created that is echoed to

the browser.

<?php
SbookId $ GET['id'];
Saction = $ GET['action'];

$strResponse;

$objXML = simplexml load file('../common.xml') ;
foreach ($objXML->book as $book)

{

Chapter 3

if ($book['index'] == S$bookId)
{

if (Saction == 'year')

{
$strResponse = 'This book was published in year:'.

$book->name ['year'] ;

}

else if (Saction == 'stories')

{
$stories = S$book->story;
$strResponse = '<uls>';
foreach($stories as $story)
{

$strResponse.= ''. $story->title. '</1li>';

}
$strResponse.= '';

}

else

{
$strResponse = 'Nothing to do';

}

break;

}

echo S$strResponse;

?>

Run your browser and point it to the index . php file. You will see a combo box and
two buttons. Select a book from the combo box and click any of these buttons. The
following image shows a list of stories that gets displayed after selecting a book
and clicking on the Get story list button.

¥) Accessing node and attribute values - Mozilla Firefox

B Accessing node and attribute values \‘i o

File Edit Wiew History Bookmarks Tools Help Related Links

http: fflocalhost: 808 1,/book /Chapter3/Recipez/

TechCrunch Google Blogoscoped B Gek It B Spritetle B Mote in Reader » The Official G

|The Case-bookDfSherIDckHDImesj GetYearufpuincatiDnl Get story list

® The Adventure of the Three Gables
e The Problem of Thor Bridge
o The Adventure of Shoscombe Cld Place

s

Working with XML Documents

To get the value of a node we can refer it by its name as a property of the SimpleXMLElement
object. In the index . php file, we created a SimpleXMLElement object from the common . xm1
file by loading it through the simplexml load file method. Since there are multiple book
nodes, we get an array of these in our object on which we can loop like a normal array. Similarly,
attributes of a node can be fetched like values from arrays, using the attribute name as an index
of an associative array.

For each book, we created an option element with its value set to the index attribute and text
set to the value of the name node. The way we selected these values shows us how easy it is
to fetch values using SimpleXML methods.

The jQuery code registers event handlers for each of the two buttons as shown in the previous
screenshot. Clicking on a button gets the value of the selected book and the clicked button
and sends it to the process . php file, using jQuery's $.get () method.

The values sent by jQuery are available in $_GET Superglobal. These values are stored
in PHP variables; $bookId and Saction. Then we load the XML file and we have a
SimpleXMLElement object available to us in the form of $objXML.

To determine the selected book, we can iterate over each book element and check if its
index attribute matches the $bookId variable. When a match is found we check the value of
Saction variable. If Saction is "year", we get the year attribute from the book's name that
is stored in the $strResponse variable.

If Saction is set to "stories", we get the array of the story object from the current Sbook
object. Then we iterate over this array and create an unordered list for each story name and
store it in SstrResponse.

Finally, we echo the $strResponse variable to the browser where it is filled in a paragraph
by jQuery.

There's more...

Modifying an XML with SimpleXML

The value of nodes in an existing XML can also be modified using SimpleXML functions. For
example, if we have to change the name of the first book in our common . xm1 file, we can
do so by using the following code:

$SobjXML->book [0] ->name = 'New name for book';
Sresult = $SobjXML->asXML () ;

[

Chapter 3

If no parameter is passed to asxXML () method, it will return the modified XML in the form of
a string, false in case of failure. A filename can also be passed to asXML () in which case it
will write the resulting XML to that file.

Adding elements to an XML
New elements can also be added to an XML as shown in the following code:

SobjXML->book [0] ->addChild ('remark', 'Stories in this novel were
narrated by Sherlock Holmes himself');

$SobjXML->book [0] ->remark->addAttribute ('totalStories', '13"');
Sresult = $SobjXML->asXML() ;

This code will add a remark node as the first book element and also add a totalStories
attribute to it.

Do not forget that the resulting XML will be stored in Sresult variable and not in the original
XML file, though you can save it to the original XML also by specifying the filename to asxMIL,,
as explained in the previous section.

» Loading XML from files and strings using SimpleXML
» Searching elements using XPath
» Fetching data from PHP using jQuery in Chapter 2

Searching elements using XPath

XPath or the XML Path is used to navigate an XML document. It is basically a query language
that provides a standard set of expressions and functions for traversing a document tree.
XPath operates on a document tree and can be used for functions, such as searching,
comparing, and so on in a document.

PHP has built-in support for using XPath. This recipe will explain some concepts of XPath and
how they can be used to get information from XML.

Using the common . xm1 file we will write a simple example that will demonstrate the
capabilities of XPath.

Getting ready

Like earlier recipes, create a separate folder named Recipe3 inside the Chapter3 directory.

&)

Working with XML Documents

How to do it...

1. Create an HTML file and name it as index.html. Create four buttons that will
be used to show different usage of XPath. Also, create an empty DIV element for
displaying the result. Also, define some CSS in the <head> section for better display.

<html>
<head>
<title>Using XPath</title>
<style type="text/css">
ul{border:1px solid black;padding:5px;
list-style:none;width:550px%; }
label{font-weight:bold; }
1i{ padding:5px;}
</style>
</head>
<body>
<input type="button" value="Show all books" id="all"/>
<input type="button" value="Show stories with quotes"
id="total"/>
<input type="button" value="Get last book" id="last"/>
<input type="button" value="Books with year <1900" id="year"/>

<div id="result"></div>
</body>
</html>

2. Include the jQuery library and write the jQuery code that will send an AJAX request
to a PHP file, process . php. The request will contain the ID of the clicked button for
processing on the server side. Response from the PHP script will be inserted into the
DIV element.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()
{
$('input:button') .click (function ()
{
$.get (
'process.php',
{ action: $(this).attr('id')},
function(data)

{
$('#result') .html (data) ;
13N
I3
13N

</script>

=

Chapter 3

Switching to the server side now, create a PHP file, process.php, in the same
directory. This file will load the XML file and will perform appropriate actions
depending on the value of the clicked button. It will use the xpath method to search
the document and echo the result back to the browser. This response will be inserted
into a page by jQuery.
<?php

$objXML = simplexml load file('../common.xml');

if (!$objXML)

{

echo 'Error loading xml';

}

else

{
Sresponse = '';
Saction = $ GET['action'];
switch($action)

case 'all':
$book = $SobjXML->xpath('//book/name') ;
Sresponse.= '';
foreach ($book as $item)

{

Sresponse.= '"';
Sresponse.= $item[0].' ('.Sitem['year'l.')';
Sresponse.= '';
}
Sresponse.= '';
break;
case 'total':
Sresponse.= '';

$stories = $objXML->xpath('//story');
foreach ($stories as $story)

{

Sresponse.= '"';
Sresponse.= '<labels>'.Sstory->title.'</label>

"'.$story->quote. '"';
Sresponse.= '';
}
Sresponse.= '';
break;

case 'last':
$lastElement = $SobjXML->xpath('//book[last()]"');

Working with XML Documents

echo ''.$lastElement [0] ->name.'
(".$lastElement [0] ->name['year'].')"';
break;

case 'year':
$book = $0bjXML->xpath('//book/name [@year<1900]"') ;

Sresponse.= '';
foreach (Sbook as $item)
{
Sresponse.= '"';
Sresponse.= S$item.' ('.Sitem['year'l.')';
Sresponse.= '';
!
Sresponse.= '';
break;
!
echo S$Sresponse;
!
?>

4. Runthe index.php file and click on any buttons. The AJAX request will be fired,
which will then go to the process . php file and the result will be displayed on the
page. For example, clicking on the last button will show the books that have year
value less than 1900.

¥) Using XPath - Mozilla Firefox

[§ using ¥path

File Edit Wiews History Bookmarks Tools Help Related Links
http:/flocalhost: 8081,/book [Chapter3/Recipe3/ 3 [

TechCrunch Google Blogoscoped D Get It D SpriteMe D Maote in Reader @ The Official Google El. . [

Showe all books | Show stories with quotes | Getlast book || ‘Books with ear<1EDD§|

The Adventures of Sherlock Holmes (1852)
The Memeirs of Zherlock Holmes {1593)

We have defined four buttons here. The first button for getting the names and years of all
books, the second one for displaying list of all the stories and quotes regardless of book, the
third one is for getting the name and year of the last book and the fourth button for displaying
all those books that have the value of year attribute less than 1900.

~[ee]

Chapter 3

We have also provided four different IDs to each of these buttons that include all, total, last,
and year respectively.

Clicking a button sends that button's ID in an AJAX request to process . php file where ID
of the clicked button is retrieved and stored in a variable called saction. We have already
loaded the common . xml file in $obj XML variable. Next is a switch statement that executes
the case matching the ID.

SimpleXML provides the xpath method for running XPath queries on a loaded document.
xpath method takes an XPath query as a parameter and returns an array of SimpleXML
elements on successful execution, false on failure.

Expression / /book will select all book elements in the document, regardless of their position.

Expression / /book/name selects all name elements that are children of book elements in
the whole document.

//book [last ()] selects the last book element in the document.

Expression //book/name [@year<1900] looks like a complex one but is actually not the
case. Just try breaking it in parts. @ refers to an attribute. Hence, this expression will select
all the name elements under book elements that have a name attribute with year value less
than 1900. In this case, only two books qualify—the first and the last one. The second book
has year 1927, hence it does not qualify for selection.

We then format the results by putting some HTML tags around them and return the result
back to the browser.

More info about XPath

Here are some online resources where you can learn more about the XPath syntax and
its usage:

» http://www.w3schools.com/xpath/
» http://oreilly.com/catalog/xmlnut/chapter/ch09.html

See also

» Accessing elements and attributes using SimpleXML
» Reading an XML using DOM extension

7}

Working with XML Documents

Reading an XML using DOM extension

In this recipe, you will see the use of PHP's DOM extension to read an XML and extract
information from it. We will create an example where we will display a list of books.
Clicking a book name will reveal the list of stories in that book.

Getting ready

Create a folder Recipe4 in the Chapter3 directory and make sure you have common . xml
file accessible.

How to do it...

1. Create an index.php file in the Recipe4 folder. In the HTML markup, write the PHP
code that will load the XML using DOM methods. From the loaded XML, create h1
sections that will contain the book name and its publication year.

2. Under each h1, create an unordered list of stories in that book. Note that in the
<head> section, we have hidden ul using display property. Therefore, on the
page only book names will be visible.

<html>
<head>
<title>Using DOM</titlex>
<style type="text/css">
h1{ cursor:pointer;font-size:20px;}
ul{ display:none; list-style:none;margin:O0pt;padding:0pt;}
</style>
</head>
<body>
<?php
SobjXML = new DOMDocument () ;
S$objXML->load('../common.xml', LIBXML NOBLANKS) ;
Sbooks = $objXML->getElementsByTagName ('book') ;
foreach ($books as s$book)
{
echo '<hl>'.$book->firstChild->nodeValue.'
('.$book->firstChild->attributes->item(0) ->value.')</hl>";
Sstories = $book->getElementsByTagName ('story') ;
echo '<uls>';
foreach($stories as $story)

{

echo ''.S$story->firstChild->nodeValue.'"';

}

(e

Chapter 3

echo '';

}
?>
</body>
</html>
E) Using DOM - Mozilla Firefox
/ [using Dom \i fEL

File Edit ‘Wiew Hiskory Bookmarks Tools Help Related Links
hitp: /flocalhost: 8081 /book AChapter 3/Reciped/

TechCrunch Google Elogoscoped B Get It B SpriteMe B Mote in Reader =

The Adventures of Sherlock Holmes (15892)
The Case-book of Sherlock Holimes (1927)
The Memoirs of Sherlock Holines (1893)

To spice up our example, we will write some jQuery code that will be used to show the
list of stories in each book. An event handler will be attached to each book name that
will show or hide stories.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{
S('hl').click (function/()
{
$(this) .next ('ul') .toggle('fast');
I3
I3
</script>

Working with XML Documents

4. Run the index.php file in your browser and you will be presented with the list of
books. Clicking a book name will toggle the list of stories in that book with animation.

&) Using DOM - Mozilla Firefox
/ [using Dom \@

File Edit Wiew History Bookmarks Tools Help Related Links

bt /flocalhost: 8081 /book AChapter3 Recipeds

TechZrunch Google Blogoscoped a Gek Ik B SprikeMe a Moke in Readd
The Adventures of Sherlock Holmes (15892)
The Case-book of Sherlock Holes (1927)

The Adwenture of the Three Gables
The Problem of Thor Bridge
The Adwventure of Shoscombe Old Place

The Memoirs of Sherlock Holmes (1893)

First, we create an object $objXML of the DOMDocument class. This class provides a number
of properties and methods that can be used to manipulate an XML file. Names of nodes, their
values, attributes, and so on, can be extracted from an XML file.

Then, we use the load method on the $objXML. 1oad () method takes two parameters. First
is the filename and the second parameter is libxml option constants. The second parameter is
optional. We pass common . xml as the first parameter and LIBXML NOBLANKS as the second
one. We also pass LIBXML NOBLANKS because we do not want any blank nodes to appear.

Because we want to access all the book nodes, we use the getElement sByTagName
method and pass a book to it that returns a DOMNodeList object. A foreach loop has
been used to iterate in this collection. There are several methods available to objects of
the DOMNode class. We have used some of them here.

The firstChild property gives us the immediate first child which is the book node in our
case. nodeValue gives us the value inside the book tag, which is the name of book. We wrap
itin an hl element.

To access the attribute, we use the attributes property. Attributes gives a map of all the
attributes. We can navigate in this attribute collection using the item property. We retrieved
the value of attribute at Oth position and that gives us the value of the year attribute.

5]

Chapter 3

Similarly, to get the list of stories for a book, we use getElement sByTagName again and
then iterated in it for the value of each book title.

Finally, we wrap it into an unordered list.

After the DOM is ready on the browser, the jQuery code attaches a c1ick event handler to
each h1 element on the page. Clicking on an h1 element toggles its next ul element.

Getting child nodes
We can also check if a node has child nodes and can also fetch them. In the above example,
to get the child nodes of a book use the following code:

if ($book->hasChildNodes ())

{

Schildren = $book->childNodes;

}

nodeType, nodeName, and nodeValue
When you are not familiar with the XML structure or if it is inconsistent, you can determine the
name and values of nodes and attributes at run time itself.

$node->nodeType
Snode- >nodeName
S$node->nodeValue

nodeType may return different values depending on node. These values are libxml
constants. Some common values for nodeType are as follows:

» XML ELEMENT NODE

» XML ATTRIBUTE NODE

» XML TEXT NODE

» XML CDATA SECTION NODE

» Creating an XML using DOM extension
» Searching elements using xPath

i

Working with XML Documents

Creating an XML using DOM extension

DOM extension gives us the ability to create whole new documents using its numerous
functions. In this recipe you will learn how to create new XML documents using DOM
functions. As you know we have multiple book elements in our common . xm1 file, we will
create a similar book element with name and story elements using DOM methods.

Getting ready

Create a new folder Recipe5 in the Chapter3 directory.

How to do it...

1. Create a file and name it index.php in the Recipes folder.

2. Write the PHP code that will create a new XML document, then create some elements
and add these to the new document. Some of these elements will have text as well as
attributes and their values. Finally, this XML will be saved on the disk.
<?php

$0bjXML = new DOMDocument ('1.0', 'utf-8'); /* <?xml
version="1.0" encoding="UTF-8" ?> */
$books = $0bjXML->createElement ('books') ;//books

Sbook = $objXML->createElement ('book') ;

SattrIndex = new DOMAttr ("index", "4");

Sbook->appendChild ($SattrIndex) ;

SbookName = $objXML->createElement ('name', 'The case book of
sherlock holmes') ;

SattrYear = new DOMAttr ("year", "1894");
SbookName->appendChild (SattrYear) ;

Sbook->appendChild ($bookName) ;
Sstory = $objXML-s>createElement ('story!') ;
Stitle = $SobjXML->createElement ('title', 'Tha case of'");

Squote = $SobjXML->createElement ('quote', 'Yet another quote');

Sstory-s>appendChild(stitle) ;
Sstory-s>appendChild (squote) ;

Sbook->appendChild ($story) ;

[

Chapter 3

Sbooks->appendChild ($book) ;
$objXML->appendChild ($books) ;

if (SobjXML->save ('new.xml') != FALSE)
{

echo 'XML file generated successfully.';

}

else

{

echo 'An error occured.';

}

?>

3. Now run the index.php file in your browser. If the code executed successfully, you
will see some text telling you that the XML file has been generated. Look up in the
Recipes5 folder and you will find the newly generated XML file. This file will have the
same structure as the common . xm1 file.

<?xml version="1.0" encoding="utf-8"?>
<books>
<book index="4">
<name year="1894">The case book of sherlock holmes</name>
<story>
<title>Tha case of</title>
<quote>Yet another quote</quotes
</story>
</book>
</books>

The constructor of DOMDocument class creates a new DOMDocument object. There are two
optional parameters that can be passed to it. The first parameter indicates the version of XML
specification and its value is 1.0 by default and the second parameter denotes the encoding
of the document.

To create a new node, createElement () method is used. It creates a new object of
DOMElement class. createElement () accepts two parameters out of which the second
is optional. The first parameter is the name of node and the second is the text value inside
a node.

To create an attribute, we can create an object of DOMALttr class. Similar to createElement,
it also has two parameters: attribute name and its value.

55}

Working with XML Documents

Elements and attributes thus created are standalone at this moment and are not a part
of the document. To insert them into the document, we can call the appendChild method.
This method takes an element as a parameter and appends it to the calling object.

In the previous example, we created new elements with createElement and appended
them to the document according to the required format.

When we are done with creating elements, we saved the resulting XML to a file using the
save () method.

» Reading an XML using DOM extension
» Modifying an XML using DOM extension

Modifying an XML using DOM extension

Apart from creating a new XML from scratch as in the previous recipe, we can modify existing
XML files too. We can add and remove elements from them.

In this recipe, we will create an example that will allow you to add new stories for a particular
book. You will be able to add a title and quote for the selected book.

Getting ready

Create a new folder Recipe6 in the Chapter3 directory.

How to do it...

1. Create a new file named index.php. Next, create a form that has a list of books and
two input fields for entering story name and a quote. Also, create a button that will be
used to add the new story and the quote to the XML file.

<html>
<head>
<title>Modifying xml with</title>
<style type="text/css">
ul{border:1px solid black;padding:5px;
list-style:none;width:350px; }
label{float:left;width:100px; }

=

Chapter 3

</style>
</head>
<body>

<label for="bookList">Book:</labels>
<select id="bookList">
<option value="">select a book</option>
<?php
$SobjXML = new DOMDocument () ;
$objXML->load('../common.xml', LIBXML NOBLANKS) ;
Sbooks = $objXML->getElementsByTagName ('book') ;
foreach (Sbooks as S$book)

{

echo '<option value="'.$book->attributes->
item(0)->value.'">"'.$book->firstChild->nodeValue. '</option>"';
}
?>
</select>
</1li>

<label for="storyName">Story Name</label>
<input type="text" id="storyName" value=""/>
</1li>

<label for="quote">Quote</label>
<textarea id="quote"></textareas>
</1li>

<input type="button" id="add" value="Add new story"/>
</1li>

</body>
</html>

Now write the jQuery code that will invoke on the click of the button. jQuery will collect
the values filled in the form and will send them to a PHP file, process . php, through
an AJAX post request for further processing. The response received from PHP file will
be displayed next to the button.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

S('#add') .click (function ()

{

[55]-

Working with XML Documents

$.post (
'process.php',
{ bookId: $('#bookList').val() , storyTitle:
$('#storyName') .val(), quote: $('#quote').val() },
function (data)
{
S ('#add') .after (data) ;
13K
13K
13K

</script>

3. We turn to the PHP script now where the actual magic will take place. Create a file
in the same folder and name it process . php. This file will take the values out from
$_POST. After that, it will load the common . xm1 file. The script will find the selected
book. When the selected book has been found, it will create new elements, fill them
with respective values, and then save them back to the XML.

<?php
$bookId = $ POST['bookId'];
$title = $ POST['storyTitle'];
$quote = $ POST['quote'];
$SobjXML = new DOMDocument () ;
$objXML->load('../common.xml', LIBXML NOBLANKS) ;
Sbooks = $objXML->getElementsByTagName ('book') ;
foreach (Sbooks as S$book)
{
if ($book->attributes->item(0) ->value == S$bookId)
{
$Sstory SobjXML->createElement ('story') ;
Stitle = SobjXML->createElement ('title', S$title);
Squote = $objXML->createElement ('quote', S$Squote) ;
$story->appendChild ($title) ;
$story->appendChild ($quote) ;
Sbook->appendChild ($story) ;
break;

}
}

if (SobjXML->save('../common.xml') != FALSE)

{

echo 'New story added successfully.';

}

else

{

echo 'An error occured.';

Chapter 3

4. Run the index.php file and you will be presented with a form. Select a book from
the select box, fill in the values for story name, and quote in the textboxes and click
on Add new story. On successful submission, you will see a message next to the
button. Open the XML file with an editor and you will see that a new story has been
inserted into the appropriate book.

E) Modifying xml with - Mozilla Firefox

/B Madifying sl with

File Edit Wiew History Bookmarks Tools Help Related Links
htp:/flocalhost: 8081 /book fChapter3/Recipes,

TechCrunch Google Elogoscoped B Get It B SpriteMe B Mote in Reader

Book: The Adventures of Sherlock Holmes = |
Story MName Mew Stary

Cuote New quote

Add new story |.‘Clew story added successfully.

When the values are filled in the form and the button is clicked, jQuery sends the filled values
to the process. php file. First, we get the values from $_POST array. Now DOMDocument
class is used to load the XML file. We then use function getElementsByTagName to get

all the book elements and then loop through them using foreach loop. Our main task here
is to identify which book has been selected and also to modify that book node. Using the
attributes property, we can compare the index attribute of a book with variable $bookId
to find out the selected book. Once the book is found, we can break out of the loop.

Now that we have found the selected book, we can use DOM functions to add new elements.
In the previous example we created three elements: story, title, and quote, and assigned the
received values to title and quote.

To add these newly-created elements to the document tree, we use the appendChild
method that we have used in the previous recipe. We appended the $title and $quote
objects to $story objects and finally appended the $story object to $Sbook object.

To change the modified object to a real XML string, we can use either of two methods: save
and saveXML. save () method saves to a file whereas saveXML () returns XML as a string.

We can then echo the appropriate message that is displayed in the browser. Now, you can
also check the value by opening the XML file that you have written.

o7}

Working with XML Documents

There's more...

Deleting nodes

Opposite to createElement () method is the removeChild () method, which is used
to remove elements from a document.

$SobjXML = new DOMDocument () ;

SobjXML->load ('new.xml') ;

Sbook = $objXML->getElementsByTagName ('book')->item(0) ;
Sbook->parentNode->removeChild ($book) ;

SobjXML->save ('new.xml') ;

The above code will remove the first book element (and all its children) from the document.
If you wish to call the removeChild method from the root node itself, you can do this quite
easily. You just need to replace the line:

Sbook->parentNode->removeChild ($book) ;
with the following line:

$objXML->documentElement - >removeChild ($book) ;

» Reading an XML using DOM extension
» Creating an XML using DOM extension

» Accessing elements and attributes using SimpleXML

Parsing XML with jQuery

jQuery itself can be used to parse an XML document on the client side. We can fetch an XML
file using jQuery's AJAX methods and then process it on the browser itself and get data from it.

We will recreate the same example that we wrote in the recipe Reading an XML using DOM
extension. Contrary to that recipe where we used DOM methods on the server side, we will
use jQuery's selector functions to traverse through the XML.

Getting ready

Create a new folder under Chapter3 directory and name it as Recipe7. Also copy the
common . xml file to this folder.

5]

Chapter 3

How to do it...

1.

Create a file named index.html in the Recipe?7 folder. In this file, simply declare
some styles for h1 and ul elements that will be created later through jQuery. Create
a DIV element in which we will insert the HTML.

<html>
<head>
<title>Reading xml through jQuery</title></head>
<style type="text/css">
h1{ cursor:pointer;font-size:20px;}
ul{ display:none; list-style:none;margin:O0pt;padding:0pt;}

</style>
<body>
<div id="result"></div>
</body>
</html>

Include the jQuery file. Next bind click handler for h1 elements using 1ive method.
After that send an AJAX request to get the common . xm1 file. When the file is fetched,
write success event handler to traverse through it and create HTML in the desired
format. Finally, insert this HTML to the DIV element on the page.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
S('hl').live('click', function()
{

$(this) .next ('ul') .toggle('fast');

3N

$.ajax(
{
url: 'common.xml',
type: 'GET',
dataType: 'xml',
success: function (xml)
{
var str = '';
S (xml) .find ('book') .each (function ()
{
var book = $(this);
str+= '<hl>' + book.find('name') .text () + '</hl>';

str+= '';

Working with XML Documents

book.find ('story') .each(function ()

{
str+= '"';
str+= $(this).find('title') .text () ;
str+= '</1i>';
13N
str+= '</uls>';
13N
$('#result') .html (str) ;
}
13N
13N
</script>

3. Runthe index.html file in the browser and you will see names of all the books in
the XML file. Click on any of the titles to show or hide the story list for that book.

&) Reading xml through jQuery - Mozilla Firefox
/ B Reading xml through jQuery \'., o)

File Edt Wew History Bookmarks Tools Help Related Lin

http:/flocalhost: 8081 book AChapter 3/Reciper/

TechCrunch Google Blogoscoped B Getk Ik B SpriteMe B ol

The Adventures of Sherlock Hohnes

The Case-book of Sherlock Holmes

The Adwenture of the Three Gables
The Problem of Thor Bridge
The Adwventure of Shoscombe Old Place

The Memoirs of Sherlock Hohnes

Download from Wow! eBook <www.wowebook.com>

100

Chapter 3

After the page has been loaded, the common . xm1 file is fetched through an AJAX GET request.
Note the dataType property; we have set it to xm1. Now jQuery knows that the response

is going to be an XML file. So, when jQuery receives the XML string it converts it into a
document object.

Now, we can apply all the jQuery's selector functions to it and extract the data. We used the
find method to get all the book elements. Using each () we iterated in each book and again
iterated for stories in each book. During this whole process, we also wrapped book names into
hl elements and story names into list items.

When we are done looping, we have an HTML string that we insert into the page. Since we
had already used live method for h1 elements, clicking the book names will toggle the list
of stories.

Remember that the 1ive method is used to attach event
i handlers to elements that will be created in future.

The delegate() method

delegate () is another method similar to live—the difference being that it also takes selector
elements as parameters and filters them against a set of elements that trigger the event.

$S('div') .delegate("span", "click", function|() {
$(this) .toggleClass ("hover") ;

)

If a DIV is clicked then the code will check whether this event has been fired by clicking on
a span element inside the DIV. toggleClass will execute only when a span inside a DIV is
clicked. delegate () has done the filtering in this case.

See also

» Reading an XML using DOM extension
» Accessing elements and attributes using SimpleXML
» Adding events to elements that will be created later in Chapter 1

Working with JSON

In this chapter, we will cover:

» Creating JSON in PHP

» Reading JSON in PHP

» Catching JSON parsing errors

» Accessing data from a JSON in jQuery

Introduction

Recently, JSON (JavaScript Object Notation) has become a very popular data interchange
format with more and more developers opting for it over XML. Even many web services
nowadays provide JSON as the default output format.

JSON is a text format that is programming-language independent and is a native data form of
JavaScript. It is lighter and faster than XML because it needs less markup compared to XML.

Because JSON is the native data form of JavaScript, it can be used on the client side in an
AJAX application more easily than XML.

A JSON object starts with { and ends with }. According to the JSON specification, the
following types are allowed in JSON:

» Object: An object is a collection of key-value pairs enclosed between { and } and
separated by a comma. The key and the value themselves are separated using a
colon (:). Think of objects as associative arrays or hash tables. Keys are simple strings
and values can be an array, string, number, boolean, or null.

» Array: Like other languages, an array is an ordered pair of data. For representing an
array, values are comma separated and enclosed between [and].

» String: A string must be enclosed in double quotes

» The last type is a number

Working with JSON

A JSON can be as simple as:

{

"name" : "Superman", "address": "anywhere"

}

An example using an array is as follows:

{
"name": "Superman", "phoneNumbers": ["8010367150", "9898989898",
"1234567890"]

}

A more complex example that demonstrates the use of objects, arrays, and values is as follows:

{
"people":
[
{
"name": "Vijay Joshi",
"age": 28,
"isAdult": true
b
{

"name": "Charles Simms",
"age": 13,
"isAdult": false

}

An important point to note:

{

}

Above is a valid JavaScript object but not a valid JSON. JSON requires
that the name and value must be enclosed in double quotes; single
quotes are not allowed.

'name': 'Superman', 'address': 'anywhere'

Another important thing is to remember the proper charset of data.

Remember that JSON expects the data to be UTF-8 whereas PHP
i adheres to ISO-8859-1 encoding by default.

104

Chapter 4

Also note that JSON is not a JavaScript; it is basically a specification or a subset derived
from JavaScript.

Now that we are familiar with JSON, let us proceed towards the recipes where we will learn
how we can use JSON along with PHP and jQuery.

Create a new folder and name it as Chapter4. We will put all the recipes of this chapter
together in this folder. Also put the jquery . js file inside this folder.

To be able to use PHP's built-in JSON functions, you should have PHP
e version 5.2 or higher installed.

Creating JSON in PHP

This recipe will explain how JSON can be created from PHP arrays and objects.

Getting ready

Create a new folder inside the Chapter4 directory and name it as Recipel.

How to do it...

1. Create a file and save it by the name index.php in the Recipel folder.
2. Write the PHP code that creates a JSON string from an array.
<?php
StravelDetails = array(
'origin' => 'Delhi’,
'destination' => 'London’',
'passengers' => array
(
array('name' => 'Mr. Perry Mason', 'type' => 'Adult’',
'age'=> 28),
array('name' => 'Miss Irene Adler', 'type' => 'Adult',
'age'=> 28)
),
'travelDate' => '17-Dec-2010"
) ;
echo json encode ($travelDetails) ;

?>

Working with JSON

3. Run the file in your browser. It will show a JSON string as output on screen. After
indenting the result will look like the following;:

{

"origin":"Delhi",
"destination":"London",
"passengers":

[

{

"name":"Mr. Perry Mason",
"type":"Adult",
"age":28

b

{

"name":"Miss Irene Adler",
"type":"Adult",
"age":28
}
I
"travelDate":"17-Dec-2010"
}

PHP provides the function json_encode () to create JSON strings from objects and arrays.
This function accepts two parameters. First is the value to be encoded and the second
parameter includes options that control how certain special characters are encoded. This
parameter is optional.

In the previous code we created a somewhat complex associative array that contains travel
information of two passengers. Passing this array to json_encode () creates a JSON string.

Predefined constants
Any of the following constants can be passed as a second parameter to json_encode ().

» JSON_HEX TAG: Converts < and > to \u003C and \u003E
» JSON_HEX AMP: Converts &s to \u0026

106

» JSON_HEX APOS: Converts ' to \u0027
» JSON_HEX QUOT: Converts " to \u0022

Chapter 4

» JSON_FORCE_OBJECT: Forces the return value in JSON string to be an object instead

of an array

[These constants require PHP version 5.3 or higher.]

See also

» Reading JSON in PHP

» Catching JSON parsing errors

Reading JSON in PHP

Opposite to the previous recipe, this recipe will explain how JSON strings can be read in
PHP and converted to objects or arrays. Decoding JSON strings is very easy in PHP with

its JSON functions.

Getting ready

Create a new folder named Recipe2 in the Chapter4 directory.

How to do it...

1. Create a file named index.php in Recipe?2 folder.

2. Now try to convert a JSON string to object using json_decode () method. After that,
print the resulting object on screen. For json_decode (), you can use the output

from previous recipe which is a valid JSON string.

<?php
$json = <<<JSON

{

"origin":"Delhi",

"destination":"London",

"passengers":
[
{

"name":"Mr. Perry Mason",

"type":"Adult",
"age":28

Working with JSON

I
{
"name" :"Miss Irene Adler",
"type":"Adult",
"age":25
}
1,
"travelDate":"17-Dec-2010"
}
JSON ;

echo '<pre>';

$objJson = json decode ($json) ;
print r ($objJson);

echo '</pre>';

?>

3. Runthe index.php file in the browser and you will see the structure of JSON string
in the form of an object. To access the values from this object, you can query it just
like any other object in PHP.

&) Mozilla Firefox

File Edit “iew Historp Bookmarks Tool: Help Related Links

&g -c o | | hite/ecalhost:8081 /book /Chapterd/Rrecipe2/

J |J hllp:Hlucalhosl:__ﬂd_cnde.ﬂ'ﬂecipe2.ﬂ'| -

stdClass Chject
[
[origin] => Delhi
[destination] =» London
[passengers] => Array
[
[O] =» stdClass Chject
[
[name] => MNr. Ferry Hason
[type] => Adult
[age] == Z8
I

[1] => stdClass Chject
{
[name] => Miss Irene Adler
[t¥ype] =3 Adult
[age] == 25

)

[travellate] => 17-Dec-2Z010

108

Chapter 4

json_decode () converts valid JSON strings into objects. It accepts three parameters each
of which is described below:
» The JSON string itself

» Optional parameter assoc: By default this value is false. If changed to true,
json_decode will convert objects to associative arrays

» Depth: Maximum allowed depth of a recursive structure in the JSON string. It used
to be 128 before PHP 5.3. PHP 5.3 has this limit increased to 512 bytes default.
This parameter is also optional.

In the previous code we used the HEREDOC syntax to define a JSON string. Then we passed
this string to the json_decode () function which converted it to an object.

We can now access the values from this object using standard PHP operators. For example,
to get the travel date from this object use:

Sobjdson->travelDate
Similarly,
SobjJson->passengers[1l] ->name

will output the name of a second passenger, that is, Miss Irene Adler

See also

» Creating JSON in PHP
» Accessing data from a JSON in jQuery
» Catching JSON parsing errors

Catching JSON parsing errors

Errors are a part of application development. It depends on how the developer handles them
to ease the life of users. While encoding or decoding JSON it may happen that the value
passed to these JSON functions is erroneous or violates the JSON rules. In such cases you
should always try to catch these errors and handle them.

Working with JSON

This recipe deals specifically with error handling for JSON functions. We will use PHP's inbuilt
JSON error handling methods to detect any errors in JSON.

Please note that error handling in JSON is only available in PHP
versions 5.3 and higher. So make sure you have the correct version of
PHP installed to use this feature.

Getting ready

Create a new folder inside the Chapter4 directory and name it Recipe3. Also make sure you
have PHP version 5.3 or higher installed.

How to do it...

1. Create a new PHP file index.php in the Recipe3 folder.

2. Using the same JSON string as present in the previous recipe, try to convert it into an
object. Then write a switch case that will check for any errors in JSON and will output
the result accordingly.

<?php

$json = <<<JSON

{
"origin":"Delhi",
"destination":"London",
"passengers":
[

{

"name":"Mr. Perry Mason",
lltypell . IlAdultll ,
"age":28

"name" :"Miss Irene Adler",
"type":"Adult",
"age":25
}
1,
"travelDate":"17-Dec-2010"
}
JSON;
$objJson = json decode ($json) ;
switch(json last error())

{

Chapter 4

>

}

?>

case JSON_ERROR_NONE:
echo'Travel date is:' . $objJson->travelDate;
break;
case JSON_ERROR_DEPTH:
echo 'The JSON string has exceeded maximum allowed stack
depth';
break;
case JSON_ERROR CTRL CHAR:
echo 'Control character error';
break;
case JSON_ERROR_SYNTAX:
echo 'Incorrect JSON : Please check your JSON syntax';
break;

Now, run the index . php file. Since JSON is correct, you will see the output Travel
date is:17-Dec-2010 on your screen. Now remove the comma from the line
"destination":"London",. Save the file and reload it. You will see an error
message : Incorrect JSON : Please check your JSON syntax

PHP version 5.3 onwards provides a function json_last error (). This function takes no
parameters and captures the last error through JSON parsing. It returns an integer value that
can be checked to know the specific error. PHP has some predefined constants for these error
values. These are:

JSON_ERROR_NONE: It means the JSON was parsed successfully and there was
no error

JSON_ERROR_SYNTAX: Means there is a syntax error in the JSON string

JSON_ERROR_CTRL_CHAR: Invalid control character encountered

JSON_ERROR_DEPTH: The JSON string has exceeded maximum allowed stack depth

See also

Reading JSON in PHP

Working with JSON

Accessing data from a JSON in jQuery

So, now we know how to generate JSON using PHP. We can put this knowledge of ours
to some real use. We will write an example that will request some JSON data from PHP
(using jQuery of course) and then we will display it in the web page.

Getting ready

Create a folder for this recipe inside the Chapter4 directory and name it Recipe4.

How to do it...

1. Create a file named index.html in the newly created Recipe4 folder.

2. Write some HTML code in this file that will create and empty select box and
an empty unordered list. Also define some CSS styles for these elements in the
<head> section.
<?php
<html>

<head>
<title>Accessing data from a JSON</title>
<style type="text/css">
body, select,ul{ font-family:"trebuchet MS",verdana }
ul{ list-style::none;margin:O0pt;padding:0pt;}
</style>
</head>
<body>
<h3>Select a date to view Travel Details</h3>
<p>
<select id="travelDates">
</select>

<li id="origin">
<li id="destination"></1i>
<1li id="travellers">

</p>
</body>
</html>

?>

Chapter 4

Time for some jQuery now. First, add a reference to the jQuery library, just before the
closing of the <body> tag. Then, write the jQuery code that will request some JSON
data from a PHP file json . php. On receiving the response, jQuery will fill the select
box and will bind a change event handler for it. On selecting a value from this select
box, another function will be called that will search for the JSON response for the
selected date and will display relevant details on finding it.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var jsonResult;
$.getJSON ("json.php",displayData) ;
function displayData (data)
{
jsonResult = data;
var str = '<option value="">select a date</options>';
for(var i=0; i<data.length;i++)

{

str+= '<option value="' + datal[il] .travelDate + '">' +
datal[i] .travelDate + '</options>';

S ('#travelDates') .html (str) ;
S ('#travelDates') .change (function()
{

if ($(this).val() = '")

{

displayDetails ($(this) .val());

13N

function displayDetails (selectedDate)
{
for(var i=0; i<jsonResult.length;i++)
{
var aResult = jsonResult[i];
if (aResult.travelDate == selectedDate)
{
$('#origin') .html ('Origin : '+
aResult.origin) ;
S ('#destination') .html ('Destination
'+ aResult.destination) ;
var travellers = aResult.passengers;
var strTraveller = '<uls>';

Working with JSON

for(var j=0; j<travellers.length;j++)

strTraveller+= '';
strTraveller+= travellers[j] .name;
strTraveller+= '"';
}
strTraveller+= '</uls>';
$('#travellers') .html ('Travellers :

'+ strTraveller) ;

break;

}

}
3N

</script>

4. Now let's get to the file that will receive the request for JSON. Create this new file and
save it as json.php. In this file, create an array of travel details of some travellers,
then convert it to JSON and send it to the browser.

StravelDetails = array(
array (
'origin' => 'London',
'destination' => 'Paris’',
'passengers' => array
(
array('name' => 'Mr. Sherlock Holmes', 'age'=> 34),
array('name' => 'Mr. John H. Watson', 'age'=> 32)

),
'travelDate' => '17-Dec-2010"

).

array (
'origin' => 'Delhi’,
'destination' => 'London',
'passengers' => array
(
array('name' => 'Mr. Albert Einstein', 'age'=> 51),
array('name' => 'Mr. Isaac Newton' ,‘'age'=> 43)

),
'travelDate' => '25-Jan-2011"

).

array (
'origin' => 'Delhi’,
'destination' => 'London',

114

'passengers' => array
(
array('name' => 'Prof. John Moriaty', 'age'=> 44),
array('name' => 'Miss Irene Adler', 'age'=> 28)

),
'travelDate' => '30-Mar-2011'
)
) ;
header ('Content-Type:text/json') ;
echo json encode ($travelDetails) ;

All done now. Open your browser and run the index.html file. A select box will
appear on screen with some dates filled in it. Select a date and you will see the
details for that particular date.

¥) Accessing data from a JSON - Mozilla Firefox
File Edit Wiew Higtory Bookmarke Tool: Help Belated Links

Gi' + @ 0 .| | btpMocalhost8051 /book/Chapterd/Rieciped/
J. IJ Accessing data from a JSON | -

Select a date to view Travel Details

I 17-Dec-2010 'l

Origin : London
Destination : Faris
Travellers :

Mr. Sherlock Holmes
Mr. John H. Watson

When the DOM is ready, we call the AJAX method $.getJSON () . Previously, you learnt

about $.get () and $.post (). Similarly, this is a special method that is used when the
expected data from the server is in JSON format. Here is the breakdown of parameters of
$.getJSON () :

>

>

URL: This is the URL where the request will be sent.
Data: The data (if any) that has to be sent to the server.

Chapter 4

Callback function: This function is fired when the response is received from the

server. In case of a JSON response, jQuery parses it and a JavaScript object of
the parsed data is made available to the callback function.

Working with JSON

In our example, the request is sent to the json. php file first, where an array with multiple
records has been declared. We then use the json_encode method to convert this array
to JSON and echo it to the browser.

On receiving the response jQuery parses it and an object is made available to the callback
method, displayData. Here we store it in a global variable $jsonResult for future use.

Then we iterate in this object and fill the select box with all the travel dates in the array.
Because the data is now a JavaScript object, JavaScript syntax will apply to it.

After the select box is filled with data, we attach a change event handler for it. When a value
is selected from the select box, the displayDetails () function is called. This function
searches the object for the selected date. When the date is found we retrieve the values for
origin, destination, and passengers from the selected set and insert them into corresponding
elements on the page.

There's more...

Other AJAX methods for requesting JSON data

As mentioned earlier, $.getJSON () is solely designed for conditions where we know in
advance that the response from the server is going to be JSON. However, this behavior can
be simulated with other high-level AJAX methods like $.get (), $.post () and the low level
implementation $.ajax ().

$.get (
'json.php',
displayData,
'json'

)i

By specifying the last parameter as JSON, jQuery will try to assume the response as JSON
string and will try to parse it. Same can be done with $.post () and $.ajax().

Handling errors while requesting JSON

The method that we have used above use AJAX methods such as $.getJSON or $.get.
These methods do not have error-handling abilities by themselves. For example, if we have
requested JSON using $.getJSON and the server sends malformed JSON, $.getJSON will
fail silently. There are two ways to resolve this: either use the ajaxError () method, which
gets executed when any AJAX request encounters an error, or use the low level $.ajax
method, which provides both success and error callbacks. Both of these have been described
in detail in the recipe Handling errors in AJAX requests in the previous chapter.

Chapter 4

Parsing a JSON

Other than using $.getJSON or specifying a data type in AJAX requests, you can also parse
a valid JSON string to convert it to JSON object. jQuery provides a method parseJSON ()
to convert a JSON string to a JavaScript object.

var objJSON = jQuery.parseJSON('{"key":"value"}');

objJSON is now a JavaScript object.

Another method, which is not recommended, is to use eval () function of JavaScript.
var objJSON = eval (' (' + '{"key":"value"}' + ")')

Using eval () may harm your site as the eval () will execute any data that is passed to it.
Therefore, it is recommended to use either parseJSON or a specific AJAX method of jQuery
that returns parsed JSON.

» Creating JSON in PHP
» Fetching data from PHP using jQuery in Chapter 2

Working with Forms

In this chapter, we will cover:

>

Adding input fields dynamically in a form

Searching for a user-inputted string in a page

Checking for empty fields using jQuery

Validating numbers using jQuery

Validating e-mail and website addresses using regular expressions
Displaying errors as user types: performing live validation
Strengthening validation: validating again in PHP

Creating a voting system

Allowing HTML inside textareas and limiting HTML tags that can be used

Introduction

Forms and pages are the only part of your web application that the end-user uses directly. It
is, therefore, the responsibility of a web developer to make forms that are easy to use, easy
to navigate, and interactive. Moreover, attackers can try to damage your application by trying
to input malicious data through your forms.

This chapter deals with forms and form validations like searching for data in a form both

on the browser and the server side. Though validation can be done on the browser with the
help of jQuery, validating data on the server side is more important. If JavaScript is disabled
on the browser, then the client-side validation will not work. Validation on the client side
makes your application user-friendly and less error prone. You will learn how to validate forms
for different types of data such as empty fields, numbers, e-mail or web addresses, and so on
later in this chapter.

Working with Forms

Validation on the server side is a must and the client-side
validation should not be seen as a replacement for it because
’ client-side validation can be disabled.

Adding input fields dynamically in a form

We will create a form where you will be able to add more fields to a form without making a
trip to the server side. In our form, we will present the user with a single textbox and we will
provide buttons for adding and removing additional textboxes.

Getting ready

Create a folder for this recipe named Recipel in the Chapters directory. Do not forget to
put the jquery. js file inside the Recipe1l folder.

How to do it...

1. Create a file and save it as index.html in the Recipel folder and write an HTML
code that will create a list with only one list item. This list item will only have a single
textbox. In the end, we'll see a button that will add more fields to our form.

<html>
<head>
<title>Add rows dynamically</title>
<style type="text/css">
fieldset{width:450px; }
ul{padding:2px;list-style:none; }
label{float:left;width:100px; }
</style>
</head>
<body>
<form action="process.php" method="post">
<fieldset>
<legends>Websites you visit daily</legend>
<ul id="sites">
<lis>
<label>Name</label><input type="text" value=""/>
</1li>

<input type="button" id="add" value="Add More"/>
</fieldset>

120

Chapter 5
</form>

</body>
</html>

Y Add rows dynamically - Mozilla Firefox

File Edit “iew Hizstory Bookmarks Toole Help Belated Links

gi' ~ @ | | hip/locaihost8081 ook /ChapteiS/Fecipel/

J I_] Add rows dynamically | k=

Websites you wisit daily

HName |

Add Maore |

Now, include jQuery and write event handlers. The first event handler will be for the
Add More button that will add more textboxes and also a button to remove them.
We will write another event handler that will remove selected textboxes.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$('#add') .click (function ()
{
var str = '';
str+= '<labels>Name</label><input type="text" value=""/> ';
str+= '<input type="button" value="remove"
class="remove"/>"';
str+= '</1li>"';
$('#sites') .append (str) ;

3N

S('.remove') .live('click', function()
{
$(this) .parent ('1i') .remove () ;
13N
13N

</script>

Working with Forms

3. Run the file in your browser. Clicking on the Add More button will add more textboxes
to the page. You can also remove specific textboxes by clicking on the remove button
next to the textbox.

£ Add rows dynamically - Mozilla Firefox

File Edit “iew History Bookmarks Tool: Help Related Links

Gl- -~ €@ | | pecalhostB081 fbook/ChapterS/Fecipel/

J |_] Add rows dynamically | - |

A
£

Q

S

X

o

o

o

[9]

2

o

2

— Websttes you wisit daily §
v

X

8

Matme Reddit)
Mame Google remove E
Matme Techcrunch remaowve i
Matne Smashing kMagazine remaowve 2
o

3

Add Mare | E
o

a

The event handler for the Add More button creates a new 11 with a textbox and a remove
button inside it, and then uses jQuery's append method to append it to an existing list
of sites.

Note that all remove buttons have a class called remove specified. We used the 1ive
method to attach the event handler for elements having this class. If you remember, the
live method adds an event handler to those elements that are already present in the form
as well as those that will be created in the future.

Therefore, clicking on the remove button on any row finds its parent 1i and removes it from
the DOM.

Getting values on server side

All these textboxes are generated on the client side that is using jQuery. To access these on
the server side, all of these should have a name attribute. Since all of these belong to the
same group (websites), we can provide a name attribute in array format that will allow us

to get all filled values in the form of an array.

122

Chapter 5

Simply add name="sites []" to the existing textbox as well as when we create it from
jQuery. Now if the form is submitted you can access all the filled values from the array
$ POST['sites']. Given below is the $_ POST array after submitting the form with
some values:

Array
(
[sites] => Array
(

[0] => Purple
[1] => Violet
[2] => Red
[3] => Green
[4] => Yellow

Searching for user-inputted string in a page

We will use jQuery to highlight a word entered by the user. The data on the browser can be
made available from the server side (or database) as well. For this example, we will use some
text in an HTML page. The user will enter a search query in a textbox and after pressing a
button all matching words in the content will be highlighted.

Getting ready

Create a folder for this recipe in the Chapters directory and name it as Recipe?2.

How to do it...

1. Open a new file, name it as index.html and save it in the Recipe2 folder. Let us
begin by writing the markup now. Create some paragraphs and put some text inside
them. In the end, place a textbox and two buttons. We have also defined a CSS class
highlight that will create the highlight effect.
<html>

<head>
<title>Search</title>
<style type="text/css">
p { border:1px solid black;width:500px;padding:5px; }
.highlight { background-color:yellow; }

Working with Forms

12

</st

yle>

</head>

<body>

<form>
<p>

</

I consider that a man's brain originally is like a little
empty attic, and you have to stock it with such furniture
as you choose. A fool takes in all the lumber of every
sort that he comes across, so that the knowledge which
might be useful to him gets crowded out, or at best is
jumbled up with a lot of other things, so that he has a
difficulty in laying his hands upon it.

P>

<p>

I consider that a man's brain originally is like a little
empty attic, and you have to stock it with such furniture
as you choose. A fool takes in all the lumber of every
sort that he comes across, so that the knowledge which
might be useful to him gets crowded out, or at best is
jumbled up with a lot of other things, so that he has a
difficulty in laying his hands upon it.

</p>
<p>

I consider that a man's brain originally is like a little
empty attic, and you have to stock it with such furniture
as you choose. A fool takes in all the lumber of every
sort that he comes across, so that the knowledge which
might be useful to him gets crowded out, or at best is
jumbled up with a lot of other things, so that he has a
difficulty in laying his hands upon it.

</p>
<input type="text" id="text"/>

<input type="button" id="search" value="Search"/>

<input type="button" id="clear" value="Clear"/>

</form>
</body>

</html>

Chapter 5

Before the body tag closes, include jQuery. Now in the form we have two buttons. The
first button is for searching the entered text and the second one is for clearing the
highlighted parts. For searching, we'll call a highlight function by clicking on the
Search button. This function searches the text on the page and on finding it, wraps
it into HTML tags and applies the highlight class to it. The second button calls the
clearSelection function that restores the page to normal.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$('#search') .click (highlight) ;
$('#clear') .click(clearSelection) ;

function highlight ()

{

var searchText = $('#text') .val();
var regExp = new RegExp (searchText, 'g');

clearSelection() ;
$('p') .each(function ()
{

var html = $(this).html () ;
var newHtml = html.replace (regExp,
''+searchText+'') ;

S (this) .html (newHtml) ;

13N

function clearSelection/()

{

$('p') .each(function/()

{

$(this) .find('.highlight') .each(function ()

{

$(this) .replaceWith ($ (this) .html ()) ;

</scripts>

Working with Forms

3. Run the file in your browser and enter a search term in the textbox. Click on the
Search button and all matching words will be highlighted on the page. Click on
the Clear button to reset.

¥2) Search - Mozilla Firefox

File Edit “iew History Bookmarks Toolz Help Related Links

GEy- ¢ o | | hitp/iocalhost 8081 /baok/ChapterS/Recipe2/

J |] Search Ij

I consider that a man's bran origmally iz ke a hittle empty athc, and you have to
stock it with such firniture as you choose. A fool takes in all the umber of every
sott that he comes across, so that the knowledge which might be uzefiil to him gets
crowded out, or at best is jumbled up with a lot of other things, so that he has a
difficulty in laying his hands upon it.

I consider that a man's brain origmally iz like a little empty athic, and you have to
stock it with such farndture as you choose. A fool takces in all the lumber of every
sort that he comes across, so that the knowledge which mught be usefil to him gets
crowded out, or at best is jumbled up with a lot of other things, so that he has a
difficulty i laying his hands upon it.

I consider that a man's brain originally iz lilce a little empty attic, and you have to
stock it with such furmture as you choose, A focl takes i all the lumber of every
sort that he comes across, so that the knowledge which might be uzefil to him gets
crowded out, or at best is jumbled up with a lot of other things, so that he has a
difficulty m laying his hands upon it.

|the Sedrch | Clear |

After entering a search term and clicking on the Search button, the highlight function is
called. This function first clears any highlights on the page by calling the clearSelection
function. We will see what clearSelection does in a moment. Next, we get the entered
search term in variable searchText. After that, we create an object using the RegExp
method of JavaScript. This regular expression will perform an actual search for the entered text.

Then we iterate through each paragraph on the form. We get the HTML of each paragraph and
we get to use JavaScript's replace function on that HTML. The replace function takes two
parameters. The first parameter is the regular expression object and the second one is the
text with which we have to replace the matched text. We have just wrapped the search text in
a span and assigned CSS class highlight to it. The replace function will return the whole
text with the replaced words. We then replace the original HTML of the current paragraph with
this new one.

126

Chapter 5

There's more...

Search and replace

You can extend this idea and could create a simple utility for "search and replace". Rather
than highlighting the selected text, you can ask for a string to replace it with.

Checking for empty fields using jQuery

Validation is an important technique in client-side scripting. Validation on the client side
can significantly reduce round trips to the server by providing instant feedback in the form
of messages. Even so, it is NOT recommended to rely on the client-side validation alone.
JavaScript on the users' browsers might be turned off; therefore, validation should ALWAYS
be done again on the server side as well.

How to do it...

1. Create a file for this recipe and name it index.html. Create a form with some text
fields and an input button. Note that all textboxes except city has a class name
required assigned to them. This will be used while validating the fields.

<html>
<head>
<title>Validate empty fields</title>
<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:450px;}
.error{ color:red; }
#info{color:#008000; font-weight:bold; }
</style>
</head>
<body>
<form>
<fieldset>
<legend>Personal</legend>
<table>
<tbody>
<tr>
<tds>Name:* </td>
<td><input type="text" class="required" /></td>
</tr>

Working with Forms

<tr>
<td>Address:* </td>
<td><input type="text" class="required"/></td>
</tr>
<tr>
<td>City: </td>
<td><input type="text"/></td>
</tr>
<tr>
<td>Country:* </td>
<td><input type="text" class="required"/></td>
</tr>
</tbody>
</table>
</fieldset>

<input type="button" value="Check" id="check" />
</form>
</body>
</html>

2. Now, include the jQuery before the <body> tag closes. Write the validation code that
attaches a click event handler to the input button.The validate function will be
called on clicking this button that will check the text fields for empty values.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s

$ (document) .ready (function ()
{
$ ('#check') .click (validate) ;
function validate()

{

var dataValid = true;
S('"#info') .html(''");
$('.required') .each(function ()

{

128

Chapter 5

var cur = $(this);

cur.next ('span') .remove () ;
if ($.trim(cur.val()) == '")
{

cur.after (' Mandatory field
"') ;
datavalid = false;
}
1)
if (datavalid)
{

S('#info') .html ('Validation OK') ;

}
3N

</script>

Launch your browser and run the index.html file. Try clicking on the Check button
without filling in values for the textboxes. You will see an error message next to each
textbox that needs to be filled:

&) validate empty fields - Mozilla Firefox
B Validate empty figlds T

File Edit Wiew History Bookmarks Tools Help Related Links

http: #/localhost: 808 1,book AChapters Reciped/

TechCrunch Google Blogoscoped D Get It D Moke in Reader » The Official Goo

—Personal
Mame:* | Mandatory field
Address:* | Mandatory field
City: |
Country:* | Mandatory field

Check |

Working with Forms

After filling the required values in each of the textboxes, click on the button again and this
time you will see the Validation OK message appearing above the Check button as shown
in the following screenshot:

¥) validate empty fields - Mozilla Firefox

B Walidate empty fields

File Edit Wwisw History EBookmarks Tools Help Related Links
hip:/flocalhost: 8081 book /Chapters Recipe3/

TechCrunch Google Blogoscoped B et It D Make in Reader = The Cfficial G

—Personal

Mame:* IVijay Jashi
Address:* IPithDragarh
City: |
Country:* [India

Validation OK

Check |

We start by assigning a class name required to each textbox that we wish to make mandatory.
This way we will be able to use jQuery's class selector to select all such textboxes.

First of all, in the jQuery code, we have attached an event handler to the Check button that
calls the validate function. This function starts by declaring a variable datavalid to true
and then it selects all the textboxes that have CSS class required. It then iterates in this
collection and removes any span elements next to the textbox. These span elements maybe
previous error messages. If we do not remove them, we will have multiple similar looking error
messages next to a single textbox.

After this, the if condition checks the value of the current textbox. Note the use of jQuery
utility function trim here. Since blank spaces are not considered valid values, we trim these
from the text value. If a blank value is found, we append a span with an error message next
to the current textbox and variable datavalidis setto false.

After all the iterations are done using jQuery's each method, we check the value of
datavalid. If it's still true, that means no field is blank and we display a Validation OK
message on the screen.

130

Chapter 5

There's more...

Validating fields one by one

If you do not want to show all errors at once but instead want to make sure that the user
has filled the first field and then proceeded to the next, you can do so by modifying the
previous code.

To do that, change the i f condition as follows:

if ($.trim(cur.val()) == '"')

{

cur.after (' Mandatory field') ;
datavalid = false;

!
And remove this code:

if (datavalid)

{

S('#info') .html ('Validation OK') ;

}

See also

» Validating numbers using jQuery
» Validating e-mail and website addresses using regular expressions
» Displaying errors as user types: performing live validation

Validating numbers using jQuery

In the last recipe, we validated empty fields. In this recipe, we will extend that behavior and
will check for numbers along with empty fields.

Getting ready

Create a new folder Recipe4 inside the Chapters5 directory.

Working with Forms

How to do it...

1. Create a new file and save it as index.html in the Recipe4 folder. We will take
the same code form as used in the previous recipe and will add another section to it.
So, copy the code from the previous recipe to the index.html file. Now, we will add
another section to it through which a user will be able to enter some numbers. Create
another section named Other Details after the Personal section. It is important to
note that these fields have another CSS class named number along with required
assigned to them. This way we will be able to validate for empty fields as well as
for numbers.

<fieldset>
<legend>Other Details</legend>
<table>
<tbody>
<tr>
<tr>
<td>Age:* </td>
<td><input type="text" class="required number"/></td>
</tr>
<tr>
<td>Monthly Expenses:* </td>
<td><input type="text" class="required number"/></td>
</tr>
</tr>
</tbody>
</table>
</fieldset>

&) Search - Mozilla Firefox

B Search LY

File Edit Wiew Hiskory Bookmarks Tools Help Related Links

http:/flocakhost: 8081 ook /Chapters Reciped/

s TechCrunch 5y Google Blogoscoped D Get Ik D MNote in Reader = 5 The Official Goo

—Personal

Name:* I—
Address:"l—
ci* [
Country:*l—

—Other Details

fge |
Maonthly Expenses:*l

Download from Wow! eBook <www.wowebook.com>

Check |

132

Chapter 5

Now, let's look at the jQuery code. Once again, include the jQuery library and write the
code for validating empty fields as well as numbers. Clicking on the button this time
will first check for blank fields. If any of the fields are empty, the user will be notified
and we will jump out of the function. Once all the fields have passed the blank field

validation, jQuery will check for those textboxes that should have numbers only. Here
is the complete jQuery code:

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>

$ (document) .ready (function ()

{

S ('#check') .click(validate) ;

function validate ()

{

var datavValid = true;
$('.required') .each(function ()

{
var cur = $(this);
cur .next () .remove () ;
if ($.trim(cur.val()) == '')

{

cur.after(' Mandatory field
"') ;
datavalid = false;
}
P

if (!datavalid) return false;

S ('.number') .each (function ()
{
var cur = $(this);
cur .next () .remove () ;
if (isNaN(cur.val()))
{
cur.after (' Must be a number
"') ;
datavValid = false;
}
13N
if (datavalid)
{

S('#info') .html ('Validation OK') ;

}
3N

</scripts>

Working with Forms

In the previous code, we first check for empty fields by iterating on elements with class name
required. After the iterations are complete we check the value of the datavalid field. If
itis false, we'll return immediately from the function. Once all the fields are non-empty, we
proceed to check for numbers.

We select all the elements with class hame or number and use the each method to check
each element. JavaScript function isNaN (is Not a Number) can be used to determine if a
value is a number or not. If a value is found that is not a number, we append the appropriate
error message after that element.

If all elements pass this validation, the message Validation OK gets displayed near the
Check button.

» Checking for empty fields using jQuery
» Validating e-mail and website addresses using regular expressions

» Displaying errors as user types: performing live validation

Validating e-mail and website addresses

using regular expressions

While filling out web forms it is common to ask a user for an e-mail ID and a website name.
These values are a little bit different from the normal strings as they have a fixed pattern.
E-mail addresses require @ symbol whereas website addresses generally start with http or
https. These and many other conditions are required by such addresses.

This is where regular expressions come to the rescue. This recipe will show you the use of
regular expressions to validate patterns like e-mail addresses and URLs.

Chapter 5

Getting ready

Create a new folder named Recipes5 inside the Chapters5 directory.

How to do it...

1. Create a file named index.html inside the Recipes folder. Similar to the previous
recipe, create two textboxes—one for entering the e-mail address and another for the
website address. Also, assign a CSS class mail to the first textbox and site to the
second one.

<html>
<head>
<title>Search</titles>
<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:450px;}
.error{ color:red; }
#info{color:#008000; font-weight:bold; }
</style>
</head>
<body>
<form action="process.php" method="post">
<fieldset>
<legend>Contact Details- both fields are
mandatory</legend>
<table>
<tbody>
<tr>
<tr>
<td>Email: </td>
<td><input type="text" class="required mail"/></td>
</tr>
<tr>
<td>Website:
(start with http://) </td>
<td><input type="text" class="required site"/></td>
</tr>
</tr>
</tbody>
</table>
</fieldset>

Working with Forms

<input type="button" value="Check" id="check" />
</form>
</body>
</html>

¥ Search - Mozilla Firefox

/ [search \@

File Edit Yiew History Bookmarks Tools Help Related Links

http: /flocalhost: 2081 hook /Chapters Recipes/

TechCrunch Gongle Blogoscoped B Gek It B Mate in Reader = The Official God

Contact Details- both fields are mandatory

Email: |
Website: |

Checkl

2. To make our validations actually work, first include the jQuery library. Then add
an event handler for the Check button. It will first search for all elements with
class name mail and will validate the entered e-mail address against a regular
expression. After that, it will validate the website address entered by the user, again
against a regular expression. If no match is found, an error will be displayed next to
that textbox.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$ ('#check') .click(validate) ;

function validate()

{

var datavValid = true;

$('.mail') .each (function()
var cur = $(this);
cur.next ('span') .remove () ;
var emailPattern = /" ([a-20-9 \.-l+)@([\da-z\.-1+)\. ([a-
z\.1{2,6})s/;

if (!emailPattern.test (cur.val()))

136

Chapter 5

cur.after (' Invalid Email Id
</spans>"') ;
datavValid = false;
}
1)

if (!datavalid) return;
$('.site') .each(function()
var cur = $(this);

cur.next ('span') .remove () ;
var urlPattern = /* (http(s?))\:\/\/www. ([0-%a-zA-Z\-
1+\.)+[a-zA-21{2,6} (\: [0-91+)? (\/\S*)?$/;
if (!urlPattern.test (cur.val()))
{
cur.after (' Invalid URL') ;
datavalid = false;
}
13N
if (datavalid)
{
S('#info') .html ('Validation OK') ;
}
}
13N,

</script>

On clicking the Check button, the validate function is called. This function first defines the
variable datavalid to true. Then it gets all textboxes with class name mail and iterates
in the selection. We declare a variable emailPattern, which defines a regular expression.
Then, inside the i f condition, we use JavaScript test function to check the value of textbox
against the regular expression. If the pattern does not match, we append an error message
next to the textbox and set the datavalid variable to false.

We then repeat the same procedure for elements with class name site. For URL validation,
another regular expression has been used.

If all validations pass, we show the message Validation OK to the user.

Working with Forms

There's more...

References for regular expressions
You can refer to the below mentioned links for further study of regular expressions:

» http://www.regular-expressions.info/

» http://en.wikipedia.org/wiki/Regular expression

See also

» Checking for empty fields using jQuery
» Validating numbers using jQuery

Displaying errors as user types: Performing

live validation

Wouldn't it be better if we could validate the data as soon as the user starts typing? We will
not have to wait until the button is clicked and this will be quite informative for the user too.

This recipe is a major enhancement on previous recipes and will show you how you can use
live validation in your forms. Users will be notified of errors as they are inputting data in a field.

Getting ready

Create a folder named Recipes6 inside the Chapters5 directory.

How to do it...

1. Create a new file inside Recipe6 folder and name it as index.html. Write the
HTML that will create two panels, one for Personal details and the other for Other
details. Textboxes of the first panel will have class name required assigned to
them. Similarly, the second panel textboxes will have class names required and
number assigned to them.

<html>
<head>
<titlesLive validation</title>
<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:450px;}
.error{ color:red; }

138

Chapter 5

#info{color:#008000; font-weight:bold; }

</style>
</head>
<body>

<form action="process.php" method="post">

<fieldset>

<legend>Personal</legend>

<table>
<tbody>
<tr>
<td>Name:* </td>
<td><input type="text"
</tr>
<tr>
<td>Address:* </td>
<td><input type="text"
</tr>
<tr>
<td>Country:* </td>
<td><input type="text"
</tr>
</tbody>
</table>
</fieldset>
<fieldset>

class="required" /></td>

class="required"/></td>

class="required"/></td>

<legend>Other Details</legend>

<table>
<tbody>

<tr>

<tr>
<td>Age:* </td>
<td><input type="text"
</td>

</tr>

<tr>

class="required number"/>

<td>Monthly Expenses:* </td>

<td><input type="text"
</td>
</tr>
</tr>
</tbody>
</table>
</fieldset>

class="required number"/>

Working with Forms

<gspan id="info">

<input type="button" value="Save" id="save" />
</form>
</body>
</html>

2. To bring our form to life, include the jQuery library first. Then write an event handler
for textboxes that will execute when any of the textboxes gets focus or a key is
released in any of the textboxes. This code will execute as the user is typing and will
show an error message on a failed validation condition. Finally, add an event handler
for the Check button also because the user might click on the Check button without
entering any data in the form.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$('input:text') .bind('focus keyup',validate) ;

function validate ()

{
var cur = $(this);
cur.next () .remove () ;
if (cur.hasClass ('required'))

{

if ($.trim(cur.val()) == '"')
{

cur.after (' Mandatory field
"') ;
cur.data('valid', false);

}

else

{

cur.data('valid', true);

if (cur.hasClass ('number'))
{
if (isNaN(cur.val()))

{

cur.after (' Must be a number
</spans>"') ;
cur.data('valid', false);

140

Chapter 5

}

else

{
datavalid = true;
cur.data('valid', true);

S('#save') .click (function ()
{
var dataValid = true;
$('.required') .each(function ()
{
var current = $(this);
if (current.data('valid') != true)
{
datavalid = false;
!
3N

S (' .number') .each (function()
{
var current = $(this);
if (current.data('valid') != true)
{
datavalid = false;
!
3N

if (datavalid)
$('#info') .html ('Validation OK') ;
else
S('#info') .html ('Please fill correct values in fields.');
13N
13N

</script>

Working with Forms

The output should look similar to the following screenshot on a failed validation:

¥ Live validation - Mozilla Firefox

File Edit “iew History Bookmarks Tools Help Related Links

EI - G X I |httpi.-".-"|0t:a|hDStBDS1a"bDDka"Ch&ptErEa"HBCipEEa"
J- d Live validation | -

—Personal

Marne:* [wijat
Address:* |De|hi
Country:* [India

—Other Details

fige: [28
honthly Expenses:* [text Must be a number

Download from Wow! eBook <www.wowebook.com>

Save |

Since we are going to validate all the fields instantly as user types we attach two event
handlers to the textboxes—focus and keyup. keyup will execute when the user releases
a key on the keyboard and focus will execute when the user places the cursor in a textbox
either by clicking it through a mouse or by using the Tab key. Both event handlers will call
the same validate function. This way we will be able to validate the value as soon as it is
entered in a textbox.

The validate function will now perform the same functions as we have seen in the last few
recipes. It will get the value of textbox and check it for blank values and numeric values, as
specified by the class name of the target textbox.

However, there is one problem here. If the user does not fill any values and just clicks on
the Save button, we will not be able to detect if any values are filled or not. To resolve this,
we will take two steps.

First, while validating in the validate function, we will save a value true or false for each
textbox. This will be done by using the data () method of jQuery that stores data with DOM
elements. If a field validates we save the value with key valid to it. The value against the key
will be either true or false.

142

Chapter 5

There is also an event handler attached to the Save button. Now suppose the user clicks
the Save button without doing anything with the textboxes. We then select the textboxes and
check if there is data associated with the textboxes or not. The key name should be valid
and its value should be true. If we do not get a value true, it means the fields have not
been validated yet and we set the variable datavalidto false. We then repeat the same
process with textboxes and with the CSS class number. Finally, we show a message to the
user depending on the value of the datavalid variable.

» Checking for empty fields using jQuery

» Validating numbers using jQuery

» Validating e-mail and website addresses using regular expressions
» Strengthening validation: validating again in PHP

Strengthening validation: validating again

in PHP

As mentioned previously, client-side validation should always be accompanied by server-side
validation. If users turn off JavaScript on their browser and there is no server-side validation,
then they can enter whatever they want. This could lead to disastrous results like your
database being compromised and so on.

This recipe will go through the validation methods and functions available in PHP, which we
can use to validate the data.

Getting ready

Create a new folder named Recipe7 inside the Chapters5 directory .

Make sure your version of PHP is >5.2. We will be using filter functions
i that are available only after PHP >=5.2

Working with Forms

How to do it...

1. Create a file named index . php inside the newly-created Recipe7 folder. Create a
form with different type of fields for entering strings, numbers, e-mail addresses, and
website addresses.

<html>
<head>
<titles>Server Side validation</titles>
<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:450px;}
.error{ color:red; }
.info{color:#008000; font-weight:bold; }
</style>
</head>
<body>
<form method="post">
<fieldset>
<legend>Information form</strongs>
(A1l fields are mandatory)</legends>
<table>
<tbody>
<tr>
<td>Name: </td>
<td><input type="text" name="userName"/></td>
</tr>
<tr>
<td>Address: </td>
<td><input type="text" name="address"/></td>
</tr>
<tr>
<tr>
<td>Age: </td>
<td><input type="text" name="age"/></td>
</tr>
<tr>
<tds>Mail: </td>
<td><input type="text" name="email"/></td>
</tr>
<tr>
<td>Website: </td>
<td><input type="text" name="website"/></td>
</tr>
</tr>

Chapter 5

</tbody>
</table>
</fieldset>

<input type="submit" name="save" value="Submit"/>
</form>
</body>
</html>

The form should look similar to the following screenshot:

&) Server Side validation - Mozilla Firefox

/ B Server Side walidation

File Edit Wiew History Bookmarks Tools Help Related Links
hitp:/flocalhost: 8081 /hook /Chapters Recipe?/

TechCrunich Google Blogascoped D Get It D Mate in Reader = The CFficial Goo

—Information form (All fields are mandatory)

Mame: |
Address: |
Age: |
|
|

wail:
Website:

Submhl

When the form is submitted, it will go to the index . php file. Hence, we will place our
validations at the beginning of this file. Shown below is the PHP code that needs to
be placed at the beginning of the index . php file. This code checks all the fields and
upon finding any error it pushes an error message into an array.

<?php
if (isset ($_POST['save'l))
{
Sname = trim($_POST['userName']) ;

Saddress = trim($_POST['address']);
Sage = trim($_POST['age'l) ;

Semail = trim($_POST['email']) ;
Swebsite = trim($_POST['website']);

Working with Forms

$errorArray = array();
if ($name == '' || $address == '' || $age == '' || $email == '
| | Swebsite == '"')

array push(SerrorArray, 'Please fill all fields.');

if (filter var($age, FILTER VALIDATE INT) == FALSE)

{

array push(SerrorArray, 'Please enter a number for age.');

if (filter var($email, FILTER VALIDATE EMAIL) == FALSE)

{

array push($SerrorArray, 'Email address is incorrect.');

if (filter var($website, FILTER VALIDATE URL) == FALSE)

{
array push(SerrorArray, 'Website address is incorrect.');
}
}

?>

3. Asyou can see in the previous code, we are creating an array of error messages
(if any). The following code will print these error messages on the browser. Place
this code just after the <form> tag opens:
<?php

if (count ($SerrorArray) > 0)

{

?>
<p class="error">
<?php
foreach($errorArray as S$Serror)
{
echo Serror.'
';
}
?>
</p>
<?php
}
?>

146

Chapter 5

4. Open your browser and point it to the index . php file. Enter some incorrect values in
the form and click on the Submit button. You will see error messages in the form of a
list in your browser.

&) Server Side validation - Mozilla Firefox

{ D Server Side validation

File Edit ‘“iew History Bookmarks Tools Help Related Links
http: fflocalhost: 808 1 book /Chapters Recipe?
o TechCrunch & Google Blogoscoped DGet 1t DNote inReader = =y The Official Go
Please fill all fields.
Please enter a number for age.

Email address is incorrect.
Website address is incorrect.

—Information form (4l fields are mandatony)

MName:
Address:

Mail:
Website:

|
|
Age: |
|
|

Submit |

First, we confirm the form submission using the isset function for $_POST['save']. Then,
we collect the values of all form variables in separate variables. Next, we declare an array
SerrorArray that will collect all the error messages. After that, we check if the fields

are blank or not. If any of the field is found blank, we push an error message in the
SerrorArray array.

Next comes the use of PHP's filter var () function. This function takes three parameters
out of which the last two are optional. The first parameter is the value that is to be filtered.
The second parameter is the ID of the Validate filter that defines the type of validation to be
done. For example, FILTER VALIDATE INT validates the value as integer. In the previous
example, we have used three of them, FILTER VALIDATE INT, FILTER VALIDATE
EMAIL, and FILTER VALIDATE URL.

filter var () returns the filtered value on success, and false on failure. In the
previous code if we encounter a false value, we push a related error message to the
SerrorArray array.

Working with Forms

Then in the form we check the count for SerroraArray. If the number of elements in this
array is not equal to zero, then there is some error. So, we iterate in this array and print
all the error messages.

List of Validate filters

» FILTER VALIDATE INT
FILTER VALIDATE FLOAT
FILTER VALIDATE EMATL
FILTER VALIDATE URL
FILTER VALIDATE BOOLEAN
FILTER VALIDATE REGEXP
FILTER VALIDATE IP

vV vV v Vv v VY

To see the list of all Validate filters available in PHP, you can refer to this URL from the PHP
site: http://www.php.net/manual/en/filter.filters.validate.php.

Sanitizing data

Apart from validation £ilter var () can also be used to sanitize the data. Data sanitizing
refers to removing any malicious or undesired data from the user's input. The syntax remains
the same, the only difference is that instead of passing Validate filters as the second
parameter, Sanitize filters are passed. Here are some commonly-used Sanitize filters:

FILTER SANITIZE EMAIL
FILTER_SANITIZE NUMBER FLOAT
FILTER SANITIZE NUMBER INT
FILTER_SANITIZE SPECIAL_ CHARS
FILTER SANITIZE STRING
FILTER_SANITIZE URL

FILTER SANITIZE ENCODED

v vV v VvV Vv v VY

A list of all Sanitize filters can be found on the PHP website at this URL :
http://www.php.net/manual/en/filter.filters.sanitize.php

» Validating numbers using jQuery
» Validating e-mail and website addresses using regular expressions
» Displaying errors as user types: performing live validation

148

Chapter 5

Creating a voting system

We will create an example where users will be able to vote for their favorite browsers. Once
voted, they will not be able to vote for another day, that is 24 hours. Votes will be stored in an
XML file. We will also display the votes in a nice graphical format.

XML file has been used just for the example. In real world applications,
data will be loaded from databases or web services (which can return
"~ anything like XML, JSON, or any other format).

Getting ready

Create a folder named Recipes8 inside the Chapters5 directory.

How to do it...

1. OK. This recipe is going to be a bit long, so grab a mug of coffee and start. First of all,
create an XML file in the Recipe8 folder and name it as browsers . xml. This file will
have information about the browsers that we will display to the user.

<?xml version="1.0"?>

<browsers>
<browser name="Firefox" value="FF" votes="200"/>
<browser name="Google Chrome" value="GC" votes="130"/>
<browser name="IE" value="IE" votes="30"/>

</browsers>

2. Now create a PHP file named index.php. We will read the XML file and present the
user a list of browsers to select from. This file also contains the code that will handle
form submission. Also, the user will not be able to vote more than once in a day.
<?php
if (isset ($_POST['vote']))

{
if (isset ($_COOKIE ["voted"]))

{

Smessage = 'You have already voted. You cannot vote more than
once per day.';
else
Smessage = 'Your vote has been saved';
Sdom = new DOMDocument () ;
Sdom->load ('browsers.xml') ;

Working with Forms

$Sxpath = new DomXPath ($dom) ;
Sunits = $xpath->query('//browser') ;

foreach (Sunits as Sunit)

{

$value = $Sunit->getAttribute('value');
if (svalue == $ POST['browser'])

{

Svotes = $Sunit->getAttribute('votes');

Sunit->setAttribute ('votes', ++S$votes);

setcookie ("voted", true, time()+ (24*60%60)); /* expire
in 24 hours */

break;

}

Sdom->save ('browsers.xml') ;

}

?>
<html>
<head>
<titles</title>
<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:350px; }
ul{list-style:none;}
</style>
</head>
<body>
<form method="post">
<fieldset>
<legend>Which is your favorite browser?</legend>

<?php
Sdom = new DOMDocument () ;
Sdom->load ('browsers.xml') ;
$Sxpath = new DomXPath ($dom) ;
Sbrowsers = $xpath->query('//browser') ;

foreach (Sbrowsers as Sbrowser)

{
$checked = $ POST['browser'] ==
Sbrowser->getAttribute ('value')? 'checked': '

150

Chapter 5

echo '<lis><input type="radio" '.S$checked.'
name="browser" value="'.$browser->getAttribute('value').'">'. Sbrow
ser->getAttribute ('name').'</1li>"';

}

?>
<1li style="color:red;"><?php echo Smessage; ?>
<input type="submit" name="vote" value="vote" /> OR
View Results

</fieldset>
</form>
</body>
</html>

Run the file in the browser and you will see some radio buttons and a vote button as
shown in the following screenshot:

E) Mozilla Firefox
/ B http: fflocalhost: 8. jRecipesfindex.php ﬁ;;\

File Edit ‘iew History Bookmarks Tools Help RelakedLi
htip: fflocalhost: 8081 bock AChapters /Reciped/indesx. php

TechCrunch Googls Blogoscoped B Get It D Mote in Reader

Which is your favorite browser?

O Firefox

C Google Chrome
CIE

vote | OR Vieww Results

The above page also contains a link to view the results. To create that page, open a
new file and save it as results.php. The code in this file will read the XML file and
will display votes for each browser.
<html>
<head>

<titles>Vote Results</title>

<style type="text/css">

body{font-family: "Trebuchet MS",verdana;width:350px;}

ul{list-style:none;}

li{height:25px;}
span{background-color:red;color:#fff;float:left; }

Working with Forms

</style>
</head>
<body>

<fieldset>

<legend>Poll Results</legend>
<?php

Sdom = new DOMDocument () ;
Sdom->load ('browsers.xml') ;
$Sxpath = new DomXPath ($dom) ;
Sbrowsers = $xpath->query('//browser') ;

echo '';

foreach (Sbrowsers as Sbrowser)

{

Sname = S$browser-s>getAttribute ('name') ;
$votes = $browser->getAttribute ('votes') ;
echo ''.$name.' - '.$votes. ' votes';

echo ' </1li>
';style="width:'.S$style="width:'.$
}

echo '';

?>
</fieldset>
</body>
</html>

5. All done and we are ready to run our example now. Run the index . php file in your
browser and you will see the form. Select the last radio button and click on the vote
button. You will see a message that says Your vote has been saved. Now select a
browser and click the vote button again. This time you will see an error message
that says You have already voted. You cannot vote more than once per day.

6. Now click on the View Results link. This will open a new page and you will see the
number of votes for each browser. Your vote will increase the vote count for IE from
30 to 31.

152

Chapter 5

&) Vote Results - Mozilla Firefox

{ [vote Resuls Lo

File: Edit ‘“iew History Bookmarks Tools Help Related Links

http: /flocalhost: 2081 hook /Chapters Recipeg/results.php

TechCrunch Google Blogoscoped B Gek It B Maote in Reader »

—Foll Results

Firefox - 200 wotes

Google Chrome - 130 votes

IE - 31 votes

Let us start by examining the structure of the browsers.xml file. This XML contains three
browser nodes, each defining one browser. Each node has three attributes: name, value, and
nodes. Name will be displayed to the user, value will be used in internal processing, and votes
are the number of votes for each browser.

Coming to the index . php file now, we will start from the HTML. Using the DOM Document
functions we load the XML file and create an unordered list from it. A radio button is created
for each browser. In the end, a button is created for vote and another link for View Results.

Now here's a summary of what happens after a form is submitted.

>

To find out if a user has previously voted or not, we check the Superglobal $ COOKIE.
If this cookie contains an entry for voted, this means the user has voted previously
and we show an error message.

If the user has not voted already, we increase one vote in the XML file.
To add a vote for the selected browser, we load the XML using DOMDocument.

Then we search through all browser nodes and check the attribute value against the
value selected by the user. This value is available in $_POST ['browser'].

Once a match is found we increase the number of votes by one against that browser.

Then we set a cookie named voted, which will sit on the user's browser. PHP's
setcookie function is used to set the cookie and it is set to expire after 24 hours.
This will prevent the user from voting more than once in a single day.

Finally, save the XML using the save method of DOM.

Working with Forms

To generate the page results.php, load the XML file using DOM Document again and
iterate through all browser nodes. We create an unordered list again. For each browser, two
list items are created. In the first 11, we write the name of browser and number of votes cast
against it. The second 11 creates a span element with its width set to the number of votes in
pixels. This will create the effect of a bar chart.

There's more...

Cookie expiration time

In the previous example, we have set the cookie to expire after a day. You can change this as
per your requirements. Just note that it is passed as a UNIX timestamp and hence you will
have to pass it in seconds.

See also

» Reading an XML using DOM extension in Chapter 3
» Modifying an XML using DOM extension in Chapter 3

Allowing HTML inside text areas and limiting

HTML tags that can be used

While a user is filling out some form, you may want to restrict the HTML tags that are allowed
through user input. Some unwanted tags like <script> tags can cause potential harm to
your site and its data.

This recipe will teach you how to filter the tags from data entered in a web form and accept
only specific tags.

Getting ready

Create a folder named Recipe9 inside the Chapters5 directory.

How to do it...

1. Create a new file and save it as index.html. Now, create two textarea elements and
a button. The first textarea is where the user will enter the text in HTML format. The
second textarea will show the HTML after disallowed tags are stripped from it.

<html>
<head>
<title>Strip tags</title>

Chapter 5

<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:700px;}
</style>
</head>
<body>
<form>
<table>
<tr>
<td valign="top">Write some HTML in the box

(Only allowed HTML tags are
,<u>,<
i> and <strongé>.
Other tags will
be removed) :</td><td>
<textarea id="comment" cols="50" rows="10"></textarea>
</td>
</tr>
<tr>

<td valign="top">This is how your HTML will look:</td>

<td>
<textarea id="stripped" cols="50" rows="10">
</textareas>
</td>
</tr>
</table>
<input type="button" value="Check" id="check" />
</form>
</body>
</html>

Include the jquery. js file and then add an event handler for the Check button.
Clicking on this button will send the data of the first textarea to a PHP file,

validate.php. On receiving a response, it will be set inside the second textarea.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>

$ (document) .ready (function ()

{

S ('#check') .click (function ()

{
$.post (
"validate.php",
{ comment: $('#comment').val() },
function (data)
{
S('#stripped') .val (data) ;
13N
13N
13N
</script>

Working with Forms

Create another file for the PHP code and name it validate . php. The code in this

file will strip the disallowed HTML tags from the input data and will echo them back

'<u><is>')) ;

3.
to the browser.
<?php
Stext = $ POST['comment'];
echo trim(strip_ tags (stext,
?>

4.

Now, open your browser and run the index.html file. Write some HTML in it and

click on the Check button. The second textarea will show the HTML after disallowed

tags are stripped from it.

&) Strip tags - Mozilla Firefox

Write some html in the box
{Only allowed html tags are
,<u>,<i= and .
Cther tags will be removed):

This is how your hitml will look:

Check |

[strip tags \\@
File Edit Wiew History Bookmarks Tools Help Related Links
htty: flocalhost: 8081 book Chapters Recipedy » > &
TechCrunch Google Blogoscoped B izet It B Mote in Reader = The Official Google Bl... B [# Twpe in Hindi] B Share or|

<h3> This iz a heading </h3>
<strongrhix</strongs>

<uls
<lirItem 1</1li>
“lir <ur Item 2 </ux </ 1ix
<lirItem 3</1i>

</l

<& href="http://uwv.google.com™> Go to Google </ axr

This i=s a heading

<gtrongrhix

Item 1
<ux> Item 2 </u>
Item 3

Go to Google

156

Chapter 5

On clicking the Check button, an AJAX request is sent to the PHP file validate.php. Here
comes the main part. We get the data received from the POST request. Then we use the PHP
function strip tags (). This function removes the HTML tags from the input string. The
first parameter to this function is the input string that we need to strip tags from. The second
parameter is optional. If not passed, this function will strip all HTML tags from the input
string. In our example, we want to allow four tags: ,<u>,<i>, and <strongs, therefore
we passed these as second parameters. The function will now remove all HTML tags from the
input string except these four. It returns the resulting string that you can now safely save to

a database or perform other operations on. In this example, we echo it to the browser to see
how it will look. On the browser, jQuery inserts it into the second textarea.

There's more...

PHP tags are stripped too
Any HTML comments in input string and PHP tags are automatically stripped.

Adding Visual Effects
to Forms

In this chapter, we will cover:

» Creating a Tic-Tac-Toe game with effects

» Informing a user while an AJAX request is in progress

» Creating expandable and collapsible boxes (accordion)
» Fading an element after updating it

» Floating a box on demand

» Updating items in a shopping cart

Introduction

Adding jQuery to web pages can result in amazing effects and user interaction if used wisely.
There are many plugins in jQuery that already provide most of the utilities and widgets
presented in this chapter. But most of the time these plugins try to be so complete that
unnecessary features creep in.

In this chapter we will be creating widgets, such as accordion, floating DIVs, and yellow fade
techniques that are common in modern AJAX applications. We will create these in the simplest
manner with minimum code.

Adding Visual Effects to Forms

Creating a Tic-Tac-Toe game with effects

Web forms should be as user-friendly as possible to ease the life of users. Users should be
clear as to which part they are interacting with.

In this recipe we will create a game of Tic-Tac-Toe. You may have already played this game as
a kid. This will present a good example of how different sections of a page can be highlighted
for a user to let him or her know where he or she is interacting on the page.

Ours will be a two-player game where we will present the user with a grid of 3*3 or 5*5
depending on his selection. Hovering over a box in the grid will highlight that box and clicking
on a box will put either a cross or a circle depending on the player's turn. With every mark
made on the grid, we will switch user turns and check if a user has won or not.

Getting ready

Create a folder named Recipel inside the Chapteré directory. For this recipe we will need
two more images: one for a cross and one for a circle as the game demands. Using paint or
any other simple image editing programs we can create these two images. | have used the
following images in this recipe:

How to do it...

1. First create a CSS file main.css in the Recipel folder. This file will contain the
following CSS styles for our game:
body{color: #FA6766; font-family:Trebuchet MS,arial,verdana;margin:2
Opx;padding:0pt;}
h3{margin:Opt:padding:0pt; }
div{float:left;}

#table{ width:100%; }
.row {width:100%;}
.col {width:75px;float:left;height:75px;cursor:pointer; }

160

Chapter 6

.hr{ border-right:2px solid #FA6766;}

.vr{ border-bottom:2px solid #FA6766;}
.cross{background-image:url (cross.png) ; }
.round{background-image:url (round.png) ; }
#log{clear:both;margin:Opt;padding:Opt; }
.reset{cursor:pointer;display:none;text—decoration:underline;}

After defining styles, create another file in the same folder and name it as
index.html. This file includes the main. css file. Then create a combo box from
where the user will select a grid size (3*3 or 5*5). Then create two h2 elements. The
first element will be used to display the player's turns and the second element will be
used to reset the game when it ends. Lastly, create a DIV with ID container that will
hold the grid for a game. It will be created using jQuery.

In the end add the reference to the jQuery library. Since the jQuery code will be a
bit lengthy, we will keep it in a separate file that we will call tictactoe.js.Add a
reference to this file also.

<html>
<head>
<title>Tic-Tac-Toe</title>
<link rel="stylesheet" href="main.css" />
</head>
<body>
<div>
Grid Size:<select id="size">
<option value="3">3 * 3</options>
<option value="5">5 * 5</options>
</select>
</div>
<p> </p>
<h2 id="log">Waiting for Player 1l</h2>
<h2 class="reset">Reset</h2>
<p> </p>
<div id="container"s></divs>
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript" src="tictactoe.js"></script>
</body>
</html>

Adding Visual Effects to Forms

4. Now create the tictactoe. js file in the Recipel directory. This code will define
a separate namespace game in which we will keep all our variables and functions.
The code in this file has a function createGrid (), which will create a grid according
to selected size and other functions. Then it will add event handlers for clicking on
the grid.

$ (document) .ready (function ()

{

function game() {};

game.init = function(size)

{
if (parselInt (size,10) <=0) return;
this.gridSize = size;
this.player = 0; // 0 - player 1; 1- player 2
this.marker;
//create grid
this.createGrid() ;

$('.col') .hover (function () {$ (this) .css ('background-color',
"#FBF9EA') ; }, function() {$ (this) .css ('background-color',
"HFFF') ; }) ;

S('.col'") .click (function()

{

//check if already clicked

if ($(this) .hasClass('cross') || $(this).hasClass('round'))
{ return; }// cant

var who = (game.player ==0) ? "Player 1" : "Player 2";

game.marker = (game.player == 0) ? 'cross' : 'round';

$(this) .addClass (game.marker) ;

var won = game.checkForWin (this) ;

if (!won)

{
//change players turn
game.player = (game.player == 0) ? 1 : 0;
var player = (game.player ==0) ? "Player 1" : "Player 2";
$('#log') .html ('Waiting for '+ player);

}

else

{
S('.col'") .unbind('click') ;
$('#log') .html (who + ' Wins!!!');
$('h2:1last') .show('slow') ;

3N

162

Chapter 6

5. Another function checkForWin () is defined that will check if a player has won a
game after clicking on a box in the grid. Finally, there are event handlers for both h2
elements. In the last line of code we start the game by calling the init function.

game.checkForWin = function (current)

{
var size = this.gridSize;
var row = $(current).attr('i');
var col = $(current).attr('j');
//check horizontal and vertical rows
var hDone = true, vDone = true;
for(var 1i=0; i< size; i++)

{

1f($S('#'+(row + 1)) .hasClass(this.marker) != true)
hDone = false;
if(S('#'+(i + col)) .hasClass(this.marker) != true)
vDone = false;
!
if (hDone == true || vDone == true) return true;

//check diagonals

if (row == col || ((parselnt(row) + parselnt(col)) ==
(this.gridSize)-1))

{
var ldDone = true, rdDone = true;
for(var i = 0, j = size-1; i< size; i++, j--)
{
if($S('#'+1i+1) .hasClass (this.marker) != true)
ldDone = false;
if(S('#'+i+j) .hasClass (this.marker) != true)

rdDone = false;

if (1dDone == true || rdDone == true) return true;

}

return false;

game.createGrid = function()

{

var size = this.gridSize;
var str = '<div id="table">';
for(var i=0; i<size; i++)

{

str+= '<div class="row">';

for(var j=0; j<size; Jj++)
var cssClass='col';
if(j< size-1) c¢ssClass+= " hr";
if (i< size-1) cssClass+= " vr";

Adding Visual Effects to Forms

str+= '<div id="'+4+i+j+'" class="' + cssClass +'" i="'4+i+'"
J=""+j+ "' "></div>";

}

str+= '</div>';

}

S ('#container') .html (str) ;

}

$('#size') .change (function ()

{

game.init ($(this) .vall()) ;
$('#log') .html ('Waiting for Player 1');

1)

$('h2:1last') .click (function()

{

game.init (S ('#size') .vall());
S('#log') .html ('Waiting for Player 1');
$(this) .hide('slow') ;

3N

game.init (3) ;

13N

6. Our game is complete and is ready to be played now. Run the file index.html in
your browser and you will see a nice 3*3 tic-tac-toe grid.

¥) Tic-Tac-Toe - Mozilla Firefox
{B Tic-Tac-Toe T

File Edit Wiew History Bookmarks Tools Help

http: fflocalhost: 9081 dook fChapters Recipal/
TechCrunch Google Blogoscoped D Get It B Tk

QU sturblel A7 v S Tlkeitl @ & B #=h

i*3x

164

Chapter 6

7. Start playing the game now. Taking the mouse pointer over a box will make it yellow.
Clicking in any box will place cross and circle symbols alternatively. After a player wins
the game, the screen will look similar to the following screenshot:

&) Tic-Tac-Toe - Mozilla Firefox

{ D Tic-Tac-Tae w

File Edit Wiew History Bookmarks Tools HE
htip: /flocalhost: 8081 /book /Chapters,/Recipe 1
TechCrunch Google Blogoscoped DGet I D

QU stumble! 28~ &y ke it & & E A

OX X
X O
O

First, define a global object game. This will be our namespace under which we will keep all
variables and functions for our game.

We start with the init function where we pass a number. This number is the size of the grid
that we will create. There is another variable, player, whose value will be O if it's Player 1's
turn and 1 if it's Player 2's turn. The variable marker will decide which icon to place (cross or

circle) depending on the player's turn. In the case of Player 1 it will be a cross and a circle if it
is Player 2's turn.

Adding Visual Effects to Forms

Next comes createGrid () that creates the actual game grid. This function creates a DIV with
rows and columns and assigns CSS classes to them that define the look and feel of the grid. If
the grid size is 3, it will create a 3*3 grid. After creating the HTML for the grid, it inserts it into
the container DIV. Each column in the grid has also been assigned two custom attributes i
and j whose value is the index value of the matrix. The following figure will explain this:

Grid Size |3*3 vl
Waiting for Player 1

i=0; =0 |fi=0:j=1 |i=0; =2

i=1;4=0 fi=1 ;=1 |[i=1;4=2

=21 4=0 |i=z 1 =1 |i=z ;=2

Before proceeding, make note of two important CSS classes: cross and round. cross will
add a background image of a cross to a column and round will add the background image
of a circle.

Our Ul is ready and now we need to add event listeners. There are two important event
handlers. First is when a user hovers the mouse pointer over a box in the grid. For this we use
the jQuery .hover listener that changes the color to yellow while the mouse pointer is over

a box and back to white if the mouse pointer goes out of the boundaries of a box.

The most important event is the c1ick event on a box on the grid. On clicking a box or
column, we first check if it has the cross or round class. If it has, we simply return
from the function as we can place icons or markers on already empty columns.

As mentioned above, the variable who defines which player is playing and marker defines
the CSS class to be applied. We then apply the suitable class after checking which player

is playing.

After placing the CSS class we check if a player has won or not. We check this in function
checkForWin (). If we get true, it means that the current player has won the game and we
unbind the c1lick event from the columns. With this we also display an information message
and the game ends.

166

Chapter 6

If, however, checkForWin () returns false, we switch the player's turn by changing the
value of variable player and displaying it on the Ul too.

The function checkForWin () actually checks for three same CSS classes in a row, column,
or diagonal, which indicates a win situation. Horizontal and vertical rows are checked first with
the help of a for loop.

Next, we check for diagonals using two for loops. The logic is simple. If all elements in a row,
column, or diagonal have the same CSS class then a player has won. Accordingly, we return
either a true or false value from this function.

Two other event handlers are present: one for the select box, which calls the init function
when a user changes the grid size from the combo box and the other is for the Reset button,
which becomes visible after a player wins.

by passing the value in the init function.

There's more...

Exercise—checking for a draw

If you observe closely, you will find that our example only shows the Reset link if a player wins.
In case of a draw, the user is stuck and cannot reset the game again. | will leave this as an
exercise for you.

[Note that this code of ours is generic. You can create a grid of any size]
S

To check for a draw you just need to count the clicks according to the size of the draw.
For example, if grid size is 3*3, after nine clicks the game is a draw unless function
checkForWin has returned true.

Informing a user while an AJAX request is

in progress

As AJAX applications do not have full page reloads, if an AJAX request is pending to the server,
and the user can't see any natification, they may get confused.

It is, therefore, necessary that a user must be provided some kind of information while
an AJAX request is in process. This is an important point worth noting while creating AJAX
applications that should not be ignored.

In this recipe, you will learn how users can be notified that an AJAX request is taking place and
how to provide the feedback of the progress to the user.

Adding Visual Effects to Forms

Getting ready

Create a folder named Recipe2 inside the Chapteré directory. The other thing that you need
to do is visit either of these websites http://ajaxload.info/ orhttp://preloaders.
net /. Here you will find animated images of loading icons. Choose an image and download

it. You will need this image for this recipe. For this recipe | have used the following image from
http://ajaxload.info/.

| |
How to do it...

1. Create a new file in the Recipe2 folder and name it as index.html.

2. We will create a form where the user will fill some information and it will then be sent
to the server. Create this form and also create an image tag with its path set to the
previously mentioned image. For the moment, hide this image using CSS style. Also
create a paragraph element where response from the server will be displayed.

<html>
<head>
<title>User feedback</title>
<style type="text/css">
body{font-family: "Trebuchet MS",verdana;width:450px; }
#info{color:#008000; font-weight:bold; }
</style>
</head>
<body>
<form>
<fieldset>
<legend>
Please fill the information
</legend>
<table>
<tbody>
<tr>
<td>Name:</td>
<td><input type="text" id="name" /></td>
</tr>
<tr>
<td>Address:</td>

168

Chapter 6

<td><input type="text" id="address"/></td>
</tr>
<tr>

<td>City:</td>

<td><input type="text" id="city"/></td>
</tr>
<tr>

<td>Country:</td>

<td><input type="text" id="country"/></td>
</tr>
<tr>

<td colspan="2"><img src="ajax-loader.gif"

style="display:none;" id="loading"/></td>

</tr>
<tr>
<td colspan="2"><input type="button" value="Save"
id="save" /></td>
</tr>
</tbody>
</table>
</fieldset>
</form>
<p id="info"></p>
</body>
</html>

&) User feedback - Mozilla Firefox

D User feedback

File Edit “iew History Bookmarks Tools Help Related Links
bt Alocalhost: 8081 bock /Chapters Recipez/

TechCrunch Google Blogoscoped B Gek Ik D Mote in Reader » The Official Go

—Please fill the information

Mame: |
Address: |
City: |
CounUy:l

Save |

Adding Visual Effects to Forms

3. Now let's create the jQuery code that will collect the form values and will send them
to a PHP script process . php on the server side. On receiving a response it will hide
the form and will display the received data. This code will also be responsible for
displaying the progress indicator while the PHP script processes the data.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

S('#save') .click (function ()

{

$('#loading') .

show () ;

$(this) .val('Please wait...');

$.post (

"process.php",

{

name : $(
address

city : $(
country :

b

"#name') .val

()
$('#address') .val(),
"#coity') .val(),
$('#country') .val()

function (data)

{

S ('#loading') .hide() ;
S('form') .hide() ;

)
3N
3N

</scripts>

S('#info') .html (data) ;

4. Create another file in the Recipe?2 folder and name it as process . php. This file
will echo back the information received from the HTML form in a formatted string. To
simulate the delay on the server side so that the browser has enough time to display
the progress indicator we use the sleep function to halt the execution for five seconds.

<?php
sleep (5) ;
Sstr =
Sstr.= '
';
Sstr.= 'Name - '.
Sstr.= '
';
Sstr.= 'Address -
Sstr.= '
';
$str.= 'City - '.
Sstr.= '
';
Sstr.= 'Country -
echo S$str;

?>

'Your following information has been submitted:';

$_POST['name'];
'. $_POST['address'];
$_POST['city'l;

'. § POST['country'];

170

Chapter 6

5. We are good to go with this. Run the index.html file in your browser. Fill the form
with values and click on the Save button. A progress bar will appear, which will stay
for five seconds until the response is received from the PHP script. After the response
is received you will see the values you earlier filled on the screen.

&) User feedback - Mozilla Firefox

/a User Feedback \@

File Edit Wiew History EBookmarks Tools Help Related Links

hitp: /flacalthost: 8081 /hook /Chaptera,Recipe2,/

TechiZrunch Google Blogoscoped B Get It B Mote in Reader » The Cfficial Go

Please fill the information

MName: I‘v’ijayJoshi
Address: |\f’ikaspuri
City: [Dethi
Country: |india

FPlease wait... |

6. The following screenshot shows the screen after the response is received from the
PHP script:

¥) User feadback - Mozilla Firefox
/ B ser Feedback \@

File Edt Miew History Bookmarks Tools Help Related
bt fflocalhost:B03 1 book /Chapters/Recipez/

TechCrunch Goodle Blogoscoped B Get Ik B Mote in Reade

Your follwing information has been submitted
Mame - Vijay Joshi

Address - Vikaspuri

City - Delhi

Country - india

Download from Wow! eBook <www.wowebook.com>

Adding Visual Effects to Forms

We have an event handler for the Save button that executes when the button is clicked. When
the button is clicked, the image which has ID 1ocading is displayed using the jQuery show ()
function and the button's display text is changed to Please wait.... Then an AJAX request is
sent to process . php with the form values. On receiving these values, the PHP script waits
for five seconds and then echoes the values to the browser.

On receiving a response from PHP, jQuery hides the progress bar, and the form and values
received from the server are displayed on the page.

In this way, the user can be made aware that some processing is taking place and he or she
should wait until the request finishes.

There's more...

Using text instead of images
If you do not want to use images as a progress indicator, you can use some text instead of it.

Using overlays to stop a user from interacting with the form

In the previous example, while the request is in progress, a user can click on the Save button
again, which will send a new request to the server. To avoid this, you can disable the Save
button or, alternatively, you can use an overlay that covers the form till the request completes.
This will convey the message clearly to the user that since a request is in progress, he or she
must not interact with the form until it finishes.

See also

» Sending data to PHP in Chapter 2

Creating expandable and collapsible boxes

(accordion)

Accordions are good examples of widgets where more information can be displayed in less
space in an interactive and attractive manner. This recipe will teach you to create a simple
accordion using jQuery.

172

Chapter 6

Getting ready

Create a folder named Recipe3 inside the Chapteré directory.

How to do it...

1. Create a new file inside the Recipe3 folder and name it as index.html.

2. Now define the HTML markup for the accordion. The accordion will be a collection of
div elements each having an h1 tag for the section title and a DIV for that section's
content. Put some title for each section and also some content for it. Also define
some CSS styles in the head section that will give the accordion a nice look and feel.

<html>
<head>
<titlesAccordion</titles>
<style type="text/css">
body{ margin:50px auto;font-family:"trebuchet MS",
Arial;font-size:1l4px;width:500px; }

div{ border:1px solid #FA6766;width:500px; }

hl{cursor:pointer;font—size:20px;font—weight:bold;
text-align:center; }

.active{color:red;}

.container{background-color: #FOF8FF;padding:5px;
text-align:justify;width:488px;}
</style>
</head>
<body>
<div>
<div>
<hl href="#">PHP: PHP Hypertext Preprocessor</hl>
<div class="container">PHP is a widely used, server side
scripting language that is used to create dynamic web
applications. PHP is very much popular among web
developers and many top websites use PHP for their
sites.</div>

</div>
<div>
<hl href="#">jQuery - The write less, do more
javascript</hl>

Adding Visual Effects to Forms

17

<div class="container">From the jQuery site: jQuery is

a fast and concise JavaScript Library that simplifies
HTML document traversing, event handling, animating, and
Ajax interactions for rapid web development. jQuery is
designed to change the way that you write
JavaScript.</divs>

</div>

<div>

<hl href="#">AJAX - Asynchronous JavaScript and XML</hl>
<div class="container">Ajax is a group of web development
techniques used on the client-side (browser) to create
interactive web applications. AJAX can be used to
retrieve data from the server asynchronously in the
background. XMLHttpRequest objects is generally used to
contact the server side.</divs>

</div>

<div>

<hl href="#">JSON - JavaScript Object Notation</hls>
<div class="container">
<p>JSON which stands for JavaScript Object Notation can
be defined as a lightweight data interchange format. It
is also said a fat-free lightweight alternative to xml.
It is a text format which is programming language
independent and is native data form of JavaScript. It
is lighter and faster than xml. The credit to make json
popular goes to Douglas Crockford.
</p>
<p>
Since JSON is the native data form of JavaScript,
it can be used on the client side in an Ajax application
more easily then XML.
</p>
</div>

</div>

</div>
</body>

</html>

The result will be similar to the following screenshot:

a accordion \@

http: #flocalhost:8081book /Chaptere,Recipe3/

PHP: PHP Hypertext Preprocessor

PHF iz @ widely used, server side scripting language that is used to create
dynamic web applications, PHP is very much popular among web developers
and marry top websites use PHP for their sites,

jQuery - The write less, do more javascript

From the jQuery site: jQuery i= a fast and concise JavaScript Library that
simplifies HTML document traversing, event handling, animating, and Ajax
interactions for rapid web dewelopment. jQuery is designed to change the
weany that you write JavaScript,

AJAX - Asynchronous JavaScript and XML

Aja is @ group of web development techniques used on the client-side
[broweser] to create interactive web applications. AJAX can be used to
retrieve data from the server asynchronously in the bBackground.
¥hWLHttpRequest objects is generally used to contact the server side.

JSON - JavaScript Object Notation

J50M which stands for JavaScript Object Motation can be defined as a
lightweight data interchange format. It is also said a fat-free lightweight
alternative to wml |t 4= 3 text format which is programming language
independent and is native data form of JavaScript, 1t is lighter and faster
than =ml. The credit to make json popular goes to Douglas Crockford,

Since JSON is the native data form of JavaScript, it can be used on the
client side in an Ajax application more easily then XML,

Chapter 6

Before the body tag closes, include the jQuery library. Now write the jQuery code that
will convert our HTML markup into a working accordion.

<script type="text/javascript" src="../jquery.js"></script>

<script type="text/javascript"s>

$ (document) .ready (function ()

{

$('.container') .hide() ;

S('hl').click (function/()

{

Adding Visual Effects to Forms

var hl = $(this);
S('hl.active') .removeClass ('active') ;
hl.addClass('active') ;
$(".container:visible") .slideUp('fast');
hl.next ('div') .slideToggle ('fast"') ;
13N
13N

</script>

4. With this the accordion is ready now. Launch your browser and run the index.html
file. You will see four sections in the accordion. Clicking on a section will reveal its
content and will hide any other open sections.

&) Accordion - Mozilla Firefox

B Accordion

File Edit Wiew History Bookmarks Tools Help Related Links
http: /flocahost: 8081 ook Chapter6,/Recipe3/

TechCrunch Google Blogoscoped B Get It B Mote in Reader = The Cfficial Google Bl B

PHP: PHP Hypertext Preprocessor

jQuery - The write less, do more javascript

From the jQuery site: jQuery is a fast and concise JavaScript Library that
simplifies HTWL document traversing, event handling, animating, and Ajax
interactions for rapid web development. jQuery is designed to change the
way that you write JavaSoript,

AJAX - Asynchronous JavaScript and XML

JSON - JavaScript Object Notation

The HTML in the above code has a main DIV that has four DIV elements inside it. These four
DIVs are four sections of the accordion. Each section has two parts: an h1 tag and another
DIV with class set to container. The h1 tag will serve as the header for that section and the
DIV will hold the HTML for that section. The CSS in the head section gives the look that you

saw in the previous screenshot. This creates our basic structure that we will convert to an
accordion using jQuery.

Now comes the jQuery part that does all the work.

176

Chapter 6

First, we hide all the DIV elements with container class so that only header sections of the
accordion are visible at first. Then we add an event handler for the h1 tag. Note that we have
defined a CSS class named active that will be applied to the clicked hi.

On clicking an h1, we first remove the active class from any head section that might have
it. Then we add an active class to the current h1, which makes its text red in color. The
selector expression . container:visible selects any content DIV elements that might be
visible and hides them using jQuery's s1ideUp () method. Finally, we get the DIV next to the
current hl and apply the toggleSlide () effectto it that shows or hides it. This gives us the
feel of an accordion.

In summary, what we did is as follows:

» Getthe h1 that was clicked

» Remove the active class if any hl has it

» Addthe active class to the clicked h1

» Hide any visible content containers

» Make the container DIV next to the clicked h1 visible

There's more...

Using different markup for accordion

You are not restricted to the markup that can be used for the accordion. In the previous
example we used h1 and DIV elements for the header and content sections respectively. You
can also use unordered lists, anchors, and virtually any kind of markup to achieve the same
effect. Just remember that the jQuery code will change accordingly. Also do not forget to
change the CSS styles depending on which elements you are using, as different elements
are rendered differently on a browser.

You can try implementing the accordion using ul and 11i elements as an exercise.

Fading an element after updating it

In modern web applications where parts of a page are updated without loading the entire
page, it is necessary to inform the user about the change that has happened. Without it,
a user may not know that a certain part of a page has been changed.

One of the commonly used techniques for this is known as the Yellow Fade Technique or
the YFT. The basic idea behind it is simple: when a part of a page is changed or is required
to be highlighted, that part is highlighted with a yellow color which gradually fades to its
original colour. This attracts the user's attention to that part and the user notices the change.
Although simple, this technique should be used while creating rich AJAX applications.

Adding Visual Effects to Forms

jQuery core does not provide this effect in itself but jQuery Ul has this effect. However, to
use this effect with jQuery you need to include two separate files effects.core.js and
effects.highlight.js of the jQuery Ul (which is an overload in itself) or you can use
the jQuery easing plugin that is available from http://gsgd.co.uk/sandbox/jquery/
easing/.

This recipe will teach you how to create a similar effect in a few lines of code and that too
without having to use any other files.

Getting ready

Create a folder named Recipe4 inside the Chapteré6 directory.

How to do it...

1. Create a new file and save it as index.html in the Recipe4 folder.

2. Inthis file create a textbox and a button. Also create a p element, which will display
the highlight effect.

<html>
<head>
<title>Fade</title>
<style type="text/css">
body{ margin:50px auto;font-family:"trebuchet MS",
Arial;font-size:14px;width:500px; }
p{ border:1px solid #FA6766;width:315px;height:50px; }
</style>
</head>
<body>
<label for="textVal"s>Whats your name?</label>
<input type="text" id="textVal"/>
<input type="button" value="Show"/>
<p id="result"s></p>
</body>
</html>

3. Now include jQuery and write the code that will take the value of the textbox and
insert it into the p element on clicking the button. The p element will then be
highlighted using the fade () function.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

var base,interval;

178

Chapter 6

$('input:button') .click (YFT) ;

function YFT ()

{
$('#result') .html ('Hello ' + $('#textVal').val());
base = 100;

interval = setInterval (fade,100) ;
!
function fade()
{

if (base > 255)
clearInterval (interval) ;
else
$('p') .css ({'background-color': 'rgb (255,255, '+ (base+=10)

+') ') ;

}

3N

</script>

We are done and ready to see our highlight effect now. Run the index.html file in
your browser and enter a name in the textbox. Now click on the Show button. You will
see that the value of textbox is inserted into the p element and the paragraph will
fade from yellow to its original colour.

&) Fade - Mozilla Firefox
D Fade =

File Edit Wiew History Bookmarks Tools Help Related Links

hitp:/flocalhost: 2081 ,/book /Chapters,/Reciped/

TechCrunch Gaoagle Blogascoped D Get It D Mate in Reader =

Wifhats your name? I.James Bond 007 iShow;

Hello James Bond 007

Here is the concept: to fade an element from yellow to white, we will have to start with the
yellow colour and will have to change its RGB value until it turns white. That's what we will do
here. We will start with a shade of yellow whose RGB value is 255,255,100 and we will step
up the last value by 10 until we reach a RGB value of 255,255,255, that is, white colour. To
repeatedly increment the value, we will use JavaScript's set Interval function to step up the
value every 100 milliseconds.

Adding Visual Effects to Forms

Start by declaring two variables base and interval. Then an event handler is attached

to an input button that calls the YFT function. Inside the YFT function we take the value from
the textbox and insert it inside the p element. Then we define the value of the base as 100.
Next, we use the setInterval JavaScript function to call the fade function every

100 milliseconds.

Inside the fade function we check the value of the variable base. If the value of base
exceeds 255, we clear the interval and the £ade function is not called anymore. This means
the background color of the paragraph has now become white. If the value of base is still
under 255, we set the background color of paragraph by changing its RGB value. R and G
remain 255, and we increment the value of B by 10. As mentioned, setInterval keeps
on executing the £ade function until the value of base becomes 255.

Floating box on demand

Imagine a page having a long list of products where you can select multiple products and the
list gets updated in a separate container. On reaching the bottom of such a page, you may
forget what you have selected previously as the box holding your selections is sitting at the
top of the page.

Would it not be great if such a container box also scrolled as you scroll on the page? In other
words, how about a floating box that scrolls on the page as you go up or down the page.

This recipe will show you how to create a floating box that will scroll on the page automatically
as you scroll up or down on a page.

Getting ready

Create a folder named Recipes5 inside the Chapteré6 directory.

How to do it...

1. Create a file named index.html inside the newly created Recipe5s folder.

2. In order to demonstrate a floating DIV we must create a really long page. We do this
by creating multiple paragraph elements with dummy text on the page, each with
height set to 200px in CSS. After that create a DIV which we will float using jQuery
and assign CSS class and ID float to it. While defining CSS properties for this DIV,
do not forget to assign position as absolute. It is necessary to be able to make
this DIV floating.

<html>
<head>
<title>Float</title>
<style type="text/css">

180

body{ font-family:"trebuchet MS",6Arial;
font-size:14px;width:500px; }
P

{

border:1px solid black;
height:200px;
width:300px;
}
.float
{
border:1px solid black;
position:absolute;
right:50px;
height:100px;
width:100px;
padding:10px;
}
</style>
</head>
<body>
<p>
This is some text
</p>
<p>
This is some text
</p>
<p>
This is some text
</p>
<p>
This is some text
</p>
<p>
This is some text
</p>
<p>
This is some text
</p>
<p>
This is some text
</p>
<p>
This is some text
</p>

<div id="float" class="float">Floating box</div>
</body>
</html>

Chapter 6

Adding Visual Effects to Forms

3.

182

Now when our markup is done, let us proceed to make this DIV floating. First, include
the awesome jQuery library. Then, write the £1oatDiv function that will make the
DIV floating. After defining this function add an event handler for window scroll, which
will be called each time you scroll up or down on the page. Finally, call the f1loatDiv
function to float the DIV as the page loads.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>

$ (document) .ready (function ()

{

var defaultOffset = 50;
function floatDiv ()

{

var offsetTop = $(document) .scrollTop() + defaultOffset;
$('#float') .animate ({top: offsetTop +
"px"}, {duration:500, queue:false}) ;
}

$ (window) .scroll (floatDiv) ;
floatDiv () ;

13N

</scripts>

Run the index.html file in your browser and scroll the page up or down using either
the mouse or keyboard. You will see that the floating DIV sits on the top right-hand
side of the page no matter where you are on the long page.

&) Float - Mozilla Firefox !En
/ [Fioat \@ O~
File Edit Wiew History EBookmarks Tools Help Related Links
lacalhost: 8051 ook /Chaptert,/RecipeS/ [SRR C x cooge el -
TechZrunch (Google Blogoscoped D et It D Mote in Reader » The Official Google E... B [Type in Hindi] B~
[This is some text -
Floating box

[This is some text

m

[This is some text

& Done El —riate @ P o Ws 3o (%o #

Chapter 6

Two functions are responsible for the floating behavior of the DIV. The first function is the

$ (document) .scrollTop () that gives us an integer value which is the number of pixels
from the top of the browser window to current scroll bar start position. Second is the animate
method that is used to create custom animations with jQuery.

We have attached a scroll event to the window object that calls the £1oatDiv function.
This function is called each time the user scrolls on the web page using either the mouse or
keyboard. Inside the f1oatDiv function we get the scrol1Top () value of document and
add it to variable defaultOf fset to get another variable of fsetTop. We have defined
variable defaultOffset to 50 so that the DIV on floating is always 50 pixels below the top
of the browser.

Then the animate function is used to set the top value for the DIV. Note the options where
we have set the duration to 500. This means that the animation will take 500 milliseconds
to complete. As another option queue is set to false, jQuery will not wait for any previous
animation to finish before starting a new one.

Finally, we have called the £1oatDiv () function independently on DOM load. We have done
this to float the DIV automatically on page load. Try this by scrolling to the bottom of the page
and then pressing F5. The DIV will float according to the positions of the page (whether the
user is at top or bottom).

Important note about animate

Other properties that have numeric values can also be animated using the animate function.
Properties having non-numeric values like color and background-color cannot be
animated. For example, see the following code:

$('#float') .animate ({backgroundColor: "#ffffcc"}, {duration:500, queue:
false}) ;

The above code is an invalid use of animate. However, the following code is perfectly valid.

$('#float') .animate ({width: 500}, {duration:500, queue:false}) ;

Adding Visual Effects to Forms

Updating items in a shopping cart

We will try to create a simple page with a list of items with their price and quantity. The user
will be able to select any number of a particular item and that information will be sent to the
server side. The server-side script will calculate the prices of selections and will show the net
price to the user.

This is similar to a shopping cart as you might have seen in many sites. The difference is that
a page reload will not occur and the user will have to wait less. This recipe is a basic example
and you can enhance it in many ways to suit your requirements.

Getting ready

Create a folder named Recipe6 inside the Chapteré directory. Next, under the same
directory, create an XML file that will have a list of some books. Each book will have an ID,
name, and a price. We will use this XML to display the list of books and select some books.
Name this file as books . xml.

<?xml version="1.0"?>
<books>
<book id="1">
<name>PHP Book</names
<price>35</prices>
</book>
<book id="2">
<name>jQuery Book</names>
<price>35</prices>
</book>
<book id="3">
<name>The Twitter API Book</names>
<price>35</prices>
</book>
<book id="4">
<name>Fundamentals of Facebook</name>
<price>35</prices>
</book>
</books>

184

Chapter 6

How to do it...

1.

Create a file named index.php in the Recipeé6 folder. This file will save an empty
array in session which we will use as a cart to hold selected books. Next, define a DIV
for the cart. After that create a list of books and their prices by reading data from the
XML file using simplexml functions of PHP. Each book will have its name, price, a
select box for selecting quantity, and a button to save selections. A hidden field will
also be created for each book to hold its ID.

<?php
session start();
SbooksInfo = array();
$ SESSION['cart'] = $booksInfo;
?>
<html>
<head>
<titlesCart</title>
<style type="text/css">
body{ font-family:"trebuchet MS",6Arial;
font-size:14px;width:500px; }
div
{
border:1px solid black;
padding:20px;
width:250px;
margin-top:10px;
}
.cart
{
border:1px solid black;
float:right;
right:50px;
position:absolute;
width:300px;
padding:10px;

}

</style>
</head>
<body>
<div class="cart">
Your Cart</strongs>
<p id="cart">Cart is empty</p>

</divs>
<?php

Adding Visual Effects to Forms

$SobjXML = simplexml load file('books.xml') ;
foreach ($objXML->book as $book)
{
echo '<div>';
echo 'Name - '. $book-sname, '
';
echo 'Price - $'. $book->price,'
';
?>
Quantity -
<select>
<option value="1">1l</option>
<option value="2">2</option>
<option value="3">3</option>
</select>

<input type="hidden" ?2>"/>
<input type="button"
<?php
echo
}

?>
</body>
</html>

value="<?php echo $book['id'];
value="select this book"/>

'</div>"';

The following screenshot shows the output:

&) cart - Mozilla Firefox

/ B Cart \@ [
File Edit ‘Wiew History EBookmarks Tools Help Related Links
bt /lncalhost: 8081 /baok /ChapterdReciped/index. php > b & C %] coogle yel
TechCrunch Google Blogoscoped BGet 1t BNDtE in Reader = The Official Google Bl D [+ Twpe in Hindi] 5

Name - PHP Book
Price - 535

Quantity-|1 v | - selectthis book |

Your Cart

Cart is empty

Narne - jQuery Book
Price - 535

Quantity-|1 v | - selectthis book |

Name - The Twitter APl Book
Price - 539

Quantity-|1 ~| - selectthis book |

Name - Fundamentals of Facebook
Price - 535

Quantity—|1 > | - selectthis book |

186

Chapter 6

Now include the jQuery and write an event handler for the select this book

button. On clicking this button an AJAX request will be sent to a PHP file called
calculate.php. This request will contain the selected book ID and the quantity
of that book. On receiving a response from the PHP file it will be inserted inside the
element with the ID cart.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$('input:button') .click (function ()
{
$.post ('calculate.php',
{
bookId : $(this) .prev('input:hidden') .val(),
quantity: $(this) .prev() .prev('select') .val()
1
function(data)
{

S('#cart') .html (data) ;

}

13N
13N

</scripts>

Switching to server side now, create another file in same directory named
calculate.php. This file will process the AJAX request. It will check if the selected
book already exists in session or not. If not then book ID and its quantity will be saved
in session otherwise its existing quantity will be updated. At last, the HTML for the
cart will be created, which will list all the selected books, their quantity, price, and
the net price for all the books.
<?php

session_start () ;

$booksInfo = $ SESSION|['cart'];
if (count ($booksInfo) > 0)
{
SbookFound = false;
for($i=0; S$i< count (SbooksInfo); Si++)
{
if ($booksInfo[$i] ['bookId'] == $ POST|['bookId'])
{
$booksInfo[$i] ['quantity'] = $_POST['quantity'];
SbookFound = true;

Adding Visual Effects to Forms

188

if

{

}

break;

(! SbookFound)

$book = array('bookId' => $ POST['bookId'],
'quantity' => $ POST['quantity']);
array push ($booksInfo, $book) ;

$ SESSION['cart'] = $booksInfo;

$grossTotal = 0;

for($i=0; $i< count (SbooksInfo); $i++)

{

SaBook = SbooksInfol[$i];

SbookName = getBookName ($booksInfo[$i] ['bookId']) ;
SbookPrice = getPriceForBook ($booksInfo[$i] ['bookId']) ;
StotalPrice = $bookPrice * $booksInfo[$i] ['quantity'];
SgrossTotal+= StotalPrice;

$str.= 'Name - '.SbookName;
Sstr.= '
';
Sstr.= ' Copies - '.SbooksInfo[$i] ['quantity'
$str.= '
';
$str.= 'Price - $'.S$SbookPrice. ' * !
.SbooksInfo[$i] ['quantity'].' = $'.StotalPrice;
$str.= '

';
}
$str.= 'Net Amount - $'.SgrossTotal;

echo S$str;

function getBookName ($id)

{

$objXML = simplexml load file('books.xml') ;
foreach ($objXML->book as $book)

{

if (Sbook['id'] == $id)

{

return S$Sbook->name;

}

return false;

simplexml load file('books.xml') ;

}
function getPriceForBook ($id)
{
$0bjXML =
foreach ($objXML->book as $book)
{
if (Sbook['id'] == $id)
{
return S$book->price;
}
}
return false;
}
?>

Chapter 6

All done now. We are ready to play with our example. Run the index.php file in

your browser. You will see the list of books and an empty cart on the right-hand side.
Select a quantity for a book and click on the select this book button. The cart will be
updated on the right-hand side. Try selecting multiple books and changing quantities.
The cart will reflect the corresponding values as per selection.

&) cart - Mozilla Firefox

/ B Cart

©

HE

File Edit Wiew History Bookmarks Tools

Help

Related Links

http: /flocalhost: 8081 /book /Chapterf,/Recipes findex. php

TechCrunch

MName - PHP Book
Price - 435

Quantity-IW 'I - selectthis book |

MName - jQuerny Book
Price - 535

Quantity-IZ 'l - gelectthis book |

MName - The Twitter APl Book
Price - 535

Quantity-IW 'l - gelectthis book |

Mare - Fundamentals of Facebook
Price - 435

Quantity—IW 'l - selectthis book |

Google Blogascoped D Get It B Mote in Reader »

b

r| € CcC x

The Cfficial Google Bl... B [# Type in Hindi]

2§ Google

Your Cart

Mame - The Twitter APl Book
Copies - 1

Price - 535" 1= 1515

Mame - jQuery Book

Coples - 2

Price - 535" 2 = 570

Met Amount - 5105

Adding Visual Effects to Forms

The PHP part in index . php file is simple. We created an empty array $boocksInfo and put it
in session. This array will hold the user selections. Next, we used the simplexml load file
function to load the books . xm1 file. We created some HTML from it by iterating in each of the
books so that we have a list of books ready on the page. Along with each book we also created
a hidden variable that holds the book ID. We will need the book ID to send it to the server.

Let us analyze the jQuery code now. On clicking the select this book button we get the value
of the selected book and the hidden variable (bookId) using jQuery selectors and send them
to a PHP file called calculate.php using a Post AJAX request. The successful callback of
this request simply inserts a server response into the element with the ID cart.

The real magic happens on the server side in the calculate.php file. First of all let us see
the structure of the $booksInfo array. This array will hold selected books with the quantity
and book ID of each book. It will have the following structure:

Array
(
[0] => Array
(
[bookId] => 1
[quantity] => 1

[1] => Array
(
[bookId] => 3
[quantity] => 2

)

The calculate.php file starts with line session_start () thatinitiates the current session
in PHP. Then we pull out the $booksInfo array from the session. We now check if the selected
book, the ID of which is in variable $_POST ['bookId'], is already present in SbooksInfo
array or not. If book ID is already in the array we just update the existing book quantity with

the new quantity we have received from the AJAX request ($_POST ['quantity']). If the
book was not present in the $SbooksInfo array, we create a new array and push it in the
SbooksInfo array.

Next we push back the updated sbooksInfo array into the session.

190

Chapter 6

We then proceed to calculate the price of all the selected books. For this, we iterate in the
$booksInfo array and get the name and price of each book. To get the name of a book we
have created function getBookName () . This function accepts a book ID and searches the
books .xml for that particular ID. On finding a match it returns the book name. Similarly,
function getPriceForBook () returns the unit price of a book. After getting these two values
we create some HTML for each book and its price. At last we also display the Net Amount in it.
When all selected books have been processed, we echo the result back to the browser.

jQuery on receiving the data inserts it into the DIV with ID cart.

This recipe makes an important point. We could have done the
calculations on the client side itself with jQuery, then why a trip to
. the server side for each selection? The answer is that calculation on
% the client side can be manipulated by making changes using tools
L such as Firebug. We did the calculations on the server side and
then displayed the results on the browser. In such a case the user
cannot manipulate the calculations and we can trust the server side
for correct calculations.

Removing items from the cart

Similar to adding items to your cart you can modify this recipe to remove items from the cart
too. For this simply place a link against each item in the cart. Clicking that link will initiate an
AJAX request that will take the book ID to the server side. PHP on the server side can then
check the book ID and can remove the corresponding book from the $booksInfo array
and session.

See also

» Loading XML from files and strings using SimpleXML in Chapter 3
» Accessing elements and attributes using SimpleXML in Chapter 3

Creating Cool
Navigation Menus

In this chapter, we will cover:

» Creating a basic drop-down menu

» Creating a menu that changes background on mouse-over
» Creating an accordion style menu

» Creating a floating menu

» Creating an interface for tabbed navigation

» Adding more tabs

» Creating a wizard using tabs

Introduction

Menus are the lifeline of a website. Imagine a website without menus. It will be impossible
to navigate it. A site having good navigation links proves to be very helpful to users. Good
navigation menus are key to a good user experience.

This chapter will introduce to you a variety of techniques using which you will be able to create
different types of menus.

We will start with basic drop-down menus and will gradually proceed to accordion and
floating menus.

Finally, we will create tabs for navigation and will look at several ways in which tabs can
be implemented.

Creating Cool Navigation Menus

Creating a basic drop-down menu

In this recipe we will create a basic drop-down menu that will have three menu items. Hovering
the mouse pointer over a menu item will display a submenu and taking the pointer away from
it will hide it.

Getting ready

Create a folder in the Chapter7 directory and name it as Recipel. Now create a file named
index.html inside it.

How to do it...

Start by creating the structure of menus and the CSS styles for them. Our menu will be an
unordered list where each list item will be a menu header. Inside the list item will be an
anchor which will contain the text for a menu. Next to it will be another unordered list whose
list items will serve as menu items. Each of these menu items will contain a link which can be
used to navigate to a page on a website.

1. While writing markup, we will also take care of the fact that a menu should be
available on the page even if JavaScript is turned off in the user's browser. The
following code defines the markup that we require:

<html>
<head>
<title>jQuery Menu</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body>
<div>

<li class="menuHeader about"s>
About us
<ul class="menultem">
Company</1li>
<lis>Culture
<lis>Motto</1li>
</uls>
</1li>
<li class="menuHeader products"s>
Products
<ul class="menultem">
Shopping Cart

Chapter 7

<lis>CMS
Blog Software

</1li>
<li class="menuHeader tech"s
Technology
<ul class="menultem">
<lis>PHP
JavaScript</1li>
MySgl</1li>

</1li>

</div>
</body>
</html>

Now create a new file named style. css, which we have referenced in index.html
and add the following CSS styles in it:

body

{

font-family: "Trebuchet MS",verdana;

}

ul

{
list-style:none;
margin:0;
padding:0;

}

1i.menuHeader

{
border:1px solid #fff;
float:left;
padding:5px 10px;
text-align:center;
width:120px;

}

ul.menultem

{
margin-top:5px;

}

.menultem > 1i

{

padding:5px 10px;

Creating Cool Navigation Menus

}

a

{

color:#fff;

}

.about{ background-color:#6D9931; }
.products{ background-color:#D63333;}
.tech{ background-color:#D49248;}

The screenshot shows how the page will look with styles applied to the markup:

uery Menu - Mozilla Firefox

D jQuery Menu
Eile Edit View Histary Bookmarks Tools Help Related Links

% D http: /flocalhost: 2081 /hook /Chapter 7/Recipe 1/

3. Now include the jquery. js file before body tag closes. Now hide the submenus
and write the event handler that will show and hide the submenu on mouse-over.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function () {
$('ul.menultem') .hide() ;
$("1li.menuHeader") .hover (
function () {
S('ul', this).slideDown() ;
I
function () {
S('ul', this).slideUp();

3N
3N

</script>

4. Save the file, open your browser and open the file in your browser. You will see three
menus. Hover the mouse pointer over any of them and the submenu will appear.
Taking the mouse pointer out will again hide the menu.

196

Chapter 7

?) jQuery Menu - Mozilla Firefox

B jouery Menu
File Edit ‘iew History Bookmarks Tools Help Relaked Links

L% a bty Alocalhost: 8081 /hook Ahapter 7 Recipel/

About us Products

We begin by creating the HTML structure for menus. We created an unordered list that will
hold all menus and submenus. Each list item has a menuHeader class. Inside each list
item is an anchor that will hold menu text. In real world uses you will assign an href value
to it for navigating to the other pages. After the anchor is another unordered list, which is a
placeholder for menu items for that particular menu. This list may contain multiple menu
items each with an anchor for navigation.

When the DOM has loaded jQuery hides all elements with class menuItem. As explained
previously, these elements refer to items for a menu that should be hidden when a page
loads. So, only menus will be visible at page load. Next, we make use of the hover function
to animate the menus. As you know from previous recipes, the hover method accepts two
functions as parameters the first of which is executed when the mouse pointer enters an
element and the second one is executed when the mouse pointer leaves that element.

In the first function, we select the ul inside the current list item and apply the s1ideDown
function to it, which shows the submenu. Similarly, the second function uses the s1ideUp
function to hide the menu when the mouse leaves it.

There's more...

Opening menus on click

You can also code the menu to open on click. The following code will open a submenu and will
hide any other submenus that are already open:

$(".menuHeader > a").click (function /() {
$('.menultem:visible') .slideToggle () ;
S('ul', $(this) .parent()).slideToggle() ;

1)

Creating Cool Navigation Menus

» Creating a menu that changes background on mouse-over

» Creating an accordion style menu later in this chapter

Creating a menu that changes background

on mouse-over

This recipe will teach you to create a menu that will allow you to highlight a menu item when
the mouse pointer hovers over it. Other menus will be faded and only the menu having mouse
focus will be highlighted.

Getting ready

Create a folder named Recipe?2 inside the Chapter7 directory. Also create a file named
index.html inside the Recipe?2 folder. Create three images that will serve as backgrounds
for our menu items. | have used the following three images. Each image has dimensions of
120px * 41px:

How to do it...

1. First of all create the HTML structure for menus. Create an unordered list with three
list items. Each list item has a class name menuHeader that will be used by jQuery.
Another class name will add a background image to it. Put an anchor tag inside
each 11 element and set its href to the page that you wish to navigate to.

<html>
<head>
<title>jQuery Fading Menu</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body>
<div>
<uls>
<li class="menuHeader about"s>
google

198

Chapter 7

</1li>
<1li class="menuHeader products">
yahoo
</1li>
<li class="menuHeader tech"s
bing
</1li>
</uls>
</div>
</body>
</html>

Now create a stylesheet file named style.css and add the following styles in it:

body{ font-family:"Trebuchet MS",verdana; }
ul
{
list-style:none;
margin:0;
padding:0;
}
1i.menuHeader
{
border:1px solid #fff;
cursor:pointer;
float:left;
padding:5px 10px;
text-align:center;
width:120px;
}
a{ color:#fff;}
.about{ background-image:url(1l_1.png) ;}
.products{ background-image:url (1l 2.png);}
.tech{ background-image:url (1l _3.png) ;}

Now include the jQuery library. After including the library, set the opacity of all menu

items to 0.5 so that they look faded when the page loads. Attach a hover event

handler to each list item that will highlight the menu item on which users will place

their mouse pointer. As soon as the mouse pointer leaves a menu item, it will be

restored to its previous condition.

<script type="text/javascript" src="../jquery.js"></scripts>

<script type="text/javascript"s>

$ (document) .ready (function () {
$("li.menuHeader") .css ("opacity","0.5");

$("1li.menuHeader") .hover (function ()

{
b

$(this) .stop() .animate ({ opacity: 1}, 'slow');

Creating Cool Navigation Menus

function ()

{
$(this) .stop() .animate ({ opacity: 0.5 }, 'slow');

I3
3N

</script>

4. Runthe index.html file in your browser and you will see three menu items that are
faded. Move your mouse pointer over a menu and it will be highlighted slowly. After
highlighting, its text will be changed to a larger size and to uppercase. The following
screenshot shows the capture when the mouse is over the last menu item:

¥ jQuery Fading Menu - Mozilla Firefox

File Edit ‘Wew History Bookmarks Tools Help

- c A (b I |http:,l',l'localhost:808l,l'bookl'Chapter?,l’ReciDEZ,l'

First of all we set the opacity of all menu items using $ ("11i . menuHeader") .

css ("opacity","0.5") to 0.5 that makes them look faded. Once again the hover
function comes to the rescue. This function is called on hovering over list items. The first
function (that is, when the mouse enters a list item) uses the animate function to set
hovered list items' opacity back to 1. We have passed s1low as the second parameter to
animate and the third parameter is a callback function that executes when an animation is
complete. This function finds the first child of the current list item (which is an anchor) and
sets its font-weight and text-transform CSS properties that make the anchor text
bold and uppercase.

See also

» Creating a basic drop-down menu in this chapter

» Creating an accordion style menu

Creating an accordion style menu

Accordions can also be used as a menu. The content part of an accordion can be used

in many ways. In this recipe, we will create a simple accordion and will use it as a menu.
Headers of the accordion reveal the content section. This content section will have some text
and a Read More link. Clicking on this link will request the related content from a PHP script
and will display it on the page.

200

Chapter 7

It can be very handy in cases when you want to show the user only a summary of something
(say a product) instead of lengthy details. If the user finds the summary interesting, he can
click the link and can read the full details on the page. It can save a lot of space, which
means more data can be displayed in the saved space.

Getting ready

Create a new folder under the Chapter7 directory and name it Recipe3.

How to do it...

1. Create a file named index.html inside the Recipe3 folder. Now we have to create
a page with three sections. On the top will be a header that will have the page name.
Below it the page will be divided into two sections: we will call them left panel and
right panel respectively. The left panel will have the markup for an accordion. h1 tags
will be used as headers for the accordion. Below each h1 there will be a DIV with
class container, which will have the content for it. There will also be an anchor
tag in the end of each DIV that will be used to fetch content from the server related to
that section. Right panel can have some text or HTML in it. In the head section of this
page are some CSS styles for the elements on the page.

<html>
<head>
<titles>Accordion Menu</titles
<style type="text/css">
body{ margin:Opx auto;font-family:"trebuchet MS", Arial;
font-size:1l4px;width:900px; }
.header{ background-color:#FA6766;color:#fff;height:100px;
text-align:center; }
.accordion{ border:1px solid #FA6766;width:300px; }
.accordion > hl{cursor:pointer;font-size:1l4px;
font-weight:bold;text-align:center; }
.active{color:#££0000;}
.container{background-color: #F0F8FF;padding: 5px;
text-align:left;width:288px; }
p,div{ padding:Opt;margin:Opt; }
#leftPanel{ float: left; width: 300px; }
#rightPanel{ float: left; margin: Opt Opt Opt 10px;
padding: Opt;text-align:justify;width: 590px; }
</style>
</head>
<body>
<div id="main">
<div class="header">
<h1l>My Awesome Page</hl>
</div>

201

Creating Cool Navigation Menus

<div class="content">
<div id="leftPanel">
<div class="accordion">
<hl1>PHP</hl>
<div class="container">PHP is a widely used,
server side scripting language that is used to
Read More</divs>

</div>
<div class="accordion">
<hl>jQuery</hl>

<div class="container">From the jQuery site: jQuery
is a fast and concise JavaScript Library that...
Read More</divs>

</div>
<div class="accordion">
<hl1>AJAX</hl>

<div class="container"s>Ajax is a group of web

development techniques used on the browser...

Read More</div>
</div>

<div class="accordion">
<h1>JSON</hl>
<div class="container">JSON which stands for
JavaScript Object Notation can be defined as...
Read More</div>
</div>

</div>

<div id="rightPanel"s>
<h2>Select a term from the left menu to know more
about it.</h2>
</div>
</div>
</div>
</body>
</html>

202

Chapter 7

The following screenshot shows how the page will look:

3 Accordion Menu - Mozilla Firefox =1
File Edit “iew History Bookmarks Tools Help
IEET\ c x 7ot I ‘ http:/flacalhostfbook/Chapter7/Recipe3) 3> - I '| Goagle

My Awesome Page

PP Select a term from the left menu to know more about it.

PHP iz & widely used, server side scripting
language that is used to .. Read Maore

jQuery

From the jQuery site: jQueny iz a fast and
concise Javabcript Library that.. Read Maore

AJAX

Adax is @ group of web development
techniques used on the browser.. . Read More

JSON

JSOM which stands for JavaScript Object
Notation can be defined as...Read More

2. The page in the previous screenshot has no JavaScript or jQuery yet. Switching to
jQuery now, include the jQuery library using the correct path first. We have to do two
things now: first, write code for left panel so that it changes into an accordion and
second, on click of the Read More link, fetch the corresponding data from the server.
In order to do this two event handlers will be written. The first one will be called on
clicking accordion headers and the second one will be called on click of Read More
link which will call a function getData. The getData function will request data from
a PHP script called data . php. jQuery will send information regarding which link
was clicked.

<script type="text/javascript" src="../jquery.js"></scripts>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$('.container') .hide() ;
$('.accordion >hl') .click (function/()

{
$('hl.active') .removeClass ('active') ;
$(".container:visible") .slideUp('fast');
$(this) .addClass ('active') .next ('div') .slideToggle('fast');
I3

$('.container > a').click(getData) ;

203

Download from Wow! eBook <www.wowebook.com>

Creating Cool Navigation Menus

function getData ()

{
var url = ($(this) .attr('href'));
$.get (url, {

{

}, function(data)

S ('#rightPanel') .html (data) ;
13N
return false;
Vi
13K

</script>

3. To handle the AJAX request create another file named data . php in the same
directory. In this file write the code that will echo response based on parameters
received in the get request.

<?php
$page = $ GET['page'];
switch ($page)
{
case 'php':
echo 'PHP is a widely used, server side scripting language
that is used to create dynamic web applications. PHP is
very much popular among web developers and many top
websites use PHP for their sites.';
break;
case 'jQuery':
echo 'From the jQuery site: jQuery is a fast and concise
JavaScript Library that simplifies HTML document
traversing, event handling, animating, and Ajax
interactions for rapid web development. jQuery is
designed to change the way that you write JavaScript.';
break;
case 'ajax':
echo 'Ajax is a group of web development techniques used on
the browser (client-side) to create interactive web
applications. AJAX can be used to retrieve data from the
server asynchronously in the background. XMLHttpRequest
objects is generally used to contact the server side.';
break;
case 'json':
echo 'JSON which stands for JavaScript Object Notation can be
defined as a lightweight data interchange format. It is
also said a fat-free lightweight alternative to xml. It
is a text format which is programming language
independent and is native data form of JavaScript. It is
lighter and faster than xml. The credit to make json

204

Chapter 7

popular goes to Douglas Crockford.'!';
break;

?>

4. Once this is done, run the index.html file in your browser and click on any header
of the accordion. It will expand while hiding any open sections and you will see a
summary and a link. Click on this link now and jQuery will load data from the
data.php file related to that link. If you clicked Read More on the AJAX tab,
you will see detailed information related to AJAX on the right panel.

3 accordion Menu - Mazilla Firefox [

File Edit ‘“iew History Bookmarks Tools Help

@ c x Tar I ‘http:HlnEaIhnstfhnnHChaptEr?fRec\peS,l’ 3 - |'|Gnng\e

My Awesome Page

Ajax 15 8 group of web development techniques used an the browser [client-side) to create
interactive web applications. AJAX can be used to retrieve data from the server
i asynchronously in the background, ¥*MLHttpRequest objects is generally used to contact the
jQuery server side,

PHP

AJAX

Ajax 15 @ group of web development
techniques used on the browser...Read More

JSON

DIV elements with the class name set to container represent sections of the

accordion which hold data. In jQuery, after a document loads, we hide all of these using
$('.container') .hide () so that only accordion headers are visible. After that we register
a click event handler for all h1 elements of the accordion. Clicking on an h1 first removes
its active class. Then any visible content sections are hidden. Finally, we add class active
to the clicked h1, and toggle its next DIV, which makes the summary related to that section
visible. This completes our first task of creating an accordion.

Secondly, we have to activate the Read More link. For this, we add an event listener to an
element of the container DIV. Note that the href attribute of each anchor has a variable
page as part of the query string whose value is different for each section of the accordion.
Clicking on the link calls the getData function. This function gets the href attribute from the
clicked link and then uses jQuery's $.get method to send an AJAX request to that address.

205

Creating Cool Navigation Menus

This request is received by a PHP page data . php that analyzes the value of variable page in
$_GET array and then uses a switch case to send back an appropriate response to the client.
On receiving a response jQuery inserts it inside the right panel which has ID rightPanel.

Do not forget to return false from the getData function otherwise the
s page will navigate to the URL specified for the Read More link.

There's more...

jQueryUl Accordion

For more features and functionality you can use the jQueryUl Accordion. It is available from
the jQuery Ul website at http://jqueryui.com/demos/accordion/.

See also

» Creating expandable and collapsible boxes in Chapter 6
» Fetching data from PHP using jQuery in Chapter 2

Creating a floating menu

In the previous chapter Adding Visual Effects to Forms, we learnt to create a floating box that
shifts its position as the user scrolls up or down on a page so that it is always visible. We can
use this effect to create menus, which will be helpful for users if the pages are too long. In a
normal case, if the user has scrolled too much down on a page, they will have to go all the way
up to access any menus or submenus.

We can design a menu inside the floating box itself so that it is available to users all the time
while they are on the page. This recipe will explain how you can design such menus.

Clicking on a menu item will reveal submenus inside it. Menus can be multiple levels
deep also.

Getting ready

Create a folder named Recipe4 inside the Chapter7 directory.

206

Chapter 7

How to do it...

Create a new file inside the Recipe4 folder and name it as index.html.

We will create menus in such a way that we can have as many submenus as possible
without having to change our jQuery code. For this reason HTML needs to be
structured in such a way that jQuery code could be applied to it as many levels

deep as possible.

3. First of all create a long paragraph on the page so that we can see the floating effect.
Now create a DIV for a floating box. Inside it will be the markup for our menu. The menu
will be an unordered list with each list item working as a menu item. Each list item
will have a span element immediately followed by another unordered list that will act
as a submenu for that span. All span elements will have a CSS class menu and all
unordered lists that are submenus will have class menulItem. Finally, the innermost list
can have anchor tags that can be used to navigate to other pages. This structure can
be nested as deep as you want. For this recipe we will write a three-level deep menu.
The CSS styles required for all elements have been specified in the head section of
the page.

<html>
<head>
<title>Floating Menu</title>
<style type="text/css">
body{ font-family:"trebuchet MS",6Arial;
font-size:14px;width:500px; }

.longP,ul

{
margin:0; padding:0;

}

ul

{
list-style:none;

}

.longP

{
border:1px solid black;
height:1000px;
width:300px;

}

#floatingBox

{
border:1px solid black;
padding:10px;
position:absolute;
right :50px;

207

Creating Cool Navigation Menus

width:200px;
}
.menu
{
font-weight:bold;
margin-top:10px;
}
.menultem
{
margin:0;
padding:10px;
}
span
{
color:#FA6766;
cursor:pointer;
text-decoration:underline;
}
</style>
</head>
<body>
<div id="floatingBox">

Menu Item 1l
<ul class="menultem">
Sub Link
Sub Link
Sub Link

</1li>

Menu Item 2
<ul class="menultem">

Sub Menu
<ul class="menultem">

l</1i>
2</1i>
3</1i>

3rd Level Menu</spans

<ul class="menultem">

Sub Link 1l

</1li>

Sub Link 1l

</1li>

208

Chapter 7

JFloating Menu - Mozilla Firefox _|d

File

Sub Link 1l
</1li>

</1li>

</1li>
Sub Link l
Sub Link l
</uls>
</1li>

</div>
<p class="longP">
This is paragraph with height set to 1000 to create
a long page
</p>
</body>
</html>

This will result in the menu being shown as seen in the following screenshot:

Wiew History EBookmarks Tools Help

W c x TRY I ‘http:,i,I’IUcalhusthDUHChapter?fRe:\pe4,i » - I"Guugle

[This is paragraph with height set to 1000 to
reate a long page

Menu ltem 1

Sub Link 1
Sub Link 2
Sub Link 3

Menu Item 2
Sub Menu
3rd Level Menu

Sub Link 1
Sub Link 1
Sub Link 1

Sub Link 1
Sub Link 1

Since we have not hidden any submenus, this menu will work fine even if JavaScript
is disabled on the user's browser. Let us now add some jQuery magic to make it live.
Include the jquery . js file before the body tag closes. First add a listener for the
window scroll event. It will position the floating box on the page depending on the
user's position on page. After that hide all submenus and add a c1ick event listener
for elements with class menuItems.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>

209

Creating Cool Navigation Menus

$ (document) .ready (function ()

{
S('.menultem') .hide() ;
$ (window) .scroll (floatDiv) ;
floatDiv () ;
1)
function floatDiv ()
{
$('#floatingBox') .animate ({top: $(document).scrollTop() +
"px"}, {duration:250,queue:false}) ;
}
$S('span.menu') .click (function ()
{
$(this) .next ('ul') .slideToggle('fast');
3N
</script>

5. All done now. Save your code and switch to the browser. Point it to the index.html
file and there it is. You will see a long page with a scrollbar. On the right-hand side
will be a box with two menu items. Scroll down the page a bit using the keyboard or
mouse and the box will scroll with you. Now click any of the menu items. They will
slide down to show you submenus. Try opening the second menu: Menu Item 2. It
has a three-level deep nesting of menus. The following screenshot shows the page

after all the submenus of Menu Item 2 are opened:

¥JIFloating Menu - Mozilla Firefox

File Edit Yiew History EBookmarks Tools Help

== x]

3rd Level Menu

Sub Link 1
Sub Link 1
Sub Link 1

Sub Link 1
Sub Link 1

‘3 - e x TRT I |http:,I’,I’IDcalhost,l’bnnijhaptarT,l’Recwpe‘I,l’ 3+ - |'|GOOQ|B)"::‘

IThis iz paragraph with height set to 1000 to Menu Item 1 =
reate a long page Menu Item 2
Sub Menu

Download from Wow! eBook <www.wowebook.com>

Chapter 7

We will start with the floating box. The f1oatDiv function is called after page loads or the
user scrolls on the page. This function gets the scrollbar position from the top of the page
using jQuery's $ (document) .scrollTop () method. Then we use the animate method to
set the top property of floating box over a period of 250 milliseconds. f1loatDiv is also
called on page load so that it positions the floating box, by default, when the page opens.

After floatDiv, we get all elements with the class name menuItem and hide them. We did
not do this from CSS because if JavaScript is off on the user's browser, the user will not be
able to see submenus, which will make navigation a nightmare.

To toggle the submenus on click of a menu, we have attached another listener to the

span elements with class menu. When a span, which has a class menu, is clicked we

get its next unordered list element (which is a submenu) using the next method and use

the s1ideToggle function to toggle its visibility. The s1ideToggle function toggles an
element's visibility. Different from show and hide functions, it manipulates the element's
height to achieve the sliding effect. This function accepts parameters similar to show and
hide functions. You can pass either strings slow, normal, or fast to it or you can pass the
number of milliseconds for which the effect will run.

See also

» Floating box on demand in Chapter 6

Creating an interface for tabbed navigation

Tabs are a very powerful tool for displaying more information in less space. We will go
thorough some techniques in this recipe and the next few recipes that will allow us
to create tabs for displaying data.

Getting ready

Create a folder for this recipe in the Chapter7 directory and name it as Recipes.

How to do it...

1. Create a file named index.html in the Recipes5 folder. In the same folder
create another file named tabs. css. This file will be used to write the CSS
rules for elements.

Creating Cool Navigation Menus

2. Open the index.html file in the text editor of choice. First of all, reference the
tabs.css file in the head section. Now create the structure of the tabs. Tab headers
will be an unordered list with each list item representing one tab header. Next to it
will be a DIV that will have contents for each tab in a separate DIV. The first list item
(tab) will have its contents in the first DIV, the second list them contents will be in
the second DIV, and so on. Wrap the unordered list and the DIV containing the tab
contents in a separate DIV.

<html>
<head>
<title>Tabs</title>
<link rel="stylesheet" type="text/css" href="tabs.css"
media="screen" />
</head>
<body>
<div class="tabContainer"s>
<ul class="tabHeader">
Tab 1</1i>
Tab 2</1i>
Tab 3</1li>
</uls>
<div class="contentsg">
<div class="tabContent">
<h3>Tab 1</h3>
Content for tabl
</div>
<div class="tabContent">
<h3>Tab 2</h3>
Content for Tab 2
</div>
<div class="tabContent">
<h3>Tab 3</h3>
Content for Tab 3
</div>
</div>
</div>
</body>
</html>

3. Openthe tabs.css file and define the CSS properties for elements. We have done
only basic styling for this example but you can add images and make it more colorful
and attractive.
body

{

font-family: "Trebuchet MS",verdana;

margin: 50 auto;
width:800px;

margin:0;padding:0;

float: left;
list-style: none;
margin: Opt;
padding: Opt;
width:600px;

border-left:1px solid #000;
border-right:1px solid #000;
cursor:pointer;
float:left;
padding:5px;
text-align:center;
width:100px;

}

.tabContainer

{
border:1px solid #000;
float:left;
width:600px;

}

.tabContent

{
border-top:1lpx solid #000;
float:left;
height:100px;
padding:5px;
text-align:justify;
width:590px;

}

.active

{
background-color:#6AA63B;
color:white;

Chapter 7

Creating Cool Navigation Menus

The output will be similar to the following screenshot:

%9 Tabs - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

.iszlv c x ToT I |http:,l’,l’localhost,l’booKI'Chapter?,l’Recipes,l’ > - |'|GUUQ|E
Tab 1 | Tab 2 Tab 3
Tab 1

Content for tab1

Tab 2
Content for Tab 2

Tab 3
Content for Tab 3

4. Include the jQuery library first using the correct path. Now let's see the jQuery code
that will convert this structure to a tab format. This code will make the first tab look
active and will have a function showHideTabs defined, which will be called on the
click of a tab header. This function will make the clicked tab active and will display
the content related to it.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{
S ('.tabContent:gt(0) ') .hide() ;
S ('.tabHeader > li:eq(0)').addClass('active');
$('.tabHeader > 1li') .click(showHideTabs) ;

1

function showHideTabs ()

{

var alllLi = $('.tabHeader > 1i').removeClass ('active')
$(this) .addClass ('active') ;

214

Chapter 7

var index = allLi.index(this) ;
S('.tabContent:visible') .hide() ;
$('.tabContent:eq('+index+') ") .show() ;

}

</script>

5. With this our tabs are ready. Run the index.html file in your browser. You will
see three tabs with the first tab being shown as active and only its content being

displayed. Clicking on another tab header will make it active and the related content
will be displayed.

¥ Tabs - Mozilla Firefox

Eile Edit Wiew History Bookmarks Tools Help

i;z-lv c x et I |http:,I',I'Iocalhost,l'booHChapter?,l'RecipeS,l' > - I-

Tab 2 Tab 3

Tab 1
Content for tab1

OK. Here is the logic. The contents of each tab are inside a tab that has class tabContent.
$('.tabContent:gt (0) ') .hide () hides all such containers that have an index greater
than O. This means only the first DIV with class tabContent remains visible and all others
are hidden. The next line $ (' . tabHeader > li:eq(0) ') .addClass('active') adds
the active class to the first list item so that it is highlighted. In the next line we add an event
handler to the list items that call function showHideTabs whenever a tab header is clicked.
This function will take care of switching of the tabs.

Here is how showHideTabs works. First of all get all the list items and remove the active
class from all of them using the removeClass function. Then using the addClass function,
add the active class to the current item. This will take care of highlighting tab headers. To
display the content related to clicked tab, get the index of the clicked list item using jQuery's
index function. This function returns a 0 based index of an item from a collection. Now hide
the visible DIV elements that have class tab containers using the : visible selector. Finally,
display the DIV whose index is equal to the clicked list items index. If the second list item is
clicked, its index will be 1. The line $ (' .tabContent:eq('+index+') ') .show () will get
the DIV whose index is 1 and will show it.

Creating Cool Navigation Menus

Adding more tabs

This recipe may be considered as an extension to the previous recipe. You learned to create
tabs in the previous recipe. This recipe will explain how you can add new tabs to existing ones.
You will be able to specify name and contents for a new tab.

Getting ready

Create a folder for this recipe inside the Chapter7 folder and name it Recipes.

How to do it...

1. Create a new file in the Recipeé folder and name it as index.html. Now create
another file in the same folder for CSS rules and name it as tabs.css.

2. Open the tabs.css file and define the following CSS properties for elements. This
file will have some more properties than the previous recipe because we will also
create some elements for entering tab and content name.

body{
ul

{

}

float: left;
margin: Opt;
padding: Opt;
list-style: none;
width:600px;

border-left:1px solid #000;
border-right:1px solid #000;
cursor:pointer;

float:left;

padding:5px;
text-align:center;
width:100px;

.tabContainer

{

}

border:1px solid #000;
float:left;
width:600px;

.tabContent

{

font-family: "Trebuchet MS",verdana;}

Chapter 7

border-top:1px solid #000;
float:left;
height:200px;
padding:5px;
text-align:justify;
width:590px;

}

.newTabHolder

{
float:left;
width:300px;

}

.active

{
background-color:DarkBlue;
color:white;

}

.hide
{
display:none;
!
#error{ color:#££0000;}
.remove{float: right;font-weight:bold;color:#££0000;}
h4{ margin:O0px;padding:0px; }
label{float: left; width: 100px;}
input, textarea{ width:185px;}

Now let us write the markup for creating tabs. We will use the same structure as in
the previous recipe. Before that we will create a textbox, a textarea, and an input
button. We will enter the tab name in the textbox and the contents of the tab in
textarea and the button will add the new tab to the existing structure. Open the
index.html file in the text editor of choice. Now reference the tabs. css file

in the head section and write the complete HTML markup as follows:

<html>
<head>
<titles>Tabs</title>
<link rel="stylesheet" type="text/css" href="tabs.css"
media="screen" />
</head>
<body>
<div class="newTabHolder">
<h4>Add a New Tab</h4>
<label for="tabName">Tab Name</labels>
<input type="text" id="tabName"/>
<label for="tabHTML">Tab HTML</labels>
<textarea id="tabHTML" rows="10"></textareas

Creating Cool Navigation Menus

<input type="button" id="addTab" value="Add New Tab"/>

</div>
<div class="tabContainer">
<ul id="tabHeader"s>
Tab 1</1i>
Tab 2</1i>
Tab 3</1i>

<div id="contents">
<div class="tabContent">
<h3>Tab 1</h3>
Content for tabl
</div>
<div class="tabContent">
<h3>Tab 2</h3>
Content for Tab 2
</div>
<div class="tabContent">
<h3>Tab 3</h3>
Content for Tab 3
</div>
</div>
</div>
</body>
</html>

The page will be similar to the following screenshot:

¥ Tabs - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

i;z-lv c x ot I |http:,i,l’lncalhnst,ihnnk,l'chapter?,l’RecipeﬁJ‘ - - |'|Gnngle
Add a New Tab Tab 1 | Tab 2 | Tab 3 ‘
Tab Name
Tab HTHML
Tab 1

Cantent for tabi

Tab 2

Cantent for Tab 2
Add MNew Tahk

Tab 3

Cantent for Tab 3

Chapter 7

Include the jQuery library first using the correct path. Besides making the first tab
active and hiding other content tabs, we will write a new function addTab, which will
take the values for tab name and its contents and will create a new tab with it. From
the previous recipe we already have the capability to switch tabs. For that purpose,
we had created a function called showHideTabs, which made the clicked tab active
and displayed the content related to it.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()
{
$('.tabContent:gt (0) ') .hide() ;
$ ('#tabHeader > li:eq(0)').addClass('active');
S ('#tabHeader > 1i') .live('click', showHideTabs) ;
$('#addTab') .click (addTab) ;

function showHideTabs ()

{
var alllLi = $('#tabHeader > 1i') .removeClass('active') ;
$(this) .addClass ('active') ;
var index = allLi.index(this);
$('.tabContent:visible') .hide () ;
$('.tabContent:eqg('+index+') ") .show() ;

}

function addTab ()
{
if (jQuery.trim($ ('#tabName') .val())!= '' &&
jQuery.trim($ ('#tabHTML') .val()) != '")
{

S ('#error') .empty () ;

$ ('#tabHeader') .append ('' + $('#tabName').val() +
'</1i>") ;

S ('#contents') .append('<div class="tabContent hide">' +

$('#tabHTML') .val() + '</divs>');

//display the new tab by default

S ('#tabHeader > 1li') .removeClass('active');

$('#tabHeader > li:last').addClass('active') ;

S('.tabContent:visible') .hide () ;

$('.tabContent:last') .show () ;

}

else

{
S ('#error') .html ('Please provide a Tab Name.');
}
!
3N

</script>

Creating Cool Navigation Menus

5. Save the index.html file and launch it in the browser. On the left-hand side you will
see a textbox, a textarea, and a button. On the right-hand side will be three tabs with
the first one already active. Fill some values in the elements on the left-hand side and
click on the Add New Tab button. A new tab will be created and will be appended at
the end of the existing ones.

¥ Tabs - Mozilla Firefox [

Flle Edt Wiew History Bookmarks Tools Help

isEl - c x 0T I |http:,f;’lncalhnst;‘hnnKI'Chapter?,l’Recipaﬁ,l’ > - |'|Gnngle
Add a New Tab Tab 1 | Tab 2 | Tab 3 mn

Tab Name New Tab 4

Tab HTHL strong Hi,l was just created

Hi,I was just
created
</ strong>

Add New Tab |

An important point to begin with, if you remember from the previous recipe, is that function
showHideTabs was registered using the c1ick event. In this recipe we are going to add
new tabs, and we want the c1ick event available to new tabs also. So, instead of adding the
event with click, we will use 1ive to add the event. 1ive () adds events to elements that
are created later.

Now back to adding a new tab. On clicking the Add New Tab button, function addTab is
called. This function checks if the value of textbox or textarea is empty or not. If any of these
values are empty, an error message is displayed. If there is no error, the tab can be added.
First, the span element, which may have a previous error message, is emptied. In the very
next line we create a list item with its HTML set to the tab name as in textbox and append it to
the unordered list. Similarly, we create a DIV and set its HTML with the value in textarea and
append it to the DIV with class name contents. We also assign this DIV another class called
hide, which makes it hidden and currently the display is not affected. Clicking on this new tab
header will now display its contents.

220

Chapter 7

There's more...

Displaying new tab by default

In the previous code, a new tab is created but not displayed by default. You can set it
to be active by default. Add these four lines of code in the end of the i f block in the
addTab function.

S ('#tabHeader > 1li') .removeClass('active');

S ('#tabHeader > li:last').addClass('active');
S('.tabContent:visible') .hide () ;

S ('.tabContent:last') .show() ;

Since the new tab is appended in the end, the first two lines remove the active class
from all tab headers and add it to the last one. The last two lines hide all tab content DIV
elements and then show the last one. Therefore, all other tabs are hidden and the new tab
is now active.

See also

» Creating an interface for tabbed navigation in this chapter
» Adding events to elements that will be created later from Chapter 1

Creating a wizard using tabs

This recipe will explain how you can create a wizard in which you can guide a user step
by step.

Getting ready

Create a folder for this recipe and name it as Recipe?7. Create an index.html file inside it.

How to do it...

1. Similar to the previous recipe, create the structure for tabs using list items of
an unordered list as tab headers and DIV elements with class tabContent as
containers for respective tabs. Do not forget to define the CSS styles in the
head section.

<html>
<head>
<titles>Tabs</title>
<style type="text/css">

221

Creating Cool Navigation Menus

body

{
font-family: "Trebuchet MS",verdana;
margin: 50px auto;
width:600px;

}

.tabContainer

{
border:1px solid black;
float:left;
width:600px;

}

ul

{
float: left;
margin: Opt;
padding: Opt;
list-style: none;
width:600px;

border-left:1px solid black;
border-right:1px solid black;
cursor:pointer;
float:left;
padding:5px;
text-align:center;
width:100px;

}

.tabContent

{
border-top:1lpx solid black;
float:left;
height:200px;
padding:5px;
text-align:justify;
width:590px;

}

.active

{
background-color:#6AA63B;
color:white;

222

Chapter 7

.prev{ float:left;}
.next{ float:right;}
#order

{

border:0px solid #000;
}
</style>
</head>
<body>
<form action="">
<div class="tabContainer">
<ul class="tabHeader">
Name</1li>
Selections</1li>
Confirmation

<div class="contents">
<div class="tabContent"s
<p>
Please enter your name</strongs
<input type="text" id="userName"/>
</p>
<input type="button" value="Next >>" class="next"/>
</div>
<div class="tabContent"s
<p>
Please select a product</strongs>
<select id="product"s>
<option>Shirt</option>
<option>Jeans</option>
<option>Shoes</option>
</select>

Select quantity</strongs>
<select id="quantity"s>
<option value="1">1l</option>
<option value="2">2</option>
<option value="3">3</option>
</select>
</p>
<input type="button" value="<< Previous"
class="prev"/>

<input type="button" value="Next >>" class="next"/>
</div>

223

Creating Cool Navigation Menus

<div class="tabContent last">
<p>
Review
<div id="order"></div>
</p>
<input type="button" value="<< Previous"
class="prev"/>
</div>
</div>
</div>
</form>
</body>
</html>

There will be some more elements in these tabs. The first tab has a textbox and a Next
button, which will be used to navigate to next tab. The second tab will have a few select boxes
and Previous and Next buttons that will take a user to the previous and next tabs respectively.
The third and final tab has an extra class name last and it has a DIV with ID order. It also
has a Previous button. The page is similar to the following screenshot:

¥ Tabs - Mozilla Firefox EETES|
File Edit \Wiew History Bookmarks Tools Help
él——‘v c x i I ‘http:,l',l’\ocalhDstJ‘booHChaptar?;’Racwpe?J‘ 2 - |'|GngIe ,
Name | Selections | Confirmation ‘
Please enter your name
MNext »> |

Please select a product |Shin -

Select quantity |1 vl

<< Previous | MNext>> |
Review
<< Previous |

Chapter 7

Now include the jQuery file and add event handlers for the previous and next buttons.
To keep it simple, we will not add event handlers for tab headers this time so that
the user cannot jump directly to any tab. Event handlers for buttons will first get
the index of the current tab, and will then call the function showHideTabs. The
showHideTabs function will switch tabs according to the passed value. It will also
check if the tab is last. If it is, jQuery will collect the information from the previous
tabs and will display it in the last tab.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$('.tabContent:gt (0) ') .hide() ;
$('.tabHeader > li:eq(0)').addClass('active');

$('input:button') .click (function ()

{
var currentTabIndex = getCurrentTabIndex(this) ;
if ($(this) .hasClass ('prev'))

{

showHideTabs (--currentTabIndex) ;

!
else if($(thisg) .hasClass('next'))
{
showHideTabs (++currentTabIndex) ;
!
3N

function getCurrentTabIndex (el)

{
var parent = $(el) .parent ('.tabContent');
return $('.tabContent') .index (parent) ;

}

function showHideTabs (index)

{
$S('.tabHeader > li.active') .removeClass('active');
$('.tabHeader > li:eqg('+index+') ') .addClass('active');

$('.tabContent:visible') .hide () ;
$('.tabContent:eq('+index+') ") .show() ;

if ($('.tabContent:eq('+index+') ') .hasClass('last'))

{

displaySelectedvalues () ;

}

225

Creating Cool Navigation Menus

¥ Tabs - Mozilla Firefox

Hiskary

File

Edit

}

function displaySelectedValues ()

{

var name = $('#userName') .val() ;
S ("#product') .val () ;
S ("#quantity') .val ()

'Hello '

var product =
var quantity =

var strHtml = + name + ',

7

LI
7

+ quantity;

strHtml+= 'Please confirm your selection:
';
strHtml+= 'Item: ' + product;
strHtml+= '
';
strHtml+= 'Quantity: '
strHtml+= '';
S ('#order') .html (strHtml) ;
}
1)
</script>

Save the file and open it in your browser. You will see three familiar tabs. Enter some
value in the first tab and click on the Next button. Then select a product and its
quantity from the second tab and click on the Next button. The final tab will show
you a confirmation message with the values that you have selected.

Wiew

Bookmarks Tools Help

i;z-lv c x ot I |http:,l’,l’localhost,l’bookl'(hapter?,l’Recipe?,l’

> - |'|Google

Narme Selections

Review

Itemn: Shirt
Quantity: 3

| <<Frevious |

Confirmation

Hello Ajay Joshi, Please confirm your selection:

226

Chapter 7

First we hide all tabs except the first one. Then add class active to the first tab. Then comes
the event handler for the Previous and Next buttons. When a button is clicked, we get the index
of its parent DIV in variable current TabIndex using the getCurrentTabIndex function.
Then the handler function checks the class of the clicked button. If it is prev, which means
user wants to navigate to previous tab, we then decrease the value of currentTabIndex and
pass it to the showHideTabs function. Similarly, if the button has class next, we pass the
incremented value of currentTabIndex to the showHideTabs function.

Function showHideTabs first removes the class active from the list item. Then it finds
the list item whose index is equal to the passed index and adds class active to it. Then
the visible tabContent DIV is hidden and the DIV whose index matches the passed index
is displayed.

In the end, the code checks if the tab is the last one or not by checking for class last. If it is
the last tab then function displaySelectedvalues is called.

Function displaySelectedvalues takes the values of the userName textbox and the
product and quantity select boxes and creates a nicely formatted information message
in the form of HTML and inserts it into the DIV with ID order.

See also

» Creating an interface for tabbed navigation
» Adding more Tabs

227

Data Binding with PHP
and jQuery

In this chapter, we will cover:

» Fetching data from a database and displaying it in a table format

» Collecting data from a form and saving it to a database (Registration form)
» Filling chained combo boxes that depend upon each other

» Checking username availability from a database

» Paginating data for large record sets

» Adding auto suggest functionality to a textbox

» Creating a tag cloud

Introduction

This chapter will explain some recipes where we will use a database along with PHP on the
server side. A database is an essential part of almost every dynamic web application. PHP
provides a large number of functions to interact with the database. The most commonly
used database along with PHP is MySQL. In this chapter, we will be using another version of
MySQL called MySQLi or MySQL improved. It provides significant advantages over the MySQL
extension; most important of them being the support for the object-oriented interface as
well as the procedural interface. Other features include support for transactions, prepared
statements, and so on.

You can read more about MySQLi on the PHP site at http://www.php.net/manual/en/
book.mysqgli.php.

Data Binding with PHP and jQuery

MySQLi extension is available with PHP version 5.0 or higher. So, make sure
~ you have the required PHP version. If you are running PHP 5 or a higher

Q version, you will have to configure MySQL separately as a default PHP support,
for MySQL was dropped starting from PHP versions 5.0 and higher.

Cleaning data before use

Throughout the recipes in this book, we have used user input directly
by pulling these from $_GET or $_POST arrays. Although this is okay for
s examples, in practical websites and applications, user data must be properly
% cleaned and sanitized before performing any operations on it to make your
I~ application safe from malicious users. Below are some links where you can
get more information on how to make your data safe, and security in general.

PHP Security Consortium: http://phpsec.org/

PHP Manual: http://php.net/manual/en/security.php

Fetching data from a database and

displaying it in a table format

This is a simple recipe where we will get some data from a table and we'll display it in a page.
Users will be presented with a select box with options to choose a programming language.
Selecting a language will get some functions and their details from the database.

Getting ready

Create a new folder named Recipel inside the Chapters directory. Now, using phpMyAdmin
create a table named language in the exampleDB database using the following query.

CREATE TABLE ~language™ (
“id® int(3) NOT NULL auto_increment,
“languageName~ varchar (50) NOT NULL,
PRIMARY KEY (Tid™)

)i

Insert two records for 1languageName in this table, namely PHP and jQuery. Now, create
another table functions that will have function names and details related to a language.

CREATE TABLE ~functions™ (
“id® int(3) NOT NULL auto_increment,
“languageId™ int(11) NOT NULL,

230

Chapter 8

“functionName~ varchar (64) NOT NULL,
“summary” varchar (128) NOT NULL,
“example” text NOT NULL,
PRIMARY KEY (~id")

) ;

languageId isthe ID of the language that is in the language table. Now, insert some records
in this table using phpMyadmin with some data for PHP and some for jQuery. Here is a
snapshot of what the functions table will look like after filling it with data:

id languageld functionName summary example
1 1 simpleswml load file Interprets an XML file into an object Faznl = simplesml load_file('test sml’;
print_r(E. .
2 1 array_push Push one o more elements onto the end of array FarrPets = array('Dog', 'Cat', 'Fish'),
Array_pu...
3 1 ucfirst Make a string's first character uppercase Fmessage = 'have a nice day;
Fmessage = uchirst(§ .
4 1 mai used to send etnail Fmessage = "Example message for mail",
ifmail’t...
5 2 Pget Load data from the server using a HTTP GET request... §oajas({
url: url,
data: data,
SUCCESS 3.
6 2 hower hover method accepts 2 functions as parameters whi . B(zelector) hover(
fimnction)

{

Ifezecutes enm. ..

7 2 bind Attach a handler to an event for the elements. Fielement) bind('click', finction()
{
alert(”. .

8 2 Query.data Store arbitrary data associated with the specified. . Query. datalelement, key, value);

How to do it...

1. Create a file named index.php in the Recipel folder. Using methods of
MySQLi class, select data from the 1anguage table, and populate a select box
with list of languages. Also, create a p element that will show the functions for
the selected language.

<html>
<head>
<style type="text/css">
body{font-family: "Trebuchet MS", Verdana, Arial;width:600px; }
div { background-color: #F5F5DC; |}

</style>

</head>
<body>

231

Data Binding with PHP and jQuery

<?php
Smysqgli = new mysqgli('localhost', 'root', '', 'exampleDB');
if (mysgli connect errno())

{
}

else

{

Squery = 'SELECT * FROM language';
if ($result = Smysqgli->query(Squery))

{

die ('Unable to connect!');

if ($result->num rows > 0)

{

?>
<p>
Select a language
<select id="selectLanguage"s>
<option value="">select</options>
<?php
while ($Srow = Sresult->fetch assoc())
{
?>

<option value="<?php echo $row[0]; ?>"><?php echo $rowl[l];
?></option>

<?php
}
?>
</select>

</p>

<p id="result"></p>
<?php

}

else

{

echo 'No records found!';

}

$result->close() ;

}

else

{

}
}

Smysqgli->close() ;

echo 'Error in query: $query. '.Smysgli-serror;

?>
</body>
</html>

232

Chapter 8

Now, add a reference to the jQuery file. After this, write the event handler for a select
box that will be fired on selecting a value from the combo box. It will send an AJAX
request to a PHP file results.php, which will get the data for the selected language
and will insert it into the p element.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()

{

$ ('#selectLanguage') .change (function ()
{
if ($(this).val() == '') return;
$.get (
'results.php',
{ id : $(this).val() },
function (data)

{

S ('#result') .html (data) ;

13N
13N

</scripts>

Create another results.php file that will connect to the database exampleDB
and will get data specific to a language from the database. It will then create the
formatted HTML from the results and will send it back to the browser where jQuery
inserts it into the p element.

<?php

Smysgli = new mysqgli('localhost', 'root', '', 'exampleDB') ;
SresultStr = '';

Squery = 'SELECT functionName, summary, example FROM functions

where languageId='.$ GET['id'];
if (Sresult = Smysqgli->query(Squery))
{
if ($result->num rows > 0)
{
SresultStr.='"';
while ($row = $result->fetch assoc())

{

SresultStr.= ''.S$row['functionName'].'
- '.Srow['summary'];

SresultStr.= '<divs<pre>'.$row|['example'].'</pre></div>';
'</1i>";

233

Data Binding with PHP and jQuery

SresultStr.= '</uls>';
1
else
{
SresultStr = 'Nothing found';
1

!
echo SresultStr;

?>

4. Now, run the index.php file in the browser and you will see a combo box with two
options: PHP and jQuery. Select any option and you will see the results in the form
of a bulleted list.

&%) Mozilla Firefox
Eil= Edit “iew Higtory Bookmarks Tools Help Belated Links

El - G X I |http:#!localhost:SDS'IJbook#EhapterS!HecipeU
J I_] htlp:HIocthust:__DB_cudeHHeciptﬂJ'| -

telect a language |PHP 'I

* simplexml_load_file - Interprets an XML file into an object

fxml = simplexml load file('test.xml'):
print_r($xml):

® array_push - Push one or more elements onto the end of array

jarrPets = array('Dog', 'Cat', 'Fish' }:
array_push(§arrPets, 'Bird', 'Bat'):

e ucfirst - Malke a string's first character uppercase

fmessage = 'have a nice day:
fmessage = ucfirst (§message) /4 output: Have AL Nice Day

e mail - used to send email

fmessage = "Example message for mail'™:
if(mail ('testltest.com', 'Test Subject', Smessage))
1

echo 'Mail sent!':

echo 'Sending of wail failed':

Chapter 8

First, we create a new object of MySQLi class using its constructor. We pass the host,
database user name, password, and database name to it. Then, we check for errors, if any,
while connecting to the database. In case of an error, we display an error message and
terminate the script.

Then, we use the query method of the mysqgli class to select all data from the language
table. If the query is successful we get the result object in the $result variable. The $result
variable that we have is an object of the MySQLi Result class. The MySQLi Result class
provides several methods to extract data from the object. We have used one such method
called fetch assoc () that fetches a row as an associative array. Using a while loop, we

can iterate in the sSresult object one row at a time. Here, we create a select box with ID
selectLanguage and fill the language names as its options and 1anguageId as values

for the options.

In jQuery code, we have an event handler for the change event of the combo box. It takes the
value of the select box and sends it to the results.php file, using a GET AJAX request.

The results.php file connects to the exampleDB database and then writes a query for
selecting data for a particular language. jQuery sends an id parameter with an AJAX request
that will be used in the query. Like the index . php page, we get the results in the Sresult
variable. Now, we iterate over this result and create an unordered list and assign it to the
SresultStr variable. Each list item contains a function name, a brief description about it,
and an example. In case of any error, the variable $resultStr is assigned an error message.

Finally, we echo the $resultStr variable received by jQuery. jQuery then inserts the received
HTML in the p element with ID result.

There's more...

What is a constructor?

In object-oriented programming, a constructor is a method that is invoked whenever a new
object of that class is created. A constructor has the same name as the class name.

Smysgli = new mysqgli('localhost', 'root', '', 'exampleDB') ;

The above line creates a new object of mysqgli class, which has a constructor that takes
four arguments.

One thing to keep in mind is: in PHP5 and above versions, a constructor is defined
as __ construct () whereas in prior versions the constructor has the same name
as the class name. To read more about constructors in PHP refer to the PHP site:
http://www.php.net/manual/en/language.oop5.decon.php

235

Data Binding with PHP and jQuery

Collecting data from a form and saving

to a database

Using the same two tables of the previous recipe, we will create a form that will allow the user
to select a language, add a function name, its summary, and related examples. We will then
save this information to the functions table with the selected language.

Getting ready

Create Recipe?2 folder inside the Chapters directory.

How to do it...

1. Create a file named index.php inside the Recipe2 folder. Now, create a form with
four fields. First, create a select box and query the 1anguage table to fill languages
in it. Next, create two textboxes for Function name and Summary. Finally, create a
textarea in which users will enter the example for that function. Assign a CSS class
named required to each of these elements.

¥%) Mozilla Firefox
File Edit “iew Higtory Bookmarks Toole Help Belated Links

@l - C X I |http:a"a’localhost:BDB'lHbooka’EhapterEh"FlecipeZ.-’

J I_] http: /flocalhost:__08code/Recipe?/ | -

—Add a function

Select a language Iselect 'I

Function name |

Surmmary |

Example

Sawve Information |

236

Chapter 8

Before the closing of body tag, include the jquery. js file and after that, write the
event handler function for the form's submit event. This function will perform a basic
validation by checking each element's value. If any of the fields is blank, it will display
an error message. If there are no errors, the form will be submitted.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
S('#frmMain') .submit (function ()
{
var flag = true;
S('#error') .empty () ;
$('.required') .each(function ()
{
if (jQuery.trim($ (this) .val()) == '')
{
flag = false;
}
1)
if(!lflag)
{
S('#error') .html ('Please fill all the fields');
return false;

}

else

{
return true;
}
13N
13N

</scripts>

Now, when the form is submitted, PHP will take the values for each element from the
global $_POST array and will assign them to different variables, after escaping them.
Then an INSERT query will execute and will insert these values into the database.
An appropriate message will be displayed, depending on whether the query has
succeeded or failed. Below is the full code for the index . php file.
<html>
<head>
<style type="text/css">
body{ font-family: "Trebuchet MS", Verdana, Arial;
width:500px; }
input, textarea { vertical-align:top; }
label{ float:left; width:150px;}

237

Data Binding with PHP and jQuery

238

</style>
</head>
<body>
<?php
Smysqgli = new mysqgli('localhost', 'root', '', 'exampleDB');
if (isset ($_POST['save'l]l))
{
$language = Smysqgli->real escape string($ POST['language']);
$functionName = $mysgli->real escape string($_
POST ['functionName']) ;
$summary = $mysgli->real escape string($ POST['summary']) ;
Sexample = $mysgli->real escape string($ POST['example']) ;
Squery = 'INSERT INTO functions (
languageId ,
functionName |,
summary ,
example
)
VALUES ('.$language.',6 "'.$functionName.'", "'. $Ssummary.'",6"
'.Sexample.'")';
if ($mysqgli->query(Squery))

echo 'Data Saved Successfully.';

}

else

{

echo 'Cannot save data.';

}

Squery = 'SELECT * FROM language';
if (Sresult = S$mysqgli->query(Squery))
{
if ($result->num rows > 0)
{
?>
<fieldset>
<legend>Add a function</legends>
<form action="" method="post" id="frmMain"s>
<p>
<label>Select a language</labels>
<select name="language" class="required"s>
<option value="">select</options>
<?php
while ($row = Sresult->fetch array())

{

Chapter 8

?>
<option value="<?php echo S$row[0]; ?>">
<?php echo $row([l]; ?></option>
<?php
}
?>
</select>
</p>
<p>
<labels>Function name </labels>
<input type="text" name="functionName" class="required"/>
</p>
<p>
<label>Summary</label>
<input type="text" name="summary" class="required"/>
</p>
<p>
<label>Example</label> <textarea rows="10" cols="30"
name="example" class="required"></textareas>
</p>
<p>
<strong id="error"s>
</p>
<p>
<input type="submit" name="save"
value="Save Information"/>
</p>
</form>
</fieldset>
<?php
}
else

{
}

$result->close() ;

}

else

{

echo 'No records found!';

echo 'Error in query: $query.

$mysgli->close() ;
?>

</body>
</html>

'.$mysqgli->error;

239

Data Binding with PHP and jQuery

4. Now, run the file in your browser and fill some values in the form. Click on the
Save Information button and it will save the values to the functions table in the
database. You will also see a message Data Saved Successfully on successful
execution of the query. Leaving any fields blank and trying to submit the form will
display an error message.

First, we connect to the database using the constructor of mysqgli class. Next, the i
statement checks whether the form has been submitted or not. Hence, this part will be
executed after the form submission. We will look into this part in detail later in this chapter.

if (isset ($_POST['save']))
{
}

Outside the above condition, we query the 1anguage table using a SELECT statement that
gets us the languages from the database. We then fill these languages and their values inside
the select box. Other fields include two textboxes and a textarea.

After the form is submitted with non-blank values, PHP fetches these values from the $_POST
Superglobal and escapes it using real escape_string () method of mysqgli class. This
function escapes the user data so that it is ready to be used in a query. Then, we insert the
values for the language, function name, and example using an INSERT query. query () will
return true on success and false on failure. We then display the final message to the user
based on this return value.

real_escape_string() function

The real escape string() function is used to escape special characters in a string. SQL
queries may throw an error if the data present in them is not escaped properly. You should
always use it in your database queries.

Also note that you need to be connected to a database to be able to use this function.

Return values for mysqli->query()

For statements such as SELECT, SHOW, and so on, this method returns an object of class
MySQLi_ Result. For statements like INSERT, UPDATE, and DELETE, it returns either
TRUE of FALSE.

240

Chapter 8

» Checking for empty fields using jQuery in Chapter 5

Filling chained combo boxes that depend

upon each other

This recipe tries to solve a very common task that is seen in many web applications, that is,
filtering contents of a combo box according to the selection made in its previous combo box.

We will create an example where the user will be presented with three select boxes—one each
for country, state, and town. Selecting a country will get its states and selecting a state will get
its towns. Finally, on selecting a town we will display some information related to it.

The most important point here is that there will not be any page reloads. Instead, we will use
AJAX to filter the contents silently. This will create a better user experience compared to classic
web application behavior where it would have required a full-page reload on each selection.

Getting ready

Create a folder named Recipe3 inside the Chapters directory. Now, we will require four
tables in our database. Once again, open phpMyadmin, create these four tables, and fill
them with the desired values.

» Country

CREATE TABLE “country™ (
“id® int(11) NOT NULL auto_ increment,
“countryName~ varchar (64) NOT NULL,

PRIMARY KEY (~id")
)i
INSERT INTO “country™ (7id~, “countryName~) VALUES
(1, 'India');

» States

CREATE TABLE “states™ (
“id® int(11) NOT NULL auto_ increment,
“countryId® int(11) NOT NULL,
“stateName~ varchar (64) NOT NULL,

PRIMARY KEY (~1d")
)i
INSERT INTO “states”™ (°1d~, “countryId~, “stateName~) VALUES
(1, 1, 'u.p."),

(2, 1, 'Uttarakhand') ;

241

Data Binding with PHP and jQuery

>

Towns

CREATE TABLE “towns™ (
“id® int(11) NOT NULL auto_ increment,
“stateId” int(11) NOT NULL,
“townName~ varchar (64) NOT NULL,

PRIMARY KEY (~4id")
) ;
INSERT INTO “towns~ (~id~, “stateId™, “townName~) VALUES
(1, 1, 'Lucknow'),
(2, 1, 'Bareilly'),
(3, 2, 'Pithoragarh'),
(4, 2, 'Dehradun'),
(5, 2, 'Nainital');
Towninfo

CREATE TABLE “towninfo™ (
“id® int(11) NOT NULL auto_increment,
“townId® int(11) NOT NULL,
“description” text NOT NULL,
PRIMARY KEY (~id")

)i

INSERT INTO “towninfo~ (7id~, “townId~, “description™) VALUES

(1, 3, 'Pithoragarh is a beautiful town situated in Kumaon region
of Uttarakhand. It has an average elevation of 1,514 metres (4,967
feet) above sea level.'),

(2, 4, 'Dehradun also known as Doon is the capital city of
Uttarakhand. It is around 250 Kilometers from national capital
Delhi.\r\nRice and Lychee are major products of this city.'),

(3, 1, 'Lucknow is the capital city of U.P. or Uttar Pradesh.\
r\nLucknow has Asia''s first human DNA bank.\r\nIt is popularly
known as The City of Nawabs, Golden City of the East and The
Constantinople of India.');

How to do it...

1.

242

Create a file index.html inside the Recipe3 folder. Create three combo boxes

for country, state, town, and a p element that will display the information about the
selected town. Also write some CSS styles in head section for styling these elements.
All values in these combo boxes will be filled using AJAX requests.

<html>
<head>
<style type="text/css">
body{font-family: "Trebuchet MS", Verdana, Arial;width:600px;}

Chapter 8

ul { list-style:none;margin:Opt;padding:0pt;width:525px;
float:left; }
1i{ float:left;padding:10px; }
p{border:1px solid #000; float:left;height:100px;width:500px; }
select { width:100px;}
</style>
</head>
<body>

Country
<select id="countryList"s>
<option value="">gelect</option>
</select>
</1li>

State
<select id="stateList">
<option value="">gelect</optionx>
</select>
</1li>

Town
<select id="townList">

<option value="">gelect</option>
</select>
</1li>

<p id="information"></p>
</body>
</html>

¥) Mozilla Firefox

File Edit Miew Higtory Bookmarks Tools Help Belated Links
€1 - € % .| [rwsocahosta81book/Chapters Recioed

J |_1‘] http:/flocalhost:__08 code/Recipe3/ | -

Country | select ~| State |select M Tovvnlsmed 4

243

Data Binding with PHP and jQuery
2.

Before the body tag closes, add the jQuery library. Now, create a function getList
that will be called whenever the value in the combo box changes. Depending on
which combo box it is, a URL will be set with two parameters: £ind and id. Finally,
an AJAX request will be sent to this URL which will fetch the corresponding results.
Function getList () will be called once the document is ready so that we have
values available in the Country combo box.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
S ('select') .change (getlList) ;
getList () ;
function getList ()
{
var url, target;
var id = $(this).attr('id'");
var selectedvValue = $(this) .val();
switch (id)
{

case 'countryList':

if (selectedValue == '') return;
url = 'results.php?find=states&id='+ selectedvValue;
target = 'statelist';

break;

case 'statelList':

if ($(this) .val() == '') return;
url = 'results.php?find=townsé&id='+ selectedValue;
target = 'townList';

break;

case 'townList':

if ($(this) .val() == '') return;
url = 'results.php?find=information&id='+ selectedvValue;
target = 'information';
break;
default:
url = 'results.php?find=country’';
target = 'countryList';
}
$.get (
url,

Chapter 8

function (data)

{

S('#'+target) .html (data) ;

3N

</script>

The AJAX request will be sent to the results.php file. So, create a new file with this
name. This file connects to the database and depending on the values of parameters
find and iq, it queries the appropriate table and fetches data from it. HTML is
generated from this data and is sent back to the browser where jQuery displays it.
<?php

Smysqgli = new mysqgli('localhost', 'root', '', 'exampleDB');

$find = $ GET['find'];

switch ($find)

{

case 'country':

Squery = 'SELECT id, countryName FROM country';
break;
case 'states':
Squery = 'SELECT id, stateName FROM states WHERE
countryId='.$ GET['id'];
break;
case 'towns':
Squery = 'SELECT id, townName FROM towns
WHERE stateId='.$ GET['id'];
break;
case 'information':
Squery = 'SELECT id, description FROM towninfo
WHERE townId='.$ GET['id'] .' LIMIT 1';
break;

}
if ($mysqgli->query(Squery))
{
Sresult = Smysqgli->query(Squery) ;
if ($find == 'information')
{
if ($result->num rows > 0)
{
$row = $result->fetch array();
echo $row[1l];

245

Data Binding with PHP and jQuery

else

{

echo 'No Information found';

else

{

?>

<option value="">select</options>
<?php

while ($row = Sresult->fetch array())

{
?>

<option value="<?php echo $row[0]; ?>"><?php echo $rowl[l];

?></option>
<?php

}
}

?>

4. Runthe index.html file in your browser and you will find the values in the Country
combo box. Other boxes will be empty. Select a country and the State combo box will
be filled with data. Selecting a state will fill the last combo box (Town). In the end,
select a town and an AJAX request will get information related to it and will display
it in the p element.

) Mozilla Firefox

File Edt Wiew History Bookmarks Toolz Help Related Links

GI |~ e A 0T I |http:.-".-"localhost:BDS‘I.-"hook.-"ChapterB.-"FleciD.e&-"
J I_] http://localhost:__08 code/Recipe3/ I 4=

Country | India =l state [Utiarakhand -] Town [Pitharagarn 7

Pithoragarh is a beautiful town situated in Kumaon region of
Uttarakhand. It has an average elevation of 1,514 metres (4,947 feet)
above sea level.

The HTML code of index.html is almost clear. We have created three combo boxes and a
p element. Each element has been assigned an ID: countryList, stateList, townList,
and information respectively.

246

Chapter 8

In the jQuery code, we have added a change event listener for all select elements that call

a function getList (). getList () defines two variables: URL and target. Then, it gets the
ID and the value of the element whose value is changed. Next, is a switch case where the
ID of the element is checked in four different cases. If the value from the combo box with

ID countryList is selected, we set the £ind parameter in the URLto states and id
parameter as its value. Similarly for stateList box, £ind is set to towns and for selectbox
townList, we set the find parameter to information because on selecting a town we
need to show information related to it. In the default case, £ind is set to country so that it
gets all the countries from the database and fills them in first combo box. Along with setting
the URL we also set the target element in which data will be inserted.

After the switch case, an AJAX GET request is sent from jQuery to the PHP file results.
php. The response received from results.php will be inserted in the target element.

Let's go through the code of results.php now. This script first connects to our exampleDB.
Then, we fetch the value of the £ind key from the $_GET Superglobal. A switch case checks
the value of the $find variable and creates a query accordingly. If £ind is setto states

it creates a query to retrieve data from the states table based on countryId. If case is
information, it queries the information table for the id of a particular town.

Once the results are retrieved from the database, a while loop is used to iterate over them
and a formatted HTML is sent back to the browser where jQuery inserts it into the appropriate
target element.

Checking username availability from

database

We will write an example of a registration form that will match a user-entered name against
all other names in the database and will notify the user whether that username is available
or not.

Getting ready

Create a folder for this recipe inside the Chapters directory and name it as Recipe4. Open
phpMyAdmin and create a new table named users with the following structure and data.

CREATE TABLE “users (
“id® int(11) NOT NULL AUTO_INCREMENT,
“username” varchar (32) NOT NULL,
“password” varchar(32) NOT NULL,
PRIMARY KEY (~id")

247

Data Binding with PHP and jQuery

INSERT INTO “users (~id~, “username”, “password™) VALUES
, 'holmes', 'sherlockholmes'),
, 'watson', 'johnwatson'),
, 'sati', ‘'pranay'),
, 'mantu', 'ajayjoshi'),
, 'sahji', 'brijsah'),
, 'vijay', 'vijayjoshi'),

, 'arjun',6 'samant'),

, 'jyotsna', 'sonawane'),
2, 'ravindra', 'pokharia'),
3, 'prakash', 'joshi'),

4, 'sahji2', 'aloklal'),

5, 'basant', 'bhandari')

How to do it...

1. Create afile named index.html in the Recipe4 folder. In this file, create two
textboxes for login name and password. Next to the login name, create an anchor that
will check the username on clicking it. Another element next to it will show whether
that login hame is available or not.
<html>

<head>

(1
(2
(3
(4
(5
(6
(7, 'brij', 'brijsah'),
(8
(9
(1
(1
(1
(1

<title>Check Username</title>
<style type="text/css">
body{ font-family: "Trebuchet MS", Verdana, Arial;
width:555px; }
input, textarea { vertical-align:top; }
label{ float:left; width:150px;}
#error {font-weight:bold; color:#££0000;}
</style>
</head>
<body>
<fieldset>
<legend>Add a function</legend>
<form action="" method="post" id="loginForm">
<p>
<label>Username </labels>
<input type="text" name="loginName" id="loginName"/>
Check

</p>
<p>

248

Chapter 8

<label>Password</label>
<input type="password" name="password"/>

</p>

<p>

</p>

<p>
<input type="submit" value="Save" name="dos"

id="dosave"/>
</p>
</form>
</fieldset>
</body>
</html>

¥ Check Username - Mozilla Firefox

File Edit “iew Higtory Bookmarks Toolz Help Related Links

GI - g (1] I |http:.n’.n’localhost:SDS'IHbook#ChapterSHHecipeM

J | | Check Username [_:TW

—Add a function

Username [Check

Password [

Save |

Now include the jquery . js file first. Next, write an event handler function that

will be executed when the user clicks on the element with check ID. It will send an
AJAX request to the PHP file, check.php, which will return either true or false
depending on whether the username is available or not. Another event handler is for
the submit event of the form that will allow the form to be submitted when the user
has chosen an available username.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var checked = false;
$ ('#check') .click (function ()

{

S ('#error') .empty () ;

249

Data Binding with PHP and jQuery

var inputValue = $('#loginName') .val();
if (jQuery.trim(inputValue) == ''){return false; }
$.post (

'check.php',

{ username : inputvValue },

function (data)
{
if (data)
{
checked = true;

S ('#status') .html ('Username is available');

}

else
{
checked = false;

S ('#status') .html ('Username not available');
return false;

}
)
13N
S ('#loginForm') .submit (function ()
{
if (checked == false)
{
S ('#error') .html ('Kindly check the username') ;
return false;

}

else

{

return true;

}
3N

S ('#loginName') . focus (function ()
{
checked == false;
13N
13N
</script>

250

Chapter 8

Create another file and name it as check . php. This file will check the values
supplied by jQuery in the users table and will return true or false.

<?php

Smysgli = new mysqgli('localhost', 'root', '', 'exampleDB') ;
$selectQuery = 'SELECT username as user FROM users WHERE
username="'.$ POST['username'].'"';

Sresult = Smysqgli->query($selectQuery) ;

if (Sresult)

{

if ($result->num rows > 0)

{

echo false;

}

else

{

echo true;

}

else

{

echo false;

}

?>

Run the index.html file in the browser and enter a username that is already in
the database and click on the Check link. You will see an error message Username
not available. Entering an available username will show the message Username is
available. Trying to submit the form without checking the username will display an
error Kindly check the username.

& Check Usemame - MozillaFiclox

File Edit “iew History Bookmarks Tools Help Related Links

E. - & (1] I |hltp:a’flncalhosl:BDB'l.n"book.n’EhaplerB.n’Hecipedf

J |] Check Username I_—|

—Add a function

Username [halmes Check Username not available

Password [

Savel

251

Data Binding with PHP and jQuery

On clicking the Check link an AJAX request is sent to check . php file. This file checks the
users table for that username. If there are more than zero records in the table we can be
sure that the username is already in use and we return false, otherwise we return true.

jQuery's success callback function checks the value provided by PHP and displays an error
message accordingly.

Variable checked is used to prevent the form submission if it takes place without checking a
username. Only if a username is available is the variable set to true and the form submission
is allowed.

There's more...

Alternative methods for implementation

In this recipe, we are checking the username on the click of a button. The same check can
be implemented on the onkeydown event of the textbox too. This has been left as an exercise
for you.

Paginating data for large record sets

It is best to break down a long list into separate pages and navigate them with buttons such
as Previous, Next, and specific page numbers. In this recipe, we will take a long list of HTML
elements and will paginate them into separate pages with a fixed number of items per page.
We will also provide the user with options to jump to any page using a select box.

Getting ready

Create a folder for this recipe inside the Chapters8 directory and name it as Recipe5s. Using
phpMyAdmin, create a table named movies with the following structure:

CREATE TABLE IF NOT EXISTS “movies™ (
“id® int(11) NOT NULL AUTO_ INCREMENT,
“movieName~ varchar (64) NOT NULL,
PRIMARY KEY (~id")

)i

For pagination, we will require a long list so as to enter some movie hames in this table, using
phpMyAdmin. For this example, we have already inserted 100 names in the table. You can
use the movies. sql file that will be supplied along with this book to populate the table.
Names of movies in this list have been taken from: http://www.thebest100lists.com/
bestl00movies/.

252

How to do it...

1.

Chapter 8

Create a file named index . php inside the Recipe5 folder. In this file, connect
to the database and fetch all the movie names from the movies table and create
an unordered list with movie names as the list items. Also, create a DIV with ID
navigation where the pagination buttons will be placed. Some CSS properties

are also defined in the head section for a proper look and feel.

<html>
<head>
<title>Top 100 movies</title>
<style type="text/css">
body{ font-family: "Trebuchet MS", Verdana,
Arial;width:400px;}
h3{ margin:0;padding:0;}
ul{ list-style:none;margin:10px 0;padding:0;
border:1px solid #000;}
1i{ padding:5px;}
#prev{ float:left;width:100px;}
#next{ float:right;width:100px;text-align:right;}

#navigation {float: left; border: 1lpx solid; padding:

width: 97%;}
#navigations>div { float: left; text-align: center;
margin-left:40px; 200px;}
select { width:100px; }
strong { cursor:pointer; text—decoration:underline;}
</style>
</head>
<body>
<h3>Top 100 movies voted by people</h3>

5px;

http://www.thebest100lists.com/bestl00movies/
<ul id="list">
<?php

Smysqgli = new mysqgli('localhost', 'root', '', 'exampleDB') ;

if ($mysgli->connect errno)

{

die('Connect Error: ' . $mysqgli->connect errno) ;

}

Squery = 'SELECT movieName FROM movies';

if ($mysqgli->query(Squery))

{
Sresult = Smysqgli->query (Squery) ;
if ($result->num rows > 0)

{

while ($row = Sresult->fetch array())

253

Data Binding with PHP and jQuery
{

echo ''.Srow([0].'"';
}
}

else

{
}

echo 'No records';

}

else

{

echo 'Query Unsuccessful';

?>

<div id="navigation"></div>
<p> </p>
</body>
</html>

&) Top 100 movies - Mozilla Firefox
D Top 100 movies \\ + Y

File Edit Wiew History Bookmarks Tools Help Related Links

L http: /flocalhost:5081/book /Chapter8/Recipes,
[, FIQiL iU

17. Saving Private Ryan

18. Braveheart

19, The Lord of the Rings: The Twa Towers
20, The Wizard of Oz

21. The Sound of Music

22, 1t's A Wonderful Life

23. Gladiator

24, 2001 A Space Odyssey

25. The Good, The Bad, and The Ugly
26, The Departed

7. Apocalypse Mows

28. One Flew Over the Cuckoo's Nest
29, Paycho

30. American Beauty

31, Scarface

32, Taxd Driver

33. A Beautiful Mind

2 Raidarc of tha | act Al
“a v Done

Chapter 8

The previous screenshot is a partial capture of what the page will look like. It will
display all the 100 movies on the browser. Include the jquery. js file and write
the jQuery code for paginating this list. First, define the number of items per page
and total pages that will be displayed. In this example, we have defined the number
of items per page as ten, which means that in total ten pages will be available.
Then, define createNavigation function that will create links for the previous
page, the next page, and a combo box with all page numbers. Then, write a function
setDataAndEvents that will have event handler functions for these navigation
links. Clicking on a navigation link or selecting a page number from the combo box
will call another function goToPage that will display the movies for that page only.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var totalMovies = $('#list>1i') .length;
var moviesPerPage = 10;
var totalPages = Math.ceil (totalMovies/moviesPerPage) ;

createNavigation() ;
setDataAndEvents () ;
function createNavigation ()
var navHTML = '<strong id="prev"s>Previous';
navHTML+= '<div>"';
navHTML+= '<select id="goTo">';
navHTML+= '<option value="">Go to page</option>';
for(var i = 0; i< totalPages; i++)
navHTML+= '<option value="'+(i+1l)+'">Page '+ (i+1)+'
</options>"';
navHTML+= '</selects>';
navHTML+= '</div>';
navHTML+= '<strong id="next">Next</strongs>';

S ('#navigation') .html (navHTML) ;
S ('#prev') .hide() ;
S ('#goTo') .val (1) ;

function setDataAndEvents ()

{
S('#list') .data('currentPage', 1);
S('#list>1li:gt (' + (moviesPerPage-1) + ') ') .hide();

255

Data Binding with PHP and jQuery

256

S ('#prev') .click (function ()
{

var current = $('#list').data('currentPage') ;
goToPage (--current) ;

1) s

$('#next') .click (function () {
var current = $('#list').data('currentPage') ;
goToPage (++current) ;

3N

S ('#goTo') .change (function ()
{

if($.trim($(this) .val()) == '') return;
goToPage ($ (this) .val()) ;

1) s

function goToPage (pageNumber)
{
if (pageNumber == 1) $('#prev') .hide();
else $('#prev') .show() ;
if (pageNumber == totalPages) $('#next').hide(); else
$('#next') .show () ;

$('#list') .data('currentPage', pageNumber) ;
S ('#goTo') .val (pageNumber) ;

var from = (pageNumber - 1) * moviesPerPage;
var to = from + (moviesPerPage - 1);
$('#list>1i') .show() ;

S('"#list>1i:1t (' + (from) + ')').hide();
S('#list>1li:gt (' + (to) + ') ') .hide();

}
3N

</script>

Now run the file in your browser and you will see list of ten movies and navigation
links available at the bottom. The page number will be set as 1 in the combo box.
Because it will be the first page, only the Next button will be available. Clicking the
Next button will change the list as well as page number at the bottom. Going to the
last page will hide the Next button.

Chapter 8

&) Top 100 movies - Mozilla Firefox

i/ B Top 100 mavies

File Edit Wew History Bookmarks Tools Help Related Links

% http:/flocalhost: 8081 /book /Chapters/Recipes/

Top 100 movies
http: S wano . thebest100lsts. comd best 100 movies s

91. Amalie

92, Twilight

93. Rain Man

94, The Graduate

95. All About Eve

96. The Bridge on the River Kwai
97, Dances with Wolves

98. The Ten Commandments

99, Castaway

100, Breakfast at Tiffam's

|Previous [Pagetn

First of all, we retrieve the list of all movies from the database using query method of
mysqgli class. Then by iterating over results, we create an unordered list with ID 1ist, using
each movie name as a list item. After the list, there is a DIV with ID navigation, which will
contain the navigation links. After the page is loaded, jQuery code executes. First, we get

the length of all 11 element and assign it to the totalMovies variable. Then, we set the
moviesPerPage variable to 10. After this, we calculate the total number of pages by
dividing totalMovies with moviesPerPage.

Now, the createNavigation function is called. This function creates two elements inside
the navigation DIV that act as Previous and Next buttons and assigns those prev and
next IDs respectively. Another select element is created with ID goTo. It has page numbers
as the options. Once these elements are created, they are inserted inside the DIV with ID

navigation. After that, the Previous button is hidden and the value of select box goTo
is setto 1.

257

Data Binding with PHP and jQuery

Next is the setDataAndEvents function. To navigate between the previous and next pages,
we need to know the current page number and then increase or decrease it for previous or
next page respectively. This is achieved by jQuery's data function. We save data with the

ul list having currentPage as its key with initial value set to 1. The next line uses the : gt
selector that hides all 11 elements that have an index more than 10 (first page).

Event handlers for Previous and Next buttons come next. On clicking the Previous button, we
get the saved value of currentPage; decrease it by 1 and pass it to the goToPage function.
Similarly, value of currentPage is increased by 1 for Next button and passed to the function
goToPage. The select box has a change event handler attached to it that takes the currently
selected value and passes it to the goToPage function.

Function goToPage receives the passed value in the pageNumber variable. Value of this
variable is the page where we have to navigate. Here we put two checks. If the user is on the
first page, we hide the Previous button, and on last page, we hide the Next button. Then, we
update the value of currentPage and then set the value of select box to pageNumber. To
decide what list items are to be displayed for that page, we calculate two variables: from and
to. The final three lines hide all other list items except the ones which do not fall in range
between from and to.

Adding auto-suggest functionality to a

textbox

Perhaps the simplest example of explaining auto-suggest is the Google homepage. When
you type a query in the search box, it displays a list of queries beneath it by matching your
search terms.

We will create an example with the same functionality where text entered by the user will be
matched against user names in a table and matching results will be displayed to the user in
the form of a list just below the textbox in form of suggestions. The user will be able to use
arrow keys to navigate up or down in a list and select a name from the list.

Getting ready

Create a folder named Recipe6 inside the Chapters8 directory. To be able to match user
input with the database, we will require a table. Open phpMyAdmin and create a new table
named users with the following structure and data:

CREATE TABLE “users (
“id® int(11) NOT NULL AUTO_INCREMENT,
“username” varchar (32) NOT NULL,
“password” varchar (32) NOT NULL,
PRIMARY KEY (~id")

)i

258

Chapter 8

INSERT INTO “users (~id~, “username”, “password™) VALUES
1, 'holmes', 'sherlockholmes'),

, 'watson', 'johnwatson'),

, 'sati', ‘'pranay'),

, 'mantu', 'ajayjoshi'),

, 'sahji', 'brijsah'),

, 'vijay', 'vijayjoshi'),

, 'brij', 'brijsah'),

(

(2

(3

(4

(5

(6

(7

(8, 'arjun', 'samant'),

(9, 'jyotsna', 'sonawane'),
(12, 'ravindra', 'pokharia'),
(13, 'prakash', 'joshi'),
(14, 'sahji2', 'aloklal'),
(15, 'basant', 'bhandari'),
(16, 'ajay', 'gamer')

How to do it...

1. Create a file named index.html inside the Recipe6 folder. In this file, create a DIV
with class autosuggest. Inside this DIV, create a textbox with ID suggest, and an
unordered list with ID suggestions. This list will display the matched results. Now,
create an image tag that will have a spinning loading indicator that will be displayed
while script is busy getting data from the database. Finally, create a span element
with ID error that will be displayed when there are no matched results.

<html>
<head>
<title>Autocomplete</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body>
<div class="autosuggest">
<input type="text" id="suggest"/>
<ul id="suggestions">

<img src="ajax-loader.gif" alt="loading" title="loading"
id="loader"/>

</divs>
</body>
</html>

259

Data Binding with PHP and jQuery

2. Note that we have referred to a style. css file in the head section. CSS attributes
are very important for this example as we have to position the ul, just under the
textbox. Create a new file named style.css and place the following CSS properties
in it:
body{ font-family: "Trebuchet MS", verdana, arial;width:400px;marg
in:0 auto; }

.autosuggest
{
width:200px;
top:5px;
position:relative;
}
input { width:200px;}
#suggestions
{
position:absolute;
list-style:none;
margin:0;
padding:0;
width:200px;
display:none;
background-color: #ECECF6;
top:20px;
left:0px;
}
#suggestions 1i
{
cursor:pointer;
padding:5px;
border-right:1px solid #000;
border-bottom:1px solid #000;
border-left:1px solid #000;

}

.active

{
background-color:red;
color:#fff;

}

#error

{
top:25px;
font-weight:bold;
color:#££0000;

260

Chapter 8

}

#loader

{
position:absolute;
top:2px;
right:0;
display:none;

}

Focusing on jQuery now, add the jquery . js file before the closing of the body
tag. Now define four event handlers that will get the suggestions from the database
and display them in a list at a proper position. Call function getSuggestions on
keyup. This is the core function that picks up keystrokes and gets matching results
using an AJAX request. Value of textbox is sent through an AJAX request to a PHP
file, suggestions.php. On receiving the results function, showSuggestions
executes, which creates a list from received data and displays it.

Function navigateList will be executed on keydown event. It will take care of the
navigation by adding functionality for up and down arrow keys and the Enter key for
selecting a list item. Next are two functions for mouse movements. The first function
listHover will execute whenever the mouse pointer enters or leaves a list item and
will change the look and feel of list items. 1istClick function will be used to fill the
textbox with the selected value when a mouse is clicked against a list item.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
var xhr;
$ ('#suggest') .keyup (getSuggestions) ;
$ ('#suggest') .keydown (navigateList) ;

S ('#suggestions>1i') .live (0'mouseover mouseout click',
listHover) ;

function getSuggestions (event)
{
var value = jQuery.trim($(this).val());
if (value == '' || event.which == 27)
{
$ ('#suggestions') .empty () .hide () ;
S('#loader') .hide() ;

if ((event.which >= 65 && event.which <= 90) ||
event .which == | | event.which == 46)

261

Data Binding with PHP and jQuery

$('#loader') .show () ;
if (xhr) xhr.abort () ;
if (value.length >= 1)
{
xhr = $.getJSON
(
'suggestions.php',
{ input : value },
showSuggestions
) ;
}

else

{

}
}

$('#loader') .hide () ;

}

function showSuggestions (data)

{
if (data == false)
{
S ('#error') .html ('No results') .show() ;
S ('#suggestions') .empty () .hide () ;

}

else

{

var str = '';

S ('#error') .empty () .hide () ;
for(var i=0; i < data.length; i++)
{

str+= '<lis>'+datali]l+'</1li>"';

}

S ('#suggestions') .html (str) .show() ;

}

$('#loader') .hide () ;

function navigatelList (event)

{

switch (event.which)

{

case 38: //up arrow
if ($('#suggestions>li.active') .length > 0)

{

262

Chapter 8

S ('#suggestions>li.active') .removeClass ('active') .
prev () .addClass ('active');
}

else
{
S ('#suggestions>li:last') .addClass('active') ;
}
break;
case 40: //down arrow
if ($('#suggestions>li.active') .length > 0)

{

S ('#suggestions>li.active') .removeClass ('active') .

next () .addClass ('active') ;
}
else
{
S ('#suggestions>li:first') .addClass('active');
}
break;
case 13: //enter
S ('#suggest') .val (S ('#suggestions>1li.active') .
html());
S ('#suggestions') .empty () .hide () ;
break;

}
}

function listHover (event)

{

if (event.type == 'mouseover')

{

$ ('#suggestions>li.active') .removeClass ('active');
}
$(this) .toggleClass ('active');

if (event.type == 'click')
{
S ('#suggest') .val (s (this) .html()) ;
$(this) .parent () .empty () .hide () ;
$ ('#suggest') .focus () ;
}
}
1

</script>

263

Data Binding with PHP and jQuery

5.

Create another file named suggestions.php in the same directory. Connect to
the exampleDB database in this file, and using the value of textbox, write a query to
fetch results from the database. Once results are retrieved, JSON is created and is

sent back to the browser where it is displayed by jQuery.

Run the index.html file in the browser and press any key. The AJAX request will try
to get the matching results and will show them in the list. Below is a sample response

after pressing key a:

) Autocomplete - Mozilla Firefox

File Edit

Wiew

Higtory Bookmarks Tools Help

Belated Links

- € o | | hipovlocalhosta0et Jhook, Chapterd/Recipet/

J I_] Autocomplete m

a

watson

sati

mantu

sahji

vijay

arjun

jyotsna

ravindra

prakash

basant

ajay

First, we will make sure that the ul always appears below the textbox. There is a clean and
easy way to do it. First, make the CSS position of the outer DIV relative. This has been done in
the CSS file. Now you can make the position of any element inside this DIV absolute, relative
to the DIV. So, the following CSS properties of ul will place it just below the textbox.

264

position:absolute;

top:20px;
left:0px;

Chapter 8

Rest of the properties define the look and feel for the ul. Similarly, we place the loaded image
absolutely to the right.

Let us implement autocomplete now. First is the keyup event handler for the textbox.

It executes a function get Suggestions. This function gets the value of the textbox and
continues only if the value is not empty. Then, it checks which keys are pressed using

event .which that is provided by jQuery. Pressing keys between a-z, A-Z, Delete key,

or the Backspace key will change the value of textbox. So, we take this value from the

textbox and send it with an AJAX request to the suggestions. php file. A callback function
showSuggestions is provided for handling the response. suggestions.php returns a JSON
that is used in showSuggestions. The response can be an array of matching names or false
in case of any error or upon finding no records. If the response from showSuggestions is
false, we show an error message. Otherwise we iterate over the response array and create a
list item for each element in the array. After all list items are created, we insert them into the ul
with ID suggestions. Just before the request is sent, we show the loading indicator image and
after processing is done in showSuggestions we hide it.

We want to be able to use arrow keys to move up or down in the list and select a value by
pressing Enter. Moving up and down in the list will highlight the item by adding a CSS class
active to it. For this purpose, another event handler navigateList has been defined for the
keyDown event. This function has a switch statement with three cases. First one is for Up
arrow key whose key code is 38. It checks if any 1i element has already CSS class active or
not. If not, it adds the active class to the last element that highlights the last item in the list.
If a list item already has an active class attached to it, then on pressing the Up arrow key,
an if condition is executed that removes the active class from the highlighted element and
adds the same class to its previous element.

The code for the Down arrow key works in a similar way. If no element is highlighted and the
Down arrow key is pressed, the first element of the list elements is selected If an item is
already active and Down arrow key is pressed again, the active class is removed from it
and is added to the next element.

The third and final case is for the Enter key, which has key code 13. On pressing Enter, the
HTML of the currently-highlighted element is taken and is set as the value of the textbox.
After that, the ul suggestions are emptied and hidden.

After keyboard navigation, we need to take care of mouse selections too. Hovering over a list
item should add an active class to it and moving the mouse pointer out of it should remove
this class. Also, clicking an item should select its value in the textbox. As no list item is present
inside the ul tag at the beginning, we use the 1ive method to add the 1istHover event
handler. This function will execute whenever the mouse pointer enters a list item, leaves it,

or it is clicked. In this function, if the event is mouseover, we first remove the active class
from any previously active item. Then we use the toggleClass function to add or remove the
active class from the current item. This will make a list item active when mouse pointer is
over it and will remove the active class when the mouse pointer is taken away.

265

Data Binding with PHP and jQuery

Finally, ListHover also checks if a 11 was clicked, we take the active item's HTML and insert
it into the textbox. Then the ul is emptied and hidden and focus is given to textbox.

On the server side, the PHP file suggestions.php receives the value of the textbox and
queries the users table in the database to find all the matching records.

Squery = 'SELECT username FROM users where username like "%'.
$ GET['input']. '$"';

Use of % before and after the textbox value in our query indicates that any characters may
precede or follow the value. This means if the input value was "ss", it will match both "pass"
and "passed". After getting the results from the database, we iterate over them and create an
array. This array is converted to JSON and echoed back to the browser.

Another important thing to note is variable xhr, which we have declared at the beginning
of the file. If the user presses multiple keys, that number of requests will hit the server
simultaneously. To avoid this, we assign $.getJSON to variable xhr. Now before sending
a request to the server, we can abort any previous request using the abort method of
xmlHttpRequest so that only the current request is processed.

» Creating keyboard shortcuts in Chapter 1

Creating a tag cloud

A tag cloud is a visual representation of tags or keywords where each tag's size or color is
determined by its weight. Consider a blog with many articles. Each article can be tagged to a
category like PHP, jQuery, XML, JSON, and so on. Out of these, if PHP category has 50 articles,
jQuery has 30, XML 10, and JSON has 22 articles, we can say that PHP has most weight and
XML has the least weight. If we wanted to present these tags in a graphical manner so that a
more weighted item is more emphasized, we can do so by setting their respective font size in
proportion to their weights.

We will create a similar example where we have a list of cities in a database and each has a
rating out of 100. We will present these tags in the form of a tag cloud such as with their sizes
depending on their rating.

Getting ready

Create a folder named Recipe?7 inside the Chapters8 directory. For the list of cities and their
ratings, use the following SQL query in phpMyAdmin to create a new table named cities:

CREATE TABLE “cities”™ (
“id” int(3) NOT NULL AUTO_ INCREMENT,

266

Chapter 8

“cityName™ varchar (32) NOT NULL,
“cityRating® int (3) NOT NULL,
PRIMARY KEY (~id")

)i

INSERT INTO “cities™ (7id~, “cityName~, “cityRating~) VALUES
(1, 'udaipur', 71),
(2, 'Leh', 55),
(3, 'Mahabaleshwar',6 28),

(4, 'Mount Abu', 31),

(5, 'Rishikesh', 15),

(6, 'Hampi', 81),

(7, 'Matheran', 29),

(8, 'Manali', 85),

(9, 'Mysore', 33),

(l 'Jaipur', 55),

(1 'Munnar', 89),

(1 'Bangalore', 66),

(1 'Wayanad', 42),

(1 'Amritsar', 29),

(1 'Gangtok', 69),

(1 'Havelock Islands', 27),
(1 'DharamShala', 57),

(1 'Kashmir', 78),

(1 'Tirupati', 22),

(2 'Goa', 75)

How to do it...

1. Create a file named index.html in the Recipe7 folder. In this file, create a DIV
with cloud ID and define some CSS styles for DIV and anchor elements that will be
created in the page.

<html>
<head>
<title>Create a tag cloud</title>
<style type="text/css">
body { font-family:"Trebuchet MS",Verdana,Arial; }
div
{
width:600px;
border:1px solid;
float:left;
position:relative;

267

Data Binding with PHP and jQuery

float:left;
text-decoration:none;
padding:0px 5px;
text-transform:lowercase;
}
span { font-size:12px; }
</style>
</head>
<body>
<h3>Popularity of Indian Tourist Destinations</h3>
<div id="cloud"></div>
</body>
</html>

2. Include the jquery . js file before closing the body tag. In jQuery code, send an
AJAX request to the PHP file tags . php. Callback function is createTagCloud for
this AJAX call. This function iterates over the response and creates tags on the page.
<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s

$ (document) .ready (function ()
{
$.getJSON (
'tags.php',
{},
createTagCloud
)i
13N

function createTagCloud (response)

var str = '', i=0;

$.each(response.tags, function(index, tag)

{

var color = i%2 == 0 ? 'color:#A52A2A' : 'color:#6495ED';

var fontSize = ((parselnt(tag.rating,10)/30));

str+= '<a href="#" style="font-size:'+fontSize+'em; '+color+'
" title="' + tag.city + '">' + tag.city + '';

1++;

3N

S ('#cloud') .html (str) ;

}

</script>

268

Chapter 8

Create another file named tags . php. This file will connect to the database and will
fetch the city information from the cities table. A JSON string will be created from
the database results that will be sent to the browser where jQuery receives it and
handles the tag creation.

<?php
Smysgli = new mysqgli('localhost', 'root', '', 'exampleDB') ;

if (mysgli connect_errno())

{
die ('Unable to connect!');
}
Squery = 'SELECT cityName, cityRating FROM cities';

Sarr = array();
if (Sresult = Smysqgli->query(Squery))

{
if ($result->num rows > 0)
{
while ($row = $result->fetch assoc())
{
array push($arr, array('city' => $row['cityName'],
'rating' => S$row['cityRating'l));
}
}
}

Sresult = array('tags' => S$Sarr);
header ('Content-Type:text/json') ;
echo json_encode ($result) ;

?>

Run the index.php file in the browser and you will see a collection of city names in
various sizes.

¥ Create a tag cloud - Mozilla Firefox

File Edit “iew History Bookmarks Toolz Help Belated Links

g . -c | | hitp:/ocalhost:8081/book /Chapter/Fiecipe7/
J. I_] Create a tag cloud | -

Popularity of Indian Tourist Destinations

uda_i pu r rmahabalestwar fafikesh
matheran mysore
munnar
wayanad gangtok
dharamshala e

269

Data Binding with PHP and jQuery

Once the document is ready, an AJAX request is sent to the PHP file tags . php using
$.getJSON method. The callback function for this request is createTagCloud. In the
tags.php file, a SELECT query is executed which fetches all city names and their ratings.
Then we use the fetch assoc method to retrieve results from each row and insert them
into the Sarr array.

Once all records are pushed in this array Sarr, we assign it to an associative array Sresult
having tags as the key.

Finally, we set the response type as text/json and convert the array $result toa JSON
string using PHP's json_encode method. The JSON will look like the following:

{

"t-ags":

[
{reicy™:"Udaipur™ , "racting™:"71"} ,
{"cit?": "LEh" o "rating": HSSH} o
{"ocity™: "Hahabaleshwar™ , "racting™:"25"},
{Mocity™: "Hount Abu® , "rating™:"31"}.
{feicyTi"Rishikesh™ , "rating™:"15"}
{"cit?": "Hampi" o "ratingﬂ : "81"} o
{Moity™": "Hatheran®, "rating™:"29"},
{"city™:"Hanali™, "rating®™: "35"} ,
{feicy™: "Hy=sore™, "racing™: "33"}) ,
{feity™:"Jaipur™, "rating™: "55"} ,
{rfeity™: "Hunnar™, "rating™: "39"} ,
{"city":"Bangalore™ , "rating™:"66"}
{"city™: "Tayanad" "racting™:"42 "},
{feicy™:Tiwritsar™,"ratingTiTZ97},
{Mfeity™: "Gangtok" "rating™: 69"},
{Moity™: "Havelock Islands™,"rating®™:"27"},
{"city"™:"DharamShala™ ,"rating™:"57"},
{roicyTi "Eashwic"™ , "racing™: 78"},
{Mfeicy™:"Tirupaci®™,"racing™:T227},
{"c lt?": "GD&" o Hrat 1ng": "?5 "}

1

}

270

Chapter 8

Now the response is available in the createTagCloud function inside a variable named
response. We use jQuery's each method to iterate over the tags array in this JSON. For
each element, we set different colors for alternate tags by checking the value of variable i.
For deciding the font size, we divide the rating by 30. You can choose any number for division,
depending on how large or small the font sizes need to be. Once the font size and colors

are set, we create anchor tags, set these values, and keep on appending these anchors to a
variable str. After the array has been traversed fully, we insert the value of variable str into
DIV with ID cloud. The end result is a beautiful tag cloud.

» Creating JSON in PHP in Chapter 4
» Accessing data from JSON in jQuery in Chapter 4

271

Enhancing your Site
with PHP and jQuery

In this chapter, we will cover:

» Sending cross-domain requests using server proxy
» Making cross-domain requests with jQuery

» Creating an endless scrolling page

» Creating a jQuery plugin

» Displaying RSS feeds with jQuery and PHP

Introduction

In this final chapter, we will look at some advanced techniques that can be used to enhance
the functionality of web applications.

We will create a few examples where we will search for images the from Flickr and videos from
YouTube using their respective APls. We will parse a RSS feed XML using jQuery and learn
to create an endless scrolling page like Google reader or the new interface of Twitter.

Besides this, you will also learn to create a jQuery plugin, which you can use independently
in your applications.

Enhancing your Site with PHP and jQuery

Sending cross-domain requests using

server proxy

Browsers do not allow scripts to send cross-domain requests due to security reasons.
This means a script at domain http://www.abc.com cannot send AJAX requests
to http://www.xyz.com.

This recipe will show how you can overcome this limitation by using a PHP script on the
server side. We will create an example that will search Flickr for images. Flickr will return
a JSON, which will be parsed by jQuery and images will be displayed on the page. The
following screenshot shows a JSON response from Flickr:

Elle View Help
#" W [Console~ | HTML S5 Script DOM Net Page Speed Yslow =[5]s]
2 Clear Persist Prafile JQuerify
= POST http://localhost:8081 /book/Chapter9/2749_o9_code/Recipel /search.php 200 Ok 1665 jquery.js {line 130) =
Headers Post Response JSON
- photos Object I page=1, more.. } /E\
page 1 o
pages 184347 O
perpage z0 %
= photo [Object { id="50%01¢9395", more.. }, Object{ id="5090767178", more.. }, Object{ o
id="5090169733", more.. }, 17 more... 1 fa]
=N Object { id="5090169395", more... } g
farm £ o
id "5090169395" g
isfamily o ;
isfriend o ;
ispublic 1 ;
ovmer "17193211EH00" " v
secret "97e43dn584" B %
server "4lagn Q
title "cat dim & box 253" %
+ 1 Object { id="5090767178", more... } -—
+ z Object { id="5090169733", more... } ;
+ 3 Object { id="5090726300", more... } §
H 4 Object { id="5090660568", more... }
+ 5 Object { id="5090660474", more... } E
+ & Object { id="5089902061", more... } g
+ 7 Object { id="5090378448", more... } o
+ B Object { id="5090152110", more... } o
+ 9 Object { id="5090103574", more... } %
+ 10 Object { id="5089500159", more... } g
H 11 Object { id="5089502761", more... } o
M 12 Object { id="5089503259", more... } &)
H 13 Object { id="5090105042", more... }
+ 14 Object { id="5090100056", more... }
H 15 Object { id="5090035368", more... }
H 16 Object { id="5089441153", more... }
#.17 Obiect £ id="5089993242" _more.. } - R e Copy (&)

Getting ready

Create a directory for this chapter and name it as Chapter?9. In this directory, create a folder
named Recipel.

Also get an API key from Flickr by signing up at http://www.flickr.com/services/
api/keys/.

274

Chapter 9

How to do it...

1

Create a file inside the Recipel folder and name it as index.html. Write the HTML
code to create a form with three fields: tag, number of images, and image size. Also
create an ul element inside which the results will be displayed.

<html>
<head>
<title>Flickr Image Search</titles>
<style type="text/css">
body { font-family:"Trebuchet MS",verdana,arial;
width:900px; }
fieldset { width:333px; }
ul{ margin:0;padding:0;list-style:none; }
1i{ padding:5px; }
span{ display:block;float:left;width:150px; }
#results 1i{ float:left; }
.error{ font-weight:bold; color:#££0000; }
</style>
</head>
<body>
<form id="searchForm">
<fieldset>

<legend>Search Criteria</legend>

<uls>
<lis
Tag
<input type="text" name="tag" id="tag"/>
</1li>
<lis

Number of images</spans
<select name="numImages" id="numImages">
<option value="20">20</option>
<option value="30">30</option>
<option value="40">40</option>
<option value="50">50</option>
</select>
</1li>
<lis
Select a size</spanx>
<select id="size">
<option value="s">Small</option>
<option value="t">Thumbnail</options>

<option value="-">Medium</option>

275

Enhancing your Site with PHP and jQuery

<option value="b"sLarge</options>
<option value="o">Original</option>
</select>
</1li>

<input type="button" value="Search" id="search"/>
</1li>

</fieldset>
</form>
<ul id="results">

</body>
</html>

The following screenshot shows the form created:

¥) Flickr Image Search - Mozilla Firefox
/ B Flickr Image Search \@

File Edit Wiew History Bookmarks Tools Help Related Links

% hitp: fflocahost: 808 1 book /Chapters/Recipe 1,/

Search Criteria

Tag |

Mumber of images |20 =

Select a size |Sma|| vl
Seamhl

2. Include the jquery. js file. Then, enter the jQuery code that will send the AJAX
request to a PHP file search.php. Values of form elements will be posted with an
AJAX request. A callback function showImages is also defined that actually reads
the JSON response and displays the images on the page.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()

{

S('#search') .click (function()

276

Chapter 9

if(S.trim(S('#tag') .val()) == '")

{

$('#results') .html('<li class="error">Please provide
search criteria"');

return;

}

$.post (
'search.php',
$ ('#searchForm') .serialize (),
showImages,
'json'

) ;

13N

function showImages (response)

{

if (response['stat'] == 'ok')

{
var photos = response.photos.photo;
var str= '';

$.each (photos, function (index,value)
{

var farmId = value.farm;

var serverId = value.server;

var id = value.id;

var secret = value.secret;

var size = $('#size') .vall();

var title = value.title;

var imageUrl = 'http://farm' + farmId +
'.static.flickr.com/' + serverId + '/' + id + ' ' +
secret + ' ' + size + '.jpg'; B

str+= '"';

str+= '<img src="' + imageUrl + '" alt="'

+ title + '" />';
str+= '';

3N

S ('#results') .html (str) ;

}

else

277

Enhancing your Site with PHP and jQuery

278

{

S('#results') .html('<li class="error">an error
occured</1is>"') ;

}
}
3N

</script>

Create another file named search.php. The PHP code in this file will contact the
Flickr APl with specified search criteria. Flickr will return a JSON that will be sent back
to the browser where jQuery will display it on the page.

<?php
define ('API_KEY', 'your-API-key-here');
Surl = 'http://api.flickr.com/services/rest/?method=flickr.
photos.search';
Surl.= '&api key='.API KEY;
Surl.= '&tags='.$ POST['tag'];
Surl.= '&per page='.$ POST['numImages'];
Surl.= '&format=json';
Surl.= '&nojsoncallback=1"';

header ('Content-Type:text/json; ') ;
echo file get contents(surl);

?>

Now, run the index.html file in your browser, enter a tag to search in the form, and
select the number of images to be retrieved and the image size. Click on the Search
button. A few seconds later you will see the images from Flickr displayed on the page:

Chapter 9

¥) Flickr Image Search - Mozilla Firefox

D Flickr Image Search hon Y

File Edit ‘“iew Hishory Bookmarks Tools

Help

Related Links

% | htiprfflocahost: 8081 ook /Chapterd/Recipel/

—Search Criteria
Tag cat

Mumber of images |30 =

Select a size Small vl
Search |

> & - C %) Google

Ly

e
]

On clicking the Search button, form values are sent to the PHP file search.php. Now,

we have to contact Flickr and search for images. Flickr APl provides several methods for
accessing images. We will use the method £1ickr.photos.search to search by tag
name. Along with the method name we will have to send the following parameters in the URL:

» api_key: An API key is mandatory. You can get one from:
http://www.flickr.com/services/api/keys/.

» tags: The tags to search for. These can be comma-separated. This value will be the

value of textbox tag.

» per_ page: Number of images in a page. This can be a maximum of 99. Its value will

be the value of select box numImages.

» format: It can be JSON, XML, and so on. For this example, we will use JSON.

» nojsoncallback: Its value will be set to 1 if we don't want Flickr to wrap the JSON

in a function wrapper.

279

Enhancing your Site with PHP and jQuery

Once the URL is complete we can contact Flickr to get the results. To get the results we
will use the PHP function £ile_get contents, which will get the results JSON from the
specified URL. This JSON will be echoed to the browser.

jQuery will receive the JSON in callback function showImages. This function first checks the
status of the response. If the response is OK, we get the photo elements from the response
and we can iterate over them using jQuery's $. each method. To display an image, we will
have to get its URL first, which will be created by combining different values of the photo
object. According to Flickr API specification, an image URL can be constructed in the
following manner:

http://farm{farm-id}.static.flickr.com/{server-id}/{id} {secret}
[size] .jpg

So we get the farmId, serverId, id, and secret from the photo element. The size can be
one of the following:

» s (small square)

» t(thumbnail)

» - (medium)

» b (large)

» o (original image)
We have already selected the image size from the select box in the form. By combining all

these values, we now have the Flickr image URL. We wrap it in a 1i element and repeat the
process for all images. Finally, we insert the constructed images into the results 11.

» Making cross-domain requests with jQuery

Making cross-domain requests with jQuery

The previous recipe demonstrated the use of a PHP file as a proxy for querying cross-domain
URLs. This recipe will show the use of JSONP to query cross-domain URLs from jQuery itself.

We will create an example that will search for the videos from YouTube and will display them
in a list. Clicking on a video thumbnail will open a new window that will take the user to the
YouTube website to show that video.

The following screenshot shows a sample JSON response from YouTube:

280

version: "1.07,
encoding: "UTF-8",
- feed: |

4
4
4
4
4
4
+
+
+
4
4

smlns§app: http://purl.org/atom/apps,

smlng: http://wmm.wd org/2005/ Ao,

smlns§media: http://search.yahoo.com/mrss/,
smlns§opensearch: http://ad.com/-/spec/opensearchres/1.0/,
smlns§gd: http://schemas.google. com/g/2005,

wmlns$yt: http://gdats.youtube.com/schemas /2007,

id: {0},

updated: { . },

category: [1.

title: { . },

logo: { . 1,

Link: [.],

author: [.. 1,

generator: { . 1,
opensearchstotalResults: { . },
opensearch§startIndex: { . },

openSearch§itemsPerPage :
entry: [
-

-
$t: http://gdata.youtube . con/feeds/api/videos/QitIALTel
by
- published: {
$t: "2007-08-05T14:33:15.0002"
b
+ updated: { . },
+ category: [. 1,
- title: {
§t: "The Mean Kitty Song",
type: "text”
by
+ content: { . },
- link: [
-
rel: "alternate",
type: "text/html"”,
href: http://wwm.youtube.com/watch?v=0itIALTelOos feature=youtube gdata
I
-
rel: http://gdata, youtube . com/schenas /20074viden. respon
type: "application/atomrxul”,
href: http://gdata.youtube.com/feeds/api/videos/Qit3ALTel0o, responges
b
-
rel: http://gdata.youtube.com/schemas/20074viden. related,
type: "application/atomixml”,
href: http://gdata.youtube.com/feeds/api/videns/0it3ALTe 100/ related
by
-
rel: http://gdata. youtube . com/schenas 20078k le,
type: "text/html”,
href: http://m.youtube.com/details?v=QitiALTelon
b
-
rel: "self”,
type: "application/atomixml”,
href: http://gdata.youtube.com/feeds/api/videns/0it3ALTe 100
i
1,
+ authox: [1,
- gdScomments: [

- gdsfeedLink: {
href: http://gdata.youtube.com/feeds/api/videos/Qit3ALTe 100,/ comuents,
countMint: 177930

i
b

+mediaSgroup: [. },

- gd$rating:
average: 4.7772064,
max: 5,
min: 1,
numRaters: 748333,
xel: http://schemas.google. con/g/2005¢overall

b
+ ytfstatistios: (. |

i S R A 2 2 SRS

Chapter 9

281

Enhancing your Site with PHP and jQuery

Getting ready

Create a folder named Recipe2 inside the Chapter9 directory.

How to do it...

1. Create afile inside the Recipe2 folder and name it as index.html. Write the HTML
code to create a form with a single field query and a DIV with results ID inside
which the search results will be displayed.

<html>
<head>
<title>Youtube Video Search</title>
<style type="text/css">
body {font-family:"Trebuchet MS",verdana,arial;width:900px; }
fieldset { width:333px; }
ul{ margin:0;padding:0;list-style:none; }
1i{ padding:5px; }
span{ display:block;float:left;width:150px; }
#results ul 1i{ float:left; background-color:#483D8B;
color:#fff;margin:5px; width:120px; }
.error{ font-weight:bold; color:#££0000; }
img{ border:0}
</style>
</head>
<body>
<form id="searchForm">
<fieldset>
<legend>Search Criteria</legend>

<lis>
Enter query
<input type="text" id="query"/>
</1li>
<lis>
<input type="button" value="Search" id="search"/>
</1li>

</fieldset>
</form>
<div id="results">
</div>
</body>
</html>

282

Chapter 9

&) Youtube Video Search - Mozilla Firefox
/ B Youtube Video Search @

File Edit Wiew History Bookmarks Tools Help Related Links

% bt fflocalhost: 8081 book ChapterS/Recipes/

Search Criteria

Category fi

Seamhl

Include the jquery . js file before closing the body tag. Now, write the jQuery code
that will take the search query from the textbox and will try to retrieve the results from
YouTube. A callback function called showVideoList will get the response and will
create a list of videos from the response.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function ()

{
$('#search') .click (function ()
{
var query = $.trim(S$('#query') .val());
if (query == '")
{
$('#results') .html('<li class="error">Please enter
a query.</lis');
return;
}
$.get (
'http://gdata.youtube.com/feeds/api/videos?g="' + query +
'&alt=json-in-script',
{1
showVideoList,
'jsonp'
)
3N
1)
function showVideoList (response)
{

var totalResults =
response ['feed'] ['openSearchs$totalResults'] ['St'];
if (parselInt (totalResults,10) > 0)

{
283

Enhancing your Site with PHP and jQuery

var entries = response.feed.entry;
var str = '';
for(var i=1; i< entries.length; i++)
{
var value = entries|[i];
var title = value['title']['S$t'];
var mediaGroup = value['mediaS$group'];
var videoURL = mediaGroup ['media$player'] [0] ['url'];

var thumbnail = mediaGroup['media$thumbnail'] [0] ['url'];
var thumbnailWidth =
mediaGroup ['media$thumbnail'] [0] ['width'];
var thumbnailHeight =
mediaGroup ['media$thumbnail'] [0] ['height'];
var numComments =
value ['gd$comments'] ['gd$SfeedLink'] ['countHint '] ;
var rating =
parseFloat (value['gdSrating'] ['average']) .toFixed (2) ;

str+= '"';

str+= '';

str+= '<img src="'+thumbNail+'" width=""'+thumbNailWidth+'"
height="'+thumbNailWidth+'" title="' + title + '" />';

str+= '';

str+= '<hr>';

str+= '<p style="width: 120px; font-size: 12px;">Comments:
' + numComments + '';

str+= '
';

str+= 'Rating: ' + rating;

str+= '</p>';

str+= '';

}

str+= '</uls>';
S ('#results') .html (str) ;

}

else

{

$('#results') .html ('<1li class="error"sNo results.');

</script>

284

Chapter 9

3. All done, and we are now ready to search YouTube. Run the index.html file in your
browser and enter a search query. Click on the Search button and you will see a list
of videos with a number of comments and a rating for each video.

Search Criteria

Category songs
Search

script tags are an exception to cross-browser origin policy. We can take advantage of this by
requesting the URL from the src attribute of a script tag and by wrapping the raw response
in a callback function. In this way the response becomes JavaScript code instead of data. This
code can now be executed on the browser.

285

Enhancing your Site with PHP and jQuery

The URL for YouTube video search is as follows:

http://gdata.youtube.com/feeds/api/videos?g="' + query +
'&alt=json-in-script

Parameter g is the query that we entered in the textbox and alt is the type of response

we want. Since we are using JSONP instead of JSON, the value for alt is defined as
json-in-script as per YouTube API specification. On getting the response, the callback
function showVideoList executes. It checks whether any results are available or not. If
none are found, an error message is displayed. Otherwise, we get all the entry elements and
iterate over them using a for loop. For each video entry, we get the videoURL, thumbnail,
thumbnailWidth, thumbnailHeight, numComments, and rating. Then we create the
HTML from these variables with a list item for each video. For each video an anchor is created
with href set to videoURL. The video thumbnail is put inside the anchor and a p tag is
created where we display the number of comments and rating for a particular video. After
the HTML has been created, it is inserted in the DIV with ID results.

There's more...

About JSONP
You can read more about JSONP at the following websites:

» http://remysharp.com/2007/10/08/what-is-jsonp/
» http://en.wikipedia.org/wiki/JSON#JSONP

See also

» Sending cross-domain requests using server proxy

Creating an endless scrolling page

If you use Google reader or the new Twitter then you will understand what | am talking
about. In both of these applications when you scroll and reach the bottom of the page
they automatically load content that is appended to the bottom of the page. This behavior
eliminates the need for pagination; the previous and the next buttons.

We will create an example that will have a similar functionality. On reaching the bottom
of a page, an AJAX request will load data from a PHP script and will append it to the bottom
of the page.

286

Chapter 9

Getting ready

Create a folder named Recipe3 inside the Chapter9 directory.

How to do it...

1.

Create a new file named index.html inside the Recipe3 folder. In this file, create a
DIV with container ID along with some paragraphs so that the page becomes long
enough for scrolling. Next to it create another paragraph that will show a loading text
when data will be fetched from the server.

<html>
<head>

<title>Endless Scroll</titles>

<style type="text/css">
body{ font-family: "Trebuchet MS",verdana,arial;}
#loading{ display:none; font-weight:bold;color:#FF0000; }
p{padding:10px; }

</style>

</head>
<body>
<div id="container">
<p>Test Paragraph 1l</p>
<p>Test Paragraph 2</p>
<p>Test Paragraph 3</p>
<p>Test Paragraph 4</p>
<p>Test Paragraph 5</p>
<p>Test Paragraph 6</p>
<p>Test Paragraph 7</p>
<p>Test Paragraph 8</p>
<p>Test Paragraph 9</p>
<p>Test Paragraph 10</p>
<p>Test Paragraph 1ll</p>
<p>Test Paragraph 12</p>
<p>Test Paragraph 13</p>
<p>Test Paragraph l4</p>
<p>Test Paragraph 15</p>
<p>Test Paragraph 16</p>
<p>Test Paragraph 17</p>
<p>Test Paragraph 18</p>
<p>Test Paragraph 19</p>
<p>Test Paragraph 20</p>
</div>
<p id="loading">loading data... </p>
<p> </p>
</body>
</html>

287

Enhancing your Site with PHP and jQuery

2. Include the jquery. js file before closing the body tag. Write the jQuery code that
will add event handlers for window scroll. If the user reaches the window bottom
while scrolling or using arrow keys, the code will send an AJAX request to a PHP file,
data.php, to load the data. This data will be appended to the existing data.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript"s>
$ (document) .ready (function ()
{
$ (window) .scroll (loadData) ;

3N

var counter = 0;
function loadData ()

{

if (counter < 5)

{
if (isUserAtBottom())
{

getData () ;

}

}

}

function isUserAtBottom()

{

return ((($(document) .height() - $(window) .height()) -
$ (window) .scrollTop()) <= 50) ? true : false;

}

function getDatal()

{
$ (window) .unbind ('scroll') ;
S ('#loading') .show() ;

$.get (

'data.php',

{},

function (response)

{

counter++;

$('#loading') .hide () ;
$ ('#container') .append (response) ;
$ (window) .scroll (loadData) ;

13N

}

</scripts>

288

Chapter 9

3. Onthe server side, create a new PHP file data . php. In this file, simply echo a line
that will be sent to the browser.
<?php
sleep(2) ;
echo '<p>This data has been
loaded from server...</p>';

?>

4. Runthe index.html file in your browser. You will see a long list of paragraphs.
Now scroll down the page using the mouse wheel or arrow keys. When you reach
the bottom a loading indicator will appear.

Test Paragraph 12
Test Paragraph 13
Test Paragraph 14
Test Paragraph 15
Test Paragraph 16
Test Paragraph 17
Test Paragraph 18
Test Paragraph 19
Test Paragraph 20
loading data

ﬁt Done

5. After the data has been loaded, this indicator will disappear and data received from
the PHP script will be appended to the existing one.

Test Paragraph 13
Test Paragraph 14
Test Paragraph 15
Test Paragraph 16
Test Paragraph 17
Test Paragraph 18
Test Paragraph 19

Test Paragraph 20

This data has been
loaded from server...

B~ Done

289

Enhancing your Site with PHP and jQuery

First of all, we attached a scroll event handler to the window element. On scrolling the page
through a mouse or arrow keys, the handler function 1oadData is called. Now before we load
any data we will have to make sure that the user is indeed at the bottom of the page. For this
purpose, a function isUserAtBottom is defined. To determine this we use following code:

return ((($(document) .height () - $(window) .height()) - $(window) .
scrollTop()) <= 50) ? true : false;

$ (document) .height () is the height of the complete HTML page. $ (window) .height ()
is the height of the visible area of the browser or the viewport. $ (window) .scrollTop ()
indicates the vertical position of the scroll bar from the top. We have calculated the resulting
value by subtracting the window height and scrollbar position from the document's total
height. If this value is less than 50, that is, the user is 50 pixels above from the bottom of the
browser, we return true, otherwise false.

Once we know that the user is at the bottom we call the getData () function. This function
first unbinds the scroll event from the window so that no more requests could be processed
until the current one completes. Then the loading indicator is displayed and an AJAX request
is sent to the data . php file. In this example, this file echoes a single line. When the response
is received in callback function, the loading indicator is hidden and the received data is
appended to the DIV container. The scroll event is then again attached to the window that will
allow the user to load more data. This process will continue until the value of variable counter
is less than five. It means data will be fetched from the server a maximum of five times.

There's more...

Loading data from other sources

In this example, we have echoed a single line from PHP file. In real world applications, data
will be fetched from databases or APIs. You should also allow a condition when there is no
more data to load and show an appropriate response to the user.

290

Chapter 9

Creating a jQuery plugin

This recipe will explain how you can create a simple jQuery plugin. The user will be able to
enter two numbers and the plugin will count from the first number to the second number while
animating just like how a stopwatch changes. We will call it Cash Counter. You will also be
able to specify how fast or slow the animation runs.

Getting ready

Create a folder Recipe4 inside the Chapter9 directory.

How to do it...

1. Create afile named index.html inside Recipe4 folder. In this file, create two text
boxes to enter starting and end numbers, an h1 element to display the number as it
changes, and a button to initiate the process.

<html>
<head>
<title>Cash Counter</title>
<style type="text/css">
body{ font-family:"Trebuchet MS",verdana,arial;
width:900px;margin:0 auto; }
ul{ list-style:none;padding:10px; }
label{ display:block;float:left;width:75px; }
</style>
</head>
<body>

<lis
<label>Start :</labels<input type="text" id="start"/>
</1li>
<lis
<label>End :</label><input type="text" id="end"/>
</1li>

<hl id="container"></hl>
</1li>

<input type="button" id="change" value="Change" />
</1li>

291

Enhancing your Site with PHP and jQuery

</body>
</html>

¥2) Cash Counter - Mozilla Firefox

File Edit “iew History Bookmarks Toolz Help Belated Links

@I - " I |http:.n".n"localhnst:8081a’bookfthaptergfﬁecipem’
J. I_] Cash Counter | =

Start: |

End : |

Change |

2. Next, create a new JavaScript file and name it as jquery.counter. js. This file will
contain the code for the plugin. Put the following code for creating the plugin:

(function($)

{

$.fn.cashCounter = function (options)

{

return this.each(function ()
settings = $.extend

(

start: 0,
end: O,
step: .5
b
options
) ;
var e = $(this);
if (isNaN(settings.start) || isNaN(settings.end) ||
((settings.start) == (settings.end)))

{

return this;

}

settings.increasing = (settings.start < settings.end) ?
true : false;

if (settings.increasing)

{

if (settings.start >= settings.end)

292

Chapter 9

return this;

}

else

{

if (settings.start <= settings.end)

{

return this;

}
var diff = parselnt (settings.end,10) -
parselnt (settings.start, 10) ;
var changeBy;
if (settings.increasing)
{
changeBy = Math.ceil (diff * settings.step) ;
}

else

{

changeBy = Math.floor (diff * settings.step);
}
settings.start = parselnt (settings.start,10) + changeBy;
e.html (settings.start) ;
setTimeout (function ()
{
e.cashCounter (settings) ;
}, 100);

});//each
¥
1) (jouery);

Coming back to index.html again, include the jquery . js file first and then
include the just created plugin file jquery.counter. js. After that write the code
for the click handler for the button that will take the values from textboxes and will
run the plugin.

<script type="text/javascript" src="../jquery.js"></script>
<script type="text/javascript" src="jquery.counter.js"></scripts>
<script type="text/javascript"s>

$ (document) .ready (function ()

{

$ ('#change') .click (function ()

{

293

Enhancing your Site with PHP and jQuery

if($('#start').val() !'= '' && $('#end').val() != '")
{

var startVal = $('#start').vall();

var endval = $('#end') .val();

S ('#container') .cashCounter

(

start: startval,
end: endvVal,

step: .2
!
)i
!
else
{
S ('#container') .html ('Please enter start and
end values.');
!
3N
3N
</script>

4. Open your browser and run the index.html file. Enter the Start and End numbers
in the textboxes and click on the Change button. The counting will start from the start
value until the end value. Since it is not possible to show the animated image, the
following screenshot captures the process in between. Also try changing the step
value to see how fast or slow the counting happens:

¥ Cash Counter - Mozilla Firefox

File Edit “iew Higtorp Bookmarks Tool: Help Belated Links

' - o | | hitplacalhost: 8081 fhook /Chapterd/Reciped/

J. l_] Cash Counter | |

Start: 100
End : [123455

102762

Chapter 9

The cashCounter plugin will accept three parameters while initializing it. start, end, and
step. While start and end values are obvious, step will be used to determine how fast the
counting runs. Its value can vary from 0.1 to 0.9 with 0.1 being the fastest speed.

A jQuery plugin begins by extending the jQuery . fn object. We want to name our plugin
cashCounter, so we wrap it in the following:

jQuery.fn.cashCounter = function (options)

{
}i

All of the plugin code will go inside this block. Next is the return
this.each(function () {}) line. It ensures that a jQuery object is returned to the
calling function. This will help maintain the chaining of elements as supported by jQuery.

Next is the settings object that defines the default values for a plugin if they are not
supplied. In case these values are supplied we extend these by merging the user provided
options object with the default settings. By default, both start and end have a zero value
and the value for step is 5.

With all the settings in place we can now write the functionality. If start or end values
are not numbers or if start is equal to end we stop the code execution by returning from
the function.

Then, we set a property increasing for the settings object. If the end value is greater
than start we set it to true, otherwise false. In case increasing is true, if the start
value exceeds the end value we terminate further execution. Similarly, if increasingis
false we terminate if the end value exceeds the start value.

Then, we find the difference of start and end values and calculate a variable changeBy,
which will increase or decrease the start value depending on the variable step. The

new start value is set and also inserted into the requesting element, hl container

in this case.

Finally, we call the JavaScript setTimeout function that calls the cashCounter function
recursively after 100 milliseconds. On each execution, if conditions will be checked and
once the end value is reached, the control will exit out of application.

295

Enhancing your Site with PHP and jQuery

Displaying RSS feeds with jQuery and PHP

In this recipe we will fetch a Really Simple Syndication (RSS) feed of a blog using PHP and
then display it in the page using jQuery. RSS is a standard format for publishing feeds and
there are several formats of RSS feeds. The feed we will use is in RSS2.0 and its standard
structure is shown in the following screenshot:

— <rss version="2.0">
~ <chanmnel>
<title>PHP, javascript and AJAT at vyayjoshi org</title>
<atom: link hoef="http./fwrwrw wiayjoshi org/feed™ rel="sell" type="application/rss+umnl"f>
<link >hitp:/ferww. wayjoshi org=/link>
<description>php | javascript | gjax | and all things web</de scription>
<lastBuildDate>Mon, 09 Aug 2010 12:03:19 +0000</lastBuildDate >
<generator=hitp:ffwordpress orgfPv=2 & 4</generator>
<langnage>en</language>
<sy:updateP eriod>hourly</sy:updatePeriod>
<sy:updateFrequency>1</sy:updateFrequency>
- <iftem>
<title>19 Things NOT To Do When Building a Website <ititle>
+ <link > </link>
+ <commnents></comnents>
spubDate>Mor, 09 Aug 2010 12:03:19 +0000</pubDate >
<dc: creator>Viay Joshi</dc: creator>
<eategory>Weh Design</category>
<category>Technology</category>
<guid isPermaLink="false"~hitp:iwww wayjoshi org/Tp=570</guid>
= description®
Here is a very useful post I found today. 19 mistakes to avoid while designing wehsites. Although, T am no expert on designing but I have found myself maling
some of these mistakes then and now. Some of my favorites from the hst are: If your website does not work in Firefox, welcome to 2007 DUMBASS. If your

[]

<fdescription>
+ ewhw: commentRss><Awfiv: commentRss>
<slsh:c #1<slash: c 5%
<fitem>

Getting ready

Create a folder named Recipe5s inside the Chapter9 directory.

How to do it...

1. Create a file index.html inside Recipes5 folder. In this file, define some CSS styles
for elements and create a div with ID results, which will serve as a container for
displaying posts from the feed.

<html>
<head>
<title>Parse RSS Feed</title>
<style type="text/css">
body { font-family:"Trebuchet MS",verdana,arial;
width:900px;margin:0 auto; }
ul{ border:1px solid #000;float:left;list-style:none;
margin:0;padding:0;width:900px; }

296

1i{ padding:5px;border:1lpx solid #000; }

Chapter 9

h3 { color:brown;cursor:pointer;text-decoration:none; }

span{ font-size: 12px;font-weight:bold;}
.content{ display:none;}
div { width:100%;}
a{font-weight:bold; }
</style>
</head>
<body>
<div id="results">loading
</div>
</body>
</html>

Before the closing <body> tag, include the jquery . js file. Then send a get AJAX
request to a PHP file feed. php. This file will return an XML response that will be
handled by the callback function showPosts. Define the showPosts function that
will parse the response XML and will create the HTML from it. The resulting HTML

will be inserted inside the results DIV on the page.

<script type="text/javascript" src="../jquery.js"></script>

<script type="text/javascript">
$ (document) .ready (function ()
{
$.get (
'feed.php',
{},
showPosts
)i
function showPosts (data)
{
var posts = $(data).find('channels>item') ;
var str = '';
$.each(posts, function(index, value)
{
var title = $(value) .find('title') .text () ;
var link = $(value) .find('link') .text () ;

var description = $(value) .find('description') .text () ;

var comments =

$(value) .find ('slash\\:comments') .text () ;

var pDate = new Date ($(value) .find('pubDate') .text()) ;

var day = pDate.getDate() ;

var month = parselnt (pDate.getMonth(),10) + 1;
var year = pDate.getFullYear();

var fullDate = day + '-' + month + '-' + year;

297

Enhancing your Site with PHP and jQuery

str+= '';

str+= '<div>';

str+= '<h3>' + title + '</h3>';
str+= '<div class="content"s';
str+= '<p>';

str+= description;

str+= ' Read
Full Post'; a

str+= '</p>';

str+= 'Published on ' + fullDate + ' with '
+ comments + ! comments';
str+= '</divs>';
str+= '</div>';
str+= '';
1)
str+= '';

$('#results') .html (str)

$('#results ul li:even').css ({'background-color':
'CornflowerBlue'}) ;

}
S('h3').live('click', function()
{
$(this) .next ('div') .slideToggle ('fast') ;
1)
1)

</script>

3. Now create the feed.php file. This file will get the XML for the RSS feed from a URL
and will echo it to the browser.
<?php
$feedData = file get contents('http://vijayjoshi.org/feed') ;
header ('Content-type:text/xml;"');

echo sfeedData;
?>

298

Chapter 9

4. Runthe index.html file in the browser. You will see a loading text first. After the
response is received, a list of posts will be seen initially. Clicking on a post title will
expand to show its summary, publication date, and comment count. The summary
will have a Read Full Post link that will open that post in a new window:

FAQ: Specifying css page breaks after or before elements for printing

How to dynamically load the Google Maps javascript APl (On demand loading)

How to restore and backup mysql databases?

Getting and setting value of html elements using jQuery m

After the DOM is ready an AJAX request is sent to the PHP file feed. php. This file gets

the contents of the RSS feed from a URL using the £ile get contents function. The
rss element is the root of an XML file. channel is a child of the rss node that contains
information about the blog and the ten latest entries. Each entry is represented by an item
node in this file. We then echo the received XML to the browser.

299

Enhancing your Site with PHP and jQuery

In jQuery, showPosts is the callback function that receives the XML in the data variable.
jQuery can parse XML just like HTML elements. So to get the posts, we use the £ind method
that gets all the item elements.

var posts = $(data).find('channel>item') ;

Then, we iterate over the posts variable and on each iteration we get the values for the title
of the post, link to the post, summary of contents, number of comments, and the publishing
date. Using these variables, we create a list of items inside an unordered list. The post title
is given inside an h3 element. Next is a DIV that contains the post summary, link to the post,
date, and number of comments. This DIV has a class content assigned to it. The display
property for content class is set to none. Therefore, only the post title will be visible when the
posts are displayed.

After the list is complete we insert it inside a DIV with ID results.

We also have a click event handler function for h3 elements. Clicking on h3 elements gets the
DIV next to it and toggles its display using s1ideToggle function. Thus, clicking the post title
will show or hide its post summary. Clicking on the Read Full Post link will open the original
post in a new window.

» Adding events to elements that will be created later from Chapter 1

300

Firebug

In this chapter, we will cover:

» Inspecting elements
» Editing HTML and CSS
» Debugging JavaScript

Introduction

If you are not aware of Firebug, you are missing a great web development tool. Firebug is an
add-on for Firefox, which sits inside the browser and provides many tools to assist in web
development. You can watch the document or HTML structure, the CSS styles applied to
elements, debug JavaScript, and much more.

First of all install Firebug from its website http://getfirebug.com/. After installation it is
ready to use in web pages. You can activate it by pressing F12 or by clicking a bug icon in the
status bar.

Firebug has six buttons on the toolbar whose names and functions are described below.

» Console: It shows the errors in your JavaScript in the form of friendly error messages
with line numbers. Along with errors it also displays the AJAX requests. You can see
the data sent with an AJAX request, request and response headers, and the response
from the AJAX request itself.

You can also log your own variables in console. console.log () can be used to log
data in the console.

Var x = 10;

console.log('Value of x is: ' + x);

Firebug

This code in your script will display the following in the Firebug console:
Value of x is 10

This is a great replacement for the ugly alert boxes, which developers use frequently
to check the value of variables and so on.

» HTML: This panel shows the document structure and HTML of a page. On the
right-hand side it shows the CSS styles for the selected element.

» CSS: It lists all the CSS files available to a web page. After selecting this panel, you
can select the desired file from a drop down and edit it.

» Script: It lists all the JavaScript files used in the web page. You can select a file, put
breakpoints on specific lines, and can watch variables.

» DOM: It lists all the DOM objects and functions. Firebug displays their values in a
formatted manner. You can also edit the values of variables from here.

» Net: This panel shows all the resources or files that the page has loaded. Firebug
displays the size of each file and a progress bar, which tracks how much time each
file is taking to load. Using these metrics you can optimize the page performance. You
can also monitor network activity by resource type. The Net panel has further options
that allow you to group HTML, CSS, JavaScript, AJAX requests, and images together.

) Tic-Tac-Toe - Mozilla Firefox

Ble Edl View Hgop Bookmarks [ook Help Related Links
- c | 1| hitpesYlocalhast 8081 fbaok/Chapter/2743_06_code/Fecipe1/ E B i

|| Tic-Tac-Toe |T| F

3*3 -

I o
% % Console HTML €SS Sciipt DOM | Met= (5[]
v | Clear Pesist | Al HTML €55 JS XHR Images Flash |

URL Status Domain Size Timeline

+ GET Recipel 200 0K localhost: 8061 581 B 62Mms

+ GET main.css 304 Mot Modified localhost:3081 489B 28ms

GET jquery.js 200 0K lncalhost: 8081 70.5KE a0ms

+ GET tictactoe.js 304 ot Modified localhost:8051 Z.6KE Tims

+ GET cross.png 304 Mot Modified localhost:3061 7278 . ams

GET round.png 304 Mot Modified localhost: 8061 717 B 1l

b requests 75.6KB (4.5 KB from cache) 174ms (onload: 202ms)
Done & e @) [4F

302

Appendix

Inspecting elements

This recipe will introduce the HTML panel of Firebug and how it can be used to inspect the
document structure, select an HTML element, and watch its CSS style.

How to do it...

Open an HTML page, for example, http://www.google.com in your browser.

Now click on the arrow icon from the Firebug bar and move your mouse pointer over

any element on the page. The element will be highlighted and in the Firebug panel
you will see details of that HTML element, as seen in the following screenshot:

¥) Google - Mozilla Firefox
Fle Edt

Wiew Higtoy Bookmarks Took Help Related Links

g - e

", ITl ‘ hittp: £ v google. comy

- I"_l '| Google »

*J Google

Web Images Yideos Maps News Shopping Gmail mare »

Google

Google Search | I'm Feeling Lucky

iGoogle | Search settings | Sign in

Advanced search
Languace tools

e
% |"% Il Console

HTML ~

C55 Script DOM Met

] SE O ot

= <span id="main"s

= «center>

¥ <div id="ghead">

= <span id="body" elass="ctr-p"~

Edit | imgihplogo © divHiga < center ¢ spanHbodyctrp < spandmain < body ¢ html

<br id="lgpd" clear="all"/»
Sl <div_id="lga" style='height: 17lpx; padding—top: ZZpz;'>

Style~ | Lapout DOM

= element.style {
padding—tep: 26px;

3

Inherited from body

<img id="hplogo" width="3€4" height="126" onload="window.lolss

body, hrml |
font-zize: =small;
| !

body {

= fdiws

k1|

lol{}" style="padding-top: 26px;" sro="/images/logos
fps_logoZ.png" alt="Google"/>

<hrsr

color: black;

+

'-l body, td, a, b,
3 .

Dane

h {
&

www.google.com (line 3)

www.google.com (line 3)

www.google.com (line 3)

=
{CIE

3. Another method, which is faster and more accurate, is to right-click on an element

and click on Inspect Element on the context menu. Firebug will set the focus on the

selected element.

303

Firebug

The HTML panel of Firebug is divided into two parts. The left panel shows the HTML whereas
the right part shows the CSS styles. Clicking on the Inspect button allows us to inspect

any element on the page. Moving the mouse pointer over any element will then display the
element details in the HTML panel of Firebug. This panel displays the complete HTML of

the document. This way we can see the complete structure of a page. There is one more
advantage of inspecting elements in the HTML panel. It also shows the elements created
after page load, that is, if you created any elements with jQuery or JavaScript, it will also
show them in the HTML panel.

Once an element is selected, the right-hand side of Firebug shows its CSS styles whether
defined in a stylesheet or created by a script.

There's more...

Plugins for firebug

Yes, you read that right. Firebug itself is a plugin, however, there are some other plugins that
are very useful in rapid web development and are recommended to use with Firebug. Both of
the tools listed next are useful in determining network activity, page performance, download
time, and so on. Both of these provide a score of page performance against a set of rules and
listed recommendations that can make page performance faster:

» Google Page Speed: It is a plugin from Google. The following is its description from
the Google site:

Page Speed is an open-source Add-on for Firebug. Webmasters and web
developers can use Page Speed to evaluate the performance of their web pages
and to get suggestions on how to improve them.

You can download Page Speed from the following URL:
http://code.google.com/speed/page-speed/download.html.

» Yahoo! YSlow: It is a plugin from Yahoo!, and can be downloaded from
https://developer.yahoo.com/yslow/.

See also

» The next recipe Editing HTML and CSS

Appendix

Editing HTML and CSS

In a typical scenario of editing a page, you open the page in an editor, make changes in it, and
then reload the web page to see the changes. If there is something wrong, or anything is not
as desired, you go back to the editor and repeat the cycle.

Well, there's no need for this anymore when you have the power of Firebug. This recipe will
explain how you can edit the HTML and CSS of a page or specific elements in real time using
Firebug. Once all the changes are made you can implement those into your source code

at once.

How to do it...

1. Take any recipe from this book. For example Creating an accordion style menu from
Chapter 7 and open it in the browser.

&) Accordion Menu - Mozilla Firefox HEE
File Edit “iew Higtory Bookmarks JTools Help Related Links

&g - c u | [hitp:tocahost 801 fback /Chapterd/Rreciped + - [*-Googe J.

| '] Accordion Menu | | |T

PHP Select a term from the left menu to know more about it.

iQuery

From the jQuery site: jQuery is a fast and
concise JavadScript Library that...Read More

AJAX

JSON
I
#c 5 Ul Cconsole | HTML~ | €55 Scipt DOM Net P =& O o
Edit | div.container < div.accordion « divileftPanel < div.content « diviimain < body < html Style~ | Layout DOM

= <div class="content's = element. style { =
= =div id="leftPanel"> display: block;
% <div class='accordion"s ¥

Reciped (line 10}
=l #div class="accordion"® .container {

<hl class="active'r jluery</hlx bhackground-color: #FOFSFE;

padding: Spx;
text-align: left;
width: 288px;

ey concise JavaSoript Library
<a href="dava.phpipage=jlusry"»Read Hore . _

<rdiwr b e o Recipe (line 11)

<fdiv> margin: 0;

¥ <div class="saccordion"®

<div class="accordion"s =l

=
e Bl e

2. Now using the Inspect button locate the h1 element on the page, which has jQuery
written inside it. Click on the Edit button beneath the Inspect button and you will be
able to edit the HTML of the h1 element. Change the text inside it to About jQuery.

305

Firebug

3. Now click on the DIV with class container. On the right panel you will see the
container class and its CSS properties. You can edit its existing properties by
clicking on the property values and then change them to the required values. For
example, click on the value for background-color and change it from #FOF8FF to
#££0000. All elements with class container will now have a red background colour.

4. To add a new property, right-click on that class name and select New Property. It
will append a new line to the existing properties where you can add new properties
and their values. Add two new properties color and font -weight with values
#E££f and bold respectively. This change will be reflected in all elements with
class container.

¥) Accordion Menu - Mozilla Firefox

File Edit View History Bookmarks Tool: Help Related Links
B3 - €@ 0 L[e osshost 08 ook ChapindReciesd/ 5 - [*W]Go0e 3 y

|j Accordion Menu lT‘ F

My Awesome Page

FHP Select a term from the left menu to know more about it.

About jQuery

From the jQuery site: jQuery is a fast and
concise JavaScript Library that...

AJAX
JSON
* —_—
%" % Console | HTML= | £S5 Script DOM Net | [EEE
<» | Edt | div.container < div.accordion ¢ divleftFanel divcontent < divimain < body < himl Stylev | Computed Layout DOM

[<div class="content's 2| elemenc. seyie |—
display: block;

= <div id="leftPanel">)

<div class="accordion"> o ;
_comtainer { Reciped (line 10}

background-celor: $FFOO00;
color: §FFFFFF;
font-weight: bold;

< fdive padding: Spx;
[<div class="accordion"s text-align: left;
widvh: 288px; =

[F #div class="accordion"s
<hl class="sctive">&bout jQuery</hl>

=di iner" st dis

<div class="accordion">

/i
Reciped(line 11)

*div id="rightPansl"s b, div {
<jdive margin: 0;
srdive 2f| eesdiea—ss =
Done | =) |U 2 Enors

There's more...

Changing style for a specific element

Apart from changing CSS for already defined classes, you can also specify CSS properties for
individual elements. For this, right-click anywhere on the right panel and select Edit Element
Style option. This will append a new row in the right-hand column for adding CSS name values
that will be applicable to only the selected element.

306

Appendix

Debugging JavaScript

Firebug can also be used to debug JavaScript in a browser. You can place breakpoints and
debug the code line by line. In addition to it you can also watch variables and DOM elements
changing in real time.

How to do it...

1.

File Edit

¥) Tic-Tac-Toe - Mozilla Firefox

To put breakpoints in your JavaScript code, open Firebug either by clicking the icon in

the status bar or by pressing F12.

Then click on the Script button in the Firebug toolbar. This will show a list of all the

available scripts for that page.

Select a script among these and that file will be displayed in the Firebug

content panel.

Wiew Higtory Bookmarks Tools Help Related Links

g -c o | 1 | it ocalhost 8061 /bock/ Chapter/2743_08_code/Frecipel/ -1 [28 -] Google J;
J |] Tie-Tac-Toe F
=
3*3x
e
% & Console HTML CS5 | Scipt~ | DOM Net LEe

b | all~ | tictactoe.jz - b

#1t localhost:8081/book/Chapter8/2749_08_code
jquery.js
localhost:8081/book /Chapter8/2749_08_code/Recipel

ifiparseInt (size J hitp: Alocalhost: 8081 /book/ChapterB/2743_08_code/Recipe] Aictactoe.js

Watch~ | Stack Breakpoints

Mew wakch expression. ..

8 this gridfize = size;
) this.player = 0; /7 0 - player 1; 1- player Z
10 this.marker;
ficreate grid
12 this createbridi);
11 ${'.col') hover(function() {§ ichis).css('background-color', '$FEF2EA') 7}, functio
15 $i'_col').click{functioni)
{
Sfcheck if already clicked
- e R ERRT T _'l_l
Done |m

307

Firebug

4. After a file has been selected you can put breakpoints on a line by clicking just before
the line number. A breakpoint is indicated by a dark brown colour circle.

5. Now you are ready for debugging. In the example seen in the next screenshot—the
tic-tac-toe game—place a breakpoint on line 18. It will execute whenever a column
of the game is clicked upon.

6. Click on a column and you will see that the execution has halted on that line.

) Tic-Tac-Toe - Mozilla Firefox

Fle Edit Miew Histoy Bookmaks Tooks Help Related Links

& - @ 0 L[] rewocahostaos ook Chapter2749_08_codeFecipels o - [Gock i -
|] Tie-Tac-Toe - F
EEEIR
e
#° "% Console HTML CSS | Script | DOM et =[5
L all 0 tictactosis~ | (200 < handiel) < removel) [T Watch~ S
10 this.marker; ;l Mew watch expression,.,
11 fioreate grid + this divfOl.col
12 this.createGrid(); ® scopeChain [Call{ }, Call{ }, Window Recpel 1
- J player
14 $1' . col') hower(function(){$(this) cssi{'background-color', '§FBF9EL'};}, functia
15 $#0'.col').clickdfunction(} who
1€ i won
17 ffcheck if already clicked
G 18 ifi$ (this) hasClass('cross') || #(this) . hasClass{'round'})) { return; }//
19 var who = {gams.player ==0 } ? "Playsr 1" : "Player 2';
20 game.marker = {game.player == 0 } 7 'cross' : ‘round';
21 #(this) . addClassigame marker);
22 var won = game.checkForWin({this):
23 if{lwon)
24 {
z5 //change players turn
26 game.player = {game.player == 0} 7 1 : 0; =
I B _»I—I

e Bl o [(4

7. Now you can watch the code execution line by line. To go to the next line press F10
on your keyboard. If you encounter a function, you can press F11 and control step
into it.

8. You can also watch variables. In the right panel there is a line called New Watch
Expression. You can write a variable name or an expression here and Firebug will
evaluate its value.

9. Pressing F8 will continue the code execution till another breakpoint is encountered.

308

Appendix

There's more...

Debugging in a nutshell
» F8: Continue.
» F10: Step Over. It takes control to next line.

» F11:Step Into. If you press F11 on a line where a function is defined, control will go
inside the defined function.

» F12:0pen or close Firebug on a web page.

Inspecting AJAX requests

The console of Firebug logs all the AJAX requests sent from the browser. It also shows
the response code for each request. For each request, the parameters sent, request and
response headers, and server response can be seen.

Web developer toolbar

The Web developer toolbar is another handy tool, through which you can control behaviour of
various elements on the page. It also provides a large set of tools that operate on web pages.

You can disable or enable JavaScript, images, view page structure, form info, and so on. It can
be obtained from https://addons.mozilla.org/firefox/addon/60.

309

Symbols

$.ajax() method 55, 64,116
$.each() method 20
$.get() method 46, 116
$.getJSON() method 115
$.getScript() method 66
$.post() method 52, 55,116
$action variable 87
$SerrorArray array 147
$objXML. load() method 90
$objXML variable 87
Sresult variable 235
.bind() method

working 12
.css() method 12
.hover listener 166
.load() method 8
.ready() method

about 8

using 9

working 8
.selectionEnd property 35
.selectionStart property 35
.toggle:checked selector 24
<p> element 46
<script> tags 154

A

abort() method 59
accordion

about 172

different markup, using 177
accordion style menu

creating 200-205

Index

active class 177
addClass function 215
addEvents() function 69
addTab function 219
AJAX 42
ajaxError() method 67,116
AJAX request
aborting 56-58
detecting, in PHP 50, 51
errors, handling 63-66
inspecting 309
working 52
altPressed variable 30
animate method 183
api_key 279
API key
getting, from Flickr 274
appendChild method 94, 97
append method 122
asynchronous 42
attributes

accessing, SimpleXML used 79-81

attributes property 90
auto suggest functionality
adding, into textbox 258-266

bind() method 9
browser

preventing, from caching AJAX requests 67,

68
buttons, Firebug
console 301
CSS 302
DOM 302

HTML 302
Net 302
Script 302

C

cashCounter function 295
cashCounter plugin 295
chained combo boxes

filling 241-246
change event handler 11,116
checked attribute 24
checkForWin() function 163, 166
child nodes 91
clearSelection function 125
click event 15, 166
click event handler 9
common.xml parameter 90
common event types

blur 14

change 14

click 14

dbclick 14

focus 14

keydown 14

keypress 14

keyup 14

load 14

mousedown 14

mousemove 14

mouseout 14

mouseover 14

mouseup 14

scroll 14

select 14

submit 14

unload 14
console button 301
constructor 235
createGrid() function 162
cross-domain requests

making, with jQuery 280-285

sending, server proxy used 274-280
css() method 39
CSS button 302
currentTabindex variable 227

312

D

data
collecting, from form 236-240
displaying, in table format 230-235
fetching, from database 230-235
paginating 252-258
retrieving, from PHP script 43-45
saving, in database 236-240
sending, to PHP 52-55
data() method 142
dataType parameter 71
dataType property 101
dataValid field 134
dataVvalid variable 130, 137
delegate() method 101
die() method 16
displayDetails() function 116
display property 88
displaySelectedValues function 227
divLeft variable 38
divTop variable 38
DOMALttr class 93
DOM button 302
DOMDocument class 90, 97 74
DOM extension
using, for creating XML 92-94
using, for modifying XML 94-97
using, for reading XML 88-90
DOMNode class 90
DOMNodelList object 90
dragElement function 37, 39
dragMe class 36
drop-down menu
creating 194-197

E

e-mail addresses

validating, regular expressions used 134-137

elements
accessing, SimpleXML used 79-81
adding, to XML 83
binding 9-12
dragging, on page 36-38
fading, after update 177-179
inspecting 303
searching, XPath used 83-86

emailPattern variable 137
empty fields
validating, jQuery used 127-130
empty page
creating 59-62
endless scrolling page
creating 286-290
error() event handler 19
errors handling, in AJAX request 63-66
eval() function 117
event handlers
removing, die() method used 16
event object 30
events
adding, to elements 14, 15
triggering 13
unbinding, from element 14
exampleDB database 235
expandable and collapsible boxes
creating 172-176

F

fadeln() method 27
fadeout() method 27
fetch_assoc () 235
file_get_contents function 299
filter_var() function 147, 148
Firebug
about 301
buttons 301
elements, inspecting 303
HTML and CSS, editing 305
plugins 304
website 301
firstChild property 90
floatDiv() function 182,183
floating box
creating 180-183
floating menu
creating 206-211
form
about 119
e-mail addresses, validating 134-137
empty fields, validating 127-130

errors, displaying 138-142
HTML tags, filtering 154-157
input fields, adding 120-122
live validation, performing 138-143
numbers, validating 131-134
submitting, with jQuery 16, 17
URLs, validating 134-137
user-inputted string, searching 123-126
validation, strengthening 143-148
visual effects, adding 159
voting system, creating 149-154
format 279
form submission
controlling 18
jQuery way 16, 17
functionality, to toggle checkboxes
creating 21-23
functions
executing 8

G

getBookName() function 191
getCurrentTabindex function 227
getData() function 203, 290
getElementsByTagName function 97
getElementsByTagName method 90
getHTML() function 46

getList() function 244

get method 43

getPositions() function 34
getPriceForBook() function 191

H

highlight function 125
hover() method 27
hover event handler 199
hover function 197
hoverMe class 26
href attribute 205
HTML and CSS

editing 305, 306
HTML button 302
HTML tags, forms

filtering 154-157

313

index function 215
init function 163
input fields
adding dynamically, in form 120-122
isNaN function 134
isUserAtBottom function 290
items
removing, from shopping cart 191
updating, in shopping cart 184-191

J

JavaScript
about 42
debugging 307, 308
executing 8, 9
loading 68, 69
JavaScript Object Notation. See JSON
jQuery
JSON data, accessing 112-115
tabs, creating 211-215
using, for XML parsing 98-101
jQuery menu

accordion style menu, creating 200-205

drop-down menu, creating 194-197
floating menu, creating 206- 211

menu highlighting on mouse over, creating

198-200
opening 197
jQuery plugin
creating 291-294
working 295
jQueryUl Accordion
about 206
URL 206
JSON
about 103

AJAX methods, for requesting data 116

creating, in PHP 105, 106

errors handling 116

parsing 117

reading, in PHP 107-109
json_decode() function 109
json_decode() method 107
json_encode() function 106

predefined constants 106

31

json_encode method 116
json_last_error() function 111
JSON data
accessing, in jQuery 112-115
JSON error handling methods
using 110
JSONP 286
JSON parsing errors
catching 109-111
JSON specifications
array 103
object 103
string 103

K

keyboard shortcuts
creating 28-30

keydown event 30

keydown event handler 29

keyup handler function 30

L

libxml

info site 78
LIBXML_NOBLANKS parameter 90
LibXMLError object 78
libxml functions 76
libxml parameters 78
live() method 15, 122
live validation, forms

performing 138-143
load() method 62
loadData function 290

menu, highlighting on mouse over
creating 198-200
menultem class 197
menus 193
missing images
detecting 18, 19
mouse events
capturing 25, 27
mousemove element 37
mouseup event 37

mousex variable 38
mousey variable 38
moveToElementText() function 34
multiple events

binding 13
MySQLi

about 229

info site 229
MySQLi_Result class 235

name attribute 122

Net button 302

new tabs
adding, to existing one 216-220
displaying 221

nodeName 91

nodes
deleting 98

nodeType 91

nodeType values
XML_ATTRIBUTE_NODE 91
XML_CDATA_SECTION_NODE 91
XML_ELEMENT_NODE 91
XML_TEXT_NODE 91

nodeValue 91

nojsoncallback 279

numbers
validating, jQuery used 131-134

P

pageX property 28
pageY property 28
parseJSON() method 117
per_page 279
PHP
predefined constants 111
validate filters 148
PHP Manual
URL 230
PHP Securit Consortium
URL 230
preventDefault() 18

Q

query method 235
query string
creating 47-49

real_escape_string() function 240
Really Simple Syndication (RSS) feed 296
RegExp method 126
removeChild() method 98
removeClass function 215
replace function 126
RSS feeds
displaying, with jQuery and PHP 296-300

S

sanitize filters
about 148
FILTER_SANITIZE_EMAIL 148
FILTER_SANITIZE_LENCODED 148
FILTER_SANITIZE_NUMBER_FLOAT 148
FILTER_SANITIZE_NUMBER_INT 148
FILTER_SANITIZE_SPECIAL_CHARS 148
FILTER_SANITIZE_STRING 148
FILTER_SANITIZE_URL 148
URL 148
saveXML. save() method 97
Script button 302
scrollTop() method 183, 211
searchText variable 126
selectors
using 25
serialize() method 48
serializeArray() method 49
setcookie function 153
setEndPoint() function 34
setTimeout function 295
shopping cart
items, removing 191
items, updating 184-191
show() function 172
showHideTabs function 215, 219
showlmages function 280

315

showPosts function 297
showVideolList function 283
SimpleXML
info site 78
simplexml_load_file method
class_name parameter 78
flename parameter 78
options parameter 78
parameters 78
simplexml_load_string method 78
SimpleXMLElement class
using, for object creation 78
SimpleXMLElement object 77
SimpleXML functions 74
sleep function 170
slideDown function 197
slideToggle effect 31
slideToggle function 211, 300
slideUp() method 177
slideUp function 197
span element 207
strip_tags() function 157
submit buttons 16
submit event 237
switch statement 87

T

tabContent class 221
tabs, for data display
about 211
creating 211-215
working 215
tag cloud
about 266
creating 266-271
tags 279
textOnPage variable 35
Tic-Tac-Toe game
creating, with effects 160-165
working 165, 166
Toggle All checkbox
working 24
toggleSlide() effect 177

316

U

unbind() method 9
URLs

validating, regular expressions used 134-137

user-inputted string

searching, in page 123-126
username availability

checking, from database 247-252
users

notifying, while an AJAX request progress

167-172
user selected text
displaying 31-35

\'}

validate filters, PHP
FILTER_VALIDATE_BOOLEAN 148
FILTER_VALIDATE_EMAIL 148
FILTER_VALIDATE_FLOAT 148
FILTER_VALIDATE_INT 148
FILTER_VALIDATE_IP 148
FILTER_VALIDATE_REGEXP 148
FILTER_VALIDATE_URL 148
URL 148

validate function 128, 130, 137

validation 127

validation, forms
strengthening 143-148

voting system
creating 149-154

w

Web developer toolbar 309
wizard

creating, tabs used 221- 227
WYSIWYG editors 31

X

XML
about 42,73
creating, DOM extension used 92-94
elements, adding 83
loading, from files 76-78
loading, from strings 76-78
modifying, DOM extension used 94-97
modifying, SimpleXML used 82
parsing, jQuery used 98-101
reading, DOM extension used 88-90
XMLHttpRequest 42
XMLHttpRequest object 42, 59

XPath

about 83

online resources 87
XPath method 74, 85

Y

Yahoo! YSlow plugin 304
Yellow Fade Technique. See YFT
YFT

about 177

implementing 177

31

open source

community experience distilled

PUBLISHING

Thank you for buying
PHP jQuery Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and selector
expression in the jQuery library with an easy-to-
follow approach

jQuery 1.4 Reference Guide
3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery’s powerful
plug-in architecture

jQuery Plugin Development
Beginner’s Guide
ISBN: 978-1-849512-24-4 Paperback: 288 pages

Build powerful, interactive plugins to implement jQuery
in the best way possible

gr

il 1. Utilize jQuery’s plugin framework to create a wide

E R range of useful jQuery plugins from scratch

jQuery 1.4

Plugin Develo pment 2. Understand development patterns and best
: - ¢ . practices and move up the ladder to master

plugin development

3. Discover the ins and outs of some of the most
popular jQuery plugins in action

4. A Beginner’s Guide packed with examples and
step-by-step instructions to quickly get your hands
dirty in developing high quality jQuery plugins

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Handling Events with jQuery
	Introduction
	Executing functions when page has loaded
	Binding and unbinding elements
	Adding events to elements that will be created later
	Submitting a form with jQuery
	Checking for missing images
	Creating the select/unselect all checkboxes functionality
	Capturing mouse events
	Creating keyboard shortcuts
	Displaying user selected text
	Dragging elements on a page

	Chapter 2: Combining PHP and jQuery
	Introduction
	Fetching data from PHP using jQuery
	Creating a query string automatically for all form elements
	Detecting an AJAX request in PHP
	Sending data to PHP
	Aborting AJAX requests
	Creating an empty page and loading it in parts
	Handling errors in AJAX requests
	Preventing browser from caching AJAX requests
	Loading JavaScript on demand to reduce page load time

	Chapter 3: Working with XML documents
	Introduction
	Loading XML from files and strings using SimpleXML
	Accessing elements and attributes using SimpleXML
	Searching elements using XPath
	Reading an XML using DOM extension
	Creating an XML using DOM extension
	Modifying an XML using DOM extension
	Parsing XML with jQuery

	Chapter 4: Working with JSON
	Introduction
	Creating JSON in PHP
	Reading JSON in PHP
	Catching JSON parsing errors
	Accessing data from a JSON in jQuery

	Chapter 5: Working with Forms
	Introduction
	Adding input fields dynamically in a form
	Searching for user-inputted string in a page
	Checking for empty fields using jQuery
	Validating numbers using jQuery
	Validating e-mail and website addresses using regular expressions
	Displaying errors as user types: Performing live validation
	Strengthening validation: validating again in PHP
	Creating a voting system
	Allowing HTML inside text areas and limiting HTML tags that can be used

	Chapter 6: Adding Visual Effects to Forms
	Introduction
	Creating a Tic-Tac-Toe game with effects
	Informing a user while an AJAX request is in progress
	Creating expandable and collapsible boxes (accordion)
	Fading an element after updating it
	Floating box on demand
	Updating items in a shopping cart

	Chapter 7: Creating Cool Navigation Menus
	Introduction
	Creating a basic drop-down menu
	Creating a menu that changes background on mouse-over
	Creating an accordion style menu
	Creating a floating menu
	Creating an interface for tabbed navigation
	Adding more tabs
	Creating a wizard using tabs

	Chapter 8: Data Binding with PHP and jQuery
	Introduction
	Fetching data from a database and displaying it in a table format
	Collecting data from a form and saving to a database
	Filling chained combo boxes that depend upon each other
	Checking username availability from database
	Paginating data for large record sets
	Adding auto-suggest functionality to a textbox
	Creating a tag cloud

	Chapter 9: Enhancing your site with PHP and jQuery
	Introduction
	Sending cross-domain requests using server proxy
	Making cross-domain requests with jQuery
	Creating an endless scrolling page
	Creating a jQuery plugin
	Displaying RSS feeds with jQuery and PHP

	Appendix: Firebug
	Introduction
	Inspecting elements
	Editing HTML and CSS
	Debugging JavaScript

	Index

