A Practical Guide to Creating
Web Applications with PHP

Alex Vasilev

PHP by Example

A Practical Guide to Creating
Web Applications with PHP

Alex Vasilev

Apress’

PHP by Example: A Practical Guide to Creating Web Applications with PHP

Alex Vasilev
Department of Software Systems and Technologies,
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

ISBN-13 (pbk): 979-8-8688-0257-7 ISBN-13 (electronic): 979-8-8688-0258-4
https://doi.org/10.1007/979-8-8688-0258-4

Copyright © 2024 by Alex Vasilev

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Editorial Assistant: Gryffin Winkler

Copyeditor: Kim Burton

Cover designed by eStudioCalamar
Cover image designed by Barbara A Lane from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York
Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

“All Rights are reserved by the Publisher except for Russian, Ukrainian and Bulgarian rights”.
Translated into the English from the Ukrainian.

Previously published in Russian as “Ilporpammuposanue va PHP B ipumepax u 3agauax” (2021) by
Eksmo Publishing

Previously Published in Ukrainian as “Ilporpamysasns Mmosoio PHP” (2022) by LIRA-K Publishing

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0258-4

In memory of my dad. Thank you for all you gave, and sorry
for all 1didn’t return.

Table of Contents

About the AULNOr ... ————— Xi
About the Technical REVIEWETcccumnsssssmmmmnmsmmssssssssssssnnsssesssssssssnnns Xiii
Acknowledgments.......ccccceeeemmmmmmnmmmmnmmnmnnnnmnnnssnsssnsssssssssnsnnnnnnnnnnnnnnnnnns XV
INtroduction.......cccuiimeeemmmnnnnnnsssssssssns s Xvii
Chapter 1: The First Programcccccnnsemnmmnsssssmmmsssssnsssssssssssssssssssnss 1
The Program’s COUB.......cevrerrererererserersesssseressesssssssessessssssssssessesssssssessesssssssessenes 1
The Interpreter REgiMe ... s 3
The Server REJIME ... s sesnsnens 18
SUMMANY....eiierrcerre s e e e e 25
Chapter 2: Variables and Data TYpescccemrmsssanmnmsssssnnssssssssnssssssnnnnss 27
Introduction to Variablesccveernnnnesnnesnsse s 27
BaSiC DAtA TYPES ..cvuerverrererersereererserersessesessessesssssssessessesssssssessesssssssessessesssssssessens 31
The Arithmetic Operationsccccvevvvrrrierernrrrre s es 34
The Comparison OPerations.........cccuvvnvrrinnnnnnne e 37
The Logical Operationsc.cceceerenerensesessesesesessssesessesessesesessesessssessssessssssesssnnns 39
The Bitwise Operations ... s 41
The Operations With STHiNgS......c.cccvvirinn 46
ASSIGNING VAIUBS ...eerverreeeereressesersersessessssessessessssessessesssssssessessesssssssessesssssssesseses 48
The Ternary OPEratorccovvvrvrereressersereressssesse s e se s sse s ssesssessessessssessesseses 49
SUMMAIY..c..eitiii i e s s s s s b e e e e e p e e e aenrs 52

TABLE OF CONTENTS

Chapter 3: The Control Statements...........cccivsremnnnnssnnnnnssssnnensnnns 53
The if Conditional Statement.............oovceenrrneccsr e 53
The while Loop Statement ... 62
The do-while Loop Statement............cccvirinnininnnn e 66
The for Loop Statement ... 69
The switch Selection Statement ... 74
The goto INSTUCTIONcccce i —————— 82
The match Selection Statement.............cccovvriieinnnnnes e 84
SUMIMANY....eieeirereeee e e e n e s re e e e e 89

Chapter 4: ArraysS....ccccuusssssssmmmmmesssssssssssssnssssssssssssssssnsssesssssssssnnnnnnsness 91
Getting Familiar With Arrays.........cccovernenmnnssnsessess s ssssesenns 92
A LOOP OVEF N AITAYceeerereereesesese e ses e sse s e sse s sssses e ssessessssensssssssssssssssens 99
Multidimensional AITAYSccvvvveriererensensesess s ses s e sessessessessssessessenes 107
Array ASSIGNMENTSovciriiicie e 111
Concatenaling Arrays........cccccveeernrerenesinesers s sts et sae s 115
COMPATING AITAYS ...covevriirerese e s s s s s a s s r e s 117
Functions for Handling Arrays..........cueeernnernsesessesssssssssssssssessssssesssssssssessenes 119
SUMMANY ...t e np e 125

Chapter 5: FUNCLIONSccccvvseemmmnnsssnnmmmssssssnnmssssssnnssssssssssssssssssssssnnns 127
Creating FUNCHIONSccoccvivierircere s se e sne e snens 127
The FUnction RESUIL ... 132
The Type of Arguments and ReSUlt..........c.ccooeenvninininincni e 137
The Argument Passing Mechanism............ccovvnniennnnnnnnn s sesenns 141
The Argument Value by Defaull...........covvernennnenncserssessesesesess s 145
An Arbitrary Number of Arguments..........ccovrerrinnnesnnssssesseses e 147
RECUISION.....viciiirirrsse s 156

TABLE OF CONTENTS

The eval() FUNCLION........ccoceririre s 159
ANONYMOUS FUNCLIONS.......cccoiiriirire e 162
NamMed ArgUMENLEScccoereeree e 164
SUMMANY....ceiveereresesese s s e s s s e se e nen e nns 169
Chapter 6: Useful Tricks and Operationsc...cccmmnsssannnmsssssnnnnsssnnns 171
REfEIBNCEScovieercrcerte et e 171
CONSTANTS ... s 177
GlODAl VariabIESccveereririnciie s 179
Static VariabIes ..o s 182
MURIING STHNGS....coeiereeererce e 184
UL T N T[S 187
Including a File in the Program...........ccouvvrnnennenmnnse s sessenes 194
SUMMAIY.c.ueititrierere st e s e s s a e e s s sae e e e s e s aesae e s e s aesae e e e nannaees 196

Chapter 7: Classes and Objectsccccemmmrrnnsmsssssssssnsssssssssssssssnssnnnes 199

The OOP PrinCIPIES....cccveererrererserersessssessessessessssessessesssssssessessessssessessesssssssessesaes 199
Creating Classes and ODJECLScccvvererercrnrerneser s 202
The MEthOdS ..o 207
The Constructor and the DeStruCtor..........cccvvevrneseresernse s 211
Static Fields and Methods...........cccvirernsenninnns e 215
0])T 10 T =T OO 217
Private Fields and Methods............cccovnrnnrnnnnn s 220
Special Methods ..o e e 223
Defining Fields in the CONSIIUCTON..........ccoeerrecrreer e 235
SUMMANY....ceiieeresesesese e se e e s e se e nensenenns 239

vii

TABLE OF CONTENTS

Chapter 8: INheritance.......cccurerrrmssnnnmmssssssnsesssssnnsesssssnssssssssnsnsssssnns 243
Creating @ Child ClaSS........ccouvevrererererinserire s s e s sesseseens 243
Overriding Methods.........cccoriinnnnr s s 248
Constructors and INNEFTANCE..........ccovrererienernsesreser s 253
Inheritance and Private Members..........cccccvvvnnenncs e 257
Protected Members 0f @ Class.......c.couernnnnnssnssse s 259
Virtual Methods.........cocierimrnie e 261
A Function as a Field VAIUE ... 263
Multilevel INNEILANCE ..o 266
SUMMANY....ceiveerineresese s se s e srs e sss e e e senssnenns 271

Chapter 9: Advanced O0P Mechanisms.......ccuusssssessnnsnssssssssssssssnnnnnas 273
ADSIIACE ClASSES ...uevrreerrierisesrssese e s e sr e srs s e s snsssnens 273
INEEITACES ... 278
Interface INheritance...........ccovvrcninn 281
Class Inheritance and Interface Implementationcccccovveervcnnvcvncccnnnne, 283
L SRR 285
ODbject TYpe CONTIOlccoveeereerrreresesere s 288
A NAMEBSPACEercerreriereriir e s e e r e s nr e ne e naran 292
ANONYMOUS ClASSESvevrererrerierereressesessessessessssessessessssesessesssssssessessessssessesses 298
SUMMAIY.c.veiteitrerereseesere e sre e se s s s sa e e s e s aesaese s e saesaesae e s e saesaesseenaesaens 300

Chapter 10: Error Handling..........coussemmsanmssassssnssssnsssassssassssnsssassssanssns 303
Exception Handling PrinCiples...........couu e 303
EXCEPLioN ClaSSESccucvveririiiirrinere st 307
Throwing EXCEPLIONS......cccvveerrererresrsese s s sesnnnens 310
The Custom EXCEPLIONS........cccucriererrrrere s 314
Handling Exceptions of Different CIaSSescccvvrvervnrinieresensensesesessessensenns 318

viii

TABLE OF CONTENTS

Nested try-catch Constructions and the finally BIOCK..........ccccvvvrervererensensersens 324
Rethrowing an EXCeptionccccvvvncniniennsnsese s 328
The Functions for Handling Errorscccoeeereenerenernscsenseneseseseesesesesesnenens 330
SUMMANY....ceiveereresesese s s e s s s e se e nen e nns 333
Chapter 11: Generators and Iterators..........cccouseemmsessssnssssnsssassssnsnnns 335
Getting Familiar with GENErators........coceveeresesnsesneses s 335
A Generator Function with Argumentsccoeevvvvreniennnnsenese e sessesennes 339
An Array Based 0N @ GENEIALOrc.ccvvververererensersessessssessessessssessessesssssssessesnes 341
The Generator RESUIL ..o 343
USING GENEIALOLS........ccovecrererereee e snens 346
Passing a Value t0 @ GENeratorc.covvrernsesssesesiesesssesese s sennes 351
12T £ 1 0] £ TSRS 353
SUMMAIY.c.ueititrierere st e s e s s a e e s s sae e e e s e s aesae e s e s aesae e e e nannaees 359
Chapter 12: Using PHP..........ccccimnnnsnmmmmmmsssssnmmmsssssssssssssssssssssssssssssnnns 361
A Script in an HTML DOCUMENTccovvvirrererererreresessssese e ssssesessesessssessesnes 361
Handling the Request Parametersccccocvvvnvrinnnnsnsness s 369
USING BUHTONS ... 373
Using Several BULLONS.........ccocvvrernserrnsessssse s sessssesss e s sesesssssssssessnnes 381
Using Lists and ChEeCKDOXESccueerrrererrenerrnsessnesess s s sesss s 386
A Slider and Radio BUHIONS ... 394
SUMMAIY . veiteitrerere e sere e s e s e e s ssesae e s e s aesaese e e saesaesae e s e saesaesseenaesaens 402
Chapter 13: Afterword: What Was and What Will Beccccunssennes 405
1T = 407

ix

About the Author

Alex Vasilev is a software systems and
technologies professor at the Faculty of
Information Technology, Taras Shevchenko
National University of Kyiv in Ukraine. He has
taught programming (C++, C#, Java, JavaScript,
Python, and PHP) for 20 years. To date, he

has written over 30 programming books in his

native Ukraine. This is his first book directly
published in English.

About the Technical Reviewer

Vadim Atamanenko is an experienced

software engineer and technical reviewer

with over 25 years of expertise in software
development. His professional journey

(\
— . . '.'

Corp. Throughout his career, he has actively contributed to the scientific

includes a leadership role in the analytical
reporting department of Freedom Holding

community, publishing articles on the application of artificial intelligence
in the financial sector.

Vadim’s technical expertise has been internationally recognized,
evidenced by membership in two prestigious associations: IEEE (Institute
of Electrical and Electronics Engineers) and Leaders Excellence at Harvard
Square. His scientific papers have been published in various scholarly
journals, including Modern Science: Current Issues in Theory and Practice.

xiii

Acknowledgments

To my dear children Anastasia and Bohdan, and all my family. Thank you
for your support and love. You give meaning to my life and encourage me
to move on.

I'sincerely thank the great and professional Apress team for the
outstanding support and dedication provided throughout the process of
bringing the book to fruition. Their collective efforts have undoubtedly
played a pivotal role in making the book better.

Introduction

There are many things in this universe you are not meant to
understand. Now, that does not mean they are not real.

—ALF (TV series)

This book discusses the PHP programming language. PHP is a simple,
beautiful, and elegant language. Moreover, it is special in some sense.
PHP is designed to execute code on the server side. In other words, it is
not enough to know PHP. It is also necessary to understand how and for
what it is used. That is important since understanding the possibilities of a
language is the key to using it effectively.

Note PHP is a language designed for programming and web
programming.

About PHP

The PHP language is used for creating sites and web applications. It has
a long story, is popular among developers, and is supported by most host
servers.

xvii

INTRODUCTION

Details

Hosting is a service for providing resources and space on a server to host data and
information (for example, web pages). The host server is a server that hosts the
information. For the sake of simplicity, this means the host server is a computer
(server) that hosts the user’s web page (that is, the page where PHP is supposed to
be used).

The author of PHP is Rasmus Lerdorf. The project started as writing
scripts to support a personal web page and was initially titled Personal
Homepages Tools or PHP Tools. Then, it was transformed into an
independent and influential software product. Today, the name PHP is
usually associated with the phrase Hypertext Preprocessor, which is not far
from the truth.

Note When writing this book, the current version is PHP 8. On the
other hand, in practice, the latest version of the language does not
immediately start to be used. There is some inertia here due to both
objective and subjective factors. Therefore, universal approaches
relevant to the last few language versions are considered. Notably,
there is no sixth version: the seventh version follows after the fifth.
The reason is that the attempt to release the sixth version was highly
unsuccessful.

PHP is a scripted and interpreted language. Interpretability means that
a program is executed under the control of a particular program called an
interpreter. The interpreter reads the code line by line and executes the
corresponding instructions.

xviii

INTRODUCTION

£ The PHP 8 Standard PHP 8 introduced a JIT compiler (short for
Just in Time) for compiling PHP code to speed up program execution.
When compiled, the program instructions are translated into
processor-level instructions.

Scripting languages are usually high-level ones. Unlike conventional
programs, scripts usually contain instructions for controlling ready-made
software components. In other words, a scripting language is a straightforward
language. Although, of course, not everything is always so rosy.

Details

The C language has influenced the syntax of the PHP language. Therefore, if you
know languages such as C, C++, C#, or Java, you will find many familiar syntax
constructions.

Of course, PHP is a programming language, among many others. But it
has an essential feature in how PHP codes are used.

Ifyou are dealing with any conventional programming language,
the process of writing and using programs looks like follows. First, you
create the program code—in other words, you write a program. Then,
that program must be executed. How to do that depends on the language,
but the most crucial question is whether the program is compiled or
interpreted. If the program is compiled, a particular compiler program
translates your program into machine instructions (or something similar
to them), and then those instructions are executed. If the program is
interpreted, a special interpreter program reads your program and
executes statements from the code. But whatever happens, the important
thing here is that you do all the operations on the same computer. You run
the program on the computer and get a result. You can do anything you
want with the result of the program execution, but the critical point is that
itis enough to have only one computer.

Xix

INTRODUCTION

With the PHP language, things are somewhat different. To understand
the problem, let’s consider what happens when you access a web page and
how PHP is involved in that case.

A Client and a Server

In general terms, here is the scheme according to which the site is viewed
on the network. In this case, the main acting “characters” are the computer
on which you want to view the web page and the computer on which that
page is located. The first computer (on which you are trying to view the
web page) is called a client, and the computer on which the web page is
located is called a server.

There is a connection between these computers through the global
network; therefore, the computers can send information to each other. You
work on a client computer and want to view a web page. To do that, you
run a special program designed to view web pages. The program is called
a browser. You open a browser (for example, Chrome, Opera, or Edge),
and in the address bar, you enter the site address you want to view. The
browser initiates a request to the server. The server receives the request,
processes it, and returns a response to the client. The response contains
the document’s code; the browser should display it on the client screen.
The general scheme of the “interaction” is illustrated in Figure I-1.

==

Response

Browser:

Figure I-1. The scheme of the interaction between a client and
a server

INTRODUCTION

The browser processes the document in HTML format (the
abbreviation comes from Hypertext Markup Language). The text contains
a special markup. The browser “understands” that markup and renders
the document following the instructions embedded in the document.

In addition to the actual HTML markup, the document displayed by the
browser can contain additional instructions. For example, CSS (Cascading
Style Sheets) formatting can be used in the document. The document may
also contain JavaScript scripts. In the latter case, the browser executes
these scripts. So, the server sends a set of commands, and the browser
executes them. The important thing is that the commands are executed on
the same computer that made the request.

Note The server tells what to do, and the client’s browser performs
the necessary operations. Convenient but not always safe.

So, where is the place for PHP in this scheme? The answer is at the
stage of processing the request by the server. When the server receives
arequest from a client, it processes the request, and while processing it,
scripts can be executed—in this case, PHP scripts.

Details

Often, the script’s output is a generated HTML code passed to the client.

But that is not all. Many programs try to exchange information over
the network. Processes on a client send signals to processes on a server
and back, and you need to know which signal is for which process. For that
purpose, you use ports. Ports are unique integer identifiers the processes
use to identify the signals sent to them. Therefore, requests from the
client’s browser and server responses must be synchronized by ports. That
is, to work effectively with PHP, you need to solve quite a few technical
problems. All that is considered step by step, as necessary.

INTRODUCTION

How to Execute the PHP Code

Let’s take the next step in studying PHP. Namely, focusing on how to
execute a program written in PHP. If you are talking about the “natural”
way of using PHP code, you would need a server and a client. That is two
computers. The script (the program) is hosted on the server, and you can
view the result of the program execution by accessing the web page on
the server through the client browser. But even if all these resources are
available, the described strategy is not very convenient since you need to
edit the program on one computer (the server) and check the result on
another computer (the client). So, it is clear that you would like to have a
more reliable strategy.

An alternative way is to “trick” the browser. Namely, you can create
an illusion that the server is a client itself. It’s about using a local server. It
is easy to switch to that mode. The advantage of the approach is that the
program and its result are localized within the same computer.

On the other hand, PHP code can be executed using an interpreter—
that is, approximately the same as in the case of other interpreted
languages. That is probably the easiest way to see what the result of
running a program is. Nevertheless, you should not forget that PHP
programs are not written to be executed by the interpreter on the client’s
computer. So, there will be some tricks, too.

The Software

The book contains many examples, and in the process of studying them,
itis desirable to disassemble the program and examine the result of its
execution. That requires special software.

First of all, you have to install the software that supports PHP. To do
that, go to www.php.net, as shown in Figure I-2.

xxii

http://www.php.net

INTRODUCTION

Fast, flexible and pr

What's new in 8.2 Download

Upcoming confe:

PHP 8.3.0 RC 4 available for testing » 12 Oct 2023

The PHP team is pleased to announce the release of PHP 8.3.0, RC 4. This is the fourth release candidate,

Figure I-2. The window for PHP support at www. php.net

You should find the software download section in that window and
download the necessary files.

Note In the simplest case, the installation comes down to
unpacking the archive downloaded from www. php . net. That will
likely be enough for using the PHP interpreter (php . exe file) in
command-line mode. You may need to perform additional settings for
a more “comfortable” work regime involving special software. If so,
refer to the help information on the www. php . net page and use the
help for the relevant software product (for example, a code editor).

xxiii

http://www.php.net
http://www.php.net
http://www.php.net

INTRODUCTION

Details

You can use the php -v command-line instructions to check the PHP version.
To get PHP help, use the php -h command. Additional information about PHP
can be obtained with the php -i command.

If you use the Windows operating system, you can enter the cmd
instruction into the address bar of Windows Explorer to switch to the terminal
mode. Then, you must change to the PHP directory in the terminal window. For
example, if PHP is in the C: \PHP folder, the appropriate command would be cd
C:\PHP. An alternative is to navigate to the PHP directory first and then enter
the cmd instruction in the Explorer address bar.

Many operating systems of the Linux family have PHP pre-installed. But
if this is not the case, you can use the sudo apt install php command to
install PHP.

In general, to have a PHP interpreter that allows you to execute
programs written in PHP is enough. However, you also need to type and
edit your programs somewhere. In principle, a regular text editor could
be the choice. But it’'s much better to install something more advanced,
with support for PHP syntax (an editor that “understands” PHP special
instructions).

Note It is easy to find a suitable editor for processing PHP code if
necessary. However, such a strategy is mainly aimed at advanced
users. That is why it is beyond your attention.

There are other options as well. For example, the Visual Studio Code
development environment (the address is https://code.visualstudio.com)
is quite convenient. The browser opened on the project page is shown in
Figure I-3.

XXiv

https://code.visualstudio.com

INTRODUCTION

] Visual Sudio Code - Code Ednr X o

€« ¢ O & codevisualstudio.com G % = w @0 &

Code editing.
Redefined.

Download for Windows
Stable Buid

b

Figure I-3. The Visual Studio Code project support page

Details

The first time you run the Visual Studio Code application, you must confirm the
installation of the PHP support in the Customize section.

Another good option for developing PHP programs is the NetBeans
IDE. The installation files can be downloaded from http://netbeans.
apache.org. Figure I-4 shows a browser open on the NetBeans project
support page.

http://netbeans.apache.org
http://netbeans.apache.org

INTRODUCTION

Q) Welcome to Apache NetBeans X 4 5 = =] x
¢ = C O & netheansapacheorg G & 2w @x T O
0 Apache NetBeans Community Participate Blog GetHelp Plugins Download

Latest release

Apache NetBeans 19

Download

Apache NetBeans

Fits the Pieces Together

Development Environment, Tooling Platform and Application Framework.

(Z Fast & Smart /F Java, JavaScript,

Editing PHP, HTMLS, CSS,
i and More

Figure I-4. The NetBeans project support page

Details

You may need the Java Development Kit (JDK) pre-installed on your computer to use
NetBeans.

There are other helpful software products, including commercial ones.
But once again, it is enough to install PHP and select a suitable code editor.

Note You will learn how to use the software (at the primary level)
through examples.

INTRODUCTION

About This Book

This book is entirely devoted to the PHP language, focusing on why it

is needed and its features. It investigates the main constructions of the

language, as well as the approaches and mechanisms used in PHP. In

the book, considerable attention is paid to examples. The range of topics

discussed in the book is enough for writing effective PHP codes. The main

part of the book consists of twelve chapters.

Chapter 1 contains simple programs, and it discusses
how to use the software and analyzes the general
principles of creating PHP programs there.

Chapter 2 discusses variables and data types. There,
you will learn how to create variables, perform
operations with them, and use data of different types.

Chapter 3 is devoted to the control statements. You
will get a notion of the conditional statement, selection
statement, and loop statements, as well as the goto
instruction. All those are critical for creating efficient
PHP programs.

Chapter 4 contains information about arrays. In PHP,
arrays have several unique features and will be the
study’s subject. This chapter discusses one-
dimensional and multi-dimensional arrays, describes
the iteration over a collection statement, and provides
an overview of the basic operations performed

on arrays.

XxXVii

INTRODUCTION

o Chapter 5 describes functions. You will learn how
they are created, discuss the mechanisms for passing
arguments, consider how a result is returned, learn how
to set default values for arguments, and how to create
functions with an arbitrary number of arguments. You
will consider ways for passing arguments by name.
The chapter also focuses on recursion, anonymous
functions, and some other topics related to functions.

o Chapter 6 deals with links, constants, global and
statistic variables, file handling, and methods for
working with multi-line text.

o Chapter 7 discusses the principles of object-oriented
programming (OOP) and considers how PHP
implements these principles. You will learn how
to create classes and objects and what to do with
methods. You will also meet constructors, destructors,
and static class members. The chapter deals with the
problem of copying objects and illustrates how to use
private fields and methods. Some special methods are
also described in the chapter.

o Chapter 8 is devoted to such an important OOP
mechanism as inheritance. You will learn how a child’s
class is created and how methods are overridden. You
will consider the features of constructors, private and
protected members of a class in the context of the
inheritance. The chapter also discusses the virtuality
of methods, describes multi-level inheritance and

contains some other information.

xxviii

INTRODUCTION

o Chapter 9 describes abstract classes and interfaces
(including their implementation and inheritance). You
will learn what traits are, how an interface can control
the type of an object, what a namespace is, and how it
is used.

e The principles of error and exception handling are
discussed in Chapter 10. You become familiar with the
main exception classes and learn how exceptions are
generated. In addition, the chapter describes methods
for creating classes for user-defined exceptions. Some
other issues related to error and exception handling are
also covered.

o Chapter 11 is devoted to generators and iterators. You
will learn to use and apply the generator functions in
different situations. You will also learn what iterators
are and how they are created.

o Chapter 12 contains examples of using PHP programs
in practice. The chapter discusses several subjects that
give an idea of the role PHP codes play in creating web
documents.

At the end of each chapter, for convenience, a summary lists all the
main points discussed in the chapter.

Note This book is primarily for those with minimal programming
experience, so the content is presented as simply as possible.

XXix

CHAPTER 1

The First Program

—I demand to restore the Earth’s ozone layer.
—Alf, we won’t make it by Saturday.

—ALF (TV series)

In this chapter, you will create your first PHP program. Namely, you will
examine some simple code and determine how it can be executed. There is
not much programming in the chapter, but a lot of information is essential
for using PHP.

The Program’s Code

A program in PHP is a set of instructions that an interpreter executes.
These instructions must be appropriately formatted and passed to the
interpreter for execution. The plans are focused on solving the following
two tasks.

e Writing the code of a program
e Launching the program for execution

The second task is much more complex than the first one.

So, let’s create your first PHP program. Namely, let’s define what your
program should do. Traditionally, the first program displays a message.
You will do the same. Your program displays a welcome message in the
output window (terminal). The program is shown in Listing 1-1.

© Alex Vasilev 2024 1
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_1

https://doi.org/10.1007/979-8-8688-0258-4_1

CHAPTER 1 THE FIRST PROGRAM
Listing 1-1. The First Program

<?php
print("Hello, PHP!");
?>

The program begins with the <?php statement and ends with the
?> statement. That is a standard situation for all programs in PHP. The
commands to be executed in the program are placed between these
instructions. In this case, there is a single command. It calls the print()
built-in function with "Hello, PHP!" passed as an argument.

Details

A function is a named block of code (command block) that can be executed by
calling the function (by specifying its name with arguments, if necessary). Functions
can be created in a program, or you can use built-in functions. Among the built-in
functions, there is the print () function.

Text values are enclosed in double quotes. Also, text values can be enclosed in
single quotes. Both styles are almost equivalent, but there are essential differences,
which are discussed a little later.

It is also worth noting that every command in PHP ends with a semicolon.

Q Note Frankly speaking, print() is not exactly a function

but rather a special syntax construction of the PHP language. But
since its properties are similar to a function, consider it a function.
And you proceed in the same way in all such cases.

CHAPTER 1 THE FIRST PROGRAM

As you might guess, the command displays a message in the terminal.
The message’s text is passed to the print () function as an argument. The
following shows the result of running the program.

The output of the program (from Listing 1-1)
Hello, PHP!

There is nothing complicated in this program. It remains only to figure
out how to run the program for execution.

Details

The argument can be specified without parentheses when calling the print()
function. That means that instead of the print("Hello, PHP!™") command,
you can use the print "Hello, PHP!" statement. Another alternative to the
print() function is the echo statement. Namely, the echo "Hello, PHP!"
command could display the message.

The Interpreter Regime

Let’s explore several options, and you can choose the one you like the best.

@ Note There are two regimes of the PHP program execution.

The first one is the execution of a program using an interpreter on a
client computer. The second regime means encapsulating PHP code
in a document with HTML markup. In that case, you must use an
external or local server. Implementing this is a little more complicated
than executing the code with an interpreter, but it is more “natural”
and related to practical PHP usage.

CHAPTER 1 THE FIRST PROGRAM

So, the first thing to do is to create a file with the program, as in Listing 1-1,
and save that file with the . php extension. For example, name the file
hello.php, located in the D: \Books\php\codes folder. Next, execute the
file. At this stage, you need an interpreter, the php.exe file located in the
folder where PHP was installed. Let’s assume that PHP is installed in
the C: \PHP folder. The recipe for launching the program is simple: in the
terminal’s command line, you must execute php.exe, passing the hello.
php file to it (the file with the program) as a parameter. You can make
that simple. You need to specify the full path to the php.exe file in the
command line and, separated by a space, the full path to the file with the
hello.php program. The corresponding command would look as follows.

C:\PHP\php.exe D:\Books\php\codes\hello.php

Nevertheless, specifying the full path to the files is not very convenient.
In principle, you can move to the directory with the php.exe file installed
and save the files with the PHP code in the same place. So, if PHP is
installed in the C: \PHP folder, then to move to it, run the following
command in the command line.

cd C:\PHP

Details

If you need to change a directory and a disk, use the /d option. For example, if you
need to move from the D: \ drive to the C:\ drive, the command looks like cd /d
C:\.

If the hello. php file is located in the same folder as the php.exe file,
then you use the following command to run the program for execution.

php hello.php

CHAPTER 1 THE FIRST PROGRAM

The same command can be used under the Windows operating system
if you add the path to the PHP folder to the Path environment variable and
then move to the folder with the program file.

Details

Select the Advanced system settings item in the computer properties to get
the Path environment variable. In the System Properties window, select the
Environment Variables icon. In the Environment Variables window, select the
Path position and change the contents of the corresponding variable.

The use of development environments simplifies testing and executing
codes. Let’s look at the Visual Studio Code environment as an example.
Figure 1-1 shows the environment’s window with the hello.php file open.

:Q File Edit Selection View Go Run Terminal Help helle.php - codes - Visual Studic Code - O X

EXPLORER =™ hellophp X o -

> OPEN EDITORS ® hello.php
1 <?php — |
2 | print(“Hello, PHPI");
3 b

~ CODES

hello.php

TERMINAL - 1:emd « + M @ ~ x

0:\Books'\php\codes>php hello.php
Hello, PHPI
> OUTLINE D: \Books\php\codes(]

n3,Col3 Spacess3 UTF8 CRUF PHP & 0

Figure 1-1. The Visual Studio Code development environment
window with the hello. php program file open

In the environment window, open the folder with the program file.
(You can use the Open Folder command from the File menu.) The files
from this folder should appear in the Explorer section on the left side of
the development environment window. In this case, select the file with
the program. The file’s contents are displayed in the central part of the
window. You can run the program in the terminal, which is opened using

CHAPTER 1 THE FIRST PROGRAM

the New Terminal command from the Terminal menu. In the example,

you enter the following command in the terminal command line.
php hello.php

If you use the Windows operating system, the Path environment
variable must contain the path to the php.exe file. If not, you must specify
the full path to that file, and the command looks as follows.

C:\PHP\php.exe hello.php

If everything goes well, then the message displayed by the program
should appear in the terminal.

However, the most comfortable and free way to develop is to use the
NetBeans development environment (the site with the installation files is
athttp://netbeans.apache.org). The NetBeans environment window is
shown in Figure 1-2.

) File Edit View MNmigate Sowre Refactor Run Debug Profile Team Tools Window Help Apache MetBeans IDE 19 8T - o x
TS ¢ O TH)» B @ e G

Projects » | Files Senaces

Figure 1-2. The NetBeans window

To create a new project in this environment, select the New Project
command from the File menu, as shown in Figure 1-3.

http://netbeans.apache.org

CHAPTER 1 THE FIRST PROGRAM

(,I H Edit View Navigate Source Refactor Run

1 Wl New Project... *crmsmmm

™ e :
¥ New File.. Ctrl+N
Projt

(&8 Open Project.. Ctrl+Shift+O =
Open Recent Project >

Figure 1-3. Creating a new project

The New Project window opens, as shown in Figure 1-4.

J New Project X
Steps Choose Project
1. Choose Project C), Filter:
2. .
Categories: Projects:
[Java with Maven i@ PHP Application
[Java with Gradle Big PHP Application with Existing Sources
B3 Java with Ant 6§ PHP Application from Remote Server
[HTMLS/JavaScript
[C/C++
[Samples
Description:
Creates a new PHP application in a standard IDE project. Such praject can be easily run
and debugged.
< Back Finish Cancel Hel,
p

Figure 1-4. The window New Praoject for creating a new project

In the window, you select the type of application (a PHP project must
be created). The following New PHP Project window appears, as shown in
Figure 1-5.

CHAPTER 1 THE FIRST PROGRAM

[J New PHP Project

X
Steps Name and Location
1. Choose Project Project Name: MyProject
2. Name and Location
3. Run Configuration Sources Folder; Dr\Books\php\codes\NetBeans v || Browse..
4. PHP Frameworks
5. Composer

PHP Version: PHP 8.2

PHP version is used only for hints
Default Encoding: UTF-8

Put NetBeans metadata into a separate directory

=tadata Folde; ChUsers\Alex\Documents\NetBeansProjects

Finish Cancel Help
x

Figure 1-5. The New PHP Project window to set up the project
parameters

You use the window to perform the project settings, such as the project
name (the Project Name field), project location (the Sources Folder field),
and some others (it makes sense to leave them as they are by default).

In the next window, a runtime environment is selected. You are
interested in running from the command line. To do that, select the Script

(run in command line) option in the Run As drop-down list, as shown in
Figure 1-6.

CHAPTER 1 THE FIRST PROGRAM

[J New PHP Project

X
Steps Run Config
1. Choose Project Specify the way this project’s files will be deployed.
2. Name and Location g N - - . 0 q N
Configuration settings can be added and modified later in the Project Properties dialog box.
3. Run Configuration wgurat i o n : perties Cla10g 0ok
4. PHP Frameworks
5. Composer Run As: Seript (run in command line) ~
PHP Interpreter: C\PHP\php.exe Configure...

< Back Finish Cancel Help

Figure 1-6. Selecting a runtime environment

The PHP Interpreter field specifies the location of the PHP interpreter
(in this case, C: \PHP\php.exe). The settings in other windows should be
left unchanged. Figure 1-7 shows the window of the newly created project.

i Projects x | Files Services
| - ¥ mrcna

Maagasar

O Fle EdR View Mavigate Souce Rescior Rn Debug Profie Team Took Window Hep

EEHBS D@ [(o

MyProject - Apache MetBeans IOE 15 L= = o x

@ TH PR pagegC G

@ 13

Figure 1-7. The window of the newly created project

CHAPTER 1

THE FIRST PROGRAM

Add the index.php file to the Source Files folder in the Projects tab if

necessary. To do that, select the PHP File item in the New submenu of the

context menu, as shown in Figure 1-8.

U File Edit View MNavigate Source Refactor Run Debug Prof

‘t,m % l—‘@) @?—] : | <default> v e

Projects x = Files Services =

~ §i§ MyProject
W& Source Fil
> '@ Include Pat New 81 [Folder...
T " PHPFile...
ownload... :
E File...
Upload... D o s
PHP Web Page...
Synchronize... @ eALege
! . | [PHP Class..
Navigator x History ?| [s PHP Interface.. L
Find.. [€] HTMLFile..
[€] XHTMLFile..
Paste CUI*V | &) JavaScript File..
Tools 5| Wy Cascading Style Sheet...
) B SassFile..
Properties
| B LESS File..
Other...

Figure 1-8. Adding a file to the project

Enter the file name in the File Name field in the New PHP File

window, shown in Figure 1-9.

10

CHAPTER 1 THE FIRST PROGRAM

J New PHP File

X
Steps Name and Location
1. Choose File Type File Name: | index.php
2. Name and Location
Project: MyProject
Folder: Browse...

Created File: | D:\Books\php\codes\NetBeans\index.php

Figure 1-9. The File Name field with the name of the file

@ Note In some NetBeans versions, the index. php file is

automatically created in the project folder.

The code of the index.php file is entered in the editor window.
Figure 1-10 illustrates the situation.

11

CHAPTER 1 THE FIRST PROGRAM

) Fle Edit WView MNmigate Scurce Refactor Run Debug Profile Team Tooks Window Help MyProject. O Search (Culel =T
N o . o o . B A A
FEESG D@ e @ TH DB 0 kg GG
Projecss » | Files Servces _ [dl indexphp = » 0
W MyFroject Somce]| Hmory BE-H- QTSFEOLIFL AU OB #
T Source Files
= bl php N
- 2 print("Hello, PHPI")s b
Inchude Path 8l L
Mavigator

Fiers B8 (2 & (@

Figure 1-10. The index. php file with the code

Then, run the code for execution. To do that, click the icon with a large
green button on the toolbar or select the Run Project command from the
Run menu, as shown in Figure 1-11.

() File Edit View Navigate Source Refactor m Debug Profile Team Tools Window Hel

FEE D s DN

Test Project (MyProject) Alt+F6
Projects = | Files Services = g
;ﬁs = ¥ Build Project (MyProject) F11
MyProject s . i . i
Clean and Build Project (MyProje Shift+F11
'@ Source Files 9 L ect MyProjecn

=i_index| 2 Set Project Configuration >
ES Include Path 3 Set Project Browser >
Set Main Project >

B8 Open Java Shell for Project (N

Generate Javadoc

Hayipacor:x = Run File Shift+F6
Test File Ctrl+F6

Compile File F9

@ Check File Alt=ES

V Validate File Alt+Shift+F9

Repeat Build/Run Ctri+F11

Stop Build/Run
Fiters: 88 @ & &

Figure 1-11. Running a PHP program for execution

12

CHAPTER 1 THE FIRST PROGRAM

The result of executing the code is displayed in the output area at the
bottom of the NetBeans IDE window (see Figure 1-12).

) e Edit Wiew Nmigate Scwree Refactor Run Debug Profile Team Tooks Window Help MyProjest. (dr Search (Cu- = o =

PEBS DE e O TH D HE

Projects . Files Services [indexpnp « 0
W MyFroject Soace | History | B8 gl - ALFELAFL QA2 o #
i) %ﬂll((‘ hes v <rphp
= - print ("Hell " -
& Include Path o
Cutput - Run (MyProject) = =
o | vc:\eP\php.exe® "D:\Books\php\codes\NetBeans\index.php®

Hella, FHF!
Done.

&

Fites B8 (@ & (@

Figure 1-12. The result of the program execution

Thus, you can edit the program code conveniently and run it for

execution.

@ Note The NetBeans environment has a simple and user-

friendly configuration system. Its description is beyond the scope of
the book. At the same time, if necessary, you can deal with related
technical issues on your own.

It is also worth noting that some settings related to working with PHP
are performed in a special window, which can be accessed using the
Options command from the Tools menu.

In NetBeans, you can create a single file with PHP code instead of
creating a project. To do that, in the NetBeans development environment
window, select the New File command from the File menu (see
Figure 1-13).

13

CHAPTER 1 THE FIRST PROGRAM

Proji

Figure 1-13. Creating a file in NetBeans

Close Project

U RGN Edit View Navigate Source

Ctrl+Shift+N }

: jé; 7] New Project..

@ Open Project...
Open Recent Project

Ctrl+Shift+0 l

>

The New File window opens, in which you select the file type to be

created (see Figure 1-14).

Figure 1-14. Selecting the file type

14

J New File x
Steps Choose File Type
1. Choose File Type Project: 7
e
Q Filter
Categories: File Types:
[] HTMLS/JavaScript HTML File
[%ML XHTML File
Java File
(3 Other JavaScript File
React JSX File
I JSON File
Properties File
Cascading Style Sheet
E Dockerfile
3 Folder
Description:
Creates an empty file with an arbitrary extension on your disk.
< Back Finish Cancel Help

CHAPTER 1 THE FIRST PROGRAM

In particular, select Other in the Categories section and Empty File

in the File Types section. Then, the New Empty File window appears (see
Figure 1-15).

(J New Empty File

Steps Name and Location

1. Choose File Type
2. Name and Location

File Name: | hello.php

Project: MNone

Folder: DA\Books\php Browse...

Created File: | D:\Books\php\hello.php

Cancel
Figure 1-15. The window to determine the file name
In this window, you set the file name (hello.php in the File Name

field). The Folder field specifies the file location (in this case, D: \Books\

php). As a result, an empty file is created into which you enter the program,
as shown in Figure 1-16.

15

CHAPTER 1 THE FIRST PROGRAM

) Fie Edit View Mavigite Source Refactor Run Debug Profile Team Tools Window Melp Apache. (L - o x
HEES D @ TH)» B @ »~JgCG
Projects = Hiles Senices . l hellophg x v
Souce | Hitory & aes F 4 @2l e *
¥ E <mprp .
"] -
”»
[} 3 INS Unix (LF)

Figure 1-16. The file with the program in the NetBeans window

To run the file with the code for execution, select the Run File
command in the Run menu (see Figure 1-17).

[} File Edit View Navigate Source Refactor JilLM Debug Profile Team Tools Window

PEHED D B st B (€

Test Project Alt+F6
Projects x | Files Services — [hellc T susd Projec - [
SOUIES| *By Clean and Build Project Shift=F11 E % |9
g T ' : _ i
2 Set Project Configuration >
3| - Set Project Browser >

Set Main Project

% Open Java Shell for Project

Generate Javadoc
<No Project Open>
Test File Ctri+F6 |
Compile File F9

@ CheckFile

¥ validate File

Repeat Build/Run Ctrl+F11

Stop Build/Run

Figure 1-17. Running the file with code for execution

16

CHAPTER 1 THE FIRST PROGRAM

After you run the program for execution, the result appears in the
output area at the bottom of the development environment window, as
shown in Figure 1-18.

) File Edit View Mavighte Source Refactor Fun Debug Profile Team Tool Window Help Apache. Tl Seasch (Crie - a x

TS DE @ TH B0 usee (b G

Projects w0 Filss Services [hetlashe ~
Source | Hisory | [[- QAEFEOLLPLTL G2 e

¥ C <wphp

@ print(“Hello, PHPI™);

al Lo

= B0

Output - Run thelio.php) = =
1] “C:\FHF\Php.exe" “D:\Beoks\php\hells.php
| Helle, PHP!

«| Done
4

@ 225 INS

Figure 1-18. The result of executing the program from the file

Q Note When you run the file for execution, the Run File
window appears, in which you just need to click the OK button.

Details

Sometimes, it is vital to ensure that the encoding of the development environment
editor matches the encoding in which the file is written and the encoding of the
output area. You can change the default encoding of the NetBeans Environment
Editor. To do that, open the netbeans. conf file (located in the etc subfolder

of the folder where the NetBeans environment is installed). Then, find the
netbeans_default_options parameter and append the value -J-Dfile.
encoding=UTF-8 (UTF-8 encoding is used) by the space. If there are any
problems, it is recommended to consult the NetBeans IDE Help.

17

CHAPTER 1 THE FIRST PROGRAM

What software to use depends on taste, personal preferences, and
technical capabilities. The main thing is to check the performance of the
program codes from the book.

The Server Regime

Another regime of testing how PHP programs operate is using a server that
executes the programs. An external and local computer can be used as a
server. Let’s start with the second case.

You are going to encapsulate PHP code into an HTML document.

HTML BASICS

To create web pages, a special document markup is used. That markup
defines the document’s structure and how its separate blocks are formatted—
namely, the declarative language HTML (short for Hypertext Markup
Language). The corresponding document contains plain text and special
instructions called tags or descriptors. The instructions are for the browser
that displays the document according to those instructions.

Let’s use the HTML code shown in Listing 1-2.

Listing 1-2. The HTML Code of the First Project

<!DOCTYPE html>
<html>
<head>
<title>The First Program</title>
</head>
<body>
<?php

18

CHAPTER 1 THE FIRST PROGRAM

print("Hello, PHP!");
?>
</body>
</html>

This code must be saved in a . php file. It is the hi.php file located in the
D:\Books\php\codes directory.

HTML BASICS

An HTML document begins with the < IDOCTYPE html> statement that
defines the specification of the document. The document’s contents are placed
between the <html> and </html> tags. Metadata for the document is placed
in the block defined by the <head> and </head> tags. In this case, there is
only one element, separated by the <title> and </title> tags (the title
element). The text The First Program contained in that element serves as
the title for the web page (displayed on the document tab in the browser).

The document’s contents rendered by a browser are placed in a block marked
with the <body> and </body> tags. There is only one snippet of PHP code
similar to that from Listing 1-1. When the server executes that code, the text
is added to the web document at the appropriate place. The print("Hello,
PHP!") command prints the text. In other words, the text "Hello, PHP!"is
added to the web page, and all that can be seen when you open the document
with a browser. But how to open the web page is another question.

If you try to open the hi.php file with a browser, the result is not quite
what you might expect. Namely, the file code is displayed in the browser
window, as shown in Figure 1-19.

19

CHAPTER 1 THE FIRST PROGRAM

b = (| *
@ hiphp x +

& O @ File | DyBooks/php/codes/hiphp Q@ ¥ @ 0O@:

<IDOCTYPE html>
<html>
<head>
<title>The First Program</title»
</head>»
<body>
<«?php
print(“Helle, PHPI™);
[
</body>
</html>

Figure 1-19. Trying to open the hi.php file in a browser

To get a different result, you need to run a local server. To do that, run
php.exe with the -S option, followed by the localhost keyword, and,
separated by a colon, a port number for the local server. In principle, the
port number is arbitrary, but making it greater than 5000 is reasonable.

Details

In general, a port number is a number between 1 and 65535. The system processes
use primary numbers for the ports.

After that, in the command line, specify the -t option and a link to the
folder you want to identify with the root directory of the local server. More
specifically, let’s say the command looks as follows.

php -S localhost:6789 -t D:\Books\php\codes

The instruction runs the local server using port 6789. The server’s
root directory is identified with the D: \Books\php\codes folder. Such a
command is correct if the Path environment variable contains the path to
the php.exe file or if it is executed from the folder where the php.exe file is
located. In general, the command might look as follows.

C:\PHP\php.exe -S localhost:6789 -t D:\Books\php\codes

20

CHAPTER 1 THE FIRST PROGRAM

Here, the full path to the php.exe file is specified.
If everything is done correctly, the local server is started. Now, open
the browser and enter the following instructions in the address bar.

localhost:6789/hi.php

As aresult, when opening the hi.php file, your computer emulates a
server job. The result should look like what’s shown in Figure 1-20.

~ = m) x
@ The First Program x 4+
5 C O © localhost678%hiphp @ 2 & @ * O @ ¢
Hello, PHP!

Figure 1-20. Displaying the hi. php file in the local server regime

@ Note The path to the displayed file begins from the folder

specified when starting the local server. In this case, it is the D: \
Books\php\codes folder.

You can use the mentioned NetBeans development environment to
debug an HTML code with a PHP script encapsulated in it. Creating a
new project is similar to the one discussed. However, when choosing a
runtime environment (see Figure 1-6), select PHP Built-in Web Server
(running on built-in web server) in the Run As drop-down list, as shown

in Figure 1-21.

21

CHAPTER 1 THE FIRST PROGRAM

) Mew PHP Project

X
Steps Run Config
1. Choose Project Specify the way this project’s files will be deployed.
2. Name and Location 2 . - o . . "

f 3

3. RunConfiguration Configuration settings can be added and modified later in the Project Properties dialog box.
4. PHP Frameworks
5. Composer Run As: PHP Built-in Web Server (running on built-in web server) ~

Hostname: localhost
Port: 8000
http://localhost:3000/

Note:
PHP 5.4.0 or newer is required.

< Back Finish Cancel Help

Figure 1-21. Setting up the runtime environment for an HTML
document

The Hostname field contains the local host’s name, and the Port field

contains the port number. You can leave the default values there.

As a result, you should create a new project with the index.php

file. Enter the HTML code (with the PHP script) in that file, as shown in
Figure 1-22.

22

CHAPTER 1 THE FIRST PROGRAM

) File E View Navigate Source Refasctor Run Dwbug Profile Team Tock Window Help MiyProject - Q- se - a x
(" ;. o o . . ™
PSS D oo @ TH DB O e G
Projects x | Fies Services — [l indexphp x »0
W MyProject Sl Moy [B QTITOFLR QA S B W
[Source Files e
@ ey - "
@ Inchude Path j N =
@ Projes L
3
A
Navigator — 4 PHR!™)
EZ nmi 3
(3 nesd 12
e 11 =
13 vouy
Fiters: @ (8 & (@
@ 434 N5

Figure 1-22. The project window with the HTML code and the
PHP script

Q Note Except for the page name, the code is the same as in
Listing 1-2.

When you run the project, the browser opened on the local host is
automatically launched. The result is shown in Figure 1-23.

~ = a *
@ The NetBeans Project x +
> C O @ localhost:8000 Q 2 % 20 @
Hello, PHP!

Figure 1-23. The browser is opened on the local host

23

CHAPTER 1 THE FIRST PROGRAM

Details

You have to account for the following circumstances. Suppose a certain address

is entered in the browser’s address bar without specifying a file. In that case, the
index.html file, or, as in this case, the index. php file, is automatically opened
in the corresponding directory. Running a project means starting a local server; the
server’s root directory is identified with the project folder. Since the index. php file
is located there, it is the file that is opened and processed by the local server.

Finally, another way to test the PHP code is to host the corresponding
file on an external server. That is the most reliable way of testing, but it has
a significant drawback since not everyone has such an opportunity. But
in general, the idea is simple. The file is uploaded to the server and then
opened using a browser. Figure 1-24 shows a browser window where the
document with the address www.vasilev.com.ua/php/hi.php is opened.

R = (=] %
@ The First Program h 3 +
« CcC O & vasilev.com.ua/php/hiphp = 4 @& #» 0 ‘ H
Hello, PHP!

Figure 1-24. The pagewww.vasilev.com.ua/php/hi.php is opened
in the browser window

Another inconvenience of using the external server is that you need to
change a file not located on the local computer.

24

http://www.vasilev.com.ua/php/hi.php
https://www.vasilev.com.ua/php/hi.php

CHAPTER 1 THE FIRST PROGRAM

@ Note Of the many options offered, it is necessary to choose

one. In principle, running program codes from the command line using
the PHP interpreter is more than an acceptable option. It is suitable for
testing examples from all chapters except the last one. You have to
use the local server regime to see the result of the PHP scripts.

Summary

o The upcoming chapters discuss the features of the
PHP language. The functionality of the code covered
in them can be tested in the interpreter regime. To do
that, save the program in a file with the . php extension
and execute the corresponding instruction in the
command line.

e A good choice for developing PHP projects is the
NetBeans development environment. It allows you to
create projects for testing both in the interpreter regime

and using a local server.

o To test the correctness of the program execution in the
server regime, you can use the following template (the
PHP code is placed in the block between the <?php and
?> instructions).

<!DOCTYPE html>
<html>
<head>
<title>The title of the page</title>
</head>

25

CHAPTER 1 THE FIRST PROGRAM

<body>
<?php
// The PHP code
?>
</body>
</html>

26

CHAPTER 2

Variables and
Data Types

We can’t throw these things away. These are a part of who
we are.

—ALF (TV series)

As usual, programs operate with data. And the data needs to be stored
somewhere. If you deal with small blocks of information, variables are a
good place to store it, which is the focus of this chapter. The chapter also
discusses the main data types used in programs and the basic operations
performed with variables.

Introduction to Variables

In its “classical” sense, a variable is a named block of memory that can

be accessed through the name to read a value from memory or write a
new value there. In PHP, creating variables is quite simple: you just need
to assign a value to the variable. In other words, the variable appears in a
program when a value is assigned to it.

There is a rule in PHP: the name of a variable begins with the $ symbol

(this symbol is part of the variable name). To assign a value to a variable,
you specify the variable’s name, then put the assignment operator (equal

© Alex Vasilev 2024 27
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_2

https://doi.org/10.1007/979-8-8688-0258-4_2

CHAPTER 2 VARIABLES AND DATA TYPES

sign =) and the value to be assigned to it. For example, the $number=123
command assigns the integer 123 to the $number variable, and the
$text="Hello, PHP" command assigns the text value "Hello, PHP" to the
$text variable.

Q Note In PHP, there is no such thing as a variable type.
Variables do not have a type. But the value that the variable refers to
has a type. At different stages of program execution, the same
variable can refer to values of different types.

First, let’s look at Listing 2-1, a small example that uses a variable.

Listing 2-1. Creating a Variable

<?php
// Creating a variable:
$number=123;
A message that contains the name of the variable:
print 'The variable $number: ';
/*
A message that contains the name of the variable:
*/
print "the value is $number";
?>

The result of the program execution is as follows.

The output of the program (from Listing 2-1)
The variable $number: the value is 123

In the program, you also meet three types of comments
allowed in PHP.

28

CHAPTER 2 VARIABLES AND DATA TYPES

@ Note A comment is a text in a program destined for the

programmer and ignored when the program is executed. In other
words, comments explain the purpose of commands but do not affect
the program execution.

There are single-line comments. A single-line comment begins with
the double slash // or the # character. Anything to the right of the // or #
characters is a comment. In addition to single-line comments, there are
multi-line comments. Such comments can span multiple lines. A multi-
line comment begins with /* and ends with */. Everything between these
characters is a comment. The program used all three types of comments,
although there was no need for that.

In addition to comments, the program contains several noteworthy
commands. The first is the $number=123 instruction, which creates the
$number variable with the value 123. In addition to that, there are two
more commands for displaying messages in the terminal. Although both
commands use the print() function, they are different.

@ Note This time, you pass an argument to the print()

function without parentheses.

The difference between the commands is as follows. In the first case,
the text to be displayed is enclosed in single quotes. In the second case,
the text is in double quotes. In principle, in both cases, you get text. That
means single and double quotes are two different ways to create a text.
They are almost equal. But some differences also exist. In this case, both
text values (' The variable $number: 'and "the value $number")
contain the name of the $number variable. So, if the variable’s name occurs
in the text enclosed in single quotes, then when the text is displayed in the
terminal, the variable’s name is displayed. If the variable’s name is placed

29

CHAPTER 2 VARIABLES AND DATA TYPES

in the text enclosed in double quotes, then when displayed in the output
window, its value is substituted instead of the variable’s name. Therefore,
when executing the print 'The variable $number: 'command, exactly
the text in single quotes is displayed. But when executing the print "the
value $number" command, then, instead of the name of the $number
variable, its value 123 is substituted in the text.

Q Note Asa result of calling the print() function, the value

of the argument passed to the function is displayed in the output
window. But there is no line break in the output area. Therefore, two
messages are displayed sequentially in the program discussed, one
after the other in the same line.

Notably, many common tasks in PHP can be performed in different
ways. The examples are several types of comments, several ways to
create text literals, several instructions for displaying messages, and
the list is not complete. The situation is typical for PHP. In this sense,
the language is very convenient and “comfortable” if such a definition
is suitable for a programming language.

Details

Along with variables, you can also use constants. A constant differs from a variable
in a way that the value of the constant cannot be changed. To create a constant, use
the define() function, the first argument of which is the name of the constant, and
the second argument is the value of the constant. The dollar symbol $ is not used

in the constant name. Constant names usually consist of capital letters. For example,
the define("NUMBER",123) command defines the NUMBER constant with the
value 123. You can check the existence of a constant with a specific name using the
defined() function. The function argument is the name of the constant (in quotes).

30

CHAPTER 2 VARIABLES AND DATA TYPES

Basic Data Types

As noted, variables have no type. Nevertheless, the value referred to by a
variable has a type. You can use the gettype() function to determine the
value type that the variable refers to. The variable is passed as an argument
to the function. The result of the function is a text with the name of the
type. In particular, integer numbers are of the integer type. Real numbers
(floating point numbers) are of the double type. Text is of the string type.
There is also the boolean type (logical values true or false), array (an
array), object (an object), resource (a reference to an external resource),
and NULL (which means no value for the variable). A small example that
illustrates the situation is shown in Listing 2-2.

Listing 2-2. The Type of Value

<?php
// An integer number:
$value=123;
echo $value," => type ",gettype($value),"\n";
// A text:
$value="text";
echo $value," => type ",gettype($value),"\n";
// A real number:
$value=12.3;
echo $value," => type ",gettype($value),"\n";
// The null reference:
echo $VALUE," => type ",gettype($VALUE),"\n";
?>

31

CHAPTER 2 VARIABLES AND DATA TYPES

The result of the program execution is as follows.

The output of the program (from Listing 2-2)
123 => type integer
text => type string
12.3 => type double
=> type NULL

£ The PHP 8 Standard When using PHP 8 and higher, you get a
warning about the unknown variable $VALUE, which appears
between the type and NULL tokens.

Here, you deal with a simple program. The $value variable gets
consequently different values, and its type is determined for each value. To
determine the type, use the gettype() function, the argument of which is
the $value variable.

Q Note The last command is remarkable. It uses the $VALUE

variable. That is far from being the same as the $value variable
since variable names are case-sensitive (it matters whether the
variable name contains capitalized letters or small ones). Therefore,
$value and $VALUE are different variables.

To display values, an instruction based on the echo keyword is used.
To the right of the instruction, comma-separated values are listed. They
are displayed in the output area. In particular, these are the current value
of the $value variable, the " => type " string, the name for the value
type of the $value variable, which is calculated by the gettype($value)
statement, and the escape sequence "\n".

32

CHAPTER 2 VARIABLES AND DATA TYPES

Details

The \n instruction is a so-called escape sequence. If such an instruction is placed
in a text enclosed in double quotes (this is important!), a line break is performed at
the appropriate place when the text is displayed. Therefore, one should “print” the
text "\n" to break a line. The \n escape sequence is not the only one in PHP. For
example, the \ 't instruction inserts a tab character into a text.

The last statement echo $VALUE," => type ",gettype($VALUE),"\n"
requires special explanation. As noted, PHP interprets uppercase and
lowercase letters in the variable names (as opposed to the function names)
as different characters. Therefore, the $VALUE variable has nothing to do
with the $value variable.

In the preceding statement, try to display the value of the $VALUE
variable in the output area, although the value has not been assigned yet
to the variable. The variable has no value; in other words, the value of the
variable is the NULL reference. That confirms the call of the gettype()
function with $VALUE as an argument. When trying to display the value
of the $VALUE variable, since it is missing, nothing is displayed in the
output area. In this sense, the PHP language is more than “liberal” when a
variable has no value.

@ Note There are quite a few functions designed to

manipulate data types. An example is the settype() function used
to apply a type. The get_class() function allows you to determine
the class of an object. You can check the existence of a function using
the function_exists() function. The existence of a method is
checked using the method_exists() function. You can check if a
variable refers to a callable object using the is_callable()
function. There is a group of functions that allow you to check if data
belongs to a specific type: is_array() (whether the variable refers

33

CHAPTER 2 VARIABLES AND DATA TYPES

to an array), is_bool() (whether the variable refers to a boolean
value), is_float() (whether the variable refers to a real number),
is_int() (whether the variable refers to an integer), is null()
(whether the value of the variable is the null reference), is
numeric() (whether the variable refers to a number or a string with
a text representation of a number), is_object() (whether the
variable refers to an object), is_resource() (whether the variable
refers to a resource), is_scalar () (whether the variable refers to a
scalar value), is_string() (whether the variable refers to a text).

Details

In addition to using the settype() function to change the type of a value explicitly,
you can use the (type_name) instruction (a type name in parentheses) that
precedes the value whose type is to be converted. For example, the (int) or
(integer) instructions are used to cast to the integer type, the (bool) and
(boolean) instructions are used to cast to the boolean type, the (string)
instruction is used to cast to the text type, and the cast of a value to the real
numeric type can be performed with the (float), (double), or (real)
instructions (the last instruction has been deprecated in PHP 8). Also, there are other
options.

The Arithmetic Operations

Some basic operations can be performed on variables and values of
different types. Conventionally, all operations can be divided into
arithmetic, logical, comparison, and bitwise. Let’s also examine operations
with text, assignment operations, and the ternary operator.

34

CHAPTER 2 VARIABLES AND DATA TYPES

Details

Sometimes, you need to check if a value is assigned to some variable. In that case,
you can use the isset() function (the name of the variable to check is passed as a
function argument). To remove a variable, use the unset () function.

It is worth mentioning that the arithmetic operators +, -, *, and /
are used to calculate the sum, difference, product, and quotient of two
numbers, respectively. You use the ** operator (or the pow() function) to
exponentiate. The % operator calculates the remainder of a division.

In addition to these binary operators, you can use the unary increment
++ and decrement - - operators. Moreover, they have the prefix and the
postfix form.

Details

Binary operators have two operands. Unary operators have one operand. The prefix and
postfix forms of the increment and decrement operators differ in whether the operator
is placed before the operand (the prefix form) or after the operand (the postfix form).

Regarding “action” on the operand, the postfix and prefix forms are
equivalent. The increment operator ++ increases the value of the operand
by one, and the decrement operator -- decreases the value of the operand
by one. For example, if the value of the $number variable is 100, then after
executing the $number++ statement, the variable’s value will be 101. The
result will be the same if you use ++$number instead of the $number++
statement: the $number variable gets the new value 101. However, there
is a difference between the postfix and prefix forms. The value of the
expression with the postfix form of the increment/decrement operator is
the “old” (which was before applying the operator) value of the operand.
The value of the expression with the prefix form of the increment/
decrement operator is the “new” (calculated after applying the operator)
value of the operand.

35

CHAPTER 2 VARIABLES AND DATA TYPES

Details

Let’s say there are commands $A=100 and $B=100. After executing the $a=$A++
and $b=++$B commands, $a has the value 100, and $b, $A, and $B have the value
101. That is because after executing the $A++ and ++$B statements, the $A and $B
variables increase their values by one (and get the value 101), but the value of the
$A++ expression is 100, and the value of the ++$B expression is 101. So, the $a
variable gets 100 as its value, and $b gets 101 as its value.

Examples of arithmetic operations are collected in Listing 2-3.

Listing 2-3. The Arithmetic Operations

<?php
// Variables:
$A=5;
echo "[1] $A = ",$A,"\n";
$B=3;
// Arithmetic operations:
echo "[2] $B = ",$B,"\n";
echo '[3] $A + $B = ', $A+$B,"\n";
echo '"[4] $A - $B = ',$A-$B,"\n";
echo "[5] $A * $B = ',$A*$B,"\n";
echo "[6] $A / $B = ',$A/$B,"\n";
echo "[7] $A ** $B = ',$A**$B,"\n";
echo "[8] $A % $B = ',$A%$B,"\n";
$A++;
echo '[9] $A = ',$A,"\n";
--$B;
echo '[10] $B = ',$B,"\n";

?>

36

CHAPTER 2 VARIABLES AND DATA TYPES

The result of the program execution is as follows.

The output of the program (from Listing 2-3)

[1] $A =5

[2] $B = 3

[3] $A + $B = 8

[4] $A - $B = 2

[5] $A * $B = 15

[6] $A / $B = 1.6666666666667
[7] $A ** $B = 125

[8] $A % $B = 2

[9] $A =6

[10] $B = 2

Here, everything is quite simple, and it is believed that the result of the
program execution does not require comments.

The Comparison Operations

In addition to the arithmetic operations, there are also the comparison
operations. Those operations are implemented through the following
operators: < (less than), <= (less than or equal to), > (greater than), >=
(greater than or equal to), == (equal to), ! = (not equal to), === (identically
equal to), | == (identically not equal to), and the <=> comparison operator.
Most of the operators in the list are traditional and easy to understand.
Maybe the exceptions are the <=> operator, equal/not equal to operators,
and identically equal/identically not equal to operators.

It is important to know that when using the operators (including
comparison ones) with operands of different types, automatic type
conversion is performed. That means that to execute a statement, certain
algorithms are automatically applied to transform the values of the
operands in the statement. With the == and != operators, the comparison

37

CHAPTER 2 VARIABLES AND DATA TYPES

involves automatic type conversion. For example, you get true if you use
the == operator to compare the boolean value true and the integer value 1
(the true==1 statement). The reason is that non-zero values are interpreted
as true, and zero values are interpreted as false. Therefore, not only

the true==1 statement gives true but also the true==2, true==-10, and
false==0 statements.

Details

If you try to print the boolean value true, the 1 value is printed. Moreover, the
boolean value false is not displayed at all. Instead of this value, the empty text is
printed (that is, the text without characters).

But there are also more exotic options. For example, the 123=="123"
statement, where you compare the 123 number and the "123" text for
equality, gives true. That is because, here, the automatic conversion of
the textual representation of the number "123" into the integer value 123
comes into play.

The comparison mode described may or may not be convenient.

It depends on the context of the problem being solved. If you want the
comparison to be performed without automatic type conversion, the ===
and !== operators should be used. For example, the true===1, false===0,
and 123==="123" expressions give false.

2 The PHP 8 Standard In PHP 8, the rules for comparing values
have changed somewhat. The main innovation is that an empty text
value is not interpreted as equal to zero. For example, in PHP 8, the
value of the 0=="" expression is false, while the value of the
0=="" expression in previous versions of PHP is true.

38

CHAPTER 2 VARIABLES AND DATA TYPES

Regarding the comparison operation <=>, it is performed as follows.
Let’s say you have an expression like $A<=>$B. The result of such an
expression is -1, provided that the value of $A is less than that of $B. If the
value of the $A variable is greater than that of the $B variable, then the
$A<=>$B expression evaluates to 1. Finally, if the $A and $B variables have
the same value, the $A<=>$B expression gives the value 0.

Details

An operation of the form $A<=>$B can be thought of as one that returns the

sign of the difference between the values of $A and $B. Moreover, keep in mind
that the operation involves automatic type casting. Therefore, for example,

the "123"<=>123 expression gives 0 since the text "123" is automatically
converted to the number 123. Accordingly, the value of "123"<=>12 equals 1. The
true<=>123 expression has the value 0 because the non-zero integer value 123 is
automatically converted to the boolean value true.

The Logical Operations

The logical operators are designed to perform operations on values of the
boolean type (here, you also must keep in mind automatic type casting).
To perform the logical operations, you use the binary operators && (logical
and) and | | (logical or), as well as the unary logical negation operator !.

The value of an expression of the form $A8&$B is true if the operands
$A and $B, accounting for automatic type casting, both are equal to true.
If at least one of the operands is Talse (or is interpreted after automatic
type casting as one with the false value), then the $A&&$B expression
gives false.

39

CHAPTER 2 VARIABLES AND DATA TYPES

@ Note Simply speaking, the $A&&$B expression is true only
if both operands $A and $B in the expression are true.

The value of an expression of the form $A| | $B is true if at least one of
the operands $A or $B is true or its value is cast to true due to automatic
type casting. If both operands are false, then the value of the entire
expression is false.

@ Note It turns out that the value of the $A| | $B expression is

true if at least one of the operands in the expression is true.

It is worth mentioning that expressions based on the operators && and
| | are calculated from left to right according to the simplified scheme.
Namely, if it is possible to determine the result of the entire expression after
evaluating the first operand, then the second operand is not evaluated.

Details

If in an expression of the form $A&8$B, the first operand $A turns out to be false,
then the value of the entire expression is equal to false, regardless of the value of
the second operand $B.

In an expression of the form $A| | $B, if the first operand $A is true, the
value of the entire expression is true, regardless of the second operand $B value.
Therefore, in these cases, the value of the second operand is not calculated.

The logical negation operator ! is a unary one. The value of an
expression of the form !$A is true if the value of the operand $A is false
(or is converted to false due to automatic type conversion). If the value of
the operand $A is true (or is reduced to that value), then the! $A expression
is false.

40

CHAPTER 2 VARIABLES AND DATA TYPES

Details

There exist “twins” for the operators && and | |. They are, respectively, the and
and or operators. These operators have lower precedence than the 88 and | |
operators. In some cases, it could be convenient to use them.

The Bitwise Operations

The bitwise operations are performed at the level of the binary (bitwise)
representation of a number. Therefore, to understand the consequences of
performing such operations, it is necessary to have at least an elementary
idea of how numbers are encoded in the binary system.

Details

In the binary representation, a number is written as a sequence of zeros and ones.
Formally, that can be represented as a,a, ,...a,a,a, , where the parameters a,, a;,
..., 4, can take the value 0 or 1.

To convert a positive number from the binary to the decimal system, you can
use the formula a,a, ,...a,a,a, =a,2° +a,2' +a,2* +...+a, 2" +a,2".

Let’s take a look at the basic bitwise operators, starting with the bitwise
and operator &. Suppose an expression like $A&$B is evaluated. Its result is
anumber. The binary code of that number is calculated following such a
rule. The binary codes of the operands $A and $B are compared. Namely, in
those binary codes, the corresponding bits are compared. The comparison
result gives a bit for the expression value number.

Details

A computer uses a certain fixed count of bits to remember a number. Therefore,
whatever the values are, they are implemented by the same count of bits, and there
is a one-to-one correspondence between those bits.

41

CHAPTER 2 VARIABLES AND DATA TYPES

With the & operator, you get bit 1 if both bits being compared are 1. If at
least one bit is 0, the result is a zero bit. For example, the value of the 13&21
expression is the number 5. The explanation is as follows. The binary code
of the number 21 is 10101. The binary code of the number 13 is 01101. The
result of the 13821 expression is calculated in such a way: the codes 01101
and 10101 are compared bit by bit, and if two bits are 1, then the output is
1. In all other cases (if at least one bit is 1), you get 0 as the output.

& 01101
10101
00101

As aresult, you get the 00101 code, which corresponds to the
number 5.

@ Note The binary representation of numbers used only five

positions (bits). All other (previous) bits are assumed to be zero.

Using the bitwise operator or | when comparing bits in numbers,
you get 1 if at least one of the bits is 1. In other words, the result of an
expression like $A | $B is a number whose binary code is obtained by
comparing the binary codes of the numbers $A and $B. In the number you
get, a bit at a particular position is 1 if at least one of the compared bits at
the same position in $A and $B is 1. If both compared bits are 0, the result
is a bit with the value 0. Thus, the result of the 13|21 expression is 29 (the
binary code 11101).

| 01101
10101
11101

42

CHAPTER 2 VARIABLES AND DATA TYPES

The bitwise exclusive or operator * is different from the bitwise or | in
that the output is 1 if one and only one of the bits being compared is 1. In all
other cases (two bits are 1 or two bits are 0), the result is a bit with the value
0. For example, the result of the 13”21 expression is calculated as follows.

~ 01101
10101
11000

The code 11000 corresponds to 24. That is the value of the 1321
expression.

The bitwise inversion operator ~ is a unary one. The result of an expression
of the form ~$A is a number whose binary code is obtained from the code of
the number $A by replacing zeros with ones and ones with zeros. In that case,
the code of the number $A does not change, and a new value is calculated.

@ Note As you will see later, the value of the ~$A expression is

the number - ($A+1). For example, the value of the ~5 expression is
the number -6.

The bitwise shift operations (when the bit representation of a number
is shifted several positions to the right or left) are performed using the
<< (shift to the left) and >> (shift to the right) operators. The value of an
expression of the form $A<<$n is a number whose binary code is obtained
by shifting the binary code of the number $A by $n positions to the left.
The left bits are lost, and the right bits are filled with zeros. The value of an
expression of the form $A>>$n is a number whose binary code is obtained
from the binary code of the number $A by shifting $n positions to the right.
The right bits are lost, and the left bits are filled with the sign bit’s value
(the first bit, which is 0 for positive numbers and 1 for negative numbers).

43

CHAPTER 2 VARIABLES AND DATA TYPES

Details

Coding negative numbers has its peculiarities. To understand the coding principle, imagine
that numbers are stored using 8 bits. Let’s say you have some code. For example, let

it be the code 00010011 (number 19). Let’s perform a bitwise inversion of that code
(replace 1 with 0 and 0 with 1). You get the code 11101100. Now, add these two codes.
The addition rules in the binary system are simple: 0+0=0, 1+0=1, 0+1=1, and 1+1=10.
The last statement is 2+2=4, but only written in the binary code. So, if you add the codes
00010011 and 11101100, you get the code 11111111, consisting of ones.

Next, add one (the code 00000001) to that code. You get 100000000. But
here, you must remember that you are dealing with a computer, assuming it stores
numbers using 8 bits. But there are nine digits in the code 100000000. Therefore,
there is simply no bit at the beginning of the number to remember the 1, which is
lost. You get the code 00000000, which consists of zeros. That number is 0.

The result will be the same if you take a different source code and a different
number of bits to remember the number. What did you get? If you take some positive
number $X, invert its code (the ~$X expression), add these codes, and then add 1,
you get 0 as a result. In other words, whatever the value of $X is, there is the relation
$X+(~$X)+1=0. It is easy to see that the (~$X)+1 expression can be identified with
the code of the number -$X (the number opposite to the value of $X).

Thus, if you need to get the binary code of a negative number, you should take
the code of the opposite positive number, invert that code, and add 1. The first bit in
the binary code of a number is used to determine a sign: for positive numbers, that bit
is 0, and for negative numbers, that bit is 1.

The binary representation is converted to a decimal value for positive numbers
according to the standard mathematical rules.

If you need to convert the binary code of a negative number into decimal
representation, then you should follow these next steps. First, you invert the code.
Then add 1 to it. The resulting value is converted to decimal representation according
to the rules applied for positive numbers. The last step is to place a minus sign before
the calculated number.

44

CHAPTER 2 VARIABLES AND DATA TYPES

Let’s assume that 8 bits are used to write numbers. Then, the result
of the 41<<1 expression is the number 82. The explanation is as follows.
The code of the number 41 is 00101001. After shifting by one position to
the left, you get the code 01010010, corresponding to 82. If you shift the
code 00101001 by two positions to the left (the 41<<2 statement), you get
the code 10100100. Here, the first sign bit is 1. Therefore, the number is
negative. You perform a bitwise inversion to determine that number and
get the code 01011011. Then you add 1 and get the code 01011100. That
is the code for the number 92. So, the result of the 41<<2 expression is the
number -92 with the code 10100100. The result of the 41<<3 expression is
the number 72 with the code 01001000.

@ Note It is important to understand that such results will be if

exactly 8 bits are used to store numbers. If the count of bits is
different (for example, 32), then the result of the 41<<1 is 82
expression, the value of the 41<<2 expression is 164, and when
calculating the value of the 41<<3 expression, you get 328.

When the 41>>1 expression is evaluated, the code 00101001 of the
number 41 is shifted by one position to the right, which gives the code
00010100. It corresponds to the number 20. The 41>>2 expression value is
10 with the binary code 00001010. The result of the -69>>2 expression is the
number -18. Here, you should consider that the code of the number -69
(when encoded using 8 bits) is 10111011. Shifting it by two positions to the
right, you get the code 11101110. That is the code of the number -18.

@ Note Once again, all these calculations are given for the

case if the number is stored using 8 bits. A different count of bits
means different (in general) results.

45

CHAPTER 2 VARIABLES AND DATA TYPES

The Operations with Strings

Working with text is a vast theme to discuss. Here, let’s focus only on the
basic operations with text and the features of the text that you will need in
the foreseeable future.

Q Note You already know that text literals can be enclosed in

single or double quotes. In the latter case, if the text contains a
variable’s name, its value is substituted instead of its name. You can
also insert escape sequences into such text, consisting of a
backslash \ and a character that defines some operation. For
example, \n is a break-line instruction, and \t is a tab. You can use
\\, \$,\',and \" to insert backslash \, dollar sign $, single ', and
double " quotes, respectively.

One of the basic operations often performed with text is the concatenation
of strings. In PHP, the concatenation of strings can be done by using the
. operator “dot” For example, the result of the "Learning"." PHP" expression
is the string "Learning PHP".The same operation can be done with variables:
the value of an expression of the form $A. $B is the text calculated by

combining the text values of the $A and $B variables.

46

CHAPTER 2 VARIABLES AND DATA TYPES

Details

If the $A and $B variables have non-text values, the $A. $B statement is calculated
by trying to convert those values to the text type and then concatenate them.

It is also worth mentioning that, unlike many other programming languages, PHP
does not use the + operator to concatenate text values. Moreover, applying this
operator to concatenate text values may lead to an error or unexpected result. For
example, the "1"+"2" expression does not give the text “12", as you might expect,
but the numeric value 3. The reason is that the + operator is an arithmetic one, so
the operands "1" and "2" are automatically converted to the integers 1 and 2,
respectively. After that, the numbers are added. Therefore, to get the text "12", you

should use the "1"."2" statement.

Another simple string operation is determining the length of a string.
In that case, use the strlen() function. You can compare strings for
equality/nonequality using the == and ! = operators. But here, you should
remember automatic type casting. Therefore, using the === and !==
operators sometimes makes more sense.

Q Note You can also use the strcmp() (the case-sensitive

comparison) and strcasecmp() (the case-insensitive comparison)
functions to compare strings.

There are several other essential operations performed with text.
Among them, one of the main ones is extracting a substring from a string.
To do that, use the substr () function. The function arguments are a
string (from which the substring is extracted), the index of the character
from which the substring is extracted, and, if necessary, the length of the
substring. If you do not specify the last argument, the substring is extracted
to the end of the string.

47

CHAPTER 2 VARIABLES AND DATA TYPES

The str_replace() function is used to replace a substring in a string.
The function replaces the substring specified by the first argument with the
substring specified by the second argument in the string specified by the
third argument.

Q Note You can access a single character in a string by

specifying the character index in square brackets after the text value.
For example, if the $A variable has a text value, then the $A[$n]
expression is a reference to the character with the $n index.
Character indexing starts from zero.

Assigning Values

In PHP, the assignment operator returns a value. That means an expression
with the assignment operator can be an operand in another expression. In
particular, the value of an expression of the form variable=value is the value
of the variable on the left side of the expression. For example, after executing
the $A=($B=100)+1, $A instruction has the value 101, and $B has the value 100.

Details

The $A=($B=100)+1 command assigns the ($B=100)+1 expression to the

$A variable. That is the sum of two terms: ($B=100) and 1. When the $B=100
is expression evaluated, the $B variable gets the value 100, and the ($B=100)
expression has the same value. Therefore, the $A variable is assigned the sum of
100 and 1, that is, the number 101.

There also exist simplified forms of assignment operators. They allow
you to simplify the process of executing assignment statements of the

48

CHAPTER 2 VARIABLES AND DATA TYPES

form $A=$A £\ $B, where & is a binary arithmetic or bitwise operator or the
string concatenation operator. So, instead of a statement like $A=$A £ $B,
you can use the $A &= $B instruction. For example, instead of the
$A=$A+$B statement, you can use the $A+=$B command, and the $A.=$B
command is an analog to the $A=$A. $B instruction.

The Ternary Operator

Operators are usually unary (they have one operand) or binary (they have
two operands). But there is one operator that has three operands. That
operator is called the ternary one. In general, if you do not focus on the
terminology, you may consider it as a specific syntactic construction that
allows you to assign a value to a variable depending on a condition that
can be true or false. The syntax for the ternary operator is as follows.

condition?value 1:value 2

First, place the condition (as usual, an expression that returns a
boolean value). Then enter a question mark (?), the value returned if
the condition is true, a colon (:), and the value returned if the condition
is false. The described construction can be assigned to a variable. For
example, after executing the $number=($x<0)?-10:10 statement, $number
is set to -10 if the value of $x is less than zero (if the condition $x<0 is true),
and 10 otherwise (if the condition $x<0 is false). A simple example that
uses the ternary operator is shown in Listing 2-4.

Listing 2-4. The Ternary Operator

<?php
print("Enter a number: ");
Reads a value and converts it
to the integer format:
$number=(int)trim(fgets(STDIN));

49

CHAPTER 2 VARIABLES AND DATA TYPES

The ternary operator is used:
$word=($number%2==0)?"even":"odd";
The result of the test for even/odd:
print("This is an $word number");

?>

The program is simple, but it contains some notable instructions. First,
the $number=(int)trim(fgets(STDIN)) statement reads the integer value
entered by the user from the keyboard and writes it to the $number variable.
Then, using the ternary operator, the $number variable is tested for even/
odd, and depending on the test result, the $word variable is assigned the
value "even" or "odd". The test result is displayed on the screen.

When you run the program, you are prompted to enter a number.

The program is waiting for the user input. The user enters a number and
presses the Enter key. After that, another message appears, which contains
information about whether the number is even or odd. Depending on the
value entered by the user (highlighted in bold), the result of the program
execution can be as follows (an odd number is entered).

The output of the program (from Listing 2-4)
Enter a number: 123
This is an odd number

Or the result can be as follows (an even number is entered).
The output of the program (from Listing 2-4)
Enter a number: 124
This is an even number

Now, let’s analyze the main statements. First, consider the

$number=(int)trim(fgets(STDIN)) instruction. It is based on a call
of the fgets() function, which reads a string from the input stream.

50

CHAPTER 2 VARIABLES AND DATA TYPES

The function argument is the STDIN constant identifier for the standard
input stream (which, in this case, is associated with the console). But the
fgets() function reads any entered value as text, and, in addition, the text
can contain special escape sequences (like a break-line instruction). To
remove all “redundant” characters, use the trim() function. It removes
all leading and trailing spaces and special characters from the string
passed as an argument. Thus, if the user enters an integer, then the
trim(fgets(STDIN)) expression contains the textual representation of that
number. For example, if the user enters the number 123, then the value
read (taking into account the call to the trim() function) is "123". Frankly
speaking, accounting for automatic type conversion, calculations could be
performed even with that value.

Nevertheless, for reliability, you convert the read text into a number.
To do that, place the (int) instruction before the entire expression. In
addition to the settype() function mentioned, that is another way to cast
a type explicitly.

Details

Instead of the $number=(int)trim(fgets(STDIN)) statement, which reads the
value for the $number variable from the console, you could use the $number=123
or $number=124 statement, which explicitly assigns the value to the $number
variable.

The $word=($number%2==0)?"even":"odd" command assigns
the ($number%2==0)?"even":"odd" expression (based on the ternary
operator) to the $word variable. If the $number%2==0 condition is true
(which means that the remainder of dividing the $number variable by 2 is
zero), then the $word variable gets the text "even". If the $number%2==0
condition is false, then the $word variable gets the text "odd". The value of
the $word variable is used when displaying the test result.

51

CHAPTER 2 VARIABLES AND DATA TYPES

Summary

52

A variable is a named block of memory that allows you
to refer to that block of memory by name. If you want to
create a variable in PHP, it is enough to assign a value
to the variable. The variable name begins with the $
character.

A variable does not have a type, but the value that the
variable refers to has a type. The main types include
integer (integer numbers), double (real numbers),
string (text), boolean (boolean values), array (an
array), and object (an object). You can obtain the
type of value a variable refers to using the gettype()
function.

For explicit type conversion, you can use the settype()
function or specify the final type in parentheses before
the converted value. PHP also has an automatic type
conversion system.

Basic operations use arithmetic, logical, bitwise, and
comparison operators. The dot operator is used to
concatenate strings.

The assignment operator returns a value that is the
same as the variable’s value (to which the value is being
assigned). There exist simplified forms of assignment
operators.

The ternary operator returns a value that depends on a
specific condition that can be true or false.

The fgets() function can read data from the console.

CHAPTER 3

The Control Statements

Twas sitting quietly, peacefully. Then I got hungry. Further, as
ifin a fog.
—ALF (TV series)

This chapter discusses control statements, which are instructions designed to
create branch points in a program and instructions to repeat statement blocks.
In other words, it covers the conditional, loop, and selection statements.

The if Conditional Statement

The conditional if statement allows you to execute different blocks of
commands depending on some condition. The conditional statement has
two alternative syntaxes. Usually, you use the following option.

if(condition){
commands
}
else{
commands

The if keyword is followed by a condition in parentheses. Then, in
curly braces, commands follow. After the block of commands, the else
keyword is placed with other commands in curly braces.

© Alex Vasilev 2024 53
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_3

https://doi.org/10.1007/979-8-8688-0258-4_3

CHAPTER 3 THE CONTROL STATEMENTS

Let’s discuss how the conditional statement is executed. First, the
condition after the if keyword is checked. If the condition is true, the
commands after the condition are executed. If the condition is false, the
commands in the block after the else keyword are executed.

The else block is optional. It is allowed not to use it. The syntax of the
conditional statement, in that case, is as follows.

if(condition){
commands

If the else block is not used, the conditional statement is executed.
First, the condition is checked; if it is true, the commands after the
condition are executed. If the condition is false, then nothing happens, and
the instruction after the conditional statement starts to execute.

@ Note Curly braces can be omitted if the if block or else

block consists of a single command. However, the absence of curly
braces reduces the readability of the code and leads to errors.
Therefore, it is reasonable to use curly braces always.

Another way to describe the conditional statement is to use no curly
braces but a colon after the condition, the else keyword, and the endif
statement (followed by a semicolon) at the end of the whole construction.
The general syntax of the conditional statement, in that case, looks as follows.

if(condition):
commands
else:
commands
endif;

54

CHAPTER 3 THE CONTROL STATEMENTS

As in the previous case, the else block can be omitted. If so, the
conditional statement is declared according to the following pattern.

if(condition):
commands
endif;

A small example that uses the conditional statement is shown in
Listing 3-1.

Q Note Let’s continue to examine the conditional statement

execution without considering the automatic type conversion. In other
words, assume that the user enters the correct values when asked by
a program. All kinds of “exotic” cases in the programs are not tracked
or processed.

The program is simple. The user enters a number there, and
the program checks whether the number can be divided by another
known number.

Listing 3-1. The Conditional Statement

<?php
print("Enter an integer number: ");
Reads a number:
$number=(integer)trim(fgets(STDIN));
The divider:
$A=3;
Checks whether the numbers can be divided:
if($number%$A==0){
print("The number $number can be divided by $A");

55

CHAPTER 3 THE CONTROL STATEMENTS

else{
print("The number $number can not be divided by $A");

2>

The result of the program execution is shown next (the number
entered by the user is marked in bold).

The output of the program (from Listing 3-1)
Enter an integer number: 5
The number 5 can not be divided by 3

There is also possibly another result.

The output of the program (from Listing 3-1)
Enter an integer number: 15
The number 15 can be divided by 3

In the conditional statement, the $number%$A==0 condition is checked,
which is true if the value of the $number variable (entered by the user) is
divisible without a remainder by the value of the $A variable (explicitly
specified in the program).

Details

The $number=(integer)trim(fgets(STDIN)) command is used to read

the value of the $number variable. The value of the variable is determined by the
(integer)trim(fgets(STDIN)) expression. The fgets() function reads

a line from the standard input (the STDIN identifier). This means that the value
entered by the user is read as a string. The trim() function removes leading and
trailing spaces and escape sequences from that string. The (integer) instruction
converts the textual representation of the number to the integer.

56

CHAPTER 3 THE CONTROL STATEMENTS

Q Note Instead of the $number=(integer)
trim(fgets(STDIN)) statement, you can use an explicit
assignment to the $number variable: for example, $numbexr=5 or
$number=15.

Another example of using the conditional statement is shown in

Listing 3-2. It uses a complex condition (it contains logical operators) and

an alternative form of the conditional statement syntax.

Listing 3-2. The Alternative Form of the Conditional
Statement Syntax

<?php
print("Enter a prime number from 1 to 5: ");
// Reads a number:
$number=(int)trim(fgets(STDIN));
// Checks the value:
if($number==2 || $number==3 || $number==5):
print("You are correct!");
else:
print("You are wrong!");
endif;
?>

When the program is run, the user is prompted to enter a prime
number between 1 and 5. If the user enters the number 2, 3, or 5, the
message You are correct! appears. If any other number is entered,
the message You are wrong! appears. The following shows what the
program’s output looks like if the user enters a prime number from the
specified range (the entered value is marked in bold).

57

CHAPTER 3 THE CONTROL STATEMENTS

The output of the program (from Listing 3-2)
Enter a prime number from 1 to 5: 3
You are correct!

If a number other than 2, 3, or 5 is entered, the result is as follows.

The output of the program (from Listing 3-2)
Enter a prime number from 1 to 5: 4
You are wrong!

You can use nested conditional statements to check several conditions
sequentially. But it is better to use a modification of the conditional
statement with the elseif blocks. The following shows the syntax for
calling such a conditional statement.

if(condition){
commands
}
elseif(condition){
commands
}
elseif(condition){
commands
}
else{
commands

Two elseif blocks are used here, but in principle, you can use as many
elseif blocks as you like. Let’s discuss how the conditional statement is
executed. First, the condition after the if keyword is checked, and if the
condition is true, the corresponding block of commands is executed.

58

CHAPTER 3 THE CONTROL STATEMENTS

If the condition is false, the condition in the elseif block is checked. If
that condition is true, the commands from the corresponding elseif block
are executed. If the condition is false, the condition in the next elseif
block is checked, and so on. The commands in the else block are executed
if all the checked conditions are false. The else block is optional.

The following is an alternative syntax for calling the conditional
statement with the elseif blocks.

if(condition):
commands
elseif(condition):
commands
elseif(condition):
commands
else:
commands
endif;

Namely, curly braces are not used, a colon is placed at the beginning of
the blocks, and the entire structure ends with the endif keyword (followed
by a semicolon).

Let’s look at an example program that solves an equation of the form
Ax = B. Depending on the values of the parameters A and B, there three
options are possible. The first case is if A # 0, so the equation has a single
solution x = B/A. The second case is if both parameters are zero, that is,

A =0and B=0.Ifso, then the solution of the equation is any number.
Finally, and this is the third case, if A = 0 and B # 0, then the equation has
no solutions. All these cases are tracked using the conditional statement in
the program shown in Listing 3-3.

59

CHAPTER 3 THE CONTROL STATEMENTS

Listing 3-3. Solving the Equation

<?p

?>

hp
print("Solving the equation Ax=B\n");
// Reads the parameters:

print("A = ");
$A=(double)trim(fgets(STDIN));
print("B = ");

$B=(double)trim(fgets(STDIN));
// Calculates the solution:
if($A1=0){
$x=$B/%A;
print("x = ".$x);
}
elseif($B==0){
print("The solution is any number");

}
else{

print("There are no solutions");
}

The user is prompted to enter the parameters of the equation, and after

that, the result is calculated. Much depends on what values are entered.

The following is the result of the program execution if the equation has a

single solution (the values entered by the user are marked in bold).

The output of the program (from Listing 3-3)

Sol
A =
B =
X =

60

ving the equation Ax=B
5.0

12.6

2.52

CHAPTER 3 THE CONTROL STATEMENTS

The following is the result of the program execution when both
parameters are set to zero.

The output of the program (from Listing 3-3)
Solving the equation Ax=B

A=o0

B=o0

The solution is any number

There may be no solutions at all.

The output of the program (from Listing 3-3)
Solving the equation Ax=B

A=o0

B=1

There are no solutions

In the program, the user enters the values for the $A and $B variables.
You use the instruction (double) to cast to the double type. The search
for a solution is performed using the conditional statement. First, the
$A!=0 condition is checked (the value of the $A variable is not 0). If so,
the $x=$B/$A command calculates the value for the root of the equation,
which is displayed in the console.

If the $A!=0 condition is false (that is, the value of the $A variable is
0), the $B==0 condition in the elseif block is checked. The truth of this
condition (considering the falsity of the $A!=0 condition) means that any
number can be a solution

Finally, the equation has no solutions if the $B==0 condition is also
false. The else block of the conditional statement handles this situation.

61

CHAPTER 3 THE CONTROL STATEMENTS

The while Loop Statement

The loop statements make it possible to execute instructions or commands
repeatedly. There are several loop statements in PHP. Their action is

the same (in the sense that they allow solving the same tasks and are
equivalent in their functionality).

The while loop statement has perhaps the simplest syntax of all loop
statements. It begins with the while keyword, after which some condition
is placed in parentheses, and then a block of commands in curly braces
follows. In general, it looks as follows.

while(condition){
commands

Let’s discuss how the while loop statement is executed. First, the
condition is checked. If it is true, then the commands in the body of
the loop statement are executed. Then, the condition is rechecked. If
the condition is true, the commands are executed, and the condition
is checked again? and so on. That continues until the next test of the
condition is false. If so, then the loop statement terminates.

Q Note If the body of the loop statement contains a single

command, then curly braces can be omitted. But that is not a good
practice.

There is another form of the while loop statement, in which curly
braces are not used, a colon is placed after the condition, and the operator
ends with the endwhile instruction (and a semicolon).

while(condition):
commands
endwhile;

62

CHAPTER 3 THE CONTROL STATEMENTS

Listing 3-4 uses the while loop statement to calculate the sum of
numbers.

Listing 3-4. The Sum of Numbers

<?php
// The upper limit of the sum:
$n=100;
// The initial value of the sum:
$s=0;
// A term for the sum:
$k=1;
// Calculates the sum:
while($k<=$n){
$s+=$k; // Adds the term
$k++; // The new term
}
// The result of the calculation:
print("1+2+...+$n=$s");
?>

The result of the program execution is as follows.

The output of the program (from Listing 3-4)
1+2+...+100=5050

The program uses three variables: the upper limit of the sum (the
count of terms) is saved to the $n variable, the value of the sum is saved to
the $s variable (the initial value of the variable is 0), and the value for the
next term is saved to the $k variable (the initial value is 1).

The loop statement checks the $k<=$n condition, which is true if the
value of the $k variable does not exceed the value of the $n variable. In
the body of the loop statement, the $s+=$k command adds a term to the

63

CHAPTER 3 THE CONTROL STATEMENTS

sum. The $k++ command increments the value of $k by one. On the next
iteration, that is the new term for the sum.

After the loop statement is terminated, the $s variable contains the
sum of numbers from 1 to the value stored in the $n variable. This result is
displayed in the console.

@ Note The sum of numbers from 1 to n can be calculated

+1
using the formula i). You do not use this formula but calculate
the sum directly by adding the terms.

Another example that calculates the divisors of a certain number is
shown in Listing 3-5. In this case, you use an alternate form of the while
statement.

Listing 3-5. The Divisors of a Number

<?php
The number for which we calculate the dividers:
$number=315;
The variable to store a divider:
$A=1;
print("The number $number can be divided by:\n$A");
while(2*$A<$number):
$A++;
if($number%$A==0){
print(" ".$A);
}
endwhile;
print(

.$number)
?>

64

CHAPTER 3 THE CONTROL STATEMENTS

The following is the result of the program execution.

The output of the program (from Listing 3-5)
The number 315 can be divided by:
135791521 35 45 63 105 315

The number for which the program calculates divisors is stored in the
$number variable (use the value 315). It also uses the $A variable, whose
initial value is 1. You need that variable to store the value of the next divisor
for the number saved to the $number variable. Finding divisors is simple:
iterate over the numbers in a particular range and check if it is a divisor. To
do that, you use the loop statement.

The loop statement checks the 2*$A<$number condition. Here, a divisor
of a number (except for the number itself) cannot be more than half of the
number. In the body of the loop statement, the $A++ command increments
the $A variable, and in the conditional statement (in the simplified
form without the else block), the $number%$A==0 condition is checked
(the remainder of dividing $number by $A is zero). The print(" ".$A)
command is executed if the condition is true. That is, the corresponding
number is identified as a divisor. If the condition is false, then nothing
happens.

@ Note The value of the " ".$A expression is the text

resulting from the concatenation of the space and the value of
the $A variable. The latter is automatically converted to the
text format.

The last print (" ".$number) instruction adds the number to the list of
its divisors. That is done without checks since any number can be divided
by itself.

65

CHAPTER 3 THE CONTROL STATEMENTS

The do-while Loop Statement

The other loop statement is the do-while statement. The following is the
syntax for the statement.

do{
commands
}while(condition);

It begins with the do keyword followed by a block of commands in
curly braces that form the loop statement’s body. Then the while keyword
follows, and, in parentheses, some condition. Let’s discuss how the do-
while loop statement is executed. First, the commands in the body of
the loop statement are executed. After that, the condition after the while
keyword is checked. If the condition is true, the commands in the body
of the loop statement are executed again, and the condition is checked.

If it is true, the commands are executed, and so on. The execution of the
loop statement terminates if the next time the condition is checked, it
gives false.

Q Note The fundamental difference between the do-while

statement and the while statement is that in the while statement,
the condition is checked first, and then the commands are executed.
At the same time, in the do-while statement, the commands are
executed first, and then the condition is checked. When using the
while statement, it may turn out that the commands in the
statement’s body are not executed at all. That happens if the
condition is false the first time it is tested. If the do-while statement
is used, then the commands in the loop statement are executed at
least once.

66

CHAPTER 3 THE CONTROL STATEMENTS

As an example of using the do-while loop statement, Listing 3-6 is a
program that tests a user-entered number for being prime.

Q Note A number is called prime if it has no divisors but one
and the number itself.

Listing 3-6. A Prime Number

<?php
print("A number to check: ");
// Reads a number:
$number=(int)trim(fgets(STDIN));
// The divisor for the number:
$A=2;
// Text with the check result:
$result="It is a prime number";
do{
// Checks whether the numbers are divisible:
if($number%$A==0){
// Changes the message:
$result="The number can be divided by $A";
// The termination of the loop statement:
break;
}
// The next divisor:
$A++;
}while($A<=sqrt($number));
// The result:
print($result);
?>

67

CHAPTER 3 THE CONTROL STATEMENTS

If the user enters a prime number (marked in bold), the program’s
output is as follows.

The output of the program (from Listing 3-6)
A number to check: 37
It is a prime number

If the number is not prime, the result is somewhat different.

The output of the program (from Listing 3-6)
A number to check: 91
The number can be divided by 7

The program runs as follows. First, the user enters a number to check.
That number is stored in the $number variable. The text "It is a prime
number" is saved to the $result variable, which is displayed in the console
if it turns out that the number entered by the user is prime.

The do-while loop statement uses the conditional statement that
tests the $number%$A==0 condition. The truth of the condition means that
$number is divisible without remainder by $A (whose initial value is 2). If
so, the $result="The number can be divided by $A" command assigns
anew value to the $result variable, after which the break statement is
executed. It terminates the execution of the loop statement.

If, when checking the $number%$A==0 condition in the conditional
statement, it gives false, then the break statement is not executed, and
the loop statement goes on. In such a case, the $A++ command increments
the value of $A by one, and at the next iteration, the test for divisibility is
performed for that new value.

The loop statement is executed while the $A<=sqrt($number)
condition is true. Here, the sqrt () function is used; it calculates the square
root of the number passed as an argument to the function.

68

CHAPTER 3 THE CONTROL STATEMENTS

Details

If when searching the smallest (after 1) divisor for a certain number X, some value
Ais found, that means the initial number can be presented as the product X=A- B
and here A < B.That is why 4> < X. This relation gives you the upper limit for the
range where you search for divisors.

If the loop statement is terminated not due to the break instruction
but because the $A<=sqrt($number) condition becomes false, then the
$result variable remains with its original value. If so, the print($result)
command prints a message stating that the number is prime. If the break
statement “works,” then the $result variable gets a new value, and the
message in the console states that the number being checked has a divisor.
That means that the number is not prime.

Details

The break instruction terminates the execution of the loop statement in which

it is called. Here, the do-while statement and the while and for statements
(discussed later in the chapter). In addition to this instruction, the continue
instruction may be helpful, which terminates the current iteration (while the entire
loop statement goes on).

The for Loop Statement

The for loop statement has the following syntax.

for(first block;second block (condition);third block){
commands

69

CHAPTER 3 THE CONTROL STATEMENTS

The for keyword is followed by three blocks of commands placed in
parentheses. Semicolons separate the blocks. If a block contains multiple
commands, they are separated by commas. After the closing parenthesis,
another block of commands follows in curly braces. Those commands
form the body of the for loop statement.

Q Note Curly braces can be omitted if a command block in the

statement body consists of a single command. However, it is better to
have them.

Let’s discuss how the for loop statement operates. At the very
beginning, the commands from the first block are executed. They are
executed once and only once. Then, the condition in the second block is
checked. If the condition is true, then the commands from the body of the
loop statement and the commands in the third block are executed. After
that, the condition is checked. If it is true, the commands in the body of
the loop statement and the commands in the third block are executed,
and after that, the condition is checked again. And so on. The execution of
the loop statement is terminated when the condition turns out to be false
during the next test.

There is also an alternative way to call the for loop statement. It does
not use curly braces. Instead of them, you place a colon after the for-
instruction (before the command block in the statement body). And all
that ends with the endif instruction (and a semicolon).

for(first block;second block (condition);third block):
commands
endif;

70

CHAPTER 3 THE CONTROL STATEMENTS

The statement in this form is executed the same as described earlier.

As an example of using the for loop statement, let’s consider a
program that calculates the sum of odd natural numbers, as shown in
Listing 3-7.

Listing 3-7. The Sum of Odd Numbers

<?php
// The count of terms:
$n=100;
// Calculates the sum of odd numbers:
for($s=0, $k=1;$k<=$n; $k++){
$s+=2*$k-1;
}
// Prints the result:
print("1+3+...+".(2*$n-1)."=$s");
?>

The program’s output is as follows.

The output of the program (from Listing 3-7)
1+3+...+199=10000

The program is simple. It uses the $n variable that determines the
count of terms in the sum. The sum itself is calculated using the for loop
statement. In the first block, the commands $s=0 (the initial value for
the sum) and $k=1 (the first term) are executed. The $k<=$n condition
is checked in the loop statement. It is true as long as the value of the $k
variable (the count of terms already added to the sum) does not exceed the
value of the $n variable (the expected count of terms in the sum). The loop
statement is executed while the $k<=$n condition is true. The commands
$s+=2*%k-1 (the next term is added to the sum) and $k++ (the term for the
next iteration) are performed for each iteration.

71

CHAPTER 3 THE CONTROL STATEMENTS

@ Note Here, odd numbers can be calculated using the formula
2k — 1, where the k variable takes the values 1, 2, 3, and so on.

After the loop statement is terminated, the result of the calculations
is displayed in the console with the print("1+3+...+".(2*$n-1)."=$s")
command. This command uses the string obtained by concatenating
several text fragments (including the 2*$n-1 expression, which determines
the last term in the sum, and the $s variable, which determines the sum).

@ Note The sum of the first n odd natural numbers is
equal to 2.

Listing 3-8 is an alternative form of the for loop statement using a
program in which the Fibonacci numbers are calculated.

@ Note In the Fibonacci sequence, the first two numbers are

equal to one, and each subsequent number is equal to the sum of the
previous two.

Listing 3-8. The Fibonacci Numbers

<?php
// How many numbers to calculate:
$n=15;
// The first and second numbers:
$a=$b=1;
// Prints numbers:
print("$a $b");

72

CHAPTER 3 THE CONTROL STATEMENTS

// Calculates other numbers:

for($k=3; $k<=$n; $k++):
// The new pair of numbers:
$b=%$a+%b;
$a=%b-%a;
// Prints the new number:
print(" ".$b);

endfor;

?>

The following is the result of the program execution.

The output of the program (from Listing 3-8)
11235813 21 34 55 89 144 233 377 610

The count of calculated numbers is stored in the $n variable. The $a
and $b variables get the initial value 1 (the $a=$b=1 command, in which
the assignment operator returns a result). The print("$a $b") command
displays the values of these variables in the console. Assume that the $a
variable contains the last but one number in the sequence, and the $b
variable contains the last calculated value in the sequence. The calculation
process is implemented using the loop statement. There, the $k variable
runs from 3 (because the first two numbers are already known) to the value
of the $n variable (the count of numbers to be calculated in the sequence).
In the body of the loop statement, the $b=$a+$b and $a=$b-$a commands
calculate a new number in the sequence.

73

CHAPTER 3 THE CONTROL STATEMENTS

Details

Let’s discuss how to calculate the numbers. Suppose that $a and $b contain
respectively the last but one and the last number in the Fibonacci sequence. Let’s
formally denote the value of the $a variable as A and the value of the $b variable as
[]. You need to do the "next step": the $b variable should contain the value A+[],
and the $a variable should contain the value .

After executing the $b=%$a+$b command, $b contains the value A+, and $a
contains the original value A. To write the value [] to the $a variable, you need to
execute the $a=$b-$a command.

After the next number in the sequence is calculated and saved to the $b
variable, the print(

.$b) command displays it in the console.

@ Note It is worth mentioning that the distribution of

commands in the blocks of the for loop statement is somewhat
arbitrary. For example, commands from the body of the loop
statement can be moved to the third block, and commands from the
third block can be moved to the main body of the loop statement as
long as the commands are executed in the same order.

The switch Selection Statement

Depending on the value of some expression, the switch statement

allows you to execute one or another block of commands. In some sense,
this statement resembles nested conditional statements. But while in a
conditional statement, a condition is checked (an expression with a value
of the boolean type or a value that can be cast to the boolean type), in a
selection statement, the value of an expression is checked, whose type may
differ from the boolean.

74

CHAPTER 3 THE CONTROL STATEMENTS
The syntax for calling the selection statement is as follows.

switch(expression){
case value:
commands
break;
case value:
commands
break;
default:
commands

The switch keyword is followed by an expression in parentheses
whose value is being checked. Then, case blocks follow. There are two of
them in the preceding template, but generally, the count of such blocks is
practically unlimited. The last one can be the default block (it is optional).
The whole structure is enclosed in curly braces.

Each case block contains, after the case keyword, a control value. It is
followed by a colon and a block of commands, which usually ends with the
break instruction. In the default block, if it exists, the break instruction is
not used (it simply does not make any sense to use it there).

How is the selection statement executed? The expression in
parentheses after the switch keyword is evaluated first. The value of that
expression is sequentially compared with the control values in the case
blocks until the first match.

Details

That is an ordinary comparison, not a check for identical equality.

75

CHAPTER 3 THE CONTROL STATEMENTS

The commands in the corresponding case block are executed if a
match is found. That is the situation when the command block ends with
the break instruction. If there is no break instruction at the end of the case
block, the commands in the next block are executed, the block after it, and
so on. The process continues until a break instruction is encountered or
until the closing curly brace of the selection statement is reached.

The selection statement has an alternative syntax.

switch(expression):
case value:
commands
break;
case value:
commands
break;
default:
commands
endswitch;

Here, the curly braces are not used: a colon is used instead of the
opening curly brace, and the endswitch statement (followed by a
semicolon) is used instead of the closing curly brace.

Listing 3-9 shows a program illustrating how the selection statement
can be used.

Listing 3-9. The Selection Statement

<?php
// The names of the Musketeers:
$athos="Athos";
$porthos="Porthos";
$aramis="Aramis";
print("A name from \"The Three Musketeers\": ");

76

CHAPTER 3 THE CONTROL STATEMENTS

// Reads the name:
$name=trim(fgets(STDIN));
// Checks the name:
switch($name){
case $%athos:
print("Yes, Athos is a Musketeer");
break;
case $porthos:
print("Yes, Porthos is a Musketeer");
break;
case $%aramis:
print("Yes, Aramis is a Musketeer");
break;
default:
print("Strange. Is this a fourth Musketeer?");

?>

The program prompts the user to enter the name of one of the Three
Musketeers: Athos, Porthos, or Aramis.

The program "knows" the names "Athos", "Porthos", and "Aramis".
If the user enters one of these names, the program displays the name of the
Musketeer. If the name entered by the user is "not known" to the program,
then the message "Strange. Is this a fourth Musketeer?" is printed. The
following shows the program’s output if the user enters the name "Athos".

The output of the program (from Listing 3-9)

A name from "The Three Musketeers": Athos
Yes, Athos is a Musketeer

77

CHAPTER 3 THE CONTROL STATEMENTS

If the user enters "Porthos", the result is as follows.

The output of the program (from Listing 3-9)
A name from "The Three Musketeers": Porthos
Yes, Porthos is a Musketeer

The following is the result for the case when the user enters the name
"Aramis".

The output of the program (from Listing 3-9)
A name from "The Three Musketeers": Aramis
Yes, Aramis is a Musketeer

Finally, if the program “doesn’t recognize” the name, the result is as
follows.

The output of the program (from Listing 3-9)
A name from "The Three Musketeers": D'Artanian
Strange. Is this a fourth Musketeer?

The program uses the $athos, $porthos, and $aramis variables to
store the names of the Three Musketeers in them. The $name variable is
assigned the name entered by the user. The switch statement is used to
find matches. The expression to be tested is the value of the $name variable.
The $athos, $porthos, and $aramis variables are used as control values in
the case blocks.

Let’s discuss how the selection statement is executed. The value
of the $name variable is sequentially compared with the values of the
$athos, $porthos, and $aramis variables. As soon as a match is found, the
commands of the corresponding case block are executed. If there are no
matches, then the commands in the default block are executed.

78

CHAPTER 3 THE CONTROL STATEMENTS

Listing 3-10 illustrates how to use the selection statement in the
alternative form. In this program, the number the user enters is checked
for divisibility by 2 and 4.

Listing 3-10. The Divisibility of a Number

<?php
print("Enter a number: ");
Reads the number:
$number=(int)trim(fgets(STDIN));
Checks the numbers for divisibility:
switch($number%4):
case 0:
print("The number can be divided by 4");
break;
case 2:
print("The number can be divided by 2");
break;
default:
print("The number can not be divided by 2");
endswitch;
?>

If the user enters a number that can be divided by 4, the result is as

follows.

The output of the program (from Listing 3-10)
Enter a number: 140
The number can be divided by 4

79

CHAPTER 3 THE CONTROL STATEMENTS

If the number can be divided by 2 but not by 4, the result is as follows.

The output of the program (from Listing 3-10)
Enter a number: 70
The number can be divided by 2

Finally, if the number the user enters is not divisible by 2, the program
produces the following result.

The output of the program (from Listing 3-10)
Enter a number: 123
The number can not be divided by 2

In this case, the integer entered by the user is stored in the $number
variable. The switch statement checks the value of the $number%4
expression (the remainder of dividing $number by 4). If the remainder is 0,
the print("The number can be divided by 4") command is executed.
If the remainder is 2, the print("The number can be divided by 2")
command displays the message. Here, the number is divisible by 2 but not
by 4. Finally, all other situations are handled in the default block. If so, the
print("The number cannot be divided by 2") command is executed.

The case blocks ended with the break instructions in the considered
examples. However, that is not required. There exist situations when the
same set of commands must be executed for several control values. The
program in Listing 3-11 shows how that could be done.

Listing 3-11. A Day of the Week

<?php
print("A day of the week: ");
// Reads a day of the week:
$day=trim(fgets(STDIN));

80

CHAPTER 3 THE CONTROL STATEMENTS

// Checks the day of the week:
switch($day){
case "Monday":
case "Tuesday":
case "Wednesday":
case "Thursday":
case "Friday":
print("It is a working day");
break;
case "Saturday":
case "Sunday":
print("It is a holiday");
break;
default:
print("There is no such day");
}

?>
The result of the program execution can be as follows (the value

entered by the user is marked in bold).

The output of the program (from Listing 3-11)
A day of the week: Wednesday
It is a working day

It could also look as follows.
The output of the program (from Listing 3-11)

A day of the week: Saturday
It is a holiday

81

CHAPTER 3 THE CONTROL STATEMENTS

Or it could look as follows.

The output of the program (from Listing 3-11)
A day of the week: Midday
There is no such day

In the program, the user enters the name of a day of the week, and the
program determines whether it is a working day or a holiday. The critical
point is that for the values "Monday", "Tuesday", "Wednesday", "Thursday",
and "Friday", the same print("It is a working day") command mustbe
executed. To not duplicate the code five times, create four empty case blocks
(they do not contain commands), and only the last (out of five) case block
contains the necessary command and the break instruction. If, for example,
the user enters "Wednesday", the code from the case block with the control
value "Wednesday" is executed until the first break instruction. It turns out
that the same commands are executed for each of the five control values.

A similar tactic handles the "Saturday" and "Sunday" values. The
commands in the default block are executed if the user enters a value
other than one of the controls.

The goto Instruction

PHP has the goto instruction that can be used to jump to a particular
position in a program marked with a label. Frankly speaking, using the
goto instruction is usually considered not a very good programming style.
Nevertheless, such a possibility exists, and it is better to know about it.

So, you can place a label in a program. It is an identifier that
determines the transition point in the program. Declaring a label is simple.
You specify the name of the label followed by a colon. To jump to that place
in the program, you must call the goto statement followed by the label
(that determines the place in the program to jump to). Listing 3-12 shows

82

CHAPTER 3 THE CONTROL STATEMENTS

a program that emulates a loop statement using a conditional statement,
alabel, and the goto instruction. As a result, a sequence of numbers is
displayed in the console.

Listing 3-12. The goto Instruction

<?php

// Variables:

$number=10;

$k=1;

// A label:

start:

print($k." ");

// The new value:

$k++;

if($k<=$number){
// Jumps to the label:
goto start;

?>

The result of the program execution is as follows.

The output of the program (from Listing 3-12)
12345678910

The program uses two variables: $number (how many numbers to
display) and $k (the current number). The place in the program marked
with the start label begins with the print($k." ") command (prints
the value of the $k variable and a space). After that, the $k++ command
increments $k by one. Then, the program checks the $k<=$number
condition in the conditional statement. If it is true, goto startis
executed. As a result, the program’s execution continues from the place

83

CHAPTER 3 THE CONTROL STATEMENTS

marked with the label start. Namely, the commands print($k." ")

and $k++ are executed, after which the condition in the conditional
statement is checked again, and so on. It looks like a loop statement. When
$k<=$number evaluates to false, the goto start instruction is ignored,
and the program is over (since there are no other commands).

The match Selection Statement

PHP 8 introduces yet another selection statement. That is the match
statement. In a certain sense, the match statement is like a combination of
the switch statement and the ternary operator. Like the switch statement,
the match statement allows you to check expressions. But unlike the
switch statement, the match statement returns a result (similar to the
ternary operator). The following shows the general syntax for using the
match statement.

$variable=match(expression){
value=>resulr,
value=>result,
value=>result,

$value=>result,
default=>result
};

At the very beginning of the statement, you place the match keyword
followed by the expression (in parentheses) whose value has to be
checked. The next block is enclosed in curly braces. As mentioned, the
match statement returns a result, so the whole expression is assigned to
some variable. At the end of the statement, you put a semicolon.

In the main body of the match statement, place blocks of the form
value=>result in curly braces. These elements are separated by commas.

84

CHAPTER 3 THE CONTROL STATEMENTS

The last one can be a block like default=>result with the default
keyword, but it is optional.

Let’s discuss how the match statement is executed. First, the value of
the expression in parentheses after the match keyword is evaluated. Then,
that value is sequentially compared (up to the first match) with the values
specified in the body of the match statement. If a match is found, the result
after the corresponding => arrow is returned. If no matches are found, the
result for the block with the default keyword is returned.

Details

The match selection statement must return a result. When executing the statement,
an error occurs if it turns out that none of the blocks work (no matches are found,
and there is no default block)

The comparisons are performed until the first match. If a match is found, the
remaining values are not checked.

If the result should be the same for several values of the tested
expression, then such values can be collected (separated by commas)
within one block. Let’s look at such a situation in more detail.

£ The PHP 8 Standard The following code runs in PHP 8 only.

The program that uses the match selection statement is shown in
Listing 3-13.

Listing 3-13. Getting Familiar with the match Statement

<?php
// The loop statement for iterating values:
for($num=1; $num<=10; $num++){
// The selection statement:
$res=match($num){

85

CHAPTER 3 THE CONTROL STATEMENTS

1=>"one",
2,3,5,7=>"a prime number",
4,6,8=>"an even number",
9=>"nine",
default=>"a great number"
};
// Prints the result:
echo "[$num] ",$res,"\n";

2>

The result of the program execution is as follows.

The output of the program (from Listing 3-13)
[1] one
[2] a prime number
[3] a prime number
[4] an even number
[5] a prime number
[6] an even number
[7] a prime number
[8] an even number
[9] nine
[10] a great number

The program’s core is the for loop statement, in which the $num
variable runs through the range from 1 to 10 inclusively. For each iteration,
the $res variable is assigned a value, after which that value (along with the
value of the $num variable) is displayed by the echo "[$num] ",$res,"\n"

command.

86

CHAPTER 3 THE CONTROL STATEMENTS

Use the match selection statement to assign a value to the $res
variable. It checks the value of the $num variable. If the variable’s value is 1,
the string "one" is returned as a result (the 1=>"one" block). For the values
2,3, 5, and 7 of the $num variable, the statement returns the result "a prime
number" (the 2,3,5,7=>"a prime number" block).If $numis 4, 6, or 8, the
result is the text "an even number" (the 4,6,8=>"an even number" block).
For the value 9, the result "nine" is returned (the 9=>"nine" block). In all
other cases, the result is the string "a great number". The default=>"a
great number" block is responsible for that result.

Another example of using the match selection statement is shown in
Listing 3-14.

Listing 3-14. Using the match Selection Statement

<?php
// The loop statement for iterating numbers:
for($num=1; $num<=10; $num++){
// The selection statement:
$res=match(true){
($num<=3)=>"a small number",
($num<8)=>"just a number",
($num>=5)=>"a great number"
15
// Prints the result:
echo "[$num] ",$res,"\n";

?>

87

CHAPTER 3 THE CONTROL STATEMENTS

The following is the program output.

The output of the program (from Listing 3-14)
1] a small number

2] a small number

3] a small number

4] just a number

5] just a number

[
[
[
[
[
[6] just a number
[7] just a number
[8] a great number
[9] a great number
[10] a great number

This example is similar to the previous one, but significant changes
were made. The keyword true is specified as the expression to be checked.
The results of the $num<=3, $num<8, and $num>=5 expressions are compared
against that value. They are checked one by one until the first match. In
particular, it first checks if the value of the $num<=3 expression is true. If
so, then the result of the match statement is "a small number".If there is
no match, then the value of the $num<8 expression is checked if it is true.
If there is a match, the statement returns the string "just a number"
as a result. If there is no match, the $num>=5 expression is checked. If
that expression is true, the result of the statement is the string "a great
number".

88

CHAPTER 3 THE CONTROL STATEMENTS

Details

The conditions $num<=3, $num<8, and $num>=5 are such that at least one of them
is true. Therefore, the selection statement returns a result for any value of the
$num variable.

It is also worth mentioning that for the values 5, 6, and 7 of the $num variable,
the $num<8 and $num>=5 conditions are true at the same time. But the $num<8
condition is checked before the $num>=5 condition. Therefore, if it turns out that the
$num<8 condition is true, the $num>=5 condition is not checked.

Summary

o The if statement allows you to execute different blocks
of commands depending on the truth or falsity of some
condition. The condition is specified in parentheses
after the if keyword, followed by the commands to
be executed when the condition is true. Commands
executed when the condition is false are placed in the
else block.

e Thewhile loop statement allows you to execute a block
of commands repeatedly. Commands are executed
while the condition specified after the while keyword
is true.

e The do-while statement differs from the while
statement as follows. In the do-while statement, the
block of commands is executed first, and then the
condition is checked, while execution of the while
statement begins with checking the condition.

89

CHAPTER 3 THE CONTROL STATEMENTS

90

The for loop statement has a more complex syntax
than the while and do-while statements, but it is pretty
convenient to use, and its capabilities are not inferior to
those of other loop statements.

The break instruction allows you to terminate
the execution of a loop statement. The continue
instruction is used to terminate the current iteration

(without terminating the loop statement execution).

The switch statement allows you to execute different
blocks of commands depending on the value of some
expression. It contains case blocks with control values.
If the value of the checked expression matches the
control value, the commands in the corresponding
case block are executed. The commands in the
optional default block are executed if no matches

are found.

The goto statement allows you to jump to a particular
place marked with a label in the program. The label is
specified after the goto keyword. To mark a place in a
program with a label, put the label name followed by
acolon.

PHP 8 introduces the match selection statement.

The statement allows you to check the value of some
expression and returns a result depending on that
value. In a certain sense, the match selection statement
can be interpreted as a symbiosis of the switch
selection statement and the ternary operator.

CHAPTER 4

Arrays

—This is such a toy—puzzles.
—She’s broken!
—That’s the point, Alf. You have to collect it.
—What's that? I didn’t break it!
—ALF (TV series)

An array is generally a set or group of values united by a common name.
Arrays are usually used when there are many values, and creating a
separate variable for each is impossible. If so, a common name is used for
the entire set of values, and specific values (array elements) are identified
using an index or indexes. In the “classic” version, the indexes are integers.
In PHP, integers and strings can be used as indexes. In that case, the term
key may be used instead of index. An array with string keys is usually called
an associative array.

@ Note About the terminology, there are a lot of possible terms.

For example, the term list is sometimes used along with the term
array. Instead of the associative array, the term dictionary or table is
used. Let’s name all arrays (integer indexes and string keys) as
arrays. A listis an array with integer indexes. The index is interpreted
as a particular case of an integer key.

© Alex Vasilev 2024 91
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_4

https://doi.org/10.1007/979-8-8688-0258-4_4

CHAPTER 4 ARRAYS

Next, let’s consider some cases of creating and using arrays.

Getting Familiar with Arrays

An array in PHP can be created differently, and all methods are acceptable.
Let’s examine the main and simplest possibilities and other tricks for
creating and using arrays. You do that step by step as you solve problems.
So, you can create an array using the array() function. If that
function is called without arguments, an empty array is created. If you
pass arguments to the array() function, they determine the values of the
array elements. If so, element indexes are integers, and indexing begins
from zero. Also, there are other ways to create arrays. A small example that
creates arrays is shown in Listing 4-1.

Listing 4-1. Creating an Array

<?php
// An empty array:
$A=array();
print("Array \$A:\n");
// The contents of the array:
print r($A);
// Elements are added to the array:
$A[0]="Red";
$A[1]="Yellow";
$A[2]="Green";
print("Array \$A:\n");
// The contents of the array:
print r($A);
// An array with three integer elements:
$B=array(100,200,300);
print("Array \$B:\n");

92

CHAPTER 4

// The contents of the array:
print r($B);
print("\$B = [");
// Prints the elements one by one:
for ($k=0; $k<count($B); $k++){
print($B[$k]." ");

}
print("]\n");
// An array with elements of different types:
$C=["First",2,3.3];
print("Array \$C:\n");
// The contents of the array:
print r($C);

7>

The result of the program’s execution is as follows.

The output of the program (from Listing 4-1)
Array $A:
Array

(

)
Array $A:

Array

(
[0] => Red
[1] => Yellow
[2] => Green

)

Array $B:

Array

(

ARRAYS

93

CHAPTER 4 ARRAYS

[0] => 100
[1] => 200
[2] => 300

)

$B = [100 200 300]

Array $C:

Array

(
[0] => First
[1] => 2
[2] => 3.3

)

The program creates and performs simple operations on three arrays.
The first array is created with the $A=array() statement. The array is
empty, and a reference to it is written to the $A variable. To check the
contents of an array, you use the print_r() function, whose argument is a
variable that refers to the array.

Details

To display the dollar symbol $ in text, use the combination \$.

If you try to display the contents of an array using the print () function or the echo
statement, the text Array appears. Therefore, it is better to use the print_r()
function to display the array. The contents of the array in the output area are
represented as follows: the word Array appears followed (in parentheses) by the
keys/indexes and values of the array elements in the [index] => value format.

After checking the array, you see that the array is indeed empty.
However, you can add elements to the array: the $A[0]="Red",
$A[1]="Yellow", and $A[2]="Green" commands. The commands mean
that you add the "Red" element with the 0 index, the "Yellow" element

94

CHAPTER 4 ARRAYS

with the 1 index, and the "Green" element with the 2 index to the $A array.
Here, to refer to an element of an array, you specify the name of the array
followed by the index in square brackets. Having displayed the array’s
contents using the print_r() function, you ensure that the elements were
added to the array.

Details

If a value is assigned to the array element that does not exist, then the element is
added to the array. If you assign a value to an already existing element, then that
element changes its value. In this case, the array is empty. By assigning values to
the elements of the array, you add elements to the array. Moreover, there was no
need to create the array first. It was enough to assign a value to an element of the
array. The array is created automatically in that case.

The $B=array(100,200,300) command creates an array with three
integer elements whose values are 100, 200, and 300. The values of the
elements of the created array are passed as arguments to the array()
function. The indexes of the elements are defined automatically. They are
0, 1, and 2, respectively. The contents of the $B array are displayed using
the print_r() function and then using the for loop statement, where you
explicitly iterate over the elements of the array. The elements are iterated
using the index stored in the $k variable. The count () function determines
the count of elements in the array. You also saw that indexing begins
from zero, and the index of the last element is one less than the count of
elements in the array.

Q Note In addition to the count () function, you can use the
sizeof() function to determine the size of an array.

95

CHAPTER 4 ARRAYS

Another way to create an array is to list the values of the array
elements in square brackets. That is how the $C array is created. The
$C=["First",2,3.3] statement is used to create it. It is worth mentioning
that the elements of that array have values of different types. In PHP, that
is an acceptable situation. Indexes for the array elements are determined
automatically (0, 1, and 2).

It may happen that you are not satisfied with the situation when the
indexes of the array elements are determined automatically, or you want
to use non-numeric values as indexes. If so, when creating an array, you
pass constructions of the form key=>value as arguments to the array()
function or list them in square brackets. Namely, you specify the key of
the element and, after the “arrow” =>, its value. In addition, as before,
you can assign values to the elements of an array. In that case, the array
is automatically created, and elements with the corresponding keys are
added to it.

Q Note Once again, let’s go over the terminology. Arrays

contain elements. Elements have a value and a key (or keys for
multidimensional arrays). For integer keys, the term indexes is
also used.

An example of creating an array with elements whose keys are
explicitly specified is shown in Listing 4-2.

Listing 4-2. Explicitly Specifying Keys When Creating an Array

<?php
// Adds elements to the array:
$A["Red"]=100;
$A["Yellow"]=200;
$A["Green"]=300;

96

CHAPTER 4 ARRAYS

print("Array \$A:\n");
// The contents of the array:
print_r($A);
// An array with three elements:
$B=array(100=>"0One hundred",200=>"Two hundred", 300=>"Three
hundred");
print("Array \$B:\n");
// The contents of the array:
print_r($B);
// An array with elements and keys of different types:
$C=[5=>"First","X"=>0,"Last"];
print("Array \$C:\n");
// The contents of the array:
print r($C);
2>

The following is the program’s output.

The output of the program (from Listing 4-2)

Array $A:

Array

(
[Red] => 100
[Yellow] => 200
[Green] => 300

)

Array $B:

Array

(
[100] => One hundred
[200] => Two hundred
[300] => Three hundred

97

CHAPTER 4 ARRAYS

)
Array $C:
Array
(
[5] => First
[X] => 0
[6] => Last
)

The program starts with the $A["Red"]=100, $A["Yellow"]=200, and
$A["Green"]=300 commands. As a result, the $A array with three elements
is created: the elements have the keys "Red", "Yellow", and "Green", and
the values are 100, 200, and 300, respectively.

The $B=array(100=>"0One hundred",200=>"Two
hundred",300=>"Three hundred") command creates the $B array with
three elements. Elements have the integer indexes 100, 200, and 300. Their
values are "One hundred", "Two hundred", and "Three hundred".

Finally, the $C=[5=>"First","X"=>0,"Last"] command creates the
$C array, whose elements have keys of different types. Namely, the element
with the value "First" has the integer key 5. The element with the value 0
has the "X" string key. The element with the value "Last" has no specified
key. In that case, the index is calculated automatically: one greater than
the highest integer index of the elements already included in the array.
Therefore, the element with the value "Last" gets the integer key 6.

98

CHAPTER 4 ARRAYS

Details

You can add a new element to an array with a command like array[]=value.
Here, you refer to an element, specifying empty parentheses without specifying
a key. In that case, the key (index) is calculated automatically (the highest index
among the array elements, plus one).

To remove an element from an array, you can use the unset () function,
passing the element to be removed as an argument to the function.

Suppose multiple elements with matching indexes are specified in the array
description. In that case, the array has a single element with the corresponding
index, and its value is determined by the last of the values specified for the element
with that index.

A Loop over an Array

You have examined a case where the index is used the for loop statement
to iterate array elements. The inconvenience of that approach is that the
indexes must form an ordered sequence. But that may not be the case.
Therefore, another loop statement is usually used. It is called foreach. Its
syntax is as follows.

foreach(array as key=>value){
commands

The foreach keyword is followed by a special “construct” in parentheses.
First comes the array name, the as keyword, and then the key=>value
expression. The keys and values are realized by employing variables. The
body of the loop statement contains statements enclosed in curly braces.

The foreach loop statement is executed as follows. The elements
are iterated sequentially in the array specified in the foreach statement.
The commands in the body of the loop statement are executed for each

99

CHAPTER 4 ARRAYS

element of the array. The variable specified as a key in the key=>value
statement gets the value of the element’s key, and the variable specified as
avalue gets the element’s value.

An alternative syntax uses a colon instead of the opening curly brace
and the endforeach keyword (and a semicolon) instead of the closing
curly brace.

foreach(array as key=>value):
commands
endforeach;

Listing 4-3 illustrates the foreach loop statement in practice.

Listing 4-3. Tterating over Elements in an Array

<?php
// An array:
$A=["X"=>100,"Y"=>200,"Z"=>300];
// Iterating over the array elements:
foreach($A as $k=>$v){
echo "Key ",$k," -> value ",$%v,"\n";

?>

The following shows the result of the program’s execution.
The output of the program (from Listing 4-3)
Key X -> value 100

Key Y -> value 200
Key Z -> value 300

In this case, everything is quite simple. First, with the $A=["X"=>100,
"Y"=>200, "Z"=>300] instruction, you create an array. Then, use the loop
statement. After the foreach keyword, the parentheses contain the $A

100

CHAPTER 4 ARRAYS

as $k=>$v construction. It means that the elements of the $A array are
iterated, and the $k variable gets the keys of the elements; meanwhile, the
$v variable gets the values of the elements. There is only one command,
echo "Key ",$k," -> value ",%v,"\n", in the body of the loop
statement, which displays the "Key" string, the value of the $k key of the

element, the " -> value " string, the value $v of the element, and the

break-line escape sequence (the "\n" instruction).

Details

For the first loop, $k is set to "X", and $v is set to 100. For the second loop, $k is set
to "Y", and $v is set to 200. For the third loop, $k is setto “Z", and $v is set to 300.

Another example of using the foreach statement (in its alternative
form) is shown in Listing 4-4.

Listing 4-4. Deleting Elements from an Array

<?php
// An array:
$A=[5=>100, "Two hundred",300];
print("Array \$A:\n");
print r($A);
// Iterates over the elements in the array:
foreach($A as $k=>$v):
print("\$A[$k] = $v");
// Checks the element type:
if(gettype($v)=="string"){
print(" - delete\n");
// Deletes the element from the array:
unset($A[$k]);
}else{
print(" - remain\n");

101

CHAPTER 4 ARRAYS

}

endforeach;
print("Array \$A:\n");
print r($A);

7>

The following is the result of the program’s execution.

The output of the program (from Listing 4-4)

Array $A:

Array

(
[5] => 100
[6] => Two hundred
[7] => 300

)
$A[5] = 100 - remain

] = Two hundred - delete
$A[7] = 300 - remain

Array $A
Array
(
[5] => 100
[7] => 300
)

The program creates an array and then removes the elements with

text values from the array. The array is created by the $A=[5=>100, "Two

hundred",300] command. It has three elements. The value of the

element with the 5 index is 100. The indexes of the other two elements are

calculated automatically. Thus, the index of the element with the value
"Two hundred" is 6, and the index of the element with the value 300 is 7.

102

CHAPTER 4 ARRAYS

The foreach loop statement is used to iterate over the elements of
the $A array. The key is stored in the $k variable, and the element’s value
is stored in the $v variable. For each cycle, the print ("\$A[$k] = $v")
command displays the value of the array element. Then, the conditional
statement comes into play, in which the gettype($v)=="string"
condition is checked (the element’s value is of the string type). If so, the
print(" - remove\n") command displays a message about removing
the element, and then the element is removed from the array using the
unset($A[$k]) command.

If the gettype($v)=="string" condition is false, then the print (" -
remain\n") command displays a message that the element remains in
the array.

After the loop statement is terminated, check the array’s contents.
The check shows that the element with the text value is removed from
the array.

Sometimes, you do not need to know and use the keys of the array
elements. That means that you are interested only in the values of the
elements. If so, a simplified syntax can be used in the foreach loop
statement.

foreach(array as variable){
commands

Here, a variable to store the keys is not specified, and the name of the
variable follows the as keyword that sequentially, cycle by cycle, takes the
values of the elements from the array placed before the as keyword. An
example of using the foreach loop statement in a simplified form is shown
in Listing 4-5.

103

CHAPTER 4 ARRAYS
Listing 4-5. Tterating over the Array’s Elements

<?php
An array:
$A=["X"=>100,"Y"=>200,"Z"=>300];
echo "\$A = [";
Iterates over the values of the elements:
foreach($A as $v){

echo $v," ";
echo n ll;
?>

The following shows the program’s output.

The output of the program (from Listing 4-5)
$A = [100 200 300]

Here, in the loop statement, the $v variable sequentially takes the
values of the $A array elements. The keys are not used.

It is worth mentioning that within the framework described, you can
access the value of an element in a read-only mode. You cannot assign
a new value to the element since the standard scheme for iterating over
array elements assumes that a copy of the element’s value is written to
the corresponding variable. By changing the value of the copy, you do not
affect the element’s value. Nevertheless, there exists an easy way to change
the situation. To do that, in the description of the foreach loop statement,
before the name of the variable proposed for storing the values of the
array elements, you should place the & symbol. If you do so, the specified
variable refers to an array element. In other words, you get access to the
element’s value and the element itself (and you can, if necessary, change
its value).

104

CHAPTER 4 ARRAYS

Details

You can also refer to ordinary variables. A variable reference is an alternative way to get
access to that variable. To create a reference to a variable, you must create a new variable
(reference) in the program and assign the original variable as a value, prefixing it with the
& symbol. For example, the $x=100 command creates the $x variable with the value 100.
Then, the $y=&$x command creates the $y reference to the $x variable. That means
changing the $x variable automatically changes the $y variable, and vice versa. The
reason is simple: the $x and $y variables refer to the same memory area.

Listing 4-6 explains how array elements are accessed.

Listing 4-6. Accessing Elements by a Reference

<?php
An array:
$A=[100,200,300];
print("The initial array:\n");
print r($A);
Accessing the values by a variable:
foreach($A as $v):
$v++;
endforeach;
print("The first try:\n");
Checks the result:
print r($A);
Accessing the values by a reference:
foreach($A as &$v):
$v++;
endforeach;
print("The second try:\n");
Checks the result:
print_r($A);
?>
105

CHAPTER 4 ARRAYS

The following shows the program’s output.

The output of the program (from Listing 4-6)
The initial array:

Array
(
[0] => 100
[1] => 200
[2] => 300
)
The first try:
Array
(
[0] => 100
[1] => 200
[2] => 300
)
The second try:
Array
(
[0] => 101
[1] => 201
[2] => 301
)

The program creates an array and then, using the foreach loop
statement, iterates over the elements of the array and attempts to increase
the value of the array elements by one (the $v++ command in the body
of the loop statement). In the first case, you use an ordinary variable to
access the array’s elements; in the second case, you use a reference. As you
can see, in the first case, the values of the elements do not change; in the
second case, the value is increased by one for each array element.

106

CHAPTER 4 ARRAYS

Multidimensional Arrays

The elements of an array can be, among other things, arrays. And the
elements of these internal arrays can also be arrays, and so on. In that case,
multiple indexes or keys must be used to access an element of the internal
array: the first key allows access to the internal array, the second key allows
access to an element of that internal array, and the chain can continue. If
so, you usually speak of multidimensional arrays. But, in the respect that in
PHBP, array elements can be of different types, this concept is rather vague.
You proceed from the fact that a multidimensional array is an array among
the elements of which there are arrays.

From a technical point of view, creating a multidimensional array
is not tricky. It is enough to describe one or more elements as an array
when creating the initial (external) array. A small example is shown in
Listing 4-7.

Listing 4-7. A Multidimensional Array

<?php
// A multidimensional array:
$A=[[1,2,3,4,5],["A","B","C"],[6,7,8,9]];
echo "Array \$A:\n";
// The contents of the array:
print r($A);
echo "Array \$A:\n";
// Iterates the elements (with the help of indexes):
for($i=0;$i<count($A);$i++){
for($j=0;$j<count ($A[$1]);$j++){
// Displays the value of the elements:
echo $A[$i][$31," ";

107

CHAPTER 4 ARRAYS

// Breaks the line:
echo "\n";
}
// A multidimensional array:
$B=array(7=>array("X"=>2,"Y"=>3),9=>array("D","E","F"));
echo "Array \$B:\n";
// The contents of the array:
print r($B);
echo "Array \$B:\n";
// Iterates the elements:
foreach($B as $ki=>$v1){
foreach($vl as $k2=>$v2){
// Displays the value of the element:
echo "\$B[$k1][$k2] = $v2\n";

}

?>

The following shows the result of the program’s execution.

The output of the program (from Listing 4-7)

Array $A:
Array
(
[0] => Array
(
[0] => 1
[1] => 2
[2] => 3
[3] => 4
[4] => 5
)

108

[1] => Array
(
[0] => A
[1] => B
[2] => C
)
[2] => Array
(
[0] => 6
[1] => 7
[2] => 8
[3] => 9
)
)
Array $A:
12345
ABC
6789
Array $B:
Array
(
[7] => Array
(
[X] => 2
[Y] => 3
)
[9] => Array
(
[0] => D
[1] => E

CHAPTER 4 ARRAYS

109

CHAPTER 4 ARRAYS

[2] => F

-
[==)

— /o
O

_ e

— — oo
o

[T Sy S [T S
I

m o m O W N

The program creates two multidimensional arrays and displays their
contents in different modes. The first array is created with the $A=[[1,2,3,
4,5],["A","B","C"],[6,7,8,9]] command. That is an array consisting of
three elements: the element $A[0] is the [1,2,3,4,5] array, the element
$A[1] is the "A","B","C"] array, and the element $A[2] is the [6,7,8,9]
array. If you specify the second index, you get access to an element of the
internal array. For example, the $A[0][1] expression refers to the element
with the 1 index in the array, which is the element with the 0 index in the
$A array (the element value is 2). The $A[1][2] instruction refers to the
element with the 2 index in the array, which is the element with index 1 in
the $A array (the value of the element is "C").

You did not specify indexes for array elements, so they are determined
automatically. You can use that fact and enumerate the array elements
employing indexes. You do that in the nested for loop statements. In the
outer statement, the loop variable $i runs from 0 to count($A) (the count
of elements in the $A) array minus one. In the inner loop statement, the
loop variable $j runs from 0 to count($A[$1]) (the number of elements in
the inner array $A[$1]) minus one. With the given values of the $i and $j
variables, the echo $A[$i][$j]," " command is executed, which displays
the value of the element $A[$1][$]] (the element with the $j index in the
array, which is the element with the $i index in the $A) array and a space.

110

CHAPTER 4 ARRAYS

After the inner loop statement is terminated, the echo "\n" command

breaks the line (moves the caret to the new line in the output area).
Another multidimensional array is created by the $B=array(7=>

array("X"=>2,"Y"=>3),9=>array("D","E","F")) command. Here,

you use the array() function, and for some arrays (including the outer

one), you explicitly specify the key values. Nested foreach statements

are used to iterate over elements. The outer statement iterates over the

contents of the $B array. The key of an $B array element is written to

the $k1 variable, and the value of the element of the $B array is written to

the $v1 variable. But the $B array consists of arrays, so $v1 is an array. That

array is reviewed in the inner foreach loop statement. There, the key of the

element in the internal array is written to the $k2 variable, and the value

of that element is written to the $v2 variable. The echo "\$B[$k1][$k2]

= $v2\n" command displays the keys and the value of the element in the

internal array.

Array Assignments

The basic operations performed on array elements are reading the
element’s value and assigning a value to the element. If you need to know
an array element’s value, specify the array name and element index/key in
square brackets after the array name.

@ Note You can use curly braces instead of square brackets

when referring to array elements, but in PHP 8, such syntax raises
an error.

111

CHAPTER 4 ARRAYS

new value to the element. As noted earlier, if the element to which a value
is assigned does not exist in the array, such an element is created. You also
know how to iterate over the elements of an array using the foreach loop
statement. All these have been discussed. However, that is not a complete
list of operations that can be performed with arrays. Next, let’s examine

some of the most relevant issues. Let’s start with array assignments.

If you want to change the value of an array element, you just assign a

The program in Listing 4-8 assigns an array as a value to a variable.

Listing 4-8. Array Assignments

<?p

?>

112

hp

// The initial array:
$A=[1,[2,[3,4]]];
print("Array \$A:\n");
// Checks the contents
print_r($A);

// Assigns an array:
$B=%A;

print("Array \$B:\n");
// Checks the contents
print r($B);

// Changes the initial
$AL0]="A";
$A[1][0]="B";
$A[1][1][0]="C";
print("Array \$A:\n");
// Checks the contents
print_r($A);
print("Array \$B:\n");
// Checks the contents
print_r($B);

of the array:

of the array:

array:

of the array:

of the array:

CHAPTER 4 ARRAYS

The program creates an array with the $A=[1,[2,[3,4]]] command.
Next, with the $B=$A command, the $A array is assigned as a value to the $B
variable. Then, you change the values of some array elements $A and check
how the $A and $B arrays have changed

Details

After the $A array is created, the following commands are executed: $A[0]="A"
changes the value of the $A array element with the 0; $A[1][0]="B" index
changes the value of the element with the 0 index in the array, which is the element
with the 1 index in the $A; $A[1][1][0]="C" array changes the element with the
0 index in the array, which is the element with the 1 index in the array, which is the
element with the 1 index in the $A array.

The following shows the result of the program’s execution.

The output of the program (from Listing 4-8)

Array $A:
Array
(
[0] => 1
[1] => Array
(
[0] => 2
[1] => Array
(
[0] => 3
[1] => 4
)
)
)

113

CHAPTER 4 ARRAYS

Array $B:
Array
(
[0] => 1
[1] => Array
(
[0] => 2
[1] => Array
(
[0] => 3
[1] => 4

)

Array $A:
Array

(
[0] => A
[1] => Array
(
[0] => B
[1] => Array
(
[0] => C
[1] => 4

114

CHAPTER 4 ARRAYS

Array $B:
Array
(
[0] => 1
[1] => Array
(
[0] => 2
[1] => Array
(
[0] => 3
[1] => 4

The most important conclusion is that changing the $A array (after
executing the $B=$A command) does not affect the $B array. In other
words, the $B=$A command creates a copy of the $A array.

@ Note Such an obvious conclusion might seem strange and

naive. However, this situation may surprise those familiar with Java,
C#, or Python.

Concatenating Arrays

Another practical operation is the concatenation (addition) of arrays. To
do that, you use the + operator. The rule is as follows. If you add an array
to an array, you get an array consisting of elements from both arrays. If the
merged arrays have elements with the same keys, the resulting array keeps

115

CHAPTER 4 ARRAYS

the value presented in the first operand (the value from the first array). The
situation is illustrated in Listing 4-9.

Listing 4-9. The Sum of Arrays

<?php
// The initial arrays:
$A=["First"=>1,2,"Last"=>3];
$B=[100,200, "Last"=>300];
// The sum of the arrays:
$C=$A+$B;
// The contents of the resulting array:
print r($C);

2>

The output of the program is as follows.

The output of the program (from Listing 4-9)

Array

(
[First] => 1
[0] => 2
[Last] => 3
[1] => 200

)

Create two arrays using the $A=["First"=>1,2,"Last"=>3] and
$B=[100,200, "Last"=>300] commands. Next, calculate the sum of these
arrays (the $C=$A+$B instruction). What is the result? The result is an array
that contains elements from the two original arrays. There is just some
intrigue regarding the elements that have matching indexes. There are two
such elements (two pairs). This means the element with the "Last" key,
and the element with the 0 index (in the $A array, that is, the element with

116

CHAPTER 4 ARRAYS

the value 2, and in the $B array, that is, the element with the value 100).

As noted, the first array (the $A array) takes precedence in such situations.
Thus, in the $C array, the element with the 0 index has the value 2, and the
element with the "Last" key has the value 3.

Comparing Arrays

Another important procedure is comparing arrays for equality or inequality.
Two arrays are considered equal if they have the same set of elements,
including the keys of those elements and their values. But here, you should
consider the automatic type casting involved when comparing arrays. Namely,
ifthe == and ! = operators are used to compare arrays, then the comparison is
performed considering the automatic type conversion. If you want to compare
arrays without involving the automatic type casting, you should use the ===
and !== operators. Here, only the values of the elements are considered. The
keys are compared for a match involving the automatic type casting in any
case. An example of how arrays are compared is shown in Listing 4-10.

Listing 4-10. Comparing Arrays

<?php

// The arrays to compare:
$A=["0"=>123,1=>true,2=>""];
$B=["123",10,0];
$C=[0=>123,"1"=>true,"2"=>""];
$D=[0=>123,1=>true,3=>""];
// Compares the arrays:
if($A==9B){

echo '$A==$B',"\n";

}
if($A1==$B){

echo "$A!==$B',"\n";
}

117

CHAPTER 4 ARRAYS

if($A===$C){

echo "$A===$C","\n";
}
if($A1=$D){

echo "$A!=$D","\n";
}

2>

The result of the program’s execution is as follows.

The output of the program (from Listing 4-10)
$A==$B
$A!==$B
$A===%C
$A1=$D

There is the $A=["0"=>123, 1=>true,2=>""] array, which is compared
to the $B=["123",10,0], $C=[0=>123,"1"=>true, "2"=>""] arrays and
$D=[0=>123,1=>true,3=>""]. It appears that the $A==$B condition is true. The
reason is like that. The elements of the $A array have the "0", 1, and 2 keys, and
the values 123, true, and "" respectively. The elements of the $B array have
the 0, 1, and 2 keys (auto-calculated), and the values of the corresponding
elements are "123", 10, and 0. The keys match because "0" is automatically
converted to 0. The value "123" is converted to 123, the non-zero number 10 is

equivalent to true, and the empty string " " is converted to the zero value 0.

£ The PHP 8 Standard In PHP 8, the empty string "" is not equal
to the number 0. Therefore, in PHP 8, $A==$B is not true.

If the automatic type conversion is not involved, then the values of the
elements of the arrays $A and $B are different, so the $A!==$B expression
is true.

118

CHAPTER 4 ARRAYS

In the $C array, the values of the elements are the same as in the $A
array. Although the elements’ keys in the $C array are different from those
in the $A array, the keys are interpreted as the same due to the automatic
type casting. Therefore, the $A===$C condition is true. Finally, the $D
array is compared to the $A array, and only one of the keys differs. That is
enough for the $A!=$D condition to be true.

Functions for Handling Arrays

Many interesting operations with arrays can be performed using special
functions. One is the 1ist () function (frankly, it is not a function but

a special syntax construction). The format for using the function is as
follows.

list(variables)=array

You pass variables as arguments to the function (and these variables
may have no values at all) and assign an array to that expression. The
consequences are as follows: the variable specified as the first argument of
the 1ist() function is assigned the first element of the array, the second
variable in the argument list of the 1ist() function is assigned the second
element of the array, and so on. Some arguments can be skipped, and the
count may not match the count of array elements. Examples of using the
list() function are shown in Listing 4-11.

Listing 4-11. Extracting Values from an Array

<?php
// An array:
$A=[1,2,3,4,5];
list($x,,%y,%z)=%A;
// The result:
print("\$x = $x\n");

119

CHAPTER 4 ARRAYS

print("\$y = $y\n");
print("\$z = $z\n");
?>

The following is the program’s output.

The output of the program (from Listing 4-11)

$x = 1
$y = 3
$z = 4

The $A=[1,2,3,4,5] array is assigned as the value in the
list($x,,$y,$z)=$A statement. The command is executed as follows. The
value 1 of the first element of the $A array is stored in the $x variable. The
next argument of 1ist() is omitted, so the element with the value 2 is not
written anywhere. The value 3 is written to the $y variable, the value 4 is
written to the $z variable, and the value 5 is not written anywhere because
the corresponding variable is not specified in the 1ist() argument list.

There are also some other functions and utilities that can be useful
when handling arrays. For example, the array keys() function returns
an array with the keys of the array passed as an argument to the function.
The array _combine() function allows you to create an array based on
two arrays: one defines the keys, and the second defines the values of the
elements. Another useful function is range (), which creates an array with
the values of the elements in the specified range (function arguments).
The array_pop() function removes the last element from the array, and
the array_push() function adds an element (or elements) to the end
of the array. The array_slice() function allows you to get a slice of an
array (that is, extract a subarray from the array). The first argument of the
function is the array to be sliced. The second argument is the index of
the element from which the slice is to be performed. If that argument is
negative, then the index is counted from the last element of the array

120

CHAPTER 4 ARRAYS

(-1 means the last element, -2 means the last but one element, and so on).
The third argument specifies the number of elements in the slice.

@ Note In general, there are a lot of functions for manipulating

arrays. A separate book could be devoted to their description.

Listing 4-12 is a program in which the functions described are used.

Listing 4-12. Functions for Handling Arrays

<?php
// The first array:
$K=range(3,5);
print("Array \$K:\n");
print_r($K);
// The second array:
$A=["X"=>100,"Y"=>200,"Z"=>300];
print("Array \$A:\n");
print r($A);
// The third array:
$B=array keys($A);
print("Array \$B:\n");
print r($B);
// The fourth array:
$C=array combine($K,$B);
print("Array \$C:\n");
print_r($C);
array_pop($C);
print("Array \$C:\n");
print_r($C);
array push($cC,"A","B");

121

CHAPTER 4 ARRAYS

print("Array \$C:\n");
print r($C);
// The fifth array:
$D=array slice($C,0,3);
print("Array \$D:\n");
print_r($D);
// The sixth array:
$E=array slice($C,-3,2);
print("Array \$E:\n");
print r($E);

7>

The following is the program’s output.

The output of the program (from Listing 4-12)
Array $K:
Array

Array $A:

Array

(
[X]
[Y]
[Z]

> 100
> 200
> 300

)
Array $B:

Array

(

122

[0] => X
[1] => VY
[2] => Z
)
Array $C
Array
(
[3] => X
[4] => Y
[5] => Z
)
Array $C:
Array
(
3] => X
=Y
)
Array $C:
Array
(
[3] => X
[4] => Y
[5] => A
[6] => B
)
Array $D
Array
(
[0] => X
[1] => VY
[2] => A
)

CHAPTER 4 ARRAYS

123

CHAPTER 4 ARRAYS

Array $E:
Array
(
[0] =>Y
[1] => A
)

The $K=range(3,5) command creates an array of numbers from 3 to
5 inclusively (that is, the [3,4,5] array). Another array is created by the
$A=["X"=>100,"Y"=>200,"Z"=>300] command. The $B=array keys($A)
command creates the third array. It is an array consisting of the keys of the
$A array (that is, the ["X","Y","Z"] array). The $C=array combine($K,$B)
command creates an array whose keys are determined by the values of the
elements of the $K array, and the values of the elements of the $C array are
determined by the values of the elements of the $B array.

The array _pop($C) command removes the last element from the $C
array. And due to the array push($C,"A","B") command, the elements
with the values "A" and "B" are added to the end of the $C array.

The $D=array slice($C,0,3) command creates an array obtained by
extracting three elements (due to argument 3) from the $C array, beginning
from the element with the 0 index (due to argument 0).

The $E=array slice($C,-3,2) command creates an array obtained by
extracting two elements (since the third argument is 2) from the $C array,
beginning from the third from the end (due to the second argument -3)

element.

124

CHAPTER 4 ARRAYS

Summary

e Anarray is a collection of values joined by a common
name. The values, in general, can be of different types.

e Anarray element is accessed by the key or index
(indicated in square brackets after the array name).
Keys/indexes can be integers or strings.

o There are several ways to create an array. Namely, you
can assign values to array elements, use the array()
function (syntax construction), or list the values of
the array elements in square brackets. If the keys/
indexes are not specified explicitly, they are calculated
automatically.

e You can use the foreach loop statement to iterate over
the contents of an array. It allows you to access the keys
and values of the array elements.

e The array elements can be arrays. In that case, the
elements of the internal arrays are accessed using
multiple keys.

e You can perform various operations on arrays,
including assignment and comparison for equality/
inequality. You can also concatenate arrays.

o There exist special functions designed to handle arrays.

125

CHAPTER 5

Functions

—I notice you spend a lot of time fixing stuff, Willie.
—That’s because you spend a lot of time breaking stuff, Alf.

—Well, it’s nice that our hobbies are so compatible.

—ALF (TV series)

This chapter introduces functions, which play an essential role in any
programming language. The PHP language is not an exception. You learn
how to create functions, how they can be used, and what is unique about
functions in the PHP language.

Creating Functions

Very often in programs, you must execute many times the same sequence
of commandes. It is convenient to write such commands as a separate block
of code and then, if necessary, simply put the instruction that means the
execution of the corresponding block of commands. In general terms, that
idea underlies the use of functions.

A function is a named block of code that can be called by that name.
In other words, you form a block of commands, specify a name for that
block of commands, and every time you need the block of commands
executed, you just specify its name. As usual, you use commands to
process some values or data. If you are intended to process such values

© Alex Vasilev 2024 127
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_5

https://doi.org/10.1007/979-8-8688-0258-4_5

CHAPTER 5 FUNCTIONS

during the function call, the function should be called with an argument
(or arguments). Traditionally, function arguments are specified in
parentheses after the function name. If there are multiple arguments, they
are separated by commas.

Before calling a function, it must be declared (or created). The
description of a function implies that you must define what commands are
executed when the function is called and what operations are performed
on the arguments (if any). So, how is a function defined in PHP?

A function declaration begins with the function keyword followed
by the function name and a list of arguments in parentheses. Arguments
are similar to variables and are identified with the values passed to the
function when called. If the function has no arguments, empty parentheses
are placed after the function name in the function’s description. The
commands executed when the function is called are placed in a block
enclosed in curly braces. The following is the general function declaration
template.

function name(arguments){
// commands

Commands in the body of a function may refer to the function
arguments, and the function arguments are described as variable names
(the argument names begin with the $ symbol). When a function is called
and arguments are passed to it, the commands described in its body are
executed. In that case, in those places where the arguments are put in the
code, the actual values passed to the function are used.

128

CHAPTER 5 FUNCTIONS

Details

Function names are not case-sensitive. In other words, whether the function name
is in uppercase or lowercase letters doesn’t matter. For example, if you have the
show() function, then that is the same as the SHOW () or Show() function.

It is also worth mentioning that traditionally, function names are specified with
empty parentheses after the function name. That is usually done to distinguish
function names from variable names. As you know, in PHP, the distinguishing feature
of variable names is the $ symbol with which the name begins. Nevertheless, the
tradition is held.

To call a function, it is enough to specify its name and parentheses:
empty if the function has no arguments and with a list of values if there are
arguments. A small example in which you declare and then call a function

is shown in Listing 5-1.

Listing 5-1. Getting Familiar with Functions

<?php
// The function declaration:
function show($argument){
echo "Calling the function show()\n";
echo "The argument type: ",gettype($argument),”\n";
echo "The argument value: $argument\n\n";
}
// Calls the function:
show(123);
SHOW("We learn PHP");
Show(2.5);
?>

129

CHAPTER 5 FUNCTIONS

The following is the result of the program execution.

The output of the program (from Listing 5-1)
Calling the function show()

The argument type: integer

The argument value: 123

Calling the function show()
The argument type: string
The argument value: We learn PHP

Calling the function show()
The argument type: double
The argument value: 2.5

The straightforward show() function has been described. It has only
one argument, which is named $argument. That means that when you
call the function, you should put some value (the function argument) in
parentheses after the function name.

@ Note It is essential to understand that the description of a
function does not imply the execution of its code. For the function
code to be executed, the function must be called.

You should refer to the code in the function’s body to understand
what happens when a function is called. In this case, there are only
three commands, each using the echo statement. So, three messages
appear in the output window whenever you call the function. The first
message states that the show() function has been called. The second
message contains information about the type of argument passed to the
function. To determine the type of the argument, the gettype($argument)
instruction is used to explicitly refer to the $argument argument.

130

CHAPTER 5 FUNCTIONS

Q Note When the function is described, the type of the
argument and its value are not known. Those circumstances “reveal”
when the function is called. Now, you can simply describe what
needs to be done with the function argument.

Another message contains information about the value of the
$argument argument.

@ Note After the last message, a line break is performed twice
using two \n instructions. That is purely for aesthetic purposes so
that message blocks displayed due to different function calls are
separated by a blank line.

After the function is declared, you call it with three different arguments
(an integer, a string, and a real number). To illustrate the case-insensitivity
of the function name, you specify each time the function name using a
different combination of uppercase and lowercase letters. In particular,
you write the name of the function in small letters (the show(123)
command), in capital letters (the SHOW("We learn PHP") command), and
also indicate the first capital letter in the function name (the Show(2.5)
command). In all three cases, the same show() function is called.

Q Note Let’s hold a simple principle: call a function according
to how it is described (i.e., the name of the function).

131

CHAPTER 5 FUNCTIONS

The Function Result

A function can return a result. The result of a function is the value that
remains “for memory” after the function has completed its execution. If a
function returns a result, the instruction by which the function is called has
avalue, which is the result of the function. Therefore, you can, for example,
assign a function call instruction to a variable or use it as an operand in a
complex statement. To understand the result of an expression containing
function call instructions, you should replace those instructions with the
values returned by the corresponding functions in the expression.

To show in the function description that the function returns a result,
you use the return instruction followed by the value the function returns.

Details

Executing a command with the return statement terminates the execution of the
function. The function code can contain several retuxrn instructions (for example,
in a conditional statement), but as soon as one of them is executed, the function
execution is terminated.

If a function does not return a result, then the return statement can be used
to terminate the execution of such a function without specifying a return value.
Generally, a function that does not return a result is interpreted as returning a
null reference. Therefore, in principle, for such functions, instead of the return
instruction (without a value), you can use the return null statement.

Listing 5-2 shows a program in which you use several functions that
return a result.

132

CHAPTER 5 FUNCTIONS
Listing 5-2. A Function That Returns a Result

<?php
// The function calculates the factorial:
function factorial($n){
$s=1;
for($k=2; $k<=$n; $k++){
$s*=9k;
}
return $s;
}
// The function calculates a number in a power:
function power($x,$n){
$s=1;
for($k=1; $k<=$n; $k++){
$s*=$x;
}
return $s;
}
// The function checks whether a number is even/odd:
function test($number){
if($number%2==0){
return "even";
telse{
return "odd";

}
// Variables:

$z=2;
$num=10;
// Calls the function:

133

CHAPTER 5 FUNCTIONS

$res=power($z,$num);
echo "Calculate $z in the power $num: $res\n”;
// Calls the function:
echo "$num! = ",factorial($num),"\n";
// Calls the function:
echo "The number $num is ".test($num)."\n";
$num--; # Decreases the variable by one
echo "The number $num is ".test($num)."\n";
?>

The following is the result of the program execution.

The output of the program (from Listing 5-2)
Calculate 2 in the power 10: 1024

10! = 3628800

The number 10 is even

The number 9 is odd

Three functions are described in the program. The factorial()
function is designed to calculate the factorial of a number. Its argument is
named $n. It is assumed that that is the number for which the factorial is
calculated.

@Note The factorial of an integer number n (denoted as n!) is
the product of all numbers from 1 to ninclusively. That is, by
definition,n! =1-2-3-...-(n—=1)-n.

You use the local variable $s with the initial value 1 in the function’s
body. Then, a loop statement is executed. There, the $k variable gets
values from 2 to $n inclusively. For each loop, the $s*=$k command
is executed. According to the command, the current value of the $s

134

CHAPTER 5 FUNCTIONS

variable is multiplied by the current value of the $k variable. As a result,
after executing the loop statement, the product of numbers from 1 to
$n is stored in the $s variable. Finally, with the return $s command, the
computed value is returned as the result of the factorial() function.

Details

The variables in the body of a function are called /ocal variables. They are the first
assigned values in the function’s body. Local variables exist while the function code
is executed and are available only in the function’s body. Two important conclusions
follow from that. First, it makes sense to refer to a local variable only in the function
body. Second, you can use local variables with the same names in different
functions; these are different variables since they have different scopes.

The arguments specified in the function declaration have the “power” of local
variables. They are available only in the function’s body. If you specify the same
names for the arguments in the description of different functions, they are different
variables independent of each other.

The power () function is designed to raise a number to a power. The
function has two arguments, separated by a comma in the function
description. The first argument $x, is the number to be raised to a power,
and the power is determined by the second argument $n.

Q Note Even though the name of the second argument $n of
the power () function is the same as the name of the argument of
the factorial() function, there is nothing in common between
these arguments. The same remark applies to the local variable $s
used in the body of the power () function.

135

CHAPTER 5 FUNCTIONS

In the power () function, the local variable $s is initialized with the
initial value 1. After that, the $s*=$x command is executed in the loop
statement, which multiplies the current value of the $s variable by the first
argument $x of the power () function. The number of cycles is determined
by the second argument $n. As a result, the $s variable contains the value
of $x in the power $n. The return $s statement returns the result of the
function.

Another function used in the program is named test(). It is designed
to check the number passed as an argument (denoted as $number) to see
ifitis even or odd. If the number is even, the function returns the "even"
string as a result, and if the number is odd, the "odd" string is the result of
the function.

The core of the function code is a conditional statement, which checks
the $number%2==0 condition (the remainder of dividing the $number
argument by 2 is 0). If the condition is true, then the result is returned
by the return "even" command. Otherwise, the result is returned by
return "odd".

You use two variables to test how the functions operate: $z with the
value 2 and $num with the value 10. Using the $res=power ($z, $num)
command, you call the power () function with arguments $z and $num, and
you store the result, returned by the function, to the $res variable. That is
the value of the $z variable in the power determined by the $num variable.

The factorial of the number saved in the $num variable is calculated by
the factorial($num) instruction.

Finally, the program uses expressions like "The number $num is
".test($num)."\n". That is the string obtained by concatenating the "The
number $num is ", test($num), and "\n" strings. The dotis used as a
concatenation operator, and the second of the strings to be concatenated
(the test($num) instruction) is the result returned by the test () function.

136

CHAPTER 5 FUNCTIONS

Details

The PHP interpreter generates a special intermediate bytecode based on the source
code. This process is called translation. After the code is translated, the code
execution begins. In PHP, the translation and the code execution are separated.
Because of that, functions do not have to be declared before they are called. In other
words, you can first place a function call instruction in a program and only after

that describe the function. However, such a style should not be overused, especially
in the practical use of PHP codes, since that can increase the probability of error
raising.

The Type of Arguments and Result

When describing functions in the examples, it is assumed that the values
passed to the functions belonged to a specific type. It was essential and
accounted for when processing the arguments. However, there is no
guarantee that when a function is called, a value of the correct type is
passed to it as an argument. A similar situation is with the result type
returned by a function.

@ Note The fact that the type of the arguments or the type of
the result is not explicitly specified is not always a disadvantage;
rather, it is on the contrary. There are often situations when you need
to create a function whose argument could be values of different
types. But there are also opposite situations when you must pass a
value of a strictly defined type to a function. It all depends on the
specifics of the problem being solved.

137

CHAPTER 5 FUNCTIONS

Of course, you can add some code to the function to check the passed
arguments’ type. But that is not always convenient. Fortunately, there is an
easier way to “restrict” the range of allowed types for arguments. Namely,
you can explicitly specify the type of the arguments and the result of the
function in the function description. That could be done quite simply. For
arguments, the type is specified before the argument name in the function
description, and the function result type is specified, separated by a colon,
after the closing parenthesis. The function description template, in that
case, is as follows.

function name(type argument, type argument,...): type{
// commands

An error arises with such a function description if you call it and pass
an argument of a different type than the one specified in the function
description.

Details

PHP has a system for catching and handling exceptions (errors) of various types.
That system allows you to create programs that operate efficiently even if errors
arise. Catching exceptions is discussed later.

Listing 5-3 uses functions with explicit type specifications for their
arguments and results.

Listing 5-3. Type of Arguments and Results

<?php
// To switch to the hard typing mode, we need
// to uncomment the next statement:
declare(strict types=1);

138

CHAPTER 5 FUNCTIONS

// The type of arguments and result

// is specified explicitly:

function power(float $x,int $n): string{
for($s=1,$k=1;%k<=$n; $s*=$x, $k++);
return "The number $x in the power $n: ".$s."\n";

}

// Calls the function:

echo power(3,4);

echo power(1.5,2.7);

echo power("2","10.1");

?>

The result of the program execution is as follows.

The output of the program (from Listing 5-3)
The number 3 in the power 4: 81

The number 1.5 in the power 2: 2.25

The number 2 in the power 10: 1024

This program modifies the power () function designed to calculate a
number in a power. In the new version, the first function argument $x is
declared to be of the float type (a real number), the second argument $n
is of the int type (an integer), and the result of the function is a value of the
string type (text).

There are only two commands in the body of the function. The first one
is a call of the for loop statement. In the first block of that statement, the
$s=1 and $k=1 commands are executed, which set the $s and $k variables
to the initial value 1. The loop statement is executed while the $k<=$n
condition is true. Two commands, $s*=$x and $k++, are executed for each
loop. Both commands are placed in the third block of the loop statement,
so the body of the loop statement is empty (there are no commands at all).
You end the instruction that calls the loop statement with a semicolon
since the command following the loop statement does not belong to it.

139

CHAPTER 5 FUNCTIONS

The result of the function is returned by the "The number $x in the
power $n: ".$s."\n" statement. Thus, the result is a string formed by
combining string fragments and contains information about the results of
calculations.

You test the created function using the echo power(3,4), echo
power(1.5,2.7), and echo power("2","10.1") commands. It may seem
strange, but all three commands run without errors, although the type of
the arguments passed to the power () function does not match the declared
one. The reason is that the automatic type casting comes into play by
default. For example, the second argument must be of the integer type. If
areal number is passed as the second argument, then the fractional part
is automatically discarded in that real number. If you pass a string with a
number “hidden” in it as an argument, then such a string is converted to
the number format, and so on.

~ The PHP 8 Standard

In versions higher than PHP 8, on the echo power(1.5,2.7) and
echo power("2","10.1") commands, you get a warning that the
implicit conversion from float (float-string) to integer is deprecated
since it leads to losing precision.

If unsatisfied with such code execution, you can switch to the hard
typing mode. To do that, the declare(strict types=1) statement should
be added to the program.

Q Note In the preceding program, the instruction is a comment
(the line begins with the # symbol). If you want to switch to the hard
typing mode, remove the # symbol at the beginning of the
corresponding line.

140

CHAPTER 5 FUNCTIONS

If so, only the first of the three instructions to test the power () function
operates correctly. Attempting to execute the other two cause an error.

Details

In the power (3,4) statement, the first argument is an integer despite the
corresponding argument being declared a real number. In such a case, the integer
value is automatically extended to the real type. Notably, from the mathematical
point of view, the set of integers is a subset of the set of real numbers.

2 The PHP 8 Standard

In PHP 8, the ability to define type unions is introduced. In that
case, the types are listed with the vertical bar | as a separator. For
example, the int|string|double expression means that the
corresponding variable (function argument or result) can be int,
string, or double.

Also, PHP 8 introduces the mixed type, the broadest possible union
of types.

The Argument Passing Mechanism

Take a look at the program in Listing 5-4.

Listing 5-4. Passing Arguments by Value

<?php
// A function with two arguments:
function swap($a,$b){

141

CHAPTER 5 FUNCTIONS

echo "Input: the arguments $a and $b\n";

$x=%a;
$a=$b;
$b=$x;
echo "Output: the arguments $a and $b\n";
}
// Variables:
$A=100;
$B=200;

// The values of the variables:
echo "\$A = $A and \$B = $B\n";
// Calls the function:
swap($A,$B);
// Checks the values of the variables:
echo "\$A = $A and \$B = $B\n";
?>

The following is the result of the program execution.

The output of the program (from Listing 5-4)
$A = 100 and $B = 200

Input: the arguments 100 and 200

Output: the arguments 200 and 100

$A = 100 and $B = 200

You create the swap() function in the program with two arguments.
When the function is called, it displays the arguments passed to the
function. Then, you try to change the values of the arguments (the first
argument is assigned the value of the second argument, and the second
argument is assigned the value of the first argument) and check their

values again.

142

CHAPTER 5 FUNCTIONS

Two variables are used, $A and $B, with the values 100 and 200
respectively. First, check the values of these variables. Then, you pass
the variables to the swap() function as arguments (the swap ($A, $B)
command). Next, check the values of the variables again.

What is the program’s output? As you can see, the $A and $B variables
do not change their values. Nevertheless, the second check of the
arguments in the body of the swap() function shows that the values of
the arguments are switched. What does all that mean, and how do you
understand the situation? Indeed, everything is quite simple. You should
consider that when passing arguments to a function, the function gets
copies of the variable passed to the function as the arguments. In other
words, when executing the swap ($A, $B) command, it is not the $A and $B
variables that are passed to the swap() function but their copies. So, the
copies of the variables swap values when executing the code of the swap()
function. When the function execution is over, the copies of the arguments
are removed from memory, and the $A and $B variables remain with their
previous values. Such a mechanism of passing arguments to functions
is the default one called passing arguments by value. Besides passing
arguments by value, arguments can be passed by reference. In that case,
not copies of the arguments but “originals” are passed to the function. If
you want to pass arguments by reference, you should put the & instruction
before the argument name in the function declaration. A modification
of the previous program, but this time with passing the arguments to the
swap () function by reference, is shown in Listing 5-5.

Listing 5-5. Passing Arguments by Reference

<?php
// Passing arguments by reference:
function swap(&$a,8$b){
echo "Input: the arguments $a and $b\n";
$x=%a;
$a=$b;

143

CHAPTER 5 FUNCTIONS

$b=$x;
echo "Output: the arguments $a and $b\n";
}
$A=100;
$B=200;
echo "\$A = $A and \$B = $B\n";
swap($A,$B);
echo "\$A = $A and \$B = $B\n";
?>

Now, the result of the program execution is as follows.

The output of the program (from Listing 5-5)
$A = 100 and $B = 200

Input: the arguments 100 and 200

Output: the arguments 200 and 100

$A = 200 and $B = 100

You see that the values of the $A and $B variables have changed after
these variables were passed to the swap () function.

Q Note The mechanism of the argument’s passing is essential
if you change the values of the function arguments during the
function’s execution. If the argument values are not going to be
changed, then the default mechanism of passing the arguments by
value is perfectly acceptable.

144

CHAPTER 5 FUNCTIONS

The Argument Value by Default

You can set default values for the arguments of a function. The default
value is used when calling the function if you do not specify a value for
such an argument.

To set a default value for an argument, you put the assignment
operator and that default value after the argument name in the function
declaration. The arguments with default values must be placed at the end
of the arguments list in the function declaration.

Q Note In other words, arguments without default values are
described first, followed by those with default values.

Listing 5-6 is a program with functions whose arguments (some or all)
have values by default.

Listing 5-6. The Argument Values by Default

<?php

// All arguments of the function

// have values by default:

function show($first="Alpha",$second="Bravo"){
echo "The first argument: ",$first,"\n";
echo "The second argument: ",$second,"\n\n";

}

// Not all arguments of the function

// have values by default:

function display($x,$y=200,$z=300){
echo "The first number: ",$x,"\n";
echo "The second number: ",$y,"\n";
echo "The third number: ",$z,"\n\n";

145

CHAPTER 5 FUNCTIONS

// Calls the functions:
show(); # No arguments
show("A"); # One argument
show("A","B"); # Two arguments
display(100); # One argument
display(1,2); # Two arguments
display(1,2,3); # Three arguments
?>

The following is the program’s output.

The output of the program (from Listing 5-6)
The first argument: Alpha
The second argument: Bravo

The first argument: A
The second argument: Bravo

The first argument: A
The second argument: B

The first number: 100
The second number: 200
The third number: 300

The first number: 1
The second number: 2
The third number: 300

The first number: 1
The second number: 2
The third number: 3

146

CHAPTER 5 FUNCTIONS

The program uses two functions: show() with two arguments and
display() with three arguments. Both arguments of the show() function
have values by default. The last two arguments have default values in the
display() function. You call these functions and pass them a different
count of arguments each time.

When the show() command is executed, the default values are used for
both arguments to the show() function. In other words, the command is
executed as if the first argument were "Alpha" and if the second argument
were "Bravo".

The show("A") command means that the value "A" is used for the first
argument, and the default value "Bravo" is used for the second argument.
Finally, the show("A","B") statement means that the value "A" is passed
as the first argument, and the value "B" is passed as the second argument
to the function.

A similar situation takes place for the display() function. The only
difference is that since there is no default value for the first argument,
the first argument must always be specified. So, when you run the
display(100) command, the values of the arguments are 100, 200, and
300, respectively. The display(1,2) command means that the first
argument’s value is 1, the second argument is 2, and the third is the default
value 300. When executing the display(1,2,3) command, all function
arguments are explicitly specified and have the values 1, 2, and 3.

An Arbitrary Number of Arguments

The peculiarity of PHP is that you can pass more arguments than specified
in the function declaration without any tragic consequences when calling
a function. For example, if a function is described with two arguments, and
when you call the function, you pass five arguments, then the last three
arguments are ignored.

147

CHAPTER 5 FUNCTIONS

That peculiarity of functions can be used to create ones with an
arbitrary number of arguments. This means the situation when a function
can be called with any number of arguments, and all those arguments are
processed in the function.

Q Note You are dealing with default values for function
arguments. That makes it possible to specify a different number of
arguments when calling a function (less than indicated in the function
description). But in that case, the number of processed arguments is
limited to those specified in the function description. Contrary to that,
you want all arguments to be processed, no matter how many you
pass to the function when called.

It is also worth mentioning that there are several modes of declaring
a function with an arbitrary number of arguments. You would name
one as “old” and the other as “new” (it’s available since PHP 5.6).
Let’s explore both.

To process the arguments passed to a function, they need to be
accessed somehow. Moreover, you want to process arguments not
mentioned in the list of arguments in its declaration. You can get a list of
the arguments passed to the function using the func_get args() function.
The func_get_args() function has no arguments, and it returns a list
(array) of arguments passed to the function in whose body the func_get
args() function is called.

148

CHAPTER 5 FUNCTIONS

Details

The functions func_num_args() and func_get arg() can also be useful.

The first of these functions returns the count of passed arguments (meaning the
arguments of the function in whose body func_num_args() is called). The second
one returns the value of the argument (of the function in which the func_get
arg() function is called) with a specific index (the argument of the func_get
arg() function).

Listing 5-7 is a program that uses functions that accept an arbitrary
number of arguments.

Listing 5-7. An Arbitrary Number of Arguments

<?php
// The function calculates the sum of the arguments:
function sum(){
// The initial value of the sum:
$s=0;
// Iterates over the arguments and calculates the sum:
foreach(func_get args() as $a){
$s+=%a;
}
// The result of the function:
return $s;
}
// The function counts the arguments of a certain type:
function count type($type){
// The number of passed arguments:
$num=Ffunc_num_args();
// The number of arguments of a certain type:
$count=0;

149

CHAPTER 5 FUNCTIONS

?>

150

}

echo "Arguments at all: $num\n";
// If there is one argument:
if($num==1){
echo "The search is over\n";
// The function is terminated:
return;
}
// Iterates over the arguments:
for($k=1; $k<$num; $k++){
// Checks the type of the argument:
if(gettype(func_get arg($k))==$type){
$count++;

}

// The result of calculations:
echo "Arguments of the type $type: $count\n";

// Calls the function for calculating the sum:
echo "[1] The sum: ",sum(5,9,6),"\n";

echo "[2] The sum: ",sum(),"\n";

echo "[3] The sum: ",sum(1,3,5,7,9),"\n";

// Calls the function for calculating the number
// of arguments of a certain type:
count_type("integer",2,8,"12",3.5,2,"hello");
count_type("integer");
count_type("string",2,8,"12",3.5,2,"hello");

CHAPTER 5 FUNCTIONS

The result of the program execution is as follows.

The output of the program (from Listing 5-7)
[1] The sum: 20

[2] The sum: 0

[3] The sum: 25

Arguments at all: 7

Arguments of the type integer: 3

Arguments at all: 1

The search is over

Arguments at all: 7

Arguments of the type string: 2

Two functions are declared in the program. The sum() function is
declared without arguments, while the count_type() function has one
argument. But in fact, the code of the functions provides the processing of
all arguments passed to the functions.

Q Note The sum() function can be called with an arbitrary
number of arguments, including none. At least one argument must be
passed when calling the count_type() function.

The sum() function calculates the sum of the arguments passed to the
function when called. To store the sum’s value in the function’s body, you
use the $s variable with the initial zero value. The iteration of arguments
is performed in the foreach loop statement. The func_get args()
expression is specified as the array to iterate over it. Since the func_get_
args() function returns a list with the arguments passed to the function
(in this case, sum()), it is these values that are iterated over. The $a variable
is used to store the arguments. For each loop, the $s+=%$a command

151

CHAPTER 5 FUNCTIONS

increments the current value of the $s variable by the value of $a, so after
terminating the loop statement, the sum of the arguments of the sum()
function is written to the $s variable. The return $s command returns
that number as the result of the function.

Details

If you call the sum() function with no arguments, the result is zero. That is the initial
value of the $s variable, which does not change during the execution of the function
code.

The count_type() function does not return a result but only displays
messages. They contain information about how many arguments were
passed to the function in total and the count of arguments of a specific
type. The type is determined as a string by the first argument $type of the
function (for example, "integer" or "string").

In the function’s body, the $num=func_num_args() command assigns
the number of arguments passed to the function to the $num variable. That
value is returned as the result of func_num_args(). To count the number
of arguments of the type given by the $type argument, you use the $count
variable with the initial zero value.

Before starting the count, you use the conditional statement to check
the $num==1 condition. The true condition means that only one argument
is passed to the function, which, following the assumptions, determines
the type of the arguments, and there are no other arguments. If so, then
echo "The search is over\n" displays a message, and then the function
is terminated due to the return instruction.

If there are more arguments than one, the return statement is not
executed, and the for loop statement comes into play. There, the $k
variable takes the values from 1 and strictly less than $num. Here, you
iterate over all but the first argument: ignore the first one because it
is unique.

152

CHAPTER 5 FUNCTIONS

Q Note Argument indexing begins from zero.

To check the type of an argument, use the conditional statement
with the gettype(func_get arg($k))==$type condition to be checked.
The gettype() function returns a string with the type name for the
value passed as an argument to the gettype() function. In this case, the
func_get arg($k) expression is passed as an argument. It gives the value
of the count_type() function argument with the $k index. If the type of
that argument matches the type specified in $type, then the $count++
command increments the $count variable by one. After the loop statement
is terminated, the $count variable contains the count of arguments of the
given type passed to the count_type() function.

@ Note The func_num_args() and func_get arg()
functions are used to implement the count_type() function code
(although the func_get args() function could be as well) to
illustrate different ways of handling arguments passed to a function.

After creating the functions, you check how they operate. Thus, the
sum(5,9,6) expression gives the sum of the numbers 5, 9, and 6. When the
function sum() is called without arguments, the result is 0. The value of the
sum(1,3,5,7,9) expression is the sum of the numbers 1, 3, 5, 7, and 9.

In the count_type("integer",2,8,"12",3.5,2,"hello") command,
the count_type() function is called with seven arguments, and the count
of integer arguments is three. In the count_type("string",2,8,"12",3.5,
2,"hello") command, the count_type() function gets the same number
of arguments, but now the string arguments have to be counted, and
there are two (not counting the first one) such arguments. Finally, when

153

CHAPTER 5 FUNCTIONS

the count_type() function is called with the count_type("integer")
command, only one argument is passed to it, so it does not come to
counting the integer type arguments.

As noted, a more convenient way to create functions with an arbitrary
number of arguments exists. It assumes declaring a function with one
argument with the ellipsis before the argument. Such an argument
identifies the entire list of arguments passed to the function and is treated
as an array. Let’s re-examine the previous program but adjust it for the
new way of declaring functions with an arbitrary number of arguments.
The code is shown in Listing 5-8 (the comments are removed to keep the
code short).

Listing 5-8. One More Way to Declare a Function with an Arbitrary
Number of Arguments

<?php
function sum(...$nums){
$s=0;
foreach($nums as $a){
$s+=%$a;
}
return $s;
}
function count_type($type,...$args){
$num=sizeof($args)+1;
$count=0;
echo "Arguments at all: $num\n";
if($num==1){
echo "The search is over\n";
return;

154

CHAPTER 5 FUNCTIONS

for($k=0; $k<sizeof($args); $k++){
if(gettype($args[$k])==$type){
$count++;

}
echo "Arguments of the type $type: $count\n";

}

echo "[1] The sum: ",sum(5,9,6),"\n";

echo "[2] The sum: ",sum(),"\n";

echo "[3] The sum: ",sum(1,3,5,7,9),"\n";

count_type("integer",2,8,"12",3.5,2,"hello");

count_type("integer");

count_type("string",2,8,"12",3.5,2,"hello");
?>

The program’s result is the same as in the previous case. The main part
of the code has not changed either. But there are still some innovations,
and they are important ones. Let’s analyze them.

The sum() function has an argument described by the . . . $nums
instruction. The ellipsis before $nums means that it "hides" a set of values,
which can be identified with an array of the function arguments. That
"array" is what you use in the foreach loop statement when iterating over
the arguments.

The count_type() function is declared with two arguments. The
first $type argument has the same meaning as in the previous example.
The second argument $args, described by the . ..$%args instruction, is
identified with a set (or "array") of other arguments (except the first one)
passed to the function.

The value of the $num variable is now determined by the
$num=sizeof($args)+1 command, which uses the sizeof() function to
get the size of the "array" $args. Since there is also the first argument that
is not included in the $args argument, one is added to the result of the
sizeof() function.

155

CHAPTER 5 FUNCTIONS

The initial value of the $k variable in the for loop statement is now
0 instead of 1 as it used to be. It is taken into account here that the first
argument $type is not included in the “array” $args, and the indexes of all
elements from $args must be handled.

Finally, the gettype($args[$k])==$type condition is checked in
the conditional statement, in which the $args|[$k] instruction is used to

access the argument.

Recursion

There is a method of defining functions that deserves special attention. It is
about recursion. In that case, the function is declared to call itself. That can
be achieved by placing a command that calls the same function (usually
with a different argument) in the function’s body. Listing 5-9 is a program
in which several functions are defined using recursion.

Listing 5-9. Recursion

<?php
// The factorial of a number:
function factorial($n){
if($n==0) return 1;
else return $n*factorial($n-1);
}
// The sum of numbers:
function sum($n){
if($n==0) return o0;
else return $n+sum($n-1);

156

CHAPTER 5 FUNCTIONS

// A number in a power:
function power($x,$n){
if($n==0) return 1;
else return $x*power($x,$n-1);
}
// Variables:
$x=2;
$n=5;
// Calls the functions:
echo "$n! = ",factorial($n),"\n";
echo "142+...+$n = ",sum($n),"\n";
echo "The number $x in the power $n: ",power($x,%n),"\n";
?>

The following is the program’s output.

The output of the program (from Listing 5-9)
5! = 120

14+2+...+5 = 15

The number 2 in the power 5: 32

The program uses recursion to define functions for calculating the
factorial of a number, the sum of natural numbers, and for raising a
number to a power.

The factorial is calculated by the factorial() function, which takes
one argument (denoted as $n). The function’s body consists of only one
conditional statement, in which the $n==0 condition is checked. If it is
true, then the function returns 1 as a result (by definition, the factorial of
0 is equal to 1). Otherwise, the value of the function is calculated by the
$n*factorial($n-1) expression, in which the function calls itself, but with
an argument one less than the value of the original argument.

157

CHAPTER 5 FUNCTIONS

Details

In this case, consider that the factorial of some number nis the product of the
number n and the factorial of the number (n — 1), thatis, n! =n-(n— 1)L

What happens when the function is called? If the function is called
with a zero argument, the result is 1. Let’s say the argument is non-zero;
for example, 5. Then the result is calculated as the product of the number
5, and the result of the function call with argument 4. When the function is
called with argument 4, the product of the number 4 and the result of the
function call with argument 3 is calculated. When the function is called
with argument 3, the product of the number 3 and the result of calling
the function with argument 2 is calculated, and so on. The chain of calls
ends when the function is called with argument 0. After that, everything is
“rolled up”: the values of expressions are sequentially evaluated until the
result of calling the function with argument 5 is received.

Q Note For the sake of clarity and compactness of the code,
curly braces were not used in the conditional statement, although
that is not very good practice.

The function for calculating the sum of numbers sum() also has one
argument $n, and when calculating the result, the $n==0 condition in the
conditional statement is checked. If the condition is true, the result is zero
(the sum of zero terms is assumed to be zero). If the condition is false, the
result is calculated by the $n+sum($n-1) expression.

Details

The sum of the numbers from 1 to n can be thought of as the sum of the number n
and the sum of the numbers from 1 to (n — 1).

158

CHAPTER 5 FUNCTIONS

The power () function for raising a number to a power has two
arguments: $x (the number to be raised to the power) and $n (the
power). If the power is zero (the $n==0 is true condition), then the result
is 1 (the number in the power 0 is 1). Otherwise, the result is calculated
by multiplying the value of the $x argument by the result of calling the
power () function with arguments $x and $n-1 (the $x*power ($x, $n-1)
expression).

Details

When determining the function, the obvious relation x” = x - x"~"is taken into
account.

In addition to describing functions, the program contains commands
that check the correctness of calling the functions with recursion. It is
hopeful to believe that they do not require comments.

The eval () Function

In PHP, there are many features worthy to be noted. However, let’s focus on
the eval() function (more precisely, a syntax construction). It allows you
to evaluate the expression passed to it as a string argument. For example,

if you pass the '$number=2*3+4; ' string as an argument to the eval()
function, 10 is written to the $number variable. That result is obtained by
evaluating the 2*3+4 expression.

159

CHAPTER 5 FUNCTIONS

Details

First, the commands with the eval() syntax construction are very dangerous—so
much so that the corresponding codes can be blocked by antivirus programs (in
that case, you need to “ask” the antivirus to make an exception). The reason for
the potential danger is that eval() allows you to execute previously unknown
code, which can affect the vulnerability of the entire system. Therefore, the eval()
construction should not be overused.

Second, it matters in which quotes (single or double) you pass the string
to eval(). The string must contain a valid PHP instruction (including the
semicolon at the end of the command). You should also remember that their
values are substituted in double quotes instead of variable names. Therefore,
for example, an alternative to the eval (' $number=2*3+4;"') command is the
eval("\$number=2*3+4;") command. In the latter case, the \$ instruction is
used to include the $ character in the string. The result is the same in both cases.

Listing 5-10 is an example of using the eval() function.

Listing 5-10. Using eval()

<?php
// The string variables:
$first="%$A=2%3+4;";
$second="\$B=2*\$A-5;";
// Calls eval():
eval($first);
eval($second);
echo 'The statement for $x: ';
// Calls eval():
eval(trim(fgets(STDIN)));
// Checks the result:
echo "\$x = $x\n";

?>

160

CHAPTER 5 FUNCTIONS

The result of the program’s execution could look as follows (the user
input is marked in bold).

The output of the program (from Listing 5-10)
The statement for $x: $x=$A+$B;
$x = 25

The program is small. It uses two string variables $first="$A=2%3+4;"
and $second="\$B=2*\$A-5;". These variables contain text with
commands executed when the eval ($first) and eval($second)

instructions are executed.

Details

That is, the $A=2*3+4 and $B=2*$A-5 commands are indeed executed, as a result
of which $A is set to 10 and $B is set to 15.

Then, the expression entered by the user is read and passed as an
argument to eval() (the eval(trim(fgets(STDIN))) command). The user
must enter a command assigning a value to the $x variable. That command
is executed because the corresponding text is passed as an argument to
eval(). After that, the value of the $x variable is checked using the echo
"\$x = $x\n" command.

Details

The preceding is the program’s output when the user enters the $x=$A+$B;
expression. The expression is read (subject to the transformations due to the
trim() function) as the text ' $x=$A+$B; ' and is passed as an argument to
eval().As aresult, the $x=$A+$B command is executed, and the $x variable is
set to 25.

161

CHAPTER 5 FUNCTIONS

Anonymous Functions

In PHBP, it is possible to describe functions that do not have a name. Such
functions are usually called anonymous. The elegance and practical value
of anonymous functions come from the fact that they can be assigned as a
value to variables.

Details

An anonymous function can be represented as an object (which is not far from the
truth) that can be called; that is, used as a function. If such an object (an anonymous
function) is assigned to a variable, that variable can be treated as if it were the
name of a function.

An anonymous function is described as simply as a regular one but
with two important features. First, the function name is not specified (a
list of arguments in parentheses follows the function keyword). Second,
such a function is usually immediately assigned to a variable. The general
template for creating an anonymous function looks like the following.

$variable=function(arguments){
commands

};

How this looks in practice is illustrated in Listing 5-11.

Listing 5-11. Anonymous Functions

<?php
// The function is assigned to a variable:
$A=function($n){
for($s=0, $k=1;$k<=$n; $k++){
$s+=$k*$k;

162

?>

CHAPTER 5

return $s;
};
// Variables:
$n=4;
$x=5;
$y=10;
// Calls the functions by a variable:
echo "\$A($n) -> ",$A($n),"\n";
// Assigning functions:
$B=$A;
// The variable gets a function as a value:
$A=function($x,$y){
return $x+%y;
};
// Calls the functions by variables:
echo "\$B($n) -> ",$B($n),"\n";
echo "\$A($x,%y) -> ",$A($x,%y),"\n";

The result of the program execution is as follows.

The output of the program (from Listing 5-11)
$A(4) -> 30

$B(4) -> 30

$A(5,10) -> 15

FUNCTIONS

163

CHAPTER 5 FUNCTIONS

First, the $A variable is assigned the following construction as a value.

function($n){
for($s=0, $k=1;$k<=$n; $k++){
$s+=$k*$k;
}
return $s;
}

It defines an anonymous function that, based on the argument $n,
calculates (and returns as a result) the sum of the squares of natural
numbers from 1 to $n. Once that anonymous function has been assigned
to $A (note the semicolon at the end of the assignment statement), $A can
be treated like a function—in particular, it can be called. For example,
the value of the $A($n) expression (with the value 4 for the $n variable)
is the sum of the squared numbers from 1 to 4 (that is, 30). Further, after
executing the $B=$A command, which assigns $A to the $B variable, the $B
variable also “becomes a function” and is the same as $A. The $A variable is
then assigned a new anonymous function, defined as follows.

function($x,$y){
return $x+$y;

This time, it is a function with two arguments and returns the sum of
the arguments. Therefore, the value of the $A($x,$y) expression (with the
values 5 and 10 for the $x and $y variables, respectively) is 15.

Named Arguments

When calling a function, you pass the arguments in the same order in
which they were specified in the function declaration. That way of passing
arguments is called positional one, or passing arguments by position.

164

CHAPTER 5 FUNCTIONS

However, PHP 8 introduced the ability to pass arguments by name. In that
case, when the function is called, the arguments (all or some) are defined
by a name and a value. The function itself is described as usual.

Details

If an argument is specified in the function declaration, then the name of that
argument is specified without the $ symbol when the function is called. A colon
follows the argument name and then the argument value. For example, if you used
the $arg argument in the func() function declaration, then to pass the argument
by name when calling the function, you use the func(arg: value) instruction.

Listing 5-12 is a small example illustrating how to pass arguments by
name to a function.

2 The PHP 8 Standard

The following code only runs in PHP 8.

Listing 5-12. Using the Named Arguments

<?php
// A function with three arguments:
function show($first,$second,$third){
echo "The first argument: $first\n";
echo "The second argument: $second\n";
echo "The third argument: $third\n";
echo "--------cmmmeeo o \n";

165

CHAPTER 5 FUNCTIONS

2>

// Passing arguments by position:
show(100,200,300);

// Passing arguments by name:
show(second:200,third:300,first:100);

// The mixed scheme of passing arguments:
show(100,third:300,second:200);

The result of the program execution is as follows.

output of the program (from Listing 5-12)
first argument: 100

second argument: 200

third argument: 300

first argument: 100

second argument: 200

third argument: 300

first argument: 100

second argument: 200

third argument: 300

In this case, an ordinary function show() with three arguments named

$first, $second, and $third is described. When you call the function, it
displays the values of the arguments passed to it.

You can call the function in the usual way, using positional argument

passing. For example, the show(100,200,300) command means that the

value 100 is passed as the $first argument, the value 200 is passed as the

$second argument, and the value 300 is passed as the $third argument.

166

CHAPTER 5 FUNCTIONS

The show(second:200,third:300,first:100) command gives an
example of passing all three arguments by name. As in the previous case,
the value 100 is passed as the $first argument, the value 200 is passed
as the $second argument, and the value 300 is passed as the $third
argument.

You can use the mixed argument passing scheme when some
arguments are passed positionally and some are passed by name.

Q Note When calling a function, if arguments are passed by
position and by name, those arguments that are passed by position
are listed first.

Another example is given by the show(100,third:300,second:200)
command. The first argument is passed positionally, and the other two are
passed by name.

Passing arguments by name can be especially efficient if the function’s
arguments have default values.

Details

Note that a default argument value is used if that argument is not explicitly specified
when the function is called. In a function declaration, the default value is specified
after the argument name through the assignment operator.

An example where function arguments have default values and are
passed by name is shown in Listing 5-13.

167

CHAPTER 5 FUNCTIONS
Listing 5-13. Named Arguments and Default Values

<?php
// The function arguments have default values:
function show($first=1,$second=2,$third=3){
echo "The first argument: $first\n";
echo "The second argument: $second\n";
echo "The third argument: $third\n";
echo "-------mmeme \n";
}
// Calls the function:
show(100,third:300);
show(second:200);
?>

The following is the result of the program execution.

The output of the program (from Listing 5-13)
The first argument: 100

The second argument: 2

The third argument: 300

The first argument: 1

The second argument: 200

The third argument: 3

Now, for the show() function, the $first, $second, and $third
arguments have the default values 1, 2, and 3 respectively. Therefore, when
you call the function with the show(100,third:300) command, the $first
argument is set to 100, the $second argument uses the default value 2, and
the $third argument is set to 300.

168

CHAPTER 5 FUNCTIONS

If the show(second:200) command is used, the $second argument
is set to 200, and the default values 1 and 3 are used for the $first and
$third arguments, respectively.

Summary

e Afunction is a named block of code that can be called
by the name. The function declaration begins with
the function keyword, followed by the function’s
arguments (in parentheses). Then, the commands are
enclosed in curly braces. The commands are executed
when the function is called.

¢ A function can return a result. The return value of a
function is specified after the return instruction, which
terminates the execution of the function.

o For a function, you can explicitly specify the type of
arguments and the type of result.

o By default, the arguments of functions are passed by
value (copies of the variables specified as the function
arguments are created). To pass the arguments by
reference, in the function declaration, the name of
the corresponding argument is preceded by the &
reference symbol.

e Arguments can have default values (specified through
the assignment operator after the argument name in
the function declaration). The default value is used
if no value is specified for the argument when the
function is called.

169

CHAPTER 5

170

FUNCTIONS

You can create functions with an arbitrary number of
arguments. In that case, the entire set of arguments is
identified with one argument, preceded by an ellipsis
in the function declaration. The argument is treated as
an array.

Functions can be defined using recursion when
the function calls itself (but usually with a different
argument).

The function (syntax construction) eval () allows you
to execute the commands in the string passed as an
argument to the function.

It is possible to create anonymous functions that do not
have a name. An anonymous function is assigned to
avariable; after that, the variable can be called as if it
were a function.

Starting with PHP 8, arguments can be passed by
name when calling functions. In that case, you specify
the argument’s name (without the $ symbol) and,
separated by a colon, the argument’s value when
calling the function.

CHAPTER 6

Useful Tricks
and Operations

Imitation is the sincerest form of plagiarism.

—ALF (TV series)

This chapter discusses topics that are essential and useful in everyday
practice.

References

If the value of a variable is assigned to another variable, then you get a
copy of the assigned variable. For example, if $B=%A is executed, the value
of $A becomes the value of $B. The important thing here is that if the value
of $A is subsequently changed, then the value of $B does not change. But
another situation is also possible when two variables refer to the same
value. In that case, you deal with a reference. A reference is, in fact, an alias
for a variable, an alternative way to refer to the corresponding value.

@ Note It turns out that there is one value and two variables.
Both allow access to that value.

© Alex Vasilev 2024 171
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_6

https://doi.org/10.1007/979-8-8688-0258-4_6

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

To create a reference to a variable, you must place the symbol & after
the assignment operator in the assignment statement. Thus, the $R=8%$A
command creates a reference $R to the $A variable. By changing the value
of the $A variable, you change the value of the $R reference, and vice
versa—changing the value of the $R reference means changing the value of
the $A variable.

Details

When a variable is created, space is allocated in memory to store the value of

that variable. The previously allocated memory area is accessed each time you
access the variable to read or assign a value. If you create a reference, no memory
area is allocated for it. The reference is associated with an existing variable or the
memory area allocated for that variable. When accessing a reference, operations are
performed on the allocated memory area for the variable with which the reference is
associated.

Listing 6-1 uses these references.

Listing 6-1. Creating a Reference

<?php
// The initial variable:
$A=100;
// A copy of the variable:
$B=$A;
// A reference to the variable:
$R=8$A;
// Checks the values:
echo "The initial values:\n";
echo "\$A = $A\n";
echo "\$B = $B\n";
echo "\$R = $R\n";

172

?>

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

// Changes the value of the variable:
$A=200;

// Checks the values:

echo "The new values:\n";

echo "\$A = $A\n";

echo "\$B = $B\n";

echo "\$R = $R\n";

// Deletes the variable:

unset($A);

// Checks the values:

echo "After deleting the variable \$A:\n";
echo "\$B = $B\n";

echo "\$R = $R\n";

// Changes the reference:

$R=8%$B;

// Checks the values:

echo "Now \$R refers to \$B:\n";

echo "\$B = $B\n";

echo "\$R = $R\n";

// Changes the value through the reference:
$R=300;

// Checks the values:

echo "After changing the value:\n";
echo "\$B = $B\n";

echo "\$R = $R\n";

The following are the results of executing the program.

The output of the program (from Listing 6-1)
The initial values:
$A = 100

173

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

$B = 100

$R = 100

The new values:

$A = 200

$B = 100

$R = 200

After deleting the variable $A:
$B = 100

$R = 200

Now $R refers to $B:

$B = 100

$R = 100

After changing the value:
$8 = 300

$R = 300

The program is simple. First, $A=100 sets $A to 100, and $B=$A sets $B
to the same value (the value of $A). But the $R=8$A command creates the
$R reference to the $A variable. The difference between the $B variable and
the $R reference becomes obvious after executing the $A=200 instruction,
which assigns a new value to the $A variable. At the same time, the value
of the $B variable does not change, and when checking the value of the $R
reference, you get the value 200.

In the next step, you use the unset ($A) command to remove the $A
variable. That does not affect the value of the $R reference, and it still refers
to the same value as before the variable was deleted.

After executing the $R=&%$B command, you “link” the reference to
the $B variable. More precisely, after executing that command, the $R
reference is associated with the same memory area as the $B variable. So,
after executing the $R=300 command, $B is set to 300.

174

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

References like this one are called hard references. In addition to hard

references, there are also soft references. That is a more general mechanism

for accessing variables. Let’s begin with the brief example shown in
Listing 6-2.

Listing 6-2. Soft References

<?php

?>

// The variable with an integer value:
$number=123;

// The value of the variable is a string with a name
// of another variable:
$reference="number";

echo "\$\$reference = ",$$reference,"\n";
// The new value of the variable $number:
$$reference=321;

echo "\$number = ",$number,"\n";

// The variable with a string value:
$A="Alpha";

// Assigns a value to the variable $Alpha:
$$A=100;

echo "\$Alpha = ",%$Alpha,"\n";

// The new value of the variable $Alpha:
$Alpha=200;

echo "\$\$A = ",$%A,"\n";

// The new value of the variable $A:

$A="'Bravo';
// Assigns a value to the variable $Bravo:
$$A=300;

echo "\$Alpha
echo "\$Bravo

",$Alpha,"\n";
",$Bravo,"\n";

175

CHAPTER 6 USEFUL TRICKS AND OPERATIONS
The following are the results of executing the program.
The output of the program (from Listing 6-2)

$$reference = 123
$number = 321

$Alpha = 100
$$A = 200

$Alpha = 200
$Bravo = 300

Let’s analyze the program’s code. The $number=123 and
$reference="number" commands define two ordinary variables. The
string value of the second variable is the same as the name of the first
variable (but without the $ symbol). Then, the value of the $$reference
expression is checked. Based on the program results, it is easy to guess that
that is the value of the $number variable. Thus, adding another $ symbol at
the beginning of the $reference variable name leads to the following: the
$ symbol is “appended” to the text value of the $reference variable, and
the resulting text is interpreted as the name of the variable being accessed.
That is confirmed by the $$reference=321 command, which causes the
$number variable to get the value 321.

Using the method described, you can get a reference to a variable that
does not yet exist. The $A="Alpha" command writes the text "Alpha" to
the $A variable. Therefore, when the $$A=100 command is executed, the
$Alpha variable is assigned the value 100, and thus such a variable appears
in the program.

After executing the $Alpha=200 command, the new value 200 is
returned by the $$A expression. If the $A variable is assigned a new value
(as is done by the $A="Bravo' command), then the $$Aexpression refers to
the $Bravo variable. In particular, after executing the $$A=300 command,
the $Bravo variable is set to 300, while the $Alpha variable remains with
the old value 200.

176

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

Constants

Constants are fundamentally different from variables in that the value of
a constant cannot be changed. The define() function (more precisely,

a syntax construction) is usually used to add a constant to a program.
The function’s first argument is a string with the constant’s name. The
second argument specifies the value of the constant. The $ symbol is

not used at the beginning of the constant name. Following the generally
accepted convention, the names of constants consist of capital letters
(that is, this is not necessary, but good manners oblige). For example, the
define("PI",3.141592) command defines the constant PI with the value
3.141592. After executing that command, the value of the constant PI
cannot be changed.

A constant cannot be deleted after it has been created. To check the
existence of a constant, the defined() function is used, the argument
of which is a string with the name of the constant; for example,
defined("PI"). The resultis true or false depending on whether the
constant is defined.

There is another way to add a constant to a program. In that case, the
keyword const is used, after which the name of the constant is specified
(without the $ symbol at the beginning of the name), and, through the
assignment operator, the value of the constant. For example, the constant
TEN with the value 10 can be defined with the const TEN=10 command.

The fundamental difference between these two ways of creating
constants is that constants defined by the define() function are created
at runtime. In contrast, constants created using the const statement are
created at the compilation time. That circumstance has consequences.
For example, the command to create a constant using the const statement
cannot be placed in a conditional statement but can be done using the
define() function. On the other hand, the define() function cannot be

177

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

used in classes and interfaces (discussed in later chapters of the book)
to create constant fields; in that case, an expression based on the const
statement is used.

A small example in which you use constants is shown in Listing 6-3.

Listing 6-3. Constants

<?php
// The constant is the number "pi":
define("PI",3.141592);
// Using constants:
echo "The number PI = ",PI,"\n";
echo "sin(PI/6) = ",sin(PI/6),"\n";
// Declares constants:
const ONE=1;
const TWO=2;
const THREE=ONE+TWO;
// Checks the constants:
echo "ONE = ",ONE,"\n";
echo "TWO = ",TWO,"\n";
echo "THREE = ",THREE,"\n";

?>
The following are the results of executing the program.
The output of the program (from Listing 6-3)

The number PI = 3.141592
sin(PI/6) = 0.49999990566244

ONE = 1
TWO = 2
THREE = 3

178

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

The program uses the define("PI",3.141592) statement to define the
PI constant, and after that, you check its value and calculate the sin(PI1/6)
expression.

Q Note In PHP, there exists the built-in pi() function, which,
when called, returns the value of the “pi” number.

Three more constants are created using the const ONE=1, const
TWO=2, and const THREE=ONE+TWO commands. In the latter case, the value
of the THREE constant is calculated as the sum of the ONE and TWO constants.

Details

In PHP, some built-in constants allow us to get important information about the
working document and program components. For example, using the LINE
constant, you can get the current line number in the file. The _ FILE _ constant
allows you to get the name of the file, the value of the _ DIR _ constant is the
name of the directory in which the file is located, and the name of the function

(in which the constant is requested) can be obtained using the _ FUNCTION
constant. The names of all these (and some other) constants begin and end with a
double underscore.

Global Variables

Earlier, you dealt with functions and used local variables in them. Local
variables are created in the body of a function (by assigning a value to the
variable) and exist while the function is operating. After executing the
function, the local variables are removed from memory. The next time the
function is called, local variables are created again, and everything repeats.
The situation is illustrated in the program in Listing 6-4.

179

CHAPTER 6 USEFUL TRICKS AND OPERATIONS
Listing 6-4. Local Variables

<?php
// The function with a local variable:
function show(){
// The local variable:
$A=100;
echo "The local variable \$A = ",$A,"\n";

}

// The global variable:
$A=200;

// Calls the function:
show();

// Checks the value of the variable:
echo "The global variable \$A = ",%A,"\n";
2>

The following are the results of executing the program.

The output of the program (from Listing 6-4)
The local variable $A = 100
The global variable $A = 200

You use the show() function, which creates a local variable $A with
the value 100 in its body and displays the variable’s value in the output
window. Before calling the function, you use the $A=200 command to
create the $A global variable with the value 200. When the show() function
is called, the value 100 is displayed, while the value of the global variable
does not change. The explanation is simple: the variable created when the
show() function is called has nothing to do with the $A global variable.

On the other hand, there are situations when, in a function, it is
necessary to perform operations on a variable declared outside the

180

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

function—that is, with a global variable. If so, then in the function, you
should indicate that the variable is global. To do that, you use the global
keyword, after which you put the name of the global variable. An example
of using global variables in a function is shown in Listing 6-5.

Listing 6-5. Global Variables

<?php

// The function:

function show(){
// The global variable:
global $A;
// Displays the value of the variable:
echo "[1] In the function: \$A = ",$A,"\n";
// The new value:

$A=200;
echo "[2] In the function: \$A = ",$A,"\n";
}
// The global variable:
$A=100;
// Calls the function:
show();

// Checks the value of the variable:
echo "The variable \$A = ",$A,"\n";
?>

The program’s output is as follows.

The output of the program (from Listing 6-5)
[1] In the function: $A = 100

[2] In the function: $A = 200

The variable $A = 200

181

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

In the function’s body, the global $A command declares that the $A
variable is global. Next, the variable’s value is displayed, the value 200 is
assigned to it, and then the value is checked again.

In the program, the $A variable is assigned the value 100. Then, you call
the show() function and, after calling it, check the value of the $A variable.
All operations are performed with the same $A global variable.

Q Note The programming style, which implies using global

variables in functions, should not be called very successful. The
corresponding global variable is an “external factor” when a function
is called. That does not fit well with functional programming
principles, according to which the passed to the function arguments
must determine its result.

Details

A built-in $GLOBALS array contains all global variables available in the program. The
array is accessible anywhere in the program and does not need to be declared in
any way.

Static Variables

Quite interesting is the concept of static variables. Such a variable is
declared with the static keyword. It is not removed from memory
after the function is terminated, and the same variable is used for each
subsequent function call. The program in Listing 6-6 shows how static
variables can be used.

182

CHAPTER 6 USEFUL TRICKS AND OPERATIONS
Listing 6-6. Static Variables

<?php
// The function with a static variable:
function calc(){
// The static variable:
static $value=0;
$value+=100;
return $value;
}
// Calls the function within the loop statement:
for($k=1;%k<=5;$k++){
echo "[$k] calc() -> ",calc(),"\n";

?>

The result of the program execution may seem a little unexpected.

The output of the program (from Listing 6-6)
[1] calc() -> 100
[2] calc() -> 200
[3] calc() -> 300
[4] calc() -> 400
[5] calc() -> 500

Briefly, everything is simple. You have the calc() function that is
called with no arguments. The first time the function is called, the result
is 100. The second time the function is called, the result is 200. The
third time, the function returns 300, and so on. Thus, you use the same
instruction but get a new (predicted) result each time. To understand why
that happens, let’s analyze the code of the calc() function.

183

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

In the function’s body, the static $value=0 command creates the
static variable $value with the value 0. Then, with the $value+=100
command, that value is incremented by 100 and returned as the result of
the function.

Let’s see what happens when the function is called for the first time.
It’s simple: the $value variable is created, it gets the value 100 after all,
and the function returns the result. That completes the execution of the
function. If the $value variable were normal (not a static one), then it
would be removed from memory, and the next time the function is called,
everything would start with creating the new variable $value. But the
variable is static. Therefore, the variable is not deleted from memory after
the function is terminated.

Moreover, the next time the calc() function is called, it is the variable
that is used, and with the value that the variable had at the last function
call. That value is incremented by 100 and returned as the result. It turns
out that each time the calc() function is called, the value of the $value
variable is increased by 100. Therefore, the function returns a new value
each time.

Details

The command that initializes the static variable $value with the zero value is
executed only once, the first time the function is called. It is also worth mentioning
that the $value variable (despite being static) is available only in the function’s
body.

Multiline Strings

From a practical point of view, strings are very important when using
PHP. And often, you must deal with multiline strings. There are several
ways to create them.

184

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

To create a multiline string, you can use the following construction.
The <<< instruction is followed by an identifier, and then a new line is
entered. That is followed by text (without quotes) that can span multiple
lines. The whole construction ends with the same identifier that begins,
and a semicolon is placed at the very end. It must be the last instruction in
the line with no additional characters. An example of using such a string is
shown in Listing 6-7.

Listing 6-7. Getting Familiar with Multiline Strings

<?php
// A variable:
$word="wind";
// A multiline string:
$text=<<<MYTEXT
The mighty Dnieper roars and bellows,
The $word in anger howls and raves,
Down to the ground, it bends the willows,
And mountain-high lifts up the waves.
MYTEXT;
echo $text;

?>

The output of the program is as follows.

The output of the program (from Listing 6-7)
The mighty Dnieper roars and bellows,

The wind in anger howls and raves,

Down to the ground, it bends the willows,
And mountain-high lifts up the waves.

185

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

Here, the $text variable is assigned a rather complex expression,
which begins with the <<< instruction followed by the MYTEXT identifier.
(You determine the name of the identifier.) Then, the text follows, ending
with the MYTEXT instruction and a semicolon.

Details

The text indentation should be made relative to the position of the instruction that
terminates the text value (in this case, the MYTEXT identifier). An error arises if the
text is placed to the left of that instruction

Notably, the name of the $word variable in the text fragment is used. As
aresult, the variable’s value is inserted instead of its name. That means the
text behaves like a string literal enclosed in double quotes.

There is another way to create a multiline string. It is similar to the
previous one, but the initial identifier after the <<< instruction is enclosed
in single quotes. An example of such a multiline string is shown in
Listing 6-8.

Listing 6-8. Another Way to Create a Multiline String

<?php
// A multiline string:
$text=<<<"MYTEXT'
An example of programming code:
$number=123; // Creates a variable
echo "\$number = ",$number,"\n";
MYTEXT;
echo $text;

?>

186

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

The following is the result of the program execution.

The output of the program (from Listing 6-8)
An example of programming code:

$number=123; // Creates a variable

echo "\$number = ",$number,"\n";

In this case, the MYTEXT identifier after the <<< instruction is enclosed
in single quotes, and the text itself contains commands, including variable
names. All the text content is displayed “as it is”—that is, it is similar to the
situation when a string literal is enclosed in single quotes.

Using Files

Another important aspect of using PHP is related to operating with files.
Let’s discuss the most common techniques for getting data from files and
writing data to files.

First of all, the file needs to be opened. To do that, you use the fopen()
function. The function’s first argument is a string specifying the path to
the file. The second argument is a string with special characters. That
argument determines the access mode under which you use the file.
Table 6-1 lists and describes combinations for the second argument of the
fopen() function.

187

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

Table 6-1. The Access Modes for Using Files

Instruction Access Mode

I

The file is opened for reading. The pointer for reading is set at the
beginning of the file.

The file is opened for reading and writing. The pointer for reading/
writing is set at the beginning of the file.

The file is opened for writing. The pointer for writing is set at the
beginning of the file. The original contents of the file are deleted. If the
file does not exist, it will be created.

The file is opened for reading and writing. The pointer for reading/
writing is set at the beginning of the file. The original contents of the
file are deleted. If the file does not exist, it will be created.

The file is opened for writing only. The pointer for writing is set at the
end of the file. If the file does not exist, it will be created.

The file is opened for reading and writing. The pointer for reading/
writing is set at the end of the file. If the file does not exist, it will be
created.

The file is created for writing. The pointer for writing is set at the
beginning of the file. If the file already exists, an error is raised.

The file is created and opened for reading and writing. The pointer
for reading/writing is set at the beginning of the file. If the file already
exists, an error is raised.

The file is opened for writing only. If the file does not exist, it will be
created. If the file already exists, then the contents of the file are not
deleted. The pointer for writing is set at the beginning of the file.

The file is opened for reading and writing. The pointer for reading/
writing is set at the beginning of the file. If the file does not exist, it will
be created. If the file exists, its contents are not deleted.

188

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

As aresult, the fopen() function returns a numeric identifier that can
be used to access the opened file.

Details

Data can be written and read in byte or character stream mode. As it is easy to
understand from the name, operating with a byte stream implies that data is written
and read byte by byte. If the stream is a character one, then reading and writing

are performed character by character. The type of the stream (character or byte)

is determined by the characters b (the byte stream) and t (the character stream),
which are placed in the string after the instruction that specifies the file access
mode.

There is a set of functions designed to work with files. The most
important among them are the following. The fgets() function reads
a line starting at the pointer in the file. The fread() function is used for
byte reading. The fwrite() function allows you to write bytes. The file()
function allows you to read a file into an array. You can use the file_
exists() function to check if a file exists. The is_readable() function
checks if a file is readable. The feof () function lets you know if the end of
the file has been reached.

Details

After operations with a file are completed, it is recommended to close the file. The
fclose() function is used for that.

In some cases, creating (for reading or writing) a file with a random name
may be necessary (S0 no one gets unauthorized access to it by mistake). The
tmpfile() function can be used for doing that.

189

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

Listing 6-9 uses some of the functions discussed.

Listing 6-9. Reading a File Line by Line

<?php

?>

// The full path to the file:
$path="D:/books/php/myfile.txt";
// We open the file for reading
// as the character stream:
$h=fopen($path,"rt");
// The variable to count lines:
$k=1;
// While the end of the file is not reached:
while(!feof($h)){
// Reads a string line:
$line=fgets($h);
// Displays the read line:
echo "[$k] ",$line;
// The new value for the counter:
$k++;
}
// Closes the file:
fclose($h);

For this program to run successfully, there must be the myfile.txt file

with some text in the D: \books\php folder. In this case, the contents of the

text file are as follows.

The mighty Dnieper roars and bellows,

The wind in anger howls and raves,

Down to the ground, it bends the willows,
And mountain-high lifts up the waves.
Taras Shevchenko

190

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

The full path to the file is written to the $path variable. Then, the
$h=fopen($path,"rt") command attempts to open the file, and if
successful, the file identifier is written to the $h variable. Next, using that
variable, you get access to the file. In particular, you read the contents of
the file line by line and display the read string in the output area. Each line
is preceded by its number in square brackets. The $k variable is used to
count the lines.

The second argument, "rt" passed to the fopen() function, means
that the file is opened for reading only under the character stream mode.

Details

An error arises if the file you are trying to open does not exist. In that case,

instead of the $h=Ffopen($path,"rt") command, you can use a command like
$h=fopen($path,"rt") or die("File access error").Here, the or
logical operator is used. It performs the logical or operation in a simplified form:

the second operand, die("File access error"), is evaluated only if the first
operand, $h=fopen($path,"rt"), has a value equal to false. If the file is
opened successfully, the first operand is non-zero, which is equivalent to true. In
that case, the second operand is not evaluated. If the file cannot be opened, then
the second operand die("File access error") is evaluated, and as a result, a
message about the error appears in the output area, and the code execution stops.

To read the file’s contents, you use the while loop statement. The
condition is defined by the ! feof($h) expression. The feof() function
determines whether the end of the file whose identifier is passed as an
argument to the function has been reached. Therefore, the ! feof($h)
expression is true if the end of the file has not been reached.

Until the end of the file is reached, the $1ine=fgets($h) command
writes the line read to the $1ine variable using the fgets() function. Then
the echo "[$k] ",$line instruction displays the read line in the output
area. Finally, the $k++ command increments the counter variable $k value.

191

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

That process is terminated as soon as the end of the file is reached. The
fclose($h) command closes the file. The result of running the program is
as follows.

The output of the program (from Listing 6-9)
[1] The mighty Dnieper roars and bellows,

[2] The wind in anger howls and raves,

[3] Down to the ground, it bends the willows,
[4] And mountain-high lifts up the waves.

[5] Taras Shevchenko

Listing 6-10 shows how to write into a file in the program.

Listing 6-10. Writing into a File

<?php
// The full path to the file:
$path="D:/books/php/mytext.txt";
// We open the file for writing:
$h=fopen($path,"wt");
echo "Writing into the file.\n";
echo "Enter text. To terminate, enter exit:\n";
// The variable to count lines:
$k=1;
// Reads the string entered by the user:
$line=trim(fgets(STDIN));
while($line!=="exit"){
// Writes the line number into the file:
fwrite($h,"[$k] ");
// Writes the line into the file:
fwrite($h,$line."\n");
// The new value for the counter:

192

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

$k++;
// Reads a new string:
$line=trim(fgets(STDIN));
}
// Closes the file:
fclose($h);
echo "The program is over.";
?>

The result of the program execution could be as follows (the text
entered by the user is marked in bold).

The output of the program (from Listing 6-10)
Writing into the file.

Enter text. To terminate, enter exit:

The mighty Dnieper roars and bellows,

The wind in anger howls and raves,

Down to the ground, it bends the willows,

And mountain-high lifts up the waves.

Taras Shevchenko

exit

The program is over.

But the most important thing is that in the D: \books\php folder, there
appears (if it was not there) the mytext. txt file with the following content.

[1] The mighty Dnieper roars and bellows,

[2] The wind in anger howls and raves,

[3] Down to the ground, it bends the willows,
[4] And mountain-high lifts up the waves.

[5] Taras Shevchenko

193

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

Let’s find out why that happens. Namely, let’s analyze the program.
The $path variable, as in the previous case, stores the full path to the
file where you intend to write the text. In particular, that is the mytext.
txt file from the D: \books\php folder. You open the file using the
$h=fopen($path, "wt") instruction. The second argument, "wt",
means the file is opened for writing under the character stream mode.
Next, several messages are displayed, and then, with the help of the
$line=trim(fgets(STDIN)) command, you read the text entered by the
user (in which all leading and trailing spaces and special characters are
previously discarded). After that, the while loop statement is launched, in
which the $1ine!=="exit" condition is checked. The condition is true if
the user has not entered the text "exit".

@ Note Thus, to terminate the input process, you must enter

the word exit.

The fwrite($h,"[$k] ") command writes the line number in square
brackets into the file, after which the fwrite($h,$1line."\n") command
adds the read string into the file, supplemented by the instruction to move
to a new line in the file. The $k++ instruction changes the value of the
counter variable $k, and then the $1line=trim(fgets(STDIN)) command
reads the next line the user enters. Finally, you close the file using the
fclose($h) instruction.

Including a File in the Program

Often, there is a need to include some code from another file into a
program. Next, let’s examine a small example that shows (at an elementary
level) how that could be done. The main idea is as follows. You describe
some function in a file and then call it in another. Namely, you create a file
called show.php with the following code.

194

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

<?php
// The function:
function show($n){
echo "The argument - $n\n";

?>

Let’s create a file (see Listing 6-11) in the same folder that contains the
show. php file with the show() function code.

Listing 6-11. Including a File in the Program

<?php
// Includes a file into the program:
require_once 'show.php';
// Creates a variable:
$val=123;
// Calls the function from the file:
show($val);

?>

The output of the program is as follows.

The output of the program (from Listing 6-11)
The argument - 123

The code begins with the require once 'show.php' command, which
imports the contents of the show. php file into the program. Then, you
create the $val variable and pass it to the show() function as an argument.
The function is called, and a corresponding message appears in the
output area.

195

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

Summary

196

References provide alternative access to variables.
When creating a reference to a variable, the variable
name preceded by the & instruction is assigned to the
reference. That kind of reference is called the hard one.

When using a soft reference, some variable is assigned
a string with the name of another variable (without the
$ symbol). Adding a second $ character to the name of
the first variable allows access to the variable, whose
name contains the string assigned to the first variable.

In addition to variables, you can use constants. The
value of a constant cannot be changed after the first
assignment. Constants can be created using the
define() function or the const statement. The $
symbol is not used in the constant names.

Functions can use global variables. These are variables
that are also available outside the scope of the function.
In the body of a function, global variables are declared
using the global statement.

Functions can use static variables. (The static
keyword to declare such a variable was used.) A static
variable is created and gets its initial value the first time
the function is called. After the function is terminated,
the static variable is not removed from memory,

and the next time the function is called, that variable is
used again.

CHAPTER 6 USEFUL TRICKS AND OPERATIONS

In some cases, a multiline string is used. If so, a variable
is assigned an expression that begins with the <<«
instruction followed by some label. The text is entered
without quotes in multiple lines. The expression

ends with the same label and a semicolon. That is

the equivalent of a string in double quotes. If the first
occurrence of the label is enclosed in single quotes, you
get an analog of a string enclosed in single quotes.

A set of functions is designed for working with files.
The fopen() function is used to open a file. The first
argument specifies the full path to the file, and the
second argument specifies the access mode. When the
file has been handled, it is closed using the fclose()
function.

To import the contents of a file, the require_once
instruction is added to the program, after which you
put the string with the name of the imported file.

197

CHAPTER 7

Classes and Objects

—As you may have gathered, I'm in big trouble.
—You're always in trouble.

—ALF (TV series)

This chapter discusses how the principles of object-oriented programming
(OOP for short) are implemented in PHP. Let’s start by introducing

the concept of classes and objects. That is the cornerstone of the OOP
paradigm, and how the main conceptual points are learned will largely
determine the success of using the broad features of PHP to create OOP
projects.

The OO0P Principles

The study of the OOP principles often begins with their enumeration:
encapsulation, polymorphism, and inheritance. That may sound a little
bit scary. However, not everything is as scary as it seems at first glance. To
understand the concept of OOP, it makes sense to clarify what it is and why
you need it to create programs.

The OOP paradigm must imply a certain way of organizing a program.
In other words, OOP is about how to organize a program. And here, an
analogy would help us.

© Alex Vasilev 2024 199
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_7

https://doi.org/10.1007/979-8-8688-0258-4_7

CHAPTER 7 CLASSES AND OBJECTS

Let’s say there is a small café with a kitchen, and you need to organize
the work in the kitchen. The kitchen receives orders from visitors and
prepares dishes following those orders. If the cafe is not very large and
there are not many visitors, you need a chef to manage the process for the
successful operation of the kitchen. You also need to have several assistant
chefs. Each assistant chef is responsible for preparing a specific dish or
dishes. For example, one chef specializes in meat dishes, another in fish
dishes, the next one prepares salads, someone specializes in desserts, and
so on. One or more refrigerators can be used to store food, and all chefs
store products there and use those products to prepare meals. All chefs
have access to all refrigerators. The distribution of tasks to the assistant
chefs is the responsibility of the main chef. The main chef also controls
the contents of the refrigerators: are there all the products, and are their
quantities sufficient?

@ Note Even if, in reality, the work of a kitchen is organized
differently, it does not matter. The example is illustrative; you just
need to explain the difference in approaches, but not to organize the
work of a real kitchen.

Let’s compare how a kitchen works to how a program works. Assistant
chefs are analogous to functions, and food stored in the refrigerator
is analogous to data. The overall goal is to “connect” the data and the
“functionality” associated with processing that data. In “culinary”
language, that means you need to define for each assistant chef the
functional responsibilities and the products they can use in their work.
Let’s say you make everything right, and the kitchen operates like
a clock. What can break the situation? One of the main reasons is the
expansion of the “enterprise.” In a programming language, an increase
in the amount of code. Imagine that there are a lot of visitors, and the

200

CHAPTER 7 CLASSES AND OBJECTS

kitchen is huge—Ilots of assistant chefs, lots of refrigerators. Unavoidably,
problems will arise due to someone incorrectly taking an order, collecting
another chef’s products, or dropping out of the process. That is a pure
scaling problem. It can be solved by changing the structure of production.
Namely, let’s divide the kitchen into departments. Each department has
its own specialization. Products in each department are stored in separate
refrigerators. Each department has its own main chef. That may increase
staff and overall costs, but it makes the kitchen more reliable since some
problems are automatically removed due to how the production is
organized. For example, if the refrigerator is located in the fish department,
no one from the meat department can access it.

What is important in this new model? The important thing is that you
use a system of departments that interact with each other. Previously,
in the original scheme, individual assistant chefs interacted with each
other. As part of the new approach, the chefs also interact with each other
within the department. At the next level, there is an interaction between
departments. You can do the same with the program. Namely, you can
organize it as an interaction of some blocks which contain the data and
which can process that data. Such blocks are called objects. The scheme
itself describes the paradigm of object-oriented programming (OOP).

@ Note OOP principles were developed for creating large
programs. A large program usually contains several thousand lines of
code or more.

Thus, writing a program within the framework of OOP implies the
creation of objects. Objects are created based on patterns called classes.

Let’s consider another analogy to understand the difference between
a class and an object. Let’s say you want to build a house (an analogy to
an object). But to build a house, you need a plan or scheme according to

201

CHAPTER 7 CLASSES AND OBJECTS

which you build (an analogy to a class). You take a plan and build a house
following the plan. Similarly, you take a class and create an object based
on the class. Several houses can be built based on the same plan. They are
of the same type but physically different. And if you build houses based on
different plans, you get different houses. As well multiple objects can also
be created based on a class. They are also of the same type (with the same
functionality), but at the same time, physically, they are different. If you
create objects based on different classes, the objects are also different. It is
also possible that there is a plan but no buildings. Similarly, you can create
a class but not create any object based on it.

That is the main idea. Next, you must learn how to declare classes and
create objects based on them.

@ Note Returning to encapsulation, polymorphism, and
inheritance, it is worth mentioning the following. These are the three
basic mechanisms of OOP. Encapsulation means that the data and
the code for processing it are combined into a single unit, which is an
object. Polymorphism implies using generic interfaces for interacting
with objects, functions, and methods. Finally, inheritance allows you
to create new classes based on existing ones by inheriting their
properties. All these mechanisms are examined step by step in
examples.

Creating Classes and Objects

It is time to go deep into the practical issues. Let’s start by creating classes.

A class declaration begins with the class keyword followed by the
class name. Then, in a block defined by curly braces, the contents of the
class are described. The class declaration template looks as follows.

202

CHAPTER 7 CLASSES AND OBJECTS

class name{
The contents of the class

But the intrigue remains: what can be described in a class? The short
answer is that you can describe methods and fields there. The fields are
actually variables. Unlike ordinary variables, the fields are described in
the class. There is no need to assign values to them; it is just enough to
specify their presence in the class. Methods are the same as functions. But
contrary to the functions, the methods are described in the class.

Q Note The fields are sometimes also called properties or
attributes. The fields and methods of a class are called members of
the class.

The following is an example of a simple class with only a single field.

class MyClass{
public $number;

The class contains only one public $number statement, which means
that the class describes a field called $number. The public keyword is
called an access level specifier, meaning the field is public. The “publicity”
of the field, in turn, allows you to access the field not only inside the class
but also outside of it.

Q Note In addition to the public access level specifier, the
private (a private field) and protected (a protected field)
keywords can be used. How the access level specifier affects the
field properties is discussed later.

203

CHAPTER 7 CLASSES AND OBJECTS

So, there is the MyClass class with a single $number field. What does
that mean? That means if you create an object based on the MyClass class,
the object has the $number field.

Details

Afield is like a variable. If you imagine an object as a container, then the field of the
object is a variable put in that container. If you have several objects created based
on the same class, they have the same set of fields. However, these are different
variables since each object has its own fields. Therefore, it is not enough to specify
the field’s name when referring to an object field. You must also specify the object to
which that field belongs.

To create an object based on a class, use the new instruction followed
by the name of the class to be the basis for creating the object. A reference
to that object is written to a variable (an object variable) identified with the
object. The template of the statement that creates an object is as follows.

$variable=new ClassName;

For example, if you want to create an object of the MyClass class, the
corresponding command could look like the following.

$obj=new MyClass;

This command creates an object of the MyClass class, and a reference
to the created object is written to the $obj variable. If you need to access
the object, use the $obj variable.

204

CHAPTER 7 CLASSES AND OBJECTS

2~ The PHP 8 Standard

In PHP 8, you can use the $obj: :class statement to get the name
of that class based on which the $ob7j object was created. In the
previous versions of PHP, the get class() function is used for
that purpose, and the corresponding command looks like get
class($obj).

But an object is primarily its fields and methods. Therefore, access
to the object is access to its fields and methods. To do that, put the
arrow -> after the object variable and then place the field name without
the $ symbol. In this case, you access the $number field of the $obj object
using the $obj->number instruction.

Listing 7-1 is a program in which you describe a class, create an
object based on the class, and then perform some operations with the
object’s field.

Listing 7-1. Creating an Object

<?php
// Description of a class:
class MyClass{
public $number;
}
// Creates an object:
$obj=new MyClass;
// The field is assigned a value:
$obj->number=123;
// Displays the field:
echo "The field \$number: $obj->number\n";
// The new value of the field:
$obj->number=321;

205

CHAPTER 7 CLASSES AND OBJECTS

// Displays the field:
echo "The field \$number: $obj->number\n";
2>

The following is the result of the program execution.

The output of the program (from Listing 7-1)
The field $number: 123
The field $number: 321

The program begins with a description of the MyClass class. Based
on the class, the $obj=new MyClass instruction creates the $ob7j object. It
has the $number field, assigned the value 123 using the $obj->number=123
statement. Then, use the echo "The field \$number: $obj->number\n"
statement to display the $number field of the $obj object.

Q Note Instead of the $obj->number instructions in the string
literal in double quotes, the value of that instruction is displayed.

After that, the $obj->number=321 command assigns the new value 321
to the $number field of the $obj object. The check shows that the field value
has changed.

Details

The public access level specifier in the description of the $number field in the
MyClass class makes it possible to access the field in the $obj->number format
outside the MyClass code.

206

CHAPTER 7 CLASSES AND OBJECTS

The Methods

As mentioned, in addition to describing fields in a class, you can describe
methods there. A method is described in the same way as a function, but
only in the body of the class. The main feature of the method is related to
how it is called. When you call a function, you have to specify the name
of the function and the list of its arguments. When you call a method, you
need to specify the object from which the method is called. The method
has access to all fields and methods described in the class.

Q Note From here, you examine ordinary (non-static) fields and
methods. In addition to ordinary class members, there exist static
members. Operations with them have their own peculiarities, which
are discussed later.

Listing 7-2 is a small modification of the previous example. Now, the
MyClass class contains two methods besides the $number field.

Listing 7-2. Using Methods

<?php
class MyClass{
public $number;
// The method to display the field:
function show(){
print("The field \$number: $this->number\n");

207

CHAPTER 7 CLASSES AND OBJECTS

// The method to assign a value to the field:
function set($n){
$this->number=%$n;

}
// Creates objects:

$A=new MyClass;
$B=new MyClass;
// The fields are assigned values:
$A->set(100);
$B->set(200);
// Displays the fields:
$A->show();
$B->show();
?>

The following is the result of the program execution.

The output of the program (from Listing 7-2)
The field $number: 100
The field $number: 200

The main changes are related to the MyClass code. In addition to
the $number field, the class contains the methods show() and set(). The
show() method has no arguments and allows you to display the $number
field of the object from which the method is called. The set () method
assigns a value to the $number field of the object from which the method is
called. The method’s argument (named $n) determines the value assigned
to the $number field.

208

CHAPTER 7 CLASSES AND OBJECTS

You are faced with an essential problem in the description of these
methods. Namely, a method is called from an object. That means that to
call the method, it is necessary to specify the name of the method and the
object from which the method is called. The method, in turn, accesses
the field $number of the object. When accessing the field, you must specify
the object (which owns the field). But when you describe the method, the
object does not yet exist. In other words, you need to denote somehow
the object from which the method is called. That is what the $this
identifier is used for. The $this instruction, when used within the method
code, denotes the object from which the method is called. Therefore, for
example, the $this->number command is a reference to the $number field
of the object from which the method is called. In particular, in the body
of the show() method, use the print("The field \$number: $this-
>number\n") statement, which displays the $number field of the object
from which the method is called. In the body of the set() method, the
$this->number=$n statement assigns the $n argument of the method to the
$number field.

In the program, create two objects, $A and $B, of the MyClass class.

To do that, use the $A=new MyClass and $B=new MyClass commands,
respectively. Each object has the $number field, but these are different
fields despite the coinciding names: one belongs to the $A object, and the
other belongs to the $B object. You use the set() and show() methods to
perform operations with fields. The $A->set(100) instruction assigns 100
to the field $number of $A, and the $B->set(200) instruction assigns 200 to
the field $number of $B. After that, using the $A->show() command, display
the $number field of the $A object, and to display the $number field of the $B
object, use the $B->show() command.

209

CHAPTER 7 CLASSES AND OBJECTS

Details

It might be interesting that when trying to assign a value to a field that doesn’t exist
in an object, such a field appears (a so-called dynamic property). For example, if
the $obj object has no $name field, then after executing the $obj->name="php"
command, the $ob7j object gets the $name field with the value "php".
Nevertheless, since PHP 8.2, that possibility is deprecated. If you still want to use it,
you should put the #[\AllowDynamicProperties] annotation before the class
description.

You can use the unset () function to remove a field from an object. For
example, to delete the $name field from the $ob7j object, the unset ($obj->name)
instruction could be helpful.

It is also worth mentioning that methods, like fields, can be described with
the public, private, and protected specifiers of access level. If a method is
described without a specifier of access level (as in the earlier examples), then the
method is a public one by default.

A good practice is to specify the public access level explicitly for public
methods. Nevertheless, let’s use the default (public) access level (so the public
keyword is not used) for some methods to demonstrate PHP’s flexibility and power.

Also, you can assign values to fields in the description of a class. In that case,
when creating an object based on the class, the corresponding field of the object
has the value assigned to the field in the class.

2~ The PHP 8 Standard

In the PHP 8 version, you can use the ?-> instruction instead of - >
when accessing the fields and methods of objects. For example,
you can use an expression like $object?->method instead of
the expression like $object->method. The former option is safer
because if the value of the $object variable is an empty null
reference, then there is no fatal error.

210

CHAPTER 7 CLASSES AND OBJECTS

The Constructor and the Destructor

In the examples, you created objects based on a class, and then the fields
of the objects were assigned values. If there are many objects and they
have many fields, then the process can become tedious. So, it is advisable
to automate it. In that sense, two special methods may be useful: the
constructor and the destructor.

The constructor is a method called automatically when an object is
created. The constructor’s nameis __construct() (the name starts with
a double underscore). The constructor can take arguments. Typically, the
constructor contains commands that assign values to fields or perform
other operations.

Details

If the constructor has arguments, then those arguments must be specified when
an object is created. Arguments of the constructor are specified in parentheses
after the class name in the command based on the new instruction that creates the
object.

The destructor is a method automatically called when an object is
removed from memory. The destructor’s nameis __destruct(), and it has
no arguments. Listing 7-3 illustrates how to use the constructor and the
destructor.

Listing 7-3. The Constructor and the Destructor

<?php
The class with the constructor and the destructor:
class MyClass{
The field:
public $code;
The constructor:

211

CHAPTER 7 CLASSES AND OBJECTS

function _ construct($code=123){
$this->code=%code;
echo "The object is created: ",$this->code,"\n";
}
The destructor:
function destruct(){
echo "The object is deleted: ",$this->code,"\n";

}

Creates objects:

$A=new MyClass();

$B=new MyClass(321);
?>

The result of the program execution is as follows.

The output of the program (from Listing 7-3)
The object is created: 123
The object is created: 321
The object is deleted: 321
The object is deleted: 123

The program describes the MyClass class. The class has the $code field,
the constructor, and the destructor. The constructor has a single argument
(denoted as $code) with the default value 123. In the constructor, the
$this->code=$code command is executed, which assigns a value (the
method argument) to the $code field of the object being created.

212

CHAPTER 7 CLASSES AND OBJECTS

Q Note Thus, if an argument is passed to the constructor, its
value becomes the value of the $code field of the created object. If
no argument is passed to the constructor, the field gets the default
value 123.

The echo "The object is created: ",$this->code,"\n" command
displays a message that the object has been created and informs about the
value of its field.

Q Note So, when an object is created, a message about that
automatically appears, and it also contains information about the
value of the object’s field.

The destructor contains only one command echo "The object is
deleted: ",$this->code,"\n", which informs you that the object is
deleted.

In addition to the class description, the program contains two
commands, $A=new MyClass() and $B=new MyClass(321), which create
objects of the MyClass class. When the $A object is created, no arguments
are passed to the constructor, so the $code field of that object is set to 123.

Details

If no arguments are passed to the constructor, you can put empty parentheses or
not put them after the class name in the command that creates the object. In other
words, instead of the $A=new MyClass() command, you could use the $A=new
MyClass command.

213

CHAPTER 7 CLASSES AND OBJECTS

When the $B object is created, the value 321 is passed to the
constructor as an argument. That is the value of the $code field of the
$B object.

Each time an object is created, a constructor is called. The command
displays a message in the constructor that the object was created.

You create two objects, so two messages appear. Two more messages
automatically appear when objects are deleted from memory. You see that
the program ends with the commands creating objects. There are no other
commands in the program. Therefore, after the objects are created, the
program is terminated. But before the program is terminated, all created
objects are automatically deleted from memory.

As you already know, the destructor is called before the object is
deleted. The command executed in the destructor displays a message that
the object is deleted. Two objects were created, so two objects were also
deleted.

@ Note Objects are deleted in the reverse order as they were
created: the last created object is deleted first.

Details

In the previous versions of PHP, there was another way to create the constructor.

It differs from the one described in that the constructor’s name is not
construct(), but its name matches the name of the class. In this case, that would
be the MyClass () method.

2 The PHP 8 Standard

In PHP 8, a method whose name is the same as the name of its class
is no longer interpreted as the constructor.

214

CHAPTER 7 CLASSES AND OBJECTS

Static Fields and Methods

The fields and methods that were described in the classes in the previous
examples were ordinary—that is, non-static. But, as noted earlier, a class
can also contain static members—static fields and static methods.

From a formal point of view, creating a static field or method is easy.
You describe it with the static keyword. But what is the difference
between a static field or method and a non-static field or method? If
ordinary (non-static) fields and methods are “attached” to an object, then
static class members do not belong to any object. They exist on their own
(but in the context of the class in which they are described).

To refer to a static field or class method, specify the class name
followed by a double colon (: :), and then the name of the field or method
(with arguments in parentheses) follows. If you call a static method or refer
to a static field inside the class code, the self keyword is used instead of
the class name.

Listing 7-4 describes a class with a static field and two static methods.

Listing 7-4. Static Fields and Methods

<?php
A class with static members:
class MyClass{
A static field:
public static $name;
Static methods:
static function rename($name){
self::$name=%$name;
}
static function hello(){
echo "The name: ",self::$name,"\n";

215

CHAPTER 7 CLASSES AND OBJECTS

}
The value of the static field:

MyClass::$name="Alpha";
// Calls the static methods:
MyClass::hello();
MyClass::rename("Bravo");
MyClass::hello();

?>

The output of the program is as follows.

The output of the program (from Listing 7-4)
The name: Alpha
The name: Bravo

The MyClass class has the static field $name. The rename() static
method is designed to change the value of the $name field (the method
argument has the same name). Assigning a value to the field is realized
by the self: :$name=$name command in the method. There, the $name
instruction means the method’s argument, and the static field is accessed
by the self: :$name instruction.

The static hello() method has no arguments. When the method is
called, the echo "The name: ",self::$name,"\n" command is executed,
which displays the value of the static field.

After the class is declared, the MyClass: : $name="Alpha" command
assigns the "Alpha" string to the $name static field of the MyClass class.
Here, you should pay attention to how the static field $name of the MyClass
class is accessed: since you are accessing the field outside the class, use
the MyClass: : $name instruction, which contains the class name. Also
noteworthy is that you have not yet created objects for the MyClass class
and do not plan to create them.

216

CHAPTER 7 CLASSES AND OBJECTS

The MyClass: :hello() and MyClass: :rename("Bravo") commands
are used to call the static methods. In the first case, the value of the static
field $name of the MyClass class is displayed, and the second command sets
the field to "Bravo" (after which the hello() method is called again in the
program).

Copying Objects

From a practical point of view, such a task as copying objects is important.
Let’s look at the example program shown in Listing 7-5.

Listing 7-5. Assigning Objects

<?php
The description of a class:
class MyClass{
public $code;
function _ construct($code){
$this->code=%code;
}
function show(){
echo "The field \$code: ",%$this->code,"\n";

}

Creates an object:
$A=new MyClass(100);
echo "The object \$A\n";
$A->show();

Assigns objects:
$B=$A;

echo "The object \$B\n";
$B->show();

217

CHAPTER 7 CLASSES AND OBJECTS

Changes the value of the field of the initial object:
$A->code=200;
echo "The object \$A\n";
$A->show();
echo "The object \$B\n";
$B->show();
2>

The following is the result of the program execution.

The output of the program (from Listing 7-5)
The object $A

The field $code: 100

The object $B

The field $code: 100

The object $A

The field $code: 200

The object $B

The field $code: 200

The program defines the MyClass class with the $code field, the one-
argument constructor (defines the value of the $code field), and the show()
method that displays the field’s value.

Based on the MyClass class, the $A=new MyClass(100) command
creates the $A object, whose $code field gets the value 100. Using the
show() method, check the value of that field. Then, the $B=$A command
is executed. But the copying of objects, in that case, does not happen. The
$A variable does not contain the object but only refers to it. The situation
can be interpreted so that the $A variable contains the object’s address.
Therefore, as a result of executing the $B=$A command, the address
from the $A variable is copied to the $B variable. So, it turns out that the
$B variable refers to the same object as the $A variable. Therefore, if you

218

CHAPTER 7 CLASSES AND OBJECTS

change the value of the $code field of the $A object (the $A->code=200
command), the check shows that the value of the $code field of the
$B object has also changed. But once again, you deal with the same
object here.

So, how can you create a copy of an object? One of the easiest ways
is to use the clone instruction in the object assignment command. In
particular, the $B=clone $A command could be used instead of the $B=$A
command. The new version of the program that copies objects is shown in
Listing 7-6.

Listing 7-6. Copying Objects

<?php
class MyClass{

public $code;

function _ construct($code){
$this->code=%code;

}

function show(){
echo "The field \$code: ",%$this->code,"\n";

}
$A=new MyClass(100);

echo "The object \$A\n";
$A->show();

Copies objects:
$B=clone $A;

echo "The object \$B\n";
$B->show();
$A->code=200;

echo "The object \$A\n";
$A->show();

219

CHAPTER 7 CLASSES AND OBJECTS

echo "The object \$B\n";
$B->show();
?>

The result of the program execution is as follows.

The output of the program (from Listing 7-6)
The object $A

The field $code: 100

The object $B

The field $code: 100

The object $A

The field $code: 200

The object $B

The field $code: 100

The result of the program execution proves that a copy of the object
was indeed created.

Private Fields and Methods

The previous examples used public fields and methods. Their “publicity”
allowed access to them outside the class code. However, making fields or
methods private is often reasonable and convenient. Such class members
are described with the private keyword and are available only inside the
class code. What does it give to us? The point is that private members of a
class are more difficult to use in an “unsupposed” manner. In other words,
if a field or method is used to solve additional routine tasks and is not
proposed for the “end user;” it is better to “hide” such a field or method.
The situation is illustrated in Listing 7-7.

220

CHAPTER 7 CLASSES AND OBJECTS

Listing 7-7. Private Members of a Class

<?php
// A class:
class MyClass{
// The private field:
private $code;
// The method for reading the field value:
function get(){
return $this->code;
}
// The method for assigning a value to the field:
function set($code){
$this->code=%$code;
}
// The private constructor:
private function _ construct($code){
$this->set($code);
}
// The static method for creating objects:
static function create($code){
return new self($code);

}

// Creates an object:

$obj=MyClass::create(100);

// Checks the field:

echo "The field: ",$obj->get(),"\n";

// Assigns a value to the field:

$obj->set(200);

// Checks the field:

echo "The field: ",$obj->get(),"\n";
7>

221

CHAPTER 7 CLASSES AND OBJECTS

The following is the program’s output.

The output of the program (from Listing 7-7)
The field: 100
The field: 200

You describe the MyClass class with a private $code field and two
public non-static methods. The get () method returns the value of the
$code field of the object from which the method is called (the return
$this->code statement in the method body).

The set () method has one argument (denoted as $code) and is
designed to assign a value to the $code field of the object from which the
method is called. The $this->code=$%code instruction in the method’s
body solves the task.

The class has a constructor with one argument to pass when creating
an object, and the argument determines the value of the object’s $code
field. And you do that by calling the set () method. But the tricky moment
is that the constructor is described with the private keyword. That is, it is
private. So, you cannot create an object outside the class code using the
new instruction. Then how can you create objects? For that purpose, you
create the public static create() method. The method has one argument
(denoted as $code). The argument defines the value of the object’s field
of the same name, the reference to which is returned by the method as a
result. The object itself is created by the new self($code) statement in
the method body. The result of the expression is a reference to the created
object. It is the reference that is returned by the method. The self keyword
is used to identify the class from which the method is called.

Since you cannot create an object in the usual way, you use the
$obj=MyClass: :create(100) command to create an object of the MyClass
class. The $code field of the created object gets the value 100. However,

222

CHAPTER 7 CLASSES AND OBJECTS

since the $code field is private, you cannot access it directly. If you want to
get the value of the field, use the $obj->get() instruction, which calls the
public get () method from the $obj object.

To assign a value to the field of the object, call the set() method, as is
done with the $obj->set(200) command.

Q Note It turns out that the $code field of the object is private,
so you cannot perform operations directly with it outside the class
code. But you can access the field using public methods. In particular,
use public methods to read the field’s value and assign a value to

the field.

Special Methods

There is a group of methods that solve “special” tasks. The names of those
methods begin with a double underscore. Let’s explore them next.

Q Note As you might guess, the construct() and
destruct() methods (the constructor and the destructor) are also
special ones.

Let's start with the __toString() method. That method is called
automatically every time an object is in the place where a string should
be. Examples are when the object is concatenated with a string using the
dot operator or when the object is passed as an argument to the print()
function or to the echo statement. Let’s look at the example in Listing 7-8.

223

CHAPTER 7 CLASSES AND OBJECTS
Listing 7-8. The _ toString() Method

<?php
// The description of the class
// with the _ toString() method:
class MyClass{
// The fields:
public $name;
public $code;
// The constructor:
function _ construct($name,$code){
$this->name=$name;
$this->code=%$code;
}
// The _ toString() method:
public function _ toString(){
$txt="The fields of the object:\n";
$txt.="The field \$name = $this->name\n";
$txt.="The field \$code = $this->code\n";
return $txt;

}

// Creates an object of the class:
$obj=new MyClass("Object",123);
// Explicitly calls the method _ toString():
echo "Call the method _ toString() explicitly:\n";
echo $obj-> toString();
// Implicitly calls the method _ toString():
echo "Call the method _ toString() implicitly:\n";
echo $obj;
$text=$obj."The program is over";
print($text);
7>

224

CHAPTER 7 CLASSES AND OBJECTS

The result of the program execution is as follows.

The output of the program (from Listing 7-8)
Call the method _ toString() explicitly:
The fields of the object:

The field $name = Object

The field $code = 123

Call the method _ toString() implicitly:
The fields of the object:

The field $name = Object

The field $code = 123

The fields of the object:

The field $name = Object

The field $code = 123

The program is over

The program describes the MyClass class, which has two fields ($name
and $code). The class also has a constructor with two arguments that
define the values of the fields. In addition, it describes the _ toString()
method. The method has no arguments and returns a string as a result.
The string is formed in several steps and contains information about the
values of the object’s fields.

Based on the MyClass class, you create the $obj object. In the $obj->
toString() statement, the toString() method is called explicitly, like
an ordinary method. But when the echo $obj instruction is executed, the
__toString() method is called automatically from the $ob7j object, and
the result of the method replaces the reference to that object. The method
is also called implicitly when the $text=$obj."The program is over"
command is executed. There, you concatenate the object with a string.
That operation is performed as follows: the _ toString() method is called

225

CHAPTER 7 CLASSES AND OBJECTS

from the $obj object, and the string result of the method is concatenated
with the second string operand.

~ The PHP 8 Standard

In PHP 8, if the _ toString() method is declared in a class, then
that class automatically implements the Stringable interface.
Interfaces are discussed later.

Let’s explore three more special methods: __set(), get(), and
__call(). They are used when referring to members of a class. Namely,
the call() method is called if a call is made to the non-existing
object method.

The arguments of the __call() method are the name of the called
method and the list of arguments passed to the called method.

Details

If a method is called from an object and the object does not have such a method,
thenthe _ call() method is automatically called from the object. The first
argument of the __call() method is the name of the non-existing method. The
second argument of the _ call() method is an array whose elements are the
arguments passed to the non-existing method.

Listing 7-9 is an example of using the __call() method.

Listing 7-9. The special __call() Method

<?php
// The class with a special method:
class MyClass{
// The method:
public function show($txt){

226

CHAPTER 7 CLASSES AND OBJECTS

echo $txt."\n";
}
// The special method:
public function _ call($name,$args){
if(strlen($name)>5){
echo "The arguments: ",sizeof($args),"\n";
echo "The $name() method does not exist!\n";
telse{
for($k=0; $k<sizeof($args); $k++){
echo "[",$k+1,"] $args[$k]\n";

}
// An object of the class:

$obj=new MyClass();

// Calls an existing method:
$obj->show("The MyClass class");

// Calls the non-existing methods:
$obj->display("Alpha");
$obj->hello("Bravo","Charlie","Delta");

The following is the result of the program execution.

output of the program (from Listing 7-9)
MyClass class

arguments: 1

display() method does not exist!

Bravo

Charlie

Delta

227

CHAPTER 7 CLASSES AND OBJECTS

The program uses the MyClass class, which describes the ordinary
show() method with one argument. When the method is called, the value
of the argument passed to the method is displayed. You need that method
to show that the presence of the _call() method does not affect the
operation of ordinary methods in a class.

The special __call() method is declared with two arguments. The
first argument $name means the name of the method that is called from the
object and which the object does not have. The second argument, $args, is
an array with the arguments passed to the non-existing called method.

You use a conditional statement in the method’s body that tests the
strlen($name)>5 condition. The condition is true if the name of the called
(non-existing) method consists of more than five characters. If so, echo
"The arguments: ",sizeof($args),"\n" displays a message informing
about the count of arguments passed to the method. echo "The $name()
method does not exist!\n" displays a message stating that the method
does not exist.

If the strlen($name)>5 condition is false and the name of the called
method has no more than 5 characters, a loop statement is launched that
iterates over the elements of the $args array (the arguments passed to the
non-existing method) and displays their values.

Details

The sizeof() function is used to calculate the size of an array. The length of a
string is calculated using the strlen() function.

Based on the MyClass class, create the $obj object. If you call the
existing show() method from that object, everything happens as it should,
without surprises.

The $obj->display("Alpha") command calls the non-existing
display() method with the "Alpha" argument from the $obj object.

The name of the method consists of more than five characters. So, when

228

CHAPTER 7 CLASSES AND OBJECTS

the call() method is automatically called, it displays the message that
the method does not exist, and it also contains information about the
number of arguments passed to the method (in this case, there is one
argument).

The other non-existing method is called by the $obj->hello("Bravo”,
"Charlie","Delta") instruction. The method name is now five characters
long, so the automatically called _call() method displays the list of
arguments passed to the method hello().

The set()and _get() methods are automatically called when
accessing the non-existing fields of an object. In particular, the _set()
method is called if you try to assign a value to the field that does not exist.
The arguments of the method __set() are the name of the field to which
the value is assigned and the assigned value itself.

Details

By default, if the non-existing field of an object is assigned a value, then such a field
is added to the object. If the __set () method is defined in the class, then when

a value is assigned to an inaccessible (non-existing or private) field, the set()
method is automatically called.

The _get() method is called if you try to read the value of the non-
existing field. The name of that field is passed as an argument to the
method _ get().

The program that illustrates how to use the __get() method is shown
in Listing 7-10.

Listing 7-10. The special _get() Method

<?php
// The class:
class MyClass{
// The public field:

229

CHAPTER 7 CLASSES AND OBJECTS

public $number=321;

// The private field:

private $code=100;

// The method to access the private field:

public function get(){
return $this->code;

}

// The method handles the access

// to the non-existing field:

public function _ get($name){
if(isset($this->$name)) return $this->$name/2;
return 123;

}
// Creates objects:

$obj=new MyClass();
// The reference to the public field:
echo "\$number: ",$obj->number,"\n";
// The reference to the private field:
echo "\$code: ",$obj->code,"\n";
echo "get(): ",$obj->get(),"\n";
// The reference to the non-existing field:
echo "\$value: ",%obj->value,"\n";
?>

The result of the program execution is as follows.

The output of the program (from Listing 7-10)
$number: 321

$code: 50
get(): 100
$value: 123

230

CHAPTER 7 CLASSES AND OBJECTS

The MyClass class has the public field $number with the value 321
and the $code private field with the value 100. The class has the ordinary
get () method with no arguments, which returns the value of the private
field $code.

In addition, the special __get() method is described in the class,
automatically called when an attempt is made to access the inaccessible
field. The method’s only argument is denoted as $name. It identifies the
name of the field being accessed.

In the method’s body, a conditional statement is executed in a
simplified form. It checks the isset($this->$name) condition. The
condition is true if the object has the requested field (but unavailable). If
the field is present, then the returned value is half the value of the field (the
return $this->$name/2 command). Here, implicitly assume that you deal
with a numeric field. If the object does not have the requested field, the
__get() method returns the value 123.

Details

A field can be inaccessible because the object does not have it or the field is private.
The _ get() method is automatically called in both cases. You use the conditional
statement to check if the object has a private field with the requested name.

You should also pay attention to the $this->$name instruction. Here, the
$name variable contains the name of the field. In other words, this is not about the
$name field but the field whose name is the value of the $name variable (argument).

After creating the $obj object of the MyClass class, access the fields of
that object. The result of the $obj->number expression is the value 321 of
the $number field of $obj.

The $obj->code instruction accesses the private field $code of the
$obj object. The field is there, but there is no access to it. The value of the
private $code field is 100. That is the value returned by the get () method
(the $obj->get() instruction). But the value of the $obj->code expression

231

CHAPTER 7 CLASSES AND OBJECTS

is twice less (that is, 50). It is the value returned by the __get() method. It
is called automatically when the $obj->code expression is processed.

The $obj->value instruction accesses the non-existing $value field. In
that case, the __get() method returns the value 123.

The program that uses the special _set() method is shown in
Listing 7-11.

Listing 7-11. The special __set() Method

<?php
// The class description:
class MyClass{

// The public field:

public $number;

// The private field:

private $code;

// The method to access the private field:

public function get(){
return $this->code;

}

// The method to assign a value

// to the private field:

public function set($code){
$this->code=%$code;

}

// The special method is called when

// assigning a value to the inaccessible field:

public function _ set($name,$arg){
if(isset($this->$name)) $this->$name=$arg/2;
else $this->$name=2*$arg;

232

2>

CHAPTER 7 CLASSES AND OBJECTS

// Creates an object:

$obj=new MyClass();

// Assigns values to the fields:
$obj->number=123;

$obj->set(321);

// Checks the values of the fields:

echo "\$number: ",%$obj->number,"\n";
echo "\$code: ",%$obj->get(),"\n";

// Assigns a value to the private field:
$obj->code=100;

// Assigns a value to the non-existing field:
$obj->value=100;

// Checks the values of the fields:

echo "\$code: ",%$obj->get(),"\n";

echo "\$value: ",%obj->value,"\n";

The following is what you get when running the program.

The output of the program (from Listing 7-11)
$number: 123

$code: 321
$code: 50
$value: 200

233

CHAPTER 7 CLASSES AND OBJECTS

2~ The PHP 8 Standard

In versions higher than PHP 8, the creation of dynamic properties is
deprecated. Thus, the $obj->value=100 command causes a warning.
To avoid that, you can use the #[\A1LowDynamicProperties]
annotation for the MyClass class (put the annotation before the class
description).

The MyClass class has the public $number field, the private $code field,
the public get () method to read the value of the $code field, and the set()
method to set the value to that field.

The _set() method is described with two arguments. The first
argument $name specifies the field name to which the value is assigned.
The second argument $arg is the value to assign to the field.

The core of the method code is a conditional statement. You check
the isset($this->$name) condition in the conditional statement. It is
true if the object has the corresponding field. If the condition is true, the
$this->$name=$arg/2 command is executed. In that case, the field gets
half the value passed for assigning. If the condition is false, then $this-
>$name=2*$arg is executed. As a result, the object gets a corresponding
field, and the field’s value is twice the value you tried to assign to the field.

Q Note If you assign a value to the unavailable private field,
that field gets half the value you assign. If you assign a value to the
non-existing field, the field is added to the object and gets twice the
value you assign.

Based on the MyClass class, create the $obj object. After that, you use
the $obj->number=123 command to assign the value 123 to the public
field $number, and the $obj->set(321) command sets the value 321 to

234

CHAPTER 7 CLASSES AND OBJECTS

the $code private field. Here, everything happens without any intrigue.
Therefore, the $obj->number expression gives 123, and the $obj->get ()
expression gives 321.

In the next step, you try to assign a value to the private $code field
with the $obj->code=100 command. In that case, the _set() method is
automatically called. Since the $obj object has the $code field, the value of
that field is not 100 but 50. Checking it with the $obj->get () instruction
confirms the predictions.

The $obj->value=100 command attempts to assign the value 100 to
the non-existing $value field. In that case, the __set() method is also
called. As a result, the $value field is added to the object and gets the value
200. The field’s value can be checked using the $ob7j->value statement.

Defining Fields in the Constructor

The constructor in a class often assigns values to the fields of the object
being created. In that case, the fields are declared in the class, and the
constructor contains commands that assign values to the fields (based on
the constructor’s arguments). In practice, it looks like the following.

class MyClass{
// The field:
public $code;
// The constructor:
function _ construct($code){
// The field is assigned a value:
$this->code=$code;

235

CHAPTER 7 CLASSES AND OBJECTS

Here, you deal with the MyClass class, which has the public $code field
and the one-argument constructor. The constructor argument specifies
the value of the field. Starting with PHP 8, combining the field declaration
and field assignment can significantly reduce the code. Considering the
innovations, the code could look like the following.

class MyClass{
function _ construct(public $code){}

What has changed? First, there is no field declaration. Second, in
the constructor, no command assigns a value to the field. Third, the
$code argument is preceded by the public access level specifier in the
constructor declaration. That means the class has the $code field with
the public access level. It also means that the argument passed to the
constructor is automatically assigned as a value to the field.

Thus, if you specify an access level specifier for the argument in the
description of the constructor argument, then that means the following.

e The class has the corresponding field.

e The constructor argument is assigned (automatically,
no need to write a command) as a value to that field.

Next, let’s analyze a small example.

£ The PHP 8 Standard
The code in Listing 7-12 runs only in PHP 8.

Listing 7-12 shows the class declaration with a constructor that defines
two fields (one public and one private).

236

CHAPTER 7 CLASSES AND OBJECTS
Listing 7-12. Defining Fields in the Constructor

<?php
// The declaration of a class:
class MyClass{
// The fields are declared in the constructor:
function _ construct(public $code,private $name){
echo "The object is created: $code and $name\n";
}
// The method for displaying the fields:
function show(){
echo "The field \$code
echo "The field \$name

", $this->code,"\n";
",$this->name,"\n";

}

// Creates an object:
$obj=new MyClass(123,"MyClass");
// Checks the fields:
$obj->show();

?>

The result of the program execution is as follows.

The output of the program (from Listing 7-12)
The object is created: 123 and MyClass

The field $code = 123

The field $name = MyClass

In the constructor of the MyClass class, the $code argument is declared
with the public specifier, and the $name argument is declared with the
private specifier. That means the class has the public field $code and the
private field $name. The constructor’s first argument is assigned as a value

237

CHAPTER 7 CLASSES AND OBJECTS

to the $code field, and the constructor’s second argument specifies the
value of the $name field. The constructor contains the echo "The object
is created: $code and $name\n" command, which displays a message
with information that the object is created and the values of the arguments
passed to the constructor.

Details

Constructor arguments are named the same as class fields. In the constructor, the
$code and $name instructions refer to the constructor’s arguments. You access the
fields using the $this->code and $this->name instructions.

The show() method is described in the MyClass class. When the
method is called, it displays the $code and $name fields of the object from
which the method is called.

After the MyClass class is declared, use the $obj=new
MyClass(123, "MyClass") command to create an object based on the
class. After that, call the show() method from the object (the $obj->show()
statement).

A constructor can have both ordinary arguments and arguments
that declare fields. An example similar to the previous one is shown in
Listing 7-13.

Listing 7-13. Ordinary Arguments and the Arguments That Declare
Fields in the Constructor

<?php
class MyClass{
// The private field:
private $name;
function _ construct(public $code,$name){
// The field is assigned a value:
$this->name=$name;

238

CHAPTER 7 CLASSES AND OBJECTS

echo "The object is created: $code and $name\n";
}
function show(){
echo "The field \$code
echo "The field \$name

",$this->code,"\n";
",$this->name,"\n";

}
$obj=new MyClass(123,"MyClass");

$obj->show();
?>

The second argument in the constructor of the MyClass class is a
regular argument, and the private field of the same name in the class
is traditionally declared. You also added the command that assigns the
constructor’s second argument to the $name field. In all other aspects, the
examples are similar. The result of the program execution is the same as in

the previous case.

Summary

e Objects are created from classes and can contain fields
and methods.

e The class declaration begins with the class keyword,
followed by the class name and, in curly braces, the
class description.

¢ The fields and methods declared in a class are called
class members. Methods are described as ordinary
functions. When describing fields, field values can be
omitted.

239

CHAPTER 7 CLASSES AND OBJECTS

240

To determine the access level, you can use the
keywords (access level specifiers) private (the
private class member), protected (the protected class
member), and public (the public class member).

The absence of an access level specifier means the
corresponding class member is public.

To create an object based on a class, use the new
instruction followed by the name of the class. The
result of the corresponding expression is a reference to
the created object. That reference is assigned as a value
to an object variable.

No copy of the object is created when assigning object
variables, and the two variables refer to the same
object. The assignment statement should contain the
clone instructions to create a copy of the object.

The constructor is a method automatically called when
an object is created. It isnamed __construct() and
can take arguments. If so, the constructor’s arguments
are specified in the statement that creates an object in
parentheses after the class name.

The destructor is a method called automatically when
an object is removed from memory. The destructor is

named _ destruct() and has no arguments.

A class can contain static fields and methods. Such
class members are declared with the static keyword.
Static class members are not tied to any particular
object and exist regardless of whether any objects of the
corresponding class were created.

CHAPTER 7 CLASSES AND OBJECTS

To access the fields of an object, use the instructions
of the $object->field form, and the $ symbol is
not indicated in the field name. A method from

an object is called by a command like $object-
>method(arguments). Access to static class
members is performed in the class::$field and
class: :method(arguments) format.

The $this keyword is used in a class as an identifier for
the object from which the method is called. The self
keyword is used in a class as the class identifier when
accessing static fields and methods.

There are special methods with a special purpose

that are called automatically. The names of those
methods begin with a double underscore. Among those
methods are __toString() (automatically called to
convert an object to a string), _call() (automatically
called when trying to call the non-existing method),
__get() (automatically called when trying to read

the value of the inaccessible field), and __set()
(automatically called when trying to assign a value to
the unavailable field).

Starting with PHP 8, you can combine argument
descriptions and field declarations in the class
constructor. In that case, an access level specifier is
supplied for the argument that automatically creates
the corresponding field and assigns a value based on
the argument passed to the constructor.

241

CHAPTER 8

Inheritance

It’s all very nice, but I didn’t get it!
—ALF (TV series)

This chapter is devoted to such a critical OOP mechanism as inheritance.
Along with encapsulation and polymorphism, inheritance is one of the
three pillars on which the knowledge of OOP rests. Next, you learn how
inheritance is implemented in PHP.

Creating a Child Class

So, let’s say that you have a class that you would like to modify (add some
new properties and methods to it). In principle, you can simply modify the
code of the corresponding class. But the situation is complicated because
the programs already use the class. Therefore, the idea of modifying the
code of an already existing class is not the best one. The idea of describing
a new class from scratch, duplicating, in addition to new fragments, the
contents of the original class is also not productive. First, in that case, you
have to repeat the existing code. In programming, such a style is usually

a sign of a badly created program. Second, if you later have to make
changes to the original class (for example, by changing the code of one

© Alex Vasilev 2024 243
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_8

https://doi.org/10.1007/979-8-8688-0258-4_8

CHAPTER 8 INHERITANCE

of the methods), you may need to make changes to the newly created
class synchronously. So, what are you going to do? In such a situation, it is
reasonable to use the inheritance mechanism.

The idea is simple: create a new class based on an existing one. In
that case, the newly created class automatically inherits all public and
protected methods from the original class. (What happens to the private
members of the class is a special case, which is discussed a little later.) The
class from which the new class is created is called the parent or base class.
A class created based on the parent class is called a child or derived class.

Q Note PHP allows multilevel inheritance: from a parent class,
you can create a child class, from which another child class can be
created, and from it, the next child class, and so on. Thus, child and
parent classes are relative: a class can be a child for some class and
a parent for another class.

However, PHP does not allow multiple inheritance: a child class can
have one and only one parent class.

From a technical point of view, creating a child class is very simple:
in the class description, after its name, you put the extends keyword and
the name of the parent class. The description of the child class specifies
only those fields and methods that should be appended to the child class
in addition to the members from the parent class. The members of the
parent class are automatically available in the child class. The child class
declaration template looks as follows.

class Bravo extends Alpha{
The description of the class

244

CHAPTER 8 INHERITANCE

That pattern means the Bravo class is created based on the Alpha class.
In the Bravo class, you need to describe only those members you want to
append to the inherited members from the Alpha class.

Details

The situation is as if all public and protected members of the Alpha class were
declared in the Bravo class. In the body of the Bravo class, you can directly access
those class members.

Listing 8-1 is a program that creates and uses parent and child classes.

Listing 8-1. Creating a Child Class

<?php

// The parent class:

class Alpha{
// The field:
public $number;
// The method for assigning a value to the field:
public function setNumber($number){

$this->number=$number;

}
// The child class:

class Bravo extends Alpha{
// The field:
public $symbol;
// The method for assigning a value to the field:
public function setSymbol($symbol){
$this->symbol=$symbol;

245

CHAPTER 8 INHERITANCE

// The method for assigning values
// to both fields:
public function setAll($symbol,$number){
// Calls the method described
// in the parent class:
$this->setSymbol($symbol);
// Calls the inherited method:
$this->setNumber ($number);
}
// The method for displaying the fields:
public function show(){
// Calls the method described
// in the parent class:
echo "The field \$symbol: ",$this->symbol,"\n";
// Calls the inherited method:
echo "The field \$number: ",$this->number,"\n";

}

// Creates an object:
$obj=new Bravo;
// Assigns values to the fields:
$obj->setSymbol('A");
$obj->setNumber(100);
// Displays the fields:
$obj->show();
// Assigns values to the fields:
$obj->setAll('B',200);
// Displays the fields:
$obj->show();

2>

246

CHAPTER 8 INHERITANCE

The result of the program execution is as follows.

The output of the program (from Listing 8-1)
The field $symbol: A

The field $number: 100

The field $symbol: B

The field $number: 200

The program describes two classes: the Alpha parent class and the
Bravo child class created based on the Alpha parent class.

The Alpha class has the public $number field and the public one-
argument setNumber () method for assigning a value to the field.

Since the Bravo child class is based on the Alpha class, the Bravo class
also has the $number field and the $setNumber () method, even though
these class members are not defined in the Bravo class. But they are
inherited from the Alpha class. In addition to the inherited members, you
explicitly declared the public $symbol field and three public methods in
the Bravo class. The setSymbol () method with one argument is designed
to assign a value to the $symbol field. The setAll() method has two
arguments. The method assigns values to the $number and $symbol fields.
It contains the commands that call the setSymbol () and setNumbexr ()
methods.

The show() method has no arguments. When the method is called,
it displays the $symbol and $number fields of the object from which it
is called.

Q Note In the body of the child class, you handle the fields and
methods inherited from the parent class as if they were declared
directly in the child class.

247

CHAPTER 8 INHERITANCE

The $obj=new Bravo command is used to create the $obj object based
on the Bravo class.

Q Note You do not create an object of the Alpha parent class
since it is not particularly interesting. It would be an ordinary object of
an ordinary class.

First, the $obj->setNumber(100) and $obj->setSymbol('A")
commands assign values to the fields of the $obj object. You check the
fields using the show() method. The $obj->setA11(200, 'B') command is
another way to change the fields of the $obj object.

Details

You also could directly access the $number and $symbol fields of $obj. Note that
a member must be public to be accessed outside the class.

It is also worth mentioning that there is a way to prevent a particular class from
being inherited. In that case, the class should be declared with the final keyword.

Overriding Methods

It is pretty convenient that, due to inheritance, a child class gets the fields
and methods of its parent class. However, in some cases, it is necessary for
the method inherited in a child class to be performed somewhat differently
than it is implemented in the parent class. In other words, there are
situations when an inherited method needs to be overridden. To override a
method in a child class is easy. You just need to declare it explicitly.

Listing 8-2 shows how that can be done.

248

CHAPTER 8 INHERITANCE
Listing 8-2. Overriding Methods

<?php
// The parent class:
class Alpha{
// The field:
public $number;
// The method for assigning a value to the field:
public function set(...$args){
$this->number=$args[0];
}
// The method for displaying the field:
public function show(){
echo "The class Alpha\n";
echo "The field \$number: ",$this->number,"\n";

}
// The child class:

class Bravo extends Alpha{

// The field:

public $symbol;

// Overrides the method for assigning

// values to the fields:

public function set(...$args){
parent::set($args[0]);
$this->symbol=$args[1];

}

// Overrides the method for displaying

// the fields:

public function show(){
echo "---------mom-- \n";
parent::show();

249

CHAPTER 8 INHERITANCE

echo "The class Bravo\n";
echo "The field \$symbol: ",$this->symbol,"\n";

}
// An object of the parent class:

$A=new Alpha;
// Assigning a value to the field:
$A->set(100);
// Displays the field:
$A->show();
// An object of the child class:
$B=new Bravo;
// Assigns values to the fields:
$B->set(200, 'B');
// Displays the fields:
$B->show();

?>

The result of the program execution is as follows.

The output of the program (from Listing 8-2)
The class Alpha

The field $number: 100

The class Alpha

The field $number: 200

The class Bravo

The field $symbol: B

The Alpha parent class has the $number field and two public set()
and show() methods you plan to override in the child class. The show()
method has no arguments. When the method is called, it displays a

250

CHAPTER 8 INHERITANCE

message with the name of the Alpha class and the $number field of the
object from which the method is called. The set() method, which you
need for assigning a value to the $number field, is described as one that can
take an arbitrary number of arguments (formally, it is described with the
$args argument preceded by an ellipsis). To understand why you did that,
itis necessary to consider the following important circumstances. When
overriding a method in a child class, the method must be declared with

the same arguments as in the parent class. The set() method in the parent
class assigns a value to a single field. In the child class, use the method to
assign values to two fields. Therefore, use a trick: describe the method with
an arbitrary number of arguments and use only those that are needed. In
the parent class, that is the first argument accessed using the $args[0]
instruction. The value is assigned to the $number field by the $this-
>number=$args[0] command in the method body.

~ The PHP 8 Standard

In PHP 8, a method with an arbitrary number of arguments can
override a method with a fixed number of arguments (subject to type
compatibility).

The Bravo child class is created by inheriting the Alpha class. The
$symbol field also appears, and the set() and show() methods are
overridden.

In the description of the set() method, the parent: :set($args[0])
command calls the version of the set () method inherited from the
parent class. Here, the general rule was used, according to which,
if you want to access a parent class method, you should precede it
with the parent keyword and a double colon (: :). In particular, the
parent::set($args[0]) statement means that when the set() method
is called from an object of the Bravo class, the version of the method from

251

CHAPTER 8 INHERITANCE

the parent class (that is, the Alpha class) must be called first. The first
argument of that version of the method (from the Alpha class) is defined
by the first argument passed to the set() method (from the Bravo class).
As aresult, the $number field is assigned a value. To assign a value to the
$symbol field, the $this->symbol=$args[1] command is used, according
to which the second argument determines the value of the field passed to
the set() method.

To override the show() method, the following commands were used.
First, the echo "----------------- \n" statement displays a “decorative”
line, purely aesthetic, to separate the results of different calls to the
show() method. The parent: :show() command calls the version of the
show() method from the Alpha parent class, after which the echo "The
class Bravo\n" command displays a message, and then the value of the
$symbol field is displayed (by the echo "The field \$symbol: ",$this-
>symbol, "\n" command).

The $A=new Alpha command creates the $A object based on the Alpha
class. The set() and show() methods for that object are executed as
described in the Alpha class.

The $B object of the Bravo child class is created by the $B=new Bravo
command. You check directly that for the object, the show() and set ()
methods are executed differently (if compared to the $A object), namely,
according to how they are overridden in the Bravo class.

@ Note You can disable method overriding by declaring the
method with the final keyword.

252

CHAPTER 8 INHERITANCE

Constructors and Inheritance

Let’s examine the program shown in Listing 8-3.

Listing 8-3. Constructors and Inheritance

<?php
// The parent class:
class Alpha{
// The constructor:
function _ construct(){
echo "An object of the class Alpha is created\n";
}
// The destructor:
function destruct(){
echo "An object of the class Alpha is deleted\n";

}
// The child class (with an empty body):

class Bravo extends Alpha{}
// Creates an object of the child class:
$obj=new Bravo;

?>

The following is the program’s output.
The output of the program (from Listing 8-3)

An object of the class Alpha is created
An object of the class Alpha is deleted

253

CHAPTER 8 INHERITANCE

You have created a very simple Alpha parent class. The class only has
the constructor and the destructor. When you create an object, a message
appears that an object of the Alpha class is created. When an object is
removed from memory, a message appears that an object of the Alpha
class is deleted.

The Bravo child class is based on the Alpha class. The body of the
Bravo class is empty. You don’t describe anything in it at all (you may
do that, but why to do that is another question). Then, create an object
based on the Bravo class. As a result, you get messages about creating and
deleting an object of the Alpha class appearing in the output window. How
is that possible? The parent class’s constructor and the destructor of the
parent class and other public methods are inherited in the child class. In
this case, you did not describe either the constructor or the destructor for
the Bravo child class. If so, the constructor and the destructor inherited
from the Alpha parent class are used.

Another important point is that the constructor can be overridden in
a child class. As you already know, if you override ordinary methods in a
child class, you must describe them with the same arguments as in the
parent class. But that rule does not apply to the constructors. In the child
class, the constructor may have arguments different from the arguments of
the constructor in the parent class.

Finally, as with regular methods, you can call the constructor and
destructor from the parent class. To do that, use the parent keyword.
Namely, an instruction of the form parent:: construct(arguments)
means calling the parent class’s constructor with the appropriate
arguments. The parent:: destruct() statement means calling the
destructor of the parent class. The corresponding example is shown in
Listing 8-4.

254

CHAPTER 8 INHERITANCE
Listing 8-4. The Constructor and the Destructor of a Child Class

<?php
// The parent class:
class Alpha{
// The field:
public $number;
// The constructor:
function _ construct($number){
$this->number=$number;
echo "The number: ",$this->number,"\n";
}
// The destructor:
function destruct(){
echo "Deleted: the number

,$this->number,"\n";

}
// The child class:
class Bravo extends Alpha{
// The field:
public $symbol;
// The constructor:
function _ construct($number, $symbol){
echo "---------- \n";
parent:: construct($number);
$this->symbol=$symbol;
echo "The character: ",$this->symbol,"\n";
}
// The destructor:
function destruct(){
echo "~ v \n";

255

CHAPTER 8 INHERITANCE

parent:: destruct();
echo "Deleted: the character ",$this->symbol,"\n";

}
// Creates an object of the child class:

$obj=new Bravo(200,'B");
?>

The result of the program execution is as follows.

The output of the program (from Listing 8-4)

The number: 200
The character: B

~roA NLVLVTN

Deleted: the number 200
Deleted: the character B

You have the Alpha parent class with the $number field, the constructor,
and the destructor. The constructor is passed one argument that defines
the value of the $number field. The constructor and the destructor display
messages with the $number field value.

The Bravo child class, derived from the Alpha class, adds another field,
$symbol, and overrides the constructor and the destructor. The constructor
of the Bravo class has two arguments (named as $number and $symbol).
One is passed as an argument to the parent class's constructor (the
parent:: construct($number) instruction) and defines the value of the
$number field. The other argument specifies the value of the $symbol field
(the $this->symbol=$symbol statement).

In the destructor of the Bravo class, among other actions, the
destructor from the Alpha class is called. To do that, use the parent::
destruct() instruction.

256

CHAPTER 8 INHERITANCE

The $obj=new Bravo(200,'B") command creates an object of
the Bravo class, and due to that, the constructor of the child class is
automatically called. Next, the destructor is automatically called before the
program terminates.

Inheritance and Private Members

Let’s explore what happens to private class members during inheritance
starting with the program in Listing 8-5.

Listing 8-5. Private Members and Inheritance

<?php
// The parent class:
class Alpha{
// The private field:
private $code;
// The public method for assigning a value
// to the field:
public function set($code){
$this->code=%code;
}
// The public method for getting
// the value of the field:
public function get(){
return $this->code;

}
// The child class:

class Bravo extends Alpha{
// The constructor:
function _ construct($code){

257

CHAPTER 8 INHERITANCE

// Calls the inherited methods:
$this->set($code);
echo "An object is created: ",$this->get(),"\n";

}
// Creates an object of the child class:

$obj=new Bravo(123);

// Calls the inherited methods:

$obj->set(321);

echo "The field \$code: ",$obj->get(),"\n";
?>

The following is the result of the program execution.

The output of the program (from Listing 8-5)
An object is created: 123
The field $code: 321

The Alpha class has the private $code field and two public methods:
the set() method allows you to assign a value to the field, and the get ()
method returns the field’s value. Based on the Alpha class, the Bravo
class is created by inheritance. It inherits the public set() and get ()
methods but does not (according to conventional terminology) inherit
the private $code field. It turns out that the Bravo class has the set() and
get () methods that require the $code field to operate properly, but that
field itself is not inherited. How can that be? To answer the question, it is
necessary to clarify what the phrase “not inherited” means. The matter
of fact is that the private field $code is not inherited in the Bravo class
because you cannot directly access the $code field in the body of the Bravo
class. You can interpret the situation so that the class “does not know”
anything about that field, but technically, such a field exists, and the set ()
and get () methods can operate with it.

258

CHAPTER 8 INHERITANCE

The set() and get() methods are used in the Bravo class constructor.
The $this->set($code) command assigns a value to the $code field, and
the $this->get() instruction is used to get the field’s value.

A child class object is created with the $obj=new Bravo(123)
command. The object has public set() and get() methods. The methods,
in turn, refer to the “invisible,” even for the Bravo class, the $code field.
Thus, the $obj->set(321) command writes the value 321 to the field, and
the $obj->get() instruction is used to get its value.

Details

You must remember the following important circumstances when working with
private class members. If the non-existing field of an object is assigned a value,
then the object gets such a field. Therefore, if you assign a value to a non-inherited
private field from the parent class in the child class, then the object has such a field,
and it is not the field described in the parent class.

Protected Members of a Class

In addition to public and private members, a class can also have protected
class members. Protected class members are described with the protected
access level specifier. Like private members, protected members of a class
are available only within the class’s code. But unlike private members,
protected members are inherited. An example of using protected class
members is shown in Listing 8-6.

Listing 8-6. Protected Class Members

<?php
// The parent class:
class Alpha{

259

CHAPTER 8 INHERITANCE

// The protected field:
protected $code;
}
// The child class:
class Bravo extends Alpha{
// The method for assigning a value to the field:
public function set($code){
$this->code=$code;
}
// The method for displaying the field:
public function show(){
echo "The field \$code = ",$this->code,"\n";

}
// Creates an object of the child class:

$obj=new Bravo;
// Assigns a value to the field:
$obj->set(123);
// Displays the field:
$obj->show();

2>

The result of the program execution is as follows.

The output of the program (from Listing 8-6)
The field $code = 123

The Alpha parent class has the single protected $code field. The field
is only available in the body of the Alpha class. And that field is inherited
in the Bravo child class. Therefore, in the body of the Bravo class, in the

260

CHAPTER 8 INHERITANCE

methods set () (the method for assigning a value to the field) and show()
(the method for displaying the field value), you can directly access the
inherited $code field (the instruction like $this->code).

The $obj object is created based on the Bravo class. The object has the
$code field, but it is not directly accessible. To assign a value to the field,
use the set () method (the $obj->set(123) command), and to display the
field value, use the show() method (the $obj->show() command).

Virtual Methods

An interesting property of overridden methods is illustrated in Listing 8-7.

Listing 8-7. Virtual Methods

<?php
The parent class:
class Alpha{
The public method:
function hello(){
print("The class Alpha\n");
}
The method calls another method:
function show(){
$this->hello();
}
The constructor:
function _ construct(){
print("Creates an object:\n");
Calls the method:
$this->hello();

261

CHAPTER 8 INHERITANCE

PIin't(" ________________ \nn);

}
The child class:

class Bravo extends Alpha{
Overrides the method:
function hello(){
print("The class Bravo\n");

}
Creates an object of the child class:

$obj=new Bravo;
Calls the inherited method:
$obj->show();

?>

The following is the result of the program execution.

The output of the program (from Listing 8-7)
Creates an object:
The class Bravo

The class Bravo

The idea behind the program is very simple. There is the Alpha parent
class, and it has the public hello() method, which, when called, displays
a message with the name of the Alpha class. The Alpha class also has the
public show() method, in the body of which the hello() method is called.
The class also has the constructor that calls the hello() method.

The Bravo child class, which is derived from the Alpha class, overrides
the hello() method. The method now displays a message with the name
of the Bravo class. What does happen? It turns out that the Bravo class

262

CHAPTER 8 INHERITANCE

inherits the show() method and the constructor from the Alpha class. Both
the show() method and the constructor call the hello() method. And that
method, in turn, is overridden in the Bravo class. The intrigue is which
version of the hello() method is called when the show() method is called
from an object of the Bravo class. The result of the program execution
demonstrates that the constructor and the show() method, despite being
described in the Alpha class, call the version of the hello() method
described in the Bravo class. Such a feature of methods is called virtuality.
The version of the called method is determined by the class of the object
from which the method is called.

A Function as a Field Value

In the earlier examples, you assigned numeric or string values to fields.
That does not mean that the possible values of an object field are limited
to only those data types. In fact, the value of an object field can be almost
anything. For example, let’s investigate a situation when an anonymous
function is assigned as a value to a field.

@ Note Note that an anonymous function is described similarly
to an ordinary function but without specifying a name. That
construction can be assigned as a value to a variable or, as in this
case, to a field of an object.

263

CHAPTER 8 INHERITANCE

Consider the program shown in Listing 8-8.

Listing 8-8. A Function as a Field Value

<?php
// The class with a field:
class MyClass{
public $calc;
}
// A variable:
$number=9;
// Creates an object:
$obj=new MyClass;
// A function is assigned to the field:
$obj->calc=function($n){
return $n*$n;
1
// Checks the result:
echo "Argument $number: ", ($obj->calc)($number),"\n";
// A function is assigned to the field:
$obj->calc=function($n){
return sqrt($n);
};
// Checks the result:
echo "Argument $number: ", ($obj->calc)($number),"\n";
?>

The following is the result of the program execution.
The output of the program (from Listing 8-8)

Argument 9: 81
Argument 9: 3

264

CHAPTER 8 INHERITANCE

Let’s analyze the code using the MyClass class, which has the public
$calc field. Based on the MyClass class, create the $obj object. The
following command assigns a value to the $calc field of that object.

$obj->calc=function($n){
return $n*$n;

};

The anonymous function assigned to the field returns the square of
the $n argument. To calculate the result of the function to which the $calc
field of the $obj object refers, use the ($obj->calc)($number) instruction.
There, you engage parentheses to “calculate” at first the $obj->calc
expression (it is a reference to the function). Then specify the $number
argument (in parentheses) for that function.

Q Note If the $number argument is set to 9, the result of the
function is 81 (the number 9 squared).

After checking the result of the function, the $calc field is assigned a
new value.

$obj->calc=function($n){
return sqrt($n);
};

Now, the $calc field refers to the function that returns the square root
of its argument.

Q Note The sqrt() built-in function is used to calculate the
square root. If the $number argument is set to 9, the result of the
function is 3 (the square root of 9).

265

CHAPTER 8 INHERITANCE

Multilevel Inheritance

As noted earlier, PHP allows multilevel inheritance when a child class is
created based on a parent class, a new child class is created based on that
child class, and so on. In such a case, the child class is a parent one for
another child class. At the same time, inheritance allows you to “pass” the
contents of the original parent class along the chain, and the overriding of
methods makes that process quite flexible. The situation is illustrated in
Listing 8-9.

Listing 8-9. Multilevel Inheritance

<?php
// The first class:
class Alpha{
// The protected field:
protected $number;
// The constructor:
function _ construct($number){
$this->number=$number;
$this->show();
}
// The method for displaying the field:
function show(){
echo "Alpha: ",$this->number,"\n";
$this->drawLine();
}
// The method for displaying a "line":
function drawlLine(){

echo "-=--cmmmmmmeoo o \n ;

266

CHAPTER 8 INHERITANCE

// The second class:
class Bravo extends Alpha{
// The private field:
protected $symbol;
// The constructor:
function _ construct($number, $symbol){
$this->symbol=$symbol;
parent:: construct($number);
}
// Overrides the method:
function show(){
echo "Bravo: ",$this->number,"\n";
echo "Bravo: ",%$this->symbol,"\n";
$this->drawLine();

}
// The third class:

class Charlie extends Bravo{

// The private field:

protected $text;

// The constructor:

function _ construct($name,$symbol, $text){
$this->text=%text;
parent:: construct($name,$symbol);

}

// Overrides the method:

function show(){
echo "Charlie: ",$this->number,"\n";
echo "Charlie: ",$this->symbol,"\n";

267

CHAPTER 8 INHERITANCE

echo "Charlie: ",$this->text,"\n";
$this->drawLine();

}
// Creates objects:

$A=new Alpha(100);

$B=new BIaVO(ZOO)'B');

$C=new Charlie(300,'C',"Charlie");
?>

The result of the program execution is as follows.

The output of the program (from Listing 8-9)
Alpha: 100

Bravo: 200

Bravo: B

Charlie: 300

Charlie: C

Charlie: Charlie

The scheme is as follows: based on the Alpha class, the Bravo class is
created by inheritance, and based on the Bravo class, the Charlie class is
created. The Alpha class has the protected $number field, the one-
argument constructor, the show() method, and the drawLine() method.

In the constructor, the field is assigned a value, and then the show()
method is called, which displays the value of the object’s field and the
name of the Alpha class.

268

CHAPTER 8 INHERITANCE

Q Note For convenience, the drawLine() method in the
Alpha class is described. When called, it displays a decorative “line.”
That element separates the results of calling the show()) method in
all three classes. That is possible since the drawLine() method is
inherited in all child classes.

The $number field, the constructor, the show(), and the drawLine()
methods are inherited in the Bravo class. But the constructor and the
show() method in that class are overridden. The constructor now has
two arguments defining the values of the $number and $symbol fields
(a protected field described in the Bravo class). The show() method is
overridden so that when the method is called, the values of both fields and
the name of the Bravo class are displayed.

In the Charlie class, the $number and the $symbol fields, the
constructor, the show(), and the drawLine() methods are inherited from
the Bravo class. At the same time, the show() method and the constructor
are overridden. In the Charlie class, the constructor has three arguments
that determine the $number, $symbol, and $text fields (the last one is
a protected field described in the Charlie class). The show() method
is overridden so that the values of the three fields and the name of the
Charlie class are displayed when it is called.

The Alpha, Bravo, and Charlie classes are used to create objects.
Executing the $A=new Alpha(100) command causes calling the
constructor described in the Alpha class. As a result, the $number field
of the $A object is set to 100, and the show() method (the version of the
method from the Alpha class) is called from that object. The method
displays the name of the Alpha class, the value of the $number field, and a
separator line.

269

CHAPTER 8 INHERITANCE

Executing the $B=new Bravo(200, 'B') command leads to calling
the constructor described in the Bravo class. Following the code of that
constructor, the $symbol field is assigned a value, and then the parent
class constructor is called (that is, the code of the constructor described
in the Alpha class). So, the $number field gets a value, the show() method
is called, and a separator line is displayed. Here, you need to consider an
essential circumstance: due to the virtuality of the methods, the version of
the show() method is called not from the Alpha class but from the Bravo
class (since the object of that class is created). The show() method from
the Bravo class displays the name of that class and the values of the created
object’s $number and $symbol fields.

The $C=new Charlie(300,'C',"Charlie") command results in the
call of the constructor described in the Charlie class. That constructor
assigns a value to the $text field and then calls the parent class version
of the constructor, which for the Charlie class is the Bravo class. The
execution of the constructor from the Bravo class starts with assigning
a value to the $symbol field, after which the parent class’s constructor
is called (for the Bravo class, the parent class is the Alpha class). The
execution of the constructor from the Alpha class starts with assigning
a value to the $number field. Then, the show() method is called. But,
due to the same virtuality of the methods, it is the version of the show()
method from the Charlie class. As a result, it displays the name of the
Charlie class, the values of the three fields of the created object, and a

separator line.

270

CHAPTER 8 INHERITANCE

Summary

o New classes can be created based on existing ones.
Such a mechanism is called inheritance. The class from
which the new class is derived is called a parent class.
The class derived from a parent class is called a child
class. All non-private fields and methods of a parent
class are inherited in the child class.

¢ Inthe declaration of a child class, the class name is
followed by the keyword extends and the name of the
parent class. There can be only one parent class. On
the other hand, a child class can be a parent one for
another child class.

o The methods (including constructors and destructors)
inherited in a child class can be overridden. In that
case, a new version of the inherited method (or
constructor/destructor) is described in the child class.
The arguments in the new version of the method
must match the arguments in the original version of
the method. The rule does not apply to constructors.
To access the version of a method (or constructor/
destructor) from the parent class, use the parent
keyword, a double colon (: :), and the method’s name
(or constructor/destructor).

o To prevent a method from being overridden, the final
keyword is used in its description. The same keyword is
used if you want to disable class inheritance.

271

CHAPTER 8

272

INHERITANCE

The private class members are not inherited. Such
members cannot be directly accessed in a child class.
However, they can be accessed by inherited public
methods.

Protected class members are declared using the
protected access level specifier. Like the private
members of a class, they are available only in the class
code, but unlike the private members, the protected
ones are inherited.

Methods and constructors are virtual. That means the
version of a method is determined by the class of the
object from which the method is called.

CHAPTER 9

Advanced OOP
Mechanisms

I don’t know whether to laugh or cry.

—ALF (TV series)

This chapter explores the crucial mechanisms for implementing the OOP
concept in PHP. In particular, you get familiar with interfaces, abstract
classes, and traits. You also get some notion about a namespace and
anonymous classes. Let’s start with abstract classes.

Abstract Classes

When you create a class, you may not describe some methods but only
declare them. In other words, you can specify that the class has some
method but not specify what that method does. Such methods are called
abstract methods.

Q Note Why you would do such a thing is a different question.
All that matters now is that it is possible to do so.

© Alex Vasilev 2024 273
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_9

https://doi.org/10.1007/979-8-8688-0258-4_9

CHAPTER9 ADVANCED OOP MECHANISMS

Abstract methods are declared with the abstract keyword. If a class
has at least one abstract method, that class is also abstract and must be
defined with the abstract keyword. But the question remains: why do you
need all that?

In its most general form, the answer is that abstract classes are used
in inheritance. To understand the depth of the answer, you should look
at the inheritance process not in the context that you can pass fields and
methods from the parent class to the child but in a slightly different way.
The point is that the parent class defines the “structure” of the child class,
which is created based on the parent class. To be more specific, let’s look at
an example (without having to write program code yet).

Suppose you want to create classes to implement objects describing
different geometric shapes. More specifically, you want to create objects
to implement a square, a circle, and an equilateral triangle. Each of these
shapes has a characteristic size (the side of the square, the radius of the
circle, and the side of the triangle). For each figure, you can calculate the
area. Thus, each object that implements a geometric figure must have a
field (the figure’s characteristic size) and a method for calculating area.

Q Note The area is calculated using the method because this
characteristic of a geometric figure is determined by its characteristic
size and must change according to how the characteristic size of the
figure changes. It is best to use a method that, when called, refers to
the field in which the characteristic size of the figure is written.

Note that the area of a square with side Ris equal to R2. The area of
a circle of radius Ris equal to zR? The area of an equilateral triangle

2

4

with side Ris defined by the expression

274

CHAPTER9 ADVANCED OOP MECHANISMS

Thus, in all three cases, the objects have a similar structure. The only
difference is how the method that calculates the area is implemented. But
those are different objects, and they must be created based on different
classes. Then, you can ask yourself: how do you get the different classes
to have the same structure (the same set of fields and methods, but the
implementation of the methods should be different)? The answer could
be as follows: you can describe an abstract class and then create different
classes based on it using inheritance. Those classes have the same
structure defined by the abstract class.

@ Note In principle, instead of an abstract class to implement
your strategy, you could take a regular class and override the
inherited methods. But that is not a good option since if some method
is accidentally not overridden, there is no formal error, but the code
does not execute correctly. Such situations are pretty challenging to
keep track of. Abstract classes are more reliable in that sense.

Let’s examine Listing 9-1.

Listing 9-1. An Abstract Class

<?php
// An abstract class:
abstract class Figure{
// Protected fields:
protected $name;
protected $R;
// The constructor:
function _ construct($R,$name){
$this->R=9%R;
$this->name=$name;

275

CHAPTER9 ADVANCED OOP MECHANISMS

// An explicitly described method:
function getName(){
return $this->name;
}
// An abstract method:
abstract function getArea();
}
// The class to realize a square:
class Square extends Figure{
// The description of the method:
function getArea(){
$r=%$this->R;
return $r*$r;

}

// The class to realize a circle:
class Circle extends Figure{
// The description of the method:
function getArea(){
$r=$this->R;
$k=3.141592;
return $k*$r*$r;

}

// The class to realize a triangle:
class Triangle extends Figure{
// The description of the method:
function getArea(){
$r=$this->R;
$k=sqrt(3)/4;
return $k*$r*$r;

276

CHAPTER9 ADVANCED OOP MECHANISMS

}

// The function displays information about an object:
function show($F){
echo $F->getName(),": ",$F->getArea(),"\n";
}
// Creates objects:
$S=new Square(2.5,"Square");
$C=new Circle(3,"Circle");
$T=new Triangle(4,"Triangle");
// Checks the result:
show($S);
show($C);
show($T);
?>

The following is the program’s output.

The output of the program (from Listing 9-1)
Square: 6.25

Circle: 28.274328

Triangle: 6.9282032302755

In that case, you describe the abstract Figure class and then create the
Square, Circle, and Triangle classes based onit.

The Figure class has two protected fields: $name (for the name of the
figure) and $R (for the characteristic size of the geometric figure).

Details

0On the one hand, you want the fields to be inaccessible outside the class code, but
on the other hand, you need the fields to be inheritable. That is why you make the
fields protected.

277

CHAPTER9 ADVANCED OOP MECHANISMS

The Figure class has the constructor with two arguments that define
the value of the fields $R and $name.

Since the $name field is protected, to read its value, you describe the
getName () method, which returns the value of that field. You also declare
the abstract getArea() method in the Figure class. Assume that that
method should calculate the area of the figure. How exactly the area is
calculated is defined in the child classes.

@ Note The abstract class has an abstract method and a
method described explicitly. The child class defines the abstract
method and inherits the explicitly described method. The constructor
and protected fields are also inherited.

The Square, Circle, and Triangle classes differ only in the way they
implement the getArea() method; there is nothing else in them besides
that method.

You create objects based on each class and then use the show()
function to display information about those objects (the name and area).
The important thing here is that in the description of the show() function,
you refer to the getName () and getArea() methods of the object passed as
an argument to the function. The function is called three times, and each
time, it takes an object of a different class as an argument. But since all
these classes are child classes of the abstract class Figure, each object has
the getName() and getArea() methods.

Interfaces

Thus, abstract classes can be used as a template for creating other classes.
They have a similar structure, which is very convenient in practice. There
is one problem here, however. The point is that a child class can have

278

CHAPTER9 ADVANCED OOP MECHANISMS

only one parent class. If you need to “combine” several templates into
one child class at the same time, the abstract class is of little help in that
case. Fortunately, there is another mechanism that allows you to solve the
problem. It is based on using interfaces.

An interface is very similar to an abstract class. The only fundamental
difference is that an abstract class can have non-abstract methods, while
an interface cannot. Also, an interface has no fields (but it can have
constants— their description contains the const keyword). An interface
can be considered a “very abstract” class. In that sense, the capabilities
of an interface are more modest than those of an abstract class. The
advantage of interfaces, however, is that a single class can implement
several interfaces at once.

To use interfaces in practice, you first need to figure out how to create
an interface and, second, how to implement it in a class.

Creating an interface is easy. It starts with the interface keyword,
after which the contents of the interface are described in curly brackets.
That is a declaration (without a description) of the methods that are part
of the interface. There, you can use the access level specifiers public and
protected. You can also declare constants.

If a class implements an interface, then all methods from the interface
must be described in the class. The fact that the class implements an
interface is stated in the class description: the name of the interface
implemented in the class is given after the class name, using the keyword
implements. If the class implements multiple interfaces, they are listed
after the implements keyword, separated by commas. How all that looks
like in practice is illustrated in Listing 9-2.

279

CHAPTER9 ADVANCED OOP MECHANISMS
Listing 9-2. Getting Familiar with Interfaces

<?php
// The first interface:
interface Alpha{
function show();
}
// The second interface:
interface Bravo{
function set($val);
}
// The class implements two interfaces:
class MyClass implements Alpha,Bravo{
private $num;
function _ construct($val){
$this->set($val);
}
function set($val){
$this->num=$val;
}
function show(){
echo "\$num = ",$this->num,"\n";

}

// Creates an object of the class:
$obj=new MyClass(100);
// Checks the result:
$obj->show();
$obj->set(200);
$obj->show();

?>

280

CHAPTER9 ADVANCED OOP MECHANISMS
The following shows the result of the program execution.
The output of the program (from Listing 9-2)

$num = 100
$num = 200

The program describes two interfaces, Alpha and Bravo, and the
MyClass class that implements both. The Alpha interface has the show()
method (without arguments), and the Bravo interface has the set ()
method with one argument. Therefore, these methods are described in
the MyClass class. In addition, the class has the private field $num and the
constructor with one argument. When the constructor is called, it calls the
set() method, which assigns a value to the $num field. The show() method
is described so that the value of $num is displayed when it is called.

Based on the MyClass class, the $obj=new MyClass(100)
command creates the $obj object with the value 100 of the field $num. The
$obj->show() command checks the field’s value. The $obj->set(200)
command assigns a new value to the field.

Interface Inheritance

One interface can inherit another interface. Everything happens the same
way as with class inheritance: the interface description is followed by the
extends keyword, and then the name of the inherited interface follows. As
aresult, all the declarations from the inherited interface are “passed” to the
interface being created. A small illustration is shown in Listing 9-3.

281

CHAPTER9 ADVANCED OOP MECHANISMS

Listing 9-3. Interface Inheritance

<?php

?>

// The interface:
interface Alpha{
function show();
}
// The Bravo interface inherits the Alpha interface:
interface Bravo extends Alpha{
function set($val);
}
// The class implements the Bravo interface:
class MyClass implements Bravo{
public $num;
function set($val){
$this->num=$val;
}
function show(){
echo "\$num = ",$this->num,"\n";

}

// Creates an object:
$obj=new MyClass;

// Checks the result:
$obj->set(123);
$obj->show();

The following is the result of the program execution.

The output of the program (from Listing 9-3)
$num = 123

282

CHAPTER9 ADVANCED OOP MECHANISMS

The example is similar to the previous one, but there is a strategic
difference. As before, you declare the Alpha interface with the show()
method. The Bravo interface declares the set() method. But apart from
that, the Bravo interface inherits the Alpha interface. Therefore, the
Bravo interface implicitly gets the show() method and the set() method.
Accordingly, the MyClass class that implements the Bravo interface should
contain (and does contain) descriptions of the set() and show() methods.

@ Note A scheme where one interface inherits another
interface and then is implemented in a class is not good. Let’s explain
that using the example. In particular, the Bravo interface only
explicitly declares the set () method. You must trace the interface
inheritance chain to understand that you must define the show()
method when implementing the interface. That is not very good. The
first option, when the class implements two different interfaces, is
much more convenient since you can immediately identify the
contents you need to implement in the class.

Class Inheritance and Interface
Implementation

A class can inherit another class and implement an interface or interfaces.
In such a case, in the class description after the class name, you put

the extends keyword, the name of the inherited class, the implements
keyword, and the names of the interfaces to be implemented. An example
of that is shown in Listing 9-4.

283

CHAPTER9 ADVANCED OOP MECHANISMS
Listing 9-4. Class Inheritance and Interface Implementation

<?php
// The parent class:
class Base{
public $number;
}
// The first interface:
interface Alpha{
function show();
}
// The second interface:
interface Bravo{
function set($number);
}
// The child class inherits the parent class
// and implements two interfaces:
class MyClass extends Base implements Alpha,Bravo{
function set($number){
$this->number=$number;
}
function show(){
echo "\$number = ",$this->number,"\n";

}

// Creates an object:
$obj=new MyClass;
// Checks the result:
$obj->set(123);
$obj->show();

?>

284

CHAPTER9 ADVANCED OOP MECHANISMS

The following shows the result of the program execution.

The output of the program (from Listing 9-4)
$number = 123

The program describes the Base class with the $number field. In
addition, you describe the Alpha interface with the show() method
declared and the Bravo interface with the set() method declared. The
MyClass class inherits the Base class and implements the Alpha and Bravo
interfaces. The $number field is inherited from the Base class in the MyClass
class so that you can refer to it in the description of the set() and show()
methods. The $obj object is created based on the MyClass class, so it has
the $number field and the show() and set() methods.

Traits

Both class inheritance and interface implementations solve one strategic
problem: code reuse. There is another syntax construction designed to
solve that problem. You mean fraits.

A trait is a block of code that can be used when “constructing” a class.
Traits do not play an independent role, but you can get a class by putting
them together. A trait is described as follows. You use the trait keyword,
after which a trait block is placed in curly braces. That is the block of code
added to the class if you include the trait. To include traits in a class, you
put the use instruction in the class body, then list the traits to be included
in the class, separated by commas. Listing 9-5 shows how that looks in
practice.

285

CHAPTER9 ADVANCED OOP MECHANISMS
Listing 9-5. Getting Familiar with Traits

<?php
// The first trait:
trait First{
private $number;
function show(){
echo "\$number
echo "\$symbol

",$this->number, "\n";
",$this->symbol, "\n";

}

// The second trait:
trait Second{
function set($number,$symbol){
$this->number=%$number;
$this->symbol=$symbol;

}
// Including the traits in the class:

class MyClass{
use First,Second;
private $symbol;
function _ construct($number, $symbol){
$this->set($number,$symbol);
$this->show();

}

// Creates an object of the class:
$obj=new MyClass(100,'A");
7>

286

CHAPTER9 ADVANCED OOP MECHANISMS

The following is the program’s output.

The output of the program (from Listing 9-5)
$number = 100
$symbol = A

The program’s culmination is creating the MyClass class (with the
subsequent creation of the $obj object based on the class). But you
“assemble” that class “in parts.” In particular, you describe two traits (the
First and Second). The First trait contains the private field $number
declaration, and the show() method. When the method is called, the
values of the $number and $symbol fields are displayed (the $symbol field is
not declared in the trait).

The Second trait describes the set () method with two arguments.
When called, the method assigns values to the $number and $symbol fields
(the fields are not declared in the trait).

The description of the MyClass class begins with the use
First,Second instruction, which adds contents of the traits First and
Second to the class.

Q Note The situation is as if the contents of the traits First
and Second were described directly in the body of MyClass class.

In addition to the traits, you declare the private field $symbol in the
class. You also describe the constructor with two arguments in the class.
The set() and show() methods are called in the constructor so that the
$number and $symbol fields get values, and then the values of those fields
are displayed. So, the $obj=new MyClass(100,'A') command, which
creates an object of the MyClass class, automatically displays a message.

287

CHAPTER9 ADVANCED OOP MECHANISMS

Object Type Control

In some cases, ensuring that the object used in a program belongs to a
specific class or implements a particular interface is important. Why is
that necessary? For example, you describe a function and plan to pass an
object as an argument to it, then call a certain method from the object.
The object needs to have that method. How can you guarantee that? One
way is to specify the argument type in the function description explicitly.
But if you just specify the name of the class, then you can pass objects of
that class only (or its child classes) as an argument to such a function.
There is a more “refined” approach. It consists in creating an interface in
which the needed method is declared. Then, you create a function with an
argument whose type is the interface’s name. If so, an object of any class
implementing that interface can be passed as an argument of the function.
The fact that the object implements the interface guarantees that the
object has the needed method.

Details

You can create an abstract class with a declared method. If you specify the name of
that abstract class as a function argument type, you can pass an object of any class
that inherits the abstract class as a function argument.

The described approach is implemented in the program shown in
Listing 9-6.

Listing 9-6. An Interface as a Type of Function Argument

<?php
// The interface:
interface MyInterface{
function show();

288

?>

CHAPTER9 ADVANCED OOP MECHANISMS

// The classes that implement the interface:
class Alpha implements MyInterface{
function show(){
echo "The class Alpha\n";

}

class Bravo implements MyInterface{
function show(){
echo "The class Bravo\n";

}

// The function with an argument of the interface type:
function display(MyInterface $obj){
// Calls the method from the object:
$obj->show();
}
// Creates objects:
$A=new Alpha();
$B=new Bravo();
// Passes the objects to the function as an argument:
display($A);
display($B);

The program describes the MyInterface interface, in which the

show() method is declared. It also creates two classes, Alpha and Bravo,

implementing the MyInterface interface. The display() function has one

argument whose type is MyInterface. That means you can pass objects of

the classes that implement the MyInterface interface as an argument to

the function. That ensures the object being the argument has the show()

method. The method is called in the function from the object passed as an

argument.

289

CHAPTER9 ADVANCED OOP MECHANISMS

To check if the display() function operates correctly, you first call it by
passing an object of the Alpha class as an argument, and then you call it by
passing an object of the Bravo class. The following shows the result of the
program execution.

The output of the program (from Listing 9-6)
The class Alpha
The class Bravo

By specifying an interface type for the function argument, you set a
“filter” for the potential function arguments.

@ Note An error arises if you try to pass an object of the class
that does not implement the MyInterface interface to the
display() function. It happens even if that class contains the
show() method.

There is another way to check the type of argument, which is not as
tragic in terms of consequences. It is based on the use of the instanceof
instruction, which can be exploited to check if an object is of a specific
type. Listing 9-7 is a version of the previous program, but this time, the type
of the display() function argument is not explicitly specified. Instead, the
argument type is checked in the function’s body.

Listing 9-7. Checking the Argument Type

<?php
// The interface:
interface MyInterface{
function show();

290

?>

CHAPTER9 ADVANCED OOP MECHANISMS

// The class that implements the interface:
class Alpha implements MyInterface{
function show(){
echo "The class Alpha\n";

}

// The class does not implement the interface:
class Bravo{
function show(){
echo "The class Bravo\n";

}
// The argument type is checked in the function body:

function display($obj){
if($obj instanceof MyInterface){
$obj->show();
telse{
echo "The argument type error\n";

}
// Creates objects:

$A=new Alpha();

$B=new Bravo();

// The object is passed as an argument to the function:
display($A);

display($B);

291

CHAPTER9 ADVANCED OOP MECHANISMS

The result of the program execution is as follows.

The output of the program (from Listing 9-7)
The class Alpha
The argument type error

Unlike the previous example (from Listing 9-6), the Bravo class
contains a description of the show() method, but it does not implement
the MyInterface interface. Also, the display() function description does
not specify the argument type. But in the body of the function, you use
a conditional statement. It checks the $obj instanceof MyInterface
condition. It is true if the $obj argument of the function is of the type
MyInterface. Thatis so if the class based on which the $obj object was
created implements the MyInterface interface. In that case, the show()
method is called from the $obj object. Otherwise, the echo "The argument
type error\n" command is executed.

A Namespace

The concept of a namespace is universal and is used in many
programming languages. To understand it, let’s consider an imaginary
situation unrelated to programming. Suppose a student community has
two students whose names are identical (the same first, last, and middle
names). It would be challenging to distinguish these students in the official
documents. But if you separate the whole student community by groups
and distribute the namesakes into different groups, then the situation
with student identification significantly improves. Something similar
happens when using namespaces. A namespace is an analogy to a group
of students. Within the namespace, classes, functions, and other utilities
should be distinguishable or, in other words, should have unique names.
But if, for example, functions belong to different namespaces, they may
have the same names.

292

CHAPTER9 ADVANCED OOP MECHANISMS

To include a program into a namespace, you add the namespace
instruction into the program and then put the name of the namespace.
The instruction must be the first command in the code. Then, if you
want to include some utilities in another program, you have to use the
require_once instruction to add the file that contains the namespace.
When referring to classes, functions, and other utilities from the imported
namespace, you put the namespace name and the backslash \ before the
class or function name.

Let’s analyze a small example in which a namespace is created and
used. A description of the MyUtils namespace is shown in Listing 9-8.

Listing 9-8. Creating a Namespace

<?php
// Creates a namespace:
namespace MyUtils;
// The description of a class:
class MyClass{
function show(){
echo "The class MyClass\n";

}

// The description of a function:
function hello(){
echo "The namespace MyUtils\n";

?>

The code begins with the namespace MyUtils instruction, which
means that the following MyClass class and the hello() function belong
to the MyUtils namespace. It is assumed that the code is written to the
listing09_08.php file

293

CHAPTER9 ADVANCED OOP MECHANISMS

The next step uses the created MyUtils namespace. The code in which
that happens is shown in Listing 9-9.

Listing 9-9. Using the Namespace

<?php
// Includes the file contents into the program:
require once "listing09 08.php";
// The function description:
function hello(){
echo "The function hello()\n";
}
// Creates an object from the imported namespace:
$obj=new MyUtils\MyClass();
// Calls a method from the object:
$obj->show();
// Calls the function described in the program:
hello();
// Calls the function from the imported namespace:
MyUtils\hello();
?>

The program begins with the require_once "listing09 08.php"
instruction, which imports the contents of the 1isting09 08.php file. The
program also describes the hello() function. The name of the function
matches the name of the function from the MyUtils namespace.

To create an object based on the MyClass class from the MyUtils
namespace, use the $obj=new MyUtils\MyClass() command. Here, the
way you refer to the class is remarkable: along with the name of the class,
you specify the namespace name (the MyUtils\MyClass expression). Then,
you can perform standard operations with the created object. For example,
the $obj->show() command calls the show() method from the $obj object.

294

CHAPTER9 ADVANCED OOP MECHANISMS

The hello() command calls the function described directly in the
program. To call the function from the MyUtils namespace, use the
MyUtils\hello() command. The result of the program execution is as
follows.

The output of the program (from Listing 9-9)
The class MyClass

The function hello()

The namespace MyUtils

A single file may describe several namespaces (nevertheless, that
is not the best option). If so, the blocks describing the contents of the
namespaces (including the namespace instructions) are specified one after
another. It is also possible to enclose the code of the same namespace in
curly braces. Let’s look at a small example. The program in Listing 9-10
describes the Alpha and Bravo namespaces.

Listing 9-10. The Description of Two Namespaces

<?php
// The first namespace:
namespace Alpha{
function show(){
echo "The namespace Alpha\n";

}

// The second namespace:
namespace Bravo{
function show(){
echo "The namespace Bravo\n";

2>

295

CHAPTER9 ADVANCED OOP MECHANISMS

Each namespace contains the show() function that displays a message
with the namespace name. The namespaces are used in Listing 9-11.

Listing 9-11. Using the Two Namespaces

<?php
// Includes the contents of the file into the program:
require_once "listing09 10.php";
// Calls the function from the namespace Alpha:
Alpha\show();
// Calls the function from the namespace Bravo:
Bravo\show();

?>

After importing the contents of the namespace file with the require
once "listing09 10.php" command, use the Alpha\show() and Bravo\
show() commands to call the functions described in the different
namespaces.

@ Note Assume that the Alpha and Bravo namespaces are
described in the 1isting09 10.php file.

The following shows the result of the program execution.

The output of the program (from Listing 9-11)
The namespace Alpha
The namespace Bravo

When working with namespaces, it is possible to create aliases. In

that case, you involve the use instruction followed by the full namespace
utility reference. Next, you put the as keyword and the alias for that utility

296

CHAPTER9 ADVANCED OOP MECHANISMS

(for functions, the use keyword is also followed by the function keyword).
Listing 9-12 is the code for the MyUtils namespace with the show() and
display() functions and the MyClass class

Listing 9-12. One More Namespace

<?php

// A namespace:
namespace MyUtils;
function show(){

echo "The function show()\n";
}
function display(){

echo "The function display()\n";
}
class MyClass{

function _ construct(){

echo "An object of the class MyClass";

?>

The namespace is used in the program in Listing 9-13.

Listing 9-13. Creating Aliases

<?php
// Imports the file contents:
require once "listing09 12.php";
// Creates aliases:
use function MyUtils\show;
use function MyUtils\display as disp;
use MyUtils\MyClass as MyClass;

297

CHAPTER9 ADVANCED OOP MECHANISMS

// Uses aliases:

show();

disp();

$obj=new MyClass();
?>

The output of the program is as follows.

The output of the program (from Listing 9-13)
The function show()

The function display()

An object of the class MyClass

After importing the contents of the namespace from the
listing09_12.php file, you create aliases by the use function MyUtils\
show, use function MyUtils\display as disp, and use MyUtils\
MyClass as MyClass instructions. For the show() function, you do not
specify the as instruction so that the alias is the function’s name (without
referencing the namespace). For the display() function, the alias is
disp(). The alias for the MyClass class is the name of the class itself.

Anonymous Classes

There are situations when you need a class to create only a single object
based on it. In such cases, it is convenient to use anonymous classes. It
means that you create an object at the same time as you create a class.
The corresponding instruction begins with the new keyword, followed by
the class keyword and the class description in curly braces. Let’s look at
a small example that explains the described approach. The program is
shown in Listing 9-14.

298

CHAPTER9 ADVANCED OOP MECHANISMS
Listing 9-14. An Anonymous Class

<?php
// Creates an object based on the anonymous class:
$obj=new class{
// The private field:
private $number;
// The method for getting the value of the field:
public function get(){
return $this->number;
}
// The method for assigning a value to the field:
public function set($number){
$this->number=$number;
}
};
// Operations with the objects:
$obj->set(100);
echo "\$number = ",$obj->get(),"\n";
?>

The result of the program execution is as follows.

The output of the program (from Listing 9-14)
$number = 100

In that case, you create the $obj object with the help of the following
instructions (the comments are deleted).

new class{
private $number;
public function get(){
return $this->number;

299

CHAPTER9 ADVANCED OOP MECHANISMS

public function set($number){
$this->number=$number;

That is an expression that could be a description of the class. The
difference is that you do not specify the class name, and the new instruction
is present. It turns out that the object is created based on the class
described by the instruction, but the class just has no name.

@ Note You put a semicolon at the end of the entire
construction, which acts as a command to create an object.

Summary

e An abstract class is described with the abstract
keyword and contains abstract methods. An abstract
method is not described but only declared. The
abstract method declaration also uses the abstract
keyword. In addition to abstract methods, abstract
classes may contain regular (non-abstract) methods
and fields. Abstract classes are used to create (by using
inheritance) child classes based on them.

e Aninterface is like a “totally abstract” class. An
interface has no fields (but constants), and methods
are only declared in it. An interface is described with
the interface keyword. If an interface is implemented
in a class, the class must describe each method from
the interface. To implement an interface in a class, in
the class description, you put the implements keyword

300

CHAPTER9 ADVANCED OOP MECHANISMS

and the interface name to be implemented after the
class name. If a class implements multiple interfaces,
they are listed after the implements keyword, separated

by commas.

An interface can inherit another interface. In that case,
use the extends keyword like in class inheritance.

A class can inherit another class and implement several
interfaces at the same time.

Traits contain blocks of code that can be included

in the class description. Traits are described using
the trait keyword. To include the trait contents into
a class, you place the use instruction, then list the
traits to be included in the class and separate them
by commas.

If you specify the interface name as a function
argument type, you can pass an object of the class
that implements the interface as an argument to

that function. If you specify a class name (usually
abstract) as an argument type, you can pass an object
of any child class as the argument. The instanceof
instruction can be used to check the type of an object

or argument.

To create a namespace, use the namespace instruction
followed by the name of the namespace. An
appropriate file should be imported to include the
namespace in a program. Utilities from a namespace
are accessed by specifying the namespace name. The
as instruction is used to create aliases.

301

CHAPTER9 ADVANCED OOP MECHANISMS

302

An anonymous class is used when you need only one
object to be created based on the class. In that case,
you assign an expression to the object variable, and
that expression starts with the new and class keywords
followed by the actual description of the class in curly
braces, based on which the object is created.

CHAPTER 10

Error Handling

Have I ever broken anything? Well, lately?
—ALF (TV series)

Even if the code is reliable and well thought out, it is not always possible to
guarantee that no errors will occur during its execution. And the reasons
are often objective. For example, the user might enter an invalid value,

or the program might not find the file it needs to run. In such cases, error
handling is used, which is discussed in this chapter.

Exception Handling Principles

The PHP language is quite democratic in many ways. That is also
applicable to the reaction to error raising. While in most programming
languages, an error usually means that the program is terminated (unless
a special error-handling system is involved), things are not always so
tragic in PHP. Even if something unpleasant like an error happens, it
does not mean that the program abruptly terminates. Often, it is limited
to a warning message or even no warning at all. In other words, there

are quite different errors. Errors that cause the program to terminate are
usually called fatal errors or exceptions. First, let’s explore how to handle
such errors.

© Alex Vasilev 2024 303
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_10

https://doi.org/10.1007/979-8-8688-0258-4_10

CHAPTER 10 ERROR HANDLING

The idea behind exception handling is very simple. You must provide
some program code to execute when an exception occurs. In PHP, you can
implement that idea in many different ways. Let’s start with the simplest
case and then explore the problem in detail.

Q Note Once again, it should be noted that errors and
exceptions in the context of PHP are not the same. However, from
now on, unless it leads to misunderstandings, terms such as
exception and error are synonyms.

So, let’s say there is a code block, and you suspect an error may occur
during its execution. What do you have to do? There is a simple recipe. It
assumes putting the mentioned code (the controlled code) in a special
block that begins with the try keyword and is enclosed in curly braces.
After the try block with the controlled code, the catch block is placed,
containing the code to be executed in an error. The following is the
template for the whole try-catch.

try{
// The controlled code

}catch(Error_type $object name){
// The code to handle the error

The catch keyword is followed by the error class name and a formal
notation in parentheses for the error object (the variable identified with
the error object).

304

CHAPTER 10 ERROR HANDLING

Details

The point is that when an error occurs, an object that contains information about
the error is automatically created. The information can, in principle, be used when
processing the error. The catch block contains the name of the error class (the
error type) and the error object.

You can use different processing methods to handle errors of different types. If
S0, then in the try-catch construction, use several catch blocks—each one for
an error of a specific type.

2 The PHP 8 Standard

In PHP 8, you can (if you need to) specify only the exception class
name in the catch block description in parentheses after the catch
keyword without any variable for the exception object.

The code with the try-catch construction is performed as follows.
First, the controlled code is executed. If there is no error, the catch block is
ignored. If there is an error in the try block while executing the controlled
code, the try block is stopped, and the catch block is executed. Then,
the command after the try-catch construction is run. How that looks in
practice is illustrated in Listing 10-1.

Listing 10-1. The Exception Handling Principles

<?php
// The controlled code:
try{
echo "The value of the variable \$x: ";
// Reads the value entered by the user
// and the string with a command:
$input="\$x=".trim(fgets(STDIN)).";";

305

CHAPTER 10 ERROR HANDLING

// Executes the command:
eval($input);
// Checks the variable:
echo "\$x = $x\n";
// If an error occurs:
}catch(ParseError $e){
echo "There was an error\n";
}
echo "The program is over\n";
?>

The program, in this case, is simple. The user is asked to enter
an expression specifying the value of the $x variable. You discard
leading and trailing spaces in the read string. The $input="\%$x=".
trim(fgets(STDIN)).";" instruction forms the command that assigns
a value to the $x variable. The corresponding string is written into the
$input variable. That command is executed when you pass the string from
the $input variable as an argument to the eval() function. Next, the value
of the $x variable is displayed. All commands are placed inside the try
block. The point is that the eval ($input) statement may cause an error
because the value entered by the user is invalid. That type of error belongs
to the ParseExrror class. To catch errors, use the catch block, in which the
echo "There was an error\n" command is executed.

Thus, if no error of the ParseError class occurs during the code
execution in the try block, then the catch block is ignored, and the
calculated value of the $x variable is displayed. If an error occurs, the
value of $x is not displayed, and the code in the catch block is executed
instead. But in any case, the echo "The program is over\n" command is
executed after the try-catch construction.

The result of the program execution depends on what expression the
user enters. If the expression is a correct PHP statement, the result is as
follows (the user input is marked in bold).

306

CHAPTER 10 ERROR HANDLING

The output of the program (from Listing 10-1)
The value of the variable $x: 3+4*5

$x = 23

The program is over

If the expression that should determine the value of the $x variable is
incorrect, the result is as follows.

The output of the program (from Listing 10-1)
The value of the variable $x: 3++4

There was an error

The program is over

You can handle errors of different types in the way described.

Exception Classes

The classes corresponding to errors of different types (exceptions of
different classes) form a hierarchy based on the inheritance of classes and
the implementation of interfaces. Why is it important? The reason is that

if the catch block is designed to handle errors of a specific class, then it
also handles errors of all child classes of that class. Next, let’s discuss the
main classes related to error handling. But let’s begin with the Throwable
interface. It is important since the classes used for error handling directly
or indirectly implement that interface. Therefore, methods declared in the
interface are common to many exception classes. Those methods are listed
and described in Table 10-1.

307

CHAPTER 10 ERROR HANDLING

Table 10-1. Throwable Interface Methods

Method Description

getMessage() The method returns a message associated with the
exception.

getCode() The method returns the exception code.

getFile() The method returns a string with the name of the file in
which the exception object was created.

getLine() The integer result of the method determines the line on
the execution of which the exception object was created.

getTrace() The stack trace is returned (as an array).

getTraceAsString() The stack trace is returned (as a string).

getPrevious() Returns a reference to the previous exception object.

__toString() The method returns a string representation for the

exception object.

Q Note In the interface, the methods are only declared. The
purpose of the methods is given following how they are defined in the
classes that implement the interface.

The exception classes are presented in Table 10-2.

308

CHAPTER 10 ERROR HANDLING

Table 10-2. The Exception Classes

Class Description

ArgumentCountError It inherits the TypeError class. An exception of this
class is thrown if fewer arguments than necessary are
passed when calling a function or method.

ArithmeticError It inherits the Exror class. Exceptions of this class
are generated in errors arising when performing
mathematical operations.

AssertionError It inherits the Exror class. An exception of this class
is thrown when an assert () statement fails.

CompileError It inherits the Exror class. An exception of this class
can be thrown due to a compilation error.

DivisionByZeroError Itinherits the ArithmeticError class. The
exception of this class is associated with an attempt
to divide by zero.

Error It implements the Throwable interface. It is the
parent class for the built-in (predefined) exceptions.

ErrorException It is an exception class that is a child of the
Exception class.

Exception It implements the Throwable interface and is the
parent class for the custom exception classes (that is,
the user-defined classes).

ParseError It inherits the CompileError class. An exception

of this class may occur in an error while interpreting
the program (an attempt to execute an incorrect
command).

(continued)

309

CHAPTER 10 ERROR HANDLING

Table 10-2. (continued)

Class

Description

TypeError

UnhandledMatchError

ValueError

It inherits the Exror class. An exception of this class
can be thrown if the actual type of an argument or
result of a function or method does not match the type
specified in the description of the function/method
and also if the number of arguments passed to the
function or method is incorrect.

It inherits the Exror class. The exception can be
thrown while executing the match expression.

It inherits the Exror class. An exception of this class
is thrown if an argument with the incorrect value is
passed to a function or method.

In addition to the listed exception classes, you can create your own—

usually by inheriting the Exception class. The custom class exceptions are

used for throwing exceptions artificially.

Throwing Exceptions

It may seem strange at first glance, but exceptions can be generated

artificially. Why is that needed? Here, you have to consider that there

is a relatively simple and convenient mechanism for catching and

handling exceptions of different classes. Therefore, a way to use exception

throwing means throwing exceptions of different classes under different

circumstances and then handling those exceptions.

310

CHAPTER 10 ERROR HANDLING

Q Note In fact, this scheme is similar to the one used in the
conditional statement, save that throwing an exception is used
instead of the condition.

You use the throw statement followed by the exception object to throw
an exception. An exception object is created the same way you create
objects of any other class: after the new statement, you put the class name
and, if necessary, the arguments passed to the class’s constructor.

Q Note It is worth mentioning that just creating an exception
object does not cause the exception to be thrown.

Listing 10-2 is a program that artificially throws exceptions.

Listing 10-2. Throwing Exceptions

<?php
echo "Enter a number: ";
// Reads a number:
$number=(int)trim(fgets(STDIN));
// The controlled code:
try{
// If the number is positive:
if($number>0){
// Throws an exception:
throw new Exception("A positive number");

311

CHAPTER 10 ERROR HANDLING

// If the number is negative:
if($number<o){
// Throws an exception:
throw new Exception("A negative number");
}
// The statement is executed
// if no exception is thrown:
echo "The zero";
}catch(Exception $e){ // Handling the exception
// Displays a message:
echo $e->getMessage();

2>

During the program execution, the user is prompted to enter a
number. The number is saved to the $number variable. The following code
is enclosed in the try block and uses two conditional statements in a
simplified form. The first one checks the $number>0 condition. If it is true,
the throw new Exception("A positive number") command throws
an exception of the Exception class. The new Exception("A positive
number") statement creates an anonymous object of the Exception class.
The string passed to the class constructor describes the thrown exception.

Q Note An anonymous object is an object the reference to
which is not stored in any variable.

The second conditional statement tests the $number<0 condition. If
the condition is true, the throw new Exception("A negative number")
command throws an exception of the Exception class. Unlike the previous
case, use another description for the exception.

312

CHAPTER 10 ERROR HANDLING

The last command in the try block is the echo "The zero" statement.

If an exception is thrown while executing the code, the code in the try
block is terminated, and the code in the catch block starts executing. There
is a single echo $e->getMessage() command in the block, which displays
a message associated with the thrown exception (the text that was passed to
the constructor when the exception object was created). The getMessage()
method gets the message string from the $e exception object.

If no exception is thrown when executing the code in the try block, the
echo "The zero" command is eventually executed, and the catch block is
ignored.

Depending on what number the user enters, three outcomes are
possible when the program is executed. If the user enters a positive
number, the result is like the following (the value entered by the user is
marked in bold).

The output of the program (from Listing 10-2)
Enter a number: 5
A positive number

The following is the result when the user enters a negative number.
The output of the program (from Listing 10-2)
Enter a number: -5

A negative number

Finally, if the user enters zero, the result of the program execution is as
follows.

The output of the program (from Listing 10-2)

Enter a number: 0
The zero

313

CHAPTER 10 ERROR HANDLING

In this case, you have thrown exceptions of the Exception class. As
noted, you can create your own in addition to the built-in exception
classes.

The Custom Exceptions

The recipe for creating your own exception class is simple: you just need
to create a child class for the Exception class. An example is shown in
Listing 10-3.

Listing 10-3. The Custom Exceptions

<?php
// The exception class is created by inheriting
// the Exception class:
class MyException extends Exception{
// A reference to an object:
private $error;
// The constructor:
function _ construct($msg,$error){
// Calls the constructor of the parent class:
parent:: construct($msg);
// Assigns a value to the field:
$this->error=$error;
}
// The method to cast the object to a string:
function _ toString(){
$txt="The message: ".$this->getMessage()."\n";
$txt.=$this->error->_toString();
return $txt;

314

CHAPTER 10 ERROR HANDLING

// The class for odd numbers:
class 0dd{
// A private field:
private $number;
// The constructor:
function _ construct($number){
$this->number=$number;
}
// The method for casting the object to a string:
function _ toString(){
return "The number ".$this->number." is odd\n";

}

// The class for even numbers:
class Even{
// A private field:
private $number;
// The constructor:
function _ construct($number){
$this->number=$number;
}
// The method for casting the object to a string:
function _ toString(){
return "The number ".$this->number.’

is even\n";

}
// The loop statement:

for($count=1;$count<=3;$count++){
// The message:
$msg="attempt ".$count;

315

CHAPTER 10 ERROR HANDLING

// The prompt to enter a number:
echo "Enter a number: ";
// Reads the number:
$number=(int)trim(fgets(STDIN));
// The controlled code:
try{
// If the number is entered:
if($number%2==0){
// Throws an exception:
throw new MyException($msg,new Even($number));
}else{ // If the number is odd
// Throws an exception:
throw new MyException($msg,new Odd($number));
}
// Handles the exception:
}catch(MyException $e){
echo $e;

?>

The result of the program execution could be as follows (entered by the

user values are marked in bold).

The output of the program (from Listing 10-3)
Enter a number: 123

The message: attempt 1

The number 123 is odd

Enter a number: 124

The message: attempt 2

The number 124 is even

316

CHAPTER 10 ERROR HANDLING

Enter a number: 5
The message: attempt 3
The number 5 is odd

The program creates a custom MyException exception class by
inheriting the library class Exception. In that class, you declare the
private $error field. It is supposed that the field is assigned a reference to
some object.

The class has a constructor with two arguments. The first argument
(denoted as $msg) is passed as an argument to the parent class constructor
(the parent:: construct($msg) command in the constructor body).
The second argument (denoted as $error) is a reference to an object
and is used to assign a value to the field of the same name (the $this-
>error=%$error command in the constructor body).

To be able to use objects of the MyException class as strings, you
override the _ toString() method in the class. The method returns a
string, which is obtained by concatenating the text "The message: ",
the result of the getMessage() method, the result of the _ toString()
method called from the object referenced by the $error field (the
$this->error-> toString() instruction), as well as the break line
instruction "\n".

In addition to the MyException class, you create two classes: 0dd and
Even. They have a similar structure and differ in some details (namely,
by the result that the _ toString() method returns). Each class has the
private field $number and the constructor with a single argument specifying
that field’s value. The __ toString() method returns a string containing the
value of the $number field and information about whether the number is
even or odd

After describing the classes, you run the loop statement for three
iterations (the $count variable is used as a counter). For each loop, the
$msg="attempt ".$count command generates a string with the current

317

CHAPTER 10 ERROR HANDLING

iteration’s count, then reads a number and writes it to the $number
variable. After that, the controlled code in the try block is executed. In the
conditional statement, you check the $number%2==0 condition, and then
an exception of the MyException class is thrown. The second argument of
the MyException class constructor depends on the condition. It can be an
object of the Even class (if the number is even) or an object of the 0dd class
(if the number is odd).

Details

The throw statement is used to throw an exception. It is followed by an anonymous
object of the MyException class. The constructor’s first argument is the string
written to the $msg variable. The second argument is an anonymous object of the
Even or 0dd class (depending on the $number%2==0 condition). When creating
anonymous objects of the Even or 0dd class, the number stored in the $number
variable is passed as an argument to the constructor of the corresponding class.

Exceptions are handled in the catch block. The class of exceptions
to be checked is MyException. The block contains the single echo $e
command. In such a case, the __toString() method is automatically
called from the $e exception object, and the result returned by the method
is displayed in the output window.

Handling Exceptions of Different Classes

In the previous example, when throwing an exception, you passed different
arguments to the exception class’s constructor in different situations. You
can go even further and throw different types of exceptions. And handle
those exceptions differently. It is implemented quite simply. After the try
block, several catch blocks are placed. Each catch block is designed to
handle an exception of a specific class.

318

CHAPTER 10 ERROR HANDLING

Details

If the catch block is designed to handle exceptions of a certain class, it also
handles exceptions of its child classes.

Let’s look at an example in which the linear equation of the form
Ax = Bis solved. If the parameter A is nonzero, the equation has a single
solution x = B/A. If the parameter A has a zero value, then two situations
are possible. When the parameter B is zero, the solution of the equation is
any number. And if the parameter B is nonzero, then the equation has no
solutions.

Let’s examine the program shown in Listing 10-4.

Listing 10-4. Solving the Linear Equation

<?php
// The exception classes:
class AnyNumberException extends Exception{}
class NoRootsException extends Exception{}
echo "The equation Ax=B\n";
// Reads the parameters:
echo "A = ";
$A=(double)trim(fgets(STDIN));
echo "B = ";
$B=(double)trim(fgets(STDIN));
// The controlled code:
try{
// If the first parameter is zero:
if($A==0){
// If the second parameter is zero:
if($B==0) throw new AnyNumberException();

319

CHAPTER 10 ERROR HANDLING

// If the second parameter is nonzero:
else throw new NoRootsException();
}
// The root of the equation:
$x=$B/%A;
// Displays the result:
echo "The root is \$x = $x\n";
// Handles the exceptions:
}catch(AnyNumberException $e){
echo "Any number is a root\n";
}catch(NoRootsException $e){
echo "There are no roots\n";
}
echo "The problem is solved\n";
?>

Depending on what values for the parameters A and B are entered by
the user (marked in bold), the following results of the program execution
are possible. The following occurs when a nonzero value is entered for the
parameter A, while the parameter B also has a nonzero value.

The output of the program (from Listing 10-4)
The equation Ax=B

A=2.4

B = 12

The root is $x =5

The problem is solved

The following is the result of the program execution if the parameter A
has a nonzero value and the parameter B is equal to zero.

320

CHAPTER 10 ERROR HANDLING

The output of the program (from Listing 10-4)
The equation Ax=B

A=5

B=0

The root is $x = 0

The problem is solved

If both parameters are zero, the result is as follows.

The output of the program (from Listing 10-4)
The equation Ax=B

A=o0

B=0

Any number is a root

The problem is solved

Finally, if the parameter A is zero and the parameter B is nonzero, the
result is as follows.

The output of the program (from Listing 10-4)
The equation Ax=B

A=o0

B=1

There are no roots

The problem is solved

You have used the following strategy. The program reads the values
entered by the user for the parameters and then tries to calculate the
solution of the equation. But while executing the code, one of two custom
class exceptions can be thrown under certain conditions. Here, you have a
“general line” and two “special cases,” which are handled with the help of
exception catching.

321

CHAPTER 10 ERROR HANDLING

The AnyNumberException and NoRootsException exception classes
inherit the Exception class and are defined with an empty body. That
means those classes duplicate the Exception class, but the classes are
formally different, which is essential for us. You use the classes to throw
exceptions.

You read the values of the parameters of the equation and write those
values to the $A and $B variables. The main calculations are performed in
the try block. You also use a conditional statement in a simplified form.
It checks the $A==0 condition. If the condition is true, another (inner)
conditional statement is executed. The $B==0 condition is checked there.
If it is true, an AnyNumberException exception is thrown. If the condition is
false, then a NoRootsException exception is thrown.

Q Note Thus, if the $A==0 condition is true, an
AnyNumberException or a NoRootsException exception is
thrown. In both cases, it does not reach the execution of the
commands placed after the external conditional statement since
handling of the thrown exception begins.

The $x=$B/$A command, which calculates the root of the equation,
is executed if no exception was thrown during the execution of the
conditional statement. If so, the root is calculated and displayed by the
echo "The root is \$x = $x\n" instruction. The exception handling
blocks placed after the try block are ignored. If an exception is thrown,
then it is handled by one of the catch blocks.

The program performed the exception handling directly in the
handling blocks, and the exception class was used to identify the
scenario to implement. But you could act somewhat differently, “hiding”
information about the scenario to implement in the exception object. Such
an approach is illustrated in Listing 10-5.

322

CHAPTER 10 ERROR HANDLING

Listing 10-5. One More Way to Solve the Equation

<?php

?>

// The exception classes:
class AnyNumberException extends Exception{
// The constructor:
function _ construct(){
parent:: construct("Any number is a root\n");

}

class NoRootsException extends Exception{
// The constructor:
function _ construct(){
parent:: construct("There are no roots\n");

}

echo "The equation Ax=B\n";

echo "A = ";

$A=(double)trim(fgets(STDIN));

echo "B = ";

$B=(double)trim(fgets(STDIN));

try{
if($A==08$B==0) throw new AnyNumberException();
if($A==08$B!=0) throw new NoRootsException();
$x=$B/$A;
echo "The root is \$x = $x\n";

}catch(AnyNumberException|NoRootsException $e){
echo $e->getMessage();

}

echo "The problem is solved\n";

323

CHAPTER 10 ERROR HANDLING

The result of the program execution is the same as in the previous
case. However, the execution algorithm has changed slightly. There are
two main changes. First, the message displayed when an exception is
generated is associated with the exception object. This message can be
retrieved using the getMessage () method. Second, you combined two
catch blocks into one by specifying the AnyNumberException |NoRootsE
xception expression as the exception class to be handled (the exception
class names are separated by the | operator). Such a block handles both
AnyNumberException and NoRootsException exceptions. Also, instead
of the nested conditional statements, use two consecutively placed
conditional statements in a simplified form with combined conditions.

Details

The $A==08%$B==0 condition is true if the $A==0 and $B==0 conditions are both
true. The $A==0&$B ! =0 condition is true if the $A==0 and $B!=0 conditions are
both true.

Nested try-catch Constructions
and the finally Block

The try-catch constructions can be nested. If an exception thrown in the
inner try-catch construction is not handled by it, then the exception is
passed to the outer try-catch construction for handling. In addition, the
try-catch construction can contain the finally block whose commands
are executed regardless of whether an exception is thrown or not. The
situation is illustrated in Listing 10-6.

324

CHAPTER 10 ERROR HANDLING

Listing 10-6. Nested try-catch Constructions

<?php

// The exception classes:
class RedException extends Exception{}
class GreenException extends Exception{}
class BlueException extends Exception{}
class OtherException extends Exception{}
// Reads the name of a color:
echo "Your favorite color: ";
$color=strtolower(trim(fgets(STDIN)));
// The outer block of the controlled code:
try{

// The inner block of the controlled code:

try{
// Makes a selection:
switch($color){
case "red":
throw new RedException();
case "green":
throw new GreenException();
case "blue":
throw new BlueException();
default:
throw new OtherException();
} // Handles the exceptions of the inner block:
}catch(RedException $e){
echo "Red is beautiful\n";
}catch(GreenException $e){
echo "Green is wonderful\n";
}catch(BlueException $e){
echo "Blue is stylish\n";

325

CHAPTER 10 ERROR HANDLING

}finally{ // The block is always executed
echo "Thank you for the answer\n";
}
echo "You have a good taste\n";
} // Handles the exceptions of the outer block:
catch(OtherException $e){
echo "I don't know this color\n";
}
echo "The program is over\n";
?>

In this program, the user is prompted to enter the name of a color, and
depending on the entered value, the program displays specific messages.

To react to different situations, use throwing and handling exceptions.
The program creates four custom exception classes: RedException,
GreenException, BlueException, and OtherException. Each class inherits
the Exception class and is defined with an empty body.

The entered by the user name of a color is written to the $color
variable. First, the symbols in the string are converted to lowercase, for
which the strtolower () function is used. Next is the outer try block
with the inner try-catch-finally construction inside. In the inner try
block, the switch statement is executed, in which the value of the $color
variable is checked. If the variable’s value is "red", then an exception
of the RedException class is thrown. The "green" value throws an
exception of the GreenException class. If the variable’s value is "blue", a
BlueException exception is thrown. In all other cases, an exception of the
OtherException class is thrown.

In the inner try-catch-finally construction, you handle the
exceptions of the RedException, GreenException, and BlueException
classes. An exception of the OtherException class is handled in the outer
try-catch construction.

326

CHAPTER 10 ERROR HANDLING

Let’s discuss how the code is executed. First, the string the user
enters is read and written to the $color variable, and the variable’s
value is checked in the switch statement. As a result, one of the four
classes of exceptions is thrown. If it is an exception of the RedException,
GreenException, or BlueException class, it is handled in one of the catch
blocks of the inner try-catch-finally construction. Then, the finally
block is executed, and the echo "You have a good taste\n" instruction
after that block. The outer catch block is ignored, and the last instruction,
echo "The program is over\n", is executed.

If an exception of the OtherException class is thrown, it is not
caught by the inner catch blocks and passed to the outer catch block for
handling. But before that, the finally block is executed.

The result of the program execution depends on the value entered by
the user (the values entered by the user are marked in bold). Symbols in
the name of a color does not matter. In particular, the result could be as
follows.

The output of the program (from Listing 10-6)
Your favorite color: Red

Red is beautiful

Thank you for the answer

You have a good taste

The program is over

The result could also be as follows.

The output of the program (from Listing 10-6)
Your favorite color: green

Green is wonderful

Thank you for the answer

You have a good taste

The program is over

327

CHAPTER 10 ERROR HANDLING

It could be like the following.

The output of the program (from Listing 10-6)
Your favorite color: BLUE

Blue is stylish

Thank you for the answer

You have a good taste

The program is over

Or it could be like the following.

The output of the program (from Listing 10-6)
Your favorite color: yellow

Thank you for the answer

I don't know this color

The program is over

Once again, two things are worth mentioning. First, if the inner try-
catch construction does not handle an exception, it is passed to the outer
try-catch construction for handling. Second, the code in the finally
block is always executed, both if an exception is thrown and if no exception
is thrown.

Rethrowing an Exception

An exception can be thrown after it has been thrown. In that case, the
same exception object is used multiple times. Let’s consider a problem
that solves a linear equation once again as an example of using such an
approach. The program is shown in Listing 10-7.

328

CHAPTER 10 ERROR HANDLING
Listing 10-7. Rethrowing Exceptions

<?php
// The exception class:
class MyException extends Exception{}
echo "The equation Ax=B\n";
// Reads the parameters:
echo "A = ";
$A=(double)trim(fgets(STDIN));
echo "B = ";
$B=(double)trim(fgets(STDIN));
// The outer block of the controlled code:
try{
// The inner block of the controlled code:
try{
// Throws an exception:
if($A==0) throw new MyException();
// The root of the equation:
$x=$B/$A;
// Displays the result:
echo "The root is \$x = $x\n";
// Handles the exceptions of the inner block:
}catch(MyException $e){
// Rethrows the thrown exception:
if($B==0) throw $e;
echo "There are no roots\n";
}
// Handles the exceptions of the outer block:
}catch(MyException $e){
echo "Any number is a root\n";
}
echo "The problem is solved\n";
2>

329

CHAPTER 10 ERROR HANDLING

The result of the program execution is the same as in Listing 10-4. But
the code is worth analyzing.

You use the exception class MyException. After reading the values of the
$A and $B variables, the block of the controlled code is executed. It contains
the inner try block in which, if the condition $A==0 is true, an exception of the
MyException class is thrown. If the condition is false, the $x=$B/$A and echo
"The root is \$x = $x\n" statements are executed. The first statement
calculates the root of the equation. The second statement displays the result of
the calculation. Those statements are not executed if an exception is thrown. If
itis, the exception is handled in the inner catch block. The handling is based
on checking the condition $B==0. If the condition is false, the echo "There
are no roots\n" instruction is executed. If the condition is true, the throw
$e command rethrows the previously thrown exception. Here, $e denotes the
exception object passed to the inner catch block for handling. The exception
is caught and handled in the outer catch block this time. In particular, the echo
"Any number is a root\n" command is executed there. The last command
to be executed is echo "The problem is solved\n".

Details

It turns out that if one of the parameters of the equation is zero, a custom class
exception is thrown. If, while handling this exception, it turns out that the second
parameter is equal to zero, then the exception is rethrown. Rethrowing an exception
means you are using the exception object thrown earlier.

The Functions for Handling Errors

Very often, errors that occur during the execution of a program are not
critical and do not cause the program’s termination. The typical external
effect in such a case is an error or warning message. Different techniques
and schemes allow you to react to such situations adequately. But even if

330

CHAPTER 10 ERROR HANDLING

the error is critical and is not caught in the program (using the try-catch
construction), you can still “fight” against it.

Details

The basic settings (including how to respond to scripting errors) are contained in the
php.ini initialization file, which is read when the PHP server starts up. To manage
the mode of error monitoring, you can use the error_reporting() function. Its
argument is a constant defining the error messages to be displayed. For example, the
E_ERROR constant corresponds to the mode of monitoring the fatal errors leading to
the termination of the program execution. The E_WARNING constant means the mode
in which the non-critical warnings are monitored. The E_ALL constant specifies the
mode of monitoring almost all errors (the maximum control mode).

In practice, you can use the set_exception_handler() function to
handle exceptions. As an argument, it takes the function’s name that is
called if an unhandled exception occurs during the code execution. The
code stops executing after executing the function passed to the set
exception_handler() function. A small example is shown in Listing 10-8.

Listing 10-8. The Function for Handling Exceptions

<?php
// The function for handling exceptions:
function handler(){
echo "There was an error!";
}
// Sets the handler function for exceptions:
set_exception handler('handler');
// Displays a message:
echo "An error is about to occur...\n";
// Throws an exception:
throw new Exception();

331

CHAPTER 10 ERROR HANDLING

// This statement is not executed:
echo "This message will not be displayed!";
?>

The following is the program’s output.

The output of the program (from Listing 10-8)
An error is about to occur...
There was an error!

In this case, you describe the handler () function, and the name of
the function (as a string) is passed as an argument to the set_exception_
handler() function. So when an exception is thrown with the throw new
Exception() statement, the handler () function is automatically called.
That terminates the execution of the program.

Q Note There are other functions useful when dealing with
errors and exceptions. For example, you can use the set _error
handlexr () function to define error handlers. You can throw errors
using the trigger error() function. And the list is not complete.

Another interesting feature is related to the error message disable
@ operator. The operator is placed before some expression, and if
an error occurs during the execution of the expression, then the
corresponding message is not displayed.

2~ The PHP 8 Standard

Since PHP 8, the @ operator doesn’t hide fatal errors.

332

CHAPTER 10 ERROR HANDLING
Summary

e Youcan use the try-catch-finally construction to
handle exceptions. The controlled code is placed in the
try block. If an exception is thrown while executing
that code, it can be handled in the catch block. The
commands in the optional finally block are always
executed.

« To handle different exceptions, multiple catch blocks
can be used. For each block, you specify the exception
class to be handled.

o Exceptions can be thrown artificially. To do that, use
the throw instruction followed by the object of the
exception.

e You can create custom exception classes. Such classes
inherit the Exception class. The built-in exception
classes implement the Throwable interface.

e The try-catch-finally constructions can be nested,
and exceptions can be rethrown. In that case, the object
of the thrown exception is used multiple times.

e Special functions and utilities allow you to set the error
control mode. Among them are the error message
disable @ operator, the error_reporting() function
(defines the error control mode), the set_exception_
handler() and set_error_handler() functions (define
an error handler), and the trigger error() function
(throws an error).

333

CHAPTER 11

Generators
and lterators

Oh, I understand. Nobody on this planet ever says what
they mean.

—ALF (TV series)

In this chapter, you become familiar with generators and iterators. An
iterator is a special object that allows you to iterate over a collection. A
generator is a particular iterator. So, in any case, you deal with iterating
over collections. Let’s start with the more straightforward issue: the
generator.

Getting Familiar with Generators

A generator function is a function that returns a special object as a result.
That object resembles an array in its properties. But it is not really an array.
Rather, it is a spectacular way to create an illusion of an array. In particular,
the result of calling a generator function can be used in the foreach loop
statement to iterate over a collection.

© Alex Vasilev 2024 335
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_11

https://doi.org/10.1007/979-8-8688-0258-4_11

CHAPTER 11 GENERATORS AND ITERATORS

Details

Formally, a generator function returns an object of the Generator class. The class
implements the Iterator interface. An object of the Generator class cannot be
created using the new statement.

Let’s consider the specifics of creating and using the generator
functions employing small examples. You first need to know that the object
returned by a generator function can be used to get a sequence of values.
In particular, to get the current value, you can use the current() method,
and to shift to the next value, you involve the next () method.

QNote Strictly speaking, “generator” is more appropriate for
the object returned by a generator function. However, that term is
used for the corresponding functions for convenience.

The description of a generator function has its own peculiarities. So,
to include a value to the list of values to be returned when the current()
method is called, use the yield statement followed by the corresponding
value within the function code. An example is shown in Listing 11-1.

Listing 11-1. Getting Familiar with Generators

<?php
// A generator function:
function colors(){
yield "Red";
yield "Yellow";
yield "Green";
}
// Calls the generator function:
$color=colors();

336

CHAPTER 11 GENERATORS AND ITERATORS

// Using the generator function:
for($k=1;$k<=3; $k++){
// We get the current value:
echo "[$k] ",$color->current(),"\n";
// The shift to the next value:
$color->next();

?>

The result of the program execution is as follows.

The output of the program (from Listing 11-1)
[1] Red

[2] Yellow

[3] Green

In this case, you describe the colors () generator function, where you
use the yield "Red",yield "Yellow", and yield "Green" commands.
That means that the resulting generator object (which you get when
calling the colors() function) generates the values "Red", "Yellow", and
"Green".

The $color=colors() command is executed in the program, which
writes the result of calling the colors() function to the $color variable.
Thus, the $color variable refers to an object of the Generator class. That
object has, among other things, the methods current() and next(). If
you call the current () method from the $color object, you get the value
"Red". If, after that, you call the next () method and then the current()
method again, you get the value "Yellow". Finally, another call of the
next() and current() methods gives you the value "Green". All that is
illustrated by the for loop statement, in which the current() and next()
methods are called three times from the $color object.

337

CHAPTER 11 GENERATORS AND ITERATORS

Details

If you call the current () method after three calls to the next () method (that is,
after all the values “written” to the $coloxr object have been iterated), you get a null
reference.

There would be little use for the generator functions if two methods
had to be called each time to generate a new value. Listing 11-2 illustrates a

better way to use a generator function.

Listing 11-2. A Generator Function and a Loop Statement

<?php
// A generator function:
function colors(){
$colors=["Red","Yellow","Green"];
foreach($colors as $clr){
yield $clr;

}

// Using the generator function:
foreach(colors() as $color){
echo $color,"\n";

?>

The program’s result is almost the same as in the previous case.
The output of the program (from Listing 11-2)
Red

Yellow
Green

338

CHAPTER 11 GENERATORS AND ITERATORS

The code of the colors() generator function was slightly changed. The
list of generated values is now implemented as an array, and the yield
statement is called in the foreach loop statement in the function body.
Also, you do not write the instruction with the function call into a separate
variable but directly indicate it as a collection to be iterated in the foreach
loop statement. The result is that instead of calling the color () function,
you would specify an array with values displayed when the program is
executed.

A Generator Function with Arguments

It might seem at first glance that the concept of a generator function is an
unnecessary complication of the array-based approach. But it is far from
being the case. The generator functions allow you to write beautiful and
efficient codes. For example, Listing 11-3 uses a generator function with

arguments to generate a sequence of numbers.

Listing 11-3. A Generator Function with Arguments

<?php
// A generator function with arguments:
function numbers($count,$start,$step=1){
for($k=1, $num=$start; $k<=$count; $k++, $num+=$step){
yield $num;

}

// Using the generator function:

echo "[1]";

foreach(numbers(5,1,2) as $n){ // 0dd numbers
echo " ".$n;

339

CHAPTER 11 GENERATORS AND ITERATORS

echo "\n[2]";

foreach(numbers(7,3) as $n){ // Natural numbers
echo " ".$n;

}

echo "\n[3]";

foreach(numbers(6,10,-1) as $n){ // Reverse order
echo " ".$n;

?>

The output of the program is as follows.

The output of the program (from Listing 11-3)
[1] 13579

[2] 3456789

[31 1098765

The numbers () function is described with three arguments (the last
one has a default value). The function is designed to create an object
that generates a numeric sequence. The first argument $count specifies
how many numbers should be in the sequence. The second argument
$start specifies the first value in the sequence. The third argument, $step
(with the default value 1), specifies the increment when calculating the
sequence. The core of the function is the loop statement. The count of
cycles is determined by the $count argument. The $num variable, used in
the yield $num command, gets the initial value defined by the $start
argument. For each loop, the variable’s value is incremented by the value
determined by the $step argument.

You call the number () function in the foreach loop statements used
to display the sequence of numbers. So, the numbers(5,1,2) instruction
means generating the sequence of 5 numbers, the initial value is 1, and
each next number is 2 more than the previous one. The numbers(7,3)

340

CHAPTER 11 GENERATORS AND ITERATORS

instruction is used to create the sequence of 7 numbers, starting from 3,
and each number is 1 greater than the previous one. Finally, using the
numbers(6,10,-1) instruction, you get the sequence of 6 numbers; the
first number is 10, and each next number is 1 less than the previous one
(the numbers are listed in reverse order).

An Array Based on a Generator

As noted, a generator gives the illusion of using an array. But sometimes,
you must solve the more trivial task of creating an array based on a
generator. In principle, the iterator to array() built-in function can be
used for that. A generator is passed as an argument to the function, and the
function returns the array created by iterating over the “contents” of the
generator. Let’s say you have a function described as follows:

function nums($n){
for ($k=1; $k<=$n; $k++){
yield $k;

Then, the following command inclusively creates the array of numbers
from 1 to 5, and a reference to the array is written to the $A variable.

$A=iterator to_array(nums(5));

Listing 11-4 creates a function that duplicates the work of the built-in
iterator to_array() function.

Listing 11-4. An Array Based on a Generator

<?php
// The function to create an array based on a generator:
function generator to array(Generator $gen){

341

CHAPTER 11 GENERATORS AND ITERATORS

// An empty array:
$array=[];
foreach($gen as $a){
// Adds an element to the array:
$array[]=%a;
}
// The function result:
return $array;
}
// A generator function:
function nums($n){
for($k=1; $k<=%n; $k++){
yield $k;

}

// Creates an array:
$A=generator to_array(nums(5));
print_r($A);

2>

The output of the program is as follows.

The output of the program (from Listing 11-4)

Array

(
[0] => 1
[1] => 2
[2] => 3
[3] => 4
[4] => 5

)

342

CHAPTER 11 GENERATORS AND ITERATORS

The generator_to_array() function is designed to create an array
based on a generator. It is described with a single argument of the
Generator type. That means only objects created by calling the generator
function can be passed as an argument to the function. The $array=[]
command creates an empty array in the function body. The foreach loop
statement then iterates over the values produced by the $gen generator
passed as an argument to the function. By the $array[]=$a command, the
next received value of $a is added to the end of the $array array, which is
eventually returned as the result of the function.

The program also describes the nums () function, which creates the
generator for a sequence of natural numbers. The argument of the function
determines how many numbers are in the sequence. Therefore, when the
$A=generator to_array(nums(5)) command is executed, the array of 5
elements (the natural numbers from 1 to 5 inclusively) is created, and a
reference to that array is written to the $A variable.

The Generator Result

In a generator function, in addition to using the yield instruction, you can
also use the return statement. Nevertheless, the result is quite the same as
you could expect.

First, if the return statement is executed within the code of a generator
function, that terminates the generator function execution, but at the same
time, the result of the function is an object of the Generator class (that
is, a generator object). If you specify a value after the return statement,
then that value can be obtained through the generator object using the
getReturn() method. For example, suppose you specify a number after
the return statement. In that case, an object of the Generator class is
returned as a result of the generator function. When the getReturn()
method is called from that object, you get the number specified after the
return statement. The situation is illustrated in Listing 11-5.

343

CHAPTER 11 GENERATORS AND ITERATORS
Listing 11-5. The Generator Result

<?php
// A generator function:
function randoms($n){
// The initial value for the sum:
$sum=0;
for($k=1; $k<=$n; $k++){
// A random number from 1 to 9:
$number=rand(1,9);
yield $number;
// Adds a new term for the sum:
$sum+=$number;
}
// The result is the sum of numbers:
return $sum;
}
// A generator object:
$rnd=randoms(5);
// Generates random numbers:
foreach($rnd as $r){

echo $r," ";

}

// Using the generator result:
echo "\nThe sum: ",$rnd->getReturn(),"\n";
?>

A possible result of the program execution can be as follows.
The output of the program (from Listing 11-5)

49415
The sum: 23

344

CHAPTER 11 GENERATORS AND ITERATORS

This program describes the randoms () generator function with a
single argument that specifies how many random numbers have to be
generated by the generator object. In the function’s body, the $sum variable
is initialized with the zero value, after which the loop statement is run.
The number of iterations is determined by the $n function argument. The
$number=rand(1,9) command generates a random integer in the range
from 1 to 9 inclusively, and that number is written to the $number variable.

Details

The built-in rand () function generates random numbers. You call this function with
two integer arguments that define the bounds of the range within which the random
number is generated.

Then, use the yield $number command to include the generated value
in the list of generated values. Then, due to the $sum+=$number command,
the value of the $number variable is added to the current value of the $sum
variable.

The last command in the function’s body is the return $sum
statement. That means that when the getReturn() method is called from
the generator object, you get the value of the $sum variable, which is the
sum of the generated random numbers.

Details

Although the return statement formally returns an integer, the randoms ()
generator function returns a generator object. You can call the getReturn()
method from a generator object only after the object has been “worked out”—
that is, after you have “looked through” the generator object in the foreach loop
statement.

345

CHAPTER 11 GENERATORS AND ITERATORS

The $rnd=randoms(5) command creates a generator object (to
generate five numbers), and a reference to the object is written to the $rnd
variable. Use the object in the foreach loop statement. Finally, you exploit
the $rnd->getReturn() instruction to determine the sum of the generated
numbers.

Using Generators

Let’s pay special attention to several issues related to using generators.
Namely, let’s analyze a few simple examples, starting with Listing 11-6.

Listing 11-6. Reusing a Generator Object

<?php
// A generator function:
function nums(){
for($k=100; $k<=300; $k+=100){
yield $k;

}

// Creates a generator object:
$nums=nums();
// The controlled code:
try{
// The first use of the generator object:
echo "The first use of the generator object:\n";
foreach($nums as $n){
echo $n," ";
}
// The second use of the generator object:
echo "\nThe second use of the generator object:\n";

foreach($nums as $n){

346

CHAPTER 11 GENERATORS AND ITERATORS

echo $n," ";
}
}catch(Exception $e){
echo "Something is wrong\n";

?>

The program’s output is as follows.

The output of the program (from Listing 11-6)
The first use of the generator object:

100 200 300

The second use of the generator object:
Something is wrong

Everything is simple here. You need the nums () generator function to
generate 100, 200, and 300. Using the $nums=nums () command, you create
a generator object, and a reference to it is written to the $nums variable. The
rest of the code is enclosed in the try block. There, the foreach statement
executes the same block of commands twice. Each time, the $nums
generator object is used. The catch block is designed to handle possible
exceptions by executing the echo "Something is wrong\n" command.

What is the program'’s output? You get the numbers 100, 200, and 300
the first time. But then you get an exception. It happens since the generator
object is an object “for a single use.” It can be “iterated through” only once.
After that, you must create a new generator object to generate the same
sequence of values. If you try to iterate an object that has already been
iterated, you get an error. Therefore, instead of writing a reference to the
generator object into a variable, the generator function call instruction
is used directly in practice. A small variation of the previous example is
shown in Listing 11-7.

347

CHAPTER 11 GENERATORS AND ITERATORS
Listing 11-7. Calling a Generator Function

<?php
function nums(){
for($k=100; $k<=300; $k+=100){
yield $k;

}
try{
echo "The first use of the generator object:\n";
foreach(nums() as $n){
echo $n," ";
}
echo "\nThe second use of the generator object:\n";
foreach(nums() as $n){

echo $n," ";

}
}catch(Exception $e){
echo "Something is wrong\n";

?>

The output of the program is as follows.

The output of the program (from Listing 11-7)
The first use of the generator object:

100 200 300

The second use of the generator object:

100 200 300

The result of the program execution has changed. The numbers 100, 200,
and 300 are displayed both times, and no exception is thrown. Changes to the

program code are minimal. You no longer use a variable to store a reference to

348

CHAPTER 11 GENERATORS AND ITERATORS

the generator object, and in the foreach statements, where the $nums variable
used to be, the instruction that calls the nums () function is now placed. What
does it change? Each time the nums () function is called, a new generator
object is created, so, in this case, you do not reuse the generator object.

Another unexpected feature of generator objects is illustrated in
Listing 11-8.

Listing 11-8. Peculiarities of Using a Generator Function

<?php
// A generator function:
function gen(){
echo "A generator function is executed\n";
yield 123;
}
// A generator object:
sgen=gen();
echo "A generator object is created\n";
// Gets the value from the generator:
echo $gen->current(),"\n";
2>

Here is the result of the program execution.

The output of the program (from Listing 11-8)
A generator object is created

A generator function is executed

123

You use the very simple generator function gen(), which executes the
echo "A generator function is executed\n" command followed by
the yield 123 statement. That means that the message is displayed first,
and then the number 123 is added to the list of the values to be generated.
Iterating over the generator object returns that single value.

349

CHAPTER 11 GENERATORS AND ITERATORS

The $gen=gen() command creates a generator object, and then
the echo "A generator object is created\n" and echo $gen-
>current(),"\n" statements are executed. You might expect that first, you
getthe A generator function is executed message, followed by the A
generator object is created message. And after that, you might expect
that the value 123 is displayed. However, the first two messages appear in
a different order. The reason is that executing the $gen=gen () statement
does not lead to executing the code described in gen(). The actual
function code only starts executing when the current () method is called
from the $gen object.

Objects of the Generator class have the rewind() method, which
allows you to execute the part of a generator function code before the
first yield instruction. A modification of the previous program where you
use the rewind() method is shown in Listing 11-9.

Listing 11-9. Generator Object Methods

<?php
function gen(){
echo "A generator function is executed\n";
yield 123;
}
$gen=gen();
// Executes the initial code of the generator function:
$gen->rewind();
echo "A generator object is created\n";
echo $gen->current(),"\n";
2>

350

CHAPTER 11 GENERATORS AND ITERATORS

The program’s output is as follows.

The output of the program (from Listing 11-9)
A generator function is executed

A generator object is created

123

In this case, the $gen->rewind() command is executed as soon as
the generator object is created. As a result, the message A generator
function is executedis displayed first. Then, the message A generator
object is created is also displayed.

Passing a Value to a Generator

The yield instruction can be used to form a list of generated values and
pass a value to a generator. The yield keyword is identified with the value
passed to the generator object using the send() method.

Details

You can call the send () method from a generator object and pass some argument
to the method. In the body of the corresponding generator function, that value (the
argument of the send () method) can be accessed using the yield keyword.

An example of passing values to a generator object is shown in
Listing 11-10.

Listing 11-10. Passing Values to a Generator

<?php
// A generator function:
function nums($n){

351

CHAPTER 11 GENERATORS AND ITERATORS

// The sum:
$sum=0;
// Gets the values:
for($k=0; $k<$n; $k++){
$number=yield;
$sum+=$number;
}
// The result of the generator:
return $sum;
}
// How many numbers:
$n=5;
// A generator object:
$nums=nums ($n);
for($k=1;$k<=$n; $k++){
echo "[$k] The number: ";
// Reads a number:
$num=(double)trim(fgets(STDIN));
// Passes the value to the object:
$nums->send($num);
}
// The sum:
echo "The sum: ",$nums->getReturn(),"\n";
?>

The result of the program is as follows (the numbers entered by the
user are marked in bold).

The output of the program (from Listing 11-10)
[1] The number: 2
[2] The number: 3
[3] The number: 5

352

CHAPTER 11 GENERATORS AND ITERATORS

[4] The number: 1
[5] The number: 4
The sum: 15

The nums () generator function has a single argument and is described
as follows. You define the $sum variable with the zero initial value in the
function. Then, the loop statement comes into play. The count of iterations
is determined by the generator function argument $n. For each iteration,
the $number=yield command is executed. It means that the value the
generator receives is written to the $number variable. The $sum+=$number
command then adds that value to the current value of the $sum variable.

After the loop statement is terminated, the return $sum
command returns the value of the $sum variable as the result of the
getReturn() method.

The generator object is created with the $nums=nums ($n) command.
Then, the loop statement is run. For each loop, among other things, the
number entered by the user is read and written to the $num variable.

Next, that value is sent to the generator object; to do that, use the $nums-
>send($num) command. After reading all the values, using the $nums-
>getReturn() instruction, you get the result for the sum of the numbers
entered by the user.

lterators

The generators discussed are a particular case of iterators. From a formal
point of view, an iterator is an object of a class that implements the
Iterator interface. The methods that must be described in the class that
implements the Iterator interface are presented in Table 11-1.

353

CHAPTER 11 GENERATORS AND ITERATORS

Table 11-1. Iterator Interface Methods

Method Description

current() The method returns the current value of the iterator.
key() The method returns the key/index of the current value of the iterator.
next() The method shifts to the next value of the iterator.

rewind() The method for setting the iterator to the state to generate the first
value.

valid() The method is designed to check the readiness of the iterator.

Q Note It is not surprising that generator objects have the
same methods since the Generator class implements the
Iterator interface.

To create an iterator, it is enough to create a class that implements the
Iterator interface and then create an object based on that class.
Listing 11-11 describes the custom iterator class.

Listing 11-11. An Iterator

<?php

// The class for an iterator:

class Fibonacci implements Iterator{
// The last and one before the last numbers:
private $last;
private $previous;
// The element numbetr:
private $key;
// The maximal value of the index:
private $max;

354

CHAPTER 11

// The constructor:

function _ construct($max){
$this->max=%$max;
$this->rewind();

}

// The methods from Iterator:

public function rewind(){
$this->key=1;
$this->previous=1;
$this->last=1;

}

public function current(){
return $this->previous;

}

public function key(){
return $this->key;

}

public function next(){
++$this->key;
$this->last+=%$this->previous;

GENERATORS AND ITERATORS

$this->previous=$this->last-$this->previous;

}
public function valid(){

if($this->key<=$this->max) return true;

else return false;

}
// The additional methods:

public function resize($max){
$this->max=$max;

355

CHAPTER 11 GENERATORS AND ITERATORS

// Creates an iterator object:
$fibs=new Fibonacci(10);
// Using the iterator:
foreach($fibs as $f){

echo $f," ";
}
echo "\n";
// Changes the number of values:
$fibs->resize(15);
// Using the iterator:
foreach($fibs as $f){

echo $f," ";
}

?>
The result of the program execution is as follows.
The output of the program (from Listing 11-11)

11235813 21 34 55
1123581321 345589 144 233 377 610

£ The PHP 8 Standard Versions higher than PHP 8 display a set of
warnings since the class methods that implement the Iterator
interface should be described with the return type (stated after braces
with the method’s arguments through a colon). Namely, you should use
the following description of the Fibonacci class (the comments are
discarded, and the added blocks of code are marked in bold).

class Fibonacci implements Iterator{
private $last;
private $previous;

356

CHAPTER 11

private $key;

private $max;

function _ construct($max){
$this->max=$max;
$this->rewind();

}

public function rewind(): woid{
$this->key=1;
$this->previous=1;
$this->last=1;

}

public function current(): mixed{
return $this->previous;

}

public function key(): mixed{
return $this->key;

}

public function next(): woid{
++$this->key;
$this->last+=%$this->previous;

GENERATORS AND ITERATORS

$this->previous=$this->last-$this->previous;

}
public function valid(): bool{

if($this->key<=$this->max) return true;

else return false;

}

public function resize($max){
$this->max=$max;

357

CHAPTER 11 GENERATORS AND ITERATORS

Another solution is to precede each method (from the Iterator
interface) with the #[\ReturnTypeWillChange] attribute.

Let’s create the Fibonacci class that implements the Iterator
interface. An object of the class is designed to generate a sequence of the
Fibonacci numbers (the first two numbers are equal to one, and each next
is equal to the sum of the previous two). The class has the private $1last
and $previous fields that are supposed to store the last and last but one
number in the sequence. The private field $key is used to store the key of
the generated number. The $max field contains the value that determines
how many numbers are generated in the sequence.

The constructor has a single argument that specifies the value of the
$max field. The rewind() method is called in the body of the constructor.
When the method is called, the $key, $previous, and $last fields are
assigned values.

When called, the current() method returns the value of the $previous
field. The key() method returns the value of the $key field.

When the next () method is called, due to the ++$this->key
statement, the value of the $key field is incremented by one. Next, the
$this->last+=$this->previous and $this->previous=$this->last-
$this->previous commands calculate the next number in the sequence
and update the values of the $previous and $1ast fields, respectively.

The valid() method is used (automatically) to check that the iterator
is ready to generate a value. The $this->key<=$this->max condition is
checked in the method’s body. It is true if the current number key does not
exceed the maximum value set for the sequence. If so, the method returns
true. Otherwise, it returns false.

358

CHAPTER 11 GENERATORS AND ITERATORS

Details

You need the valid() method to determine when the iteration of the elements in
the loop statement ends.

In addition to the “required” methods from the Iterator interface, you
describe an “additional” resize() method for changing the value of the
$max field in an already created iterator object.

An iterator object is created with the $fibs=new Fibonacci(10)
command. The object is designed to generate ten numbers in the
Fibonacci sequence. That happens when you pass the $fibs iterator object
to the foreach statement.

The iterator object created can be used multiple times. To do that, it is
enough to put it to its original state using the rewind() method. Moreover,
you can change the number of values generated by the iterator. So, after
executing the $fibs->resize(15) command, the iterator object generates
15 numbers from the sequence, which is confirmed by the program output.

Summary

e Aniterator is an object of a class that implements
the Iterator interface. Iterators are used to emulate
sequences, and, in particular, they are used in the
foreach loop statements.

o Ifyou create a class and implement methods of the
Iterator interface in that class, then an class object
can be used as a collection iterator in the foreach loop
statement.

359

CHAPTER 11 GENERATORS AND ITERATORS

e You can create functions that return a generator object
as a result. A generator is an object of the Generator
class that implements the Iterator interface. To add a
value to the list for generation, use the yield statement
followed by the corresponding value.

o The current() method is used to get the current value
of an iterator. To shift to the next value to generate, use
the next () method. The rewind() method puts an
iterator into the state to generate the first value. You can
get the key of the generated element using the key ()
method. You can use the valid() method to check if an
iterator is ready.

360

CHAPTER 12

Using PHP

Why must you needlessly complicate everything?

—ALF (TV series)

Unlike most other popular languages, PHP is not used “on its own.” It is
used “in a context” PHP was developed for creating web programs or
scripts. Accordingly, PHP is designed for web programming. Next, let’s
look at some simple tasks and situations that explain how PHP code can be
used in web development.

A Script in an HTML Document

Perhaps the most straightforward situation is when PHP code is included
in a document with HTML markup. This approach is useful when you need
to generate content for an HTML document automatically.

THE HTML BASICS

HTML (the acronym from the Hypertext Markup Language) is used to create
web pages. That is, in fact, plain text with unique markers or descriptors, also
called tags. Those tags are for the browser that displays the corresponding
document. Namely, the tags are instructions for the browser to display the
actual text in the document.

© Alex Vasilev 2024 361
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_12

https://doi.org/10.1007/979-8-8688-0258-4_12

CHAPTER 12 USING PHP

Let’s explore how to create (using the PHP tools) a document that
contains a list of the Fibonacci numbers (the first two numbers are equal to
one, and each subsequent number is equal to the sum of the two previous
numbers). In that case, instead of writing the numbers in the document
explicitly, use PHP code to generate the corresponding content.

Details

Documents with HTML markup usually have the . html extension. For the browser,
that is an indicator that the document contains hypertext markup. If you want to
place PHP code in a document with HTML markup, the corresponding file should be
saved with the . php extension.

Let’s analyze the document shown in Listing 12-1.

Listing 12-1. The Fibonacci Numbers

<!DOCTYPE html>
<html>
<head>
<title>The Fibonacci Numbers</title>
</head>
<body>
<h1>The Fibonacci Sequence</h1>
<p>The first two numbers are equal to one, and each next number
is equal to the sum of the two previous ones. Here are the
numbers:</p>
<p>
<?php
$n=20;
$a=1;
$b=1;
echo "%$a, $b";
for ($k=3; $k<=$n; $k++){
362

CHAPTER 12 USING PHP

$b=%$a+%b;

$a=$b-$a;

echo ", $b";
}

echo

, and so on.";

?>

</p>

<p>Do you know what the next number is?</p>
</body>

</html>

Here, you deal with a document containing HTML markup; in that
document, there is a block with PHP code.

Details

It is important to consider what happens when you try to open a document with
HTML code. You study the most common and frequently used scheme and consider
it in a very simplified form.

So, suppose that there are two computers: a client and a server. They are
connected to each other. A browser is launched on the client computer, and using
that browser, you try to open a document hosted on the server computer. When the
client receives the document, it renders it based on the HTML markup.

If you request a PHP document on the server through the client browser, then
that document is executed on the server as a script, and the result is returned to
the browser. If the document contains both HTML markup and PHP code, then the
already existing HTML markup remains "as it is", and instead of the PHP code,
the result of its execution is substituted. The total result is a document with HTML
markup designed to be displayed by the browser. You may say that you deal with
dynamic documents since their contents can change due to the execution of PHP
scripts directly while processing the document. That is how the preceding document
is organized. It contains “static” HTML code and a block of PHP code, which “is
transformed” into a block of hypertext markup during execution.

363

CHAPTER 12 USING PHP

In fact, after executing the PHP code, the browser receives such a
document.

<!DOCTYPE html>

<html>

<head>

<title>The Fibonacci Numbers</title>

</head>

<body>

<h1>The Fibonacci Sequence</h1>

<p>The first two numbers are equal to one, and each next number
is equal to the sum of the two previous ones. Here are the
numbers:</p>

<p>

1, 1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, and so on.</p>

<p>Do you know what the next number is?</p>

</body>

</html>

This code differs from Listing 12-1 because the following HTML code is
inserted instead of the PHP block.

i, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, and so on.

That is a text, although in a general case, it could contain descriptors of
hypertext markup. The text is the result of executing this code.

<?php
$n=20;
$a=1;
$b=1;
echo "$a, $b";

364

CHAPTER 12 USING PHP

for($k=3; $k<=$n; $k++){

$b=%a+%b;
$a=$b-%$a;
echo ", $b";
}
echo ", and so on.";
?>

Anything that is displayed using the echo statement is included in the
document. The code itself is simple. It calculates the first 20 Fibonacci
numbers (the $n variable defines how many numbers are calculated).
Namely, the last and the one before the last numbers in the sequence (two
ones) are stored in the $a and $b variables. A new number is calculated for
each loop. The result is displayed in the document.

@ Note You can imagine all that as if the program prints
directly into the document.

Viewing the document in the browser window shows the result shown

in Figure 12-1.

@ The Fibansca Numbers x o+

Nump
C 0 O locahosts789 w912 01 Qa e w @ »0 @ !

The Fibonacci Sequence

The first two numbers are equal to one, and each next number is equal to the sum of the two
previous ones. Here are the numbers:

1,1,2,3,5,8, 13,21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, and so on

Do you know what the next number is?

Figure 12-1. Displaying the document with PHP code in the
browser window

365

CHAPTER 12 USING PHP

That is, everything is more or less simple. The only thing left is figuring
out how to get the result presented here.

THE HTML BASICS

To create documents with HTML markup, you must have at least a basic
understanding of HTML. However, you do not intend to cover all the principles
of creating HTML documents since it is not the book’s primary purpose. On the
other hand, it is quite difficult to understand how to use PHP scripts effectively
without knowing HTML. Therefore, especially for those unfamiliar with the
basics of HTML, comments are provided to explain the hypertext markup used
in your code.

All descriptors in an HTML document are enclosed in angle brackets < and >.
Between the angle brackets, you put the descriptor’s name. Most descriptors
are paired ones: there is an opening descriptor, and there is a closing
descriptor. The closing descriptor contains a forward slash / in front of the
descriptor name. Everything between the opening and closing descriptor is the
contents of the descriptor. For example, an entire HTML document is enclosed
in a block delimited by <html> and </html> tags. The beginning instruction
<!DOCTYPE html> is a document specification.

The <html> block contains the <head> block and the <body> block. The
<head> block, in turn, contains the <title> block whose contents (the text
placed between the <title> and </title> tags) are displayed in the tab in
the browser window.

The <h1> and </h1> tags define the first-level heading. A paragraph is
defined using the <p> and </p> tags.

You can also use attributes in descriptors in the attribute="value" format
inside the opening descriptor. For example, the <html> tag typically contains
an attribute that specifies the document’s language. In that case, the opening
tag looks like <html 1an§="en">.

366

CHAPTER 12 USING PHP

Let’s consider the technical side of the issue. When dealing with the
document, you suppose that the browser on the client computer makes the
request, and the PHP code is executed on the server computer. Moreover,
even if it is possible to place the document on the server, the debugging
process is not the most pleasant in such a case. Therefore, using the same
computer as the client and server during development is natural. There
are several ways to do that. The following describes the one that seems to
be the most simple, convenient, and understandable. It is about running a
local server.

Q Note Some information about the software and how to
create PHP programs is provided in the Infroduction and Chapter 1.
You can learn how to start a local server and use the NetBeans
environment there. Here, you refresh a little the knowledge gained
earlier.

To start a local server, you can use the following command.
php -S localhost:some port -t some folder

First comes the php (or php.exe) instruction, after which you put the
-S option and the localhost:some_port construction. After the localhost
keyword, specify the port to communicate with the server.

367

CHAPTER 12 USING PHP

Details

Different programs and services send and receive requests when the client and
server interact. A unique numeric identifier matches a program and a message sent
for that program. It is called a port. Many services choose a port automatically, but
in this case, you need to specify the port explicitly. That can be almost any number,
but for reliability (to not specify the port already in use), selecting a port after 5000
is recommended. For example, port 6789 is quite acceptable.

The port is followed by the -t option and a folder on the hard drive
that is the server’s root directory. For example, you can use the following

command.
php -S localhost:6789 -t D:\Books\php\codes

In that case, files in the D: \Books\php\codes folder are treated as
in the server’s root directory. Interaction with the local server is carried
out through the port 6789. But if you first move to the D: \Books\php\
codes folder using the command line, then it is enough to use a simpler
command.

php -S localhost:6789

Details

In Windows, you can use Explorer to navigate to the folder you want to use as the
root directory of the local server and enter the cmd command in the address bar.
The php -S localhost:6789 command is executed in the console window.
You may also have to specify the full path to the php.exe file. For example, if the
php.exe file is in the C: \PHP folder, the command looks like C: \PHP\php -S
localhost:6789.

368

CHAPTER 12 USING PHP

After starting the local server, you can view the document in a browser
window. If the file is called 1isting12_01.php andislocated in the D:\
Books\php\codes folder, which serves as the root directory for the local
server, then you need to enter the following request in the browser
address bar.

localhost:6789/1isting12 01.php

If the 1isting12 01.php file contains the code as in Listing 12-1, the
result should look as shown in Figure 12-1.

@ Note The scheme described is acceptable for testing all
examples discussed next.

Handling the Request Parameters

When you enter the page’s address into the browser’s address bar, you can
specify additional parameters and their values. That can be done quite
simply. After the address, you place the question mark (?) followed by the
parameter and its value in a parameter=value format. The & symbol is
used as a separator if there are multiple parameters.

Listing 12-2 is an example.

Listing 12-2. Handling the Request Parameters

<!DOCTYPE html>

<html lang="en">

<head>
<title>Greetings</title>
</head>

<body>

369

CHAPTER 12 USING PHP

<h1>Welcome Page</h1>
<p> We are happy to greet you,
<?php
if(isset($_GET["name"])) $name=$ GET["name"];
else $name="Mister X";
echo $name;
?>
! It is a great honor for us.
</p>
</body>
</html>

First, let’s look at the result of the code execution and then analyze it.

So, you start the local server; for example, using port 6789 (the php -S
localhost:6789 command from the folder with the 1isting12 02.php file
with the program), and enter the following request in the address bar of

the browser.
localhost:6789/1isting12 02.php

As aresult, the browser window looks as shown in Figure 12-2.

@ Greetings x + - - 2 =

“ C O @ localhost6789/listing12_02.php e =2 % & »» = 0O ‘ H

Welcome Page

We are happy to greet you, Mister X! It 1s a great honor for us.

Figure 12-2. The browser window if the name parameter is not
passed in the request

370

CHAPTER 12 USING PHP

In this case, the browser renders the document with the following
HTML markup.

<!DOCTYPE html>

<html lang="en">

<head>

<title>Greetings</title>

</head>

<body>

<h1>Welcome Page</h1>

<p> We are happy to greet you,
Mister X! It is a great honor for us.
</p>

</body>

</html>

The document contains a greeting with the name Mister X marked
in bold.

THE HTML BASICS

A pair of the and tags were used to bold the text.

Next, in the browser’s address bar, you enter another command (the
important part of the command is marked in bold).

localhost:6789/1isting12_02.php?name=Mickey Mouse

@ Note A space in the name parameter value in the browser’s
address bar is automatically replaced with the %20 instruction.

371

CHAPTER 12 USING PHP

The result is shown in Figure 12-3.

@ Creetings x +
« @ 0 O lcalhost67Blisting12 02phpiname=Mickeyit20Mouse. G & 2 & @ » O @

Welcome Page

We are happy to greet you, Mickey Mouse! It is a great honor for us.

Figure 12-3. The browser window if the name parameter is passed in
the request

In this case, specify the Mickey Mouse value for the name parameter in
the request. As a result, that value is displayed on the welcome page. The
document now has the following HTML markup.

<!DOCTYPE html>

<html lang="en">

<head>

<title>Greetings</title>

</head>

<body>

<h1>Welcome Page</h1>

<p>We are happy to greet you,
Mickey Mouse! It is a great honor for us.
</p>

</body>

</html>

The markup differs from the previous case only in the name (Mickey
Mouse instead of Mister X). That effect is achieved using the PHP code
included in the source document in Listing 12-2. The code is quite simple.

372

CHAPTER 12 USING PHP

<?php
if(isset($_GET["name"])) $name=$ GET["name"];
else $name="Mister X";
echo $name;

?>

The main task is solved using the conditional statement. It checks
the isset($_GET["name"]) condition. The condition is true if there is
an element in the $_GET array with the key "name". Here, you need to
consider that all parameters passed in the request are stored in the $ GET
array. The name of the parameter is the key of the element, and the
value of the parameter is the element’s value. Therefore, you can use the
$_GET["name"] instruction to get the name parameter value passed in the
request. However, the problem is that the user may not pass a value for
the name parameter in the request. Therefore, you first check if the $_GET
array contains the corresponding element. If the element exists, then the
$name=$_GET["name"] statement assigns the value of the name parameter
to the $name variable. If the required element is not in the array, the $name
variable is assigned the "Mister X" value. After that, the echo $name
instruction writes the value of the $name variable to the HTML document.

Using Buttons

Often, when working with HTML documents, use forms. Those are special
blocks with controls, such as buttons, input fields, options, radio buttons,
and drop-down lists. Next, let’s examine another example similar in
functionality to the previous one, but you use a button and an input field
this time. To understand how it works, let’s start with the result.

Assume that there is an index.html file in a folder. The file must
have exactly that name since a file with such a name is automatically
downloaded when accessing the server (unless the file is explicitly
specified in the request).

373

CHAPTER 12 USING PHP

Details

When running a local server, a command like php -S localhost:6789 should be
run from the folder where the index.html file is located.

After running the local server, you enter the request localhost:6789
into the browser’s address bar (or specify a different port, depending on
which one was indicated when running the local server). The result is
shown in Figure 12-4.

@ Greetings x 4+

< C (O O localhost6789 Qv @R O§ :

Introduce yourself

What is your name?

| Submit

Figure 12-4. The initial browser window

The window contains an input field with the text What is your name?
above it, as well as the Submit button. If you just click the button (without
filling in the field), then the contents of the browser window change and is
as in Figure 12-5.

374

CHAPTER 12 USING PHP

@ Welcome x 4+ i - m] X
< C O O localhost:6789/listing120.. @ 12 v+ @ & O @
Welcome

We are happy to greet you, Mister X! It is a great honor for us.

Figure 12-5. The result of clicking the Submit button in the case of
the empty field

You can also do otherwise - enter a name in the field and click the

Submit button, as shown in Figure 12-6.

@ Greetings ® ==

€ =2 C O @ localhost:6789 Qv ©® % 0O ‘ i

Introduce yourself

What is your name?

[Mickey Mouse || submit |

Figure 12-6. The form with the filled field before submitting data

After pressing the Submit button, you see the result shown in
Figure 12-7.

375

CHAPTER 12 USING PHP

- (=] X
@ Welcome ® + b

< C O O localhost6789/listing’2.. @ 1= % © * O @

Welcome

We are happy to greet you, Mickey Mouse! It is a great honor for us.

Figure 12-7. The result of clicking the Submit button in the case of
the filled field

Thus, after pressing the Submit button, a greeting appears. If the field
was empty when submitting the form data, the name Mister Xis displayed
in the greeting. If the field was filled in, the greeting displays the name
specified in this field. Now, let’s turn to the program code. You start with
the contents of the index.html file.

<!DOCTYPE html>

<html lang="en">

<head>

<title>Greetings</title>
</head>

<body>

<h1>Introduce yourself</h1>
<p>What is your name?</p>

<form action="listing12 03.php" target="_self" method="post">
<input type="text" name="name">
<button>Submit</button>

</form>

</body>

</html>

376

CHAPTER 12 USING PHP

In addition to the standard HTML elements already familiar to us, the
document contains a form block marked with the <form> and </form>
tags. Inside the form, there are two elements. That is an input field and a
button. The input field is created as an <input> element.

THE HTML BASICS

It can be understood that you deal with a text field due to the type attribute
whose value is "text".

A button is created using the <button> and </button> tags. The text
between these tags is the name of the button.

It is crucial here which attributes are specified for the form and the
input field. In particular, you use three attributes for the form. The method
attribute is set to "post". It defines how the form data is submitted.

Details

There are two methods for submitting form data: GET and POST. The difference

is in the way the data is transmitted. In general terms, the GET method transfers
data without encoding. An example of transferring data using the GET method

has already been given in the example with processing parameters passed in the
request in the address bar.

The POST method transfers data more safely. In this example, you use it to transfer
data to the server.

The target attribute with the value "_self" means that the response
sent by the server is displayed in the same window where the form was
displayed.

377

CHAPTER 12 USING PHP

Details

Let’s talk about the scheme. The browser on the client side makes a request to the
server. The server sends a response — the page with the form. There is the Submit
button. The form data is sent to the server when the button is clicked. The server
processes the data (for doing that, a script is used that can be explicitly specified
in the form description) and then sends a response (HTML code) to the browser.
The document, among other things, can be displayed in the window where the
document with the form was displayed initially. That is the approach you use in the
example.

Finally, the action attribute defines the script to process the form
data. The HTML code resulting from executing the program is sent back
to the browser. In this example, the value of the action attribute is the text
"listing12 03.php". That means the form data is passed to the program
written in the 1isting12 03.php file for processing.

Details

The listing12 03.php file must be in the same folder as the index.html file. If
the file is located in another folder, then you should specify the full path to it, starting
from the root directory (in this case, that is the place where the index.html file is
located).

Submitting the form data means passing information about the state
of the form’s controls to the server. When processing the data, the controls
need to be identified somehow. For that purpose, set the name attribute
for the controls. In this case, there is only one control (however, it also
needs to be identified). You set the input field’s name attribute to "name".
Submitting the form data means that the server gets the value contained in
the input field when the Submit button is clicked.

378

CHAPTER 12 USING PHP

So, you know now what is sent to the server. The question is how the
data received by the server is processed. According to the value of the
form’s action attribute, the program from the 1isting12 03.php file is
responsible for processing the form data. The program code is shown in
Listing 12-3.

Listing 12-3. Processing the Button Click

<!DOCTYPE html>
<html>
<head>
<title>Welcome</title>
</head>
<body>
<h1>Welcome</h1>
<p>We are happy to greet you,
<?php

if(empty($_POST["name"])){

$name="Mister X";
}
else{
$name=$_POST["name"];

}

echo $name;
?>
! It is a great honor for us.</p>
</body>
</html>

379

CHAPTER 12 USING PHP

You are dealing with HTML code with the following PHP block
added to it.

<?php
if(empty($_POST["name"])){
$name="Mister X";
}
else{
$name=$_POST["name"];
}
echo $name;
7>

A text fragment is inserted into the document when the code is
executed. But to define that text, you need to make some manipulations.
The first step is to get the value entered by the user in the form'’s input field.
As noted, you use the POST method to send the data, and the field name
attribute from which to read the text has the value "name". Attributes that
are passed by the POST method are automatically stored in the $ POST
global array. The name attribute’s value (enclosed in double quotes) is the
element’s key, and the passed value (the contents of the input field) is the
array element’s value.

Q Note In the example, the name attribute has the value
"name". That may cause some ambiguity. Note that the "name" key
of the $ POST["name"] element is associated with the "name"
value of the name attribute. If the input field’s name attribute had the
value "newname", then the value written to the input field would be
passed as the $ POST["newname"] element.

380

CHAPTER 12 USING PHP

The program uses a conditional statement that checks the empty($_
POST["name"]) condition. There, the $_POST["name"] element is passed as
an argument to the empty () function. The function checks the text passed
as an argument to define if it is empty (the user did not enter anything into
the form input field). If the user left the field blank, the $name variable is
setto "Mister X".Ifthe input field is not empty, then the $name variable is
assigned the value of the $ POST["name"] element - that is, the value that
the user has entered in the form input field.

Once the value of the $name variable is defined, it is written to the
document, and the server sends it to the browser, and thus it is displayed
in the original browser window.

Using Several Buttons

Often, you have to use several buttons in the same form. When pressing
different buttons, the reaction of the server should be different. The
following example explains how to implement such a task using PHP. Like
in the previous example, let’s start with the results.

Details

As before, the local server is launched from the folder where the index.html file is
located. In other words, you should place the index.html file in the folder that serves
as the root directory for the local server. The code for that file is discussed later.

The initial browser window is shown in Figure 12-8.

381

CHAPTER 12 USING PHP

@ Two Buttons X o+

= C @ @ localhost6789 Qe ¥ @20 @ :

Two Buttons

Please, select a button and click 1t.

[Fist || second |

Figure 12-8. The initial browser window with a form and
two buttons

Details

To see the window, you should enter localhost, followed by a colon, and the port
number specified when running the local server in the browser’s address bar. For
example, that could be localhost:6789.

The window contains a small text and two buttons named First and
Second. You can click any of them. If you click the First button, you get the

result shown in Figure 12-9.

w = 0 *
@ !know the button x +

€ C O O localhost6789/listing12... @ 12 % @ * O @ i

You have made a choice

You have clicked the FIRST button.

Figure 12-9. The result after pressing the First button

382

CHAPTER 12 USING PHP

Now, the browser window contains a message with the name of the
clicked button. The same happens if you click the Second button in the
initial window (see Figure 12-8). But the button’s name is different in this
case, as shown in Figure 12-10.

@ !know the butten x +

« C 0 @ localhost6789/listingl2_... & =2 &« @ #» 0O ‘ i

You have made a choice

You have clicked the SECOND button.

Figure 12-10. The result after pressing the Second button

Thus, when a button is pressed in the original window, a new
document is displayed in the same window with the message containing
the name of the pressed button (displayed in capital letters and in bold).

First, analyze the HTML code for the index.html file that opens when
the browser starts.

<!DOCTYPE html>

<html lang="en">

<head>

<title>Two Buttons</title>

</head>

<body>

<h1>Two Buttons</h1>

<p>Please, select a button and click it.</p>
<form target="_self" method="post" action="listing12 04.php">
<button name="first" value="FIRST"
style="width:100px">First</button>

383

CHAPTER 12 USING PHP

<button name="second" value="SECOND"
style="width:100px">Second</button>
</form>
</body>
</html>

Compared to the previous case, there are not too many changes,
but they are. First, there is no input field, but there are two buttons (the
elements created by <button> and </button> tags). Each of the buttons
is described with the style="width:100px" attribute. It defines the width
of the button to be 100 pixels. That is about “decoration.” The first button
has the value "first" for the name attribute. The name attribute’s value
for the second button is "second". You need that attribute to identify the
buttons in the PHP code. In addition, each button has a value for the value
attribute. For the first button, itis "FIRST", and for the second button, it is
"SECOND". You also use those values in the PHP code.

Details

When you click a button, since, in this case, the POST method is used to send
data, the element associated with the clicked button is added to the $_POST array.
The key is determined by the button’s name attribute, and the element’s value is
determined by the button’s value attribute.

The form data is processed by the program from the 1isting12 04.
php file (the value "listing12 04.php" for the form’s action attribute).
The code of the program is shown in Listing 12-4.

384

CHAPTER 12 USING PHP

Listing 12-4. Handling a Button Click

<!DOCTYPE html>

<html>

<head>

<title>I know the button</title>

</head>

<body>

<h1>You have made a choice</h1>

<p>

You have clicked the

<?php
if(isset($ _POST["first"])) $button=$ POST["first"];
else $button=$ POST["second"];
echo $button;

?>

 button.

</p>

</body>

</html>

That is a simple HTML code containing a small PHP block.

<?php
if(isset($_POST["first"])) $button=$ POST["first"];
else $button=$ POST["second"];
echo $button;

?>

As a result of executing the code, the text (the word associated with
the button’s name) is determined and entered in the document. Then, the
document is passed to the browser.

385

CHAPTER 12 USING PHP

You use the conditional statement in which the isset($_
POST["first"]) condition is tested. It is true if there is an element with
the "first" keyin the $_POST array. The true condition means that the
user clicked the First button since that button’s name attribute has the
value "first". The element $ POST["first"] gives the value of the
button’s value attribute (so it is "FIRST"). That is why after executing the
$button=$ POST["first"] statement, the $button variable gets the value
"FIRST".

If the isset($ POST["first"]) condition is false, it means that there
is no element with the key "first" in the $_POST array. That, in turn,
implies that the First button was not clicked. If so, then you must conclude
that the Second button was clicked. Therefore, using the $button=$
POST["second"] command, you assign the value of the element from the
$_POST array with the "second" key to the $button variable. That is the
value "SECOND" of the value attribute of the second button.

As aresult of executing the conditional statement, the $button variable
gets the value of the value attribute of the button clicked by the user. That
value is written to the document the server sends to the browser.

Using Lists and Checkboxes

The following example uses PHP to process data from a form with a drop-
down list and checkboxes. How the browser window looks at the initial
stage is shown in Figure 12-11.

Details

You should use the previous scheme: in the root directory for the local server, you
place the index.html file, which contains the form description.

386

CHAPTER 12 USING PHP

@ Menu ® +

S
%

&« - C O O localhost:6789 Q@ ® % = 0O ‘ :

Make your choice

Select a drink:

| Tea v

O Add milk
O Add sugar

| Reset] [Submit

Figure 12-11. The form with a drop-down list and checkboxes

The window contains a form where the user is prompted to select a
drink (from a drop-down list). Also, the user can select to add (or not to
add) milk and sugar. The window with the expanded drop-down list is

shown in Figure 12-12.

387

CHAPTER 12 USING PHP

& Menu b +
« - C ©t @ localhost6789 Q ¥ w ® % = 0O ‘ :

Make your choice

Select a drink:

Tea ~

Coffee
Chocolate

(J Add sugar

Reset || Submit

Figure 12-12. The window with the expanded drop-down list

There are also two buttons in the window: Reset and Submit. Clicking

the Reset button resets the form settings. The form data is sent to the
server when you click the Submit button. Figure 12-13 shows the window
with the form settings made: the Coffee drink is selected in the drop-down
list, the Add milk checkbox is checked, and the Add sugar checkbox is not
checked.

388

CHAPTER 12

USING PHP

X

£% = 0

@ Menu x =+

& C 0 O localhost:6789 @

S
Y

Make your choice

Select a drink:

| Coffee

Add milk

(J Add sugar

[Reset] [Submit

@»I 0@ :

Figure 12-13. The settings in the form

If you send the data to the server, you get the result shown in

Figure 12-14.

L -

(m]

b4

@ Your order ® -~

€« - C 0 O localhost:6789/listi.. @

Your order is ready

You ordered:

¢ The drink: COFFEE

« Milk: add
« Sugar: do not add

2 % @ % = O :

Thank you for your choice!

Figure 12-14. The result of processing the form data

389

CHAPTER 12 USING PHP

The window displays information about the order (the selected drink
and the need to add milk and sugar). Let’s analyze how the program’s
execution leads to the described result. The index.html file contains the
following code.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Menu</title>
</head>
<body>
<h1>Make your choice</h1>
<form target="_self" method="post" action="listing12 05.php">
<label for="drinks">Select a drink:</label>

<!-- The drop-down list -->
<select name="drinks" style="width:205px">
<option value="TEA">Tea</option>
<option value="COFFEE">Coffee</option>
<option value="CHOCOLATE">Chocolate</option>
</select>

<!-- Checkboxes -->
<input type="checkbox" value="add" name="milk">
<label for="milk">Add milk</label>

<input type="checkbox" value="add" name="sugar">
<label for="sugar">Add sugar</label>

<!-- Buttons -->
<input type="reset" name="rb" value="Reset"
style="width:100px">
<input type="submit" name="sb" value="Submit"
style="width:100px">

390

CHAPTER 12 USING PHP

</formy
</body>
</html>

The drop-down list is an element defined by the <select> and </
select> tags. And this time, you implement the buttons as <input>
elements.

THE HTML BASICS

The element defined by the <select> and </select> tags is a drop-down
list. The items of the list (you see them when expanding the list) are created
by the <option> and </option> tags. The text between those descriptors is
the item’s content displayed in the list. You specify the value attribute for the
three <option> elements. The <select> element has the value "drinks"
for the name attribute. When the form data is submitted to the server, there

is an element in the $_POST array with the key "drinks", and the value of
that element is determined by the value attribute of the <option> element
selected in the drop-down list.

The checkboxes are created as <input> elements, with the type attribute
set to "checkbox". For one of the checkboxes, the value and name
attributes are "add" and "milk", respectively, and for the other — "add" and
"sugar". Suppose a checkbox is selected when submitting the form data. In
that case, the $_POST array contains an element with the key determined by
the value of the name attribute of that checkbox, and the value of the array
element is determined by the value attribute.

The buttons are also created as <input> elements. The type attribute for the
first button is set to "reset", and for the second button, that attribute is set
to "submit". Therefore, the first button is a reset button. If you click it, the
settings of all form elements return to their original state. The second button is

391

CHAPTER 12 USING PHP

a button for submitting the form data. The name attribute for buttons is equal
to "rb" and "sb", respectively, but those values are not used. The value
attribute determines the title displayed on the button.

The text labels are used for the list and checkboxes. The label elements are

created using the <label> and </label> tags. The for attribute of those

elements specifies the name (the value of the name attribute) of the element
for which the text label belongs.

The
 instruction is a command to break a line in the browser window.

The document also uses HTML comments. Comments in HTML begin with <! -
- and end with -->.

As you can see from the form description, data processing is performed
by the program in the 1isting12 05.php file. The program code is shown
in Listing 12-5.

Listing 12-5. Using a List and Checkboxes

<!DOCTYPE html>
<html>
<head>
<title>Your order</title>
</head>
<body>
<h1>Your order is ready</h1>
<p>You ordered:</p>
<?php
// Defines a drink:
$drink=$ POST["drinks"];
// Is it necessary to add milk:
if(isset($_POST["milk"])) $milk=$ POST["milk"];
else $milk="do not add";

392

CHAPTER 12 USING PHP

// Is it necessary to add sugar:
if(isset($_POST["sugar"])) $sugar=$ POST["sugar"];
else $sugar="do not add";
// The text to add to the document:
$txt=<<<MYTEXT

The drink: $drink</1i>
Milk: $milk</1i>
Sugar: $sugar</1li>

MYTEXT;
// Adds the text to the document:
echo $txt;

?>

<hr>

<p>Thank you for your choice!</p>

</body>

</html>

This HTML document contains a PHP code that generates text (based
on the form data), and then the text is added to the document. But first, the
$drink=$ POST["drinks"] command assigns the value attribute of the
element selected in the drop-down list to the $drink variable.

Q Note In this case, you don’t check if the $_POST array
contains an element with the key "drinks" (the value of the drop-
down list’s name attribute) because some element in the list is
always selected.

393

CHAPTER 12 USING PHP

Next, two similar conditional statements follow. In the first one, the
isset($ _POST["milk"]) condition is checked. It is true if the $_POST
array contains an element with the key "milk" (the checkbox for adding
milk is checked). If so, then the $milk=$ POST["milk"] command assigns
the value attribute of the corresponding checkbox to the $milk variable.
Otherwise, the $milk="do not add" command is executed.

The data associated with the checkbox “responsible” for adding sugar
is processed similarly. But now, the isset($_POST["sugar"]) condition is
checked. If the condition is true, the $sugar=$ POST["sugar"] command
is executed. If the condition is false, the $sugar="do not add" command
is executed.

After the values of the $drink, $milk, and $sugar variables are defined,
the $txt variable is created with a multi-line text value.

THE HTML BASICS

Use the and tags to create an unordered list. List items are
defined by the <1i> and </11i> tags.

The <hr> instruction adds a horizontal line to the document.

The echo $txt command adds the generated text into the document,
which the server returns to the browser.

A Slider and Radio Buttons

The following example continues the “culinary” theme. This time, you use
controls such as a slider and radio buttons. The browser window displays
the document shown in Figure 12-15 at the initial stage.

394

CHAPTER 12 USING PHP

@ Coffee X + v B = e

& C O O localhost:6789 @ 2 % * = 0O ‘ :

Coffee is the best drink

We would like you to taste it.

@ Espresso

O Latte

O Americano

O Cappuccino

Sugar (no more than 5 spoons):

)

| Reset || submit |

Figure 12-15. The document with a slider and radio buttons

In addition to text, the document contains a group of four radio
buttons with the names of coffee drinks and a slider at the bottom of the
form for selecting the amount of sugar to add to the drink. Two buttons
in the document (Reset and Submit) allow us to clear the form (reset
controls) and submit the form data to the server. The server sends a
response, which depends on the form settings. For example, if the settings
in the form are the same as those proposed in the initial document, the
result is as in Figure 12-16.

395

CHAPTER 12 USING PHP

@ Coffes x + e - = &

“ C 0 O localhost6789/listin.. & & ¥ ® = O @

Your coffee is ready

It will be coffee Espresso with two spoons of sugar.

Good luck and come again!

Figure 12-16. The document is displayed after submitting the
form data

If you change the original document’s settings, the result is different.
Figure 12-17 shows the document in which different (compared to the

initial version) settings are made.

396

CHAPTER 12 USING PHP

@ Coffes x + e - = =

€ 2 C 0 O localhost6789 @ e w * S 0O0@

Coffee is the best drink

We would like you to taste it.

O Espresso
O Latte

O Americano
@ Cappuccino

Sugar (no more than 5 spoons):

L]

Reset || Submit |

Figure 12-17. The settings of the form are changed in the initial
document

After submitting the form data, you get the result, as shown in
Figure 12-18.

397

CHAPTER 12 USING PHP

@ Coffes x + e - = &

& C 0O O localhost6789/listin.. @ 12 ¥ R N O @

Your coffee is ready

It will be coftee Cappuecino with four spoons of sugar.

Good luck and come again!

Figure 12-18. The server response depends on the form settings

Next, let’s analyze the code. This project uses two files. One is the
index.html file in the root directory where the local server is started. The
second is the 1isting12 06.php file in the same directory for processing
the form data sent to the server. The following is the code for the index.
html file.

<!DOCTYPE html>

<html lang="en">

<head>

<title>Coffee</title>

</head>

<body>

<h1>Coffee is the best drink</h1>

<p> We would like you to taste it.</p>

<hr>

<form target="_self" method="post" action="listing12 06.php">
<!-- Radio Buttons -->

<input type="radio" id="espresso" name="coffee" checked
value="Espresso">

<label for="espresso">Espresso</lebel>

398

CHAPTER 12 USING PHP

<input type="radio" id="latte" name="coffee" value="Latte">
<label for="latte">Latte</lebel>

<input type="radio" id="americano" name="coffee"
value="Americano">

<label for="americano">Americano</lebel>

<input type="radio" id="cappuccino” name="coffee"
value="Cappuccino">

<label for="cappuccino">Cappuccino</lebel>

<label for="sugar">Sugar (no more than 5 spoons):</label>

<!-- Slider --»>

<input type="range" name="sugar" min="0" max="5" step="1"
value="2">

<!-- Buttons -->

<input type="reset" name="rb" value="Reset"
style="width:100px">

<input type="submit" name="sb" value="Submit"
style="width:100px">

</form>

</body>

</html>

The document, in general, and the form in particular, contains many
familiar elements. In addition to them, there are radio buttons and a slider.
The radio buttons and the slider are implemented as <input> elements.

399

CHAPTER 12 USING PHP

THE HTML BASICS

For the radio buttons, the type attribute is set to "radio", and for the slider,
the type attribute is set to "range".

In addition to the type attribute, the following attributes are specified for

the radio buttons. The name attribute for all radio buttons is "coffee". You
use the same value for the name attribute since you need to group the radio
buttons. One and only one radio button can be selected within a group. Group
the radio buttons by giving the same value to the name attribute. Individual
radio buttons can be identified using the id attribute. You use that attribute
to bind a text label and a radio button. The radio buttons also have the value
attribute. By that attribute, when processing the request, you determine which
radio button was selected when submitting the form. One of the radio buttons
has the checked attribute, which means that the corresponding radio button
is selected (checked).

For the slider, the name attribute’s value is "sugar". That attribute is used
when processing the form data to determine the slider. The state of the slider
is defined by the value attribute (initially set to "2"). The min and max
attributes are the minimum and maximum values for the slider, respectively.

The step attribute holds the increment for the positions of the slider.

Listing 12-6 is the code used to process the form data.

Listing 12-6. Using a Slider and Radio Buttons

<!DOCTYPE html>
<html>

<head>
<title>Coffee</title>
</head>

<body>

400

CHAPTER 12 USING PHP

<h1>Your coffee is ready</h1>
<p>
<?php
// The function defines text with information
// about sugar content:
function getsugar($spoons){
switch($spoons){
case 1: return "with a spoon of sugar";
case 2: return "with two spoons of sugar";
case 3: return "with three spoons of sugar";
case 4: return "with four spoons of sugar";
case 5: return "with five spoons of sugar";
default: return "no sugar";

}

// Defines a drink:
$coffee=$ POST["coffee"];
// Determines the sugar content:
$sugar=getsugar($_POST["sugar"]);
// The text to add to the document:
$txt="It will be coffee $coffee $sugar.";
// Adding text to the document:
echo $txt;

2>

</p>

<hr>

<p>Good luck and come again!</p>

</body>

</html>

401

CHAPTER 12 USING PHP

The idea is quite simple. Following the form’s settings, the $txt
variable is formed, and its text value is inserted into the document
that the server sends to the browser. The text includes the values of the
$coffee and $sugar variables. The $coffee variable is determined by the
$coffee=$ POST["coffee"] command. That is the value attribute of the
selected radio button. The getsugar () function determines the $sugar
variable. The function has a text argument (assumed to be the slider’s
value attribute). Depending on the argument, the function returns a string
with information about how many spoons of sugar to put in coffee. The
function is used in the $sugar=getsugar($ POST["sugar"]) command.
Here, to get the value attribute of the slider, use the $ _POST["sugar"]
instruction. In all other aspects, the code should be clear.

THE HTML BASICS

The corresponding block is marked with the and tags to highlight
a text in italics.

Summary

e PHP code can be added to HTML documents, selected
by the <?php and ?> instructions. Such blocks allow us
to automatically generate HTML code fragments and
insert them into the final document.

o PHP scripts can be used to process requests performed
through the address bar. Parameters passed in the
address bar are stored in the $_GET array. The name of
the parameter is the key of the element, and the value
of the parameter is the element’s value.

402

CHAPTER 12 USING PHP

PHP scripts are used to process form data sent to the
server. Usually, data is sent using the POST method,
and the parameters that the server receives are
contained in the $_POST array. The name attribute of a
form element specifies the element’s key in the array.
The value attribute of a form element is the value of the

corresponding element in the array.

403

CHAPTER 13

Afterword: What
Was and What Will Be

I'm tired. I blink with difficulty!
—ALF (TV series)

Programming is a field in which something new, effective, and interesting
appears constantly. So, monitoring all innovations is necessary, but for
objective reasons, that is not always possible. Therefore, the “minimal
strategy” is to understand and assimilate the basic principles underlying
this or that technology. It is important because understanding the basic
concept makes it possible to quickly and easily learn new approaches and
employ resources, just like new elements of a children’s construction set
are added to an existing framework.

The book discussed the most essential topics and issues related to
learning the PHP language. In addition to the actual syntax rules and
constructions, there is also such an aspect as the use of the language in
practice. But to understand how a language “works” in real life, it is vital
to know what it can do in principle. Hopefully, after reading the book and
studying the examples discussed, you now have an overall picture of PHP’s
potential.

© Alex Vasilev 2024 405
A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4_13

https://doi.org/10.1007/979-8-8688-0258-4_13

CHAPTER 13 AFTERWORD: WHAT WAS AND WHAT WILL BE

One more point is important to be stressed. Programming languages
are studied for a variety of reasons. But the main thing, perhaps, is the
desire to get a new profession, to become a programmer. That means that
programming is not limited to learning a single language. Each language
has its own characteristics, but certain universal programming principles
are common for most languages. The presented book is to help you
understand, even on an intuitive level, those principles and make it easier
for them to move ahead along your professional path. And, of course,
thank you for paying attention to the book.

406

Index

Symbols

== and != operators, 117
$A="Alpha” command, 176
$A++ command, 65
$color=colors() command, 337
$gen=gen() command, 350
$gen->rewind() command, 351
$num=func_num_args()
command, 152
$number variable, 65
$res=power($z,$num)
command, 136

$rnd=randoms(5) command, 346

$setNumber() method, 247

A

Abstract methods, 273

Anonymous function, 162

Array
assignments, 111, 113, 115
comparing, 117, 118
concatenation, 115
definition, 91, 125
elements, 125
example, 92-94, 96-98
functions, 119-121, 123
loop

© Alex Vasilev 2024

deleting elements, 101, 102

elements, 104, 105
endforeach keyword, 100
foreach, 103, 106
statement, 99

multidimensional, 107, 108, 110

array_pop($C) command, 124
Assignment operators, 48, 52
Associative array, 91

B

Bitwise operations, 41

C

calc() function, 183, 184
__call() method, 226, 228, 229
catch keyword, 304
Child/derived class, 244, 271
Classes and objects
constructor, 211, 212
copying objects, 217-220
creating, 203-206
destructor, 213, 214

fields, in constructor, 235-238

methods, 207, 209
OOP principles, 199-202

A. Vasilev, PHP by Example, https://doi.org/10.1007/979-8-8688-0258-4

407

https://doi.org/10.1007/979-8-8688-0258-4

INDEX

Classes and objects (cont.)
private fields, 221, 222
special tasks, 223, 225-227,

229-232, 234
static fields, 215, 216

defined() function, 177
define() function, 30, 177, 196
display() function, 147, 298
do-while statement, 89
drawLine() method, 268

Class members, 239
Constants, 177, 179
Control statements E
do-while, 66-69
goto instruction, 82, 83
conditional if, 53-55, 57-59, 61
for loop, 69-71, 74
switch selection, 74,
76-78, 80-82
while loop, 62-65
count() function, 95
count_type() function,
151-153, 155
create() method, 222
current() method, 336, 358, 360

echo keyword, 32
Error handling
multiple catch blocks, 333
classes, 318-320, 322-324
custom exceptions,
314-316, 318
exception classes, 307, 308, 310
handling errors, 330, 331
principles, 303-305, 307
rethrowing exception, 328, 330
throwing exceptions,
310,311, 313
try-catch constructions/finally
block, 324-327
D error_reporting() function, 331, 333

Data types eval() function, 159, 306
function, 31
integer type, 31
operations F

factorial() function, 134, 157
fclose() function, 189, 197
feof() function, 189, 191
fgets() function, 52, 189, 191
file_exists() function, 189

arithmetic, 34-36
assignment, 48
bitwise, 41-43, 45
comparison, 37-39
logical, 39, 40
strings, 46, 48 Files

ternary, 49-51 access modes, 188

408

fopen(), 187
functions, 189, 190
including file, in program,
194, 195
myfile.txt, 190, 193
reading, 190
writing, 192
fopen() function,
187,189, 191, 197
foreach keyword, 99
foreach loop statement, 106
for keyword, 70
for loop statement, 90
fread() function, 189
func_get_args() function, 148, 151
function_exists() function, 33
Functions
anonymous function, 162-164
arguments, 169
arbitrary number, 148,
150-152, 154
default values, 145-147
passing mechanism, 141-144
result type, 137-140
commands, 128
creating, 127-129, 131
definition, 127
eval() function, 159, 161
named arguments, 164-167, 169
recursion, 156-158
result, 132-134, 136
return value, 169
fwrite($h,"[$k] ") command, 194

INDEX

G

Generator function
arguments, 339, 340
array, 341, 342
calling function, 348
definition, 335
example, 336, 337, 346
loop statement, 338
objects, 349, 350
passing value, 351-353
result, 344, 345

generator_to_array() function, 343

__get() method, 229, 232

getArea() method, 278

get_class() function, 33

getMessage() method, 313,

317,324

getName() method, 278

getReturn() method, 343, 345

getsugar() function, 402

gettype() function, 31-33, 153

Global variable, 181, 182

goto statement, 90

H

hello() command, 295
hello() function, 293

l, J
if keyword, 53
if statement, 89

409

INDEX

Inheritance
constructors, 253-256
creating child class, 243-245, 248
field value, 263-265
multilevel, 266-268, 270
overriding method, 248, 249,
251, 252
private class members, 257,
258, 272
protected class members, 259,
261, 272
virtual methods, 261-263
Interpreter regime
command, 4, 5
create new project, 6, 8
hello.php file, 4
index.php file, 10, 12
NetBeans, 13, 14, 16
NetBeans environment
window, 6
program execution, 12, 17
runtime environment, 9
Visual Studio code
environment, 5
is_callable() function, 33
Iterators
class, 354, 355
interface, 356, 357
interface methods, 354
object, 359

K

key() method, 358, 360

410

L

list() function, 119
Local variables, 179
Logical operators, 39

match statement
default keyword, 85
program output, 88
program uses, 85
selection statement, 87
syntax, 84
method_exists() function, 33
Multidimensional array, 107
Multiline strings, 184-186

N

NetBeans environment, 13

next() method, 336, 337, 358, 360
numbers() function, 340

nums() function, 343, 349

nums() generator function, 347, 353

O

Object-oriented programming
(OOP), 199
OOP mechanisms
abstract class, 273-276, 278, 300
anonymous classes, 298, 299, 302
inheritance/interface,
implementation, 283, 285

interface inheritance, 281

interfaces, 278-281

naming, 292-294, 296-298

object type control,
288-290, 292

traits, 285-287

P, Q
Parent class, 271
PHP
buttons
attributes, 377
click, 379, 385
example, 381-383
forms, 373, 378
index.html file, 376, 383
program, 381
submit button, 376
window, 374
$_POST array, 386
HTML document, script
browser window, 365, 367
code, 364
fibonacci numbers, 362, 363
local server, 369
port, 368
text, 364
list and checkboxes, 386
browser window, 386-388
form settings, 389
index.html file, 390
<input> elements, 391
program code, 392, 393

INDEX

programming, 361
request parameters
browser window, 370-372
conditional statement, 373
example, 369, 370
welcome page, 372
slider/radio buttons, 394-399,
401, 402
PHP program
code, 1-3
NetBeans development
environment, 25
regime
interpreter, 3
Server, 18
POST method, 380, 403
power() function, 135, 141
print(" ".$b) command, 74
print($result) command, 69
print() function, 30
print_r() function, 94, 95

R

randoms() generator function, 345
readable() function, 189
References
creation, 172,173
example, 175
program execution, 173, 174
variable, 171, 172
resize() method, 359
rewind() method, 358, 360
Run File command, 16

411

INDEX

S

send() method, 351
Server regime
hi.php file, 20, 21
HTML document, 18, 19, 22
local host, 23, 24
__set() method, 229, 232
set() method, 208, 222, 251,
258, 281
setAll() method, 247
set_exception_handler()
function, 331
setNumber() method, 247
setSymbol() method, 247
settype() function, 33, 34
show() function, 130, 147, 180,
195, 298
show() method, 238, 247, 248, 250,
252,262, 263, 270, 283,
287, 289
sizeof() function, 155
Static variables, 182, 184
strlen() function, 47
str_replace() function, 48
substr() function, 47

412

sum() function, 151

swap() function, 142-144
swap($A,$B) command, 143
switch keyword, 75

T, U

Ternary operator, 52

__toString() method, 223, 225,
317,318

trim() function, 51

\'

valid() method, 358, 360
Variables
commands, 29
comments, 29
creating, 28
$ symbol, 27
Virtuality, 263

W XY, Z
while loop statement, 89
Windows operating system, 5

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The First Program
	The Program’s Code
	The Interpreter Regime
	The Server Regime
	Summary

	Chapter 2: Variables and Data Types
	Introduction to Variables
	Basic Data Types
	The Arithmetic Operations
	The Comparison Operations
	The Logical Operations
	The Bitwise Operations
	The Operations with Strings
	Assigning Values
	The Ternary Operator
	Summary

	Chapter 3: The Control Statements
	The if Conditional Statement
	The while Loop Statement
	The do-while Loop Statement
	The for Loop Statement
	The switch Selection Statement
	The goto Instruction
	The match Selection Statement
	Summary

	Chapter 4: Arrays
	Getting Familiar with Arrays
	A Loop over an Array
	Multidimensional Arrays
	Array Assignments
	Concatenating Arrays
	Comparing Arrays
	Functions for Handling Arrays
	Summary

	Chapter 5: Functions
	Creating Functions
	The Function Result
	The Type of Arguments and Result
	The Argument Passing Mechanism
	The Argument Value by Default
	An Arbitrary Number of Arguments
	Recursion
	The eval() Function
	Anonymous Functions
	Named Arguments
	Summary

	Chapter 6: Useful Tricks and Operations
	References
	Constants
	Global Variables
	Static Variables
	Multiline Strings
	Using Files
	Including a File in the Program
	Summary

	Chapter 7: Classes and Objects
	The OOP Principles
	Creating Classes and Objects
	The Methods
	The Constructor and the Destructor
	Static Fields and Methods
	Copying Objects
	Private Fields and Methods
	Special Methods
	Defining Fields in the Constructor
	Summary

	Chapter 8: Inheritance
	Creating a Child Class
	Overriding Methods
	Constructors and Inheritance
	Inheritance and Private Members
	Protected Members of a Class
	Virtual Methods
	A Function as a Field Value
	Multilevel Inheritance
	Summary

	Chapter 9: Advanced OOP Mechanisms
	Abstract Classes
	Interfaces
	Interface Inheritance
	Class Inheritance and Interface Implementation
	Traits
	Object Type Control
	A Namespace
	Anonymous Classes
	Summary

	Chapter 10: Error Handling
	Exception Handling Principles
	Exception Classes
	Throwing Exceptions
	The Custom Exceptions
	Handling Exceptions of Different Classes
	Nested try-catch Constructions and the finally Block
	Rethrowing an Exception
	The Functions for Handling Errors
	Summary

	Chapter 11: Generators and Iterators
	Getting Familiar with Generators
	A Generator Function with Arguments
	An Array Based on a Generator
	The Generator Result
	Using Generators
	Passing a Value to a Generator
	Iterators
	Summary

	Chapter 12: Using PHP
	A Script in an HTML Document
	Handling the Request Parameters
	Using Buttons
	Using Several Buttons
	Using Lists and Checkboxes
	A Slider and Radio Buttons
	Summary

	Chapter 13: Afterword: What Was and What Will Be
	Index

