PHP and MySQL

°24—Hour Trainer

Andrea Tarr

PHP AND MYSQL® 24-HOUR TRAINER

INTRODUCTION. .

» SECTIONI
LESSON 1
LESSON 2
LESSON 3
LESSON 4
LESSON 5
LESSON 6

» SECTIONII

LESSON 7
LESSON 8
LESSON 9
LESSON 10
LESSON 11

» SECTION Il
LESSON 12
LESSON 13
LESSON 14
LESSON 15

» SECTION IV
LESSON 16
LESSON 17

» SECTION YV
LESSON 18
LESSON 19

... XVii
GETTING STARTED WITH PHP

Setting Up Your Workspace.oviii i 3
AddingPHPtoaWebPage, 23
Learning PHP Syntax. ... 33
Working with Variables 45
DebuggingCodet 57
Working with ComplexData. ..., 71
WORKING WITH PHP CONTROLS, FUNCTIONS,

AND FORMS

Making DecCiSioNsS. oot 91
Repeating Program Steps. 107
LearningaboutScope. 119
Reusing Code with Functions 125
Creating FOrms. 141
OBJECTS AND CLASSES

Introducing Object-Oriented Programming 161
Defining Classes. . ..o v 167
UsSiNg Classesot e 177
Using Advanced Techniques, 187
PREVENTING PROBLEMS

Handling Errors.t e 205
Writing Secure Codeo 217
USING A DATABASE

Introducing Databases i 227
Introducing MySQL 239

Continues

LESSON 20
LESSON 21
LESSON 22
LESSON 23
LESSON 24
LESSON 25
LESSON 26
LESSON 27

» SECTION VI

LESSON 28
LESSON 29
LESSON 30
LESSON 31
APPENDIX

Creating and Connecting to the Database 263

Creating Tables.ot 275
EnteringData ... 295
SelectingDataot 313
Using Multiple Tables i 331
ChangingDataooii i 343
DeletingData ..ot 361
Preventing Database Security Issues. 387

PUTTING IT ALL TOGETHER

Creating UserLogins. ... 399
Turn the Case Study into a Content Management System. 419
Creatinga DynamicMenu 443
NeXt StepS . ..o 461
What'sonthe DVD?. e 463

PHP and MySQL"®

24-HOUR TRAINER

Andrea Tarr

WILEY

John Wiley & Sons, Inc.

PHP and MySQL® 24-Hour Trainer

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by Andrea Tarr
Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-06688-1

ISBN: 978-1-118-17291-9 (ebk)
ISBN: 978-1-118-17293-3 (ebk)
ISBN: 978-1-118-17291-9 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available
in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of
this book that did not include media that is referenced by or accompanies a standard print version, you may request this
media by visiting http: //booksupport.wiley.com. For more information about Wiley products, visit us at www
.wiley.com.

Library of Congress Control Number: 2011932086

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. MySQL is a registered trademark of MySQL AB. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com

For my parents, who gave me the feeling that it was

perfectly natural for a girl to have a passion for math.

CREDITS

EXECUTIVE EDITOR
Carol Long

PROJECT EDITOR

Charlotte Kughen, The Wordsmithery LLC

TECHNICAL EDITOR
Wim Mostrey

PRODUCTION EDITOR
Kathleen Wisor

COPY EDITOR
Kim Cofer

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE
PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
Corina Copp, Word One

INDEXER
Robert Swanson

COVER DESIGNER
Ryan Sneed

COVER IMAGE
© Clayton Hansen / iStockPhoto

VERTICAL WEBSITES PROJECT MANAGER
Laura Moss-Hollister

VERTICAL WEBSITES ASSISTANT PROJECT
MANAGER
Jenny Swisher

VERTICAL WEBSITES ASSOCIATE PRODUCER
Shawn Patrick

DVD TECHNICAL PRODUCER
Focal Point Studios LLC

ABOUT THE AUTHOR

ANDREA TARR has been a programmer and I'T manager for 30 years and now works
for Tarr Consulting and 4Web Inc. writing custom extensions, templates, and web-
sites with the open source content management system Joomla! She is currently a
member of the Joomla Production Leadership Team and is active in the Joomla Bug
Squad. Andrea was involved in the development of Joomla 1.6 and created the acces-
sible administrator template Hathor. She wrote the first computerized library circulation system

in the state of New Hampshire and holds a Master of Science in Information Technology from
Marlboro College Graduate School.

ABOUT THE TECHNICAL EDITOR

WIM MOSTREY has 10 years’ experience in PHP development and is a long-time Drupal
developer. He’s passionate about enabling corporate, non-profit, and governmental
organizations to switch to free and open-source software.

ACKNOWLEDGMENTS

Thanks to my executive editor, Carol Long, and my project editor, Charlotte Kughen, for their
suggestions and helpfulness during this process.

Thanks to Jen Kramer for her inspiration, support, and encouragement in the writing of this book.

Thanks to Bob Ross and Karen Augusta for giving me a glimpse of their fascinating business and
allowing me to use wonderful photographs from their website: www.augusta-auction.com.

Finally, thanks to Bill Tomczak, my fellow geek. Everyone needs someone they can turn to with the
truly stupid questions.

CONTENTS

INTRODUCTION

XVii

SECTION I: GETTING STARTED WITH PHP

LESSON 1: SETTING UP YOUR WORKSPACE 3
Installing XAMPP 3
Installing XAMPP on a Windows PC 4
Installing XAMPP on Mac OS X 6
Troubleshooting Your XAMPP Installation 8
Configuring XAMPP 9
Installing Your Editor 1"
Configuring Your Workspace 12
Preparing a Place to Put Your Files 12
Using Eclipse for the First Time 14
Try It 18
Lesson Requirements 19
Hints 19
Step-by-Step 19
LESSON 2: ADDING PHP TO A WEB PAGE 23
Writing Your First PHP Page 23
Introducing the Case Study 25
Using echo and include 27
Try It 29
Lesson Requirements 29
Hints 30
Step-by-Step 30
LESSON 3: LEARNING PHP SYNTAX 33
Picking a Formatting Style 33
Learning PHP Syntax 35
Entering Comments 39
Using Best Practices 40
Try It 40
Lesson Requirements 4
Hints 4

4

Step-by-Step

CONTENTS

LESSON 4: WORKING WITH VARIABLES 45
Introduction to Variables 45
Working with Text 46

Working with the Concatenation Operator 48
Working with String Functions 48
Understanding Different Types of Numbers 50
Working with Numbers 50
Changing between Text and Numbers 52
Try It 52
Lesson Requirements 53
Hints 53
Step-by-Step 53

LESSON 5: DEBUGGING CODE 57

Troubleshooting Techniques 57
Display Errors while Developing 57
Common Issues 59
Seeing What’s What 60

Using Xdebug 61
Configuring Xdebug 62
Using Xdebug 66

Try It 67
Lesson Requirements 68
Hints 68
Step-by-Step 68

LESSON 6: WORKING WITH COMPLEX DATA 71
Working with Arrays 71
Working with Logical Variables 73
Working with Constants 74
Working with Dates 74

Time Zone Functions 74
Date/Time Functions 75
Working with Built-in Functions 80
$_GET 80
$_POST 81
Cookies 82
filter_var() 84
Working with Objects 86
Try It 86
Lesson Requirements 86
Hints 86
Step-by-Step 86

CONTENTS

LESSON 7: MAKING DECISIONS 91
If/Else 91
Basic If Statements 91
Comparison Operators for If/Else Statements 94
If/Else with Ternary Operator 96
Logical Operators 97
Switch Statements 100
Alternative Syntax 102
Try It 103
Lesson Requirements 103

Hints 103
Step-by-Step 103
LESSON 8: REPEATING PROGRAM STEPS 107
While Loops 107
Do/While Loops 109
For Loops 10
Foreach Loops 112
Continue/Break 14
Try It 115
Lesson Requirements 15

Hints 15
Step-by-Step 16
LESSON 9: LEARNING ABOUT SCOPE 119
Learning about Local Variables 19
Learning about Global Variables 120
Try It 122
Lesson Requirements 122
Hints 122
Step-by-Step 122
LESSON 10: REUSING CODE WITH FUNCTIONS 125
Defining Functions 126
Passing Parameters 127
Getting Values from Functions 131
Using Functions 132
Including Other Files 137
Try It 137
Lesson Requirements 137
Step-by-Step 138

xi

CONTENTS

xii

LESSON 11: CREATING FORMS 141
Setting Up Forms 141
Processing Forms 146
Redirecting with Headers 153
Try It 154

Lesson Requirements 154
Hints 154
Step-by-Step 154

SECTION lill: OBJECTS AND CLASSES

LESSON 12: INTRODUCING OBJECT-ORIENTED PROGRAMMING 161
Understanding the Reasons for Using OOP 161
Introducing OOP Concepts 162

Objects and Classes 162
Extending Classes 163
Learning Variations in Different PHP Releases 163
Try It 164
Lesson Requirements 164
Hints 164
Step-by-Step 164

LESSON 13: DEFINING CLASSES 167
Defining Class Variables (Properties) 168
Defining Class Functions (Methods) 169
Try It 173

Lesson Requirements 173
Hints 174
Step-by-Step 174

LESSON 14: USING CLASSES 177
Instantiating the Class 177
Using Objects 178
Try It 181

Lesson Requirements 182
Hints 182
Step-by-Step 182

LESSON 15: USING ADVANCED TECHNIQUES 187
Initializing the Class 187
Understanding Scope 188

Properties 188
Methods 191
Classes 192

CONTENTS

Understanding Inheritance
Understanding Static Methods and Properties
Try It

Lesson Requirements

Hints

Step-by-Step

192
197
199
199
199
199

SECTION IV: PREVENTING PROBLEMS

LESSON 16: HANDLING ERRORS 205
Testing for Errors 205
Using Try/Catch 210
Try It 21

Lesson Requirements 21
Hints 212
Step-by-Step 212

LESSON 17: WRITING SECURE CODE 217
Understanding Common Threats 217
Using Proper Coding Techniques 218
Try It 221

Lesson Requirements 221
Hints 221
Step-by-Step 221

SECTION V: USING A DATABASE

LESSON 18: INTRODUCING DATABASES 227
What Is a Database? 227
Gathering Information to Define Your Database 228
Designing Your Tables 229
Setting up Relationships between Tables 229
Instituting the Business Rules 230
Normalizing the Tables 231
Try It 232

Lesson Requirements 232
Hints 233
Step-by-Step 233

LESSON 19: INTRODUCING MYSQL 239

Using phpMyAdmin 239
Creating Databases 241
Defining Tables and Columns 244
Entering Data 248
Backing Up and Restoring 250

xiii

CONTENTS

Learning the Syntax 253
Literal Values 253
Identifiers 254
Comments 255

Try It 255
Lesson Requirements 255
Hints 255
Step-by-Step 256

LESSON 20: CREATING AND CONNECTING TO THE DATABASE 263

Connecting with mysql/mysqli 263

Connecting with PDO 269

Creating the Database 270

Try It 271
Lesson Requirements 271
Hints 272
Step-by-Step 272

LESSON 21: CREATING TABLES 275

Understanding Data Types 275
Strings 275
Numeric 277
Date and Time 278
Other Data Types 279

Using AUTO_INCREMENT 279

Understanding Defaults 280

Creating Tables in phpMyAdmin 281

Using .sql Script Files 283

Adding MySQL Tables to PHP 287

Try It 288
Lesson Requirements 288
Hints 289
Step-by-Step 289

LESSON 22: ENTERING DATA 295

Understanding the INSERT Command 295

Executing MySQL Commands in PHP 297

Processing Data Entry Forms in PHP 302

Try It 305
Lesson Requirements 305
Hints 305
Step-by-Step 306

Xiv

CONTENTS

LESSON 23: SELECTING DATA 313
Using the SELECT Command 314
Using WHERE 317
Selecting Data in PHP 319
Try It 321

Lesson Requirements 322
Hints 322
Step-by-Step 322

LESSON 24: USING MULTIPLE TABLES 331
Using the JOIN Clause 332
Using Subqueries 335
Try It 336

Lesson Requirements 336
Hints 337
Step-by-Step 337

LESSON 25: CHANGING DATA 343
Using the UPDATE Command 344
Updating Data in PHP 345
Using Prepared Statements 347

MYSQLI 348
PHP Data Objects (PDO) 350
Try It 352
Lesson Requirements 352
Hints 352
Step-by-Step 353

LESSON 26: DELETING DATA 361
Using the DELETE Command 361
Deleting Data in PHP 364
Try It 365

Lesson Requirements 365
Hints 366
Step-by-Step 366

LESSON 27: PREVENTING DATABASE

SECURITY ISSUES 387
Understanding Security Issues 387
Using Best Practices 389
Filtering Data 391

XV

CONTENTS

XVi

Try It
Lesson Requirements
Hints
Step-by-Step

393
393
393
393

SECTION VI: PUTTING IT ALL TOGETHER

LESSON 28: CREATING USER LOGINS 399
Understanding Access Control 399
Protecting Passwords 400
Using Cookies and Sessions 402
Putting Logins to Work 403
Try It 404

Lesson Requirements 405
Hints 405
Step-by-Step 405

LESSON 29: TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM 419
Designing and Creating the Table 419
Creating the Class 420

Properties 420
Methods 420
Creating the Maintenance Pages 422
Creating the Display Page 422
Try It 425
Lesson Requirements 425
Hints 425
Step-by-Step 425

LESSON 30: CREATING A DYNAMIC MENU 443
Setting up the Menu Table 443
Adding the Menu to the Website 444
Try It 445

Lesson Requirements 446
Hints 446
Step-by-Step 446
LESSON 31: NEXT STEPS 461
APPENDIX : WHAT’S ON THE DVD? 463

INDEX

467

INTRODUCTION

PHP IS A POPULAR PROGRAMMING LANGUAGE that powers many websites. It originally started out
as a way to make dynamic websites by generating HTML. Today it stands on its own as a general-

purpose programming language and is available on most web hosting sites. Because of its roots, it is
very easy to insert bits and pieces of PHP inside of standard HTML/XHTML code.

MySQL is a popular relational database management system. It is the standard database system
available on web hosting sites. Although it works with many different programming languages, it is
frequently paired with PHP.

WHO THIS BOOK IS FOR

This book is for beginners who have never programmed before or who have never worked with data-
bases. It’s also for those who have copied a few lines of PHP into their HTML pages and want to know
more. General programming concepts are explained while you learn to program PHP and manipulate
data with MySQL. If you already program other languages, this book may be too basic for you.

To get the most out of this book, you need to understand HTML and the basic concept of CSS.
Much of the PHP that you do is aimed at creating HTML, so you need to know what you are trying
to create.

WHAT THIS BOOK COVERS

This book teaches you to take a static website and turn it into a dynamic website run from a data-
base using PHP and MySQL. You start by preparing your computer to run PHP and MySQL by
downloading and installing free software. Next, you write your first PHP by including some PHP
code on an HTML page. Then you dive into PHP, learning what variables are, how to work with
them, and how to debug your programs. You learn how to have your programs make decisions and
loop through code.

The modern PHP is object oriented. You learn what that means and how to use it to make your pro-
grams less buggy and error prone, and easier to maintain. Along with that you learn best practices
and how to write secure code.

You learn how databases work and how to design one, as well as how to use phpMyAdmin to work
with MySQL. You learn different ways of connecting to MySQL through PHP, and how to create
tables, enter data, select data, change data, and delete data. Finally, you learn how to combine all of
these things into creating a mini content management system with a dynamic menu.

PHP is a general-purpose language that isn’t limited to running websites. However, this beginning
book is concentrated on programming websites because that is a natural extension for those who have
been coding in HTML and CSS. By the same token, database programming can be quite complex.
This book teaches the fundamentals needed to work with databases and how to do it safely.

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book consists of short lessons, each focusing on a particular aspect of PHP and/or MySQL.
The lessons are arranged in a logical order of study. Although you can study the lessons in any
order, you often need to know what is taught in the early lessons before the later ones make sense.
It is not meant as an exhaustive resource or as an in-depth look at technical aspects of the language.
The goal is to teach you what you need to know in order to start using PHP and MySQL in your
web pages and applications.

xviii

This book consists of 31 lessons, broken into six sections:

>

Section I, “Getting Started with PHP”: In this section you set up your computer to run PHP
and MySQL. You learn the fundamentals of programming as you learn the fundamentals of
programming in PHP.

Section II, “Working with PHP Controls, Functions, and Forms”: In this section you learn
how to control what lines your programs will process and how to loop through repeating
program steps. You learn about creating your own functions and how to process HTML
forms.

Section III, “Objects and Classes™: In this section you learn what object-oriented program-
ming is and why you want to use it. Then you learn how to use it.

Section IV, “Preventing Problems”: In this section you learn how to handle errors and how to
write secure code.

Section V, “Using a Database”: In this section you are introduced to databases and how to
design a database. You learn the basics of how MySQL works and then how to integrate
it with PHP. You learn how to take static information on your HTML page and put it in a
database and retrieve it.

Section VI, “Putting It All Together”: In this last section you take what you have learned
and create user logins, a mini content management system, and a menu based on database
information.

The lessons end with a tutorial called “Try It.” Each tutorial applies concepts from the lesson.

@

A Case Study is used in most of the Try It sections. This Case Study starts as a
static website created from HTML and CSS. As the lessons progress, you replace
parts of it with PHP and MySQL until at the end you have a website that takes
its information from a database that you maintain through pages on the website.

As you work through the Case Study, you start most Try It sections with the Case
Study that you finished in the previous Try It section. Howeuver, at any time you
can download the Case Study code as it should be at the beginning of each Try It
section and also download the code as it should be at the end of the Try It section.

INTRODUCTION

You can watch the DVD to see the Try It sections from the lesson done by the author. After you’ve
finished reading the book and watching the DVD, you can visit Wrox’s P2P forums, where your
author offers support.

WHAT YOU NEED TO USE THIS BOOK

To get the best results from this book, you should perform the examples and do the Try It sections.
In order to do that, you need the following resources:

> PHP and MySQL need to run on a web server. You have two options: You can turn your
computer into a local web server or you can use an online web host that runs PHP 5.3 and
MySQL 5. This book assumes that you will be running a local web server and the first lesson
steps you through the process of downloading free software and configuring your computer.

> You need a text editor that can produce plain-text files. The first lesson shows you how
to download and install the Eclipse PDT, which is a very helpful editor for writing PHP.
However, other text editors such as Adobe’s Dreamweaver in code mode, Notepad,
TextWrangler, or NetBeans also work. A word processing program such as Microsoft Word
does not work.

INSTRUCTIONAL VIDEOS ON DVD

Some people learn better with a visual and audio aid. That is why a DVD that includes a video tuto-
rial for each lesson accompanies this book. So if seeing something done and hearing it explained
help you understand a subject better than just reading about it, this book-and-DVD combination is
just the thing for you.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, this book uses a number
of conventions.

Boxes like this one hold important, not-to-be forgotten information that is
directly relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and
placed in italic like this.

References like this one point you to watch the instructional video on the DVD
with the print book or watch online at www.wrox.com/go/24phpmysql.

Xix

INTRODUCTION

As for styles in the text:
> New terms and important words are italicized when introduced.
> Code appearing in text looks like this: document .body.
> URLs look like the following when inside text: www.wrox . com.
> Code blocks are presented in the following way:

A monofont type on its own line(s)
denotes code examples.

> Important or changed parts of code blocks are highlighted in the following way:

Some code examples have
sections that are highlighted which
illustrate different or key parts.

SUPPORTING PACKAGES AND CODE

As you work through the lessons in this book, you can choose to type the code and create all the
files manually or you can use the supporting code files that accompany the book. All the code and
other support files used in this book are available for download at www.wrox.com. On the site, sim-
ply locate the book’s title (either by using the Search box or by using one of the title lists), and then
click the Download Code link on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-1-118-06688-1.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

XX

Every effort is made to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in this book or any Wrox book for that matter,
such as a spelling mistake or faulty piece of code, your feedback is appreciated. By sending in errata,
you can save a reader hours of frustration, and at the same time, you can help your author and
Wrox provide even higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the Book Search Results page, click the Errata link. On this page,
you can view all errata that have been submitted for this book and posted by Wrox editors.

INTRODUCTION

A complete book list, including links to errata, is also available at
WwWw .Wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the form
to send us the error you have found. We’ll check the information and, if appropriate, post a message to
the book’s Errata page and fix the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system you can use to post messages relating to Wrox books and related technologies and interact
with other readers and technology users. The forums offer a subscription feature to email you top-
ics of interest of your choosing when new posts are made to the forums. Wrox authors and editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you can find a number of different forums that help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these

steps:
1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information for joining as well as any optional information you want
to provide and click Submit.

4. You receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, You must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXi

SECTION |
Getting Started with PHP

» LESSON 1: Setting Up Your Workspace
» LESSON 2: Adding PHP to a Web Page
» LESSON 3: Learning PHP Syntax

» LESSON 4: Working with Variables

» LESSON 5: Debugging Code

» LESSON 6: Working with Complex Data

In this section, you learn the basics of working with PHP. In the first lesson, you learn what
PHP requires on your computer before PHP will run. If your computer does not have the nec-
essary software, you can use the instructions provided to download the free software, install
it, and configure it to work. In the next lesson, you learn how HTML and PHP work together
as you add your first PHP code to a web page. You are also introduced to the Case Study web-
site you use throughout the book.

You learn in the third lesson about the syntax of PHP and how to write PHP statements. In
the fourth lesson, you learn what variables are and how to use them. At this-point; you will
have learned enough to start making mistakes, so in the next lesson"you learn about how to
find your errors and debug your code. You need to know about debugging as you work with
more complex data in the final lesson of this section.

Setting Up Your Workspace

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a
package of software that installs the web server, PHP, and MySQL for you. You learn how to
download and install XAMPP in this lesson.

If you already have a web server with PHP and MySQL running on your computer, you do not
need XAMPP. Other packages that fulfill the same need are WAMPServer and MAMP.

You also need a text editor that can produce plain-text files. You learn how to download
and install Eclipse PDT in this lesson. Some other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

INSTALLING XAMPP

XAMPP stands for whatever operating system you have: (X), Apache (A), MySQL (M), PHP
(P), and Perl (P). Separate packages are available for each of the different operating systems
such as Windows, Mac OS X, or Linux. This lesson covers installing the Windows and Mac
versions.

Perl is another programming language. It’s popular for housekeeping tasks and
for communications between different programs and programming languages.
You won’t need to use it for the lessons in this book.

XAMPP is intended for local development work. It is not set up for running production
websites.

4 | LESSON1 SETTING UP YOUR WORKSPACE

Do not use XAMPP to host websites on the Internet. Although it uses the same
building blocks as production hosts, it is not set up to be secure. You will get

hacked if you try it.

Installing XAMPP on a Windows PC

This section walks you through downloading the proper XAMPP package and installing it on your
Windows PC. If you have a Mac, skip forward to the section “Configuring XAMPP on Mac OS X.”

1.
2.

Go to the Apache Friends website at www.apachefriends.org/en/xampp.html.

Locate the section labeled XAMPP for Windows and click the title. Scroll down to the
Download section that lists the versions available for download. See Figure 1-1.

25 xampp
XAMPP for Windows exists in three different flavors:
Installer
Probably the most comfortable way to install XAMPP.
ZIp:
For purists: XAMPP as ordinary ZIP archive.
7zip:
For purists with low bandwidth: XAMPF as 7zip archive.
Attention:
If you extract the files, there can be false-positives virus
warnings.
XAMPP for Windows 1.7.4, 26.1.2011
Version Size Content
XAMPP Windows 1.7.4 Apache 2.2.17, MySQL 5.5.8 + PBXT engine (currently
disabled), PHP 5.3.5, OpensSsL 0.9.8, phpMyAdmin 3.3.9,
XAMPP Control Panal 2.5.8, Webalizer 2.21-02, Mercury
Mail Transport System v4.72, FileZilla FTP Server 0.9.37,
SQLite 2.8.17, SQLite 3.6.20, ADOdb 5.11, Xdebug
2.1.0rcl, Tomcat 7.0.3 (with mud_pruxy_aj/e as connector)
For Windows 2000, XP, Vista, 7. See also] README
= Installer 66 MB Installer
MD5 checksum: 84d88cb5b3471ddad1d7b7952dfaczbf
= ZIP 123 MB ZIP archive
MDS chacksum: bdeaffeeaa256409ad800becS8dfd21a
-1 7zip 56 MB 7zip archive
MD5 checksum: 62cb70cad583336686c35d9d22595fa0
FIGURE 1-1

You have a choice of three ways to install this package: via the installer, via a ZIP file, or via
a 7zip file. The easiest way to change options is to use the installer, but you are more likely
to encounter problems. Because you are using the defaults, use the ZIP version. Click the ZIP

link and save the ZIP file.

Unzip all the files to c¢:\. The ZIP file contains a folder called xampp that holds all the fold-
ers and files so unzipping to the c: drive creates the c: \xampp folder.

The program you use is ¢ : \xampp\xampp-control .exe. In Windows Explorer, right-click
the file and select Create Shortcut. Drag that shortcut to your desktop.

Installing XAMPP | 5

6. Double-click the XAMPP Control desktop icon you just created. The Control Panel is dis-
played. See Figure 1-2.

@ XAMPP Control Panel Application EI@
XAMPP Control Panel [service... | [scm.. |
Modules

Swec Apache Start
Swc MySql
Svo FileZilla

[[Jsve Mercury

FIGURE 1-2

7. To start XAMPP, first start the Apache web service by clicking the Start button next to
Apache. Then start MySQL by clicking the Start button next to MySQL. You do not need to
start FileZilla or Mercury. When you click the Start buttons, they change to Stop buttons
to indicate that the processes are running.

8. To stop XAMPP, click the Stop button next to MySQL and then click the Stop icon next to
Apache.

9. To test that XAMPP is properly working, go to your browser and enter http://localhost/
xampp. You should see a screen similar to Figure 1-3.

]
w English ; Deutsch s Francais + Nederlands / Polski / Slovene /
Italiano ; Norsk / Espaficl y £33/ Portugués s Portugués (Brasil) s

E=g

XAMPP
[PHP: 5.3.1] XAMPP 1.7.31

Congratulations:

Status You have successfully installed XAMPP on this system!
Security
Documentation
Components

F’hf-’!"’::og For OpenSSL support please use the test certificate with https://127.0.0.1 or https://localhost

pearinfol

perlinfa() And very important! Big thanks for help and support to Nemesis, KriS, Boppy, Pc-Dummy and all other friends of

aspinfo() KAMPP!
Good luck, Kay Vogelgesang + Kai 'Oswald' Seidler + Carsten Wiedmann

Now you can start using Apache and Co. You should first try »Status« on the left navigation to make sure
everything works fine.

Biorhythm
Instant Art
Flash art
Phone Book
ADOdb
Guest Book

phpMyAdmin
Webalizer
Mercury Mail
FileZilla FTP

FIGURE 1-3

6 | LESSON1 SETTING UP YOUR WORKSPACE

If the installation is successful, skip to the “Configuring XAMPP” section later in this lesson.
Otherwise, check out the “Troubleshooting Your X AMPP Installation” section that follows the
“Installing XAMPP on Mac OS X” section.

Installing XAMPP on Mac OS X

This section walks you through downloading the proper XAMPP package and installing it on your
Mac OS X system. If you are using a Windows PC, you used the prior section to install XAMPP so
you can jump forward to the “Configuring XAMPP” section.

1.
2.

Go to the Apache Friends website at www.apachefriends.org/en/xampp.html.

Locate the section labeled XAMPP for Mac OS X and click the title. Scroll down to find the
section labeled Installation in 4 Steps. See Figure 1-4.

Installation in 4 Steps

i Step 1: Download
Simply click on the link below. It's a good idea to get the latest version. @}

A complete list of downloads (older versions) is available at 7 SourceForge.
There are none yet, but there will be.

XAMPP for Mac 0S X 1.7.3, 2010/03/04

Verslon Size Notes

7 XAMPP Mac OS5 X 1.7.3 86 MB Apache 2.2.14, MySQL 5.1.44, PHP 5.3.1, Perl 5.10.1, ProFTPD
2 1.3.3, phpMyAdmin 3.2.4, OpenSSL 0.9.8k, GD 2.0.35, Freetype
Universal Binary 2.3.5, libjpeg &b, libpng 1.2.32, lbungif-4.1.4, zlib 1.2.3, expat
2.0.1, Ming 0.4.2, Webalizer 2.01-10, pdf class 005e, mod_perl
2.0.4, SOLite 3.6.3, gdbm-1.8.3, libxml-2.7.2, libxslt-1.1.24,
openidap-2.3.43, imap-2004g, gettext-0.16.1, llbmerypt-2.5.8,
mhash-0.9.9, zziplib-0.13.48, bzip2-1.0.5, freetds-0.64
MD5 checksum: fcbd4bl4461a5b5e7a817f59defd0Obe2

] Developer package 32 MB Developer package
MDS checksum: f31a0615a35507a0e4305b674ae1155b

FIGURE 1-4

Click XAMPP Mac OS X. You want the Universal Binary, not the Developer Package. Click
OK to save the file when asked.

Open the .dmg file you just saved. Drag the XAMPP icon over to the Applications icon as
shown in Figure 1-5.

Find the XAMPP control.app in /Applications/XAMPP/Xamppfiles. This is the applica-
tion file that you use to start and stop XAMPP and you will find it convenient to add it to
your dock. The first time you open it you receive the standard warning about using files from
the Internet. Click the Open button to start the Control Panel. The Control Panel looks like
Figure 1-6.

To start XAMPP, first start the Apache web service by clicking the Start button next to
Apache. Then start MySQL by clicking the Start button next to MySQL. You do not need to
start FTP. When you click the Start buttons, they change to Stop buttons to indicate that the
processes are running.

Installing XAMPP | 7

.

Drag to install

| XAMPP for Mac OS X 1.7.3

AAA _| XAMPP for Mac 05 X 1.7.3 =

b 2 items, 318.65 GB available e
(=] XAMPP for Mac 0S X
Version 1L.7.3

XAMPP Applications

FIGURE 1-5

oy

Getting Started

Getting Started

Where should | put my Websites?

You can put your Websites in [Applip-si~=r {VARIDALadnnn f ~nsd
access them via http://localhost/ Controls
Or you put your Websites in the Sites @ Apache | Start |
access them via http://localhost/~Al)
@ MySQL Start
Whats the username and the | | L -
@ FTP | start |

Username: root
Password: No password

@ Show at launch

FIGURE 1-6

To stop XAMPP, click the Stop button next to MySQL and then click the Stop button next

to Apache.

Apache needs to be running for http://localhost and PHP to work. If you get
an error that the server cannot be found, check that you’ve started Apache.

To test that XAMPP is properly working, go to your browser and enter http://localhost/

xampp. You should see a screen similar to Figure 1-7.

8 | LESSON1 SETTING UP YOUR WORKSPACE

pr—
XA M P P fo r M a c OS X English ; Deutsch / Francais ; Nederlands s Polski s [taliano / Norsk 7 Espafiol / 3L /

Portugués (Brasil) y B%EE

XAMPP
Welcome to XAMPP for Mac OS X 1.7.3!

Congratulations:
Documentation You successfully installed XAMPP on this system!

Components

Now you can start using Apache and Co. Firstly you should try »Status« on the left navigation to make sure everything works fine.

Demos After testing you may take a look at the examples below the test link.
CD Collection
Biurhy‘l:hm If you want to start programming PHP or Perl (or whatever ;} please take a look at the XAMPP manual first and get more
Guest Book information about your XAMPP installation.

Instant Art
Flash Art
phpinfo()

Phone Book

Good luck,
Kristian Marcroft, Florian Pollini, Christian Speich & Team

Tools
phpMyAdmin
webalizer

FIGURE 1-7

Troubleshooting Your XAMPP Installation

Usually, XAMPP installs easily. Sometimes, however, you can run into issues. The Apache Friends
have a forum where you can find answers to many problems at www.apachefriends.org/f/
viewforum.php?f=34.

The Mac OS X ships with Apache. Apache works by listening on a specific port. If you run two copies of
Apache, both listening to the same port, you will have problems. The default port is 80 and the common
alternate port to use is 8080. If you need both, change the port on one of them and restart Apache.

If you want to change the port in XAMPP, go to /Applications/XAMPP/xamppfiles/etc/httpd
.conf and change Listen 80 to Listen 8080. Stop and restart Apache for the change to take effect. If
you cannot get into the XAMPP control to stop and start Apache, shut down your Mac and restart it.

If you want to change the port in the pre-installed Apache, go to etc/Apache2/http.conf

and change Listen 80 to Listen 8080. To get to this hidden file, go to Finder and press

Shift+ Command+G and then enter \etc. You need to restart the pre-installed Apache. The easiest
way to do that is to shut down your Mac and restart it.

If you changed the port that Apache listens to, you need to enter it as part
of the address. If you changed the port to 8080, the address is
http://localhost:8080/xampp.

Skype is another program that might conflict with port 80. If you have problems, look in the Skype
Advanced section of Tools/Options (on the PC) or Preferences (on the Mac) and be sure it isn’t using
port 80 for incoming or alternative ports.

Installing XAMPP | 9

Configuring XAMPP

Now that you have successfully installed XAMPP on your Windows PC or Mac, make sure
XAMPP is running and then call up XAMPP in your browser. The address to call up XAMPP is
http://localhost/xampp. A screen similar to Figure 1-8 displays.

XA M P P fO r M a c OS X English ; Deutsch ; Francals ; Nederlands s Polski s Italiano ¢ Norsk ¢ Espafiol ; 3T 1

Portugués (Brasll) ; B4E%

XAMPP
Welcome to XAMPP for Mac OS X 1.7.3!
s
Security Cengratulations:
Documentation You successfully installed XAMPP on this system!

Somponents Now you can start using Apache and Co. Firstly you should try »Status« on the left navigation to make sure everything works fine.

Demos After testing you may take a look at the examples below the test link.
CD Collection
Biorhythm If you want to start programming PHP or Perl {or whatever ;} please take a look at the XAMPP manual first and get more
Guest Book information about your XAMPP installation.

Instant Art
Flash Art
phpinfo()

Phone Book

Good luck,
Kristian Marcroft, Florian Pellini, Christian Speich & Team

phpMyAdmin
webalizer

FIGURE 1-8

You need to create a password on MySQL. Some programs do not allow you to use MySQL unless
MySQL has a password, for security reasons. Click the phpMyAdmin link on the left-side naviga-
tion under Tools to open the page shown in Figure 1-9.

Click Privileges on the top menu. You see a table of the users. Click the Edit icons next to the users.
Scroll down to find the Change Password box as shown in Figure 1-10.

Enter a password and click Go. Do this for each of the users with All Privileges.

Now that you’ve added a password to MySQL, you need to change the configuration in XAMPP for
phpMyAdmin so that it can access the database. The configuration file is in c: \xampp\phpMyAdmin\
config.inc.php on the Windows PC or in /Applications/XAMPP/xamppfiles/phpmyadmin/
config.inc.php on the Mac. Find the following code:

/* Authentication type */

Scfg['Servers'][$i]['auth_type'] = 'config';
/* Server parameters */
Scfg['Servers'][$i]['host'] = 'localhost';
Scfgl['Servers'][$i]['user'] = 'root';

$cfgl'Servers'][$i]['password'] = '';

LESSON1 SETTING UP YOUR WORKSPACE

[Caruars lanalhact
apache friends - xampp for mac os x

thDatab JISQL ¥FStatus () Variables [flCharsets [jEngines g3Privileges 4hProc
SuExport [Falmport
Actions MySQL
MySQL localhost 8 server: Localhost via UNIX socket
K Crocin I = & server version: 5.1.44
[OH1e: oW ‘ = — » Protocol version: 10
. . Collation 3] » User: root@localhost
(Create) MySQL charset: UTF-8 Unicode (utf8)
[#1] MySQL connection collation: i &
] My utf8_general_ci o @ NEESEeE
Interface » Apache/2.2.14 (Unix) DAV/2
mod_ssl/2.2.14 OpenSSL/0.9.8
& Language (@ : | English ':-] PHP/5.3.1 mod_perl/2.0.4 Perlfv5.10.1

» MySQL client version: 5.1.44

& Theme / Style: | Original \-5] » PHP extension: mysgli

i ' N\
» Custom color: /7 Reset phpMyAdmin
» Fontsize:| 82% |+
: » Version information: 3.2.4
Documentation
B wi

at Official Homepage
» [Changelog] [Subversion] [Lists]

php

FIGURE 1-9

~Change password
) No Password
@ Password: fsenee | Re-type:
Password Hashing: @ MySQL 4.1+
) MySQL 4.0 compatible
Generate Password (Ganerate)

FIGURE 1-10

Change the password to your new password. For instance, if your new password is !xvz72g, the
change looks like the following;:

Scfg['Servers'][$i]['password'] = '!xYz72g';

Restart the XAMPP server by going into the Control Panel and stopping first MySQL and then
Apache. Restart by starting Apache and then restarting MySQL.

Call up XAMPP in your browser and see that you can open phpMyAdmin.

Installing Your Editor | 11

INSTALLING YOUR EDITOR

You need a text editor for programming. Word processing editors such as Word change your code and
add extraneous codes and characters that invalidate your program, so you should not use them. Possible
text editors are Notepad, TextWrangler, Dreamweaver in the code mode, NetBeans, or Eclipse.

A good text editor for PHP is Eclipse PDT. It has syntax checking, auto-completion for commands,
color syntax coding, debugging, and other features that become important as you do more complex
PHP programming.

To install Eclipse PDT, go to http: //www.eclipse.org/pdt/downloads/ to download the pro-
gram. You see a screen similar to Figure 1-11.

eclipsecon™2011 Last week . P
March 21 - 24* Santa Clara, CA for early registration! ' S = @
Home Downloads Users Members Committers Resources Projects About Us (Sea"ch :'

About this ject
o Downloads Additional Info
Committers
Newsgroups PHP Debugger [required for debugging) = FAQGs
Bugs 2 " ® Archived Releases
2 In erder to be able to perform debugging using PDT, you should download ane
Articles of the following extra packages: = About Build Types
Project Homa = Using md5 Files
i 53 POT and Zend Server Community Edition
Downloads = Open Bugs
Installation 53 XDebug = Release Notes
Project Plan
Wik
i Nate: Due to Eclipse licensing requirements, PDT with debugger packages are Getting Sources
distributed from external locations.
Tutorials Click hare to h;gm h?w to set up your environment in order to ba able to u CVS +Eclipse
Newsgroup Search perform debugging with POT.
Open Bugs u CVS +Map File + Script
Submit A Bug = SDK zip or Update Manager
Development Eclipse PDT 2.2.0 All In Ones / Eclipse PHP Package forg* source_x y.z.%/"src.zip)
These downloads include PDT 2.2.0, Eclipse 3.8, Mylyn and all other required plugins.
Sort
£ Allin-One Windows 32-bit 141M (md5)
u By Date

B Allin-One Linux x86/GTK 2 32-bit 1380 (md5)

RS Allin-One Linux xB6/GTK 2 B4-bit Jedw frrch3

B AlLin-One Mac DSX Cocoa 32-bit 1380 (md5)

BEE Allin-One Mac OSX Cocoa B4-bit 138M (md5)

FIGURE 1-11

Find the All-in-One package for your operating system and click it. You are given a choice of mir-
rors from which you can download the package, as shown in Figure 1-11. Click the mirror displayed
(which in this figure is Georgia Tech) and save the file when requested.

Unzip the file in an appropriate folder. In Windows a good folder is c: \eclipse. It does not need to
be installed. On the Mac, put it in the Applications directory.

12 | LESSON1 SETTING UP YOUR WORKSPACE

The program file is eclipse.exe in the eclipse folder. Make a shortcut on your desktop or add it
to your dock (on the Mac) so you can find it easily.

CONFIGURING YOUR WORKSPACE

Now that you’ve installed the programs, you need to do some configuring.

Preparing a Place to Put Your Files

The first thing you need to do is decide where you are going to put your files. By default the Apache
web server looks for web files in the htdocs folder. On a Windows PC, this is directly off where you
installed XAMPP. If you installed XAMPP in c: /xampp, then your htdocs file is in the c: /xampp/
htdocs folder. On a Mac the path 1S /Applications/XAMPP/xamppfiles/htdocs.

If you are going to be doing a lot of development work, you should change this default and set up
virtual hosts so that you can put your files in more convenient places. However, setting up virtual
hosts is beyond the scope of this book, so use the default htdocs folder.

If you are on a Windows PC, skip forward to the next section, “Using Eclipse for the First Time.”

On the Mac OS X you need to change the permissions to the htdocs folder in order to add folders
and files to it. Open Finder, browse to /applications/XaMPP/xamppfiles, and select htdocs as
shown in Figure 1-12.

anoe [] xamppfiles =)
[<]>] - 40 9 -
DEVICES 2 Name 4| Date Modified
B andrea tar’s MacBookpro [> 8 bin 11/16/10 10:02 PM 2
.| Macintosh HD > [l cgi-bin 2/27/10 2:00 PM
Bl ipisk > [l doc 2/27/10 2:00 PM
SHARED » [error 2/27/10 2:00 PM
= andrea tarr's Time Capsule > [l etc 2/27/10 2:00 PM
PLACES .
I Desktop [icons 2/27/10 2:00 PM
& andyearr > & lib 2/27/10 2:00 PM
Y e » [libexec 2/27/10 2:00 PM "
5 Downloads » [l licences 2/27/10 2:00 PM
(] php2a ¥ » & logs 2/6/11 7:35 PM
[web » [modules 2/27/10 2:00 PM
i je » [phpmyadmin 2/27/10 2:01 PM ks
[patches > £3 chin 2/27/10 2:01 PM X
7913 Applications : _r Maci R - -
v| L. Macintosh HD » Applications » [[J] XAMPP + (] xamppfiles » [htdocs
r.4 1 of 20 selected, 355.09 GB available .
FIGURE 1-12

Press Command+] to display the htdocs Info as shown in Figure 1-13.

Configuring Your Workspace | 13

RBUOUO o htdacs ok

=—, htdocs 1.3 MB
m Modified: Feb 27, 2010 2:00 PM

¥ Spotlight Comments:

¥ General:
Kind: Folder
Size: 1.3 MB on disk (950,300 bytes)
for 140 items
Where: /Applications/XAMPP/xamppfiles
Created: Saturday, February 27, 2010 2:00
PM
Modified: Saturday, February 27, 2010 2:00
PM

Label: || @ U U U & W L

] Shared folder
_| Locked

¥ More Info:
Last opened: Today 10:23 AM

¥ Name & Extension:

htdocs

|| Hide extension

¥ Preview:

» Sharing & Permissions: A

FIGURE 1-13

Click the arrow next to Sharing & Permissions to expand the section as shown in Figure 1-14.

W Sharing & Permissions:
You can only read
Name Privilege
A system Read & Write
8% admin - Read only
it Bveryone Read only
+[=] [&~ a
FIGURE 1-14

You need to unlock the padlock before you are allowed to make changes to the permissions. Click
the padlock in the lower-right corner. Enter your administrator password for the Mac when asked.

Now you can click the Privilege drop-down for the admin. Change from Read Only to Read &

Write. Your permissions should look similar to Figure 1-15.

14 | LESSON1 SETTING UP YOUR WORKSPACE

W Sharing & Permissions:
You can read and write
Name Privilege

L system * Read & Write

22 admin : Read & Write

m everyone - Read only

+]=] &~ &

' £

FIGURE 1-15

Click the padlock again to relock the permissions.

Using Eclipse for the First Time

The first time you go into Eclipse, you have to identify an Eclipse workspace. See Figure 1-16. This
workspace is the place that you put your files. You use the htdocs folder.

Workspace Launcher

8 ™

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: l

=] (Browse..)

b Copy Settings

@

) k)

(Cancel

FIGURE 1-16

Use the Browse button to locate and accept the htdocs folder. On the PC, if you installed
XAMPP in c: /xampp, your htdocs file is in the c¢: /xampp/htdocs folder. On a Mac, the path is
/Bpplications/XAMPP/xamppfiles/htdocs. See Figure 1-17. Click OK.

Workspace Launcher

a Maf™

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: l [Applications /XAMPP/xamppfiles /htdocs

:-j (" Browse..

} Copy Settings

@

) o)

(Cancel

FIGURE 1-17

Configuring Your Workspace | 15

Eclipse displays a splash screen along with a request for permission for Eclipse to collect and send
usage information, as shown in Figure 1-18.

s AT

(ol 2 iy

Welcome to Eclipse for PHP Developers

A Subclipse Usage

Please allow Subclipse team to receive anonymous usage statistics for this Eclipse instance (info).

Report usage of Subcdlipse to Subclipse team.

G) (@mee

FIGURE 1-18

Uncheck the box if you do not want to have this information collected and sent. Click OK and
then close the tab for the splash screen. You see the main workspace for Eclipse, as shown in
Figure 1-19.

Across the top of the window, Eclipse lists the path to the workspace you are in. If you use virtual
hosts you can create multiple workspaces, although you can have only one open at a time. To switch
between workspaces, or to add a new workspace, use File & Switch Workspaces. You use only one
workspace in this book.

Within the workspace, you have projects. All your folders and files are created inside these proj-
ects. To create a project for this book, click File = New = PHP Project. You see a screen similar
to Figure 1-20.

16 | LESSON1 SETTING UP YOUR WORKSPACE

= 4 0- Q- Je @] 408 T @] 2-50e 0 v s I (Sl
m_& Type HW a = 0|5z oui 2 B Taskw =a
BEEIEN L
An outline is not available.

Problems 83 . Tasks |] Console| #°°-0

0 items

Description~~—~~~~~ &|Reseurce [Path TLocatien Type]
| o y
FIGURE 1-19

Create a PHP Project

Create a PHP project in the workspace or in an external location.

=

Project name: Iphp24|

Contents

® Create new project in workspace

() Create project at existing location (from existing source)

Directory: /Applications [XAMPP/xamppfiles /htdocs/php24

PHP Version

=) Use default PHP settings

() Use project specific settings: PHP Version: [PHP 5.1/ PHP 5.2 =

Project Layout

® Use project as source folder

() Create separate folders for source files and public resources

Configure default...

JavaScript Support

‘ [Enable JavaScript support for this project

) EFinish—)

@ (<Back)(_ Next >) (Cancel

FIGURE 1-20

Configuring Your Workspace | 17

Type in a project name of php24. You can use what you want here, but this is part of the address
you use to call your programs, so short and uncomplicated is best. Leave all the rest as the defaults
and click Finish. You should see a screen similar to Figure 1-21.

PHP - Eclipse - /Applications /XAMPP/xamppfiles /htdocs
mik 0% |2 ® P @ |-5l- oo & &Slewp
I8 pHPEx 52 Te Typen| = O = 8|5 oudi B ETask| T B
| =k=3 | i i
=~ php24 An outline is not available.
= PHP Include Path
=, PHP Language Library
[2 Problems 52 ™. ¥ Tasks | E] Console =
0 items
Description 4 Resource Path Location Type
s
php24
A

Notice that you now have the project php24 listed in the left window. This is the PHP Explorer. It
works like the Windows Explorer, showing a hierarchical view of the folders and files within the dif-
ferent projects. Just as in Windows Explorer, you use this to open and select files and perform other
actions on them. Right-clicking php24 displays a menu as shown in Figure 1-22.

Here’s what some of these options do:
> New: Use this to create new folders and files.
Copy/Paste/Delete: These work as you would expect.
Refactor: This is where Rename and Move are hidden.
Refresh: Use this if you’ve added, renamed, or moved files outside of Eclipse.
Debug As: You learn more about this in Lesson 5.

Validate: This is for validating files without needing to open them.

Y Y Y VY Y Y

Compare With: This compares files either with another file or with an earlier version of the
same file. Files are automatically posted to Local History so you can roll back to a prior ver-
sion. See Options (in Windows) or Preferences (Mac) if you want to change how many copies
and how long they are kept.

> Properties: This is for quite a bit of Meta information.

18 | LESSON1 SETTING UP YOUR WORKSPACE

New >
Co Into

Open in New Window

= Copy #®C
[5 Paste EAY
¥ Delete ®
Remove from Context C(3.

Build Path 2
Refactor »
Include Path 2
g3 Import...

e Export...

«* Refresh F5

Close Project

4" Search... ~
Run As >
Debug As >
Profile As »
Validate

Team >
Compare With »
Restore from Local History...

Source >
Configure »

Properties |

FIGURE 1-22

In the center of the screen is a blank window. This is where you edit your files. Over to the right is
another window with tabs in it. The Outline tab shows you the outline of whatever file you have
open and selected and can be used to navigate to various sections in the file. The bottom of the
screen has another window with tabs. The Problems tab shows validation errors and the Tasks tab
lists to-do’s you have put inside your files and enables you to navigate directly to them.

This full screen that you see is called by Eclipse a “perspective.” This particular perspective is the
PHP perspective. Later you use a Debug perspective. Perspectives, which can be customized in
Windows > Customize Perspectives, enable you tailor your work area to best suit the project you
are working on.

HTRYIT

Available for
download on

Waeom' In this Try It, you create a .php file and run it to test your PHP setup. This program runs a very
handy function to see how you have your PHP configured. This is even handier for hackers so it
is good practice not to have a file running it on your system. For a local system it is not a problem
however, because you delete it when you are done.

Trylt | 19

Lesson Requirements

To run PHP files locally, you need to set up your computer so it can process PHP and run MySQL.
This lesson shows you how to do that using XAMPP.

You also need to be able to create the PHP files themselves. You can do this with any editor that
can produce plain-text files, including Notepad, TextWrangler, Dreamweaver in the code mode,
NetBeans, or Eclipse. You learned in this lesson how to install the Eclipse PDT.

You should have a folder called php24 in the htdocs folder where you put your code files. If you cre-
ated the Eclipse workspace, the folder was created for you automatically.

You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lesson01 folder in the down-
load. You will find code for both before and after completing the exercises.

Hints

This is the code you need in the .php file:
<?php phpinfo();

Be sure that the Apache server is running when you run the program.

Step-by-Step

@ In this lesson I am giving detailed instructions using Eclipse PDT for those new
to Eclipse. You can use a different text editor if you chose not to install Eclipse
PDT.

1. Create a blank .php file called test.php. In Eclipse, create it with the following steps:
Right-click your project in the PHP Explorer.
Select New = PHP File. Note that this is a PHP file, not a PHP project.
Leave Source Folder as /php24 (your project name).

a
b
C
d. Type test.php as the name of the file in the File Name field.
€. Click Finish. You see a screen similar to Figure 1-23.

f.

The center window contains a file called test.php. This file is also showing on the left
in the PHP Explorer window. If you don’t see it below your project, click the triangle
next to your project to expand the list.

20 | LESSON1 SETTING UP YOUR WORKSPACE

0 Qe | @ | @8- Ty 5| &lene |
(8] test.php &2 = 0|5 outli 2 El Taskw = |m|
1 <?php L laz i
» [F] test.php
I =) PHP Include Path
b =i PHP Language Library
E‘} Problems 2% @Tasks} =] Cunsolq @ - O
0 items
Descripton & Resource [path “Location Type —
&3
Io php24 | y
FIGURE 1-23

2. Your text editor may have already typed in <?php for you.

3. Type in <?php phpinfo();.
4. Your screen should look like Figure 1-24.

- %0 |o®a] 4]0 H- e -

[pHPEx 52 I:TypeH] =0 ﬁ;ﬂ

P <)=' &y T 1 <?php
L=R:SK > BRI

¥ php24
» [A] test.php
» = PHP Include Path
» = PHP Language Library

FIGURE 1-24

If it did, do not retype it in step 3.

Trylt | 21

5. Save the file. In Eclipse you save by pressing Ctrl+S on the PC or Command+S on the Mac.
You can also save the file by selecting File = Save.

6. To run the program, go to your browser and enter localhost/php24/test.php.

a. localhost: This identifies the web server, which in our case points to the htdocs folder.

b. php24: This is the folder that was automatically created to hold your project if you use
Eclipse, or, if you are not using Eclipse, it is a folder you created to contain your code
files.

C. test.php: This is the PHP file to run.

7. Your screen should look similar to Figure 1-25.

PHP Version 5.3.1

System

Darwin mbpro.local 10.6.0 Darwin Kernel Version 10.6.0: Wed Nov 10 18:13:17 PST 2010,
root:xnu-1504.9.26~3/RELEASE _I3686 i386

Build Date

Feb 27 2010 12:28:52

Configure
Command

"Jeonfigure' “-prefix=/Applications/XAMPP/xamppfiles’ --program-suffix=-5.3.1'
'libdir=/Applications/XAMPP/xamppfiles/lib/php/php-5.3.1" -includedir=/Applications X AMPP
/xamppfilesincludeiphp/ohp-5.3.1' - with-apxs2=/Applications/XAMPP; pfilesibin/apxs'
"--with-config-file-path=/Appli [XAMPP/x files/ete’ '-with-mysgl=/Appli 15
[XAMPP/xamppfiles' '--disable-debug’ --enable- ol ~-enable- -cgi' —enable-bemath’ -enable-
calendar' --enable-ctype' “-enable-discard-path' --enable-filepro' '-enableilter' '--enable-
force-cgi-redirect’ '—enable-fastcgi' --enable-ftp' --enable-hash’' --enable-ipvE' '--enable-json’
‘--enable-odbe’ --enable-path-info-check' --enable-gd-imgstrit!’ '-enable-gd-native-iti' '-with-tt"
"--enable-magic-quotes' --enable-memory-limit' --enable-safe-mode’ --enable-shmop'
“-enable-sysvsem' '—enable-sysvshm' —-enable-track-vars' '-enable-trans-sid’ -enable-
reflection’ '-enable-session' '--enable-spl' --enable-tokenizer' '-enable-wddx' --enabl

"--gnable "--enable-xmiwriter' --enable-zlib' --enable-zts' --with-simplexml' '--with-
icony' --with-libxml' '-with-wddx' '-with-xml' '-with-fip' --with-ncurses=/Applications/XAMPP
/xamppfiles' -with-gdbm=/Applications/XAMPP/xamppfiles' --with-jpeg-dir=/Applications
XAMPP/xamppfiles' '--with-png-dir=/Applications/XAMPP/xamppfiles' --with-freetype-
dir=/Applications/XAMPP/xamppfiles' '-without-xpm' '—with-zlib=shared' “-with-

zlib- GIr—JAppFIuhonleAMPPhcamppﬂes' '--wltl" 4 lications/ XAMPP, pfiles'
"-with-expat-dir=/Appli [XAMPP, ' --enable-xslt=shared /Applications/ XAMPP
xamppfiles —with-xsl=shared /ApplicationsXAMPP/xamppfiles' *-with-
dom=shared,/Applications/XAMPP/xamppfiles' --with-ldap=shared /Applications™AMPP
/xamppfiles' '-with-gd=shared' "-with-mysgl-sock=/Applications/XAMPP/xamppfilesivar/mysql
/mysql.sock' “-with-merypt=/Applications/XAMPP/xamppfiles' --with-mhash=/Applications
TXAMPP/ files' '-enable-sockets' --enable-zend-multibyte' --with-libxmi-dir=/Applications
IXAMPP/xamppfiles' '~enable-pent! -enable-dbx=shared' '—with-mysgli=shared,/Applications
XAMPP/xamppfilesibin/mysqgl_config' '--with-pear=/Applications/XAMPP/xamppfiles/lib/php
[pear' --with-mssgl=/Applications/XAMPP/xamppfiles' “-with-imap-dir=/Applications/XAMPP
ixamppfiles' -with-i hared,/Applications/XAMPP/xamppfiles' --enable-
mbstrbng-shered all' —with- pgsqF:sharad JApplications/XAMPP/xamppfiles' --with-
gettext=/Applications/XAMPP/xamppfiles' '-enable-apache2-2filter=shared' -enable-
apache2-2handler=shared' -with-bz2=shared' '--with-cur=shared' --with-dba=shared'
-enable-dbase=shared' -with-fdf=shared' -enable-mbregex' "-enable-mbregex-backlrack'
‘—with-mime-magic=shared' '-with-mysqgl=shared /A ions/XAMPP/xamppfiles' '-enable-
shmop=shared' -with-sn hared' —enable-sockets=shared' ‘—enable-pdo’ —with-
sqlite=shared' ‘—enabhe—zup:shared fApplications/XAMPP/xamppfiles' -enable-exif=shared'
"--with-pdo-mssql=shared /Applications’XXAMPP/xamppfiles' —with-

pdo-mysgl=shared /Applications/XAMPP/xamppfiles/bin/mysql_config' '-with-
pdo-pgsql=shared /Applications’™XAMPP/xamppfiles’ --with-pdo-sqlite=shared" "--with-
pdo-sqlite-external=shared' --enable-so hared' '—with-xmirpc=shared' '—with-
oracle=shared' --with-pdf=shared' '-with-sqglite3=shared /Applications/XAMPP/xamppfiles’

Server APl

Apache 2.0 Handler

Virtual
Directory
Support

disabled

Configuration

File (php.ini)
Path

Applications/XAMPP/xamppfiles/etc

Loaded

/Applications/XAMPP/xamppfiles/etc/php.ini

FIGURE 1-2

5

22 | LESSON1 SETTING UP YOUR WORKSPACE

10.

TROUBLESHOOTING

If you’re having trouble, verify the following things:

>

>
>
>

There should be a space between <?php and phpinfo ().
There should be no space between phpinfo and the ().
Don’t forget the final semicolon.

Don’t forget to use localhost:8080 if you changed your XAMPP port
to 8080.

Go back to your text editor.

Close the file. In Eclipse, click the X on the tab with the test.php filename to close the file.

Delete the file. In Eclipse, delete your file by doing the following;:

a.

Expand your project by clicking the triangle next to the project name if it is not already
expanded.

Right-click test .php.
Click Delete.

Confirm that you want to delete the file.

Watch the video for Lesson 1 on the DVD or watch online at www.wrox.com/
go/24phpmysql .

Adding PHP to a Web Page

PHP is a programming scripting language that was first developed to generate HTML state-
ments. Even programs written totally in PHP are ultimately displayed as ordinary HTML.

You can also write programs that are mostly HTML with just the occasional PHP statement.
In this lesson you start with an HTML page and learn how to add PHP statements to it.

You are also introduced to the Case Study website. By the end of this book, you will have
changed it from a static HTML/CSS site to a dynamic website. In this lesson you add the first
bit of dynamic code.

WRITING YOUR FIRST PHP PAGE

You start with a simple HTML page that looks like Figure 2-1. Welcome

The file is called 1esson2a.html. Today is Sep 27, 2011

Here’s the HTML for that page:

<html>
<head>

<title>Lesson 2a</title>
</head>

FIGURE 2-1

<body>

<hl>Welcome</hl>
<p>Today is Sep 27, 2011</p>

</body>
</html>

Now you turn this into a PHP page. All you do is change the file extension from .html to
.php and it becomes a PHP file. When you call that in your browser it still looks just like
Figure 2-1.

24 | LESSON2 ADDING PHP TO A WEB PAGE

You can display standard HTML in your browser by entering the file path. An
example of a file path is c: /xamppfiles/htdocs/lesson2a.html. With .php
files, you enter the address that starts with the web root. An example of an
addn%siShttp://localhost/lessonZa.php.

The difference is that, because of the .php extension, the PHP processor reads through the file to see
if there is any PHP to process. Any HTML that it finds it prints to the screen. Because all it found
was HTML, the results were just the same as the .htm1 file.

So the first rule of writing PHP code is to use the file extension .php.

Other extensions run PHP code, but for this book, .php is the only one you need.

Today isn’t really Sep 27, 2011, so you can add PHP code to dynamically display today’s date. Make
a copy of the previous file, call it 1esson2b.php, change the title to Lesson 2b and replace sep 27,
2011 with the following code:

<?php echo date('M j, Y'); ?>
The file now looks like the following:

<html>
<head>

<title>Lesson 2b</title>
</head>

<body>

<hl>Welcome</hl>
<p>Today 1is <?php echo date('M j, Y'); ?></p>

</body> Welcome
</html>

Today is Feb 8, 2011

When you run this code in your browser it looks similar to
Figure 2-2. Of course your screen displays the current date. FIGURE 2-2

The PHP processor looks for blocks of code that start with <?php. It interprets everything after that
as PHP code until it gets to a ?>. The echo date('M j, Y') tells the processor to find today’s date;

Introducing the Case Study | 25

format it with a three-character month, the day without leading zeros followed by a comma, and a
four-digit year; and then output it. The program continues to output the HTML that it finds, but
also processes the new PHP code.

You learn more about echo later in this lesson and about processing dates in Lesson 6.

INTRODUCING THE CASE STUDY

To give you a feel for how PHP code can make a website dynamic, you take a static HTML/CSS
website and replace sections of it with PHP code as you work through the lessons. The site is for
a fictitious company called Smithside Auctions. This company holds auctions of historic clothing
throughout the year. Figure 2-3 shows the Home page.

P

Smithside
~Auctions

Home ‘ About Us ‘ Lot Categories

Next Auction September 22nd

Join us for our next auction of historic clothing to be held at the St. Paul's Auditorium in
NYC on September 22nd at 1 o'clock.

Lots can be viewed the prior day from 4pm until 7pm and again on Thursday morning
from 10am to noon.

© 2011 Smithside Auctions

FIGURE 2-3

The About Us page lists the employees, as shown in Figure 2-4.

Smithside Auctions assigns the clothing into lots for the auctions and then puts those lots into
appropriate categories. The categories are shown in Figure 2-5 and a sample of the detail of one of
the categories is shown in Figure 2-6.

26 | LESSON2 ADDING PHP TO A WEB PAGE

Eic
<) £ Vol
I, 72

Smit‘hsid'e
Auctions

Home \ About Us \ Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith

Position: none

Email: martha@example.com
Phone:

George Smith

Position:

Email: george@example.com
Phone: 515-555-1236
Jeff Meyers

Position: hip hop expert for shure
Email: jeff@example.com
Phone:

Peter Meyers

Position:

Email: peter@example.com
Phone: 515-555-1237

FIGURE 2-4

5 Y

2

> :
- o g)

rﬁithside
Auctions

Home ‘ About Us ‘ Lot Categories

Categories

Gents

Gents' clothing from the 18th century to modern times

Sporting

Sporting clothing and gear.

L

hing from the 18th century to modern times

FIGURE 2-5

Using echo and include | 27

quithSide

~Auctions

Home ‘ About Us ‘ Lot Categories

e Product Category: Sporting

Sporting

o ., Ladies Bathing Costume, Shoes & Floats, C. 1900
Marine blue lightweight wool, white sailor collar & trim, button-on skirt,
labeled "Arnold Constable & Co. New York", B 34", W 25", L 40"; 1
pair black cotton knit thigh-high canvas scle bathing shoes & set of
"Aybad's Water Wings Patented May 7, 1901", excellent.
Lot: #4 Price: $510.00
Colorful Striped Wool Bathing Suit, C. 1910
Gent's 1-piece machine knit suit in red, green, black & cream, 3
buttons each shoulder, DLM, Ch 35", W 32.5", L 43", (minor mends, 1
dime size hole in back) good.
Lot: #5 Price: $1,380.00
Frontier Beaded Jacket & Chaps, C. 1920
Caramel deerskin leather w/ large glass beads in green & white,
Jacket: Chest 42", W 39", L 34", Chap's inseam 29", prob. made by
Mohawks for Wild West shows or as fraternal costume for Improved
Order of Red Men, (leather dry, bead loss) good.
Lot: #6 Price: $258.75

FIGURE 2-6

You can download the code for this site from the book’s website at www.wrox.com. There is a

version available for the start of each lesson in which you use the case study. Thus you can follow
along, making the changes as you do the lessons, or you can simply download appropriate code at
any point in the process if you want.

The photographs are from Augusta Auctions, an actual company that auctions
consigned historic clothing and textiles. You can use the photographs for the
exercises in this book. If you want to use them for any other purpose, contact
Augusta Auctions through its website at www.augusta-auction.com. While
there, you can browse through the rest of the 30,000 photos on the site.

USING ECHO AND INCLUDE

The echo function tells the processor to output data. The PHP version

<?php echo

'<p>Where is the dog?</p>'; ?>

is the same as the HTML version

<p>Where is the dog?</p>

28 | LESSON2 ADDING PHP TO A WEB PAGE

You can use either a single quote (') or a double quote ("). If the text you are printing already has
single or double quotes in it, use the other type of quote to surround it. For example:

<?php echo "<p>Where's my dog?</p>"; ?>
is the same as
<p>Where's my dog?</p>
You learn about some differences between the two quote types in Lesson 4.

The include function tells the processor to take the file that you specify and insert it in place of the
include statement.

Create the file 1esson02d.php with this code:

<hl>Welcome</hl>
<p>Today is <?php echo date('M j, Y'); ?>.</p>

Some text editors automatically put a <?php at the beginning of any PHP file you
create. Just type over it if you are not starting the file with PHP code, as in this
example.

Create the file 1esson02e.php with the following code. Your output should look similar to Figure 2-7.
<html>

<head>
<title>Lesson 2e</title> Welcome

</head>
Today is Feb 15, 2011

<body>
. FIGURE 2-7
<?php include('lesson02d.php'); ?>

</body>
</html>

This is what the processor sees:

<html>
<head>

<title>Lesson 2e</title>
</head>

<body>

<hl>Welcome</hl>
<p>Today is <?php echo date('M j, Y'); ?></p>

</body>
</html>

Trylt | 29

If you view the source in your browser, you see:

<html>
<head>

<title>Lesson 2e</title>
</head>

<body>

<hl>Welcome</hl>
<p>Today is Feb 15, 2011.</p>

</body>
</html>

The include makes it possible to create a single file that can be called multiple times or to create a
single file where you can swap different parts in and out.

HTRYIT

Available for
download on

wocem' In this Try It, you take the content out of the Home page (index.html), put it in a separate
file, and include it into the renamed index.php file. This content file goes in a new folder
called content. Then you change about.html so that the content section is called as an include
in index.php.

Like most websites, the header information and the footer information in the Case Study site stay
the same while the content on the page changes. Using the include enables you to create several
web pages that share a single file for the header and footer information, making changes easier.

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox .com. You can find them in the Lesson02 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of the previous les-
son. Alternatively, you can download the files from the book’s website at www.wrox . com.

30 | LESSON2 ADDING PHP TO A WEB PAGE

Hints

Remember to rename the files to .php.

Remember to use the localhost address to call the website locally.

Step-by-Step

1. Start with the HTML Case Study code. You can download it from the Lesson02/lesson02cs

folder on the book’s web page at www.wrox.com. This exercise could also be done on any
simple HTML site.

Rename the index.html file to index.php.

Create a folder called content.

.

Create a blank file content /home.php.

vl A WN

. Cut the following code from index.php and put it in contents/home . php:

<hl>Next Auction September 22nd</hl>

<p>Join us for our next auction of historic clothing

to be held at the St. Paul's Auditorium in NYC on September 22nd at
1 o'clock.</p>

<p>Lots can be viewed the prior day from 4pm until 7pm and again on Thursday
morning from l0am to noon.</p>

6. Replace that code in index.php with the following:
<?php include 'content/home.php';?>

7. Change the menu to look for the .php file instead of the .htm1 file. The code should look
like this:

Home</1li>
8. Call up the Home page in your browser. It should still look like Figure 2-3.
9. Rename about.html to about .php.
10. Move about .php to the content folder.
11. Remove all the code except the code in the <div class="content"> div.

12. Check that the remaining code in content /about . php is

<hl>About Us</hl>
<p>We are all happy to be a part of this. Please contact any of us
with questions.</p>

<ul class="ulfancy">
<1li class="row0">

Trylt | 31

13.

14.

<h2>Martha Smith</h2>
<p>Position: none

Email: martha@example.com

Phone:
</p>

</1li>

<1li class="rowl">
<h2>George Smith</h2>
<p>Position:

Email: george@example.com

Phone: 515-555-1236
</p>
</1li>

<1li class="row0">
<h2>Jeff Meyers</h2>

<p>Position: hip hop expert for shure

Email: jeff@example.com

Phone:
</p>
</1li>

<1li class="rowl">
<h2>Peter Meyers</h2>
<p>Position:

Email: peter@example.com

Phone: 515-555-1237
</p>
</1li>

<1li class="row0">
<h2>Sally Smith</h2>
<p>Position:

Email: sally@example.com

Phone: 515-555-1235
</p>
</1li>

<1li class="rowl">
<h2>Sarah Finder</h2>
<p>Position: Lost Soul

Email: finder@a.com

Phone: 555-123-5555
</p>
</1li>

Go to the index.php file and change the include statement from <?php include
'content/home.php';?> to <?php include 'content/about.php';?>.

Change the menu to look for the index.php file instead of the about . htm1 file. The code

should look like this:

About Us

32 | LESSON2 ADDING PHP TO A WEB PAGE

15. Call up the About Us page in your browser. It should still look like Figure 2-4.

Both the Home page and the About Us page are called by the index.php file. At
the moment, you need to change the include statement in the index.php file
to switch between the pages. In Lesson 7 you learn how to make them change
automatically.

16. Go back to the index.php file and change the include statement from <?php include
'content/about.php';?>to <?php include 'content/home.php';?>.

Watch the video for Lesson 2 on the DVD or watch online at www.wrox .com/
go/24phpmysql .

Learning PHP Syntax

You’ve seen how PHP can work on a web page. Now it’s time to learn some basics of coding in
PHP before you get into the detail of the language.

In this lesson you find out about formatting styles for PHP. You learn the general rules of PHP
syntax and how to create comments. You learn the specific syntax of different PHP elements
as you go over them in subsequent chapters.

Finally, you learn some best practices to make life easier and your code better.

PICKING A FORMATTING STYLE

When you read a book or type a letter you are used to certain conventions. For instance, each
paragraph might have the first line indented and a space before the next paragraph. Each chap-
ter might start with the first letter enlarged.

Styling makes the text easier to understand because it organizes the information and tells you
what to expect. If there are no paragraphs, if all the sentences continue one after the other
without a break, you can read it but it is more difficult.

Programming uses formatting styles in the same way. The program runs fine without using
any formatting but it is more difficult for a human being to read. It is harder to see what is
happening and harder to find errors.

A computer has no trouble reading this code:

<?php Smessages='";Stask=filter_input (INPUT_POST, 'task', FILTER_SANITIZE_
STRING) ;if (Stask=='product.maint') :$results=maintProduct () ;Sa==true;Smess
ages .=Sresults;endif;if ('contact.maint'):Sresults=maintContact();Smessa

ges .=Sresults;endif;if ('category.maint'):Sresults=maintCategory () ;Smessages
.=Sresults;endif;?>

34 |

LESSON 3 LEARNING PHP SYNTAX

However, even if you don’t know PHP, the following is much easier to understand:

<?php
Smessages = '';
Stask = filter_input (INPUT_POST, 'task', FILTER_SANITIZE_STRING) ;

if ($task == 'product.maint')
Sresults = maintProduct () ;
$a == true;
Smessages .= Sresults;
endif;

if ('contact.maint')
Sresults = maintContact();

Smessages .= Sresults;
endif;

if ('category.maint')
Sresults = maintCategory();

Smessages .= Sresults;
endif;

?>
Formatting styles address the following issues:

> Indention: What should be indented? How big is the indentation? Do you use spaces or a
tab?

> Line length: Do you restrict how long a single line can be before you use more than one line?
How many characters is it?

> Whitespace: What additional whitespace (that is, spaces, new or blank rows) do you add for
readability?

> Use of {} (curly braces): If these are optional in the syntax, do you use them anyway or leave
them off?
Just as one book might have a different style than another, there are different PHP formatting styles.

It’s more important that you are consistent in your coding style than the particular style that you use.

Two popular styles are the Zend Framework (http: //framework.zend.com/manual/en/coding-
standard.html)andthePear(kxﬁngStandards(http://pear.php.net/manual/en/standards.php)

Learning PHP Syntax | 35

LEARNING PHP SYNTAX

As you saw in the preceding lesson, the first step to using PHP is to put your PHP code in a file with
the extension of .php. This warns the server to be on the lookout for a PHP block.

A block of PHP code starts with <?php and ends with 2>. So an example code block looks like this:

<?php
some php code here
?>

You can have one PHP block that encompasses an entire file or a number of PHP blocks interspersed
with HTML. If your file contains only PHP, or if it ends with a PHP block, leave off the final »>.

The final 2> is omitted because if there is any information, including blanks or
an extra line, after that final »>, it is interpreted as HTML and the system sends
that data to the browser. This results in extraneous whitespace and possible
header errors.

Some servers permit you to use the short tag version of <2 to start a PHP block.
Don’t do this. Your code will not be accepted on all servers and is open to
misinterpretation.

Each statement ends with a semicolon:

<?php

Sfirst_name = 'Andrea';

?>

The end of a statement is often at the end of a line, but not always. This is
particularly noticeable when mixing PHP with HTML.<p>Hello, <?php echo
$first_name; ?2></p>

The official manual for PHP located on the php.net website is a great resource, although it can be con-
fusing. As an example, look up information on the function echo that you used in the previous lesson.

Go to www.php.net/manual/en/index.php. You see a table of contents as shown in Figure 3-1.

36 | LESSON3 LEARNING PHP SYNTAX

0 N function list |

2#PHP Manual
view this page in | Brazilian Portuguese Last updated: Fri, 04 Feb 2011
PHP Manual

by:

Mehdi Achour
Friedhelm Betz
Antony Dovgal
Nuno Lopes
Hannes Magnusson
Georg Richter
Damien Seguy
Jakub Vrana

And several others

2011-02-04
Edited By: Philip Olson
© 1997-2011 the PHP Documentation Group

= Copyright
= PHP Manual
= Preface
= Getting Started
= Introduction
= A simple tutorial

= Installation and Configuration
= General Installation Considerations

Installation on Unix systems
Installation on Mac OS X
Installation on Windows systems
FastCGI Process Manager (FPM)
Installation of PECL extensions
Problems?

= Runtime Configuration
= Language Reference

= Basic syntax

= Types

= Variables

FIGURE 3-1

You could use the table of contents to locate what you are looking for, but there’s a quicker way. In
the upper-right corner, type echo in the Search For box and press Enter. Your window should look
like Figure 3-2.

Learning PHP Syntax | 37

#PHP Manual
~Function Reference
~Text Processing
~Strings

~String Functions

a addcslashes

a addslashes

a bin2hex

a chop

a chr

a chunk_split

a convert_cyr_string
o convert_uudecode
o convert_uuencode
a count_chars

o cre32

o crypt

= echo

o explode

a fprintf

a get_html_translation_table
a hebrev

o hebreve

o html_entity_decode
a htmlentities

o htmispecialchars_decode
o htmlispecialchars
o implode

@ join

a |cfirst

a levenshtein

o localeconv

a Itrim

o md5_file

a mds

o metaphone

o money_format

o nl_langinfo

a nl2br

o number_format

2 ord

«crypt

view this page In | Brazilian Portuguese &

echo

(PHP 4, PHP 5)

echo — Out

put one or more strings

= Description

function list =]

explodex»

Last updated: Fri, 04 Feb 2011

Report a bug

void echo (string $argl [, string §... 1)

Outputs all parameters.

echo() is not actually a function (it is a language construct), so you are not required to use parentheses with
it. echo() (unlike some other language constructs) does not behave like a function, so it cannot always be
used in the context of a function. Additionally, if you want to pass more than one parameter to echo(), the
parameters must not be enclosed within parentheses.

echo() also has a shortcut syntax, where you can immediately follow the opening tag with an equals sign.
This short syntax anly works with the short_open_tag configuration setting enabled.

1 have <?=%$foo?> foo.

= Parameters

argl

Report a bug

The parameter to output.

FIGURE 3-2

You may be thinking it’s a good thing that you know what echo does because the explanation here
doesn’t help much. The following explanation should help you make more sense of it.

The first section contains a description that starts with the syntax of the element. See Figure 3-3.

38 |

LESSON 3 LEARNING PHP SYNTAX

void echo (string gargl [, string £... 1)

FIGURE 3-3

The element is in bold text.

The keywords void and string tell you what the type is. You learn about types in Lesson 4. This is
just informational and you don’t type those words.

The parameters are shown in italic. Parameters are the changeable data that the function uses. Detail
about the parameters is contained in the second section. You learn more about parameters in Lesson 6.

The square brackets around the second parameter indicate that the parameter is optional. The ellip-
sis (...) means that you can have more than one additional parameter.

The third section gives the return values. You learn more about return values in Lesson 10.

The most helpful section is often the next one: Examples. Here you can see how the function is actu-
ally used, as shown in Figure 3-4.

[=] Examples Report a bug

Example #1 echo() examples

<?php
echo "Hello World";

echo "This spans

multiple lines. The newlines will be

output as well";

echo "This spans\nmultiple lines. The newlines will be\noutput as well.";
echo "Escaping characters is done \"Like this\".";

$foo = "foobar";

$bar = "barbaz";

echo "foo is $foo";

$baz = array("value" =» "foo");

echo "this is {$baz['value']} !";
echo 'foo is $foo';

echo $foo;
echo $foo,$bar;

echo 'This ', 'string ', 'was ', 'made ', 'with multiple parameters.', chr(18)
echo 'This ' . 'string ' . 'was . 'made . 'with concatenation.' . "\n";

FIGURE 3-4

Entering Comments | 39

Programmers are allowed to add notes directly to the bottom of the page. These often consist of tips
and techniques in using the function.

ENTERING COMMENTS

Comments are an important part of PHP coding. Although you might remember tomorrow what
you were trying to do with a certain bit of code, you probably won’t remember in six months.
Document what you are trying to do as you do it.

Comments are not sent on to the browser so they don’t slow down your system. If you look at the
source code of a web page, the only comments you see are HTML comments, not PHP comments.

There are two main types of PHP comments. The first type is for commenting a single line or partial
line. The comment starts with a // and ends at the end of the line:

<?php

// This is a single line comment

Stemperature = 65;

Scelsius = (Stemperature - 32)* (5/9); // this is also a valid comment
echo '<p>The answer is ' . Scelsius . '</p>';

// You can, of course, have multiple lines
// of single line comments.

?>

The second type of comment is a block comment. The block comment starts with a /* and ends
with a */:

<?php

/* This is an example of using a multiple line comment. With

this type of comment you don't need to keep repeating

the comment code. */

Stemperature = 65;

Scelsius = (Stemperature - 32)* (5/9); /* this is also a valid comment */
echo '<p>The answer is ' . Scelsius . '</p>';

/* You can also use different techniques
* to make your comments stand out
* because everything is ignored until the */

?>

Note that, unlike the single-line comments, you need to indicate when the block comment ends.

There is a special type of multiple-line comment called a PHPDoc block comment. Automated tools,
including Eclipse PDT, pick up comments that use this specific style.

The PHPDoc comment starts with /**, has a * at the beginning of each line, and ends with */. This
is an example that documents the file itself:

40 | LESSON3 LEARNING PHP SYNTAX

/**

* Short description for file

*

* Long description for file (if any)...
*

* @version 1.2 2011-02-03

* @package Your Project Name

* @copyright Copyright (c) 2011 Your company name
* @license GNU General Public License
* @since Since Release 1.0

*/

There are specific setups for PHPDoc comments depending on what you are documenting.
You learn the common blocks as you learn about the different elements in later lessons. You
can find details about the PHPDoc comment at the phpDocumentor site at http: //manual
.phpdoc.org/HTMLSmartyConverter/HandS/phpDocumentor/tutorial_ phpDocumentor
.howto.pkg.html.

USING BEST PRACTICES

Following best practices makes your code less error prone, easier to maintain, and more secure.
You’ve already learned some of the best practices earlier in this lesson:

> Don’t use the <? 2> short tag.

> Comment your code.

> Be consistent within your own code but recognize that other developers may have their own
styles.

> If you are working on a project with other developers, use the style adopted by the project
rather than your personal preference.
Additionally, you should

> Create the ending tag, bracket, or parenthesis when you create the beginning tag, bracket, or
parenthesis. You save a lot of headaches this way.

Use extra lines to separate related blocks of code for improved readability.
Indent nested elements.

Be consistent with naming conventions and use meaningful names.

Y VYV VY

Leave error reporting on while developing and turn it off when your code goes into produc-
tion. This enables you to locate errors, but protects the user from strange error messages. If
you are using XAMPP, error reporting is turned on by default.

HTRYIT

Available for
download on

Wovan: In this Try It you add comments to .php files. You use all three types of comments.

Trylt | 41

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson03 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of the previous les-
son. Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Remember that the comments need to be within <?php 2> tags.

Step-by-Step
Add comments to the given code.
1. Open Eclipse or your text editor.

2. Create a blank .php file called exercise03a.php.

3. Type in the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Lesson 3</title>

</head>

<body>
<?php
echo '<hl>Lesson 3</hl>';
echo '<p>This is the first paragraph</p>' ;
echo '<p>This is the second paragraph</p>';
?>
</body>
</html>

4. To enter the PHPDoc block at the beginning, you need to go into PHP, so go to the start of
the file and press Enter to get a new line.

42 | LESSON3 LEARNING PHP SYNTAX

5. Type the beginning and ending PHP tags of <?php 2>.Your editor may auto-complete the
commands once you start typing.

Put your cursor between the tags and press Enter twice to make space to enter the PHPDoc block.

7. Type in the following code:

*
*

Try it Lesson 3

This program creates a php file demonstrating PHPDoc blocks
and basic PHP syntax

@version 1.0 2011-02-03
@package PHP & MySQL 24-hr Trainer
@subpackage Lesson 3
@Qcopyright Copyright (c)

2011 Your company name

L . R I

@license GNU General Public License
@since Since Release 1.0
/
8. Onanew line above echo '<hl>Lesson 3</hl>'; add the following code:
/* This is a long comment about
* the hl command
*/
9. On anew line above echo '<p>This is the first paragraph</p>' ; add the following
code:
// This is a comment about the first paragraph
10. Add the following comment on the same line after echo '<p>This is the second
paragraph</p>"';:
// Comment about paragraph 2
11. Save the file.
12. In your browser enter http://localhost/exercise03a.php.

You should see the results shown in Figure 3-5. None of your

comments show.

Add the PHPDoc blocks to the beginning of the .php files in the
Case Study.

1. Copy the program you created in Lesson 2.

Lesson 3

This is the first paragraph
This is the second paragraph

FIGURE 3-5

2. Open index.php.

3. At the beginning of the file, add <?php 2> tags.

4. Enter the following code between those tags. Leave the beginning and ending tags on their
own lines.
/‘k *

* index.php

*

* Main file

Trylt | 43

12.

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

Open content/home. php.
At the beginning of the file, add <?php 2> tags.

Enter the following code between those tags. Leave the beginning and ending tags on their
own lines.
/ * %

* home.php
*

* Content for the home page

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

Open the Case Study in your browser. You should not be able to see the comments on the
Home page. See Figure 3-6.

Open content/about.php.
At the beginning of the file, add <?php 2> tags.

Enter the following code between those tags. Leave the beginning and ending tags on their
own lines.

/**

* about.php

*

* Content for About Us page

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0

*/

In order to see the About Us page, you need to change the content page from home . php to
about .php.

a. ()pm1index.php.
b. Find this code: <?php include 'content/home.php';?>
€. Change home to about.

d. Save the file.

44 | LESSON3 LEARNING PHP SYNTAX

hrside
f\uctlo_ps

Home | About Us ‘ Lot Categories

Next Auction September 22th

Join us for our next auction of historic clothing to be held at the St. Paul's Auditorium in
NYC on September 22nd at 1 o'clock.

Lots can be viewed the prior day from 4pm until 7pm and again on Thursday morning
from 10am to noon.

© 2011 Smithside Auctions

FIGURE 3-6

13. Open the Case Study in your browser. The About Us page displays. You should not be able
to see the comments. See Figure 3-7.

Sithside
\/_Aucth_:ns

Home | About Us ‘ Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith

Position: none

Email: martha@example.com
Phone:

George Smith

Position:

Email: george@example.com
Dhoma- €10 CEC 1222

FIGURE 3-7

Watch the video for Lesson 3 on the DVD or watch online at www.wrox . com/
go/24phpmysql .

Working with Variables

In this lesson you learn what variables are, how to define them, and how to use them in several
ways. You learn how PHP treats text and numbers differently.

INTRODUCTION TO VARIABLES

Variables are used to store information that can change. By creating variables, you have a way
to write a program that can be used again and again with different data.

Say you want to calculate the tip at a restaurant. You normally give 20 percent. You know that
to calculate a 20 percent tip you multiply the cost of the dinner by .20. You then add the tip to
the cost of the dinner to get the total you pay. Your formula stays the same every time you go
out to eat (well, unless the service is exceptionally bad or good, of course), but the cost of the
dinner is different each time. You can think of the cost of the dinner as a variable.

In PHP, variables start with a dollar sign and you assign the variable a value using the = sign:
ScostOfDinner = 15.95;
The following list includes rules for naming variables (after the $):

> You must start variables with a letter or an underscore. By convention, underscores are
used only at certain times. You learn about when to use underscores in Lesson 15. For
now, always start with a letter.

You can use only alphanumeric characters and underscores (a~z, A-Z, 0-9 and _).
You cannot use dashes or spaces.

If the variable is more than one word, you should separate the words with capitaliza-
tion or underscores.

46 |

LESSON 4 WORKING WITH VARIABLES

PHP is case sensitive, which means that it sees lowercase and uppercase letters
as totally different characters. So $myVar and $myvar are not the same. They
are two separate variables. Remember this when you are trying to troubleshoot
problems.

In some programming languages you have to declare the variable ahead of time and say what type of
information you are putting in the variable, such as whether it is text or numeric. In PHP you don’t
need to do this for simple variables. The variable takes on the type of the information you assign to
it. You do need to assign a value to the variable before you can use it or you get an undefined variable
error, however.

Complex variables, such as arrays and objects, should be declared. You learn about the arrays in
Lesson 6 and objects in Lesson 13.

WORKING WITH TEXT

In programming, another term for text is string. Variables that contain text are called string vari-
ables. “Hello, world!” is a string. To assign that string to a variable, use the equal sign (=). This is
actually called the assignment operator. Try not to think of it as an equal sign because that might
cause you trouble later on. The = takes what is on the right side and uses that to set the value on the
left side. This piece of code assigns a value to $myvar and then displays it.

<?php

SmyVar = 'Hi, my name is Andy';
echo $myVar;

?>

You can use either the single quote or the double quote when assigning a string value.

You can create a file and run that piece of code in your browser. You don’t actually need any HTML
at all. However, if you write a real program, you should wrap code that you are displaying to the
browser in HTML such as this:

<?php
$myVar = 'Hi, my name is Andy':;
?>
<html>
<head>

<title>Lesson 4b</title>
</head>

<body>

<hl>Welcome</hl>
<p><?php echo $myVar; ?></p>

</body>
</html>

Working with Text | 47

@ Technically, if you want your HTML to validate, you also need a
Doctype declaration. To add a Doctype, replace <html> with
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml">

To keep the examples simple, I am not using a Doctype declaration in
most of them.

Up to now, single and double quotes have been used interchangeably. There is a difference in how
the two act. If you use double quotes, the PHP parser converts variables into their value within the
string. The following code will interpret $myvar as “Hi, my name is Andy™:

<?php

SmyName = 'Andy';

SmyVar = "Hi, my name is S$myName";
echo S$myVar;

?>

If, however, you use single quotes, $myVvar is interpreted as “Hi, my name is $myName.” The PHP
parser does not expand the variable; that is, it does not replace the variable with the value inside the
variable.

<?php

SmyName = 'Andy';

SmyVar = 'Hi, my name is S$myName';
echo S$myVar;

?>

Sometimes with double quotes there is some ambiguity about what exactly the parser should inter-
pret as a variable to be translated. This can happen if text starts immediately after the variable. You
can put curly braces ({}) around the variable to delineate it. The following code interprets $myvar as
“There are 5 cats™

<?php

SmyAnimal = 'cat';

SmyVar = "There are 5 {SmyAnimal}s";
echo $myVar;

?>

It can happen that you have both single quotes and double quotes in the data that you need to quote.
At that point you need to escape the quote. To escape something is to tell the PHP parser that the
character is a data character and is not to be used as a control character, such as the ending quote.
To escape, type a backslash (\) before the character that needs to be escaped:

<?php
$sayingl = 'She said, "I didn\'t hear what you said."';
Ssaying2 = "She said, \"I didn't hear what you said.\"";

echo $sayingl;
echo '
';
echo S$saying2;
?>

48 | LESSON4 WORKING WITH VARIABLES

Working with the Concatenation Operator

You can attach two string values together. They can either be actual strings or variables that
have strings in them. This is called concatenation. You use a period (.) to concatenate the
different strings:

<?php

SmyName = 'Andy';

SmyVar = 'Hi, my name is ' . S$myName;
echo $SmyVar;

?>

Notice that there is a space after the word is. All the spaces are ignored after the single quote until
you get to the variable. So if you do not have the space after is and before the single quote, $myvar
would be “Hi, my name isAndy.” The spaces are optional around the concatenation operator and
are there to make the code easier to read.

If you are concatenating two variables and need a space between them, you concatenate a string that
consists of just a space:

<?php

SfirstName = 'Andy';

$lastName = 'Tarr';

$myVar = 'Hi, my name is ' . $firstName. ' ' . $lastName . '.';
echo $myVar;

?>

The last.is not a concatenation period, but the period at the end of the sentence. So $myvar is equal
to “Hi, my name is Andy Tarr.”

In PHP you often have different ways of doing the same thing. You could accomplish the same thing
using double quotes and no concatenation:

<?php

$firstName = 'Andy';

$lastName = 'Tarr';

SmyVar = "Hi, my name is S$firstName S$lastName.";
echo $myVar;

?>

Notice that you don’t need curly braces around $1astName. Even though it is immediately followed
by text, a period cannot be part of a variable name so the parser knows to stop with $1lastName. It
would not hurt anything to use curly braces, however. Notice also that the space between the two
variables shows in the final result.

Working with String Functions

You can think of functions as little programs that perform tasks for you. PHP has a number of func-
tions for manipulating strings. Often you pass the function a variable by putting the variable in the
parentheses that are suffixed to the function. In addition to performing tasks, a function can return
a value; that is, the value of the function is the value that is returned by the function.

Functions do not start with a dollar sign and they are immediately followed by parentheses.

Working with Text | 49

For a complete list of string functions, see the PHP manual at http://php.net/

manual/en/ref.strings.php. This also contains more detail and examples of
the functions you are about to learn.

strlen()

String Length returns the length of the string. The following function returns a result of 4:

<?php

SmyName = 'Andy';
echo strlen($myName);
?>

htmlspecialchars()

HTML Special Characters takes a string and converts &, <, >, and double quotes to proper HTML
entities.

<?php
SmyName = 'Andy & Amos';

echo htmlspecialchars ($myName) ;
?>

This code displays “Andy & Amos,” but if you look at the source for the browser page, you see
“Andy & Amos.”

ucfirst()

Upper Case First changes the first character to uppercase. The following function returns a result of
“The book of days™:

<?php
SmyVar = 'the book of days';

echo ucfirst ($myVar);
?>

ucwords()

Upper Case Words changes the first character of each word to uppercase. The following function
returns “The Book Of Days™:

trim()

<?php
SmyVar = 'the book of days';

echo ucwords ($myVar) ;
?>

Trim removes any blank characters from the beginning and end of the string. The following func-
tion returns “the book of days™:

<?php
SmyVar = ' the book of days ';

echo trim($myVar);
?>

50 | LESSON4 WORKING WITH VARIABLES

strtolower()

String to Lower converts any uppercase letters to lowercase. The following function returns “the
book of days™:

<?php

SmyVar = 'THE BOOK OF DAYS';
echo strtolower ($myVar);

2>

strtoupper()

String to Upper converts any lowercase letters to uppercase. The following function returns “THE
BOOK OF DAYS”:

<?php

SmyVar = 'the book of days';
echo strtoupper ($myVar);

?>

You can nest the functions as well. The following code converts the text to lowercase and then capi-
talizes the first letter of each word, resulting in “The Book of Days”:

<?php

SmyVar = 'THE BOOK OF daYs';

echo ucwords (strtolower ($myVar));
?>

UNDERSTANDING DIFFERENT TYPES OF NUMBERS

PHP works with two different types of numbers: integer and floating-point numbers.
Integers are whole numbers. They have no decimal points and can be positive, negative, or zero.

Floating-point numbers are numbers that have decimals. Arguably one of the strangest concepts of
working with numbers in computers is that after you introduce decimals you introduce rounding
errors. You may not always notice it because the error may be small enough that it does not affect
what you are doing. The most likely place you will get tripped up is if you try to determine if two
numbers are equal and at least one of them is a floating point. The two numbers might print out
looking identical, but one could be 6.599999991234 while the other is 6.599999992236.

Integers do not have the rounding issue.

When you perform arithmetic with integers, they could turn into floating-point numbers if the
results require decimals.

WORKING WITH NUMBERS

You can assign values to numeric variables with the = sign. This is called the assignment operator.
Try not to think of it as an equal sign because that might cause you trouble later on. The = takes
what is on the right side and uses that to set the value on the left side. The following code sets
$result to 2. Notice that, unlike strings, there are no quotes around the number.

Working with Numbers | 51

<?php
$result = 2;
echo Sresult;
?>

The following code sets $result to 1.45:

<?php

$result = 1.45;
echo S$Sresult;
?>

Besides assigning a specific value in the same way that you assign a value to a text variable, numeric
variables have additional ways to assign values, as shown in Table 4-1.

TABLE 4-1: Assignment Operators

OPERATOR

The numeric operators should look very familiar to you. $a is equal to 3

EXAMPLE
Sa = 3;
Sa += 3;
$a -= 3;
s$a *= 3;
$a /= 3;
Sa %= 3;

TABLE 4-2: Numeric Operators

OPERATOR

o

++

DESCRIPTION

Addition
Subtraction
Multiply
Divide
Remainder
Increment

Decrement

EXAMPLE

Sa + 2;

Sa - 2;

Sa * 2;

Sa / 2;

Sa%2;

Sa++;

$a--;

EQUALS

$a = 3;

Sa = $a + 3;
$a = $a - 3;
Sa = Sa * 3;
$a = $a / 3;
$a = $a % 3;

in Table 4-2.

RESULT

$Sa equals 4

$a equals 2

52 | LESSON4 WORKING WITH VARIABLES

CHANGING BETWEEN TEXT AND NUMBERS

Various functions and operations require that the variables be of a particular type. For instance, you
can multiply only numeric variables. PHP quietly converts variables to the right data type if it can.
In the following code, $stringNumber is automatically converted to a number and 15 is displayed:

<?php

$stringNumber = '3';

Snumber = 5;

echo $stringNumber * $number;
?>

Here, the $stringNumber is converted to 15, giving 75 as the result:

<?php

$stringNumber = 'l15a4';
Snumber = 5;

echo $stringNumber * Snumber;
?>

And here, the $stringNumber is converted to 0, giving the result as 0 as well:

<?php

$stringNumber = 'aaa';
Snumber = 5;

echo $stringNumber * S$number;
?>

The following code uses concatenation, which expects string variables. The variables are converted
to strings and the result displayed is 35.

<?php

$stringNumber = 3;

Snumber = 5;

echo $stringNumber . S$number;
?>

Here’s another string function that takes a float number and displays it as a formatted string.
Because it expects $number to be a floating-point number, it converts it from a string to a float:

<?php

Snumber = '15';

echo number_format ($number, 2);
?>

)TRYIT

Available for
download on

Woem' In this Try It, you start changing static information in the Case Study website to variables. You
work with the page that displays the gents category of lots.

You start by moving the information in the content <div> from the gents.htm1 file into a PHP
file in the content folder and then deleting the HTML page. You also change the link references to
gent.html in index.php.

Trylt | 53

You create and assign values to variables for the data used on the page. You use those variables to
display the data. Use the string functions to automatically change the & to samp; for you in the text.

Finally, you replace the odd/even row class with a calculated formula.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson04 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 3.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Remember that you moved the home . php and about . php into the content folder in Lesson 2.
The string function htmlspecialchars () encodes & characters into the proper HTML entities.

Use number_format () to display the price with two decimals.

Step-by-Step
Move the content in gents.html to the new file content/gents.php.

1. Move gents.html to the content folder. If you are using Eclipse, right-click the gents.html
file in the list on the left, select Refactor &> Move, and select the content folder.

2. Rename gents.html to gents.php. If you are using Eclipse, right-click and then select
Refactor = Rename and change the .html to .php.

3. Open content/gents.php.

4. Delete all the code up to and including <div class="content">. Your first line is now the
h1 tags.

5. Delete </div><!—end content -->and all code below it. Your last line is an ending
 tag.

54 | LESSON4 WORKING WITH VARIABLES

Open index.php and change the line <?php include 'content/about.php';?> to <?php
include 'content/gents.php';?>.

Open the Case Study. The first page that shows should be the Gents lots page similar to
Figure 4-1.

P! 3

Shithside
Auctions

Home ‘ About Us | Lot Categories

Product Category: Gents

Naval Officer's Formal Tailcoat, 1840s

Black wool broadcloth, double breast front, missing 3 of 18 raised
round gold buttons w/ crossed cannon barrels & "Ordnance Corps"
text, silver sequin & tinsel embroidered emblem on each square cut
tail, quilted black silk lining, very good;

Lot: #1 Price: $19.95

Striped Cotton Tailcoat, America, 1835-1845

Orange and white pin-striped twill cotton, double breasted, turn down

collar, waist seam, self-fabric buttons, inside single button pockets in
each tail, (soiled, faded, cuff edges frayed) good.

Lot: #2 Price: $20,700.00

Black Broadcloth Tailcoat, 1830-1845

Fine thin wool broadcloth, double breasted, notched collar, horizontal
front and side waist seam, slim long sleeves with notched cuffs,

curved tails, black silk satin lining quilted in diamond pattern, padded
and quilted chest, black silk covered buttons, (buttons worn)

FIGURE 4-1

Change the image, name, description, price, and lot (1ot_number) to variables and assign values to
the variables.

1.

Add the following variable assignments to the top of the gents.php file:

<?php

// Get the lot information

$lot_number = '1";

Simage = "naval-19-173.jpg";

Sname = "Naval Officer's Formal Tailcoat, 1840s";
S$description = 'Black wool broadcloth, double breast front, missing

3 of 18 raised round gold buttons w/crossed cannon barrels &
"Ordnance Corps" text, silver sequin & tinsel embroidered emblem
on each square cut tail, quilted black silk lining, very good; ';
Sprice = 5700.00;
$lot_number2 = '2';

Simage?2 = "gents-striped-8-26.jpg";

Trylt | 55

Sname?2 = "Striped Cotton Tailcoat, America, 1835-1845";
$description2 = 'Orange and white pin-striped twill cotton, double
breasted, turn down collar, waist seam, self-fabric buttons, inside
single button pockets in each tail, (soiled, faded, cuff edges
frayed) good. ';

Sprice2 = 20700.00;

Slot_number3 = '3';

$image3l = "gents-black-8-27.jpg";

Sname3 = "Black Broadcloth Tailcoat, 1830-1845";

Sdescription3 = 'Fine thin wool broadcloth, double breasted, notched collar,

horizontal front and side waist seam,

slim long sleeves with notched cuffs, curved tails, black silk satin lining
quilted in diamond pattern, padded and quilted chest, black silk covered
buttons, (buttons worn) excellent. ';

Sprice3 = 3450.00;

?>

a. Notice that the descriptions with single quotes have double quotes around them and
descriptions with double quotes have single quotes around them. Also notice that the
HTML entities samp; are changed to a simple &. You automatically convert these before
they are output, so you don’t need to manually translate them ahead of time.

b. The commas in the prices have been removed.
Replace the hardcoded data with the variables.

a. Images: Use the same variable for the thumbnail and the full size image with this code:

<div class="list-photo"><a href="images/<?php echo $image; ?>">
<img src="images/thumbnails/<?php echo $image; ?>" alt="" />
</div>

b. Name: Add the ucwords () string function to be sure that the first letter of each word is
capitalized:

<h2><?php echo ucwords ($name); ?2></h2>

C. Description: Because the data now might have &’s in it, use the string function
htmlspecialchars () to automatically turn them into samp;:

<p><?php echo htmlspecialchars ($Sdescription); ?></p>
d. Lot: Use the variable $1ot_number for the lot:
<p>Lot: #<?php echo $lot_number; ?>
€. Price: Use number_format () to format the price:
Price: $<?php echo number_format (Sprice,2); ?></p>
Repeat step 2 for the second and third lots.
Save the file.
Open the Case Study. You should see the Gents list of lots still looking like Figure 4-1.

56 | LESSON4 WORKING WITH VARIABLES

When you learn about databases you will be able to load the variables from the
database. You will also be able to loop around and fill all three lots from one set
of variables.

Replace the hardcoded row0, rowl classes with a calculated class in gents.php.

1.

Initialize a variable for counting the number of rows. Put this at the end of the list of vari-
ables at the top of the file:

$i = 0; // for counting line number

Take the row number and divide it by 2. The remainder, either 0 or 1, is then appended to
the class row. To do this, replace <1i class="row0"> with

<1i class="row<?php echo $i % 2; ?>">

You need to add 1 to the number of rows after printing each row. Use the increment opera-
tor. The following code is added just after displaying the price:

<?php S$i++; 2>

Repeat steps 2 and 3 for the next two rows.

Save the file.

Open the Case Study. You should see the Gents list of lots still looking like Figure 4-1.

Watch the video for Lesson 4 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl.

Debugging Code

From Grace Hopper and her moth in the 1940s to the present day, programmers have been
debugging to locate errors. No one writes perfect code the first time, and the better you are at
finding your errors, the less frustrated you will be and the better your code will be.

Your first line of defense is using a good editor that validates syntax for you. That catches
many possible errors.

In this lesson you learn techniques for locating problems and identifying common issues. You
are also introduced to a debugging program you can use to facilitate your debugging.

TROUBLESHOOTING TECHNIQUES

In this section you learn when and how to display PHP errors in order to get automatic feed-
back on PHP problems. You also learn what many of the common problems are and how to
avoid them. Finally, you are introduced to various ways to see what is happening inside your
program as it processes.

Display Errors while Developing

You want errors to be displayed for you while you are developing your code. To do this,

make sure that display_errors is on in your php. ini file. You can check this by running
phpinfo (). If you are using XAMPP, display_errors is on by default because it is set up for
development, not production. This is the code for running phpinfo():

<?php
phpinfo () ;

In the earlier lessons, I included the ending PHP tag of »> to make it easier and
clearer. Howeuver, it is good practice not to use the ending tag at the end of a
file, so from now on I leave off the ending tag where it is not needed.

58

LESSON5 DEBUGGING CODE

Find the section called Core. It should look similar to Figure 5-1.

Core

PHP Version 5.3.1

Directive Local Value Master Value
allow_call_time pass reference |On On
allow_url_fopen Cn On
allow_url_include of Off
always_ raw_post_data | Off Off
arg_separator.input & &
arg_separator.output & &
asp_tags Ofi Off
auto_append_file no value no value
auto_globals_jit Cn Cn
auto_prepend _file no value no value
browscap ng valie no value
default_charset no value no value
default_mimetype text/html text/html
define_syslog_variables O Off
detect_unicode On On
disable classes no value no value
disable_functions nao value no valug
display_errors On On
display startup errors Of Off
doc_root no vaiue no value
docref_ext no vaiue no value
docref_root no value no valug
enable_dl On On
error_append_string no value no valug
error_log no value no value
error_prepend_siring no value no value
error_reporting 30711 3071
exit_on_timeout Oft Off
FIGURE 5-1

If your display_errors is not on, edit the php. ini file so display_errors is on. If you are using
XAMPP, the php. ini file is located at c¢: \xampp\php on a Windows PC and at /Applications/
XAMPP/Xamppfiles/etc on a Mac OS X.

display_errors = on

display_errors determines if reported errors are displayed. error_reporting determines which
errors should be reported. Errors have different levels, from minor notices to warning to severe.
Your error reporting level is also listed on the phpinfo () report, but it is in machine-readable code,
so it is easier to look in your php. ini file. A good level for developing is to show all errors except for
notices. The tilde (~) prefixed to E_NOTICE provides direction to not show those errors.

error_reporting = E_ALL & ~E_NOTICE

If you want to make sure you get all notices, including if you have a defined variable, do not exclude
the notices. This is helpful if you have typos or problems remembering the right cases.

error_reporting = E_ALL

If you want to go one step further, you can also display errors that don’t meet very strict PHP stan-
dards. The pipe symbol (I) means to display if the error violates E_ALL or E_STRICT.

error_reporting = E_ALL | E_STRICT

Troubleshooting Techniques | 59

If you make changes to php. ini, be sure to stop your Apache web server and start it again.

Take a look at what the errors look like when they are reported. Can you find the error in the fol-

lowing code?

<?php
SfirstName = 'Andy';
SnameLength = str_len($firstName) ;

SmyVar = 'Hi, my name is ' . $nameLength.

echo S$myVar;

letters long.';

If you run the code, you see an error message similar to Figure 5-2. The error message starts out
with the error level, which in this case is “Fatal error.” It then says what the error is, which is a
“Call to undefined function.” Then it gives the name of the function, which is str_len(). Then it
says what file contains the error, which is 1esson05b.php, and finally what line the system was on

when it realized there was an error, which is line 3.

You know the problem is that str_len() in line 3 doesn’t exist. Oops. That should be strien(). So

you remove the underscore and successfully rerun.

(1)
Call Stack

[Time [Memory [Function [Location

T 0.0003 | 324236/ {main}() [-Jlesson05b.php:0
FIGURE 5-2

Note that the line number is when the system realizes the problem. Your actual
error could be on another line. For instance, a common error is a missing semi-
colon, which often results in a parse error on the following line. A parse error
means that the PHP parser just threw up its hands and said, “I have no idea
what you are trying to tell me.”

Common Issues

Here are things to check when your code isn’t working:

>

>

Typos: Did you type what you meant to?

Missing echo: One of the most common errors, even for experienced programmers, is
forgetting to echo a variable when you need to display it. <p>$myVvar</p> displays
nothing.

Case: PHP is case sensitive, so $firstname is not the same as $firstName.
Semicolons: Check that you have not missed ending a statement with a semicolon.

Misplaced or missing closing braces: You’ll use parentheses, curly braces, and even square
brackets. Make sure they all begin and end when you want them to and make sure you are
using the right type of brace.

60

LESSON5 DEBUGGING CODE

> =versus ==: This is assignment versus comparison. You learn about comparisons in Lesson
7. For now, realize that the question “Is x equal to y?” uses a double equal sign (==) or,
sometimes, a triple equal sign (===). If you use a single equal sign for comparison, you won’t
get any errors but the code does not work the way you think it does. Instead of comparing, it
assigns. So, in this example, x is made equal to y instead of checking to see if it is equal to y.

> $ on variables: Don’t forget that variables have to start with a $ sign.

> Quotes: Check your single quotes, double quotes, nested quotes, and escaped quotes, and
also your use of MySQL backticks () with regard to the following.

> Double quotes expand enclosed variables and single quotes do not.

> Use curly braces ({}) around variables if there is any ambiguity.

> If you have one type of quotes in your text, enclose with the other type.
>

If you have both types or need to enclose with the same type of quote, escape the
quote by prefixing with a backslash (\).

When concatenating a mix of PHP and HTML, it can be helpful to replace the PHP
with the values and then replace each block of PHP code one at a time.

\/

> MySQL uses backticks (%) around database, table, and column names. You learn
about this in Lesson 19.

> Array number: Arrays in PHP start counting with 0, not 1. So the third element is number 2.
You learn about arrays in Lesson 6.

Seeing What’s What

So how do you see what’s going on inside a program before it displays to your browser?

If your web page does not look right, first check the source for the browser page. Is the HTML
showing you what you expect? If it is, you have an HTML issue to fix. If it is not, you can see what
PHP is actually outputting.

The echo command that you have been using throughout these lessons can be used to display the
value of a variable. You can use it to trace where you are in a program by echoing a variable or even
just echoing here:
<?php
Snumber = 42;
if (Snumber > 2) {
// some code here
} else {
// some other code here
}

This code does something if $number is greater than 2 and something else if $number is not greater
than 2. In this instance you are setting $number to 42 just before this statement, but pretend that
that was several lines up and not so obvious. You learn about the if statement in Lesson 7.

You want to know what the number is just before the if statement and which of the two paths it
follows. So you add an echo statement before the if statement to display $number and add an echo
statement in each of the branches. Now when you run the program you know what is in the variable

Using Xdebug | 61

and which path it took. Obviously you remove these after you don’t need them anymore. Running
the following code looks similar to Figure 5-3:

<?php

Snumber = 42;

echo S$number. '
'; 42

if (Snumber > 2) { here 1
echo 'here 1';

} else { FIGURE 5-3

echo 'here 2';
}

Arrays are lists of variables that you learn about in Lesson 6. The print_r () function works like
echo but is used for arrays because arrays are too complex for the echo statement. The syntax for
print_r() is different but you can use it in the

same way as the echo statement. The follow- Array ([0] =>Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri)

ing code displays output similar to Figure 5-4:

FIGURE 5-4
<?php
SmyArray = array("Mon", "Tue", "Wed", "Thu", "Fri");
print_r (SmyArray) ;

var_dump () is another function that displays a variable. It also displays the complex data types such
as the arrays you learn about in Lesson 6 and objects that you learn about in Section III. The fol-
lowing code displays output similar to Figure 5-5:

<?php

$myArray = array("Mon", "Tue", "Wed", "Thu", "Fri");

var_dump ($myArray) ;

If you want processing to stop when you reach a certain point, you can use the die () function.
Notice that the following code never gets to the echo statement, as shown in Figure 5-6:

<?php

SmyArray = array("Mon", "Tue", "Wed", "Thu", "Fri");
var_dump ($SmyArray) ;

die('Stop here');

echo 'We never get here.';

array array
0 => string 'Mon’' (length=3) 0 => string 'Mon’' (length=3)
1 => string 'Tue’ (length=3) 1 => string 'Tue’ (length=3)
2 => string 'Wed' (length=3) 2 => string 'Wed' (length=3)
3 => string 'Thu' (length=3) 3 => string 'Thu' (length=3)
4 => string 'Fri' (length=3) 4 => string 'Fri' (length=3)
FIGURE 5-5 mon eig
FIGURE 5-6

USING XDEBUG

If you are working with complex PHP programs, you will find that echos and var_dumps can be
cumbersome. At that point, you should use a debugger program. A debugger program does not tell
you what is wrong with your program, but it does let you step through your code line by line so you
can see where it goes. It enables you to see the value of all the variables whenever you want.

62 | LESSON5 DEBUGGING CODE

Eclipse PDT comes with two debugger programs. They can be tricky to configure but it is well
worth the time to set one up. If you don’t use Eclipse, your text editor may have its own debugger or
you can use the methods you learned earlier in this lesson.

Configuring Xdebug

In Eclipse, go to Tools = Option (Windows) or Eclipse = Preferences (Mac). You see a window
similar to Figure 5-7. You take several steps in this window.

General
Dynamic Languages
Help

> Install/Update

> Java

¥ JavaScript

> PHP
Remote Systems
Run/Debug
Server
Tasks

»Team

»Usage Data Collector
Validation

Preferences

General - r -

] Always run in background
| Keep next/previous editor, view and perspectives dialog open
] Show heap status
Open mode
(%) Double click
() single click
Select on hover
Open when using arrow keys

Note: This preference may not take effect on all views

»Web
XML

(" Restore Defaults | [Apply

@:I (Cancel 3y (OK

FIGURE 5-7

Go to PHP = Debug and change PHP Debugger to Xdebug as shown in Figure 5-8. Click Apply to
save the change.

Click PHP = Debug = Installed Debuggers. Select each of the debuggers in turn and click the
Configure link to change the ports so they match Figure 5-9. Zend Debugger is Port 10001 and
Xdebug is Port 10000. Click Apply to save the change.

Go to General & Web Browser. Select the Use External Web Browser function. The window looks
similar to Figure 5-10.

If you don’t use http://localhost as your root, you need to change your PHP server. So if you
didn’t change your port, and you aren’t using virtual hosts (if you don’t know what they are, you are
not using them), you can skip this next step.

To change your PHP server, go to PHP &> PHP Servers. The window looks similar to Figure 5-11.

Select the Default PHP Web Server, click Edit, and change the URL to your root. If your root is http: //
localhost: 8080, your resulting window looks similar to Figure 5-12. Click Apply to save the change.

Using Xdebug | 63

¥ General
I Dynamic Languages
P Help
W Install jUpdate
P Java
» JavaScript
VPHP
Appearance
b Code Style
¥ Debug
¥ Editor
New Project Layout
Path Variables
¥ PHP Executables
PHP Interpreter
PHP Libraries
PHP Manual
PHP Servers
I Remaote Systems
P Run/Debug
b Server
P Tasks
»Team
I Usage Data Collector
Validation
> Web
XML

PHP Debug

Configure Project Specific Settings...

Default Settings

PHP Debugger: [XDebug

Server: [Default PHP Web Server

H Configure...
H PHP Servers...

PHP Executable: [None Defined

H PHP Executables...

Encoding Settings

Debug Transfer Encoding |UTF-8

Debug Output Enceding |UTF-8

g Break at First Line

(Restore Defaults) (_ Apply)

@

(_ Cancel) M

FIGURE 5-8

P General
 Dynamic Languages
P Help
P Install /Update
> Java
P JavaScript
¥PHP
Appearance
b Code Style
¥ Debug
Installed Debuggers
Step Filtering
Workbench Options
» Editor
New Project Layout
Path Variables
¥ PHP Executables
PHP Interpreter
PHP Libraries
PHP Manual
PHP Servers
I Remote Systems
P Run/Debug
b Server
P Tasks
»Team
P Usage Data Collector
Validation
FWeb
XML

Installed Debuggers

Installed Debuggers

Debugger Type. (Port
10001
10000

Configure

(Restore Defaults) (Apply)

@

(cancel

) ——

FIGURE 5-9

LESSON5 DEBUGGING CODE

[type filter text

¥ General A

b Appearance
Compare/Patch
Content Types

¥ Editors
Keys

b Network Connections
Perspectives
Search

P Security

P Startup and Shutdow

PWorkspace
P Dynamic Languages
» Help
W Install/Update
P Java
P JavaScript
¥PHP
Appearance
P Code Style
¥Debug
Installed Debugger,
Step Filtering
Workbench Oprtion:
b Editor
New Project Layout
Path Variables
»PHP Executables
PHP Interpreter Ir

Web Browser (=R 4

Add, remove, or edit installed web browsers.
The selected web browser will be used by default when web pages are
opened, although some applications may always use the external browser.

() Use internal web browser
@ Use external web browser

External web browsers:

E Default system web browser
[Firefox

[—) |
(Restore Defaults) (Apply)

o)

(cancel

) —an—

A

FIGURE 5-10

[type filter text

P General
P Dynamic Languages
F Help
P Install/Update
P Java
P JavaScript
¥PHP
Appearance
P Code Style
¥ Debug
Installed Debuggers
Step Filtering
Workbench Options
P Editor
New Project Layout
Path Variables
P PHP Executables
PHP Interpreter
PHP Libraries
PHP Manual
PHP Servers
I Remote Systems
P Run/Debug
P Server
b Tasks
¥ Team
I Usage Data Collector
Validation
FWeb
XML

PHP Servers L= - w

PHP Servers Management
Mote that removing a server definition will also remove any launch
configuration that is using it.

Name URL
—E Default PHP Web Server| http:/ /localhost

(" Remove)

(Set Default)

. ______1

®

(Cancel

) .

FIGURE 5-11

Using Xdebug | 65

800 Preferences

type filter text) PHP Servers fe=P4 - -

W General
P Dynamic Languages
P Help
P Install fUpdate
¥ Java
» JavaScript Name URL
VPHP E Default PHP Web Server(http:/ /localhost:B080
Appearance
P Code Style
¥ Debug —
Installed Debuggers Remove
Step Filtering
Workbench Options " Set Default
¥ Editor -
New Project Layout
Path Variables
» PHP Executables
PHP Interpreter
PHP Libraries
PHP Manual
PHP Servers
P Remote Systems
P Run/Debug
b Server
I Tasks
FTeam
Pk Usage Data Collector
Validation
FWeb
XML e >

PHP Servers Management

Note that removing a server definition will also remove any launch
configuration that is using it.

Edit

@ (Cancel) E—H

FIGURE 5-12

Click OK to exit.

The last task to configuring is to change the php. ini file. XAMPP sets up the debug configuration
needed, though depending on the exact install you may need to change the xdebug. remote_port.
The following code is an example of the Xdebug configuration code on the Mac:

;xdebug Configuration starts

zend_extension="/Applications/XAMPP/xamppfiles/lib/php/php-5.3.1/extensions/
no-debug-non-zts-20090626/xdebug.so"

xdebug.profiler_output_dir = "/tmp/xdebug/"
xdebug.profiler_enable = On
xdebug.remote_enable=0n
xdebug.remote_host="localhost"
xdebug.remote_port=10000
xdebug.remote_handler="dbgp"

;xdebug Configuration ends

You need to exit Eclipse, stop and restart Apache, then restart Eclipse.

66 | LESSON5 DEBUGGING CODE

Using Xdebug

When you start the debugger, Xdebug stops on the first line of your program by default. From
there you can choose to go to the next line or, if the line is an include or calls another file, you
can choose to step into that file or just to the next line. You can also put breakpoints on PHP lines,
which pause the program on that line. By using breakpoints you do not need to pause on every line.

To use Xdebug, you right-click the program you want to debug. If this is a program that is depen-

dent on other programs, you start with the top-most program. Select Debug = Debug as Web Page.
If you get a dialog box, confirm the starting URL. The perspective switches to the PHP Debug per-
spective. You see a window similar to Figure 5-13 that shows your program.

fano PHP Debug - php24/lesson05code/lesson05cs/index.php - Eclipse - /Users/andytarr/Documents/php24 /wphp24 =
|3 %70 Qv | @ v] 70w v e Ti fppPDebug.
" Il 3 3 = |_ﬁ?| ~ = O/ t9= variables 5% '\\09 Breakpoints] 3~ =0
v index (1) [PHP Web Page] Name Value
¥ i PHP Application b @ S_ENV Array [16] .
¥ 3 Remote Launch (stepping) > @ 3_FILES Array [0]
= php24/lesson05code/lesson05cs/index.php.fmain} : lineno 480 php24 /I LN Heiay Array [2]
> % $_POST Array [0]
P % $_REQUEST Array [3]
b & S_SERVER Array [32) v
<€ - B
a L) iC
[£] index.php o % = [
38 <div class="clearfloat"></div> a
39 </div=<!-- end navigation --»> 2
48
415 «div class="message ">
42 </div><!-- end message -->
a3
441 «div class="sidebar">
45 </div><l-- end sidebar --»
46
47g <div class="content"-
» 48 <?php include 'content/gents.php’;?>
49 </div><l-- end content --»
5@
51 =div class="clearfloat "></div>
52
538 =div id="footer">
54 <p=&eopy; <?php echo date('Y'); 7= Smithside Auctions</p=>
55 </div=<l-- end footer --»
56
57 </div><l-- end container -->
58 </body>
59 </html>
L) ¥
FIGURE 5-13

y Perspectives are the different prearranged groupings of screens that show for
the editor. If the PHP Debug perspective does not automatically appear, look
at the upper-right corner where the name of the current perspective shows.
Click the >> symbol and choose PHP Debug from the list to switch to that per-
spective. If the perspective does not appear in the list, go to Window & Open

Perspective = Other. Click PHP Debug and click Open. It now appears in your

list of perspectives.

Trylt | 67

The main screen shows the source code for the file you are debugging with the current line
highlighted.

In the upper right are the tabs that show you the variables and a list of the breakpoints. The
Variable tab shows all the current variables and their values.

In the upper left you see the Debug tab. See Figure 5-14. This shows you which file you are in along
with the files you went through to get there. Along the top of this window are icons that you use to
control the debugger.

¥ [index (1) [PHP Web Page]
v aﬁ PHP Application
¥ 3 Remote Launch (stepping)

= php24/lesson05code/lesson05cs/index.php.{main} : lineno 480 php24 /s

=
4 €

FIGURE 5-14

> Resume: This arrow tells the program to continue processing. It pauses at the next break-
point or the end of the program.

Stop: This square ends the debugging.

> Step into: This arrow pointing between two dashes steps into the current line. For instance, if
the line you are on is an include statement, clicking this icon jumps you into the included file.

> Step over: The arrow pointing past the dash takes you to the next statement in the same file.

It is easy to create breakpoints. All you need to do is double-click in the column to the left of the line
numbers in the file. Breakpoints are remembered even after you close a file.

O TRYIT

Available for
download on

weom' 10 this Try It, you use the techniques learned in this lesson to debug a code sample. You have numer-
ous other opportunities to debug as you complete the rest of the lessons.

You also use Xdebug to explore the Case Study files.

@ You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson03 folder in
the download. You will find code for both before and after completing the
exercises.

68 | LESSON5 DEBUGGING CODE

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study you need your files from the end of Lesson 4.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints

Remember to go through the list of common errors.

Step-by-Step
Find the error in the following code:

<?php

SfirstName = 'Andy';

SnameLength = str_len(SfirstName) ;

SmyVar = 'Hi, my name is ' . S$namelength. ' letters long.';
echo $myVar;

1. If you have Notices printing, you see a message saying that $namelength is uninitialized. If
y p g Y ge saying
you are not displaying Notices, you still see that you are missing the number of letters. See

Figure 5-15.
(Call Stack
[Time Memory Function Location
1 0.0006 323940|{main}() .Jexercise05a.php:0
Hi, my name is letters long.

FIGURE 5-15

2. The variable that you initialized was $nameLength not $namelength. Change $namelength
to $nameLength to fix.

The following code should print out the name and number of characters. They are missing,
as shown in Figure 5-16. The correct result is shown in Figure 5-17. Find the error.

<?php
$firstName = 'Andy’; Welcome
$nameLength = strlen($firstName) ;
2>

<html>

<head>

My name is and it is characters long.

FIGURE 5-16

Trylt | 69

<title>Exercise 5b</title>
</head>
<body>

<hl>Welcome</hl>
<p>My name is <?php $firstName; ?>
and it is <?php S$nameLength; ?> characters long.</p>

</body>
</html> Welcome
Go through the list of the common errors. This My name is Andy and it is 4 characters long.

is the corrected code:
FIGURE 5-17
<?php
SfirstName = 'Andy';
$namelLength = strlen($firstName) ;
?>
<html>
<head>
<title>Exercise 5bfinal</title>
</head>
<body>

<hl>Welcome</hl>
<p>My name is <?php echo $firstName; ?>
and it is <?php echo $nameLength; ?> characters long.</p>

</body>
</html>

Use Xdebug to explore the Case Study files.

Right-click the index.php file from the Case Study.

Select Debug > Debug as Web Page. The program stops on the first PHP line, which happens
to be the include line to the gents.php file.

Click the Step Into icon twice to go into that file.

Step Into or Step Over several times and then scroll through the Variable tab. You see the
variables for those that have been given a value. Variables not assigned a value are uninitial-
ized. See Figure 5-18.

Try creating a breakpoint by double-clicking the column to the left of the numbers.
Remember that only lines with PHP code can be debugged.

Click the Resume icon to jump to the breakpoint.
When you are done exploring, click the red square Stop icon to terminate the debugger.

If the perspective does not change automatically, you can return to the PHP perspective by
clicking the >> in the upper-right corner and choosing PHP.

70 | LESSON5 DEBUGGING CODE

=i [$:0-Q- @] 4] er £ fopHpoeug

[= D RS |_‘T5=2 ¥ = O |[9= variables 53 % Hmlkpmmq =4 == m
index (1) [PHP Web Page] Name _Value
v E’D@ PHP Application » & Sdescription Black wool broadcloth, double breast fron 4
¥ 1 Remote Launch (stepping) » & Sdescription2 Orange and white pin-striped twill cotton|
lesson0Scode/lesson05cs [content/gents.php.include : lineno 16(@ Sdescription3 <Uninitialized> m
= php24/lesson05code/lesson05cs findex.php.{main} : lineno 480 php24/l 1] <Uninitialized>

» & Simage naval-19-173.jpg

b & Simage2 gents-striped-8-26 jpg 1

e ——————————3

3 G
[6] gents.php 52 = (]
1 <?php .

2 // Get the lot information

3 S$product_id = "17;

4 $image = "naval-19-173.jpg";

5 $nome = "Naval Officer's Formal Toilcoat, 1848s";
b

7

&

$description = 'Black wool broadcloth, double breast front, missing 3 of 18 raised round gold buttons w/
crossed cannon barrels & "Ordnance Corps” text, silver sequin & tinsel embroidered emblem
on each square cut tail, quilted black silk lining, very good; '
9 $price = 19.95;
18 $product_id2 = "2';
11 $image2 = "gents-striped-8-26.7jpg";
12 $name2 - "Striped Cotton Tailcoat, America, 1835-1845";
13 $description? = 'Orange and white pin-striped twill cotton, double breasted, turn down collar, waist seam,
14 self-fabric buttons, inside single button pockets in each tail, (soiled, faded, cuff edges
15 frayed) good. ';
» 16 $pricez = 20700.00;
17 $product_id3 = '3';
1% $image3 = "gents-black-8-27.jpg";
19 $name3 - "Black Broadcloth Tailcoat, 1838-1845";
28 $description3d = 'Fine thin wool broadcloth, double breasted, notched collar, horizontal front and side waist seam,
21 slim long sleeves with notched cuffs, curved tails, black silk satin lining quilted in diamond pattern,
22 padded and quilted chest, black silk covered buttons, (buttons worn) excellent. ';
23 $priced = 3450.00;

H

al

FIGURE 5-18

Q Watch the video for Lesson 5 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl .

Working with Complex Data

You have learned how to work with variables that store text and numbers. This works well
for simple data, but what if you have a list you need to manipulate or you want to know how
many days there are between January 15, 2011, and March 2, 2011?

In this lesson you learn how to use special variables that are designed for specific types of data.

WORKING WITH ARRAYS

An array holds multiple values in a single variable. Within one variable you have an entire list
of values. You refer to and access the entire array just by the array name as you would a regu-
lar variable, or you can use indexes to access the individual values. You can even nest arrays
within arrays. These nested arrays are called multi-dimensional arrays.

Let’s display a list of employees on a web page. You could assign each employee to a regular
variable and then display each of those variables. Your results look similar to Figure 6-1.

<?php

// Assign Value .

Semployeel = 'Sally Meyers'; Employee LlSt

Semployee2 = 'George Smith';

Semployee3 = 'Peter Hengel'; Sally Meyers

?> .

<html> George Smith

<head> Peter Hengel
<title>Lesson 6a</title>

</head> FIGURE 6-1

<body>

<hl>Employee List</hl>
<p><?php echo $employeel; ?></p>
<p><?php echo S$employee2; ?></p>
<p><?php echo $employee3; ?></p>

</body>
</html>

72

LESSON 6 WORKING WITH COMPLEX DATA

Now try it using an array. There are two types of arrays in PHP. The first type is a numeric array
where the index is the position of the value in an array. You can assign the values in the array just by
telling PHP this variable is an array and then listing the values:

Semployee = array('Sally Meyers', 'George Smith', 'Peter Hengel');

Just like regular variables, you need quotes around text and not around numbers. To reference a
single value, add the index in square brackets to the array variable name. Your results look like
Figure 6-2.

<?php
Semployee = array('Sally Meyers',6 'George Smith', 'Peter Hengel');
echo Semployee[l];

Not quite what you were expecting? Unlike normal counting where you
start with 1, PHP uses standard computer geek counting and starts with 0.
Therefore index 1 displays the second value, which happens to be George FigURE 6-2
Smith.

George Smith

You can also assign values using the same syntax you used to display the array element:

Semployee[0] = 'Sally Meyers';
Semployee[l] = 'George Smith';
Semployee[2] = 'Peter Hengel';

To see what is in an array use the print_r () function instead of the echo statement you are famil-
iar with. If you echo an array it displays the word “array” instead of the values in the array. Add the
following line of code to display the values in the array $employee. See Figure 6-3.

print_r (Semployee) ;

Array ([0] => Sally Meyers [1] => George Smith [2] => Peter Hengel)

FIGURE 6-3

The second type of array is the associative array. In addition to being able to access the element val-
ues by their position, you can assign a name (key) to each value, which you can use to reference the
element. Instead of a list of employees, make a list of information about a particular employee:

Semployee = array('name'=>'Sally Meyers', 'position'=>'President',
'yvearEmployed'=>2001);

Alternatively, you can assign the values with the same syntax you use to display the elements:

Semployee['name'] = 'Sally Meyers';
Semployee['position'] = 'President';
Semployee['yearEmployed'] = 2001;

Either way, if you print_r () the employee array you see a result similar to Figure 6-4.

print_r (Semployee) ;

Array ([name] => Sally Meyers [position] => President [yearEmployed] => 2001)

FIGURE 6-4

Working with Logical Variables | 73

You can combine these two arrays into a multi-dimensional array that holds information on all the
employees. Use the HTML <pre> tag around the print_r () so that the display is easier to read.
You should see a window similar to Figure 6-5.

<?php

Semployees = array (
array('name'=>'Sally Meyers',
array ('name'=>'George Smith',
array ('name'=>'Peter Hengel',
)

?>

'position'=>'Clerk"',

<pre>
<?php print_r($Semployees) ;
</pre>

?>

If you want to reference a specific element, use both of the
indexes. To reference Sally’s position, for example, use the
following code:

echo Semployees[0]['position'];

WORKING WITH LOGICAL VARIABLES

PHP

has special types of variables to show simple true/false

conditions and to indicate a variable with no value.

A Boolean variable value is either true or false. You
expressly set a variable to true or false using TRUE or FALSE.
The results of the following code are shown in Figure 6-6:

<?php

SmyVarl = TRUE; // No quotes and case-insensitive
SmyVar2 = FALSE;

?>

<p>True: <?php echo $myVarl; ?2></p>

<p>False: <?php echo SmyVar2; ?></p>

'position'=>'President',
'position'=>'Treasurer',

'yearEmployed'=>2001)
'yvearEmployed'=>2006),
'yvearEmployed'=>1992),

=> Array

(
[name] => Sally Meyers
[position] => President
[yearEmployed] => 2001

)

=> Array
(

[1]

[name] => George Smith

[position] => Treasurer

[yearEmployed] => 2006
)

=> Array
(

[2]

[name] => Peter Hengel
[position] => Clerk
[yearEmployed] => 1992

FIGURE 6-5

True:1

False:

FIGURE 6-6

As you see from the results, a TRUE resolves to 1 and FALSE is nothing. When PHP converts a differ-
ent type of variable to Boolean, the following are false:

>

>

>

Numeric 0 or string ‘0’
An empty string or an array with no elements

A variable with no value

Everything else evaluates to true.

If you put quotes around the TRUE or FALSE, the variable becomes a string variable
"FALSE' ; is the same as $myVar =

and evaluates to true. So $myvVar =

TRUE.

74 |

LESSON 6 WORKING WITH COMPLEX DATA

PHP has a special value to represent a variable with no value. This is the null type. A variable is null
if you have not assigned it to a value yet or if you assigned it to NULL. The following code displays
nothing:

<?php

SmyVar = NULL; // No quotes and case-insensitive
echo $myVar;

WORKING WITH CONSTANTS

Variables are variable because they can change throughout the program. Sometimes you have a
value that does not alter during the running of the program. Rather than directly using that value,
you can assign it to a constant and use the constant instead. Constants are frequently used for con-
figurations where different values may be assigned for different times you run the program.

In Lesson 20, you use constants to define your database name, username, and password. You can
then use the constant throughout your program without having to change it if you change any of
those values.

Constants use the same rules as variables for naming. They are not prefixed with a $. They are case-
sensitive, but by convention constants are all uppercase. Rather than using the assignment operator
(=), you use the define () function:

<?php

define ('DATABASE', 'mydatabase');

define('USERNAME', 'andyt');

define ('PASSWORD', 'sOmePasswOrd')
?>

<p>This program uses the <?php echo DATABASE;?> database with the user name
<?php echo USERNAME; ?> and password <?php echo PASSWORD?>.</p>

As its name implies, you cannot change a constant after you have defined it. If you try to do so,
you get an error message. You use the function defined () to see if the constant is already defined.
defined ('DATABASE') is true if the constant is already defined, and false if it is not.

WORKING WITH DATES

PHP uses Unix timestamps to represent dates. Unix timestamps represent a given date/time by the
number of seconds since January 1, 1970. By translating dates into a number rather than actual
dates, you can use ordinary math to manipulate the dates. Negative numbers show dates before
January 1, 1970, but they do not work in pre-5.1.0 versions of PHP on Windows.

Time Zone Functions

It is important to be aware of time zones when dealing with dates. Your server has a time zone,
which may be different from the local time zone. The following code displays your current default
time zone:

<?php
echo 'Current timezone: ' . date_default_timezone_get() . '
';

Working with Dates | 75

You can set your default time zone if it should be different. The following code changes the default
time zone to that of New York City:

<?php
date_default_timezone_set ('America/New_York') ;
echo 'Current timezone: ' . date_default_timezone_get() . '
';

To find your time zone, check out the list of supported time zones at http: //
us2.php.net/manual/en/timezones.php.

Your time zone may also be set in the php. ini file. This is a best practice. By default, XAMPP adds
the UTC time zone as shown in the following code:

date.timezone = 'UTC'

You change it by supplying a different supported time zone. The following code changes the time
zone to that in New York City:

date.timezone = 'America/New_York'

If you start receiving unexpected results from your dates, check what your time zone is. That could
be the problem. Depending on your error reporting and your PHP version, you could receive error
messages if the time zone is not set before you use the date/time functions.

Date/Time Functions

Dealing with dates and times is complex because you are dealing with arbitrary measurements. PHP
has a series of functions for getting the current time, dealing with time zones, and doing calcula-
tions with dates. The following is a list of some of the common functions that you will come across.

time()

You use the time () function to get the current time as a timestamp. Your results for the following
code are an integer such as that in Figure 6-7:

<2php 1299442037

echo time(); FIGURE 6-7

date()

You use the date () function to take a timestamp and format it so it is easier to read. By default, it
uses the current time. The following code displays the current date in various formats as shown in
Figure 6-8. Table 6-1 has a partial listing of the format codes.

<?php 2011-03-06T15:08:58-05:00
echo date('c') . '
'; 03/06/2011

echo date('m/d/Y') . '
'; Sunday, March 3, 2011
echo date('l, Fn, Y') . '
'; Sulnday3pm

echo date('l ga') "
'; 03:08 pm

echo date('h:1i a') '
';

FIGURE 6-8

76

LESSON 6 WORKING WITH COMPLEX DATA

TABLE 6-1: Date Formats for date()

FORMAT CHARACTER
Day

d

D

J

| (lowercase L)
Week

W

Month

o «Q

DESCRIPTION

01to 31
Mon through Sun
1to 31

Sunday through Saturday

Week number in the year

January through December
01through 12

Jan through Dec

1through 12

Number of days in the month

1if leap year, otherwise O
Four-digit year

Two-digit year

am or pm
AM or PM

1through 12 (hours)

0 through 23 (hours)
01 through 12 (hours)
00 through 23 (hours)
00 to 59 (minutes)

00 to 59 (seconds)

Working with Dates | 77

FORMAT CHARACTER DESCRIPTION
Timezone

e Timezone ldentifier (e.g., UTC, GMT)

| (Capital i) 1for Daylight Savings Time, else O

@) Offset from GMT in hours (e.g., +0200)

P Offset from GMT in hours (e.g., +02:00)
T Timezone abbreviation (e.g., EST, MDT)
z Timezone offset in seconds

Full Date/Time

c 2004-02-12T15:19:21+00:00

php.net/manual/en/function.date.php

You can also specify the date you want to format. It needs to be in the timestamp format. This
example takes the current time, adds seven days in seconds to it and then displays it formatted. See
Figure 6-9 for sample output.

<?php

echo '<p>Original date/time: ' . date('l, F j, Y g:ia T') . '</p>';

SmyTime = time() + (60 * 60 * 24 * 7);

echo '<p>New date/time in different formats: </p>';

echo date('c', S$myTime) . '
';

echo date('m/d/Y', SmyTime) . '
';
echo date('l, F j, Y', SmyTime) . '
';
echo date('l g:ia T', SmyTime) . '
';
echo date('h:i a', SmyTime) . '
';

.) Original date/time: Sunday, March 6,2011 4:26pm EST
Notice the automatic change from standard to

daylight savings time. Programmers frequently

leave the calculations for the seconds as shown for 2011-03-13T17:26:01-04:00
clarity. 03/13/2011

Sunday, March 13, 2011
Sunday 5:26pm EDT

strftime() 05:26 pm

The strftime () function also formats dates. It

has the advantage of begin able to convert based

on the locale settings. However, it does not have some of the formatting options of date (). The
syntax is the same, but, just to make things confusing, the formatting options are different. The fol-
lowing code performs the same function as the previous example for date (). See Figure 6-10 for
example results. Table 6-2 has a partial listing of format codes.

New date/time in different formats:

FIGURE 6-9

<?php
echo '<p>Original date/time: ' . strftime('%A, %B %$e, %Y $I:%M%p %Z') '</p>"

SmyTime = time() + (60 * 60 * 24 * 7);

78 |

LESSON 6 WORKING WITH COMPLEX DATA

echo '<p>New date/time in different formats: </p>';

echo strftime('%c', $SmyTime) . '
';
echo strftime('%m/%e/%Y', SmyTime) . '<br
echo strftime('%A, %B %e, %Y', SmyTime)
echo strftime('%A $I:3M%p %Z', SmyTime)
echo strftime('$I:%M %p', SmyTime) . '<br

(
(
(
(

Original date/time: Sunday, March 6,2011 04:31PM EST
New date/time in different formats:

Sun Mar 13 17:31:56 2011
03/13/2011

Sunday, March 13, 2011
Sunday 05:31PM EDT
05:31 PM

FIGURE 6-10

TABLE 6-2: Date Formats for strftime()

FORMAT CHARACTER
Day
%d

%a

%e

%A
Week
%U
Month
%B
%m
%b
Year
%Y

%Yy
Time

%P

/>
'
';
'
';
/>

DESCRIPTION

O1to 31
Sun through Sat
1to 31

Sunday through Saturday

Week number in the year

January through December

01through 12

Jan through Dec

Four-digit year

Two-digit year

am or pm

Working with Dates | 79

FORMAT CHARACTER DESCRIPTION

%P AM or PM

%l (upper case i) 01 through 12 (hours)

%H 00 through 23 (hours)

%M 00 to 59 (minutes)

%S 00 to 59 (seconds)

Timezone

%z or %Z (depending on operating system) Offset from GMT in hours (e.g., +0200)
%z or %Z (depending on operating system) Timezone abbreviation (e.g., EST, MDT)

Full Date/Time

9%C 2004-02-12T15:19:21+00:00

php.net/manual/en/function.strftime.php

Depending on your technical specifications, your system may not support all of the formatting
codes.

mktime()

You use mktime () to put a date into a timestamp so that you can use it in other date/time functions.
The syntax is as follows:

mktime (hour, minute, second, month, day, is_dst)

The last parameter, is_dst, is depreciated and not to be used. It was for specifying daylight savings
time. The following code displays the date 12/5/2011:

<?php
$myDate = mktime(0,0,0,12,5,2011);
echo date('n/j/Y', SmyDate);

A helpful feature of mktime () is that it converts out-of-bounds dates to valid dates. In other words,
if you specify arithmetic that, for instance, gives you 14 months, it adds one to the year and changes
the months to 2. The following code displays the date 2/5/2012:

<?php
Soffset = 2;
echo date('n/j/Y', mktime(0,0,0,12+$offset,5,2011));

strtotime()

The strtotime () function is another way to get a Unix timestamp. With this function you translate
a string into a timestamp. This is the syntax:

strtotime(time, now)

80 | LESSON6 WORKING WITH COMPLEX DATA

The first parameter is the text string of the date and/or time. It can be a simple date such as
12/5/2011 or a relative term such as yesterday. See Figure 6-11 for an example of results from the
following code:

<?php

echo date('l, F j, Y', strtotime('12/5/2011"')) . '
';

echo date('l, F j, Y', strtotime('yesterday', strtotime('12/5/2011')))
'
';

echo date('l, F j, Y', strtotime('yesterday')) . '
';

echo date('l, F j, Y', strtotime('now')) . '
';

echo date('l, F j, Y', strtotime('Dec 5 2011')) . '
';

echo date('l, F j, Y', strtotime('+4 hours')) . '
';

echo date('l, F j, Y', strtotime('+1l week')) . '
';

echo date('l, F j, Y', strtotime('+2 weeks 1 day 4 hours 10 seconds'))
'
';

echo date('l, F j, Y', strtotime('next Tuesday')) . '
';

echo date('l, F j, Y', strtotime('last Monday'));

For a complete list of the terms that can be used, see Monday, December 5,2011

Sunday, December 4, 2011
Saturday, March 5, 2011
Sunday, March 6,2011
Monday, December 5, 2011
getdate() Sunday, March 6,2011
The getdate () function takes a Unix timestamp and puts the date and Sunday, March 13, 2011

. R Monday, March 21, 2011
time information in an array. If there is no timestamp 1t uses the current Tuesday, March 8, 2011

time. See Figure 6-12 as an example of the following code: Monday, February 28,2011

www . php.net/manual/en/datetime. formats.php.

<pre><?ph rint_r (getdate ; ?></pre>
p php p _r(g) /P FIGURE 6-11

To see full documentation on all the date/time functions, see

http://www.php.net/manual/en/ref.datetime.php. ?rrﬂ}'
[seconds] => 5
[minutes) => 45
[hours] => 17

WORKING WITH BUILT-IN FUNCTIONS)

[wday]
[mon] => 3
. => 2011
PHP has built-in functions for passing data and communicating. gz:;} —

[weekday] => Sunday
[month] => March

$_GET } [0] => 1299451505

The ¢_GET function stores values from a form sent with the

. FIGURE 6-12
method="get” or added to the URL. You learn more about using forms
in PHP in Lesson 11. This simple form displays like Figure 6-13: User Name:
<form action="lesson06w.php" method="get">
<label for="username">User Name:</label>
 Password
<input type="text" id="username" name="username" />
))
<label for="password">Password</label>
 (_Submit)
<input type="text" name="password" />

<button type="submit">Submit</button> FIGURE 6-13

</form>

Working with Built-in Functions | 81

When you type a username and password and click Submit, the screen looks the same, but the
username and password are added to the URL address. If you type in “Andy” as the username and
“12345” as the password you see ?username=andy&password=12345 added to the end of your
address.

The parameter section starts with a ? and each subsequent parameter starts with an &. The param-
eter names are taken from the name attribute of the input tag.

PHP reads those parameters with the $_GET function. $_GET is an associative array of the GET vari-
ables. To select the appropriate parameter, put that name surrounded by quotes in square brackets,
just as you would an associative array. The following code lets you enter a username and password
and then displays them. Results look similar to Figure 6-14.

<form action="lesson06x.php" method="get">
<label for="username">User Name:</label>

<input type="text" id="username" name="username" />

<label for="password">Password</label>

<input type="text" name="password" />

<button type="submit">Submit</button>
</form>
<p>You entered <?php echo $_GET["username"] ?> as the User Name
and <?php echo $ GET["password"] ?> as the Password.</p>

User Name:

Password

(Submit)

You entered Andy as the User Name and 12345 as the Password.

FIGURE 6-14

Now, obviously, you never actually use a GET for a password because everyone would be able to
see it. By the same token, you should always filter the input that you receive. You learn how to filter
later in this lesson.

Use the GET method when you are doing inquiries that can be repeated, if the variables are less
than 2,000 characters, and the variables do not need to be private.

$_POST

The $_posT function stores values from a form sent with the method=“post”. This simple form dis-
plays just like the $_cET did in Figure 6-13:

<form action="lesson06y.php" method="post">
<label for="username">User Name:</label>

<input type="text" id="username" name="username" />

<label for="password">Password</label>

82 | LESSON6 WORKING WITH COMPLEX DATA

<input type="text" name="password" />

<button type="submit">Submit</button>
</form>

When you type a username and password and click Submit, the screen looks the same though PHP
has saved them. The following code uses $_POST to retrieve the values and display them. Again, the
display is the same as using the GET method shown in Figure 6-14.

<form action="lesson06z.php" method="post">
<label for="username">User Name:</label>

<input type="text" id="username" name="username" />

<label for="password">Password</label>

<input type="text" name="password" />

<button type="submit">Submit</button>
</form>
<p>You entered <?php echo $_POST["username"] ?> as the User Name and <?php echo $_
POST["password"] ?> as the Password.</p>

Use the $_rosT method if you are adding or updating data, doing something that should not be
repeated, if the variables are more than 2,000 characters, or if the variables need to be private. As
with GET, you should always filter the input that you receive. You learn how to filter later in this
lesson.

Cookies

Cookies are little files of data that the server puts on the user’s computer. They are often used to
identify a user and retain data needed in multiple screens.

setcookie()

You create a cookie with the setcookie () command and retrieve it with the $_cookIE function
that works just like $_GET and $_posT. The syntax of the setcookie () looks like:

setcookie (name, value, expire, path, domain);

The following code creates two cookies called “username” and “password” and assigns the values
“andyt” and “12345” to them. It expires in one day. The setcookie () function must be before any
HTML including the <html> tag.

<?php

setcookie("username", "andy", time()+(60*60%*24));

setcookie ("password", "12345", time()+(60*60%*24));

You can view cookies in your browser. Each browser has a different way of viewing cookies. In
Firefox on the PC, go to Tools @ Options, select Privacy, and then select Show Cookies. On the Mac,
go to Preferences, select the Privacy tab, and then click Remove Individual Cookies. The cookies are
displayed by the domain name. If you have used the setup in this book, your domain is “localhost.”
Figures 6-15 and 6-16 show what the display looks like on a Mac with the domain of wphp24.

Working with Built-in Functions | 83

806 Cookies

Search: (Q

The following cookies are stored on your computer:

Site Cookie Name
wpcandy.com &
wphp24
wphp24 password
| wphp24 ____usename i
wpmu.org v

Name: username
Content: andy
Host: wphp24
Path: /php24/lesson0OGcode/
Send For: Any type of connection
Expires: March 7, 2011 9:11:59 PM

(Remove Cookie;,\ [Remove All Cookies)

FIGURE 6-15
8,006 Cookies
Search: (Q 3

The following cookies are stored on your computer:

Site Cookie Name
wpcandy.com £
wphp24
wphp24 username m
wpmu.org v

Name: password
Content: 12345
Host: wphp24
Path: /php24/lesson06code/
Send For: Any type of connection
Expires: March 7, 2011 9:11:55 PM

(Remove Cookie) (Remove All Cookies)

FIGURE 6-16

$_COOKIE
The following code displays the information in the two cookies with the $_coox1E function:

<p>You entered <?php echo $_COOKIE["username"] ?> as the User Name
and <?php echo $_COOKIE['"password"] ?> as the Password.</p>

You should remember how easy it was to display the cookies in the browser when you decide what
you want to save in plain text in a cookie.

84 | LESSON6 WORKING WITH COMPLEX DATA

filter_var()

Any time you accept input from a user or an unknown source, you need to be sure that the data is
in an appropriate format both to be sure you are not using garbage and to prevent against hacking
attacks. PHP has a number of filters you can use to cleanse your data. You work with the filter_
var () function to filter the built-in functions you have just learned.

The filters can be used to either verify that you have good data (returns true or false) or to sanitize
the data of particular issues (returns safe or usable data). The syntax of the filter var()
function is

filter_var(variable, filter, options)
Table 6-3 contains some of the most useful filters that sanitize your data by removing or chang-

ing specific characters. The function returns the sanitized data. Your original variable remains
unchanged.

TABLE 6-3: Common Sanitation Filters

1D DESCRIPTION

FILTER_SANITIZE STRING Strip tags, optionally strip or encode special
characters

FILTER_SANITIZE_ENCODED URL-encode string, optionally strip or encode

special characters

FILTER_SANITIZE_EMAIL Remove all characters, except letters, digits and
#S%& ™ +-/=27_(I}~@.[]

FILTER_SANITIZE_URL Remove all characters, except letters, digits and
$-_HF(0,ON\V<>#%";/?.@8=

FILTER_SANITIZE_NUMBER_INT Remove all characters, except digits and +-

FILTER_SANITIZE_NUMBER_FLOAT Remove all characters, except digits, +- and
optionally .,eE

FILTER_SANITIZE SPECIAL_CHARS HTML-escape ’<>& and characters with ASCI|
value less than 32

Table 6-4 contains some of the most useful filters that tell you if your data is valid. The function
does not make changes to your data. The function returns true or false, unless otherwise indicated.

The following code takes the $_PosT data and sanitizes it before displaying the data:

<form action="lesson06zc.php" method="post">
<label for="username">User Name:</label>

<input type="text" id="username" name="username" />

<label for="password">Password</label>

Working with Built-in Functions | 85

<input type="text" name="password" />

<button type="submit">Submit</button>
</form>
<p>You entered
<?php echo filter_var ($_POST["username"],
FILTER_SANITIZE_STRING) ?>
as the User Name and
<?php echo filter_var ($_POST["password"],
FILTER_SANITIZE_STRING) ?>
as the Password.</p>

TABLE 6-4: Common Validation Filters

ID DESCRIPTION

FILTER_VALIDATE_INT Validate value as integer, optionally from the
specified range

FILTER_VALIDATE_BOOLEAN Return TRUE for “1”, “true”, “on” and “yes”, FALSE
for “0”, “false”, “off”, “no”, and “”, NULL otherwise

FILTER_VALIDATE_FLOAT Validate value as float

FILTER_VALIDATE URL Validate value as URL, optionally with required
components

FILTER_VALIDATE_EMATIL Validate value as e-mail

Enter some invalid data, such as that shown in Figure 6-17.

User Name:
Andy<tag>
Password
123<br /=45
(Submit)

You entered as the User Name and as the Password.

FIGURE 6-17

After you click Submit, you should see that the invalid data has been stripped out, as shown in
Figure 6-18.

User Name:

Password

(Submit)

You entered Andy as the User Name and 12345 as the Password.

FIGURE 6-18

86 | LESSON6 WORKING WITH COMPLEX DATA

WORKING WITH OBJECTS

An object is a complex type that combines variables and functions in a single unit. You learn about
objects starting with Lesson 12.

HTRYIT

Available for
download on

Wovan' In this Try It, you change the Case Study to use arrays instead of numerous individual variables in
the gents.php file.

You can download the code and resources for this Try It from the book’s web
page at www.wrox .com. You can find them in the Lesson06 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study you need your files from the end of Lesson 4.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Use a numbered array for each row. Make the variables on each row the indexes for a nested asso-
ciative array.

If you have trouble with the array, you can use print_r () or var_dump to see what you have.

Step-by-Step
1. Define the array at the beginning of the assignments. This clears the array if anything is in it.

<?php
// Get the lot information
Slots = array();

2. Change the first row of variables to an associative array within the array row [0]:

Slots[0]['lot_number'] = '1';
$lots[0]['image'] = "naval-19-173.jpg";

Trylt | 87

Slots[0]['name'] = "Naval Officer's Formal Tailcoat, 1840s";

$lots[0] ['description'] = 'Black wool broadcloth, double breast front,

missing 3 of 18 raised round gold buttons w/crossed cannon barrels &

"Ordnance Corps" text, silver sequin & tinsel embroidered emblem

on each square cut tail, quilted black silk lining, very good; ';
$lots[0]['price'] = 5700.00;

3. Change the second row of variables to an associative array within the array row [1]. Notice
that the associative array indexes are exactly the same in this row as the first row.

Slots[1]['lot_number'] = '2';

$lots[1]['image'] = "gents-striped-8-26.jpg";

Slots[1]['name'] = "Striped Cotton Tailcoat, America, 1835-1845";
Slots[1]['description'] = 'Orange and white pin-striped twill cotton,

double breasted, turn down collar, waist seam, self-fabric buttons,
inside single button pockets in each tail, (soiled, faded, cuff edges
frayed) good. ';

$lots[1]['price'] = 20700.00;

4. Change the third row of variables to an associative array within the array row [2]:

Slots([2]['lot_number'] = '3';

Slots[2]['image'] = "gents-black-8-27.jpg";

$lots([2]['name'] = "Black Broadcloth Tailcoat, 1830-1845";

$lots[2] ['description'] = 'Fine thin wool broadcloth, double breasted,

notched collar, horizontal front and side waist seam, slim long sleeves
with notched cuffs, curved tails, black silk satin lining quilted
in diamond pattern, padded and quilted chest, black silk covered buttons,
(buttons worn) excellent. ';

$lots[2] ['price'] = 3450.00;

5. Change the first display row to use the array. Use $1 for the array row index.

<div class="list-photo"><a href="images/<?php echo $lots[$i]['image']; ?>">
<img src="images/thumbnails/<?php echo $lots[$i]['image']; ?>" alt="" />
</div>
<div class="list-description">
<h2><?php echo ucwords ($lots[$i]['name']); ?></h2>
<p><?php echo htmlspecialchars($lots([$i]['description']); ?></p>
<p>Lot: #<?php echo $lots[$i]['lot_number']; ?>

Price: $<?php echo number_format ($lots[$i]['price'],2); ?></p>
<?php $i++; ?>
</div>

6. Copy and paste the first row over rows two and three. Because you are using a numbered
array, you can let $i do all the work for you.

Watch the video for Lesson 6 on the DVD or watch online at www.wrox. com/
go/24phpmysqgl .

SECTION 1I

Working with PHP Controls,
Functions, and Forms

» LESSON 7: Making Decisions

» LESSON 8: Repeating Program Steps

» LESSON 9: Learning about Scope

» LESSON 10: Reusing Code with Functions
» LESSON 11: Creating Forms

In this section you learn how to make a program perform different actions based on different
criteria. If variables are nouns, control structures are verbs.

In Lesson 7, you learn how to set up conditional statements so that code is performed only if
the conditions are met. In Lesson 8, you learn how to make the program loop, performing the
same action multiple times.

You discover how local and global scope work in Lesson 9. Scope refers to where a specific
variable, function, or object can be seen. You create user-defined functions in Lesson 10, and
in Lesson 11 you use what you have learned so far as you process forms.

Making Decisions

One of the most useful aspects of a programming language is the ability to do different actions
in different situations. If it rains today I use an umbrella, but if it is sunny I wear my sun-
glasses. When the light is red I stop; when it is green I go; and when it is yellow I go fast.

In this lesson you learn how to use various conditional statements to make the program per-
form differently depending on the situation.

IF/ELSE

The most recognizable conditional statement is the if statement. You use the if statement to
tell the program to execute some code if a given condition is true. Optionally, you can add an
else statement to tell the program what to do if the condition is not true.

Basic If Statements

The most basic 1f statement consists of the condition that is being evaluated along with the
code to be executed enclosed in curly braces This is how you write a basic i f statement:

if (some condition) {
some lines of PHP code here;
that are performed;
if the condition evaluated to true;

If you have only a single line of code, you can leave off the curly braces.
Howeuver, this can cause errors if you later add another line and do not add the
curly braces.

92 | LESSON7 MAKING DECISIONS

Following is an example of how you could report on a rainy day. The results look similar to Figure 7-1.

<html>
<head>
<title>Lesson 7a</title>
</head>
<body>
<hl>Weather Report</hl>
<?php
Sweather = 'rainy';
if ($weather == 'rainy') {
echo "<p>It will be rainy today. Use your umbrella.</p>";
}
?>
</body>
</html>

Weather Report

It will be rainy today. Use your umbrella.

FIGURE 7-1

Notice that when you check to see if the weather is rainy, you use a double equal sign (==) and that
all the PHP statements still end with a semicolon, although the if statement itself does not have a
semicolon.

It is a common error to use a single equal sign in a conditional statement.

The single equal sign (=) is the assignment operator. It takes whatever is on

the right side and makes the left side equal to it. That is usually not what you
want to do. The double equal sign (==) is the equal comparison operator, which
determines if the left and right sides are equal. There is also the triple equal
sign (===), which checks that the two sides are even more equal. You learn
about that later in this lesson.

In a few instances you could use the single equal sign in a conditional state-
ment, but the best practice is to avoid it completely because of the ambiguity of
whether or not it is there in error.

Now, of course, it is always rainy with that code. If you make the day sunny, nothing displays
because that code is never executed. If you want to have code execute if the condition is not met,
you add an else statement. else statements never live on their own. They must always follow an if
statement. The following code shows the syntax of an if statement with an else statement.

if (some condition) {
some lines of PHP code here;
that are performed;

If/Else

93

if the condition evaluated to true;
} else {

some lines of PHP code here;

that are performed;

if the condition did not evaluate to true;
}

So now the code performs some action whatever the weather. If the weather is rainy then the output
tells you to use your umbrella. Otherwise it tells you to wear your sunglasses. Because the variable

weather is set to sunny, you are told to wear your sunglasses. See Figure 7-2.

<html>
<head>
<title>Lesson 7b</title>
</head>
<body>
<hl>Weather Report</hl>
<?php
Sweather = 'sunny';
if ($weather == 'rainy') {
echo "<p>It will be rainy today. Use your umbrella.</p>";
} else {
echo "<p>It will be sunny today. Wear your sunglasses.</p>";
}
?>
</body>
</html>

Weather Report

It will be sunny today. Wear your sunglasses.

FIGURE 7-2

You can add a condition on the else statement by turning it into an elseif statement. In the fol-
lowing code, if it is not rainy, you check to see if it is actually sunny before you decide to wear your

sunglasses. After you know it is sunny, you perform your actions and jump to the bottom of the if

statement. See Figure 7-3.

<html>
<head>
<title>Lesson 7c</title>
</head>
<body>
<hl>Weather Report</hl>
<?php
Sweather = 'sunny';
if ($weather == 'rainy') {
echo "<p>It will be rainy today. Use your umbrella.</p>";
} elseif ($weather == 'sunny') {

echo "<p>It will be sunny today. Wear your sunglasses.</p>";
} elseif ($weather == 'snowy') {

94 | LESSON7 MAKING DECISIONS

echo "<p>It will be snowy today. Bring your shovel.</p>";
} else {

echo "<p>I don't know what the weather is doing today.</p>";
}

?>
</body>
</html>

Weather Report

It will be sunny today. Wear your sunglasses.

FIGURE 7-3

Comparison Operators for If/Else Statements

So far you have just been using the equal comparison operator, but conditional statements are really
checking to see if a statement evaluates to true, not if something is equal. You can also check to see
if something is not equal to something, less than something else, more than something, and so on.
Strings that consist of numbers are converted to numeric before the test except for the identical ===.
Table 7-1 has a list of comparison operators.

TABLE 7-1: Comparison Operators

OPERATOR DESCRIPTION EXAMPLE

== Is equal to 6=="6" returns true
=== Is identical to (including the type cast) 6==="'6" returns false
U= Is not equal to 6!=5 returns true

<> Is not equal to 6<>5 returns true

< Is less than 6<5 returns false

> Is greater than 6>5 returns true

<= Is less than or equal to 6<=5 returns false

>= Is greater than or equal to 6>=5 returns true

Some if statements can become complex as you perform actions within the conditional statement
itself. Because the conditional statement is testing for “true” and anything that is not false is true,
you have a wide range of conditions that you can test for. Refer to Lesson 6 for a discussion on what
is true and false.

If/Else | 95

TRUE AND FALSE

As a reminder, the following are false:
> Numeric 0 or string ‘0’.
> An empty string or an array with no elements.

» A variable with no value. Undeclared variables or variables set to NULL have
no value.

Everything else is true.

The following code gives some examples of the different ways that you use if statements. See
Figure 7-4 for the results.

<html>
<head>
<title>Lesson 7d</title>
</head>
<body>
<hl1>If Statements</hl>
<?php
$a = 5;
$b = 8;
Sc = 58;
sd = 40;
$date = date('D, M d, Y');
if (84 < 50) {

if ($a >= strlen($data)) {
echo "<p>Position 1: $a</p>";
}

echo "<p>Position 2: s$d</p>";

if (($d4 + $b) < ($c - $a)) {

echo '<p>Position 3: ' . ($d + $b) .'</p>';
} else {
echo '<p>Position 4: ' . (Sc - sa) . '</p>';
}
}
?>
<div>

<?php if ($date) { ?>
<p>Today 1is <?php echo $date; ?>.</p>
<p>You can check to see if there's something

96 | LESSON7 MAKING DECISIONS

in a variable before you print it.<p>
<p>You can also jump in and out of PHP in the
middle of an if statement.</p>
<?php } ?>
</div>
</body>
</html>

If Statements

Position 1: 5

Position 2: 40

Position 3: 48

Today is Tue, Mar 08, 2011.

You can check to see if there's something in a variable before you print it.

You can also jump in and out of PHP in the middle of an if statement.

FIGURE 7-4

If/Else with Ternary Operator

You can use a shortcut syntax with simple if-then-else statements that can make your code easier to
read, especially if you are interspersing it in HTML code. The following code does a simple test for

gender:

<?php

Sgender = 'F';

if ($gender == 'M') {
echo 'Man';

} else {
echo 'Woman';

}

This same code can be written using the ternary operator (?) as:

<?php
Sgender = 'F';
echo ($gender == 'M') ? 'Man' : 'Woman';

Ternary stands for three parts. This statement consists of the condition in parentheses followed by
the ternary operator (the question mark), then the result-if-the-condition-is-true separated with a
colon from the result-if-the-condition-is-false. Notice that there is no if in the ternary if statement
at all as can be seen in the previous statement and in the following syntax statement:

(condition) ? whentrue : whenfalse;

Logical Operators | 97

This shorthand version of if/else is useful as well when assigning defaults. In the following code, if a
variable is empty, you give it a value; otherwise you use whatever is in the variable:

<?php
echo (empty(S_GET['task'])) ? 'home' : $_GET['task'];
LOGICAL OPERATORS

Sometimes you need to look at multiple conditions before you decide to execute a block of code. The
following example displays similar to Figure 7-5:

Sweather = 'sleeting';
if ($weather == 'snowing') {
echo '<p>Something is falling from the sky.</p>';
} elseif (Sweather == 'sleeting') {
echo '<p>Something is falling from the sky.</p>';
} elseif (Sweather == 'raining') {
echo '<p>Something is falling from the sky.</p>"';
} elseif (Sweather == 'sunny') {
echo '<p>I need my sunglasses.</p>';
} elseif (Sweather == 'partly sunny') {
echo '<p>I need my sunglasses.</p>"';
} else {
echo '<p>The weather is ' . Sweather .'.</p>';

Something is falling from the sky.

FIGURE 7-5

The same actions are performed whether it is snowing, sleeting, or raining. Imagine that that code
block was 20 lines long. That is a lot of extra code, not to mention there is a greater chance for
errors and more work to maintain it.

Instead of the multiple if statements, you can link together multiple conditions. In this case, you
want to say that something is falling from the sky if it is snowing, sleeting, or raining. Here is how
that works. The results are shown in Figure 7-6.

<?php

Sweather = 'sleeting';

if ($weather == 'snowing' OR $weather == 'sleeting' OR $weather == 'raining') {
echo '<p>Something is falling from the sky.</p>';

} elseif ($weather == 'sunny' OR $weather == 'partly sunny') {

echo '<p>I need my sunglasses.</p>';

98 | LESSON7 MAKING DECISIONS

} else {
echo '<p>The weather is ' . Sweather .'.</p>';

Something is falling from the sky.

FIGURE 7-6

When using the oR operator, the condition is true if any of the conditions are true. The ORr operator
is case insensitive and can also be written as a | |. This vertical bar symbol is called a double pipe
symbol. This code is identical to the preceding code as you can see in Figure 7-7:

<?php
Sweather = 'sleeting';
if ($weather == 'snowing' || $weather == 'sleeting' || $weather == 'raining') {
echo '<p>Something is falling from the sky.</p>';
} elseif ($weather == 'sunny' || $weather == 'partly sunny') {
echo '<p>I need my sunglasses.</p>';
} else {
echo '<p>The weather is ' . S$Sweather .'.</p>';

Something is falling from the sky.

FIGURE 7-7

In the same way, you use the AND operator when you need all conditions to be true before executing
a block of code. This code produces output as shown in Figure 7-8:

<?php
Sauthor = 'Dodie Smith';
Stitle = 'I Capture the Castle';

if ($author == 'Dodie Smith' AND $title == 'I Capture the Castle') {
echo "<p>Found the book.</p>";
} else {

echo "<p>S$title by Sauthor is the wrong book.</p>";
}

Logical Operators | 99

Found the book.

FIGURE 7-8

Instead of using AND you can use the symbol &&, which gives you the same result as the previous example,
as shown in Figure 7-9.

<?php

Sauthor = 'Dodie Smith';

Stitle = 'I Capture the Castle';

if ($author == 'Dodie Smith' && $title == 'I Capture the Castle') {
echo "<p>Found the book.</p>";

} else {

echo "<p>S$title by S$author is the wrong book.</p>";
}

Found the book.

FIGURE 7-9

You can mix AND and OR as needed as shown here. See Figure 7-10.

<?php

Scity = 'Springfield';

Sstate = 'MA';

if ($city == 'Springfield' AND ($state == 'MA' OR $state =='VT')) {
echo "<p>This Springfield is in Massachusetts or Vermont.</p>";

} else {
echo "<p>S$city, $state is not Springfield in MA or VT.</p>";

}

This Springfield is in Massachusetts or Vermont.

FIGURE 7-10

100 | LESSON7 MAKING DECISIONS

There is a slight difference between AND/OR and &&/| |. The words AND/OR have a lower operator pre-
cedence than the symbols &&/| |, which for practical purposes means that you do not want to mix
the word version and the symbol version in the same statement or you could get unexpected results.
Just as in regular mathematics, you can use parentheses to change the precedence order, to improve
readability, or when there is any ambiguity.

The final logical operator is the not (1) operator. Use this to negate. The following code tells you to
put away your umbrella if it’s not rainy, otherwise it tells you it is raining. See Figure 7-11.

<?php
Sweather = 'sunny';
if (! ($Sweather == 'rainy')) {
echo "<p>Put away your umbrella.</p>";
} else {

echo "<p>It's raining!</p>";

}

Put away your umbrella.

FIGURE 7-11

SWITCH STATEMENTS

switch statements are also used to perform specific blocks of code depending on conditions. They
are used when you want to compare the same variable or expression to several different values.
Take, for example, the following series of if statements:

<html>
<head>
<title>Lesson 7m</title>
</head>
<body>
<hl>Weather Report</hl>
<?php
Sweather = 'sunny';
if ($weather == 'rainy') {
echo "<p>It will be rainy today. Use your umbrella.</p>";
} elseif ($weather == 'sunny') {
echo "<p>It will be sunny today. Wear your sunglasses.</p>";
} elseif ($weather == 'snowy') {
echo "<p>It will be snowy today. Bring your shovel.</p>";
} else {

echo "<p>I don't know what the weather is doing today.</p>";
}
?>
</body>
</html>

Switch Statements | 101

Each if statement is comparing to the variable $weather. With a switch statement you write the
same code in a clearer fashion. The following code performs the same functions:

<html>
<head>
<title>Lesson 7n</title>
</head>
<body>
<hl>Weather Report</hl>
<?php
Sweather = 'sunny';

switch ($weather) {
case 'rainy':
echo "<p>It will be rainy today. Use your umbrella.</p>";
break;
case 'sunny':
echo "<p>It will be sunny today. Wear your sunglasses.</p>";
break;
case 'snowy':
echo "<p>It will be snowy today. Bring your shovel.</p>";
break;
default:
echo "<p>I don't know what the weather is doing today.</p>";
}
?>
</body>
</html>

The syntax of the switch statement is as follows:

switch (S$Svariable) {
case valuel:
code to be executed if $variable is equal to valuel;
break;
case value2:
code to be executed if $variable is equal to value2;
break;
default:
code to be executed 1f S$variable is different from both valuel and value2;

}

The switch ($variable) establishes what is compared. Each of the case statements lists a value.
Notice that the case statements end with a colon. This is the normal practice, though a semicolon
works as well. If the variable in the switch statement matches the value in the case statement,

the associated block of code is performed. The break; tells the program to jump to the end of the
switch block, ignoring all the rest of the case statements. If you want to perform some action when
the value matches and then get out, use the break;. The default statement at the end is always per-
formed unless an earlier matching case contained a break.

If you want to have two or more values perform the same actions, skip the break on the first
value. It then drops through and executes the lines (regardless of matching any subsequent case

102 | LESSON7 MAKING DECISIONS

statements) until it finds a break. In the following code the state is Ma, so after it gets a match,
it displays “Southern New England” because it continues until it finds a break;.

<?php
Sstate = 'MA';

switch ($state) {

case 'ME':

case 'VT':

case 'NH':
echo "<p>Northern New England</p>";
break;

case 'CT':

case 'MA':

case 'RI':
echo "<p>Southern New England</p>";
break;

default:
echo "<p>$state is not in New England.</p>";

}

ALTERNATIVE SYNTAX

There is an alternative syntax for the control structures: the if and switch statements that you
already know as well as the control statements you learn in the next lesson.

Curly braces have a tendency to get lost in long stretches of code, especially if you are hopping in
and out of PHP and HTML. You often end up with lines that look like this:

<?php } ?>

This alternative syntax replaces the curly braces with a colon and an end word. The syntax for an
if statement is as follows:

if (condition)
some lines of PHP code here;
that are performed;
if the condition evaluated to true;
elseif (condition)
some lines of PHP code here;
else
some lines of PHP code here;
endif;

The switch statement uses this syntax:

switch ($variable)

case valuel:
code to be executed if $variable is equal to valuel;
break;

case valuel:
code to be executed if $variable is equal to value2;

Trylt | 103

break;
default:

code to be executed if S$variable is different from both valuel and value2;
endswitch;

The recommendation is to use this syntax if you are mixing HTML and PHP on a page and to use
the curly brace syntax if you are doing straight PHP.

) TRYIT

Available for
download on

Woceon' In this Try It, you finally put the case study back together so that the menus display the right
content. You use the GET parameters in the URL that you learned to manipulate in Lesson 6 along
with the conditional statements that you learned in this lesson to create a dynamic menuing system
that tells the program what content to display.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson07 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the case study, you need your files from the end of Lesson 6.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Lesson 6 teaches how to work with GET values.

Remember the shortcut if/else statement for setting up a default:

Svariable = (empty($variable)) ? "default" : Svariable;

Step-by-Step

The first task is to create a .php file in the content folder that contains the sidebar menu in the
sporting.html file.

104 | LESSON7 MAKING DECISIONS

1. Create a blank file called catnav.php in the content folder. If <?php is automatically entered
in the file, remove it.

2. Copy the code inside the sidebar div from the sporting.html file, paste it into the new
catnav.php file, and save the file:

<h3 class="element-invisible">Lot Categories</h3>
<ul class="catnav">
Gents</1i>
Sporting</1li>
Women</1i>

The next task you need to do is to take the remaining HTML pages (categories.html, sporting
.html, and women.htm1) and turn them into PHP content files. This process is described in more
detail in the Try It sections of Lessons 2 and 4. If you want to skip this step, you can download the
lesson07cs01 folder for the completed files.

1. Move categories .html, sporting.html, and women.html to the content folder.
2. Change the extensions to .php.
3. Delete everything in the files except the code inside the div class="content".
4. Save the files.
Add a parameter called content to each of the menu options in the index.php mainnav menu.
1. Open index.php.
2. Find the ul with the class="mainnav".

3. Change the href for each of the items to index.php?content=contentname where
contentname is the name of the file in the content folder without the extension. This passes
a GET parameter that you use in the next step. This is standard HTML, not PHP. The code
should look like this:

<ul class="mainnav">
Lot Categories
About Us
Home</1i>

Change the include statement in the content div to include based on the GET parameter.
1. Find the div with class="content" in the index.php file.

2. Between the <?php and the include statement, get the content from the URL if there is one.
The isset () function checks to see if the variable exists.

<?php

Scontent = '';

// Get the content from the url
if (isset(S_GET['content']))
Scontent = $_GET['content'];

Trylt | 105

3. Someone could enter malicious data into a GET parameter, so sanitize the data before using it:

// Sanitize it for security reasons
Scontent = filter var ($content, FILTER_SANITIZE_STRING) ;
endif;

4. Set up the home page as a default if there is no GET parameter:

// Set up the home page as the default
Scontent = (empty(Scontent)) ? "home" : S$Scontent;

5. Change the include to use the $content variable:

// Include the chosen page
include 'content/' . Scontent . '.php';
?>

6. Your links in the main menu should now work to take you to the Home page, the About Us
page, and the Lot Categories page.

Now you change the categories.php file to also use the GET parameters on its links to the lots
pages.
1. ()pm1contents/categories.php.

2. Find the h2 tag containing the link to the Gents page and change it as you did the mainnav
menu:

<h2>Gents</h2>
3. Find the a tag with class="button display" containing the link to the Gents page and
change it the same way:

Display Lots
4. Find the h2 tag containing the link to the Sporting page and change it the same way:
<h2>Sporting</h2>

5. Find the a tag with class="button display" containing the link to the Sporting page and
change it the same way:

Display Lots
6. Find the h2 tag containing the link to the Women page and change it the same way:
<h2>Women</h2>

7. Find the a tag with class="button display" containing the link to the Women page and
change it the same way:
Display Lots
8. Save the file and you should now be able to link to the Gents, Sporting, and Women’s pages

from the Lot Categories page either by clicking the titles or by clicking the Display Lots
buttons.

Now you add these changes to the catnav menu and add the menu to show on the lots pages.

106 | LESSON7 MAKING DECISIONS

Open the content/catnav.php file.

Change the href link to match the links from the previous steps and then save the file:

Gents</1i>
Sporting</1li>
Women</1i>

Open the index.php file.
Find the div where class="sidebar".

Include the content for the catnav if the page is Gents, Sporting, or Women and save the
file. This example uses a switch statement, but you could use multiple if statements here
instead.

<div class="sidebar">
<?php
switch (isset($_GET['content']))
case 'gents'
case 'sporting'
case 'women'
include 'content/catnav.php';
endswitch;
?>
</div><!-- end sidebar -->

You can now use a menu on the left to move between the different categories of lots without
returning to the Lot Categories page.

Watch the video for Lesson 7 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl .

Repeating Program Steps

Loops let you repeat blocks of code multiple times. Depending on the type of loop, you can
repeat the code a given amount of times or while a certain condition is true.

In this lesson you learn how to use the different types of loops:
> wWhile loops repeat the code while a given condition is true.
> Do/while loops do the code and then repeat the code while a given condition is true.
> For loops repeat the code a given number of times.
> Foreach loops repeat the code separately for each element in an array or object.

You also learn how to break out of a loop or jump to the next iteration using break and

continue.

Finally, you learn what array pointers are and how to manipulate them. This enables you to
use loops more effectively with arrays.

WHILE LOOPS

While loops execute a block of while a given condition is true. This is the syntax of a while loop:

while (condition) {
lines of code here;
as many as you need;

}

As with the other control structures, the while loop also has the alternative syntax that is pre-
ferred if you are mixing PHP and HTML.:

while (condition)
lines of code here;
as many as you need;
endwhile;

108 | LESSON8 REPEATING PROGRAM STEPS

A standard use of this type of loop is to set a counter and loop through until it meets the condition.
Each of the loops is called an iteration and you often find that programmers use the variable $i as
the counter. The following program sets $i to 1, then loops through printing $i and adding 1 to it
until $1i reaches 5 and makes the while condition false. See Figure 8-1.

<hl>Print 1 through 4</hl>
<?php
$i = 1;
while ($i < 5) {
echo "<p>The counter is $i.";
Si++;

Print 1 through 4

The counter is 1.
The counter is 2.

The counter is 3.

The counter is 4.

FIGURE 8-1

The ++ attached to $1 is the increment operator. It is used to increase $i by 1. The while loop does
not automatically change the variable in the condition as it loops, so you need to remember to do that.

You need to make sure that all this looping eventually ceases or you get an infa-
mous infinite loop. Make sure your condition eventually goes false. A common
problem is to forget to increment a counter variable.

Increment and decrement operators are convenient ways to count up and down. You can attach the
operator before or after the variable depending on whether you want to increment/decrement before
or after you use the original variable. Assume that $i is equal to 3 in Table 8-1.

TABLE 8-1: Increment/Decrement Operators

EXAMPLE NAME RESULT

echo ++$1i; Pre-increment Adds 1 and then prints 4
echo $i++; Post-increment Prints 3 and then adds 1
echo --$1i; Pre-decrement Subtracts 1 and then prints 2

echo $i--; Post-decrement Prints 3 and then subtracts 1

Do/While Loops | 109

You do not need to use the increment operator. You can use any calculation that is appropriate to
change the counter.

You do not even need to use a counter to run a while loop. Any statement that can evaluate
to true or false can be used as the condition. Just be sure that it does not end up in an infinite
loop!

DO/WHILE LOOPS

The do/while loops are the same as while loops except that the condition is checked after running
the block of code instead of before. while loops that start with a false condition never run; do/
while loops always run at least once.

Following is the syntax for a do/while loop. The do/while loop does not have an alternate
syntax.

do {
lines of code here;
as many as you need;
} while (condition);

Here is the same example as the while loop, refactored as a do/while loop. See Figure 8-2.

<hl>Print 1 through 4</hl>
<?php
$i = 1;
do {
echo "<p>The counter is $i.";
Si++;
} while ($1i < 5);

Print 1 through 4

The counter is 1.
The counter is 2.
The counter is 3.

The counter is 4.

FIGURE 8-2

Refactoring is rewriting the same code in a different, presumably better, way. It
can include restructuring to take advantage of new techniques or reworking an
old program to more elegantly integrate added features. You are refactoring the
Case Study as you add more advanced PHP.

110 | LESSON8 REPEATING PROGRAM STEPS

FOR LOOPS

The for loops execute a block of code a given number of times. Unlike while loops, for loops han-
dle the incrementing/decrementing of the counter for you. This is the syntax of the for loop:

for (init; condition; increment) {
lines of code here;
as many as you need;

}

> init is executed at the beginning of the first loop. It is usually used to initialize the counter.
It can contain more than one expression (separated by commas) or be empty. It always ends
with a semicolon.

> condition is evaluated at the beginning of each loop. If it is false, the looping stops. It can
contain more than one expression (separated by commas) or be empty. If there is more than
one expression, they are all processed, but the last one determines if the loop should con-
tinue. If this element is empty, you need to exit the loop using the break statement, which
you learn about later in this lesson. It always ends with a semicolon.

> increment is executed at the end of each pass of the loop. It is usually used to increment the
counter. It can contain more than one expression (separated by commas) or be empty. Notice
that it does not end with a semicolon.

The for loop has alternative syntax as well:

for (init; condition; increment)
lines of code here;
as many as you need;

endfor;

Following is the same function used for the while loop, but refactored as a for loop. See Figure 8-3.

<hl>Print 1 through 4</hl>

<?php

for ($1=1; $1 < 5; Si++) {
echo "<p>The counter is $i.";

}

Print 1 through 4

The counter is 1.
The counter is 2.
The counter is 3.

The counter is 4.

FIGURE 8-3

For Loops | 111

As you can see, the for loop takes elements that you commonly used for iteration in the while loop
and puts them tidily in one spot. For loops are handy for looping through arrays. The following
code lists out the contacts in the array. See the display in Figure 8-4.

<hl>Contacts</hl>
<?php
Scontacts = array(
array('name' => 'George Smith', 'email' => 'george@example.com'),
array('name' => 'Sally Carpenter', 'email' => 'sally@example.com'),
array('name' => 'Peter Jason', 'email' => 'peter@example.com'),
array('name' => 'Lila Carhausen',6 'email' => 'lila@example.com')
)i
?>

<?php for ($i=0, $size=count (Scontacts); $i < S$size; S$Si++) : 2>
<?php echo S$contacts[$i]['name']; ?>

<?php echo S$contacts[$i]['email']; ?></1i>

<?php endfor; ?>

Contacts

» George Smith
george@example.com

s Sally Carpenter
sally@example.com

« Peter Jason
peter@example.com

¢ Lila Carhausen
lila@example.com

FIGURE 8-4

This is a typical example of how a program jumps in and out of PHP. You could have stayed in PHP
and echo’d all the HTML. For clarity of the PHP, most of the examples have done that. However,
generally speaking, if you are outputting to the screen, it is better to think of it as mostly HTML
with PHP helping out where needed.

It’s important that you understand the sequence of events for the for loop so here’s a closer analysis
of this example:

> You start out in HTML with the <h1> tag and then jump into PHP to assign values to the
$contact array.

You go briefly back into HTML to start the unordered list.

Now you jump back into PHP for the start of the for loop.

112 | LESSON 8 REPEATING PROGRAM STEPS

> Next you define the loop. The initialization, condition, and increment of this example are
more complex than the earlier examples:

> The first expression of the initialization sets the starting point of $1i. By setting $1
to 0 you are able to use it as the index for the array because array indexes start at 0.
The second expression counts the number of elements in the array.

> The condition compares the variable containing the index of the array to the number
of items in the array. Notice when the condition turns false. That is when the looping
stops. It turns false when the index of the array matches the number of items in the
array. Hmm. Does that mean that you miss the last person? No, because the array
index is 0,1,2,3 and number of elements is 4.

> The increment is the standard increment that you have been using. It adds 1 to $i as
it finishes each loop. Because this is the first time through, this statement is ignored.

Now that you’ve finished defining the for loop, you get out of PHP.

> While in HTML, you define a list tag. You need to define only one <11i> tag because you are
using this single one as you loop through.

> To display the name and e-mail of this row of the array you use a PHP echo command.

The end of the code in the loop is signaled by the endfor statement. At that point the follow-
ing happens:

> You are sent back to the for statement.

> The increment statement is processed.

» The conditional statement is evaluated to see if it is now true or false:
> Ifitis true, you continue to do the loop again.

> Ifitis false, you jump to the endfor, which takes you out of the loop and out
of PHP. You then end with the unordered list tag.

FOREACH LOOPS

The foreach loop is a simple way of looping through all the elements in an array or object.
Although you could do the same thing with a for loop, using a foreach loop is less complex and
gives you advantages. This is the standard syntax:

foreach ($Sarray as $element) {
code to be executed using S$element;

}

As with most of the other control structures, the foreach has an alternative syntax that is helpful
when moving in and out of PHP:

foreach (Sarray as S$Selement)
code to be executed using S$element;
endforeach;

Foreach Loops | 113

It is a convention, when it makes sense, for the array name to be plural and the element to be the
singular. The following example loops through the outer array with a foreach loop and gives the
same results as in Figure 8-4. Here each element happens to be another array.

<hl>Contacts</hl>

<?php

Scontacts = array(
array('name' => 'George Smith', 'email' => 'george@example.com'),
array('name' => 'Sally Carpenter', 'email' => 'sally@example.com'),
array('name' => 'Peter Jason', 'email' => 'peter@example.com'),
array('name' => 'Lila Carhausen',6 'email' => 'lila@example.com')
)i

?>

<?php foreach ($contacts as $contact) : ?>

<?php echo $contact|'name']; ?>

<?php echo $contact['email']; ?></1i>

<?php endforeach; 7>

If the array you are looping through is an associative array you can keep track of the index with the
following syntax:

foreach ($array as Skey=>S$value) {
code to be executed using $element and/or S$Skey;
}

foreach ($array as Skey=>S$element)
code to be executed using Selement and/or ;
endforeach;

In the following code you loop through the array and use each key as a label for displaying the
value. See Figure 8-5.

<hl>Contact</hl>

<?php

SmyArr = array('name' => 'George Smith',
'email' => 'george@example.com',

'phone' => '555-555-1212",

'state' => 'MA');

?>

<?php foreach ($myArr as $key=>$value) : ?>

<?php echo ucfirst ($key); ?>:
<?php echo $value; ?></1li>

<?php endforeach; ?>

114 | LESSON8 REPEATING PROGRAM STEPS

Contact

+ Name: George Smith

» Email: george@example.com
e Phone: 555-555-1212

+ State: MA

FIGURE 8-5

You should be aware of these behaviors:
> The foreach loop always starts on the first element of the array.

> The element variable is a copy of the array element so nothing you do to it affects the actual
array. If you want to make changes to the actual array, prefix an & to the element variable as
in foreach ($Sarray as &$value). The & makes this a reference of the array rather than a
copy. The new variable is just another name for the same variable.

> If you reference the array, the last referenced element remains after the foreach finishes so it
is recommended that you remove the variable by unsetting with unset ($value).

CONTINUE/BREAK

You use continue if you are done with a particular loop iteration and want to jump to the start of
the next iteration. In the following example, the email value is skipped:

<hl>Contact</hl>

<?php

SmyArr = array('name' => 'George Smith',
'email' => 'george@example.com',

'phone' => '555-555-1212",

'state' => 'MA');

?>

<?php foreach (SmyArr as Skey=>$value)

if (Skey == 'email')
continue;
endif; 2>

<?php echo ucfirst(Skey); ?>:
<?php echo $value; ?></1li>

<?php endforeach; ?>

If you have multiple nested loops, you can use a numeric argument to skip to the next iteration of
enclosing loops.

Trylt | 15

You use continue to jump to the next iteration of a loop. To jump completely out of the loop, use
break. You used break in Lesson 7 when learning about switches, but you can also use break to
jump out of loops.

Overuse of continue and break can lead to what is called spaghetti code. This
is code that is convoluted and jumps around. It is hard to read, hard to debug,
and error prone. Breaks are standard on switch statements and a simple
continue can be very helpful, but be cautious of more than that.

A TRYIT

Available for

Sorem' In the first part of this Try It, you create a program to display the even numbers from an array using
the for loop.

You continue improving the Case Study in the second part of the Try It. In the previous lesson you
moved information from individual variables to arrays and duplicated the code for each element in
the array. Now you replace the duplicated code with a loop.

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lesson08 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the case study, you need your files from the end of Lesson 7.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Remember that the first index of an array is 0, not 1.

116 | LESSON8 REPEATING PROGRAM STEPS

Remember that the index of an element is not the same thing as the value of that element.

Don’t forget the echo when needed.

Step-by-Step

Create a program to display the even numbers from an array using the for loop. See Figure 8-6 for
the desired results.

Display the even numbers

» The array value is 2.
» The array value is 4.
» The array value is 6.
» The array value is 8.
» The array value is 10.

FIGURE 8-6

1. Start by creating a file called exercise08a.php.

2. Enter the basic code for an HTML page:

<html>
<head>

<title>Exercise 8a</title>
</head>

<body>

</body>
</html>

3. Initialize an array called $myArray with the numbers 1-10. Insert it on a line just after the
<body> tag. Remember to go into PHP.
<?php
SmyArray = array(1,2,3,4,5,6,7,8,9,10);
4. Count the total number of items in the array:

Stotal = count (SmyArray) ;

5. Insert a heading that says Display the even numbers. Use HTML, rather than PHP.

?>
<hl>Display the even numbers</hl>

6. Start an unordered list:

7. Setup the for loop. You are using the index to print the value and to control the loop.
Because you want the second value (2) to be the first to print, set a variable called $i with the

Trylt | 17

beginning value of 1. This is the index for the second value. You want the loop to continue
while the index is less than the count of the items. Because you are printing only even num-
bers, you want to increase $1i by 2 at the end of each loop. You use HTML after this state-
ment, so get out of PHP at the end.

<?php for ($i=1; $i < Stotal; $i += 2) : 2>
8. Display the value of the element in a list:

The array element value is <?php echo $myArray[$i]; ?>.</1i>

9. End the for loop and the unordered list:

<?php endfor; ?>

10. The resulting code should look like this:

<html>
<head>

<title>Exercise 8a</title>
</head>

<body>

<?php

$myArray = array(1,2,3,4,5,6,7,8,9,10);
Stotal = count (SmyArray) ;

?>

<hl>Display the even numbers</hl>

<?php for ($i=1; $i < $total; $i += 2) : 2>
The array element value is <?php echo $myArray[$i]; ?>.</1i>
<?php endfor; ?>

</body>
</html>

In the Case Study, add a foreach loop to display the list in content /gents.php.
1. ()pm1contents/gents.php.

2. Find the <ul class="ulfancy"> line and add the beginning of the foreach loop following
that line. Use $i as a key. That will give you a counter to use for calculating alternating rows:

<?php foreach ($lots as $i=>$lot) : ?>
3. Add the endforeach after the </11i>:

<?php endforeach; ?>

4. Within that loop, change $1lots[$i] to $lot.

5. Remove the increment counter <?php $i++; 2> because you are letting the foreach loop
key do that work.

118 | LESSON8 REPEATING PROGRAM STEPS

6. Delete the next two <1i></1i> groupings.

7. The group should now match this:
<ul class="ulfancy">
<?php foreach ($lots as $lot) : ?>

<1li class="row<?php echo $1 % 2; ?>">
<div class="list-photo"><a href="images/<?php echo $lot['image']; ?>">

<img src="images/thumbnails/<?php echo $lot['image']; ?>" alt=""
/>
</div>
<div class="list-description">
<h2><?php echo ucwords ($lot['name']); ?></h2>
<p><?php echo htmlspecialchars($lot['description']); ?></p>
<p>Lot: #<?php echo $lot['product_id']; ?>
Price: $<?php echo number_format ($lot['price']l,2);
?></p>
</div>
<div class="clearfloat"></div>
</1li>

<?php endforeach; ?>

8. Back at the end of the first block of PHP code is the line $i = 0;. You used that when you

were counting the lines manually. Because the foreach loop is handling that, you can delete
this line.

Watch the video for Lesson 8 on the DVD or watch online at www.wrox.com/
go/24phpmysql .

Learning about Scope

In this lesson you learn about the concept of scope. As you learn about user-defined functions
in Lesson 10 and objects in Lesson 12, you learn the details of how scope works when you use
functions and objects.

Scope refers to where a specific variable, function, or object can be seen. Scope can be local
or global.

LEARNING ABOUT LOCAL VARIABLES

Think of a program as a village where the houses have blinds on all their windows. Imagine
that a variable is a person taking a walk down the street. He can talk and interact with all
the other people outside, but he cannot be seen by anyone inside the houses nor can he see
them. If he needs to talk with someone inside a house, he has to knock on the door and be
let in first.

This is the way that local scope works. Variables can be seen only where they are created. The
houses are the user-defined functions you learn about in Lesson 10. If you create a variable
outside a function, it cannot be seen inside the function. Conversely, if you create a variable
inside a function, it can be seen only within that function.

Global scope, on the other hand, is as if that village was on a South Seas island and the houses
were open-air tents. Everyone can see everyone else at all times.

Scope is local by default in PHP. Having local scope allows for encapsulation. Encapsulation
means that you can create a function and know that nothing that goes on outside of that func-
tion will change anything inside the function unexpectedly. It also means that you are free to
make changes inside the function and do not have to worry that you are messing up something
outside the function. This makes your code easier to debug and more robust.

Older programming styles made extensive use of global variables so you may see programs
using it, but it’s not a style you should copy.

120 | LESSON9 LEARNING ABOUT SCOPE

At times you may need to create and use global variables, however. In the next section you learn
how to define and work with global variables.

LEARNING ABOUT GLOBAL VARIABLES

Setting a variable to global scope is very easy. Just put the word global before the variable before
you use it:

<?php
global $myVar;
SmyVar = '15';

In addition to regular globals, PHP has predefined variables called superglobals. These variables are
automatically global. You used the superglobals $_GET, $_PosT, and $_cookIE in Lesson 6. The rest

of the superglobals work the same way. The superglobals and an explanation of each are listed in
Table 9-1.

TABLE 9-1: Superglobal Variables

SUPERGLOBAL VARIABLE CONTENTS

SGLOBALS All global variables

$_SERVER Server and execution environment information
$_GET Variables passed via URL parameters

$_POST Variables passed via the HTTP POST method
$_FILES Iltems uploaded via the HTTP POST method (file uploads)
$_COOKIE Variables passed via HTTP cookies

$_SESSION Session variables

$_REQUEST Contains contents of $_GET, $_POST, and $_COOKIE
$_ENV Variables passed via environment method
$_SERVER Server and execution environment information

Notice that scLoBALS does not have an underscore. It is the superglobal that has been around for
the longest time.

Globals have undergone many changes in the different versions of PHP. It is handy to be familiar
with the old style so that you know not to copy it. Some of the old ways of doing things still work,
but will be removed in later versions. That is another reason for moving right to the modern style.

In the old style the superglobals were prefixed with HTTP and suffixed with VARS. Table 9-2 con-
tains a cross-reference from the current values to the terms that are being retired.

Learning about Global Variables | 121

$_SERVER ELEMENTS

The $_SERVER superglobal has several predefined keys (elements) for the data it
contains. Not all elements work on all servers and they might give you unexpected
data depending on the server setup. Here are some that may be useful to you:

> pHP_SELF: Filename of the currently executing script, relative to the document
root

> SERVER_NAME: Name of the server host

> DOCUMENT_ROOT: Document root directory under which the current script is
executing

> HTTP_REFERER: Address of the page that referred the user agent to the current
page (not available with all user agents)

> HTTP_USER_AGENT: Contents of the User-Agent such as Mozilla/4.5 [en]
(X11; U; Linux 2.2.9 1586)

> SCRIPT_FILENAME: Absolute pathname of the currently executing script
> scRIPT NAME: Current script’s path
> REQUEST_URT: URI used to access this page; for instance /index.html

These are some of the elements listed in the PHP manual. See the full list at
www . php .net/manual/en/reserved.variables. server.php.

TABLE 9.2 Deprecated Variables

NEW STYLE DEPRECATED OLD STYLE
$SGLOBALS This has always been $GLOBALS
$_SERVER SHTTP_SERVER_VARS

$_GET SHTTP_GET_VARS

$_POST SHTTP_POST_VARS

$_FILES SHTTP_POST_FILES

$_COOKIE SHTTP_COOKIE_VARS
$_SESSION SHTTP_SESSION_VARS

$_ENV SHTTP_ENV_VARS

Variables are local by default in PHP. There is a setting in your php. ini file where you can change
that. If you turn register_globals on, all your variables will be global by default. Some older

122 | LESSON9 LEARNING ABOUT SCOPE

programs depended on that setting being on to work. Properly run servers do not allow register_
globals to be on because it is a security risk, so most of those programs have been weeded out. In
PHP6, register_globals will not exist.

) TRYIT

Available for
download on

W' In this Try It, you set a variable to global and use a superglobal to display information about the
server.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson09 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

This Try It does not use the Case Study.

Hints

The superglobal for the server information is $_SERVER.

$_SERVER works the same way as $_GET, which you learned to use in Lesson 6.

Step-by-Step

Create a program that creates a global variable, assigns a value to it, locates the document root, and
concatenates the two results.

1. Create the file exercise09a.php.

2. Create a global variable called $file, set it to exercise09a.php, and display it:

<?php

global $file;

Sfile = 'exercise(09a.php';

echo 'S$file: ' . S$file .'
';

Trylt | 123

3.

4.

Look up DOCUMENT ROOT, SCRIPT_NAME, and REQUEST URT and display them:

$path = $_SERVER['DOCUMENT_ROOT'] ;

echo 'DOCUMENT_ROOT: ' . S$path .'
';
$script = $_SERVER['SCRIPT NAME'];

echo 'SCRIPT NAME: ' . S$script .'
';
Suri = $_SERVER['REQUEST_URI'];

echo 'REQUEST_URI: ' . Suri .'
';

Your results should look similar to Figure 9-1. They reflect your server and documents.

$file: exercise09a.php

DOCUMENT_ROOT: /Applications/XAMPP/htdocs
SCRIPT_NAME: /exercise09a.php
REQUEST_URI: /exercise09a.php

FIGURE 9-1

Watch the video for Lesson 9 on the DVD or watch online at www.wrox . com/
go/24phpmysqgl .

10

Reusing Code with Functions

Writing code can be time-consuming and error prone. After you have written a piece of code
that works well, you want to reuse that code instead of constantly rewriting it when you need
to do the same thing again.

You could copy and paste that piece of code everywhere you need it, but then if you found a
new bug or thought of an enhancement, you’d need to change it everywhere that you copied
it — assuming you could find all the places.

PHP lets you take those pieces of code and create mini-programs called functions out of them.
Functions make it easier to read your code because functions move extraneous detail out of
the main flow of the program. You learned several PHP functions in Lesson 4, such as the
function strlen () that counts the number of characters:

<?php
SmyName = 'Andy';
echo strlen($myName) ;

You give strlen() some information (optionally), it does something, and it (optionally) gives
you something back. When it gives something back, it is said to return something.

In this lesson you learn how to take the valuable pieces of code that you’ve written and turn
them into user functions of your own. You learn how to define the function, how to pass data
to the functions, and how to get data back from the functions. Then you take that knowledge to
learn how to use the functions in your code.

Another way of reusing code is include statements. You are using a simple include in the
Case Study. In this lesson you also learn about the different types of includes, how they work,
and how you can use them to organize your collection of functions.

126 | LESSON10 REUSING CODE WITH FUNCTIONS

DEFINING FUNCTIONS

You name functions with the same rules as naming variables. Functions do not have a $ before their
name and they are immediately followed by parentheses. The simplest function definition looks like this:

function functionname() {
// PHP code goes here;
}

PHP, in general, is very forgiving of whitespace — those blank spaces, tabs, new
lines, and blank lines you put in code to make it more readable. However, one
place where whitespace is not allowed is between the end of the function name
and the parentheses. The () must immediately follow the name.

It’s easy to turn code into a function. This code displays “George Smith”:

<?php
Sname = "George Smith";
echo $name;

This is how you define a function to display “George Smith”:

<?php
function getName () {
Sname = "George Smith";

echo S$name;
}

This defines the function but does not run the function. To actually run the function and display
“George Smith” you need to also call the function, as shown in the following code. See Figure 10-1.

<?php
function getName () {
$name = "George Smith"; Contacts
echo $name; i
} George Smith
?>
<hl>Contacts</hl>
FIGURE 10-1

<p><?php getName(); ?></p>

You see that the code in the function is not processed when you define it in the function. It is only
when you call the function that “George Smith” is displayed. After you have defined the function
you can call it as often as you need it. So if you

had a need to echo out George’s name three Contacts
times, you could do it this way (see Figure 10-2):

<?php George Smith
function getName () { George Smith

Sname = "George Smith";
George Smith

echo $name;

}
?> FIGURE 10-2

Passing Parameters | 127

<hl>Contacts</hl>

<p><?php getName(); ?></p>
<p><?php getName(); ?></p>
<p><?php getName(); ?></p>

Each time you run a function, the variables in your function are new variables. If you change the
value of a variable in a function, that change does not exist the next time the function is called.
Look at this code and compare it to the results in Figure 10-3:

<?php
function getCount () {
Scount++; Count
echo "Count: " . S$Scount. "
";
) Count: 1
5 Count: 1
7> Count: 1
Count: 1
<hl>Count</hl> Count: 1
<?php for ($i=0; $i < 5; $i++)
getCount () ; FIGURE 10-3

endfor; ?>

When the getcount () in the preceding code is called, it adds 1 to $count using the $count++ com-
mand and then prints it out. So when you loop through the for loop five times, $count prints out as
1 each time because every time getCount () is called $count is initialized to 0. This is a good thing

because it keeps your functions clean and contained. You know that your variables start fresh every
time you run the function.

Every so often, however, you may want to have a variable stick around through all the times you run
the function in a script. Two examples of this would be if you want to do something different the
first time you run a function or if you are trying to keep a counter going. To do that you declare
your variable as a static variable. Static variables maintain their values instead of reinitializing. See
how the results change when $count is declared as static in the following code. Figure 10-4 shows
the results.

<?php
function getCount () {
static $count; Count
Scount++;
echo "Count: " . $Scount. "
"; Count: 1
} Count: 2
2> Count: 3
Count: 4
<hl>Count</hl> Count: 3
<?php for ($i=0; Si < 5; $i++)
getCount () ; FIGURE 10-4

endfor; ?>

PASSING PARAMETERS

All this function can do is print out “George Smith,” which is not very useful. If, however, you
could tell it to print any name you wanted, it would more useful. The parentheses following the
function name are used to hold parameters, which are variables that can be passed from the calling

128

LESSON 10 REUSING CODE WITH FUNCTIONS

program into the function. You pass different values to the function and the function uses those val-
ues when it processes its code. This code displays two different names as shown in Figure 10-5:

<?php Contacts
function getName ($name) {

echo $name; George Smith
}
?> Sally Meyers
<hl>Contacts</hl> . FIGURE 10-5
<p><?php getName ("George Smith"); ?></
p>
<p><?php getName("Sally Meyers"); ?></p>

PARAMETERS AND ARGUMENTS

You often hear the terms “parameters” and “arguments” used interchange-
ably. Technically, parameters are the list of variables in the function definition.
Arguments are the actual values that are passed to the parameters when the func-

tion is used.

You can also pass the information as a variable. This code produces the same results as the prior

code:

<?php

function getName ($name) {
echo S$name;

}

?>

<hl>Contacts</hl>
<?php
Snamel =
Sname?2
?>
<p><?php getName ($namel) ;
<p><?php getName ($name2) ;

"George Smith";
"Sally Meyers";

?></p>
?></p>

You can use all the different arrays and loops that you have learned as well. This code is another

way to get the same results:

<?php
function getName ($name) {
echo S$name;

}

?>

<hl>Contacts</hl>

<?php

Scontacts = array("George Smith",

foreach ($contacts as $contact)

"Sally Meyers");

Passing Parameters | 129

?>
<p><?php getName ($contact); ?></p>
<?php endforeach; ?>

The name of the variable that you are passing does not need to be the same as the name in the func-
tion definition. It ignores the actual name of the variable. Note that in the prior code the variable
$contact was passed to the function getName (), but the function defined the parameter as $name.

You can pass more than one parameter to a function. The function loads the information you send it
in the same order that the information is received. The following code passes both the name of the
contact and the department he or she is in. See the results in Figure 10-6.

<?php Contacts
function getName ($name, $department) {

echo $name . ' - ' . S$department; George Smith - Office
}
2> Sally Meyers - Office
<hl>Contacts</hl> FIGURE 10-6
<?php
Scontacts = array("George Smith", "Sally Meyers");

Sdepartment = "Office";

foreach ($Scontacts as S$contact)
?>

<p><?php getName ($contact, $department); ?2></p>
<?php endforeach; ?>

When variables are created within a function, they are automatically created as local variables and
can be seen only within the function. Even if a variable has been declared a global variable outside
of the function, within the function a variable created with the same name would be a separate local
variable and would not know the value in the global variable. If you want a variable in a function to
be global, you must specifically declare it as global:

global SmyVariable;

The following example tries to display $department, but it shows as blank. The reason you see the
value of the $name within the function is because you passed it through the parentheses.

Because you did not do that with $department, you are not passed those values. See the results in
Figure 10-7.

<?php Contacts
function getName ($name) {
echo $Sname . ' - ' . S$department; George Smith -

}

?>

<hl>Contacts</hl> FIGURE 10-7
<?php

Sname = "George Smith";

Sdepartment = "Office";

?>

<p><?php getName ($name); ?></p>

130

LESSON 10 REUSING CODE WITH FUNCTIONS

The function is passed a copy of the argument so any changes made to the variable are not made to
the original variable. The following example changes the value of $name in the function after it is
displayed from within the function. However, when the $name variable is displayed outside the func-
tion, it has not changed. See Figure 10-8 for the results of the following code.

<?php
function getName ($name) { Contacts
echo $name;

} Sname = "Sally Meyers"; George Smith
?> George Smith
<hl>Contacts</hl>

ontacts</ FIGURE 10-8
<?php
Sname = "George Smith";
2>

<p><?php getName ($name); ?></p>
<p><?php echo S$name; ?>

If you want to make changes to the original variable, you need to pass it by reference. When you
pass a variable by reference you create a link, a shortcut, or an alias to the original variable rather
than making a copy of it. You are creating multiple names for the same thing. Prefix the parameter
in the function definition with an ampersand (&) to indicate it should pass by reference, rather than
making a copy. In the following example, $name is passed by reference. When the function is called,
it prints out the passed name and department and then changes those variables. When you echo
$contact after calling the function, you see that the value variable passed by reference, $contact,
has changed. On the other hand, $department was not passed by reference, so it is unchanged.

See Figure 10-9.

?php
function getName (&Sname, $department) {

echo $name . ' - ' . $department;

Sname = "Sally Meyers";

$department = "Techs"; Contacts
}
?> George Smith - Office
<hl>Contacts</hl> Sally Meyers
<?php , Office
Scontact = "George Smith";
Sdepartment = "Office";
2> FIGURE 10-9

<p><?php getName ($contact, S$department); ?2></p>
<p><?php echo S$contact; ?></p>
<p><?php echo $department; ?></p>

You can also assign a default to a parameter. If a parameter has a default value, that value is
assigned if no argument is passed. You must pass an argument for every parameter without a
default, so always put the arguments with defaults at the end. In the following code, notice that
George has no department passed, so he gets the default, while Sally uses the department that is
passed. See Figure 10-10.

Getting Values from Functions | 131

<?php
function getName ($name, $department="Office") {

echo $name . ' - ' . S$department;
}
2
> Contacts
<hl>Contacts</hl> George Smith - Office
<?php
$contact = "George Smith"; Sally Meyers - Tech
Sdepartment = "Tech";
?>

Fl RE 10-1

<p><?php getName ($contact); ?></p> Gu 0-10
<?php
Scontact = "Sally Meyers";
?>

<p><?php getName ($contact, $department); ?></p>

GETTING VALUES FROM FUNCTIONS

Up until now, the examples of the functions in this lesson have been functions that just perform
an action. They print something to the browser. Often, however, you want a function to
perform an action and then give you the results back. This “giving the result back” is called
returning. For instance, you could have a function that takes two arguments and adds them together
and returns the result. Give it two and three and it returns five. This example creates a function that
adds two numbers together. The result of that function is assigned to the variable $answer, which is
then printed out. Here is what that code would look like:

<?php

function addNumbers ($Snumberl, S$number2) ({

Sresult = S$numberl + S$number2;

return $result;
}

$answer = addNumbers('2', '3');
echo answer;

If you want to know if a function performed correctly and it does not have data to return, you
would return true or false. You could also return false if there were errors in calculating the
data. The following code creates a function that checks to be sure that it received valid numbers and
returns false if it received non-numeric data. The program uses the result of the function as the
condition in an if statement to determine what to do. See the results in Figure 10-11.

<?php
function addNumbers ($Snumberl, S$number2) ({
if (is_numeric(Snumberl) AND is_numeric ($number2)) {
Sresult = Snumberl + $number2;
return $result; Unable to calculate. Non-numeric data.
} else {

return false;

FIGURE 10-11

132 | LESSON10 REUSING CODE WITH FUNCTIONS

$answer = addNumbers('2', 'all');

if ($answer) {
echo S$Sanswer;
} else {
echo 'Unable to calculate. Non-numeric data.';

}

If you want to pass multiple bits of data, you use
an array. The following code uses an associative
array to return the value of the calculation and a
separate value for the success or failure. Refer to

Unable to calculate. Non-numeric data.

Figure 10-12.

FIGURE 10-12
<?php
function addNumbers ($numberl, S$number2) {
if (is_numeric ($Snumberl) AND is_numeric ($number2)) {
Sresult['answer'] = Snumberl + $number2;
Sresult|'status'] = true;
Sresult['message'] = "The answer is ";
return $result;
} else {
Sresult['answer'] = null;
Sresult['status'] = false;
Sresult['message'] = "Unable to calculate. Non-numeric data.";
return $result;
}
}
$answer = addNumbers('2', ‘'all');
if ($answer['status']) {
echo Sanswer|['message'] . Sanswer|'answer'];

} else {
echo Sanswer|['message'];

}

The answer is 5
Change $answer = addNumbers('2', 'all');

to $answer = addNumbers('2', '3');, which

gives you a valid result. You see a result similar
to Figure 10-13. FIGURE 10-13

You can use a return (with or without a value) to end a function wherever you want. If you use
return without a value, it returns a NULL value.

USING FUNCTIONS

Now that you know how to define functions,

Convert Temperature

how to pass data to them, and how to get data Temperature: 70.0°
back, it is time to try using them. Type: Fahrenheit to Celsius
You are creating a program that takes a temper- Answer: 70.0° Fahrenheit is equal to 21.1° Celsius.

ature, converts it from Fahrenheit to Celsius (or
vice versa), and displays it. See Figure 10-14. FIGURE 10-14

Using Functions | 133

First, look at the main script for the program:

<?php

// Set up the inputs

Stemperature = 70; // Enter the temperature to be converted
Stype = 'FtoC'; // Enter FtoC or CtoF for the type of conversion

// Display the Results
?>
<html>
<head>
<title>Lesson 10t</title>
</head>

<body>

<hl>Convert Temperature</hl>

<p>Temperature: <?php echo formatDeg (Stemperature); ?></p>
<p>Type: <?php echo expandType (Stype); 2>

<p>Answer: <?php echo convertTemperature (Stemperature, Stype); ?>
</body>

</html>

is code is just the script. ou run it, you receive errors because it is calling several functions tha
Th de is just th pt. Ify t,y b t lling | funct that
you have not given it yet. Let’s go through the script and the functions that need to be added to the
start of the program.

This script starts by setting the variables for temperature and for the type of conversion. In
Lesson 11 you learn how to get this information from a form, but for now you can just hard-
code it.

HARDCODING

You might come across the term hardcoding often in programming. Hardcode
just means that you have directly specified the data instead of using a dynamic
method of getting it. It is used for testing or when it’s deemed too difficult, too
time-consuming, too insecure, or just unnecessary to use a more flexible method.

Next, you display the temperature with this code: echo formatDeg ($temperature) ;. You

are displaying a temperature several times, so you create a function called formatDeg () that
takes a number and returns it formatted to display with the proper number of decimals and
the special HTML entity for a degree symbol. If the value received is not numeric, the function
returns 0.

function formatDeg ($number) {

if (is_numeric (Snumber)) {
return number_format (Snumber, 1) . '°';
} else {

return 0 . '°';

134 | LESSON10 REUSING CODE WITH FUNCTIONS

The next line displays the type of conversion: echo expandType ($type) ;. You could just display

FtoC or CtoF, but it is easier for the user if you spell out what that means. The expandType () does
that for you:

function expandType (Stype) {
if (Stype=='CtoF') {
return 'Celsius to Fahrenheit';
} else {
return 'Fahrenheit to Celsius';

}

And now we come to the real meat of the matter where you display the following answer:

echo convertTemperature (Stemperature, Stype);

The convertTemperature () function takes the temperature and the type of conversion and returns
an answer with the converted temperature:
function convertTemperature (Stemperature, Stype = "FtoC") {
switch (Stype) {
case 'CtoF':
Sresult = convertCtoF (Stemperature) ;
break;
case 'FtoC':
default
Sresult = convertFtoC (Stemperature) ;
}
return Sresult;

}

Notice that the convertTemperature () function is really just a controlling function that calls the
function that does the real work, depending on what type of conversion needs to happen. There are
a few defaults happening here as well. The two valid types are ctoF and Ftoc. If no type is specified
when the function is called, then the type is set to Ftoc. If the type that comes in is not one of the
two valid types then it is processed as an Ftoc.

Finally we come to the two functions that do the conversion calculations and create the answer text,

convertFtoC () and convertCtoF (). Notice that these functions also call the formatDeg () func-
tion described earlier:

function convertFtoC ($temperature) {

Scelsius = (Stemperature - 32)* (5/9);

Sresult = formatDeg(Stemperature) . ' Fahrenheit is equal to '
formatDeg ($celsius) . ' Celsius.';

return Sresult;

}

function convertCtoF (Stemperature) {
$fahren = Stemperature * (9/5) + 32;
Sresult = formatDeg(Stemperature) . ' Celsius is equal to '
formatDeg ($Sfahren) . ' Fahrenheit.';
return Sresult;

Using Functions | 135

Taking all the preceding code and adding comments, the final code is as follows:

<?php
// FUNCTIONS
/**
* convertTemperature
* Convert Temperature
* @param Stemperature
* @param Stype
*/
function convertTemperature (Stemperature, Stype = "FtoC") {
switch ($type) {
case 'CtoF':
Sresult = convertCtoF (Stemperature) ;
break;
case 'FtoC':
default
Sresult = convertFtoC (Stemperature) ;
}

return $result;

/**
* convertFtoC
* Convert from Fahrenheit to Celsius
* @param Stemperature
*/
function convertFtoC ($temperature) {
Scelsius = (Stemperature - 32)* (5/9);
Sresult = formatDeg($temperature) . ' Fahrenheit is equal to '
formatDeg ($Scelsius) . ' Celsius.';
return $result;

/**
* convertCtoF
* Convert from Celsius to Fahrenheit
* @param unknown_type Stemperature
*/
function convertCtoF ($temperature) {
$fahren = Stemperature * (9/5) + 32;
Sresult = formatDeg($temperature) . ' Celsius is equal to '
formatDeg ($fahren) . ' Fahrenheit.';
return $result;

/**
* formatDeg
* Format the numbers to display as Degrees
* @param unknown_type S$number
*/
function formatDeg ($number) {
if (is_numeric (Snumber)) {

136 | LESSON10 REUSING CODE WITH FUNCTIONS

return number_format (Snumber, 1) . '°';
} else {
return 0 . '°';

/**
* expandType
* Convert the type to a description
* @param Stype
*/
function expandType (Stype) {
if (Stype=='CtoF') {
return 'Celsius to Fahrenheit';
} else {
return 'Fahrenheit to Celsius';

?>

<?php
// SCRIPT

// Set up the inputs
Stemperature = 70; // Enter the temperature to be converted
Stype = 'FtoC'; // Enter FtoC or CtoF for the type of conversion

// Display the Results
?>
<html>
<head>
<title>Lesson 10t</title>
</head>
<body>
<hl>Convert Temperature</hl>
<p>Temperature: <?php echo formatDeg ($temperature); ?></p>
<p>Type: <?php echo expandType (Stype); ?>
<p>Answer: <?php echo convertTemperature (Stemperature, Stype); ?>
</body>
</html>

If you forget and put a $ in front of a function such as $myvar (), PHP calls
a function with the name of the value of $myvar. So the following code calls
the function foo ():

<?php

SmyVar = 'foo';

echo SmyVar () ;

This is called a variable function and is perfectly good PHP, but likely not
what you intended to do.

Trylt | 137

INCLUDING OTHER FILES

With user functions you have moved from just writing scripts to the more upscale procedural
programming where your code is in reusable modules. Procedural programming cuts down on
redundant code and makes debugging and maintenance easier.

You use the PHP commands include, include_once, require, and require_once to organize
your files by grouping your functions in their own files and then “including” them in the code you
are writing. You did this in Lesson 2 when you moved the content div into files in the content folder
and then included them back in.

Includes are different from functions. You can think of an include as an automatic copy/paste. PHP
goes out, grabs the file, and plops it right down where the include command is. Include files can
contain just straight PHP and HTML, which is executed immediately, or they can contain function
definitions, which are now available to be called.

These four commands, include, include_once, require, and require_once, all have the same
syntax: the command and then the filename to be included:

<?php
include 'content/home.php';

The difference between include and require is that the two require commands give you a fatal error
and stop if the file is missing, whereas the two include commands just issue a warning and keep
going. The “once” on the end means that PHP loads the file only once. If the file is already loaded it
won’t try to load it again.

Functions and classes (which you learn about in Lesson 12) can be loaded only
once because otherwise they attempt to load duplicate functions or classes, which
causes a fatal error. So always use include_once or require_once with those files.

) TRYIT

Available for
download on

woceom' In this Try It, you create a new folder for the Case Study where you put your functions. You create a
new function that loads content for different areas of the web page based on parameters passed and
from the URL string.

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lessonl0 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

138 | LESSON10 REUSING CODE WITH FUNCTIONS

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the case study, you need your files from the end of Lesson 8.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Step-by-Step

Create a function that loads content from the URL string and puts it in a file called functions.php
in a new folder that contains the includes files.

1. Create a folder called includes.
2. Create a file called functions.php in that folder. You put your new functions in this file.

3. Create a new function called 1loadcontent ():

<?php
/**
* loadContent
* Load the Content
* @param Sdefault
*/
function loadContent () {

}

4. Open index.php and move the code that is in the content div inside the PHP tags to this new
function. Your function should now look like this:

<?php
/**
* loadContent
* Load the Content
* @param S$default
*/
function loadContent () {
Scontent = '';
// Get the content from the url
if (isset($_GET['content']))
$content = $_GET['content'];
// Sanitize it for security reasons
Scontent = filter var ($Scontent, FILTER_SANITIZE_STRING) ;

endif;

// Set up the home page as the default
Scontent = (empty(Scontent)) ? "home" : Scontent;
// Include the chosen page
include 'content/' . $content . '.php'; }

5. Inthe index.php file, add a require_once command to the functions file, just below the
starting comments:

require_once 'includes/functions.php';
?>

Trylt | 139

6. In the index.php file, call the new loadcontent () function. Your content div should now
look like this:

<div class="content">
<?php loadContent(); ?>
</div><!-- end content -->

7. Save the function.php and index.php files and test that the pages are showing up as they
did before without errors.

Use the 1oadcontent to load the catnav div menu. To do this you add the $where and $default
parameters to the loadContent function.

1. Add a swhere parameter to the function in function.php so you know where the request
is coming from. Make it the first parameter because there is no default value for it. Add a
$default parameter with the default of ' '. You use the file in $default if you don’t get
passed a good file name in the $where parameter:

function loadContent ($where, S$default='") {
2. Change the call directly to the content URI parameter with one that locates the URI param-
eter specified in the $where passed to the function. Remove the following code:

if (isset($_GET['content']))

$content = $_GET['content'];

// Sanitize it for security reasons

Scontent = filter var (Scontent, FILTER_SANITIZE_STRING) ;
endif;

3. Replace it with this code, which retrieves the GET parameter whose name is in the $where
variable:

Scontent = filter_input (INPUT_GET, S$where, FILTER_SANITIZE_STRING) ;

4. Filter the $default parameter:

Sdefault = filter_var(sdefault, FILTER_SANITIZE_STRING) ;

5. Change the hardcoded “home” default to the $default variable:

Scontent = (empty(Scontent)) ? $default : S$Scontent;

6. Change the include statement so that you include a file only if there is something in
$content and return the include statement:
if ($content) {
// sanitize the data to prevent hacking.
Shtml = include 'content/'.S$Scontent.'.php';
return $html;
}

7. Add those same parameters where you call the function in index.php. Pass 'content' and
'home' as the values:

<?php loadContent ('content', 'home'); ?>

8. Add the parameter asidebar=catnav to the URL of the Gents, Sporting, and Women links
in contents/catnav.php:

140 | LESSON10 REUSING CODE WITH FUNCTIONS

Gents</1i>
Sporting</1i>
Women</1li>

9. Add the parameter asidebar=catnav to the URL of the Gents, Sporting, and Women links
in contents/categories.php:

<h2>Gents</h2>
<p>Gents' clothing from the 18th century to modern times</p>

<a class="button display"
href="index.php?content=gents&sidebar=catnav">Display Lots

<h2>Sporting</h2>
<p>Sporting clothing and gear.</p>

<a class="button display"
href="index.php?content=sporting&sidebar=catnav">Display Lots

<h2>Women</h2>
<p>Women's Clothing from the 18th century to modern times</p>

<a class="button display"
href="index.php?content=women&sidebar=catnav">Display Lots

10. In index.php, replace everything in the sidebar div to a 1oadcontent (). with the first argu-
ment of 'sidebar' and the second argument of ' ':
<div class="sidebar">

<?php loadContent ('sidebar', ''); ?>
</div><!-- end sidebar -->

Watch the video for Lesson 10 on the DVD or watch online at www .wrox . com/
go/24phpmysql .

11

Creating Forms

Forms are ubiquitous on websites. They include not only obvious “fill in the blank” forms but
also are the method used to interact with the user. Search boxes and drop-down filters, for
instance, are contained within forms.

In this lesson you review the HTML needed to code a form. Then you learn how to use PHP
to process that form and gather the responses. Finally, you learn how to send users to the right
page after they have submitted the form.

SETTING UP FORMS

Forms are set up primarily using HMTL code. This is a basic form that asks for your name
(see Figure 11-1):

<html>
<head>
<title>Contact</title>
</head>
<body>
<form action="index.php" method="get">
<fieldset>
<legend>Contact</legend>
<label for="fullname">Name</label>
<input id="fullname" name="fullname" type="text" />
<input name="contactForm" type="submit" value="Submit" />

</fieldset>
</form>
</body> Contact
</html> ’_Nmnc' (submit)
The <form> tag sets the action that occurs
FIGURE 11-1

when the Submit button is clicked. This is the

URI of the program that processes the form. It can either be a file specifically for processing
forms or it can be an existing file that checks for whether form data was sent and automati-
cally processes it. You learn how to do that later in this lesson.

142 |

LESSON 11 CREATING FORMS

The <form> tag also assigns the method that is used to send the form data. You learned about the
two methods, GET and POST, in Lesson 6. In general, use get, which is the default, for inquiries
and use post for database changes or actions that should not be repeated. GET data is appended to
the end of the URL and POST data is not.

The for attribute in the <1abel> tag links to the <input> tag’s id. The name attribute on the
<input> tag is the name that is used to identify the data. The for, name, and id attributes are often
the same, but only the for and the id need to match.

The <input> tag of type="submit" is the Submit button. When the user clicks that button, the form
is submitted for processing. This is often used to identify the form. The data is named by the name
attribute and the value is from the value attribute, which is also what is displayed on the button.

Use the <input> tag to create the submit buttons in forms. <input
type="submit"> automatically submits the form. <input type="button"> does
not automatically submit the form. You need to use JavaScript to submit it.

If you use the <button> tag instead of the <input> tag, be aware that Internet
Explorer passes the information between the button tags and all the other
browsers use the value.

To create radio buttons, you use an <input> tag of type="radio":

<fieldset>
<legend>What is your gender?</legend>
<input type="radio" id="genderf" name="gender" value="f" checked="checked"/>
<label for="genderf"> Female</label>
<input type="radio" id="genderm" name="gender" value="m"/>
<label for="genderm"> Male</label>
</fieldset>

The name attribute matches for each of the radio buttons. This groups the radio buttons together so
only one value is sent for the group. The value attribute is the value that is submitted, not what is in
the label. Because you cannot have duplicate id attributes, this is one place where your for and id
attributes do not match your name attribute.

Checkboxes are similar to radio buttons, except that more than one box can be marked:

<fieldset>

<legend>Where do you live?</legend>
<input type="checkbox" id="arearural" name="areatypes[]" value="rural" />
<label for="arearural"> Rural</label>
<input type="checkbox" id="areasuburb" name="areatypes[]" value="suburb"/>
<label for="areasuburb"> Suburb</label>
<input type="checkbox" id="areacity" name="areatypes[]" value="city"/>
<label for="areacity"> City</label>

</fieldset>

Here the name attribute for all the checkmarks is the same and has square brackets prefixed to it.
The square brackets tell the system to send the checked values as an array. If you leave off the square

Setting Up Forms | 143

brackets, only the last checked value is sent. You could also have each name be different and without
the square brackets. In that case each name that was selected is sent as a separate value. With check-
boxes, only checked values are sent.

You can also have individual checkboxes that are not part of a group. In the following instance,
if the box is checked, the form field imagesonly is sent with the value of yes. If it is not checked,
nothing is sent:

<input type="checkbox" id="imagesonly" name="imagesonly" value="yes" />
<label for="imagesonly"> Check here if you only want images.</label>

If you want to enter multiple lines of text, you use the <textarea> tag instead of a type of <input>
tag. The following code shows what that looks like:

<label for="address">Address</label>

<textarea id="address" name="address" rows="3" cols="30"></textarea>

To enable a user to select from a drop-down list, you use the <select> tag with <option> tags as in
the following example. This passes the value selected with the name given in the name attribute.

<label for="level">Level</label>
<select id="level" name="level">
<option value="">- Select a level -</option>
<option value="gold">Gold</option>
<option value="silver">Silver</option>
<option value="bronze">Bronze</option>
</select>

To enable multiple selections, you add the multiple attribute and add square brackets to the end of
the name attribute as shown in the following code. The multiple attribute enables the user to select
multiple options with his operating system’s shortcut using the Shift, Control, or Command keys.
The square brackets on the name attribute create an array to hold the multiple selections. The size
attribute determines how many options should be displayed at a time.

<label for="interests">What do you like?</label>

<select id="interests" name="interests[]" multiple="multiple" size="3">
<option value="0">Reading</option>
<option value="1l">Whitewater boating</option>
<option value="2">Music</option>

</select>

If you want to let the user clear his form, you use the <input> tag of type="reset". This automati-
cally resets the values for you, as shown in the following code.

<input type="reset" value="Clear" />

You can also send hidden values. “Hidden” just means the form field is not displayed in the form. It
is still displayed in the URL. Use the <input> tag with type="hidden" to specify hidden values:

<input type="hidden" name="id" value="12345" />

When you put all these examples together you have a form that looks similar to Figure 11-2. This is
the code for that program:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/
TR/xhtmll/DTD/xhtmll-transitional.dtd">

144 | LESSON 11 CREATING FORMS

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Contact</title>
<style type="text/css">
1i {list-style:none; margin-bottom: 10px}
</style>
</head>

<body>

<form action="lessonllb.php" method="get">
<fieldset>

<legend>Contact</legend>

<label for="fullname">Name</label>

<input id="fullname" name="fullname" type="text" /></1i>

<label for="address">Address</label>

<textarea id="address" name="address" rows="3" cols="30"></textarea></1li>

<fieldset>

<legend>What is your gender?</legend>

<input type="radio" id="genderf" name="gender" value="f" checked="checked"/>
<label for="genderf"> Female</label>

<input type="radio" id="genderm" name="gender" value="m"/>

<label for="genderm"> Male</label>

</fieldset>

</1li>

<input type="checkbox" id="imagesonly" name="imagesonly" value="yes" />
<label for="imagesonly"> Check here if you only want images.</label>

</1li>

<fieldset>

<legend>Where do you like to live?</legend>

<input type="checkbox" id="arearural" name="areatypes[]" value="rural" />
<label for="arearural"> Rural</label>

<input type="checkbox" id="areasuburb" name="areatypes[]" value="suburb"/>
<label for="areasuburb"> Suburb</label>

<input type="checkbox" id="areacity" name="areatypes[]" value="city"/>
<label for="areacity"> City</label>

</fieldset>

</1li>

<label for="level">Level</label>
<select id="level" name="level">
<option value="">- Select a level -</option>

Setting Up Forms | 145

<option value="gold">Gold</option>
<option value="silver">Silver</option>
<option value="bronze">Bronze</option>

</select>

</1li>

<label for="interests">What do you like?</label>

<select id="interests" name="interests[]" multiple="multiple"

<option value="0">Reading</option>

<option value="1">Whitewater boating</option>
<option value="2">Music</option>

</select>

</1li>

<input type="submit" value="Submit" name="contactForm" />
<input type="reset" value="Clear" />

<div>
<input type="hidden" name="id" value="12345" />
</div>

</fieldset>
</form>

</body>
</html>

Contact

Name*

Address*

‘What is your gender?
@ Female) Male

| Check here if you only want images.

‘Where do you like to live?
=) Rural O Suburb) City

Level | - Select a level - 4

Reading
Whitewater boating

‘What do you like? music

(submit) ;Clear.

FIGURE 11-2

size="3">

146 | LESSON 11 CREATING FORMS

You can download the preceding code in this book from the book’s web page

at www.wrox.com. The program is 1essonllb.php in the Lessonll folder in the
download. “Processing Forms” starts with lessonllc.php for the step-by-step
files, though the instructions refer to the completed file 1esson11i .php. It is
important to be aware of the name of the file because that must match the action
on the <form> tag.

PROCESSING FORMS

You have refreshed your knowledge of coding forms in HTML and you have learned how to set up
the information that is passed when the user submits the form. So now it is time to learn how to
process the form using the example at the end of the previous section. Figure 11-3 shows the form
just before the user submits it.

Contact

Name*
George Smith

Address*®

Anywhere XX 00000

‘What is your gender?
O Female @& Male

| Check here if you only want images.

‘Where do you like to live?
Rural) Suburb # City

Level | Gold -4

Reading
,
‘What do you like? LIS

(submit) ;Cleat.

FIGURE 11-3

When the form is submitted, the data is passed to either the GET or the PoST variable, depending on
the method attribute. Here is the code used for the <form> tag:

<form action="lessonlli.php" method="get">

Processing Forms | 147

Normally you use a POST because this is data that you are probably using to update a database.
I used the GET method here so that you can see the data being passed. Look at the data in the
address bar. You see something similar to this:

http://localhost/lessonlli.php?fullname=George+Smith&address=123+Anywhich+Street%0D
%0AAnywhere+XX+00000&gender=m&areatypes[]=rural&areatypes[]=city&level=gold&
interests([]=1&interests[]=2&contactForm=Submit&id=12345

This is dictated by the HTTP protocol, not PHP itself. Just after the filename 1esson11i.php is a
question mark. That signals the start of a query string. The GET variables show as key=value pairs
separated by ampersands within the query string. The name attribute from the form fields is the key
and the value attribute (or equivalent) is the value.

Only certain characters are allowed in a URL so characters that are not allowed are encoded to an
allowable sequence. Notice that blanks are changed to + and the carriage return between the two
lines of address is encoded as $0D%0A.

Yousubnﬁtthefornlwdﬂl<input type="submit" value="Submit" name="contactForm" />
so you should be able to find scontractForm=Submit in that query string. It’s near the end of the
string if you are having trouble locating it. You can have your program look for that value shortly.

As well as passing the data, the action on the <form> tag is performed. If a URL, either absolute or rela-
tive, is listed, that program is called. Your action is to call the same program that contains the form.

You add code to the top of the file to see if a form has been submitted. First, you check to see if
there is a GET variable with the same name as the Submit button that contains the value of that
Submit button. If you had used the PosT method, you would look for it in PoST. Because you are
just doing a compare with this data, you do not need to worry about filtering it. If a form is submit-
ted, you display a message to the user. It’s a good idea to let the user know that she is successful in
submitting the form and it also is a quick way to test your if statement.

<?php

1f ($_GET['contactForm'] == "Submit") {

echo 'Thank you for submitting the form';

}

?>

You should not see the message the first time you go to the page. Fill in the form and submit it.
Figure 11-4 shows the form after submitting. A message is displayed across the top thanking the
user for submitting the form and the form has been reset to the default values.

Next, it is time to collect the rest of the data within the form. You do this using $_GET, $_PoOsT,
and the sanitizing methods you learned at the end of Lesson 6. Normally you would do some-
thing constructive with this data, such as update a database. For this example, you just display
it on the screen.

148 | LESSON 11 CREATING FORMS

Thank you for submitting the form
Contact

Name*

Address*

‘What is your gender?
® Female O Male

) Check here if you only want images.

‘Where do you like to live?
! Rural) Suburb) City

Level [- selecta level - %]

Reading
Whitewater boating

What do you like? music

N £)
{ submit Clear
kbl b risdacide

FIGURE 11-4

You can assign single values to a variable. The following code gets the value from the fullname
form field, sanitizes it, and assigns it to $name. It does the same thing for the address, gender, and
level form fields. You then display the data as a test. See Figure 11-5.

<?php

1f($S_GET['contactForm'] == "Submit") {
Sname = filter_var ($_GET['fullname'], FILTER_SANITIZE_STRING) ;
Saddress = filter_var($_GET['address'], FILTER_SANITIZE STRING) ;

Sgender = filter_var ($_GET['gender'], FILTER_SANITIZE_STRING) ;
Slevel = filter_var($_GET['level'], FILTER_SANITIZE_STRING) ;

echo $name . '
';
echo $address . '
';
echo $Sgender . '
';
echo $level . '
';

echo 'Thank you for submitting the form';
}

Radio buttons, such as gender in the preceding example, are passed only if one is selected. In that
example you preselected a choice. If you don’t require your user to answer the question, when
you process the form you should check first to see if a value was passed. You can do this with the
isset () function, which is demonstrated in the discussion on checkmark boxes next.

Remember that the data from this form is in the address bar. If you get tired of
filling in the form while you are testing, just copy and use the full URL. It simu-
lates submitting the form.

Processing Forms | 149

George Smith
123 Anywhich Street Anywhere XX 00000
m
gold
Thank you for submitting the form
Contact

Name*

Address*

‘What is your gender?
® Female O Male

‘Where do you like to live?
Rural Suburb City

Level | - select a level - [+

) Check here if you only want images.

FIGURE 11-5

Next you process the checkboxes. With checkboxes, the field itself is passed only if the box was

checked, so you want to see if the field exists. Take your single checkbox named imagesonly, which
has a value of ves. You check that the parameter was set and that it is equal to the value. If not, you
know the checkbox was not checked. See Figure 11-6 to see the results when the box is not checked.

<?php

if (isset($S_GET['imagesonly']) && $_GET['imagesonly'] == 'Yes') {
Simagesonly = 'Yes';

} else {
$imagesonly = 'No';

}

echo 'Images Only? ' $imagesonly . '
';

In the example you also had a group of checkboxes that you want to process as an array. You signi-
fied this by using the same name and suffixing the name with square brackets. Because the check-
boxes are sent only if they are checked, you use isset () to see if any of the areatype checkboxes
were selected at all. Then you loop through and filter each element of the array and build the filtered
$areatypes array that you will display. See Figure 11-7 for the results.

if (isset(S_GET]['areatypes']))

Sinputs = array();

{

Sinputs = $_GET['areatypes'];

foreach ($inputs as S$Sinput)

{

Sareatypes[] = filter_var ($input, FILTER_SANITIZE_STRING) ;

}

foreach ($areatypes as Sareatype) {

echo S$Sareatype

}
} else {

'
';

echo "You don't want to live anywhere.
";

150 | LESSON11 CREATING FORMS

George Smith
123 Anywhich Street Anywhere XX 00000
m
gold
Images Only? No
Thank you for submitting the form
Contact

Name*

Address*

‘What is your gender?
® Female O Male

) Check here if you only want images.
‘Where do you like to live?
~ Rural ! Suburb () City

Level | - select a level - a

FIGURE 11-6

George Smith
123 Anywhich Street Anywhere XX 00000
m
gold
Images Only? No
rural
city
Thank you for submitting the form
Contact

Name*

Address®

‘What is your gender?
® Female O Male

) Check here if you only want images.

‘Where do you like to live?
_ Rural) Suburb () City

FIGURE 11-7

You can use the same procedure for the multi-select box as well. The values here should be integers
so you force them to integers as your filter. See Figure 11-8.

if (isset($S_GET['interests'])) {
$inputs = array();
Sinputs = $_GET['interests'];
foreach ($inputs as S$input) {

Processing Forms | 151

Sinterests[] = (int) S$Sinput;
}
foreach ($interests as $interest) {
echo $interest . '
';
}
} else {
echo "You have no interests.
";

George Smith

123 Anywhich Street Anywhere XX 00000

m

gold

Images Only? No

rural

city

1

2

Thank you for submitting the form
Contact

Name*

Address*

‘What is your gender?
® Female O Male

_ | Check here if you only want images.
Wi i n live?
FIGURE 11-8

Hidden parameters are processed just like regular parameters. In this case your hidden parameter
field id should be an integer, so you filter it by forcing it to an integer. See Figure 11-9.

$id = (int) $_GET['id'];
echo $id . '
';

Now that you know how to read the data, you can run error checking to see if the form was filled
out correctly. In this example, the only checking you need is to be sure that the user entered a name
and address. You change the processing for the fullname and address parameters. You build an
array with any errors and then loop through and display those errors. You fill in the same form, but
submit it without an address. Your result should be similar to Figure 11-10.

// initialize error array
Serrors = array();
// see if the form was submitted
1f($S_GET['contactForm'] == "Submit") {
// Process required fields
Sname = filter_var($_GET['fullname'], FILTER_SANITIZE_STRING) ;
if (! (trim(Sname))) {
Serrors[] = "You must enter a name";

}
Saddress = filter_var($S_GET['address'], FILTER_SANITIZE_STRING) ;

152 | LESSON11 CREATING FORMS

if (!(trim(Saddress))) {

Serrors[] = "You must enter an address";

}

if ($errors) {

foreach ($Serrors as Serror) {
echo Serror . '
';
}
}
George Smith
123 Anywhich Street Anywhere XX 00000
m
gold
Images Only? No
rural
city
1
2
12345
Thank you for submitting the form
Contact
Name*
Address*
‘What is your gender?
® Female) Male
| Check here if you only want images.
FIGURE 11-9
You must enter an address
George Smith
m
gold
Images Only? No
rural
city
1
2
12345
Thank you for submitting the form
Contact
Name*
Address*
‘What is your gender?
® Female) Male

FIGURE 11-10

Redirecting with Headers | 153

REDIRECTING WITH HEADERS

Often when processing forms you need to send the user to another page, depending on the user’s
response. You can redirect the pages this way, using the header () function.

Headers are part of the HTTP protocol that the Web uses to direct traffic and carry data. You see
the HTTP every time you call a web page: http: //www.example.com. HTTP consists of two parts:
the headers and the body. The headers contain the address to go to as well as the GET information.
The body is where the data goes, including HTML and posT data.

HTTP sends the headers before the body of the message. If it comes across a body before it

is given any headers, it automatically creates the headers. Any HTML that you create, even a
blank line or an invisible newline character, is seen as part of the body. After headers have been
created and the body started, any attempt to add another header results in an error. This is

the reason for leaving off the final 2> tag at the end of PHP files (so no final control characters
are seen as output) and why cookies have to be set before any HTML (because setting cookies
involves creating headers).

When you use the header () function, you are creating headers, so you need to use this
before you have created any HTML or echos or stray blank lines. The syntax of the header ()
function is

header ("Location: filename.php");

In this example you are echoing out information so you do not use the redirect. If instead you were
saving the data to a database, you could choose to redirect to a different page upon successful com-
pletion or stay on the same page to allow the user to correct errors. You can also use redirects if you
have a series of forms for the user to go through as in an order entry process.

In most of the examples you have been using GET rather than POST to send your data because then
you then can see what is being passed. When you use POST, the parameters do not appear as part of
the URL. Some of these example forms would normally have used POST. One of the decisions you
need to make for every form you create is whether to use the method GET or POST. Here are some
pointers on which one to select when.

Use GET when the same submission of the form can be processed multiple times, such as when mak-
ing inquiries that don’t change a database. GET parameters are part of the address and are displayed
in the address bar so they are easily visible to users. Because they are part of the address they can be
included in a bookmark.

Use POST when the same submission of the form cannot be processed multiple times without mak-
ing changes. For instance, a form that is part of registering a new user should be created using POST
parameters rather than GET. You may have noticed this difference when you use the back button

on your browser and you get a message that warns you that you are about to reprocess POST data.
POST data is not part of the address so it is not seen as easily. This also means that you cannot use
POST to create different pages that can be bookmarked.

154 | LESSON 11 CREATING FORMS

WHERE ARE THE GET PARAMETERS?

You may come across programs that are using GET but you don’t see them in the
address bar. All the GET parameters in the URL can look messy, which was his-
torically a disadvantage when it came to search engine optimization (SEO). There
are ways to rewrite the address so that the GET parameters don’t show, but that is
beyond the scope of this book.

HTRYIT

Available for
download on

woom 1 this Try It, you create a form that allows people to enter a temperature and have it converted
from Fahrenheit to Celsius or vice versa. You use the temperature conversion functions you created
in Lesson 10. You do not use the Case Study for this Try It.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson11 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

Hints
The conversion from Fahrenheit to Celsius is C = (F = 32)* (5/9).

The conversion from Celsius to Fahrenheit is F = C * (9/5) + 32.

Step-by-Step

Create a form to get the temperature. The form should have two buttons: one for Fahrenheit to
Celsius and the other for Celsius to Fahrenheit.

1. Create a new file called exercisella.php.

2. Enter the following code to create the form:

Trylt | 155

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Convert Temperature</title>
</head>
<body>

<form action="exercisella.php" method="post">

<fieldset>
<legend>Fahrenheit/Celsius Converter</legend>
<p><label for="temperature">Temperature</label>
<input type="text" name="temperature" id="temperature" size="6" />
</p>
<p><input type="submit" name="FtoC" value="Fahrenheit to Celsius" /></p>
<p><input type="submit" name="CtoF" value="Celsius to Fahrenheit" /></p>
</fieldset>
</form>
</body>
</html>

Create a file containing functions to convert the temperature.
1. Create a new file called exercisellb.php.

2. Add the convertFtoc () and convertctoF () functions as shown in Lesson 10.
/**
* convertFtoC

* Convert from Fahrenheit to Celsius
* @param $Stemperature

*/

function convertFtoC ($temperature) {
Scelsius = (Stemperature - 32)* (5/9);
Sresult = formatDeg(Stemperature) . ' Fahrenheit is equal to '
formatDeg ($celsius) . ' Celsius.';

return $result;

}

/‘k‘k
* convertCtoF
* Convert from Celsius to Fahrenheit
* @param unknown_type Stemperature
*/
function convertCtoF ($temperature) {
$fahren = Stemperature * (9/5) + 32;
Sresult = formatDeg(S$temperature) . ' Celsius is equal to '
formatDeg ($fahren) . ' Fahrenheit.';
return $result;

}
3. These functions call the formatDeg () function that formats the temperature for display, so
add that function to the same file:
/*k *

* formatDeg

156 | LESSON 11 CREATING FORMS

* Format the numbers to display as Degrees
* @param unknown_type S$number

*/
function formatDeg ($number) {

if (is_numeric (Snumber)) {

return number_format (Snumber, 1) . '°';
} else {
return 0 . '°';

}

Back in the exercisella.php file, include the exercisellb.php file. Check to see which button
was clicked. Based on that, do the conversion.

1. Inthe exercisella.php file, include the file with the functions using the require_once ()
function:

require_once "exercisellb.php";

2. Use an if statement to check the $_posT to see if the FtoC button was clicked:

if ($_POST['FtoC'] =="Fahrenheit to Celsius") {
}

3. Inside that if statement call convertFtocC () passing the $_POST[' temperature'] param-
eter. Force a conversion to float type to prevent a malicious code from getting in.

Sanswer = convertFtoC((float) $_POST['temperature']);

4. Continue the if statement with an elseif statement to check for the other button and pro-
cess it:

elseif ($_POST['CtoF']) {

Sanswer = convertCtoF ((float) $_POST['temperature']);
}

Display the answer. Initialize it in the beginning so it is set to nothing.

1. Inthe exercisella.php file, initialize $answer before the if statement performing the
conversions:

Sanswer = '';

2. Inthe HTML below the form, echo out $answer:

<p><?php echo $answer; ?></p>

3. The full exercisella.php file should look like this:

<?php
require_once ("exercisellb.php");
Sanswer = '';
if ($_POST['FtoC']) {
Sanswer = convertFtoC((float) $_POST['temperature'l]);
} elseif ($_POST['CtoF']) {
Sanswer = convertCtoF ((float) $_POST['temperature']);

}

?>

Trylt | 157

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Convert Temperature</title>
</head>
<body>

<form action="exercisella.php" method="post">

<fileldset>
<legend>Fahrenheit/Celsius Converter</legend>
<p><label for="temperature">Temperature</label>
<input type="text" name="temperature" id="temperature" size="6" />
</p>
<p><input type="submit" name="FtoC" value="Fahrenheit to Celsius" /></p>
<p><input type="submit" name="CtoF" value="Celsius to Fahrenheit" /></p>
</fieldset>

</form>
<p><?php echo $answer; ?></p>
</body>
</html>

4. Test the program. You should see results like Figure 11-11 if you enter 70 and click the
Fahrenheit to Celsius button.

Fahrenheit/Celsius Converter

Temperature [

(Fahrenheit to Celsius |

(Celsius to Fahrenheit)

70.0° Fahrenheit is equal to 21.1° Celsius.

FIGURE 11-11

Watch the video for Lesson 11 on the DVD or watch online at www .wrox . com/
go/24phpmysqgl .

SECTION lil
Objects and Classes

» LESSON 12: Introducing Object-Oriented Programming
» LESSON 13: Defining Classes
» LESSON 14: Using Classes

» LESSON 15: Using Advanced Techniques

The first level in PHP programming is writing scripts, which is just sequential lines of PHP
code or bits of PHP interspersed with HTML. The second level is procedural programming,
which you learned in Lesson 10 when you started moving code into functions. The next level
is object-oriented programming (OOP).

In Lesson 12, you learn the basic concepts of object-oriented programming and why you
would want to use it. In the next two lessons you learn how to create classes and use them.
The final lesson of this section teaches the more advanced object-oriented techniques.

12

Introducing Object-Oriented
Programming

Programmers strive to write code that has fewer errors, is easier to read, and is easier to main-
tain, and they strive to write that code faster. Object-oriented programming (OOP) gives you
more tools to do that. In this lesson you learn the reasons for using OOP and the basic con-
cepts behind it.

UNDERSTANDING THE REASONS FOR USING OOP

Object-oriented programming is a way of coding that organizes your programs, encourages
consistency, reduces redundancy and complexity, increases flexibility, and promotes better
security.

It enables you to create building blocks of basic functionality. You can then reuse these blocks,
add on to the blocks, or even override parts of the blocks to create more complex structures.
Being able to reuse code in this flexible manner means you have fewer bugs when creating your
programs, which makes them more reliable over time.

OOP also uses what is called encapsulation. You use encapsulation every time you use local
variables in functions because the variables have local scope and can’t be seen outside of the
function. Encapsulation is the concept that what you do in one section of your program is not
affected by and does not affect another section. OOP has similar structures that encapsulate
data and actions. You are inside your house with the shades drawn and you control the door
through which you receive and disseminate information.

Additionally, OOP is well suited for implementing both design patterns, which are an
advanced technique for modeling program designs, and MVC (Model-View-Controller), which
is a software design technique for separating database interactions, presentation, and control
systems much as you separate content from presentation with HTML and CSS.

162 | LESSON12 INTRODUCING OBJECT-ORIENTED PROGRAMMING

INTRODUCING OOP CONCEPTS

One reason people shy away from OOP is that it involves some advanced concepts that can be hard
to grasp at first. However, good programming often incorporates OOP so you need to know how to
handle it when you come across it. Besides, it is a lot of fun when you understand it.

Objects and Classes

OOP is a way of thinking about what you need to accomplish in terms of objects (nouns) that you
need to define and actions (verbs) that you need to perform.

An object is an instantiation of a class that contains properties and methods. This sounds like so
much geek-speak, but you will understand it by the time you are done with this section.

Let’s use the example of a cell phone. The cell phone itself is an object. This particular phone is 4.5
inches tall by 2.3 inches wide by .37 inches thick. It has 32GB of storage and weighs 4.8 ounces.

It contains specific songs, phone numbers, and ebooks. These are properties that the phone has.
Properties are information.

This cell phone can do actions. You can tell it to make phone calls, take pictures, browse the
Internet, or play tunes. Each of those types of actions is a method. These are the verbs, the acts that
can be performed.

A class corresponds to the blueprint for creating this cell phone. A class is what defines the object.

An object, such as this particular cell phone, is an instance of the class. You can imagine a manufac-
turing line just churning out instances (objects) of the class. The act of making an instance from a
class is called instantiation.

So you could say, “My cell phone was manufactured based on plans and it contains songs and a way
for me to play them.” An object is an instantiation of a class that contains properties and methods.

To illustrate the concept more clearly, here are some other examples:
Customer Class
Properties: First name, last name, company, address, e-mail, phone number
Methods: Place an order, inquire about an order, change an e-mail address
Product Class
Properties: Product number, description, cost, price, quantity on hand, image of product

Methods: Increase quantity when product received, decrease quantity when product shipped,
format the price, find an extended price for a given quantity

Article Class
> Properties: Title, author, abstract, content, ratings, permanent link

Methods: Check for proper authority to see the article, save the article to the database, delete
the article from the database, format the article for display

Learning Variations in Different PHP Releases | 163

To bring it into PHP terms, properties are variables for the class and the methods are functions that
are in a class. You learn in the next lesson how to create the classes in PHP.

Extending Classes

You can create a parent class that contains common functions and properties and then build more
detailed classes on top of it. For example, a Phone class is able to receive calls and make calls. A
Cellphone class extends the phone class so it can automatically receive and make calls, but is also
able to retrieve phone numbers from an address book. A Smartphone class extends the Cellphone
class and is able to keep track of your calendar, browse the Internet, and play songs.

The classification of animals is another example. The parent class is Animal. Dog, Cat, and Bird
all extend Animal, but with different properties and methods. Dog has a Tail Wagging method,
whereas Cat has a Purring method and a Length of Fur property, and Bird has a Flying method.

You can also override methods in the parent class with your new class. So the Whale class can over-
ride those parts of the Mammal class that it needs to because it swims in the ocean instead of walk-
ing on land as most mammals do.

The ability to extend classes (inheritance) and override them makes OOP very powerful. It enables
you to create classes that are generic enough to reuse in many programs and yet it enables you to
tailor classes for very specific needs.

LEARNING VARIATIONS IN DIFFERENT PHP RELEASES

OOQP features are relatively new to PHP. They existed in PHP4 but were more fully developed in
PHPS, especially 5.2. Also, PHP 5.3 introduced additional features.

If you are writing your own code in 5.3, these differences are not important. If you are dipping into
someone else’s code you should be aware of these changes so you can recognize a remnant of an
older coding style:

> Pass by Reference: When you assign an object to a variable it used to create a copy of the
object. Now it creates a reference so that changes in either the original or the new object

affect both.

> Visibility & Final: The ability to alter the scope of properties and functions. You learn about
visibility in Lesson 15.

> Constructors: An optional method that is called when you create an object. In PHP4 this
was the same name as the class. Now there is a special function, __construct (). You learn
about this in Lesson 13.

> Class Constants and Static Methods: This is a way to use classes without creating an object.
You learn about this in Lesson 15.

> Abstract Classes: This is a special type of parent class that you can use to define other classes.
You learn about this in Lesson 15.

164 | LESSON12 INTRODUCING OBJECT-ORIENTED PROGRAMMING

> The __autoload Function: This is a way to automatically load your class definitions without
needing long lists of require_once statements. This is not fully implemented until PHP 5.3.
You learn more about this in Lesson 15.

) TRYIT

Available for
download on

Woem' In this Try It, you analyze the contacts in the About Us page of the Case Study to decide what prop-
erties and methods you need for a contact object.

You can download the code and resources for this Try It from the book’s web
page at www.wrox .com. You can find them in the Lessonl2 folder in the down-
load. This lesson does not contain any changes to the code.

Lesson Requirements

If you want to look at the Case Study on your local computer, your computer needs to be able to

run as a web server with PHP and MySQL. XAMPP is a package of software that installs the web
server, PHP, and MySQL for you. You can find instructions for downloading and installing XAMPP
in Lesson 1.

Hints

This is a conceptual exercise, not a PHP coding exercise.

Step-by-Step

Based on the contacts in Figure 12-1, write down the properties and methods that a contact object
might need.

1. The properties are the pieces of information about the contact.
Properties include the following:

> First name

» Last name
> Position

> Emalil

> Phone

2. The methods are functions that the object would need.

» A method that assembles a full name from first name and last name

Trylt | 165

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith

Position: none
Email: martha@®example.com
Phone:

George Smith

Position:

Email: george@example.com
Phone: 515-555-1236
Jeff Meyers

Pasition: hip hop expert for shure
Email: jeff@example.com
Phone:

Peter Meyers

Position:
Email: peter@example.com
Phone: 515-555-1237

Sally Smith

Position:
Email: sally@example.com
Phone: 515-555-1235

Sarah Finder

Position: Lost Soul
Email: finder@a.com
Phone: 555-123-5555

FIGURE 12-1

Watch the video for Lesson 12 on the DVD or watch online at www . wrox . com/

go/24phpmysqgl .

13

Defining Classes

Classes are the heart of object-oriented programming. They define what an object looks like,
what information it can store, and what actions and calculations it can perform. In this lesson
you learn how to create classes.

The basic syntax of a class looks like this:

<?php
class MyClassname

{
// Properties
public $someProperty;
public $someOtherProperty;

// Methods

public function someFunction($input = false) {
// php code

}

public function anotherFunction() {
// php code
}
}

Begin a class declaration with the word class followed by the name of the class. The body of
the class goes in curly brackets. Put property definitions next, followed by the methods.

The class name can be any combination of letters, numbers, or underscores. It can start with
either a letter or an underscore, but, according to convention, a class name should begin
with a capital letter. The name is case sensitive. Note that like functions, classes do not start
with a s.

It is standard practice to put each class in a file with the same name as the class. So the class
Myclassname would go in a file called myclassname.php. This makes it easier to find the right
file while you are programming and easier to reuse selected ones in different programs.

168 |

LESSON 13 DEFINING CLASSES

If you document your classes with PEPDoc blocks, many editors are able to use them as help text as
you program. The block for a class looks like this:

*

/
Class short description

Class longer description if needed

@package PackageName
/

* 0% X ok 2k kX

If the class is in its own file, you have both the page PuPDoc block and the class PHPDoC block.

Up until now you have been able to run the code in the lessons. Classes do not actually do anything
because they are just blueprints. So you are not able to see this code in action until the next lesson.

DEFINING CLASS VARIABLES (PROPERTIES)

Class variables, called properties, are where you put information that is specific to the object. Valid
prop you p p J
property names are the same as valid variable names. This is the syntax for a property:

public $someProperty = 'Mine';
public $someOtherProperty = true;

The declaration starts with the scope keyword (public, protected, or private) followed by the
property. You learn more about the scope keywords in Lesson 15. For now use public.

You can initialize the property as you do with regular variables except that you can only initialize
with a constant, including the Boolean literals. The following code is not valid because you cannot
use variables:

public $someOtherProperty = $myVar;

Notice that these class variables are outside the functions. The functions themselves can have ordi-
nary variables within them, but the properties are separate. When you create an object from a class,
a brand new set of properties is initialized and set aside specifically for that object.

To use a property in a method, you prefix the property name with sthis->:

Sthis->someProperty

Notice that when using $this->, the property name does not have a s. If you
put a $ in front of the property name, you are telling the program that you want
to use the property name that is the value of the property, not that property.

$someProperty = 'anotherProperty';

SanotherProperty = 'Hello';

echo $this->someProperty; // displays 'anotherProperty'
echo $this->S$SsomeProperty; // displays 'Hello'

Defining Class Functions (Methods) | 169

It’s important when you start working with methods that you recognize the difference between
properties, which are defined in the class, and variables, which are defined in a method. The proper-
ties require $this and keep their value for the life of the object. Variables in methods (like variables
in functions) do not use $this and start new each time the method is called.

You should document each of your properties with a PHPDoc block. The comment includes a short
description, any pertinent or confusing information, the @var tag to signal that this is a variable,
and the type of variable expected, such as string, integer, float, array, Boolean, or object.
/ * %
* The phone number of this cell phone

* @var string

*/

DEFINING CLASS FUNCTIONS (METHODS)

Although properties have a vital difference from ordinary variables, methods act just like functions
and are often called functions. The main difference between methods and functions (other than that
one is inside a class and the other is not) is that methods are defined with a scope keyword. This
scope affects access to the method, not to anything within the method. You learn more about scope
for methods in Lesson 15. For now use public scope. This is the syntax for a method:

public function myMethod($Sinput) {
// php code
}

You can put anything in this function as you would in a regular function. In addition, you can use
the properties by using the $this->someProperty form. If you want to call another method in the
class you use $this as well. So to call yourMethod () use $this->yourMethod().

Let’s go through a complete class, including the methods. The following is a class describing a cell
phone.

Start with the class name and the properties:

class Cellphone

{
// Properties
public S$phoneNumber;
public $model;
public S$color;
public S$contacts;
public $songs;

Next come the methods. The first is a method to add contacts. The Contact name and Contact

phone number are passed in when the method is called. They are then added to the property

contacts, which is an associative array. Notice the use of $this-> to reference the property.
public function addContact ($Snumber, $name) {

Sthis->contacts[$name] = S$number;

}

170 | LESSON13 DEFINING CLASSES

The following method adds songs to the cell phone. A song is passed into the method when it is
called. If the argument is an array, the program loops through the array and adds the songs. If it is
not an array, it adds the single song. Remember that empty square brackets on an array automati-
cally add an element with the next available numeric index.

public function addSongs ($songs) {
if (is_array($songs)) {
foreach ($songs as $song) {

Sthis->songs[] = $song;
}
} else {
$this->songs[] = $songs;

}
}

The following method displays the contacts, which are stored in the property $contacts. It uses a
foreach loop that loops through the property $contacts, which is an array. Remember that this is
just a class — a blueprint — so nothing runs until you create an object from it in the next lesson.

public function displayContacts() {
// Notice that the property has -> and no $
// while the array has => and a $
foreach ($this->contacts as S$name=>S$number) {
echo Sname . ' - ' . Snumber . '
';

}

It’s easy to get confused between -> and => as well as when you need a $ and
when you don’t.

The class construction uses a dash with the greater-than sign, and constructions
working with associative arrays use the equal sign with the greater-than sign.

The associative array uses the normal form for the second variable, so it has a $
in front of the second variable.

There is normally no $ following $this->. You can think of the $ as meaning
“use the value of what is inside.” If you want to use the property $contacts, it is
$this->contacts. You use the $ only if you want to use the value of what is in

a property as the name of another property. The following two echo statements
both display “George Smith”:

Sthis->field = 'contact';
Sthis->contact = 'George Smith';
echo $this->$field;

echo $this->contact;

The following method calls two other methods in the same class. It uses the same $this-> construc-
tion as used for properties.

public function addThenDisplayContacts ($newname, S$newnumber) {
Sthis->addContacts ($Snewnumber, S$newname) ;

Defining Class Functions (Methods) | 171

Sthis->displayContacts() ;
}

The next method counts the number of songs. It passes the result back via the return statement.
The earlier methods did what they needed within the method so they did not need to return any-
thing. With this method, the whole point is to return an answer.

public function countSongs() {
Sresult = count($this->songs) ;
return Sresult;

}
And, finally, you need the closing curly bracket for the class:
}

Document each of the methods with a pPEPDoc block. You will find this invaluable when program-
ming if you are using one of the many editors that are able to use it as dynamic help text. This is an
example:

/**

* Add contacts

* @param string Snumber

* @param string S$name

* @return integer | boolean
*/

The comment starts with a description. Include in the description anything about the method that
might trip someone up. List all the parameters coming in, along with their type and parameter
name. If you have a return in the method, document it here, along with the type. If it could be more
than one type (such as a good value or false if there was an error), separate the types with a pipe
symbol (]). Some of the editors even give you a skeleton of the comment. If you are using Eclipse,
type a /** on the line before a method and Eclipse gives you a comment template with the param-
eters filled in.

This is what the full cel1phone class looks like, complete with documentation:

<?php
/~k~k

*

cellphone.php

*

* Cellphone class file

*

* @version 1.2 2011-02-03

* @package Example

* @copyright Copyright (c) 2011 Myself
* @license GNU General Public License
* @since Since Release 1.0

*/

/**

* Cellphone class
*

* @package Example
*/

172 | LESSON13 DEFINING CLASSES

class Cellphone
{

/**
* The phone number of this cell phone
* @var string
*/

public $phoneNumber;

/*‘k
* The model number
* @var string
*/

public S$model;

/**
* The color of the phone, using an id from the color file
* @var int
*/

public $color;

/**
* Assoc. Array with contact name as the key, the phone number as the value
* @var array
*/

public $contacts;

/*‘k

* Array with filenames of song mp3 files
* @var array

*/

public $songs;

/**

* Create a new Contact
* @param string S$Snumber
* @param string Sname

*/

public function addContact ($number, S$name) {
Sthis->contacts|[$name] = S$number;

}

/*‘k

* Add an array mp3 filename to the Songs array,
* if it isn't an array, then just add the single song
* @param array|string $songs
*/
public function addSongs ($songs) {
if (is_array(Ssongs)) {
foreach ($songs as $song) {

Sthis->songs[] = $song;
}
} else {
Sthis->songs[] = $songs;

/**

Trylt | 173

* Display a list of the Contacts
*/
public function displayContacts() {
foreach ($this->contacts as S$name=>$number) {
echo $name . ' - ' . Snumber . '
';

}

/**
* Create a new contact and then display all the contacts
* @param string $newname
* @param string S$newnumber
*/

public function addThenDisplayContacts ($Snewname, $newnumber) {
Sthis->addContacts (Snewnumber, S$newname) ;
Sthis->displayContacts() ;

}

/**
* Count the songs
* @return int
*/

public function countSongs() {
Sresult = count ($this->songs) ;
return Sresult;

}

}

You have learned how to define a class. In the next lesson you learn how to use this class.

HTRYIT

Available for
download on

Wmeom' 10 this Try It, you create a class for the contacts in the Case Study. A contact should include first
name, last name, position, email, and phone along with a method that creates a full name out of the
first name and last name.

You can download the code and resources for this Try It from the book’s web
page at wiww .wrox .com. You can find them in the Lessonl3 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

174 | LESSON13 DEFINING CLASSES

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the case study, you need your files from the end of Lesson 10.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints

You do not need the puPDoc block comments for the code to work but it is good to get into a habit
of entering it as you go.

Step-by-Step
Cranetheincludes/classes/contact.phpfﬂ&
1. Create a folder called classes in the includes folder.

2. Create a file called contact.php in the includes/classes folder. Enter the page-level
documentation:
<?php
/ * %

* contact.php

* ok

Contact class file

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

3. Define the class called contact:

/ * %
* Contact class
*
* @package Smithside Auctions
*/

class Contact

{

}

4. Enter the properties in between the curly braces:
/* *
* First name
* @var string
*/
public $first_name;
/* *
* Last Name
* @var String

Trylt | 175

*/
public $last_name;
/**
* Position in the company.
* @var string
*/
public S$position;
/**
* Email
* @var string
*/
public Semail;
/**
* Phone number, formatted in string
* @var string
*/
public Sphone;

5. Create a function called name that concatenates the first and last names with a space in
between. Put this method after the properties.

/**

* Creates a full name by concatenating first and last names
* @return string

*/
public function name () {
$name = $this->first_name . ' ' . $this->last_name;

return $name;

}

You test this class in the Try It in Lesson 14.

Watch the video for Lesson 13 on the DVD or watch online at www .wrox .com/
go/24phpmysqgl .

14

Using Classes

In the previous lesson you learned how to define classes. In this lesson you learn how to use them.

INSTANTIATING THE CLASS

A class is a blueprint for creating objects. When you create an object you are instantiating the
class—making an instance of the class. You can create multiple objects from the same class.
They all start out the same, with properties empty or equal to a default and with the capability
of performing all the actions detailed by the methods. They are all independent so when you
change a property in one, it does not affect the property in any of the other objects made from
that class. It is just like when you enter a contact in your cell phone; no one else’s cell phone is
affected.

Instantiating the class is very easy. Make sure that the class code has been included. Use

a require_once to include it. You need the file, so it should be a require rather than an
include. You also want the class to be included only once because you get an error if you

try to define the class a second time, even if it is identical. It is standard practice to include
your common classes when you start the program. If you rarely use a class, you can include it
before you create an object.

If a class called cellphone is in the cellphone.php file, the following code creates an object
called $myPhone:
<?php

require_once 'cellphone.php';
$SmyPhone = new Cellphone();

The object called $myPhone is a regular variable that happens to be an object. You use all the
same naming conventions for the variable as you do for other variables.

If you want to create multiple objects, create multiple variables:

<?php
require_once 'cellphone.php';
$myPhone = new Cellphone();

178 | LESSON14 USING CLASSES

$sallyPhone = new Cellphone() ;
$georgePhone = new Cellphone () ;

You can also use a variable to contain the name of the class:

<?php
Stype = 'cell';
$classname = Stype . 'phone';

$SmyPhone = new S$classname () ;
$sallyPhone = new $classname();
$georgePhone = new $classname();

Be careful that you only use the $ when using a variable to specify the class
name. If you use the actual name of the class, which is usual, do not use a $.

USING OBJECTS

To access an object’s properties or classes use the “dash-greater-than” construction. If $myPhone
is an object with a property of $phoneNumber, the following code assigns 555-555-7777 to that
property:

<?php
$myPhone->phoneNumber = '555-555-7777";

Assuming that the object has a method called $displayContacts (), the following code runs that
method:

<?php
$myPhone->displayContacts () ;

Often the purpose of a method is to give you a value, that is, to return a value. You capture this by
assigning it to a variable or by using it. Here are two ways of getting the same information from
countSongs ():

<?php

SnumberSongs = S$SmyPhone->countSongs () ;

echo $numberSongs;
echo $myPhone->countSongs () ;

In the previous lesson you created the class cellphone, which you put in the file cel1phone.php.
You can see that code at the end of Lesson 13, just before the Try It section, or you can download it
from this book’s website at www.wrox.com in the Lesson14 folder. You are now ready to create code
using the class so that you can run it and see results.

The first step is to include the class and create an object:

<?php
require_once 'cellphone.php';
SmyPhone = new Cellphone() ;

Using Objects | 179

Now put some data into the object. You can put data into the properties directly. This is how you
load the cell phone’s own number, model, and color:

$myPhone->phoneNumber = '555-555-1111";
SmyPhone->model = '3GS';
SmyPhone->color = 'Black';

Echo them back to verify that it worked. The results should look like Figure 14-1. This is what the
full code looks like:

<?php

require_once 'cellphone.php';

SmyPhone = new Cellphone();
$myPhone->phoneNumber = '555-555-1111";

SmyPhone->model = '3GS';

SmyPhone->color = 'Black';

echo 'Phone number: ' . S$myPhone->phoneNumber . '
';
echo 'Model: ' . S$myPhone->model . '
';

echo 'Color: ' . SmyPhone->color . '
';

Phone number: 555-555-1111
Model: 3GS
Color: Black

FIGURE 14-1

There are also a couple of methods that enable you to enter data into the properties:
addcontact () and addSongs (). Use addContact () to add to the $contacts property array
by giving the name and phone number of the contact. Display the array to see that the contacts
were added properly. Use print_r () to display an array rather than echo. The results look like
Figure 14-2.

SmyPhone->addContact ('555-555-1212"', 'Sally Strange');

$myPhone->addContact ('555-555-1515"', 'George Mason') ;
print_r (SmyPhone->contacts) ;

Phone number: 555-555-1111

Model: 3GS

Color: Black

Array ([Sally Strange] => 555-555-1212 [George Mason] => 555-555-1515)

FIGURE 14-2

Use a method that prints the contacts. Replace the print_r () statement with a call to
displayContacts (). See Figure 14-3.

$myPhone->displayContacts () ;

180 |

LESSON 14 USING CLASSES

Phone number: 555-555-1111
Model: 3GS

Color: Black

Sally Strange - 555-555-1212
George Mason - 555-555-1515

FIGURE 14-3

The addsongs () property is looking for either an array of filenames of songs or a single filename.
Add an array of songs and then display the property to verify it. Putting the <pre> tags around
print_r () makes the results easier to read when testing. See Figure 14-4.

SmyPhone->addSongs (array ('ibelieve.mp3', 'heaven.mp3', 'song3.mp3')) ;
echo '<pre>';print_r (SmyPhone->songs) ;echo '</pre>';

Phone number: 555-555-1111
Model: 3GS

Color: Black

Sally Strange - 555-555-1212
George Mason - 555-555-1515

Array

{

=> ibelieve.mp3
=> heaven.mp3
=> song3.mp3

o
I
12

FIGURE 14-4

The countSongs () method counts the number of songs and returns the number. It does not display
the number, though, so you need to display it so you can see that you received it. Instead of printing
out the song names, display how many songs are on the phone. See Figure 14-5.

echo 'My phone has ' . S$myPhone->countSongs(). ' songs.
';

Phone number: 555-555-1111
Model: 3GS

Color: Black

Sally Strange - 555-555-1212
George Mason - 555-555-1515
My phone has 3 songs.

FIGURE 14-5

Updating a property directly is convenient but best practices recommend using a method. Using a
method enables you to handle any other actions that need to be done when you change the property.
This could be error checking, filtering, or adding subsidiary information. Even if you only need to
change the value now, at some point in the future you might need to add filtering. If you are updat-
ing through a method, the only place you need to change is in the class. If you are updating directly,
you need to locate all those places and make changes to all of them.

Two special methods help you fill in the properties when you create the object. The __construct ()
method is automatically called when you create an object. You pass arguments to the method, which

Trylt | 181

can be used to update the methods or perform any other initializing tasks you need. As an example,
add the following method to the cellphone class definition:

public function __construct ($phoneNumber, $model, S$Scolor) {
Sthis->phoneNumber = $phoneNumber;
Sthis->model = S$model;
Sthis->color = S$color;

}

Note that the method begins with a double underscore. You are taking the phone number, model,
and color and using them to update those properties.

Now create a new file and create some objects from the class and then display them. See Figure 14-6.

<?php

require_once 'cellphone.php';

SmyPhone = new Cellphone('555-555-1111"', 'iPhone', 'Black');
SyourPhone = new Cellphone('555-555-2222"', 'Droid', 'Purple');
ShisPhone = new Cellphone('555-555-3333', 'Blackberry', 'Pink');

echo 'Phone number: ' . S$myPhone->phoneNumber . '
';
echo 'Model: ' . SmyPhone->model . '
';

echo 'Color: ' . S$myPhone->color . '
';

echo 'Phone number: ' . S$yourPhone->phoneNumber . '
';
echo 'Model: ' . S$yourPhone->model . '
';

echo 'Color: ' . S$yourPhone->color . '
';

echo 'Phone number: ' . ShisPhone->phoneNumber . '
';
echo 'Model: ' . $hisPhone->model . '
';

echo 'Color: ' . ShisPhone->color . '
';

Phone number: 555-555-1111
Model: iPhone

Color: Black

Phone number: 555-555-2222
Model: Droid

Color: Purple

Phone number: 555-555-3333
Model: Blackberry

Color: Pink

FIGURE 14-6

If PHP does not find a __construct () method, it looks for a method with the same name as the
class. This is the old style and you should avoid it in new coding.

)TRYIT

Available for
download on

wom' 10 this Try It, you replace the static HTML code on the About Us page of the Case Study with
objects for each of the contacts.

First you add the __construct () method to the contact class that you created in Lesson 13. Then
you update the properties in the objects with the names and contact information. Finally you use
those objects to display them on the About Us page.

182 | LESSON 14 USING CLASSES

When you start using databases in Section V, you will be able to fill these objects from the database.

You can download the code and resources for this Try It from the book’s web
page at www .wrox .com. You can find them in the Lessonl4 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 13.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints

The __construct method is called automatically when you create an object.

Because objects are just another type of variable, they can be array elements. By putting objects into
an array you can use the power of the array to loop through the objects.

Step-by-Step

So that you can instantiate the contact class, add an include to the index.php file and add a
__construct () method to the class.

1. Include the contact .php file so that the class is available. In index.php, add the following
code immediately following the PHPDoc block comments:

require_once 'includes/classes/contact.php';

2. Inthe contact.php file, add a __construct () method as the first method. The following
code shows what it should look like.

/'k*
* Initialize the Contact with first name, last name, position
* email, and phone
* @param array
*/
public function __ construct ($Sinput = false) {
if (is_array($input)) {
foreach ($input as Skey => S$val) {
// Note the $key instead of key.
// This will give the value in Skey instead of 'key' itself
Sthis->$key = $val;
}

Trylt | 183

}

Create an object for each of the contacts and fill with the information on each of the contacts.

1. In about.php, just below the PHPDoc comment block, create an object called $item from the
Contact class. Pass an associative array with the property names as the keys and the values

from the first contact in the list.

Sitem = new Contact (array('first_name'=>'Martha',
'last_name'=>'Smith',
'position'=>'none',
'email'=>'martha@example.com',
'phone'=>"'"));

2. Change the first item in the unordered list to use the object instead of the hardcoded informa-

tion about Martha Smith:

<1li class="row0">
<h2><?php echo $item->name(); ?></h2>
<p>Position: <?php echo S$item->position; ?>

<?php echo $item->email; ?>

Phone: <?php echo $item->phone; ?>
</p>
</1li>

3. Run your program and verify that your About Us page looks similar to Figure 14-7.

%

< Smithside
_é\UCtIQFnS 1

Home ‘ About Us J Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith

Position: none
martha@example.com
Phone:

George Smith

Position:

Email: george@example.com
Phone: 515-555-1236

Jeff Mevers

FIGURE 14-7

4. Now that you have successfully created and used your first object, you create an array of
objects and loop through the array to display all the contacts. In the about .php file, just
before you create the $item object, initialize the array $items:

Sitems =

array();

184 | LESSON14 USING CLASSES

5. Change the variable $item to $items[] where you create your object. This adds an element
to the $items array instead of using a single variable. This is what the altered code looks like:

$items[] = new Contact (array('first_name'=>'Martha',
'last_name'=>'Smith',
'position'=>'none',
'email '=>'martha@example.com',
'phone'=>"'"));

6. Create objects for the rest of the contacts, adding them to the $items array:

Sitems[] = new Contact (array('first_name'=>'George',
'last_name'=>'Smith',
'position'=>'none',
'email'=>'george@example.com',
'phone'=>'515-555-1236")) ;

Sitems[] = new Contact (array('first_name'=>'Jeff',
'last_name'=>'Meyers',
'position'=>'hip hop expert for shure',
'email'=>'jeff@example.com',
'phone'=>""));

Sitems[] = new Contact (array('first_name'=>'Peter’',
'last_name'=>'Meyers',
'position'=>'none’,
'email'=>'peter@example.com',
'phone'=>'515-555-1237")) ;

Sitems[] = new Contact (array('first_name'=>'Sally"',
'last_name'=>'Smith',
'position'=>'none',
'email'=>'sally@example.com',
'phone'=>'515-555-1235"));

Sitems[] = new Contact (array('first_name'=>'Sarah',
'last_name'=>'Finder',
'position'=>'Lost Soul',
'email'=>'finder@a.com',
'phone'=>'555-123-5555")) ;

7. Puta foreach loop around the first item in the unordered list to loop through the $itemns array:

<?php foreach ($items as $item) : ?>
<1li class="row0">
<h2><?php echo $item->name(); ?></h2>
<p>Position: <?php echo Sitem->position; ?>

<?php echo Sitem->email; ?>

Phone: <?php echo $item->phone; ?>
</p>
</1li>
<?php endforeach; ?>

8. Notice that with this loop the class on the <1i> tag is always "row0". You want that to alter-
nate between "row0" and "rowl" so that your CSS background colors alternate. To do this,
add the index of the array in the foreach loop. Because you created the array by automati-
cally adding each element, the index counts starting from 0. You then use the formula $i %
2, which divides the index by 2 and returns the remainder, thus alternating between 0 and 1.
Change your foreach statement and the <1i> tag to the following code:

Trylt | 185

<?php foreach ($items as $i=>$item) : 2>
<1i class="row<?php echo $i % 2; ?>">

9. Now remove the remaining hardcoded contacts in the unordered list. Your complete
group should look like the following:

<ul class="ulfancy">
<?php foreach ($items as $i=>$item) : ?>
<1i class="row<?php echo $i % 2; ?>">
<h2><?php echo $item->name(); ?></h2>
<p>Position: <?php echo S$item->position; ?>

<?php echo S$item->email; ?>

Phone: <?php echo $item->phone; ?>
</p>
</1i>
<?php endforeach; ?>

10. Your About Us page should still look the same. See Figure 14-8. You have changed the inter-
nal workings of the page but not what it looks like.

-
- g

- Sm

Auctions
. Home ‘ About Us | Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith
Position: none
martha@example.com
Phone:

George Smith
Position:

Email: george@example.com
Phone: 515-555-1236

Jleff Mevers

FIGURE 14-8

Watch the video for Lesson 14 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl.

15

Using Advanced Techniques

Now that you have a grasp of the basic concepts of using classes and objects in PHP, you are
ready to learn more advanced techniques. In this lesson you learn easier ways of including the
code for the class files and best practice techniques for updating and accessing properties. You
learn how to use scope with classes to make your code more secure.

You also learn how to extend classes so that you can build on stable classes, and how to
organize the functionality in your program by using static functions and classes.

INITIALIZING THE CLASS

Best practice dictates that you create a new file for each of your classes. You also have to
include any of those files once, and only once, to define the class before you can use it. You can
use different techniques to do this.

As you learned in the previous chapter, you can use require_once statements at the begin-
ning of your program or just before you use your classes. This, however, can result in a lot of
tedious code or a lot of extra code that might never be needed.

PHP has what are called “magic methods.” These are functions that are called automatically
at certain times. One magic method you are familiar with is __contruct (), which is called
when you create a new object. Magic methods start with a double underscore.

PHP has a magic function called __autoload() that is automatically called if you try to use a
class that has not been defined. You define this function at the beginning of your program and
you can use it to include your class files when they are needed.

The cellphone class was included in the previous lesson with this code:

<?php
require_once 'cellphone.php';

188 | LESSON15 USING ADVANCED TECHNIQUES

The following code takes the class that is being instantiated, adds the .php extension, and includes
that file if this is the first time it has been looked for:

<?php
function _ autoload($class_name) {
require_once S$class_name . '.php';

}

PHP calls this magic function if you have created it, but you have control over what happens when
__autoload is called because you write the function. You need to include this function at the begin-
ning of your code because it needs to exist or PHP will not call it.

That code works if your server is case insensitive, but Cellphone.php and cellphone.php are

considered two different files on most servers. So you need to take that class name and convert it to
lowercase before you use it in as a filename. This assumes that you are following the convention of
using all lowercase for your filenames. The following code shows the addition of this functionality:

<?php
function _ autoload($class_name) {
require_once strtolower(Sclass_name) . '.php';

}

Obviously if you have one class, this is overkill. But if you have several classes using the __autoload ()
function is easier than remembering to go into your first program and adding a require_once for
each new class. It is also more efficient in terms of performance than including all the files at the begin-
ning of the program if you might not use them all.

UNDERSTANDING SCOPE

Scope dictates who can see what; what has visibility. You learned in Lesson 9 that variables have
local scope (they can only been seen where they are created) unless they are declared as global. You
have more options when using scope with classes.

Properties

When you create a property in a class, you can use it in any of the methods in an object using the
$this-> construction. This gives you the value for the property in the particular object you are in,
as opposed to the values of the same property in other instances of the same class. You can think

of it as “$this gives you the value in this object”. Remember that variables that are not properties
(those ordinary variables in the methods) do not use $this. You can have a property and a variable
with the same name, so in a method $this->myVar and $myVar refer to different variables. The first
is a property and its value is accessible anywhere in the object; it is still there the next time you go
into the same object. The second is an ordinary variable and is available only in that method; it is
initialized every time you use the method.

When you declare a property at the beginning of the class you preface the declaration with the
scope. The scope keywords are public, protected, and private. So far in this book, you have
been using public as the scope:

public S$phoneNumber;

Understanding Scope | 189

When a property is public, it can be accessed directly from outside the class. You indicate the object
that the property is in to locate it. The following code gives you the public $phoneNumber from
objects created from the cellphone class. See Figure 15-1.

<?php

require_once 'cellphone.php';

SmyPhone = new Cellphone('555-555-1111"', 'iPhone', 'Black');
SyourPhone = new Cellphone('555-555-2222", 'Droid', 'Purple');
echo 'Phone number: ' . $myPhone->phoneNumber . '
';

echo 'Phone number: ' . $yourPhone->phoneNumber . '
';

Phone number: 555-555-1111
Phone number: 555-555-2222

FIGURE 15-1

You may see properties using the var scope. This is a holdover from PHP 4 and
is the same as public if there is no scope keyword.

Protected properties cannot be seen outside the class except in inherited classes or parent classes.
You learn about inheritance later in this lesson. The following code is how you define a protected
property in the class.

protected $_phoneNumber;

Private properties are available only within the class itself. This code is an example of defining a pri-
vate property:

private $_phoneNumber;

Private and protected properties often start with a single underscore. This was
the convention used in earlier versions of PHP, which did not have scope key-
words. It was a signal to programmers not to use the property outside of the
class. Many programmers continue the convention because it is a good reminder
of which properties are private.

However, just starting a variable name with an underscore does not make it pri-
vate. You need to add the protected or private keyword.

The protected and private keywords are not necessarily used in the same sense that you keep
your Social Security number private. They are used for control and encapsulation. As an example,
say that whenever you change a customer’s e-mail address, you want to send an e-mail to the old
address as confirmation. If you can change the customer’s address directly, you have to know and
remember that you also need to send the e-mail. Instead, you can make the e-mail property private
and force programmers to use a method to update the e-mail address. You send the e-mail confirma-
tion from within that method. So then any time someone changes the e-mail, the message is auto-
matically sent.

190 | LESSON15 USING ADVANCED TECHNIQUES

If you need to access these properties outside of the class, you use what are commonly called getter
and setter methods. These are methods you write that return the property value (getters) or change
the property value (setters). By convention, the method name begins with get or set followed by the
property name with the first letter capitalized. The following is the earlier example in which you
directly retrieved the public property $phoneNumber:

<?php

require_once 'cellphone.php';

SmyPhone = new Cellphone('555-555-1111", 'iPhone', 'Black');

$yourPhone = new Cellphone('555-555-2222"', 'Droid', 'Purple');
echo 'Phone number: ' . $myPhone->phoneNumber . '
';
echo 'Phone number: ' . $yourPhone->phoneNumber . '
';

This next example uses a protected phone number and retrieves the property with a getter method
instead. This is the class definition that defines the protected property $phoneNumber and the new
getter function get PhoneNumber () :

<?php

class Cellphone

{
protected $_phoneNumber;
public $model;
public $color;

public function __construct ($SphoneNumber, S$model, $color) {
$this->_phoneNumber = $phoneNumber;
Sthis->model = S$model;
Sthis->color = S$color;

}

public function getPhoneNumber () {
return $this->_phoneNumber;

}

The following is the script that retrieves the protected property. Remember that the method requires

parentheses.
<?php
require_once 'cellphone_v2.php';
$myPhone = new Cellphone('555-555-1111', 'iPhone', 'Black');
SyourPhone = new Cellphone('555-555-2222"', 'Droid', 'Purple');
echo 'Phone number: ' . $myPhone->getPhoneNumber() . '
';
echo 'Phone number: ' . $yourPhone->getPhoneNumber() . '
';

The getter method is simply returning the value of the $_phoneNumber property. However, at a later
date, you could add more functionality to that method without needing to change any of the places
that are calling it and they would all get the new version.

You may have noticed that in the previous example the require_once file was
cellphone_v2.php but the class name was cellphone. The filename and the
class name do not have to be the same, although if you want to use __autoload()
to load the classes for you, it’s easier if they are.

Understanding Scope | 191

Methods

Methods have the same scope keywords as properties: public, protected, and private. If they
have no scope keyword, public is assumed. Older code doesn’t include the scope because it has
been available only since PHP 5. Get into the habit of always using a scope keyword.

If you use a method as a getter or setter for a property, the method should be public because only
public methods work outside the class.

Private and protected methods are used when they are needed only within the class or they are
using variables that are available only within the class. In the following example, the _formatbeg ()
method is only needed to format the information in the other class methods. See Figure 15-2 for the
results. Though you usually put the classes in a separate file, for the sake of demonstration, the class
and script to use the class are in one file.

<?php

class Converter

{

public function convertFtoC ($temperature) {

Scelsius = (Stemperature - 32)* (5/9);
Sresult = $this->_formatDeg($temperature) . ' Fahrenheit is equal to '
$this->_ formatDeg($celsius) . ' Celsius.';

return Sresult;

}

public function convertCtoF ($temperature) {
$fahren = Stemperature * (9/5) + 32;
Sresult = $this->_formatDeg($temperature) . ' Celsius is equal to '
$this->_formatDeg($fahren) . ' Fahrenheit.';
return Sresult;

}

private function _formatDeg ($number) {

if (is_numeric ($Snumber)) {

return number_format ($Snumber, 1) . '°';
} else {

return 0 . '°';

} // end of class

// script to use the class
SnewTemp = new Converter;
echo S$newTemp->convertFtoC(70) ;

70.0° Fahrenheit is equal to 21.1° Celsius.

FIGURE 15-2

192 |

LESSON 15 USING ADVANCED TECHNIQUES

Classes

Classes do not use scope keywords, but you can prevent people from instantiating the class by making
the _ construct () method and the __clone () methods private or protected. The __construct ()
method is used to create the object so if it is not accessible, the object cannot be created. You don’t need
a__construct () method in your class to create an object, but if there isa __construct () method
then it needs to be available. So if you don’t need a __construct () method but don’t want people to
instantiate the class from outside the class, just create an empty protected or private __construct ()
method. You are still able to create an object from within itself or an inherited or parent class, depend-
ing on the scope. If you are wondering how you could create an object inside the class if you cannot
create an object, you find out when you learn about static methods later in this lesson. The __clone ()
method is used to create a copy of an object, so if you need to prevent anyone from creating a copy you
need to make that method protected or private.

UNDERSTANDING INHERITANCE

One of the powerful features of using classes is that you can extend them. You can make a base
class and then create subclasses that inherit all the public and protected properties and methods in
addition to their own properties and methods. You can also override existing parent methods with
special ones for the child class by using the same name. Here is an example:

class Child extends Parent

It is the classes that are being extended, not the objects. Another way of say-
ing it is that the blueprints are extended, and you build houses based on those
extended blueprints. So inberiting properties does not inherit any property val-
ues because you have your own values.

The terms base class and parent class are interchangeable as are subclass and child class. They are
just descriptive terms that indicate that one class is the class being extended (base, parent) and the
other is the extended class (subclass, child class). You may also come across talk of grandparents
and siblings.

The following class, Smartphone, extends the cellphone class. In addition to the properties and
methods it inherits from the cellphone class, it has apps and a method to list the apps. There are
three files: one each for the classes and the script file. In the interest of space I have left off the docu-
mentation blocks.

The first file is the base file for the cellphone class. This is the same file used earlier at the end of
the discussion on property scope.
<?php

class Cellphone
{

Understanding Inheritance | 193

protected $_phoneNumber;
public $model;
public S$color;

public function __construct (SphoneNumber, Smodel, $color) ({
Sthis->_phoneNumber = S$phoneNumber;
Sthis->model = S$model;
Sthis->color = S$color;

public function getPhoneNumber () {
return $this->_phoneNumber;

}

The following code defines the smartphone class. You add a public property for $apps that
contains the names of apps stored on the phone in an array. In the __construct () method,

you bring in all four properties; the one you add in this class, plus the three inherited from the
Cellphone class. You can use all the inherited properties just as if you had created them in

the child class. $app should be an array, so you use the shortcut if statement to cast it to an array

if it isn’t already.

You also add a public function called displayapps () that creates an unordered list of the apps.
The period before the = is a concatenation sign. It appends what is on the right side to the value
on the left. This is a common way of building a long, complex string in an easy-to-read, easy-to-

create way.

<?php
class Smartphone extends Cellphone
{

public $apps;

public function __ construct ($phoneNumber, S$model, $color, Sapps)
Sthis->_phoneNumber = S$phoneNumber;
Sthis->model = S$model;
Sthis->color = $color;
Sthis->apps = is_array($Sapps) ? Sapps : array(Sapps);
}

public function display@pps () {

Sresult = '';
foreach ($this->apps as Skey=>S$Sapp) {
Sresult .= ‘'' . (Skey + 1) . ' - ' . Sapp . '</1li>';
}
Sresult .= '';

return Sresult;

{

194 | LESSON15 USING ADVANCED TECHNIQUES

TRYING TO USE UNAVAILABLE PRIVATE PROPERTIES

If the phone number were private, rather than protected, in the cellphone class,
the smartphone class would not see the cellphone class phone number. Because
PHP does not require declarations of properties, it would create _phoneNumber as a
public property in Smartphone.

This next part is a little tricky, but see if you can follow it. If you use $this->_
phoneNumber in Smartphone, it works as you expect because PHP created a prop-
erty. However, when you use the methods that you inherit from cellphone you
have a problem. $this-> refers to the class it is in, which in this case is Cel1lphone.
Because you put the value into Smartphone’s phoneNumber, not Cellphone’s _
phoneNumber, the Cellphone method to display the phone number displays blanks.

The moral of this story is that you need to be aware of the scope of the variables
and PHP’s overly helpful tendencies.

The following is the script that uses the smartphone class. First, include the code for the two classes. The
parent class code must exist before the child class. Then populate two instances of Smartphone, my phone
and your phone, with data. You can display the phone number using a method inherited from cellphone and
display the apps list from a method that you added in Smartphone. See the results in Figure 15-3.

<?php

require_once 'cellphone_v2.php';

require_once 'smartphone_vl.php';

Sapplist = array("Angry Birds", "Tetris", "Pandora");

$myPhone = new Smartphone('555-555-1111', 'iPhone', 'Black', Sapplist);
Sapplist = array("CNN", "Angry Birds");

SyourPhone = new Smartphone('555-555-2222', 'Droid', 'Purple', Sapplist);
echo 'Phone number: ' . $myPhone->getPhoneNumber () . '
';

echo 'List Apps: '. SmyPhone->display2pps() . '
';

echo 'Phone number: ' . S$yourPhone->getPhoneNumber () . '
';

echo 'List Apps: '. $yourPhone->display2pps() . '
';

Phone number: 555-555-1111
List Apps:

+ 1 - Angry Birds
s 2 - Tetris
s 3 - Pandora

Phone number: 555-555-2222
List Apps:

+« 1-CNN
s 2 - Angry Birds

FIGURE 15-3

Understanding Inheritance | 195

Take another look at the __construct () methods in Cellphone and Smartphone.

From cellphone:

public function __ construct ($phoneNumber, S$model, S$color) {
Sthis->_phoneNumber = S$phoneNumber;
Sthis->model = S$model;
Sthis->color = S$color;

}
From Smartphone:

public function _ construct ($phoneNumber, S$model, $color, Sapps) {
Sthis->_phoneNumber = S$phoneNumber;
Sthis->model = S$model;
Sthis->color = $color;
Sthis->apps = is_array($Sapps) ? Sapps : array(Sapps);
}

The only thing different is that the smartphone pulls in the $apps and updates it. What you want to

do is extend the __construct () method itself. You cannot extend methods but you can call the par-
ent’s version of a method.

To call a parent’s version of a method, use the scope resolution operator, which is a double colon
(: :), known affectionately as a Paamayim Nekudotayim. You may see this name in error messages.
This calls a parent’s __construct () method:

parent::__construct (SphoneNumber, $model, S$color);

You could also use the class name instead of the keyword parent, but using a generic keyword is
better in case your inheritance tree changes. The only change you need to make is to change the
Smartphone’s __construct () to the following:
public function __ construct ($phoneNumber, S$model, S$color, Sapps) {
parent::___construct ($SphoneNumber, $model, Scolor);

Sthis->apps = is_array($Sapps) ? Sapps : array($apps);
}

You call the parent’s __construct (), passing it the three parameters it is expecting. Then you use
the fourth parameter to update the new property. Normally when you override a parent’s method
you should keep the same parameters. The __construct () method is the exception to that rule.

You can override any of the parent’s methods and call the parent’s version of the method as well, if
you need it.

FINAL KEYWORD

If you have a method in the parent that you do not want children to override, add
the final keyword to the definition in the parent class:

final protected MyClassMethod ()

Because it is a protected method, the children can use it and because it is final
they can’t override it. As a reminder, private methods can’t be seen by the

children.

196 | LESSON15 USING ADVANCED TECHNIQUES

Often the classes that you extend are ordinary classes. When you are creating an application, how-
ever, you may find it makes sense to use abstract classes to extend. Abstract classes are classes that
are only blueprints; you cannot create objects from them. They are there to act as a base for other
classes, not to be used themselves. They are a template for creating classes. You declare a class
abstract with the abstract keyword:

abstract class MyBaseClass

An abstract class can contain both regular and abstract methods. Child classes inherit the regular
methods. Abstract classes are empty in the parent and must be defined in the child class. In the fol-
lowing example, MyBaseClass is an abstract class. It requires that child classes create a method
called getTtem () and a method called quantity (), which has a parameter of $qty. This abstract
class also has a regular method that the child classes inherit called 1istItem().

<?php

abstract class MyBaseClass

{

abstract protected function getItem();
abstract protected function quantity($qty);

public function listItem() {
Sresult = '<p>' . Sthis->getItem() . '</p>';
return Sresult;

}

The child class in the example, Mychildclass, defines the two abstract classes, one of which it
changes to public scope so that it can be called from outside the class:

class MyChildClass extends MyBaseClass
{
protected function getItem() {
return "This is an Item";

}

public function quantity($qty) {
return '<p>Your quantity is ' . Sqgty . '.</p>';
}
}

The script that uses these classes starts by instantiating (creating an object) from the mychildclass:
SmyObject = new MyChildClass

Next, the script echoes out (displays on the screen) the result from $myobject->quantity(5). The
object $myobject uses the public method in Mychildclass to create an HTML paragraph to display.

echo $myObject->quantity(5);

Finally, the script displays the result from the
inherited public method 1istItem(), which
calls a method in the child class and creates
another HTML paragraph. The results are
shown in Figure 15-4. FIGURE 15-4

Your quantity is 5.

This is an Item

echo $myObject->listItem();

Understanding Static Methods and Properties | 197

UNDERSTANDING STATIC METHODS AND PROPERTIES

So far I have emphasized that the class is just a blueprint and the objects created from the class are the
actual items that you use. Static methods and properties are accessible without creating an object. As
such, they do not have access to regular properties because it is the object that holds the property values.

You might want to use static methods if you have a function that is related to a class but does not
require the data from an object. For instance, take the customer class example from Lesson 12:

> Properties: First name, last name, company, address, e-mail, phone number

> Methods: Place an order, inquire about an order, change an e-mail address

Say you have a function that pulls a list of all the customers from the database. You could just leave
it as a function but if you put it in the class, you know where to find it and don’t need to include
more files. You do not want to make a customer object to get the list, however, because a customer
object is one customer and what you want is an array with a list of customers.

To move back to the converter class from earlier in the lesson, notice that it has no properties; all

that is happening is calculations based on data that passed to it. If you turn those into static meth-

ods, you do not have to take the expense of creating objects when you want to use the methods:
<?php

class Converter

{

static public function convertFtoC ($temperature) {

Scelsius = (Stemperature - 32)* (5/9);
Sresult = self:: formatDeg(Stemperature) . ' Fahrenheit is equal to '
self::_ formatDeg(Scelsius) . ' Celsius.';

return Sresult;

}

static public function convertCtoF (Stemperature) {
$fahren = Stemperature * (9/5) + 32;
Sresult = self::_formatDeg(Stemperature) . ' Celsius is equal to '
self:: formatDeg(Sfahren) . ' Fahrenheit.';
return S$result;

}

static private function _formatDeg ($number) {

if (is_numeric (Snumber)) {

return number_format (Snumber, 1) . '°';
} else {

return 0 . '°';

} // end of class

To convert this to static, you add the static keyword to the method definitions. Because you do not
have an object to work with, you cannot use $this-> because that refers to the object data. You use
the self construction with the scope resolution parameter self: : instead of $this->. So calling the
ﬁnﬂnatﬁng(ﬂassChangesfronl$this—>_formatDeg($celsius) to self::_formatDeg(Scelsius).

198 | LESSON15 USING ADVANCED TECHNIQUES

Now that there are static methods to call, you

do not need to create an object. You can refer- 70.0° Fahrenheit is equal to 21.1° Celsius.

ence the class itself, using the same scope resolu-
tion parameter. See the results in Figure 15-5.

// script to use the class FIGURE 15-5
echo Converter::convertFtoC(70);

Static properties can be used as a substitution for global variables. Because they can be accessible
from anywhere and retain their values, they can hold or transfer data that needs to be available to
many classes and programs. They can also be used as counters. The following is a class that is used
to hold site-wide information:

<?php

class Sitewide

{
public static $copyright ='© 2011°';
private static $site = 'Counting Site';
private static S$Scount;

public static function getSite() {
return self::$site;

}

public static function getCopyright () {
return self::$Scopyright;

}

public static function getCount () {
self::Scount++; // add one to count
return self::S$count; // return count

}

The following program could then reference it. You need to include the data either with a require_
once or the autoloader. See Figure 15-6 for the results.

<html>
<title><?php echo Sitewide::getSite(); ?></title>
<body>
<hl><?php echo Sitewide::getSite(); ?></hl>

<?php echo Sitewide::getCount(); ?></1i>
<?php echo Sitewide::getCount(); ?></1i>
<?php echo Sitewide::getCount(); ?></1i>

<p><?php echo Sitewide::S$copyright; ?></p>
</body>
</html>

Counting Site

. & @
T b e

(c) 2011

FIGURE 15-6

Trylt | 199

You can also use the static keyword on variables within functions or methods as well as on prop-
erties. Static variables remember their value across multiple opens of the functions or methods.
Ordinary variables are initialized each time a function or method is used, but static variables remem-
ber their value. So when you use a function again, it still remembers the value of any static variables.

) TRYIT

Available for
download on

Woveon' In this Try It, you improve the Case Study by adding autoloading of the classes. With only one class
this is not needed yet but you add more classes in the later lessons. Without autoloading you would
need to change the initialization for each class to include a require_once for the class file.

You also change the scope of appropriate properties and methods, adding needed getter methods in
the contact class.

@ You can download the code and resources for this Try It from the book’s web
page at viww .wrox .com. You can find them in the Lessonl$ folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 14.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Move the initial processing out of the index.php to a separate file to keep index.php less complex.

To autoload classes, use the magic method __autoload () that you used in the “Initializing the
Class” section. You need to add the path to where you put the classes in the Case Study.

Step-by-Step

Create a file called includes/init.php to put in all the initial processing including autoloading the
classes. Move the initialization code out of index.php.

1. Create a file includes/init.php with an initial PEHPDoc block comment:

<?php

/‘k‘k

* init.php

200 | LESSON15 USING ADVANCED TECHNIQUES

*

* Initialization file

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

Add the magic function for autoloading class files:
/ * *
* Auto load the class files
* @param string S$Sclass_name

*/
function _ _autoload($Sclass_name) {
require_once 'includes/classes/' . strtolower ($class_name) . '.php';}

Move the require_once for the functions file from the index.php file and paste it into the
includes/init.php file:

// include required files
require_once 'includes/functions.php';

Intheindex.phpfﬂe,Changetherequire_onceforthecontact.phpfﬂetotheinit.php.
The PHP section before the <DocTYPE> now looks like this:

<?php

/ * *

* index.php

*

* Main file
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
require_once 'includes/init.php';
?>

Change the contact class to use protected properties. Add the getter methods to return the values.

1.

In the includes/classes/contact.php file change all the properties to protected. They
should look like the following when you are done:
/* *
* First name
* @var string
*/
protected S$first_name;

/**
* Last Name
* @var String

Trylt | 201

*/
protected $last_name;

/**

* Position in the company.

* @var string
*/
protected S$position;

/**
* Email
* @var string
*/

protected S$Semail;

/**

* Phone number, formatted in string

* @var string
*/
protected S$phone;

2. Inthe includes/classes/contact.php file, add public methods to return each of the prop-
erties. Use the getProperty naming convention for the methods. Put the following code after

the __construct method:

/**

* Return First Name
* @return string

*/

public function getFirst_name()

return $this->first_name;

/**
* Return Last Name
* @return string

*/

public function getLast_name ()

return S$this->last_name;

/**
* Return Position

* @return string
*/

public function getPosition()

return $this->position;

/**
* Return Email
* @return string
*/
public function getEmail ()
return $this->email;

202 | LESSON15 USING ADVANCED TECHNIQUES

/* *
* Return Phone
* @return string
*/
public function getPhone() {
return $this->phone;

}

3. Inthecontent/about.phpfﬂe,Change$item—>position,$item—>email,and
$item->phone to use the getter methods. The name is already a function so it does not
change. The <1i> group should look like this:

<1li class="row<?php echo $i % 2; ?>">

<h2><?php echo $item->name(); ?></h2>

<p>Position: <?php echo $item->getPosition(); ?>

<?php echo Sitem->getEmail(); ?>

Phone: <?php echo $item->getPhone(); ?>
</p>
</1li>

4. Test your changes. Your About Us page should look just the same as it did in the previous
lesson. See Figure 15-7.

& 71,. :)/

mithside
Auctions

Home ‘ About Us | Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith
Position: none
martha@example.com
Phone:

George Smith
Position:

Email: george@example.com
Phone: 515-555-1236

Jeff Mevers

FIGURE 15-7

Watch the video for Lesson 15 on the DVD or watch online at www.wrox.com/
go/24phpmysql .

SECTION IV
Preventing Problems

» LESSON 16: Handling Errors

» LESSON 17: Writing Secure Code

You want a program that runs smoothly. To do that you need to minimize the errors that can
occur and handle gracefully errors that do happen.

In the first lesson in this section, you learn how to test for possible errors so that you can fix
the problem, bypass it, or gently inform the user. You learn how to set up PHP to monitor for
specific error conditions and react to them. In the second lesson, you learn how to secure your
code against malicious people.

16

Handling Errors

Errors come in different types and levels. The first type, which you likely have become very
familiar with, is programming errors. This is when you use a wrong syntax or do something
incorrectly in PHP. If you have display_errors set to on in your php. ini file, PHP is not
shy about letting you know there is a problem. You receive big orange warnings with a lot of
barely comprehensible stack information. These PHP errors have levels from minor notices
where the code still works, to warnings where there is an error but the code continues to run
after the error, to fatal errors where processing stops.

You should display all of these errors while you are developing, but not when
your program goes into production. You can have them posted to a log file
instead where you can see them if needed but they do not inconvenience your
user.

The next type is those errors that happen not because of intrinsic problems with your code,
but because of data and resources outside your code. For example, the variable you want to
divide by happens to be zero; the e-mail given by the user is not an e-mail address; the image
file you want to display is missing; or the database is not accessible.

You learn how to handle this second type of error in the first part of this lesson. You also learn
how to incorporate this in the standard error reporting of PHP. In the second part of this les-
son, you learn the new error processing techniques that PHP has added to use with objects.

TESTING FOR ERRORS

Testing for errors can be divided into two groups. One is to test for conditions that will pro-
duce the errors, so you can prevent them before they happen. The other is to test whether an
error has happened.

206 | LESSON16 HANDLING ERRORS

Here are conditions that could produce errors that you should check for:

> Variable types and values: Is the variable the type you expected and is the value within the
range you expected? Are you trying to use a foreach loop on a variable that isn’t an array or
an object? Are you trying to divide by 0? Does the variable contain the name of a valid file?

> Existence of a resource: Are you trying to include a file that doesn’t exist? Are you trying to
display an image that doesn’t exist? Does the parameter exist? Is the variable NULL or not set?

> Validity of user supplied data: Did the user fill in all the required inputs on the form? Did the
user inject malicious code? Did the user give you data that needs to be encoded before it can
be displayed in HTML?

PHP is a loosely typed programming language. A variable can switch between containing text or
numbers. PHP automatically converts text to numbers, if it can, if the calculation requires numbers.
It uses numbers as text if the operation calls for text. You were introduced to this in Lesson 6.

In the following example, $a has a value of 2
and a type of string. $b has a value of 3 and

a type of integer. When you multiply them
together, PHP converts $a to a type of integer
because 2 is a valid integer. The result of the cal- | **
culation is 6. PHP does not change the type of
the variable; it just converts it while it uses it in
the calculation. See Figure 16-1. FIGURE 16-1

6

string '2' (length=1)

<?php

$a = '2';
$b = 3;
echo $a * $b;
var_dump ($a) ;
var_dump ($b) ;

This works even if both of the variables are string. Change the assignment to $b = '3'; and you get the
same result. In fact, change that same assignment to sb = '3xyz'; and you still get the answer 6. PHP
sees the 3, converts that, and ignores the rest. However, if you change the assignment to $b = 'xyz3';,
PHP uses 0 for the variable and the result is 0. It is hard to predict how a string with mixed numbers
and letters will convert.

Although it is convenient that PHP automatically converts the type for you, it can make it more
difficult to know if you have the right type of data for a particular situation. PHP has built-in func-
tions that enable you to check for variable types or for certain values in the variable. The PHP
function is_numeric () checks whether a variable is a number (2) or a valid numeric string ('2'). If
it is either, then it returns true. You saw this function in use in the temperature converter. If the vari-
able is a number, it is formatted. If it is not a number, a 0 is returned.

function formatDeg ($number) {

if (is_numeric ($Snumber)) {
return number_format ($Snumber, 1) . '°';
} else {

return 0 . '°';

}

Testing for Errors | 207

Table 16-1 lists other common functions for verifying types and values in variables.

TABLE 16-1: Checking Variable Values and Types

FUNCTION

is_numeric ()

ctype_digit ()

is_bool ()
is_null ()
is_float ()
is_double ()
is_int ()

is_string()

DESCRIPTION

True if number or numeric string

True if all digits are numeric characters
True if variable is a Boolean

True if variable is NULL

True if variable type is a float

True if variable type is a double

True if variable type is integer

True if variable type is string

is_object () True if variable is an object

is_array () True if variable is an array

You should check that a variable is not 0 before attempting to divide by it. The following example
shows different ways of checking for the condition as well as different variable values that PHP

would convert to 0. See Figure 16-2.

<?php Cannot divide by 0.
Sb = 3; Cannot divide by 0.
$c = 0; Cannot divide by 0.
sd = '0'; Cannot divide by 0.
Se = 'xyz3';
if ($c !'=0) {

echo $b/sc '
';

sb/s FIGURE 16-2

} else {

echo 'Cannot divide by 0.
';
}
echo ($c != 0) ? $b/Sc
echo ($d != 0) ? $b/$d :
echo ($e != 0) ? Sb/Se

'Cannot divide by 0.
';
'Cannot divide by 0.
';
'Cannot divide by 0.
';

You can handle errors in different ways. Here you just displayed a message to the user. In the
converter example, you took steps in the program to handle the error so that the user never saw it.
Another option is to use the PHP error reporting system. Rather than just displaying a message, you

use the trigger_error () function. This is the syntax:

trigger_error (Serror_msg, Serror_level);

This posts your error as using the same system that PHP uses. If you have display_errors on, the
user sees the error message. If you are logging errors, it is logged. You can use the E_USER_NOTICE
level to post informational notices that do not affect the processing, E_USER_WARNING level for
errors that allow processing to continue, or E_USER_ERROR to stop the processing. If you do not

208 | LESSON16 HANDLING ERRORS

specify a level when you create the message, the level defaults to E_USER_NOTICE. Remember that it

is good practice to display errors only while testing so this would be more useful for logging.
See Figure 16-3.

<?php
$b = 3;
$c = 0;
$d = '0';
Se = 'xyz3';
if ($c !'=0) {
echo $b/$c . '
';
} else {
trigger_error ('The value of $c is ' $c .'. You cannot divide by it ',
E_USER_NOTICE) ;
}
if (sd !'= 0) {
echo $b/$d . '
';
} else {
trigger_error ('The value of $d is ' $d .'. You cannot divide by it ',
E_USER_WARNING) ;
}
if (se !=0) {
echo $b/$e . '
';
} else {
trigger_error ('The value of $Se is ' Se .'. You cannot divide by it ',

E_USER_ERROR) ;

}
echo 'You will never see this because E_USER_ERROR stops the program';
|Time Function Location
1 0.0005 327588 {main}() /lesson16h.php:0
2 0.0005 328064 trigger error () ./lesson16h.php:9
|Time Function Location
1 0.0005 327588|{main}() ./lesson16h.php:0
2 0.0007 328144|Irigget error () ../lesson16h.php:15

|Time VI 'y Function Location
1 0.0005 327588|{main}() ./lesson16h.php:0
2 0.0008 328148|m'gger error) ./lesson16h.php:21

FIGURE 16-3

Testing for Errors | 209

You can create a custom class for handling errors so all errors, including PHP errors, are processed
by your custom class. You could make that class user-friendly enough that you would use it for dis-
playing errors to the user during production. However, that is beyond the scope of this book.

Sometimes it is not the value that you are concerned about but whether the item exists. To see if
a variable exists, use the isset () function. This example prints the variables if they exist. See
Figure 16-4.

<?php $b equals 3
$h = 3; $c equals 0
$c = 0;

if (isset(S$a)) {
echo 'Sa equals ' . $a . '
';
}
if (isset(S$b)) {
echo 'Sb equals ' . $b . '
';
}
if (isset(S$c)) {
echo 'Sc equals ' . $c . '
';

}

FIGURE 16-4

To find out if a file exists, you use either file_exists() or is_file(). file_exists() looks

for either a directory or a file. is_file() is faster and works better if you are working with
relative paths but fails on very large files. It only locates files. Use is_dir () as the alternative for
directories. The following example checks for the existence of the image before trying to display it.
See Figure 16-5.

<?php
Sname = "Sally Meyers";
$phone = "515-555-1222";
Simage = "sally-meyers-t.jpg"
?>
<html>
<head> Sally Meyers : 515-555-1222
<title>Contact</title>
</head> FIGURE 16-5
<body>
<p>
<?php 1f (file_exists(S$image)) : ?>

<img src="<?php echo $image; ?>" />
<?php endif; 72>
<?php echo $name; ?>
<?php echo $phone; ?>
</p>

</body>
</html>

210

LESSON 16 HANDLING ERRORS

FILE SYSTEM PATH VERSUS URL

When dealing with files and folders, you need to remember when you are giving
the location based on where it is in the folder and file structure on the computer or
servers (file system path), or when based on the URL. Some functions are looking
for the URL and others for the file system path. If your website does not start at
your web root the relative paths are different.

You should check all data that is coming from users or gets or posts for validity or sanitize it. As
a reminder, checking for validity means to see if a value meets certain parameters and sanitizing
means to automatically make changes to values to render them harmless or in a proper state. See
Lesson 6 for more information.

Check the data from users as early as possible in the processing so that you can try to get the proper
data before you have done anything that cannot be undone. For instance, if you have required fields,
check that you have data for those fields while you can still go back to the user for more informa-
tion. Be specific about what the customer has to do differently when you display an error message
for the user so that he has an easier time fixing it. Some people suggest that you be very non-specific
to users about errors over which the user has no control. However, this can make it difficult to track
down bugs. You may want the message language to be non-specific but have an error number that
identifies the actual problem.

USING TRY/CATCH

With the proliferation of object-oriented abilities in PHP 5, a new type of error handling has been
introduced. Most of PHP’s internal errors still use the old system, but its object-oriented expressions
have started using try/catch and the Exception class to handle errors.

This new system has four parts: try, throw, catch, and the Exception class. The try/catch has a
syntax similar to the if/else. Your main code goes in the try block, where you throw an error if
you find one. It is then caught in the catch block where you handle the error.

<?php
try {
// your code goes here that might have an error
// when you find an error you throw an exception
// by creating an object in Exception class,
// passing it the error message
throw new Exception('Divide by Zero');
} catch (Exception Se) {
// Here's where you handle the error
echo 'Found an error:', Se->getMessage();

Trylt | 21

Here is an example where you check to see if the number you are going to divide by is 0. If it is 0,
you throw an Exception with the message “Divide by Zero”. See Figure 16-6.

<?php
$b = 3; Found an error: Divide by Zero
$c = 0;

And then the code continues.
try {

if ($c !'= 0) {
echo $b/$c . '
';
} else {
throw new Exception('Divide by FIGURE 16-6
Zero');
}
} catch (Exception Se) {
echo 'Found an error: ', S$Se->getMessage();
}

echo '<p>And then the code continues.</p>';

You throw only objects and the object must be the Exception class or a subclass that you have

extended from the Exception class. If you throw an object, be sure that it will be caught or you will
get an error.

HTRYIT

Available for
download on

Woeom' In this Try It, you add error checking to the Case Study. You check for the existence of images files
in the display of the gents lots before displaying them.

You add a try/catch block around the autoloading of classes.

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lessonl6 folder in the down-
load. You find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

212 | LESSON16 HANDLING ERRORS

If you are following along with the Case Study, you need your files from the end of Lesson 15.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints

You can use either is_file() or file exists () to check for the existence of a file.

Try/catch only works with autoloading if you are using at least PHP 5.3. If you are still on PHP
5.2, substitute with a check for the existence of the file and a trigger_error ().

Step-by-Step
Check for the existence of the image files before trying to display them in the content/gents.php file.

1. Decide what to do if you have no image files. You want something to display as a thumbnail
because it is part of the design. So if you do not have a good thumbnail, you use a place-
holder photo that exists in the thumbnail folder. You could check to see if that exists each
time, but because that is unlikely on a production system and the result of a missing image is
not catastrophic, assume your placeholder image exists.

The larger image is a link from the thumbnail. If there is no larger image, show the thumb-
nail with no link.

2. Open content/gents.php.

3. Create variables to hold the calculated paths. If there is no thumbnail, replace it with the
nophoto.jpg. Add the following code immediately following <div class="list-photo">:

<?php // Set up the images

Simage = 'images/'. S$lot['image'];
Simage_t = 'images/thumbnails/'. $lot['image'];
if (!is_file($image_t))

S$image_t = 'images/thumbnails/nophoto.jpg’;
endif;

4. Addan if statement to see if the larger image file exists. You can use either the is_file()
or file_exists (). Get out of PHP at the end because you are going back to HTML.

if (is_file($image))
?>
5. Change the <a> tag and tag to reference the $image and $image_t variables:

<a href="<?php echo S$image; ?>">
<img src="<?php echo Simage t; ?>" alt="" />

6. Display just the thumbnail if the larger image did not exist:

<?php else : ?>
<img src="<?php echo $image_t; ?>" alt="" />
<?php endif; ?>

Trylt | 213

Your results should look the same as they did in the previous lesson. See Figure 16-7.

Gents

Sporting

‘Women

\éuctiqns

Home ‘ About Us | Lot Categories

Product Category: Gents

& -,

Naval Officer's Formal Tailcoat, 1840s

Black wool broadcloth, double breast front, missing 3 of 18 raised
round gold buttons w/cressed cannon barrels & "Ordnance Corps"
text, silver sequin & tinsel embroidered emblem on each square cut
tail, quilted black silk lining, very good;

Lot: #1 Price: $19.95
Striped Cotton Tailcoat, America, 1835-1845

Orange and white pin-striped twill cotton, double breasted, turn down
collar, waist seam, self-fabric buttons, inside single button pockets in
each tail, (soiled, faded, cuff edges frayed) good.

Lot: #2 Price: $20,700.00

Black Broadcloth Tailcoat, 1830-1845

Fine thin wool broadcloth, double breasted, notched collar, horizontal

FIGURE 16-7

7. To see what it looks like if there is no photo, temporarily change one of the filenames, such
as the following. Your results should look similar to Figure 16-8.

Gents

Sporting

‘Women

$lots[1]['image'] = "gents-striped-8-26XXX.Jjpg";

Auctions, |

Home ‘ About Us | Lot Categories

Product Category: Gents

FIGURE 16-8

Naval Officer's Formal Tailcoat, 1840s

Black wool broadcloth, double breast front, missing 3 of 18 raised
round gold buttons w/crossed cannon barrels & "Ordnance Corps"
text, silver sequin & tinsel embroidered emblem on each square cut
tail, quilted black silk lining, very good;

Lot: #1 Price: $19.95

Striped Cotton Tailcoat, America, 1835-1845

Orange and white pin-striped twill cotton, double breasted, turn down
collar, waist seam, self-fabric buttons, inside single button pockets in
each tail, (soiled, faded, cuff edges frayed) good.

Lot: #2 Price: $20,700.00

Black Broadcloth Tailcoat, 1830-1845

Fine thin wool broadcloth, double breasted, notched collar, horizontal

8. Change the filename back to the correct name.

214 | LESSON16 HANDLING ERRORS

Add a try/catch block to the autoloading of the classes. Note: If you are not running at least
PHP 5.3, leave off the try/catch structure and use a trigger_error () function instead of
throwing an error.

1. Open the includes/init.php file.

2. Add the try/catch structure around the require_once statement in the __autoload ()

function:
try {
require_once 'includes/classes/' . strtolower($Sclass_name) . '.php';
} catch (Exception Se) {
echo 'Exception caught: ', $e->getMessage(), "\n";

}

3. Add a check to see if the file exists around the require_once. Because there are a lot of cal-
culations to get the filename, assign it to a variable first:

Sclass_file = 'includes/classes/' . strtolower ($class_name) . '.php';
if (is_file($class_file)) {

require_once S$class_file;
}

4. Addan else to the if statement to throw an error if the file was not found:

} else {
throw new Exception("Unable to load class $class_name in file $class_

5. The completed __autoload() function should look like this:

function __autoload($class_name) {
try {
Sclass_file = 'includes/classes/' . strtolower ($Sclass_name) . '.php';
if (is_file($class_file)) {
require_once S$class_file;
} else {
throw new Exception("Unable to load class S$class_name in file Sclass_
file.");
}
} catch (Exception Se) {
echo 'Exception caught: ', $e->getMessage(), "\n";

}

6. To test it, go to the About Us page. It should look similar to Figure 16-9 and contain
no errors.

Trylt | 215

ﬂ. :),,

Sn‘ﬁith'side
AUctions

Home ‘ About Us | Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith

Position: none
martha@example.com

FIGURE 16-9

7.
should look similar to Figure 16-10.

$class_file = 'includes/classesXXX/' strtolower ($class_name)

o g

it :
~Auctions

Home ‘ About Us | Lot Categories

Exception caught: Unable to load class Contact in file includes/classesx/contact.php.
Fatal error: Class "Contact’ not found in /Users/andytarr/Documents

/php24/wphp24/php24/lesson16code/lesson16esfinal/content/about.php on
line 75

Call Stack
#Time Memory Function
1 0.0004 327880 {main}()

2 0.0011 336448 loadContent()

Location
../index.php:0
../index.php:50

include('/Users/andytarr/Documents/php24
3 0.0014 350772 /wphp24/php24/lesson16code

../functions.php:17
/lesson16csfinal/content/about.php')

FIGURE 16-10

8. Change your path back to the correct path.

To see what an error looks like, temporarily change the path to an invalid path. Your results

".php';

Watch the video for Lesson 16 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl .

17

Writing Secure Code

One of the most important things you can learn about PHP and MySQL is how to prevent
your code from being an easy target to those who are malicious. There is no way to make your
code completely hack-proof, but you can go a long way to securing it by following certain
practices. This is not an exhaustive lesson in all the ways that a hacker can get into your site,
but it is the equivalent of keeping your car safe by removing your keys and locking your doors.

You might think that the chance of your site being hacked is slight, but remember that hackers
can find your site and its vulnerabilities the same way that Google scans your site for search
indexes.

In the first section of this lesson you learn what is meant by three common threats: cross-site
scripting, cross-site request forgery, and SQL injection. You learn proper coding habits in the
second part, which mitigate those and other threats.

UNDERSTANDING COMMON THREATS

Cross-site scripting (XSS), a type of code injection, embeds malicious code inside innocent
code that is later output; for instance, when a user enters a search term it is usually dis-
played on the screen with the results. If, instead of an innocent word, the data entered were
JavaScript, that code would be run when the search term was output to the screen. Hackers
can install programs that track your keystrokes and track where you go.

Cross-site request forgeries (CSRF, XSRF) work by allowing an attacker to hijack a user’s ses-
sion so that the hacker can use an authenticated user’s authority or identity. Requests from the
attacker look like they are legitimate responses from forms on your website. The attacker is
able to do such things as post comments as a different person, transfer funds to another per-
son’s account, or do a distributed password-guessing attack. Attackers can alter your website
to trick your users into linking to their site where the hacker can then have control.

SQL Injections are where a hacker injects his own code to alter your database queries, enabling
him to access, alter, or even destroy your database. The dynamic power of the PHP/MySQL
combination is using PHP variables and expressions when creating queries and updates to the

218 | LESSON17 WRITING SECURE CODE

database. If you use input directly from a user in creating those queries, a malicious user can effec-
tively change your innocent queries into different queries that give him direct access to your database.
You learn more specifics about preventing this type of attack starting in the next lesson.

USING PROPER CODING TECHNIQUES

The first rule of writing secure code is to never trust your users. They will give you data you do not
expect, either intentionally or unintentionally. You need to check all data that a user submits or
could intercept. This includes information from forms or data from POSTs, GETs, or cookies. You
should check variables for the proper type of data, for malicious data, and for any character substi-
tutions required, such as changing & to samp; before displaying in HTML.

You already know several ways of sanitizing your data, such as these:

<?php

SmyVar = htmlspecialchars (SmyInput); // Lesson 4

SmyVar = filter var ($myInput, FILTER_SANITIZE_STRING); // Lesson 6

SmyVar = filter_input (INPUT_GET, S$where, FILTER_SANITIZE_STRING); // Lesson 10
$myVar = (int) S$myInput; // Lesson 11

When displaying any user output to the browser, use htmlspecialchars () if you have not veri-
fied that it is an integer. Before saving any data to a database you need to escape it properly for that
database. With MySQL you use mysql_real_escape_string, which you learn in Lesson 22.

When given an option of using quotes or not, use quotes because it makes it more difficult for a
hacker to break out. You still need to sanitize the variable. Here is a case where using valid XHTML
makes your code more secure. Take, for instance, the following insecure code:

<?php SmyClass = $_GET['class']; ?>
<div class=<?php echo $myClass; ?>>Text goes here</div>

Call that code with ?class=red at the end of the URL and your source code evaluates to <div
class=red>Text goes here</div>. However, if you call the code with ?class=g>BAD STUFF
HERE </b, you see results similar to Figure 17-1.

BAD STUFF HERE Text goes here

FIGURE 171

If you enclose the class with quotes, which is the valid method in XHTML, your results look like
Figure 17-2.

<?php S$myClass = $_GET['class']; ?>
<div class="<?php echo $myClass; ?>">Text goes here</div>

Text goes here

FIGURE 17-2

Using Proper Coding Techniques | 219

You should also sanitize any input coming from your GET so your final code will look like this:

<?php $myClass = filter_ input (INPUT GET, 'class', FILTER SANITIZE STRING); °?>
<div class="<?php echo $myClass; ?>">Text goes here</div>

If you validate forms using a client-side validation such as JavaScript, always back it up with server-
side validation such as PHP. Using JavaScript enables you to create a better user experience, but it
is easier to bypass than server-side validations or could be turned off, so using a combination is the
better solution.

How your PHP is set up is important for security. Global variables should be off in php.ini. On
a production site, turn off display_errors. You can do this via php. ini for the whole site or use
.htaccess if you are using a site for both production and development.

Initialize your variables if you are not setting the variable in all cases. Do not assume they start
empty because users can add variable assignments to URLs.

<?php

$myvar = '';

if ($someCondition) {
SmyVar = '1';

}

Do not include a file directly from a get request. Use a two-step process. First verify that there is no
invalid data in the name itself using filter_input or filter_var. Then you need to verify that the
file is one of your files and not from some remote site. You can do this by checking against a list of
valid files or only displaying files from valid folders. An example is the loadContent function in the
Case Study:

function loadContent ($where, S$default='"') {
Scontent = filter_input (INPUT_GET, Swhere, FILTER_SANITIZE_STRING) ;
S$default = filter_var ($default, FILTER_SANITIZE_STRING) ;
Scontent = (empty($content)) ? S$default : Scontent;
if (Scontent) {
Shtml = include 'content/'.S$Scontent.'.php';
return Shtml;

}

Do not let users list your file directories. There are ways to prevent this with the .htaccess file,
but if your program is run where you do not have control of the .htaccess file you should take
measures yourself. The easiest way to do that is to create a skeleton index.html file and add it
to each of your folders that does not have an index.php file. A typical index.html file contains
this code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title></title>

</head>

<body>

</body>

</html>

220

| LESSON17 WRITING SECURE CODE

To prevent cross-site request forgeries when using forms, use randomly generated tokens on the form
and verify those tokens when you use the data.

In the following example, a token is generated on the form. That token is then passed to both the
session and to the form as a hidden value. Remember that hidden just means that it does not display
on the form page. If the form uses the GET method, the hidden field is displayed in the URL.

A session is used for storing data such as gets, posts, and cookies. The session file is stored on the
server, not in the user’s browser, so is not generally viewable by the user. A cookie holds a session
ID that is used to link to the session file. A session lasts until you destroy it or your user closes her
browser.

To start a session or access an existing session, put this code at the very beginning of your program:

<?php session_start(); ?>

On your form, create a random value. For security, you want to salt that value. To salt a value is to
add an additional piece to it that makes it more difficult to decode. There are many ways of creating
salts. You can use a randomly created salt or put a salt constant in a configuration file. Randomly
generated salts are the safest if you are using a salt with a password. This token is created by choos-
ing a random number between 1 and 1,000,000 that is concatenated to the $salt value. That is
then encrypted as a shal () hash:

<?php S$token = shal (mt_rand(1,1000000) . S$salt); 2>

$token is assigned to both a session variable ' token' and a hidden input in the form:

<?php $_SESSION|['token'] = S$Stoken; ?>
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>

In the program that reads your form values, start the session and compare the session value with the
POST/GET value. If the token parameter is not set in either the POST or the SESSION or if it is empty
or if they do not match then do not trust the input.

<?php
session_start();
if (!isset ($_POST['token'])

|| !isset ($_SESSION|['token'])
|| empty ($_POST['token'])
||

$S_POST['token'] !== $_SESSION['token']) {
die('Bad token'];
} else {

S$name = filter_ input (INPUT_POST, 'name', FILTER_SANITIZE_STRING) ;
unset ($_SESSION|['token']) ;
}

For the best user experience, you want to control how you end a program. However, when dealing
with security, it is sometimes better just to get out of the program entirely if you detect an insecu-
rity. In these cases, the die () function ends the program immediately and optionally displays a mes-
sage to a user. You may also want to be wary of how much information you give a user at this point
because the user could use that information maliciously.

An additional security precaution against CSRF is to add a confirmation page and to check that
both the original request and the confirmation page are processed.

Trylt | 221

) TRYIT

Available for
download on
Wrox.com

In this Try It, you add an additional security feature to the Case Study. You have been using some
security features already, such as sanitizing data from forms. Here you add index.html files to the
folders in the Case Study. This prevents attackers from seeing your folders and files if they enter a
folder name in the URL.

For the second part of the Try It, you create a form with a generated token and check for the valid
token before processing the form.

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lessonl7 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 16.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Don’t forget to add the index.html file to subfolders.

You don’t need an index.html file in your root directory because you already have the index.php
file there instead. Depending on your server setup, an index.html file might be displayed instead of
your index.php file.

When you use sessions, you need to do a session_start () at the very beginning of any file where
y 5 Y Yy beg g Yy
you want to use the session variables.

Step-by-Step

Prevent users from seeing your folders and files.

1. Create a file called index.html that displays a blank screen using the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

222 | LESSON17 WRITING SECURE CODE

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title></title>

</head>

<body>

</body>

</html>

2. Add a copy of that file to the following folders. The only folder that doesn’t need an
index.html file is the root folder, which already has the index.php file.

> content

css

images
images/thumbnails

includes

Y VYV Y Y Y

includes/classes

Create a form and then add a generated token to verify the form before processing in order to pre-
vent CSFR.

1. Create a standard HTML input form called exercisel7a.php that asks for a name
input. The form action is exercisel7b.php and the method is post. The results look
like Figure 17-3.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Test Form</title>
</head>
<body>

<form action="exercisel7b.php" method="post">

<fieldset>

<legend>Test Form</legend>

<p><label for="name">Name</label>

<input type="text" name="name" id="name" />

</p>

<p><input type="submit" name="testform" value="Submit" /></p>
</fieldset>

</form>
</body>
</html>

2. Create the file exercise17b.php that processes the form and then displays the name. Run
exercisel7a.php, enter a name, and submit. Your results should look similar to Figure 17-4.
<?php

Sname = filter_ input (INPUT_POST, 'name', FILTER_SANITIZE_STRING) ;
?>

Trylt | 223

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Test Form</title>
</head>
<body>

<p>My name is <?php echo S$name; ?></p>

</body>
</html>

Test Form

Name | Andy

P T ¥
| Submit)

FIGURE 17-3

My name is Andy

FIGURE 17-4

Now that you have a form that works, you can add the CSFR prevention features to it. At
the very beginning of exercisel7a.php, start a session:

<?php session_start(); ?>
Create a token just before the </ fieldset>:

<?php
$salt = 'SomeSalt';
Stoken = shal (mt_rand(1,1000000) . $salt);

Add that token to the session and to a hidden input:

$_SESSION|['token'] = S$token;
?>
<input type='hidden' name='token' value='<?php echo $token; ?>'/>

In exercisel7b.php, start a session at the very beginning of the file:

<?php
session_start();

Initialize $message to nothing and $badToken to true:

Smessage = '';
SbadToken = true;

Check to see if the token parameter is missing in either the POST or the SESSION, if the
token value is empty, and if the tokens from the POST and the SESSION are not equal. If any

224 | LESSON17 WRITING SECURE CODE

10.
1".

of those conditions exist, set the “bad token” message; otherwise set $badToken to false and
set up the $name variable. Unset the session token so that it cannot be used again.

if (!isset ($_POST['token'])
|| 'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Smessage = 'Sorry, go back and try again. There was a security issue.'
SbadToken = true;
} else {

SbadToken = false;
Sname = filter_ input (INPUT_POST, 'name', FILTER_SANITIZE_STRING) ;

unset ($_SESSION['token']);
}
?>

Change the output so that it displays the name only if there is a good token:

<?php 1f (!S$badToken) : 2>

<p>My name 1is <?php echo S$name; ?></p>
<?php else : ?>

<p><?php echo $message; ?></p>
<?php endif ?>

Run exercisel7a.php and your results should look the same as before.

To test what happens if a bad token is found, temporarily change the session in exercisel7a
.php. To do that, change $_SESSTON['token'] = $token; to $_SESSION['token'] =
112345 ; and rerun exercisel7a.php. Your results should look similar to Figure 17-5.

Sorry, go back and try again. There was a security issue.

FIGURE 17-5

Watch the video for Lesson 17 on the DVD or watch online at www.wrox.com/
go/24phpmysql .

SECTION V
Using a Database

>

>

Variables in PHP hold information, but only for the length of the program. You can fill'in a
form to get information, but you need to store it somewhere. You need a place to hold your
data that is still there after the program ends. This section introduces you to what databases
are and how to design a database. You learn how to create a MySQL database, how to set up
the appropriate tables, and how to use the MySQL scripting language within PHP to create,

LESSON 18: Introducing Databases

LESSON 19: Introducing MySQL

LESSON 20: Creating and Connecting to the Database
LESSON 21: Creating Tables

LESSON 22: Entering Data

LESSON 23: Selecting Data

LESSON 24: Using Multiple Tables

LESSON 25: Changing Data

LESSON 26: Deleting Data

LESSON 27: Preventing Database Security Issues

update, query, and delete information.

18

Introducing Databases

In this lesson you learn about databases, what they are, how to figure out what to put in them,
and how to organize them so that you can retrieve the information you need when you need it.
Most of the information is true for most databases, but the information covered is in the
context of the relational database system MySQL.

WHAT IS A DATABASE?

Databases have terminology all their own. Several terms are also used interchangeably:

>

Database: A database is an organized collection of data. In MySQL you often create
separate databases for each of your projects.

Table: A table is a collection of similar information. In MySQL you might have a
Customers table that contains data about your customers, a Products table that has
data about your products, an Order Headers table that contains header and totals
about your orders, and an Order Details table that contains the line items on the orders.

Row: Inside a table, you have rows. Each row is a related set of data. In the Customers
table, each customer is in a row.

Record: A record is another word for a row.

Column: Inside your table you also have columns. Columns are the types of informa-
tion you are storing in your table. For instance in the Customers table, name, street,
and city would all be columns.

Field: A field is another word for a column. Sometimes used to refer to a specific row’s
column.

Value: A value is what is in a given cell. In the Customers table, for instance, you
would have a row for George Smith where the value of the cell in the name column is
“George Smith.”

228 | LESSON18 INTRODUCING DATABASES

> Relationship: A relationship is a link between two tables. For instance, an Order Details table
would link to the Order Headers so that you can associate the line items with the correct order.

> Key: A key is a field, or fields, that link the tables. In the Order Details table you have an
order number field that matches an order number field in the Order Headers table. The order
number field is a key or key field.

> Index: An index is an internal system that a database system uses to locate information more
quickly. In MySQL you can specify that certain columns, usually keys, are indexes.

There are different types of databases. The simplest are flat files. A .csv file is a flat file as are . ini
files such as the php. ini file you may have had to configure in the first lesson. These are in a single
file, each row is a complete record, and there are no relationships. Hierarchical databases have
hierarchical relationships such as you see in the Windows Explorer folders and files lists. Relational
database management systems, such as MySQL, have multiple tables with dynamic relationships
that you define and a query language for extracting data in different formats and groupings without
having to reorganize the tables.

For your database to be successful, it needs to contain all the data that the business needs. It needs
to contain the business rules for processing the data and to protect the data security and integrity.
Your database also needs to be able to access the data effectively, yet be flexible enough to handle
exceptions and questions you didn’t think of when you first created the database. It should have the
ability to allow for growth and change.

Research, and a lot of trial and error, has gone into determining the most likely way to meet these
goals. The rest of this lesson shows you the best practices in designing your database.

GATHERING INFORMATION TO DEFINE YOUR DATABASE

Before you can design your tables, you need to gather certain information. This part is not techni-
cal. It is finding out about the business. You need to know the problem you are trying to solve and
the scope. You need to know the purpose and objectives of the database. You need to know the data
that has to be retained and what the database needs to do. Ideally, the client provides this informa-
tion for you, but if he doesn’t, you need to find it out.

Find out what you already have. What are people already using? Are there existing databases? What
do they contain? What are they missing? Are there spreadsheets that people are using? Forms?
Reports? These all give you a handle on the data that that needs to be in the database as well as the
type of data it is. MySQL has data types, just as PHP does, but they are more rigid so you need to
know what type of data you can expect.

If you have a chance, observing people gathering and working with the data is invaluable. It helps
answer the “What did you know and when did you know it?” question. You need to know if there
is a specific order when the users find out what certain data is or when they use the data, so you
should be familiar with the standard workflow of the data. For instance, if you find out there is a
vital required piece of data that is not known until late in the workflow, you know you won’t always
have access to it. You also need to understand the exceptions that can occur.

After you have all this information, you are ready to start designing your tables.

Setting Up Relationships between Tables | 229

DESIGNING YOUR TABLES

At this point you have analyzed your data needs. Now it is time to organize a list of the different data
pieces you have collected into tables and fields. The nouns (things) are likely to become tables. Adjectives
and aspects of a thing are likely to become fields. Data that can be calculated generally does not belong
in a database because you can create functions in PHP to do the calculations when they are needed.

Based on the information showing on the Case Study website, Table 18-1 shows you what a data-
base would look like to provide the information needed:

TABLE 18-1: Tables and Fields for the Case Study

TABLE FIELDS
Contacts First name, last name, position, e-mail, phone
Lots Category, lot name, description, image, lot

number, price

Categories Category, description, image

The next task is to determine the characteristics of each of the fields. For instance, which fields
are text fields and which are numeric fields? How long do your text fields need to be? Is there any
validation that you need? Which fields do you have to have information in from the start? MySQL
assigns data types to each field. In Lesson 21, you use the information about what type of data is
stored in each of the fields to assign specific data types to the fields when you create your tables.
You also use this information to set up business rules such as whether an email is required for all
contacts or whether a phone number is a formatted numeric field in the form xxx-xxx-xxxx or a
freeform text field. This is what the Contacts table could look like:

Table: Contacts

First name: Text, up to 50 characters long, required
Last name: Text, up to 50 characters long, required
Position: Text, up to 50 characters long

Email: Text, up to 255 characters long

Phone: Text, up to 20 characters long

SETTING UP RELATIONSHIPS BETWEEN TABLES

You link between tables by including in one table a field that identifies a record in another table. For
instance, in the Case Study, lots are assigned to a category. So in the Lots table you need a field that
matches a uniquely identifying field in the Categories table.

Those fields are called keys. The key in the Lots table is called a foreign key because it links to
something outside the table. This key in the Categories table is the primary key, which uniquely
identifies the category record. The primary key is often referred to as the id.

230 | LESSON18 INTRODUCING DATABASES

Requirements exist for determining what fields can be used as primary keys. These requirements are
not forced on you by the database, but if you do not follow them you will have trouble keeping your
database working correctly.

> Unique: The primary key must be unique. If it is not unique then you are not able to match
to a single record.

> Not null and not optional: There must always be something in the field.

Not changeable: There should be no reason you should need to change the field. If you use a
person’s name for the primary key and the person changes his name, then all the tables trying
to link with the old name won’t work.

> Should not violate security policies: In other words, do not use something as a key that needs
to be private, such as a Social Security number or a password.

Many database developers create a new field whose only purpose is to be the primary key. These are
called artificial keys. Integers are usually used because they are fast to process and do not take up
much room in the database. In MySQL, you learn how to create such keys with auto_increment.
Because these keys are arbitrary and divorced from the business logic, there is no need for them to
change. They can be assigned when the record is created, and they can be unique.

Not all foreign keys have to match to a primary key. They could match to a different field that also
identifies the record.

Relationships can be one-to-one (driver to driver’s license) or one-to-many (teacher to students) or
many-to-many (students to courses). The most common relationship between tables is a one-to-many
relationship. In a one-to-many relationship, one record in a table links to many records in a second
table. In the Case Study the link between the Categories table and the Lots table is a one-to-many.

When tables have a many-to-many relationship, the relationship can be defined with a separate
file that contains only the foreign keys. So if you allowed lots to be in multiple categories, your files
might look like this:

Table: Lots

Fields: Lot id, lot name, description, image, lot number, price
Table: Categories

Fields: Category id, category name, description, image

Table: Categories-Lots

Fields: Category id, Lot id

There would be multiple records in the Categories-Lots table; one for each category/lot combination
that exists.

INSTITUTING THE BUSINESS RULES

Business rules are policies that a business uses to make its business run smoothly and profitably. There
are different ways of enforcing business rules. Some are enforced just in the way that you design your
database. The Case Study has a business rule that each lot needs to be in one and only one category.
By putting a foreign key in the Lots table to the Categories table, you are enforcing that rule.

Normalizing the Tables | 231

Data typing is another way to enforce business rules. If a business rule is that prices have to be
numeric, you set the data type for the price field to be numeric. Data types in MySQL can also
include lengths or sizes. If you have a business rule that no comment can be longer than 100 charac-
ters, you can specify that the field is no more than 100 in size.

Some database systems allow you to enforce other aspects of the data. MySQL enables you to force
certain fields to be unique or to not be empty. It also enables you to set a default value for fields.

You use validation files if you need to restrict a field to containing only specific values. An example
is if you want to restrict a State field to the two-character abbreviation of the state. Validation files
in MySQL are just like any other table. They can be a small table with one or two columns or they
can be a regular table, such as the Categories table.

Then, finally, you can use program validation in place of or in addition to database validation.
MySQL enforces the integrity of the database, but if you try to give it something invalid it gives you
an error message. Because you do not want error messages going to your user, you want to verify that
the data about to go into the database meets the criteria the database is looking for, and fix it first.

NORMALIZING THE TABLES

If you hang around with people dealing with databases, you might hear them talking about nor-
malization or about normalizing a database. Normalization is the reorganization of the database
so it meets certain design standards. Like the list of requirements for a primary key, these are rules
established so that the database ends up more usable. Normalization aims to design databases that
are more robust and that will be useful longer. It does this by designing for flexibility, so that you
can use the database for a variety of general queries and tasks rather than designing it so that it is
optimized for a single task but is unfit for handling future tasks.

Normalization reduces redundancy. Redundancy requires more storage space and introduces main-
tenance errors. If, instead of just having a key to the categories table in the Lots table, you had the
description in all the lots records, you would use more storage. Any time the description changed,
you would have to change it in each of the lots.

Normalization ensures that data that is independent in reality is independent in the database. If you
have the category description in the Lots table instead of in a separate Categories table, you have to
create a lot before you can have a category. If you delete all the lots in a particular category, you lose
that category altogether.

To normalize a database, you apply a series of rules to the tables and change them as necessary to
pass the rules. There is a balance to be maintained among flexibility, performance, and understand-
ability. There are six levels of normalization, but most databases use only the first three levels,
achieving what is called third normal form.

First normal form (1NF) states that a field must provide a fact about a key, that there can be no
repeating elements, and no multivalued elements. Take the following table:

Table: Lots

Fields: Lots id, lot name, description, image, lot number, price, category id1, category id2,
category id3

232 | LESSON18 INTRODUCING DATABASES

Category id1, category id2, and category id3 are repeating elements. They allow up to three
categories to be assigned to the Lots table. However, if the business rule changes and you now need
to assign a fourth category, you have to change the database and all the programs that use that
table. Instead use the many-to-many relationship file as shown earlier in this lesson.

Table: Lots
Fields: Lot id, lot name, description, image, lot number, price
Table: Categories
Fields: Category id, category title, description
Table: Categories-Lots
Fields: Category id, Lot id
Now if a fourth category is needed, there is no problem.

Second normal form (2NF) states that you need the whole key in order to retrieve the data. You
need to worry about second normal form only if you have a composite key, which is a key made up
of more than one field.

Third normal form (3NF) states that you cannot have any hidden dependencies and no duplicate
or calculated fields. Category description in the following table is a hidden dependency because it
depends on category id rather than lot id.

Table: Lots

Fields: Lot id, Lot name, description, image, lot number, price, category id, category
description

HTRYIT

Available for
download on
Wrox.com

In this Try It, you design the three database tables for the Case Study website, contacts, categories,
and lots. You use this design when you create the tables in Lesson 21. There is no coding for this
exercise, but you may want to display the Case Study to see the information that you need to store.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson18 folder in the
download.

Lesson Requirements

There is no coding in this Try It. If you use the figures in the “Step-by-Step” section, you don’t need
your computer. If you want to look at the Case Study on your computer, you have the following two
requirements:

Trylt | 233

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

If you are following along with the Case Study, you need your files from the end of Lesson 17.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

I used the Case Study tables as examples in this lesson.

Look at the About Us page, Lot Categories page, and the Display Lots pages to see the tables to be
created or look at the figures in the Try It.

The lots in the Gents, Sporting, and Women pages can all be in one table.

Step-by-Step

Look at the About Us page. Based on that, design the Contacts table, showing the fields and charac-
teristics. See Figure 18-1.

1. List the fields needed in the Contacts table, including an artificial key for the primary key:
Contact id, first name, last name, position, e-mail, phone.

2. Write down characteristics to each of the fields.

Table: Contacts

Contact id: Integer, positive number, required, primary key
First name: Text, up to 50 characters long, required

Last name: Text, up to 50 characters long, required
Position: Text, up to 50 characters long

E-mail: Text, up to 255 characters long

Phone: Text, up to 20 characters long

Look at the Lot Categories page. Based on that, design the Categories table, showing the fields and
characteristics. See Figure 18-2.

1. List the fields needed in the Categories table, including an artificial key for the primary
key: Category id, category name, category description, category image.

2. Write down the characteristics for each of the fields.

Table: Categories

Category id: Integer, positive number, required, primary key

234 | LESSON18 INTRODUCING DATABASES

Category name: Text, up to 50 characters long, required
Category Description: Text, up to 5 or 6 lines of text
Category Image: Text, up to 255 for the name of the file

Look at the Gents, Sporting, and Women pages. Based on that, design the lots table, showing the
fields and characteristics. See Figure 18-3, Figure 18-4, and Figure 18-5.

- 4 >

' Smlthzside
_ \AUCtIO_;ﬂS

Home | About Us ‘ Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

Martha Smith
Position: none
martha@example.com
Phone:

George Smith
Position: none
george@example.com
Phone: 515-555-1236
Jeff Meyers
Pasition: hip hop expert for shure
jeff@example.com
Phone:

Peter Meyers

Paosition: none
peter@example.com
Phone: 515-555-1237
Sally Smith
Position: none
sally@example.com
Phone: 515-555-1235
Sarah Finder

Position: Lost Soul
finder@a.com
Phone: 555-123-5555

© 2011 Smithside Auctions

FIGURE 18-1

Trylt | 235

Categories

© 2011 Smithside Auctions

'Sﬁﬁthgde

) AR

T

Auctions

Home ‘ About Us ‘ Lot Categories

Gents
Gents' clothing from the 18th century to modern times

Sporting

Sporting clothing and gear.

Women
Women's Clothing from the 18th century to modern times

FIGURE 18-2

© 2011 Smithside Auctions

o 5

- Shthade

Auctions

Home ‘ About Us ‘ Lot Categories

Geats Product Category: Gents
Sporting
‘Women Naval Officer's Formal Tailcoat, 1840s

Black wool broadcloth, double breast front, missing 3 of 18 raised
round gold buttons w/crossed cannon barrels & "Ordnance Corps"
text, silver sequin & tinsel embroidered emblem on each square cut
tail, quilted black silk lining, very good;

Lot: #1 Price: $19.95

Striped Cotton Tailcoat, America, 1835-1845

Orange and white pin-striped twill cotton, double breasted, turn down
collar, waist seam, self-fabric buttons, inside single button pockets in
each tail, (soiled, faded, cuff edges frayed) good.

Lot: #2 Price: $20,700.00

Black Broadcloth Tailcoat, 1830-1845

Fine thin wool broadcloth, double breasted, notched collar, horizontal
front and side waist seam, slim long sleeves with notched cuffs,
curved tails, black silk satin lining quilted in diamond pattern, padded
and quilted chest, black silk covered buttons, (buttons worn)
excellent.

Lot: #3 Price: $3,450.00

FIGURE 18-3

236 | LESSON18 INTRODUCING DATABASES

Auctions

Home ‘ About Us ‘ Lot Categories

Gents Product Category: Sporting

Ladies Bathing Costume, Shoes & Floats, C. 1900
Marine blue lightweight wool, white sailor collar & trim, button-on skirt,
labeled "Arnold Constable & Co. New York", B 34", W 25", L 40"; 1
pair black cotton knit thigh-high canvas sole bathing shoes & set of
"Aybad's Water Wings Patented May 7, 1901", excellent.

Lot: #4 Price: $510.00

Colorful Striped Wool Bathing Suit, C. 1910

Gent's 1-piece machine knit suit in red, green, black & cream, 3
buttons each shoulder, DLM, Ch 35", W 32.5", L 43", (minor mends, 1
dime size hole in back) good.

Lot: #5 Price: $1,380.00

Frontier Beaded Jacket & Chaps, C. 1920

Caramel deerskin leather w/ large glass beads in green & white,
Jacket: Chest 42", W 39", L 34", Chap's inseam 29", prob. made by
Mohawks for Wild West shows or as fraternal costume for Improved
Order of Red Men, (leather dry, bead loss) good.

Lot: #6 Price: $258.75

© 2011 Smithside Auctions

FIGURE 18-4

&
) AR

o) g
Y LA ¢
2

Auctions

Home ‘ About Us ‘ Lot Categories

Gents Product Category: Women
Sporting
‘Women Printed & Voided Velvet Evening Gown, 1850s

Chocolate brown silk faille with border design of brown and cream
roses, uncut and voided velvet printed in shades of brown and cream,
full skirt in two tiers, back brass hook & eye closure, glazed linen
bodice lining, (seams at waistline weak, minor stains) excellent.
Lot: #7 Price: $13,800.00
Dior Couture Wool Cocktail Dress, 1948
Unlabeled black melton wool 3 piece ensemble, c/o tulip shape skirt
w/ projecting side panel, strapless bodice w/ built-in corset, &
face-framing off-the-shoulder shrug, B 36", W 27", H 42", center
front bodice L 9.75", skirt L 31", excellent.
Lot: #8 Price: $40,250.00
Pierre Cardin For Mia Farrow Dress, 1967
‘ Made exclusively for Mia Farrow in her first starring film role, 1968's

4

"A Dandy In Aspic", white wool woven in tiny honey-comb pattern,
graduated accordian pleats from collar to hem, circular padded roll
collar w/ CF snap, white China silk lining. excellent.

Lot: #9 Price: $19,550.00

© 2011 Smithside Auctions

FIGURE 18-5

Trylt | 237

1. List the fields needed in the Lots table, including an artificial key for the primary key: Lot id,
lot name, description, image, lot number, price. Add a key to link to the Categories table.

2. Write down the characteristics to each of the fields.

Table: Lots

Lots id: Integer, positive number, required, primary key
Lot name: Text, up to 50 characters long, required
Description: Text, up to 5 or 6 lines of text

Image: Text, up to 255 for the name of the file

Lot number: Integer, positive number

Price: Numeric, up to $100,000.00

Category id: Integer, positive number, link to categories table

Watch the video for Lesson 18 on the DV D or watch online at www.wrox . com/
go/24phpmysqgl .

19

Introducing MySQL

MySQL is a free open-source relational database management system. It’s pronounced either
as My S-Q-L or as My Sequel. It is a standard for many shared hosting services and is part of
the standard (L)AMP stack of Apache web server, MySQL database, and PHP scripting that
runs many of the Internet’s sites. Access to MySQL data is based on SQL, a query language
developed in the 1970s. Other SQL databases include Oracle (the current owner of MySQL),
PostgreSQL, MS SQL Server, and SQLite. Although all are based on SQL, differences exist in
the implementation, so the different databases and SQL commands are not interchangeable.

MySQL runs on many platforms including various Unix/Linux versions, Windows, and Mac
OS X. It can be used in many different programming languages, including PHP, Java, C#,
Visual Basic, ASP, and ColdFusion. Using MySQL in PHP is a combination of running the
MySQL statements and using special PHP functions written to interact with MySQL.

MySQL as shipped allows for manipulation at a command line and does not have a graphical
interface. The most widespread graphical interface is phpMyAdmin. Because it is generally the
interface that is available and because it displays the MySQL statements for the actions you
do, it is a good choice to use when learning MySQL.

In the first part of this lesson you learn your way around phpMyAdmin. As you create a data-
base and a table with phpMyAdmin, you get exposure to MySQL statements. In the second
part of this lesson you learn the basics of the SQL syntax as used by MySQL.

USING PHPMYADMIN

You installed phpMyAdmin in Lesson 1 as part of XAMPP. You run phpMyAdmin either by
going to http://localhost/xampp and clicking the phpMyAdmin link on the left as shown
in Figure 19-1, or by going directly to http://localhost/phpMyAdmin where you see a page
similar to Figure 19-2.

240 | LESSON19

INTRODUCING MYSQL

XAMPP
Nelcome|
Status
Security
Documentation
Components

Demos

CD Collection
Biorhythm
Guest Book
Instant Art
Flash Art
phpinfo()
Phone Book

Tools
phpMyAdmin
webalizer

©2002-2008
-..APACHE
FRIENDS...

Welcome to XAMPP for Mac OS X 1.7.3!

Congratulations:
You successfully installed XAMPP on this system!

Good luck,
Kristian Marcroft, Florian Pollini, Christian Speich & Team

After testing you may take a look at the examples below the test link.

XA M P P fO r M a c 0 S X English / Deutsch / Francals / Nederlands ; Polskl / Italiano s Norsk ; Espafiol f 30/

Portugués {Brasil) / B4

Now you can start using Apache and Co. Firstly you should try »Status« on the left navigation to make sure everything works fine.

If you want to start programming PHP or Perl (or whatever ;) please take a look at the XAMPP manual first and get more information
about your XAMPP installation.

FIGURE 19-1

phpliyAdinin

« information_schema (28)

Please select a database

»

&) Server: localhost

£ Language @:[English

B

@ Theme/ Style: [Original =2}
» Custom color: ﬁ
» Fontsize:[82% 3]

2D JiS0L ¥ Status Bl glEngines g3 ges &y Pr {1Export
Falmport
Actions MySQL
MySQL localhost &3 Server: Localhost via UNIX socket

& crmoren =

(Collation I (Create » User: mm@lncaihcsl

MySQL connection collation: MySQL charsel: UTF-8 Unicode [utf@)

Interface Web server

» Apache/2.2.14 (Unix) DAV/2 mod_ssl/2.2.14
OpenSSL/0.9.8| PHP/5.3.1 mod_perl/2.0.4
Perliv5.10.1

» MySQL client version: 5.1.44
» PHP extension: mysqli

phpMyAdmin
» Version information: 3.2.4
E) pocumentation
B wiki

&} official Homepage
» [Changelog] [Subversion] [Lists]

phpMyAdmin

@ The additional features for working with linked tables have been deactivated. To find out why click here.

= Open new phpMyAdmin window

FIGURE 19-2

Using phpMyAdmin | 241

If you did not install XAMPP and do not have php MyAdmin, you can freely
download it from www.phpmyadmin.net.

Creating Databases

On the left in Figure 19-2 is a list of your databases. If at any point you want to return to this
screen, click the icon that looks like a house just above the list. You likely have only one database
showing, information_schema. This is the database that contains all the information about the
MySQL databases on your server. You do not want to touch this.

There are several tabs across the top of the window. This list of tabs and what they refer to changes
depending on whether you are at the base level, as you are now, in a selected database, or in a
selected table.

At this level the only tab you are likely to use is called Privileges. This is where you add or remove
users or change passwords as you learned in Lesson 1. When you are working with MySQL in PHP,
you specify a single user for the program to use. You do not create a user for everyone who runs the
PHP program. In a production program it is more secure to use a user that has only the privileges
needed to run the program.

To create a new user, click on the Privileges tab. On the page that appears, find the Add a New User
link as shown in Figure 19-3 and click it.

&° Add a new User

FIGURE 19-3

Fill in the screen as shown in Figure 19-4. To match the sample code, use php24sql for the User
Name. Your Host is most likely 1ocalhost. To match the sample code, use haQverTest for the
Password and Re-type fields.

In the Global privileges section, check the following boxes in the Data section: SELECT, INSERT,
UPDATE, DELETE. This gives your user (that is, the program you run) the ability to update

the data in the database. Because you have not given the user any privileges in the Structure sec-
tion, he isn’t able to change the structure of your database. Because you haven’t given him any
privileges in the Administration section, he won’t be able to do any administrative tasks. This is
important because if a hacker is able to run code through your program, he is more limited in
what he can do.

Click the Go button to create this user.

@ This is the user you use when you need to connect to the database within your
program. This does not affect the user you use to run MySQL itself or when you
are in phpMyAdmin, so don’t change anything in your XAMPP configuration.

242

| LESSON19 INTRODUCING MYSQL

23 Server: localhost

(Databases f?SQL ¥fStatus [Z]Variables [{T|Charsets HIEngines giPrivileges _ YProcesses SuExport [Jilmport

¢ Add a new User

—Login Information

User name: | |se text field: [} php24sq|
Host: | | gcal 14 localhost !
Password: | Jse text field: & } ssessnse

Re-type:

Generate Password: (GCanerate)
S

—Datab for user
® None
() Create database with same name and grant all privileges
) Grant all privileges on wildcard name (username_%}

—Global privileges (Check All / Uncheck All)

Note: MySQL privilege names are expressed in English

Data —Structure—————— ~Administration Resource limits
™ sELECT (] CREATE (] cranT 3 3 =
Note: Seiting these options to 0 (zero} removes the limit.
INSERT] aLTER] suPER
vepatE [wpEX (] PROCESS MAX QUERIES PER HOUR 0
@ DELETE] prop] RELOAD
MAX UPDATES PER HOUR (
] FILE (| CREATE TEMPORARY TABLES] sHUTDOWN
(] sHOW VIEW] SHOW DATABASES S GELe i A b
[CREATE ROUTINE] LOCE TABLES MAX USER_CONNECTIONS
| ALTER ROUTINE | REFERENCES
O ExecuTe] REPLICATION CLIENT
(] CREATE VIEW] REPLICATION SLAVE
[EVENT | CREATE USER
[TRIGGER

T
e

FIGURE 19-4

Next, you need to create a database. To create a database you need to know two things: the name of
the database and the default character set and collation the database will use.

A character set is a list of the symbols and their internal representation. At its simplest, you can
think of a character set as the alphabet, numbers, and punctuation along with the encoding of those
characters. A collation is the set of rules for comparing and ordering those characters. The colla-
tion decides not only that A comes before B and 1 comes before 2, but whether or not A and a are
equivalent and whether letters come first or numbers.

Character sets can contain not just the characters used in English, but also characters for accented
characters used in other languages or the thousands of characters used in other systems of writing.
The early common character sets were limited in scope and although they work with English, they

Using phpMyAdmin | 243

cannot handle many of the world’s languages. Use a UTF-8 such as ut f8_general_ci collation to
allow for more languages.

The character set/collation is used only on text data. Fields that are numeric types have no character
sets or collations. You can also have text data that has no character set or collation. These are called
binary strings. An example of a binary string is a field that contains the bytes for an image.

MySQL is flexible with its use of character sets and collations. You can mix and match different
character sets and collations on the same server, the same database, and even within the same table.
Unless you know what you are doing, however, you can really get into trouble. If possible, use the
same character set and collation at all the levels.

Follow these steps as illustrated in Figure 19-5 to create a database called test.

&3 Server: localhost

phpliyAdmin »

i
E“E‘ BD s 71SGL #FStatus (£ Variables [{f[Charsets EEngi £2Privileges 4 Processes fiExport
e Import
ek IMp
« aa (40)
« albany (38) Actions MySaL
« arborfrom (11)
« capture (36) MySQL localhost &3 server: Localhost via UNIX socket
« capturetest (36) @ g Pl
1 erver version: 5.1.
: fgrﬁﬂat;; SCreals naw ————— » Protocol version: 10
s gnc;jmmla (38) % & e (Lreate) » User: root@localnost
+ information_schema - ST - -
« j15arbor (36) 7 MySQL connection collation: [utf8_generalci %] MySQL charset: UTF-8 Unicode (utfg)
+ j15sql (36)
« 15testcap (36) Interface Web server
« j1Baname (33) -
- icoderminer (39 & Lepiccr: flnaini '+ * CoenSSLI0 88 PHIA | o0 ber2 04
« j16elin (33) @t Theme / Style: [Original Perl/v5.10.1
. 1Sgrumpy (33) —— » MySQL client version: 5.1.44
= j1Ginstall (66) » Custom color: [Reset) PHP . i
« [16mark (33) — 3 extension: mysgli
« [16modal (33) - » Font size: [82% [+
« j18prior (33) phpMyAdmin
: }::g:::c;g)s] G} Version information: 3.2.4
* j16sample (33) Documentation
« j1Bsettings (33)
« j16svn (33) B wiki
: 1:}:?(533? 4t official Homepage
- j1Btest2 (33) » [Changelog] [Subversion] [Lists]
» j16test3 (33) h
« j16Btestd (33)
+ j16tests (33) php
« j16tests (33) (i) The additional features for working with linked tables have been deactivated. To find out why click here.
» j16test7 (33)
« |16test8 (33) = Open new phpMyAdmin window
+ j16tests (33)
« j16testa (35
i1Btasth }me v
FIGURE 19-5

1. Type test in the input box labeled Create New Database. (If you do not see that input box,
click the house icon to return to the Home page first.)

2. Click the down arrow in Collation and select utf8 general ci.

3. Click the Create button.

Your results should look similar to Figure 19-6.

244 | LESSON19 INTRODUCING MYSQL

m}_’]” Aelradn £ Server: localhost » [Database: test
= 5 Structure SQL ’'Search [©iQuery &iExport [Hilmport Operations Privileges EDro
@ i) i e Yy @=Exp ! I pe i) i) [X|Drop
«# Database test has been created.
Database CRENTE DATABASE "tma: DEFAULT CHARACTER SET uiff COLLATE uoff_genmral cij
o L [Edit] [Create PHP Code]
test (0}
No tables found in database. No tables found in database.
‘i3 Create new table on database test.
Name: Number of fields:
Go)
FIGURE 19-6

Defining Tables and Columns

You are now working in your test database and the list on the left in phpMyAdmin displays any
tables in the database, rather than a list of databases. Notice the breadcrumbs at the top of the
window. This helps you keep track of whether or not you are in a database. Later you see that it also
shows if you are in a particular table in the database.

There is a new set of tabs that are based on the actions you perform on a specific database. Just
beneath the tabs is a message. This message is either a success message or a specific error message.
The action that you just performed is displayed in the box below. What you see here is the actual
statement that you use on a command line to perform the same action. If you click the Create
PHP Code link, you see the same statement transformed into an assignment to a PHP variable by
adding the variable, double quotes around the statement, and a semicolon. Either version can be
easily copied with the standard keyboard shortcuts of Ctrl+A, Ctrl+C (on a PC) or Command+A,
Command+C (on a Mac).

If you click Create PHP Code and then try to return by clicking Without PHP
Code, the program tries to rerun your code. Use the back arrow for the browser
instead.

Using phpMyAdmin | 245

Next comes a list of the tables in this database. There are no tables yet, so you need to create
one now:

1.

Enter tablel as the name.

2. Enter 2 for the number of fields (columns) to create.
3. Click the Go button and a window similar to Figure 19-7 is presented.
ij'\/]i .! A J'J'Jjﬂ 3 Server: localhost » [Database: test » [Table: table1
Type @ CINT -+ INT 3+
Database 1
[test B ﬂ Length/Values
Default? ‘None | 3! “None [C]
test (0)
No tables found in database. Collation =] - = !
Attributes = =] - |
Null 2| ‘s
Index ki T W ™
e nCHEMENTIR. O
Comments
Table comments: Storage Engine: Collation:
[MyISAM]] 2]
PARTITION definition:
Save) Or Add 1 field(s) (Go
! It field type is "enum" or “set’, please enter the values using this format: 'a','b''c"...
@ If you ever need to put a backslash ("\") or a single quote (") amongst those values, precede it with a backslash (for example
xyz' or 'a\b’).
2 For default values, please enter just a single value, without backslash escaping or quotes, using this format: a
FIGURE 19-7

Fill in the field ID by giving it the name id, selecting PRIMARY from the Index drop-down,
and clicking the AUTO_INCREMENT checkbox. Selecting Primary for the index tells
MySQL that this is a main field that is used to identify records in the table. MySQL creates
an index for the field in order to retrieve the data more quickly. Flagging the field as auto_

increment means that MySQL automatically creates a unique sequential number in this field
when a record is added.

Fill in the field description by giving it the name description, changing the Type drop-down
to TEXT, and clicking the Null checkbox to allow nulls to exist. Allowing nulls to exist means
that the field is not required. Your window looks like Figure 19-8.

Click the Save button to add these two columns to table1 as shown in Figure 19-9.

246 | LESSON 19

INTRODUCING MYSQL

”M" Adlrnin o3 Server: localhost » G Database: test » Table: table1
Field id description
Type [INT) _TEXT 3
Database 1
test 2] Length/Values
Default? _None s _None K
test (0)
No tables found in database. Collation ([™ (%
Attributes (H 5
Null = ™
Index [PRIMARY % — =
“ a
‘Comments
Table comments: Collation:
[i ;i
PARTITION definition:
(Save)OrAdd 1 field(s) (Go)
! field type is "enum" or "set", please enter the values using this format: 'a',’b','c'...
@ If you ever need to put a backslash ("\") or a single quote (") amongst those values, precede it with a backslash (for example
xyz' or 'a\'b’).
2 For default values, please enter just a single value, without backslash escaping or quotes, using this format: a
FIGURE 19-8
”Mq Nidlrmin 23 Server: localhost » & Database: test » [Table: tabled
fEBrowse [¥Structure .J7SQL 'Search 3cinsert [EExport [fImport Operations JiEmpty [Drop
+# Table “tesf ."table1” has been created.
Database CREATE TABLE “test’. tablel
(test (1) 'ﬂ . " oir RoT L el g
| v - s ;
test (1) [Edit] [Create PHP Code]
B tablet
Field Type Collation Attributes Null Default Extra Action
g d int(11) No None auto_increment * m B
(| description text utf8_general_ci Yes NULL X [B2l
Check All/ Uncheck All With selected: Fd x Jam}
4 Print view & Propose table structure @
FcAdd |1 field(s) @ At End of Table () At Beginning of Table () After | id »¢]. GCo |
Indexes:
Action Keyname Type Unique Packed Field Cardinality Collation Null Comment
¥ PRIMARY BTREE Yes No id 0 A
Create an indexon 1 columns [Go |
Space usage Row Statistics
Type Usage Statements Value
Data 0 B Format dynamic
Index 1.,02¢ B Rows 0
Total 1.02¢ B Next Autoindex 1
Creation Apr 25, 2011 at 05:34 PM
Last update Apr 25, 2011 at 05:34 PM

FIGURE 19-9

Using phpMyAdmin | 247

The table tablel is now listed in the left column. To work with a specific table, click that table on
the left. If there are records in the table, the Browse tab is activated; otherwise, as in this case, the
Structure tab is active as it was in Figure 19-7. You add or change columns (not the data in the col-
umns) in the Structure tab. You can add a column either at the end of the table, at the beginning of
the table, or after a given column as shown in Figure 19-10.

Field Type Collation Attributes Null Default Extra Action
- d int(11) No None auto_increment S X M B T
[description text uif8_general_ci Yes NULL 2 X E= 4
Check All / Uncheck All With selected: ¥4 > o}
%5 Print view [Propose table structure)
FtAdd 1 field(s} @ At End of Table () At Beginning of Table () After | id . :]- Go)
+ Details...

FIGURE 19-10

After you click the Go button, the window where you create your new column displays as shown in
Figure 19-11. This example creates an integer column called code, where any new rows default to 42
if not set to a different number.

mjw‘, oy Jﬂ-jﬂ o3 Server: localhost » 5 Database: test » [Table: table1
@@ [EBrowse Structure msQL 'Search F:insert [EjExport [5jimport Operations [fiEmpty [¥Drop

Field code

- — Type o) INT 2

| test (1)) 2]
LengthNalueB'

pesalc Default? As defined:

[tablet
Collation -]
Attributes —
Null =
Index — [
R INCHERE T
Comments

Save | OrAdd 1 field(s) [Go

"1t field type is "enum"” or "set", please enter the values using this format: ‘a',b','c'...

@ If you ever need to put a backslash ("\') or a single quote (") amongst those values, precede it with a backslash (for example “wyz'
or 'a\'b’).
2 For default values, please enter just a single value, without backslash escaping or quotes, using this format: a

FIGURE 19-11

Clicking the Save button adds the column to tablel as shown in Figure 19-12.

248 | LESSON19 INTRODUCING MYSQL

Table: table1

PﬂPMéJ-*Wfﬂjﬂ & Server: localhost » &5 Database: test p [
— [EBrowse [fStructure Zsal 'Search Ftinsert MEExport [ZImport Operations [fiEmply 5 Drop
BE e
«#” Table table1 has been altered successfully

Database ALTER TABLE ~tablel’ ADD "code’ NOT WULL DEFAULT 'd2

test (1)) [Edit] [Create PHP Code]

test (1) Field Type Collation Attributes Null Default Extra
B tablet id int(11) No None auto_increment

CRENE |
N

description text utf8_general_ci Yes NULL
code int(11) No 42

i Check All/ Uncheck All With sefected: V4 b4 [}

000
NN
X AKX
E%ﬁg

=

% Print view [Propose table structure

FiAdd 1 field(s) @ At End of Table () At Beginning of Table () After | id 4 Go)

Indexes:

Action Keyname Type Unique Packed Field Cardinality Collation Null Comment
X PRIMARY BTREE Yes No id 0 A

" £)
Create an indexon 1 columns [Go)

Space usage Row Statistics

Type Usage Statements Value

Data o B Format dynamic

Index 1.02¢ B Collation utfs_general eci

Total 1.02¢ B Rows o
Next Autoindex 1
Creation Apr 25, 2011 at 05:34 PM
Last update Bpr 25, 2011 at 05:3¢ PM

FIGURE 19-12

Entering Data

You now have a database called test, which contains a single table called table1, which has three
fields: id, description, and code. At this point you can enter data into your database. To do so, be
sure that the table is selected either by clicking the table name on the left or checking the bread-
crumb at the top of the window. Clicking the Insert tab opens a window with forms to enter two
records. Figure 19-13 shows the forms filled in and ready to be saved.

The first field is id, which is the primary key that is flagged as an auto_increment field. When left
blank, MySQL automatically assigns the next number in sequence. The next field is description,
which is a text field where text can be entered. The code field displays the default of 42 to start,
but can that can be changed to a different number. To save both the records, click the Go button
in either form. The program jumps to the SQL tab where it displays a status message and the SQL
command used to add the records as shown in Figure 19-14.

Now that you have records in the table, clicking the Browse tab displays those records as shown in
Figure 19-15.

To delete the records in a table, but leave the structure intact, click the Empty tab. You are asked
if you want to TRUNCATE TABLE. Click the OK button to continue with the deletion of the
records.

To delete the entire table, including the structure, click the Drop tab. You are asked if you want to
DROP TABLE. Click the OK button to continue to delete the table completely.

Using phpMyAdmin | 249

Mwm 23 Server: localhost » Database: test » Table: table1
fElBrowse [&Structure JESQL Search 3Fcinsert FEExport [FZImport QOperations [ffEmpty 3 Drop
Field Type Function Null Value
Database id int(11) | i
| test (1)) description text | = [] [rhis is the first record or zow
test (1)
B tablet
code int{11) | ':‘d 39
Go
[Ignore
Field Type Function Null Value
id int(11) | Bl
description text | ﬁ [[this is the second record. Also called a
code int(11) | Ai 42
Go
[Insert as new row |5 andthen "Go pack to previous page [+)
i Go) [Reset
Restart insertion with [2 14 rows
FIGURE 19-13

7 Server: localhost » Database: test Table: tabled

phpliyAdemin

felBrowse EHStructure ESQAL ['Search Fcinsert [EExport FZimport Operations [[jEmpty [Drop
vf 2 row(s) inserted.
Database Inserted row id: 2
test (1) yH nmm INTO “test’. tablel” | A

“description® ,
“code’

feat) .

E fariad WULL , 'This ias the first record or row', ‘39"

‘Wi, “Thia is the smd reserd. Mlso called e row., '42°

[Edit] [Create PHP Code |

r Run SQL query/queries on test: (T
INSERT INTO test . tablel (id , —description , ~code) VALUES (NULL, 'This is Fields
the first record or row', '39'), (NULL, 'This is the second record. Also called a id
row.', '42'); g
description
code
| <<
[Delimiter 1 ® Show this query here again Go

FIGURE 19-14

250 | LESSON19 INTRODUCING MYSQL

wwm ¢ Server: localhost » Database: test » [z Table: tablet
[ElBrowse & Structure J7SQL JSearch Fcinsert [EExport [FImport Operations [fiEmpty [Drop
. ‘
+# Showing rows 0 - 1 (2 total, Query took 0.0008 sec)
Database e
test (1) %) |aoan o, o
(] Profiling [Edit] [Explain SQL] [Create PHP Code] [Refresh]
fest (1)
B tablet Fermm— i
2 ((Show:) 30 row(s) starting from record # 0
in_harizontal [4] mode and repeat headers after 100 cells
Soribykey:(None ¥
+ Options
id description code
O ¥ € 1 Thisis the first record or row 39
O 4 X 2 Thisisthe second record. Also called a row. 42
+ Check All/ Uncheck All With selected: x ig]
(Show:) 30 row(s) starting from record # |
in | horizontal [+ mode and repeat headers after 100 cells
Query results operations
’V 15 Printview !, Print view (with full texts) f Export CREATE VIEW
= | Open new phpMyAdmin window
FIGURE 19-15

Make sure that it says DROP TABLE, not DROP DATABASE. If you are at the
database level instead of in a table, the Drop tab deletes the database including
all the tables and all the data.

Backing Up and Restoring

After you have a database, you need to know how to back up that database. Databases are not
backed up by creating a copy of a file, but by creating commands that enable you to re-create that
database. In phpMyAdmin you can back up the entire database, a single table, or a selected group
of tables.

If you need to back up the entire database, be sure that you are at the database
level, not in a table.

Click the database name on the left side of the window and then click the Export tab to see the win-
dow shown in Figure 19-16.

Using phpMyAdmin | 251

MP;‘J}_.’};}ZJJ’IJ}N) Server: localhost » [z Database: test
@ @ Structure .[7SQL USearch [@Query E1Export Fyimport Operations £3Privileges [Drop
 View dump (schema) of
Database
test (1) ﬂ rExport——— —Options
Select All / Unselect All Add custom comment into header (\n splits lines)
Restid) tablel
B tablet ¥ Comments
] Enclose export in a transaction
[Disable foreign key checks
SQL compatibility mode NONE ™
0O
() CodeGen _ @ Structur
O csv [/Add DROP TABLE / VIEW / PROCEDURE / FUNCTION / EVENT
©) CSV for MS Excel #Add IF NOT EXISTS
Add AUTO_INCREMENT value
() Microsoft Excel # Enclose table and field names with backquotes
2000 []Add CREATE PROCEDURE / FUNCTION / EVENT
() Microsoft Word Add into comments.
0o ’7 [Creation/Update/Check dates
O LaTeX
(O) Open Document — [Data
Spreadshest
Complete inserts
() Open Document %
STEd ¥ Extended inserts
.
O PDF Maximal length of created query
50000
@ saL [[]Use delayed inserts
. (] Use ignore inserts
O Texy! text bord
=it # Use hexadecimal for BLOB
) XML Export type INSERT %
) YAML
- M Save as fil
File name templa!e‘ 1 _DB__ (@ remember template)
Compression: @ None () "zipped" () "gzipped" () "bzipped"
Kol
{ Go)
FIGURE 19-16

The form is divided into three sections. On the left is the Export fieldset that enables you select the
tables to include and the format to use. On the right is the Option fieldset that lists a series of options
that change depending on the format. At the bottom is where you specify how you want to save.

At the top of the Export fieldset is a list of the tables in the database. All the tables are automatically
selected, but you can change that to only specific tables. Below that is a list of formats that can be
used to export the database. For a normal backup you use SQL.

The Options for the SQL format are displayed on the right. The defaults work well for a standard
backup. The Structure fieldset refers to setting up the table: what columns it has, how those columns
are defined, and so on. It coordinates with the Structure tab. Here are explanations on common
items you might change:

> Add DROP TABLE deletes an existing table with the same name if one exists. Check this if
you want to replace an existing table.

252 | LESSON19 INTRODUCING MYSQL

> Add IF NOT EXISTS creates a table only if there is not one. If it finds a table with the same
name it leaves it intact. If you use the default Export type of INSERT in the Data fieldset, the
data also stays.

> Add AUTO_INCREMENT value copies over the current value. If you are bringing over the
data as well, you usually need to bring over the auto_increment value so that new records
start on the right value. If you are just exporting the structure, uncheck this so that new
records start at the beginning value.

The Data fieldset deals with the actual data in tables—the records. Leave these at the defaults.

The bottom fieldset is where you tell the program whether you want to save the statements it creates
in a file or to display them in the SQL tab box. When saving as a file you have the option of giving a
specific name or of setting up a template that automatically creates a name for you. The default tem-
plate is to use the database name, which is what _DB_ stands for. In this case, where you are export-
ing as in the SQL format, the database test is saved as test.sql. Files in the .sqgl format are simple
text files that contain SQL statements.

To restore a database from an SQL Export, you use the Import tab at a database level. You can
restore the tables to the same database or a different database. If you restore into the same database,
you need to remove the tables first, either manually with the Drop tab on the table or by including the
DROP table in the backup. To restore into a new database, you create a new database and select it.

To restore your test database into a new database, create a new database called testbackup. Click the
Import tab. You see a window that looks similar to Figure 19-17.

phpliyAdimin E9 Server: localhoet 1 fjir X ap
@@ E§Structure 3SQL 'Search [FQuery #iExport &ilmport Operations ¢ Privileges [Drop
rFile to import
Database
testbackup %] | Location of the text file (Browse...) (Max: 128 MiB}
Character set of the file: | utf8 [
testbackup (0)

Imported file compression will be automatically detected from: None, gzip, bzip2, zip

Mo tables found in database.
r Partial import

™ Allow the interruption of an import in case the script detects it is close to the PHP timeout limit. This might be good way to import
large files, however it can break transactions.

Number of records (queries) to skip from start 0

— Format of imported file
@ saL

Options:
SQL compatibility mode NONE e

Do not use AUTO_INCREMENT for zero values

Go)

= | Open new phpMyAdmin window

FIGURE 19-17

Learning the Syntax | 253

Click the Browse button for the Location of the Text File input, select the .sql file from your hard
drive, and click the Go button. The results look similar to Figure 19-18. You have successfully re-
created your database.

phpiyAdmin EEam lomihos s Datibace: ip
@ @ Structure . J2SQL 'Search (@Query @&iExport & lmport Operations 2 Privileges [Drop
«# Import has been successfully finished, 7 queries executed.
Databa_se -- phpMyAdmin SOL Dump i
stoaciup () M 0
-- Host: localhost
testbackup (1) - G::\erat‘i’s: 1:\5: Apr 27, 2011 at 04:18 PM
-- server version: 5.1.44
B tablet -- PEP Version: 5.3.1
v
File to import
" ' ” e y—— y -
Location of the text file (Browse... | (Max: 128 MiB)
Character set of the file: utf8 [
Imported file compression will be automatically detected from: None, gzip, bzip2, zip
r Partial import
™ Allow the interruption of an import in case the script detects it is close to the PHP timeout limit. This might be good way to import
large files, however it can break transactions.
MNumber of records (queries) to skip from start (
 Format of imported file
saL
[HEE Optio
SQL compatibility mode NONE ™
Do not use AUTO_INCREMENT for zero values
Kol
[Go)
FIGURE 19-18

LEARNING THE SYNTAX

MySQL has an online reference manual for each of the versions of MySQL. You can find the manual
for version 5.6 at http://dev.mysql.com/doc/refman/5.6/en/. The manual contains a list of all
the statements, along with the syntax for each. The manual is for MySQL as used on a command
line or in the SQL box of phpMyAdmin. Before trying to use a statement in PHP it can be helpful to
be sure that it is a valid MySQL command that works as you expect it to. In this section you learn
the common language structure for the statements and the conventions of the manual.

A command is a MySQL statement followed by a semicolon. You can have multiple commands on a
single line and a single command can be on multiple lines.

There is a difference between .sql files and statements within PHP programs. In the .sql files the
only things in the file are MySQL statements. When you use MySQL in PHP programs, the actual
MySQL statement is contained within other PHP code and may have variables inside it.

Literal Values

Text strings in MySQL are quoted. You can use either single quotes or double quotes. As in PHP,
single quotes and double quotes are usually, though not always, interchangeable. Standard SQL uses

254 | LESSON19 INTRODUCING MYSQL

only single quotes, so that is preferred. If you have a quote as part of the text, you either need to
enclose the text with the other type of quote mark, escape the quote with a backslash (\), or double it.

Numbers are not enclosed in quotes. They can be preceded by a - or a + to show whether the num-
ber is negative or positive. Number types that are allowed to have decimals can also have a decimal
separator (.). Scientific notation is also allowed.

Dates and times can either be quoted strings or numbers depending on the circumstances. You learn
more about dates and times in Lesson 21.

The Boolean True and False evaluate to 1 and 0 and are not case sensitive.

Identifiers

Identifiers are the names of objects in MySQL such as databases, tables, indexes, and columns. They
can be up to 64 characters long. Identifiers that contain only alphanumeric characters, underscores
(_), and ¢ do not have to be enclosed in quotes unless they contain a reserved word. There is a list of
reserved words in the manual at http://dev.mysgl.com/doc/refman/5.6/en/reserved-words.
html. Special characters are encoded so that could cause issues if the character set changes.

The quote mark for identifiers is the backtick (°). If you are using a QWERTY keyboard, this is the
little ticky-mark under the tilde (~) usually in the far upper-left side of your keyboard.

The backtick (°) is not the same as the single quote (°). You will get errors if you
use the wrong one in the wrong place. The easiest way to remember which to

use is that the backtick goes on the names of things (databases, tables, columns)
whereas the single quote goes on values and around statements and commands.

Identifiers can be qualified or unqualified as long as the unqualified identifier is unambiguous. For
example, if you have a database named test and a table named tablel and a column named id it
could be written as

id

tablel.id

test.tablel.id

ia

‘tablel®. id®

“test’. tablel. id’
Notice that if you quote the names in a qualified identifier, you quote each name separately. If an
identifier is unqualified, the defaults are used.

Technically databases and tables are not case sensitive but they map to files in the filesystem on the
host. Depending on your operating system, files in the filesystem are case sensitive. Windows is not
case sensitive but if you develop on Windows and then move your work to an online host that is
Linux, your code could fail. For that reason, it is recommended that you code as if your identifiers
are case sensitive.

Trylt | 255

Comments

If you are using MySQL through your PHP program you usually only use MySQL comments if you
create a backup from phpMyAdmin or if you have a .sql file to create your database structure and
set up data when doing an install of your program.

Comments come in different flavors in MySQL:
> Use a # character to comment everything from the character to the end of the line.

» Use -- (double-dash plus space/tab/newline) to comment everything from the dashes to the
end of the line.

> Use /* to */ for commenting multiple lines as in PHP.

Do not nest comments. There are times when it works, but many more when it doesn’t. So if you
have a block of statements to comment out, don’t try to do it by surrounding the block with /* */ if
there are comments within the statements.

) TRYIT

Available for

Sersm' In this Try It, you create a database for the Case Study. Based on part of the database analysis from
the previous lesson, you create the Contacts table and fill it with data. You back up the database and
restore it in a second database.

@ You can download the code and resources for this Try It from the book’s web
page at viww . wrox . com. You can find them in the Lessonl9 folder in the down-
load. You will find code for the smithside.sql file.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a working copy of phpMyAdmin, which comes as part of XAMPP. You can download a
free copy at www.phpmyadmin.net.

Hints

See the database analysis done for the Case Study in the Try It section of Lesson 18.

Make sure that you are in the right level, whether it is global, database, or table. Use the indicators
on the left column or the breadcrumbs at the top of the window.

256 | LESSON19 INTRODUCING MYSQL

Step-by-Step
Create the Case Study database.
1. Open phpMyAdmin.
2. In the input box labeled Create New Database enter smithside.
3. Change the Collation drop-down from collation to utf£8-general-ci.
4

. Click the Create button. Your results look similar to Figure 19-19.

MP}J};}FWIJ‘J}H £ Server: localhost p [Database: smithside
@ @ Structure fESQL JSearch [maQuery {&iExport [ilmport Operations =2 Privileges [Drop
|
«# Database smithside has been created.
Database CREATE DATABASE ~smithside’ DEFAULT CHARACTER SET utfi COLLATE utfé general cip
 — 2 [Edit] [Create PHP Code]
smithside (0}
No tables found in database. No tables found in database.
3 Create new table on
MName: Number of fields:
Go
FIGURE 19-19

Create the contacts table with the fields id, first name, last name, position, email, and phone.
1. In the fieldset called Create New Table on Database smithside, type contacts as the name.
2. Type 6 for the Number of Fields.
3. Click Go to see a window that looks similar to Figure 19-20. Because there are several fields,

each of the field definitions stretches horizontally, instead of vertically in the lesson example.

4. The first field is id. Fill in the following information, scrolling the screen to see the rest of the
window as necessary. Steps 4 through 9 are shown in Figure 19-21.

Field: ia
Type: INT

Trylt | 257

Length: 11

Default: None

Attributes: UNSIGNED

Index: PRIMARY

A_I: Check this box for AUTO_INCREMENT

WWWWM i Server: localhost) &1 Database: smithside » [z Table: contacts
Field Type Length/Values' Default®
4EEE T =) None =
Database
smithside 3
H'i INT [| None &
smithside (0}
No tables found in database. INT) _None [
INT) | None [E> |
INT 3] (Nore &
INT [| None B
Table comments: Storage Engine: Collation:
[MylSAM) [[}
PARTITION definition:
Save) Or Add 1 field(s) [Go
1 If fiald_tuna ie "anum" ar "eat! _nlaaco antar tha ualuae neina thie farmat: 'a' h! 'a!

FIGURE 19-20

5.

Type in the information for the next field, first name. This is a text field of up to 50 charac-
ters. VARCHAR stands for Variable Characters and lets you specify a maximum number of
character positions. You learn more about types in Lesson 21.

Field: first_name
Type: VARCHAR
Length: 50

Default: None

Type in the information for the next field, last name.

Field: 1ast_name

Type: VARCHAR

258 |

LESSON 19 INTRODUCING MYSQL

Length: 50

Default: None

7. Type in the information for the next field, position.
Field: position
Type: VARCHAR
Length: 50
Default: None
Null: Because position is not a required field, check the Null box to indicate that a null is
permitted.
8. Type in the information for the next field, email.
Field: email
Type: VARCHAR
Length: 255
Default: None
Null: Because email is not a required field, check the Null box to indicate that a null is
permitted.
9. Type in the information for the next field, phone.
Field: phone
Type: VARCHAR
Length: 20
Default: None
Null: Because phone is not a required field, check the Null box to indicate that a null is
permitted.
Field Type LengthiValues" Defauti? Collation Atiributes Nall index AL
id (ONT M 1 [None W (W (B O [PRIMARY i3 ©
first_name [VARCHAR ™ 5o [None = =l N IEH= W O
last_name [varcHAR & 50 [None =l " i = | = ® O
position [_VARCHAR B ([so [None B [| > M R WO
canail | VARCHAR B [z (None m) ® & (— ™ O
phone [varcHAR B (20 [_None 22 I = [I — ™ O
FIGURE 19-21
10. Click the Save button. Your results should look similar to Figure 19-22.

Trylt | 259

phpM_uAdmjﬂ o Server: localhost » [Database: smithside » [z Table: contacts
@@ [EBrowse [&Structure J7SQL 'Search F<insert [EExport [i5Import Operations [ff Empty [Drop
+# Table "smithside’.’contacts’ has been created.
Database “emithaide" . contacts® (
smithside (1) B
smithside (1) phone" {20)
| EWGINE - MYISAN ;
B contacts
[Edit] [Create PHP Code |
Field Type Collation Attributes Null Default Extra Action
O d int(11) Ne None auto_increment S X B B B
() first_ name varchar(50) utf8 general ci Ne None B & X o
(] last_name varchar(50) utf8_general _ci No None E & X @ b B
[position varchar(50) utf8_general_ci Yes NULL B & X o
) email varchar(255) utf8_general_ci Yes NULL B & X R 3
] phone varchar(20) utf8_general_ci Yes WNULL E & X @& b B
1 Check All/ Uncheck All With selected: Vs]
4 Print view [Propose table structure
FiAdd 1 field(s) @ At End of Table (7)) At Beginning of Table () After | id 4 Go)
Indexes:
Action Keyname Type Unique Packed Field Cardinality Collation Null Comment
#* ¥ PRIMARY BTREE Yes No id 0 A
Create an indexon 1 columns [Go)
FIGURE 19-22

Create six contact records. You can use the data from the Case Study or create your own.
1. In phpMyAdmin in the contacts table, click the Insert tab.
2. At the bottom of the page, change Restart Insertion With to 10 rows.

3. Enter the contacts. Leave the ids blank so that they are automatically calculated. Do not click
the Go button until you have entered all six contacts. Use the Tab key to navigate. If you
press Enter, whatever you have entered so far is saved. If that happens, click the Insert tab
and insert the remaining contacts. If you were in the middle of a contact, see step 4 to fix that
contact. Your result should look like Figure 19-23.

Martha Smith, position: none, martha@example.com

George Smith, postion: none, george@example.com, 515-555-1236

Jeff Meyers, hip hop expert for shure, jeff@example.com

Peter Meyers, position: none, peter@example.com, 515-555-1237

Sally Smith, position: none, sally@example.com, 515-555-1235

Y Y Y Y Y Y

Sarah Finder, Lost Soul, finder@a.com, 555-123-5555

4. Click the Browse tab to see your contact data as shown in Figure 19-24. If you

need to change any of the data, click the pencil at the beginning of the row you need
to change.

260 | LESSON19 INTRODUCING MYSQL

£3 Server: localhost » gy Database: smithside)

phpilyAdsmin

Table: contacts

[EBrowse pfStructure J¢SAL Search Filnsert [EiExport [Eimport Operations [ffEmpty [Drop
« 6 row(s) inserted.
Database Inserted row id: 6
[smithside (1) [5) [msms oo mitnaise . contacte .
smithside (1) m
Bl contacts
Iluu. + 'Martha', "Smith', 'nome', "marthafexsmple.com', WULL u
[Edit] [Create PHP Code]
r Run SQL query/queries on
INSERT INTO - smi = . contacts' (id , first mame , 'last name , -position , Fields
“email”, “phone”) VALUES (NULL, ‘Martha’, “Smith', 'none', 'marthafexample.com’, id a
NULL), (NULL, 'George', 'Smith’', 'none’, 'georgefexample.com’, '515-555-1236'), =
(NULL, 'Jeff', 'Meyers', 'hip hop expert for gl ‘, 'jefffexample.com', NULL), first_name
(NULL, 'Peter’', 'Meyers', 'none’, 'peterfexample.com’, '515-555-1237'), (NULL, last_name
‘Sally’', 'Smith', 'none', 'sallyfexample.com’, '515-555-1235'), (NULL, 'Sarah’, ssidon
‘Finder’, 'Lost Soul', 'finderfa.com’, "555-123-5§55"); posik
email .
(<<
Delimiter ; Show this query here again Go
; query g \ J
FIGURE 19-23
”M”’.! a?f'mjﬂ 3 Server: localhost » [Database: smithside » Table: contacts
[EBrowse pfstructure JPSOL 'Search Filnsert [Export fZimport 5£0p fflEmpty ¥ Drop

in|_harizontal

" Showing rows 0 - 5 (6 total, Query took 0.0004 sec)
Database s=LECT)
PRON " contacea
smithside (1) b |eomro,
[Profiling [Edit] [Explain SQL] [Create PHP Code] [Refresh |
smithside (1)
B contacts e i :
oo (Show:) 30 row(s) starting from record #
in|_harizontal [+] mode and repeat headers after 100 cells
Sort by key:| None)
+ Options
id first_name last_name position email phone
O # X 1 Marha Smith none martha@example.com NULL
O # X 2 George Smith nene george@example.com 515-555-1236
O & X 8 Jet Meyers hip hop expert for shure jeff@example.com NULL
O | # X 4 Peter Meyers none peter@example.com 515-555-1237
O # X & saly Smith nene sally@example.com 515-555-1235
O # X 6 Sarah Finder Lost Soul finder@a.com 555-123-5555
Check All / Uncheck All With selected: X [iE]

[Show :) 30 row(s) starting from record #

»-6{ mode and repeat headers after 100 cells

Query results op:

[

“h Printview . Print view (with full texts) f2j Export CREATE VIEW

~ | Open new phpMyAdmin window

FIGURE 19-24

Trylt | 264

Back up your database and restore it in a different database.

1. Click the database smithside on the left column.
2. Click the Export tab to see the window shown in Figure 19-25.
mj\ij_'}.rgﬂfﬂjﬂ o3 Server: localhost » [Database: smithside
@ @ Structure .JISQL 'Search |[@Query @ EiExport iimport Operations 2 Privileges % Drop
r View dump (schema) of datab.
Database
smithside (1)) —Export —Options:
e Select All / Unselect All Add custom comment into header (\n splits lines)
smithside (1) contacts
B eentacts # Comments
[Enclose export in a transaction
[Disable foreign key checks
SQL compatibility mode NONE [
0O
picecCed — M Structure
O csv [JAdd DROP TABLE / VIEW / PROCEDURE / FUNCTION / EVENT
©) CSV for MS Excel @ Add IF NOT EXISTS
Add AUTO_INCREMENT value
() Microsoft Excel @ Enclose table and field names with backquotes
2000 [Add CREATE PROCEDURE / FUNCTION / EVENT
() Microsoft Word Add into cor
2000 ;
’7] Creation/Update/Check dates
) LaTeX
() Open Document — ™ Data
Spreadsheet
¥ Complete inserts
() Open D it
Toxt ettt ¥ Extended inserts
.
O PDF Maximal length of created query
50000
@ saL [Use delayed inserts
. [Use ignore inserts
) Texy! text =t
SA AR ¥ Use hexadecimal for BLOB
0 XML Export type INSERT [+]
) YAML
~ @ Save as fil
File name templa!e' 1 _DB_ (™ remember template)
Compression: @ None () "zipped" () "gzipped" () "bzipped"
T
{Go)

FIGURE 19-25

3. Save the smithside.sql file.
4. Click the house icon on the upper-left side.
5.

Database: ssbackup appear in the breadcrumbs at the top of the window.

Click the Import tab to see the window shown in Figure 19-26.

Click the Browse tab. Find and select the smithside.sql file you saved.

Create a database called ssbackup with the ut£8_general ci collation. You should see

262 | LESSON19 INTRODUCING MYSQL

7 Server: localhost » & Database: ssbackup
EfStructure . 7SQL “'Search [EiQuery @&iExport

phpiliAdrnin

f&almport Operations 3 Privileges [%Drop

r File to import
Database
ssbackup [%] | Location of the text file Browse...) (Max: 128 MiB)
Character set of the file: | utf8 E
[) Imported file compression will be automatically detected from: None, gzip, bzip2, zip
No tables tound in database.
r Partial import

Allow the interruption of an import in case the script detects it is clese to the PHP timeout limit. This might be good way to import
large files, however it can break transactions.
Number of records (gueries) to skip from start 0

— Format of imp d file

® saL

Optio
SQAL compatibility mode | NONE o

Do not use AUTO_INCREMENT for zero values

Go

= | Open new phpMyAdmin window

FIGURE 19-26

8. Click the Go button. You get a message saying the import was successful and the table(s) in
the database display on the left column.

9. Click the contacts table in the left column to see the six contacts you added.

Watch the video for Lesson 19 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl .

Creating and Connecting to the
Database

In this lesson, you learn the interfaces that PHP has to communicate with a MySQL database.
The original method was with an extension to PHP called mysql. You can still find this in
older code, but it has been replaced by the mysqli extension for PHP 5. Mysqli is an improved,
more secure version that takes advantage of features added to newer versions of MySQL. It is
recommended for new work.

PDO (PHP Data Objects) is an extension to PHP for connecting to various databases, not just
MySQL. The same PHP code enables you to connect to MySQL, PostreSQL, and SQLite data-
bases, among others. You use different drivers to switch from one database type to the other.

CONNECTING WITH MYSQL/MYSQLI

Mysql was the traditional way to communicate with MySQL. When mysqli came along in
PHP 3, it added the following features:

> Object-oriented interface: Mysqli has the mysqli class, the mysql_stmt class for
queries, and the mysqli_result class for results. Each of these has properties that give
you information on the connection, the request you are making, or the data you have
retrieved. They also have methods that enable you to perform actions. There is still a
procedural interface similar to mysql if you prefer to use that.

> Support for prepared statements: With prepared statements you set up the request once
and then send the particulars for the actual request. Reusing the same type of requests
works faster than creating a new request each time. More importantly, it is more secure
because it cuts down on injection attacks.

> Support for multiple statements: You can process multiple statements at a time rather
than one by one.

264 |

LESSON 20 CREATING AND CONNECTING TO THE DATABASE

Support for transactions: You use transactions when you have multiple changes to a data-
base that should be thought of as a group. An example is when you transfer money from one
account to another. A transaction ties the subtraction from one account to the addition to the
other so that if one action fails the other fails as well.

To connect to MySQL you need to know the hostname (which is usually localhost), username,
and password. You create an instance of the class mysqli to establish a connection. The follow-
ing code connects to MySQL running on localhost and uses the username root and the password
12345. The object $connection can be called anything. Other common variable names are $db,
$dbh, and $mysqli.

<?php

Sconnection = new mysqgli('localhost', 'php24sgl', 'hJQV8RTe5t');

If there is an error with the connection, the error is put in

. . Successful connection to MySQL
the property connect_error for the object you just cre-

ated. Use the if statement to check for errors. The following
example displays the error message if there is an error. If you

are in a production site you should give a message to the user FiIGURE 20-1
without details because the details could be used to hack the

system. If there is no error a success message is displayed. The @ before the new suppresses the nor-
mal error handling. Without the @, errors with the connection are automatically displayed. Use the
@ if you want to handle the errors yourself. Remember to change the configuration information to
match your setup. Your results should look similar to Figure 20-1.

<?php
Sconnection = @new mysqgli('localhost', 'php24sqgl', 'hJQV8RTe5t');
if ($connection->connect_error) {
die('Connect Error: ' . S$connection->connect_error);
} else {
echo 'Successful connection to MySQL';

You should have one place to go for the connection information. That way you have one place to go
to if you change a username or password and you have the ability to store the information separately
such as in a configuration file. One way is to use constants as the following code does:

<?php

define ("MYSQLUSER", "php24sql");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");

Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS) ;
if ($connection->connect_error) {

die('Connect Error: ' . $connection->connect_error) ;
} else {

echo 'Successful connection to MySQL';

You have successfully connected to MySQL, but before you can use a database, you need to connect
to the database. The database must already exist before you can connect to it. In the previous lesson,

Connecting with mysql/mysqli | 265

you created a database called smithside in phpMyAdmin. Adding the database name as the fourth
parameter selects that particular database.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "smithside");

if ($connection = new mysgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB)) {
echo 'Successful connection to MySQL';

You are now at the same point as you were in the previous lesson when you opened phpMyAdmin
and clicked on a database. In phpMyAdmin you could see a list of the tables. You can use your new
database connection object to get a list of the tables in the database.

The mysqgli class has a method called query (). You pass it a MySQL statement and it returns an
object of the mysqgli_result class. You then use the properties and methods of that object to see
your results. The MySQL command to see a list of tables is sHow TaBLES. The MySQL command
names are not case sensitive, but it is standard practice to capitalize them. Assuming that
$connection is your connection object, the following code executes the sHow TABLES command
and creates $result as an object based on the mysqli_result class:

Sresult = S$connection->query ("SHOW TABLES") ;

The mysqgli_result class property num_rows contains the number of rows. Because $result is
based on the mysqgli_result class it also has num_rows as a property.

Scount = S$Sresult->num_rows;

The mysqli_result class method fetch_array () returns the results in the form of an array for
each record, which in this case is each table. The first element in the array contains the table name.

Srow = $result->fetch_array();

echo Srow[0];

This finds only the first table. To get a list of all the tables you use a while loop. The script continues
to loop through the results until it reaches the end.

while ($row = Sresult->fetch_array()) {
echo $row[0]. '
';

The following is what the full code looks like to create a Successful connection to MySQL
connection and list the tables in the database. Your results Tables: (1)
should look similar to Figure 20-2. contacts
<?php
define ("MYSQLUSER", "php24sgl"); FIGURE 20-2
define ("MYSQLPASS", "hJQV8RTe5t");

define
define

"HOSTNAME", "localhost");

(
(
(
("MYSQLDB", "smithside");

266 | LESSON 20 CREATING AND CONNECTING TO THE DATABASE

Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {

die('Connect Error: ' . $connection->connect_error) ;
} else {

echo 'Successful connection to MySQL
';

if ($result = $connection->query ("SHOW TABLES")) {

Scount =$result->num_rows;

echo "Tables: ($count)
";

while (Srow = S$result->fetch_array()) {
echo Srow[0]. '
';

You have been learning the object-oriented style of mysqli. There is also a procedural type of mysqli.
The following is the same program using the procedural style:

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTeb5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "smithside");

Sconnection = @mysqli_connect (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB);

if (mysgli_connect_error()) {
die('Connect Error: ' . mysqgli_connect_error());
} else {

echo 'Successful connection to MySQL
';
if ($result = mysqli_query($connection, "SHOW TABLES")) {
Scount = mysqgli_num rows ($result);

echo "Tables: (Scount)
";
while ($row = mysqli_fetch array($result)) {
echo Srow[0]. '
';

For a complete list of the properties and methods of the mysqli classes see the
documentation at www.php .net /manual /en/mysqgli . summary.php.

Whether you use the object-oriented style or the procedural style, you use the variable that contains
the connection (in this case $connection) to access the database throughout your program. Many
older programs use a global variable to hold the connection. The connection itself goes in an initial
program such as the following code:

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "smithside");

Connecting with mysgl/mysqli | 267

$connection = @new mysgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . S$Sconnection->connect_error);

When the database is needed, the $connection variable is declared as global:

<?php
global $connection;
if (Sresult = $connection->query ("SHOW TABLES")) {

Scount = Sresult->num_rows;

echo "Tables: (S$count)
";

while (Srow =Sresult->fetch_array()) {
echo $Srow[0]. '
';

The other way is to create a database class that contains the connection. You can also use this class
to contain other database-related functions. Start by defining the database connection information
as properties. The properties are private because they should be seen only inside the class. Make
them static. Static variables are associated with the class rather than a specific object.

<?php
class Database

{
private static $_mysqglUser = 'php24sqgl';
private static $_mysglPass = 'hJQV8RTeb5t';
private static $_mysglDb = 'smithside';
private static $_hostName = 'localhost';

Add a property for the connection variable, initializing it to NULL:

protected static $_connection = NULL;

Create a method to get the connection. Make this a public static function that returns the connec-
tion property. Remember that you address static properties and functions with self: : instead of
Sthis->.
public static function getConnection() {
self::$_connection = new mysqgli(self::$_hostName, self::$_mysglUser,
self::$ mysglPass, self::$_mysqglDb);

if (self::$_connection->connect_error) {
die('Connect Error: ' . self::$ connection->connect_error);

}

return self::$ connection;

If you leave the method as it is, every time you create a new object you create a new database
connection, which uses extra memory. The solution is to make the class a singleton. A singleton
class is limited to a single instance. Each time you use the class, you get the same instance instead of
creating a new object every time you use the database.

Check first thing to see if the connection already exists. If it doesn’t, then create the object and
do the error checking. Whether the connection already existed or you just created it, return the

268 | LESSON 20 CREATING AND CONNECTING TO THE DATABASE

connection. That way, you only make the connection the first time through. All the rest of the time
youjustreturnthc $_connection.

public static function getConnection() {
if (!self::$ connection) {
self::$_connection = new mysqgli(self::$_hostName, self::$_mysglUser,
self::$_mysglPass, self::$_mysglDb);
if (self::$_connection->connect_error) {
die('Connect Error: ' . self::$_connection->connect_error);
}
}

return self::$_connection;

To prevent programmers from creating an object by using new Database you make the
$__construct () method private:

private function _ construct() {}

Outside of the class, call the getConnection method to get the $connection property. To call this
static method in the Database class, use Database: : getConnection as shown in the following code:

<?php
Sconnection = Database::getConnection;
if (Sresult = $connection->query ("SHOW TABLES")) {

Scount = $result->num_rows;

echo "Tables: (Scount)
";

while (Srow = Sresult->fetch_array()) {
echo $row[0]. '
';

PHP closes the database connection when the script is done, but you can close it yourself if you are
done with the database. The object-oriented version looks like this:
<?php

Sconnection = Database::getConnection();
$connection->close();

This is the procedural style for closing a database:

<?php
Sconnection = Database::getConnection();
mysqgli_close($connection);

Mysqli has an object-oriented style and a procedural style. You also have the choice
of sharing the connection using a global variable or using the object-oriented
method. These two decisions are separate. You can use the object-oriented mysqli
with the global variable or with a static singleton class.

Connecting with PDO | 269

CONNECTING WITH PDO

Mysqli uses an extension that is created specifically to talk to the MySQL database. As such it is
able to take advantage of all the features of the MySQL database. However, if you want

PHP programs that are more portable — that are able to be easily adapted to other flavors of
databases — then the PDO extension is the extension to use. The following is a list of PDO features.

> Object-oriented interface: PDO has the main ppo class, the PDOStatement class for prepared
statements, and the PDOException class for errors.

> Support for prepared statements: With prepared statements you set up the request once and
then send the particulars for the actual request. Reusing the same type of requests works
faster than creating a new request each time. More importantly, it is more secure because it
cuts down on injection attacks. Prepared statements in PDO are easier to use than the mysqli
prepared statements.

> Support for transactions: You use transactions when you have multiple changes to a database
that should be thought of as a group. An example is when you transfer money from one
account to another. A transaction ties the subtraction from one account to the addition to the
other so that if one action fails the other fails as well.

The concepts for using PDO are similar to using mysqli.
The following code connects to MySQL running on the
localhost and uses the username php24sqgl and the pass-
word hJQv8RrTe5t. It sets up a connection to the smithside
database and displays a message when it successfully con- FIGURE 20-3
nects. Your results should look similar to Figure 20-3.

Successful connection to MySQL

<?php

if (Sconnection = new PDO('mysqgl:host=localhost;dbname=smithside', 'php24sqgl',
"hJQV8RTe5t ")) {
echo 'Successful connection to MySQL';

As with mysqli, you can use constants to set up the connection:

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "smithside");

if ($connection = new PDO('mysqgl:host='.HOSTNAME.';dbname=' . MYSQLDB,
MYSQLUSER, MYSQLPASS)) {
echo 'Successful connection to MySQL';

The PpO class has a method called query (). You pass it a MySQL statement and it returns an
object of the PpO class. You then use the properties and methods of that object to see your results.

270 | LESSON 20 CREATING AND CONNECTING TO THE DATABASE

The MySQL command to see a list of tables is SHOw TABLES. Assuming that $connection is your
connection object, this code executes the sHow TABLES command and creates $result as an object
based on the ppo class:

Sresult = Sconnections->query ("SHOW TABLES")

The Ppo class method fetch (PDO: : FETCH_NUM) returns the results in the format specified, which in
this case is a numeric array. The format is in the form of an array for each record, which in this case
is each table. The first element in the array contains the table name.

Srow = Sresult->fetch(PDO: :FETCH_NUM) ;
echo Srow[0];

This finds only the first table. To get a list of all the tables you

i € Successful connection to MySQL
use a while loop. The script continues to loop through the Tables: (1)
results until it reaches the end. The following is what the full contacts
code looks like to create a connection and list the tables in the
database. Your results should look similar to Figure 20-4. FIGURE 20-4
<?php
define ("MYSQLUSER", "php24sql");

define
define
define

"MYSQLPASS", "hJQV8RTe5t");
"MYSQLDB", "smithside");
"HOSTNAME", "localhost");

// set up the Database connection
if (Sconnection = new PDO('mysqgl:host='.HOSTNAME. ';dbname=' . MYSQLDB,
MYSQLUSER, MYSQLPASS)) {
echo 'Successful connection to MySQL
';
if (Sresult = $connection->query ("SHOW TABLES")) {
echo "Tables:
";
while ($row =Sresult->fetch(PDO: :FETCH_NUM)) {
echo Srow[0]. '
';

For a complete list of the properties and methods of the PDO classes, see the
documentation at www.php .net /manual/en/book.pdo . php.

PDO can share the connection using either a global variable or the singleton class described in the
mysqli section.

CREATING THE DATABASE

In the previous lesson, you created a database using phpMyAdmin. That is the normal way to cre-
ate databases. Because you need more privileges to create databases than you do to use them, the
creation is often a separate function from standard programs. In this example you need to use your
root user or any user that has the privilege of creating databases.

Trylt | 271

To create a database, connect to MySQL and run the CREATE DATABASE command. This is the
MySQL command to create a database called mydatabase:

CREATE DATABASE 'mydatabase';

After you have created the database, you need to select it for .

. K K . Successful connection to MySQL
use before you can use it. Running the following code gives Database created
you a result similar to Figure 20-5:

<?php
define ("MYSQLUSER", "root"); FIGURE 20-5
define ("MYSQLPASS", "p##V89Te5t");

define ("HOSTNAME", "localhost");

if ($connection = new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS)) {
echo 'Successful connection to MySQL
';
if ($result = $connection->query("CREATE DATABASE 'mydatabase'")) {
$connection->select_db('mydatabase'); // use the database
echo "Database created";

} else {
echo "Problem creating the database. Is the user not allowed
to create database or does the database already exist?"; }

Note that the preceding code uses an equal sign in the if statement:

if ($result = $connection->query ("CREATE DATABASE 'mydatabase'")) {

The way that this statement is processed is that the statement on the right is evaluated first, which
attempts to create the database. That function returns a value, which in this case is TRUE or FALSE.
That value is then assigned to $result, which is then evaluated to determine if the code enclosed by
the if statement should be run.

) TRYIT

Available for
download on

Woveom' In this Try It, you create a database class for the Case Study. It holds a mysqli object-oriented type
of connection to the database.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson20 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

272 | LESSON 20 CREATING AND CONNECTING TO THE DATABASE

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 17.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints

Static properties and functions belong to the class, not to individual objects. Normally when you refer
to properties or functions within a class, you use the $this->propertyname construction. The $this
refers to the objects’ values so when you don’t have an object, you have no $this. Use self: :$ instead.

Step-by-Step
In the Case Study, create a database class to connect to the smithside database.
1. Create a file called database.php in the includes/classes folder.

2. Create a class called Database:

<?php

/**
* Database class

* For one point of database access
*/

class Database

{

// rest of the code will go here

}

3. Within the class, create properties for the username, password, database, and hostname.
Default the properties to the appropriate values. These values won’t change and they should
only be seen inside the class, so make them private and static. Because they are private, start
the class names with an underscore.

/**

* User name to connect to database

* @var string $_mysglUser

*/
private static $_mysglUser = 'php24sqgl';
/**

* Password to connect to database

* @var string $_mysglPass

*/
private static $_mysglPass = 'hJQV8RTeb5t';
/**

* Database name

* @var string $_mysqglDb

*/
private static $_mysglDb = 'smithside';
/**

* Hostname for the server

* @var string $_hostName

Trylt | 273

*/
private static $_hostName = 'localhost';

4. You also need a property called $_connection to hold the actual connection:
/ * %
* Database connection
* @var Mysqgli $connection
*/
private static $_connection = NULL;

5. Set up a public static function called getConnection (). Connect to the database using the
object-oriented mysqli extension. The new object is assigned to the $_connection property.
If there is an error, print the error and end the program. Return the connection. Because this
is a static method, use the self: : $propertyname construction to refer to the properties.

/**
* Get the Database Connection
*
* @return Mysqgli
*/
public static function getConnection() {
self::$_connection =
new mysqgli(self::$_hostName, self::$_mysqglUser, self::$_mysglPass,
self::$_mysqglDb) ;
if (self::$_connection->connect_error) {
die('Connect Error: ' . self::$_connection->connect_error);

}

return self::$_connection;

6. You want to do the connection only once so surround the connection with an if
statement that checks to be sure there is no connection before it tries to connect. The full
getConnection () method looks like the following code:

public static function getConnection() {
if (!self::$ _connection) {
self::$_connection = @new mysqgli(self::$_hostName, self::$_mysqglUser,
self::$_mysglPass, self::$_mysqglDb);
if (self::$_connection->connect_error) {
die('Connect Error: ' . self::$_connection->connect_error) ;

}

return self::$_connection;

7. You want to control this class so that it cannot be used to create an object using the new
Database construct. Making the __construct () method a private method prevents that.
/* *
* Constructor
*/
private function __ construct () {

}

274 | LESSON 20 CREATING AND CONNECTING TO THE DATABASE

To test your database class, temporarily display a statement on the Home page on the Case Study to
show what database you are connected to.

1. Intheindex.phpfﬂe,ﬁnd.<div class="message">.Entaﬁaﬂthefoﬂowdngcodeinthat
div. Get the connection by making a static call to the Database class getConnection ()
method.

<?php
Sconnection = Database::getConnection();

2. sHOW DATABASE() is the MySQL command to display the database name. Enter the follow-
ing data to run the command:

if ($Sresult = S$Sconnection->query ("SELECT DATABASE()")) {
Srow = S$result->fetch_array (MYSQLI_NUM) ;
echo '<p>*** Using database ' . Srow[0] . ' ***</p>';
} 2>

3. Run the program. Your results should look similar to Figure 20-6.

. Sit _
f\uctlo_ns

Home ‘ About Us | Lot Categories

*** |Jsing database smithside ***

Next Auction September 22nd

Join us for our next auction of historic clothing to be held at the St. Paul's Auditorium in
NYC on September 22nd at 1 o'clock.

Lots can be viewed the prior day from 4pm until 7pm and again on Thursday morning
from 10am to noon.

@© 2011 Smithside Auctions

FIGURE 20-6

4. Remove the test message from index.php that you just added in steps 1 and 2.

Watch the video for Lesson 20 on the DVD or watch online at www.wrox .com/
go/24phpmysql .

21

Creating Tables

In this lesson you learn how to set up detail specifications of MySQL tables. First you learn
about the different data types and attributes and then you learn how to use that information
to create the tables.

You learn what the different data types are and how to assign them to fields. You learn how
to set up a field so that it is automatically assigned a value when a row is added, whether that

is a MySQL-calculated value to be used as an arbitrary key or a constant value to be used as a
default.

You also learn advanced functions in phpMyAdmin to create and change tables and how to do
the same thing in PHP. Finally, you learn how to create and use a text file to perform MySQL
commands.

UNDERSTANDING DATA TYPES

Just as in PHP, MySQL has different data types for the fields. The data types in MySQL are
stricter than in PHP and there is not a one-to-one correlation.

Strings

There are two types of strings in MySQL. The first is text strings, which have character sets
and collations. This is the type of string that you use most often. Text strings are further
defined as follows:

> cHAR: This is the character data type. You define exactly how many characters are
stored. For example, if you want a field to be exactly six characters long, you define it
as CHAR (6) . If you pass it data that is less than that, it pads with spaces at the end. If
you pass it more, the extra characters are truncated. Whether you are truncating blanks
or non-blank characters and what error reporting you have set determines what, if any,
errors you see. You can go all the way up to 255 characters. Note that some character

276 | LESSON 21 CREATING TABLES

sets require more than 1 byte to store some characters. The size limits for the text strings are
based on the number of characters, not the number of bytes. Trailing spaces are removed
when you retrieve the data.

VARCHAR: This data type has a variable number of characters. You specify the maximum
number of characters, up to 65,535. If you have a field that could contain up to 50 characters
but would likely contain less, you define it as VARCHAR (50) . There is a little overhead when
using VARCHAR rather than CHAR because 1 or 2 bytes are used to store the length. Trailing
spaces are not removed when you retrieve the data.

TEXT: There are four TEXT types — TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. Like
VARCHAR, the TEXT types contain a variable number of characters. The difference between the
four types is the maximum number of characters. The type defines the maximum number of
characters; you do not. See Table 21-1.

TABLE 21-1: TEXT Type Sizes

TEXT TYPE MAXIMUM CHARACTERS
TINYTEXT 255

TEXT 64K

MEDIUMTEXT 16M

LONGTEXT 4G

The second type of string is binary strings, which have no character sets or collations. Character
strings contain text, whereas binary strings contain raw data such as images and other media. The
binary types are subdivided in the same way that the text strings are, but the size limits are based on
the number of bytes, not the number of characters.

>

BINARY: This is the binary data type. You define exactly how many bytes are stored. For
example, if you want a field to be exactly 6 bytes long, you define it as BINARY (6). You can
go all the way up to 255 bytes.

VARBINARY: This data type has a variable number of bytes. You specify the maximum num-
ber of bytes, up to 65,535. If you have a field that could contain up to 50 bytes but would
likely contain less, you define it as VARBINARY (50). There is a little overhead when using
VARBINARY rather than CHAR because 1 or 2 bytes are used to store the length.

BLOB: There are four BLOB types — TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. Like
VARBINARY, the BLOB types contain a variable number of bytes. The difference between the
four types is the maximum number of bytes. The type defines the maximum number of bytes;
you do not. See Table 21-2.

Understanding Data Types | 277

TABLE 21-2: BLOB Type Sizes

BLOB TYPE MAXIMUM BYTES

TINYBLOB 255

BLOB 64K

MEDIUMBLOB 16M

LONGBLOB 4G
Numeric

As in PHP, numbers that do not have a decimal point are integers. MySQL has different integer
types that are based on the size of the integer. Additionally, if the integer is STGNED — that is, has
both negative and positive values — the range starts in the negative numbers. If the field is flagged as
UNSIGNED, the values start at 0 and go twice as high, as you see in Table 21-3.

TABLE 21-3: Integer Types

INTEGER TYPE RANGE IF SIGNED RANGE IF UNSIGNED
TINYINT —128 to 127 0 to 255

SMALLINT —-32,768 to 32,767 0 to 65,535

MEDIUMINT —8,388,608 to 8,388,607 0 to 16,777,215

INT (or —2,147,483,648 to 2,147,483,647 0 to 4,294,967,295

INTEGER)

BIGINT -9,223,372,036,854,775,808 to 0 to 18,446,744,073,709,551,615

9,223,372,036,854,775,807

You may see these types written with a length such as TINYINT (1) or TINYINT (4). This refers to
the number of digits to be displayed. It does not affect the value that is stored or the space needed to
store the value.

If you need decimals you use either a floating-point data type or a fixed-point data type. The float-
ing-point types are similar to PHP floating-point types. FLOAT uses 4 bytes of storage and DOUBLE
(also called DOUBLE PRECISION or REAL) takes 8. MySQL allows you to specify the total number of
digits and the number of digits after the decimal point. So to specify a number between —999.9999
and 999.9999 you use FLOAT (7, 4). MySQL rounds the decimal when storing it rather than truncat-
ing it if it is too long.

278 | LESSON 21 CREATING TABLES

Just as in PHP, floating-point numbers are inexact because of how the computer stores them. You
use the exact value data type of DECTMAL (also called NUMERTC) if you need to store exact num-
bers. Exact values take up more room than the floating-point numbers. Currency is often stored
using the decimal format. As with the FLOAT data type, you can specify the total number of digits
and the number of digits after the decimal point. DECTMAL (10, 2) has a range of —99999999.99 to
99999999.99.

The DECTVAL data type has been evolving in MySQL to come closer to the

SOL standard. You may come across different behaviors in earlier versions of
MySOL.

Date and Time

MySQL stores dates and times in the format of YYYY-MM-DD HH:MM:SS, unlike PHP. Your
MySQL server dictates where you can store invalid dates or whether all invalid dates should be con-
verted to zeros.

> DATETIME contains the date and the time. It has a range from the year 1000 through the
year 9999.

> DATE contains just the date value.

> You can use TIMESTAMP to automatically contain the initial value or automatically update
when something changes on the row. It has a range from 1970 through early 2038. It stores
all values as of the UTC time zone.

> 71ME displays the time portion of a date or an elapsed time.

> vEAR displays the year. It can be either YEAR (2) or YEAR(4) for two- or four-digit representa-
tion of the year. It has a range from the year 1901 through 2155. Two digits between 00 and
69 are converted to 2000 through 2069 and 70 to 99 are converted to 1970 through 1999.

You can specify dates and times in several ways. Here are examples for January 8, 2013, at 8:30 a.m.
Remember that the # starts a comment.

'2013-01-08 08:30:00' # the full information
'13-01-08 08:30:00" # two digit year is fine

'13-1-8 8:30" # you do not need leading zeros
'1371+8 8/30" # any punctuation works
'130108083000" # no delimiters is fine

'13.01.08'" # just the date, if that's all you need
'13/01/00' # you can use 00 for a missing part (not TIMESTAMP)
If you are updating TTME, using colons indicates a time rather than elapsed time:

'0830' # is an elapsed time of 8 mins, 30 secs
'08:30' # is 8:30 am

Using AUTO_INCREMENT | 279

Other Data Types

MySQL has a data type ENUM that restricts the field to values from an enumerated list of values.
Although you can use numbers as values, it is not recommended because errors can easily occur.
Numbers can be misinterpreted as an index of a value instead of the value itself.

ENUM('small', 'medium', 'large')

Although you can put your business logic here, if there’s any chance it might change, it would be
better to put the value checking in your program where it would be easier to make changes.
MySQL has two other data types that you may come across:

» gET includes zero or more values from a defined list.

> BIT stores data at the bit level using binary values.

USING AUTO_INCREMENT

You learned in Lesson 18 that the primary key for a table should have the following characteristics:

> Unique

> Not Null

> Not optional

> Never needs to be changed
>

Does not violate security policies

In addition, a short simple key that can be retrieved quickly helps performance. It can be difficult to
find a data field that meets all of these requirements. For that reason, tables are often given artificial
keys — arbitrary keys that have no meaning other than to be a primary key.

MySQL supports this policy with the AUTO_INCREMENT attribute. You assign this attribute to a

field and MySQL generates a unique sequential number for each new row. You can assign AUTO_
INCREMENT to either an integer or a floating-point data type, though an integer is the most common.
Make sure that the data type you choose is large enough to hold the highest number you need. The
following snippet of code shows the typical specifications for an artificial primary key. The name

of the field is id; it is an integer data type that is unsigned, is a required field, will be automatically
filled by MySQL, and is assigned as the primary key.

‘id' INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
The table keeps track of the next number to be assigned. It starts with 1 unless you tell it differently
when you create the table.

In Lesson 22, you learn how to add data to the tables. When you add the data, if you do not assign
a value to id for new rows, or you assign a NULL or 0, a value is automatically assigned. MySQL

280 | LESSON 21 CREATING TABLES

has a function, LAST_INSERT_ID(), that contains the last AUTO_TNCREMENT value. PHP also has a
function that can retrieve this number if you need it.

UNDERSTANDING DEFAULTS

Default values are used to automatically assign a value to a field when you create a new row and
you do not assign a value to that field. If you have a required field (NoT NULL), you should either
always assign a value through your program, assign a default, or, in appropriate cases, set it up as
AUTO_TNCREMENT.

Defaults must be constants. You cannot use MySQL functions, except that you can define a field of
the TIMESTAMP data type to default to CURRENT TIMESTAMP. The following line of code, included
when you create a table, creates a field called dept that is up to 20 characters long, is required, and
defaults to 0ffice on new rows unless a different value is assigned:

‘dept’ VARCHAR(20) NOT NULL DEFAULT 'Office’,

The following code is for a field called startdate that is a date, is required, and defaults to zeros on
new rows unless a different value is assigned:

‘startdate’ DATE NOT NULL DEFAULT '0000-00-00"'

A field does not need to be required to have a default. The following code is for a field called
display_number that is an integer with a maximum range of 255 that defaults to 20:

‘display_number' TINYINT UNSIGNED NULL DEFAULT '20'
Defaults are not allowed on the TEXT or the BLOB types. If you need to assign a default and the size

permits it, create the field as a VARCHAR or VARBINARY data type instead.

There are implicit defaults on some data types. These implicit defaults are used if you don’t assign a
value or you assign the value of NULL and you have no explicit default. If you have NOT NULL speci-
fied and the implicit default has to be used, you get an error depending on the strictness of your
error reporting. These are the implicit defaults:

> Numeric data types default to 0

> Date and time (except for TTMESTAMP) are set to the appropriate version of 0000-00-00
00:00:00

» 1IMESTAMP defaults to the current date and time
> Strings default to an empty string

> ENUM defaults to the first value

Creating Tables in phpMyAdmin | 281

CREATING TABLES IN PHPMYADMIN

Now that you understand the details behind creating fields, go back to phpMyAdmin and create
another table in the test database. You did this in Lesson 19, but now you should understand what
you are doing. Open phpMyAdmin and select the test database or create a new database. Your win-
dow should look similar to Figure 21-1.

mﬁljyﬂfﬂjﬂ @3 Server: localhost » (i Database: test
@ E§Structure. =sQL " Search [(iQuery AiExport [ilmport %ZOperations g3 Privileges [Drop

o Table - Action Records ! Type Collation Size Overhead

Database [tablel B B 3 x 2 MyISAM utf8_general ci 2.1 EiB =
testy 4] 1 table(s) Sum 2 MylSAM utts general ci 2.1 kis L
kost (1) T Check All / Uncheck All | With selected: -:]
tablal 1 Print view [Data Dictionary

r i Create new table on test
Name: Number of fields:

(@ ' May be approximate. See FAQ 3.11

= Open new phpMyAdmin window

FIGURE 21-1

You create a table called products with the fOllOWing fields: id, product, description, source,

date_created.
Type in the new table name products and the number of fields as 5 and click the Go button.
Enter the following information in the five fields as shown in Figure 21-2:
> id: integer, unsigned, required, auto increment (primary key)
> Select uNSIGNED under the Attribute drop-down.
> Required is the same as NOT NULL, so do not check the Null checkbox.
> AUTO_INCREMENT is the A.I. checkbox. Check that box.
>

This is the primary key, so select PRIMARY from the Index drop-down.

282

| LESSON 21 CREATING TABLES

> product: up to 20 characters, required
> description: long description, required
> source: up to 20 characters, default to External
> To specify the default, select As Defined in the Default drop-down and then type
External.

> This field is not required, so check the Null checkbox.

> date_created: timestamp when created

> To specify the default, select CURRENT_TIMESTAMP in the Default drop-down.

> This field is not required, so check the Null checkbox.

@ Server: localhost » g Database: test b (i Table: products

Field Type @ Length/Values' Default® Collation Attributes Null Index Al
id [NT = [None W 8] (unsicnen B O (PrMaRY) @ [|
product [VARCHAR = D) [None] 4 W O [[= = =0N
deseription TEXT K None 2] B (& 0 [— = =0
source VARCHAR = I E) As defined: = [W E (= = =0
External
date_created [TIMESTAMP =] [CURRENT_TIMESTAMP [#] |] [I M o[
Table comments: Storage Engine: Collation:
[Myisam) [)

PARTITION definition: @)

o - "
Save) OrAdd 1 fieldis) (Go

" I fiekd type is "enum” or "set’, please enter the values using this format;: 'a'b'c"...
If you ever need 10 put & backslash (V') or & single quote (™) amongst those values, precede it with a backslash (for example \ueyz' or 'a\b)
2 For default values, please enter just a single value, without backslash escaping or quotes, using this format: a

FIGURE 21-2

Below the list of fields are the attributes for the table itself. You should already be familiar with
the collation from creating databases. Usually you can leave this blank. It defaults to the database
collation.

The Storage Engine either defaults to MyISAM or to InnoDB. You can think of storage engines like
the engines in a car. Different engines are good for different things. MySQL has several engines each
with their own capabilities; the most common are MyISAM and InnoDB. MyISAM has been the
default for many years. It’s a very good basic engine with very good performance. InnoDB has more
capabilities, but those capabilities can come with a performance hit. If you create applications with
complex transactions, you should use InnoDB. For the database you are creating for this website,
MyISAM is a good choice. The newest versions of MySQL are now shipping with InnoDB as the
default.

Click the Save button to create the table. You see a window similar to Figure 21-3.

Using .sql Script Files | 283

©3 Server: localhost » (& Database: test » £ Table: products

[EBrowse [%Structure JISQL 'Search F<insert [EExport [SImport %fOperations [FFEmpty [¥Drop
«# Table 'test’.’products’ has been created.

CREATE TABLE ~test” . products™ |
A UNSIGNED HOT NULL AUTO_INCREMENT PRIMARY KEY ,
*product” [20) BOT NULL ,
o HOT NULL ,
(20) MULL DEFAULT 'External’,
NULL DEFAULT CURRENT TIMESTAMP

“date created”
) ENGINE = MYISAM ;

[Edit] [Create PHP Code]

Field Type Collation Attributes Null Default Extra Action
O W int(10) UNSIGNED No None auto_increment 7S X T
O product varchar(20) utfB_general_ci No None B » X B T
[description text utf8_general_ci No None B # X T Z [
[source varchar(20) uti8_general_ci Yes External B » X T
[date_created timestamp Yes CURRENT_TIMESTAMP B S X E B T
1 Check All / Uncheck All With selected: 4 X
. Print view 5% Propose table structure -
FcAdd 1 field(s) @ AtEnd of Table () At Beginning of Table () After | id W Go)
Indexes:
Action Keyname Type Unique Packed Field Cardinality Ci ion Null Ci
¥ PRIMARY BTREE Yes No id 0] A
FIGURE 21-3

The MySQL command that was used to create the table is displayed at the top of the window. Copy
that and paste it into a text file for the next section.

If you need to change fields after you have created them, go to the Structure tab and click the pencil
icon for the field you want to change. Make your changes and click the Save button. To add fields,
use the Add fields form below the list of fields as shown in Figure 21-4.

. Print view 5% Propose table structure @ -
FcAdd 1 field(s) @ AtEnd of Table () At Beginning of Table () After | id #a(Go)

FIGURE 21-4

To add fields, select the number of fields that you want to add and whether they are to be added at
the end of the table, at the beginning of the table, or after a given existing field. Click the Go button
to go to the form to add fields. Enter the information for the fields and click the Save button to cre-
ate the fields.

To change table attributes, go to the Operations tab, where you can change the name, the engine,
the next AUTO_INCREMENT value to use, and the collation.

USING .SQL SCRIPT FILES

In the preceding section you created a table using phpMyAdmin. You copied the following code to a
text file:

CREATE TABLE “test'. products’ (
id’ INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY ,

284 | LESSON 21 CREATING TABLES

‘product’ VARCHAR(20) NOT NULL ,

“description’ TEXT NOT NULL ,

‘source’ VARCHAR(20) NULL DEFAULT 'External',
‘date_created’ TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
) ENGINE = MYISAM ;

The online MySQL manual uses 200 lines to show the syntax of the CREATE TABLE command at
http://dev.mysqgl.com/doc/refman/5.6/en/create-table.html. This is a simplified version:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name (
col_name data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string'],
col_name data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string']
) table_options;

Here are the valid data types:

BIT[(length)]
| TINYINT[(length)] [UNSIGNED] [ZEROFILL]
| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT [(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER][(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
| NUMERIC|[(length[,decimals])] [UNSIGNED] [ZEROFILL]
| DATE
| TIME
| TIMESTAMP
| DATETIME
| YEAR
| CHAR[(length)]
[CHARACTER SET charset_name] [COLLATE collation_name]
| VARCHAR (length)
[CHARACTER SET charset_name] [COLLATE collation_name]
| BINARY[(length)]
| VARBINARY (length)
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
TEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
MEDIUMTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
LONGTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| ENUM(valuel,value2,value3,...)
[CHARACTER SET charset_name] [COLLATE collation_name]

Using .sql Script Files | 285

| SET(valuel,value2,value3,...)
[CHARACTER SET charset_name] [COLLATE collation_name]
| spatial_type

Here are some common table options:

ENGINE [=] engine_name

AUTO_INCREMENT [=] value

[DEFAULT] CHARACTER SET [=] charset_name
[DEFAULT] COLLATE [=] collation_name;

Words in uppercase are keywords and words in lowercase are to be replaced with the actual values.
The keywords do not need to be in uppercase, though it is convention to use uppercase for them.
In some cases, such as tbl_name and col_name, you can put anything as long as it conforms to

the proper naming requirements. In other cases, such as data_type and engine_name, you are
restricted to actual data types and engines.

Items in the square brackets ([1) are optional, choices are separated by the pipe symbol (|), and the
list of fields is contained within the parentheses. This example shows two fields but you can enter as
many fields as you need. Commas separate the fields and there is no comma before the final paren-
thesis. After the list of fields come the table attributes, which are separated by commas. The com-
mand ends with a semicolon.

You can create temporary tables by using the TEMPORARY keyword. The table is automatically
deleted when the connection is closed and can be seen only by that connection.

If you try to create a table and it already exists you get an error unless you have specified IF NOT
EXISTS. If the table exists and you have added IF NOT EXISTS, the new table is not created and
you get no error message. Any commands that follow — for instance, to add rows — work on the
already existing table. There is no way in MySQL to verify that the table has the same structure. If
you want to totally replace any table that exists, use the DROP TABLE tbl_name command before
CREATE TABLE IF NOT EXISTS tbl_name.

The table name can be just the table name, if it is in the default database, or you can specify the
database using the dot notation:

CREATE TABLE “mydatabase’ . myproduct’

If you quote the names, remember that the quote is a back tick (*) not a single quote (') and that you
quote the database and the table separately.

In the text file you created, change the name of the products table to products2 and save the file
with a .sql extension. The extension is just a convention. You could call it anything you want, but
the .sql extension lets you and other programmers know that the file consists of SQL commands.
The export file that you created in the prior lesson was the same type of .sql file.

Go to phpMyAdmin, select the database, and go to the Import tab. Browse for the text file you just
saved. You see a window that looks similar to Figure 21-5.

Click the Go button to run the commands in the . sqgl file to create the products2 table. Click the
products? table that appears on the left column to see the list of fields shown in Figure 21-6.

By putting your commands in a file, you can save them, modify them, and rerun them when needed.
This is a good place to put those commands that you need to create your database for your applica-
tion in case you need to re-create it.

286 | LESSON 21 CREATING TABLES

mjwww”}jﬂ @ Server: localhost » [t Database: test
@ B§ Structure J7SQL 'Search [fiQuery #:Export [aimport %Z Operations _£3 Privileges
[Drop

—File to import

Location of the text file [Users,’andytarrj[)ucumgntg (Max: 128 MiB)
Character set of the file: | utf8 I~:]
products

E tablet Imported file compression will be automatically detected from: None, gzip, bzip2, zip

o
[test (2) i3]

test (2)

—Partial import
Allow the interruption of an import in case the script detects it is close to the PHP timeout limit. This might be good

way to import large files, however it can break transactions.

Number of records (queries) to skip from start 0

—Format of imported file
@ SaL

Options

SQAL compatibility mode | NONE 4

Do not use AUTO_INCREMENT for zero values

—
Go

~ Open new phpMyAdmin window

FIGURE 21-5

To change a table after it has been created, use the ALTER TABLE command. Many of the specifica-
tions are the same as for creating a table. For the details, see the online MySQL manual at http://
dev.mysgl.com/doc/refman/5.6/en/alter-table.html.

Table: products2

mj_,}” -3 f"ﬂ'}}ﬂ 23 Server: localhost » [Database: test »
[EBrowse [Structure MsQL Search Félnsert [ZExport [[Simport %£Operations
[Empty (¥ Drop

«” MySQL returned an empty result set (i.e. zero rows). (Query took 0.0004 sec)
| test (3) R

FROM "products2”
L o , 30

test (3) [Profiling [Edit] [Explain SQL] [Create PHP Code][Refresh]
B products.
B products2
5 tablet Field Type Collation Attributes Null Default Extra
O W int(10) UNSIGNED No Nene auto_increment
] product varchar(20) utf8_general_ci No None
[description text utf8_general_ci No None
] source varchar(20) utf8_general ci Yes External
) date created timestamp Yes CURRENT_TIMESTAMP
T Check All / Uncheck All With selected: V4 x

. Print view & Propose table structure @
F£Add 1 field(s) @ At End of Table () AtBeginning of Table () After | id } !

+ Details...

~ Open new phpMyAdmin window

FIGURE 21-6

Adding MySQL Tables to PHP | 287

ADDING MYSQL TABLES TO PHP

Normally you create the tables for your application ahead of time either through a program like
phpMyAdmin or by running a .sql file. However, there are times when you want to create them
within your PHP program. If you do create tables in a PHP program, the MySQL user needs the
structure privilege of CREATE. For this example, use your root user. Use the following steps:

1. Make a connection to the database.
2. Create a safe query with the command.
3. Run the query.

The following code uses the same MySQL command as in the previous section to create the table
products3. You could just enclose the command in double quotes and assign it to the $query vari-
able. It is not good practice to have extremely long lines and in practice you might need to add in
PHP variables. You can use double quotes around appropriate sections of the command and put
them back together with the concatenation operator (.). The query () method does only one state-
ment at a time and does not use a semicolon at the end of the MySQL statement. Your results should
look similar to Figure 21-7.

<?php

define ("MYSQLUSER", "root");
define ("MYSQLPASS", "p##V89Tebt");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if (Sconnection->connect_error) {
die('Connect Error: ' . Sconnection->connect_error);
} else {
echo 'Successful connection to MySQL
';
// Create the MySQL command by copying the command and
// splitting into shorter lines and concatenating with periods
// Drop the final semicolon on the MySQL commmand
// but don't forget the semicolon for ending the PHP command
$query = "CREATE TABLE test . products3™ ("
. "'id® INT UNSIGNED NOT NULL AUTO_ INCREMENT PRIMARY KEY , "
. "‘product’ VARCHAR(20) NOT NULL , "
. "“description’ TEXT NOT NULL , "
. "“source’ VARCHAR(20) NULL DEFAULT 'External',6 "
. "‘date_created’ TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP"
") ENGINE = MYISAM";
// Run the query and display appropriate message
if (!Sresult = $connection->query($query)) {
echo "Unable to create table
";
} else {
echo "Table successfully created
";
}
// Show the tables
if (Sresult = $connection->query ("SHOW TABLES")) {
Scount = S$Sresult->num_rows;
echo "Tables: (Scount)
";
while (Srow =$result->fetch_array()) {

288 | LESSON 21 CREATING TABLES

echo Srow[0]. '
';
}
}
}

Successful connection to MySQL
Table successfully created
Tables: (4)

products

products2

products3
tablel

FIGURE 21-7

A TRYIT

Available for

Socen In this Try It, you create the tables for the lots and lot categories in the Case Study using the data-
base analysis you created in Lesson 18.

You use the classes corresponding to the tables in the Case Study, so this is a good time to start cre-
ating the classes for the lots and lot categories.

You created a class for the contacts in a Lesson 13 and then in Lesson 19 you created the table. In
this Try It, you add the missing table fields to the contact class.

You can download the code and resources for this Try It from the book’s web
page at www .wrox .com. You can find them in the Lesson21 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 20.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Trylt | 289

Hints

Code to create the contacts, categories, and lots tables is in the install.sql file in the download-
able code.

You can use the includes/classes/contact.php file as a basis for your new classes.

Step-by-Step
Create the categories and lots tables.

1. Based on the database analysis from Lesson 18, create the categories table with the follow-
ing characteristics:

Table: categories

cat_id: Integer, positive number, required, primary key, auto increment
cat_name: Text, up to 50 characters long, required

cat_description: Text, up to 5 or 6 lines of text

cat_image: Text, up to 255 for the name of the file

You can use the graphical interface in phpMyAdmin, copy the following code into the SQL
tab for the Case Study database, or copy the code to a .sql file and import it.

CREATE TABLE ‘smithside’. categories’ (

“cat_id’ INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
‘cat_name' VARCHAR(50) NOT NULL,

‘cat_description® TEXT NULL,

‘cat_image’ VARCHAR(255) NULL

) ENGINE = MYISAM;

2. Based on the database analysis from Lesson 18, create the 1ots table with the following
characteristics:

Table: 10ts

lot_id: Integer, positive number, required, primary key, auto increment
lot_name: Text, up to 50 characters long, required

lot_description: Text, up to 5 or 6 lines of text

lot_image: Text, up to 255 for the name of the file

lot_number: Integer, positive number

lot_price: Numeric, up to $100,000.00, default to 0

cat_id: Integer, positive number, link to categories table

290 | LESSON 21 CREATING TABLES

You can use either the graphical interface in phpMyAdmin, copy the following code into the
SQL tab for the Case Study database, or copy the code to a .sql file and import it.

CREATE TABLE “lots® (
“lot_id' INT(11) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
“lot_name® varchar (50) NOT NULL,
“lot_description® TEXT NULL,
‘lot_image' VARCHAR(255) NULL,
“lot_number® INT(11) UNSIGNED NULL,
“lot_price’ DECIMAL(10,2) DEFAULT '0O' NULL,
‘cat_id' INT(11) UNSIGNED NULL
) ENGINE=MyISAM

Create category.php and lot.php in the includes/classes folder with classes for each of the tables.
1. Create the file includes/classes/category.php.

2. Enter the file documentation and the category class:

<?php
/**
* category.php
*
* Category class file
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
/*k*

* Category class
*

* @package Smithside Auctions
*/

class Category

{

}

2. Inside the class, add a property for each of the fields in the categories table. Make these
protected properties.
/“k *
* Category ID
* @var int
*/
protected $cat_id;

/*k*k
* Category Name
* @var string
*/
protected $cat_name;

/*k*k
* Category Description
* @var string

*/

Trylt | 291

3.

protected S$cat_description;

/**
* Category Image path
* @var string
*/

protected S$Scat_image;

Following the properties, add a __construct method to fill the properties based on an array

input:

/'k*

* Initialize the Item
* @param array
*/
public function _ construct($input = false) {
if (is_array(Sinput)) {
foreach ($input as Skey => S$Sval) {
// Note the $key instead of key.
// This will give the value in S$key instead of 'key'
Sthis->Skey = S$val;

}

Add in methods to get the protected properties:
/ * %

* Return Category ID

* @return int

*/
public function getCat_id() {

return S$this->cat_id;

/**
* Return Category Name
* @return string
*/
public function getCat_name() {
return $this->cat_name;

/‘k*
* Return Category Description
* @return string
*/
public function getCat_description() {
return $this->cat_description;

/**
* Return Category Image path
* @return string
*/
public function getCat_image() {
return $this->cat_image;

itself

292 | LESSON 21 CREATING TABLES

5. Create a similar file for the 1ots table. This file is includes/classes/lot .php.

<?php
/**
* lot.php
*
* Lot class file
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
/*k*
* Lot class
*
* @package Smithside Auctions
*/
class Lot
{
/'k*
* Lot ID
* @var int
*/

protected $lot_id;

/**
* Lot Name
* @var string
*/
protected $lot_name;

/‘k*k
* Lot Description
* @var string
*/
protected $lot_description;

/**
* Lot Image path
* @var string
*/
protected $lot_image;

/**
* Lot Number
* @var int
*/
protected $lot_number;

/**

* Lot Price path

Trylt | 293

* @var float
*/
protected S$lot_price;

/**
* Lot Catalog ID
* @var int
*/

protected S$cat_id;

/**
* Initialize the Item
* @param array
*/
public function _ construct($input = false) {
if (is_array($Sinput)) {
foreach ($input as Skey => $val) {
// Note the $key instead of key.
// This will give the value in S$key instead of 'key'
$this->Skey = $val;

}

/**
* Return Lot ID
* @return int
*/
public function getLot_id() {
return S$this->lot_id;

/**
* Return Lot Name
* @return string
*/
public function getLot_name() {
return S$this->lot_name;

/**
* Return Lot Description
* @return string
*/
public function getLot_description() {
return Sthis->lot_description;

/**
* Return Lot Image path
* @return string
*/
public function getLot_image() {

itself

294 | LESSON 21 CREATING TABLES

return $Sthis->lot_image;

}

/**
* Return Lot Price path
* @return string
*/
public function getLot_price() {
return $this->lot_price;

}

/**
* Return Lot Category ID
* @return string
*/
public function getCat_id() {
return $this->cat_id;

}

Add the ia field to the contact class in includes/classes/contact.php.

1. Add id as a protected property at the beginning of the contact class:
/* *
* ID
* @var int
*/
protected $id;

2. Add a public getter method to access the id property. Add this at the start of the rest of the
getter methods.
/* *
* Return ID
* @return int
*/
public function getId() {
return $this->id;

}

Watch the video for Lesson 21 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl .

Entering Data

In this lesson you learn how to enter data into the MySQL tables you built. You learn to use
both the MySQL INSERT command to add rows and to load a file of information with the
LOAD DATA command.

The main way that you get — data from users on websites is through forms. In this lesson you
go through the whole process from creating a form, error checking the data, adding the data
to the tables, and informing the user of the success or failure of the update. You learn how to
use the MySQL commands in a PHP program.

UNDERSTANDING THE INSERT COMMAND

The examples in this section are based on the tablel table that you created in Lesson 19. This
is the command that creates that table:

CREATE TABLE IF NOT EXISTS 'tablel' (
'id' int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
'description' text,
'code' int(11) NOT NULL DEFAULT '42'

) ENGINE=MyISAM

The MySQL 1NSERT command adds new rows to a table. You tell MySQL the table to use and
then give it the values for all the fields in the new row. The following code creates a new row,
assigning 1 as the value of the first field, abc as the value of the second field, and 15 as the
value of the third field:

INSERT INTO 'tablel' VALUES ('101',‘'abc','15');

The name of the table is enclosed with back ticks, which is optional for simple names. Enclose
the value in quotes, regardless of whether the value is text or numeric. The quotes can be
either single or double quotes. If there is a quote as part of the value, you must either use the
other type of quote to enclose it, double the quote, or escape the quote in the value. To escape

296

| LESSON 22 ENTERING DATA

a quote, prefix it with a backslash (\). All of the following methods work when the value of the
second field is a'be:

INSERT INTO 'tablel' VALUES ("102","a'bc","15");
INSERT INTO 'tablel' VALUES ('103','a''bc','15');
INSERT INTO 'tablel' VALUES ('104','a\'bc','15");

To add more than one row at a time, add additional parentheses groups separated by commas. This
code adds three more rows:

INSERT INTO 'tablel' VALUES ('105','def','23'), ('106', 'ghi','23"), &

(*107', 'jklv,'15');
If a field has the AUTO_TINCREMENT attribute, MySQL automatically assigns the next number if you
assign a 0, empty quotes, or the keyword NULL. Keywords are not enclosed in quotes. Assuming

that the first field has the AUTO_TINCREMENT attribute, the following code creates rows with the values
of 108, 109, and 110. You can use multiple lines to make the code easier to read.

INSERT INTO 'tablel' VALUES
(lOI,lmnOl’IISI),

("', 'pqr','23'),

(NULL, 'stu','42');

Use the pEFAULT keyword to indicate that the default should be used. If the default for the third field
is 42, the following code inserts 42 as the value for the third field:

INSERT INTO 'tablel' VALUES (NULL, 'vwx',DEFAULT) ;

Figure 22-1 shows the rows added by the code in this section as seen in phpMyAdmin.

= |] 101 abe 15
el | 102 a'bc 15
= |] 103 a'bc 15
O X 104 a'be 15
= || 105 def 23
02X 106 ghi 23
o # X 107 ki 15
e | | 113 mno 15
o & X 114 par 23
|| |- 115 stu 42
o # X 116 wwx 42
FIGURE 22-1

Rather than listing a value for all of the fields, you can list the fields to be added. Any fields not
listed use the default as defined in the table definition or the implied default based on the data type.
If the missing field is defined as NOT NULL and there is no appropriate default, you get an error.
The version of MySQL and the level of error reporting determine exactly what produces errors and
whether those errors prevent the command from completing. The following code adds a row with
the field description set to yza. The first field defaults with the auTo_1NCREMENT and the last field
defaults to the explicit default of 42.

INSERT INTO 'tablel' ('description') VALUES ('yza');

Executing MySQL Commands in PHP | 297

If you try to add a row that has the same primary key as an existing row, you get an error and the
row is not added. To prevent the error, add the 1GNORE keyword. If a duplicate is found, the new
line is ignored without issuing errors or killing the command in the middle. Assuming that a row
with the primary key 101 already exists and row 118 does not, the following command ignores the
request to add 101 and still adds row 118:

INSERT IGNORE INTO 'tablel' VALUES ('101', 'bed','99"), ('118','efg','23");

If you want to do something special if you get a duplicate key, specify ON DUPLICATE KEY UPDATE.
MySQL updates the existing record for any duplicates based on what you specify after the upDATE
keyword.

INSERT INTO 'tablel' VALUES ('101', 'bed','15'), ('118','efg','23') S
ON DUPLICATE KEY UPDATE code = '99';

To replace the row with the new values, you use the REPLACE statement. The REPLACE statement has
the same syntax as the INSERT statement. The only difference is that if you try to add a row with
the same primary key, the existing row is replaced rather than causing an error message or being
ignored.

EXECUTING MYSQL COMMANDS IN PHP

You won’t very often create databases or tables using PHP because then the MySQL used to make
the database connection has to have extensive privileges, which is unsafe. However, you will fre-
quently add data to MySQL tables using PHP. Entering data through a PHP program using MySQL
command takes three steps:

1. Make a connection to the database.
2. Create a safe query with the command.
3. Run the query.

The following code uses the MySQL INSERT command to add rows to the table tablel. You could
enclose the command in double quotes and assign it to the $query variable. However, it is not good
practice to have extremely long lines. Use the double quotes around appropriate sections of the com-
mand and put them back together with the concatenation operator (.). The query () method does
only one statement at a time and does not use a semicolon at the end of the MySQL statement. Your
results look like Figure 22-2. When you look in phpMyAdmin you see the rows in Figure 22-3.

<?php X

define ("MYSQLUSER", "php24sql"); ;‘;ﬁﬁ:iﬁ‘i{;‘;’gﬁ;ﬁ;& MySQL
define ("MYSQLPASS", "hJQV8RTe5t");

define ("HOSTNAME", "localhost");

define ("MYSQLDB", "test");

FIGURE 22-2
// Make connection to database

$connection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB):;
if ($connection->connect_error) {

die('Connect Error: ' . S$connection->connect_error);
} else {

echo 'Successful connection to MySQL
';

298 | LESSON 22 ENTERING DATA

// Set up the query

$query = "INSERT INTO 'tablel' ('description', 'code') VALUES "
.o (Ihijl,llsl)' n
.om (|k1m|’|23|)' n
. " ('nop', DEFAULT)";

// Run the query and display appropriate message
if (!S$result = $connection->query($query)) {
echo "Unable to add rows
";
} else {
echo "Rows successfully added
";
}

O & 2 120 hi 15

[0 I e T2 ki 23

O # X 122 nop 42
FIGURE 22-3

You can use variables to create the query statement. In the following examples I am hardcoding in
the values of the variables to make the examples clearer. In real life these variables may be coming
from forms, parameters or other sources. Even though you can see what the value is, assume the
value could be anything. The following code is an example where the data passed to MySQL comes
from variables. You add the row shown in Figure 22-4.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . $connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

$desc = "qrs";
$code = "15";

// Set up the query
$query = "INSERT INTO 'tablel' ('description', 'code') VALUES "
. " ('$desc', '$code')";

// Run the query and display appropriate message
if (!Sresult = $connection->query($query)) {
echo "Unable to add rows
";
} else {
echo "Rows successfully added
";

}

Executing MySQL Commands in PHP | 299

(1 2 K B 1230 Rars 15
IE |

FIGURE 22-4

Earlier in this lesson you learned that you need to put quotes around the values and that you can use
either single quotes or double quotes and if you have a quote within the value, you need to either
enclose with the opposite type of quote or escape the quote in the value. In the preceding example
you have the line $desc = "grs";. If you replace that with $desc = "qr's"; you might think you
are following all the rules and that it will work. However, when you do that, as demonstrated in the
following code, the rows do not update because that single quote in $desc is then enclosed by single
quotes in $query, which is invalid in MySQL as shown in Figure 22-5.

<?ph;

deIfJ ifle ("MYSQLUSER", "php24sqgl"); Successful connection to MySQL
define ("MYSQLPASS", "hJQV8RTe5t"); Uinable to add rows

define ("HOSTNAME", "localhost");

define ("MYSQLDB", "test");

FIGURE 22-5
// Make connection to database

Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if (Sconnection->connect_error) {

die('Connect Error: ' Sconnection->connect_error) ;
} else {

echo 'Successful connection to MySQL
';

$desc = "gr's";
Scode "15";

// Set up the query
Squery = "INSERT INTO 'tablel' ('description', 'code') VALUES "
" ('S$desc', 'Scode')";

// Run the query and display appropriate message
if (!Sresult = $connection->query (Squery)) {
echo "Unable to add rows
";
} else {
echo "Rows successfully added
";
}
}

You could fix this by using double quotes around $desc in the $query assignment. However, with
a dynamic site you do not know whether the data contains single or double quotes (or both) so you
need a solution that properly prepares the variables for insertion into the database. The answer

to that is to escape any quotes in the variables by prefixing each quote character with a backslash
(\). PHP has a function that does this for you. In mysqli it is the method mysqli: :real_escape_
string if you are using the object-oriented style or the function mysqli_real_escape_string().
This code escapes any quotes in $desc so that it works in the MySQL statement. The added line
seen in phpMyAdmin looks similar to Figure 22-6.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTebt");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

300 | LESSON 22 ENTERING DATA

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . S$connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

$desc = "gr's";
Scode vl5";

$desc = $connection->real_escape_string($desc);

// Set up the query
Squery = "INSERT INTO 'tablel' ('description', 'code') VALUES "
" ('Sdesc', 'Scode')";
echo $Squery;

// Run the query and display appropriate message
if (!Sresult = S$connection->query(Squery)) {
echo "Unable to add rows
";
} else {
echo "Rows successfully added
";

’.—- £ X 124 ars 15‘

FIGURE 22-6

If you are using the procedural style the command looks like this instead:

Sdesc = mysqgli_real_escape_string(Sconnection, S$desc);

There is one more wrinkle to consider — magic quotes. PHP recognized that this need to escape
quotes was inconvenient and inexperienced programmers would neglect to do it. So PHP started
doing it automatically. You used to be able to turn this behavior on or off in the php. ini file by
turning on or off magic_guotes_gpc. Unfortunately this led to more problems and the use of magic
quotes is now strongly discouraged; it will eventually be removed. However, if it happens to be on
\Vhen)Knlusethereconnnendedrmysqli::real_escape_string‘Ormysqli_real_escape_string
you get undesirable results. Before you escape your variables, you need to see if magic_quotes_gpc
is on and if so, you need to strip out the escapes it added before using the recommended function.
Use the get_magic_quotes_gpc () function to see if it is active:

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . S$connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

Executing MySQL Commands in PHP | 301

Sdesc = "gr's";
Scode = "15";

if (get_magic_quotes_gpc()) {
$desc = stripslashes($desc);
}
$desc = $connection->real_escape_string($desc) ;

// Set up the query
Squery = "INSERT INTO 'tablel' ('description', 'code') VALUES "
" ('Sdesc', 'Scode')";

// Run the query and display appropriate message
if (!Sresult = S$Sconnection->query(Squery)) {
echo "Unable to add rows
";
} else {
echo "Rows successfully added
";
}
}

Another reason for escaping the quotes is that it helps prevent SQL injection. Notice that you only
escaped the $desc variable and not $code. $desc is a string field and $code is an integer. Best prac-
tices deal with different types of fields differently. If a field is an integer data type, the best check is
to be sure that it is an integer.

<?php

define ("MYSQLUSER", "php24sql");
define ("MYSQLPASS", "hJQV8RTebt");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . Sconnection->connect_error);
} else {
echo 'Successful connection to MySQL
';

Sdesc = "gr's";
Scode = "15";
if (get_magic_quotes_gpc()) {

$desc = stripslashes($desc);
}
$desc = Sconnection->real_escape_string($desc);
$code = (int) $code;

// Set up the query
Squery = "INSERT INTO 'tablel' ('description', 'code') VALUES "
" ('Sdesc', 'Scode')";

// Run the query and display appropriate message
if (!Sresult = Sconnection->query (Squery)) {
echo "Unable to add rows
";

302 | LESSON 22 ENTERING DATA

} else {
echo "Rows successfully added
";
}
}

These examples are inserting only one row at a time. If you are inserting more than one row, the
same principles apply. Add in other error-checking for the fields and you can see that there is signifi-
cant preparation for each field that is used to update a database field. This is a place where creating
functions for preparing variables for insertion is helpful.

PROCESSING DATA ENTRY FORMS IN PHP

In this section you take everything that you’ve learned about processing forms, passing tokens,
preparing data, and updating the database and use it to program a form to add rows to a database
table. Start by creating a basic input form with two required fields for getting the description and
code as shown in Figure 22-7. Add a spot for any messages in $message to be displayed.

Data Entry

Add a Row

+ Description *

s Code *

=\
(save) Cancel

FIGURE 22-7

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title></title>

</head>

<body>

<hl>Data Entry</hl>

<p><?php echo S$message; ?></p>
<form action="lesson22j.php" method="post" name="maint" id="maint">

<fieldset class="maintform">
<legend>Add a Row</legend>

<label for="desc">Description *</label>

<input type="text" name="desc" id="desc" /></1li>
<label for="code">Code *</label>

<input type="text" name="code" id="code" /></1li>

<input type="submit" name="save" value="Save" />
Cancel

Processing Data Entry Forms in PHP | 303

</fieldset>
</form>

</body>
</html>

Because you are updating a database, you want to add the security of a token. Start a session at the
very beginning of the file:

<?php
session_start();
?>

Within the form fieldset, create a token and post it to the session as a hidden input:

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal (mt_rand(1,1000000) . $salt);

$_SESSION]'token'] = Stoken;

2>

<input type='hidden' name='token' value='<?php echo $token; ?>'/>

You can either create a file for the form and a different one for the processing or do everything in
one file. In this example, you use one file so the next task is to add the processing of the form. After
session_start (), initialize the $message variable, add a check to see if there is a form to process,
and then check for a good token, as in the following code:

Smessage = '';
if (isset($_POST['save']) AND $_POST['save'] == 'Save') {

// check the token
SbadToken = true;

if (empty ($_POST['token']) || $_POST['token'] !== $_SESSION|'token']) {
Smessage = 'Sorry, try it again. There was a security issue.';
SbadToken = true;

} else {

SbadToken = false;
unset ($_SESSION|['token']) ;

Next make your connection to the database and get the data from the POST array. For the descrip-
tion input, sanitize the data coming from the form as string data. To allow quotes without encoding
them (such as ' remaining as a ' and not changing to '), add the FILTER_FLAG_NO_ENCODE_
ouoTks filter. Filter the code input by forcing it to an integer. Verify that data exists in both $desc
and $code. If the data passes all those requirements, prepare the data for insertion into the database
and then set up the query and add it to the database. Errors or success messages are posted to
$message, which is then displayed. Close out all of the if statements.

define ("MYSQLUSER", "php24sql");

define ("MYSQLPASS", "hJQV8RTeb5t");

(
(
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if (Sconnection->connect_error) {
die('Connect Error: ' . $connection->connect_error);
} else {

304 | LESSON 22 ENTERING DATA

// Get the data

$desc = filter_input (INPUT_ POST, 'desc',
FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ;

Scode = (int) $_POST['code'];

// Verify the data
if (!Sdesc OR !Scode) {

Smessage .= 'Description and Code are required
';

} else {

// Prepare the data
if (get_magic_quotes_gpc()) {
Sdesc = stripslashes ($desc);

}

$desc = S$connection->real_escape_string($desc);

Scode = (int) Scode;

// Set up the query
Squery = "INSERT INTO 'tablel'
" (‘$deSC', '$C0de')",'

('description', 'code') VALUES "

// Run the query and display appropriate message
if (!S$Sresult = $connection->query (Squery)) {

Smessage .= "Unable to add rows
";
} else {
$message .= "Row successfully added
";
}
}
}
}
}
?>

Enter data into the form as shown in Figure 22-8. Click Save. You get a message that the row has

been successfully saved, as shown in Figure 22-9.

Data Entry

Add a Row

+ Description *

Jack's dog
s Code *
14

=\
(save) Cancel

FIGURE 22-8

Data Entry

Row successfully added

Add a Row

s Description *

+ Code *

~

("save) Cancel

FIGURE 22-9

Trylt | 305

Go to phpMyAdmin to verify that the data was added. You should see a row similar to Figure 22-10.
Note that because the id was automatically created your id might be different.

’-—_- /X 138 Jack'sdog 14‘
FIGURE 22-10
H)TRYIT

Available for
download on

woeom In this Try It, you add the ability to add contacts to the Case Study. You add a form to the website
to get the data and then use that to add rows to the contacts table. You also create a method in the
Database class for preparing data for insertion into the database.

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lesson22 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of the Lesson 21.
Alternatively, you can download the files from the book’s website at www.wrox.com. To re-

create the database tables, create an empty database and then import the install.sql file in
phpMyAdmin.

Hints

You learned about forms in Lesson 11, including working with header redirects and sessions.

If you have trouble with your database updates, try adding a var_dump ($query) after assigning
it the value. This displays the actual MySQL command that is run. Copy that and paste it into the
SQL tab in phpMyAdmin to see errors.

One of the files in the downloadable code is install.sql. This file contains all the MySQL code
needed to re-create your database. To use it you need an existing database. In phpMyAdmin either
copy the code into the SQL table and run it, or import the file. It deletes or creates tables as needed
and inserts data.

306 | LESSON 22 ENTERING DATA

Step-by-Step

Create a form (see Figure 22-11) to enter contacts. Add processing to add the data from the form to
the database and handle the messaging and page redirections.

_ ﬁuctiqns

Home | About Us | Lot Categories

Contact Maintenance
—Add a Contact:

First Name *

Last Name *

Position

Email

Phone

(save) Cancel

© 2011 Smithside Auctions

FIGURE 22-11

1. In content/about.php add a link in the <h1> to the data entry form you are creating.

<hl>About Us<a class="button" href="index.php?content=contactmaint&id=0 <
?>">Add</hl>

2. Create a new file called content /contactmaint .php. This contains the HTML form. Use an
empty Contact object to define the data fields. This isn’t required for this window but is used
when you turn it into a maintenance page. Pass a hidden input for the id for the row. This is
blank for new contacts. Pass a hidden input for a task so you know what form you are pro-
cessing. Create and pass a token to confirm this is a legitimate form.

<?php

/**
* contactmaint.php

Maintenance for Contacts

* X

Trylt | 307

(c) 2011 Smithside Auctions

GNU General Public License

* @version 1.2 2011-02-03

* @package Smithside Auctions
* @copyright Copyright

* @license

* @since Since Release 1.0
*/

Sitem = new Contact;

?>

<hl>Contact Maintenance</hl>

<form action="index.php?content=about" method="post" name="maint" id="maint">

<fieldset class="maintform">
<legend>Add a Contact</legend>

<label for="first_name" class="required">First Name</label>

<input type="text" name="first_name" id="first_name" class="required"
value="<?php echo S$item->getFirst_name(); ?2>" />

<label for="last_name" class="required">Last Name</label>

<input type="text" name="last_name" id="last_name" class="required"

value="<?php echo S$item->getLast_name(); ?>" />
<label for="position">Position</label>

<input type="text" name="position" id="position" class="required"
value="<?php echo $item->getPosition(); ?>" />
<label for="email" >Email</label>

<input type="text" name="email" id="email"
value="<?php echo $item->getEmail(); ?>" /></1li>
<label for="phone" >Phone</label>

<input type="text" name="phone" id="phone"

value="<?php echo $item->getPhone(); ?>" /></1li>

<?php
// create token
$salt = 'SomeSalt';
Stoken = shal(mt_rand(1,1000000) . $salt);
$_SESSION|['token'] = S$token;
?>
<input type="hidden" name="id" id="id" value="<?php echo Sitem->getId();
2> />
<input type="hidden" name="task" id="task" value="contact.maint" />
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>
<input type="submit" name="save" value="Save" />
Cancel
</fieldset>
</form>

3. Create a constant in includes/init.php called MAGTC QUOTES ACTIVE that contains the
result of get_magic_quotes_gpc (). This contains a 1 if magic quotes are on. Creating a
constant once rather than running the function each time you need it is quicker.

define ('"MAGIC_QUOTES_ACTIVE', get_magic_quotes_gpc());

308 | LESSON 22 ENTERING DATA

4.

Create a public static method called prep () in includes/classes/database.php to pre-
pare the data for insertion into the database. The data is passed to the function as a parame-
ter. To refer to the connection property, use the static construction of self::$_connection.

public static function prep($value) ({
if (MAGIC_QUOTES_ACTIVE) {
// If magic quotes is active, remove the slashes
Svalue = stripslashes($value);
}
// Escape special characters to avoid SQL injections
Svalue = self::$_connection->real_escape_string(S$value);
return $value;

}

Intheincludes/init.phpfﬂqlnovetherequire_once 'includes/functions.php'; to
just below the magic quotes constant.

Add processing to the includes/init.php file. This file works as the traffic cop to decide
what task needs to be done. Up until now the implied task has been to display pages. Set up a
switch to check for tasks with a case block where the condition is equal to contact .maint.
Break out at the end of the case block.

// Process based on the task. Default to display
Stask = filter_input (INPUT_POST, 'task', FILTER_SANITIZE_STRING) ;
switch (S$task) {

case 'contact.maint'

break;

}

Within the case block you created in step 5, run a function to process the task. The
$results return consists of an array where the first element is a redirect to different content
page, if any. The second element contains a message, which is assigned the $message vari-
able. If there is a redirect page, move the message to a SESSTON variable and redirect. Change
the code to this code:

// Process based on the task. Default to display
Stask = filter_input (INPUT_POST, 'task', FILTER_SANITIZE_STRING) ;
switch (S$task) {
case 'contact.maint'
// process the maint
Sresults = maintContact () ;
Smessage .= Sresults([1];
// If there is redirect information
// redirect to that page
if (Sresults[0] == 'contactmaint') {
// pass on new messages
i1f (Sresults[l]) {
$_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=contactmaint");
exit;

Trylt | 309

}
break;
}

8. Because you are using a SESSTON variable you need to start the session at the very beginning
of the file, just after the documentation:

session_start(); // starts new or resumes existing session

9. Add processing to check the SESSION for a message and move it to $message and then
remove it from the SESSTON with an unset. Put this before the task processing.

// Initialize message coming in

Smessage = '';

if (isset($_SESSION['message'])) {
Smessage = htmlentities($_SESSION|['message'l]);
unset ($_SESSION['message']) ;

}

10. Add the maintcontact () function in includes/functions.php. Start by initializing
the $results variable. If the Save button was clicked and equals save, check the token.
If there is a problem, put a message in the result. Otherwise, filter the data from the form
and put it in an array called $item. Use that array to create a new Contact object. Run the
addrecord () method of the object to add the row to the database, putting the results in
Sresults.

function maintContact () {
Sresults = '';
if (isset($S_POST['save']) AND $_POST['save'] == 'Save') {
// check the token
SbadToken = true;
if (!isset($_POST['token'])
|| !'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
$results = array('', 'Sorry, go back and try again. There was a
security issue.');
SbadToken = true;
} else {
SbadToken = false;
unset ($_SESSION|['token']) ;
// Put the sanitized variables in an associative array
// Use the FILTER_FLAG_NO_ENCODE_QUOTES to allow names like O'Connor
$item = array ('id' => (int) $_POST['id'],
'first_name' => filter_input (INPUT_POST, 'first_name'
FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ,

'last_name' => filter_input (INPUT_POST, 'last_name'
FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ,

'position’ => filter_input (INPUT_ POST, 'position',
FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ,

'email' => filter_input (INPUT_POST, 'email',

FILTER_SANITIZE_STRING),

310 | LESSON 22 ENTERING DATA

'phone’ => filter_input (INPUT_POST, 'phone',
FILTER_SANITIZE_STRING)
)

// Set up a Contact object based on the posts
Scontact = new Contact($item);
Sresults = $contact->addRecord() ;

}

return S$results;

}

11. Add the public method addrecord () in includes/classes/contact.php. This function
calls the method _verifyTInput (). If the data is verified, get the database connection. Set up
the data by creating the TNSERT statement. Use the Database: :prep () method to prepare
the data. Create the array sresult () where the first element is blank for normal processing,
or contactmaint if there is an error where the user should stay on the contactmaint page.
The second element contains a success message or an error message.

public function addRecord() {

// Verify the fields
if ($this->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

// Prepare the data
Squery = "INSERT INTO contacts (first_name, last_name, position, email,
phone)
VALUES ('" . Database::prep($this->first_name) . "',
'" . Database::prep($Sthis->last_name) . "',
'" . Database::prep(Sthis->position) . "',
'" . Database::prep($this->email) . "',
'" . Database::prep(Sthis->phone) . "')";
// Run the MySQL statement
if ($Sconnection->query ($query)) {
Sreturn = array('', 'Contact Record successfully added.');

// add success message
return Sreturn;

} else {
// send fail message and return to contactmaint
$return = array('contactmaint', 'No Contact Record Added. Unable to

create record.');
return $return;

}

} else {
// send fail message and return to contactmaint
$return = array('contactmaint', 'No Contact Record Added. Missing

required information.');
return S$return;

Trylt | 31

12. Add the protected function _verifyTInput () in includes/classes/contact.php. This
method checks that the required fields have been filled in. It returns false if there is an error.

protected function _verifyInput() {

Serror = false;

if ('trim(Sthis->first_name)) {
Serror = true;

}

if ('trim(Sthis->last_name)) {
Serror = true;

}

if (Serror) {
return false;

} else {
return true;

}

13. Inindex.phpchangethe<div class:"message">SecﬁontojustdmpbytheSmessage
variable:

<div class="message">
<?php echo $message; ?>
</div><!-- end message -->

Watch the video for Lesson 22 on the DVD or watch online at www .wrox.com/
go/24phpmysqgl .

23

Selecting Data

In this lesson you learn how to retrieve data from the database. The SELECT command is argu-
ably the most common MySQL command you use in PHP programs. It is also one of the most
complex, with clauses that enable you to choose what table(s) you use, which columns are
returned, what conditions must be met before a row is selected, what order to sort the data in,
and whether and how to group and summarize the data.

You work with a single table at a time in this lesson. In the next lesson you learn how to use
multiple tables. The table used to illustrate this lesson is shown in Figure 23-1 and is created
from the following code:

CREATE TABLE IF NOT EXISTS

'tablel' (

'id' int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
'description' text, id description code
'code' int(11) NOT NULL DEFAULT '42' 101 abc 99
) ENGINE=MyISAM; 102 abe i5
103 a'bec 15
INSERT INTO 'tablel' ('id', 'description', 'code') VALUES —_— -
(101, 'abc', 99),
(102, 'a''bec', 15), e | el =
(103, 'a''bec', 15), 106 ghi 23
(104, 'a''bc', 15), 107 jkl 15
(105, 'def’, 23), 108 mno 15
(106, 'ghi', 23), 100 i i
(107, 'jkl1', 15),
(108, 'mno', 15), 110 s 42
(109, 'par', 23), 11 vwx 42
(110, ‘'stu', 42), 112 yza 42
(111, tvwxt, 42), 118 efg 99
(112, ‘'vyza', 42),
(118, 'efg', 99);

FIGURE 23-1

314 | LESSON 23 SELECTING DATA

USING THE SELECT COMMAND

The easiest form of the SELECT command is to select all fields and rows from a single table:

The asterisk (*) indicates that all fields are to be selected and FrRoM ' tablel' tells which table to

SELECT * FROM 'tablel';

use. By default all rows are selected.

To select only some of the fields to show, specify those fields instead of using an * as in the following

code and shown in Figure 23-2:

Whatever order you put the fields in is the order in which they are displayed as shown in the follow-
ing code and Figure 23-3. This change in order is just for the display. The SELECT command does

SELECT 'id', 'description' FROM 'tablel';

not change anything in the database itself.

SELECT 'description', 'id' FROM 'tablel’';

id description description id
101 abc abc 101
102 a'be a'be 102
103 a'e a'be 103
104 a'be a'be 104
105 det def 105
106 ghi ghi 106
107 jkl jki 107
108 mno mno 108
109 par pqr 109
110 stu stu 110
111 vwx VWX 11
112 yza yza 112
118 efg efg 118

FIGURE 23-2 FIGURE 23-3

It is very tempting to always use the asterisk (*) to select your fields instead of
writing out just the ones you need. You will see this done a lot, especially by pro-
grammers who don’t know MySQL well. However, the * is more resource inten-
stve and you should avoid it if it is not needed.

The SELECT statement is made up of clauses. These clauses are the building blocks for creating the
statement. You are already using two clauses: the select expression where you chose the fields and

Using the SELECT Command | 315

the FrRoM clause. There is a list of the clauses in the MySQL documentation at http: //dev.mysql
.com/doc/refman/5.6/en/select.html. The other common clauses include WHERE, ORDER BY,
and LIMIT.

It is important that the clauses are in the right order. If you have problems with a
SELECT command, check the manual to see that you have the different clauses in
the right order. In general you start with the SELECT expression and then follow
with FROM, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT, PROCEDURE, and INTO.
It’s outside the scope of this book to go over all the different clauses.

The sELECT expression clause has many possibilities. You can rename using aliases. This code
renames the id field to myid. See Figure 23-4.

SELECT 'id' AS 'myid', 'description' FROM 'tablel';

myid description
101 abc

102 a'bec
103 abe
104 a'be
105 def
106 ghi
107 jkl
108 mno
109 par
110 stu
111 vwx
112 yza
118 efg

FIGURE 23-4

A common select expression is COUNT (). If you use an *, the result is a count of all the COUNT(*)
rows selected. If you use a field then the result is the count of all the rows selected 13
where that field is not NULL. See Figure 23-5.

SELECT COUNT (*) FROM 'tablel';

FIGURE 23-5

Another keyword that comes in handy is the prsTINCT keyword. This

.) . . .) COUNT(DISTINCT "description’)
indicates that if duplicates exist, only one is used. In the following 1
example you count the different descriptions that are in the table. See

Figure 23-6 FIGURE 23-6

SELECT COUNT (DISTINCT 'description') FROM 'tablel';

316 | LESSON 23 SELECTING DATA

You can make complex expressions. You can use string functions on text fields. item
String functions are listed at http://dev.mysql.com/doc/refman/5.6/en/string- abc, a
functions.html. Some common functions are CONCAT () to join fields, cONCAT_ws ::z‘:
to concatenate with a separator, TRIM () to remove leading and trailing spaces, and SR
SUBSTR () or SUBSTRING () to return part of the field. With numeric fields you can use def, d
numeric functions. Numeric functions are listed at http: //dev.mysql .com/doc/ ghi. g
refman/5.6/en/numeric-functions.html. MySQL automatically makes simple J:;I; =
conversions but occasionally you may need to change the data type of the field. Use par, ’p
the cast functions that are listed at http://dev.mysqgl.com/doc/refman/5.6/en/ stu, s
cast-functions.html. The following code takes the description and appends it with b
a comma, a space, and the first letter of the description and then calls the result item. g:';’
The result is shown in Figure 23-7. !
FIGURE 23-7
SELECT CONCAT('description', ', ', SUBSTRING('description',1,1)) AS
"item'

FROM 'tablel';

When you use MySQL with PHP, you can choose to perform some actions in either the MySQL
statement or in PHP. Which way you choose depends on how comfortable you are with each lan-
guage and what the performance implications are. Some people always select all fields with the *
rather than take the time to enter just the fields that they need. This has an advantage if you
later want to use another field from that selection, but it means that you are taking a perfor-
mance hit on the query. If your tables are small, the hit is irrelevant. However, if you have blobs
of data or a large number of records, it could become significant. On the other hand, complex
selections can take longer than simple selections so you could be better off doing the manipula-
tions in PHP.

If you entered some of the commands in this lesson in phpMyAdmin, you may have noticed
that they often append the LIMIT clause. The LIMIT clause is a way to limit the number

of rows returned at one time. There are limits, in both MySQL and PHP, in the amount of
server processing time used before an error is thrown. Using LIMIT allows you to receive
your results in digestible bits. L.TMIT is frequently used for pagination as well. There are
two different syntaxes for LIMIT. The following code gives three ways to select the first
five rows:

SELECT * FROM 'tablel' LIMIT 5;
SELECT * FROM 'tablel' LIMIT 0, 5;
SELECT * FROM 'tablel' LIMIT 5 OFFSET O0;

And here are two ways to select the next five rows:

SELECT * FROM 'tablel' LIMIT 5, 5;
SELECT * FROM 'tablel' LIMIT 5 OFFSET 5;

The limiting is based on selected, ordered rows.

The orRDER BY clause enables you to return the rows in a given sequence. You specify the field or
alias and whether the order should be ascending or descending. If you don’t specify a direction,

Using WHERE | 317

ascending is assumed. The following code returns the rows in order by the description in ascending
order as shown in Figure 23-8.

SELECT * FROM 'tablel' ORDER BY 'description' ASC

You can string together multiple fields/directions to create more complex orders. The following code
orders by the code in reverse order and then by the description (see Figure 23-9):

DESC,

'description' ASC

SELECT * FROM 'tablel' ORDER BY
id description -~ code id description code
102 a'be 1) 101 abc 99
103 a'be 15 118 efg 99
104 a'bc) 110 stu 42
101 abc 99 111 vwx 42
105 def 23 112 yza 42
118 efg 99 105 def 23
106 ghi 23 106 ghi 23
107 jkl 15 109 par 23
108 mno 15 102 a'be 15
109 par 23 103 a'bc 15
110 stu 42 104 a'bc 15
111 wwx 42 107 jkl 15
112 yza 42 108 mno 15
FIGURE 23-8 FIGURE 23-9
USING WHERE

The WHERE clause is the clause that you use to pick which rows to select. If
there is no WHERE clause then all rows are selected. A WHERE clause can be as
simple as it is in the following command in which it selects the row with the

id of 105 as shown in Figure 23-10:

SELECT * FROM

'tablel' WHERE

105;

id description code
105 def 23

FIGURE 23-10

A wHERE clause can use most of the functions and operators that MySQL uses. For complete infor-

mation, see the following pages in the online manual:

>

Expression Syntax: This explains things like how to use expressions such as aND and or

(http://dev.mysqgl.com/doc/refman/5.6/en/expressions.html).

Comparison Functions and Operators: This explains the different ways that you can
compare values. See Table 23-1 for common operators or the manual for all the functions
and operators (http://dev.mysqgl.com/doc/refman/5.6/en/comparison-operators

.html#operator_not —between).

318 |

LESSON 23 SELECTING DATA

TABLE 23-1: MySQL Comparison Operators

OPERATOR

<>

<=>

IS NULL

IS NOT NULL

IS

LIKE

NOT LIKE

BETWEEN... AND...

NOT BETWEEN... AND...

DESCRIPTION

Equal (Notes: PHP uses a double equal sign but MySQL uses a single;
If a NULL is on either side, the result is NULL.)

Greater than

Less than

Greater than or equal
Less than or equal
Not equal to

Not equal to

Equal to (NULL is safe. NULL<=>NULL is true. NULL<=> other things is
false.)

Is the value NULL
Is the value not NULL
IS TRUE, IS FALSE, IS NOT TRUE, IS NOT FALSE

Match to a pattern character by character

% wildcard matches any number of characters including zero;
_ (underscore) wildcard matches any single character

Does not match to the pattern

Checks to see if a value is within this range

This does data type casting, but you should use CAST () to explicitly
convert date and time values to the same type

Checks to see if a value is not within this range

Literal Values Syntax: This explains things such as when you need to use quotes and
how to specify dates and times. (Hint: In general, you don’t need quotes for numbers but
you do for strings.) See the details at http://dev.mysql.com/doc/refman/5.6/en/

literals.html.

Functions and Operators: The table of contents for all the functions and operators is at
http://dev.mysqgl.com/doc/refman/5.6/en/functions.html.

Selecting Data in PHP | 319

SELECTING DATA IN PHP

You frequently select data in a MySQL table using PHP. Selecting data through a PHP program

using a MySQL command takes four steps:
1. Make a connection to the database.
2. Create a safe query with the command.
3. Run the query.
4. Read the results.

The following code makes the connection and creates a safe query. Rather than just running the
query, use it as the right side of an assignment. This creates a mysgli_result object that you use to
read the results via methods in the result object. This example takes each row, one at a time,

and puts it into an associative array. It uses a
while loop to loop through the results and
prints each row as it retrieves it. See the results
in Figure 23-11.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database

Successful connection to MySQL

Array ([id] => 102 [description] => a'bc [code] => 15)
Array ([id] == 103 [description] => a'bc [code] => 15)
Array ([id] == 104 [description] => a'bc [code] == 15)
Array ([id] == 107 [description] => jkl [code] == 15)
Array ([id] => 108 [description] => mno [code] => 15)

FIGURE 23-11

Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;

if ($connection->connect_error) {
die('Connect Error: '
} else {

Sconnection->connect_error) ;

echo 'Successful connection to MySQL
';

// Set up the query

$query = "SELECT * FROM 'tablel' "
. " WHERE 'code' = 15"

" ORDER BY 'description' ASC "

N~ .

// Run the query
Sresult_obj = '';

$result_obj = $connection->query($query);

// Read the results
// loop through the result object,

row by row

// reading each row into an associative array
while($Sresult = $result_obj->fetch_array(MYSQLI_ASSOC)) {

320 | LESSON 23 SELECTING DATA

// display the array
print_r ($result);
echo '
';

}

The example prints out the array, but you can do anything with it at that moment before it is over-
written with the next row. This code copies the array to another array so you end up with an array
of arrays, which it prints after it has finished collecting all the rows. See Figure 23-12.

// Read the results

// loop through the results, row by row

// reading each row into an associative array

while(Sresult = $result_obj->fetch_array (MYSQLI_ASSOC)) {
// collect the array
$item[] = $result;

}

// print array when done

echo '<pre>';

print_r($item);

echo '</pre>';

Successful connection to MySQL

Array
{
[0] => Array
{
[id] => 102
[description] => a'be
[code] => 15

[1] => Array
(

[id] => 103
[description] => a'be
[code] => 15

[2] => Array
[id] => 104
[description] => a'be
[code] => 15

[3] => Array
[id] => 107
[description] => jkl
[code] => 15

[4] => Array
[id] => 108

[description] => mno
[code] => 15

)

FIGURE 23-12

The online PHP manual lists the different methods that you can use to read the results at www.php
.net/manual/en/class.mysqgli-result.php. Here are examples of some of them.

Trylt | 321

HTRYIT

Available for
download on
Wrox.com

fetch_array (MYSQLT_ASSOC): This returns an associative array. Loop through to get all the
rows. Same as fetch_assoc ().

fetch_array (MySQLI_NUM): This returns a numeric array. Loop through to get all the rows.
Same as fetch_row().

fetch_array (MYSQLI_BOTH): This returns both an associative array and a numeric array
with the same data. Loop through to get all the rows. This is the default if no type is
specified.

fetch_all (MySQLT_aAssoc): This returns all the rows as an associative array.
fetch_all (MySQLI_NuM): This returns all the rows as a numeric array.

fetch_all (MySQLT_BOTH): This returns all the rows both as an associative array and a
numeric array with the same data.

fetch_object (Sclass_name): This returns an object of the row. Loop through to get all
the rows. If you give it a class name, it uses that class to create the object. If there is no class
name it will create a stdclass object, which is a predefined class.

These are also available as ordinary functions, which need the mysqli result variable as a parameter.
You don’t need it for the object method form because the object already knows that information.

>

mysqgli_fetch_array ($result, MYSQLT_ASSOC): This returns an associative array. Loop
through to get all the rows. Same as mysqli_fetch_assoc($result).

mysqgli_fetch_array($result, MYSQLT_NUM): This returns a numeric array. Loop through
to get all the rows. Same as mysgli_fetch_row(Sresult):

mysqgli_fetch_array (MYSQLI_BOTH): This returns both an associative array and a numeric
array with the same data. Loop through to get all the rows. This is the default if no type is
specified.

mysqli_fetch_all ($result, MYSQLI_ASSOC): This returns all the rows as an associative
array.

mysqli_fetch_all ($result, MYSQLI_NUM): This returns all the rows as a numeric array.

mysqli_fetch_all ($result, MYSQLI_BOTH): This returns all the rows both as an associa-
tive array and a numeric array with the same data.

mysqli_fetch_object ($result, $class_name): This returns an object of the row. Loop
through to get all the rows. If you give it a class name, it uses that class to create the object. If
there is no class name, it creates a stdClass object, which is a predefined class.

In this Try It, you retrieve data from the Case Study database and use it to populate the website
instead of using hardcoded data. You start with the About Us page, pulling the information from
the contacts table. Then you do the same for the Lot Categories page. Because you don’t have
any data in the categories table, you also create a maintenance page to add data to the

categories table.

322 | LESSON 23 SELECTING DATA

You can download the code and resources for this Try It from the book’s web
page at viww .wrox .com. You can find them in the Lesson23 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 22.
Alternatively, you can download the files from the book’s website at www.wrox.com. To re-create
the database tables, create an empty database and then import the install.sql file in
phpMyAdmin.

Hints

Use empty square brackets to add a value as a new element in an array.

The Lot Category maintenance page is set up the same way you set up the Contacts maintenance
page in the previous lesson.

Step-by-Step
Change the About Us page to get the contact information from the database.

1. In contents/about .php the information is currently hardcoded in to the $items array.
Replace those 30 lines with a static call to the content class method getContacts():

// Get the contact information
$items = Contact::getContacts();
2>

2. When the information was hardcoded, you had total control over what it was. By pulling
information from the database, you don’t have the same control. There could be malicious
information and there could be characters, such as ampersands, that should be encoded
as HTML entities, such as samp;. To fix this, pass all string information through the
htmlspecialchars () function:

<h2><?php echo htmlspecialchars($item->name()); ?></h2>
<p>Position: <?php echo htmlspecialchars ($item->getPosition()); ?>

<?php echo htmlspecialchars($item->getEmail()); ?>

Phone: <?php echo htmlspecialchars ($item->getPhone()); ?>
</p>

Trylt | 323

3. In includes/classes/contact.php add the getContacts () public static method to
retrieve the rows and fill the array. Use the fetch_object () method with the contact class
to read the rows into objects.

static function getContacts() {

}

// clear the results
Sitems = '';
// Get the connection
Sconnection = Database::getConnection();
// Set up query
Squery = 'SELECT * FROM 'contacts' ORDER BY first_name, last_name';
// Run the query
Sresult_obj = '';
Sresult_obj = $connection->query (Squery) ;
// Loop through the results,
// passing them to a new version of this class,
// and making a regular array of the objects
try {
while(Sresult = $result_obj->fetch object('Contact')) {
$items[]= $result;
}
// pass back the results
return($items) ;

catch (Exception S$e) {
return false;

Create a maintenance page so you can add lot categories into the categories table. Add the lot cat-
egories into the categories table. Change the Lot Categories page to get the information from the

database.

1. In contents/categories.php add documentation at the beginning of the file:

<?php
/**
* categories.php
*
* Content for Categories page
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/

2. Follow that with the code to load the $items variable using the static getCategories ()
method from the category class. If nothing is returned, initialize $items to an array so that
later use of the variable doesn’t create errors.

/7
$i

Get the category information
tems = Category::getCategories();

324 | LESSON 23 SELECTING DATA

if (empty($items)) {
Sitems = array();
}

?>

3. Inthe <hi> header, add a link to the new data entry page. Give it the class button for the
CSS styling.

<hl>Categories<a class="button"
href="index.php?content=categorymaint&cat_id=0">Add</hl>

4. Wrap the first <1i>...</1i> in a foreach loop to loop through the $items array.

<?php foreach ($items as $i=>$item) : ?>
<1li class="row0">

</1li>
<?php endforeach; ?>

5. Change the <1i> class to calculate the class for either row0 or rowl based on the $i key
variable:

<1li class="row<?php echo $i % 2; ?>">

6. Set up the images. The table has a field for the name of the file in the images folder. There is
another file with the same name in the images/thumbnail folder. You want to check to see
if these files exist before trying to display them, to prevent broken links and also verify that
what you display is an actual filename in a specific folder. If a file doesn’t exist, display a
generic image instead.

<?php
Simage = 'images/'. S$item->getCat_image() ;
if (!is_file($image)) {
$image = 'images/nophoto.jpg';
}
Simage_t = 'images/thumbnails/'. $item->getCat_image() ;

if (!is_file(simage_t)) {
S$image_t = 'images/thumbnails/nophoto.jpg';
}

7>

7. Change the image references to the new image variables:
<div class="list-photo">
<a href="<?php echo $image; ?>">
<img alt="" src="<?php echo $image_t; ?>"/>
</div>

8. Change the <h2> link to assign the content= parameter based on the category name.
Change <h2> text to the category name as well. Change the description to use the category
description and change the content= parameter in the <a> tag link to the category name in
lowercase.

<div class="list-description">
<h2>

<a href="index.php?content=<?php echo
htmlspecialchars($item->getCat_name()); ?>&sidebar=catnav">

Trylt | 325

<?php echo htmlspecialchars (strtolower($item->getCat_name())); ?>
</h2>
<p><?php echo htmlspecialchars($item->getCat_description()); ?></p>
<a class="button display" href="index.php?content=<?php echo &
htmlspecialchars (strtolower($item->getCat_name())); ?>&sidebar=catnav">
Display Lots
</div>

9. Remove the rest of the <1i> groups.

10. In includes/classes/category.php add the getCcategories () public static method to
retrieve the rows and fill the array. Rather than directly creating the category object, use
fetch_array (MYSQLI_ASSOC) to retrieve the row. Use that array to create a new Category
object that is added as an element in the $items array. This is a different way of creating the
same $items array as is created in the Contact class using the fetch_object ().

static public function getCategories() {
// clear the results
Sitems = '';
// Get the connection
Sconnection = Database::getConnection();
// Set up the query
Squery = 'SELECT * FROM 'categories' ORDER BY cat_name';

// Run the query
Sresult_obj = '';
Sresult_obj = $connection->query (Squery) ;
// Loop through getting associative arrays,
// passing them to a new version of this class,
// and making a regular array of the objects
try {
while($result = $result_obj->fetch_array(MYSQLI_ASSOC)) {
$items[]= new Category($result);
}
// pass back the results
return($items) ;

catch (Exception S$e) {
return false;

}

1. AddtheaddRecord()nuihodtoaddrowmtothecategoriestabb:

public function addRecord() {

// Verify the fields
if ($this->_verifyInput()) {

// Get the Database connection
$connection = Database::getConnection();

// Prepare the data

326 | LESSON 23 SELECTING DATA

Squery = "INSERT INTO categories (cat_name, cat_description, cat_image)
VALUES ('" . Database::prep($this->cat_name) . "',
'" . Database: :prep($this->cat_description) ."',
'" . Database::prep($this->cat_image) . "')";

// Run the MySQL statement
if ($connection->query (Squery)) {
Sreturn = array('', 'Category Record successfully added.');

// add success message
return S$Sreturn;

} else {
// send fail message and return to categorymaint
Sreturn = array('contactmaint', 'No Category Record Added.

Unable to create record.');
return Sreturn;

}

} else {
// send fail message and return to categorymaint
Sreturn = array('categorymaint', 'No Category Record Added.

Missing required information.');
return Sreturn;

}

12. Addthe _verifyInput () method to verify that a category name was entered:

protected function _verifyInput() {

Serror = false;

if (!'trim(Sthis->cat_name)) {
Serror = true;

}

i1f (Serror) {
return false;

} else {
return true;

}

13. Create content/categorymaint .php, which is the form for data entry of the
categories:

<?php
/**
* categorymaint.php

*

* Maintenance for the Categories table

*

* @version 1.2 2011-02-03

@package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

*

* @since Since Release 1.0
*/

$item = new Category;

2>

<hl>Category Maintenance</hl>

Trylt | 327

<form action="index.php?content=categories" method="post" name="maint"
id="maint">

<fieldset class="maintform">

<legend>Add a Category</legend>

<label for="cat_name" class="required">Category</label>

<input type="text" name="cat_name" id="cat_name" class="required"
value="<?php echo $item->getCat_name(); ?>" />

<label for="cat_description">Description</label>

<textarea rows="5" cols="60" name="cat_description"
id="cat_description"><?php echo $item->getCat_description(); ?>
</textarea></1li>

<label for="cat_image" >Image</label>

<input type="text" name="cat_image" id="cat_image"
value="<?php echo S$item->getCat_image(); ?>" /></1li>

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal (mt_rand(1,1000000) . $salt);

$_SESSION|['token'] = S$token;

?>

<input type="hidden" name="cat_id" id="cat_id"
value="<?php echo S$item->getCat_id(); ?>" />

<input type="hidden" name="task" id="task" value="category.maint" />
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>
<input type="submit" name="save" value="Save" />
Cancel
</fieldset>
</form>

14. In includes/init.php add a case block in the switch statement for category.maint to
process the category maintenance form:

case 'category.maint'

// process the maint

Sresults = maintCategory () ;

Smessage .= Sresults[1];

// If there is redirect information

// redirect to that page

if (Sresults[0] == 'categorymaint') {
// pass on new messages
1f ($results[l]) {

$_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=categorymaint");
exit;
}
break;

15. Add the function maintCategory () to includes/functions.php:

function maintCategory () {
Sresults = '';

328 | LESSON 23 SELECTING DATA

if (isset($_POST['save']) AND $_POST['save'] == 'Save'
// check the token
SbadToken = true;
if (!isset ($_POST['token'])
|| !'isset($_SESSIONI['token'])
| | empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array('', 'Sorry, go back and try again.

There was a security issue.');
SbadToken = true;
} else {
SbadToken = false;
unset (S_SESSION|['token']) ;

) {

// Put the sanitized variables in an associative array

// Use the FILTER_FLAG_NO_ENCODE_QUOTES
// to allow quotes in the description

$item = array ('cat_id' => (int) $_POST['cat_id'],

'cat_name' => filter_input (INPUT_POST, 'cat_name'
FILTER_SANITIZE_STRING),

'cat_description' => filter_input (INPUT_POST, 'cat_:

FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ,
'cat_image' => filter_input (INPUT_POST, 'cat_image'

FILTER_SANITIZE_STRING)
)

// Set up a Category object based on the posts
Scategory = new Category($Sitem);
Sresults = S$category->addRecord() ;

}

return S$results;

}

16. Go to the new entry screen and add the lot categories shown in Figure 23-13.

Categories

Gents

Gents' clothing from the 18th century to medern times

Display Lots

Sporting
Sporting clothing and gear.

Display Lots

Women

Women's Clothing from the 18th century to modern times

Display Lots

|t

FIGURE 23-13

description',

Trylt | 329

17.

Change content/catnav.php to use the categories in the categories table rather than

hardcoded links:

<?php

/**

* catnav.php

*

* Menu for the categories

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0

*/

Sitems = Category::getCategories();

?>

<h3 class="element-invisible">Lot Categories</h3>
<ul class="catnav">

<?php foreach ($items as $i=>$item) : ?>
<a href="index.php?content=<?php echo

htmlspecialchars(strtolower (Sitem->getCat_name())); ?>&sidebar=catnav">
<?php echo htmlspecialchars($item->getCat_name()); ?>
<?php endforeach; ?>

Watch the video for Lesson 23 on the DV D or watch online at www .wrox.com/
go/24phpmysqgl .

Using Multiple Tables

In this lesson, you work with multiple tables. MySQL does not explicitly link tables together.
Instead you design the tables so that they have fields that contain the information you need to
link to another table. You then use that information in separate SELECT statements for each
table or by using multiple tables in a SELECT statement.

The Jo1n clause in the SELECT statement specifies what the links are between the tables.
Subqueries let you create compound commands by using the result of one statement nested in
another statement.

The examples in this lesson are based on three tables: the authors table that contains the
author’s name, the types table that contains the valid types of books, and the books table that
lists the title along with a field whose value matches to the author’s primary key plus a field
whose value matches to the type’s primary key. This is a simplified database where there is
only one author per book and each book is in only one type.

You can download the code for this example from the book’s web page at
www . wrox.com. You can find them in the Lesson24 folder in the download in
a ﬁle labeled 1esson24a.sql.

The first table is the authors table as shown in Figure 24-1.
The second table is the types table as shown in Figure 24-2.

The third table is the books table as shown in Figure 24-3.

id title author type id

1 Along Day in Spring 3 1

id first name last name 2 Fifteen Hours in March 2 2
1 Sally Meyers type._id type_name 3 Green Trees Go Wild l =]
2 George Smith 1 History 4 And Then It Happened 1 1
3 Peter Gabriel 2 Suspense 5 Missing in Action 5 2
5 Dale Mercer 3 Science Fiction 6 Fourteen Days in February 2 e

FIGURE 24-1 FIGURE 24-2 FIGURE 24-3

| LESSON 24 USING MULTIPLE TABLES

USING THE JOIN CLAUSE

With what you already know, you can work with multiple tables simply by
using the information from one table as the basis for the WHERE clause for the
other table. For instance, you know that the following command lists the
author George Smith. See Figure 24-4.

SELECT first_name, last_name FROM authors WHERE id = '2';

The link between the books table and the authors table is that the author
field in the books table and the id field (the primary key) of the authors
table contain the same value. To list the books that George Smith wrote,
you select from the books table all the rows where the author field is equal

to 2, as shown in the following SELECT command and in Figure 24-5:

SELECT title FROM books WHERE author = '2°';

first_name
George

last_name
Smith

FIGURE 24-4

title
Fifteen Hours in March

Fourteen Days in February

FIGURE 24-5

You can use more than one table in the SELECT statement. This command combines the books table

and the types table. See the results in Figure 24-6.

SELECT title, type_name FROM books, types;

title type_name

A Long Day in Spring History

A Long Day in Spring Suspense

A Long Day in Spring Science Fiction
Fifteen Hours in March History

Fifteen Hours in March Suspense
Fifteen Hours in March Science Fiction
Green Trees Go Wild History

Green Trees Go Wild Suspense
Green Trees Go Wild Science Fiction
And Then It Happened History

And Then It Happened Suspense

And Then It Happened Science Fiction
Missing in Action History
Missing in Action Suspense
Missing in Action Science Fiction
Fourteen Days in February History
Fourteen Days in February Suspense
Fourteen Days in February Science Fiction

FIGURE 24-6

These are probably not the results that you were intending.

Every book is listed along with every type. The JoIN clause is
used to specify how the tables should be merged. In this case
you want to merge rows based on when the type_id in both
tables is equal. Because the field name type_id is present in
both tables, you need to specify the table when using the field.

title

A Long Day in Spring
Fifteen Hours in March
Green Trees Go Wild

And Then It Happened
Missing in Action

Fourteen Days in February

type_name
History
Suspense
Science Fiction
History
Suspense
Suspense

The following code displays a merged row of the title and

type for each book as shown in Figure 24-7: FIGURE 24-7

Using the JOIN Clause | 333

SELECT title, type_name
FROM books JOIN types ON books.type_id = types.type_id

It is common practice to use aliases as a shortcut when you have to qualify names with the table.
This is another way of writing the previous command:

SELECT title, type_name
FROM books AS b JOIN types AS t ON b.type_id = t.type_id

In the previous example, the linking fields had the same name. The names of the fields are irrelevant.
The books table and the authors table both use the field name id for their primary keys. The fields,
even though they have the same name, refer to different things. Qualifying the fields with the table
name or alias removes the ambiguity.

The following code creates rows consisting of the author’s last

name, first name, and the book’s title in order by author and Tullvidide thie

. Gabriel, Peter A Long Day in Spring
then title. It joins the authors table, giving it an alias of a, and DS E e
the books table, giving it an alias of b, based on the id in the Meyers, Sally Green Trees Go Wild
authors table matching the author field in the books table. Smith, George Fifteen Hours in March

. . . Smith, G Fourteen Days in Feb

The author’s name is concatenated into a single field. The result)
is shown in Figure 24-8. FIGURE 24-8

SELECT CONCAT (last_name, ', ', first_name) AS full_name, title

FROM authors AS a
JOIN books AS b ON a.id = author
ORDER BY full name, title;;

You can join more than two files. This example takes the previous example and adds the type of
book to the list. See Figure 24-9.

SELECT CONCAT(last_name, ', ', first_name) AS full_name, title, type_name
FROM authors AS a

JOIN books AS b ON a.id = author

JOIN types AS t ON b.type_id = t.type_id

ORDER BY full name, title;

full_name title type_name
Gabriel, Peter A Long Day in Spring History
Meyers, Sally And Then It Happened History
Meyers, Sally Green Trees Go Wild Science Fiction
Smith, George Fifteen Hours in March Suspense
Smith, George Fourteen Days in February Suspense

FIGURE 24-9

MySQL statements end with the semicolon, not the end of a line. Best practice is
to move to a new line as needed for readability and to keep the lines from getting
too long.

334 | LESSON 24 USING MULTIPLE TABLES

Notice that the author Dale Mercer is not on the list nor is the book Missing in Action. Only rows
with matches in both tables are selected with the plain Jo1n. There are different types of joins. The
default is a plain Jo1N, which is the same as TNNER JOIN.

If you want all the rows of a table, regardless of whether they find a match in the other file, you use
one of the OUTER JOIN keywords. To keep all rows of the first (left) table, use a LEFT OUTER JOIN.
To keep all the rows of the second (right) table, use a RTGHT oUTER JOIN. These are the same as a
LEFT JOIN and a RIGHT JOIN. Figure 24-10 illustrates the three types of joins.

JOIN
INNER JOIN

LEFT JOIN
LEFT OUTER JOIN

RIGHT JOIN
RIGHT OUTER JOIN

last_name first_name title

Mevyers Sally Green Trees Go Wild
FIGURE 24-10 Meyers Sally And Then It Happened

)) Smith George Fifteen Hours in March

In this example, Dale Mercer has no books, but using Smith George Fourteen Days in February
a LEFT JOIN includes him in the results. Any fields that Gabriel Peter ALong Day in Spring
should come from the other table are NULL. See the Blenots Lol AL
results in Figure 24-11. FIGURE 24-11

SELECT last_name, first_name, title
FROM authors AS a
LEFT JOIN books AS b ON a.id = author;

When you use a RIGHT JOIN in the same command, all the books are listed, even if they did not
match to an author in the authors table. See the results in Figure 24-12.

SELECT last_name, first_name, title
FROM authors AS a RIGHT JOIN books AS b ON a.id = author;

Using Subqueries | 335

last_name first_name title

Gabriel Peter A Long Day in Spring

Smith George Fifteen Hours in March

Meyers Sally Green Trees Go Wild

Meyers Sally And Then It Happened

NULL NULL Missing in Action

Smith George Fourteen Days in February
FIGURE 24-12

When I said that all the rows from a table are included,

that means all the rows that meet the other selection last_name first name title
criteria in the other clauses such as the wHERE and Meyers Sally SiseiteesCollvild
LIMIT clauses. The following query asks for all authors u::’:: i:ll}: :TLIMH 't Happened
whose last names start with an M. See the results in

Figure 24-13. FIGURE 24-13

SELECT last_name, first_name, title
FROM authors AS a LEFT JOIN books AS b ON a.id = author
WHERE last_name LIKE 'M%';

Use the 701N clause in PHP as part of ordinary SELECT commands. The JoIN clause is also used in
UPDATE and DELETE statements that you learn in later lessons.

USING SUBQUERIES —
. . . 3

Subqueries are SELECT statements nested inside other statements. These can be >

a handy substitute for J0TN and can, in some cases, do things that J0TN cannot. 1
However, if you are using large files there can be unexpected performance costs. .
This code gives you a list of the author IDs in the books table as shown in 5
Figure 24-14. 2

SELECT author FROM books; FIGURE 24-14

The WHERE field IN list clause selects rows where the fieldis found in the 1ist. You can use
the SELECT statement in the preceding code to generate the list. The following example lists all the
authors that have a book in the books table. See the results in Figure 24-15.

SELECT * id first_name last_name

FROM authors 1 Sally Meyers

WHERE id IN (SELECT author FROM books) ; 2 George Smith
Peter Gabriel

You need to be aware whether the subquery returns a single value, a list
of single values, or a list of multiple values because it needs to match FIGURE 24-15

336 | LESSON 24 USING MULTIPLE TABLES

what the outer statement expects. For instance, if you use WHERE field = value then value must be
a single value, not a list. The following code returns the error “Subquery returns more than 1 row.”

SELECT * FROM authors WHERE id = (SELECT author FROM books) ;
To fix this use either the keyword ALL or ANY. ALL means that all of the rows returned need to meet
the criteria. In this example, using ALL returns an empty list of authors (but no errors), because no
author wrote all the books in the books table. However, ANY means that the condition is satisfied as
long as at least one of the rows satisfied the criteria. So this code also shows the result in Figure 24-15:

SELECT * FROM authors WHERE id = ANY (SELECT author FROM books) ;

You also get the same results writing the same statement with Jo1N without using subqueries:

SELECT DISTINCT a.* i il author _ type._id

FROM authors AS a JOIN books i | el PRSI !

WHERE a.id = author; 2 Fifteen Hours in March 2 2

3 Green Trees Go Wild al &

You can use the subqueries in other statements, such as 4 And Then It Happened 1 1

the INSERT statement. This example uses SELECT queries 5 Missing in Action 5 2

of other tables and uses the results as the values for creat- 6 Fourteen Days in February 2 2

ing a new row. The updated books table looks like 7 Sixteen Seconds in March 2 2
Figure 24-16.

FIGURE 24-16

INSERT INTO books (title, author, type_id)

VALUES ('Sixteen Seconds in March',

(SELECT id FROM authors WHERE first_name = 'George' AND last_name = 'Smith'),
(SELECT type_id FROM types WHERE type_name = 'Suspense'));

) TRYIT

Available for
download on

Worem I this Try It, you do not use the Case Study. You create MySQL commands using SELECT JOINSs in
phpMyAdmin and then run those commands in PHP.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can find them in the Lesson24 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

Trylt | 337

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

Hints

Setting up complex MySQL statements first in phpMyAdmin can help you locate errors before using
them in a PHP program.

If the command works in phpMyAdmin and you get errors in PHP, add a var_dump ($query) ; line
just after you assign the MySQL statement to $query. This displays the command that is processed.
You can copy that and run it in the SQL tab in phpMyAdmin to find issues.

Remember that $query can contain only one command and no semicolons.

Step-by-Step
Create the tables to be used in this Try It. Perform the queries on the files.

1. If you followed along with the lesson, you can skip to step 4. The code for steps 1-3 is in the
Lesson24/exercise24a.sql file and you can import it into your database in phpMyAdmin.
Create and fill the authors table in phpMyAdmin as shown in

Figure 24-17. id first_name last_name
1 Sally Meyers

CREATE TABLE " authors’ (

George Smith
“id’ int(11) NOT NULL AUTO_INCREMENT,

oW M

Peter Gabriel
‘first_name' varchar (50) NOT NULL, — —
“last_name® varchar (50) NOT NULL,
PRIMARY KEY ('id") FIGURE 24-17
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
INSERT INTO “authors'® ('id’, “first_name', ‘last_name') VALUES
(1, 'Sally', 'Meyers'),
(2, 'George', 'Smith'),
(3, 'Peter', 'Gabriel'),
(4, 'Dale', 'Mercer');
2. Create and fill the types table in phpMyAdmin as shown in .
. type_id type_name
Figure 24-18. rRfrT
CREATE TABLE ‘types® (2 [Shsponss
‘type_id' int(11) NOT NULL AUTO_INCREMENT, 3 Science Fiction
“type_name’ varchar (20) NOT NULL,
PRIMARY KEY (' type id') FIGURE 24-18

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

INSERT INTO "types (type_id', ‘type_name') VALUES
(1, 'History'),

(2, 'Suspense'),

(3, 'Science Fiction');

338 | LESSON 24 USING MULTIPLE TABLES

3. Create and fill the books table in phpMyAdmin as shown in Figure 24-19.

id title author type_id
1 Along Day in Spring 3 1
2 Fifteen Hours in March 2 2
3 Green Trees Go Wild 1 3
4 And Then It Happened 1 1
5 Missing in Action 5 2
6 Fourteen Days in February 2 2
7 Sixteen Seconds in March 2 2

FIGURE 24-19

CREATE TABLE ‘books' (
id’ int(11) NOT NULL AUTO_INCREMENT,
“title’ wvarchar (50) NOT NULL,
‘author' int(11) DEFAULT NULL,
‘type_id' int(11) DEFAULT NULL,
PRIMARY KEY (id")

) ENGINE=MyISAM DEFAULT CHARSET=utf§;

INSERT INTO “books® (°id', ‘title’, “author', “type_id') VALUES
(1, 'A Long Day in Spring', 3, 1),

(2, 'Fifteen Hours in March', 2, 2),

(3, 'Green Trees Go Wild', 1, 3),

(4, 'And Then It Happened',K 1, 1),

(5, 'Missing in Action', 5, 2),

(6, 'Fourteen Days in February',K 2, 2),

(7, 'Sixteen Seconds in March', 2, 2);

4. List the title of the book and the first and last name of the author in phpMyAdmin as shown
in Figure 24-20.

title first_name last_name
Green Trees Go Wild Sally Meyers
And Then It Happened Sally Meyers
Fifteen Hours in March George Smith
Fourteen Days in February George Smith
Sixteen Seconds in March George Smith
A Long Day in Spring Peter Gabriel
FIGURE 24-20

SELECT title, first_name, last_name
FROM books JOIN authors AS a ON author = a.id

5. Take the MySQL statement in step 4, sort it by title, and display it using PHP as shown in
Figure 24-21.

Trylt | 339

A Long Day in Spring by Peter Gabriel

And Then It Happened by Sally Meyers
Fifteen Hours in March by George Smith
Fourteen Days in February by George Smith
Green Trees Go Wild by Sally Meyers
Sixteen Seconds in March by George Smith

FIGURE 24-21

<?php

define ("MYSQLUSER", "php24sql") ;
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS,
if ($connection->connect_error) {
die('Connect Error: ' . Sconnection->connect_error);
} else {

// Set up the query

Squery = "SELECT title, first_name, last_name "

" FROM books JOIN authors AS a ON author = a.id "
" ORDER BY “title’ ASC "

// Run the query
Sresult_obj = '';
Sresult_obj = $connection->query ($Squery) ;

// Read the results
// loop through the results, row by row
// reading each row into an associative array
while(Sresult = $result_obj->fetch_array (MYSQLI_ASSOC))
// collect the array
Sitems[] = S$Sresult;
}
// print array when done
foreach ($Sitems as S$item) {
echo Sitem['title']l. " by ' . Sitem['first_name']. ' '
name'];
//print_r (Sitem) ;
echo '
';

MYSQLDB) ;

Sitem['last_

6. List the type name, title, and full name of the author for any titles that contain “Day.” Put in
sequence by the type in descending sequence, then the title. The results are shown in Figure 24-22.

340 | LESSON 24 USING MULTIPLE TABLES

SELECT type_name, title, CONCAT (last_name, ', ', first_name) AS full_name
FROM books AS b

JOIN authors AS a ON author = a.id

JOIN types AS t ON b.type_id = t.type_id

WHERE title LIKE '$%Day%'

ORDER BY type_name DESC, title;

type_name ~ title full_name

Suspense Fourteen Days in February Smith, George

History AlLong Day in Spring Gabriel, Peter
FIGURE 24-22

7. Take the MySQL statement in step 6 and put it into a PHP statement to display as shown in
Figure 24-23.

Suspense: Fourteen Days in February by Smith, George
History: A Long Day in Spring by Gabriel, Peter

FIGURE 24-23
<?php
define ("MYSQLUSER", "php24sql");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . S$connection->connect_error);
} else {

// Set up the query
Squery = "SELECT type_name, title,
CONCAT (last_name, ', ', first_name) AS full name "
" FROM books AS b "
" JOIN authors AS a ON author = a.id "
JOIN types AS t ON b.type_id = t.type_id "
" WHERE title LIKE '%Day%' "
" ORDER BY type_name DESC, title "

// Run the query
Sresult_obj = '';
Sresult_obj = Sconnection->query ($Squery) ;

// Read the results

// loop through the results, row by row

// reading each row into an associative array
while($result = $result_obj->fetch_array (MYSQLI_ASSOC)) {

Trylt | 341

// collect the array
Sitems[] = Sresult;
}
// print array when done
foreach ($items as $item) ({
echo $item['type_name'] . ': ' . Sitem['title']. ' by ' . Sitem['full_
name'] ;
echo '
';

}

Watch the video for Lesson 24 on the DV D or watch online at www.wrox.com/
go/24phpmysqgl .

25

Changing Data

In this lesson, you learn how to change the data in your database using the UPDATE command.

There are multiple ways to process MySQL data commands. You have been using variations
on similar methods. In this lesson you learn a new way with prepared statements where you
set up the statements first and then you supply the field data separately. Prepared statements
are inherently safer because they discourage SQL injections.

The examples from this lesson use the same tables used in the examples in Lesson 24.

You can download the code for this example from the book’s web page at
www.wrox.com. You can find them in the Lesson25 folder in the download in a
ﬁle labeled 1esson25a.sql.

The first table is the authors table as shown in Figure 25-1.
The second table is the types table as shown in Figure 25-2.

The third table is the books table as shown in Figure 25-3.

id title author type id

1 AlLong Day in Spring 3 1

2 Fifteen Hours in March 2 2

id first_ name last_name 3 Green Trees Go Wild 1 3
1 Sally Meyers type_id type_name 4 And Then It Happened 1 1
2 George Smith 1 History 5 Missing in Action 5 2
3 Peter Gabriel 2 Suspense 6 Fourteen Days in February 2 2
5 Dale Mercer 3 Science Fiction 7 Sixteen Seconds in March ~ 2

FIGURE 25-1 FIGURE 25-2 FIGURE 25-3

344 | LESSON 25 CHANGING DATA

USING THE UPDATE COMMAND id first_name last_name

Sarah Meyers

-

The urPDATE command is used to change the data in your tables. To George Smith

2
change row 1 in the authors table from sally Meyers to Sarah 3 Peter Gabriel
Meyers, use the following code. The result is shown in Figure 25-4. 4 Dale Mercer
UPDATE authors SET first_name = 'Sarah' WHERE id = '1'; FIGURE 25-4

id first_ name last_name

If you leave off the WHERE clause, all rows are updated. See Figure 25-5 1 Sarah Meyers
for the results of the following code: 2 Sarah Smith
3 Sarah Gabriel
UPDATE authors SET first_name = 'Sarah'; 4 FSEraN M
FIGURE 25-5

If you do not specify a WHERE clause, the default is to select all rows. With the
UPDATE command that means that you could accidently update all rows if you
forget your WHERE clause.

Unlike INSERT, there is no way to update multiple rows with different data, so to restore the first
names you need four rows:

id first_name last_name
UPDATE authors SET first_name = 'Sally' WHERE id = '1l'; 1 Saly Meyers
UPDATE authors SET first_name = 'George' WHERE id = '2'; 2 George Smith
UPDATE authors SET f:!_rst_name = 'Peter' WHERE.:Ld = '3"'; 3 Peter Gabriel
UPDATE authors SET first_name = 'Dale' WHERE id = '4°';
4 Jeff Baamer
You can, however, update more than one field at a time. This code FIGURE 25-6
gives the results shown in Figure 25-6:
UPDATE authors SET first_name = 'Jeff', last_name = 'Baamer' WHERE id = '4°';

You can use clauses you learned for the SELECT statement in the UPDATE statement. The following
code updates the title field in the books table by adding an asterisk (*) to the end of the title for any
books written by someone with the name of sally. See the results in Figure 25-7.

UPDATE books JOIN authors AS a ON author = a.id
SET title = CONCAT(title, '*') WHERE first_name = 'Sally';

id title author type_id
ALong Day in Spring

Fifteen Hours in March
Green Trees Go Wild*
And Then It Happened*
Missing in Action

Fourteen Days in February

N o ;s W N =
MR = s N
N 0N = W NN =

Sixteen Seconds in March

FIGURE 25-7

Updating Data in PHP | 345

You can also use subqueries, though the table you are updating cannot be in the subquery. This code
appends a double asterisk (**) to any titles in books that have no entry in the authors table. See the
results in Figure 25-8.

UPDATE books SET title = CONCAT (title, '**')
WHERE author NOT IN (SELECT id FROM authors) ;

id title author type_id
1 Along Day in Spring

Fifteen Hours in March
Green Trees Go Wild"
And Then It Happened*
Missing in Action**

Fourteen Days in February

~N a o s~ w N
[ASTI S TS L I ST]
N NN =S N =

Sixteen Seconds in March

FIGURE 25-8

When you INSERT new rows you get an error if you try to insert a row that already exists. This
INSERT fails with a Duplicate Entry error:

INSERT INTO authors (id, first_name, last_name) VALUES ('4', 'Jane', 'Smith');

If you add an ON DUPLICATE KEY UPDATE clause to the INSERT statement, you specify that you want
MySQL to update the row if it already exists. See the following code and the results in Figure 25-9.

INSERT INTO authors (id, first_name, last_name)
VALUES ('4', 'Jane', 'Smith')
ON DUPLICATE KEY UPDATE first_name = 'Jane', last_name = 'Smith';

id first_name last_name

1 Sally Meyers
UPDATING DATA IN PHP =] LEUE S
3 Peter Gabriel
Updating data through a PHP program using MySQL commands takes 4] [Jume sl
three steps: FIGURE 25-9

1. Make a connection to the database.
2. Create a safe query with the command.
3. Run the query.

The following code uses the MySQL uPDATE command to change fields in the table authors. See the
result in Figure 25-10.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database

346 | LESSON 25 CHANGING DATA

$connection = @new mysqli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB);
if ($connection->connect_error) {

die('Connect Error: ' . $connection->connect_error) ;
} else {

echo 'Successful connection to MySQL
';

Sfirst_name = "Liam";
$last_name = "O'Reilly";
$id = 4;

// Prepare the data
if (get_magic_quotes_gpc()) {

$first_name = stripslashes($first_name);

$last_name = stripslashes($last_name);
}
$first_name = $connection->real_escape_string($first_name);
$last_name = $connection->real_escape_string($last_name);
$id = (int) $id;

// Set up the query
Squery = "UPDATE " authors™ "
. " SET “first _name = '$first name', “last_name' = '$last_name' "
. " WHERE 'id" = '$id'";

// Run the query and display appropriate message
if (!$result = $connection->query($query)) {
echo "No rows updated
";
} else {
echo $result . " row(s) successfully updated
";

id first_name last_name
Like the INSERT you learned in Lesson 22, you need to prepare the data 1 saly Meyers
before you post it to the database using PHP with UPDATE and REPLACE. 2 George Smith
The preparation consists of making it safe against SQL injections and to 3 Peter Gabriel
deal with quotes in string values because the wrong type of quote in the 4 Liam O'Reilly
wrong place might be seen as a MySQL control character and invalidate
FIGURE 25-10

the command.
Compare these lines of code:

$result_obj = Sconnection->query ("SELECT first_name FROM authors");
$result = Sconnection->query ("UPDATE authors SET first_name='Sally' WHERE id=4");

In the first line of code, the mysqgli: :query () method returns an object because it processes a
SELECT command. In this example, I am assigning it to a variable called $result_obj as a reminder
that it is an object, though it can be named anything. This object then needs to be read to get the
results of the SELECT statement. You learned several ways to read the result object in Lesson 23.

In the second line of code, the mysqgli: :query () method returns a Boolean (TRUE or FALSE) that
indicates the success of the action, in this case, the UPDATE command.

An object is returned by mysqgli: :query () when the command is SELECT, SHOW, DESCRIBE,
or EXPLAIN. The last three commands are used to show information about the structure of the

Using Prepared Statements | 347

database or internal details that can be used to optimize performance. All other commands, such as
INSERT, UPDATE, REPLACE, and DELETE just return TRUE or FALSE.

You have been primarily using the object-oriented method of the mysqli connection, but the code
can also be written with the procedural version as in this code and as shown in Figure 25-11:

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
$connection = @mysqli_connect (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB);

if (mysgli_connect_error()) {
die('Connect Error: ' . mysgli_connect_error());
} else {

echo 'Successful connection to MySQL
';

$first_name = "Danny";
$last_name = "O'Murphy";
$id = 4;

var_dump (Sconnection) ;

// Prepare the data
if (get_magic_quotes_gpc()) {

$first_name = stripslashes($first_name);

$last_name = stripslashes($last_name);
}
$first_name = mysqli_real_ escape_string($connection, $first_name);
$last_name = mysqli_real escape_string($connection, $last_name);
$id = (int) $id;

// Set up the query
$query = "UPDATE " authors™ "
" SET “first_name = '$first_name', ‘last_name' = '$last_name' "
. " WHERE “id’ = '$ida'";

id first name last_name

// Run the query and display appropriate message 1 Sally Meyers
if (!$result = mysqgli_query($connection, $query)) { 2 George Smith
echo "No rows updated
"; 51 BEEiEs Gabriel
} else {
4 D O'Murph
echo "Row(s) successfully updated
"; e st
} FIGURE 25-11

USING PREPARED STATEMENTS

Prepared statements are relatively new to PHP. With prepared statements, you define a statement
with placeholders and then you can rerun the statement multiple times and just give it the place-
holder information. Using prepared statements has three main benefits:

> They are more secure. SQL injection takes advantage of input variables to pass embedded
code that is unconsciously run by the processor. Prepared statements separate running code
from the variable values so the embedded code has no place to run.

348 |

LESSON 25 CHANGING DATA

They can have better performance. This is only true if you reuse the same prepared statement
multiple times. The program does the heavy lifting when it sets up the statement and then it’s
cheap to send new placeholder values.

They are more convenient to write. Just like templates in a word processing program, the
constant data is separated out from the dynamic data, which makes the statements easier to
work with. Additionally, you don’t need to worry about escaping quotes because the data is
separate from the command statement.

MYSQLI

The following code creates a prepared statement and then runs it to update the name of the author
in row 4 and then in row 3 of the authors table. See the result in Figure 25-12 and Figure 25-13.

<?php

define ("MYSQLUSER", "php24sgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . Sconnection->connect_error);
} else {
echo 'Successful connection to MySQL
';

Sfirst_name = "Gilly";
$last_name = "O'Donal";
$id = 4;

// Set up the prepared statement
$query = "UPDATE " authors™ "
. " SET “first name = ?, “last_name™ = ? "
. " WHERE 'id" = ?";
// Prepare the statement
$statement = $connection->prepare($query);
// Bind the parameters
$statement->bind_param('ssi', $first_name, $last_name, $id);
// Run the query
if (!$result = $statement->execute()) {
echo "No rows updated
";
} else {
echo "First row successfully updated
";

}

// Assign new values to the bound variables

Sfirst_name = "Meg";
Slast_name = "Mitchell";
$id = 3;

// Rerun the statement

Using Prepared Statements | 349

if (!$result = $statement->execute()) {
echo "No rows updated
";
} else {
echo "Second row successfully updated
";
}
// Close the statement
$statement->close();

id first_name last_name
O # X 1 saly Meyers
Successful connection to MySQL O # X 2 George Smith
First row successfully updated — - -
Second row successfully updated O || (258 (Mea el
0O & X |4 Gily O'Donal
FIGURE 25-12 FIGURE 25-13

As you see in the example, first you set up the prepared statement. To do that, replace the variables
with a ? (? is the placeholder). Certain restrictions exist on what you can replace as placeholders.
For the most part you can use them where you put data but not as table names or field names.

After you have set up the statement, you prepare the statement with mysqli: :prepare (). You could
do both these steps in one step, but setting up the statement in a variable first makes it easier to
debug all the quotes and concatenations because you can place a var_dump ($query) ; after you’ve
created it. That displays a MySQL command that you can examine for errors.

Now that you’ve prepared the statement, you bind the placeholders to the statement with
mysqli::bind_param(). This assigns the values you want to use for this processing of the prepared
statement. Binding requires two pieces of information for each placeholder: the data type and the
value. The placeholder parameters must be specified in the same order as they appear in the state-
ment. In the example, the type is 'ssi' because $first_name and $1last_name are strings and $id
is an integer. The valid codes are listed in Table 25-1.

TABLE 25-1: Parameter Data Types

CODE DATA TYPE

i Integer

d Double (numeric with decimals)
s String (Text)

b Blob (Lots of binary characters)

After you bind the placeholder parameters, you execute the statement. Because you are binding the
variables themselves, you can change the value of the variables and execute again with the different
values. When you are done, close the statement. You can have only one prepared statement open at
a time.

350 | LESSON 25 CHANGING DATA

You can use prepared statements for SELECT commands as well. Here you bind the results as well as
any parameters. See the results in Figure 25-14.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
$connection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . $connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

$id = 4;

// Set up the prepared statement

$query = "SELECT " first_name’, ‘last_name' "
. " FROM ‘authors™"
. " WHERE "id’ = ?";

// Prepare the statement

Sstatement = $Sconnection->prepare(Squery) ;
// Bind the parameters
Sstatement->bind_param('i', $id);

// Execute the statement
Sstatement->execute () ;

// Bind the results
$statement->bind result ($first, $last);
// Run the query

$statement->fetch();

echo $first . ' ' . Slast . '
';
// Close the statement
$statement->close();

Successful connection to MySQL
Gilly O'Donal

FIGURE 25-14

PHP Data Objects (PDO)

PHP Data Objects (PDO) has its own version of prepared statements, which have some advan-
tages over the mysqli version. You have the ability to use named parameters as well as unnamed
parameters. To use named parameters, replace the question mark (?) with a name prefixed with a
colon (:). The PDO_statement: :bindParm () method assigns the variable that supplies the data,
as well as output data. The data type is specified with predefined PDO Constants, which are listed
in Table 25-2.

Using Prepared Statements | 351

TABLE 25-2: PDO Data Types

CONSTANT DESCRIPTION
PDO: : PARAM_INT Integers
PDO: : PARAM_STR Strings

PDO: : PARAM_BOOL Boolean
PDO: : PARAM LOB Blobs

Run the following code to see the results in Figure 25-15 and Figure 25-16:

<?php

define ("MYSQLUSER", "php24sql");
define ("MYSQLPASS", "hJQV8RTebt");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database

if (!Sconnection =
new PDO('mysql:host='.HOSTNAME. ';dbname=' . MYSQLDB, MYSQLUSER, MYSQLPASS)) {
die('Connect Error');

} else {
echo 'Successful connection to MySQL
';

$first_name = "Paddy";
$last_name = "O'Brian";
$id = 4;

// Set up the prepared statement
$query = "UPDATE “authors™ "
" SET ‘first_name'= :first_name, ‘last_name' = :last_name "
" WHERE ‘id’ = :id";
// Prepare the statement
$statement = $connection->prepare (Squery) ;
// Bind the parameters
$statement->bindParam(':first_name', $first_name, PDO::PARAM STR, 50);
$statement->bindParam(':last_name', $last_name, PDO::PARAM STR, 50);
$statement->bindParam(':id', $id, PDO::PARAM INT);
// Run the query

if (!Sresult = S$statement->execute()) {
echo "No rows updated
";
} else {
echo "First row successfully updated
";
}
// Change the value in the variable and rerun
$id = 3;
$first_name = 'Nancy';
$last_name = 'Misson';

// Rerun the statement
if (!Sresult = S$statement->execute()) {

352 | LESSON 25 CHANGING DATA

echo "No rows updated
";
} else {
echo "Second row successfully updated
";

}

id first_ name last_name
Sally Meyers

Successful connection to MySQL

George Smith
First row successfully updated

£ I T

Nancy Misson
Second row successfully updated
Paddy Q'Brian
FIGURE 25-15 FIGURE 25-16

HTRYIT

Available for
download on

Woeem' In this Try It, you add maintenance to the contacts and categories tables in the Case Study.
You modify the add pages for the contacts and lot categories so that you can edit contacts and lot
categories.

You can download the code and resources for this Try It from the book’s web
page at www .wrox .com. You can find them in the Lesson2$ folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 23.
Alternatively, you can download the files from the book’s website at www.wrox.com. To re-create the
database tables, create an empty database and then import the install.sql file in phpMyAdmin.

Hints

When adding rows, you don’t need to know the primary key of the row because the primary key is
automatically created. When editing rows, you need to pass that key along so that you always know
what it is.

Trylt | 353

Step-by-Step
Change the contact add page so that it edits existing records.

1. Inthe contents/about .php file add an edit button to link to the maintenance page with the
id of the current contact in the URL. This is the current <h2> line:

<h2><?php echo htmlspecialchars($item->name()); ?2></h2>

Replace it with this new <h2> line:

<h2><?php echo htmlspecialchars($item->name()); ?>
<a class="button"

href="index.php?content=contactmaint&id=<?php echo $item->getId(); ?>">
Edit</h2>

2. Inthe contents/contactmaint.php file check for the id in the URL. If it is not O then
get the row from the table to create the contact object. Do this by changing $item = new
Contact; to the following code:

$id = (int) $_GET['id'];
// Is this an existing item or a new one?
if (sid) {
// Get the existing information for an existing item
Sitem = Contact::getContact ($id);
} else {
// Set up for a new item
Sitem = new Contact;

}

3. Change the legend to show the id if this is an existing contact:

<legend><?php echo ($id) ? 'ID: '. $id : 'Add a Contact' ?></legend>

4. Add the getcontact () method in the includes/classes/contact.php file to create a
Contact object from a row in the contacts table:

public static function getContact($id) {
// Get the database connection
Sconnection = Database::getConnection();
// Set up the query
Squery = 'SELECT * FROM " contacts’ WHERE id="'. (int) $id.'"';
// Run the MySQL command
Sresult_obj = '';
try {
Sresult_obj = $connection->query (Squery) ;
if (!Sresult_obj) {
throw new Exception ($connection->error);
} else {
Sitem = Sresult_obj->fetch object('Contact');
if (!Sitem) {

354 | LESSON 25 CHANGING DATA

throw new Exception($connection->error);
} else {

// pass back the results

return($item) ;

}
}
catch (Exception S$e) {
echo $e->getMessage () ;
}
}

5. You need to change the processing of the contact.maint task. In the includes/init.php
file, locate the contact .maint case. The header redirect needs the id of the row. That id
is added to the $result array from the editRecord () method and passed through the
editContact () function.

header ("Location: index.php?content=contactmaint&id=$results[2]");

6. In the includes/functions.php file change the maintcontact () function to call the
editRecord () function if the id already exists. This is the current code:

// Set up a Contact object based on the posts
Scontact = new Contact ($item) ;
Sresults = $contact->addRecord() ;

Replace it with this new code:

// Set up a Contact object based on the posts
Scontact = new Contact ($item) ;

if (Scontact->getId()) {
Sresults = $contact->editRecord();
} else {

Sresults = Scontact->addRecord() ;
}

7. Back in the includes/classes/contact.php file add the editRecord() method to update
the table. You need the id to create the URL to redirect to the correct page if there is an
error, so add a third element to the return array.

public function editRecord() {
// Verify the fields
if ($Sthis->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

// Set up the prepared statement

$query = 'UPDATE " contacts’
SET first_name=?, last_name=?, position=?, email=?, phone=?
WHERE id=?';

$statement = $connection->prepare($query);

// bind the parameters

$statement->bind_param('sssssi’',
$this->first_name, $this->last_name, $this->position,

Trylt | 355

$this->email, $this->phone, $this->id);
if ($statement) {

$statement->execute();

$statement->close();

// add success message

Sreturn = array('', 'Contact Record successfully added.', '');
return Sreturn;
} else {

Sreturn = array('contactmaint',
'No Contact Record Added. Unable to create record.' ,
(int) $this->id);

return Sreturn;

} else {
// send fail message and return to contactmaint
Sreturn = array('contactmaint',
'No Contact Record Added. Missing required information.' ,
(int) $this->id);
return S$Sreturn;

8. Go to the About Us page as shown in Figure 25-17.

WO
e, B

29

AUCIONS

Home | About Us ‘ Lot Categories

About Us

We are all happy to be a part of this. Please contact any of us with questions.

George Smith
Position: none

george@example.com

Phone: 515-555-1236

Jeff Meyers

Position: hip hop expert for shure
jeff@example.com
Phone: 12345

Martha Smith
Position: none

martha@example.com

Phone:

Peter Meyers

FIGURE 25-17

356 | LESSON 25 CHANGING DATA

9. Click the Edit button on George Smith and you see a page similar to Figure 25-18. Make
changes and click Save to save the changes.

7

. Shithside
~AuCtions

Home ‘ About Us ‘ Lot Categories

Contact Maintenance
el Dy

First Name *

George

Last Name *

Smith

Position

none

Email

george@example.com

Phone

515-555-1236

Cancel

FIGURE 25-18

10. Instep 7 you added a third element to the array that returns out of editRecord (). You need
to add that element to the array that addrecord () returns, as shown in the following code
from includes/classes/contact.php.

// Run the MySQL statement
if ($Sconnection->query ($query)) {
Sreturn = array('', 'Contact Record successfully added.', '');

// add success message
return Sreturn;

} else {
// send fail message and return to contactmaint
$return = array('contactmaint', 'No Contact Record Added. Unable to &

create record.', '');
return S$return;

}

} else {
// send fail message and return to contactmaint
$return = array('contactmaint', 'No Contact Record Added. Missing

required information.', '0");
return S$return;

}

Trylt | 357

Change the category add page so that it edits existing records.

1. Inthe contents/categories.php file add an Edit button to link to the maintenance page
with the id of the current category in the URL. Put it below the Display Lots button:

<a class="button edit"
href="index.php?content=categorymaint&cat_id=<?php echo $item->getCat_id();
?>">
Edit

2. Inthe contents/categorymaint.php file, check for the category id in the URL. If it is not 0
then get the row from the table to create the category object. Do this by changing sitem =
new Category; to the following code:

$id = (int) S$_GET['cat_id'];
// Is this an existing item or a new one?
if (sid) |
// Get the existing information for an existing item
Sitem = Category::getCategory($id);
} else {
// Set up for a new item
Sitem = new Category;

}

3. Change the legend to show the id if this is an existing category:
<legend><?php echo ($id) ? 'ID: '. $id : 'Add a Category' ?></legend>

4. Add the getcategory () method in the includes/classes/category.php file to create a
Category Object from a row in the categories table:

public static function getCategory($cat_id) {
// Get the DB connection
Sconnection = Database::getConnection();
// Prepare the query
Squery = 'SELECT * FROM ' categories' WHERE cat_id="'. (int) S$cat_id.'"';

// Run the MySQL command
Sresult_obj = $connection->query (Squery) ;
try {
while($result = Sresult_obj->fetch_array (MYSQLI_ASSOC)) {
Sitem = new Category ($Sresult);
}
// pass back the results
return($item) ;
}
catch (Exception $e) {
return false;
}
}

5. You need to change the processing of the category.maint task. In the includes/init.php
file locate the category.maint case. The header redirect needs the id of the row. That id
is added to the $result array from the editRecord () method and passed through the
editCategory () function.

header ("Location: index.php?content=categorymaint&cat_id=$results[2]");

358 | LESSON 25 CHANGING DATA

6. Intheincludes/functions.phpChangethen@intCategory()funcﬂontocaﬂthe
editRecord () function if the id already exists. This is the current code:

// Set up a Category object based on the posts
Scategory = new Category($Sitem) ;
Sresults = $category->addRecord() ;

Replace it with this new code:

// Set up a Category object based on the posts
Scategory = new Category($Sitem);

if ($category ->getGet_id()) {
Sresults = $Scategory ->editRecord();
} else {

Sresults = $category ->addRecord();
}

7. Back in the includes/classes/category.php file, add the editRecord () method to
update the table. You need the id to create the URL to redirect to the correct page if there
is an error, so add a third element to the return array.

public function editRecord() {
// Verify the fields
if (Sthis->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

// Set up the prepared statement
$query = 'UPDATE "categories’
SET cat_name=?, cat_description=?, cat_image=?
WHERE cat_id=?';
$statement = $connection->prepare($query);
// bind the parameters
$statement->bind_param('sssi’',
$this->cat_name, $this->cat_description, $this->cat_image,
$this->cat_id);
if ($statement) {
$statement->execute();
$statement->close();
// add success message

Sreturn = array('', 'Category Record successfully added.', '');
return Sreturn;
} else {

Sreturn = array('categorymaint',
'No Category Record Added. Unable to create record.',
(int) $this->cat_id);

return $return;

} else {
// send fail message and return to categorymaint
$return = array('contactmaint',
'No Contact Record Added. Missing required information.',

Trylt | 359

8.

10.

(int) $this->cat_id);
return S$Sreturn;

}

Go to the Lot Categories page as shown in Figure 25-19.

Home | About Us ‘ Lot Categories

Categories
Gents
Gents' clothing from the 18th century to modern times
Display Lots

Sporting
Sporting clothing and gear

Display Lots R

= Women
Women's Clothing from the 18th century to modemn times

Click the Edit button on the Gents category and you see a page similar to Figure 25-20.
Make changes and click Save to save the changes.

FIGURE 25-19

In step 7, you added a third element to the array that returns out of editRecord (). You
need to add that element to the array that addrecord () returns as shown in the following
code from includes/classes/contact.php.

// Run the MySQL statement
if ($Sconnection->query ($query)) {
Sreturn = array('', 'Category Record successfully added.',''");

// add success message
return S$return;
} else {
// send fail message and return to categorymaint

360 | LESSON 25 CHANGING DATA

$return = array('contactmaint', 'No Category Record Added. Unable to
create record.','");

return Sreturn;

}
} else {

// send fail message and return to categorymaint

$return = array('categorymaint', 'No Category Record Added. Missing €
required information.','0');

return S$return;

-

" Smithside
\Auctloﬁns

Home ‘ About Us ‘ Lot Categories

Category Maintenance
iD: 2

Category *

Gents

Description
Gents’ clothing from the 18th century to modern times

Image
tephat-8-63.jpg

Cancel

© 2011 Smithside Auctions

FIGURE 25-20

Watch the video for Lesson 25 on the DVD or watch online at www.wrox . com/
go/24phpmysagl .

26

Deleting Data

In this lesson you learn how to delete rows from tables in the MySQL database. The examples
from this lesson use the same tables used in the examples in Lesson 25.

y You can download the code for this example from the book’s web page at
www . wrox.com. You can find it in the Lesson 26 folder in the download in a file
labeled 1esson26a. sql.

The first table is the authors table as shown in Figure 26-1.
The second table is the types table as shown in Figure 26-2.

The third table is the books table as shown in Figure 26-3.

id title author type_id

1 Along Day in Spring 1

2 Fifteen Hours in March 2 2

id first_name last_name 3 Green Trees Go Wild* 1 (8!
1 Sally Meyers type_id ftype_name 4 And Then It Happened* 1 1
2 George Smith 1 History 5 Missing in Action™* 5 2
3 Nancy Misson 2 Suspense 6 Fourteen Days in February 2 2
4 Paddy Q'Brian 3 Science Fiction 7 Sixteen Seconds in March 2 2

FIGURE 26-1 FIGURE 26-2 FIGURE 26-3

USING THE DELETE COMMAND

Later on in this lesson I ask you to restore the example tables back to this point. If you are
entering the examples, then you should make a backup by exporting the files now. If you are
using the downloaded file 1esson26a.sql, then you can just use that file when you are asked
to restore.

362 | LESSON 26 DELETING DATA

If you don’t remember how to back up MySQL tables by exporting them, see
“Backing Up and Restoring” in Lesson 19.

The DELETE command is used to remove rows from your tables. To remove type_id type_name

row 2 from the types table you use the following code. The results are 1 History

shown in Figure 26-4. 3 Science Fiction
DELETE FROM types WHERE type_id = '2'; FIGURE 26-4

If you don’t specify a wHERE clause, all rows are deleted from the table unless you use a LTMTT
clause, in which case, the rows selected with the LIMIT clause are deleted. The following code
deletes all the rows in the types table:

DELETE FROM types;

If you do not specify a WHERE clause, the default is to select all rows. With the
DELETE command, that means that you could accidently delete all rows if you
forget your WHERE clause.

If you want to delete all the rows in a table, best practice is to use the TRUNCATE command as shown
in the following code:

"TRUNCATE types’

See what happens when you add a row back in to the types table as shown in type_id type name
Figure 26-5. 4 Fantasy
INSERT INTO types VALUES (NULL, 'Fantasy'); FIGURE 26-5

Notice that even though there is only one row in the table, the value automatically assigned to
type_id is 4. If you are using auto_increment, deleting rows, even all the rows, does not affect it.
If the next row was to be assigned 4 before you deleted all the rows, the next row you add is still
assigned a 4. This is true for the MyISAM tables and, for the most part, InnoDB tables as well.

There’s no way to undelete deleted rows. They are gone. You need to type_id type_name
re-insert them if you want to restore them. If you need to synchronize the 4 Fantasy
primary key with other files, you need to specify the correct value rather 1 History

than letting auto_increment assign it. The following code explicitly lists 2 Suspense
the values to be used for the type_id field. As you see in Figure 26-6, these 3 Science Fiction

inserted rows are created with the specified values rather than being auto-

FIGURE 26-6
matically generated by the next higher number.

INSERT INTO ‘types' (type_id', "type_name') VALUES
(1, 'History'),

(2, 'Suspense'),

(3, 'Science Fiction');

Using the DELETE Command | 363

You can use the LIMIT clause to limit how many records are

.. type_id type_name
deleted. You can use this if you have a lot of rows to delete that 0O # X 1 History
might exceed the time limit. You would run the command mul- O 2 % 2 Suspense
tiple times until all the required rows are deleted. The following O 2 X 3 Scienc Fiction
example deletes one row. See the results in Figure 26-7.

FIGURE 26-7

DELETE FROM types LIMIT 1;

The orDER BY clause determines the order in which rows are deleted. The following code deletes the
first two books when the titles are in alphabetical order, as shown in Figure 26-8:

DELETE FROM books ORDER BY title ASC LIMIT 2;

id title author type_id
2 Fifteen Hours in March 2 2
3 Green Trees Go Wild" 1 3
5 Missing in Action™ 5 2
6 Fourteen Days in February 2 7
7 Sixteen Seconds in March 2 2

FIGURE 26-8

The WHERE clause is the same used by the SELECT statement, so it can be as complex as you need.
For instance, you can use more than one condition in selecting the rows to be deleted. This example
deletes any books written by author 2 that have “Days” in the title. See Figure 26-9.

DELETE FROM books WHERE author = '2' AND title LIKE '%Days$%';
id title author type_id
2 Fifteen Hours in March 2 2
3 Green Trees Go Wild* 1 3
5 Missing in Action** 5 2
7 Sixteen Seconds in March 2 2
FIGURE 26-9

This example uses a subquery to delete any book that has an invalid author. See Figure 26-10.

DELETE FROM books WHERE author NOT IN (SELECT id FROM authors);

id title author type_id
Fifteen Hours in March 2 2
Green Trees Go Wild* 1 3
Sixteen Seconds in March 2 2

FIGURE 26-10

After all this deleting from the books table, only two authors in the authors table still have books
in the books table. So here you use the J0IN clause to locate the orphan authors and remove them.

364 | LESSON 26 DELETING DATA

The LEFT JOIN selects all authors (because they are on the “left” side). Any author without any
matching books has the book fields assigned as NULL values. The field author (from the books table)
should always be equal to the primary key, id, in the authors table because that is what merges the

rows, so if the field author is NULL, you know that no match was found. See Figure 26-11.

DELETE authors FROM authors LEFT JOIN books ON authors.id = author
WHERE author IS NULL;

DELETI NG DATA IN PH P id first_name last_name
1 Sally Meyers
Now that you’ve succeeded in deleting most of the database, restore it to 2 George Smith

the state it was in at the beginning of the lesson so you can delete it using
PHP. Restore using either the 1esson26a.sql file you imported at the
beginning of the lesson or the file you exported at the beginning of the lesson.

FIGURE 26-11

If you don’t remember how to import a .sql file, see “Backing Up and
Restoring” in Lesson 19.

Deleting data using PHP is similar to the way you INSERT data, though you usually don’t have as
many fields to prepare because the only relevant fields are those you need for the selection process.
Easiest of all is deleting rows when you know the primary key and that key is an integer type. The
following example deletes the book with the id of 6. Figure 26-12 shows what running the PHP
program looks like and Figure 26-13 shows the books table in phpMyAdmin after the deletion has

taken place.

<?php

define ("MYSQLUSER", "php24sql");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . S$connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

// assign an id value for the test
$id = 6;

// Set up the query
$query = 'DELETE FROM “books® WHERE id="'. (int) $id.'"';
// Run the query and display appropriate message
if (!Sresult = S$connection->query(Squery)) {
echo "No rows deleted
";
} else {

echo $connection->affected_rows . " row(s) successfully deleted
";

Trylt | 365

}
}

The mysqgli->affected_rows is a property in the mysqli class that tells you the number of affected
rows in the last MySQL command. In this example this is represented by the
Sconnection->affected_rows.

id title author type_id
1 AlLong Day in Spring 3 1
2 Fifteen Hours in March 2 2
3 Green Trees Go Wild* 1 3

Successful connection to MySQL -

1 row(s) successfully deleted 2| [Rae ik tapysaed : :
5 Missing in Action** 5 2
7 Sixteen Seconds in March 2 2

FIGURE 26-12 FIGURE 26-13

Available for
download on
Wrox.com

In this Try It, you add delete capabilities to the About Us and Lot Categories pages by adding Delete
buttons and a confirmation page. The Lesson26 folder on the website contains the interim files as of
the end of this part.

You have been updating the About Us and Lot Categories pages piece by piece through the last sev-
eral chapters to use the database instead of hardcoded data. As they say in computerese, you have
created the CRUD for those tables: Create, Review, Update, and Delete. The last table, and related
pages, is the 1ots table.

In this Try It, you bring the website all the way from multiple hardcoded gents, women, and sport-
ing pages to full display and maintenance in integrated lots pages. You preselect which lots display
based on the lot category they are in. You also create a drop-down input select based on the
categories table that is used for selection of the appropriate category.

@ You can download the code and resources for this Try It from the book’s web
page at viww .wrox .com. You can find them in the Lesson26 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

366 | LESSON 26 DELETING DATA

If you are following along with the Case Study, you need your files from the end of Lesson 235.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints

The steps that you take to delete a row are the same basic steps you need to take to change a row:
select the row and display it, process the input from the user, and then either update the table or give
the user an error message.

When you display the information from the row, don’t use label and input tags because you don’t
want the user thinking that he can change the data.

When you process the form, the only vital piece of information is the id of the row in the table.
Because that is an integer, you can use (int) to force the information from the user into an integer
as your safety processing.

Step-by-Step
Add delete capabilities to the About Us page.
1. Inthe contents/about .php files add a Delete button in the <h2> tag:

<h2><?php echo htmlspecialchars($item->name()); 2>

<a class="button"

href="index.php?content=contactdelete&id=<?php echo

$item->getId(); ?>">Delete

<a class="button" href="index.php?content=contactmaint&id=<?php echo
Sitem->

getId(); ?>">Edit
</h2>

2. Create the contents/contactdelete.php file. This is similar to the contactmaint .php file
except that you just display the data instead of using labels and inputs. You won’t have new
items on this page, so you only need to look for existing items. The submit button is a Delete
button instead of a Save and the task is contact.delete.

<?php
/**
* contactdelete.php

* ok

Delete the Contacts

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

$id = (int) S$_GET['id'];
// Get the existing information for an existing item
$item = Contact::getContact($id);

Trylt | 367

?>
<hl>Contact Delete</hl>

<form action="index.php?content=about" method="post" name="maint" id="maint">
<fieldset class="maintform">
<legend><?php echo 'ID: '. $id ?></legend>

First Name:
<?php echo htmlspecialchars($item->getFirst_name()); ?></1i>
Last Name:
<?php echo htmlspecialchars($item->getLast_name()); ?></1i>
Position:
<?php echo htmlspecialchars($item->getPosition()); ?>
Email:
<?php echo htmlspecialchars($item->getEmail()); ?></1i>
Phone:
<?php echo htmlspecialchars($item->getPhone()); ?></1li>

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal(mt_rand(1,1000000) . $salt);

$_SESSION|['token'] = S$token;

?>

<input type="hidden" name="id" id="id" value="<?php echo Sitem->getId();
2> />

<input type="hidden" name="task" id="task" value="contact.delete" />
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>
<input type="submit" name="delete" value="Delete" />
Cancel
</fieldset>
</form>

3. Inthe includes/init.php file, add the contact.delete case to process the new task:

case 'contact.delete'

// process the delete

$results = deleteContact();

Smessage .= Sresults[1];

// If there is redirect information

// redirect to that page

if (Sresults[0] == 'contactdelete') {
// pass on new messages
1f ($results[l]) {

$_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=contactdelete&id=Sresults([2]");
exit;
}
break;

4. Inthe includes/functions.php file, add the deletecontact () function. This function
checks the tokens and evokes the static deleteRecord () method in the contact class.

368 | LESSON 26 DELETING DATA

Because the only piece of information you need to delete the row is the id, there is no need to
create a whole object so you can use the static class method.

function deleteContact() {
Sresults = '';
if (isset($_POST['delete']) AND $_POST['delete'] == 'Delete') {
// check the token
SbadToken = true;
if (!isset ($_POST['token'])
|| !'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array ('
'Sorry, go back and try again. There was a security issue.');
SbadToken = true;
} else {
SbadToken = false;
unset ($_SESSION['token']);

// Delete the Contact from the table
Sresults = Contact::deleteRecord((int) $_POST['id']);
}
}
return S$results;

}

5. Inthe includes/classes/contact.php file add the deleteRecord () method. This method
deletes the row based on the id that is passed in as a parameter.

public static function deleteRecord($id) ({
// Get the Database connection
Sconnection = Database::getConnection();
// Set up query
Squery = 'DELETE FROM ‘contacts’ WHERE id="'. (int) $id.'"';
// Run the query
if (Sresult = Sconnection->query(Squery)) {

Sreturn = array('', 'Contact Record successfully deleted.', '');
return $return;

} else {
Sreturn = array('contactdelete', 'Unable to delete Contact.',6 (int)

$id) ;
return Sreturn;

}

6. Check your changes and verify that they look similar to Figure 26-14 and Figure 26-15. Test
that you can delete items.

Trylt | 369

Auctions

Home ‘ About Us ‘ Lot Categories

About Us
We are all happy to be a part of this. Please contact any of us with questions.
George Smith

Position: none
george@example.com
Phone: 515-555-1236

Jeff Meyers

Position: hip hop expert for shure
jeff@example.com
Phone: 12345

Martha Smith

Position: none

martha@example.com
Dk

FIGURE 26-14

Shithside
\Auctlo_;ns

Home ‘ About Us ‘ Lot Categories

Contact Delete
ID: 3
First Name: Jeff
Last Name: Meyers
Position: hip hop expert for shure
Email: jeff@example.com
Phone: 12345

Cancel

© 2011 Smithside Auctions

FIGURE 26-15

370 | LESSON 26 DELETING DATA

Now, repeat the same steps to add delete capabilities to the Lot Categories page.
1. Inthe contents/categories.php files add a Delete button just above the Edit button:

<a class="button edit"
href="index.php?content=categorydelete&cat_id=<?php echo
$item->getCat_id(); ?>">Delete

2. Create the contents/categorydelete.php file. This is similar to the categorymaint .php
file except that you just display the data instead of using labels and inputs. You won’t have
new items on this page, so you only need to look for existing items. The submit button is a
Delete button instead of a Save and the task is category.delete.

<?php
/*k*

* categorydelete.php

*

* Delete for the Categories table
*

* @version 1.2 2011-02-03

* @package Smithside Auctions

*

@copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
$id = (int) S$_GET['cat_id'];
// Get the existing information for an existing item
$item = Category::getCategory($id);

?>
<hl>Category Delete</hl>

<form action="index.php?content=categories" method="post" name="maint"
id="maint">

<fieldset class="maintform">
<legend><?php echo 'ID: '. $id ?></legend>

Category:
<?php echo htmlspecialchars($item->getCat_name()); ?>
Description

<?php echo htmlspecialchars($item->getCat_description()); ?>
Image:
<?php echo htmlspecialchars($item->getCat_image()); ?></1i>

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal (mt_rand(1,1000000) . $salt);
S_SESSIONI['token'] = S$Stoken;

?>

<input type="hidden" name="cat_id" id="cat_id"
value="<?php echo S$item->getCat_id(); ?>" />

Trylt | 371

<input type="hidden" name="task" id="task" value="category.delete" />
<input type='hidden' name='token' value='<?php echo $token; ?>'/>
<input type="submit" name="delete" value="Delete" />
Cancel
</fieldset>
</form>

3. Inthe includes/init.php file, add the category.delete case to process the new task:

case 'category.delete'
// process the maint
$results = deleteCategory();
Smessage .= Sresults[l1l];
// If there is redirect information
// redirect to that page
if (Sresults[0] == 'categorydelete') {
// pass on new messages
if (Sresults([1]) {
S_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=categorydelete&cat_
id=S$results[2]");
exit;
}
break;

4. Inthe includes/functions.php file, add the deletecategory () function. This function
checks the tokens and evokes the static deleteRecord () method in the category class.
Because the only piece of information you need to delete the row is the id, there is no need to
create a whole object so you can use the static class method.

function deleteCategory() {
Sresults = '';
1f (isset($S_POST['delete']) AND $_POST['delete'] == 'Delete') {
// check the token
SbadToken = true;
if (!isset($_POST['token'])
|| !isset($_SESSIONI'token'])
| | empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array(''
'Sorry, go back and try again. There was a security issue.');
SbadToken = true;
} else {
SbadToken = false;
unset (S_SESSION|['token']) ;

// Delete the Category from the table
Sresults = Category::deleteRecord((int) $_POST['cat_id']);

}

return $results;

372 | LESSON 26 DELETING DATA

5. Inthe includes/classes/category.php file, add the deleteRecord () method. This
method deletes the row based on the id that is passed in as a parameter.

public static function deleteRecord($id) {
// Get the Database connection
$connection = Database::getConnection();
// Set up query
Squery = 'DELETE FROM "categories’ WHERE cat_id="'. (int) $id.'"';
// Run the query
if (Sresult = S$connection->query ($Squery)) {

Sreturn = array('', 'Category Record successfully deleted.',K '');
return S$return;

} else {
$return = array('categorydelete', 'Unable to delete Category.', (int)

$id) ;
return Sreturn;

}

6. Check your changes and verify that they look similar to Figure 26-16 and Figure 26-17. Test
that you can delete items.

side
Auctions

Home | About Us ‘ Lot Categories

Categories

Gents

Gents' clothing from the 18th century to modern times

Sporting
Sporting clothing and gear

IS Women

FIGURE 26-16

Trylt | 373

g

< Shithside
| ~Auctions

Home ‘ About Us ‘ Lot Categories

Category Maintenance
ID: 3

Category: Sporting
Description

Sporting clothing and gear
Image: wool-6-171.jpg

Cancel

© 2011 Smithside Auctions

FIGURE 26-17

The rest of this Try It section turns the pages dealing with the lots from static to dynamic. First
you change the multiple pages that display lots into a single page and then you add the CRUD for
the tables.

hdergethecontent/gents.php,content/sporting.php,and content/women.php>pagesinU)a
single content/lots.php page where you get the information from the database. Change the lot
CMngﬁeSansinthecontent/categories.phpfﬂeandinthecontent/catnav.phpfﬂetovwnk
with the new content/lots.php.

1. Copy contents/gents.php to a new file called contents/lots.php and add documenta-
tion at the beginning of the file:

/**

* lots.php

*

* Content for Lots pages

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0

*

374 | LESSON 26 DELETING DATA

2. The category id, that is, the value of the primary key from the categories table and the
matching value in the lots table, is in the URL. Retrieve it with $_GET['cat_id']. The lots
are all in this category that you use when you retrieve the lots. Category: :getCategory
($cat_id_in) creates an object containing the information from the categories table for
that category.

// Get the Category
Scat_id_in = (int) $_GET['cat_id'];
Scategory = Category::getCategory(Scat_id_in);

3. Follow that with the code to load the $1lots array using the static getLots () method from
the Lot class. This replaces the hardcoded assignments of the existing $1ots array. Pass in
the category id so you can use it in the getLots () method. If nothing is returned, initialize
$lots to an array so that later use of the variable doesn’t create errors.

// Get the lot information
$lots = Lot::getLots($cat_id_in);
if (empty($lots)) {

Slots = array();

}

?>

4. Inthe <h1> header, replace the “Gents” text with the category name and add a link to the
new data entry page. Give it the class button for the CSS styling.

<hl>Product Category: <?php echo $category->getCat_name(); ?>
<a class="button"
href="index.php?content=1lotmaint&cat_id=<?php echo $cat_id_in; ?>&lot_
id=0">
Add
</hl>

5. Inthe <1i> block change all the $1ot array notations to use get methods for the object. For
instance, change $lot['image'] to $lot->getLot_image (). Add an Edit button linking to
the maintenance page and a Delete button to link to the delete page.

<div class="list-photo">
<?php // Set up the images
Simage = 'images/'. S$lot->getLot_image();

Simage_t = 'images/thumbnails/'. $Slot->getLot_image();
if (!is_file($image_t))

S$image_t = 'images/thumbnails/nophoto.jpg’;
endif;

if (is_file($image))
?>
<a href="<?php echo $image; ?>">

<img src="<?php echo S$image_t; ?>" alt="" />

<?php else : ?>
<img src="<?php echo S$image_t; ?>" alt="" />
<?php endif; ?>
</div>

<div class="list-description">

Trylt | 375

<h2><?php echo ucwords ($lot->getLot_name()); ?></h2>
<p><?php echo htmlspecialchars($lot->getLot_description()); ?></p>
<p>Lot: #<?php echo $lot->getLot_number(); ?>

Price: $
<?php echo number_ format ($lot->getLot_price(),2); ?>
<a class="button edit"
href="index.php?content=1otdelete&cat_id=<?php echo S$cat_id_in; ?>&lot_
id=<?php
echo $lot->getLot_id(); ?>">Delete

<a class="button edit"
href="index.php?content=1lotmaint&cat_id=<?php echo $cat_id_in; ?>&lot_
id=<?php
echo $lot->getLot_id(); ?>">Edit
</p></div>

6. Inthe includes/classes/lot.php file, add the getLots () public static method to retrieve
the rows and fill the array. Use the parameter of $cat_id to select the correct lots. Rather than
directly creating the category object, use the fetch_array (MYSQLT_ASSOC) to retrieve the
row. Use that array to create a new Lot object that is added as an element in the $items array.

static public function getLots($cat_id) {
// clear the results
Sitems = '';
// Get the connection
Sconnection = Database::getConnection();
// Set up the query
Squery = 'SELECT * FROM " lots’
WHERE cat_id="'. (int) S$cat_id.'" ORDER BY lot_id';

// Run the query

Sresult_obj = '';

Sresult_obj = $connection->query (Squery) ;

// Loop through getting associative arrays,

// passing them to a new version of this class,
// and making a regular array of the objects

try {
while($result = Sresult_obj->fetch_array (MYSQLI_ASSOC)) {
Sitems[]= new Lot (Sresult);

}
// pass back the results
return($items) ;

catch (Exception S$e) {
return false;

}

7. Change the links in the content/categories.php file to use the lots page along with the
category id to the URL parameters:

<h2>
<a href="index.php?content=lots&cat_id=<?php echo (int) $item->getCat_id();
?>& sidebar=catnav">

376 | LESSON 26 DELETING DATA

<a class="button display"
href="index.php?content=lots&cat_id=<?php echo (int) $item->getCat_id();
?>& sidebar=catnav">Display Lots

8. Change the link in the content/catnav.php file to use the lots page along with the category
id in the URL parameters:

<a href="index.php?content=lots&cat_id=<?php echo
(int) $item->getCat_id(); ?>&sidebar=catnav"><?php echo
htmlspecialchars($item->getCat_name()); ?>

Now, create a lots maintenance page so you can add and change lots in the 1ots table.

1. Create content/lotmaint.php, which is the form for adding the lots. The category id is

in the URL. Use $_GET to get the id and save it. This is used to select the right category to
the new lot and for navigating back to the right lot page when saving or canceling. Because
it’s not displayed on the form, insert it in a hidden <input> so that it is available when you
update the database. You also display a drop-down list of valid categories, which you create
next in this Try It section. The rest of the file is similar to the maintenance files for contacts
and categories.

<?php

/ * %

* lotmaint.php

*

* Maintenance for the Lots table

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

// Get the Category the new lot will be in
$cat_id_in = (int) $_GET['cat_id'];
// Get the lot id. If it doesn't exist or is 0, then this is a new lot
$id = (int) $_GET['lot_id'];
// Is this an existing item or a new one?
if ($id) {
// Get the existing information for an existing item
$item = Lot::getLot($id);
// set up the category dropdown
Scat_dropdown = Category::getCat_DropDown (S$Sitem->getCat_id());
} else {
// Set up for a new item
Sitem = new Lot;
// set up the category dropdown
$cat_dropdown = Category::getCat_DropDown($cat_id in);
}
?>
<hl>Lot Maintenance</hl>

Trylt | 377

<form
action="index.php?content=lots&cat_id=<?php echo $cat_id_in;
?>&sidebar=catnav"
method="post" name="maint" id="maint">

<fieldset class="maintform">
<legend><?php echo ($id) ? 'Id: '. $id : 'Add a Lot' ?></legend>

<label for="lot_name" class="required">Lot Name</label>

<input type="text" name="lot_name" id="lot_name" class="required"
value="<?php echo $item->getLot_name(); ?>" />
<label for="lot_description">Lot Description</label>

<textarea rows="5" cols="60" name="lot_description"
id="lot_description"><?php echo S$item->getLot_description(); ?></
textarea>
</1li>
<label for="lot_image" >Lot Image File</label>

<input type="text" name="lot_image" id="lot_image"
value="<?php echo $item->getLot_image(); ?>" />
<label for="lot_number">Lot Number</label>

<input type="text" name="lot_number" id="lot_number"
value="<?php echo $item->getLot_number (); ?>" />
<label for="lot_price" >Lot Price</label>

<input type="text" name="lot_price" id="lot_price"

value="<?php echo $item->getLot_price(); ?>" />
<?php echo $cat_dropdown; ?></1i>

<?php

// create token
$salt = 'SomeSalt';
Stoken = shal(mt_rand(1,1000000) . $salt);
$_SESSION|['token'] = S$token;
?>
<input type="hidden" name="cat_id_in" id="cat_id_in"
value="<?php echo $cat_id_in; ?>" />
<input type="hidden" name="lot_id" id="lot_id"
value="<?php echo $item->getLot_id(); ?>" />
<input type="hidden" name="task" id="task" value="lot.maint" />
<input type='hidden' name='token' value='<?php echo $token; ?>'/>
<input type="submit" name="save" value="Save" />
<a class="cancel"
href="index.php?content=lots&cat_id=<?php echo $cat_id_in;
?>&sidebar=catnav">Cancel

</fieldset>
</form>

2. Intheincludes/classes/category.php,addthegetCat_DropDown()nunhodtocxeaw
the <select> drop-down. A category id is passed in, which is used to assign which category
shows as selected. If no category id is passed then the first option is set as selected. The exist-
ing getCategories () method is used to get a list of categories. The HTML is

378

LESSON 26 DELETING DATA

collected in an array called $html. When that array is passed back, it is imploded with \n.
Imploding takes the array and turns it into a single string variable, putting a \n between each
element. The \n is a newline character, which creates a new line for each section when you
view the source of the web page. Without the newline character, the entire drop-down would
appear as a single line in the source code. It does not affect what shows when you view the

web page.
public static function getCat_DropDown ($selected = '') {
// set up first option for selection if none selected
$option selected = '';
if (!$selected) {
$option_selected = ' selected="selected"';
}

// Get the categories
$items = self::getCategories();

$html = array();

$html[]
$html[]

'<label for="cat_id">Choose Lot Category</label>
';
'<select name="cat_id" id="cat_id">"';

foreach ($items as $i=>S$item) {
// If the selected parameter equals the current category id
// then flag as selected

if ((int) $selected == (int) $item->getCat_id()) {
$option_selected = ' selected="selected"';
}
// set up the option line
$html[] = '<option value="' . Sitem->getCat_id()
‘", Soption_selected . '>'
Sitem->getCat_name() . '</option>';

// clear out the selected option flag
Soption_selected = '';
}

$html[] = '</select>"';
return implode("\n", $html);

}

3. In the includes/init.php file add a case block in the switch statement for 1ot .maint to
process the lot maintenance form. This calls the maintLot () function.

case 'lot.maint'
// process the maint
$results = maintLot();
Smessage .= Sresults[1];
// If there is redirect information
// redirect to that page
if (Sresults[0] == 'lotmaint') {
// pass on new messages
if (Sresults[1l]) {

Trylt | 379

S_SESSION|['message'] = Sresults[l];
}
Scat_id_in = (int) S$_GET['cat_id'];
header ("Location: index.php?content=lotmaint&cat_id=$cat_id_in 3
&lot_id=$results[2]");
exit;
}
break;

Add the function maintLot () to includes/functions.php. Check that the token is
good and then initialize an array with the information from the form. Create a Lot object
with the data. If there is a lot id then this is an existing lot, so update the table with the
maintRecord () method. Otherwise, create a new row with AddRecord ().

function maintLot() {

Sresults = '';
if (isset($S_POST['save']) AND $_POST['save'] == 'Save') {
// check the token
SbadToken = true;
if (!isset ($_POST['token'])
|| !'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array('', 'Sorry, go back and try again.

There was a security issue.');
SbadToken = true;
} else {
$SbadToken = false;
unset ($_SESSION|['token']) ;
// Put the sanitized variables in an associative array
// Use the FILTER_FLAG_NO_ENCODE_QUOTES
// to allow quotes in the description
$item = array ('lot_id' => (int) §$_POST['lot_id'l],
'lot_name' => filter input (INPUT POST, 'lot_name’',
FILTER_SANITIZE STRING, FILTER FLAG_NO_ENCODE_QUOTES),
'lot_description' => filter_ input (INPUT_ POST, 'lot_description’',
FILTER_SANITIZE STRING,FILTER FLAG_NO_ENCODE_QUOTES),
'lot_image' => filter_input (INPUT_POST, 'lot_image',
FILTER_SANITIZE STRING),
'lot_number' => (int) $_POST['lot_number'],
'lot_price' => filter_input (INPUT_POST, 'lot_price',
FILTER SANITIZE NUMBER_FLOAT,FILTER_ FLAG_ALLOW_FRACTION),
'cat_id' => (int) $_POST['cat_id']

// Set up a Lot object based on the posts
$lot = new Lot ($item);
if ($lot->getLot_id()) {
$results = $lot->editRecord();
} else {
Sresults = $lot->addRecord() ;

380 | LESSON 26 DELETING DATA

}

return S$Sresults;

5. Inincludes/classes/lot.phpaddtheaddRecord()rnﬂhodtoaddro“mtothelots
table. When preparing numeric data for insertion in the database, force the variables to the
proper case rather than using the Database: :prep () method.

/**
* Add item
* @return array
*/
public function addRecord() ({

// Verify the fields
if ($this->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

// Prepare the data
Squery = "INSERT INTO
lots(lot_name, lot_description, lot_image, lot_number, lot_price,
cat_id)
VALUES ('" . Database::prep($this->lot_name) . "',
'" | Database::prep($this->lot_description) ."',
'" , Database::prep($this->lot_image) . "',
'"m _ (int) $this->lot_number . "',
'nm . (float) $this->lot_price . "',
v (int) $this->cat_id . "!

// Run the MySQL statement
if ($connection->query (Squery)) {
Sreturn = array('', 'Lot Record successfully added.');

// add success message
return $return;

} else {
// send fail message and return to categorymaint
Sreturn = array('lotmaint', 'No Lot Record Added. Unable to create
record."');
return Sreturn;
}
} else {

// send fail message and return to categorymaint
Sreturn = array('lotmaint',

'No Lot Record Added. Missing required information.');
return S$return;

Trylt | 381

6. Addthe _verifyInput () method to verify that a category name was entered:

protected function _verifyInput() {

Serror = false;

if (!'trim($this->lot_name)) {
Serror = true;

}

1f (Serror) {
return false;

} else {
return true;

}

7. Add the editRecord () method to update records using prepared statements:
/ * %
* Edit existing item
* @return array
*/
public function editRecord() {

// Verify the fields
if ($this->_verifyInput()) {

// Get the Database connection
$connection = Database::getConnection();

// Prepare the data
// Set up the prepared statement
$query = 'UPDATE lots’
SET lot_name=?, lot_description=?, lot_image=?, lot_number=?,
lot_price=?, cat_id=?
WHERE lot_id=?';
$statement = $connection->prepare($query);
// bind the parameters
$statement->bind param('sssidii’,
$this->lot_name, $this->lot_description, $this->lot_image,
$this->lot_number, $this->lot_price, $this->cat_id, $this->lot_id);
// Run the MySQL statement
if (Sstatement) {
$statement->execute();
$statement->close();
// add success message
Sreturn = array('', 'Lot Record successfully added.');
// add success message
return Sreturn;
} else {
Sreturn = array('lotmaint',
'No Lot Record Added. Unable to create record.',
")
return Sreturn;

}

} else {

382 | LESSON 26 DELETING DATA

8.

9.

// send fail message and return to categorymaint
$return = array('lotmaint',
'No Lot Record Added. Missing required information.',
(int) $this->lot_id);
return Sreturn;

}

Test adding in lot rows. When you know you can successfully add lots, you can either add all
the lots here or import the insertlots.sql file in phpMyAdmin as a shortcut.

Dekﬁethecontents/gents.php,contents/sporting.php,andcontents/women.phpfﬂe&

Now, add the Delete page and delete processing for the 1ots table.

1.

Create contents/lotdelete.php. This page is similar to the contents/lotmaint .php file,
but it displays the data from the table without allowing changes. Rather than submitting a
Save button, you submit a Delete button.

<?php

/**

*

lotdelete.php

*

* Delete for the Lots

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

// Save the category so you return to the right lots page
Scat_id_in = (int) $_GET['cat_id'];
// Get the lot id. If it doesn't exist or is 0, then this is a new lot
$id = (int) $_GET['lot_id'];

// Get the existing information for an existing item

$item = Lot::getLot($id);

// get the Category name for the lot

$cat_name = Category::getCategory($item->getCat_id())->getCat_name();
?>
<hl>Lot Delete</hl>

<form action="index.php?content=lots&cat_id=<?php echo $cat_id_in; 3

?>&sidebar=catnav"
method="post" name="maint" id="maint">

<fieldset class="maintform">

<legend><?php echo 'ID: '. $id ?></legend>

Lot Name:
<?php echo htmlspecialchars ($item->getLot_name()); ?></1li>
Lot Description:

<?php echo htmlspecialchars($item->getLot_description()); ?></1li>

Lot Image File:

Trylt | 383

2.

3.

<?php echo htmlspecialchars($item->getLot_image()); ?></1i>
Lot Number:
<?php echo (int) $item->getLot_number(); ?></1i>

Lot Price:
<?php echo number_format ($item->getLot_price(),2); ?></1li>
Category:
<?php echo htmlspecialchars($cat_name); ?></1li>

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal(mt_rand(1,1000000) . $salt);

$_SESSION['token'] = $token;

?>

<input type="hidden" name="cat_id_in" id="cat_id_in"
value="<?php echo $cat_id_in; ?>" />

<input type="hidden" name="lot_id" id="lot_id"
value="<?php echo S$item->getLot_id(); ?>" />

<input type="hidden" name="task" id="task" value="lot.delete" />

<input type='hidden' name='token' value='<?php echo S$token; ?>'/>

<input type="submit" name="delete" value="Delete" />

<a class="cancel"

href="index.php?content=lots&cat_id=<?php echo $cat_id_in; ?>

&sidebar=catnav">Cancel

</fieldset>

</form>

In the includes/init.php file, add the 1ot .delete case to process the delete form, which calls
the deletelot () function. The catalog id is also used in the URL to select the appropriate pages.

case 'lot.delete’
// process the delete
$results = deletelot();
Smessage .= Sresults([1];
// If there is redirect information
// redirect to that page
1f (Sresults[0] == 'lotdelete') {
// pass on new messages
if (Sresults([1]) {
$_SESSION|['message'] = Sresults[l];
}
$cat_id_in = (int) S$_GET['cat_id'];
header ("Location:

index.php?content=1lotdelete&cat_id=Scat_id_in&lot_id=Sresults[2]");

exit;
}
break;

In the includes/functions.php file, add the deletecategory () function, which calls the
deleteRecord () method in the Lot class.

function deleteLot() {

Sresults = :

if (isset($_POST['delete']) AND $_POST['delete'] 'Delete') {

384 | LESSON 26 DELETING DATA

// check the token
$badToken = true;
if (!isset ($_POST['token'])
|| !'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array('', 'Sorry, go back and try again.
There was a security issue.');
SbadToken = true;
} else {
$SbadToken = false;
unset ($_SESSION|['token']);

// Delete the Lot from the table
$results = Lot::deleteRecord((int) $_POST['lot_id']l);
}
}
return S$results;

}

4, In the includes/classes/lot.php file, add the deleteRecord () method, which deletes the
row from the lots table:

public static function deleteRecord($id) {
// Get the Database connection
Sconnection = Database::getConnection();
// Set up query
$query = 'DELETE FROM ‘lots’ WHERE lot_id="'. (int) $id.'"';
// Run the query
if ($result = $connection->query (Squery)) {

Sreturn = array('', 'Lot Record successfully deleted.', '');
return $return;

} else {
Sreturn = array('lotdelete', 'Unable to delete Lot.',6 (int) s$id);

return $return;
}

5. Check all your changes and verify that they look similar to Figure 26-18, Figure 26-19, and
Figure 26-20. Test that you can delete items.

Trylt | 385

‘Women

Smithside

~AUCtoNs

Home ‘ About Us ‘ Lot Categories

Product Category: Women

Printed & Voided Velvet Evening Gown, 1850s
Chocolate brown silk faille with border design of brown and cream
roses, uncut and voided velvet printed in shades of brown and cream,
full skirt in two tiers, back brass hook & eye closure, glazed linen
bodice lining, (seams at waistline weak, minor stains) excellent.

Lot: #173 Price: $13,800.00

Dior Couture Wool Cocktail Dress, 1948

Unlabeled black melton wool 3 piece ensemble, c/o tulip shape skirt
w/ projecting side panel, strapless bodice w/ built-in corset, &
face-framing off-the-shoulder shrug, B 36", W 27", H 42", center
front bodice L 9.75", skirt L 31", excellent.

Lot: #2 Price: $40,250.00

FIGURE 26-18

Smithside

AUCtIoNs

Home ‘ About Us ‘ Lot Categories

Lot Maintenance

rid: 3

Lot Name *

Dior Couture Wool Cocktail

Lot Description

Unlabeled black mel:
skirt w/ projecting side panel, strapless bodice w/ built-in
corset, & face-fr.
H 42", center front bodice L 9.75", skirt L 31", excellent.

on wool 3 piece ensemble, c/o tulip shape

ng off-the-shoulder shrug, B 36", W 27",

Lot Image File

dior-10-2.jpg

Lot Number
2

Lot Price
40250.00

Choose Lot
Category

Cancel

FIGURE 26-19

386 | LESSON 26 DELETING DATA

>

"Srre]ithside'
Auctions

Home ‘ About Us ‘ Lot Categories

Lot Delete
=Dz 3

Lot Name: Dior Couture Wool Cocktail Dress, 1948
Lot Description:
Unlabeled black melton wool 3 piece ensemble, c/o tulip shape skirt w/ projecting
side panel, strapless bodice w/ built-in corset, & face-framing off-the-shoulder shrug,
B 36", W 27", H 42", center front bodice L 9.75", skirt L 31", excellent.
Lot Image File: dior-10-2.jpg
Lot Number: 2
Lot Price: 40,250.00
Category: Women

Cancel

© 2011 Smithside Auctions

FIGURE 26-20

Watch the video for Lesson 26 on the DVD or watch online at www.wrox.com/
go/24phpmysqgl .

Preventing Database
Security Issues

In this lesson, you learn the general security guidelines to use when using MySQL. Some of
these guidelines are general ones that have been mentioned before in other lessons and some
are particular to using a database and MySQL. They are gathered together here so that you
can easily refer to them. As you are learning a new skill it can be exhilarating to just get things
to work, and it’s easy to ignore security issues. That can result in a painful lesson in the cur-
rent climate.

Security steps must be taken to make MySQL itself more secure against attacks. These

are related to your server setup and are not covered in this book. The XAMPP setup used
throughout this book is for local development and is not secure for Internet access. However,
the practices in this lesson are designed to make your code secure when used online.

UNDERSTANDING SECURITY ISSUES

There is no such thing as making your code completely secure against attacks. You can,
however, reduce what harm can be done and make it less likely that you will be successfully
hacked. Issues to be aware of are unauthorized access to your database files, unauthorized
ability to change the database structure, unauthorized ability to see or change data, and SQL
injection.

Unauthorized access to your database files is mostly dependent on your server setup. This

is related to who has access to the MySQL files and what the permissions are on those files.
MySQL is an application and as such its files are just as vulnerable to deletion and corruption
as any other files on your system. If an unauthorized person can delete your whole MySQL
setup, then you have a problem.

You don’t want unauthorized MySQL users to have the ability to change the structure of your
database. They could delete tables, for instance, if given a chance. Some hacking attacks need
to exploit more than one vulnerability to be successful. When an attack succeeds in running

388

| LESSON 27 PREVENTING DATABASE SECURITY ISSUES

unplanned commands, the damage can be limited if the hackers don’t have the authorization to use
commands such as DROP TABLE or DROP DATABASE.

You also don’t want unauthorized changing or displaying of data. If the application needs to
SELECT, INSERT, UPDATE, and DELETE data, you want to make sure that that application user can do
so only in a controlled manner. You need to check the data, whether it’s coming from a form or a
URL, to be sure that it does not contain unexpected code that also performs commands.

And that brings you to SQL injections. SQL injections are when additional SQL (in this case,
MySQL) code is contained in seemingly innocent form fields or added to URLs. Imagine this
command:

DELETE FROM authors WHERE id=4;

That command deletes a single row from the authors table. However, if you add a second condition
to the wHERE clause that is always true, it deletes all the rows:

DELETE FROM authors WHERE id=4 OR 1=1;

The following innocuous-looking code deletes
a single row based on a value. In this example,
that value comes from $id = 4, but imagine
that the value is coming from a POST or GET
variable from a form. Notice how the $id is
handled when assembling the command in
$query. The results are shown in Figure 27-1.

Successful connection to MySQL

string 'DELETE FROM ~“authors™ WHERE id=4' (length=32)

1 row(s) successfully deleted

FIGURE 27-1

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {
die('Connect Error: ' . S$connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

// assign an id value for the test
$id = 4;

// Set up the query
Squery = 'DELETE FROM 'authors' WHERE id='. $id;
var_dump ($query); echo '
';
// Run the query and display appropriate message
if (!Sresult = Sconnection->query(Squery)) {
echo "No rows deleted
";
} else {
echo $Sconnection->affected_rows . " row(s) successfully deleted
";

Using Best Practices | 389

Now, assume that instead of a 4, you are passed 4 orR 1=1 from the form as a GET or POST variable.
All the rows are deleted as shown in Figure 27-2.

<?php

define ("MYSQLUSER", "php24sqgl");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if (Sconnection->connect_error) {
die('Connect Error: ' . $connection->connect_error);
} else {
echo 'Successful connection to MySQL
';

// assign an id value for the test
$id = '4 OR 1=1';

// Set up the query
Squery = 'DELETE FROM 'authors' WHERE id='. $id;
var_dump ($query); echo '
';
// Run the query and display appropriate message
if (!Sresult = $connection->query(Squery)) {
echo "No rows deleted
";
} else {
echo Sconnection->affected_rows . " row(s) successfully deleted
";

Successful connection to MySQL

string 'DELETE FROM ~authors™ WHERE id=4 OR 1=1' (length=39)

4 row(s) successfully deleted

FIGURE 27-2

SQL injection is a serious issue, but if you write your code using best practices and filter and prepare
it properly, you prevent most SQL injections.

USING BEST PRACTICES

MySQL users and passwords are under the Privileges tab in phpMyAdmin for your local MySQL
installation. The global privileges are displayed if you are at the root level. There are also specific privi-
leges at the database and table levels. If your MySQL is online, you may not have access to the Privilege
tab in phpMyAdmin. Users and passwords for MySQL may be handled by a separate program.

Following are best practices for setting up MySQL users and passwords:
> The only users with access to the user table in MySQL should be the root accounts.

> Root users must have a password. Don’t make it a trivial password.

390 | LESSON 27 PREVENTING DATABASE SECURITY ISSUES

> All users should have a password.

Only grant as many privileges as necessary. If the application is only updating data in the
database and not making structural changes, then don’t allow the user profile used by

the application any structural privileges. Structural privileges are the ones that allow you to
create, alter, and destroy tables and databases. Don’t allow the user profile administration
rights, which would allow the user to create other users and grant privileges. Don’t confuse
the MySQL user profile the application is running under with operating system users or users
you might create for an application.

> Don’t grant privileges to all hosts (%).

> To see what privileges a user has use the SHOW GRANTS command, the Privileges tab in
phpMyAdmin, or a special program on cpanel or another hosting administration
software.

> To remove privileges from a user, use the sHOwW GRANTS command, the Privileges tab in
phpMyAdmin, or a special program on cpanel or another hosting administration software.

When you are writing your application, keep these best practices in mind:

> Use a separate username for your application and give it only the privileges it has to have.

> Use the standard precautions in creating your passwords:

>

>
>
>

No words from dictionaries.
Don’t use all numbers or all letters.
Include some capitalization and special characters.

Instead of using passwords, use pass phrases without spaces but with capitalization
and special characters to make very strong passwords that aren’t difficult to remem-
ber. “I go to the store” could look like: iGo2thestOre.

Using the first letters of a phrase is also a good way to get seemingly random letters
that are easy to remember.

> Don’t trust data entered by users.

>

>

This is where the SQL injections can happen.
Embedded code can be entered in forms or URLs.

Protect string data values with filters. See Lessons 6 and 11 for more information on
filtering.

Make sure numeric values are only numeric (preventing the OR 1=1 injection). With
integers, cast to (int) in PHP or use quote marks around the numeric variables even
though they aren’t required.

Escape and/or encode all data appropriately for where it is going. This helps prevent
hacking by preventing suspect control characters from acting like control characters.
Because you are dealing with different types of software languages (that is, MySQL

on one hand and HTML on the other), different characters act as control characters

Filtering Data | 391

and need to be dealt with differently. Do your escaping and encoding just before
using the data so you have control over how the prepared data is used:

> When passing data into a database: Use mysqli::real_escape_string to
escape the quotes. Remember to check to see if magic quotes is already on.
(See Lesson 22 for information on magic quotes.) Prepared statements do it
for you, as does the PDO connection.

> When passing data to the browser for display: Use htmlspecialchars() to
encode the special HTML characters into appropriate HTML entities. For
example, < is changed to &1t;.

If you create user logins and passwords for your application (these are separate from the
MySQL users/passwords), don’t store the passwords in plain text in the database. Use an
encryption code such as SHA1 () or SHA2 () to convert the password and store that instead.
MySQL has a pAsswoRD () function, but that is for MySQL passwords and shouldn’t be used

for application passwords.

There are a couple tests you can try to check out your programs. Don’t do the tests in place of fol-

lowing guidelines.
> Test what happens if you enter single and double quotes in web forms.

> Add non-numeric processing data in numeric form fields.

FILTERING DATA

You have several ways to filter and sanitize data, which you have learned through the course of this
book. In Lesson 6 you learned about the filter_var () function. In Lesson 11 you learned how to
filter $_GET and $_PosT variables to make them safe. To keep your database secure, you need to use

this knowledge to filter or sanitize any data going into your database.

Let’s return to the example earlier in the les-

S Lo . S ful tion to MySQL
son on SQL injection. The id in the example is Bl et My 0

an integer data type, so you can cast the vari- el
able to an integer and surround it in quotes to
protect against the injection. When you change

'DELETE FROM ~authors”™ WHERE id:

1 row(s) successfully deleted

"4"' (length=34)

the $query assignment to the following code,
you get the desired result in Figure 27-3. This
code takes a bad input and sanitizes it to protect the database from SQL injection.

FIGURE 27-3

<?php
define ("MYSQLUSER", "php24sql");
define ("MYSQLPASS", "hJQV8RTe5t");
define ("HOSTNAME", "localhost");
define ("MYSQLDB", "test");

// Make connection to database
Sconnection = @new mysqgli (HOSTNAME, MYSQLUSER, MYSQLPASS, MYSQLDB) ;
if ($connection->connect_error) {

die('Connect Error: ' . Sconnection->connect_error);

392

| LESSON 27 PREVENTING DATABASE SECURITY ISSUES

} else {
echo 'Successful connection to MySQL
';

// assign an id value for the test

$id = '4 OR 1=1"';

if (get_magic_quotes_gpc()) {
// If magic quotes is active, remove the slashes
$id = stripslashes($id);

}

// Escape special characters to avoid SQL injections

$id = Sconnection->real_escape_string($id);

// Set up the query
$query = 'DELETE FROM 'authors' WHERE id="' . (int) $id . '"';
var_dump ($query) ; echo '
';
// Run the query and display appropriate message
if (!Sresult = S$connection->query(Squery)) {
echo "No rows deleted
";
} else {
echo $connection->affected_rows . " row(s) successfully deleted
";

}

Those are a lot of quotes to keep straight. You’ve been seeing this in the earlier lessons, but just
in case you have trouble following it, here is how it is deciphered. The final value that is passed to
MySQL is a valid MySQL statement that looks like this:

DELETE FROM 'authors' WHERE id="4"

In PHP, because you are assigning this MySQL statement to a variable ($query), you have to enclose
strings in either double or single quotes. You have double quotes around the 4, so you can enclose
the statement in single quotes. Note that at this point you could have swapped the single and double
quotes. So when the whole line is a string, the assignment looks like this:

Squery = 'DELETE FROM 'authors' WHERE id="4"';

You want to replace the 4 with the variable $id. To do that, you need to break the statement into
three parts (the part before the 4, the 4, and the part after the 4), make sure each part is enclosed
in single quotes and concatenate them. So here you see that the crazy looking ' "' is a double quote
enclosed by single quotes. The assignment looks like this:

Squery = 'DELETE FROM 'authors' WHERE id="' . '4' . '"';

Now you replace the '4' with the $id variable. This is a variable, not a string, so there are
no quotes around it. Don’t get the PHP variable itself confused with the best practice of enclos-

ing the resulting integer value in the MySQL statement with quotes. The assignment looks
like this:

$query = 'DELETE FROM 'authors' WHERE id="' . $id . '"';

Cast the $id variable to an integer so add (int) in front of the variable to get the final assignment:

Squery = 'DELETE FROM 'authors' WHERE id="'. (int) $id . '"';

This is a bit of overkill for an explanation, but sometimes getting the quotes and concatenations cor-
rect can be very frustrating and it is helpful to be able to build up to the final result.

Trylt | 393

An alternative method for numeric variables is to use the is_numeric () function and process the
request only if the variable is actually numeric. If the value is coming from a form that you are vali-
dating, you could add this test in your form validation process along with the missing fields. You
will still want to put quotes around the resulting number in the MySQL statement.

For string variables, either use prepared statements, PDO, or always run variables through the
mysqli::real_escape_string() method or mysqli_real escape_string() function you
learned in Lesson 22.

) TRYIT

Available for
download on

Wovem' It this Try It, you test the Case Study for vulnerabilities. You’ve been following the best practice
guidelines as you have been creating the Case Study, but sometimes the tests can point out areas
where you missed something.

@ You can download the code and resources for this Try It from the book’s web
page at wwww .wrox .com. You can find them in the Lesson27 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 26.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints
Use the two tests listed under Best Practices:

> Test what happens if you enter single and double quotes in web forms.

> Add non-numeric processing data in numeric form fields.

Step-by-Step
Go through the following steps and correct the code if any errors are found.
1. In the website, create a new contact with the name Mitchell "Bud" O'Reilly.

2. Check that the double and single quotes appear as expected in the About Us page.

394 | LESSON 27 PREVENTING DATABASE SECURITY ISSUES

3. Go to the Edit page for this new contact. The first name is missing “Bud” as shown in Figure

27-4.

Smit side
AUCLIONS

Home ‘ About Us ‘ Lot Categories

Contact Maintenance
iD: 10

First Name *

Last Name *
O'Reilly
Position

Email

Phone

Cancel

FIGURE 27-4

4. Gotocontents/contactmaint.php. The data is contained in the value attributes for the
<input> tags. The variable is enclosed by double quotes and is not escaped. Therefore when
the browser encounters the first double quote around Bud, it thinks it is at the end of the
value attribute. Enclose all the output variables with ntmlspecialchars (). The result of
refreshing the page is shown in Figure 27-5.

<label for="first_name" class="required">First Name</label>

<input type="text" name="first_name" id="first_name" class="required"
value="<?php echo htmlspecialchars($item->getFirst_name()); ?>" /></1li>
<label for="last_name" class="required">Last Name</label>

<input type="text" name="last_name" id="last_name" class="required"
value="<?php echo htmlspecialchars($item->getLast_name()); ?>" /></1li>
<label for="position">Position</label>

<input type="text" name="position" id="position" class="required"
value="<?php echo htmlspecialchars($item->getPosition()); ?>" />
<label for="email" >Email</label>

<input type="text" name="email" id="email"
value="<?php echo htmlspecialchars($item->getEmail()); ?>" /></1li>
<label for="phone" >Phone</label>

<input type="text" name="phone" id="phone"
value="<?php echo htmlspecialchars($item->getPhone()); ?>" />

Trylt | 395

Smithside
AUCtions

Home ‘ About Us ‘ Lot Categories

Contact Maintenance
—ID: 10

First Name *
Mitchell "Bud™

Last Name *
O'Reilly
Position

Email

Phone

Cancel

© 2011 Smithside Auctions

FIGURE 27-5

5. hdaketheSanuschangeshlcontents/categorymaint.php:

<label for="cat_name" class="required">Category</label>

<input type="text" name="cat_name" id="cat_name" class="required"
value="<?php echo htmlspecialchars($item->getCat_name()); ?>" /></1li>
<label for="cat_description">Description</label>

<textarea rows="5" cols="60" name="cat_description"
id="cat_description"><?php echo
htmlspecialchars($item->getCat_description()); ?></textarea>
<label for="cat_image" >Image</label>

<input type="text" name="cat_image" id="cat_image"
value="<?php echo htmlspecialchars($item->getCat_image()); ?>" /></1li>

6. Incontents/lotmaint.php make the same changes to the text fields. For the lot number,
cast the variable to an integer. For the price, cast the variable to a float.

<label for="lot_name" class="required">Lot Name</label>

<input type="text" name="lot_name" id="lot_name" class="required"
value="<?php echo htmlspecialchars($item->getLot_name()); ?>" />
<label for="lot_description">Lot Description</label>

<textarea rows="5" cols="60" name="lot_description"
id="lot_description"><?php echo
htmlspecialchars($item->getLot_description()); ?></textarea>
<label for="lot_image" >Lot Image File</label>

396 | LESSON 27 PREVENTING DATABASE SECURITY ISSUES

<input type="text" name="lot_image" id="lot_image"

value="<?php echo htmlspecialchars($item->getLot_image()); ?>" />
<label for="lot_number">Lot Number</label>

<input type="text" name="lot_number" id="lot_number"

value="<?php echo (int) $item->getLot_number(); ?>" />

<label for="lot_price" >Lot Price</label>

<input type="text" name="lot_price" id="lot_price"

value="<?php echo (float) $item->getLot_price(); ?>" />
<?php echo $cat_dropdown; ?></1i>

7. Add alot, typing a non-numeric value in the lot number and price. Make sure there are no
errors. Look at the row in phpMyAdmin and verify that only numbers were placed in

the table.

Watch the video for Lesson 27 on the DVD or watch online at www .wrox.com/
go/24phpmysqgl .

SECTION VI
Putting It All Together

» LESSON 28: Creating User Logins

» LESSON 29: Turning the Case Study into a Content Management System
» LESSON 30: Creating a Dynamic Menu

» LESSON 31: Next Steps

In this section you take what you have learned and use it to add advanced features to your site.
You learn how to create user logins so that you can decide who can do what on your site. You
create a table that contains content pages that you can update through your site and then have
them display on your website. And, finally, you learn how to make the menuing system dynamic
so that you can update it through your site rather than hardcoding in the PHP programs. This
enables people who are creating text content to also create a menu item to access that content.

The examples are simple so that the concepts are easy to see.

28

Creating User Logins

In this lesson you learn how to restrict parts of your website to certain people. You learn what
access control systems are and to use them to control who sees what on your site. You learn
when and how to protect passwords and how to use cookies and sessions to remember who is
logged in. Finally, you learn how to use that information to restrict and grant access to differ-
ent parts of your site.

UNDERSTANDING ACCESS CONTROL

Access Control Lists, also known as ACLs, are the lists that are used to control who can

see, add, change, or delete different elements of a system; in other words, controlling access.
ACLs can be as simple as making sure someone is logged in. They can be as complex as listing
what different people or groups have the ability to create, read, update, or delete specific files,
tables, fields, or windows.

You can create a simple system in which you have only one type of user and all you need to
know is whether she is signed on with just a table of users with usernames and passwords.
When the user logs in, you check the username and password against a table to verify that the
user exists and that the username and password are correct. A more complex system would
have different levels of users. Some users can see but not touch. Others could see, touch, and
add. Some could delete but not change.

A true ACL comes in when each of the items or groups of items (often called assets) can be
addressed individually. So, for example, a user with a given access level can edit this item, but
not this other type of item. You can end up with a matrix of permission levels, looking at what
level is required on the asset before certain actions are allowed, looking at what level the user
is, looking at whether the item or user is in a group, and what permissions might be inherited
from the group.

In this lesson you keep to a simple system where the only things checked are whether the user
is logged in and what his access level is. There are two hardcoded access levels: Registered and

Admin.

400 | LESSON 28 CREATING USERLOGINS

PROTECTING PASSWORDS

Anytime you put passwords in a database, you should scramble or hash the password so if the data-
base is compromised, the passwords can’t be easily read. Hashing is a one-way process. You take a
string of characters and pass it through a function that turns it into what looks like gibberish. This
gibberish is not translated back. When someone logs in, you run the password through the same
function and compare that result to the password stored in the database.

The functions used to scramble passwords are called hash functions. You used the shai () hash
function when creating tokens for validating the origin of forms. The cryptography field has devel-
oped many of these hash functions over the course of time. As problems develop with each one,
newer, stronger ones are developed. Successive versions of PHP include some of the popular newer
hashes as they are developed. MDS5 was the hash of choice for many years but flaws have been dis-
covered and exploited with it. SHA1 was the next favorite and is still used, though flaws have also
been discovered in it. Both of these have individual
functions in PHP. The following code shows a
password encrypted with mds () and shal (). See
Figure 28-1 for the results.

md35: 9cf88e1df09629a23fcdabe2b02abl6a
shal: d6702d6317a20db403175d12936¢dcac71155d35

<2php FIGURE 28-1
Spassword = 'SomePassword!';

echo 'md5: ' . md5($password) . '
';

echo 'shal: ' . shal(Spassword) . '
';

Newer versions of PHP have the hash () function, which enables you to specify the type of hash to
be used. Using a generic function with the hash engine as a parameter makes it easier for PHP to
remain current. To see a list of the available hash algorithms, use the hash_algos () function as
shown in Figure 28-2.

<?php

echo '<pre>';

print_r (hash_algos());

echo '</pre>';

It is more complex to figure out what the current recommended hashes are in PHP. Currently, two of
the suggested hash algorithms are sha512 and whirlpool. Note that these both create hashes that
are 128 bytes long instead of the 32 and 40 of mas () and shal (). See Figure 28-3.

<?php

Spassword = 'SomePassword!';

echo 'md5: ' . hash('md5', S$password) . '
';

echo 'shal: ' . hash('shal', S$password) . '
';

echo 'sha512: ' . hash('sha512', S$password) . '
';

echo 'whirlpool: ' . hash('whirlpool', S$password) . '
';

In Lesson 17, you learned about salting tokens to make the hashed value more difficult to match for
the hacker. The same is true for password hashes. You should always add a salt to the password.

In Lesson 17 you used the same salt all the time. For passwords, it is best to use a different salt for
each user. You need this salt when the user signs on. Some people store that salt in the database as
well, and others use an existing field in the database that won’t change, such as the id. The problem
with storing the salt in the database is that if a hacker gets access to the database, he has the salt.
The hash_hmac () function uses a password with a salt plus a site key that is not stored in the data-
base. Therefore a hacker has to get access to your files and your database to be able to compromise

Protecting Passwords | 401

the passwords. The following example simulates a system using a password with a random salt that
consists of the id of the user row appended to a static salt along with a site key that is a constant not
stored in the database. See Figure 28-4.

<?php

Spassword = 'SomePassword!';
$id = 42;

Ssalt = '!#S$S%jEkcy2884"';

Ssitekey ='d0d48339c3b82db413b3be8fbcs5d7ealclfd3e2792605d3cbfdalHEM54!! " ;

echo 'sha512: ' . hash hmac('shabl2', $password . $id. $salt, S$sitekey) . '
';

Array

{
[0] => md2
[1] => mdd
[2] => md5S
[3] => shal
[4] => sha224
[5] => sha256
[6] => sha384
[7] => sha512
[8] => ripemdl28
[9] => ripemdl60
[10] => ripemd256
[11] => ripemd320
[12] => whirlpool
[13] => tigerl28,3
[14] => tigerl60,3
[15] => tiger192,3
[16] => tigerl28,4
[17] => tigerl60,4
[18] => tigerl92,4
[19] => snefru
[20] => snefrulsé
[21] => gost
[22] => adler32
[23] => crc32
[24] => crc3Zb
[25] => salsall
[26] => salsall
[27] => havall2s,k 3
[28] => havalléd,3
[29] => havall92,k3
[30] => haval224,3
[31] => haval256,3
[32] => havall28, 4
[33] => havallsd, 4
[34] => havall52,4
[35] => haval224,4
[36] => haval256,4
[37] => havall28s,s
[38] => havalléd,5
[39] => havall92,5
[40] => haval224,5
[41] => haval256,5

FIGURE 28-2

md5: 9cf88e1df09629a23fcdabe2b02ab06a

shal: d6702d6317a20db403175d12936cdcac71155d35

sha512: 64dd467d9f0e3b6c2fd8559009f178bad927eff588678c54453479d882400803394acaedce73elfcl2bdcfede1ef9ca®31997b4a525926e495af57f0ffdbe89S
whirlpool: 5b07fa8b6dde507¢ac330662d0d48339¢3b82db413b3be8beid7eal c1fd3e2792605d3cbfdala200c72d1 feeb84a19¢53a8848947571d0cb4b2a038e7b69b2

FIGURE 28-3

sha512: 504e33b5al3e3c65ee197394130179ef0222c2b64f4350ed13660bB8b4c0728248dc28908fc350b12e6e5cee6290c45delcd0a5b3Be962cBd56abeasc031932

FIGURE 28-4

402

| LESSON 28 CREATING USER LOGINS

To protect the passwords you need to use a two-part login where you request both the username
and the password. If you only have the password then either there’s a chance that the password is
unique, or you have to inform the user that the password is already taken, in which case she knows
the password of another user.

As an added precaution, don’t retrieve the password hash field when you query the database. Use
the calculated hash in the wHERE clause of the SELECT statement but leave it out of the list of fields to
retrieve. This means that you can’t use an asterisk (*) and retrieve all fields.

USING COOKIES AND SESSIONS

HTTP, the protocol that runs the Web, is stateless. Stateless means that the system doesn’t know the
status of what has happened before. When the server processes requests from your website, it knows
nothing more than what you’ve given it in that one command. It doesn’t know what this user has
done in the past or that he has successfully logged in.

Cookies and sessions are used to overcome this short-term memory problem. You’ve used cookies
and sessions when working with forms. As you learned there, cookies are stored on a user’s com-
puter in plain text. Sessions, on the other hand, are stored on the server with only the id to the user
session being stored in the cookie.

Security information, such as the fact that the user is logged in and what his access levels are, should
be kept in a session rather than a cookie. To use a session you must always start the session before
you do anything else. Start a session with session_start () ;. If you are using this throughout your
program and you have an initialization program, put the command in there.

After you have started a session with session_start (), the session is accessed like an associative
array using $_SESSION just as $_POST, $_GET, and $_COOKIE are accessed. For example, if the user
data is an associative array, this code stores the user’s id and access level in the session:

$_SESSION['user_id'] = S$result['id'];
$_SESSION['access'] = Sresult['access'];

If the session is used only for logged-in users, when the user logs out, you clear the session variables,
expire the cookie that points to the session, and destroy the session itself:

<?php

$_SESSION = array();

if (isset($S_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-360000);

}

session_destroy () ;

If you are also using the session for users who are not logged in, you unset the session variables that
pertain to the logged-in user:
<?php

unset ($_SESSION|['user_id']);
unset ($_SESSION|['access']);

Putting Logins to Work | 403

PUTTING LOGINS TO WORK

Now that you have the access information in a session you can use that to allow access to specific
pages or even specific pieces of information. You frequently check whether someone is logged in and
what her access is, so the first thing to do is to put those checks in a function or add it as a method
to a class. In these examples you use a function, though in the Case Study you use a static method in
the contact class.

Continuing with the examples you used earlier to check whether a user is logged in, create the fol-
lowing function:
<?php
function isLoggedIn() {
if (isset($S_SESSION['user_id'])) {
return true;

} else {
return false;

}

Using this function assumes that you have called a session_start () and that you put this informa-
tion in the session when the user logged in.

When you have a page that you want only a logged-in user to see, check at the beginning of the
page to see if she is logged in. Display the page only if the function returns true. In this example, if
the user is not logged in, she sees a message that says the page is restricted. Otherwise, if the user is
logged in, she sees the private page:

<html>

<title>Private Page</title>
<body>

<?php if (!isLoggedIn()) : ?>

<p>Sorry, this page is restricted. </p>
<?php else : ?>

<hl>Welcome</hl>

<p>You are looking at a private page.</p>
<?php endif; ?>
</body>
</html>

You can use this same logic to restrict access to a part of the page as shown in the following
example:

<html>
<title>Private Information</title>
<body>
<hl>Welcome</hl>
<p>You are looking at the public part of this page.</p>

<?php if (isLoggedIn()) : 2>
<p>And here you see private information</p>
<?php endif; ?>

404 | LESSON 28 CREATING USERLOGINS

<p>And here is more public information.</p>

</body>
</html>

These examples only care if the user was logged in. The next level of ACL is when you have different
authorizations for different people or groups. The logic is similar to checking if the user is logged

in, except here you check to see that she has the appropriate access level. This function returns the
actual access level if the user is logged in and false if the user is not logged in:

function accessLevel () {

if (isset ($_SESSION|['access'])) {
return $_SESSION|['access'];
} else {

return false;

}

You can then use this access level to determine what can be displayed. This page shows one link for
administrators, a different link for registered users, and a third for everyone else:

<html>
<title>Private Information</title>
<body>
<hl>Welcome</hl>
<p>You are looking at the public part of this page.</p>

<?php if (accessLevel() == 'Admin') : ?>
Admin functions
<?php elseif (accessLevel() == 'Registered') : ?>

Registered functions
<?php else : ?>

Public functions
<?php endif; ?>

</body>
</html>

You also can assign access levels to your assets, such as tables, fields, or rows, and then match those
access levels with the access levels of the users.

D TRYIT

Available for
download on

W' In this Try It, you add a simple ACL system to the Case Study. You use this to restrict add,
edit, and delete functions to administrators. The ACL system has two types of logged-in users:
administrators and registered users.

To keep things simple, you expand the contacts to include the user information so you add user-
name, password, and access level to the contacts table and corresponding maintenance pages and
processing. In an actual system these might be two different tables.

Users need a way to sign on, so you create a login page and a logout page. Display the link to the
login page to users who are not logged in and the logout link to those who are logged in.

Trylt | 405

@ You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lesson28 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 27.
Alternatively, you can download the files from the book’s website at www.wrox.com. The password
for the contacts in the database is 12345678.

Hints

There are many different ways to hash a password. The one used in this section adds three salts,
each of a different kind. The first salt is a salt that is different for each user and is stored in the
database. The id field is used for that. The second salt is an arbitrary list of characters hardcoded
wherever hashing is needed. The third salt is a salt that is specific to the site. This is shown as a
hardcoded constant. In a real program you might have that in a separate configuration file. The
hashing used is sha512, which takes up 128 bytes.

Step-by-Step
Add username, password, and access level to the contacts table.

1. Add the following fields to the contacts table. You can use phpMyAdmin to add the fields
to the table either with the GUI interface, in the SQL table with the following code, or by
importing the addacl.sql file from the downloaded code.

ALTER TABLE ‘contacts’
ADD ‘user_name varchar(15) NOT NULL,
ADD “password® varchar (128) NOT NULL,
ADD ‘access’ varchar(10) NOT NULL;

2. Update the content/contactmaint .php file with the new fields. You use a drop-down
for the access levels, so set that up at the very end of the first PHP block. You create this
drop-down later in the Try It. You want to fill in the password only if you want to change
it, so don’t display the value for the password. The type should be password so that the text
is not displayed when typed in. Add the attribute autocomplete="of£". This prevents the

406 | LESSON 28 CREATING USERLOGINS

3.

4.

// set up the access dropdown,

// setting up the selected option for existing records
$access_dropdown = $item->getAccess_DropDown();

?>

<hl>Contact Maintenance</hl>

<label for="user_name" class="required">User Name</label>

<input type="text" name="user name" id="user_ name"
value="<?php echo htmlspecialchars($item->getUser name()); ?>" />
</1i>
<label for="passwordl" >New Password</label>

<input type="password" name="passwordl" id="passwordl" autocomplete="off"

</1li>
<label for="password2" >Confirm Password</label>

<input type="password" name="password2" id="password2" autocomplete="off"

</1li>
<1li><?php echo $access_dropdown; ?></1li>

In the includes/classes/contact .php file, add the additional fields as properties:

/**
* User name
* @var string
*/
protected Suser_name;

/**
* Password
* @var string
*/
protected $password;

/**
* Access level
* @var string
*/
protected Saccess;

In the same file, add the getters for the username and the access level. Do not create one for
the password.

/**
* Return User Name
* @return string
*/
public function getUser_name() {
return $this->user_name;

/**
* Return Access

password from being automatically filled in by the browser. This attribute does not validate
but is needed. Add a second input for passwords to get a confirming password.

/>

/>

Trylt | 407

* @return string
*/

public function getAccess() {
return S$this->access;

}

5. Still in the same file, create a public method that creates the HTML for a drop-down showing
the options Registered and Admin:

public function getAccess_DropDown () {
// set up first option for selection if none selected
Soption_selected = '';
if (!Sthis->access) {
Soption_selected = ' selected="selected"';

}

// Get the categories
$items = array('Registered', 'Admin');

$html = array();

Shtml[] = '<label for="access">Choose Access</label>
';
Shtml[] = '<select name="access" id="access">"';

foreach ($items as $i=>$Sitem) {
// If the selected parameter equals the current category id
// then flag as selected

if ($this->access == $item) {
Soption_selected = ' selected="selected"';
}
// set up the option line
$html[] = ‘'<option value="' . $item . '"' . Soption_selected . '>' .
Sitem . '</option>';

// clear out the selected option flag
Soption_selected = '';

}

Shtml[] = '</select>"';
return implode("\n", S$html);

}

6. Inthe includes/init.php file, add a constant that defines a site key. This site key is used to
hash the password. The value in the site key is purely arbitrary. If you later change it, none of
your passwords would work.

define ('SITE_KEY ',
'd0d48339c3b82db413b3be8fbc5d7ealcl£d3e2792605d3cbfdalHEMS4!! ") ;

7. Intheincludes/function.phpfﬂe,ﬁndthenmintContact()funcﬁonhAddthelmernanm
and access level to the $item array. You do not add the passwords here.

'phone’ => filter_input (INPUT_POST, 'phone', FILTER_SANITIZE_STRING),
'user_name' => filter input (INPUT POST, 'user_name', FILTER_ SANITIZE_ STRING),
'access' => filter_ input (INPUT_ POST, 'access', FILTER SANITIZE_STRING)

)

408 |

LESSON 28 CREATING USER LOGINS

8. Backintheincludes/classes/contact.phpfﬂe,ﬁndthe_yerifylnput()
function. Verify that a username exists and is at least six characters long. Run the
getContactIdByUser () method. This method returns the id for the row with the given
username. If an id is returned, it means the username is already taken. You create the
method in the next step. If a password is entered, verify the length and confirm that it
and the confirming password are the same. If they do not match, set an error.

1f (!'trim($this->user name)) {
Serror = true;

} elseif (strlen(trim(Sthis->user_name)) < 6) {
Serror = true;

} elseif (self::getContactIdByUser (trim($this->user_name))) {
Serror = true;

}

Spasswordl = trim(S$_POST['passwordl']);
if ($passwordl) {
if ($passwordl != trim($_POST['password2'])) {
Serror = true;
} elseif (strlen($passwordl) < 6) {
Serror = true;

9. Create a static method that takes a username and looks up the id in the contacts table:

public static function getContactIdByUser (Suser_name) {
// Get the database connection
Sconnection = Database::getConnection();
// set up the query

$id = '

Squery = 'SELECT id FROM contacts’
WHERE user_name="'. Database::prep(Suser_name) .'"
LIMIT 1°';

// Run the MySQL command
Sresult_obj = '';
// Run the MySQL command
Sresult_obj = $connection->query (Squery) ;
while($Sresult = $result_obj->fetch_array (MYSQLI_ASSOC)) {
$id = Sresult['id'];
}
// if user name not found, return false
if (!$id) { // if user name not found, return with error message
return false;
} else {
return $id;

10. Update the addrecord () method by adding the processing for the new fields. Create the new
row as before. This enables you to get the newly generated id with the mysql_insert_id()
function so you can use that to help create the hash for the password. The 'hi#HUde9 is an

Trylt | 409

arbitrary salt. By hardcoding the salt here, it requires that hackers have access to your files to
locate the information. You are also using the constant STTE_KEY, which you defined earlier.

Update the new row with the username, password hash, and the access level. The following
code trims the password so that whitespaces are automatically used. Some people like to put
deliberate whitespace at the beginning or end of the password. If you want to accommodate
them, leave off the trim() around the $_POST['passwordl'].

public function addRecord() {

// Verify the fields

if

phone)

(Sthis->_verifyInput()) {
// prepare for the encrypted password
$password = trim($_POST['passwordl']);

// Get the Database connection
Sconnection = Database::getConnection();

// Prepare the data
Squery = "INSERT INTO contacts (first_name, last_name, position, email,

VALUES ('" . Database::prep($this->first_name) . "',

'" . Database::prep($this->last_name) . "',
'" . Database::prep($this->position) . "',
'" . Database::prep($this->email) . "',
'" . Database::prep(Sthis->phone) . "')";
// Run the MySQL statement
if (Sconnection->query($query)) { // this inserts the row
// update with the user name and password now that you know the id
$query = "UPDATE contacts
SET user_name = '" ., Database::prep($this->user _name) . "',
password = '" . hash_hmac('sha512',
$password . '!hi#HUde9' . mysql_ insert_id(),
SITE KEY) ."',

access = '" . Database::prep($this->access) . "'";
if ($connection->query($query)) { // this updates the row
Sreturn = array('', 'Contact Record successfully added.', '');

// add success message
return Sreturn;
} else {
// send fail message
$return = array('', 'User name/password not added to contact.',

return $return;

} else {

// send fail message and return to contactmaint

$return = array('contactmaint',
'No Contact Record Added. Unable to create record.',
'0');

return $return;

}

else {

// send fail message and return to contactmaint

410 | LESSON 28 CREATING USERLOGINS

$return = array('contactmaint', 'No Contact Record Added.
Missing required information or problem with user name or password.',
'0');
return S$return;

}

11. Next, update the editRecord () method. If a password was entered, create the hash password
and update all the fields. If no password was entered, just add the username and access fields to
the existing fields to be updated. The following code shows the affected part of the method:

// Update with a password changed
if (trim($_POST['passwordl'])) {
// prepare the encrypted password
$hash password = hash_hmac('sha512',
trim($_POST['passwordl']) . '!hi#HUde9' . $this->id,
SITE_KEY);
// Set up the prepared statement
Squery = 'UPDATE ‘contacts’ SET first_name=?, last_name=?,
position=?, email=?, phone=?,
user_name=?, password=?, access=?
WHERE id=?"';
$statement = $connection->prepare (Squery) ;
// bind the parameters
$statement->bind_param('ssssssssi', Sthis->first_name,
Sthis->last_name,
$this->position, $this->email, S$this->phone,
$this->user_name, $hash_password, $this->access,
Sthis->id);
} else {
// update without a password changed
// Set up the prepared statement
Squery = 'UPDATE ‘contacts' SET first_name=?, last_name=?,
position=?, email=?, phone=?,
user_name=?, access=?
WHERE id=?"';
$statement = Sconnection->prepare ($Squery) ;
// bind the parameters
$statement->bind_param('sssssssi', $this->first_name, S$this->last_name,
Sthis->position, S$this->email, $this->phone,
$this->user_name, $this->access,
$this->id);
}

12. Change the getcontact () method to get specific fields instead of all fields with the *. This
way you don’t bring in the hash password.

N

Squery = 'SELECT ‘id’, ‘first_name’, 'last_name’, ‘position’, ‘email’', ‘phone’,
‘user_name', ~access’
FROM “contacts® WHERE id="'. (int) s$id.'"';

13. Change the getcontacts () method to get specific fields instead of all fields with the *.

Squery = 'SELECT 'id’, ‘first_name’, 'last_name’, 'position’, ‘email’, ‘phone’,
‘user_name', ~access’
FROM ‘contacts' ORDER BY first_name, last_name';

Trylt | 41

14. Now add usernames and passwords to the existing contacts as demonstrated in Figure 28-5.
You add the Logout menu item later in this Try It.

v
oo

”Smlthside
\Aucthns

Logout ‘ Home ‘ About Us ‘ Lot Categories

Contact Maintenance
—iD: 1

First Name *
Martha

Last Name *

Smith

Position

none

Email

martha@example.com

Phone

User Name *

msmith

New Password

Confirm Password

Choose Access

Admin 8]
Cancel

@ 2011 Smithside Auctions

FIGURE 28-5
15. Flag user_name as unique in the database so that there are no duplicates in the table.
ALTER TABLE ‘contacts' ADD UNIQUE (user_name);
The next step is to create a login page so that users can log in.

1. Create a file called content/login.php that looks like Figure 28-6.

<?php
?>
<hl>Login</hl>

<form action="index.php" method="post" name="maint" id="maint">

412 |

LESSON 28 CREATING USER LOGINS

<fieldset class="maintform">

<legend>Login</legend>

<label for="user_name" class="required">User Name</label>

<input type="text" name="user_name" id="user_name" class="required"

/></1i>

<label for="password" class="required">Password</label>

<input type="password" name="password" id="password" class="required"

/>
</1li>

<?php
// create token
$salt = 'SomeSalt';
Stoken = shal (mt_rand(1,1000000) . $salt);
$_SESSION['token'] = $token;
?>
<input type="hidden" name="task" id="task" value="login" />
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>
<input type="submit" name="login" value="Login" />
Cancel, return to Home Page
</fieldset>
</form>
Login
rLogin

User Name *

Password *
|

| ——

L J

(Legin) Cancel, return to Home Page

FIGURE 28-6

2. Add the login task to the includes/init.php file. This calls the userLogin () function.

case 'login' :
// process the login
$results = userLogin();

Smes
// I

sage .= Sresults[l];
f there is redirect information

// redirect to that page
// pass on new messages

if
/7
if

(Sresults[0] == 'login') {
pass on new messages
(Sresults[1l]) {

Trylt | 413

S_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=login");
exit;
}
break;

3. Add the userLogin () function to the includes/functions.php file. This function checks
the token as usual and loads the PosT variables into an array. That array is then passed to
the static method 1ogTn () in the contact class and the results passed back to the calling
function in init.php.

function userLogin() {
Sresults = '';
if (isset($S_POST['login']) AND $_POST['login'] == 'Login') {
// check the token
SbadToken = true;
if (!isset($_POST['token'])
|| 'isset($_SESSION['token'])
| | empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION|['token']) {
Sresults = array(''
'Sorry, go back and try again. There was a security issue.');
SbadToken = true;
} else {
$badToken = false;
unset ($_SESSION|['token']);

$item = array (
'user_name' => filter_input (INPUT_POST, 'user name', FILTER SANITIZE_
STRING),
'password' => filter_input (INPUT_POST, 'password')
)i

// login
$results = Contact::logIn($item);
}
}
return $results;
}

4. Add the 10gTn () method to the includes/classes/contact.php file. First you check to
see that the user entered both a username and a password. Use the username to get the id
from the database. If there is no matching user, send the error message that, the username or
password is incorrect. Never tell the user what the exact problem is because that gives hack-
ers too much information.

Next, set up the hash for the password. Select the user based on matching both the username
and hash password. In this instance you are pulling in only those fields that you need, rather

414 | LESSON 28 CREATING USER LOGINS

than using an * to get all fields. It is better not to pull in the hash password. Post all of those
fields to sESSTON variables and return a success message.

public static function logIn($item) {
if (!$item['user_name'] || !$item['password']) {
return array('login', 'Sorry, invalid User Name and/or Password.');
}
// Get the database connection
Sconnection = Database::getConnection();

// get the id for the user
$id = self::getContactIdByUser ($Sitem['user_name']);

if (!$id) { // if user name not found, return with error message
return array('login', 'Sorry, invalid User Name and/or Password.',6 '');
$hash_password = hash_hmac('sha512', $item|['password'] . ''hi#HUde9' .

(int) $id, SITE_KEY);

// Set up the query

Squery = 'SELECT id, first_name, last_name, user_name, access
FROM "contacts’
WHERE user_name="'. Sitem['user_name'] o
AND password = "' . Shash password . '"
LIMIT 1°';

// Run the MySQL command

Sresult_obj = '';

// Run the MySQL command

Sresult_obj = $connection->query (Squery) ;

try {

while (S$result = Sresult_obj->fetch_array (MYSQLI_ASSOC)) {

// pass back the results
S_SESSION|['user_id'] Sresult['id'];

$_SESSION|['first_name'] = S$Sresult]'first_name'];
$_SESSION|['last_name'] = $result['last_name'];
S_SESSION|['user_name'] = Sresult['user_name'];
$_SESSION|['access'] = Sresult['access'];

return array('', "Welcome, {$_SESSION['first_name']}", '');

}

return array('login', 'Sorry, invalid User Name and/or Password.',6'');

}
catch (Exception $e)
{

return false;

}
5. Add the Login menu item to the main menu in index.php:

Home</1i>
Login</1li>

If you need to reset your session during your testing, an easy way is to com-
pletely close down your browser.

Trylt | 415

The next step is to create a logout page so that users can log out.

1. Create a file called content/logout .php. Assuming that George is logged in, your results
look like Figure 28-7.

<?php
/**
* logout.php
*
* Logout
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
?>
<hl>Logout</hl>

<form action="index.php" method="post" name="maint" id="maint">

<fleldset class="maintform">
<legend>Logout</legend>
<p>Are you sure you want to logout, <?php echo $_SESSION|'first_name'];
?>?</p>

<?php
// create token
$salt = 'SomeSalt';
Stoken = shal(mt_rand(1,1000000) . $salt);
S_SESSION|['token'] = S$token;
?>
<input type="hidden" name="task" id="task" value="logout" />
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>
<input type="submit" name="logout" value="Logout" />
Cancel, return to Home Page
</fieldset>
</form>

Logout

Logout

Are you sure you want to logout, George?
(Logout) Cancel, return to Home Page

FIGURE 28-7

2. Add the 1ogout task to the includes/init.php file. This calls the userLogout () function.

case 'logout' :

// process the login

$results = userLogout();

Smessage .= Sresults([1];

// If there is redirect information
// redirect to that page

// pass on new messages

416 | LESSON 28 CREATING USERLOGINS

if (Sresults[0] == 'logout') {
// pass on new messages
if (Sresults[1l]) {
$_SESSION['message'] = Sresults[l];
}
header ("Location: index.php?content=logout]");
exit;
}
break;

3. Add the userLogout () function to the includes/functions.php file. This function checks
the token as usual. The static method 1ogout () in the contact class is called and the results
are passed back to the calling function in init.php.

function userLogout () {
Sresults = '';
if (isset($_POST['logout']) AND $_POST['logout'] == 'Logout') {
// check the token
$badToken = true;
if (!isset ($_POST['token'])
|| !'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array ('
'Sorry, go back and try again. There was a security issue.', '');
SbadToken = true;
} else {
// logout
SbadToken = false;
unset (S_SESSION|['token']) ;

Contact::logout () ;
Sresults = array('', "You have successfully logged out",'');;
}
}
return S$results;

}

4, AddthelogOut()nkxhodtotheincludes/classes/contact.phpfﬂe.TologtheLweroug
you unset the SESSTON variables.

public static function logout () {
unset ($_SESSION['user_id']);
unset ($_SESSION['first_name']) ;
unset ($_SESSION|['last_name']);
unset ($_SESSION|['user_name']) ;
unset ($_SESSION|['access']);

}

5. Add the Logout menu item to the main menu in index.php:

Home</1i>
Logout</1li>
Login</1i>

Finally, you add the access level checks to your program.

Trylt | 417

1. Create a static method called isLoggedIn () in the Contact class that returns true if the user
is logged in. To see if a user is logged in, check to see if the SESSTON variable user_id is set.
Intheincludes/classes/contact.phpfﬂeaddlfﬁscod&

public static function isLoggedIn() {

if (isset($_SESSION|['user_id'])) {
return true;
} else {

return false;

}

2. Create a static method called accessLevel () in the contact class that returns the access
level of the user. This is stored in the SESSION variable access.

public static function accessLevel () {
if (isset($_SESSION|['access']l)) {
return $_SESSION]['access'];
} else {

return false;

}

3. Some pages have both public and private information. Only Admin users are allowed to
add, edit, or delete items. Add access level checks to those buttons in the about . php,
categories.php, and lots.php files in the content folder. Here is the example for the
about .php file:

// Get the contact information
Sitems = Contact::getContacts();
$accessLevel = Contact::accessLevel();
?>
<hl>About Us
<?php if ($accessLevel == 'Admin') : ?>
Add
<?php endif; ?>

</hl>
<h2><?php echo htmlspecialchars($item->name()); ?>
<?php if ($accessLevel == 'Admin') : ?>

<a class="button"
href="index.php?content=contactdelete&id=<?php echo S$item->getId();
?>">Delete

<a class="button"
href="index.php?content=contactmaint&id=<?php echo $item->getId();
?>">Edit
<?php endif; ?>
</h2>

4. Some pages should only be seen by Admin users. They don’t have access through the pro-
gram, but could still get to those pages by directly entering a URL. Check for the access level
at the beginning of the content and skip the content if the user is not an Admin user.

418 | LESSON 28 CREATING USERLOGINS

The following files in the content folder should have this check: categorydelete.php,
categorymaint.php,contactdelete.php,contactmaint.php,lotdelete.php,and
lotmaint.php.}{ﬂfiStheexanuﬂeforthecategorydelete.phpfﬂ&

$accessLevel = Contact::accessLevel();

if ($accessLevel != 'Admin') :
echo 'Sorry, no access allowed to this page';
else :

$id = (int) $_GET['cat_id'];

// Get the existing information for an existing item
Sitem = Category::getCategory($id) ;

?>

<hl>Category Maintenance</hl>

</form>
<?php endif;

5. Change the menu so that Login shows for those users who are not logged in and Logout
shows for those users who are logged in:

require_once 'includes/init.php';
$logged_in = Contact::isLoggedIn() ;
?>

Home</1l1i>
<?php if ($logged_in) : 2>

Logout</1li>
<?php else : ?>

Login</1i>
<?php endif; 72>

6. Check that you can log in and out. See that the Add, Edit, and Delete buttons show only if
you are logged in as an Admin user. See that the menu shows Login if you are not logged in
and Logout if you are logged in.

Watch the video for Lesson 28 on the DVD or watch online at www.wrox . com/
go/24phpmysql .

Turn the Case Study into a
Content Management System

In this lesson you add the ability to create additional pages of information for the Case Study
site. These could be news articles, a page listing the privacy policy, or a blog article. Instead of
creating a new .php content file for each one, you create a single .php file that displays page
text that you have in the database.

DESIGNING AND CREATING THE TABLE

The first step is to create the table that will contain the page data. What is the information you
need in this file? There is the obvious information such as

>

>

Title

Text

and other information you might want to keep:

>

>
>
>

User who created the article
Date article was created
User who last modified the article

Last date the article was modified

You also need a primary key so that you can select which article you want to display.
Remember that the primary key cannot change and should be unique. Therefore you do not
want to use the title as the key. Use an auto-increment integer key as you have in the other file.

420 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

This example is for a freeform page, but depending on your application, you could add additional
fields that you could then place in particular places on the page. For instance, if you want all the
articles to start with a picture and a short introduction and be followed by a list of references, you
could add fields for each of those in your table.

You might also want to put your articles into different categories the way that the lots are in the
Case Study. For that, you need an article categories table and a key in the articles table that links to
it. You don’t use article categories for this example.

CREATING THE CLASS

After you have created the articles table, you need to create a class that describes it and contains the
different actions you need to perform on the articles. This class is similar to the others that you have
created, but this is a good place to list what you need in the class. In different projects that you do,
you have different methods in your classes, but these are basic methods that most classes based on
tables need to have.

Properties

The properties in the class match the fields in the table. They should be protected so that only this
class or classes that extend this class can see them directly.

Methods

Your class needs methods to create the object and to handle the CRUD (creating, reading, updating,
and deleting) of the articles.

> construct (): This method is called when you create an object from this class. You have
been using a method that takes an associative array where the indexes are equal to the prop-
erties and automatically updates the properties at instantiation. You can perform different
actions in this method. In this example, you have the user who created the article and the
user who last modified the article. You store the id, not the name of the user, from the con-
tact table in the article table. If you call contact: :getContact ($this->created_by) ; in
this method you can assign it to a new property you create, which now contains all the infor-
mation about the person who wrote the article.

> getProperty name () : This is a getter method, where Property_name is the name of the
property with the first letter capitalized. You need getter methods for each of the properties
that are protected or private so that parts of the program outside the class are able to see
what the values are.
_verifyInput (): This method is used to verify the input used to add or update the table.

addRecord (): This method is used to add a row to the table.

editRecord(): This method is used to make changes to a row in the table.

Creating the Class | 421

deleteRecord (): This method is used to remove a row from the table.

getarticle(): This method is used to get the information from one row in the table, based
on the id passed to the method.

> getarticles(): This method is used to get a list of all the rows in the table.

When you have this much code that is similar, it makes sense to reuse the same code instead of copy-
ing and pasting it into new classes. It cuts down on errors, saves you time, makes the code easier to
read, and makes it easier to make changes to all the classes. For instance, instead of having four
__construct () methods in four different classes, you could create a class that hasa __construct ()
method in it and then you can extend that class.

The following class called Table has a property $id and two methods. One is the __construct ()
method and the other is a getter method for the $id property.

<?php
class Table
{
protected $id;

public function __ construct ($input = false) {
if (is_array($Sinput)) {
foreach ($input as Skey => S$val) {
// Note the $key instead of key.
// This will give the value in Skey instead of 'key' itself
Sthis->$key = $Sval;
}

}

public function getId() {
return $this->id;
}

}

Any class that extends the Table class automatically includes a property $1d and the methods
__construct () and get1d (). If the child class has no property or method with the same name, it
automatically uses the parent class or property version. If the child class has a property or method
with the same name, then the child’s property or class is used. You can still access the parent, how-
ever, by using parent as the class name. This code uses the child construct that in turn calls the
parent’s __construct () and then adds more code:

class Article extends Table
{

public function __ construct ($input = false) {
parent::_ construct ($input);
Sthis->author = Contact::getContact ($this->created_by) ;

422 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

You can expand this idea by moving some of the other methods that are similar across the
classes into the Table class and then extending the contact, category, and Lot classes from
the Table class.

CREATING THE MAINTENANCE PAGES

After you have the table and class created, you need to create the pages to maintain the table.

To maintain the articles you need a page that displays a list of the articles, a page to add or change
articles, and a page to delete the articles. You can use the contacts or categories pages as a model
for this.

The user who creates the article, the date the article was created, the user who last modified the arti-
cle, and the last date modified are already known to the system. Those fields can be automatically
updated and so do not need to be on the form.

For security and validation, the title field should be run through the htmlspecialchars () function.
This turns control characters into the HTML entities so that they display as characters rather than
performing any actions. For instance, an & would be turned into samp;.

The text field needs special consideration. If you treat it the standard way, by encoding the HTML
entities, you are not able to use HTML in the text field. This is fine if you only want paragraphs,
but if you want to be able to enter HTML commands you need to come up with a different solution.
The strip_tags () function strips away HTML tags except for the ones that you specify. This lets
you control what HTML you allow.

The strip_tags () function does not make the field entirely secure. You could still get things put
into the attributes such as with JavaScript mouseovers. In this case, the form input is coming from
within the company so it is acceptable. If this were coming from public input, you would need to
program something more secure.

CREATING THE DISPLAY PAGE

To display the articles all you need to do is to create a file that looks up the article based on the id
and display the fields. However, there is one additional change you need to make to the display of
the text field. Figure 29-1 displays an article on the maintenance screen. Figure 29-2 displays what it
looks like on the display screen.

As you can see, you have lost all the paragraphs. The text has run into a single paragraph. If you
were to use <p> tags to surround the paragraphs you would get your paragraphs back, but there’s
an easier way to get them back. Control characters that signify a new line create those para-
graphs. The <textarea> tag reads those and starts a new paragraph. Just displaying the text field
does not activate those control characters. There is a function that turns those newline characters

Creating the Display Page | 423

into
 tags. It is the “new line to
” function, which is written as n12br (). Adding that
function to the display of the text brings back the paragraphs. The results of the following code
are shown in Figure 29-3.

<?php echo strip_tags (nl2br(Sitem->getText()),
"<p>
<h2><h3><hd4><a>"); ?>

il

. Shithside
-AUCLIONs

Articles ‘ Logout ‘ Home ‘ About Us ‘ Lot Categories

Article Maintenance

Title *

Terms of Use

Text *

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sed tortor ac ante
consequat porta et et tortor. Suspendisse suscipit sodales luctus. Sed interdum,
urna a dapibus lacinia, odio velit accumsan augue, quis auctor tortor dolor vitae
massa. Etiam fermentum cursus tempor. Morbi malesuada suseipit eros ac hendrerit.
Etiam aliquam justo a dui laoreet eu congue nulla bibendum.

unc eget lectus odio. Etiam sodales vehicula ornare. Suspendisse quis porttitor
justc. Donec eget auctor felis. Sed ultricies fringilla elit guis tincidunt.
Mauris sed condimentum tellus. Phasellus sollicitudin pulvinar interdum. Integer
faucibus egestas rhoncus. In et turpis sed dolor rutrum eleifend.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Class aptent taciti
sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Duis ac
lectus eu ipsum rutrum pharetra. Nam feugiat sagittis urna, at porttitor doler
scelerisque nec. In lacinia, dui et tempus luctus, erat massa placerat orci, at
porta velit risus in diam.

Cancel

© 2011 Smithside Auctions

FIGURE 29-1

424 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

AUCtions

Articles ‘ Logout ‘ Home | About Us | Lot Categories

Terms of Use

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sed tortor ac ante consequat
porta et et tortor. Suspendisse suscipit sodales luctus. Sed interdum, urna a dapibus lacinia,
odio velit accumsan augue, quis auctor tortor dolor vitae massa. Etiam fermentum cursus
tempor. Morbi malesuada suscipit eros ac hendrerit. Etiam aliquam justo a dui laoreet eu
congue nulla bibendum. Nunc eget lectus odio. Etiam sodales vehicula ornare. Suspendisse
quis porttitor justo. Donec eget auctor felis. Sed ultricies fringilla elit quis tincidunt. Mauris
sed condimentum tellus. Phasellus sollicitudin pulvinar interdum. Integer faucibus egestas
rhoncus. In et turpis sed dolor rutrum eleifend. Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Duis ac lectus eu ipsum rutrum pharetra. Nam feugiat sagittis urna, at porttitor
doler scelerisque nec. In lacinia, dui et tempus luctus, erat massa placerat orci, at porta velit
risus in diam.

© 2071 Smithside Auctions

FIGURE 29-2

AUCTIONS

Articles ‘ Logout ‘ Home | About Us | Lot Categories

Terms of Use

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sed tortor ac ante consequat
porta et et tortor. Suspendisse suscipit sodales luctus. Sed interdum, urna a dapibus lacinia,
odio velit accumsan augue, quis auctor tortor dolor vitae massa. Etiam fermentum cursus
tempor. Morbi malesuada suscipit eros ac hendrerit. Etiam aliquam justo a dui laoreet eu
congue nulla bibendum.

Nunc eget lectus odio. Etiam sodales vehicula ornare. Suspendisse quis porttitor justo. Donec
eget auctor felis. Sed ultricies fringilla elit quis tincidunt. Mauris sed condimentum tellus.
Phasellus sollicitudin pulvinar interdum. Integer faucibus egestas rhoncus. In et turpis sed
dolor rutrum eleifend.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos himenaeos. Duis ac lectus eu ipsum rutrum
pharetra. Nam feugiat sagittis urna, at porttitor dolor scelerisque nec. In lacinia, dui et tempus
luctus, erat massa placerat orci, at porta velit risus in diam.

© 2011 Smithside Auctions

FIGURE 29-3

Trylt | 425

TRY IT

In this Try It, you add a new table to the Case Study database called articles. You set up mainte-
nance pages for this new table, including all the necessary processing for adding, editing, and
deleting articles. You create a new content file called articledisplay.php that you use to display
the articles as a web page.

@ You can download the code and resources for this Try It from the book’s web
page at viww .wrox .com. You can find them in the Lesson29 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 28.
Alternatively, you can download the files from the book’s website at www.wrox . com.

Hints

Keep the end the <textarea> tag on the same line as the beginning of the text to go inside the
textarea. If you don’t, you get whitespace at the beginning of the input box.

CURRENT_TIMESTAMP is a MySQL constant that contains the current time. You can use that to time-
stamp when an article is created and when it is modified.

The user must be logged in before he has access to the maintenance screen, so the program has
access to his user id in the SESSTON. Access the SESSION variable to get the id to update the Article
row.

Step-by-Step
Create the articles table.

1. Create the articles table with the following fields. You can use phpMyAdmin to add the
fields to the table either with the GUI interface, in the SQL table with the following code, or
by importing the addarticlestable.sql file from the downloaded code.

DROP TABLE IF EXISTS ‘articles;

CREATE TABLE articles’ (
“id’ int(11) unsigned NOT NULL AUTO_INCREMENT,

426 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

‘title' varchar (100) NOT NULL,
‘text' text NOT NULL,
‘created_by' int(11) NOT NULL,

‘date_created' datetime NOT NULL DEFAULT '0000-00-00 00:00:00',

‘modified_by" int(11) NOT NULL,

‘date_modified® datetime NOT NULL DEFAULT '0000-00-00 00:00:00',

PRIMARY KEY (‘id")
) ENGINE=MyISAM;

Create the Table class in includes/classes/table.php:

<?php
/‘k*
* table.php
*
* Table class file
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
/**

* Table class
*
* @package Smithside Auctions
*/
class Table
{
/**
* id
* @var int
*/
protected $id;

/**
* Initialize the class with data from database
* @param array
*/
public function __ construct($input = false) {
if (is_array($input)) {
foreach ($input as S$key => S$val) {
// Note the $key instead of key.
// This will give the value in $key instead of
Sthis->Skey = $val;
}

/**
* Return id
* @return int

itself

Trylt | 427

*/
public function getId() {
return $this->id;

}

}

Create the article class, which extends the Table class in includes/classes/article.

php. You don’t need the property $id or the method get1d () because those are in the Table

class. Define a __construct () method that calls the parent method and also creates an

object of the contact who created the article. Add the addrecord (), editRecord (), and

deleteRecord() methods, as well as the getArticle() and getArticles () methods.
<?php

/'k*

*

article.php

*

* Article class file

*

* @version 1.2 2011-02-03

* @package Smithside Auctions

* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License

* @since Since Release 1.0

*/

/**

* Article class
*
* @package Smithside Auctions
*/
class Article extends Table

{

/**
* title
* @var string
*/

protected Stitle;

/**
* Text
* @var String
*/

protected Stext;

/**
* Contact who created the article
* @var int
*/

protected S$Screated_by;

/**

428 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

* Date & time created
* @var datetime
*/

protected S$date_created;

/**
* Contact who modified the article
* @var int
*/

protected S$modified_by;

/**
* Date & time modified
* @var datetime
*/

protected S$date_modified;

/**
* Author Information
* @var Contact
*/

protected S$Sauthor;

/**

* Initialize the Article with data from database
* @param array

*/
public function __ construct ($Sinput = false) {
parent::_ construct ($input) ;

Sthis->author = Contact::getContact ($this->created_by) ;

/**
* Return Title
* @return string
*/
public function getTitle() {
return S$this->title;
}

/*‘k

* Return Text

* @return string

*/
public function getText() {
return S$this->text;

}

/**

* Return Created by
* @return int
*/

Trylt | 429

public function getCreated_by () {
return $this->created_by;
}

/**

* Return Created date/time

* @return datetime

*/
public function getDate_created() {
return $this->date_created;

}

/**
* Return Modified by
* @return int
*/
public function getModifiedBy () {
return $this->modified_by;
}

/**
* Return Modified date/time
* @return datetime
*/
public function getModified_by () {
return $this->modified_by;
}

/**
* Verify the Input
* @return boolean
*/
protected function _verifyInput() {
Serror = false;
if (!'trim(Sthis->title)) {
Serror = true;
}
if (!'trim(Sthis->text)) {
Serror = true;

if ($Serror) {
return false;

} else {
return true;

/**

* Add a Row to the table

* @return array (redirect content,message,id)

*/

430 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

public function addRecord() ({

// Verify the fields
if (Sthis->_verifyInput()) {
// prepare the encrypted password

// Get the Database connection
$connection = Database::getConnection() ;

// Prepare the data

Squery = "INSERT INTO articles(title, text, created_ by,
date_created, modified_by, date_modified)

VALUES ('" . Database::prep($this->title) . "',
'" . Database::prep($this->text) . "',
‘" . (int) $_SESSION['user_id'] . "',
CURRENT_TIMESTAMP,
'" . (int) $_SESSION['user_id']l . "',
CURRENT_TIMESTAMP) " ;

// Run the MySQL statement

if (Sconnection->query(Squery)) {

Sreturn = array('', 'Article successfully added.',K '');

// add success message
return Sreturn;

} else {

// send fail message and return to contactmaint

Sreturn = array('articlemaint', 'No Article Added. Unable to
create record.', '0');

return Sreturn;

}

} else {
// send fail message and return to contactmaint
Sreturn = array('articlemaint', 'No Article Added. Missing
required information.', '0');
return S$return;
}
}
/**

* Update a Row in the table
* @return array (redirect content,message,id)
*/
public function editRecord() {
// Verify the fields
if (Sthis->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

// Prepare the data
Squery = "UPDATE ‘articles’

Trylt | 431

SET ‘title’ = '" . Database::prep(Sthis->title) . "',
“text® = '" . Database::prep(S$this->text) . "',
‘modified_by® = '" . (int) $_SESSION['user_id'] . "',
‘date_modified' = CURRENT_TIMESTAMP
WHERE id='" . (int) $this->id . "'";

// Run the MySQL statement
if (Sconnection->query($Squery)) {
Sreturn = array('', 'Article successfully updated.', '');

// add success message

return S$Sreturn;

} else {

// send fail message

Sreturn = array('articlemaint',
'Article not updated. Unable to update record.',
(int) S$this->id);

return S$Sreturn;

}

} else {

// send fail message and return to maint

Sreturn = array('articlemaint',
'Article not updated. Missing required information.',
'0');

return S$return;

/**
* Delete a Row from the table
* @param int
* @return array (redirect content,message, id)
*/
public static function deleteRecord($id) {
// Get the Database connection
$connection = Database::getConnection();
// Set up query
Squery = 'DELETE FROM ‘articles’ WHERE id="'. (int) $id.'"';
// Run the query
if (Sresult = S$connection->query (Squery)) {

Sreturn = array('', 'Article successfully deleted.', '');
return Sreturn;
} else {
Sreturn = array('articledelete', 'Unable to delete Article.', (int)
$id) ;
return Sreturn;
}
}
/**

* Get an Article
* @param int

432 | LESSON 29

TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

* @return Article
*/

public static function getArticle($id) {
// Get the database connection
Sconnection = Database::getConnection() ;
// Set up the query

$query = 'SELECT * FROM ‘articles’ WHERE id="'.

// Run the MySQL command
Sresult_obj = '';
try {

Sresult_obj = $connection->query (Squery) ;

if (!Sresult_obj) {

throw new Exception ($connection->error);

} else {

(int)

Sitem = Sresult_obj->fetch_object('Article');

if (!Sitem) {

throw new Exception($connection->error);

} else {
// pass back the results
return($Sitem) ;

}

}

catch (Exception Se) {
echo $e->getMessage() ;

}

/*‘k
* Get an array of Articles
* @return array (Article)
*/
public static function getArticles() {
// clear the results
Sitems = '';
// Get the connection
Sconnection = Database::getConnection();
// Set up query

Squery = 'SELECT * FROM “articles’ ORDER BY title';

// Run the query

Sresult_obj = '';

Sresult_obj = $connection->query (Squery) ;
// Loop through the results,

// passing them to a new version of this class,

// and making a regular array of the objects
try {

$id'l|l|;

while(Sresult = S$result_obj->fetch_object('Article')) {

Sitems[]= Sresult;
}
// pass back the results
return($items) ;

Trylt | 433

catch (Exception S$e) {
return false;

}

4. Addarticles to the menu in index.php. Make it so that only Admin users can get to the
link. This links to a list of articles so you can add, edit, and delete them.

Home</11i>
<?php if ($logged_in) : ?>
Logout</1i>
<?php if ($SaccessLevel == 'Admin') : ?>
Articles</1i>
<?php endif; ?>
<?php else : ?>
Login</1i>
<?php endif; ?>

5. Create content/articles.php to display a list of the articles as shown in Figure 29-4:

<?php

/‘k*k

* articles.php

*
* Content for Articles
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
SaccessLevel = Contact::accessLevel();
if (SaccessLevel != 'Admin')
echo 'Sorry, no access allowed to this page';
else

// Get the article information
Sitems = Article::getArticles();
if (empty(Sitems)) {

Sitems = array();
}
?>
<hl>Articles

Add

</hl>

<ul class="ulfancy">

434 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

<?php foreach ($items as S$i=>$item) : 2>
<1i class="row<?php echo $i % 2; ?>">
<h2><?php echo htmlspecialchars($item->getTitle()); ?>

<a class="button"
href="index.php?content=articledelete&id=<?php echo $item->getId();

?>">
Delete

<a class="button"
href="index.php?content=articlemaint&id=<?php echo $item->getId();
>
Edit

</h2>
</1li>
<?php endforeach; ?>

<?php endif; ?>

£

rﬁithside
\Auctlo_;ns

Articles ‘ Logout | Home | About Us | Lot Categories
Article successfully updated.

Articles
Privacy Policy
Terms of Use Delete

© 2011 Smithside Auctions

FIGURE 29-4

6. Create content/articlemaint.php to add and edit the articles as shown in Figure 29-5:

<?php

/**

* articlemaint.php

Maintain the Articles table

* X X %

@version 1.2 2011-02-03

Trylt | 435

* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
SaccessLevel = Contact::accessLevel();
if (SaccessLevel != 'Admin')
echo 'Sorry, no access allowed to this page';
else

$id = (int) $_GET['id'];
// Is this an existing item or a new one?
if (sid) |
// Get the existing information for an existing item
Sitem = Article::getArticle($id);
} else {
// Set up for a new item
Sitem = new Article;
}
?>
<hl>Article Maintenance</hl>

<form action="index.php?content=articles" method="post" name="maint"
id="maint">

<fleldset class="maintform">
<legend><?php echo ($id) ? 'id: '. $id : 'Add an Article' ?></legend>

<label for="title" class="required">Title</label>

<input type="text" name="title" id="title" class="required"
value="<?php echo htmlspecialchars ($Sitem->getTitle()); ?>" /></1li>
<label for="text" class="required">Text</label>

<textarea rows="30" cols="80" name="text"
id="text" class="required"><?php echo strip_tags(Sitem-

>getText (),
"<p>
<h2><h3><hd4><a>"); ?>
</textarea></1li>

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal (mt_rand(1,1000000) . $salt);

S_SESSION|['token'] = Stoken;

?>

<input type="hidden" name="id" id="id" value="<?php echo Sitem->getId();
> />

<input type="hidden" name="task" id="task" value="article.maint" />

<input type='hidden' name='token' value='<?php echo S$token; ?>'/>

<input type="submit" name="save" value="Save" />

Cancel

</fieldset>

436 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

</form>
<?php endif;

Auctions
Articles ‘ gout | Home | About Us | Lot Categories

Article Maintenance

D: 3
Title *
Privacy Policy
Text *
<p>Lorenm ipsum dolor sit amet, consectetur adipiscing elit. Sed sed tortor ac
ante consequat porta et et tortor. Suspendisse suscipit sodales luctus. Sed
interdum, urna a dapibus lacinia, odio velit accumsan augue, quis auctor tortor
dolor vitae massa. Etiam fermentum cursus tempor. <p>
<h2>Velit Risus in Diam</h2>

In lacinia, dui et tempus luctus, erat massa placerat orci
<1i>Nulla varius posuere elit, at cursus libero facilisis imperdiet. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas .</1i>
Vestibulum placerat, lorem et comsectetur congue

Cancel

© 2011 Smithside Auctions

FIGURE 29-5

7. Create content/articledelete.php to delete articles as shown in Figure 29-6:
<?php
/* *
* articledelete.php

*

Trylt | 437

* Delete the Articles
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/
SaccessLevel = Contact::accessLevel();
if (SaccessLevel != 'Admin')
echo 'Sorry, no access allowed to this page';
else

$id = (int) $_GET['id'];
// Get the existing information for an existing item
Sitem = Article::getArticle(sid);

?>
<hl>Article Delete</hl>

<form action="index.php?content=articles" method="post" name="maint"
id="maint">

<fieldset class="maintform">

<legend><?php echo 'Id: '. $id ?></legend>

Title:
<?php echo htmlspecialchars(Sitem->getTitle()); ?2></1li>

Text:
<?php echo strip_tags (nl2br(Sitem->getText()),

"<p>
<h2><h3><hd><a>"); ?>

<?php
// create token
$salt = 'SomeSalt';

Stoken = shal (mt_rand(1,1000000) . $salt);
$_SESSION|['token'] = S$token;
?>
<input type="hidden" name="id" id="id" value="<?php echo Sitem->getId();
2> />
<input type="hidden" name="task" id="task" value="article.delete" />
<input type='hidden' name='token' value='<?php echo S$token; ?>'/>
<input type="submit" name="delete" value="Delete" />
Cancel
</fieldset>
</form>
<?php endif;

438 | LESSON 29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

Sn%ithside
AUctions

Articles ‘ Logout | Home | About Us | Lot Categories

Article Delete
1d: 3

Title: Privacy Policy

Text:
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sed tortor ac ante
consequat porta et et tortor. Suspendisse suscipit sodales luctus. Sed interdum,
urna a dapibus lacinia, odio velit accumsan augue, quis auctor tortor dolor vitae
massa. Etiam fermentum cursus tempor.

Velit Risus in Diam

=

. In lacinia, dui et tempus luctus, erat massa placerat orci

~

. Nulla varius posuere elit, at cursus libero facilisis imperdiet. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas.

3. Vestibulum placerat, lorem et consectetur congue

Cancel

© 2011 Smithside Auctions

FIGURE 29-6

8. Add the article.maint and article.delete tasks to includes/init.php:

case 'article.maint'
// process the maint
Sresults = maintArticle();
Smessage .= Sresults[l];
// I1f there is redirect information
// redirect to that page
if (Sresults[0] == 'articlemaint') ({
// pass on new messages
if (Sresults[1]) {
$_SESSION|['message'] = S$results[l];
}
header ("Location: index.php?content=articlemaint&id=Sresults[2]");
exit;
}

break;

Trylt | 439

case 'article.delete’

// process the delete

Sresults = deleteArticle();

Smessage .= Sresults[1];

// If there is redirect information

// redirect to that page

if (Sresults[0] == 'articledelete') {
// pass on new messages
if ($results[l]) {

S_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=articledelete&id=Sresults[2]");
exit;
}
break;

O. .AddthemaintArticle()anddeleteArticle()funcﬁonstoincludes/functions.php:

function maintArticle() {
Sresults = '';
1f (isset($_POST['save']) AND $_POST['save'] == 'Save') {
// check the token
SbadToken = true;
if (!isset($_POST['token'])
|| 'isset($_SESSION['token'])
| | empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION|['token']) {
Sresults = array(''
'Sorry, go back and try again. There was a security issue.');
SbadToken = true;
} else {
$badToken = false;
unset ($_SESSION|['token']);
// Put the sanitized variables in an associative array
// Use the FILTER_FLAG_NO_ENCODE_QUOTES to allow names like O'Connor
$item = array (
'id' => (int) $_POST['id'],
'title' => filter_input (INPUT_POST, 'title’
FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ,
'text' => strip_tags($S_POST['text'],
"<p>
<h2><h3><h4><a>")

);

// Set up a Article object based on the posts
Sarticle = new Article($item);

if (Sarticle->getId()) {
Sresults = Sarticle->editRecord() ;
} else {

Sresults = Sarticle->addRecord() ;

}

return S$results;

440 | LESSON29 TURN THE CASE STUDY INTO A CONTENT MANAGEMENT SYSTEM

function deleteArticle() {
Sresults = '';
if (isset($_POST['delete']) AND $_POST['delete'] == 'Delete') {
// check the token
SbadToken = true;
if (!isset ($_POST['token'])
|| !'isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array ("'
'Sorry, go back and try again. There was a security issue.');
SbadToken = true;
} else {
SbadToken = false;
unset ($_SESSION|['token']) ;

// Delete the Article from the table
Sresults = Article::deleteRecord((int) $_POST['id']);
}
}
return S$results;

}

10. Create content/articledisplay.php as shown in Figure 29-7. The id of the article is in
the URL. Use that to get the article. If an article is found, display it. Put the title between
<h1> tags and the text in a <div>. Strip all the tags except the acceptable ones and change
newline codes into
 tags.

<?php
/**
* articledisplay.php
*
* Display the Article
*
* @version 1.2 2011-02-03
* @package Smithside Auctions
* @copyright Copyright (c) 2011 Smithside Auctions
* @license GNU General Public License
* @since Since Release 1.0
*/

$id = (int) S$_GET['id'];

// Get the existing information for an existing item
Sitem = Article::getArticle($id);

if (Sitem)

?>

<hl><?php echo htmlspecialchars($item->getTitle()); ?></hl>

<div>

<?php echo strip_tags (nl2br ($item->getText()),
"<p>
<h2><h3><h4d><a>"); ?>

</div>

<?php endif;?>

Trylt | 441

Auctions
D= T
Articles ‘ Logout ‘ Home ‘ About Us ‘ Lot Categories

Privacy Policy
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sed tortor ac ante consequat
porta et et tortor. Suspendisse suscipit sodales luctus. Sed interdum, urna a dapibus

lacinia, odio velit accumsan augue, quis auctor tortor dolor vitae massa. Etiam fermentum
cursus tempor.

Velit Risus in Diam

1. In lacinia, dui et tempus luctus, erat massa placerat orci

2. Nulla varius posuere elit, at cursus libero facilisis imperdiet. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas.

3. Vestibulum placerat, lorem et consectetur congue

@ 2011 Smithside Auctions

FIGURE 29-7

11. In the next lesson you add these article pages to a menu. For now, test the programs by typ-

ing in the URL manually. Assuming your article id is 1, add this to the end of your domain in
the browser address bar:

/index.php?content=articledisplay&id=1

Watch the video for Lesson 29 on the DV D or watch online at www .wrox.com/
go/24phpmysqgl .

30

Creating a Dynamic Menu

In this lesson, you learn how to create a menu that draws its information from the database
rather than from hardcoded HTML. In the previous lesson, you created new articles through
the website, but then you had to go into the index.php file to add the code to display the
pages. By using a database, you are able to create menu links easily through the website as
well. You create a table for the menu links, set up the maintenance for that table, and write the
code to assemble and display the menu.

SETTING UP THE MENU TABLE

The first step is to create the table that will contain the menu data. Here is some information
you could have in a menu table, depending on the sophistication of the menuing system. The
first two items are the minimum needed for a menu:

>

>

>

Menu Title: This is the text that is displayed in the menu.
Menu Link: This is the link for the menu item.

Order By: If you want to be able to decide in what order the links should appear, you
need a field to sort the fields in a specific order.

Access Level: If you want to be able to show only authorized links, you need a field
that gives the authorization. Depending on the complexity of the ACL, this could
either be the access level itself or a key to another table that contains the access level
information.

Menu: If you are creating more than one menu, you need to specify which menu the
link belongs to. This should be a link to another table, which contains the information
about the whole menu.

Parent: If you are creating a menu that has multiple levels, you need to know the parent
of this link.

444 | LESSON 30 CREATING A DYNAMIC MENU

> Link Type: If you assign different types to the rows, you can make more of the link creation
automatic. If there is no link type, then all the links need to be created the same way. Take,
for instance, these following three link types:

> External: The link is whatever the user types in.
> Internal: Prefix index.php?content= to whatever the user types in.

> Article: Display a drop-down with all the articles and have the user select the right
article. The value on the drop-down contains the id. When the menu is created, pre-
fix index.php?content=articles&id= to the id.

In this instance, the menu you create for the Case Study is very simple. All the links are in a single
menu, the access levels are specified in the menus table, and the links are only one level deep. All the
links are automatically prefixed with index.php? when the menu is created.

The next step is to add the maintenance for the menus table to the website. You do this the same
way that you did for the other tables. You need a content page that displays the menu links and from
there you get to the pages to add, edit, and delete the links.

ADDING THE MENU TO THE WEBSITE

After you have the links listed in a table, you need to re-create the HTML for a menu from the rows
in the table. You do this with the same type of processing that you used for creating drop-downs for
selecting categories. There is an additional complication here, though, which is that you aren’t nec-
essarily going to display all the menu items. Depending on the authority the user has and the access
level required before viewing the menu items, different menu items are displayed for different types
of users.

You can make this selection either within the MySQL SELECT statements or you can select all the
rows and then filter what you need to when you create the HTML. If you have a lot of menu items,
it might make sense to read only those items that you know you need. However, most menus don’t
have many rows so the performance hit is negligible. If you already have a method set up to get a list
of the items, you can reuse that to get the information:

Sitems = self::getMenus|();

If you have to filter the rows, now you need to get the level information for the user. The methods
here look up the information from the current user and pass it back to the variable. $1ogged_in is
Boolean to say if the user is currently logged in. The second one gets the actual authorized access
level.

$logged_in = Contact::isLoggedIn();
SaccessLevel = Contact::accessLevel () ;

Use an array to collect the HTML statements as you create them. Putting each line of HTML in an
array element means that it is easy to implode the array with a newline control character (\n). If you
do this instead of concatenating each new line, when you look at the source code, each line appears
on its own line instead of being in one long row.

Trylt | 445

You initialize the array to start and add in any header information:

Shtml = array();
Shtml[] = '<h3 class="element-invisible">Menu</h3>";
Shtml[] = '<ul class="mainnav">';

You loop through each row and select those that pass the authorization tests. The authorizations
tests can be as simple as an if statement using series of and and or statements. As each row passes
authentication, add it as an <a> tag in an unordered list.

foreach ($items as S$Sitem) {

if (! ($item->level)
OR (Sitem->level == "Public")
OR (Sitem->level == "Admin" AND S$SaccessLevel == "Admin")
OR ($item->level == "Registered" AND ($accessLevel == "Registered" OR &
SaccessLevel == "Admin"))
OR (Sitem->level == "LoggedIn" AND $logged_in)
OR ($item->level == "LoggedOut" AND !S$logged_in)) {
$html[] = 'link. '">' . $item->title.
'</1li>";
}

}

When the list is complete, add any closing tags and implode it with a newline and return the vari-
able. See the created HTML in Figure 30-1.

Shtml[] = '';
Sreturn = implode("\n", S$html);
return Sreturn;

<h3 class="element-invisible">Menu</h3>
<ul class="mainnav">
Lot Categories
About Us
Home
Login
Terms of Use
Privacy Policy
<ful>

FIGURE 30-1

) TRYIT

Available for
download on

wocem' In this Try It, you create a dynamic menu that reads its links from a table in the database. The
class for this table resembles those you have built for the other tables for the Case Study. You can
extend the Table class so that you don’t need to redefine what is already in that class. You need the
standard processing methods to add rows, change rows, delete rows, get a list of the menu links,
and retrieve a single menu link. You then create a method that creates the HTML for the menu and
replaces the static links in the index.php file with a call to the method.

The code examples that you can download are appropriately commented, but the large docblock
comments are not displayed in this Try It.

446 | LESSON 30 CREATING A DYNAMIC MENU

You can download the code and resources for this Try It from the book’s web
page at www .wrox.com. You can find them in the Lesson30 folder in the down-
load. You will find code for both before and after completing the exercises.

Lesson Requirements

Your computer needs to be able to run as a web server with PHP and MySQL. XAMPP is a pack-
age of software that installs the web server, PHP, and MySQL for you. You can find instructions for
downloading and installing XAMPP in Lesson 1.

You need a text editor that can produce plain-text files. You can find instructions for down-
loading and installing Eclipse PDT in Lesson 1. Other text editors that you can use are Adobe’s
Dreamweaver in code mode, Notepad, TextWrangler, or NetBeans.

If you are following along with the Case Study, you need your files from the end of Lesson 29.
Alternatively, you can download the files from the book’s website at www.wrox. com.

Hints
The menu CRUD can be created the same way you did for the other tables in the database.

When creating a drop-down of valid level choices for menu links, you can follow the example of the
drop-down of valid categories.

Step-by-Step

Create the menus table and add the standard processing for creating, updating, and deleting
the data.

1. Create the menus table with id (auto_increment, primary key), title, 1ink, level, and
orderby. You use the 1level field to determine who can see that link and the orderby to
place the menu links in a specific order. You can use phpMyAdmin to add the fields to the
table either with the GUI interface, in the SQL table with the following code, or by importing
the addmenustable.sql file from the downloaded code.

DROP TABLE IF EXISTS “menus ;

CREATE TABLE “menus (
*id’ int(11) NOT NULL UNSIGNED AUTO_INCREMENT,
“title’ varchar(100) NOT NULL,
*link® varchar(255) NOT NULL,
“level’ varchar (10) NOT NULL DEFAULT 'Public',
‘orderby' int(11) NOT NULL DEFAULT '0',
PRIMARY KEY (" id")

) ENGINE=MyISAM;

2. Create the class Menu in includes/classes/menu .php. The Menu class extends the Table
class. Define the properties based on the table fields and add the getter methods. You

Trylt | 447

don’t need to add the $id property because it is in the Table class. Make the properties

protected.

<?php

class Menu extends Table

{
protected stitle;
protected $link;
protected S$level;
protected Sorderby;

}

In steps 3 through 10, you add the methods in the Menu class. Put these methods immediately

following the list of properties. Normally you would start with a __construct () function
to create the object, but you don’t need one here because you already have a __construct ()
function coming in from the Table class. Because your properties are protected, you need to
create getter functions so that you can access the properties in other parts of the program.
Having your properties protected and using getter functions means that you have the option
of adding processing whenever the properties are accessed. Because you want the rest of the
program to use these methods, make them public. Notice that there is no get1d () method
in the following code because that method is coming in from the Table class.

public function getTitle()

return Sthis->title;

}

public function getLink()
return $this->1link;

}

public function getLevel ()

return S$this->level;

}

{

{

{

public function getOrderby () {

return $this->orderby;

}
4.

Add the _verifyTInput () method as shown in the following code. This method performs

error checking for new and changing menu fields. You only use this method within this class,

so make it protected.

protected function _verifyInput() {

Serror = false;

if (!'trim(Sthis->title))

Serror =
}
if (!trim(Sthis->1ink))
Serror = true;

}

true;

if (Serror) {
return false;

} else {
return true;

{

{

448 | LESSON 30 CREATING A DYNAMIC MENU

}

B. You need to be able to add rows. The addRecord () method that follows adds new rows to
the menus table. This method should be public because it needs to be called from outside the
class. You add the code to call this class in step 16.

public function addRecord() ({

// Verify the fields
if (Sthis->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

// Prepare the data
Squery = "INSERT INTO menus (title, link, level, orderby)
VALUES ('" . Database::prep($this->title) . "',
'" . Database::prep($this->1ink) . "',
'" . Database::prep(Sthis->level) . "',
‘", (int) $this->orderby . "')";
var_dump ($query) ;
// Run the MySQL statement
if (Sconnection->query(Squery)) {
Sreturn = array('', 'Menu item successfully added.', '');

// add success message

return Sreturn;

} else {

// send fail message and return to contactmaint

Sreturn = array('menumaint',
'No Menu Item Added. Unable to create record.',
")

return Sreturn;

}

} else {
// send fail message and return to maint
Sreturn = array('menumaint', 'No Menu Item Added.
Missing required information.', '');
return Sreturn;
}

}

6. You need to be able to update rows. The editRecord () method that follows changes exist-
ing rows in the menus table. This method should be pub1ic because it needs to be called
from outside the class. You add the code to call this class in step 16.
public function editRecord() {

// Verify the fields
if (Sthis->_verifyInput()) {

// Get the Database connection
Sconnection = Database::getConnection();

Trylt | 449

id=?";

}

// update without a password changed
// Set up the prepared statement
Squery = 'UPDATE "“menus SET title=?, link=?, level=?, orderby=? WHERE

$statement = Sconnection->prepare (Squery) ;

// bind the parameters

$statement->bind_param('sssii',$this->title, S$this->1ink,
$this->level, $this->orderby, S$this->id);

if ($statement) {
$Sstatement->execute() ;
Sstatement->close() ;
// add success message

Sreturn = array('', 'Menu Item successfully updated.', '');
return S$return;

} else {
Sreturn = array('menumaint', 'Menu Item not changed.

Unable to change record.', (int) S$this->id);

return S$return;

}

else {

// send fail message and return to categorymaint

Sreturn = array('menumaint', 'Menu Item not changed.
Missing required information.', (int) S$this->id);

return S$Sreturn;

You need to be able to delete rows. The deleteRecord () method deletes rows from the
menus table. This method should be public because it needs to be called from outside the
class. This method doesn’t need an object to work because it isn’t using any of the properties.
The only information it needs from the menus is the id, which is passed to it in the param-
eters. Therefore, make it a static function as shown in the following code. You add the code
to call this class in step 17.

public static function deleteRecord($id) {

$id) ;

// Get the Database connection

$connection = Database::getConnection();

// Set up query

Squery = 'DELETE FROM ‘menus WHERE id="'. (int) $id.'"';
// Run the query

if (Sresult = S$connection->query (Squery)) {

Sreturn = array('', 'Menu Item successfully deleted.', '');
return S$return;
} else {
Sreturn = array('menudelete', 'Unable to delete Menu item.', (int)

return S$return;

450

LESSON 30 CREATING A DYNAMIC MENU

You need to be able to list the menu rows. The getMenus () method that follows reads the
rows from the menus table in order by the orderby field. It creates an object from each row
and puts each object in an array that is returned. This method should be public because it
needs to be called from outside the class. It creates a bunch of objects, but doesn’t need to be
an object itself, so make the method static.

public static function getMenus () {
// clear the results
Sitems = '';
// Get the connection
$connection = Database::getConnection();
// Set up query
Squery = 'SELECT * FROM ‘menus ORDER BY ‘orderby’ ASC';
// Run the query
Sresult_obj = '';
Sresult_obj = S$connection->query ($Squery) ;
// Loop through the results,
// passing them to a new version of this class,
// and making a regular array of the objects

try {
while($Sresult = S$result_obj->fetch_object('Menu')) {
Sitems[]= Sresult;

}
// pass back the results
return($items) ;

}

catch (Exception Se) {
return false;
}
}

You need to be able to get a single menu row from the menus table. The following method
retrieves the row and creates an object from the data, which it returns. This method should
be public because it needs to be called from outside the class. It creates an object, but
doesn’t need to be an object itself, so make the method static.

public static function getMenu ($id) {
// Get the database connection
$connection = Database::getConnection();
// Set up the query
Squery = 'SELECT * FROM ‘“menus WHERE id="'. (int) $id.'"';
// Run the MySQL command
Sresult_obj = '';
try {
Sresult_obj = S$Sconnection->query ($Squery) ;
if (!Sresult_obj) {
throw new Exception ($connection->error) ;
} else {
Sitem = $result_obj->fetch_object('Menu');

Trylt | 451

if (!Sitem) {

throw new Exception($connection->error) ;
} else {

// pass back the results

return($item) ;

}
}
catch (Exception S$e) {
echo $Se->getMessage() ;
}
}

Finally, the last method in the Menu class is getLevel_Dropbown (). This menu lists the level
of authority required of the user before the title text appears in the menu. You use this when
you add or edit menu link items. Because it needs to be called from outside the class, the
method should be public. Unlike the previous three methods, this method works with the
object so it cannot be static. These are the valid options to be listed:

> public: Everyone can see the text. This is the default.
> Registered: This is the lowest level of logged-in users.

> admin: This is the level for users who can perform admin work on the site.
> Loggedln: This link is available for anyone who is logged in.

> Loggedout: This link is available for anyone who is not logged in.

public function getLevel_DropDown () {

// set up first option for selection if none selected
Soption_selected = '';
if (!S$this->level) {

Soption_selected = ' selected="selected"';
// Get the levels
Sitems = array('Public', 'Registered', 'Admin', 'LoggedIn', 'LoggedOut');
$html = array();

Shtml[] '<label for="level">Choose Menu Level</label>
';
Shtml[] = '<select name="level" id="level">';

foreach ($items as $i=>$item) {
// If the selected parameter equals the current then flag as selected
if ($this->level == Sitem) {
Soption_selected = ' selected="selected"';
}
// set up the option line
$html[] = ‘'<option value="' . $item . '"' . $option_selected . '>' .

452 | LESSON 30 CREATING A DYNAMIC MENU

$item . '</option>';
// clear out the selected option flag
Soption_selected = '';

}

Shtml[] = '</select>"';
return implode("\n", Shtml);

}

11. Create content /menus . php to display a list of the menus such as are shown in Figure 30-2.
This page should only be viewable by Admin-level users. Use the static getMenus () method
to get the menu rows to be shown. Put the results in the $items variable and process that
array with a foreach loop. Remember that the getMenus () method returns an array of
objects, where each object is a row from the menus table. Before displaying information from
the database, pass each variable through the htmlspecialchars () to encode the HTML
entities, which helps prevent hacks and makes valid code.

<?php
SaccessLevel = Contact::accessLevel () ;
if ($SaccessLevel != 'Admin')
echo 'Sorry, no access allowed to this page';
else

// Get the menu information
Sitems = Menu::getMenus () ;

?>
<hl>Menu List

Add
</hl>

<ul class="ulfancy">

<?php foreach ($items as $i=>$item) : 2>
<1li class="row<?php echo $i % 2; ?>">
<h2><?php echo htmlspecialchars ($Sitem->getTitle()); ?>

<a class="button"
href="index.php?content=menudelete&id=<?php echo S$item->getId();

?>">
Delete

<a class="button"
href="index.php?content=menumaint&id=<?php echo $item->getId();
?>">
Edit

</h2>
<p><?php echo htmlspecialchars(Sitem->getLink()); ?></p>
</1li>
<?php endforeach; ?>

<?php endif; ?>

Trylt | 453

Smithside
Auctions

Privacy Policy ‘ Terms of Use | Menu Items | Articles ‘ Logout ‘ Home ‘ About Us ‘ Lot Categories

Menu List
Lot Categories
content=categories

About Us
content=about

Home
content=home

Logout
content=logout

Articles [Edit| [Delete]
content=articles

Menu Items
content=menus

Login
content=login

Terms of Use
content=articledisplay&id=1

Privacy Policy

content=articledisplay&id=2

© 2011 Smithside Auctions

FIGURE 30-2

12. Create content/menumaint .php to add and edit the menu links as shown in Figure 30-3 and
the following code. This page should only be viewable by Admin-level users. Pull the id for
the menu row to be added or edited from the URL. Cast the id to an integer to prevent hack-
ing. Pass that id to the static getMenu () method to get the menu row. Use the getLevel
DropDown () method to create a drop-down list of valid options with the level from the
existing row (or the default for a new row) selected. Create a security token to pass through
the SESSION and via a POST variable. These are used when you process the form to ensure
that the information is coming from a real form.

<?php
SaccessLevel = Contact::accessLevel();
if (SaccessLevel != 'Admin')

454 | LESSON 30 CREATING A DYNAMIC MENU

echo 'Sorry, no access allowed to this page';
else

$id = (int) S$_GET['id'];
// Is this an existing item or a new one?
if (sid) |
// Get the existing information for an existing item
$item = Menu::getMenu($id) ;
} else {
// Set up for a new item
$item = new Menu;

}
// set up the level dropdown, setting up the selected option for existing
records
S$level_dropdown = S$item->getLevel_DropDown () ;
2>

<hl>Menu Maintenance</hl>
<form action="index.php?content=menus" method="post" name="maint" id="maint">

<fieldset class="maintform">
<legend><?php echo ($id) ? 'ID: '. $id : 'Add a Menu Item' ?></legend>

<label for="title" class="required">Title</label>

<input type="text" name="title" id="title" class="required"
value="<?php echo htmlspecialchars ($item->getTitle()); ?>" /></1li>
<label for="link" class="required">Link</label>

<input type="text" name="link" id="link" class="required"
value="<?php echo htmlspecialchars ($item->getLink()); ?>" />
<label for="orderby">Order By</label>

<input type="text" name="orderby" id="orderby" class="required"

value="<?php echo (int) $item->getOrderby(); 2>" />
<?php echo $level_dropdown; ?></1i>

<?php

// create token
$salt = 'SomeSalt';
Stoken = shal (mt_rand(1,1000000) . $salt);

$_SESSION['token'] = Stoken;

?>

<input type="hidden" name="id" id="id" value="<?php echo $item->getId();
> />

<input type="hidden" name="task" id="task" value="menu.maint" />
<input type='hidden' name='token' value='<?php echo $token; ?>'/>
<input type="submit" name="save" value="Save" />
Cancel
</fieldset>
</form>
<?php endif;;

Trylt | 455

. Shithside
AUctions

Privacy Policy ‘ Terms of Use | Menu Items | Articles ‘ Logout ‘ Home ‘ About Us ‘ Lot Categories

Menu Maintenance
—D: 1
Title *

Lot Categories

Link *
content=categories

Order By

1

Choose Menu
Level

=
Cancel

© 2011 Smithside Auctions

FIGURE 30-3

13. Create content /menudelete.php to delete menu links as shown in Figure 30-4 and the
following code. This page should only be viewable by Admin-level users. Pull the id for the
menu row to be deleted from the URL. Cast the id to an integer to prevent hacking. Pass that
id to the static getMenu () method to get the menu row. Display the information from the

row for the user to verify that this is the menu option she wants to delete.

<?php
SaccessLevel = Contact::accessLevel();
if (SaccessLevel != 'Admin')
echo 'Sorry, no access allowed to this page';
else

$id = (int) $_GET['id'];
// Get the existing information for an existing item
$item = Menu::getMenu($id) ;

?>
<hl>Menu Delete</hl>

456 | LESSON 30 CREATING A DYNAMIC MENU

<form action="index.php?content=menus" method="post" name="maint"

<fieldset class="maintform">

<legend><?php echo 'Id: '. $id ?></legend>

Title:
<?php echo htmlspecialchars ($item->getTitle()); ?></1i>
Link:
<?php echo htmlspecialchars ($Sitem->getLink()); ?></1li>

<?php

// create token

$salt = 'SomeSalt';

Stoken = shal (mt_rand(1,1000000) . $salt);
$_SESSION|['token'] = $token;

2>

id="maint">

<input type="hidden" name="id" id="id" value="<?php echo S$item->getId();

> />
<input type="hidden" name="task" id="task" value="menu.delete"

/>

<input type='hidden' name='token' value='<?php echo $token; ?>'/>

<input type="submit" name="delete" value="Delete" />
Cancel
</fieldset>
</form>
<?php endif;

s o) & -
~
A, WRE
=

290

Auctions

Privacy Policy | Terms of Use ‘ Menu Items ‘ Articles ‘ Logout | Home | About Us | Lot Categories

Menu Delete
d: 1

Title: Lot Categories
Link: content=categories

Cancel

© 2011 Smithside Auctions

FIGURE 30-4

Trylt | 457

14.

15.

16.

Addthenenu.mainttad(toincludes/init.php.ThefOHO“dngCOdeaddsacaselﬂock
to the existing switch statement to process this task. The task performs the function
maintMenu () and, based on the results, either sends a success message or redirects back to
the form page for corrections.

case 'menu.maint’'
// process the maint
Sresults = maintMenu() ;
Smessage .= Sresults[1];
// If there is redirect information
// redirect to that page
if (Sresults[0] == 'menumaint') {
// pass on new messages
if ($results[l]) {
$_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=menumaint&id=Sresults[2]");
exit;
}
break;

Addthenenu.deletetasktoincludes/init.php.Thcfoﬂowdngcodeaddsacase

block to the existing switch statement to process this task. The task performs the function
deleteMenu () and, based on the results, either sends a success message or redirects back to
the form page for corrections.

case 'menu.delete’
// process the delete
Sresults = deleteMenu();
Smessage .= Sresults[1];
// If there is redirect information
// redirect to that page
if (Sresults[0] == 'menudelete') {
// pass on new messages
if ($results[l]) {
$_SESSION|['message'] = Sresults[l];
}
header ("Location: index.php?content=menudelete&id=Sresults[2]");
exit;
}
break;

ThefOHOdegCOdeaddsthenmintMenu()funCﬁontotheincludes/functions.phpfﬂ&
This function is called in the menu.maint task you created in step 14. It verifies that the
appropriate POST values exist that the form would have submitted and verifies that the
proper token exists and matches with the SESSION token. You then sanitize the informa-
tion coming in through the POST variables and use them to create an array of the data. You
then use that array to create an object out of the Menu class. If this is a new row, you call
the addRecord () method, which verifies the data and adds a row to the database. If it is an

458 | LESSON 30 CREATING A DYNAMIC MENU

17.

existing row, you call the editRecord () method, which verifies the data and updates the
database.

function maintMenu () {
Sresults = '';
if (isset($_POST['save']) AND $_POST['save'] == 'Save') {
// check the token
SbadToken = true;
if (!isset ($_POST['token'])
|| !isset($_SESSION['token'])
|| empty ($_POST['token'])
|| $_POST['token'] !== $_SESSION['token']) {
Sresults = array(''
'Sorry, go back and try again. There was a security issue.', '');
SbadToken = true;
} else {
SbadToken = false;
unset (S_SESSION|['token']) ;
// Put the sanitized variables in an associative array
// Use the FILTER_FLAG_NO_ENCODE_QUOTES to allow names like O'Connor
Sitem = array (
'id' => (int) $_POST['id'],
'title' => filter_input (INPUT_POST, 'title"',
FILTER_SANITIZE_STRING, FILTER_FLAG_NO_ENCODE_QUOTES) ,
"link"’ => filter_input (INPUT_POST, 'link', FILTER_SANITIZE_STRING),
'orderby' => (int) $_POST['orderby'],
'level' => filter_input (INPUT_POST, 'level',
FILTER_SANITIZE_STRING),
)

// Set up a Menu item object based on the posts
Smenu = new Menu(S$Sitem) ;
if (Smenu->getId()) {
Sresults = $Smenu->editRecord() ;
} else {

Sresults = $menu->addRecord() ;

}
}
return S$results;

}

The following code adds the deleteMenu () function to the includes/functions.php file.
This function is called in the menu.delete task you created in step 15. It verifies that the
appropriate POST values that the form would have submitted exist and verifies that the
proper token exists and matches with the SESSION token. Cast the id from the POST vari-

able to an integer and pass it to the static method deleterRecord() to delete the row from
the menus table.

function deleteMenu() {
Sresults = '';
if (isset($_POST['delete']) AND $_POST['delete'] == 'Delete') {

Trylt | 459

// check the token

SbadToken = true;

if (!isset($_POST['token'])

|| 'isset($_SESSION['token'])

| | empty ($_POST['token'])

|| $_POST['token'] !== $_SESSION|['token']) {
Sresults = array ('

'Sorry, go back and try again. There was a security issue.'

SbadToken = true;
} else {
$badToken = false;
unset ($_SESSION|['token']);

// Delete the menu item from the table
Sresults = Menu::deleteRecord((int) $_POST['id']);

}
return $results;

}

")

18. Add the menu link temporarily to the index.php menu. If you want, you can skip this step
and just add the index.php?content=menus manually in the address bar for the next step
because you will be removing all these links in the index.php file in the step after that.

Menu Items

19. Add the menu links for the main menu listed in the index.php file to the menus table using
your new maintenance pages. The results are as shown in Figure 30-5. Now if someone cre-
ates an article page, she can also add it to the menu through the website.

id title link level orderby

1 Lot Categories content=categories Public 1
2 About Us content=about Public &
3 Home content=home Public 3
4 Logout content=logout Loggedin 4
5 Aricles content=articles Admin 5
6 Menu ltems content=menus Admin 6
7 Login content=login LoggedOut 7
8 TermsofUse content=articledisplay&id=1 Public a8
9 Privacy Policy content=articledisplay&id=2 Public 9

FIGURE 30-5

20. Remove the menu links from the index.php file and replace them with a call to the static

setMenu () method in the Menu class. You create this method in the step 21.

<div id="navigation">
<?php echo Menu::setMenu(); ?>
<div class="clearfloat"></div>
</div><!-- end navigation -->

460 | LESSON 30 CREATING A DYNAMIC MENU

21. Create the static setMenu () method in the Menu class. This method calls the getMenus ()
method and then creates the HTML for an unordered list of the links read from the database,
based on the authorization of the user and the access level requirements of the menu link.
Because you use this method outside of the class, it needs to be public:

public static function setMenu() {
Sitems = self::getMenus/();
$logged_in = Contact::isLoggedIn() ;
SaccessLevel = Contact::accessLevel();

$html = array();

Sshtml[] = '<h3 class="element-invisible">Menu</h3>"';
Shtml[] '<ul class="mainnav">"';

foreach ($Sitems as S$item) {

if (! (Sitem->level)

OR ($item->level == "Public")

OR (Sitem->level == "Admin" AND S$accessLevel == "Admin")

OR ($item->level == "Registered" AND ($SaccessLevel == "Registered" OR &
SaccessLevel == "Admin"))

OR ($Sitem->level == "LoggedIn" AND S$logged_in)

OR (Sitem->level == "LoggedOut" AND !S$logged_in)) {

$html[] = 'link. '">' . &

Sitem->title. '';
}
}

Shtml[] = '"';
Sreturn = implode("\n", S$html);
return $return;

Watch the video for Lesson 30 on the DVD or watch online at www .wrox .com/
go/24phpmysql .

31

Next Steps

Over the course of this book you have taken a static website and, piece by piece, turned it
into a dynamic website run from a database using PHP and MySQL. You learned the basics
of programming and PHP: how to set up your computer so that it runs PHP, how to add
PHP to your HTML page, and how to write PHP code. You learned what variables are, how
to work with them, and how to debug your programs. You learned how to have your pro-
gram make logical decisions and to loop through code, how to create functions and process
forms, and how to work with objects and classes. You learned best practices and how to
write secure code.

You learned how databases work and how to design one, how to use phpMyAdmin to work
with MySQL, and different ways of connecting to MySQL through PHP. You learned how to
create tables, enter data, select data, change data, and delete data. And finally, you learned
how to combine all of these things into creating a mini content management system with a
dynamic menu.

Now that you know the basics of programming in PHP and working with a MySQL database,
there are different “next steps” that you can take. One is to look back at the code that you
wrote for the Case Study and take it to the next level. As you worked, you probably noticed
that you did a lot of copying and pasting. When you start seeing a lot of similar code, it
means you have code you should be reusing instead of copying. It’s time to refactor, which is
rewriting your code to make it smaller, more secure, and more efficient. You started this pro-
cess when you created the master parent Table class that you extended to create the Article
and Menu classes. To finish that refactoring you redo the other classes to also extend the Table
class and remove the duplicate code. You also add additional methods to the Table class by
looking at what other methods, or parts of methods, are similar across the classes. You will
find that there is a core of functionality you need that is the same from project to project.

Other programmers have found the need for that same “core of functionality,” which has led
to the development of frameworks. Frameworks are ordinary program files that have functions
and master classes of commonly needed functionality that you can include in your program.

A good next step is to become familiar with a framework. There is a learning curve to learn a
specific framework, but once you do, you start each project with the base functionality of your

462

| LESSON 31 NEXT STEPS

code in place, bug tested and, presumably, secure. CakePHP, Codelgniter, Symfony, Yii, and Zend
are examples of PHP frameworks that are available.

If you are building websites, popular open-source content management systems are available that
are built on PHP and MySQL, such as Joomla!, Drupal, and WordPress, which have done the heavy
lifting for you. For instance, Joomla is based on Joomla Platform, an object-oriented framework
with classes you can extend. Each of these systems has its own way of doing things. If you use one
of these CMSs, a good next step is to learn how to extend that CMS.

Seeing how others do things is a good way of learning, so examine how existing programs are writ-
ten. However, you need to be cautious when studying or copying someone else’s code. Coding styles
in PHP have changed in the last decade and what was considered perfectly good code five years ago
may not be how you should be coding today. Newer versions of PHP enable you to take advantage
of programming best practices, including encapsulation and object-oriented programming, that
older versions of PHP did not handle. In addition, the increasing availability of sophisticated hack-
ing scripts means that you need to use programming techniques that are more secure than what used
to be common practice.

In the same way, examining existing databases is a way to see how other programmers have orga-
nized their data into tables. An interesting website for seeing how databases are organized is

www . databaseanswers.org/data_models/index.htm. This site shows examples of databases for
various types of businesses and needs.

Try visiting http: //stackoverflow.com/ when you have questions that need to be answered. Use
the search function to find out if an answer already exists for the question you have. I recommend
that you include “php” or “mysql” as part of your search because this site covers many program-
ming languages and database types. If you can’t find your answer, you can post a specific question
yourself.

Finally, to get more information on the PHP functions that you have learned and find out about
additional functions you come across, use the online PHP Manual at http: //php.net/manual/en/
index.php. You learned about this manual in Lesson 3. This manual gives the syntax of the func-
tion, lists the parameters available, and what the function returns. It also contains comments from
users that can be enlightening, though some of them are old and have been superseded by newer
PHP versions.

For more information on MySQL, use the online MySQL Reference Manual at http: //dev.mysql
.com/doc/refman/5.6/en/index.html. There is a manual for each of the different versions, which
you can easily switch to using the menu on the left of the page. If you are looking for a specific state-
ment, go to Chapter 12, “SQL Statement Syntax,” at http://dev.mysql.com/doc/refman/5.6/
en/sql-syntax.html. Data definition statements are the statements that deal with the structure

of the database, such as creating and altering tables, or listing what fields are in a particular table.
Data manipulation statements are the ones that deal with the actual data such as the TNSERT,
UPDATE, and SELECT statements.

What’s on the DVD?

This appendix provides you with information on the contents of the DVD that accompanies
this book. For the latest and greatest information, please refer to the ReadMe file located at
the root of the DVD. Here is what you will find in this appendix:

>

>
>
>

System Requirements
Using the DVD
What’s on the DVD

Troubleshooting

SYSTEM REQUIREMENTS

Most reasonably up-to-date computers with a DVD drive should be able to play the screen-
casts that are included on the DVD.

USING THE DVD

To access the content from the DVD, follow these steps:

1.

Insert the DVD into your computer’s DVD-ROM drive. The license agreement appears.

The interface won’t launch if you have autorun disabled. In that case, click
Start & Run (for Windows 7, click Start v> All Programs = Accessories > Run).
In the dialog box that appears, type D\Start.exe. (Replace D with the proper
letter if your DV D drive uses a different letter. If you don’t know the letter,
check how your DVD drive is listed under My Computer.) Click OK.

464 | APPENDIXA WHAT'S ON THE DVD?

2.

Read through the license agreement, and then click the Accept button if you want to use the
DVD.

The DVD interface appears. Simply select the lesson number for the video you want to view.

WHAT’S ON THE DVD?

Each of this book’s lessons contains a Try It section that enables you to practice the concepts
covered by that lesson. The Try It includes a high-level overview, requirements, and step-by-step
instructions explaining how to build the example program.

This DVD contains video screencasts showing my computer screen as [work through key pieces of
the Try Its from each lesson. In the audio I explain what ’'m doing step-by-step so you can see how
the techniques described in the lesson translate into actions.

I don’t always show how to build every last piece of a Try It’s program. For example, if the require-
ments ask you to do the same thing multiple times, I may only do the first one and let you do the rest
so you don’t need waste time watching me do the same thing again and again.

I recommend using the following steps when reading a lesson:

1.
2.
3.

4.

Read the lesson’s text.
Read the Try It’s overview, requirements, and hints.

Read the step-by-step instructions. If the code you write doesn’t work, use the code provided
to find your problem. Look for places where my solution differs from yours. In programming
there’s always more than one way to solve a problem, and it’s good to know about several
different approaches.

Watch the screencast to see how I handle the key issues.

You can also download all of the book’s examples and solutions to the Try Its at the book’s
websites.

TROUBLESHOOTING

If you have difficulty installing or using any of the materials on the companion DVD, try the follow-
ing solutions:

>

Reboot if necessary. As with many troubleshooting situations, it may make sense to reboot
your machine to reset any faults in your environment.

Turn off any anti-virus software that you may have running. Installers sometimes mimic
virus activity and can make your computer incorrectly believe that it is being infected by a
virus. (Be sure to turn the anti-virus software back on later.)

Close all running programs. The more programs you’re running, the less memory is available
to other programs. Installers also typically update files and programs; if you keep other pro-
grams running, installation may not work properly.

Customer Care | 465

» Reference the ReadMe. Please refer to the ReadMe file located at the root of the DVD for the
latest product information at the time of publication.

CUSTOMER CARE

If you have trouble with the DVD, please call the Wiley Product Technical Support phone number
at (800) 762-2974. Outside the United States, call 1(317) 572-3994. You can also contact Wiley
Product Technical Support at http: //support.wiley.com. John Wiley & Sons will provide techni-
cal support only for installation and other general quality control items. For technical support on
the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please

call (877) 762-2974.

INDEX

: (colon)
alternative syntax, 102
parameters, 350
: : (colon-double), scope
resolution operator, 195
, (comma), 285
. (ellipsis), parameters, 38
. (period), concatenation operator,
48,287
; (semicolon), 35
errors, 59
MySQL statements, 333
PHP statements, 92
$query, 337
& (ampersand)
element variable, 113
htmlspecialchars(), 52
parameters, 81, 130
&& (ampersand-double), AND, 99
* (asterisk)
COUNT (), 315
fields, 314, 402
numeric operator, 51
** (asterisk-double), UPDATE, 345
@ (at sign), errors, 264
\ (backslash)
escape, 47, 60
MySQL, 254
variables, 299
* (backtick), MySQL, 60, 254,
295
{} (curly brackets)
classes, 167, 171
errors, 59, 102
formatting style, 34

if, 91
properties, 174
variables, 47
- (dash)
classes, 170
numeric operator, 51
-~ (dash-double)
comments, 255
numeric operator, 51
$ (dollar sign), 170
constants, 74
errors, 60
functions, 136
properties, 168, 170
variables, 45, 178
= (equal sign)
assignment operator,
46, 51
comparison operator, 318
conditional PHP statements,
92
errors, 60
numbers, 50
variables, 45
== (equal sign-double)
comparison operator, 94
errors, 60
if, 92
=== (equal sign-triple), 92
comparison operator, 94
! (exclamation mark), not
operator, 100
> (greater than), comparison
operator, 94, 318
>> (greater than-double),
perspectives, 66
(hash mark), comments, 255

< (less than), comparison operator,
94, 318
() (parentheses), functions, 48,
126
% (percent sign), numeric operator,
51
| (pipe sign)
E_ALL, 58
SQL tables, 285
| | (pipe sign-double), OR, 98
+ (plus sign)
forms, 147
numeric operator, 51
++ (plus sign-double)
increment operator, 108
numeric operator, 51
? (question mark)
parameters, 81, 350
placeholders, 349
ternary operator, 96
" (quotes-double), 28
errors, 60
variables, 47, 299, 392
' (quotes-single), 28,
295-296
arrays, 72
classes, 218
errors, 60
MySQL, 253-254,
295-296
security best practices, 390
variables, 47, 299, 392
/ (slash), numeric operator, 51
// (slash-double), comments, 39
[1 (square brackets)
arrays, 179, 322
checkboxes, 142-143

467

~ (tilde) — business rules

errors, 59
MySQL tables, 285
name, 143
parameters, 81

~ (tilde), 58
E_NOTICE, 58

_ (underscore)
MySQL, 254

properties, 189
variables, 45
__ (underscore-double)
magic methods, 187
methods, 181
*/
block comments, 39
comments, 255
*= _ assignment operator, 51
-=, assignment operator, 51
=, comparison operator, 94, 318
>=, comparison operator, 94, 318
<>, comparison operator, 94, 318
<=, comparison operator, 94, 318
<=>, comparison operator,
318
%=, assignment operator, 51
+=, assignment operator, 51
?>,35
comments, 41
ending tag, 57
headers, 153
/* , comments, 39, 255
/ * %
block comments, 39
Eclipse, 171
/-, assignment operator, 51

About Us, 25, 32, 185
comments, 44
databases, 233
about.html, 29
about.php, 30, 43, 183, 417
abstract, 196
abstract classes, 163, 196
Access Control Lists (ACLs), 399,
443

accessLevel (), 417

468

addRecord (), 325, 356,420,427,
448
Admin, 451
advanced techniques, 187-203
class initialization, 187-188
inheritance, 192-196
scope, 188-192
static methods and properties,
197-199
aliases, 315, 333
ALL, 336
All Privileges, 9
ALTER TABLE, 286
alternative syntax, 102-103, 112
&, 53, 55
AND, 99
AND/OR, 100
ANY, 336
Apache, 7, 8
files, 12
MySQL, 239
php.ini, 59
XAMPP, 5, 6
apachefriends.org, 4, 6
/ApplicationsXAMPP/
Xamppfiles/etc, 58
areatype, 149
Sareatypes, 149
arguments
functions, 130
methods, 180-181
parameters, 128
returns, 131
arrays, 179, 322. See also
associative arrays
for, 111
Sareatypes, 149
complex data, 71-73
fetch_array (), 265
foreach, 112, 113
functions, 132
HTML statements, 444
index, 115
multi-dimensional, 71, 73
numeric, 72
parameters, 128
print_r (), 61,722,179
Unix timestamps, 80
variables, 61, 207

article link, 444
artificial keys, 230
assignment operators, 46,
50, 51
associative arrays, 72
foreach, 113
$_SESSION, 402
values, 132
variables, 86-87
AUTO_INCREMENT, 252, 279,
280, 296
auto_increment, 245,
279-280
MySQL, 245, 279-280
primary key, 248
rows, 362
values, 252
__autoload(), 164, 187-188,
199, 214

backup, MySQL,
250-253
base class, 192
best practices
methods, 180
MySQL security,
389-391
passwords, 389-390
security, 390
workspace, 40
BETWEEN. .. AND..., 318
BIGINT, 277
BINARY, 276
binary strings, 243, 276
binding, 349
BIT, 279
BLOB, 276-277, 351
Boolean
PDO, 351
UPDATE, 346
variables, 73, 207

,423
break, 114-115
breakpoints, 67, 69
built-in functions, 80-85
business rules, 230-231

CakePHP - data types

CakePHP, 462
“Call to undefined function,” 59
case, 101, 327, 378
case sensitivity, 46, 74, 167
changing data, 343-360
CHAR, 275-276
character set, 242-243
checkboxes, 142-143, 149-150
child class, 192, 195
Class, 167
classes, 195, 218
case sensitivity, 167
CMS, 420-422
__construct (), 192
defining, 167-175
echo, 179
extending, 163, 192
files, 167
initialization, 187-188
instantiation, 162, 177-178
methods, 162, 169-173,
420-422
objects, 178-182, 420
OOP, 162-163, 167-175
PHPDoc, 168
properties, 162, 168-169, 420
require_once, 177
scope, 192
static functions, 272
static properties, 272
subclasses, 192
syntax, 167
Class Constants and Static
Methods, 163
class functions. See methods
class variables. See properties
class="button display", 105
classes, 174
clauses, 314-315
__clone(), 192
CMS. See content management
system
Scode, 301
Codelgniter, 462
collation, 242-243
col_name, 285
columns, 227, 244-248

comments, 255. See also PHPDoc
Eclipse, 39, 171
HTML, 39
methods, 171
MySQL, 255
.php, 40-43
single line, 39
About Us, 44
workspace, 39-40
Compare With, 17
comparison operators, 94-96,
317-318
complex data, 71-89
arrays, 71-73
built-in functions, 80-85
constants, 74
dates, 74-80
logical variables, 73-74
objects, 86
concatenation operators, 48, 287
condition, 110
conditional PHP statements, 92
configuration
workspace, 12-18
XAMPP, 9-10
Xdebug, 62-65
confirmation page, 220
connect_error, 264
$connection, 264, 266-267,
268
$_connection, 273
constants, 74
$_construct (), new Database,
268
__construct (), 163, 180-181,
273,420, 421
classes, 192
extending, 195
inheritance, 193
magic methods, 187
Constructors, 163
$contact, 111, 130
$contacts, 170
content, 104, 139
$content, 105, 139

content management system (CMS),

419-441, 462
classes, 420-422
display page, 422-424

maintenance pages, 422

tables, 419-420
content/about.php, 43
content/home.php, 43
continue, 114-115
control characters, 47
Control Panel, 5, 6
$_COOKIE, 82, 83, 120, 402
cookies, 82-83, 402

Copy, 17
COUNT (), 315
$count, 127

counters, 109

CREATE, 287

CREATE DATABASE, 271

CREATE TABLE, 284

cross-site request forgeries (CSRF,
XSRF), 217,220

cross-site scripting (XSS), 217

CRUD, 446

CSRF. See cross-site request
forgeries

.csv, 228

ctype_digit (), 207

CURRENT_TIMESTAMP, 280, 282,
425

c: \xampp\php, 58

data
changing
MySQL, 343-360
mysqli, 348-350
PDO, 350-352
prepared statements,
347-348
deleting
MySQL, 361-386
PHP, 364-365
entry, 248-250, 295-311
MySQL, PHP forms,
302-304
selection, 314-319
validity, 206
Data fieldset, 252
data types, 228, 275-279
business rules, 231
MySQL, 228, 275-279

469

databases — errors

PDO, 350-351
placeholders, 349
databases, 227-237. See also
MySQL
business rules, 230-231
character set, 242-243
collation, 242-243
columns, 244-248
flat files, 228
information gathering, 228
menu, 443-460
normalization, 231-232
tables, 229, 244-248
About Us, 233
databaseanswers.org, 462
data_type, 285
DATE, 278
date(), 75-77
dates, 24-25, 74-80
date_created, 282
DATETIME, 278
date/time, 75-80, 278
$db, 264
_DB, 252
$dbh, 264
Debug As, 17
debugging, 57-70
error display, 57-59
text editors, 57
XAMPP, 65
Xdebug, 62-67
decision making, 91-106
alternative syntax, 102-103
if/else, 91-97
logical operators, 97-100
switch, 100-102
decrement operator, 108, 110
default, 101
Sdefault, 139
Default PHP Web Server, 62
defaults
parameters, 130
values, MySQL, 280
define(), 74
DELETE, 361-364
JOIN, 335, 363-364
LIMIT, 362,363
NULL, 364
ORDER BY, 363

470

rows, 362-364
WHERE, 362, 363
deleteCategory (), 371
deleteMenu (), 458
deleteRecord(), 427
includes/classes.php,
368
menu, 449, 458
rows, 421, 449
deleting data, 361-386
deprecated variables, 121-122
$desc, 299, 303
DESCRIBE, 346
description, 245
die(), 61,220
display page, 422-424
display2pps (), 193
display_errors, 57-59, 207
DISTINCT, 315
<div>, 52
<div class="message">, 274
Doctype, 47
DOCUMENT_ROOT, 121-122
DOUBLE PRECISION, 277
do/while, 109
DROP DATABASE, 250, 388
DROP TABLE, 248, 250, 251, 388
drop-down menu, 446
Drupal, 462
Duplicate Entry error, 345
DUPLICATE KEY UPDATE,
297, 345

E_ALL, 58
echo, 36-37
for, 112
classes, 179
$contact, 130
errors, 59
HTML, 111
if, 60
PHP, 27-29
print_r (), 61
variables, 60
echo $i++;, 108
echo $i--;,108

echo ++$i;,108
echo --$i;,108
Eclipse, 11-12
comments, 39, 171
first time use, 14-18
htdocs, 14
parameters, 171
perspectives, 18
splash screen, 15
Xdebug, 62-67
eclipse.exe, 12
editRecord(), 420, 427
includes/classes/
contact.php,
354, 358
menu, 448, 458
passwords, 410
prepared statements, 381
Sresult, 354
elements, 116
element variable, 113
else
comparison operators, 94-96
decision making, 91-97
errors, 214
PHP statements, 92-93
ternary operators, 96-97
elseif, 93
encapsulation
functions, 119
local variables, 161
OOP, 161
endfor, 112
engine_name, 285
ENUM, 279
$_ENV, 120
error_report, 58
errors, 59, 60, 102, 205-215, 264
data validity, 206
debugging, 57-59
Duplicate Entry, 345
fatal, 137
fields, 296
IGNORE, 297
$Smessage, 303
MySQL, 264
PDO, 269
PHP, 209
redundancy, 231

escapes — functions

resources, 206

testing, 205-210

try/catch, 210-211

values, 206

variables, 206

web pages, 60
escapes, 47, 60

MySQL, 254, 295-296

security best practices, 390

SQL Injections, 301
E_STRICT, 58
E_USER_ERROR, 207
E_USER_NOTICE, 207-208
E_USER_WARNING, 207
Exception, 210-211
expandType (), 134
EXPLAIN, 346
Export fieldset, 251
Expression Syntax, 317
extending classes, 163, 192
external links, 444

FALSE, 73, 95-96, 346-347
false, 131
fatal errors, 137
fetch (PDO: : FETCH_NUM), 270
fetch_all (MYSQLI_ASSOC), 321
fetch_all (MYSQLI_BOTH), 321
fetch_all (MYSQLI_NUM), 321
fetch_array (), 265
fetch_array (MYSQLI_ASSOC),
321
fetch_array (MYSQLI_BOTH),
321
fetch_array (MYSQLI_NUM), 321
fetch_object (), 321
fields, 227, 296, 314, 402
aliases, 333
forms, SQL injections, 388
getContact (), 410
keys, 229
SESSION, 414
tables, 229
files
Apache web server, 12
classes, 167

flat, 228

plain-text, 41, 83, 86, 103

reusing code, 137

URL, 210

workspace, 12-14
file paths, 24, 212
file_exists(), 209,212
$_FILES, 120
filters, 84-85, 391-393
FILTER_FLAG_NO_ENCODE_NO_

QUOTES, 303
filter_input, 219
FILTER_SANITIZE_EMAIL,

84
FILTER_SANITIZE_ENCODED, 84
FILTER_SANITIZE_NUMBER_

FLOAT, 84
FILTER_SANITIZE_NUMBER_INT,

84
FILTER_SANITIZE_SPECIAL_
CHARS, 84

FILTER_SANITIZE_STRING, 84
FILTER_SANITIZE_URL, 84
FILTER_VALIDATE_BOOLEAN,
85
FILTER_VALIDATE_EMAIL, 85
FILTER_VALIDATE_FLOAT, 85
FILTER_VALIDATE_INT,85
FILTER_VALIDATE_URL,85
filter_var(), 84-85, 219
final, 195
Firefox, 82
first normal form (INF), 231
flat files, 228
floating-point numbers, 50, 52,
207,278

folders, 210

index.html, 222

index.php, 219

root, 222

subfolders, 221
for

id, 142

<label>, 142

loops, 110-112
foreach

$contacts, 170

getMenus (), 452

Sitem, 184

, 184-185
loops, 112-114
foreign keys, 229-230
<form>, 141, 142
forms, 141-159
checkboxes, 142-143
CSRF, 220
fields, SQL injections,
388
GET, 146-147
$_GET, 147
header (), 153-154
header redirection,
153-154
HTML, 141
HTTP, 147
JavaScript, 142, 219
PHP, MySQL data entry,
302-304
POST, 146-147
$_POST, 147
processing, 146-152
radio buttons, 142, 148
setting up, 141-146
formatting style, PHP, 33-34
frameworks, 461
Zend Framework,
34, 462
FROM, 315
functions, 168. See also specific
function types
arguments, 130
arrays, 132
built-in, 80-85
comparison functions and
operators, 317
date/time, 75-80
defining, 126-127
encapsulation, 119
false, 131
hash, 400, 405
local variables, 129
methods, 169
parameters, 127-131
properties, 168
returns, 131, 132
reusing code, 125-140
static, 272
string functions, 316

a7

function.php — index.html

strings, 48-50
time zones, 74-75
true, 131
using, 132-136
values, 131-132
variables, 127, 136
whitespace, 126
function.php, 139

GET, 103
forms, 146-147
headers, 153
hidden values, 220
home, 105
include, 104
parameters, 154
passwords, 81
SQL injections,
388-389
Submit button, 147
values, 220
get, 142
$_GET, 80-81, 120,
147,402
getArticle(), 421
getArticles (), 421
getCategory (), 357
getConnection(),
268,273
getContact (), 410
getCount (), 127
getdate(), 80
getLevel_DropDown (),
451
getMenus (), 450, 452
getName (), 129
getProperty_name(),
420
getter methods, 190, 191
global, 120
global variables
functions, 129
mysqli, 268
scope, 120-122
static properties, 198
$SGLOBALS, 120

472

<h1s, 111
hardcoding, 133, 183
salts, 405
user logins, 399
hash (), 400
hash functions, 400, 405
hash_algos (), 400
hash_hmac (), 400
header (), 153-154
header redirection, 153-154, 305,
354
hidden parameters, 151
hidden values, 143, 220
home, 105
Home page, 29, 32
home . php, 43
.htaccess, 219
htdocs, 12, 14
HTML
comments, 39
Doctype, 47
dynamic menu, 444
file paths, 24
forms, 141
list tag, 112
maintenance pages, 422
menu, 454
multi-dimensional arrays, 73
\n, 444
PHP, 23, 111
while, 107
security best practices, 391
statements, 444
$html, 378
.html, 24, 30
<html>, 47
htmlspecialchars (), 49, 52,
218, 391, 422
menu, 454
HTTP, 120, 147, 153, 402
SHTTP_COOKIE_VARS, 121
SHTTP_ENV_VARS, 121
SHTTP_GET_VARS, 121
http://localhost, 7
SHTTP_POST_FILES, 121
SHTTP_POST_VARS, 121
HTTP_REFERER, 121-122

SHTTP_SERVER_VARS, 121
SHTTP_SESSION_VARS, 121
HTTP_USER_AGENT, 121-122

$1, 87,108, 112
id, 142
hidden parameters, 151
myid, 315
$id, 388, 392, 421
id $query, 388
identifiers, 254
if
comparison operators, 94-96
decision making, 91-97
echo, 60
errors, 214
PHP statements, 91-94
Sresult, 271
ternary operators, 96-97
IF NOT EXISTS, 252,285
IGNORE, 297
imploding, 378
include, 66, 104, 137
$Scontent, 139
index.php, 31, 32
PHP, 27-29
reusing code, 125
include_once, 137
includes, 174
includes/classes/contact.
php, 289
addRecord (), 356
editRecord (), 354, 358
getCategory (), 357
logIn(), 413
logOut (), 416
includes/classes.php, 368
includes/functions.php, 371,
413, 416
includes/init.php, 327
increment, 110
increment operators, 108, 110
indentation, 34
index, 115, 116, 228
indexes, 228
index.html, 29, 30, 221, 222

index.php — menu

index.php, 29, 30, 199, 423
__construct (), 182
content, 104
<div class="message">,

274
folders, 219
include, 31, 32
loadContent (), 139, 140
menu link, 459
require_once, 138,200

index.php?content=, 444

INF, 231

infinite loops, 108

inheritance, 192-196

.ini, 228

init, 110

init.php, 413

INNER JOIN, 334

InnoDB, 282

<input>, 142, 143

<input type="button">,

142

INSERT, 252,295-297, 336, 345

installation
text editors, 11-12
XAMPP, 3-10

install.sqgl, 288

instantiation, 162, 177-178

INT, 277

int, 366

INTEGER, 277

integers, 50, 207, 277, 351

internal links, 444

IS, 318

IS NOT NULL, 318

IS NULL, 318

is_array (), 207

is_bool(), 207

is_double(), 207

is_file(), 209,212

is_float(),207

is_int (), 207

isLoggedIn (), 417

is_null(), 207

is_numeric (), 206,207,393

is_object (), 207

isset (), 104
checkboxes, 149-150
variables, 209

is_string(), 207
$item, 183-184
iterations, 108

JavaScript, 142, 219, 422

JOIN
DELETE, 335, 363-364
multiple tables, 332-335
SELECT, 331
subqueries, 335-336
UPDATE, 335

Joomla!, 462

keys, 228-230
artificial, 230
foreign, 229-230
primary, 229-230, 248, 331,
352
keystroke tracking, 217

<label>, for, 142
LAST7INSERT7ID(),280
LEFT JOIN, 334
DELETE, 364
LEFT OUTER JOIN, 334
, 112, 184-185
LIKE, 318
LIMIT, 316, 335,362,363
line length, 34
Linux, 239
list tag, 112
Listen 80,8
Listen 8080, 8
listItem(), 196
literal values, 253-254
Literal Values Syntax, 318
LOAD DATA, 295
loadContent (), 139, 140
local variables
encapsulation, 161
functions, 129
scope, 119-120

localhost, 82, 241, 264,
269

LoggedIn, 451

$logged_in, 444

LoggedOut, 451

logical operators, 97-100

logical variables, 73-74

logIn(), 413

login, 412

logins. See user logins

logOut (), 416

LONGBLOB, 276-277

LONGTEXT, 276

loops, 107-118
for, 110-112
break, 114-115
continue, 114-115
do/while, 109
foreach, 112-114
infinite, 108
parameters, 128
while, 107-109, 265, 270,

319
loosely typed language, 206

Mac OS X

Apache, 8

cookies, 82

htdocs, 12

MySQL, 239

php.ini, 58

wphp24, 82

XAMPP, 6-8, 24
magic methods, 187, 199
magic_guotes_gpc, 300
maintenance pages, 422
many-to-many relationships, 230
MDs5, 400
md5 (), 400
MEDIUMBLOB, 276-277
MEDIUMINT, 277
MEDIUMTEXT, 276
menu

adding to website,

444-445
addRecord (), 448

473

$message — numbers

databases, 443-460
tables, 443-444

deleteRecord(), 449, 458

editRecord(), 448

links, 443-444

index.php, 459

title, 443

_verifyInput (), 447
Smessage, 302, 303
method, 142
methods, 169, 180

arguments, 180-181

best practices, 180

classes, 162, 169-173, 420-

422

comments, 171

functions, 169

getter, 190, 191

mysqli, 266

PDO, 270

properties, 169, 180

public, 191

return, 171

scope, 169, 191

setter, 190, 191

static, 197-199

values, 178

variables, 169
method="get", 80
method="post", 81
mktime (), 79
Model-View-Controller (MVC), 161
mouseovers, 422
multi-dimensional arrays, 71, 73
multiple, 143
multiple tables, 331-341

JOIN, 332-335

MySQL, 331-341

subqueries, 335-336
MVC. See Model-View-Controller
myid, id, 315
MyISAM, 282
MySQL, 60, 239-262

Apache web server, 239

auto_increment, 2435,

279-280

comments, 255
comparison operators, 318
CURRENT_TIMESTAMP, 425
data entry, 248-250, 295-311
PHP forms, 302-304
Data fieldset, 252
data selection, 314-319
data types, 228, 275-279
date/time, 278
default values, 280
deleting data, 361-386
errors, 264
escapes, 254, 295-296
Export fieldset, 251
floating-point numbers, 278
identifiers, 254
indexes, 228
integers, 277
literal values, 253-254
localhost, 264,269
multiple tables, 331-341
NULL, 280
numbers, 277-278
passwords, 9, 389-390
PDO, 269-271
PHP, 241, 263-274, 297-302
statements, 263
phpMyAdmin, 239-253
Reference Manual, 462
restore, 250-253
security, 387-396
best practices, 389-391
sanitation filters, 391-393
SELECT, 314-317
strings, 253, 275-277
syntax, 253-255
tables, 275-294, 331-341
UPDATE, 344-347
WHERE, 317-318
XAMPP, §, 6

mysql, 263-268
mysqli, 263-268

changing data, 348-350

global variables, 268

mysgli->affected_rows,
365

mysqgli_fetch_all (Sresult,
MYSQLI_BOTH), 321
mysgli_fetch_all (Sresult,
MYSQLI_NUM), 321
mysqgli_fetch_
array (Sresult, MYSQLI_
ASS0C), 321
mysqgli_fetch_
array (Sresult, MYSQLT_
BOTH), 321
mysqgli_fetch_
array (Sresult, MYSQLI_
NUM), 321
mysqgli::query (), 346

mysqli::real_escape_string,

299, 300, 391
mysgli::real_escape_
string (), 393
mysqgli_real_escape_
string(), 393
mysqgli_result, 263,265
mysgl_real_escape_string,
218
mysqgl_stmt, 263

\n, 378, 444
name, 142, 143
$name, 129, 130
new Database, 268
normalization, 231-232
NOT BETWEEN... AND..., 318
NOT LIKE, 318
NOT NULL, 280, 296
not operator, 100
notices, 58
NULL, 280
AUTO_INCREMENT, 296
DELETE, 364
if, 95
MySQL, 280
variables, 74, 207
$Snumber, 60
numbers, 277-278

mysqgli->affected_rows, 365 floating-point, 50, 52, 207,
mysqgli_fetch_all (Sresult, 278
MYSQLI_ASSOC), 321 MySQL, 277-278

backup, 250-253
business rules, 231
changing data, 343-360

474

number_format — ports

strings, 52, 206

variables, 50-51, 207
number_format (), 52
numeric arrays, 72
numeric operators, 51
num_rows, 265

objects. See also PHP Data
Objects
classes, 178-182, 420
complex data, 86
__construct (), 182
foreach, 112
MySQL, 254
OOP, 162-163
value, $this, 272
variables, 207
object-oriented programming
(O0P), 161-165
classes, 162-163,
167-175
mysqgli, 266
one-to-many relationships,
230
one-to-one relationships, 230
OOP. See object-oriented
programming
operator precedence, 100
operators
assignment, 46, 50, 51
comparison, 94-96, 318
comparison functions and
operators, 317
concatenation, 48, 287
decrement, 108, 110
increment, 108, 110
logical, 97-100
not, 100
numeric, 51
precedence, 100
resolution, 195
ternary, 96-97
<option>, 143
OR, 98
ORDER BY, 316-317, 363
OUTER JOIN, 334

<p>, 422
parameters, 38, 350
arguments, 128
arrays, 128
defaults, 130
Eclipse, 171
functions, 127-131
GET, 154
$_GET, 81
hidden, 151
loops, 128
parent class, 195
parent class, 192, 195
Pass by Reference, 163
passwords, 9, 389-390
best practices, 389-390
editRecord(), 410

GET, 81

hash functions, 400, 405

PHP, 400-402

user logins, 400-402
Paste, 17

PDO. See PHP Data Objects
PDO, 269
PDOException, 269
PDO: : PARAM_BOOL, 351
PDO: : PARAM_INT, 351
PDO: : PARAM_LOB, 351
PDO: : PARAM_STR, 351
PDOStatement, 269
PDO_Statement: :bindParm(),
350
Pear Coding Standards, 34
Perl, 3
perspectives, 18, 66
PHP
case sensitivity, 46
data selection, 319
deleting data, 364-365
echo, 27-29
errors, 209
formatting style, 33-34
forms, MySQL data entry,
302-304
HTML, 23,107, 111
while, 107
include, 27-29

loosely typed language, 206
MySQL, 241, 263-274
commands, 297-302
forms, 302-304
tables, 287-288
OOP, 163-164
passwords, 400-402
scope, 119
statements, 91-94, 263
superglobal variables, 120
syntax, 33-44
Unix timestamps, 74
UPDATE, 345-347
web pages, 23-32
whitespace, 126
.php, 24, 30, 35, 40-43
<?php, 24, 28, 35, 41, 104
PHP Code, 244
PHP Data Objects (PDO), 263,
350-352
changing data, 350-352
MySQL, 269-271
PHP Debug, 66
PHP Explorer, 17
PHP Servers, 62
php24sqgl, 269
PHPDoc
block comments, 39-40,
174
about .php, 183
properties, 169
classes, 168
phpinfo (), 57, 58
php.ini, 58,228
Apache web server, 59
display_errors, 57
time zones, 75
variables, 121
Xdebug, 65
phpMyAdmin, 239-253
MySQL, 239-253
statements, 337
tables, 281-283
XAMPP, 9,239-253
PHP_SELF, 121-122
placeholders, 349
plain-text files, 41, 83,
86,103
ports, 8

POST - setter methods

POST
forms, 146-147
headers, 153
menu, 453
SQL injections, 388-389
values, 220
post, 142
$_POST, 81-82, 402
forms, 147
sanitation filters, §4-85
superglobal variables, 120
<pre>, 73, 180
Preferences, 82
prepared statements, 343
changing data, 347-348
editRecord(), 381
SELECT, 350
var_dump ($query), 349
PRIMARY, 282
primary keys, 229-230, 248, 331,
352
print_r (), 61,72,73,179, 180
Privacy tab, 82
private, 168, 188, 189, 195
Privileges, 9, 389, 390
proper coding, 218-220
Properties, 17
properties, 174
static, 197-199, 267, 272
protected, 168, 188, 189, 195
Public, 451
public, 168, 169, 188-189
addRecord (), 448
getMenus (), 450
methods, 191
setMenu (), 460

query (), 265, 269, 287
$query, 337, 388, 392
query statements, 298
query strings, 147

radio buttons, 142, 148
REAL, 277
records, 227

476

redundancy, 231
Refactor, 17

refactoring, 109, 110, 461
reference, 130, 163
Reference Manual, 462
Refresh, 17
Registered, 451

register_globals, 121-122
relational database management

systems, 228
relationships, 228, 229-230
REPLACE, 346
$_REQUEST, 120
REQUEST_URI, 121-122
require, 137
require_once, 137, 138,
177,200
resolution operator, scope, 195
resources, 206
restore, 250-253
$result, 265,270, 271, 354
return, 171
returns, 48
arguments, 131
functions, 131, 132
MySQL statements, 265
strlen(), 125
values, 132

reusing code
files, 137
functions, 125-140

RIGHT JOIN, 334

RIGHT OUTER JOIN, 334

root directory, 221

root folder, 222

rows, 227
addRecord (), 420
auto_increment, 362
DELETE, 362-364
deleteRecord(),

421, 449
editRecord(),
420, 448

LIMIT, 335
OUTER JOIN, 334
primary key, 352
type_id, 362
WHERE, 335

"row0", 184

$salt, 220
salts, 220, 405
sanitation filters, 84-85, 391-393
scope, 119-123, 188-192
global variables, 120-122
local variables, 119-120
methods, 169, 191
PHP, 119
resolution operator, 195
variables, 194
SCRIPT_FILENAME, 121-122
SCRIPT_NAME, 121-122
search engine optimization (SEO),
154
second normal form (2NF), 232
security, 217-225
best practices, 390
MySQL, 387-396
best practices, 389-391
sanitation filters, 391-393
proper coding, 218-220
threats, 217-218
XAMPP, 4
SELECT, 314-317
dynamic menu, 444
JOIN, 331
MySQL, 314-317
mysqgli::query (), 346
prepared statements, 350
subqueries, 335-336
UPDATE, 344
WHERE, 402
<select>, 143
self::,197,267
SEO. See search engine
optimization
$_SERVER, 120, 121-122
SERVER_NAME, 121-122
SESSION, 414, 425, 453
$_SESSION, 120,402
sessions, 220, 221, 303, 402
session_start (), 221,303,
402,403
SET, 279
setcookie (), 82-83
setMenu (), 460
setter methods, 190, 191

shal - UNSIGNED

shal (), 220, 400
Sharing & Permissions, 13
SHOW, 346
SHOW DATABASE, 274
SHOW GRANTS, 390
SHOW TABLES, 270
SIGNED, 277
single line comments, 39
singletons, 267
SITE_KEY, 409
size, 143
Skype, 8
SMALLINT, 277
source code, 67
spaghetti code, 115
splash screen, 15
.sql, 253,283-286
SQL injections, 217, 388-389, 390
escapes, 301
prepared statements, 343, 347
stackoverflow.com, 462
stateless protocol, 402
statements, 265, 287, 333, 337. See
also prepared statements
HTML, 444
MySQL, 265, 287, 333, 337
PHP, 91-94, 263
query, 298
static, 197,199, 450
static functions, 272
static methods, 197-199
static properties, 197-199, 267,272
static variables, 127
stdClass, 321
strftime(), 77-79
string, 38
strings
binary, 243, 276
floating-point numbers, 52
functions, 48-50
MySQL, 253, 275-277
numbers, 52, 206
PDO, 351
query, 147
variables, 46-47, 206
string functions, 316
$stringNumber, 52
strip_tags(), 422
strlen(), 49,59, 125

strtolower (), 50
strtotime (), 79-80
strtoupper (), 50
subclass, 192
subfolders, 221
Submit button, 141, 142, 147
subqueries, 335-336, 345
superglobal variables, 120
switch, 100-102, 115, 327, 378
Symfony, 462
syntax, 168, 253-255
alternative, 102-103, 112
classes, 167
Expression Syntax, 317
Literal Values Syntax, 318
MySQL, 253-255
PHP, 33-44
properties, 168
try/catch, 210

tables, 227, 275-294, 331-341. See
also columns; fields; rows
addRecord (), 420
aliases, 333
CMS, 419-420
databases, 229, 244-248
deleteRecord(), 421
editRecord(), 420
menu, 443-444
multiple, 331-341
JOIN, 332-335
MySQL, 331-341
subqueries, 335-336
MySQL, 275-294,
331-341
PHP, 287-288
.sql, 283-286
phpMyAdmin, 281-283
relationships, 229-230
.sqgl, 283-286
type_id, 332
tbl_name, 285
TEMPORARY, 285
ternary operators, 96-97
testing errors, 205-210
TEXT, 245, 276

text editors
debugging, 57
installation, 11-12
<?php, 28
plain-text files, 41, 86, 103
textarea, 425
<textarea>, 143,422,425
third normal form (3NF), 231, 232
$this, 272
$this->, 168, 188,197
$this->someProperty, 169
$this->yourMethod (), 169
3NF. See third normal form
TIME, 278
time(), 75
time zones, 74-75
TIMESTAMP, 280
TINYBLOB, 276-277
TINYINT, 277
TINYTEXT, 276
tokens, 220, 303
transactions, 264, 269
trigger_error (), 207
trim(), 49
troubleshooting. See also
debugging
XAMPP, 8
TRUE, 73, 95-96, 346-347
true, 131
TRUNCATE TABLE, 248
try/catch, 210-211
2NF. See second normal form
type_id, 332, 362
type="radio", 142
type="reset", 143
typos, 59

ucfirst(), 49
ucwords (), 49
Universal Binary, 6
Unix, 239
timestamps

arrays, 80

PHP, 74
unset ($value), 113
UNSIGNED, 277

477

UPDATE - XAMPP

UPDATE, 344-347
Boolean, 346
JOIN, 335
MySQL, 344-347

URL
files, 210
SQL injections, 388

user logins, 399-418
ACLs, 399
cookies, 402
passwords, 400-402
sessions, 402

userLogin (), 412,413

userLogout (), 416

UTF-8, 243

Validate, 17
validation filters, 85
value, 142
values
associative arrays,
132
auto_increment,
252
databases, 227
defaults, MySQL, 280
errors, 206
fields, 296
functions, 131-132
GET, 220
hidden, 143, 220
literal, 253-254
methods, 178
objects, $this, 272
placeholders, 349
POST, 220
returns, 132
salt, 220
variables, 207
var, 189
VARBINARY, 276, 280
VARCHAR, 257, 276, 280
var_dump (), 61
var_dump ($query), 305,
337,349

478

variables, 45-56, 178, 188,
299, 392
arrays, 61

associative arrays, 86—87

binding, 349
Boolean, 73

concatenation operators, 48

echo, 60
errors, 206
file paths, 212
functions, 127
isset (), 209
logical, 73-74
methods, 169
NULL, 74
numbers, 50-51
php.ini, 121
properties, 188
query statements, 298
reference, 130
scope, 194
sessions, 221
static, 199
strings, 46-47, 206
values, 207
Xdebug, 67
variable functions, 136
variables
deprecated, 121-122
element variable, 113

global
functions, 129
mysqgli, 268

scope, 120-122

static properties, 198

local
encapsulation, 161
functions, 129
scope, 119-120
logical, 73-74
static, 127
superglobal, 120
VARS, 120

_verifyInput (), 326, 381, 420,

447
Visibility & Final, 163
void, 38

web pages
errors, 60
PHP, 23-32
WHERE, 317-318, 344, 402
DELETE, 362, 363
MySQL, 317-318
rows, 335
SQL injections, 388
subqueries, 335-336
Swhere, 139

while, 108, 109, 265, 270, 319

whitespace, 35, 126
formatting style, 34
textarea, 425

Windows
htdocs, 12
MySQL, 239
php.ini, 58
XAMPP, 4-6

Word, 11

WordPress, 462

workspace
best practices, 40
comments, 39-40
configuration, 12-18
Eclipse, 14-18
files, 12-14
PHP syntax, 35-39

wphp24, 82

XAMPP, §, 6

Apache web service, 5, 6

configuration, 9-10
Control Panel, 5, 6
debugging, 65
display_errors, 57
installation, 3-10
Mac OS X, 6-8, 24
MySQL, 5, 6
phpMyAdmin, 9,
239-253
security, 4
time zones, 75

Xdebug - ZIP

troubleshooting, 8
Universal Binary, 6
Windows, 4-6
ZIP, 4

Xdebug
configuration,

62-65

debugging, 62-67
php.ini, 65
using, 66-67

XHTML, 218

XSRF. See cross-site request
forgeries

XSS. See cross-site scripting

YEAR, 278
Yii, 462
yourMethod (), 169

Zend Framework, 34, 462
ZIP, 4

479

SOFTWARE LICENSE
AGREEMENT

Important - Read carefully before opening software
package.

This is a legal agreement between you, the end user,
and John Wiley & Sons, Inc. (“Wiley”).

The enclosed Wiley software program and accompa-
nying data (the “Software”) is licensed by Wiley for
use only on the terms set forth herein. Please read this
license agreement. Registering the product indicates
that you accept these terms. If you do not agree to
these terms, return the full product (including docu-
mentation) with proof of purchase within 30 days for
a full refund. In addition, if you are not satisfied with
this product for any other reason, you may return the
entire product (including documentation) with proof
of purchase within 15 days for a full refund.

1. License: Wiley hereby grants you, and you
accept, a non-exclusive and non-transfer-
able license, to use the Software on the fol-
lowing terms and conditions only:

(@) The Software is for your personal use
only.

(b) You may use the Software on a single
terminal connected to a single com-
puter (i.e., single CPU) and a laptop
or other secondary machine for per-
sonal use.

(C) A backup copy or copies of the
Software may be made solely for
your personal use. Except for such
back up copy or copies, you may not
copy, modify, distribute, transmit
or otherwise reproduce the Software
or related documentation, in whole
or in part, or systematically store
such material in any form or media
in a retrieval system; or store such
material in electronic format in elec-
tronic reading rooms; or transmit
such material, directly or indirectly,
for use in any service such as docu-
ment delivery or list serve, or for
use by any information brokerage
or for systematic distribution of
material, whether for a fee or free

(d)

(e)

of charge. You agree to protect the
Software and documentation from
unauthorized use, reproduction, or
distribution.

You agree not to remove or modify
any copyright or proprietary notices,
author attribution or disclaimer
contained in the Software or docu-
mentation or on any screen display,
and not to integrate material from
therefrom with other material or
otherwise create derivative works
in any medium based on or includ-
ing materials from the Software or
documentation.

You agree not to translate, decom-
pile, disassemble or otherwise reverse
engineer the Software.

2. Limited Warranty:

(@)

(b)

()

Wiley warrants that this product

is free of defects in materials and
workmanship under normal use

for a period of 60 days from the
date of purchase as evidenced by a
copy of your receipt. If during the
60-day period a defect occurs, you
may return the product. Your sole
and exclusive remedy in the event of
a defect is expressly limited to the
replacement of the defective product
at no additional charge.

The limited warranty set forth above
is in lieu of any and all other war-
ranties, both express and implied,
including but not limited to the
implied warranties of merchantabil-
ity or fitness for a particular purpose.
The liability of Wiley pursuant to
this limited warranty will be limited
to replacement of the defective copies
of the Software. Some states do not
allow the exclusion of implied war-
ranties, so the preceding exclusion
may not apply to you.

Because software is inherently com-
plex and may not be completely free
of errors, you are advised to verify
your work and to make backup

copies. In no event will Wiley, nor
anyone else involved in creating,
producing or delivering the Software,
documentation or the materials con-
tained therein, be liable to you for any
direct, indirect, incidental, special,
consequential or punitive damages
arising out of the use or inability to
use the Software, documentation or
materials contained therein even if
advised of the possibility of such dam-
ages, or for any claim by any other
party. In no case will Wiley’s liability
exceed the amount paid by you for
the Software. Some states do not
allow the exclusion or limitation of
liability for incidental or consequen-
tial damages, so the above limitation
or exclusion may not apply to you.

(d) Wiley reserves the right to make
changes, additions, and improve-
ments to the Software at any time
without notice to any person or
organization. No guarantee is made
that future versions of the Software
will be compatible with any other
version.

Term: Your license to use the Software and
documentation will automatically terminate
if you fail to comply with the terms of this
Agreement. If this license is terminated you
agree to destroy all copies of the Software
and documentation.

Ownership: You acknowledge that all
rights (including without limitation, copy-
rights, patents and trade secrets) in the
Software and documentation (including
without limitation, the structure, sequence,
organization, flow, logic, source code,
object code and all means and forms of
operation of the Software) are the sole and
exclusive property of Wiley and/or its licen-
sors, and are protected by the United Sates
copyright laws, other applicable copyright
laws, and international treaty provisions.

Restricted Rights: This Software and/
or user documentation are provided
with restricted and limited rights.

Use, duplication, or disclosure by the
Government is subject to restrictions as set
forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Computer Software
clause in DAR 7-104.9(a), FAR 52.2227-14
(June 1987) Alternate III(g)(3)(June 1987),
FAR 52.227-19 (June 1987), or DFARS
52.227-701 (c) (1)(ii)(June 1988), or their
successors, as applicable. Contractor/manu-
facturer is John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030.

Canadian Purchase: If you purchased this
product in Canada, you agree to the fol-
lowing: the parties hereto confirm that it is
their wish that this Agreement, as well as
all other documents relating hereto, includ-
ing Notices, have been and will be drawn
up in the English language only.

Technical Support: Wiley will respond to
all technical support inquiries within 48
hours.

General: This Agreement represents the
entire agreement between us and super-
sedes any proposals or prior Agreements,
oral or written, and any other communi-
cation between us relating to the subject
matter of this Agreement. This Agreement
will be construed and interpreted pursu-
ant to the laws of the State of New York,
without regard to such State’s conflict of
law rules. Any legal action, suit or pro-
ceeding arising out of or relating to this
Agreement or the breach thereof will be
instituted in a court of competent jurisdic-
tion in New York County in the State of
New York and each party hereby consents
and submits to the personal jurisdiction of
such court, waives any objection to venue
in such court and consents to the service
of process by registered or certified mail,
return receipt requested, at the last known
address of such party. Should you have
any questions concerning this Agreement
or if you desire to contact Wiley for any
reason, please write to: John Wiley &
Sons, Inc., Customer Sales and Service,
10475 Crosspoint Blvd, Indianapolis,

IN 46256.

Try Safari Books Online FREE

for 15 days + 15% off
for up to 12 Months*

Read this book for free online—along with thousands of others—

4, '
i &
E =

<
S

N
X
3
3
8
N
X
S
3
§l
hn
S

Safari

Books Online

with this 15-day trial offer.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

® Access to hundreds of expert-led instructional
videos on today's hottest topics.

¢ Sample code to help accelerate a wide variety
of software projects

® Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

* Mobile access using any device with a browser
® Rough Cuts pre-published manuscripts

START YOUR FREE TRIAL TODAY!

Visit www.safaribooksonline.com/wrox24 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for first 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

An Imprint of $)WILEY
Now you know.

http://www.safaribooksonline.com

	Php and Mysql® - 24-Hour Trainer
	Credits
	About the Author
	Acknowledgments
	Contents
	Introduction
	Section I: Getting Started with Php
	Lesson 1: Setting up your Workspace
	Installing XAMPP
	Installing XAMPP on a Windows PC
	Installing XAMPP on Mac OS X
	Troubleshooting Your XAMPP Installation
	Confi guring XAMPP

	Installing Your Editor
	Confi guring Your Workspace
	Preparing a Place to Put Your Files
	Using Eclipse for the First Time

	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 2: Adding Php to a web Page
	Writing Your First PHP Page
	Introducing the Case Study
	Using echo and include
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 3: Learning Php Syntax
	Picking a Formatting Style
	Learning PHP Syntax
	Entering Comments
	Using Best Practices
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 4: Working with Variables
	Introduction to Variables
	Working with Text
	Working with the Concatenation Operator
	Working with String Functions

	Understanding Diff erent Types of Numbers
	Working with Numbers
	Changing between Text and Numbers
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 5: Debugging Code
	Troubleshooting Techniques
	Display Errors while Developing
	Common Issues
	Seeing What’s What

	Using Xdebug
	Configuring Xdebug
	Using Xdebug

	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 6: Working with Complex Data
	Working with Arrays
	Working with Logical Variables
	Working with Constants
	Working with Dates
	Time Zone Functions
	Date/Time Functions

	Working with Built-in Functions
	$_GET
	$_POST
	Cookies
	filter_var()

	Working with Objects
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Section II: Working with Php Controls, Functions, and Forms
	Lesson 7: Making Decisions
	If/Else
	Basic If Statements
	Comparison Operators for If/Else Statements
	If/Else with Ternary Operator

	Logical Operators
	Switch Statements
	Alternative Syntax
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 8: Repeating Program Steps
	While Loops
	Do/While Loops
	For Loops
	Foreach Loops
	Continue/Break
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 9: Learning About Scope
	Learning about Local Variables
	Learning about Global Variables
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 10: Reusing Code with Functions
	Defining Functions
	Passing Parameters
	Getting Values from Functions
	Using Functions
	Including Other Files
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 11: Creating Forms
	Setting Up Forms
	Processing Forms
	Redirecting with Headers
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Section III: Objects and Classes
	Lesson 12: Introducing Object-Oriented Programming
	Understanding the Reasons for Using OOP
	Introducing OOP Concepts
	Objects and Classes
	Extending Classes

	Learning Variations in Diff erent PHP Releases
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 13: Defining Classes
	Defining Class Variables (Properties)
	Defining Class Functions (Methods)
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 14: Using Classes
	Instantiating the Class
	Using Objects
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 15: Using Advanced Techniques
	Initializing the Class
	Understanding Scope
	Properties
	Methods
	Classes

	Understanding Inheritance
	Understanding Static Methods and Properties
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Section IV: Preventing Problems
	Lesson 16: Handling Errors
	Testing for Errors
	Using Try/Catch
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 17: Writing Secure Code
	Understanding Common Threats
	Using Proper Coding Techniques
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Section V: Using a Database
	Lesson 18: Introducing Databases
	What Is a Database?
	Gathering Information to Defi ne Your Database
	Designing Your Tables
	Setting up Relationships between Tables
	Instituting the Business Rules
	Normalizing the Tables
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 19: Introducing Mysql
	Using phpMyAdmin
	Creating Databases
	Defining Tables and Columns
	Entering Data
	Backing Up and Restoring

	Learning the Syntax
	Literal Values
	Identifiers
	Comments

	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 20: Creating and Connecting to the Database
	Connecting with mysql/mysqli
	Connecting with PDO
	Creating the Database
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 21: Creating Tables
	Understanding Data Types
	Strings
	Numeric
	Date and Time
	Other Data Types

	Using AUTO_INCREMENT
	Understanding Defaults
	Creating Tables in phpMyAdmin
	Using .sql Script Files
	Adding MySQL Tables to PHP
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 22: Entering Data
	Understanding the INSERT Command
	Executing MySQL Commands in PHP
	Processing Data Entry Forms in PHP
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 23: Selecting Data
	Using the SELECT Command
	Using WHERE
	Selecting Data in PHP
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 24: Using Multiple Tables
	Using the JOIN Clause
	Using Subqueries
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 25: Changing Data
	Using the UPDATE Command
	Updating Data in PHP
	Using Prepared Statements
	MYSQLI
	PHP Data Objects (PDO)

	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 26: Deleting Data
	Using the DELETE Command
	Deleting Data in PHP
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 27: Preventing Database Security Issues
	Understanding Security Issues
	Using Best Practices
	Filtering Data
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Section VI: Putting it all Together
	Lesson 28: Creating User Logins
	Understanding Access Control
	Protecting Passwords
	Using Cookies and Sessions
	Putting Logins to Work
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 29: Turn the Case Study Into a Content Management System
	Designing and Creating the Table
	Creating the Class
	Properties
	Methods

	Creating the Maintenance Pages
	Creating the Display Page
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 30: Creating a Dynamic Menu
	Setting up the Menu Table
	Adding the Menu to the Website
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 31: Next Steps

	Appendix : What’S on the Dvd?
	Index
	Advertisement

O -Hour e

