2022-01-16

PHP

Programming

A Step-by-Step Guide to Learn, in an
Easy Way, the Fundamentals of PHP
Programming Language

3ND Edition

Daniel Robinson

PHP Programming

A Step-by-Step Guide to Learn, in an
Easy Way, the Fundamentals of PHP Programming
L.anguage

3nd Fdition

By
Daniel Robinson

Content:

Part 1. Language syntax and operators
EXDIESSIONS . ot et et cee ees et it eer et et cee eee e eee eee een eee eee eee ae eee eee s see eee se ane eee eee ses see eee se ane oo

Part 2. Functions for working with data
Mathematical fUNCHONS v ot it ces ees e et et et e eee eee cee eee een e et e eee eee eee eee eee eee een e ae aas
Rounding fUNCHONS voe s vt ves es vt e ee et eee ee et ees te et ees ae een vee e een eee e ee aee e eee o
Random NUIMDETIS ve. cet cee et eee ees et ee ees et et eee een et eee eee et ee vee een ae vee eee e bae vee een ae e

Translation into various NUMDET SYSLEITS cee cev ver cur ver cer vee cee vee een vee een oo
Minimum and MAaXiMUITLee cee vee cee ee eee ee eee cve eee cue eee sen vee sen see sen see sen vee 2es see 2ee sue 2ee one

POWET fUNCHONS .« ... cen cer cee e eee eee cee en eee eee e eee eee ee ven eee oee ven aee aee e ven eee oee ven aee vee vun vee s
TTIGONOIMBITY . cee tev vev ver ven vt v cee eee eee tee eee eee vee vee sen sue ue sos see see see see see see vee see see sun ses ses oes

Advanced precision functions BCMath coe e cet es e vt e e vt e e e
GMP fUNCHONS « ..ttt ee cee vee it et eet e eee et et et ee tee ee vt en een eee vee ae se een ees bee ve sae een een ees

GMP functions. GMP function VAlUES cee cee e ver eee e ee eee vee e aee eee e ven oas

https://translate.googleusercontent.com/translate_f#_Выражения
https://translate.googleusercontent.com/translate_f#Функцииокругления
https://translate.googleusercontent.com/translate_f#Функцииокругления
https://translate.googleusercontent.com/translate_f#Случайныечисла
https://translate.googleusercontent.com/translate_f#Переводвразличныесистемысчисления
https://translate.googleusercontent.com/translate_f#Минимумимаксимум
https://translate.googleusercontent.com/translate_f#Степенныефункции
https://translate.googleusercontent.com/translate_f#Тригонометрия
https://translate.googleusercontent.com/translate_f#ФункцииповышеннойточностиBCMath
https://translate.googleusercontent.com/translate_f#ФункцииGMP
https://translate.googleusercontent.com/translate_f#ФункцииGMPЗначенияфункцииGMP

GMP functions. ATItRIMEIC co v et ce e et e et e eee et et eee e e e e e e e e e e e
GMP functions. MathematiCs cee ver er et cet ee eee cen et vee eee een aee eee een ae vee eee e ave aee oo e
GMP functions. Binary OPerations cee vee vee cee ven vee cer een vee ce een vee cen eee vee een es

WOTKING WIth GITAYS et ver cet ee cet ee ee et ee et eee vt eee et eee et eee een vee en vee een vee 2en vae een ove 2ee ve aee ee aes

ATITAY CTALION .« ... ee vee vee e vee eee e et tee oo e eee ees een aee cee ses un eee oee sen see tee see sun vee eee sen see vee oen
SOTTING AITAYS « cov cox ve vee eer con eee eer cen ne eee eee en vee eee sen mue eee eee san see eee sen mue eee eee een see eee sen
ATTAY CUTSOT . vev vee vee vee ver vee see sen e ee vee tee oee vee oee ses ses sus sue see vee see see see see ses sen un see see vee oee

Keys and ValUes co. cer cot ter cet es ve ee cet vee eet et een vt eee et eee e eee e tee e vee eee bee eee eee ees eee

Complex replacement in @ SITNE vee e vee ee vee cee eee cee eee et eee cae eee sn vee sen vee sen vee een oee
Working with multiple aItays ce. coe cet cer cet ees et eee et vee et vee et ee e e e e e

Getting and removing part Of an array oo cee cev cer cee eet eer e vt e e e e e e
Insert / remove elemeNLS coe vot ces cer vee e et een e e e et e e e ee e e e e e e
Variables and ATTAYS e. cev cer ee vt ees ee eet eee et een ees vt een vee vt oo tee st eee bee e eee ae e ae e

String functions .

FUHCUODS for workmg w1th smgle characters

Functions for cutting off SpPaces e vt ce es ot e s et e s et e e e e e e e e e
SeATCH AN The tOXL .« oo. cen cen e eee oot eee eee eee eee eee cee eee e ven ven ven aee aee aee eee mae mee mee vee vee e e ven ven ae

Formatting and outputting StriN@S vee cet ver cet vee een vee een ee een ee oo ee eee ee eee e vee e e

Composing / Splitting HINES cec vt ves e vee e e vt ees et eee et eee e eee e vee e e e e
Working with BIOCKS Of tEXT oo ee cot e et et e it et es vt et e e eet e e e e e e e e e e

Functions for converting characters co vee s vt ves vee vt een ee et een e e

Case change functions .

Setting the locale (local settlngs)

Conversion of eNCOINGS vee e cee vt cet et vee ee et et eet e vee e et et een e ee e e een e
Functions of format transformations ce. cee cor vee cer cee en eee vee en eee eee e een aee oae
URL fUNCHOMS © vv. ver cet cee e eee eee e eee eee ee vvn aee see ven aee aee e vee aae ee ven 2ee see vun aee see e vve oee oee ven

Working with Binary datao ceo s cee ve ven vt ve es vt e e e e e e ee ee e ee e e
String sums and hash functions cc. s vt ce s et e e e e s e e e e e e

Symbolic links. Hard links
Date and time functions .

Logical functions for determlmng the type of avariable oo vev cee e et s e

Variable functions .
Functions for workmg w1th functlons

Calendar fUNCHIONS v cee cee cee ee eee vee en eee eee e aee eee ee ven aee see ven aee wee vue ven eee ee ven aee vee ven aee eee vun

Part 3. Files and networks

WOrKing With fIles oo et cot e e s e et eet e es te vt et et e e e et et ee aee ae e e ee tee ee ae e een e

OpENING A fIle oe st ces et et ees et ee es et e ee et ee ee et eee ae eee eee ae een eee ae ees aee e een bee e aen

ClLoSING the fIleie cet et e e es et e ee et e ee et eee ee et e e eee eee ae een tee e ee aee e eee aae e

Reading and WIILINE ce. s cot es cet vee cet vee eet vee een ee een ve ee e eee et eee et eee e aee e bee e eee

The position of the current poSition POINLET vev ver cee vet ver e een vee e een vee e een vee e
Functions for determining file types e cov ces e et ve es et e e e e

Defining file parameters .
Functions for working w1th fﬂe names .

Functions for manipulating whole files cv oo es e vt e
Other fUNCHIONS e cer cee cee e eee eee cee eee eee vee ven aee eee vun aee eee e ven eee oee ven aee vee o vee aee e ven aas

Functions for working with catalo@s ce. e ce et cet es et s e e e e e e e e e e e e e

https://translate.googleusercontent.com/translate_f#ФункцииGMPАрифметика
https://translate.googleusercontent.com/translate_f#ФункцииGMPМатематика
https://translate.googleusercontent.com/translate_f#ФункцииGMPБинарныеоперации
https://translate.googleusercontent.com/translate_f#Созданиемассива
https://translate.googleusercontent.com/translate_f#Созданиемассива
https://translate.googleusercontent.com/translate_f#Сортировкамассивов
https://translate.googleusercontent.com/translate_f#Курсормассива
https://translate.googleusercontent.com/translate_f#Ключиизначения
https://translate.googleusercontent.com/translate_f#Комплекснаязаменавстроке
https://translate.googleusercontent.com/translate_f#Работаснесколькимимассивами
https://translate.googleusercontent.com/translate_f#Получениеиудалениечастимассива
https://translate.googleusercontent.com/translate_f#Вставкаудалениеэлементов
https://translate.googleusercontent.com/translate_f#Переменныеимассивы
https://translate.googleusercontent.com/translate_f#Функциидляработысодиночнымисимволам
https://translate.googleusercontent.com/translate_f#Функциидляработысодиночнымисимволам
https://translate.googleusercontent.com/translate_f#Функцииотрезанияпробелов
https://translate.googleusercontent.com/translate_f#Поисквтексте
https://translate.googleusercontent.com/translate_f#Функциисравнения
https://translate.googleusercontent.com/translate_f#Форматированиеивыводстрок
https://translate.googleusercontent.com/translate_f#Составлениеразбиениестрок
https://translate.googleusercontent.com/translate_f#Работасблокамитекста
https://translate.googleusercontent.com/translate_f#Функциидляпреобразованиясимволов
https://translate.googleusercontent.com/translate_f#Функцииизменениярегистра
https://translate.googleusercontent.com/translate_f#Установкалокалилокальныхнастроек
https://translate.googleusercontent.com/translate_f#Преобразованиекодировок
https://translate.googleusercontent.com/translate_f#Функцииформатныхпреобразований
https://translate.googleusercontent.com/translate_f#ФункцииURL
https://translate.googleusercontent.com/translate_f#Работасбинарнымиданными
https://translate.googleusercontent.com/translate_f#Строковыесуммыихешфункции
https://translate.googleusercontent.com/translate_f#СимволическиессылкиЖесткиессылки
https://translate.googleusercontent.com/translate_f#Функциидатыивремени
https://translate.googleusercontent.com/translate_f#Логическиефункцииопределениятипапере
https://translate.googleusercontent.com/translate_f#Функциипеременных
https://translate.googleusercontent.com/translate_f#Функциидляработысфункциями
https://translate.googleusercontent.com/translate_f#Календарныефункции
https://translate.googleusercontent.com/translate_f#Открытиефайла
https://translate.googleusercontent.com/translate_f#Открытиефайла
https://translate.googleusercontent.com/translate_f#Закрытиефайла
https://translate.googleusercontent.com/translate_f#Чтениеизапись
https://translate.googleusercontent.com/translate_f#Положениеуказателятекущейпозиции
https://translate.googleusercontent.com/translate_f#Функциидляопределениятиповфайлов
https://translate.googleusercontent.com/translate_f#Определениепараметровфайла
https://translate.googleusercontent.com/translate_f#Функциидляработысименамифайлов
https://translate.googleusercontent.com/translate_f#Функцииманипулированияцелымифайлами
https://translate.googleusercontent.com/translate_f#Другиефункции
https://translate.googleusercontent.com/translate_f#Манипулированиекаталогами

Manipulating dir€CLOTIES vev cot ter cet vee een vee eee vee een vee oo ve oo ve eee ee aes oae vee ou
Working With TECOTAS cee vt ves et tes vt es et tes vt tes et tee et vee eee ee oo ee oo ee eee ae vee e aee e

F
o

Working with an FTP SEIVEL cec cee vee e ces cee ees it eee et eee et vee ee vee en vee een eve aen oae 2ee ove aan

Working With files oo oot oo s et e s et e e et e e et e e et e e een eee e ee eae e eee ae e

SINMP fUNCHIONS & et ver cee vee cee vee cee eee eee eee eee eee eee vee eee vee oee vee oee vee oee vee oee aee oee aee ae vee e aee e aee e ae

Vmailmgr funCHONS cec vt ces et ces et ees vt ees et ees et eee et eee oot vee een vee een eae eee ve eee ae eee e aee e vee aan

INEItWOTK FUNCHIONS .« ... ver cee cee e eee eee e eee eee ee ven eee eee vun vee eee e ven aee see ven 2ee see sun vee see oee ven see see vun vee oas

Part 4. Control functions

Tracking and processing and €ITOT ce. vee ver vee ven vee eee vee eee ne eee ve eee sun eee sun vee sen vee e
INITOAUCTION .« o.. et e e e en een eee eee eee eee eee eee eee oee e e vue ven ven ven ven aee aee aee mee see see mee ee v vue ven

Error handling functions cc cee vt ces et e et ces et ees e eee e e e e et e e e e o

Installing a custom error handler o oo
Session management

Why sessions are needed. Sessions work mechanism cee vee e ves e ves e een o
Session initialization and variable registratione. vev vet vee eue .o
SeSSI0N GrOUD MAITIE vee cee et e ee eee vee eee eee eee see sen s un see see eee see oee see ses see ses sun see see vee oee

SESSION ID . ot oot i e e et et oot et e e e ee et eee een e e e aee eee eee een een e ee aee eee e
Other fUNCHIONS cee cvr cee eer eee eee eee eee eee eee eee vee see vee see vee see vee see vee eee vee oee vee ee vee ae aee e aee

OVErVIEW Of NANAIETS oot e cee e et e et e eee e eee e eee e eee e eee ven eee ven eee ven eee ven eee ven eee aen

About sessions and COOKIES e coe e e eee eee eee eee eee eee vee vee vee e aae

Working With WWW | .. oo e e e e it e it e vt ees et ees et eee ee eee se vee eee aee ses eee ee ave eee ve aee sue vee u

Setting reSPONSe NEAUETS vee vt ter vt ver vt eer vt ees et eee et vee een vee een aee ee ae ee ae e

Getting request REeaders coe v cet er ve ee v ee e e e e e e e e eee e ee e
RA DOt Of COOKIES TR cee e et e et e et e et eee et e eee ee eee e eee e aee e aee e aee e eee e aas

SST and virtual () fUNCHION ven cee e cee e et e eee e eee e eee e eee e eee o eee e eee e eee e eee van s

OULDUL COMTOL vee vet vee eet ee ee et eee vt oo et eee cue eee e eee en vee sen vee ses see sen see 2ee sve 2ee ve 2ee sue eee n
a0 0« L0 a5 o) P

Output control fUNCHIONS vt cet ces vt cet ees vt eet eee et een vee e een vee et eee e en eee o
PHP script execution CONLIOlo. co e ees ce et eee e et ee eee e e eee een e e e

Script control fUNCHONS cec s ces e e e e e ees et eee et eee et eee e vee e aee e
CONNECHON STATUS . ..t cer cer ven e ee cee eee eee een ven vue vee see see aee sen sen sue see ses see ave sen see sue see see see oo

Additional fUNCLIONS vvn cee cee cee vee eee cee en eee eee ven eee eee e ven aee ee ven aee see ven vee aee v ven one
POSEAl fUNCLIONS « ..o oot cee e e e e e eee eee eee eee eee eee eee see oee ee e e ven ven aen aee aee aee eee mee vee oee ee e e ven aan

Functions for 1aunching PrO@rams ce cee e cet ces ee et eee ee et eee te een vee et een vee et ee aee e ee eae e e

Dynamic loading funCtions oo cee cet ces e et e e et e e et e e et e e e e e e o
Informational fUNCLIONS co. cer cee cee e eee eee cee een eee vee ven aee eee e aee eee ee ven aee vee ven aee eae e ven aee oan

Part 5. Interaction with databases

https://translate.googleusercontent.com/translate_f#Манипулированиекаталогами
https://translate.googleusercontent.com/translate_f#Работасзаписями
https://translate.googleusercontent.com/translate_f#РаботасFTPсервером
https://translate.googleusercontent.com/translate_f#РаботасFTPсервером
https://translate.googleusercontent.com/translate_f#Работафайлами
https://translate.googleusercontent.com/translate_f#ФункцииIMAP
https://translate.googleusercontent.com/translate_f#ФункцииSNMP
https://translate.googleusercontent.com/translate_f#ФункцииVmailmgr
https://translate.googleusercontent.com/translate_f#Сетевыефункции
https://translate.googleusercontent.com/translate_f#Отслеживаниеиобработкаошибок
https://translate.googleusercontent.com/translate_f#Отслеживаниеиобработкаошибок
https://translate.googleusercontent.com/translate_f#Функцииобработкиошибок
https://translate.googleusercontent.com/translate_f#Установкапользовательскогообработчика
https://translate.googleusercontent.com/translate_f#ЗачемнужнысессииМеханизмработысесс
https://translate.googleusercontent.com/translate_f#ЗачемнужнысессииМеханизмработысесс
https://translate.googleusercontent.com/translate_f#Инициализациясессииирегистрацияперем
https://translate.googleusercontent.com/translate_f#Имягруппысессии
https://translate.googleusercontent.com/translate_f#Идентификаторсессии
https://translate.googleusercontent.com/translate_f#Другиефункциисессия
https://translate.googleusercontent.com/translate_f#Обзоробработчиков
https://translate.googleusercontent.com/translate_f#ПросессиииCookies
https://translate.googleusercontent.com/translate_f#Установказаголовковответа
https://translate.googleusercontent.com/translate_f#Установказаголовковответа
https://translate.googleusercontent.com/translate_f#Получениезаголовковзапроса
https://translate.googleusercontent.com/translate_f#РаботасCookies
https://translate.googleusercontent.com/translate_f#SSIифункцияvirtual
https://translate.googleusercontent.com/translate_f#Введение
https://translate.googleusercontent.com/translate_f#Введение
https://translate.googleusercontent.com/translate_f#Функцииуправлениявыводом
https://translate.googleusercontent.com/translate_f#Функцииуправлениясценарием
https://translate.googleusercontent.com/translate_f#Функцииуправлениясценарием
https://translate.googleusercontent.com/translate_f#Статусподключений
https://translate.googleusercontent.com/translate_f#Дополнительныефункции
https://translate.googleusercontent.com/translate_f#Почтовыефункции
https://translate.googleusercontent.com/translate_f#Функциизапускапрограмм
https://translate.googleusercontent.com/translate_f#Функциидинамическойзагрузки
https://translate.googleusercontent.com/translate_f#Информационныефункции

MYSQL dat@base cee v tes vt tes vt ees et ees et tee et eee eee eee ee ee eee ae eee e tee e tee ses tee ses bee ees eee een eee

Working with databases e vee vt ves vt es vt es vt es et ee e vee e e e ee e e eee e eee e aee e
Processing QUETY TESUILS ceeee vt vot ven eee vee ee et et een vee ee et et een eee vee ve e e

Part 6. Graphics

Working with images and the GD library.

Image parameters .

Manipulating 1rnag_s

Working with color in RGB format

Graphic primitives . e eee e

Working with fixed fonts .

Working with TrueType and PostScrrot TVDe 1 fonts

PDF AOCUITIOIIES . v.. cer et eee e eee e eee e eee e eee e aee e eee e eee ven eee ven eee vun aee vun aee von eee von eee vun oee vun eee ven

INETOAUCTION .« cvv cee cee e eee eee ee eee eee ee ven eee see vun vee eee e ven aee see vun aee see snn vee see ee ven see mee vun vee oes

Opening @ AOCUIMIENL v vee vee ee vee cre eee vt eee et eee et eee en vee een vee een vee sen bee sen see 2ee ove 2ee ve oes

WOTKING WITR EEXE . vev ve ee ves e ees it ees vt eee et eee et vee een vee een vee een eee oo ove aee sue vee sun vee sen vee oas

Setting the scale and cOOrdinate SYSIEIM cov ver vt ver cn vee ven vee ven vee een aee e
Draw and fill Shapes co ces cot es et s e s e e e e e e ee e eee e e e e e
Placement Of fIGUIES vee et cet e ee et e te et e te et e et et eee et eee bee e een bee e ee aee e s

DOoCUMENE SEYIE ot et et es et ee ee et ee et e et eee e eee e eee e eee e eee e vee eee aee eee bee aes aee an

Part 7. Tips on the topic

Ban ke sh ation by the customer, in PHP th oo s v s v s vt s et e vt ee vt e e e e e

Creating a poll in PHP .
Sending emails using PHP

General questions, encodmg issues, HTML submlssmn

File attachment . e eee een e
How to insert a chture 1nto a letter

PHP to Excel: Working with COM ODJECLS c.. vee vet vee ve ee ee ee eee e eee et ees e eee e aee e
INITOAUCTION . oot vt vee vet ee ee et ees et eee et eee et eee en eee en eee ees vee ees vee 2o ove 2ee ue vee sun vee sen vee sen ves

Opening, recording, closing a dOCUMENL vee vee ee vee ee ves ee ees e eee e eee e eee oa
Cell format: ALIGNMENLT cee cet ces cee et eee ee eet eee cte eee vee cve een vee e een vee eae een eee e
Cell fOrmMAL: FONL . oot e cee e eee e eee e eee e eee e eee e eee ven eee vun eee van eee vun eee ven eee vun eee ven eee aen

WOrking With STEIES e cee vt tes vt ees vt ees et eee et eee et vee een vee een vee een eee ees eve eee ve eee ee eee an

Working with COIUIMNS tet cot es ce ee ee et ce et ee et eee et eee et eee et vee ean vee een vee een eee aen oee

Add / Delete / Rename Sheets cev vee cen vee eee e e o

Drawing tables co ot co ee ces e ees it e e e et eee et e e eee eee tee eee e te ee aee ae eee e eee a

Copy / paste of cells

https://translate.googleusercontent.com/translate_f#Работасбазамиданных
https://translate.googleusercontent.com/translate_f#Работасбазамиданных
https://translate.googleusercontent.com/translate_f#Обработкарезультатовзапроса
https://translate.googleusercontent.com/translate_f#Параметрыизображения
https://translate.googleusercontent.com/translate_f#Параметрыизображения
https://translate.googleusercontent.com/translate_f#Манипулированиеизображениями
https://translate.googleusercontent.com/translate_f#РаботасцветомвформатеRGB
https://translate.googleusercontent.com/translate_f#Графическиепримитивы
https://translate.googleusercontent.com/translate_f#Работасфиксированнымишрифтами
https://translate.googleusercontent.com/translate_f#РаботасошрифтамиTrueTypeиPostScript
https://translate.googleusercontent.com/translate_f#_PDF-документы___Введение
https://translate.googleusercontent.com/translate_f#PDFдокументыВведение
https://translate.googleusercontent.com/translate_f#Открытиедокумента
https://translate.googleusercontent.com/translate_f#РаботастекстомPDF
https://translate.googleusercontent.com/translate_f#УстановкамасштабаисистемыкоординатPDF
https://translate.googleusercontent.com/translate_f#Черчениеизаполнениефигур
https://translate.googleusercontent.com/translate_f#Размещениерисунков
https://translate.googleusercontent.com/translate_f#Стильдокумента
https://translate.googleusercontent.com/translate_f#ЗапреткэшированияпосредствомPHP
https://translate.googleusercontent.com/translate_f#СозданиеголосованиянаPHP
https://translate.googleusercontent.com/translate_f#Общиевопросыпроблемыскодировкойот
https://translate.googleusercontent.com/translate_f#Общиевопросыпроблемыскодировкойот
https://translate.googleusercontent.com/translate_f#Прикреплениефайла
https://translate.googleusercontent.com/translate_f#Каквставитьвписьмокартинку
https://translate.googleusercontent.com/translate_f#_Из_PHP_в_Excel__работа_с_COM-объект
https://translate.googleusercontent.com/translate_f#ИзPHPвExcelВведение
https://translate.googleusercontent.com/translate_f#Открытиезаписьзакрытиедокумента
https://translate.googleusercontent.com/translate_f#ФорматячеекВыравнивание
https://translate.googleusercontent.com/translate_f#ФорматячеекШрифт
https://translate.googleusercontent.com/translate_f#Работасостроками
https://translate.googleusercontent.com/translate_f#Работасколонками
https://translate.googleusercontent.com/translate_f#ДобавлениеУдалениеПереименованиел
https://translate.googleusercontent.com/translate_f#Рисованиетаблиц
https://translate.googleusercontent.com/translate_f#Копированиевставкаячеек

Part 1. Language syntax and operators

Expressions
if
Allows you to organize the execution of code snippets conditionally.

Syntax:
if (expression) statement

Can be nested indefinitely in other IFs.

if ($a> $ b)
print "$ a is greater than $ b";
if ($ a> $ b) {echo "$ a is greater than $ b; $b = $ a;}

else
Expands the IF capabilities in terms of handling variants of an expression when it is FALSE.

The ELSE expression is executed only if the IF is FALSE.
if($a>$%$b){

echo "a is greater than b ";
} else {

echo "a is less than b";

}

elseif
Is a combination of IF and ELSE. Allows the expression to be executed if the IF value is FALSE, but unlike
ELSE it is executed if the ELSEIF expression is TRUE.

if ($a>$Db){

echo "a is greater than b";
} elseif ($a==$Db) {

echo "a is equal to b";
} else {

echo "a is less than b";

}

if _endif
One of the possible options for grouping statements with an IF statement.

Convenient for embedding large blocks of HTML code inside an IF statement.

if ($a==1):
echo "ais 1";
elseif ($ a == 2):
echo "ais 2";
else:
echo "not equal to 1 and 2";
endif;

<? php if ($ a == 5):?> A = 5 <? php endif;?>
-Block HTML code A = 5 will be visible,
if the condition $ a == 5 is true

while

The simplest type of loop in PHP. Forces PHP to execute nested statements as long as the condition is
TRUE. If the condition is FALSE from the very beginning, then the loop will not be executed once.
Syntax: WHILE (condition) expression

You can group multiple statements within curly braces, or use an alternative syntax:
WHILE (condition) expression ... ENDWHILE;

$a=1;
while ($ a <=5) {
echo $a ++; }
$a=1;
while ($ a <=5):
echo $ a;
$a++;
endwhile;
- These two examples print numbers from 1 to 5.

do_while
A loop similar to WHILE, but the value of the logical expression is checked not before, but after the end of
the iteration. The main difference is that the loop will be executed at least once.

$a=1;
do {
echo $ a;

} while ($ a> 1);
You can stop using the statement block in the middle by embedding the BREAK statement in the
DO..WHILE (0) loop :
do {
if ($a==5) {
ech o "A equals 5"
break;
}
$a*=$b;
if ($ a <$ minimum) {
break;
}
echo"Ais$a";
} while (0);

for
The most powerful loop in PHP.

Syntax:
FOR (conditionl ; condition2 ; condition3) of expression

conditionl - Unconditionally executed (evaluated) at the beginning of the loop
condition2 - Checked at the beginning of each iteration. If it is TRUE, then the loop continues and the
nested statements are executed. If it is FALSE, then the loop ends.
condition3 - Executed (evaluated) at the end of each iteration.
Each of these conditions can be empty.
Example 1:
for($a=1;%$a<=5%$a++){
echo $ a;

}

Example 2:
for($a=1;%a++){
if ($ a>5) {
break;
}
echo $ a;
}
Example 3:
$a=1;
for (;;) {

if ($a>5) {
break;
}
print $ a;
$a++
}
Example 4:
for($a=1;$a<=5;print$a, $a++);
PHP supports an alternative syntax FOR:
FOR (convl; conv2; conv3;): operators; ...; ENDFOR;

break Break the
execution of the current loop.

Example :
$a=0;
while ($ a <5) {
if ($ arr [$ a] == "stop") {
break;
}
$a++;

}

continue
Goes to the beginning of the next cycle.

while (list ($ key, $ value) = each ($ arr)) {
if ($ key% 2) {
continue;

}
do_something_odd ($ value);

}

switch
Compares a variable or expression with different values and executes different pieces of code depending on
what the expression's value equals to.

switch ($ a) {
case O:
echo "A is 0";
break;
case 1:
echo "Ais 1";
break;
case 2:
echo "A is 2";
break;
default:
echo "A is not equal to 0, 1, 2";
}
default - matches all values that do not satisfy other CASEs. CASE - can be of any scalar type, i.e. integers
or floating point numbers and strings.

require
Replaces itself with the contents of the specified file.

Example:
require ("include.inc");

But you can't put it inside a loop and expect it to include the contents of another file multiple times during
each iteration. There is INCLUDE for this.

include
Inserts and executes the contents of the specified file.
$ files = array ("first.inc", "seco nd.inc", "third.inc");
for ($ a=0; $ a <count ($ files); $ a ++) {

include ($ files [$ a]);
}
Because INCLUDE () is a special operator, you must enclose it in curly braces when used inside a
conditional operator.
if ($a<5){

include ("file_1.in c");
} else {

include ("file_2.inc");

}

function
A function declaration.

Any valid PHP code can be inside a function, even a declaration of another function or class. Functions
must be declared before they can be referenced.
function foo ($ arg_1, $ arg_2, ..., $ arg_n) {
echo " Sample function .";
return $ retvalue;
}
Returning Results:
Results are returned via an optional return statement.
The returned result can be of any type, including lists and objects.
function my_sqrt ($ num) {
retu rn $ num * $ num;
}
echo my _ sqrt (4); // will print 16
Multiple results cannot be returned as a result, but you can implement this by returning a list:
function foo () {
return array (0, 1, 2);
}
list ($ zero, $ one, $ two) = foo ();
Arquments:
Information can be passed to a function through an argument list, which is a comma-separated list of
variables and / or constants.
Variable length argument lists are not supported, but the same can be achieved by passing arrays.

function takes_array ($ input) {
echo "$ input [0] + $ input [1] =", $ input [0] + $ input [1];
}
Pass by reference:
By default, function arguments are passed by value. To change the arguments in a function, they must be
passed by reference.
To do this, put an ampersand (&) in front of the argument name in the function declaration:
function foo (& $ bar) {
$ bar. = "and an extra string.";

}
$ str = "This is a string,";
foo ($ str);

echo $ str; // will output: "This is a string, and an extra string."
function foo ($ bar) {

$ bar. = "and an extra string.";
}
$ str = "This is a string,";
foo ($ str);
echo $ str; // will output: "This is a string,"
foo (& $ str);
echo $ str; // prints: "This is a string, and an extra string."
Default values: The default
value must be a constant, not a variable or a member of a class.
function day ($ type = " monday ") {
echo "Today is $ type .";
}
echo day (); // will output: Today is Monday.
echo day ("Tuesday"); // will output: Today is Tuesday.
The default arguments in the description must appear to the right of the other arguments.
function day ($ day_num, $ type =" Monday ") {
return " Today $ day_num is $ type.";
}

old_function
The OLD_FUNCTION statement allows you to define a function using PHP / FI12 syntax (except that you
must replace "function" with "old_function").

This property is for compatibility only and should only be used by PHP / FI2 -> PHP3 converters. Functions
described in this way cannot be called from the PHP service code. You can get around this by introducing a
special function in PHP3 terms that will call OLD_FUNCTION.

class
A set of variables and functions that operate on these variables.

<? php
class Cart {
var $ items; // The number of items in the shopping cart
// Add $ num items of type $ artnr to cart
function add_item ($ artnr, $ num) {
$ this-> items [$ artnr] + = $ num;
}
// Remove $ num $ artnr items from the cart
function remove_item ($ artnr, $ num) {
if ($ this-> items [$ artnr]> $ num) {
$ this-> items [$ artnr] - = $ num;
return true;
} else {
return false;
}
}
}
>
Classes are types, that is, stubs for real variables. You must create variables of the desired type using the
new operator:
$ cart = new Cart;
$ cart-> add_item ("10", 1);

Classes can be extensions of other classes. An extended class has all the variables and functions of the base
class and what you define when extending the class. This is done using the extends keyword:
class Named _ Cart extends Cart {
var $ owner;
function set_owner ($ name) {
$ t his -> owner = $ name ;

}

}

This defines the Named_Cart class, which has all the variables and functions of the Cart class plus an
additional $ owner variable and an additional set_owner () function. You can create a named cart in the
usual way and set or get the owner of the cart. You can also use the normal cart functions in a named cart:
$ ncart = new Named_Cart; // Create cart

$ ncart-> set_owner ("kris"); // Specify the owner of the print

$ ncart-> owner; // Print the name of the cart owner

$ ncart-> add_item ("10", 1); // inherited from regular cart

Part 2. Functions for working with data

Math functions

Rounding functions
abs
Returns the modulus of a number.

Syntax:
mixed abs (mixed $ number) The

type of the $ number parameter can be float or int, and the return type is always the same as the type of this
parameter.

$x=abs(-4);/$x=4

$ x = abs (-7.45); // $ x = 7.45

round
Rounds a fraction to an integer.

Syntax:
double round (double $ val)

Rounds $ val to the nearest integer and returns the result.
$ foo = round (3.4); // $ foo == 3.0

$ foo = round (3.5); // $ foo == 4.0

$ foo = round (3.6); // $ foo == 4.0

$ x =round (5.3); / $x=5

$x =round (5.4); // $x=5

$ x =round (5.45); // $x =5

$ x =round (5.5); / $x=6

ceil
Completion of a fraction to the next integer.

Syntax:
int ceil (float $ number)

Returns the smallest integer, at least $ number . Of course, passing an integer to $ number is pointless.
$x =ceil (5.0);//$x=5
$x=ceil (5.1);/$x=6
$x=ceil (5.9);/$x=6

floor
Remove the fractional part of a number.

Syntax:
int floor (float $ number)

Returns the maximum integer not exceeding $ number .

$ x = floor (5.1); // $x=5
$ x = floor (5.9); / $x=5

Random numbers

srand
Initializes the random number generator.

Syntax:
void srand (int seed)

Initializes the random number generator to seed.
srand ((double) microtime () * 1000000);

$ random = rand ();

echo $ random ;

Here's what you get:

5645

getrandmax
Returns the largest possible random number.

Syntax:
int getrandmax ()

This function returns the maximum value that can be obtained using the random number generating function
rand ().
Usually it is 32767

rand
Generates a random number.

Syntax:
int rand ([int max [, int min]])

When called with the optional min and max parameters, this function generates a random number within
those parameters, inclusive.

If the min and max parameters are not present, a number between 0 and RAND_MAX is returned.

For this function to work correctly, before using it, you need to initialize the random number generator with
the srand () function.

mt_rand
The function returns an MT-random number, even enough even to be used in cryptography.

Syntax:
int mt_rand (int $ min = 0, int $ max = RAND_MAX)

If you want to generate numbers not from 0 to RAND_MAX (this constant specifies the maximum allowed
random number, and can be obtained by calling mt_getrandmax ()), set the appropriate interval in
parameters $ min and $ max . Don't forget to just run mt_srand () before the first call to this function .

mt_srand (time () + (double) microtime () * 1000000);
$ x = mt_rand (1,100); // $ x is a value from 1 to 100

mt_srand
Sets the MT random number generator to a new sequence.

Syntax:
void mt_srand (int seed)

The fact is that although the numbers generated by mt_rand () are fairly equally probable, they have one
drawback: the sequence of generated numbers will be the same if the script is called several times in a row.
The mt_srand () function solves this problem: it selects a new sequence based on the $ seed parameter , and
in an almost unpredictable way.

mt_srand (time () + (double) microtime () * 1000000);

for($i=0;$i<=10;$i++) {

$ x =mt _rand (1,10);

I
In this case, the sequence is set based on the script startup time (in seconds), so it is rather unpredictable.
For an even more reliable result, it is recommended to add more microseconds here (which was done), as
well as the identifier of the process that called the script.

mt_getrandmax
Returns the maximum MT random number.

Syntax:
int mt_getrandmax ()

Returns the maximum number that can be generated by the mt_rand () function - in other words, the
RAND_ MAX constant

$ max = mt_getrandmax ();

//'$ max = 2147483647

lcg_value
function generates a random fractional number.

Syntax:
double lcg_wvalue ()

This function returns a pseudo-random fractional number in the range O to 1.
Translation into various number systems

base_convert
Converting a number from one number system to another.

Syntax:
string base_convert (string $ number, int $ frombase, int $ tobase)

Converts $ number (specified as a base string in base $ frombase) to base $ tobase . The $ frombase and $
tobase parameters can only take values between 2 and 36, inclusive. In the string $ number, the numbers
stand for themselves, and the letter a matches 11, b -12, etc. to z , which stands for 36. For example, the
following commands will print 11111111 (8 ones), because this is nothing more than the binary
representation of the hexadecimal number FF :

$ x = base_convert ("FF", 16.2); / $x = 11111111
$ x = base_convert ("11111111", 2.16); // $ x = FF
$ x = base_convert ("200", 10, 16); // $ x = C8

bindec Converts
binary to decimal.

Syntax:
int bindec (string binary_string)

Converts the binary number specified in binary_string to a decimal number. The maximum number that can
still be converted is 2 147 483 647

$ x = bindec (11111111); // $ x = 255

$ x = bindec (10101010); // $ x = 170

$ x = bindec (2147483647); // $ x = 1111111111111111111111111111111

decbin Convert
decimal to binary.

Syntax:
string decbin (int $ number)

Returns a string representing the binary representation of the integer $ number . The maximum number that
can still be converted is 2147483647, which looks like 31 ones in binary.

There are similar functions for octal and hexadecimal systems. They are called the same, only instead of

"bin" are substituted respectively "oct" and "hex".
$ x = decbin (255); / $x = 11111111
$ x = decbin (2147483647); // $ x = 1111111111111111111111111111111

dechex
Performs decimal to hexadecimal conversion.

Syntax:
string dechex (int number)

Returns a string representing the hexadecimal representation of the integer number . The maximum number
that can still be converted is 2,147,483,647
$ x = dechex (2147483647); // $ x = 7 fffffff

decoct
Performs decimal to octal conversion.

Syntax:
string decoct (int number)

Returns a string representing the octal representation of the integer number . The maximum number that can
still be converted is 2,147,483,647
$ x = dechex (2147483647); // $ x = 17777777777

hexdec Convert a
hexadecimal number to decimal.

Syntax:
int hexdec (string hex_string)

Converts the hexadecimal number specified in hex_string to a decimal number. The maximum number that
can still be converted is 7fffffff
$ x = hexdec (7 fffffff); // $ x = 2147483647

octdec Convert
an octal number to decimal.

Syntax:
int octdec (string octal_string)

Converts the octal number specified in octal_string to a decimal number. The maximum number that can
still be converted is 17777777777
$ x = octdec (17777777777); /] $ x = 2147483647

deg2rad Converts
degrees to radians.

Syntax:
double deg2rad (double number)

Converts the degrees specified in the number parameter to radians.

rad2deg Converts
radians to degrees.

Syntax:
double rad2deg (double number)

Converts the radians specified in the number parameter to degrees.

number_format
Formatting a number.

Syntax:
number_format ($ number, $ decimals, $ dec_point =".", $ Thousands_sep =",");

This function formats a floating point number by dividing it into triads with the specified precision. It can be
called with two or four arguments, but not three! The $ decimals parameter specifies how many decimal
places the number should have in the output string. The $ dec_point parameter is the integer and fractional
separator, and the $ thousands_sep parameter is the triad separator in the number (if you specify an empty
string in its place, the triads are not separated from each other).

Minimum and maximum

min
This function returns the smallest of the numbers given in its arguments.

Syntax:
mixed min (mixed $ arg1 [int $ arg2, ..., int $ argn])

There are two ways to call this function: with one parameter or with several parameters. If only one
parameter (the first) is specified, then it must be an array and the minimum element of this array is returned.
Otherwise, the first (and other) arguments are treated as floating point numbers, they are compared, and the
smallest is returned. The return type is chosen as follows: if at least one of the numbers passed to the input
is specified in floating point format, then the result will be floating point, otherwise the result will be an
integer. You cannot lexographically compare strings with this function - only numbers.

$ x = min (5,3,4,6,5,6,8,9);

//$x=3
$ x [0] =4
$x[1]=1;
$x[2] =5;
$ x [3] = 2;

echo min ($ x); // will output 1

max
Get the largest argument.

Syntax:
mixed max (mixed $ argl [int $ arg2, ..., int $ argn]) This

function works like min () , only it looks for the maximum value.
$ x = max (5,3,4,6,5,6,8,9);

//$x=9

$ x [0] = 4;
$x[1]=1;
$x[2] =5;
$x[3]1=2;

echo max ($ x); // will print 5
Power functions

sqrt
Returns the square root of the argument.

Syntax:
float sqrt (float $ arg)

If the argument is negative, a warning is generated, but the program does not terminate!
$x=sqrt(9);/$x=3
echo s qrt (25); // will print 5

echo sqrt (-25); // prints -1. # IND

log
Returns the natural logarithm of the argument.

Syntax:
float log (float $ arg)

Prints a warning if the number is invalid, but does not terminate the program.
$ x = log (exp (2)); // exp (2) - e to the power of 2
//$x=2
$x=log(M_E);//$x=1
echo log (10); // will output 2.302585092994

log10
Returns the decimal logarithm of the argument.

Syntax:
float log10 (float $ arg)

Prints a warning if the number is invalid, but does not terminate the program.
echo log10 (100); // will output 2

exp
Returns e (2.718281828) to the power of $ arg .

Syntax :
float exp (float $ arg)
$x=exp (1);/$x=2.718281828459

pow
Exponentiation.

Syntax:
float pow (float $ base, float $ exp)

Returns $ base to the power of $ exp .
$x=pow (3,2); /$x=9
$x=pow ("3",2);//$x=9

Trigonometry

sin
Returns the sine of the argument.

Syntax:
float sin (float $ arg) The

argument is in radians.
$x=sin(M_PI_2);//$x=1

cos
Returns the cosine of the argument.

Syntax:

float cos (float $ arg)
$x=cos(0);/$x=0
$x=cos(M_PI); //$x=-1

tan

Returns the tangent of the argument, given in radians.

Syntax :
float tan (float $ arg)
$x=tan M_PI_4);//$x=1

acos
Returns the arc cosine of the argument.

Syntax:

float acos (float $ arg)
$x=acos (0);/$x=pi/2
$x=acos(1);/$x=0

asin
Returns the inverse sine.

Syntax:

float asin (float $ arg)

$ x =asin (0); /$x=0
$x=asin(1);/$x=pi/2

atan
Returns the arctangent of the argument.

Syntax:

flo at atan (float $ arg)
$x=atan (0); //$x=0
$x=atan (1); // $x =pi/ 4

atan2
Get the arctangent of two numbers.

Syntax:
float atan2 (float $ y, float $ x)

Returns the arctangent of $ y / $ x, but including the quarter that point ($ x, $ y) is in. This function returns
the result in radians belonging to the segment from -? before ?.

$x =atan2 (1,1); / $x=pi/4

$x=atan2 (-1,-1); / $x=-3*pi/4

pi
Returns pi - 3.14.

Syntax:
double pi ()

This function must be called with a pair of empty parentheses:
$x=pi()*2//%x=31.415926535898
Advanced Precision BCMath Functions

bcadd Adds
two arbitrary precision numbers.

Syntax:
string bcadd (string left_operand, string right_operand [, int scale]);

This function returns a string representation of the sum of the two parameters (left_operand +
right_operand) with the precision specified in the optional parameter scale.
The scale indicates the number of decimal places).

bccomp
Comparison of two arbitrary precision numbers.

Syntax :
int bccomp (string left_operand, string right_operand, [int scale]);

Compares the number (left_operand with right_operand) and returns a result of type integer (an integer).
The scale parameter is used to set the number of digits after the decimal point used in the comparison. If the
two parts are equal, O is returned. If the left part is greater than the right part, +1 is returned, and if the left
part is less than the right part, -1 is returned.

bcediv
The division operation for two arbitrary precision numbers.

Syntax :
string bediv (string left_operand, string right_operand [, intscale]);

Divides left_operand by right_operand and returns the result with the precision (decimal places) specified in
the scale parameter.

bcmod
Returns the remainder of an integer division.

Syntax:
string bcmod (left_operand, string modulus);

This function returns the remainder of the integer division of left_operand by modulus.

bcmul Multiplication
operation for two arbitrary precision numbers.

Syntax:
string bcmul (string left_operand, string right_operand [, int scale]);

Multiplies left_operand by right_operand, and outputs the result as a string with the precision specified in
the scale variable.

bcpow Raises
one arbitrary precision number to the power of another.

Syntax:
string bcpow (string X, string y, [int scale]);

Raising x to the power of y. The scale parameter can be used to set the number of digits after the dot.

bcscale
Sets the precision of the calculation.

Syntax:
string bcscale (int scale);

This function sets the default precision for all BCMath math functions that do not explicitly define
precision.

bcsqrt

Get the square root of an arbitrary precision number.

Syntax:
string besqrt (string operand [, int scale]);

Returns the square root of operand. The scale parameter sets the number of digits after the decimal point in
the result.

bcsub
Subtracts one arbitrary precision number from another.

Syntax:
string besub (string left_operand, right_operand [, int scale]);

Returns the difference of the two variables specified in the parameters of the function (left_operand -
right_operand) with the precision specified in the optional parameter scale.

GMP functions

Functions of this kind allow working with high precision integers of a certain format using the GNU MP
library.
This library is not included in the standard PHP package. You can download library codes and

documentation from http://www.swox.com/gmp/ .

The functions provided in this library can also work with regular integer arguments. In this case, they will
be automatically converted to GMP format. However, to improve performance, it is still recommended to
use GMP numbers.

GMP functions. GMP Function Values

gmp_init
Creates a GMP number.

Syntax:
resource gmp_init (mixed number)

The GMP number is generated from an integer or string argument.

The string can contain a number in decimal or hexadecimal format. If it is in hexadecimal format, the
number must be prefixed with 0x.

$ x = gmp_init (45);

$ y = gmp_init ("46");

$z=gmp _init ("Oxfa4b");

This function is optional (arguments are automatically converted to GMP format), but desirable
(performance is improved by using gmp_init ()).

gmp_intval
Convert GMP number to integer.

Syntax:
int gmp_intval (resource gmpnumber)

This function converts a GMP number to an integer if the received number does not exceed its maximum
size.

gm p_strval
Convert GMP number to string.

Syntax:

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.swox.com/gmp/

string gmp_strval (resource gmpnumber [, int base])

The function returns the gmpnumber number in string format specified in the optional base parameter.
Returns in decimal by default).

The base parameter can take values from 2 to 36.

$ x = gmp_init ("0xf1a5");

echo " In decimal :" .gmp_strval ($ x);

echo " In base-36:" .gmp_strval ($ x, 36);

gmp_abs
Calculates the modulus of a GMP number.

Syntax:
resource gmp_abs (resourse X)

Returns the absolute value of the number specified in the x parameter.

gmp_sign
Returns the sign of a number.

Syntax:
int gmp_sign (resource x)

gmp_sign () will return 1 if x is positive, and 0 if negative.

gmp_neg
Returns the negative value of a number.

Syntax :
recource gmp_neg (resource X)

Will return -x.
GMP functions. Arithmetic

gmp_add Adds
two numbers.

Syntax:
recource gmp_add (resource x, recource y)

The function will return a GMP number equal to the sum of the x and y arguments.

gm p_sub
Subtract two numbers.

Syntax:
recource gmp_sub (resource X, recource y)

The function will return a GMP number equal to the difference between the x and y arguments.

gmp_mul
Multiplication of two numbers.

Syntax:
recource gmp_mul (resource x, recource y)

The function will return a GMP number equal to the product of the x and y arguments.

gmp_div

Divide two numbers.

Syntax:
recource gmp_div (resource X, recource y [, int round])

The function will return a GMP number equal to the division of the x arguments by y. Depending on the
optional round parameter, the division result will be rounded as follows:

e GMP_ROUND_ZERO - numbers after the dot are discarded

« GMP_ROUND_PLUSINF - the division result is rounded up

« GMP_ROUND_MINUSINF - division result is rounded down

This function is synonymous with gmp_div_q ().

gmp_div_q
Divide two numbers.

Syntax:
recource gmp_div_q (resource X, recource y [, int round])

The function will return a GMP number equal to the division of the x arguments by y. Depending on the
optional round parameter, the division result will be rounded as follows:

« GMP_ROUND_ZERO - numbers after the dot are discarded

 GMP_ROUND_PLUSINF - the division result is rounded up

« GMP_ROUND_ MINUSINF - the division result is rounded down

This function has a synonym - gmp_div ().

gmp_div_r
Return the remainder of an integer division.

Syntax:
recource gmp_div_r (resource x, recource y [, int round])

The function returns the remainder of dividing x by y. The sign will inherit from the x argument.

gmp_div_q r Divide
with remainder.

Syntax:
array gmp_div_qgr (resource X, recource y [, int round])

This function combines the action of the two previous functions gmp_div_q () and gmp_div_r (). It returns
an array consisting of two elements: with the index [0] - the whole quotient, with the index [1] - the
remainder of the division.

$ x = gmp_init ("0xf3c3b5");

$ result = gmp_div_qr ($ x, "0xb1");

echo " Integer :" .gmp [strval ($ result [0]);

echo " Remaining :" .gmp [strval ($ result [1]);

gmp_mod
Returns the modulus of the remainder of the division.

Syntax:
resource gmp_mod (resource x, recource y)

This function is equivalent to gmp_div_r (), except that it returns an absolute value.

gmp_divexact

Performs residual division.

Syntax:
resource gmp_divexact (resource X, recource y)

This function uses the "fine" dividing algorithm. The result is valid only if x is integer divisible by y.

gmp_cmp Compares
two numbers.

Syntax:
int gmp_cmp (resource X, recource y)

The function will return a positive value if x> y; zero if x = y; negative value if x <y.

GMP functions. Maths

gmp_fact
Calculates factorial.

Syntax:
resource gmp_fact (resourse x)

Returns the factorial of the number given in the x parameter.

gmp_sqrt
Calculates the square root.

Syntax:
resource gmp_sqrt (resourse X)

Returns the square root of the number specified in the x parameter.

gmp_sqrtrm
Calculates the square root with remainder.

Syntax:
array gmp_sqrtrm (resourse X)

This function returns an array in which the element with index [0] is the square root of the argument, the
element with index [1] is the difference between the argument and element [0] squared.

gmp_perfect_square
Determines if a number is a perfect square.

Syntax:
bool gmp_perfect_square (resourse x)

gmp_perfect_square () will return true if x is the square of an integer. Otherwise it will return false.

gmp_pow
Exponentiation.

Syntax:
resource gmp_pow (resourse X, int y)

This function returns the exponent of x, provided that y is not negative.
echo gmp _ pow (2,3); // Prints 8
echo gmp _ pow (0,0); // Output 1

gmp_powm

Returns the remainder of a power division.

Syntax:
resource gmp_powm (resourse X, resource y, resource mod)

Returns the remainder of division (x to the power of y) by mod, in case y is positive.

gmp_prob_prime
Check for a "probably" prime number.

Syntax:
int gmp_prob_prime (resourse x [, int reps])

This function will return 0 if x is complex, i.e. which has more than two integer divisors. Will return 1 if x is
possibly prime. If it returns 2, then x is probably a prime number.

The reps argument determines the quality of the check. The higher the number, the more accurate the result.
It can take values from 5 to 10 (default).

This function uses the Miller-Rabin probabilistic test algorithm.

gmp_gcd
Finds the Greatest Common Divisor .

Syntax:
resource gmp_gcd (resourse X, resource y)

Always returns positive.

gmp_gcdext Find the
greatest common factor with factors.

Syntax:
array gmp_gcdext (resourse X, resource y) The gmp_gcdext ()

function returns an array with the values g, s, t such that x * s +y * t = g = gcd (X, y), where gcd is the
greatest total divider.

gmp_invert
Performs modulo inverse.

Syntax:
resource gmp_invert (resourse X, resource y)

The function returns the complement of x to a value divisible by y. If the result cannot be found, it returns
false.

gmp_legendre

Returns the Legrange number.

Syntax:

int gmp_legendre (resourse X, resource p)

The function returns the Legrange number. p must be even positive.
gmp_jacobi

Returns the Jacobi number.

Syntax:

int gmp_jacobi (resourse X, resource p)
The function returns the Jacobi number. p must be even positive.

gmp_random
Generates a random number.

Syntax:
resource gmp_random (int limited)

limited sets the length of the generated number. In case the value limited is negative, a negative number is
generated.

gmp_popcount
Getting the population.

Syntax:
int gmp_popcount (resource x)

The function returns the numerator of the population.

gmp_hamdist
Calculate distance.

Syntax:
int gmp_hamdist (resource x, resource y)

The function returns the distance between the numbers x and y. The x and y arguments must be non-
negative.

GMP functions. Binary operations

gmp_and
Logical AND (AND).

Syntax :
resource gmp_and (resource X, resource y)

gmp_or
Logical OR (OR).

Syntax :
resource gmp_or (resource X, resource y)

gmp_xor
Logical exclusive-OR (XOR).

Syntax :
resource gmp_xor (resource X, resource y)

gmp_setbin
Sets the bit.

Syntax:
resource gmp_setbin (resource & X, int index [, bool set_clear])

Sets the bit at position index in x. The set_clear argument specifies whether to set the bit to 0 or 1 (the
default).

gmp_clrbit Clears a

bit.

Syntax:
resource gmp_clrbit (resource & x, int index)

Sets the bit at position index in number x to 0.

gmp_scan(
Searches for bit 0.

Syntax:
Oint gmp_scanO (resource X, int start) The gmp_scanO ()

function searches for bits 0 in the number x, starting from the start position, upward. Returns the position of
the found bit.

gmp_scanl
Searches for bit 1.

Syntax:
lint gmp_scanl (resource x, int start) The gmp_scan0 ()

function searches for bit 1 in the number x, starting from the start position, in the direction of increasing
significance of the digits. Returns the position of the found bit.

Working with arrays

Array creation

array
Creates and initializes an array.

Syntax:

array array ([mix ed ...]) The function returns the created array. Indexes and values in an array are
separated by the => operator. The index => value pairs are comma separated, they define the index and
value. The index can be either numeric or string. In associated arrays, the index always behaves like a
string. If the index is not specified, the auto-increment will be substituted (by 1 more), starting from 0. If
two elements with the same indices were specified when creating the array, then the last element replaces
the first.

$ arr = array (// Next, we'll create a two-dimensional array
"fruit" => array ("a" => "orange", "b" => "banan", "c" => "apple"),
// this entry is equivalent to: $ arr ["fruit"] ["a"] = "orange"; etc.
"number" => array (1,2,3,4,5,6),
// this entry is equivalent to the entry: $ arr ["number"] [] = 1; etc.
"hotel" => array ("first", 5 => "second", "third")
);
$ arr = array (1, 1, 1, 1, 2 => 5, 19, 3 => 20);
print_r ($ arr);
// Next, print this array
Array
(
[0]=>1
[1]1=>1
[2]=>5
[3] => 20
[4] => 19

$ arr = array (1 => "January", "February", "March");
print_r ($ arr);
// printout
Array
(
[1] => January
[2] => February
[3] => March
)

range
Populates the list with integers.

Syntax:
list range (int low, int high)

The range () function creates a list filled with integers from low to high, inclusive. It is convenient to use if
we want to quickly generate an array for subsequent traversal through it with a forech loop.

$ arr = range (4.9);

// now $ arr = array (4, 5, 6, 7, 8, 9);

Sorting arrays

array_reverse Reverse ordering
of array elements.

Syntax:
array array_reverse (array arr);

The array_reverse () function returns an array whose elements are in reverse order relative to the array
passed in the parameter. In this case, the connections between keys and values are, of course, not lost. For
example, instead of ordering an array in reverse order using arsort () , we can sort it in positive order and
then reverse it:

$ A = array ("a" => "Zero", "b" => "Weapon", "c" => "Alpha", "d" => "Processor");

asort ($ A);
$ A = array_reverse ($ A);

shuffle
Shuffle array elements.

Syntax:
void shuffle (array arr);

The shuffle () function shuffles the list passed to it as the first arr parameter so that its values are randomly
distributed. This changes the array itself and associative arrays are perceived as lists.

$ A = array (10,20,30,40,50);

shuffle ($ A);

foreach ($ A as $ v) echo "$ v";

// Prints 10,20,30,40,50 randomly

sort
Sorts the array in ascending order.

Syntax:
void sort (array arr [, int sort_flags])

This function is designed to sort lists (lists are arrays whose keys start at 0 and have no gaps) in ascending
order.

$ A = array ("One", "Two", "Tree", "Four");

sort ($ A);

for ($i=0; $1i<count ($ A); $i++)echo"$i:$ A[$i]";

// prints "0: Four 1: Two 2: Tree 3: One"

Any associative array Perceived by this function as a list. That is, after the ordering, the sequence of keys
turns into 0,1,2, ..., and the values are redistributed as needed. As you can see, the links between the
parameters key => value are not saved, moreover, the keys simply disappear, so sorting something other
than a list is hardly advisable.

Argument sort_flags specifies the following sorting flags:
« SORT_REGULAR - compares items "as is"
 SORT_NUMERIC - compares items as numbers
 SORT_STRING - compares items as strings

rsort
Sort the array in descending order.

Syntax:
void rsort (array arr [, int sort_flags])
Same as sort () , only sorts in descending order.

asort Sorts the
associative array in ascending order.

Syntax:
void asort (array arr [, int sort_flags]);

The asort () function sorts the array specified in its parameter so that its values are in alphabetical (if
strings) or ascending (for numbers) order. In this case, the connections between the keys and their
corresponding values are preserved, i.e. some key => value pairs just "float" up, and some - on the
contrary, "down".

$ A = array ("a" => "Zero", "b" => "Weapon", "c" => "Alpha", "d" => "Pr ocessor");

asort ($ A);

foreach ($ A as$k=>% v)echo"$ k=>$ v";

// displays "c => Alpha d => Processor b => Weapon a => Zero"

// as you can see, only the order of the key => value pairs has changed

By default, the asort () function sorts the array alphabetically. For the values of the sort_flags, see the
description for the sort () function .

arsort Sorts the
associative array in descending order.

Syntax:
void arsort (array arr [, int sort_flags]);

This function is similar to the asort () function , only it orders the array in descending rather than ascending
order.
$ arr = array ("d" => "lemon", "a" => "orange", "b" => "banana", "c" => "apple");
arsort ($ arr);
reset ($ arr);
while (list ($ key, $ val) = each ($ arr)) {
echo "$ key = $ val
1";

}

/I will output :
a = orange

d = lemon

b = banana

c = apple

ksort
Sort the array in ascending order of keys.

Syntax:
int ksort (array arr [, int sort_flags]);

The function is almost identical to the asort () function , with the difference that sorting is performed not by
values, but by keys (in ascending order).

$ A = array ("d" =>" Zero", "c" => "Weapon", "b" => "Alpha", "a" => "Processor");

ksort ($ A);

for (Reset ($ A); list ($ k, $ v) = each ($ A);) echo "$ k =>$ v";

// outputs "a => Processor b => Alpha ¢ => Weapon d => Zero"

The sort_flags argument specifies the sort options.

krsort
Sort the array in descending order of indices.

Syntax:
int krsort (array arr [, int sort_flags]);

This function is similar to the ksort () function , except that it orders the array by keys in reverse order.

natsort
Performs "natural” sorting on an array.

Syntax:
void natsort (array arr);

The natsort () function sorts the array in a human-natural order.
$ arrl = array ("html_12.html", "html_10.html", "html_2.html", "html_1.html");
$arr2 = $ arrl;
sort ($ arrl);
echo " Standard sort : \ n";
print_r ($ arrl);
natsort ($ arr2);
echo "Natural sort: \ n"
print _ r ($ arr 2);
This example will output the following:
Standard sorting:
Array
(
[0] => html_1.html
[1] => html 10.html
[2] => html_12.html
[3] => html _2. html
)
Natural sorting:
Array
(
[3] => html_1.html
[2] => html_2.html
[1] => html 10.html
[0] => html_12.html

)

uasort
Custom sorting of the associative array.

Syntax:
void uasort (array arr, function cmp_function)

The uasort () function sorts the arr array preserving index associations, using the user-defined function
specified by the cmp_function argument to compare the element indices .

uksort
Custom sorting of an array by keys.

Syntax:
void uksort (array arr, function cmp_function)

The uksort () function sorts the arr array by index, preserving index associations, using the user-defined
function specified in the cmp_function argument to compare the element indexes . Two compared indexes
of the elements are passed to this function, and it should return a positive or negative number or O.

Quite often we have to sort something according to a more complex criterion than just alphabetically. For
example, suppose $ Files contains a list of filenames and subdirectories in the current directory. We may
want to print this list not only in lexographic order, but also so that all directories come before the files. In
this case, we should use the uksort () function , having previously written a comparison function with two
parameters, as required by uksor t () .
// This function should compare the values of $ f1 and $ f2 and return:
//-1if $ £1 <$ £2,
//0if $ f1==9%f2
//1if $ f1> $ £2
// By <and> we mean the following of these names in the output list
function FCmp ($f 1, $ f 2)
{// Directory always precedes file
if (is_dir ($ f1) &&! is_dir ($ £2)) return -1;
// The file always comes after the directory
if (is _dir ($f1) && is _ dir ($ f 2)) return 1;
// Otherwise compare lexicographically
if ($ f1 <$ £2) return -1; elseif ($ f1> $ f2) return 1; else return 0;
}
// Let $ Files contain an array with keys - file names
// in the current directory. Let's sort it out.
uksort ($ Files, "FCmp"); // pass the sort function "by reference"

usort Uses an
array sort.

Syntax:
void usort (array arr, function cmp_function)

The uso rt () function sorts the arr array preserving index associations, using the user-defined function
specified in the cmp_function argument to compare element indices . Two compared indexes of the
elements are passed to this function, and it must return a positive or negative number or 0.

This function is, as it were, a "hybrid" of the uasort () and sort () functions . It differs from sort () in that
the comparison criterion is provided by a user-defined function. And from uasort () - in that it does not
preserve relationships between keys and values, and therefore is only suitable for sorting lists.
function FCmp ($ a, $ b) {return strcmp ($ a, $ b); }
$ A = array ("One", "Two", "Three", "Four");
usort ($ A);
for ($1=0; $i <count ($ A); $i++)echo"$i: $ A[$i]";
// prints "0: Four 1: One 2: Three 3: Two"
An example of a one-dimensional array:
function cmp ($a, $b) {
if ($ a==$ b) return 0;
return ($ a> $ b)? -eleven;
}
$ a = array (3,2,5,6,1);

usort ($ a, "cmp");

while (list ($ key, $ val) = each ($ a)) {
echo "$ key : $val \n ";

}

When executed, it will print:

0:6

fifteen

2:3

3:2

4:1

An example of a multidimensional array:

functioncmp ($a,$b) {
return strcmp ($ a ["fruit"], $ b ["fruit"]);

}

$ fruit [0] ["fruit"] = "lemons";

$ fruit [1] ["fruit"] = "apples";

$ fruit [2] ["fruit"] = "grapes";

usort ($ fruit, "cmp");

while (list ($ key, $ val) = each ($ fruit)) {
echo "\ $ fruit [$ key]:". $ val ["fruit"]. "\ n";
}
When sorting multidimensional arrays, $ a and $ b contains references to the first index of the array.
It will print:
$ fruit [0]: apples
$ fruit [1]: grapes
$ fruit [2]: lemons

array_multisort
Sorting relational arrays.

Syntax :
bool array_multisort (array arl, [, mixed ol [, mixed t1 ... [, array ...]]])

The array_multisort () function sorts multidimensional arrays preserving the index association, returning
true on no error.

The original arrays are treated as columns of a table sorted row by row. Therefore, the arrays must have the
same number of elements, and the relationship between them, as in the rows of a table, is preserved. The
first arrays take priority of sorting. Sort flags can be specified for each array, and their effect only applies to
the array after which they are specified.

Sort order flags (ox arguments):
« SORT_ASC - sort in ascending order (default)
SORT_DESC - sort in descending order. Sort type flags (tx arguments):
SORT_REGULAR - compare items as they are (default)
SORT_NUMERIC - compare items as numbers
SORT_STRING - compare items as strings
arl = array ("10", 100, 100, "a");
ar2 = array (1, 3, "2", 1);
array_multisort ($ arl, $ ar2);

//'$ arl = array ("10", "a", 100, 100);

//'$ ar2 = array (1, 1, "2", 4);
The elements of the second array corresponding to the same elements (100 and 100) of the first array are
also sorted.
$ ar = array (array ("10", 100, 100, " a"), array (1, 3, "2", 1));
array_multisort ($ ar [0], SORT_ASC, SORT_STRING,

$ar [1], $ SORT_NUMERIC, SORT_DESC);

$ ar [0] = ("10", 100, 100, "a") - sorted as strings in ascending order $ ar [1] = (1, 3, "2", 1) - sorted as

numbers in descending order .
Array cursor

reset
Resets the array cursor.

Syntax:
mixed reset (array arr);

The reset () function sets the internal cursor of arr to the beginning and returns the value of the starting
element.

end
Moves the cursor to the end of the array.

Syntax:
mixed end (array arr);

The end () function sets the inner cursor of arr to the last element and returns the value of the starting
element.

next
Moves the cursor forward.

Syntax:
mixed next (array arr);

The next () function returns the value of the element the cursor is currently on and advances the array cursor
to the next element. Returns false if there are no more items left.

Also, false is returned if an element with an empty value is encountered, therefore, to work correctly with an
array containing empty elements, it is better to use the each () function .

prev
Moves the cursor back.

Syntax:
mixed prev (array arr);

The prev () function returns the value of the element the cursor is currently on and moves the array cursor
to the previous element. Returns false if there are no more items left.

Also, false is returned if an element with an empty value is encountered, therefore, to work correctly with an
array containing empty elements, it is better to use the each () function .

current
The definition of the current element of the array.

Syntax:
mixed current (array arr);

The current () function returns the value of the element on which the array cursor is currently located,
without moving the cursor.

The function will return false if the cursor is outside the array or the array has no elements.

pos
Determination of the current array element.

Syntax:
mixed pos (array arr);

This function is synonymous with the current () function .

key
The function returns the index of the current array element.

Syntax :
mixed key (array arr);

each
Get the current element of the array.

Syntax:
array each (array arr);

The each () function returns the "index and value" pair of the current array element pointed to by the inner
cursor in an array and advances the array cursor to the next element. The returned array has four elements:
[0] => index
[1] => "value"
[key] => index
[value] => "value"
The function returns false if the cursor has reached the end of the array.
$ foo = array ("bob", "fred", "jussi", "joini", "egon", "marliese");
$ bar = each ($ foo);
// now $ bar = (0 => 0, 1 => "bob", key => 0, value => "bob")
Typically the each () function is used in conjunction with list () to iterate over the elements of an array:
reset ($ HTTP_POST_VARS);
while (list ($ ke y, $ val) = each ($ HTTP_POST_VARS)) {
echo "$ key =% val
";

}

array_walk
Applying a function to array elements.

Syntax:
int array_walk (array arr string func, mixed userdata);

The array_walk () function applies the custom func function to each element in the arr array . Three or two
(if no userdata argument is specified) arguments are passed to a custom function : the value of the current
element, its index, and the userdata argument .

If func requires more than three arguments, a warning will be issued each time it is called. To block these
warnings from issuing, put an @ sign in front of array_walk () or use error_reporting () .

The func function will get the values and indices of the arr array by value, i.e. will not be able to make
changes to it. If necessary, pass the arr argument by reference, prefixing its name with "&", and then all
changes will be reflected in the array.

In PHP 4, you must explicitly call the reset () function to set the inner cursor to the first element.
$ v = array ("d" =>"A1", "a" =>"B2", "b" => "C3", "¢" => "D4");
function test_alter (& $ item1, $ key, $ prefix) {// by reference
$ item1 = "$ prefix $ item1";
I

function test_print ($ item2, $ key) {
echo "$ key. $ item2
";
b

array_walk ($ v, "test_print") ;
reset ($ v);

array_walk ($ v, "test_alter");

reset ($ v);

array_walk ($ v, "test_print");

Keys and Values

array_flip Swaps the
indices and values of an array.

Syntax:
array array_flip (array arr)

This function "iterates" through an array and swaps its keys and values. The original arr array is unchanged,
and the resulting array is simply returned. Of course, if there were several elements with the same values in
the array, only the last one will be taken into account:

mwn mw o n

$ A = array ("a" => "aaa", "b" => "a aa", "c" => "ccc");
$ A = array_flip ($ A);
// Now $ A === array ("aaa" =>"b", "ccc" =>"c");

array_keys
Returns a list of array keys.

Syntax:
list array_keys (array arr [, mixed search_value])

The function returns a list containing all the keys of the array a rr . If the optional parameter search_value is
given , then it will return only those keys that match the search_value .

$ arr = array (0 => 100, "color" => "red", 15);

array_keys ($ arr); // will return array (0, "color", 1)

$ arr = array ("blue", "red", "green", "blue", "blue");
array_keys ($ arr, "blue"); // will return array (0, 3, 4)

array_values
Remove associative array indices.

Syntax:
list array_values (array arr)

The array_values () function returns a list of all values in the associative array arr, i.e. turns an
associative array into a simple (scalar) one.

$ arr = array ("size" => "XL", "color" => "gold");

array_values ($ arr);

// returns array ("XL", "gold")

Obviously, this action is useless for lists, but sometimes it is justified for hashes.

in_ array Checks the array
for a value.

Syntax:
bool in_array (mixed val, array arr)

The in_array () function will return true if the arr array contains an element with the value var .
$ arr = array ("1", "2", "tree");
if (in_array ["2", $ arr)) e cho "2 is ";

array_count_values
Returns the number of identical values in an array.

Syntax:
array array_count_values (array arr)

This function counts how many times each value occurs in the arr array , and returns an associative array
with keys - the elements of the array and values - the number of times those elements are repeated . In other
words, the array_count_values () function counts the frequency of occurrence of values in the arr array .
$ LIst = array (1, "hello", 1, "world", "hello");

array_count_values ($ array);

// returns array (1 => 2, "hello" => 2, "world" => 1)

sizeof
Returns the number of elements in the array.

Syntax:
int sizeof (array arr)

The sizeof () function returns the number of elements in the arr array, similar to count () .

count
Returns the number of elements in an array or object.

Syntax:
int count (mixed var)

The count () function returns the number of elements in an array or var object . If var is a scalar variable,
then the function returns 1 if such a variable exists, or 0 if there is no such variable.

It should be noted that 0 is returned even when an array is specified that does not contain elements.

It is better to use the isset () function to check if a variable exists .

$al0]=1;
$all]l=3;
$al2]=5;

$ result = count ($ a) // will return 3

array _sum
Returns the sum of all the elements in an array.

Syntax:
mixed array_sum (array arr [, int num_req])

This function will return the sum of all numeric elements in the array. The type of the values in the array
determines the type of the returned number (integer or float).

$ arr = array (2,4,6,7);

echo " Amount :" .array_sum ($ arr);

// will display Amount: 19

array_rand
Produces a random selection of array indices.

Syntax:
mixed array_rand (array arr [, int num_req])

The array_rand () function returns randomly selected indices of the elements of the array arr in an array .
The num_req argument specifies the number of indexes to return. If one element is selected, then not an
array is returned, but a value.

srand ((double) microtime () * 1000000);

// here we have initialized the random number generator

$ arr = array ("Neo", "Morpheus", "Trinity", "Cypher", "Tank");
$ rand_keys = array_rand ($ arr, 2);

echo $ arr [$ rand_key [0]]. "
";

echo $ arr [$ rand_key [1]]. "
";

Complex replacement in a string

strtr
Complex replacement in a string.

Syntax:
string strtr (string str, string from, string to)
string strtr (string str, array from)

In the first case, the strtr () function returns a string str , in which each character present in the string from
is replaced with the corresponding string to ... If the strings from and to are of different lengths, then the
extra trailing characters of the long string are ignored.

In the second case, the strtr () function returns a string in which fragments of the str string are replaced
with the values of the from array elements corresponding to the indices . In this case, the function tries to
replace the largest fragments of the original string first and does not perform replacement in the already
modified parts of the string. Thus, now we can perform several replacements at once:
$ Subs = array (

"<pame>" => "Larry",

"<time>" => date ("dmY")
);
$ st = "Hello < name >! It's < time ";
echo strtr ($ st, $ Subs);
And here's how you can "undo" the action of the HtmlSpecialChars () function :
$ Trans = array_flip (get_html_translation_table ());
$ st = strtr ($ st, $ Trans);
As a result, we will get the original string from a string in which all special characters are replaced by their
HTML equivalents.

Working with multiple arrays

array_diff
Define an exceptional intersection of arrays.

Syntax :
array array_diff (array arrl, array arr2 [, array ...])

This function returns an array that contains values that are only in the array arrl (and not any others).
However, the indexes are not saved.

$arr1=array ("a"=>"green", "red", " blue ");

$ arr2 = array ("b" => "green", "yellow", "red");

$ result = array_diff ($ arrl, $ arr2);

//'$ result = array ("blue")

array_intersect
Define the inclusive intersection of arrays.

Syntax:
array array _ intersect (array arr 1, array arr 2 [, array ...]) The array_intersect () function returns an array
that contains the values of the array arrl found in all other arrays. However, the indexes are not saved.

$arr 1 =array ("a"=>"green", "red", " blue ");

$ arr2 = array ("b" => "green", "yellow", "red");
$ result = array_intersect ($ arrl, $ arr2);

//'$ result = array ("a" => "green", "red")

array_merge

Merge arrays . Syntax : array array_merge (array arrl, array arr2 [, array ...]) The array_merge () function
is designed to eliminate all the drawbacks inherent in the + operator for array merging. Namely, it merges
the arrays listed in its arguments into one large array and returns the result. If the arrays contain the same
keys, the result is filled with the key => value pair from the array located to the right in the list of
arguments. However, this does not affect numeric keys: elements with such keys are placed at the end of the
resulting array anyway.

$ L1 = array (10,20,30);

$ L2 = array (100,200,300);

$ L = array_merge ($ L1, $ L2);

// now $ L. === array (10,20,30,100,200,300);

array_merge_recursive
Combining complex arrays.

Syntax :
array array_merge_recu rsive (array arrl, array arr2 [, array ...])

The array_merge_recursive () function strongly resembles the array_merge () function with the addition
that it can work with multidimensional and tree-like arrays, and elements with the same string indices are
converted into subarrays. For numeric indices, the function behaves like array_merge () .

$ arr 1 = array (" color " => array (" favorite " => " red "), 5);

$ arr2 = array (10, "color" => array ("favorite" => "green"), "blue");

$ result = array_merge_recursive ($ arrl, $ arr2);

//'$ result = array ("color" => array (

// "favorite" => array ("red", "green"),

// "blue"), 5, 10)

Getting and removing part of an array

array_slice
Get part of an array.

Syntax:
array array_slice (array arr, int offset [, int len])

This function returns the part of the associative array arr , starting at the element with offset (number) offset
from the beginning and length len (if the last parameter is not specified, to the end of the array).

The offset and len parameters follow exactly the same rules as the analogous parameters in the substr ()
function . Namely, if offset> 0, then the sequence will start from the element at the offset position from the
beginning of the array, and if <0, then the sequence will start from the end of the array. It should be noted
that the first element has a zero position, and the last one (-1).

If you specify length > 0, then this is the number of elements returned in the array, and if length <0, then
this is the position of the last returned element in the arr array from its end.

$ input = array ("a", "b", "c", "e");

$ output = arr ay_slice ($ input, 2); // "c", "d", "e"

$ output = array_slice ($ input, 2, -1); // "c", "d"

$ output = array_slice ($ input, -2, 1); // "d"

$ output = array_slice ($ input, 0, 3); // "a", "b", "c"

array_splice
Removes part of an array or replaces it with part of another array.

Syntax:
array array_splice (array arr, int offset [, int len] [, int repl])

This function, like array_slice () , returns a subarray arr starting at the offset index of the maximum length
len , but at the same time it does and other useful action. Namely, it replaces the elements just specified with
what is in the repl array (or simply removes if repl is not specified). If offset> 0, then the sequence will
start from the element at offset from the beginning of the array, and if <0, then the sequence will start from
the end of the array. It should be noted that the first element has a zero position, and the last one (-1).

If you specify length > 0, then this is the number of elements returned in the array, and if length <0, then
this is the position of the last returned element in the arr array from its end.

$ input = array ("red", "green", "blue", "yellow");

array_splice ($ input, 2);

// Now $ input === array ("'red", "green")

array_splice ($ input, 1, -1);

// Now $ input === array ("red", "yellow")

array_splice ($ input, -1, 1, array ("black", "maroon"));

// Now $ input === array ("red", "green", "blue", "black",

"maroon”
array_splice ($ input, 1, count ($ input), "orange");
// Now $ input === array ('"red", "orange")

The last example shows that as the rep | parameter, we can also specify an ordinary, string value, and not an
array of one element.

Inserting / removing elements

array_pad
Adds multiple elements to an array.

Syntax:
array array_pad (array input, int pad_size, mixed pad_value)

The array_pad () function returns a copy of the input array to which elements with pad_values have been
added , so that the number of elements in the resulting array is equal to pad_size .

If pad_size > 0, then elements will be added to the right, and if <0, then to the left.

If the pad_size value is less than the elements in the original input array , then no addition will occur, and
the function will return the original input array .

$ arr = array (12, 10, 4);

$ result = array_pad ($ arr, 5, 0);

//'$ result = array (12, 10, 4, 0, 0);

$ result = array_pad ($ arr, -7, -1);

//'$ result = array (-1, -1, -1, -1, 12, 10, 4)

$ result = array_pad ($ arr, 2, "noop");

// won't add

array_pop
Retrieves and removes the last elements of an array.

Syntax:
mixed array_pop (array arr);

The array_pop () function pops an item from the "top" of the stack (that is, it takes the last item in the list)
and returns it, then removing it from arr . With this function, we can build stack-like structures. If the arr
array was empty, the function returns an empty string.

$ stack = array (" orange ", " app le ", " raspberry ");

$ fruits = array_pop ($ stack);

//'$ fruit = "raspberry"

//'$ stack = array ("orange", "apple")

array_push
Adds elements to the end of an array.

Syntax :
int array_push (of array arr, mixed varl [, var2 mixed, ..])

This function adds to the array arr elements varl, var2 , etc. It assigns them numerical indices - just like it
does for the standard []. If you only need to add one element, it is probably easier to use this operator:
array_push ($ Arr, 1000); // call the function

$ Arr [] = 100; // the same, but shorter

Note that array_push () takes an array like a stack and always adds elements to its end.

array_shift Extracts
and removes the first element of an array.

Syntax:
mixed array_shift (array arr)

This function retrieves the first element of the arr array and returns it. It strongly resembles array_pop () ,
but it only receives the initial, not the final element, and also produces a rather strong "shake-up" of the
entire array: after all, when extracting the first element, you have to adjust all the numeric indices of all
remaining elements, since all subsequent elements of the array are shifted one position forward.

$ ar = array ("- v", "-f");

$ opt = array (_shift ($ arr);

// now $ arr = array ("- f") and $ opt = "-v"

array_unshift
Adds elements to the beginning of an array.

Syntax :
int array_unshift (list arr, mixed varl [, mixed var2, ...])

The function is very similar to array_push , but adds the listed elements not to the end, but to the beginning
of the array. In this case, the order of varl, var2 , etc. remains the same, i.e. the elements seem to "slide"
into the list on the left. New list items are assigned numeric indices, as usual, starting at 0; in this case, all
keys of the old array elements, which were also numeric, change (most often they increase by the number of
inserted values). The function returns the new size of the array.

$ A = array (10, " a " => 20.30);

array _ unshift ($ A, "!", "?");

// now $ A === array (0 =>"I", 1 =>"?", 2 =>10, a => 20, 3 => 30)

array_unique
Creates an array of unique values only.

Syntax:
array array_unique (array arr)

The array_unique () function returns an array composed of all the unique values in arr along with their
keys, by removing all duplicate values. The first encountered key => value pairs are placed in the resulting
array . Indexes are saved.
$ input = array ("a" => "green", "red", "b" =>

"green", "blue", "red");
$ result = array_unique ($ input);

// now $ result === ("a" => "green", "red", "blue");
Variables and Arrays

list
Puts array elements into variables.

Syntax:

list () is a language construct (like array ()). It assigns to the listed variables the values of the array
elements, the first variable being assigned the first array element, the second variable the second element,
and so on.

compact
Packs variables from the current context into an array.

Syntax :
array compact (mixed varnamel [, mixed $ varname?2, ...])

The compact () function packs variables from the current context (global or function context) into an array,
specified by their names in varnamel, $ varname2 , etc. In this case, pairs are formed in the array with keys
equal to the contents of varnameN and the values of the corresponding variables.

The number of arguments can be undefined.

If the argument contains the name of a variable that does not exist, it is skipped. This function is the
opposite of extract () .

$ a =" Test string ";

$b=""Some text ";

$ A = compact ("a", "b");

// now $ A === array ("a" => "Test string", "b" => "Some text")

Why then are the function parameters labeled mixed? The point is that they can be not only strings, but also
lists of strings. In this case, the function of the latter iterates over all the elements of this list, and packs
those variables from the current context whose names it has encountered. Moreover - these lists can, in turn,
also contain lists of strings, etc. True, the latter is rarely used.

$a="Test"
$b="Text",
$c="CCC"
$d="DDD";

$ List = array ("b", array ("c", "d"));

$ A = compact ("a", $ List);

// now $ A === array ("a" => "Test", "b" => "Text",
"c¢" =>"CCC","d" =>"DDD")

extract -
exports array elements into variables.

Syntax:
void extract (array arr [, int extract_type] [, string prefix])

This function performs the exact opposite of compact () . Namely, it receives the arr array in the
parameters and turns each of its key => value pairs into a variable of the current context.

The extract_type parameter specifies what to do if a variable already exists in the current context with the
same name as the next key in arr . It can be one of the constants listed in the following table:

Behavior functions extract in the case of coincidence of variables

EXTR_OVERWRITE

Overwrite existing variable.

EXTR_SKIP Do not overwrite a variable if it already exists.
EXTR_PR If names match, create a variable with a name preceded by the prefix from $
EFIX_SAME prefix .

EXTR_PREFIX_ALL

Always prefix generated variable names with $ prefix .

The default is EXTR_ OVERWRITE , i.e. variables are overwritten.
// Make all environment variables global

extract ($ HTTP _ ENV

_VARS);

// The same, but with the E_ prefix
extract ($ HTTP_ENV_VARS, EXTR_PREFIX_ALL, "E_");

echo$ E _ COMSPEC;

// Outputs the COMSPEC environment variable
The prefix parameter only makes sense to specify when you are using EXTR_PREFIX_SAME or
EXTR_PREFIX_ALL modes .

String functions

Functions for working with single characters

chr
Returns one character with a specific code.

Syntax :
string chr (int ascii)

Returns a one-character string with $ code . This function is useful for inserting any non-printable
characters into a string, such as a zero code or a page feed, or when working with binary files.

<?
// First, create an array of what we are going to output,
// not caring about the formatting (design) of the information
for($i=0,$x=0; $x<16; $ x ++) {
for($y=0;$y<16;$y ++) {
$ Chars [$ x] [$ y] = array ($ i, chr ($ 1));
$1i++;
}
}

// Now we display the accumulated information using the ideology

// insert sections of code into an HTML document
>

<table border = 1 cellpadding = 1 cellspacing = 0>
<?for($y=0; $y<16; $y ++) {?>
<tr>
<?for ($x=0; $ x <16; § x ++) {?>
<td>
<? = $ Chars [$ x] [$ y] [0]?>:
<tt><?=$Chars [$x] [[1] [[1] [[]]
</td>
<P}?>
</tr>
<?}?>
</table>

ord
Returns the ascii character code.

Syntax:
int ord (string str)

This function returns the ASCII code of the first character of string str .
For example, ord (chr ($ n)) is always $ n - of course, if $ n is between zero and 255.

Cut off whitespace functions

trim
Removes leading and trailing whitespace from the specified string.

Syntax:
string trim (string str)

Returns a copy of str, with only leading and trailing whitespace removed. Whitespace means "\ n", "\ r", "\
t", "\ v", "\ 0" and a space.
For example, calling trim ("test \ n") will return the string "test".

Itrim
Removes leading whitespace from the specified string.

Syntax:
string ltrim (string str)

Same as trim () , but only removes leading whitespace characters ("\ n", "\ r", "\ t", "\ v", "\ 0" and space),
but does not touch the terminal.

rtrim
Removes trailing whitespace from the specified string.

Syntax:
string rtrim (string str)

Same as trim () , except that it only removes trailing whitespace characters ("\ n", "\ r", "\ t", "\ v", "\ 0" and
space), but does not touch the initial ones.
This function is synonymous with chep () .

chop
Removes trailing whitespace from the specified string.

Syntax:
string chop (string str)

Removes only trailing spaces, does not touch leading ones.

Search in text

strchr Finds the
first occurrence of a character in a string.

Syntax:
string strchr (string haystack, string needle)

This function works identically to the strstr () function .

strstr Finds the
first occurrence of a substring in a string.

Syntax:
string strstr (string haystack, string needle)

The strstr () function returns the portion of the string specified by the haystack parameter , from the first
portion specified in the needle parameter to the end.

Returns false on failure.

This function is case sensitive.

If needle is not a string, then the value is converted to an integer and used as the code of the desired
character.

$ email = "mailname@mail.ru";

$ domain = strstr ($ email, "@");

/] or

$ domain = strstr ($ email, ord ("@"))
echo $ domain;

// displays @ mail.ru

stristr Finds the
first occurrence of a substring, case insensitive .

Syntax:
string stristr (string haystack, string needle)

The stristr () function returns the portion of the string specified by the haystack parameter , from the first
portion specified in the needle parameter to the end.

Returns false on failure.

This function is case insensitive.

If needle is not a string, then the value is converted to an integer and used as the code of the desired
character.

strrchr
Find the last occurrence of a substring.

Syntax:
string strrchr (string haystack, string needle)

The strrchr () function returns the portion of the string specified by the haystack parameter , from the last
portion specified in the needle parameter to the end.

Returns false on failure.

This function is case sensitive.

If needle is not a string, then the value is converted to an integer and used as the code of the desired
character.

// get the last directory in $ PATH

$ dir = substr (strrchr ($ PATH, ":"), 1);

// and here we get everything after the last line feed

$ text = "text 1 \ nText2 \ nText3";

echo substr (strrchr ($ text, 10), 1);

strpos
Finds the position of the first occurrence of a substring in the given string.

Syntax:
int strpos (string where, string what [, int fromwhere])

The strpos () function tries to find the substring what in the string were and, if successful, returns the
position (index) of this substring in the string. The first character of the string has index 0. The optional
parameter fromwhere can be specified if you want to search not from the beginning of the string, but from
some other position. In this case, this position should be passed to fromwhere . If the substring could not be
found, the function returns false. If the what parameter is not a string, in this case its value is converted to an
integer and used as the code of the desired character.

if (strpos ($ text, " a") === false) echo " Not found !";
// Check: three equal signs

strrpos
Finds the last position in the given string at which the given chunk is.

Syntax:
int strrpos (string where, string what)

This function searches in the where string for the last position in which the character what was encountered
(if what is a string of several characters, then only the first one is detected, the rest play no role).

If the required character is the first in the string or it is not at all, the function will return 0.

If the required character is not found, it returns false.

substr_count
Finds the number of occurrences of a fragment in a string.

Syntax:
int substr_count (string where, string what)

The substr_count () function returns the number of what fragments present in the where string .
e cho substr_count ("www.spravkaweb.ru", ".");
// Prints 3

strspn
Determines the presence of leading characters in the string.

Syntax:
int strspn (string strl, string str2)

The strspn () function returns the length of the initial portion of str1 , which consists entirely of the
characters in str2 .

echo strspn ("www.spravkaweb.ru", "abc");

// Prints 3

strcspn
Determines the absence of leading characters in the string.

Syntax:
int strcspn (string strl, string str2)

The strspn () function returns the length of the initial piece of string str1 , which is completely different
from the characters in string str2 .

Comparison functions

strcmp
Compares strings.

Syntax:
int strcmp (string strl, string str2)

This function compares two strings character-by-character (more precisely, byte-wise) and returns:
0 - if the strings are exactly the same;

-1 - if string str1 is lexicographically less than str2 ;

1 - if, on the contrary, str1 is "greater than" str2 .

Since the comparison is byte-wise, the case of characters affects the results of comparisons.

strncmp
Compares the beginning of lines.

Syntax:
int strncmp (string strl, string str2, int len)

This function differs from strcmp () in that it does not compare the entire word, but the first len bytes. If len
is less than the length of the smallest of the strings, then the entire strings are compared.

This function compares two strings character by character (more precisely, byte bytes) and returns:

0 - if the strings are exactly the same;

-1 - if string str1 is lexicographically less than str2 ;
1 - if, on the contrary, str1 is "greater than" str2 .
Since the comparison is byte-wise, the case of characters affects the results of comparisons.

strcasecmp
Compares strings case insensitive.

Syntax:
int strcasecmp (string strl, string str2)

Same as strcmp () , except that it is not case sensitive.
$ strl =" Hello !";
$ str2 = " hello !";
if (! strcesecmp ($ strl, $ str2))
echo "$ strl == $ str2 for case insensitive string comparison";

strncasecmp
Compares the beginning of strings, case insensitive.

Syntax:
int strncasecmp (string strl, string str2, int len)

The strncasecmp () function is a combination of the strcasecmp () and strncmp () functions .

strnatcmp
Performs "natural” string comparisons.

Syntax:
int strnatcmp (string strl, string str2)

This function simulates a string comparison that a human would use.
$ arrl = $ arr2 = array ("img12.png", "im g10.png", "img2.png", "img1.png");
echo " Normal sort \ n";
usort ($ arrl, "strcmp");
print _r ($ arr 1);
echo "\ nNatural sorting \ n";
usort ($ arr2, "strnatcmp");
print_r ($ arr2);
This script will display the following:
Normal sort
Array
(
[0] => img1.png
[1] => img10.png
[2] => img12.png
[3] =>img 2. png
)

Natural sorting
Array
(
[0] =>img 1. png
[1] => img 2. png
[2] => img 10. png
[3] =>img12.png
)

strnatcasecmp
Performs natural case-insensitive string comparisons.

Syntax:
int strnatcasecmp (string strl, string str2)

Same as strnatcmp () , but ignores case.

similar_text
Determines the similarity of two strings.

Syntax:
int similar_text (string firsrt, string second [, double percent])

The similar_text () function calculates the similarity of two strings using the algorithm described by Oliver
(Oliver [1993]). But instead of the stack (as in Oliver's pseudocode), it uses recursive calls.

The complexity of the algorithm makes the function slow and its speed is proportional to (N /A 3), where N
is the length of the largest string.

The function returns the number of characters matched in both strings. When passing a third optional
parameter by reference, it stores the percentage of lines that match.

levenshtein
Determination of Levenshtein difference between two strings.

Syntax:

int levenshtein (string strl, string str2)

int levenshtein (string strl, string str2, int cost_ins, int cost_rep, int cost_del)
int levenshtein (string strl, string str2, function cost)

"Levenshtein difference" is the minimum number of characters which would have to be replaced, inserted,
or deleted in order to turn strl into str2 . The complexity of the algorithm is proportional to the product of
the lengths of str1 and str2 , which makes the function faster than similar_text () .

The first form of the function returns the number of operations required on string characters to transform
strl to str2 .

The second frame has three additional parameters: the cost of an insert, replace, and delete operation, which
makes it more computationally adaptable, but slower. The integral indicator of transformation complexity is
returned.

The third option allows you to specify the function used to calculate the complexity of the transformation.
The cost function is called with the following arguments:

» applied operation (insert, change, delete): "I * quot ;," R"," D ";

» the actual character of the first line

» the actual character of the second line

 line position 1

* line position 2

« remaining length of line 1

« remaining length of string 2

The called function will have to return the cost of this operation.

If one of the strings is more than 255 characters long, levenshtein () returns -1, but that length is more than
sufficient.

Formatting and Outputting Strings

print
Prints a string, variable value, or expression.

Syntax:
print (string arg)

The print () function prints the argument arg , which can be a variable or an expression.

echo
Prints one or more values.

Syntax :
echo (string arg1, string [argn] ...)

The echo () function outputs the values of the listed parameters.

echo () is actually a language construct, so no parentheses are required for it, even if multiple arguments are
used.

echo "Line break,

existing in the code is saved

and is used when displaying ".

"to avoid this use".

"concatenation operator";

printf
Output a formatted string.

Syntax:
int printf (string format [, mixed args, ...]);

Does the same thing as sprintf () , only the resulting string is not returned, but sent to the user's browser.

sprintf
Performs variable substitution string formatting.

Syntax: sprintf ($ format [, args, ...])
This function returns a string based on a format string containing some special characters that will be
subsequently replaced with the values of the corresponding variables from the argument list.

The $ format format string can include formatting commands preceded by a% character. All other
characters are copied to the output string as is. Each format specifier (that is, the% character followed by the
commands) matches one and only one parameter, specified after the $ format parameter . If you need to
put% in the text as a regular character, you need to double it:

echo spr intf ("The percentage was% d %%", $ percentage);

Each format specifier has a maximum of five elements (in the order they appear after the% character):

» An optional field size specifier that specifies how many characters will be allocated for the displayed
value. Placeholder characters (if the value is smaller than the size of the field for its output) can be a space
or 0, the default is a space. You can specify any other filler character if you specify it in the format string,
preceded by a phpostrophe.

 An optional alignment specifier that determines whether the result will be right-aligned or left-aligned.
The default alignment is right, but you can also specify left alignment by specifying the - (minus) symbol.

* An optional number specifying the size of the field for outputting the value. If the result does not fit into
the field, then it will "go out" beyond the edges of this field, but will not be truncated.

» An optional number, preceded by a dot ".", Specifying how many decimal places will be in the resulting
string. This specifier is taken into account only if a floating point number is being output, otherwise it is
ignored.

 Finally, the required (note - the only required!) Value type specifier, which will be placed in the output
line:

* b - the next argument from the list is displayed as a binary integer

» ¢ - displays a symbol with the code specified in the argument

* d - integer

» f- floating point number

* 0 - octal integer

* s - character string

* X - hexadecimal integer with small letters az
« X is a hexadecimal integer with capital letters AZ

Here's how you can specify the precision of floating point numbers:

$ money1 = 68.75;

$ money?2 = 54.35;

$ money = $ money1 + $ money2;

// echo $ money will print "123.1" ...

$ formatted = sprintf ("% 01.2f", $ money);

// echo $ formatted will print "123.10"!

Here is an example of outputting an integer, preceded by the required number of zeros:

$ i sodate = sprintf ("% 04d-% 02d-% 02d", $ year, $ month, $ day);

sscanf
Interprets the string according to the format and sets the values to variables.

Syntax:

mixed sscanf (string str, string format [, string var 1 ...]) The sscanf () function is the opposite of the printf
() function . It interprets the string str according to format , similar to the printf () specification . If only two
arguments are specified, the resulting values are returned in an array.

// get serial number
$ serial = sscanf ("SN / 235-0001", "SN /% 3d-% 4d");
echo $ serial [0] * 10000 + $ serial [1]; // outputs: 2350001
// and production date
$ date = " January 01 2000 ";
list ($ month, $ day, $ year) = sscanf ($ date, "% s% d% d");
echo " Date : $ year -". substr ($ month, 0,3). "- $ day \ n";
// outputs: 2000-Jan-01
If additional optional parameters are specified (they must be passed by reference), the function returns their
number. Variables that do not receive values are not included in the return value.
// generate XML write from string
$ auth = "765 \ tLewis Carr oll ";
$ n = sscan ($ auth, "% d\ t% s% s", & $ id, & $ first, & $ last);
echo "<author id =" $ id ">
<firstname> $ first </firrstname>
<surname> $ last </surname>
</author>\n";

Composing / splitting lines

substr
Returns a portion of a string with a specific length.

Syntax:
string substr (string str, int start [, int length])

Returns the portion of string str starting at position start and length length . If length is not specified, then
the substring from start to the end of str is assumed . If start is greater than the length of the string, or if
length is zero, then an empty substring is returned.

However, this function can also do some pretty useful things. For example, if we pass a negative number to
start , then it will be considered that this number is the substring index, but only counted from the end of str
(for example, -1 means "starts from the last character of the string").

Parameter the length , if present, can also be negative. In this case, the last character of the returned
substring will be the character from str with the index length , determined from the end of the string.

$ str = substr ("abcdef", 1); // will return "bcdef"

$ str = substr ("abcdef", 1, 3); // will return "bcd"
$ str = substr ("abcdef", -1); // will return "f"

$ str = substr ("abcdef", -2); // will return "ef"

$ str = substr ("abcdef", -3, 1); // will return "d"

$ str = substr ("abcdef", 1, -1); // will return "bcde"

str_repeat
Repeats a string a specified number of times.

Syntax:
string str_repeat (string str, int number)

The function "repeats” a string str number times and returns the concatenated result.
echo str_repeat ("test!", 3); // outputs test! test! test!

str_pad Padding a
string with another string to a specified length.

Syntax :
string str_pad (string input, int pad_length [, string pad_string [, int pad_type]])

The input argument specifies the source string . The pad_length argument specifies the length of the
returned string. If it is less than the original string, no addition is made. The optional pad_string argument
can be used to specify which string to use as a placeholder (spaces by default). The optional argument
pad_type can be used to specify whether the string should be padded to the right, left, or both. This
argument can take the following values:

. STR_PAD_RIGHT (default)

« STR PAD LEFT

« STR_PAD_BOTH

$ str = "Aaaaa";

echo str_pad ($ str, 10);

// will return "Aaaaa"

echo str_pad ($ str, 10, "- =", STR_PAD_LEFT);
// will return "- = - = - Aaaaa"

echo str_pad ($ str, 10, "_", STR_PAD_BOTH)
// will return "_Aaaa_"

chunk_split
Returns a chunk of a string.

Syntax:
string chunk_split (string str [, int chunklen [, string end]])

The function chunk_split () returns a string, wherein between each unit string str length chunklen sequence
spacers inserted (default 76) end (default: "\r\n").

This function can be useful when converting to "base64" format to comply with RFC 2045 rules.

// format $ data using RFC 2045 semantics

$ str = chunk_split (base64_encode ($ data));

This function is significantly faster than ereg_replace () .

strtok
Returns the string in parts.

Syntax:
string strtok (string arg1, string arg2) The

function returns the part of the string arg1 before the delimiter arg2 . Subsequent calls return the next part
up to the next delimiter, and so on until the end of the line. On the first call, the function takes two
arguments: the original string argl and the separator arg2 . For each subsequent call , you do not need to
specify the argl argument , otherwise the first part of the string will be returned. When there is nothing
more to return, the function will return false. If part of a string consists of 0 or an empty string, then the
function will also return false.

$ str = "This is an exampleNostringNe Aaa";

$ tok = strtok ($ str, "");

while ($ tok) {

echo "$ tok";
$ tok = strtok ("#");
1

mwun mwon

// prints : "This" "is " "an" "example" "string"

It should be noted that the delimiters are a sequence of characters, each of which can individually be a
delimiter, but when two or more delimiters are sequentially encountered in a string, the function returns an
empty string (which can terminate the processing cycle, as in the example).

explode Splits a
string into an array.

Syntax:
array explode (string seperator, string str [, int limit])

The explode () function returns an array of strings, each of which corresponds to a portion of the original
string str between the delimiters specified by separator .

The optional limit parameter specifies the maximum number of elements in the array. The remaining
unseparated part will be contained in the last element.

$ str = "Path1 Path2 Path3 Path4";

$ str_exp = explode ("", $ str);

// now $ str_exp = array ([0] => Path1, [1] => Path2,

// [2] => Path3, [3] => ", [4] => Path4)

implode Concatenates an
array into a string.

Syntax:
string implode (string glue, array pieces)

The implode () function returns a string that contains sequentially all the elements of the array specified in
the pieces parameter , between which the value specified in the glue parameter is inserted .

$ str = implode (":", $ arr);

join Joins an
array into a string.

Syntax :
: string the join (: string glue, pieces of array)

That same , that and implode () .

Working with blocks of text

str_replace
Replaces one substring in the original string with another.

Syntax:
string str_replace (string from, string to, string str)

This function replaces all occurrences of the substring from (case sensitive) with to in str and returns the

result. The original string passed as the third parameter does not change. it can also work with binary
strings.

substr_replace
Replaces one substring in the original string with another.

Syntax:
string substr_replace (string str, string replacement, int start [, int lemgth])

This function returns a string str in which the part from the character at position start and length length (or
to the end if no length argument is specified) is replaced with the string replacement ...

If start is positive, the count is from the beginning of the string str , otherwise - from the end (-1 is the last
character of the string).

If length is non-negative, then it indicates the length of the chunk to replace. If it is negative, then this is the
number of characters from the end of the string str to the last character of the fragment being replaced (with
a minus sign).

wordwrap
Splits the source text into lines with specific trailing characters.

Syntax:
string wordwrap (string str [, int width [, string break [, int cut]]])

This function splits a block of text str into multiple lines, terminated by break characters , so that there are
no more than width letters on one line . The splitting occurs along the word boundary so that the text
remains readable.

strtr
Complex replacement in a string.

Syntax:
string strtr (string str, string from, string to)
string strtr (string str, array from)

In the first case, the strtr () function returns a string str , in which each character present in the string from
is replaced with the corresponding string to ... If the strings from and to are of different lengths, then the
extra trailing characters of the long string are ignored.

In the second case, the strtr () function returns a string in which fragments of the str string are replaced
with the values of the from array elements corresponding to the indices . In this case, the function tries to
replace the largest fragments of the original string first and does not perform replacement in the already
modified parts of the string. Thus, now we can perform several replacements at once:
$ Subs = array (

"<pame>" => "Larry",

"<time>" => date ("dmY")
);
$ st = "Hello < name >! It's < time ";
echo strtr ($ st, $ Subs);
And here's how you can "undo" the action of the HtmlSpecialChars () function :
$ Trans = array_flip (get_html_tra nslation_table ());
$ st = strtr ($ st, $ Trans);
As a result, we will get the original string from a string in which all special characters are replaced by their
HTML equivalents.

stripslashes
Remove backslashes.

Syntax:
string stripslashes (string str);

Replaces some slash-preceded characters in str with their single-code equivalents. This applies to the
following characters: ",", \.

stripcslashes
Convert special characters to their binary representation.

Syntax:
string stripcslashes (string str);

Returns a string in which those special characters that are commented out (for visual display) with a
backslash are converted to their natural binary representation. C-like entries are recognized, for example: \
n, \r ..., octal and hexadecimal sequences.

addslashes
Adds slashes before special characters in a string.

Syntax:
string addslashes (string str);

mumn

Inserts slashes only before the following characters: "," and \. It is very convenient to use this function when
calling eval () .

addcslashes
Formatting string with slashes in C-representation.

Syntax:
string addcslashes (string str, string charlist);

The addcslashes () function returns the string str , into which the backslash "\" characters are inserted
before the characters listed in the ch arlist string . This allows non-printable characters to be converted to

their visual C representation.

quotemeta
Quoting metacharacters.

Syntax:
string quotemeta (string str);

Returns a string in which the added backslashes "\" in front of each of the following characters:

A+ ¥ [A] ()
Can be used to prepare patterns in regular expressions.

strrev
Reverse a string.

Syntax:
string strrev (string str)

The strrev () function returns the string str "backwards".

Functions for character conversion

nl2br
Replaces line feed characters.

Syntax:
string nl2br (string string)

Replaces all newline characters | n in a string with
 \ n and returns the result. The original string is not
changed. Please note that the | r characters that are present at the end of a line in Windows text files are not
taken into account by this function, and therefore remain in the old place.

strip_tags
Removes tags from a string.

Syntax:
string strip_tags (string str [, string allowable_tags])

This function strips all HTML and PHP tags from the string and returns the result.
Incomplete or bogus tags cause an error.
The allowable_tags parameter can be used to pass tags that should not be removed from the string. They
should be listed close to each other.
$st="
 Bold text
<tt> Monospaced text </tt>
< a href = http : // spravkaweb . ru > Link </ a > ";
echo "Source: $ st";
echo "< hr > After removing tags:". StripTags ($ st, "<a > ").
"<hr>";
By running this example, we can see that the <a> and tags have not been removed (just like their paired
closing ones), while the <tt> has disappeared.

get_meta_tags
The function searches and processes all <META> tags.

Syntax:
array get_meta_tags (string filename, int use_include_path)

The function opens the file and searches for all <META> tags in it until the closing </head> tag is
encountered.

If the next <META> tag looks like:

<meta name = "title" content = "content">

then the pair name => content is added to the resulting array, which is returned at the end.

Special characters in the filename attribute value are replaced with an underscore "_", and alphabetic
characters are converted to lowercase.

This function is convenient to use to quickly get all meta tags from a specified file.

If the optional use_include_path parameter is set, then the file is searched not only in the current directory,
but also in all those specified for search by include and require statements .

get_html_translation_table
The function returns a translation table that is used by the htmlspecialchars () and htmlentities () functions.

Syntax:
string get_html_translation_table (int table [, int quote_style])

In this function, the table argument specifies which translation table to get: HTML_SPECIALCHARS for
htmlspecialchars () or HTML_ENTITIES for htmlentities () . The optional quote_style parameter is
described in the htmlspecialchars () function .

$ trans = get _ html _ translation _ table (HTML _ ENTITIES);

$ str = "<A & B>";

$ encoded = strtr ($ str, $ strans);

//'$ encoded = "& amplt; A & amp; B & gt; "

Sometimes it is convenient to use the array_flip () function to change the direction of transliteration.
$ trans = array_flip ($ trans);
$ original = strtr ($ encoded, $ trans);

htmlspecialchars
Converts special characters to HTML representation.

Syntax:
string HtmlISpecialChars (string str [, int quote_style]);

The main purpose of this function is to ensure that no part of the output line is interpreted as a tag.

Replaces some characters in a string (such as the ampersand, quotation marks, and greater than and less than
signs) with their HTML equivalents, so that they look like they are on the page. The most typical use of this
function is the formation of the value parameter in various form elements so that there are no problems with
quotation marks, or displaying a message in the guestbook if the user is not allowed to insert tags. You can
specify what to do with quotes with the optional quote_style attribute :

« ENT_COMPAT (default) - only allow translation of double quotes

« ENT_QUOTES - enable translation of any quotes

« ENT_NOQUOTES - prohibit translation of any quotes

$ str = htmlspecialchars (" Home ", ENT_QUOTES);

htmlentities
Performs conversion of characters with HTML representation.

Syntax:
string htmlentities (string str [, int quote_style]);

This function is similar to htmlspecialchars () , but only it does not perform selective translation, but full
translation - for all characters that can have equivalent HTML representations.

You can specify what to do with quotes with the optional quote_sty le attribute :

« ENT_COMPAT (default) - only allow translation of double quotes

« ENT_QUOTES - enable translation of any quotes

« ENT_NOQUOTES - prohibit translation of any quotes

hebrev
Convert Boolean Hebrew text to displayable text.

Syntax:
string hebrev (string hebrew_text [, int max_chars_per_line]);

The optional max_chars_per_line argument specifies the number of characters per line of output. The
function tries to avoid a word break.

hebrevc
Analogue of the hebrev function with hyphenation.

Syntax:
string hebrevc (string hebrew_text [, int max_chars_per_line]);

The hebrevc () function is similar to hebrev () with the difference that it converts the newline characters "\
n" to "
\ n". the optional max_cha rs_per_line argument specifies the number of characters per line of

output. The function tries to avoid word breaks.

quoted_printable_decode
Converts the quoted string to 8-bit.

Syntax :

string quoted _ printable _ decode (string str);

Case change functions

s trtolower
Converts string characters to lowercase.

Syntax:
string strtolower (string str);

Converts a string to lowercase. Returns the translation result.

It should be noted that if the locale is incorrectly configured, the function will produce, to put it mildly,
strange results when working with Cyrillic letters.

$ str = "HeLLo World";

$ str = strtolower ($ str);

echo $ str;

// prints hello world

strtoupper
Converts the specified string to uppercase.

Syntax:
string strtoupper (string str);

Converts a string to uppercase. Returns the result of the transformation. This function works well with
English letters, but it can be weird with Russian letters.

$ str = "Hello World";

$ str = strtoupper ($ str);

echo $ str;

// prints HELLO WORLD

ucfirst
Converts the first character of a string to uppercase.

Syntax:
string ucfirst (string str);

Returns a string whose first character is uppercase.
Cyrillic characters may not be converted correctly.
$ str =" hello world ";

$ str = ucfi rst ($ str);

echo $ str;

// prints Hello world

ucwords
Converts the first character of each word in a string to uppercase.

Syntax:
string ucwords (string str);

Returns a string that capitalizes the first character of each word in the string.

A word here means a section of a line preceded by a whitespace character: space, line feed, page feed,
carriage return, horizontal and vertical tabs.

Cyrillic characters may not be converted correctly.

$ str =" hello world ";

$ str = ucfirst ($ str);

echo $ str;

// prints Hello World

Setting the locale (local settings)

setlocale
Sets regional settings.

Syntax:
string SetLocale (string category, string locale);

The setlocale function sets the current locale for case conversion, datetime display, and so on. Generally
speaking, the locale is defined separately for each category of functions and looks different. Which category
of functions will be affected by the call to set locale () is specified in the category parameter . It can take the
following string values:

 LC_CTYPE - activates the specified locale for upper / lower case translation functions;

« LC_NUMERIC - activates the locale for the formatting functions of fractional numbers - namely,
specifies the separator of the integer and fractional parts in numbers;

* LC_TIME - sets the default date and time output format;

 LC_ALL - sets all of the above modes. Now let's talk about the locale parameter . As you know, each
locale installed in the system has its own unique name by which it can be accessed. It is this that is fixed in
this parameter. However, there are two important exceptions to this rule. Firstly, if the value of locale is the
empty string "", it is set that the locale that is specified in the global environment variable with the same
name as the category name category (or LANG - it is almost always present in Unix). Second, if 0 is passed
in this parameter, then the new locale is not set, but the name of the current locale for the specified mode is
simply returned.

setlocale ("LC_CTYPE", "ru_SU.KOI * -R");
/I Here the call sets up the replacement table
// case of letters in accordance with the KOI8-R encoding.

Converting encodings

convert_cyr_string
Converts a string from one Cyrillic encoding to another.

Syntax :
string convert_cyr_string (string str, string from, string to);

The function converts the string str from encoding from in the encoding to . Of course, this makes sense
only for strings containing "Russian" letters, since Latin in all encodings looks the same. Of course, the
from encoding must match the true encoding of the string, otherwise the result will be incorrect. The from
and to values are a single character specifying the encoding:

* k-koi8-r

* w-wind ows-1251

* 1-1508859-5

e a-x-cp866

« d-x-cp866

* m - x-mac-cyrillic

The function is fast enough that it can be used to transcode letters into the desired form before sending them
by email.

bin2hex
Converts character data to hexadecimal.

Syntax:

string bin2hex (string str)

The bin2hex (') function returns a string hexadecimal representation of the character-byte data contained in
string str . Conversion is performed byte by byte, the most significant nibble is indicated first.

Format conversion functions

parse_url
Parses the URL and returns its components.

Syntax:
array parse_url (string url);

This function returns an associative array that includes many different existing URL components. These
include "scheme", "host", "port", "user", "pass", "path", "query" and "fragment".
parse_str

Pushes URL strings into variables.

Syntax:
void parse_str (string str [, array arr]);

The parse_str () function interprets the string str as if this string contained variables and their values and
would be passed in the URL. Our function sets values for these variables.
If the second optional parameter is specified, then the values found using the parse_str () function are
stored not in global variables, but in the elements of the specified array.
$ str = "name [] = Vasia & name [] = Pupkin&id=12645&mail=vasia@mail.ru&url=www.vasia.ru";
parse_str ($ str);
parse_str ($ str, $ arr);
echo $ id; // prints 1264
echo $ name [0]; // will display Vasia
e cho $ name [1]; // prints Pupkin
print_r ($ arr);
/I will output
Array
(
[name] => Array
(
[0] => Vasia
[1] => Pupkin
)

[id] => 12645
[mail] => vasia@mail.ru
[url] => www.vasia.ru

)

rawurlencode
URL encoding.

Syntax:
string RawUrlEncode (string str);

The RawUrlEncode () function returns a string in which all non-alphanumeric characters (except for the
hyphen "-", underscore "_", and period ".") Have been replaced by the sequences: percent sign (%) followed
by two hexadecimal digits, which denote the character code. This encoding is necessary to ensure that
alphabetic characters are not processed as URL string delimiters and are not distorted when transmitted over
networks.

echo "<A href = ftp: // user:" .rawurlencode ($ mypasswd).

"@ ftp.my.com / x.txt>"; // pass the password in the hyperlink

rawurldecode
Performs URL decoding.

Syntax:
string rawurldecode (string str);

This function returns a string that converts sequences with a percent sign (%) followed by two hexadecimal
digits to the characters corresponding to this code. Similar to urldecode () , but does not treat + as a space.
$ str =" foo % 20 bar % 40 baz ";

echo rawurldecode ($ str);

// prints foo bar @ baz

base64 _encode Encodes the
data in MIME base64 encoding.

Syntax:
string base64_encode (string data);

base64_encode () returns base64 encoded data. This encoding is designed to transfer binary data through
transport layers that do not contain the eighth bit, such as post bodies. Base64 encoded data takes up about
33% more space than the original.

base64 decode
Decodes data encoded in MIME base64 encoding.

Syntax:
string base64_decode (string encoded_data);

base64_decode () decodes encoded_data and returns the original data. The returned data can be binary.

URL functions

number_format
Formatting a number.

Syntax:
number_format ($ number, $ decimals, $ dec_point = ".", $ Thousands_sep =",");

This function formats a floating point number by dividing it into triads with the specified precision. It can
be called with two or four arguments, but not three! The $ decimals parameter specifies how many decimal
places the number should have in the output string. The $ dec_point parameter is the integer and fractional
separator, and the $ thousands_sep parameter is the triad separator in the number (if you specify an empty
string in its place, the triads are not separated from each other).

Working with binary data

pack
Packing data into a binary string.

Syntax:
string pack (string format [, mixed $ args, ...]);

The pack () function packs the given arguments into a binary string, which is then returned. The format of

the parameters, as well as their number, is specified using the $ format string , which is a set of one-letter
formatting specifiers similar to those specified in sprintf () , but without the% sign. Each specifier can be
followed by a number that indicates how much information will be processed by this specifier. Namely, for
the formats a, A, h and H, the number specifies how many characters will be placed in a binary string from
those that are in the next string parameter when calling the function (that is, it determines the size of the
field for outputting the string). In the case of @, it defines the absolute position at which the following data
will be placed. For all other specifiers, the following numbers specify the number of arguments that this
format applies to. Instead of a number, you can specify *, in this case, it is assumed that the specifier
operates on all remaining data.

Here is a complete list of format specifiers:

* a - string, empty spaces in the field are filled with a character with code 0;

« A - string, empty spaces are filled with spaces;

* h - hexadecimal string, least significant bits at the beginning;

* H - hexadecimal string, high order bits at the beginning;

* - signed byte (symbol);

* C - unsigned byte;

* s -signed short integer (16 bit byte order is determined by the processor architecture);
* S - unsigned short number;

* n -unsigned integer (16 bits, most significant bits at the end);

« v -unsigned integer (16 bits, least significant bits at the end);

« iisasigned integer (the size and byte order is determined by the architecture);

* I - unsigned integer;

» 1-signed long integer (32 bits, the order of the characters is determined by the architecture);
* L - unsigned long integer;

» N - unsigned long integer (32 bits, most significant bits at the end);

* V - unsigned integer (32 bits, least significant bits at the end);

« fis a floating point number (depends on the architecture);

* d - double precision floating point number (depending on architecture);

* X - a character with a zero code;

* X -goback 1 byte;

* @ - filling with a zero code to the specified absolute position.

// Whole, whole, everything else is sivol

$ bindata = pack (" nvc *", 0 x 1234, 0 x 5678, 65, 66);

After executing the above code, the $ bindata line will contain 6 bytes in the following sequence:
0x12, 0x34, 0x78, 0x56, 0x41, 0x42 (in hexadecimal notation).

unpack
Unpacks data from a binary string.

Syntax:
array unpack (string format, string data);

Unpacks data from a binary string into an array according to the format. Returns an array containing the
unpacked elements.

$ array = unpack (" c 2 chars / nint ", $ binarydata);

The resulting array will contain "chars1", "chars2" and "int".

String Sums and Hash Functions

strlen
Returns the length of the string.

Syntax:
int strlen (string str)

Returns simply the length of the string, i.e., how many characters str contains .
The string can contain any characters, including those with a zero code. The strlen () function will work

correctly with such strings as well.
count_chars
Returns information about the characters in a string.

Syntax:
mixed count_chars (string str [, int mode])

The count_chars () function counts the frequency of each byte (0-255) in str and returns the result in an
array according to the optional mode argument . mode can take on the following values:

* 0 (default) - an array with bytes as indices and repetition rate as values of an array element

* 1 - similar to 0, but bytes missing in str are not returned

« 2 -similar to 0, but only those bytes that are missing are returned

« 3 -returns a string consisting of all found characters

* 4 -returns a string consisting of all missing characters

md5
Get the MD5 hash string.

Syntax:
string md5 (string str);

Returns the hash code of str, based on the RSA Data Security Corporation's MD5 Message-Digest
Algorithm. The hashcode is just a string, practically unique to each of the str lines . That is, the probability
that two different strings passed to str will give us the same hash code tends to zero.

At the same time, if the length of a string str can reach several thousand characters, then its MD5 code takes
a maximum of 32 characters.

crc32
Get the crc32 string polyminal.

Syntax:
int crc32 (string str); Crc32 ()

function calculates the 32-bit checksum of str . That is, the result of its operation is a 32-bit (4-byte) integer.
Usually this function is used to check the integrity of the transmitted data. This function is much faster than
md5 () , but at the same time produces much less reliable "hash codes" for a string. So, now, to get the same
"hash codes" by random selection for two different strings, you will need not a trillion years of operation of
the most powerful computer, but only a year or two.

crypt
Performs symmetric encryption.

Syntax:
string crypt (string str [, string salt]);

The str argument specifies the string to be encrypted.

The hash code for the same string, but with different salt values (by the way, this must be a two-character
string) gives different results. If the salt parameter is omitted, PHP will randomly generate it.

On systems that support multiple encryption algorithms, the following constants are set to 1 or 0, depending
on whether the algorithm is supported or not:

« CRYPT_STD_DES - standard 2-byte DES encryption (SALT = 2)

« CRYPT_EXT_DES - extended 9-byte DES encryption (SALT = 9)

« CRYPT_MDS5 - 12-byte MD5 encryption (SALT starts at $ 1 $)

« CRYPT_BLOWTFISH - extended 12-byte DES-encryption (SALT starts with $ 2 $)

. Since this function uses a one-way encryption algorithm, there is no decryption function.

metaphone Computes a

metaphone hash.

Syntax:
string metaphone (string str);

This function is similar in action to soundex () , it calculates the pronunciation code of the word passed in
the string str , but with increased calculation accuracy, since uses English pronunciation rules.
The returned string value can be of variable length.

soundex
Calculate the pronunciation similarity hash.

Syntax:
string soundex (string str);

The soundex () function is used to check spelling when you know approximately how a word sounds, but
you don't know how to spell it, and you have a dictionary (database) against which you can check.

A 4-character string is returned: the first letter of the word and 3 numbers.

soundex (" Euler ") == soundex (" Ellery ") ==" E 460";

soundex ("Gauss") == soundex ("Ghosh") == "G200";

soundex ("Hilbert") == sou ndex (" Heilbronn ") == "H416";

soundex ("Knuth") == soundex ("Kant") == "K530";

soundex ("Lloyd") == soundex ("Ladd") == "L300";

soundex ("Lukasiewicz") == soundex ("Lissajous") == "L222";

Symbolic links. Hard links
A bit of theory

On Unix systems, it is quite common to have different names for the same file or directory. In this case, it is
logical to call one of the names the main one, and all the others - his pseudonyms. In Unix terminology,
such aliases are called symbolic links .

A symbolic link is simply a special kind of binary file that contains a link to the main file. When accessing
such a file (for example, opening it for reading), the system "understands" which object is actually being
accessed and provides it transparently. This means that we can use symbolic links just like regular files.
However, sometimes you need to work with a link exactly as a link, and not as a file. This is what the PHP
functions listed below are for.

Hard links

Creating a symbolic link is not the only way to give multiple names to the same file. The main drawback of
symbolic links is the existence of a base filename that everyone links to. Try to delete this file and the whole
web of links, if any, will fall to pieces. There is another drawback: opening the file to which the link points
is somewhat slower, because the system needs to parse the contents of the link and establish a link to the
"real" file. This is especially felt if one link points to another, and that one to the third, etc. levels by 10.

Hard links allow you to have several completely equal names for one file, and access to them is carried out
equally quickly. Moreover, if one of these names is deleted, then the file itself will be deleted only if this
name was the last one, and the file has no other names.

You can register a new file name (that is, create a hard link for it) using the link () function . Its syntax is
completely identical to the symlink () function, and it works according to the same rules, except that it
creates not a symbolic link, but a hard link.

readlink
Returns the name of the main file.

Syntax:
string readlink (string $ linkname)

Returns the name of the main file with which its synonym $ linkname is associated . This is useful if you
want to know the base name of a file so that, for example, you can delete the file itself, rather than a link to
it. On error, the function returns false.

symlink
Creates a symbolic link.

Syntax:
bool symlink (string $ target, string $ link)

This function creates a symbolic link named $ link to the object (file or directory) specified in $ target . If it
fails, the function returns false.

Istat This
function gathers together all the information provided by the operating system for the specified link and
returns it as an array.

Syntax:
array lIstat (string $ filename)

The function is exactly the same as calling stat () , except that if $ filename specifies not a file, but a
symbolic link, information about this link will be returned (and not about the file it points to as stat () does

).

linkinfo
The function returns the value of the "device" field from the result returned by the Istat () function .

Syntax:
int linkinfo (string $ linkname)

This is usually used when you want to determine if the object pointed to by a symbolic link in $ linkname
still exists .

Date and time functions

checkdate
Checks if the date / time is correct.

Syntax:
int checkdate (int month, int day, int year);

The checkdate () function checks the validity of the date given in its arguments.

Returns true if the date specified as "month, day, year" (month, day, year) is correct, otherwise false. A date
is considered correct if:

- a year between 1 and 32767 inclusive

- a month between 1 and 12 inclusive

- the day is in the range of allowed days for this month. Leap years are counted .

$ month = 1;
$ day = 10;
$ year = 2002;

if (checkdate ($ month, $ day, $ year)) echo " This day there !";
else echo "There is no such day!";
Output: There is such a day!

$ month = 13;
$ day = 10;
$ year = 2002;

if (checkdate ($ month, $ day, $ year)) echo " This day there !";
else echo "There is no such day!";

Output: There is no such day!

date
Local time / date format.

Syntax:
string date (string format [, int timestamp]);

This function returns a string containing the date and time formatted according to the format string and
using the timestamp or the current local time if no timestamp is specified.

The following characters must be used in the format string:

* a-"before" and "after" noon: "am" or "pm"

« A -"Before" and "Afternoon": "AM" or "PM"

* d - day of the month, 2 digits (zero in the first place) (from 01 to 31)

* D - day of the week, text, 3 letters; those. "Fri"

* j - day of the month, 1-2 digits without leading zeros (from 1 to 31)

* F - month, text, long; those. "January"

* h - hour, 12-hour format (from 01 to 12)

* H - hour, 24-hour format (from 00 to 23)

* g - hour, 12-hour format without zeros (from 1 to 12)

* G - hour, 24-hour format without zeros (from 0 to 23)

* i- minutes (from 00 to 59)

» I (largei) - 1 if daylight saving time is in effect, otherwise 0

« L - 0if the year is not a leap year, or 1 otherwise

* B - Swatch Internet time

« T - computer time zone, for example: MDT (not always available)

» 1 (lowercase "L") - day of the week, text, long; those. "Friday"

« m - month, two digits followed by zeros (from 01 to 12)

« n - month, one or two digits without zeros (from 1 to 12)

* M - three-letter English abbreviation of the month; those. "Jan"

* t-number of days in the specified month (from 28 to 31)

* s -seconds (from O to 59)

* S - English-language ordinal suffix of a number of two letters, text, ie. "th", "nd"
« U is an integer number of seconds since the beginning of the UNIX era (not always available)
* Y - year, numeric, 4 digits (1999)

* y - year, numeric, 2 digits (99)

* w - ordinal number of the day in the week, (from 0-Sunday to 6-Saturday)

» z - ordinal number of a day in a year (from 0 to 365)

» Z - mixing time zone in seconds (from -43200 to 43200)

All other characters in the format string argument are returned as is in the resulting string.
The "Z" format always returns 0 when used with the gmdate () function.

echo date ("Todayisd. m.Y ");

// Today is 01/31/2002

echo date ("l dS o f FY h: i: s A");

// Thursday 31st of January 2002 12:51:19 PM

echo " July 1, 2000 is on a". date ("1", mktime (0,0,0,7,1,2000));

// July 1, 2000 is on a Saturday

The date () and mktime () functions can be used together to find dates in the future or the past.
$ tomorrow = mktime (0,0,0, date ("m"), date ("d") + 1, date ("Y"));

$ lastmonth = mktime (0,0,0, date ("m") - 1, date ("d"), date ("Y"));

$ nextyear = mktime (0,0,0, date ("m"), date ("d"), date ("Y") + 1);

localtime
Gets date / time information.

Syntax:
array localtime ([int timestamp [, bool is_associative]]);

The first optional argument to this function is a Unix timestamp. If it is not specified, the current time is
used.

If the second optional parameter is zero (the default), then the returned array will be numerically indexed;
otherwise, an associative array is returned where the elements have the following meanings:
* ([1]) "tm_sec" - seconds

* ([2]) "tm_min" - minutes

* ([3]) "tm_hours" - hours

* ([4]) "tm_mday" - day of the month

* ([5) "tm_mon" - month of the year

* ([6]) "tm_year" - year, digital

* ([7) "tm_wday" - day of the week

* ([8])) "tm_yday" - day of the year

* ([9]) "tm_isdst" - whether daylight saving time is active

gettimeofday
Get the date with a system call.

Syntax:
array gettimeofday ();

This function returns an associative array that contains the date returned by the system call. The function is
the interface of the gettimeofday (2) system function.

The returned associative array contains the following elements:

« "sec" - seconds

« "usec" - microseconds

* "minuteswest" - offset west of Greenwich, in minutes

« '"dsttime" - type of dst correction (daylight saving time)

strftime
Format time according to local settings.

Syntax:
string strftime (string format [, int timestamp]);

Returns a string formatted according to the given format string format and using the given timestamp or the
current local time if no stamp is specified.

Using the setlocale () function, you can set the language in which the names of months and days will be
displayed.

The following conversion specifiers should be used in the format string:

* % a - abbreviated name of the day of the week by default (Wed);

* % A - full name of the day of the week by default (Wednesday);

* % b - abbreviated month name by default (Apr);

* % B - full month name by default (April);

* % c is the preferred date and time representation (06/19/02 15:45:11);

* % C - century number (year divided by 100 and without fractional part, from 00 to 99);

* % d - day of the month as a decimal number (in the range from 0 to 31);

* % D - equivalent to% m /% d /% y;

* % e - day of the month (a space is inserted instead of a non-significant zero) (from 1 to 31);
* % h - analogue 0f% b;

* % H - hour as a decimal number in 24-hour format (in the range from 00 to 23);

* %I - hour as a decimal number in 12-hour format (in the range from 01 to 12);

* % j - number of the day in the year as a decimal number (in the range from 001 to 366);

* % m - month number as a decimal number (in the range from 1 to 12);

* % M - minutes as a decimal number;

* 9% n - newline character;

* % p-"am" or "pm" (before and after noon) according to the current time;

* % - time in 12-hour format (am or pm);

* % R - time in 24-hour format;

* % S - seconds as a decimal number;

* % tis atab character;

* % T - current time, equivalent to% H:% M: $ S;

* % u - number of days in the week (from 1 to 7) (Monday - 1);

* % U is the number of the week of the year as a decimal number, starting with the first Sunday as the first
day of the first week;

* % V is the number of the week of the year according to the ISO 8601: 1988 standard (from 1 to 53),
where the first week is the one with more than 3 days in the current year;

* % W - week number of the year as a decimal number, starting with the first Monday as the first day of
the first week;

* % w - the number of the day in the week (from 0 to 6) (Sunday - 0);

* % x - representation of the date in the system format without specifying the time (06/13/02);

* % X - representation of time in system format without specifying the date (15:34:54);

* %y - year as a decimal number without century (in the range from 00 to 99);

* %Y - year as a decimal number, including the century;

* % Z - time zone or name or abbreviation;

* %% - symbol "%".

setlocale ("LC_TIME", "C");

print (strftime ("% A in Finnish is"));

setlocale ("LC_TIME", "fi");

print (strftime ("% A, in French"));

setlocale ("LC_TIME", "fr");

print (strftime ("% A and in German"));

setlocale ("LC_TIME", "de");

print (strftime ("A. \ n"));

Formats local time according to locale setting.

getdate
Gets date / time information.

Syntax:
array getdate (int timestamp);

Returns an associative array containing date information with the following elements:

« "seconds " - seconds

* " minutes " - minutes

* "hours" - hours

* "mday" - day of the month

« "wday" - day of the week, numeric

 "mon" - month, numeric

« 'year" - year, digital

« "yday" - day of the year, digital; those. "299"

» "weekday" - day of the week, text, full; those. "Friday"
"month" - month, text, full; those. "January"

0 - "UNIX timestamp" argument received .

print_r (getdate (time ()));

The above example will output the following:

Array

(

[seconds] => 23
[minutes] => 44
[hours] => 22
[mday] => 15
[wday] => 0

[mon] => 8

[year] => 2004
[yday] => 227
[weekday] => Sunday
[month] => August
[0] => 1092595463

)

gmdate

Get the date in a formatted string for GMT time.

Syntax:
string gmdate (string format, int timestamp);

Same as date () except that the time is returned in Greenwich Mean Time (GMT). For example, when
running in Finland (GMT +0200), the first line below will print "Jan 01 1998 00:00:00", while the second
line will print "Dec 31 1997 22:00:00".

echo date ("M d YH: i: s", mkti me (0,0,0,1,1,1998));

echo gmdate ("M d YH: i: s", mktime (0,0,0,1,1,1998));

gmstrftime
Local time / date formatting.

Syntax:
string gmstrftime (string format, int timestamp);

This function works in the same way as strftime (), except that it returns Greenwich Mean Time (GMT).

For example, if you run in the zone (GMT -0500), the first line is "Dec 31 1998 20:00:00", and the second is
"Jan 01 1999 01:00:00".

setlocale ("LC_TIME", "en_US");

echo strftime ("% b% d% Y% H:% M:% S", mktime (20,0,0,12,31,98)). "\ n";

echo gmstrftime ("% b% d% Y% H:% M:% S", mktime (20,0,0,12,31,98)). "\ n";

mktime
Gets the UNIX timestamp for a date.

Syntax :
int mktime ([int hour] [, int minute] [, int second] [, int month] [, int day] [, int year] [, int is_dst]);

Returns the temporary label Unix according to data arguments . This timestamp is an integer equal to the
number of seconds between the Unix epoch (Jan 1, 1970) and the specified time. All parameters of these
functions are optional, but they can only be skipped from right to left. If some parameters are not specified,
values corresponding to the current date are substituted in their place. The is_dst argument indicates
whether daylight saving time (1) has occurred or not (0); if not known, the argument is (-1) The function
returns the timestamp corresponding to the specified date. The correctness of the date passed in the
parameters is not checked. In the case of an incorrect date, nothing special happens - the function "pretends"
that it does not concern it, and forms the corresponding timestamp .

echo date ("MdY", mktime (0,0,0,12,32,1997)); // correct date
echo date ("MdY", mktime (0,0,0,13,1,1997)); // wrong date
echo date ("MdY", mktime (0,0,0,1,1,1998)); // wrong date
Outputs three identical numbers

gmmbktime
Analog of the time () function for GMT time.

Syntax:
int gmmktime (int hour, int minute, int second, int month, int day, int year [, int is_dst]);

Identical to mktime () except that the parameters passed are in Greenwich Mean Time (GMT).

time
Get time in seconds.

Syntax:
int time ();

Returns the current time, measured in seconds since the Unix epoch (Jan 1, 1970 00:00:00 GMT).

This data format is accepted in Unix as a standard (called "UNIX timestamp"): in particular, the time of the
last modification of files is indicated in this format. Generally speaking, almost all functions for working
from time to time deal with this representation of it (called the timestamp). That is, the representation
"number of seconds since January 1, 1970" is very versatile and, what is most important, convenient.

echo time ();

microtime
Returns the current UNIX timestamp in microseconds.

Syntax:
string microtime ();

Returns the string "msec sec" where sec is the current time, measured in seconds since the Unix epoch
(0:00:00 January 1, 1970 GMT), and msec is the fraction in microseconds. These functions are only
available on operating systems that support the gettimeofday () system call.

But the point is that milliseconds look different in different OCs. For example, in Unix it is really a number
of microseconds, but in Windows it is an incomprehensible value.

echo microtime (); / in Windows it will display something like 0.53033200 1012468870

strtotime
Lexical conversion of time string to Unix timestamp.

Syntax:
int strtotime (string time [, int now]);

In the time argument, the function receives a date in English format and then converts it to an integer Unix
timestamp format.

echo strtotime ("now"). "\ n";

echo strtotime (" 10 September 2002 "). "\ n";

echo strtotime ("+ 2 day"). "\ n";

echo strtotime ("+ 3 week"). "\ n";

echo strtotime ("+1 week 2 days 4 hours 34 seconds"). "\ n";

Logical functions for determining the type of a variable

is_scalar
Checks if a variable is simple.

Syntax:
bool is_scalar (mixed var)

Returns true if var is of scalar type (chill, strings, boolean values) but not complex type (arrays or objects).

is_null
Checks if a variable is empty.

Syntax:
bool is_null (mixed var)

Returns true if var does not exist (or has been explicitly assigned a null value). The function is equivalent to
the expression:

(var === null or is_set (var)

is_numeric

Checks if a variable is numeric.

Syntax:
bool is_numeric (mixed var)

Returns true if var is of a numeric type (integer, double), or a string with a numeric value.

is_bool
Checks if a variable is boolean.

Syntax:
bool is_bool (mixed var)

Returns true if var is a boolean type (TRUE or FALSE), otherwise false.

is_int
Determines if a variable is of type integer.

Syntax:
bool is_int (mixed var);

Returns true if var is of type integer.

is_integer
Determines if a variable is of type integer.

Syntax:
bool is_integer (mixed var);

Returns true if var is of type integer, or false otherwise.

is_long
Determines if a variable is of type integer.

Syntax:
bool is_long (mixed var);

Returns true if var is of an integer type (integer, long), or false otherwise.

is_real
Determines if a variable is of type real (fractional).

Syntax:
bool is_real (mixed var);

Returns true if var is of type real (fractional), or false otherwise.

is_float
Determines if a variable is of type float (fractional).

Syntax:
bool is_float (mixed var);

Returns true if var is of type float (fractional), or false otherwise.
is_double
Determines whether a variable is of type double (fractional).

Syntax:
bool is_double (mixed var);

Returns true if var is of type double (fractional), or false otherwise.

is_string
Determines if a variable is a string.

Syntax:
bool is_string (mixed var);

Returns true if var is a string, or false otherwise.

is_array
Determines if a variable is an array.

Syntax:
bool is_array (mixed var);

Returns true if var is an array, or false otherwise.

is_object
Determines if a variable is an object.

Syntax:
bool is_object (mixed var);

Returns true if var is an object, or false otherwise.

is_resource
Determines if a variable is a resource pointer.

Syntax:
bool is_resource (mixed var);

Returns true if var points to a resource allocated and returned by the intended function.

Resources are objects like files or database query results that are allocated and released by PHP's internal
functions. When a program no longer requires a resource, it is good programming practice to explicitly
release it with the intended functions. But in most cases, the PHP interpreter frees up unnecessary resources
as needed (usually at the end of the script).

get_resource_type
Determines the type of the resource descriptor.

Syntax:
string get_resource_type (resource $ handle);

This function returns a string containing a description of the resource type. If an invalid resource pointer is
passed in the argument, an error occurs.

$ ¢ = mysql_connect ();

echo get_resource_type ($). "\ n";

// prints : mysql link

$ file = fopen ("filename.txt", "w"
echo get_resource_type ($ file). "\ n";
// will output : file

$ doc = new_xmldoc ("1.0");
echo get_resource_type ($ doc). "\ n";
// will output: domxml document

Variable functions

gettype
Gets the type of the variable.

Syntax:

string gettype (mixed var);

Returns the type of PHP variable var.
Possible values for the returned string:
"integer"

"double"

"string"

"array"

"object"

"unknown type"

intval
Returns the integer value of a variable.

Syntax:
int intval (mixed var, int [base]);

Returns the integer value of var using the specified translation base (default 10). var can be scalar. You
cannot use the intval () function for arrays or objects.

doubleval
Gets the value of a variable in double format.

Syntax:
double doubleval (mixed var);

Returns the double (floating point) value of var.
var can be scalar. You cannot use doubleval () on arrays and objects.

empty
Determines if the variable has any value.

Syntax:
int empty (mixed var);

Returns false if var exists and is not null or null; true otherwise.
The function actually checks if the variable has a value that can be set to 0, that is: (var == 0)
$ var = 0;
if (empty ($ var)) {

echo "$ var is either 0 or not important";

if (! isset ($ var)) {

echo "$ var doesn't matter";

s
b5
Note that it is useless to use this function with an argument other than a variable, for example the expression
empty (Addslashes ($ name)) is meaningless, since here the value returned by the function is checked. The
only thing that the empty () function can reveal in this variant is whether the expression has a value
equivalent to true (not equal to zero), and this can be checked without using the function.

isset
Determines if a variable exists.

Syntax:
int isset (mixed var);

Returns true if var exists; false otherwise.

The function actually checks if the variable has a value identical to null, that is: (var === null). Note the
difference between equality and identity.

If a variable was removed with unset (), it will no longer be determined by isset ().

$a="test";

echo isset ($ a); // true

unset ($ a);

echo isset ($ a); // false

settype
Sets the type of the variable.

Syntax:
int settype (string var, string type);

Sets the type of variable var to type.
Possible values of type:

"integer"

"double" "

" string "

" array ""

"object"

Returns true on success; false otherwise.

str val
Gets the string value of a variable.

Syntax:
string strval (mixed var);

Gets a var string value.
var can be of any scalar type. You cannot use strval () on arrays or objects.

unset
Removes the specified variable.

Syntax:
int unset (mixed var);

unset () destroys the specified variable and returns true.
Example :

unset ($ foo);

unset ($ bar ["quux"]);

Functions for working with functions

get_defined_functions
Returns a list of all available functions.

Syntax:
array get_defined_functions ()

Function get_defined_functions () Returns a multidimensional array that contains the names of all
functions available to the script.
print_r (get_defined_functions);

function_exists
Checks for the existence of a function.

Syntax:
bool function_exists (fuction_name: string)

function function_exists () returns the value true, if the function named function_name there in the script.
Returns false otherwise.
if (function _ exists (" imagecreate ")) {
echo "Graphics library available!
} else {
echo "Graphics library not available!

",
’

};

call_user_func
Performs an indirect function selection.

Syntax :
mixed call_user_func (string function_name [, mixed parameter [, mixed ...]])

The call_user_func () function calls the fu nction_name function and passes all the other parameter
parameters ...

<? php
function myFunc ($ str) {
echo $ str;
I
call_user_func ("myFunc", "Hello World");
>

create_function
Dynamically create a function.

Syntax:
string create_function (string args, string code)

The create_function () function creates an anonymous function and returns the name generated for that
function. Function arguments listed in the args argument are usually quoted in single quotes. The body of
the function is also passed in the code argument . This is necessary to prevent the interpreter from replacing
variables with values. If you still limit it with double quotes, then you must precede the variable with a
slash: \ $ var.

Usually, names returned by a function are prefixed with lambda_ .

Using this function, you can create functions based on information obtained during script execution.
$ func = create_function ('$ a, $ b,
return "$a* $b =". $a* $ b);";
echo "New function name: $ func
";
echo $ func (2,3);
This example will output the following:
New function name: lambda_1
6

func_get_arg
Get the function argument.

Syntax:
mixed func_get_arg (int arg_num);

The func_get_arg () function returns the specified arg_num agrumen that was passed to the current user-
defined function as a parameter. The parameters passed to the function start from zero.

If this function is called outside the function definition, then it issues an error warning. Also, a warning will
be issued when trying to find out a parameter that does not exist in the list of arguments (the function will
return false). In order for the function to work correctly, it is necessary to know in advance the total number
of parameters that are passed to the user-defined function using the func_num_args () function .
<? php
functi on func () {

$ num_args = func_num_args ();

echo "The number of arguments for this function is: $ num_args
";

for ($i=0; $i <% num_args; $i ++)

echo "$ i argument :" .func_get_arg ($ i). "
";

};

func ("2", 1, "tree");
>

func_get_args
Get function arguments in an array.

Syntax:
array func_get_args ();

The func_get_args () function returns the list of arguments in an array with which the current user-defined
function was called. If func_get_args () is called outside the definition of a user-defined function, an error
warning is issued.
<? php
function func () {

$ num_args = func_num_args ();

echo "The number of arguments for this function is: $ num_args
";

$ func_list = func_get_args ();

for ($i=0; $i <% num_args; $i ++)

echo "$ i argument number $ i:". $ func_list [$ i]. "
";

};

func ("2", 1, "tree");
>

func_num_args
Returns the number of arguments received in a custom function.

Syntax:
int func_num_args ();

Function func_num_args () returns the number of arguments that were passed into the current user-defined
function.

Typically this function is used in conjunction with func_get_arg () and func_get_args () in custom
functions that can take an indefinite number of parameters.
<? php
function func () {

$ num_args = func_num_args ();

echo "The number of arguments for this function is: $ num_args
";

$ func_list = func_get_args ();

for ($1=0; $i <$ num_args; $i ++)

echo "$ i argument number $ i:". $ func_list [$ i]. "
";

1

func ("2", 1, "tree");
>

Calendar functions

JDToGregorian
Converts daily Julian account to Gregorian date.

Syntax:
string jdtogregorian (int julianday);

Converting daily Julian account to Gregorian in month / day / year format
GregorianToJD
Converts a Gregorian date to a Julian Day Count.

Syntax:
int gregoriantojd (int month, int day, int year);

The correct range for the Gregorian calendar is 4714 CE. before 9999 AD

While this software can reverse dates back to A.D. 4714, such use may be useless and not significant. The
Gregorian calendar was not instituted until October 15, 1582 (or October 5, 1582 in the Julian calendar).
Some countries did not accept it for a very long time. For example, Great Britain was transformed in 1752,
the USSR in 1918 and Greece in 1923. Most European countries used the Julian Calendar before the
Gregorian.

Example:

<? php

$ jd = GregorianToJD (10,11,1970);

echo ("$ jd \ n");

$ gregorian = JDToGregorian ($ jd);

echo ("$ gregorian \ n");

>

JDToJulian
Converts a Julian date to a Julian day count.

Syntax:
string jdtojulian (int julianday);

Converts a daily Julian account to a string containing a Julian calendar date in month / day / year format.

JulianToJD
Converts a Julian calendar date to a daily Julian count.

Syntax:
int juliantojd (int month, int day, int year);

The correct range for the Julian calendar is AD 4713. before 9999 AD

Although this software can operate in reverse order up to AD 4713. such use may be useless and not
significant. The calendar was created in 46 AD, but the detailed did not stabilize until at least 8 AD, and
possibly later in the 4th century. Also, the beginning of the year is different from one culture to another - not
everyone agrees that January is the first month.

JDToJewish
Converts the daily Julian count to the Hebrew calendar.

Syntax :
string jdtojewish (int julianday);

JewishToJD
Converts a date in the Hebrew Calendar to a daily Julian count.

Syntax:
int jewishtojd (int month, int day, int year);

The Hebrew calendar has been in use for several millennia, but during the initial period there was no
formula to determine the beginning of the month. The new month began when the full moon was seen.

JDToFrench
Converts Daily Julian Account to French Republican Calendar.

Syntax:
string jdtofrench (int month, int day, int year);

Converts Daily Julian Account to French Republican Calendar.

FrenchToJD
Converts the date and the French Republican calendar to the Julian day count.

Syntax:
int frenchtojd (int month, int day, int year);

This program converts dates from 1 to 14 (Gregorian dates September 22, 1792 to September 22, 1806).
This covers the period when the calendar was used.

JDMonthName
Returns the name of the month.

Syntax:
string jdmonthname (int julianday, int mode);

Returns a string with the name of the month. main tells the function which calendar to convert the Julian
day account to, and what type of monthly names should be returned.
Calendar ways

Gregorian -
apreviated

Gregorian

Julian - apreviated

Julian

AlWIN|F o

Jewish

five

French Republican

JDDayOfWeek
Returns the day of the week.

Syntax:
mixed jddayofweek (int julianday, int mode);

Returns the day of the week. It can return a string or an int depending on the mode.
Calendar weekly paths

Value

returns the day number as int (0 = Sunday, 1 = Monday, etc.)

return string content of the day of the week (english-gregorian)

returns a string containing abreviated days of the week (English-
Gregorian)

Part 3. Files and networks

Working with files
Opening a file

fopen
Opens a file and binds it to a descriptor.

Syntax:
int fopen (string $ filename, string $ mode, bool $ use_include_path = false)

Opens a file named $ filename in $ mode and returns a handle to the open file. If the operation failed, then
the function returns false. The optional parameter use_include_pa th tells that if a relative file name is
given, it should also be looked for in the list of paths used by the include and require statements . This
parameter is usually not used.

The $ mode parameter can take the following values:

r

- The file is opened for reading only. If the file does not exist, the call logs an error. After successful
opening, the file pointer is set to its first byte, i.e. at the beginning.

r+

- The file is opened simultaneously for reading and writing. The current position pointer is set to its first
byte. Returns false if the file does not exist. If at the time of recording the file pointer is set somewhere in
the middle of the file, then the data will be written directly over the existing ones, and not spread them
apart, increasing the file size if necessary.

w

- Creates a new empty file. If at the time of the call there was already a file with the same name, then it is
previously destroyed. In the case of an incorrectly specified file name, the call fails.

w +

- Similar to r +, but if the file did not exist initially, creates it. After that, you can work with the file in both
read and write modes. If the file existed before the call, its contents are deleted.

a

- Opens an existing file in write mode, and at the same time shifts the current position pointer by the last
byte of the file. As usual, the call fails if the file is missing.

a+

- Opens the file in read / write mode, the file pointer is set to the end of the file, while the contents of the file
are not destroyed. It differs from a in that if the file did not originally exist, then it is created. This mode is
useful if you need to add something to a file, but you don’t know if such a file has already been created.

But this is not yet a complete description of the $ mode parameter . The fact is that at the end of any of the
strings r, w, a, r +, w + and a + there can be one more optional character - b or t. If b is specified (or none at
all), then the file is opened in binary read / write mode. If this is t, then the translation mode of the line feed
character is set for the file, i.e. it is perceived as textual.

tmpfile
Creates a new temporary file with a unique name and opens it for reading and writing.

Syntax:
int tmpfile ()

Further work must be done with the returned file descriptor, because the file name is not available.
The space occupied by a temporary file is automatically released when it is closed and when the program

exits.

Closing the file

fclose
Closes a file previously opened with fopen () .

Syntax:
int fclose (int $ fp)

Returns false if the file could not be closed (for example, something happened to it or the connection with
the remote host was broken). Otherwise, it returns true.

You should always close FTP and HTTP connections, because otherwise a "stray" file will lead to
unnecessary downtime and unnecessary server load. In addition, by successfully closing the connection, you
can be sure that all data was delivered without errors.

Read and write

fread
Reads a specified number of characters from an open file.

Syntax:
string fread (int $ f, int $ numbytes)

Reads $ f $ numbytes characters from the file and returns a string of those characters. After reading, the file
pointer advances to the next position after the read block. If there is more $ numbytes than can be read from
the file, what was read is returned. This technique can be used if you need to read the entire file into a line.
To do this, just set $ numbytes to a very large number. But if you are concerned about saving memory on
the system, this is not recommended.

fwrite
Write to file.

Syntax:
int fwrite (int $ f, string $ str)

Writes the entire contents of string §$ str to file $ f. This function pairs with fread () in reverse. When
working with text files (that is, when the t character is specified in the file open mode), all \ n are
automatically converted to the line separator accepted in your operating system.

fgets
Reads a single line from the file, ending with a newline character \ n.

Syntax:
string fgets (int $ f, int $ length)

This character is also read and included in the result. If a line in the file is more than $ length-1 bytes, then
only its $ length-1 characters are returned . This function is useful if you have opened a file and want to
loop through all of its lines. However, even in this case (and faster), the File () function will be used . It is
also worth noting that this function (like the fread () function) in the case of text mode on Windows takes
care of converting \ r \ n pairs to a single \ n character.

fputs
Complete analogue of fwrite () . Syntax : int fputs (int $ f, string $ str)

fgetcsv
Function for working with one of the file formats in which Excel data can be saved.

Syntax:
list fgetcsv (int $ f, int $ length, char $ delim = ",")

The function reads a line from the file specified by descriptor $ f and splits it at the $ delim symbol . The $
delim parameter must be a single character string, otherwise only the first character of this string is taken
into account. The function returns the resulting list, or false if the lines ran out. The $ length parameter
specifies the maximum length of the string, just like fgets () does . Blank lines in the file are not ignored,
but are returned as a list of one item - an empty line.

Example :

$ f = fopen ("file.csv", "r'") or die (" Error ");
for ($i=0; $ data = fg etscsv ($ f, 1000, ";"); $i ++) {
$ num = count ($ data);
if ($ num == 1 && $ data [0] ==="") continue;
echo "<h3> String number $ i ($ num fields): </h3>";
for($c=0;$ c<$num; $ c ++)
print "[$ c]: $ data [$ c]
";
}
fclose ($ f);

Position of the current position pointer

feof
End of file pointer.

Syntax:
int feof (int $ f)

Returns true if the end of the file is reached (that is, if the file pointer is positioned past the end of the file).
Example :
$ f = fopen ("myfile.txt", "1'");
while (! feof ($ f))
{$ str = fgets ($ f);
// Process the next line $ str

}
fclose ($ f);

fseek
Sets the file pointer to a specific position.

Syntax:
int fseek (int $ f, int $ offset, int $ whence = SEEK_SET)

Sets the file pointer to the byte offset $ offset (from the beginning of the file, from its end, or from the
current position, depending on the $ whence parameter). This may not work if the $ f descriptor is
associated with an HTTP or FTP connection rather than a regular local file.

The $ whence parameter specifies where the $ offset is calculated from . There are three constants for this in
PHP, 0, 1, and 2, respectively:

SEEK_SET

- sets the position starting from the beginning of the file;

SEEK_CUR

- counts down the position relative to the current position;

SEEK_END

- counts down the position relative to the end of the file;

In the case of using the last two constants, the $ offset parameter may well be negative (and when using
SEEK_END it will most likely be negative). This function returns 0 on success and -1 on failure.

ftell
Returns the position of the file pointer.

Syntax :
int ftell (int $ f)

Functions for detecting file types

file_exists
Checks for the existence of the called file.

Syntax:
bool file_exists (string filename)

Returns true if the file named filename exists at the time of the call. Use this function with care. For
example, the following code is no good from a security standpoint:

$ fname ="/ etc / passwd";
if (! file_exists ($ fname))

$ f = fopen ($ fname, "w");
else

$ f = fopen ($ fname, "r");
The fact is that between the call to file_exists () and the opening of the file in w mode, some time passes,
during which another process can intervene and replace the file we are using. This problem comes to the
fore when you write a counter script.

The function does not work with remote files, the file must be located in the file system accessible to the
server.
Function results are cached, see clearstatcache () function .

filetype
Returns the file type.

Syntax:
string filetype (string filename)

Returns a string that describes the type of file named filename . Returns false if no such file exists.
Once called, the string will contain one of the following values:

file is aregular file;

dir - directory;

link - a symbolic link;

fifo - fifo channel;

block - block-oriented device;

char - character-oriented device;

unknown - unknown file type;

is_file
Check if a regular file exists.

Syntax :
bool is_file (string filename)

Returns true if filename is a regular file .

is_dir
Check for directory existence.

Syntax:
bool is_dir (string filename)

Returns true if filename exists.

is_lin k
Check for the existence of a symbolic link to a file.

Syntax:
bool is_link (string filename)

Returns true if filename is a symbolic link.
The function does not work under Windows.

is_readable
Checks for the existence of a readable file.

Syntax:
bool is_readable (string filename)

Returns true if the file can be opened for reading.
Typically PHP will access the file with the privileges of the user running the web server (often "nobody").
Safety considerations must be taken into account.

is_writeable
Checks if a file exists for writing.

Syntax:
bool is_writeable (string filename)

Returns true if the file can be written to.
Typically PHP will access the file with the privileges of the user running the web server (often "nobody").

Safety considerations must be taken into account.

is_executable
Checks if the executable file exists.

Syntax :
bool is_executable (: string filename)

Returns true, if the file filename - executable .

is_uploaded._fi le
Check for the existence of a file uploaded using the HTTP POST method.

Syntax:
bool is_uploaded_file (string filename)

Returns true if a file named filename was uploaded to the server via HTTP POST.

This is often useful to ensure that users are not maliciously trying to force the script to work with files they
should not work with, for example: / etc / passwd.

Defining file parameters

stat
The function gathers together all the information provided by the operating system for the specified file and
returns it as an array.

Syntax:
array stat (string $ filename)

This array always contains the following elements with the specified keys:
0 - device;

1 - inode number;

2 - file protection attributes;

3 - the number of synonyms ("hard" links) of the file;

4 - the owner's uid;

5 - group gid;

6 - device type;

7 - file size in bytes;

8 - time of the last access in seconds since January 1, 1970;

9 - time of the last modification of the file content;

10 - time of the last change of file attributes;

11 - block size;

12 - the number of occupied blocks;

This array holds information that is available on Unix systems. On Windows, many fields may be empty.

If $ filename specifies a symbolic link rather than a file name, then information about the file to which this
link refers (and not about the link) will be returned.

fileatime
Returns the time the file was last accessed.

Syntax:
int fileatime (string filename) The

time is expressed in seconds since January 1, 1970 (Unix timestamp). Returns false if no file is found.

The file's last access time attribute is changed every time the file's data is read. Since this greatly reduces
performance when working with files and directories intensively, changing this attribute is often blocked in
operating systems, and then the function is useless.

filemtime

Returns the time the file was last modified, or false if the file is missing.

Syntax :
int filemtime (string $ filename)

fi lectime
Returns the creation time of the file.

Syntax :
int filectime (string $ filename)

filesize
Returns the size of the file in bytes, or false if the file does not exist.

Syntax :
int filesize (string $ filename)

touch
Sets the modification time.

Syntax:
int touch (string $ filename [, int $ timestamp])

Sets the modification time of the specified $ filename to $ timestamp (in seconds since January 1, 1970). If
the second parameter is not specified, the current time is assumed. Returns false on error.

If a file with the specified name does not exist, it is created empty.

Functions for working with file names

basename
Separates a filename from a path.

Syntax:
string basename (string $ path)

Separates base name from $ path

Examples:

e cho basename ("'/ home / somebody / somefile.txt"); // outputs "somefile.txt"
echo basename ("'/"); // prints nothing

echo basename ("/."); // prints "."

echo basename ("/./"); // also outputs "."
Function basename () does not check the existence of the file. It just takes the part of the string after the
rightmost slash and returns it.

This function handles both forward and backslashes correctly under Windows.

dirname
Highlights the name of a directory.

Syntax:
string dirname (string $ path)

Returns the directory name as extracted from $ path . The function is quite "smart" and knows how to

highlight non-trivial situations, which are described in the examples:

echo dirname ("/ home / file.txt"); // prints "/ home"

echo dirname (". ./file.txt"); // prints ".."

echo dirname ("/ file.txt™); // prints "/" under Unix,
// "\" under Windows

echo dirname ("/"); // same

echo dirname ("file.txt"); // prints "."

If dirname () is simply a filename, it will return ".", Which stands for "current directory".

tempnam
Generates a unique filename in a specific directory.

Syntax:
string tempnam (string $ dir, string $ prefix)

Generates a filename in the $ dir directory with $ prefix in the name, so that the file created under this name
in the future is unique.
To do this , a random number is appended to the $ prefix line .

mwon

For example, calling tempnam ("'/ tmp", "temp") might return / tmp / temp3a6b243c.

— nn

If such a name needs to be created in the current directory, pass $ dir = ".

realpath
Converts a relative path to an absolute path.

Syntax:
string realpath (string $ path)

Converts the relative path $ path to absolute, i.e. starting from the root.

Example:
echo realpath ("../ t.php"); // e.g. /home/t.php

echo realpath ("."); // displays the name of the current directory
The file specified in the $ path parameter must exist, otherwise the function will return false.

Functions for manipulating whole files

copy
Copies the file.

Syntax:
bool copy (string $ src, string $ dst)

Copies a file named $ src to a file named §$ dst . In this case, if the $ dst file existed at the time of the call, it
is overwritten.
The function returns true if the copy was successful, and false if it failed.

The function does not rename a file if its new name is located in a different file system (on a different
mounted system in Unix or on a different disk in Windows).

unlink
Delete file.

Syntax:

bool unlink (string $ filename) Removes the file named §$ filename . Returns false on failure, true
otherwise. It should be noted that the file is deleted only if the number of "hard" links to it has become equal
to 0. However, this scheme is specific to Unix systems.

file
Reads a file and splits it line by line.

Syntax:
list file (string $ filename)

Reads the entire file named $ filename and returns a list array, each element of which corresponds to a line
in the file read.

The disadvantage of this function is that end-of-line characters (usually \ n) are not stripped from the lines
of the file, nor are they translated, as is done for text files.

Other functions

ftruncate
Truncates the file.

Syntax:
bool ftruncate (int $ f, int $ newsize)

This function truncates the open file $ f to the size of $ newsize . Of course, the file must be opened in a
writeable mode.
For example, the following code clears the entire file:

ftruncate ($ £, 0);

fflush

Immediately records all changes to the file.

Syntax:
void fflush (int $ f)

Forces PHP to immediately write to disk any changes that were made before with the open file $ f. What
are these changes? The point is that to improve performance, all file writes are buffered: for example,
calling fputs ($ f, "This is a string!") Does not directly write data to disk - first, they go into an internal
buffer (usually 8K). As soon as the buffer is full, its contents are sent to disk, and it itself is flushed, and
everything is repeated again. A special benefit from buffering is felt in network operations, when it is
simply stupid to send data in small portions.

set_file_buffer
Sets the buffer size.

Syntax:
int set_file_buffer (int $ f, int $ size)

This function sets the above buffer size for the specified open file $ f .
Most often it is used like this:

set_file_buffer ($ £, 0);

The above code turns off buffering for the specified file so that now all data written to the file is
immediately sent to disk or to the network.

flock
Blocking a file.

Syntax:
bool flock (int $ f, int $ operation [, int $ wouldblock])

The function sets the blocking mode for the specified open file descriptor $ f that the current process would
like to get. This mode is specified by the $ operation argument and can be one of the following constants:
« LOCK_SH (or 1) - shared lock;
« LOCK_EX (or 2) - exclusive lock;
« LOCK_UN (or 3) - unlock;
« LOCK_NB (or 4) - this constant must be added to one of the previous ones,

if you don't want the program to hang on

flock () pending its turn, but immediately returned

control.
If no wait mode was requested and the lock was not successfully set, the value true will be written to the
optional $ wouldblock variable parameter .
If an error occurs, the function returns false, and if successful, it returns true.

Functions for working with directories

Manipulating directories

mkdir
Create directory.

Syntax:
bool mkdir (string $ name, int $ perms)

Creates a directory named $ name with perms permissions . Permissions for directories are specified in the
same way as for files. Most often, the value of $ perms is set to 0770 (a leading zero is required - it tells
PHP that this is an octal constant, not a decimal number).

Example:
the mkdir (" up my _ directory ", 0755);
// creates a subdirectory in the current directory
mkdir ("'/ data");
// creates a data subdirectory in the root directory
If successful, the function returns true, otherwise - false.

rmdir
Delete directory.

Syntax:
bool rmdir (string $ name)

Removes the directory named $ name .
The directory must be empty, and its attributes must allow it.
If successful, the function returns true, otherwise - false.

¢ hdir
Change the current directory.

Syntax:
int chdir (string $ directory);

Changes the current PHP directory to directory. Returns FALSE if it cannot change, TRUE if a change has
occurred. The $ directory parameter can also specify a relative path from the current directory.

Example:

chdir ("/ tmp / data"); // follow the absolute path

chdir ("./ js"); // go to the subdirectory of the current directory
chdir (".."); // go to parent directory

chdir ("~ / data"); // go to / home / user / data (for Unix)

getcwd
Full path.

Syntax:
string getcwd ()

This function returns the current directory with respect to which file operations are performed, i.e. returns
the full path to the current directory, starting at root (/). If such a path cannot be traced, the call fails and
false is returned.

diskfreespace
Defines the free space in the directory

Syntax:
float diskfreespace (string directory);

This function returns the free space in bytes in the directory directory , that is, in the corresponding file
system or on a disk partition.

Example:
$ diskspace = diskfreespace ("/");
// Thus, we have determined the free space in the root directory "/"

Working with records

dir
Directory class (pseudo-object-oriented mechanism).

Syntax:
new dir (string directory);

A pseudo-object-oriented mechanism for listing directory files. Opens a directory from directory.

After that, two properties of the object become available: the handle to the directory and the path string
indicating which directory is currently being used. These properties are available only if the directory has
been opened. The handle property can be used in conjunction with other directory functions such as readdir
() , rewinddir (), and closedir () .

Three methods are available for the class: read, return to start, and close (read, rewind and close,
respectively).

Example :

$ d = dir ("/ etc");

echo "Handle:". $ d-> handle. "
\n";

echo "Path:". $ d-> path. "
\n";

while ($ entry = $ d-> read ()) {// Consecutively output
echo $ entry. "
\ n"; // name of each file,

} // available in the directory

$ d-> close ();

closedir
Close the handle of the directory.

Syntax:
void closedir (int dir_handle);

Closes the directory stream denoted by dir_handle. The stream must first be opened with opendir ().

opendir
Open directory descriptor.

Syntax:
int opendir (string path);

Returns a handle to the open directory path , which is subsequently used in the closedir () , readdir () , and
rewinddir () functions .

readdir
Get the name of the next file in the directory listing.

Syntax:
string readdir (int dir_handle);

Returns the name of the next file in the directory. The file names are returned in unordered order.

Example:
<? php
$ handle = opendir (".");
echo "Directory handle: $ handle \ n";
echo "Files: \ n";
while ($ file = readdir ($ handle)) {
echo "$ file \ n";
}

closedir ($ handle);
>

It should be noted that the function also returns "." and "..". If these values are not required, then they can

be excluded as follows:

<? php

$ handle = opendir (".");

while ($ file = readdir ($ handle)) {
if ($ file! ="." && $ file! ="..") {

echo " Name the file : $ file
";

b

1§

closedir ($ handle);

>

re winddir
Reinitialize the directory descriptor.

Syntax:
void rewinddir (int dir_handle);

After calling this function, the readdir () function with the dir_handle argument will return the filenames
from the beginning in the directory listing.

FTP

Working with an FTP server

ftp_connec t
Connects to an FTP server.

Syntax:
int ftp_connect (string host [, int port])

In ftp_connect (), the host argument specifies the name of the server to connect to, and the optional port
argument specifies which port to use (21 by default).
The function returns a handle to the FTP stream, or false on error.

ftp_pasv
Switches passive mode.

Syntax:
int ftp_pasv (int ftp_stream, int pasv)

The ftp_pasv () function switches the connection mode to passive if the pasv argument is true. If false, then
the connection mode will be active.

In the passive mode, data transfer is initiated by the client, and in the active mode, by the server (this is
sometimes necessary when blocking ports on the client).

The function will return true or false on error.

ftp_login Logs
in to the FTP server.

Syntax:
int ftp_login (int ftp_stream, string username, string password)

The ftp_login () function logs in to the system as username with the password passw ord . Returns true or
false on error.

ftp_quit Quit an
FTP session.

Syntax :

int ftp_quit (int ftp_stream)
ftp_pwd
Determines the current directory.

Syntax:
int ftp_pwd (int ftp_stream)

This function returns the current directory of the FTP server, or false on error.

ftp_cdup Changes
to the root directory.

Syntax:
int ftp_cdup (int ftp_stream)

The function returns true or false on error.

ftp_chdir Changes
to the directory.

Syntax:
int ftp_chdir (int ftp_stream, string directory)

The function returns true or false on error.

ftp_mkdir Creates
a directory.

Syntax:
int ftp_mkdir (int ftp_stream, string directory)

The function returns the name of the created directory or false on error.

ftp_rmdir
Deletes a directory.

Syntax :
int ftp_rmdir (int ftp_stream, string directory)

Function true or false on error .

ftp_nlist Get
a directory listing.

Syntax:
int ftp_nlist (int ftp_stream, string directory)

The ftp_nlist () function returns an array of filenames or false on error.

ftp_rawlist
Get a detailed listing of a directory.

Syntax:
int ftp_rawlist (int ftp_stream, string directory)

The ftp_rawlist () function executes the FTP LIST command, and returns its results in an array, where each
item corresponds to a string of text as is. The system type identifier returned by ftp_systype () can be used
to determine how the results should be interpreted.

ftp_systype
Returns the system identifier of the FTP server type.

Syntax:
int ftp_systype (int ftp_stream)

The function returns a string value or false in case of an error.

Working with files

ftp_get Downloads
from an FTP server.

Syntax:
int ftp_get (int ftp_stream, string local_file, string remote_file, int mode)

The ftp_get () function downloads a file called remote_file from the FTP server and stores it locally as
local_file . The mode parameter sets the file transfer mode and can be FTP_ASCII (text) or FTP_BINARY
(binary, binary).

The function returns true or false on error.

ftp_fget Downloads
and writes a file.

Syntax:
int ftp_fget (int ftp_stream, string fp, string remote_file, int mode)

The ftp_fget () function downloads a file called remo te_file from the FTP server and stores it in a file that
has a descriptor fp . The mode parameter sets the file transfer mode and can be FTP_ASCII (text) or
FTP_BINARY (binary, binary).

The function returns true or false on error.

ftp_put Uploads
a file to an FTP server.

Syntax :
int ftp_put (int ftp_stream, remote_file: string, local_file: string, int mode)

function ftp_put () loads a file on FTP- server under the name remote_file . The mode parameter sets the
file transfer mode and can be FTP_ASCII (text) or FTP_BINARY (binary, binary). The function returns
true or false on error.

$ upload = ftp _ put ($ ftp _id, " C:\\file. txt ", "/ file . txt ", FTP _ ASCII);

ftp_fput
Reads and uploads a file to the FTP server.

Syntax:
int ftp_fput (int ftp_stream, string remote_file, string fp, int mode)

The ftp_fput () function reads the open file with descriptor fp to the end and uploads this file to the FTP
server as remote_file . The mode parameter sets the file transfer mode and can be FTP_ASCII (text) or
FTP_BINARY (binary, binary).

The function returns true or false on error.

ftp_size
Determines the size of the file.

Syntax:
int ftp_size (int ftp_stream, string remote_file)

The ftp_siz e () function returns the size of the file specified in the remote_file parameter in bytes, or -1 on
erTor.
Not all servers support this feature.

ftp_mdtm
Returns the time the file was last modified.

Syntax:
int ftp_mdtm (int ftp_stream, string remote_file)

The ftp_mdtm () function returns the time, last modified, in Unix format, or -1 on error.
This function does not work with directories.

ftp_rename Renames a
file.

Syntax :
int ftp_rename (int ftp_stream, string from, s tring to)

The ftp_rename () function renames the file from to to . The function returns true or false on error.

ftp_delete
Deletes a file from the server.

Syntax:
int ftp_delete (int ftp_stream, string path)

The ftp_delete () function deletes the file specified in the path parameter .
The function returns true or false on error.

ftp_site Executes a
SITE command on the server.

Syntax:
int ftp_site (int ftp_stream, string cmd)

The ftp_site () function sends the cmd command to the server.

Because SITE commands are not standardized and may vary. They are usually useful for changing file
permissions and group ownership.

The function returns true or false on error.

IMAP functions

In order for these functions to work, you must compile PHP with the --with-imap flag.

This flag requires the c-client library to be installed. The latest version can be obtained from
ftp://ftp.cac.washington.edu/imap/ .

Then copy c-client / c-client.a to / usr / local / lib or some other directory specified in the path, then copy c-
client / rfc822.h, mail.h and linkage.h to / usr / local / include or another directory with include files.

Despite the name of the module, the functions it contains allow you to perform many other useful operations

as well, beyond the simple use of IMAP. The underlying C client library also supports NNTP, POP3, and
local mailbox access methods.

imap_append

ftp://ftp.cac.washington.edu/imap/

Adds a text message to the specified mailbox.

Syntax:
int imap_append (int imap_stream, string mbox, string message, stringflags);

Returns true on success or false otherwise.

imap_append () adds a text message to the specified mbox mailbox. If optional flags are specified, also
writes to mailbox and flags. When communicating with the Cyrus IMAP server, use "\ r \ n" instead of "\ n"
as line delimiters, otherwise the action will not be performed.

imap_base64
Decodes BASEG64 encoded text.

Syntax:
string imap_base64 (string text);

Imap_base64 () function decodes text in BASE-64 format. The decoded message is returned as a string.

imap_body
Reads the body of the message.

Syntax:
string imap_body (int imap_stream, int msg_number, int flags);

The imap_body () function returns the body of the message with the p / p number msg_number in the
current mailbox.

Optional flags are bit masks from

FT_UID - Message number msgno is the UID of

FT_PEEK message - Don't set the \ Seen flag if it is not already set.

FT_INTERNAL - The returned string is in internal format and cannot be canonicalized with CRLF.

imap_check
Checks the current mailbox.

Syntax:
array imap_check (int imap_stream);

Returns information about the current mailbox. Returns FALSE on failure.

The imap_check () function checks the status of the current mailbox on the server and returns information in
an object with the following properties:

Date: date of the message

Driver:

Mailbox driver : name of the mailbox

Nmsgs: number of messages

Recent: number of recently arrived messages

imap_close
Closes the IMAP stream.

Syntax :
int imap_close (int imap_stream, int flags);

Closes the imap stream . The optional CL._EXPUNGE flag causes the messages marked for deletion to be
erased on close.

imap_createmailbox
Creates a new mailbox.

Syntax:
int imap_createmailbox (int imap_stream, string mbox);

imap_createmailbox () creates a new mailbox specified in mbox. Returns true on success and false on
failure.

imap_delete
Marks a message in the current mailbox for deletion.

Syntax :
int imap_delete (int imap_stream, int msg_number);

Returns true.
Returns true The imap_delete () function marks the message specified by msg_number for deletion. The
actual deletion of messages is done with the imap_expunge () function.

imap_deletemailbox
Deletes a mailbox.

Syntax:
int imap_deletemailbox (int imap_stream, string mbox);

Returns true on success and false otherwise.

imap_expunge
Deletes all messages marked for deletion.

Syntax:
int imap_expunge (int imap_stream);

imap_expunge () deletes all messages marked for deletion with imap_delete ().
Returns true.

imap_fetchbody Fetch a
simple section of the message body.

Syntax:
string imap_fetchbody (int imap_stream, int msg_number, int part_number, flags flags);

This function causes the verbose section of the specified message to be retrieved as a text string. The section
is a dotted-separated string of integers that indicate the body parts of the message in the IMAP4 parts list.
Body parts are not decoded by this function.

An optional parameter to imap_fetchbody () is a bitmask from

FT_UID - msgono is the FT_PEEK

UID - do not set the \ Seen flag if it is not set

FT_UID - the returned string is written in an internal format that cannot be canonicalized with CRLF

imap_fetchstructure
Reads the structure of a simple message.

Syntax:
array imap_fetchstructure (int imap_stream, int msg_number);

array imap_fetchstructure (int imap_stream, int msg_number); This function forces to retrieve all
information about the structure of the message with the number msg_number. The return value is an object
with the following elements:

type, encoding, ifsubtype, subtype, ifdescription, description, ifid, id, lines, bytes, ifparameters type,
encoding, interface subtype, subtype, interface description, description, interface identifier, lines, bytes,
parameters interface

The function also returns an array of objects called parameters []. This object has the following properties:
attribute, value

attribute, value

In the case of a message from several parts, the function also returns an array of objects of all properties
called parts [].

imap_head er
Reads the message header.

Syntax:
object imap_header (int imap_stream, int msg_number, int fromlength, int subjectlength, int defaulthost);

This function returns an object of various header elements

remail, date, Date, subject, Subject, in_reply_to, message_id, newsgroups, followup_to, references
toaddress (full string To: string up to 1024 characters)

to [] (returns an array of objects from string To, contains :)
personal

adl

mailbox

host

fromaddress (full line From: line up to 1024 characters)

from [] (returns an array of objects from line From, contains :)
personal

adl

mailbox

host

ccaddress (full line Cc: line up to 1024 characters)

cc [] (returns an array of objects from string Cc, contains)
personal

adl

mailbox

host

bccaddress (full Bec string: string up to 1024 characters)

bec [] (returns an array of objects from string Bcc, contains :)
personal

adl

mailbox

host

reply_toaddress (full string Reply_to : string up to 1024 characters)
reply_to [] (returns an array of objects from the Reply_to string, contains :)
personal

adl

mailbox

host

senderaddress (full string Sender: string up to 1024 characters)
sender [] (returns array of objects from the Sender line, contains :)
personal

adl

mailbox

host

return_path (full Return-path line: up to 1024 characters)
return_path [] (returns an array of objects from the Return_path line, contains :)
personal

adl

mailbox

host

udate (date of the message in unix time format)

fetchfrom (From string formatted to fromlength characters)
fetchsubject (Subject string formatted to subjectlength characters)

imap_headers

Returns the headers of all messages in a mailbox.

Syntax:
array imap_headers (int imap_stream);

Returns a string array of headers information. One array element per message.

imap_listmailbox
Reads a list of mailboxes.

Syntax:
array imap_listmailbox (int imap_stream, string ref, string pat);

Returns an array containing the mailbox names.

imap_listsubscribed
Lists all subscribed mailboxes.

Syntax:
array imap_listsubscribed (int imap_stream, string ref, string pattern);

Returns an array of all mailboxes to which you are subscribed. The ref and pattern arguments specify the
starting location to start the search from and the pattern that mailbox names must match.

imap_mail_copy
Copies the specified messages to the mailbox.

Syntax:
int imap_mail_copy (int imap_stream, string msglist, string mbox, int flags);

Returns true on success and false otherwise.

Copies the mails specified with msglist to the mbox mailbox. msglist is a range, not just a message number.
Flags are bit masks from

CP_UID - numbers in the sequence contain

UIDs CP_MOVE - after copying, delete messages from the current mailbox

imap_mail_move Moves the
specified messages to the mailbox.

Syntax:
int imap_mail_move (int imap_stream, string msglist, string mbox);

Moves mails specified with msglist to the mbox mailbox. msglist is a range, not just a message number.
Returns true on success and false otherwise.

imap_num_msg
Returns the number of messages in the current mailbox.

Syntax:
int imap_num_msg (void);

Returns the number of messages in the current mailbox.

imap_num_rec ent
Returns the number of recently received messages in the current mailbox.

Syntax :
int imap _ num _ recent (int imap _ stream);

imap_open

Connecting to the server (opening the mailbox).

Syntax:
int imap_open (string mailbox, string username, string password [, int flags]);

Function imap_open () returns a handle IMAP mailbox (the connection handle to the IMAP server), or
false on error.

This function can be used to open streams to POP3 and NNTP servers, but in this case some functions will
not be available.

The mailbox argument specifies the server name and the path to the mailbox. The server name should be
enclosed in curly braces "{" and "}", inside which should contain: the server name (or its IP address),
possibly indicating the protocol (which begins with a slash "/") and the port number In order to connect to
the IMAP server on port 143 on the local machine do the following:

$ mbox = imap_open ("{localhost: 143} INBOX", "user_id", "password");

To connect to the POP3 server on port 110 on the local server use:

$ mbox = imap_open ("{localhost / pop3: 110} INBOX", "user_id", "password");

To connect to the NNTP server on port 119 on the local server use:

$ nntp = imap_open ("{localhost / nntp: 119} comp.test", "", "™);

To connect to a remote server, replace "localhost" with the name or IP address of the server you want to
connect to.

Options - bitmask from

OP_READONLY - Open mailbox in read-only mode

OP_ANONYMOUS - Do not use or update .newsrc when using news

OP_HALFOPEN - For IMAP and NNTP, connects, but does not open mailbox

CL_EXPUNGE - Automatically clear mailbox on close

imap_ping
Checks the IMAP stream for health.

Syntax:
int imap_ping (int imap_stream);

Returns true if the stream is still healthy and false otherwise.
The imap_ping () function checks the stream for health. He can also check new mail; this is the preferred
method for periodically checking for new mail and for keeping remote servers alive.

imap_renamemailbox
Renames an old mailbox to a new one.

Syntax:
int imap_renamemailbox (int imap_stream, string old_mbox, string new_mbox);

This function renames an old mailbox to a new one.
Returns true on success and false otherwise.

imap_reopen Reopens the
IMAP stream to a new mailbox.

Syntax:
int imap_reopen (string imap_stream, string mailbox, string [flags]);

Returns true on success and false otherwise.

This function reopens the specified stream to a new mailbox.

Options - bitmask from

OP_READONLY - Open mailbox in read-only mode

OP_ANONYMOUS - Do not use or update .newsrc when working with news
OP_HALFOPEN - For IMAP and NNTP, connects but does not open mailbox
CL_EXPUNGE - Clears mailbox on close

imap_subscribe
Subscribes to a mailbox.

Syntax:
int imap_subscribe (int imap_stream, string mbox);

Returns true on success and false otherwise.

imap_undelete Unchecks a
message marked for deletion.

Syntax:
int imap_undelete (int imap_stream, int msg_number);

This function unchecks a message marked for deletion with imap_delete ().
Returns true on success and false otherwise.

imap_unsubscribe
Unsubscribes from a mailbox.

Syntax:
int imap_unsubscribe (int imap_stream, string mbox);

Returns true on success and false otherwise.

imap_qprint
Converts a quoted-printable string to an 8-bit string.

Syntax:
string imap _ gprint (string string); Returns an 8-bit (binary) string.

imap_8bit
Converts an 8-bit string to quoted-printable format.

Syntax :
string imap_8bit (string string);

Returns a string in the format quoted-printable.

imap_binary
Converts an 8-bit string to base64 format.

Syntax:
string imap_binary (string string);

Returns a string in base64 format.

imap_scanmailbox
Reads the list of mailboxes, searches for mailbox names.

Syntax:
array imap_scanmailbox (int imap_stream, string string);

Returns an array containing mailbox names that have string in their name.

imap_mailboxmsginfo
Gets information about the current mailbox.

Syntax:
array imap_mailboxmsginfo (int imap_stream);

Returns information about the current mailbox. FALSE on failure.

The imap_mailboxmsginfo () function checks the status of the current mailbox on the server and returns
information in an object with the following properties:

Date: message date

Driver:

Mailbox driver : mailbox name

Nmsgs: number of messages

Recent: number of recently received messages

Unread: number of unread messages

Size: size mailbox

imap_rfc822_write_address
Returns a properly formatted email address.

Syntax:
string imap_rfc822_write_address (string mailbox, string host, string personal);

Returns a properly formatted email address for the given mailbox, host and personal information.
imap_rfc822_parse_adrlist Parses the
address bar.

Syntax:
string imap_rfc822_parse_adrlist (string address, string default_host);

This function parses the address bar and returns an array of objects for each address.
There are 4 types of objects:

mailbox - mailbox name (username)

host - host name

personal - personal name

adl - path to the source domain

imap_setflag_full
Sets flags on messages.

Syntax:
string imap_setflag_full (int stream, string sequence, string flag, string options);

This function forces to add the specified flag to the set of message flags in the specified sequence.
options is a bit mask from ST_UID Sequence
arguments contain UIDs instead of numbers

imap_clearflag_full
Clears message flags.

Syntax:
string imap_clearflag_full (int stream, string sequence, string flag, string options);

This function causes the flags to be removed from the message flag set in the specified sequence.
options is a bit mask from ST_UID Sequence
arguments contain UIDs instead of numbers

imap_sort Sorts
messages in the current mailbox.

Syntax:
string imap_sort (int stream, int criteria, int reverse, int options);

Returns an array of message numbers sorted by this parameter
Rev must be equal to 1 if sorting in reverse order

Sorting criteria (only one must be specified): SORTDATE - by message date
SORTARRIVAL - by date of receipt

SORTFROM - by the From

SORTSUBIJECT field - by message subject

SORTTO - by field To

SORTCC - by field cc

SORTSIZE - by

option size - bit mask from

SE_UID - Return UIDs instead of sequence numbers
SE_NOPREFETCH - Do not fetch previously found messages

imap_fetchheader
Returns the header of the message.

Syntax:
string imap_fetchheader (int imap_stream, int msgno, int flags);

This function causes the full, unfiltered RFC 822 header of the specified message to be retrieved as a text
string.

Options:

FT_UID msgno is the UID

FT_INTERNAL The returned string is written in internal format without any attempt to canonize it using
CRLF FT _ PREFETCHTEXT RFC 822. The text must be parsed beforehand. This will help to avoid
urgent delays if you need to extract the full text of the message (for example, in the operation "save to local
file")

imap_uid
This function returns the UID of the given message number in sequence.

Syntax :
string imap _ uid (string mailbox , int msgno);

SNMP functions

snmpget
Gets an SNMP object.

Syntax:
int snmpget (string hostname, string community, string object_id);

Returns the value of the SNMP object on success and false on error.

The snmpget () function is used to read the SNMP value of the object specified by object_id.

The SNMP agent is specified by the hostname hostname and the read group is specified by the community
parameter.

snmpget ("127.0.0.1", "public", "system.SysContact.0")

snmpwalk
Receives all SNMP objects from the agent.

Syntax:
array snmpwalk (string hostname, string community, string object_id);

Returns an array of SNMP object values starting with object_id and false on error.

The snmpwalk () function is used to read all values from the SNMP agent specified by the hostname
parameter.

Community defines a reading group for the agent.

A null object_id is taken as the root of the SNMP object tree, and all objects under that tree are returned as
an array.
If object_id is specified, then all SNMP objects below this object are returned.
$ a = snmpwalk ("127.0.0.1", "public", "");
The above function call will return all SNMP objects from the SNMP agent fired on the local host.
All values can be traversed using a loop:
for ($i=0;$i<count($a);$i++){
echo $al[$il;
}

Vmailmgr functions

These functions require the QMAIL packages (www.gmail.org) and vmailmgr Bruce Guenter
http://www.gcc.sk.ca/~bguenter/distrib/vmailmgr/

For all functions, the following two variables are defined as: string vdomain - your domain name virtual
domain (vdomain.com), the basepwd string is the password for the "real" user that supports virtual users.
Only up to 8 characters are recognized in the password for virtual users.

The status is returned for all response function values in response.h

O ok

1 bad

2 error

3 connection error

<? php

dl ("php3_ vmailmgr.so"); // load the shared library

$ vdomain = "vdomain.com";

$ basepwd = "password";
>

vim_adduser
Adds a new virtual user with a password.

Syntax:
int vim_adduser (string vdomain, string basepwd, string newusername, string newuserpassword);

Adds a new virtual user with a password. newusername is the mail login name and newuserpassword is the
password for this user.

vin_addalias
Adds a new alias for the virtual user.

Syntax:
int vm_addalias (string vdomain, string basepwd, string username, string alias);

Adds an alias to the virtual user. username is the name of the mail login and alias is the alias for this user.

vim_passwd
Changes the password for virtual users.

Syntax:
int vm_passwd (string vdomain, string username, string password, string newpassword);

Changes the password of virtual users. username is the mail login name, password is the user's old
password, and newpassword is the new password.

vim_delalias
Deletes an alias . Syntax : int vin_delalias (string vdomain, string basepwd, string alias);

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.qcc.sk.ca/~bguenter/distrib/vmailmgr/

vin_deluser
Deletes the virtual user alias.

Syntax :
int vim_deluser (string vdomain, string username);

Network functions

ip2long Convert an
[Pv4 address string to a number.

Syntax:
int ip2long (string ip_address);

The ip2long () function returns a four-byte numeric representation of an IP v4 address from a string (dot-
separated numbers, for example: "127.0.0.1").
// get the IP address of the host
$ ip = gethostbyname ("www.php.net");
echo "The following URLs are equivalent:
";
echo "http://www.php.net/, http: //". $ ip.
"/, and http: /" .ip2long ($ ip). "/
";

long2ip Converts a
number to an IP v4 address string.

Syntax:
string long2ip (int proper_address);

The long2ip () function returns the string representation of the IP address (in the format: "aaa.bbb.ccc.ddd")
from the numeric representation.

gethostbyaddr
Returns the hostname that matches the given IP address.

Syntax:
string gethostbyaddr (string ip_address); Gethostbyaddr ()

function returns the domain name of the host specified by its IP address. The argument specifies the IP
address in string format. Returns ip_address on error . It should be noted that the function does not
guarantee that the resulting name will actually match reality. It only polls the host at ip_address and asks
him to provide his name. The owner of the host can thus transfer whatever he pleases.

echo gethostbyaddr ("127.0.0.1");

gethostby name
Returns the host's IP address.

Syntax:
string gethostbyname (string hostname);

The gethostbyname () function takes the host's domain name as parameters and returns its IP address. If the
address could not be determined, the function returns hostname .

gethostbynamel
Returns a list of host IP addresses.

Syntax:
array gethostbynamel (string hostname);

Several IP addresses can correspond to one domain name at once, and in case of heavy server load, the DNS
server itself chooses to which IP address to redirect the request. He chooses the most rarely used address.
The gethostbynamel () function returns not one, but all the IP addresses of the host named hostname .

It is worth noting that there are many virtual hosts on the Internet that have different domain names, but the
same IP address. Thus, if the following command sequence for an existing host with an IP address ip always
prints the same address:

$ host = gethostbyaddr ($ ip);

echo gethostbyname ($ host);

then a similar sequence for a domain with a DNS name $ host , on the contrary, may print not the same
name, but a different one:

$ ip = gethostbyname ($ host);

echo gethostbyaddr ($ ip);

getprotobyname
Determines the port number used by the protocol.

Syntax :
int getprotobyname (string name);

getprotobynumber
Determines the port protocol.

Syntax :
string getprotobynumber (int number);

getservbyname
Determines the protocol of the Internet service.

Syntax:
int getservbyname (string service, string protocol);

This function returns the port number that the service uses the service, .
The protocol argument specifies the type of protocol, TCP or UDP.
echo getservbyname ("HTTP", "TCP"); // can print 80

getservbyport
Determines the Internet service that uses the specified port.

Syntax:
string getservbyport (int port, string protocol);

Here, in the protocol argument, you must specify the type of protocol - TCP or UDP.
echo getservbyport (21, " TCP "); // will output: ftp
echo getservbyport (23, " TCP "); // will output: telnet

¢ heckdnsrr Checks the
DNS record.

Syntax:
int checkdnsrr (string host [, string type]);

This function queries the DNS server to find the records that are available for hest . If records of type type
were found , the function returns true. Otherwise and on error, false.

The type argument can be:

- A
* MX (default)

« NS

« SOA

« PTIR

« CNAME
« ANY

The host argument can be an IP dotted string or a hostname.

getmxrr Get the
MX record for the internet host.

Syntax:
int getmxrr (string hostname, array mxhosts [, array weight]);

The getmxrr () function initiates a DNS lookup for the MX (domain mail server) record for host hostname .
If the record is found, it returns true, if not, then false.

The MX records are listed in the mxhosts array . If a weight array is specified , it is filled with additional
information about the entries.

Part 4. Control functions

Tracking and handling errors

Introduction
PHP has the following types of errors and warnings:
Value Constant Description
1 E_ERROR Fatal runtime error.
2 E_WARNING Runtime warning.
4 E_PARSE Runtime interpretation message.
8 E_NOTICE Simple runtime message.
sixteen E _CORE_ERROR Fatal error during PHP initialization.
32 E_CORE_WARNING Initialization warning.
64 E_COMPILE_ERROR Fatal compilation error.
128 E_COMPILE_WARNING Compilation warning.
256 E_USER_ERROR User-defined errors.
512 E_USER_WARNING User-defined warnings.
1024 E_USER_NOTICE User-defined messages.
2047 E_ALL All listed messages.

The specified values in the form of numbers or constants can be combined to form a bit mask of errors that
must be reported during script execution. Bitwise operators are used for combining, but only "|", "~"
Are recognized in the php.ini configuration file. and "&".

mpn
,

In PHP 4, messages of the form E_ALL & ~ E_NOTICE are allowed by default, that is, everything should
be reported except for normal messages. You can override this setting with the error_reporting ()
configuration file parameter (it can also be specified in the Apache server configuration files).

If, when calling a function, you specify the "@" symbol in front of its name, then if an error occurs in this
function, a message about it will not be displayed.

Currently, the ignore error operator even blocks the issuance of critical error messages, in which case the
script terminates ahead of schedule.

If the track_errors configuration parameter is enabled, the error message is stored in the $ php_errormsg
global variable.
<?
// user-defined error handler
function userErrorHandler ($ errno , $ errmsg , $ filename , $ linenum , $ vars) {
// time when the error occurred
$ dt = date ("Ymd H: i: s (T)");
$ errortype = array (
1 => "Error",
2 =>"Warning",
4 => "Parsing Error",
8 => "Notice",
16 => "Core Error",
32 => "Core Warning",
64 =>"C ompile Error",
128 => "Compile Warning",
256 => "User Error",
512 => "User Warning",
1024 => "User Notice"

);

$ err. = " time ($ dt), error number ($ errno),";
$ err. = " error type (". $ errortype [$ errno]. "):";
$err. ="\" $ errmsg \ ". file \" $ filename \ ", line (";

$ err. = $ linenum. ") \ n";

$ user_errors = array (E_USER_ERROR, E_USER_WARNING, E_USER_NOTICE);
if (in_array ($ errno, $ user_errors))

// issue a message for user errors

echo $ err;

// save the error event to the system log
error_log ($ err, 3, "/usr/local/php4/error.log");

}

// set error control level and handler
error_reporting (0); // do not display PHP messages
$ old_error_handler = set_error_handler ("userErrorHAndler");

// undefined constant raises a warning
$t=_NOT _ DEFINED _ CONSTANT ;

trigger_error (" My mistake ", E_USER_ERROR);
trigger_error (" My warning ", E_ USER_WARNING);

>

Error handling functions

error_log
Send an error message.

Syntax:
int error_log (string message, int message_type [, string destination [, string extra_headers]]) The

message sent by this function can be sent to the web server syslog, TCP protocol, or file.

The first argument, message, specifies the content of the message itself. The second argument message_type
is where it should be sent.

The purpose is indicated by the following values:

» 0 - The message is written to the system event log (file) according to the setting of the error_log
configuration parameter .
* 1-The message is sent by email to the address specified in the destination argument . This is the only
message type that uses the fourth parameter extra_headers , which allows you to specify additional headers
(as in the mail () function).
» 2 -The message is sent through the debug connection. This is only possible if the remote debugging
option has been enabled in the config file. For this, the host address (name or its IP address) and the socket
port that will receive debug messages must also be defined. This can be specified in the destination
argument or configuration parameters.
» 3 - message is appended to the end of the destination file .
if (! Ora_London ($ username, $ password)) {

error_log ("Oracle server is unavailable!", 0);

};

if (! ($ foo = allocate_new_foo ()) {
error_log ("FOO cannot be selected!", 1, "operator@mydomain.ru");

}

// other ways of calling error_log ():

error_log ("We have an error!", 2, "127.0.0.1:7000");
error_log (" We have an error !", 2, "localhost");

error_log (" We have an error !", 3, "/var/tmp/my-errors.log");

error_reporting
Sets the types of reported errors.

Syntax:
int error_reporting ([int level])

The error_reporting () function returns the previous setting for the type of errors reported. If an argument
is specified, then overrides it again. The argument can be a constant, number, or bit mask. Try to use
constants instead of numeric values to maintain compatibility with future PHP versions.
error_reporting (2039); // in the PHP equivalent of E_ALL A E_NOTICE

error_reporting (E_ALL A E_NOTICE); // setting of default

error_reporting (0); // disable error messages

// general runtime errors

error_reporting (E_ERROR | E_WARNING | E_PARSE);

// also inform about the unknown variables

error_reporting (E_ERROR | E_WARNING | E_PARSE | E_NOTICE);

error_reporting (E_ALL); // report all errors

restore_error_handler
Restore the previous error handler.

Syntax:
void restore_error_handler ()

This function sets the error handler function to the one that was before the last call to set_error_handler () .
The previous handler can be a previously installed custom handler or a built-in PHP handler.

trigger_error
Generate an error.

Syntax:
void trigger_error (string error_msg [, int error_type])

Explicitly calls the function set to handle errors, and is typically used in conjunction with an error handler.
The function is only capable of generating user-defined error types (E_USER family of constants), and by
default, if error_type is not specified , it is considered E_USER_NOTICE.

It is possible to construct complex constructions for generating and handling errors and exceptions.
if (assert ($ divisor == 0))
trigger_error (" You can not share to 0", E_USER_ERROR);

user_error
Synonym for trigger_error () function . Syntax : void user_error (string error_msg [, int error_type])

Installing a custom error handler

set_error_handler
Set a custom error handler.

Syntax:
string set_error_handler (string error_handler)

The function returns the name of the function previously defined as an error handler (or FALSE on error)
and sets the function with the name specified in the error_handler argument as a new handler .

Typically a custom error handler is paired with a trigger_error () function that generates an error. This can
be used (similar to the analogous construction of dealing with exceptions in C) to release allocated resources
(for example, delete generated files) if the script cannot complete normally.

A function set as an error handler must take five parameters (the last three are optional and may not be
processed):

 error code

*a string describing the error

» the name of the script in which the error occurred

 line number of the script containing the error

« context (an array containing the values of variables at the time of the error)
<?

// define custom error constants

define (FATAL , E _ USER _ ERROR);

define (ERROR, E_USER_WARNING);

define (WARNING, E_USER_NOTICE);

// set what errors should be handled in the script
error_reporting (FATAL | ERROR | WARNING);

// custom error handler
function myErrorHandler ($ errno, $ errstr, $ errfile, $ errline) {
switch ($ errno) {
case FATAL:
echo " Fatal error [$ errno] $ errstr
\n";
echo " at line : $ errline of file :". $ errfile;
echo ", PHP" .PHP_VERSION. "(" .PHP_OS. ")
\n";
echo "Aborting ...
\n";
exit -1;
break;
case ERROR:
echo " Error [$ errno] $ errstr
\n";
break;
case WARNING:
echo " Warning [$ errno] $ errstr
\n";
break;
default:
echo " Unknown error type : [$ errno] $ errstr
\n";
}
}

// function to check error handling
// (scaling the array
function scale_by_log ($ vect, $ scale) {
if (! is_numeric ($ scale) || $ scale <= 0)
trigger_error ("log (x) cannot be calculated for x <=0. ",
"(x = $ scale)", FATAL);
if (! is_array ($ vect)) {
trigger_error (" Array required ", ERROR);
return null;
}
for ($i=0; $i <count ($ vect); $i++) {
if (! is_numeric ($ vect [$ i]))
trigger_error ("Item ($ i) is not a number and
its value is considered 0 ", WARNING);
$ temp [$ i] = log ($ scale) * $ vect [$ i];

}

return $ temp;

}

// install a custom error handler
$ old_error_handler = set_error_handler ("myErrorHandler");

$ a = array (2,3, "foo", 5.5,43.3,21.11);
print_r ($ a);

$ b = scale_by_log ($ a, M_PI); // warning is issued here
echo "Array scaled by logarithm (pi):";
print_r ($ b);

$ c = scale_by_log ("not array", 2,3); // error here
var _ dump ($ ¢);

$ d = scale_by_log ($ a, -2.5); // critical error here

echo "Continuing script ...";
>
When the script is executed, the output will be as follows:
Array
(
[0] =>2
[1]=>3
[2] => foo
[3] =>5.5
[4] => 43.3
[5] =>21.11
)
 Warning [1024] Element (2) is not a number,
and its value is considered 0

Array scaled by logarithm (pi): Array
(
[0] => 2.2894597716988
[1] => 3.4341896575482
[2]=>0
[3] => 6.2960143721717
[4] => 49.566804057279
[5] => 24.165247890281
)
 Error [512] Array required

NULL

 Critical error [256] it is impossible to calculate log (x) for x <= 0,

(x =-2.5)

at line: 37, file E: \ www \ exampl.php, PHP 4.0.5 (WINNT)

Aborting ...

Keep in mind that the PHP standard handler is not used when installing a custom error handler. Setting
error_reporting () will also have no effect, and the custom handler must be able to handle all kinds of
errors (the value of error_reporting () can be traced and acted upon). Note that the error code will be O if
the error occurred in a function for which error output was blocked by the "@" operator.

Also remember that you must explicitly end the script in the handler (for example, using the die () function
), if, of course, there is a need for it. If the error handler exits with return, then script execution continues
where the error occurred (that is, the instructions that follow the one in which the error occurred) are

executed.

Session management

Why sessions are needed. How sessions work

Why sessions are needed .

A session is a mechanism that allows you to store some data that is individual for each user (for example,
his name and account number) between script runs.

There is one class of tasks in Web programming that can cause quite a lot of problems if written head-on.
We are talking about the weak side of CGI - the inability to run a program for a long time, while allowing it
to exchange data with users.

Imagine that we are writing a form, but it has so many fields that it would be silly to put them on one page.
We need to break down the process of filling out a form into several stages, or stages, and present them as
separate HTML documents.

For example, in the first document with a dialogue, the user may be prompted for his first and last name, in
the second - information about his place of residence, and in the third - a credit card number. At any time,
you can go back a step to correct certain data. Finally, if everything is in order, the accumulated information
is processed - for example, placed in a database.

Implementing such a scheme turns out to be a rather nontrivial problem for Web applications. Indeed, we
will have to store all previously entered data in some storage, which should be canceled if the user suddenly
changes his mind and leaves the site. You can use serialization functions and files for this. However, we
solve only half of the problem with them: we need to somehow bind a specific user to a specific temporary
storage. Indeed, suppose we did not. Then, if at the time of filling out a form by one user, another comes to
the site and also tries to enter his data, you will get a beleberd.

All these problems are solved with sessions.

Sessions work mechanism .

To begin with, there must be a mechanism for PHP to identify each user who runs the script. That is, the
next time you start PHP, you need to unambiguously determine who launched it: the same person, or
another. This is done by assigning a so-called unique session identifier to the client . To make this identifier
available each time the script is run, PHP places it in the browser cookies. Now, knowing the identifier
(hereinafter referred to as the SID), PHP can determine in which file on the disk the user data is stored.

A little about how to save a variable (necessarily global) in a session. To do this, we must register it using a
special function. After registering, we can be sure that the next time the script is run by the same user, it will
receive the same value that it had at the previous program exit. This is because PHP automatically saves all
the variables registered in the session to temporary storage when the script ends. Of course, you can
invalidate a variable at any time - delete it from the session, or destroy all session data altogether.

Where is the staging storage that PHP uses? Generally speaking, you are free to specify this by writing the
appropriate functions and registering them as session handlers. However, this is not necessary: PHP already

has default handlers that store data in files. If you are not going to create something special, they are fine for
you.

Session initialization and variable registration

session_start
This function initializes the session mechanism for the current user who started the script.

Syntax:
void session _ start ()

 If a visitor launches the program for the first time, cookies with a unique identifier are installed for him,

and a temporary storage is created associated with this identifier.

* Determines which store is associated with the current user ID.

 If there are any variables in the storage, their values are restored. More precisely, global variables are
created that were saved in the session when the script was terminated earlier.

It should be noted that if you set the session.auto_start = 1 mode in the PHP settings , then the initialization
function is called automatically when the script starts. You also need to make sure that there is no output to
the browser before our function - otherwise PHP will not be able to set the SID for the user.

The function always returns true.

session_register

Tells PHP to store this or that variable in the session.

Syntax:

bool session _ register (mixed name [, mixed name 1, ...]) The function accepts one or more variable names
as parameters (names are given in brackets, without the $ sign on the left), register them in the currently
running session and returns true if registration was successful. Re-writing one variable in a session will not
result in an error.

<?

session_start ();

session_register ("count");

$ count = @ $ count + 1;

>

<h2> Counter </h2>

In the current session of work with the browser, you opened this page
<? = $ count?> times (s). Close your browser to reset the counter.
</body>

Session group name

It should be noted that on the same site there may be several scripts at once that need PHP session support
services. They "know nothing" about each other, so temporary storage for sessions should be selected not
only based on user ID, but also on the basis of which of the scripts requested session maintenance.

For clarity, consider an example:

Suppose developer A has written a counter script. It uses the $ count variable and has no problem. Until
developer B, who knows nothing about scenario A, created a statistics system that also uses sessions. The
worst thing is that it also registers the $ count variable, not knowing that it is already in use. As a result, as
always, the user suffers: having started first the developer's script B, and then - A, he sees that the data of
the counters are mixed.

We need to somehow distinguish between sessions belonging to one script from sessions belonging to
another. Fortunately, the PHP developers envisioned this state of affairs. We can give session groups non-
overlapping names, and a script that knows the name of its session group will be able to access it. Now
developers A and B can protect their scripts from problems with the intersection of variable names. It is
enough to tell PHP in the first program that we want to use a group with a name, for example, sesA, and in
the second - sesB.

session_name
This function sets or returns the name of the session group that PHP will use to store the registered

variables.

Syntax:
string session_name ([string $ newname])

If $ newname is not specified, the current name is returned. If this parameter is specified, the group name

will be changed to $ newname, and the function will return the previous name.

Note that session_name () only changes the name of the current group and session, but does not create a
new session and temporary storage. This means that in most cases we must call session_name (group_name)
even before its initialization - calling session_start () , otherwise we will get something completely
different from what we expected.

If session_name () was not called upon initialization, PHP will use the default name PHPSESID .
Example:

<?

session _ name (" CounterScript "

session _ start ();

session _ register (" count ");

$ count = @ $ count + 1;

>

In the current session, you have opened this page <? = $ Count?> Times.

Session ID

So, the session ID is the name of the temporary storage that will be used to store session data between script
runs. One SID - one store. No SID, no storage or vice versa.

so how do ID and group name compare? The name is just a collective name for several sessions (that is, for
many SIDs) started by different users. The same client will never have two different SIDs within the same
group name. But his browser can handle multiple SIDs, logically located in different "namespaces".

So, all SIDs are unique and uniquely identify the session on the computer running the script - regardless of
the session name. The name specifies the namespace in which the sessions launched by different users will
be grouped. One client can have multiple active namespaces at once (that is, multiple session group names).

session_id
This function returns the current session SID.

Syntax:
string session_id ([string $ sid])

If the $ sid parameter is specified, then the identifier for the active session is changed to $ sid.
By calling session_id () before session_start () , we can connect to any (including someone else's) session

on the server, if we know its identifier. We can also create a session with an identifier we want, while
automatically setting it in the user's Cookies.

Other functions

session_is_registered
Checks whether a variable is registered or not.

Syntax:
bool session_is_registered (string $ name)

The function returns true if the variable with the name $ name was registered in the session, otherwise it
returns false.

session_unregister
Unregisters a variable.

Syntax:
bool session_unregister (string $ name)

This function unregisters the $ name variable for the current session. Otherwise, when the script ends, it

looks like a variable named $ name has never been registered.

Returns true if everything went well, false otherwise.

Note that after calling the session_unregister () function, the global variable that has been "invalidated" is
not destroyed, but retains its value.

session_unset
Unregisters and destroys global variables.

Syntax:
void session_unset ()

This function, unlike session_unregister () , not only unregisters variables (all session variables, not just
one), but also destroys global variables that were registered in the session.

session_save_path
The name of the directory where the session data files will be stored.

Syntax:
string session_save_path ([string $ path])

This function returns the name of the directory in which the files will be placed - temporary storage of
session data. If the parameter is specified, the active directory name will be reset to $ path. The function will
then return the previous directory.

Overview of handlers

handler_open
This handler should take care of all the work of opening the database for the session group with the name
that was passed to it in the parameters.

Syntax :
bool handler_open ($ save_path: string,: string $ session_name)

function is called , when call session_start () . The handler should take over all the work associated with
opening the database for the session group named $ session_name. The $ save_path parameter is passed
what was specified when calling session_save_path () or the path to the default session data storage files.

handler_close
This handler is called when session data has been written to temporary storage and needs to be closed.

Syntax :
bool handler _ close ()
handler read

Reading session data.

Syntax:
string handler_read (string $ sid)

This handler is called when you want to read session data with identifier $ sid from temporary storage.
The returned data is presented in the following form:

namel = valuel; name2 = value2; name3 = value3; ...
nameN specifies the name of the next variable registered in the session, and valueN is the result of calling

the Serialize () function for the value of this variable.
For example, our record might look like this:

foo | i: 1; count | i: 10;

It says that two integer variables were read from the temporary storage, the first of which is 1, and the
second is 10.

handler_ write
Writing session data.

Syntax:
string handler_write (string $ sid, string $ data)

This handler is designed to write session data with identifier $ sid to temporary storage - for example,
opened earlier by handler_open () handler . The $ data parameter is specified in exactly the same format. In
fact, most of the time this function works by writing the $ data string to the database without any changes to
it.

handler_gc
Cleans up temporary data storage after a certain period of time.

Syntax:
bool handler_gc (int $ maxlifetime)

This handler is called every time the script exits . If the user finally left the server, it will be charged, the
session data in the temporary storage can be destroyed. This is what the handler_gc () function should do .
It is passed in parameters that time (in seconds) after which PHP decides to delete all unnecessary data.

session_set_save handler

Register handlers . When describing handlers, we indicated their names with the handler prefix. In fact, this
is not necessary at all. On the contrary, you can name your handlers as you like. But the question arises:
how, then, will PHP find them? This is why there is a function for registering handlers, which tells the
interpreter which function it should call when an event occurs. Syntax: void session_set_save_handler ($
open, $ close, $ read, $ write, $ destroy, $ gc) This function registers subroutines whose names are passed in
its parameters as current session handlers. The $ open parameter contains the name of the function that will
be called when the session is initialized, and $ close contains the function called when it is closed. In $ read
and $ write, you need to specify the names of the handlers, respectively, for reading and writing to
temporary storage. The function with the name specified in $ destroy will be called when the session is
destroyed. Finally, the handler specified by the $ gc parameter is used as a garbage handler. This function
can only be called before the session is initialized, otherwise it is simply ignored.

About sessions and cookies

Problem: - Cookies are disabled

There is a widespread belief that a session without cookies cannot exist. Indeed, Cookies most simply solves
the problem of user identification, which is necessary for linking temporary storage and session data. But
what to do if the user has disabled the acceptance of cookies in his settings?

In this case, the PHP developers took care of transferring session identifiers not in Cookies, but in some
similar way, for example, through the address bar of the browser.

Solution: - changing hyperlinks and forms

In PHP there is one special constant named SID. It always contains the name of the session group and its
identifier in the format name = identifier . It is in this format that data is received when it comes from the
browser's cookies. Thus, we just need to pass the SID constant value to the script so that it "thinks" that the
data came from Cookies.

Here's an example of using sessions without cookies:

<?

session_name ("testses");

session_start ();

session_register ("i");

$i=@9%i+1;
>
< body >

You have opened this page

<? = $ i?> times. The counter will reset to zero when the browser is closed.

<A href=sesclick.php?<?=SID?>> Click to record in the counter!

</body>

This example will work if the user actually has cookies disabled. If enabled, PHP will simply not generate
the SID constant and will use Cookies.

But in the above method there is one inconvenience, namely, everywhere you need to insert <? = SID?>
Into code sections, and if you missed it somewhere, the program may not work!

Fortunately, the PHP developers took this opportunity into account and decided to save us from it.
Therefore, if you miss <? = SID?> In any hyperlink, PHP will insert it automatically. In this case, without
damaging the rest of the parameters that may be present in the URL.

You can use the following example to check:

<? session _ start ()?>

< body >

< A the href =" ? Php . ? Php "> the PHP </ A >

 PHP Expressions

Here's what you get when you hover the mouse over these links:

http://www.spravkaweb.ru/php.php? PHPSESSID=81456f6a886f2104
http://www.spravkaweb.ru/php.php?ss=1&PHPSESSID=34f5d04a35601510f45

PHP exists Another possibility to use sessions with disabled Cookies is to add hidden fields to forms that
generate a script to pass the session ID to the invoked document.

Here's an example that reveals this possibility:

<? session _ start ()?>

< form action = act . php mathod = post >

</form>

And here's what happens when we view our page as HTML:

<form action = "act.php" method = "post">

<INPUT TYPE = HIDDEN NAME = "PHPSESSID" VALUE = "0a561093f84d4321">

</form>

From the example we can see that PHP has added a hidden field to the form with the required name and
value.

Working with WWW

Setting response headers

Header
Displays the header.

Syntax:
int Header (string $ string)

Usually the Header () function is one of the first commands in a script. It is designed to set the response
headers that will be passed to the browser - one header per call. Header () must be called before any output
statement in the script, otherwise you will receive a warning. Text outside <? and?> are also treated as an
output operator.

Example:

// redirects the browser to the PHP

Header site ("Location: http://www.php.net");

// now we forcibly terminate the script, since there is nothing else to do after
// redirection exit;

Getting request headers

getallheaders
Get all request headers.

Syntax:
array GetAllHeaders ()

The GetAllHeaders () function returns an associative array containing the HTTP headers of the client
request that triggered the script. The array keys contain the names of the headers, and the values contain
their values.

$ headers = GetAllHeaders ();
foreach ($ headers as $ header => $ value)
echo "$ header: $ value
\n";

The GetAllHeaders () function is only supported by PHP if it is installed as an Apache module. Otherwise,
this function simply will not exist (and it cannot be, because a normal CGI script does not have access to the
request headers). In particular, in PHP for Windows (which is most often implemented as a script), the
GetAllHeaders () function is not available.

Working with Cookies

A bit of theory A

cookie is a named piece of information that can be stored directly in the user's browser settings between
sessions. The reason why cookies are used is a large number of visitors to your server, as well as the
unwillingness to have something like a database to store information about each visitor. The search in such
a database can be very, very long, and, at the same time, there is no point in centrally storing such
fragmentary information. The use of cookies actually shifts the task onto the shoulders of the browser,
solving in one fell swoop both the performance problem and the problem of a large database of user
information.

The most common way of using cookies is the username and password of a user who uses some of the
protected resources of your site. This data is, of course, stored in Cookies between page openings, so that

the user does not have to manually re-enter them each time.

Each cookie has a certain lifetime, after which it is automatically destroyed. There are also Cookies that
only "live" during the current browsing session.

Each cookie is set by a script on the server. To do this, he must send the browser a special header of the
form:

Set-cookie: data

Scripts from other servers, as well as located in another directory, will not be notified about "foreign"

Cookies. For them, they don't seem to exist. And this is correct from a security point of view - who knows
how secret the information stored in Cookies can be?

Getting a Cookie

Suppose the script ran and set some kind of Cookie, for example, with the name Cook and the value Val.
The next time this script is run (in fact, and all other scripts located on the same server in the same directory
or lower in the tree), it will receive a pair of Cook = Val type (via a special environment variable). PHP will
intercept this event and automatically create the $ Cook variable with the Val value. That is, the interpreter
acts in exactly the same way as if the value of our Cookie came from somewhere in the form. The variable
that we set last time will be available now.

setcookie
Sets the cookie.

Syntax:
int setcookie (string $ name [, string $ value] [, int $ expire] [, string $ path] [, string $ domain] [, book $
secure])

Since Cookie is actually a header, you can set it just before the first command to output to the script.

The setcookie () call defines a new Cookie, which is immediately sent to the browser along with the rest of
the headers. All arguments other than the name are optional. If only the $ name (Cookie name) parameter is
specified, then the Cookie with the specified name is deleted from the user. You can omit arguments you do
not want to supply with blank lines "". The arguments $ expire and $ secure cannot be represented by
strings, so 0 should be used instead of empty strings.

The $ expire parameter specifies a timestamp, which, for example, can be generated by the time () or
mktime () functions.

The $ secure parameter indicates that the Cookie value can only be transmitted over a secure HTTPS
connection.

Examples:

// Cookie for one session, i.e. before closing the browser
SetCookie ("TextCookie", "value");

/I These Cookies are destroyed by the browser 1 hour after setting
SetCookie ("TextCookie", $ val, time () + 3600);
SetCookie ("TextCookie", $ val, time () + 3600, "/ ~ rasmus /", ". Utoronto.ca", 1);

After calling SetCookie (), the newly created Cookie immediately appears among the global variables as a
variable with the name specified in the $ name parameter. It will appear the next time the script is run - even
if SetCookie () is not called in it.

SSI and the virtual () function

A bit of theory

You cannot use two "handlers" for the same document in Apache. In other words, the principle is valid:
either PHP or SSI. However, PHP has certain means for "emulating" the SSI-construct include virtual .

The include virtual construct loads the file whose URL is specified in its parameters, processes it with the
necessary handler and displays it in the browser. That is, everything happens as if the specified URL was
requested virtual browser Most SSI files are limited to using this feature.

virtual
Simulate include virtual . Syntax: int virtual (string $ url) The virtual () function is a procedure that can
only be supported if PHP is installed as an Apache module. It does the same as the SSI statement <-

#include virtual = ... -> . In other words, it generates a new request to the server, processes it normally, and
then writes the data to standard output. The virtual () function is most often used to run external CGI scripts
written in another programming language, or to process SSI files of a more complex structure. In case the
script is run, it must generate the correct HTTP headers, otherwise an error message will be displayed. The
virtual () function cannot be used to include regular PHP files with code sections - this is done by the
include statement .

Output control

Introduction

This group of functions allows you to control how PHP outputs information when a script is executed. This
can be useful in a variety of situations, especially when sending HTML headers to the browser after the
script has started rendering HTML text. (Normally, it is not possible to send a header after text output has
started.)

These functions do not affect headers sent by header () or setcookie (), but only functions like echo () and
HTML text between PHP blocks. -code.

<? php

ob_start ();
echo "Hello \ n"

setcookie ("cookiename", "cookiedata");

ob_end_flush ();

>

In the example above, the output from the echo () command will be stored in the output buffer until the call
to ob_end_flush (). At the same time, calling setcookie () successfully saves the cookie without throwing an
error.

Output control functions

ob_start
Enable output buffering.

Syntax:
void ob_start ([string output_callback])

After calling this function, output buffering is turned on and, while it is active, none of the output data will
be sent to the browser, but will be stored in the internal PHP buffer.

The contents of the buffer can be copied to a string variable using ob_get_contents (). The ob_end_flush ()
function is used to display the contents from the buffer. The ob_end_clean () function allows you to delete
the contents of the buffer.

In the output_callback argument, you can specify a function that will be automatically called when
displaying the contents of the buffer. This is usually used to modify the contents of the buffer before
outputting (eg compression). Then, when the ob_end_flush () function is called, the contents of the buffer
will be passed to the specified function, and what it returns will be output (note that the function itself

should not output anything).

Buffering can be nested, in which case it is handled appropriately for nesting; and the content output from
the lower-level buffer will be included in the upper-level buffer. Remember to call ob_end_flush () as many
times as ob_start () was called to display all buffered content.

<? php
function c ($ str) {// get the contents of the buffer
return nl2br ($ str); // returns the contents of the buffer

}
function d ($ str) {// get the contents of the buffer

return strtoupper ($ str); // returns the contents of the buffer

}

7>

<? php

ob _start ("c");
>

There is a different text ...

<? php

// convert text later to uppercase
ob _start ("d");

>

something else...
<? php

ob_end_flush ();
>

<? php
ob_end_flush ();
7>

ob_get_contents
Get the contents of the output buffer.

Syntax:
string ob_get_contents ()

If buffering is inactive, false is returned.

ob_get_length
Get the length of the data in the output buffer.

Syntax:
string ob_get_length ()

If buffering is inactive, false is returned.

ob_end_flush
Display the contents of the buffer.

Syntax:
void ob_end_flush (void) The

current level buffer is flushed after output, so call ob_get_contents () beforehand if you need to get its
contents.

flush
Displays the entire contents of the buffer.

Syntax:
void flush (void);

This function only affects PHP buffering and cannot control the buffering scheme of the web server or
browser.

Some servers, especially under Win32, buffer the output of the script before the script ends and the data is
sent to the browser.

The browser, in turn, can also buffer the received data before displaying it. Netscape, for example, buffers
text until it receives a line terminator or start tag, and for tables, until it receives the </table> tag of the top-
level table.

ob_end_clean
Clearing the buffer . Syntax: void ob_end_clean (void); The function call disables buffering at the current
level.

ob_implicit_flush
Set the buffering mode.

Syntax:
void ob_implicit_flush ([int flag]);

If a nonzero value is specified in the argument, or it is not specified, then the flush () function will be
implicitly called during each output operation.

It should be noted that this function often works in a funny way; for example, if you call the ob_end_clean
() function at the end of the script, the script will not output anything if the output from the buffer was not
explicitly done by other functions.

Controlling PHP Script Execution

Script control functions

set_time_limit
Sets the time limit for script execution.

Syntax:
void set_time_limit (int seconds)

When a script is run, PHP starts a system timer, and if the time (allotted to the script to execute) expires and
the script has not finished yet, PHP forces the script to terminate (generating a fatal execution error). This
will prevent the accumulation of a large number of scripts that consume server resources, but seem to
"hang" (for example, if they find an infinite loop or they are trying to wait for a connection to an
unresponsive server).

By default, the allowed execution time of the script is set in the configuration file by the

max_execution_time parameter (usually it is 30 s). But for the current scenario, this time can be changed by
calling this function, specifying the time in seconds in its argument. If the value 0 is specified, then the time
limit is removed.

The countdown starts from the moment the function is called. For example, if the script has already been
executed for 15 seconds, and then the set_time_limit (20) function is called , then the total maximum script
execution time becomes 35 seconds.

If the script is executed in safe mode (with the safe mode parameter set), then the call to this function is
ignored and the value from the configuration file is used.

sleep
Delay in script execution.

Syntax:
void sleep (int seconds);

The sleep () function delays the execution of the script in seconds.

usleep
Script execution delay in microseconds.

Syntax:
void usleep (int micro_seconds);

Delay of script execution in microseconds (micro_seconds).
This feature does not work on Windows.

die
Print a message and end the current script.

Syntax:
void die (string message);

This function displays a message and terminates the execution of the current script. It does not return a
value .

<? php

$ filename = '/ path / to / data-file";

$ file = fopen ($ filename, 'r")

or die "unable to open file ($ filename)";

>

exit
Exits the current script.

Syntax:
void exit (void);

This function ends the current script. Returns no value.

assert
Check if a value is true.

Syntax:
int assert (string | bool assertion);

The function argument can be a value or a string containing PHP code (as in the eval () function). The
function checks if a value (or expression) is false, and if so, performs certain actions.

The behavior of the function is determined by the settings in the configuration file or when calling the

assert_options () function.

Usually this function is used solely for debugging purposes, to check those values that should always be
true (for example: module connection, free disk space, etc.).

In general, the execution of the script should not depend on such checks, but use the usual checks of the
values returned by the functions.

<? php
function handler () {
echo "\ n * Failed * \ n";

}

assert ("\$a="1");

echo "a: $a\n";

assert (0);

// end script

echo assert_options (ASSERT_BAIL, 1);

// call the handler

assert_options (ASSERT_CALLBACK, "handler");
// don't print PHP messages

@assert (- $ a);

// this line will not be executed

echo"\n...\n"

The above example will output : a: 1 Warning: Assertion failed in file.php on line 20 0 * Failed *

assert_options
Define assert options.

Syntax:
mixed assert_options (int parameter [, mixed value])

This function allows you to define the behavior of the assert () construct. Returns the previous value for the
parameter (or false on error) specified in the first argument of one of the following constants:

Parameter ini parameter Default | Description

ASSERT_ACTIVE asser.active 1 Allow code to be specified in assert ().
ASSERT_WARNING assert.warning 1 Issue a PHP warning.

ASSERT_ BAIL assert.bail 0 Terminate execution if not true.
ASSERT_QUIET_EVAL | assert.quiet_eval |0 Do not send messages.

ASSERT_CALLBACK assert_callback | (null) Set the function as a handler for "false" assert ().

If a value needs to be overridden, it is specified in the second argument.

eval
Execute a line containing PHP code.

Syntax:
void eval (string code_str);

The eval () function executes the line specified in code_str containing PHP code. By the way, this can come
in handy for saving the code in a database text field for later execution. Do not forget that the code specified
in the line must be syntactically correct (for example, there must be semicolons after each command, etc.),
otherwise the script will end with an error on this line. Also keep in mind that the variable values that are

set on this line will be used in the rest of the script.
When changing variable values in eval (), those variables will be changed in the main data as well.

If a return statement is specified in the line , then the execution of the specified code will be terminated
ahead of schedule and the returned value can be obtained as the value returned by the function itself.

<? php

$ string = 'cup’;

$ name = 'coffee’;

$ str = 'This is a $ string with my $ name in it.

.
b

echo $ str;

eval ("\ $str=\"$str\";");

echo $ str;

>

The result of executing this code will be : This is a $ string with my $ name in it. This is a cup with my
coffee in it.

Connection status

Internally PHP has three connection statuses:
 0-NORMAL;

* 1- ABORTED (interrupted by the user);

« 2-TIMEOUT (response timeout expired).

When the script is executed normally, the NORMAL state is active. If the user presses the STOP button
while loading the page, the ABORTED state becomes active. If the script runs longer than its allotted time,
the TIMEOUT status flag is set. It is possible to determine how the script should behave depending on these
conditions.

If you want the script to continue its execution when the user disconnects the connection, you need to set the
value of the ignore_user_abort = 1 parameter in the configuration file (this can also be done in the Apache
configuration files). You can also use the ignore_user_abort () function. Otherwise, the script ends.

To ignore timer completion of the script, use the set_time_limit () function.

If register_shutdown_function () has been set to a "run on script termination" function, then, regardless of
the connection status, it will be executed before the script exits. And in the "final" function it will be
possible to find out (using the function: connection_aborted (), connection_timeout () and connection_status

()) whether the script was completed normally or ahead of schedule.

connection_aborted
Defines the user to disconnect the connection.

Syntax:
int connection_aborted (void);

Function connection_aborted () returns true, if the connection was aborted by the user.

connection_status Connection
status definitions.

Syntax:
int connection_status (void);

Returns the value of a bit field that allows you to find out in the "final" function, whether the script was
terminated early and the reason for this. For example, if 3 (ABORTED | TIMEOUT) is returned, it means
that the execution timed out, and that the user refused to load the page.

If it returns O (that is, NORMAL), then this means that the script has not been interrupted.

connection_timeout Timeout
definitions.

Syntax:
int connection_timeout (void);

Returns true if the script timed out.

ignore_user_abort Abort the
script on disconnection.

Syntax:
int ignore_user_abort ([int setting]);

The setting argument can be used to specify whether the script should be terminated early if communication
with the client is lost. If no argument is specified, the current setting is returned.

register_shutdown_function
Sets the function to be executed on shutdown.

Syntax:
int register_shutdown_function (string func);

Registers a function named func as a function to run when the script ends.

Note that since no output is available after the function ends, this makes normal debugging tools such as
print or echo unavailable for the function registered as "terminator".

Additional functions

get_browser
Define browser capabilities.

Syntax:
object get_browser ([string user_agent]);

The information returned is retrieved from the browscap.ini file. The browser is identified by the value of
the $ HTTP_USER_AGENT variable or the value from the user_agent argument .

The information is returned in the form of object properties and reflects the capabilities of the client browser
(for example, version, whether it supports javascript or cookies).
<? php
function list_array ($ array) {
while (list ($ key, $ val) == each ($ array)) {
$ str. = " $ key: $ val
\n";
}

return $ str;

}

echo "$ HTTP_USER_AGENT <hr>";
$ bouser = get_browser ();

echo list_array ((array) $ browser);
7>

Possible output content:

Mozilla /4.5 [en] (X 11: Linux 2.2.9 i 586) < hr >
 browser_name_pattern: Mozilla / 4\ .5. *

 parent: Netscape

 platform: Unknown

 majorver: 4

 minorver: 5

 browser: Netscape

 version: 4

 frames: 1

 tables: 1

 cookies: 1

 backgroundsounds:

 vbscript:

 javascript: 1

 javaapplets: 1

 activexcontrols:

 beta:

 crawler:

 authenticodeupdate:

msn:

In order for the function to function, the location of the browscan.ini file must be correctly specified in the
configuration file.

highlight_file
Output the content of a color-coded file.

Syntax:
boolean highlight_file (string filename);

The name or path of the file is specified in the argument. Syntax highlight colors are defined in the PHP
configuration file. Returns true or false on error.

For example, to force the Apache server, when it receives a request from a URL containing a value of the
form "http: //server.name/source/path/to/file.php", displays a listing of the file "http:
//server.name/source/path / to/file.php ", do the following.
» Add the following snippet to the httpd.conf file:
Use the "ForceType" directive to specify
that the source value in the URL is not a directory, but the name of the PHP script
<Location / source>
ForceType application / x-httpd-php
</Location>
» Create the following file named source in the web root directory :
<HTML> <HEAD>
<TITLE> Source Display </TITLE>
</HEAD>
<BODY bgcolor = # FFEEDD>
<? php
$ script = getenv ("PATH_TRANSLATED");
if (! $ script) {
echo "
 ERROR: Please enter script name
";
} else {
if (ereg ("(\. php | \ .inc) $", $ script)) {
echo "<H!> File Listing : $ PATH_INFO </H1>\n <hr>\n";
if (! @ highlight _ file ($ script))
echo "File output error";
} else {
echo "<H1> ERROR: Only PHP file listings are shown </H1>";
}
}

echo "<HR> Printed :" .date ("Y /M /d H: i: s", time ());
7>

</BODY>

</HTML>

highlight_string
Color highlighting of a string.

Syntax:
void highlight_string (string str);

This function acts like highlight_file () , but it uses the specified string instead of the file content.

show_source
Synonym for highlight_file function . Syntax : boolean show_source (string str);

pack
Packing data into a binary string.

Syntax:
string pack (string format [, mixed $ args, ...]);

The pack () function packs the given arguments into a binary string, which is then returned. The format of
the parameters, as well as their number, is specified using the $ format string , which is a set of one-letter
formatting specifiers similar to those specified in sprintf () , but without the% sign. Each specifier can be
followed by a number that indicates how much information will be processed by this specifier. Namely, for
the formats a, A, h and H, the number specifies how many characters will be placed in a binary string from
those that are in the next string parameter when calling the function (that is, it determines the size of the
field for outputting the string). In the case of @, it defines the absolute position at which the following data
will be placed. For all other specifiers, the following numbers specify the number of arguments that this
format applies to. Instead of a number, you can specify *, in this case, it is assumed that the specifier
operates on all remaining data.

Here is a complete list of format specifiers:

* a - string, empty spaces in the field are filled with a character with code 0;

« A - string, empty spaces are filled with spaces;

* h - hexadecimal string, least significant bits at the beginning;

* H - hexadecimal string, high order bits at the beginning;

* - signed byte (symbol);

* C - unsigned byte;

* s -signed short integer (16 bit byte order is determined by the processor architecture);
* S -unsigned short number;

* n - unsigned integer (16 bits, most significant bits at the end);

» v - unsigned integer (16 bits, least significant bits at the end);

« iis asigned integer (the size and byte order is determined by the architecture);
» I -unsigned integer;

» |- signed long integer (32 bits, the order of the characters is determined by the architecture);
* L - unsigned long integer;

* N - unsigned long integer (32 bits, most significant bits at the end);

* V -unsigned integer (32 bits, least significant bits at the end);

« fis a floating point number (depends on the architecture);

* d - double precision floating point number (depending on architecture);

* X - a character with a zero code;

* X -go back 1 byte;

* (@ - filling with a zero code to the specified absolute position.

// Whole, whole, everything else is sivol

$ bindata = pack (" nvc *", 0 x 1234, 0 x 5678, 65, 66);
After executing the above code, the $ bindata line will contain 6 bytes in the following sequence:
0x12, 0x34, 0x78, 0x56, 0x41, 0x42 (in hexadecimal notation).

unpack
Unpacks data from a binary string.

Syntax:
array unpack (string format, string data);

Unpacks data from a binary string into an array according to the format. Returns an array containing the
unpacked elements.

$ array = unpack (" ¢ 2 chars / nint ", $ binarydata);

The resulting array will contain "chars1", "chars2" and "int".

iptcparse
Parses an IPTC binary block for single tags.

Syntax:
array iptcparse (string iptcblock);

This function parses an IPTC binary block for single tags. Returns an array using tagmarker as index and
value as value. Returns false on error or if no IPTC data was found.

leak
Simulate a memory leak.

Syntax:
void leak (int bytes);

leak () cuts off a certain amount of memory.
This is useful when debugging a memory manager that automatically cleans up pruned memory when a
query is executed.

Memory unit size in bytes argument bytes .

serialize
Generates a human-readable representation of the value.

Syntax:
string serialize (mixed value);

serialize () returns a stream of bytes when represented as value, which can be stored somewhere.
This is useful for storing or passing PHP values without losing their type and structure.
Example:
//'$ session_data contains a multidimensional array

with session information
/I current user. We use

serialize () to save
// this in the database at the end of the request.

$ conn = odbc_connect ("webdb", "php", "chicken");
$ stmt = odbc_prepare ($ conn,
"UPDATE sessions SET data =? WHERE id =?");
$ sqldata = array (serialize ($ session_data),
$ PHP_AUTH_USER);
if (! odbc_execute ($ stmt, & $ sqldata)) {
$ stmt = odbc_prepare ($ conn,
INSERT INTO sessions (id, data) VALUES (?,?) ");
if (! odbc_execute ($ stmt, & $ sqldata)) {

/ * Something was done wrong. * /

}
}

unserialize
Creates a PHP value from a stored representation.

Syntax:
mixed unserialize (string str);

unserialize () takes one stored value and converts it back to PHP value. Returns the converted value, and can
be of type integer, double, string, array, or object. If object was converted, the methods will not be restored.
Example:
// Here we use unserialize () to load
session data from the database
//in $ the session _ data . This example complements
described in place
// with serialize ().
$ conn = odbc_connect ("webdb", "php", "chicken");
$ stmt = odbc_prepare ($ conn,
"SELECT data FROM sessions WHERE id =?");
$ sqldata = array ($ PHP_AUTH_USER);
if (! odbc_execute ($ stmt, & $ sqldata) ||
! odbc_fetch_into ($ stmt, & $ tmp)) {
/1 1f startup or fetch fails,
// then initialize the array
$ session_data = array ();
} else {
// We must have a view at $ tmp [0].
$ session_data = unserialize ($ tmp [0]);
if (! is_array ($ session_data)) {
// Something is wrong, initialize the array
$ session _ data = array ();
}
}

uniqid
Generates a unique identifier.

Syntax:
int uniqid (string prefix [, boolean lcg]);

The uniqid () function returns a unique identifier based on the current time in microseconds and prefixed
with prefix .

The prefix can be useful, for example, if you are generating identifiers at the same time on separate hosts,
which might happen to generate an identifier in the same microsecond. The prefix can be up to 114
characters long.

If an empty string is passed as its value, then the length of the generated identifier will be 13 characters
(with lcg = true - 23 characters).

If the optional Icg argument is specified with the value true, the "combined LCG entropy hash" will be
appended to the end of the identifier, making its value more unique.

It is also customary to process the received value using cryptographic methods (for example, this is often
done in session identifiers).

// no random part

$ token = md5 (uniqid (""));

// harder

$ better_token = md5 (uniqid (rnad ()));

These strings generate 32 bytes (a 128-bit hexadecimal number): they have as much unnaturalness as you
can possibly need.

Mail functions

mail
Sends mail.

Syntax : mail ($ to, $ subject, $ msg [, $ headers]),

The mail () function sends a message with the body $ msg (it can be a "multi-line string", that is, a variable
containing several lines separated by a newline character) to $ to . You can specify multiple recipients at
once by separating their addresses with spaces in the $ to parameter .

Example:
mail ("spravka_web@chat.ru spravka_web@hut.ru",

"My message",

"First line \ nSecond line \ nThird line"
);
If the fourth parameter is specified, the string passed in it is inserted between the end of standard mail
headers (such as To , Content-type , etc.) and the beginning of the message body. Typically this parameter is
used to set additional headers for the message.

Example:
mail ("spravka_web@chat.ru spravka_web@hut.ru",
"Topic",
"Letter body"
" From : webmaster @ chat. Ru\n".
"Reply-To: webmaster@chat.ru \ n".
"X-Mailer: PHP /". phpvarsion ()

Program launch functions

escapeshellcmd Strip
shell wildcards.

Syntax:
string escapeshellcmd (string command);

Strips away any characters in a string that can be used as arbitrary commands in the shell. This function
should be used to make sure that all your data is entered correctly, and it is best to insert this function in the
exec () or system () function. The standard usage for this function is:

system (EscapeShellCmd ($ cmd))

exec
Run an external program.

Syntax:
string exec (string command [, string array [, int return_var]]);

The exec () function hidden from the user runs the program from the command line, all standard output is
disabled. Returns the last line of the program execution result.

If the array parameter is set, then the specified array will be filled with the output from the program.
Remember, if the array already contains data, then exec () appends its data to the end of the array. The
unset () function can be used to clear an array .

If the return_var parameter is set along with the array parameter, then the result of the command is written
to it.

<? php

$ se ="dir c: \\";
$ s0 = exec ($ se, $ sa, $ sr);
echo "When I ran the command" $ se ", the last line printed was: \ n",
$ s0, "\ n Return code ($ sr) \ nAnd this is all that was displayed:";
print _r($sa);
>
If you want to run a program in the background (for a long time), then its output stream must be redirected
to a file (or another output stream); otherwise, after the valid time of the script execution (waiting for the
completion of the external program) has expired, it will be forcibly terminated with an error.

system
Runs an external program with the output.

Syntax:
string system (string command, int [return_var]);

this is the function to run command and print the result. If the second parameter is used, the result of the
command is written to it.

The System () call also tries to automatically insert into the web server's output buffer after each line of
output if PHP is running as a server model.

passthru
Runs an external program and outputs data directly.

Syntax:
string passthru (string command [, int return_var]);

The passthru () function is similar to the exec () function for running command . If return_var is set, then
the result of the Unix command is placed here. This function should be used instead of exec () or system ()
when the output from a Unix command is binary data that should be piped directly back to the browser. This
can be used, for example, to run the pbmplus utility to output the image stream directly. By setting the type
image / gif and calling the pbmplus program to display the gif image, you can create PHP scripts that
display the images directly.

Dynamic loading functions

dl
Load PHP extension library at runtime.

Syntax :

int dl (string library);

dl ("extensions / php_db.dll");

Loads the PHP extension defined in library.

get_loaded_extensions
Definitions of the list of loaded modules.

Syntax:
array get_loaded_extensions (void);

Returns an array containing a list of PHP module names that were compiled, loaded at PHP startup, and
loaded at runtime with the dl () function.
print_r (get_loaded_extensions ());
Displays information similar to the following:
Array
(
[0] => standard
[1] => bcmath
[2] => calendar

[3] => ctype
[4] => com
[5] => ftp
[6] => mysql
[7] => odbc
[8] => overload
[9] => pcre
[10] => session
[11] => tokenizer
[12] => xml
[13] => wddx
[14] => zlib
[15] => exif
[16] => gd
[17] => zip

)

extension_loaded
Checks module loading.

Syntax:
bool extension_loaded (string name);

Returns true if the specified module name has already been loaded. Pay attention to how the module name is
spelled and the case of characters.

get_extension_funcs
Definition of module functions.

Syntax:
array get_extension_funcs (string module_name);

Returns an array containing an enumeration of the function names contained in the module module_name.
This module must be preloaded.
print _r (get _ extension _ funcs (" xml "));

Information functions
phpinfo
Prints the current state of all PHP options.

Syntax:
int phpinfo ([int what])

To reduce the amount of information displayed, you can specify one of the following what sections (if it is
not specified, INFO_ALL is assumed):

« INFO_GENERAL
 INFO_CREDITS

« INFO_CONFIGURATION
« INFO_MODULES

« INFO_ENVIRONMENT

« INFO_VARIABLES

« INFO_LICENSE

« INFO_ALL

This function, which, in general, should not appear in a finished program, displays a large amount of
various information in the browser regarding PHP settings and script invocation parameters. Namely, the
following is printed to the standard output stream (that is, the user's browser):

 PHP version;

« options that were set when PHP was compiled;

 information about additional modules;

« environment variables, including those set by the server when receiving a request from the user to call
the script;

* operating system version;

* the state of the main and local settings of the interpreter;

« HTTP headers;

* PHP license.

The phpinfo () function is mainly used during the initial installation of PHP to test its functionality (it gives
a lot of information).

You can check the operation of this function by clicking this link .

phpversion
Returns the current PHP version.

Syntax:
string phpversion ();

Returns a string containing the version name of the PHP interpreter.
echo phpversion ();

Here's what it should look like:

4.3.6

phpcredits
HTML listing of PHP developers.

Syntax:
void phpcredits (inf flag);

Displays information about the creators and their contributions to the development of the PHP package.
phpcredits (CREDITS _ GENERAL);

Flags can be combined as follows:

phpcredits (CREDITS_GROUP + CREDITS_DOCS + CREDITS_FULLPAGE);

Below is a list of the available flags:

 CREDITS_ALL - Complete HTML listing .

« CREDITS_DOCS - List of documentation developers.

« CREDITS_FULLPAGE - Usually used in combination with other flags. Selects an option prepared for
printing.

« CREDITS_GENERAL - General development of PHP 4.0 and SAPI language

« CREDITS_GROUP - List of kernel developers.

« CREDITS_MODULES - List of add-on modules and their authors.

« CREDITS_SAPI - List of PHP server API module developers.

php_sapi_name
Get the type of interface between the web server and PHP.

Syntax:
string php_sapi_name ();

Returns a string containing the interface type in lowercase. For CGI PHP, this will be the string "cgi", for
mod_php under Apache - "apache", etc.
$ sapi_type = php_sapi_name ();
if ($ sapi_type == "cgi")
echo " This is CGI PHP \ n";
else
echo " This is not CGI PHP but $ sapi_type";
Here's what we get for our case:
This is not CGI PHP but cgi-fcgi

php_uname
Operating system definition.

Syntax:
string php_uname ();

Returns a string containing the name of the operating system, for example "Windows NT MYCOMP 5.1
build 2600".
if (substr (php_uname (), 0.7)! = "Windows") {

die ("This script must run on Windows.");

}

ini_set
Change configuration parameter.

Syntax:
string ini_set (string varname, string newvalue);

Sets the specified varname to newvalue. Returns the previous value on success, false on error.

ini_alter
Same as ini_set ().

Syntax :
string ini_alter (string varname, string newvalue);

ini_get
This function gets the values of the configuration parameters.

Syntax:
string ini_get (string varname);

Returns the current value of the configuration parameter specified in the varname variable.
This function allows you to get all the parameters available in PHP.
Returns false on error.

ini_restore Restores the
configuration parameter .

Syntax:
string ini_restore (string varname);

Sets the varname configuration parameter to its original value.

echo ini_set ("precision"”, 20) .ini_get ("precision").
ini_restore ("precision"). ini_get ("precision");

// Prints 14 20 14

get_cfg_var
Retrieves parameter values directly from php.ini file.

Syntax:
string get_cfg_var (string varname);

It should be noted that unlike the ini_get () function, which returns the current parameter value, the
get_cfg_var () function returns the parameter value, which is set in the php.ini configuration file. Also, this
function does not return other parameters (for example, from the server configuration itself).

getenv
The function returns the value of an environment variable.

Syntax :
string getenv (string varname);

$ ip = getenv ("REMOTE_ADDR");

echo " Your IP address is $ ip";

Here's what you get as a result of the work:

Your IP address: 127.0.0.1

The list of environment variables can be viewed in Applications -> Environment Variables , or using the

phpinfo () function .
This feature does not work in PHP ISAPI module.

putenv
Sets an environment variable.

Syntax:
void putenv (string setting);

putenv ("UNIQID = $ uniquid");
get_magic_quotes_gpc

Gets the current value of the magic_quotes_gpc parameter.

Syntax:
long get_magic_quotes_gpc ();

This function will return 0 for Off and 1 for On.

get_magic_quotes_runtime
Used to get the current value of the magic_quotes_runtime patameter.

Syntax:
long get_magic_quotes_runtime ();

This function will return 0 for Off and 1 for On.

set_magic_quotes_runtime
Designed to set the current value of the magic_quotes_runtime patameter.

Syntax:
long set_magic_quotes_runtime (int new_setting);

To set magic_quotes_runtime to Off, set new_setting to 0, and to set On to 1.

php_logo_guid
Function for getting the PHP logo GUID.

Syntax :
string php_logo_guid ();

Line

echo php_logo_guid ();

will return
PHPE9568F34-D428-11d2-A769-00AA001ACF42

zend_logo_guid
Function to get the GUID of the Zend logo.

Syntax :
string zend_logo_guid ();

Line

echo zend_logo_guid ();

will return
PHPE9568F35-D428-11d2-A769-00AA001ACF42

www . spravkaweb . ru Part 5 . Interaction with databases
Part 5. Interaction with databases

MySQL database

Working with databases

mysql_connect
Establishes a network connection to a MySQL database.

Syntax:
int mysql_connect ([string $ hostname [: port] [: / path / to / socket] [, [, string $ username [, string $
password]]])

The mysql_connect () function establishes a network connection to the MySQL database, located on the host
$ hostname , and returns the identifier of the open connection. All further work is carried out with this
identifier. When registering, the username is $ username and the password is $ password . The $ hostname
string can also include the port number in the form "hostname: port" or the path to the socket for the local
machine on Unix systems - ": / path / to / socket" (if the MySQL server is configured not for standard, but
for some then another port).
If an error occurs, a warning is issued. You can block the error message by prefixing the function name with
the "@" operator.
The next time the function is run with the same arguments, the second connection will not be opened, and
the function will return the identifier of the existing one.
At the end of the script, it is usually customary to close the connections with the mysql_close () function ,
but you do not need to do this, since PHP automatically closes all (volatile) connections when the script
ends.
<? php

$ conn = mysql_connect ("localhost", "username", "

or die ("Connection not established!");

print ("Connection established!");

mysql _ close ($ conn);
>

pass")

mysql_pconnect
Establishes a stable network connection to the MySQL database.

Syntax:
int mysql_pconnect ([string $ hostname [: port] [: / path / to / socket] [, [, string $ username [, string $
password]]])

The mysql_pconnect () function establishes a stable network connection to the MySQL database located on
host $ hostname and returns the identifier of the open connection. All further work is carried out with this
identifier. When registering, the username is $ username and the password is $ password . The $ hostname
string can also include the port number in the form "hostname: port" or the path to the socket for the local
machine on Unix systems - ": / path / to / socket" (if the MySQL server is configured not for standard, but
for some then another port).

On error, a warning is issued. You can block the issue of an error message by preceding the function name
with the "@" operator.

The next time the function is run with the same arguments, the second connection will not be opened, and
the function will return the identifier of the existing one.

mysql_pconnect () behaves similarly to mysgl_connect , with two differences:

« Before connecting, the function tries to check if there is already an open connection. If so, an identifier is
returned instead of creating a new connection.

» When the script ends, the connection is not closed, but remains valid for further use, ie. function
mysql_close () can not close the connection created with mysql_pconnect () .

mysql_close
Closes a previously established database connection.

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.spravkaweb.ru

Syntax:
int mysql_close ([int link_identifier])

Closes the connection to the MySQL server with link_identifier , or the last open connection if used without
an identifier.
Returns true on success, or false on error.
Using this function is optional, since PHP automatically closes all unstable connections when the script
exits.
Connections established by mysql_pconnect () are not closed.
<? php

$ conn = mysql _ connect (" localhost ", " username ", " pass ")

or die ("Connection not established!");

print ("Connection established!");

mysql _ close ($ conn);
>

mysql_change_user
Changes connection parameters.

Syntax:
int mysql_change_user (string user, string password [, string database [, int link_identifier]])

If no database or connection is specified, then the last active database is used.
If authorization has not occurred, the connection parameters are not changed.
Works with MySQL 3.23.3 and up.

mysql_list_dbs
Returns the list of databases on the server.

Syntax:
int mysql_list_dbs ([int link_identifier])

Returns a recordset containing a list of databases on the server.
$ bd = mysql_connect ("localhost", "name", "pass");
$ bd_list = mysql_list_dbs ($ bd);
while ($ row = mysql_fetch_object ($ bd_list)) {
echo $ row -> Database . "\n ";
}

It should be noted that the list of databases can be obtained without privileges, i.e. without specifying the
access password.

mysqgl_db_name
Returns the name of the database from the list.

Syntax:
int mysql_db_name (int result, int row [, mixed field])

The result parameter specifies a handle to the recordset retrieved using mysql_list_dbs () . The row
argument specifies the record number.
This function returns false on error.
mysqgl_connect ("localhost", "username", "pass");
$ db_list = mysql_list ();
for ($i=0; $i<($ cnt = mysql_num_rows ($ db_list)); $i ++) {
echo mysql_db_name ($ db_list, $ i). "\ n";
}

The function was previously called mysgl_dbname () .

mysql_select_db

Select one MySQL database.

Syntax:
int mysql_select_db (string database_name [, int link_identifier])

Returns true on successful close, or false on error.

If you plan to open only one connection to the database for the entire duration of the script, you may not
save the returned value, and also omit the identifier when calling all other functions.

Before sending the first query to the MySQL server, you need to specify which database we are going to
work with. This is what this function is for. It notifies that further operations on the link_identifier
connection (or on the last open connection if the specified parameter is not specified) will use the
database_name database .

If at the time of calling this function there are no connections to the database, then the mysql_connect ()
function is called indirectly with default parameters.

mysql_create_db
Creates a MySQL database.

Syntax:
int mysql_create_db (string dbname [, int link_identifier])

This function creates a new MySQL database named dbname using the link_identifier connection .
$ db = mysql_connect ("localhost", "name", "pass");
if (mysql_create_db ("my_db_name")) {
echo " my_db_name database has been created ");
} else {
echo " Error creating database :% s \ n" .mysql_error ());

}

mysql_drop_db
Dropping the MySQL database.

Syntax:
int mysql_drop_db (string database_name [, int link_identifier])

The mysql_drop_db () function drops the database_name database available on the link_identifier
connection .
Returns true on successful deletion, false on error.

mysql_list_tables
Returns a list of tables in the database.

Syntax:
int mysql_list_tables (string database [, int link_identifier])

The function returns the result identifier (one column), which contains the names of all tables present in the
database. To retrieve these names, you can use the mysql_result () function with a column number of 0, or
the mysql_tablename () function .

The following example will list all the names of the databases and tables they contain:
$ db = mysql_connect ("localhost", "user_name", "");
$ db_list = mysql_list_dbs ($ db);
while ($ r_db = mysql_fetch_object ($ db_list)) {
echo $ r_db-> Database. "\ n";
// print the list of tables
$ t_list = mysql_list_tables ($ r_db-> Database);
for ($1i=0; $ i <mysql_num_rows ($ t_list); $ i ++) {
echo "-" .mysql_tablename ($ t_list, $ i). "\ n";
}
}

mysql_tablename
Returns the name of the table in the database.

Syntax:
int mysql_tablename (int result, int i)

The function returns the name of the table with the number i from the set of records obtained using the
mysql_list_tables () function .
$ db = mysql_connect ("localhost", "user_name", "");
$ result = mysql_list_tables ("db_name");
$1=0;
while ($ i <mysql_num_rows ($ result)) {
$ t_name [$ i] = mysql_tablename ($ result, $ i);
echo $ t name [$ i]. "
";
$i++;

}

mysqgl_query
Sends a query to the MySQL database.

Syntax:
int mysql_query (string query [, int link_identifier])

This function sends a query query to the database associated with the link_identifier. If no identifier is
specified, the last open connection is taken into account. If a connection has not been established before,
then the mysql_connect () operation is performed with the default parameters.

The SQL expression specified in the query parameter must not end with ";".

If the expression contains errors, or its execution results in errors, then the mysgl_query () function returns
false.

A successful query returns a recordset that can be processed by the following functions:

« mysql_result () - get an element of a recordset

« mysql_fetch_array () - add a record to the array

« mysql_fetch_row () - write a record to a numbered array

« mysql_fetch_assoc () - add a record to the associative array

« mysql_fetch_object () - Fetch a record into an object

To find out how many records were found by a SELECT command, use the mysql_num_rows () function .
Use mysql_affected_rows () to find out how many records have changed as a result of DELETE, INSERT,
REPLACE, or UPDATE queries .

After processing the query results, it can be removed with the mysql_free_result () function . But this is not
necessary, since the results are themselves destroyed after the script finishes.

mysqgl_db_query
Sends a query to the specified MySQL database.

Syntax:
int mysql_db_query (string database, string query [, int link_identifier])

This function is equivalent to the following sequence of functions:

mysql_select_db (string database [, int link_identifier]);
mysql_query (string query [, int link_identifier]);

mysqgl_num_rows
Returns the number of rows in a query result.

Syntax:
int mysql_num_rows (int result)

This function returns the number of records found as a result of executing an SQL SELECT statement
(database search).

<?

$ link = mysql_connect ("localhost", "username", "
mysql_select_db ("database", $ link);

password");

$ result = mysql_query ("SELECT * FROM tablel", $ link);
$ num_rows = mysql_num_rows ($ result);

echo "Received lines: $ num_rows \ n";
>

mysql_affected_rows
Returns the number of changed records in the MySQL database.

Syntax:
int mysql_affected_rows ([int link_identifier]);

Function mysql_affected_rows () returns the number of records that have been changed in the database as a
result of DELETE, INSERT query, REPLACE, or UPDATE.

If the last query was a DELETE command without a WHERE constraint (i.e. all records were deleted from
the table), then our function will return O.

mysql_insert_id
Gets the inserted identifier.

Syntax:
int mysql_insert_id ([int $ link_identifier])

The function returns, immediately before calling it, the generated record ID for the auto-incrementing field
after executing the insert command. It is reasonable to call it only immediately after the insert statement is
executed, for example, in the following context:

mysql_query ("insert into Table (field 1, field 2) values (" aa"," bb™)");
$ id = mysql_insert_id ();

The record you just inserted can now be

referenced using the $ id: $ r = mysql_query ("select * from Table where id = $ id");
$ Row = mysql_fetch_array ($ r);

mysql_data_seek
Sets the current row pointer.

Syntax:
int mysql_data_seek (int result, int row_number)

This function sets the current row pointer in result to the row_number position , so that the next call to
mysql_fetch_row () and mysql_fetch_array () will return the field values of that particular row.
Records are numbered starting from O.

Returns false in case of an error or if the lines ran out.

mysql_free_result
Destroys a recordset.

Syntax:
int mysql_free_result (int result)

This function frees the memory occupied by the result recordset returned by the query.

This function is necessary when you need to save memory, because PHP automatically frees memory when
the script ends.

Processing query results

mysql_result
Get a specific result field.

Syntax:
int mysql_result (int result, int row [, mixed field])

The function returns the value of the field field in the result row with row number . The field parameter can
specify not only the name of the field, but also its number - the position at which the column "stood" when
creating a table, as well as the full name of a field of the form: "table_name.field_name". However, it is
recommended that field names are used wherever possible.

The function is universal: it can be used to "bypass" the entire result one by one. And although it is not
forbidden, it is not recommended to do it, because mysqgl_result () is rather slow.

mysql_fetch_array
Retrieves the next record from the result and places it into an associative array.

Syntax:
array mysql_fetch_array (int result [, int result_type])

The mysql_fetch_array () function returns the next row of the result in the form of an associative array,
where each field is associated with an element with a key that matches the field name. Additionally, the
array contains elements with numeric keys and values corresponding to the values of the fields with these
indices. In the returned array, they are placed immediately after the elements with "normal” keys.

The result_type parameter specifies the type of the returned array and can take one of the following values:
MYSQL_NUM, MYSQL_ASSOC, MYSQL_BOTH (by default).
The question may arise: why do we need numeric indices at all. The answer is simple: the fact is that as a
result of the selection, in fact, there may be fields (in fact, columns) with the same names, but, accordingly,
with different indices. This happens when a selection in a SELECT is made simultaneously from several
tables.
mysql_connect ($ host, $ user, $ pass);
$ result = mysql_db_query ("database", "select id, name from tabl");
while ($ row = mysql_fetch_array ($ result)) {

echo "id:". $ row ["id"]. "
";

echo "id:". $ row [0]. "
";

echo "name:". $ row ["name"]. "
";

echo "name:". $ row [1]. "
";
i

mysql_free_result ($ result);

mysql_fetch_row
Writes a record to a numbered array.

Syntax:
array mysql_fetch_row (int result)

The function returns an array-list with the values of the fields of the next row of the result result . If the
pointer to the current position of the result was positioned past the last record (that is, the rows ran out),
false is returned. The current position is shifted to the next record, so the next call to mysql_fetch_row ()
will return the next row in the result.

Each field in the record is stored in a numbered array element. Numbering starts from 0.

$ r = mysql_query ("select * from OutTable where age <30");

while ($ Row = mysql_fetch_row ($ 1)) {

// process the $ Row
}

As you can see, the loop will end as soon as the lines end, i.e. when mysql_fetch_row () will return false.

mysql_fetch_object
Get a record in the properties of an object.

Syntax:
object mysql_fetch_object (int result)

The function returns an object whose properties contain the fields of the current record. Returns false if
there are no more entries.
mysql _ connect ($ host , $ user, $ pass);
$ result = mysql_db_query ("database", "select * from table");
while ($ rows = mysql_fetch_object ($ result)) {
echo $ rows-> id;
echo $ rows-> name;

};

mysql_fetch_lengths
Returns the length of the item in the record.

Syntax:
array mysql_fetch_lengths (int result)

The mysql_fetch_lengths () function returns the length of the value retrieved by mysql_fetch_row (),
mysql_fetch_array (), or mysql_fetch_object () .

For example , in the following example :

$ arr = mysql_fetch_row ($ result);

$ len = mysql_fetch_lengths ($ result);

the $ len array will contain the length of the corresponding elements of the $ arr array, i.e. $ len [0] = strlen
(arr [0]) etc.

mysql_fetch_field
Returns information about object properties and record field.

Syntax:
object mysql_fetch_field (int result [, int field_offset])

The optional field_offset parameter specifies the number of the field whose properties we want to get. If this
parameter is not specified, each call to mysql_fetch_field () returns the properties of the next field in the
result recordset .

The returned object has the following properties:

* name - field name

* table - the name of the table to which the field belongs

* max_length - maximum field length

« not_null - 1 if the field is allowed to be empty

« primary_key - 1 if the field is key

» unique_key - 1 if only unique values are allowed in the field
« multiple_key - 1, if it is allowed to have duplicate values in the field
« numeric - 1 if the field is numeric

* blob - 1, if the field is BLOB

* type - field type

» unsigned - 1 if the field is numeric unsigned

o zerofill - 1, if the field is filled with zeros

mysql _ connect ($ host , $ user, $ pass);

$ result = mysql_db_query ("database", select * from table ");
for ($i=0; $ i <mysql_num_fields ($ result); $i ++) {

echo "Properties of $ i field:
";
$ param = mysql_fetch_field ($ result);
if (! $ param) echo "No property information!";
echo "<PRE>
name: $ param-> name
table: $ param-> table
max_length: $ param-> max_length
not_null: $ param-> not_null
primary_key: $ param-> primary_key
unique_key: $ param-> unique_key
multiple_key: $ param-> multiple_key
numeric: $ param-> numeric
blob: $ param-> blob
type: $ param-> type
unsigned: $ param-> unsigned
zerofill: $ param-> zerofill
</PRE>";
}

mysql_field_seek
Moves the cursor to the specified field.

Syntax :
int mysql_field_seek (int result, int field_offset)

This function is redundant . The following snippets will be equivalent :
$ param = mysql_fetch_field ($ result, field_offset);

and

mysql_field_seek ($ result, field_offset);

$ param = mysql_fetch_field ($ result);

mysql_field_name
Returns the name of the field.

Syntax:
string mysql_field_name (int result, int filed_index)

The mysql_field_name () function returns the name of the field that is located in result with index
filed_index (numbering starts at 0).

$ result = mysql_query ("SELECT id, name from table");

echo mysql_field_name ($ result, 1); / Output : name

mysql_field_table
Returns the name of the table from which the field was retrieved.

Syntax:
string mysql_field_table (int result, int field_offset)

Returns the name of the table from which the field was retrieved at offset field_offset as a result of result .

mysql_field_len
Returns the length of the field.

Syntax:
int mysql_field_len (int result, int filed_offset)

The function returns the length of the field from result . The field, as usual, is specified by specifying its
offset. The length here does not mean the size of the field data in bytes, but the size that was specified when
it was created. For example, if a field is of type varchar and was created (along with the table) with type
varchar (100) , then 100 will be returned for it.

mysql_field_type
Returns the type of the resulting recordset.

Syntax:
string mysql_field_type (int result, int filed_offset)

This function is similar to mysql_filed_name () , only it returns not the name, but the type of the
corresponding column in the result. They can be, for example, int, double, real, etc.
mysql_connect ($ host, $ user, $ pass);
mysql_select_db ("mydb");
$ result = mysql_query ("SELECT * FROM tabl");
$ fields = mysql_num_fields ($ result);
$ rows = mysql_num_rows ($ result);
$i=0;
$ table = mysql_field_table ($ result, $ i);
echo " Table " $ table " has a $ fields fields and $ rows records
";
echo " Table structure :
";
while ($ i <$ fields) {
$ type = mysql_field_type ($ result, $ i);
$ name = mysql_field_name ($ result, $ i);
$ len = mysql_field_len ($ result, $ i);
$ flags = mysql_field_flags ($ result, $ i);
echo $ type. "". $ name. "". $ len. "". $ flags. "
";
$i++;

}

mysql_field_flags
This function returns the flags that were used to create the specified field in the table.

Syntax:
string mysql_field_flags (int result, int field_offset) The

returned string is a set of words separated by spaces, so you can convert it to an array using the explode ()
function :

$ Flags = explode ("", mysql_field_flags ($ r, $ field_offset));

Field records in MySQL can have the following properties - flags : "not_nul", "primary_key",

"unique_key", "multiple_key", "the blob", "an unsigned", "zerofill", "binary", "an enum", "auto_increment"
, "'timestamp".

mysql_list_fields
Returns a list of table fields.

Syntax:
int mysql_list_fields (string dbname, string tblname [, int link_identifier])

The mysql_list_fields () function returns information about the specified tblname table in the bdname
database using the link_identifier , if specified (otherwise, the last open connection). The return value is the
identifier of the result, which can be parsed by conventional means. In case of an error, -1 is returned, the
text of the error message can be received in the usual way.
$ link = mysql_connect ($ host, $ user, $ pass);
$ fields = mysql_list_fields ("db1", "table", $ link);
$ colums = mysql_num_fields ($ fields); // number of fields in the table
// Next, print out the names of all fields in the table
for ($i=0; $i<$ colums; $i++) {
echo mysql_field_name ($ fields, $ i). "
";
}

mysql_num_fields
This function returns the number of fields in one row of the result, i.e. the number of columns in the result.

Syntax:
int mysql_num_fields (int result)

By virtue of the above, the function allows to determine the horizontal dimension of the "two-dimensional
result array".

mysqgl_errno
Returns the last error number.

Syntax:
int mysql_errno ([int link_identifier])

This function returns the number of the last logged error, or 0 if there are no errors.

The link_identifier can be omitted if only one connection was established during the script run.
mysqgl_connect ("dbname");

echo mysql_errno (). ":" .mysql_error (). "
";

mysql_error
Returns an error message.

Syntax:
string mysql_error ([int link_identifier])

This function returns a string containing the text of the error message, or an empty string if there were no
errors.

mysqgl_connect ("dbname");

echo mysql_errno (). ":" .mysql_error (). "
";

Part 6. Graphics
Image manipulation and the GD library

Image options

Application and Installation

Here we will look at the idea of creating pictures with a script on the fly. This can be very useful when
creating counter scenarios, graphs, header pictures, and much more.

For this kind of activity, there is a special library called GD. It contains many functions (such as drawing
lines, stretching / compressing an image, filling to the border, displaying text, etc.) that can be used by
programs that support this library.

GD support is included when PHP is compiled and installed. Some hosting providers may not have it.

To connect the module on your local disk, open the php.ini file in Notepad from the directory with
Windows files (usually C: \ Windows)
Then :
1. Configure the following parameter :
extension_dir = C: \ Program Files \ PHP4 \ extensions
This is where we notify PHP that it should look for modules
in the C: \ Program Files \ PHP4 \ extensions directory .
2. Find the commented out line ; extension = php_gd.dll
and uncomment it i.e. remove; at the beginning.
3. Save changes in php.ini file

imageTypes
Determines the image formats supported by PHP.

Syntax:
int imageTypes (void)

The function returns a bitmask of graphic formats supported by this version of the GD library: IMG_GIF |
IMG_JPG | IMG_PNG | IMG_WBMP

<? php
if (imageTypes () && IMG_PNG) echo "PNG is supported";
>

GetlmageSize
Determines the size of the picture.

Syntax:
array GetlmageSize (string filename [, array imageinfo])

This function is used to quickly determine the size (in pixels) and format of the image in the script, the file
name of which is passed to it in the first parameter. It returns a list of four elements. The first element (with
key 0) stores the width of the image in pixels, the second (with key 1) stores its height. The array cell with
key 2 is determined by the image format: 1 if it is GIF, 2 if it is JPG, 3 if it is PNG, and 4 if it is SWF. The
next element with key 3 will contain, after calling the function, a line similar to the following: height = sx
width = sy, where sx and sy are the image width and height, respectively. This application is intended to
make it easier to insert image size data into an tag that can be generated by a script:

<? php

$ size_img = GetImageSize ("img / image.jpg");

echo "";

>

If a second optional imageinfo array was specified when calling the function, additional information about
the file can be written to it. This could be, for example, various JPG APP markers (embedded information).
The iptcparse () function allows you to convert this data into a readable form:

<? php
$ size _ img = GetIlmageSize (" img / image . jpg ", & $ info _ arr);
if (isset ($ info_Arr ["APP13"])) {
$ iptc = iptcparse ($ info_arr ["APP13"));
var _ dump ($ iptc);
i
>
This function does not require the GD library.

imageSX
Determines the width of the image.

Syntax:
int imageSX (int im)

The function returns the horizontal size of the image specified by its identifier im , in pixels.

imageSY
Determines the height of the picture.

Syntax:
int imageSY (int im)

The function returns the vertical size of the image specified by its identifier im , in pixels.

read_exif data
Read EXIF headers from a JPEG file.

Syntax :
array read_exif_data (string filename)

The filename parameter cannot be a URL.

The function returns an associative array in which the indexes are the names of the EXIF headers.
EXIF headers usually store digital camera information (in various forms).

<? php

$ exif = read_exif_data ("img / file.jpg");

print _ r ($ exif);

>

This example will output something like:

Array

(
[FileName] => file.jpg
[FileDateTime] => 1064566998
[FileSize] => 31646
[CameraMake] => Eastman Kodak Company
[CameraModel] => KODAK DC265 ZOOM DIGITAL CAMERA (V01.00)
[DateTime] => 2002: 08: 31 02:12:45
[Height] => 454
[Width] => 620
[IsColor] => 1
[FlashUsed] => 0
[FocalLength] => 8.0mm
[RawFocalLength] => 8
[ExposureTime] => 0.004 s (1/250)
[RawExposureTime] => 0.00400000018995898
[ApertureFNumber] => f / 9.5
[RawApertureFNumber] => 9.5100002288818
[FocusDistance] => 16.66m
[RawFocusDistance] => 16.659999847412
[Orientation] => 1
[ExifVersion] => 0200

)

This function is available , if the connected library EXIF. For this you must either remove the comment

from the line ; extension = php_exif.dll in file windows \ php.ini (must have extension = php_exif.dll), or
compile PHP with the option --enable-exif.

The GD library is not required for this function to work.

imagelInterlace
Sets the interlacing .

Syntax :
int imagelnterlace (int im [, int interlace])

If the second optional parameter interlace is specified in the function, and it is equal to 1, then the picture
im is displayed interlaced, if equal to 0, then sequentially.

The function returns the current interlacing setting.

gd_info
Returns information about the GD library.

Syntax :
array gd_info (void)

The function returns an array containing the version and parameters of the installed GD library.

<? php
$ gd = gd_info ();
echo "<pre>";
print_r ($ gd);
echo "</pre>";
>
The above example will output something like the following:
Array
(
[GD Version] => bundled (2.0.22 compatible)
[FreeType Support] => 1
[FreeType Linkage] => with freetype
[T1Lib Support] =>
[GIF Read Support] => 1
[GIF Create Support] =>
[JPG Support] => 1
[PNG Support] => 1
[WBMP Support] => 1
[XBM Support] => 1
[JIS-mapped Japanese Font Support] =>

)

image_type_to_mime_type
Returns the Mime-Type of the image type .

Syntax :
string image_type_to_mime_type (int imagetype)

The function returns the MIME type of the image, specified by a constant in the imagetype parameter .

<? php

header ("Content-type:". image_type_to_mime_type (IMAGETYPE_PNG));
>

List of constants and return values of the image_type_to_mime_type () function :
« IMAGETYPE_GIF - image / gif

« IMAGETYPE_JPEG - image / jpeg

« IMAGETYPE_PNG - image / png

« IMAGETYPE_SWF - application / x-shockwave-flash

« IMAGETYPE_PSD - image / psd

« IMAGETYPE_BMP - image / bmp

« IMAGETYPE_TIFF_II - image / tiff

« IMAGETYPE_TIFF_MM - image / tiff

« IMAGETYPE_JPC - application / octet-stream

« IMAGETYPE_JP2 - image / jp2

« IMAGETYPE_JPX - application / octet-stream

« IMAGETYPE_JB2 - application / octet-stream

« IMAGETYPE_SWC - application / x-shockwave-flash

« IMAGETYPE_IFF - image / iff

« IMAGETYPE_WBMP - image / vid.wap.wbmp

« IMAGETYPE_XBM - image / xbm This function does not require the GD library.

Manipulating images

imageCreate
Creates an empty image.

Syntax:
int imageCreate (int X, int y)

Creates an empty x by y pixel image and returns its ID. After the picture is created, all work with it is
carried out precisely through this identifier, by analogy with how we work with a file through its descriptor.

Example:
Creating a new picture with GD and displaying it in the browser screen:

<? php
header ("Content-type: image / png");
$ im = @imagecreate (50, 100)

or die ("Can't open new picture!");
$ background_color = imagecolorallocate ($ im, 255, 255, 255);
$ text_color = imagecolorallocate ($ im, 233, 14, 91);
imagestring ($ im, 1, 5, 5, "A Simple Text String", $ text_color);
imagepng ($ im);
7>

imageCreateFromPng
Creates a picture from a PNG file.

Syntax:

int imageCreateFromPng (string filename)

This function loads images from a PNG file into memory and returns its ID. As after the call to
imageCreate () , further work with the image is possible only through this identifier. When loaded from
disk, the image is unpacked and stored in memory in an unpacked format, so that you can perform various
operations with it as quickly as possible, such as scaling, drawing lines, etc.

Example:
An example of finding an error when opening a graphic file.

function LoadPNG ($ imgname) {
$ im = @imagecreatefrompng ($ imgname); / * Attempt to open * /
if (! $im) {/ * See if it failed * /
$ im = imagecreate (150, 30); / * Create a blank image * /
$ bgc = imagecolorallocate ($ im, 255, 255, 255);
$ tc = imagecolorallocate ($ im, 0, 0, 0);
imagefilledrectangle ($ im, 0, 0, 150, 30, $ bgc);
/ * Output an errmsg * /
imagestring ($ im, 1, 5, 5, "Error loading $ imgname", $ tc);
}
return $ im;

}

imageCreateFromJpeg
Creates a picture from a JPEG file.

Syntax:
int imageCreateFromJpeg (string filename)

This function loads images from a file into memory and returns its ID. As after the call to imageCreate () ,
further work with the image is possible only through this identifier. When loaded from disk, the image is
unpacked and stored in memory in an unpacked format, so that you can perform various operations with it
as quickly as possible, such as scaling, drawing lines, etc.

imageCreateFromGif
Creates a picture from a GIF file.

Syntax:

int imageCreateFromGif (string filename)

This function loads images from a file into memory and returns its ID. As after the call to imageCreate (),
further work with the image is possible only through this identifier. When loaded from disk, the image is
unpacked and stored in memory in an unpacked format, so that you can perform various operations with it
as quickly as possible, such as scaling, drawing lines, etc.

It's worth mentioning that GD does not support GIF since version 1.6. Therefore, this function is practically
not used.

imagePng
The function outputs the image in PNG-format to any browser or file.

Syntax :
int imagePng (int im [, string filename])

This function saves the image specified by its identifier and located in memory to disk, or outputs it to the
browser.

Of course, the image must first be loaded or created using the imageCreate () function , i.e. we need to
know its id im .

If filename is omitted, the compressed data in the appropriate format is output directly to standard output,
i.e. into the browser. At the same time, the required Content-type header is not displayed, so you need to
display it manually using Header () .

In fact, you must invoke one of three commands, depending on the type of the image:

Header ("Content-type: image / png") for PNG.

Example:
An example of using the imagepng () function:

<? php
$ im = imagecreatefrompng (" test . png ");
Header ("Content-type: image / png")

imagepng ($ im);
>

imageJpeg
Send the JPEG image to the browser or save it to a file.

Syntax :
int imageJPEG (int im [, string filename [, int quality]])

This function saves the image specified by its ID and resides in memory to disk, or outputs it to the browser.

Of course, the image must first be loaded or created using the imageCreate () function , i.e. we need to
know its id im .

If filename is omitted, the compressed data in the appropriate format is output directly to standard output,
i.e. into the browser. At the same time, the required Content-type header is not displayed, so you need to
display it manually using Header () .

In fact, you have to call one of three commands, depending on the image type:

Header ("Content-type: image / jpeg") for Jpeg
The third optional parameter, quality, specifies the image quality (from 0 to 100).
<? php

$ im = imageCreateFromJPEG ("img / file.jpg");
Header ("Content-type: image / jpeg");
imageJPEG ($ im, "", 30);

>

image2WBMP
Output image to browser or file.

Syntax :
int image2WBMP (resource image [, string filename [, int threshold]])

The function outputs the image specified by the image descriptor to the browser, or to a file whose name is
specified by the optional filename parameter .

If the image is output to the browser, you need to set its WBMP type as image / vnd.wap.wbmp using the
Header () function:

<? php
$ file = "php.png";
$ image = imagecreatefrompng ($ file);

header ("Content-type:". image_type_to_mime_type (IMAGETYPE_WBMP));

image2wbmp ($ image); // Output the wbmp image to the browser

>

The image2WBMP () function is available in PHP only if the GD library version is 1.8 or lower.

imageGif
Send the GIF image to the browser or save it to a file.

Syntax :
int imageGIF (int im [, string filename])

The functions save the image specified by its identifier and located in memory to disk, or output it to the
browser.

Of course, the image must first be loaded or created using the imageCreate () function , i.e. we need to
know its id im .

If filename is omitted, the compressed data in the appropriate format is output directly to standard output,
i.e. into the browser. At the same time, the required Content-type header is not displayed, so you need to
display it manually using Header () .

In fact, you must invoke one of three commands, depending on the type of image:

Header ("Content-type: image / gif").

Because since GD 1.6 does not support GIF format, this function is rarely used.

imageCopy
Copies part of the picture.

Syntax:
int imageCopy (intdst _ im, int src _ im, intdst _ x, intdst _y, int src _ X, int src _y, int src _ w, int
src _h)

Function copies a rectangular region ranging from a position (src_x, src_y) width src_w and height src_h
from figure src_im in Figure dst_im , giving copied area offset (dst_x, dst_y).

The following example will copy the whole picture filel.png to file2.png

<? php

// Create the first image based on the finished image

$ im1 = imageCreateFromPNG ("img / filel.png");

// Determine its size

$ size_x = imageSX ($ im1);

$ size _ y =imageSY ($ im 1);

// Create a second empty picture

$ im2 = imageCreate ($ size_x, $ size_y);

// Copy the whole picture from the first image to the second
imageCopy ($ im2, $ im1,0,0,0,0, $ size_x, $ size_y);

// Save the copied image to a file
imagePNG ($ im 2, " img / file 2. png ");
>

imageCopyResized
Copies part of the picture with scaling.

Syntax :
int imageCopyResized (int dst_im, int src_im, int dstX, int dstY, int srcX, int srcY, int dstW, int dstH, int
srcW, int srcH)

This feature is one of the most powerful and versatile. With it, you can copy images (or parts of them),
move or scale them.

dst_im sets the image identifier in which the result of the function will be placed. This image must have
already been created or uploaded and properly sized.

src_im - the identifier of the image being worked on. However, src_im and dst_im may be the same.

The srcX, srcY, srcW, srcH parameters set the area inside the original image, over which the operation will
be performed - respectively, the coordinates of its upper left corner, width and height.

Finally, the four dstX, dstY, dstW, dstH sets the place on the dst_im image , into which the rectangle
indicated in the previous four will be "squeezed". Note that if the width or height of the two rectangles do
not match, then the picture will automatically be stretched or shrunk as needed.

In the following example, filel.jpg is halved and written to file2.jpg :

<? php

$ old = imageCreateFromJpeg ("img / filel.jpg");

$ w = imageSX ($ old);

$ h = imageSY ($ old);

$ w_new = rounr ($ w / 2);

$ h_new =round ($ h/ 2);

$ new = imageCreate ($ w_new, $ h_new);

imageCopyResized ($ new, $ old, 0, 0, 0, 0, $ w_new, $ h_new, $ w, $ h);
imageJpeg ($ new, "img / file2.jpg");

imageDestroy ($ old);

imageDestroy ($ new);
?>

imageDestroy
Destruction pattern .

Syntax :
int imageDestroy (int im)

The function destroys the im descriptor of the previously created drawing (like closing the file fclose () after
opening fopen ()).

Working with RGB color

imageColorAllocate Creates a new color and puts
it in the picture's palette.

Syntax :
int imageColorAllocate (int im, int red, int green, int blue)

The function returns the identifier of the color associated with the corresponding RGB triplet. The first
parameter of the function requires the identifier of the image loaded into memory or created before.

The red , green, and blue parameters set the red, green, and blue color components, respectively. The values
of these parameters must be in the range from 0 to 255, or from 0x00 to OxFF.

Almost every color that is planned to be used in the future must be obtained (determined) by calling this
function.

Example:
An example of using the imageColorAllocate () function:

/] white

$ white = imagecolorallocate ($ im, 255, 255, 255);

$ white = imagecolorallocate ($ im, OxFF, 0xFF, OxFF);
// black

$ black = imagecolorallocate ($ im, 0, 0, 0);

$ black = imagecolorallocate ($ im, 0x00, 0x00, 0x00);

imageColorDeAllocate Excludes a
color from the picture's palette.

Syntax :
int imageColorDeAllocate (int im, int color)

This feature removes the figure palette im color color , which has been pre-entered in the drawing function
imagecolorallocate () .

Example:
An example of using the imageColorDeAllocate () function:

<? php
$ white = imageColorAllocate ($ im, 255, 255, 255);
imageColorDeAllocate ($ im, $ white);

imageColorSet
Replaces the color of a specific palette element.

Syntax :
bool imageColorSet (int im, int index, int red, int green, int blue)

This function sets for the element of the palette index of the picture im the values of the color components:
red , green (green), blue (blue). In this case, all parts of the picture filled with this color will also change
their shade.

imageColorClosest Gets the closest
color of the palette to the specified.

Syntax :
int imageColorClosest (int im, int red, int green, int blue)

Instead of trying to find empty space in the color picker, this function simply returns the identifier of the
color that already exists in the drawing and is closest to the requested one. Thus, no new color is added to
the palette. If the palette is not large, then the function may not return exactly the color that you expect. For
example, in a palette of three colors "red-green-blue", a request for yellow will most likely return the
identifier for green — which, from GD's point of view, is closest to "green."

imageColorTransparent
Specifies the transparency color .

Syntax :
int imageColorTransparent (int im [, int color])

This function tells GD that the corresponding color (specified by its ID using the imageColorAllocate ()
function) in the image im (im is the image ID specified by the imageCreate () function) should be denoted
transparent. Returns the identifier of the previously set transparent color, or false if one was not previously
defined.

It should be noted that not all formats support the setting of transparent color - for example, JPEG cannot
contain it.

imageColorsForIndex
Getting the RGB components of the palette element.

Syntax :

array imageColorsForIndex (int im, int index)

The function returns an associative array with the keys red, green, blue (in that order), which correspond to
values equal to the values of the RGB components in the color identifier index . But we can ignore the
keys and convert the returned value as a list:

<? php

$ color = imageColorAt ($ im, 0,0);

list ($r, $ g, $b) =array_values (imageColorsForIndex ($ im, $ color));
echo"R=%r,g=%$g,b=3$b";

imageColorAt
Returns the color index of the point.

Syntax :
int imageColorAt (int im, int X, int y)

This function returns the color of the point located at coordinates (x, y).

If PHP is compiled with GD library 2.0 or higher, and the image is truecolor, then this function will return
the color identifier, not its RGB representation.

<? php

$ im = imageCreateFromPng ("file.png");

$ rgb = ImageColorAt ($ im, 100, 100);

$r=($rgb >> 16) & OxFF;

$ g = ($ rgb >> 8) & OxFF;

$b=9%rgb & OxFF;

>

imageColorsTotal Gets the
number of colors in the palette.

Syntax :
int imageColorsTotal (int im)

The function returns the number of colors in the palette of the specified image.

imageColorExact
Get the color index of the palette.

Syntax :
int imageColorExact (int im, int red, int green, int blue)

The function returns the index of the specified color (red, green, blue) in the im image palette .
The function will return -1 if the specified color is not in the image palette.

imageColorResolve Find
or create the specified color.

Syntax :
int imageColorResolve (int im, int red, int green, int blue)

The function returns the index of the specified color (red, green, blue) in the im image palette .
If there is no such color in the palette, then it is created.

imageGammaCorrect
Applies a gamma correction to the image.

Syntax :
int imageGammaCorrect (int im, double inputgamma, double outputgamma)

This function makes gamma corrections to the image specified by the im descriptor .
Parameter inputgamma sets the input range and outputgamma - range output.

Graphic primitives

imageSetPixel

Draws a pixel .

Syntax :
int imageSetPixel (int im, int X, int y, int color)

Outputs one pixel of color in the image im located at point (x, y).

imageLine
Draws a solid thin line.

Syntax :
int imageLine (int im, int x1, int y1, int X2, int y2, int color)

This function draws a solid thin line in the image im passing through the points (x1, y1) and (x2, y2) with
color . The line turns out to be loosely connected .

<? php

function imagelinethick ($ image, $ x1, $ y1, $ x2, $ y2, $ color, $ thick = 1)
{
/ * this way it works well only for orthogonal lines
imagesetthickness ($ image, $ thick);
return imageline ($ image, $ x1, $ y1, $ x2, $ y2, $ color);
*/
if ($ thick ==1) {
return imageline ($ image, $ x1, $ y1, $ x2, $ y2, $ color);
}
$t=9 thick/2-0.5;
if($x1==9$x2|$yl==%y2){
return imagefilledrectangle ($ image,
round (min ($ x1, $ x2) - $ 1),
round (min ($ y1, $ y2) - $ t),
round (max ($ x1, $ x2) + $ t),
round (max ($ y1, $ y2) + $ t), $ color);
}
$k=($y2-$yl)/($x2-$x1);/y=kx+q
$a=8t/sqrt (1+pow ($Kk, 2));
$ points = array (
round ($ x1 - (1 +$ k) * $ a), round ($ y1 + (1- $ k) * $ a),
round ($ x1 - (1- $ k) * $ a), round ($ y1 - (1 + $ k) *$ a),
round ($ x2 + (1 + $ k) * $ a), round ($ y2 - (1- $ k) * $ a),
round ($ x2 + (1-$ k) *$a), round ($y2 + (1 + $k) * $ a),
);
imagefilledpolygon ($ image, $ points, 4, $ color);
return imagepolygon ($ image, $ points, 4, $ color);
if

>

imageDashedLine
Draws a dashed line .

Syntax :
int imageDashedLine (int im, int x1, int y1, int X2, int y2, int color)

This function works in much the same way as imageLine () , except that it draws a dotted line instead of a
solid one. Unfortunately, neither the size nor the step of the strokes can be specified, so if you need a dashed
line of an arbitrary texture, you will have to do some mathematical calculations and use imageLine () .

imageRectangle
Draws a rectangle .

Syntax :
int imageRectangle (int im, int x1, int y1, int x2, int y2, int color)

This function draws a rectangle in the image im with a border of 1 pixel in color .
The upper left corner is specified by (x1, y1) and the lower right corner is specified by (x2, y2).

imageFilledRectangle

Sketch a rectangular area .

Syntax :
int imageFilledRectangle (int im, int x1, int y1, int x2, int y2, int color)

This function draws a filled rectangle in the image specified by the identifier im with the color color
(obtained, for example, using the imageColorAllocate () function). The coordinates (x1, y1) and (x2, y2)
set the coordinates of the upper-left and lower-right corners, respectively (the counting, as usual, starts from
the upper corner and goes from left to right and from top to bottom).

This function is often used to completely fill a newly created drawing, for example, with a transparent color:

<? php

$ im = imageCreate (100,100);

$ color = imageColorAllocate ($ i, 0,0,0);

imageColorTransparent ($ im, $ color);

imageFilledRectangle ($ im, 0,0, imageSX ($ im) -1, imageSY ($ im) -1, $ color);
// then work with an initially transparent background

>

imageArc
Draws a portion of an ellipse .

Syntax :
int imageArc (int im, int cx, int cy, int w, int h, int s, int e, int color)

This function draws in the image im an arc of an ellipse sector from angle s to e (angles are indicated in
degrees counterclockwise, measured from the horizontal). The ellipse is drawn large enough to fit within the
rectangle (w, h), where w and h specify its width and height. cx and cy are the coordinates of the center of
the ellipse. The shape itself is not painted over, only its outline is outlined, for which the color color is used

<? php

// create a 200x200 image

$ img = imagecreate (200, 200);

// set the color of the circle

$ white = imagecolorallocate ($ img, 255, 255, 255);
// draw a circle

imagearc ($ img, 100, 100, 150, 150, 0, 360, $ white);
// output the image to the browser

header ("Content-type: image / png");

imagepng ($ img);

// close the picture

imagedestroy ($ img);

>

imageFill

Fill the bounded area with color.

Syntax :

int imageFill (int im, int x, int y, int color)

This function fills a solid area containing a point at coordinates (x, y) with color . You need to measure that
modern filling algorithms work quite efficiently, so you shouldn't worry too much about the speed of its
work. Only those points will be shaded to which a "one-color strongly connected path" can be drawn from
the point x, y .

Two points are called strongly connected if they have the same at least one coordinate, and in the other
coordinate they differ by no more than 1 in any direction.

imageFillToBorder
Fill the area enclosed by the border.

Syntax :
int imageFillToBorder (int im, int X, int y, int border, int color)

This feature is very similar to ImageFill () , only it performs color shading color is not monochrome pixels

and all, but until then, until you reach the border color border .

imagePolygon
Draws a polygon with the given vertices.

Syntax :
int imagePolygon (int im, array points, int num_points, int color)

This function draws in the image im a polygon given by its vertices. The coordinates of the angles are
passed in the points array , with § points [0] = x0, $ points [1] = y0, $ points [2] = x1, $ points [3] = y1 ,
etc.

The num_points parameter specifies the total number of vertices, in case there are more points in the array
than you need to draw. The polygon is not painted over - only its border is drawn with the color color .

<? php
/I create a 400x300 image
$ image = imagecreate (400, 300);

// set the border color of the polygon
$ col_poly = imagecolorallocate ($ image, 255, 255, 255);

// draw a polygon
imagepolygon ($ image,
array (
0, 0,
100, 200,
300, 200

),
3, $ col_poly);

// image output to the browser

header ("Content-type: image / png");
imagepng ($ image);

>

imageFilledPolygon
Draws a filled polygon with the specified vertices.

Syntax :
int imageFilledPolygon (int im, array points, int num_points, int color)

This function does almost the same thing as imagePolygon () , except for one very important property: the
resulting polygon is completely filled with color .
In this case, the concave parts of the figure are processed correctly, if it is not convex.

<? php
// set an array with the coordinates of the corners
$ values = array (
0 => 40, // x1
1=>50,//yl
2 =>20,// x2
3 =>240,// y2
4=>60,//x3
5=>60,/y3
6 =>240,//x 4
7=>20,//y4
8=>50,//x5
9=>40,//y5
10 => 10, // x6
11 =>10,// y6
)5

// create a 250x250 image
$ im = imagecreate (250, 250);

// set the fill color of the polygon
$ blue = imagecolorallocate ($ im, 0, 0, 255);

// draw a polygon
imagefilledpolygon ($ im, $ values, 6, $ blue);

// display the cartoon in the browser and close it
header ('Content-type: image / png");

imagepng ($ im);

imagedestroy ($ im);

>

Working with fixed fonts

The GD library has some features for working with text and fonts. Fonts are special resources that have
their own identifier and are most often loaded from a file or embedded in GD. Each character in the font can
only be displayed in monochromatic mode, i.e. "drawn" characters are not supported. There are only 5 built-
in fonts (identifiers from 1 to 5), most often they include monospaced characters of different sizes. The rest
of the fonts must be preloaded.

imagelL.oadFont Font
loading .

Syntax :
int imagel.oadFont (string file)

The function loads the font file file and returns the font identifier - this will be a number greater than 5,
because the first five numbers are reserved as inline numbers. The file format is binary and therefore
depends on the architecture of the machine. This means that the font file must be generated at least on a
machine with the same processor architecture as the one on which you intend to use PHP.

Font file format

Bias A Description
type
Byte .
0-3 long Number of characters in the font (nchars)
lé)g;e long The index of the first character of the font (usually 32 - space)
byte : o :
811 long The width (in pixels) of each character (width)
byte
12- |long The height (in pixels) of each character (height)
15
byte An array with information about the style of each character, one byte per pixel. Thus, there are
16 |array width * height * nchars bytes per character. 0 means there is no point in this position, everything
-... else is its presence.

The left column sets the offset of the beginning of the data within the file, and groups of numbers, written
with a hyphen, determine to which address the data continues.

imageFontHeight
Sets the font height.

Syntax:
int imageFontHeight (int font)

The function returns the height in pixels of characters in the specified font.

imageFontWidth
Sets the font width.

Syntax:

int imageFontWidth (int font)
The function returns the width in pixels of characters in the specified font.

imageString
Prints a string horizontally.

Syntax :
int imageString (int im, int font, int x, int y, string s, int color)

The function outputs the string s to the image im using the font font and the color color .
The (x, y) coordinates will be the coordinates of the upper left corner of the rectangle the line is inscribed
in.

If the font parameter is specified as 1, 2, 3, 4, or 5, then the font of the appropriate size is displayed.

<? php
// create a 100x30 image
$ im = imagecreate (100, 30);

// set the text color
$ textcolor = imagecolorallocate ($ im, 0, 0, 255);

// display the label in the upper left corner
imagestring ($ im, 5, 0, 0, "Hello world!", $ textcolor);

// display the image to the browser
header ("Content-type: image / jpg");
imagejpeg ($ im);

>

imageStringUp
Prints a string vertically.

Syntax :
int imageStringUp (int im, int font, int x, int y, string s, int color)

This function also prints a line of text, but not horizontally, but vertically.
The upper left corner is specified by coordinates (x, y).

If the font parameter is specified as 1, 2, 3, 4, or 5, then the font of the appropriate size is displayed.

imageChar
Outputs the character horizontally .

Syntax :
int imageChar (int im, int font, int X, int y, string c, int color)

The function displays the character ¢ horizontally at the location in the figure specified by the coordinates (
X, ¥). The font of the character is specified by the font parameter . If this parameter takes a value between 1
and 5, then embedded fonts are used. The color of the symbol is set by the color parameter .

<? php
// create a 100x100 image
$ im = imagecreate (100, 100);

$ string = "PHP";

// set the color of the symbol
$ black = imagecolorallocate ($ im, 0, 0, 0);

// Display the "P" character in the upper left corner
imagechar ($ im, 1, 0, 0, $ string , $ black);

// display the image in the browser
header ("Content-type: image / png");
imagepng ($ im);

>

imageCharUp
Displays the character vertically .

Syntax :
int imageCharUp (int im, int font, int X, int y, string c, int color)

The function displays the character c in a vertical position at the location in the figure specified by
coordinates (X, y). The font of the character is specified by the font parameter . If this parameter takes a
value between 1 and 5, then embedded fonts are used. The color of the symbol is set by the color parameter

Working with TrueType and PostScript Type 1 fonts

The GD library also supports PostScript and TrueType fonts. For the functions below to work, PHP must be
compiled and installed with the FreeType library available at http://www.freetype.org . It is installed by
default in the Windows version of PHP.

imageTTFText
Draws text with TrueType font.

Syntax :
array imageTTFText (int im, int size, int angle, int X, int y, int color, string fontfile, string text)

This function puts the string text in the image im with color . As usual, color must be a valid color identifier.
The angle parameter sets the angle in degrees of the output line, counted from the horizontal
counterclockwise. The (x, y) coordinates indicate the position of the so-called base point of the line
(usually its lower-left corner). The size parameter specifies the size of the font to be used when displaying
the string. fontfile must contain the name of the TTF file that contains the font.

The function returns a list of 8 elements. The first pair of them sets the coordinates (X, y) of the upper left
corner of the rectangle described around the line of text in the image, the second pair sets the coordinates of
the upper right corner, etc. Since in general a string can have any slope angle , 4 pairs of coordinates are
required here.

The text string text can contain UTF-8 character sequences (in the form & # 123;) to output characters with
codes greater than 255.

When using negative color values of the index color is disconnected font smoothing (antialiasing).
This function requires the GD library and FreeType.

<? php
header ("Content-type: image / jpeg");
$ im = imagecreate (400, 30);
$ white = imagecolorallocate ($ im, 255, 255, 255);
$ black = imagecolorallocate ($ im, 0, 0, 0);

// Replace path by your own font path
imagettftext ($ im, 20, 0, 10, 20, $ black, "/path/arial.ttf",
"Testing ... Omega: & # 937;");
imagejpeg ($ im);
imagedestroy ($ im);
>
The following example displays a line in the center of the picture.
<? php
$ gi = imageCreate (200,100);
$ bg = imageColorAllocate ($ gi, 0,220,0);
$ tx = imageColorAllocate ($ gi, 25,2,228);
$ w = imageSX ($ gi); / image width
$ h = imageSY ($ gi); // picture height
imageFilledRectangle ($ gi, 0,0, $ w, $ h, $ bg);

$ szf = 20; // font size
$ ang = 240; // line rotation angle

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.freetype.org

$ str = "Heyou"; // line text

$ font = " symbol . ttf " // font file

$ sz = imageTTFBBox ($ szf, $ ang, $ font, $ str);

$sdx = $sz[4]/2;

$sdy = ($sz[7]+$sz[3])/2;

imageTTFText ($ gi, $ szf, $ ang, $ w/ 2- $ sdx, $ h/2- $ sdy, $ tx, $ font, $ str);
Header ("Content-Type: image / png");

imagePng ($ gi, "file.png");

7>

imageTTFBBox
Calculates the area occupied by a TrueType font line.

Syntax :
attay imageTTFBBox (int size, int angle, string fontfile, string text)

This function does not output anything to the image, but simply determines whether the size and position
would take a string of text text size size bed , derived angle angle in any drawing. The fontfile parameter
specifies the absolute path to the font file that will be used for output.

The returned list contains all information about the dimensions of the string in a format similar to that
produced by the imageTTFText () function . However, the order of the points in it is different.

Content of the array returned by the imageTTFBBox () function:

0 and 1 - (x, y) lower left corner
2 and 3 - (x, y) lower right corner
4 and 5 - (X, y) upper right corner
6 and 7 - (X, y) upper left corner

Coordinates can have negative values.
The function requires the GD library and FreeType.

imagePSLoadFont
Load from PostScript Type 1 font file.

Syntax :
int imagePSLoadFont (string filename)

Returns a handle to the loaded font, or FALSE on error (also displays a warning).

<? php

header ("Content-type: image / jpeg");

$ im = imagecreate (350, 45);

$ black = imagecolorallocate ($ im, 0, 0, 0);

$ white = imagecolorallocate ($ im, 255, 255, 255);

$ font = imagepsloadfont ("bchbi.pfb"); // or locate your .pfb files on your machine
imagepstext ($ im, "Testing ... It worked!", $ font, 32, $ white, $ black, 32, 32);
imagepsfreefont ($ font);

imagejpeg ($ im, "", 100); // for best quality ... your mileage may vary
imagedestroy ($ im);

>

This feature is only available if PHP was compiled with the --enable-t1lib option.

imagePSFreeFont
Unloading font PostScript Type 1.

Syntax :
void imagePSFreeFont (int fontindex)

This function frees memory from the font specified by the fontindex parameter .
This feature is only available if PHP was compiled with the --enable-t1lib option.

imagePSEncodeFont
Sets the text encoding scheme.

Syntax :

int imagePSEncodeFont (int font_ndex, string encodingfile)

Loads the file conversion encodingfile for font font_index . Because PostScript fonts do not use characters
with codes greater than 127 by default, transcoding is required if a language other than English is required.
The file format is described in the Tllibs documentation, and 2 ready-made files are supplied with the
library: IsoLatinl.enc and IsoL.atin2.enc.

If the transcoding is used constantly, set the ps.default_encoding parameter in the configuration file to the
name of the transcoding file that will be loaded automatically.

This feature is only available if PHP was compiled with the --enable-t1lib option.

imagePsExtendFont
Scale the font.

Syntax:
bool imagePsExtendFont (int font _ index , float extend)

The function stretches or shrinks the font specified by the font_index parameter to the size specified by the
extend parameter .
If the value of the extend parameter is less than 1, then the font will be reduced.

This feature is only available if PHP was compiled with the --enable-t1lib option.

imagePsSlantFont Sets the slant of the
font.

Syntax:
bool imagePsSlantFont (int font _ index , double slant)

The function sets the slant of the font_index to the value specified by the slant parameter .
This feature is only available if PHP was compiled with the --enable-t1lib option.

imagePSBBox
Calculates the area occupied by a line of PostScript Type 1 font.

Syntax :
array imagePSBBox (string text, int font, int size [, int space [, int tightness [, float angle]]])

Calculations are made based on the following arguments:

size - font size in pixels;

space - change the size of spaces in relation to normal (can be negative);
tightness - spaces between characters in relation to) to normal (can be negative);
angle - line angle in degrees.

Values space and tightness are measured in fractions of a space (1/1000).
Arguments space , tightness are , angle is not required.

The calculation results are not accurate enough. The function returns an array:

* 0 - lower left corner, X-coordinate;

e 1 -lower left corner, Y-coordinate;

« 2 - upper right corner, X-coordinate;
» 3 - upper right corner, Y - coordinate.

This feature is only available if PHP was compiled with the --enable-t1lib option.

imagePSText Displays text over an image using
PostScript Type 1 font.

Syntax :
array imagePSText (resource image, string text, int font, int size, int foreground, int background, int x, int y
[, int space [, int tightness [, float angle [, int antialias_steps]]]])

The size parameter sets the size of the font.

The x , y coordinates indicate the lower left corner of the first character.

The foreground and background arguments set the colors of the text and background (the background is
only needed to smooth the font).

The antialias_steps argument allows you to specify the number of colors to use when antialiasing the text
(valid values are 4 and 16). For fonts less than 20, use a higher value as it improves readability; for large
fonts, use a lower value as this will improve performance.

The angle parameter sets the slope of the text in degrees.

The function returns an array, similar to imagepsbbox () .

This feature is only available if PHP was compiled with the --enable-t1lib option.
PDF documents

Introduction

PDF functions allow PHP to create PDFs using the PDF library created by Thomas Merzem (

http://www.pdflib.com/pdflib/index.html); you might also need the JPEG (ftp:/ftp.uu.net/graphics/jpeg/)
and TIFF (http://www.libtiff.org/) libraries .

Pdflib comes with good documentation describing the features of the library. Function names and
arguments are identical in the library and PHP. Dimensions and coordinates are measured in Postscript units
(72 per inch), but this depends on the selected resolution.

The analogue of the library is ClibPDF.

Versions below 3.0 pdflib are not supported in PHP 4.
<? php

$ fp = fopen ("test.pdf". "w");

$ pdf = pdf_open ($ fp);

pdf_set_info ($ pdf, "Author", "Uwe Streinmann");
pdf_set_info ($ pdf, "Title", "Test for PHP PDFlib");
pdf_set_info ($ pdf, "Creator", "See Author");
pdf_set_info ($ pdf, "Subject", "Testing");
pdf_begin_page ($ pdf, 595, 842);

pdf_add_outline ($ pdf, "Page 1");

pdf_set_font ("$ pdf," Times-Roman ", 30," host ");
pdf_set_value ($ pdf, "textrendering", 1);
pdf_show_xy ($ pdf, "Times Roman outlined", 50, 750);
pdf_moveto ($ pdf, 50, 740);

pdf_lineto ($ pdf, 330, 740);

pdf_stroke ($ pdf);

pdf_end_page ($ pdf);

pdf_close ($ pdf);

fclose ($ fp);

echo " finished ";

>

<? php

// script getpdf.php just returns the pdf document

$ fp = fopen ("test.pdf", "r'");

header ("Content-type: application / pdf");

fpassthru ($ fp);

fclose ($ fp);

>

Opening a document

pdf_set_info
Filling in the document information field.

Syntax :
void pdf_set_info (int pdf_document, string fieldname, string value)

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.pdflib.com/pdflib/index.html
ftp://ftp.uu.net/graphics/jpeg/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.libtiff.org/

Possible fieldname fields :
» Subject
Title
Creator
Author
Keywords
One , defined by the user . The function must be called before the pages are created.

<? php

$ fd = fopen ("test.pdf", "w");

$ pdfdoc = pdf_open ($ fd);

pdf_set_info ($ pdfdoc, "Author", " Author name ");
pdf_set_info ($ pdfdoc, "Creator" , " Name of the creator ");
pdf_set_info ($ pdfdoc, "Title", " Title ");

pdf_set_info ($ pdfdoc, "Subject", " Subject ");

pdf_set_info ($ pdfdoc, "Kewwords" , " Key , the word ");
pdf_set_info ($ pdfdoc, "CustomField", " Something Else ");
pdf_begin_page ($ pdfdoc, 595, 842);

pdf_end_page ($ pdfdoc);

pdf_close ($ pdfdoc);

>

This function replaces a pdf_set_info_keyword (), pdf_set_info_title (), pdf_set_info_subject (),
pdf_set_info_creator ().

pdf_open
Opens a new pdf document.

Syntax:
int pdf_open (int file) This

function makes a file opened by fopen () a pdf document. If you do not provide a file descriptor, it is created
in memory and can then be written to standard output or sent to the browser. The function returns a handle
to the document, which should be specified in subsequent pdf functions.

pdf_close
Closes a pdf document.

Syntax :

void pdf_close (int pdf_document)
pdf_begin_page

Beginning of a new page.

Syntax:
void pdf_begin_page (int pdf_document, double width, double height)

The height and width arguments specify the height and width of the page. After entering information on the
page, it should be closed with the pdf_end_page () function.

pdf_end_page
End of page.

Syntax:
void pdf_end_page (int pdf_document)

After this function, modification of this page is not possible.

Work with text

pdf_show
Displays text at the current position.

Syntax:
void pdf_show (int pdf_document, string text)

The current position and the current font are used for output.

pdf_show_boxed
Displays text in a rectangular area.

Syntax:
void pdf_show_boxed (int pdf_document, string text, double x, double y, double width, double height,
string mode [, string feature]) The

lower left corner of the output area is set to (x : y); height and width - height , width . The mode argument
specifies the alignment of the text: if the height and width are zero, then the possible values are:
o left

* right

* center,

if they are not equal to zero, then
* justify

 fulljustify
If feature is "blind", no text is displayed.
The function returns the number of characters that do not fit in the specified rectangle.

pdf_show_xy
Displays text at the specified position.

Syntax :
void pdf_show_xy (int pdf_document, string text, double x, double y)

pdf_set_font
Selects the font, size and encoding.

Syntax:
void pdf_set_font (int pdf_document, font_name string, double size, string encoding [, int embed])

Argument encoding type encoding may be:

» winansi (default)

* builtin

* host

» macroman , etc. If the last argument is set to 1, the font will be embedded in the pdf document (otherwise
not). If the font is common, do not embed it due to the increased size of the document. The function should
be called after pdf_begin_page ().

pdf_set_leading
Sets the space between lines of text.

Syntax :
void pdf_set_leading (int pdf_document, double distance)

Used when displaying text with the pdf_continue_text () function .

pdf_set_parameter
Sets the string value of the pdflib parameter.

Syntax :
void pdf_set_parameter (int pdf_document, string name, string value)

pdf_get_parameter
Get the string value of the pdflib parameter.

Syntax :
void pdf_get_parameter (int pdf_document, string name [, double modifier])

The modifier argument is used as needed .

pdf_set_value
Sets the numerical value of the pdflib parameter.

Syntax :
void pdf_set_value (int pdf_document, string name, double value)

pdf_get_value
Get the numerical value of the pdflib parameter.

Syntax:
void pdf_get_value (int pdf_document, string name [, double modifier])

The modifier argument is used when needed.

pdf_set_text_rendering
Sets the text rendering method.

Syntax :
void pdf_set_text_rendering (int pdf_document, string mode)

Deprecated , use pdf_set_value ().

pdf_set_horiz_scaling
Sets the horizontal scaling of the text.

Syntax :
void pdf_set_horiz_scaling (int pdf_document, double scale)

pdf_set_text_rise
Sets the text rise.

Syntax :
void pdf_set_text_rise (int pdf_document, double rise)

pdf_set_text_matrix
Sets the font transformation matrix.

Syntax:
void pdf_set_text_matrix (int pdf_document, array matrix)

This function is not available since pdflib 2.3.

pdf_set_text_pos
Sets the position of the font.

Syntax:
void pdf_set_text_pos (int pdf_document, double x-coor, double y-coor)

Sets the position of the text output by a subsequent call to pdf_show ().

pdf_set_char_spacing
Sets the spacing between characters.

Syntax :
void pdf_set_char_spacing (int pdf_document, double space)

Deprecated , use pdf_set_value ().

pdf_set_word_spacing
Sets the spacing between characters.

Syntax :
void pdf_set_word_spacing (int pdf_document, double space)

Deprecated , use pdf_set_value ().

pdf_skew
Rotation of the coordinate system.

Syntax:
void pdf_skew (int pdf_document, double alpha, double beta)

The angle of rotation in degrees is specified relative to the alpha (x) and beta (y) axes. Angles cannot be 90
or 270 degrees.

pdf_continue_text
Displays text on the next line.

Syntax:
void pdf_continue_text (int pdf_document, string text)

The distance between lines can be set with the pdf_set_leading () function.

pdf_stringwidth
Calculates the width of the text.

Syntax:
void pdf_stringwidth (int pdf_document, string text)

The current font is used to calculate the string length. The font must first be installed using pdf_set_font ().
pdf_save
Save current settings.

Syntax:
void pdf_save (int pdf_document)

Acts like the postscript gsave command. Useful when you need to scale or expand an object without
affecting other objects. pdf_save () requires that pdf_restore () is then called.

pdf_restore
Restore previously saved settings.

Syntax:
void pdf_restore (int pdf_document)

Restores the settings saved by pdf_save (). Acts like the postscript grestore command.
<? php

pdf _ save ($ pdf);

// all sorts of rotations and transformations ...

pdf_restore ($ pdf);

>

Setting the scale and coordinate system

pdf_translate
Sets the origin of the coordinate system.

Syntax:
void pdf_translate (int pdf_document, double x, double y)

Coordinates are relative to the current origin. Then, before you start drawing objects, you need to set the
current point.

<? php

pdf _ moveto ($ pdf, 0, 0);
pdf_lineto ($ pdf, 100, 100);
pdf_stroke ($ pdf);
psd_translate ($ pdf, 100, 100);
pdf_moveto ($ pdf, 0, 0);
pdf_lineto ($ pdf, 100, 100);
pdf_stroke ($ pdf);

>

pdf_scale
Setting scaling . Syntax : void pdf_scale (int pdf_document, double x_scale, double y_scale)

<? php

pdf_scale ($ pdf, 72.0, 72.0);
pdf_lineto ($ pdf, 1, 1); // per inch
pdf_stroke ($ pdf);

>

pdf_rotate
Sets the rotation angle in degrees.

Syntax :
void pdf_rotate (int pdf_document, double angle)

pdf_setflat
Set flatness .

Syntax:
void pdf_setflat (int pdf_document, double value)

Possible parameter values - from 0 to 100.

pdf_setlinejoin
Sets the linejoin parameter.

Syntax:
void pdf_setlinejoin (int pdf_document, double value)

Possible parameter values are from 0 to 2.

pdf_setlinecap
Sets the linecap parameter.

Syntax:
void pdf_setlinecap (int pdf_document, double value)

Possible parameter values are from O to 2.

pdf_setmiterlimit
Setting the miter limit parameter . Syntax : void pdf_miterlimit (int pdf_document, double value) Possible
parameter values - 1 or more .

pdf_setlinewidth
Sets the width of the lines.

Syntax :
void pdf_setlinewidth (int pdf_document, double width)

pdf_setdash
Sets the current point.

Syntax :
void pdf_setdash (int pdf_document, double white, double black)

pdf_moveto
Sets the current point.

Syntax :

void pdf_moveto (int pdf_document, double x, double y)

Draw and fill shapes

pdf_curveto

Draw the curve . Syntax : void pdf_curveto (int pdf_document, double x1, double y1, double x2, double y2,
double x3, double y3) Draws a Bézier curve from the current point to (x3, y3), using points (x1, y1) and
(x2, y2) as orienting.

pdf_lineto Draw a
segment.

Syntax:
void pdf_lineto (int pdf_document, double x, double y)

Draws a line from the current point to the specified (x, y).

pdf_circle
Draw a circle . Syntax : void pdf_circle (int pdf_document, double x, double y, double radius)

pdf_arc Draw an
arc.

Syntax:

void pdf _ arc (int pdf _ document , double x , double y , double radius , double start , double end) The
start and end angles are specified in start and end .

pdf_rect Draws a
rectangle.

Syntax:
void pdf_rect (int pdf_document, double x, double y, double width, double height) The

lower left corner is set to (x, y); height and width - height and width .

pdf_closepath
Completion of the current path.

Syntax:
void pdf_closepath (int pdf_document)

Draws a line from the current point to the point where the first line began. Many functions like pdf_moveto
(), pdf_circle (), pdf_rect () start a new path.

pdf_stroke Path shading

Syntax:

void pdf_stroke (int pdf_document) The

current path is the collection of all lines. Without this function, lines will not be drawn.

pdf_closepath_stroke Draw
and close path.

Syntax:
void pdf_closepath_stroke (int pdf_document)

This is a combination of pdf_closepath () and pdf_stroke ().

pdf_fill
Fill the path with color.

Syntax :
void pdf_fill (int pdf_document)

pdf_fill_stroke
Fill the path with color and close it.

Syntax :
void pdf_fill_stroke (int pdf_document)

pdf_closepath_fill_stroke Draw
, fill and close path.

Syntax :
void pdf _ closepath _ ! Just fill _ stroke of (int pdf _ document)

pdf_endpath
Ending a path without closing it.

Syntax :
void pdf_endpath (int pdf_document)

pdf_clip
Attaches all lines to the current path.

Syntax :
void pdf_clip (int pdf_document)

pdf_setgray_fill
Sets the gray fill.

Syntax :
void pdf_setgray_fill (int pdf_document, double gray_value)

pdf_setgray_stroke
Sets the shading to gray.

Syntax :
void pdf_setgray_stroke (int pdf_document, double gray_value)

pdf_setgray
Sets the fill and hatch to gray.

Syntax :
void pdf_setgray (int pdf_document, double gray_value)

pdf_setrgbcolor_fill
Sets the fill with RGB color.

Syntax :
void pdf_setrgbcolor_fill (int pdf_document, double red_value, double green_value, double blue_value)

pdf_setrgbcolor_stroke
Sets the RGB shading.

Syntax :
void pdf_setrgbcolor_stroke (int pdf_document, double red_value, double green_value, double blue_value)

pdf_setrgbcolor
Sets RGB fill and hatch.

Syntax :
void pdf_setrgbcolor (int pdf_document, double red_value, double green_value, double blue_value)

pdf_add_outline
Add a bookmark for the current page.

Syntax:
void pdf_add_outline (int pdf_document, string text [, int parent [, int open]])

The name of the bookmark is specified by the text argument . It becomes a child of the parent object and is
open by default (if open is not 0). The bookmark identifier is returned and can be used as a parent for other

bookmarks.

pdf_set_transition
Sets the transition mode between pages.

Syntax :
void pdf_set_transition (int pdf_document, int transition)

Use the pdf_set_parameter () function with the "transition" parameter .

pdf_set_duration
Sets the spacing between pages.

Syntax :
void pdf_set_duration (int pdf_document, double duration)

Placing Pictures

pdf_open_gif
Opens GIF image.

Syntax :
void pdf_open_gif (int pdf_document, string filename)

Use pdf_open_image_file () function .

<? php

$ im = pdf_open_gif ($ pdf, "test.gif");
pdf_place_image ($ pdf, $ im, 100, 100, 1);
pdf_close_image ($ pdf, $ im);

>

pdf_open_png
Opens a PNG image.

Syntax :
void pdf_open_png (int pdf_document, string filename)

Use pdf_open_image_file () function .

pdf_open_jpeg
Opens a JPEG picture.

Syntax :
void pdf_open_jpeg (int pdf_document, string filename)

Use the pdf_open_image_file () function .

pdf_open_tiff
Opens a TIFF drawing.

Syntax :
void pdf_open_tiff (int pdf_document, string filename)

Use pdf_open_image_file () function .

pdf_open_image_file
Reading an image from a file.

Syntax:
void pdf_open_tiff (int pdf_document, format: string,: string filename)

This function loads the format picture format from the file filename and returns its identifier.
Possible formats:

« PNG

« TIFF

- JPEG

« GIF

<? php

$ pim = pdf _ open _ image _ file ($ pdf, " png ", "
pdf_place_image ($ pdf, $ pim, 100, 100, 1);
pdf_close_image ($ pdf, $ pim);

>

This function replaces pdf_open_image (), pdf_open_gif (), pdf_open_tiff (), pdf_open_png ().
pdf_open_memory_image

Opens a picture created by PHP graphics functions.

pic . png ");

Syntax:
void pdf_open_memory_image (int pdf_document, int image)

The function takes a descriptor of the image generated by PHP and makes it available to the pdf document.
The function returns the id of the pdf picture.

<? php

$ im = ImageCreate (100, 100);

$ col = ImageColorAllocate ($ im , 80, 45, 190);
ImageFill ($ im, 10, 10, $ col);

$ pim = pdf_open_memory_image ($ pdf, $ im);
ImageDestroy ($ im);

pdf_place_image ($ pdf, $ pim, 100, 100, 1);
pdf_close_image ($ pdf, $ pim);

>

pdf_close_image
Closing the picture.

Syntax:
void pdf_close_image (int pdf_document, int image)

Closes a picture opened by pdf_open_ () functions.

pdf_get_image_height
Sets the height of the image in pixels.

Syntax :
void pdf_get_image_height (int pdf_document, int image)

pdf_get_image_width
Sets the width of the image in pixels.

Syntax :
void pdf_get_image_width (int pdf_document, int image)

pdf_place_image
Placement of the picture on the page.

Syntax :
void pdf_place_image (int pdf_document, int image, double x, double y, souble scale) Placement

position is given by (x, y); scale - scale .

pdf_put_image
Save the figure in pdf for future use.

Syntax:
void pdf_put_image (int pdf_document, int image)

The function embeds the picture into the document without displaying it. Then the picture can be placed on
the page using the pdf_execute_image () function as many times as necessary. Useful when inserting a
picture multiple times (reduces file size).

Since version 2.01 of pdflib the function is useless and only displays a warning.

pdf_execute_image Places the
saved image on the page.

Syntax :
void pdf_execute_image (pdf_document int, int image, double x, double y, double scale)

displays drawing , the embedded function pdf_put_image (). Since version 2.01 of pdflib the function is
useless and only displays a warning.

<? php

$ im = ImageCreate (100, 100);

$ coll = ImageColorAllocate ($ im, 80, 45, 190);
ImageFill ($ im, 10, 10, $ coll);

$ pim = pdf_open_memory_image ($ pdf, $ im);
pdf_put_image ($ pdf, $ pim);
pdf_execute_image ($ pdf, $ pim, 100, 100, 1);
/1 200%

pdf_execute_image ($ pdf, $ pim, 200, 200, 2);
pdf_close_image ($ pdf, $ pim);

>

Document style

pdf_set_border_style
Sets the border style for notes and hyperlinks.

Syntax:
void pdf_set_border_style (int pdf_document, string style, double width)

The style argument can be "solid" or "dashed". The width is specified by the width argument .
pdf_set_border_color

Sets the border color for notes and hyperlinks.

Syntax:

void pdf_set_border_color (int pdf_document, double red, double green, double blue)

Three color components can take values from 0.0 to 1.0

pdf_set_border_dash
Sets the border style for links and notes.

Syntax:
void pdf_set_border_dash (int pdf_document, double black, double white)

Sets the length of black and white bars of broken lines.

pdf_add_annotation
Add annotation.

Syntax:
void pdf_add_annotation (int pdf_document, double l1x, double lly, double urx, double ury, string title,

string content)

Note is assumed in the lower left corner (llx , Ily), upper right corner (urx, ury).

Part 7. Tips on the topic

Disable caching with PHP

Most scripts generate documents that change each time the program is started. Obviously, if the user's browser
starts caching such documents, nothing good will come of it.
It is possible to prevent the browser and proxy servers from caching documents using the PHP language, namely the
Header () function .
To do this, use the following commands at the beginning of the script:
Header ("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in the past
Header ("Cache-Control: no-cache, must-revalidate"); // HTTP / 1.1
Header ("Pragma: no-cache"); // HTTP / 1.1
Header ("Last-Modified:" .gmdate ("D, d MYH: i: s"). "GMT");

To completely disable caching, you always have to send 4 specified headers, and none of them can be skipped -
otherwise either the browser or the Proxy server will not work.

Creating a poll in PHP

First, we need to decide what we will ask visitors about. For example, whether they liked your site or not.
for our voting we need four files:

The first will contain the voting form (form.html).

The second file will be responsible for processing the results (golos.php).

The third will store the voting data (data.txt).

The fourth will be responsible for displaying graphic information (img.php).

For example, we want to ask visitors the following questions:

Your opinion about the site: just super, normal, so-so, I don't care, bad, I haven't seen worse.
In the form.html file , write :

<form action = golos.php method = post>

<table cellspacing cellpadding = 0 border = 0>

<tr> <td align = center colspan = 2> Voting : </td> </tr>

<tr> <td align = center colspan = 2> Your opinion about the site : </td> </tr>
<tr> <td> <input type = radio name = otv value = 1 checked> </td>

<td> Just super! </td> </tr>

<tr> <td> <input type = radio name = otv value = 2> </td>

<td> Normal . </td> </tr>

<tr> <td> <input type = radio name = otv value = 3> </td> <

td> So so. </td> </tr>

<tr> <td> <input type = radio name = otv value = 4> </td> <

td> I don't care. </td> </tr>

<tr> <td> <input type = radio name = otv value = 5> </td> <

td> Bad . </td> </tr>

<tr> <td> <input type = radio name = otv value = 6> </td> <

td> I haven't seen worse! </td> </tr>

<tr> <td colspan = 2 align = center>

<input type = submit name = golos value =" Vote "> </td> </tr>

</ table </form>

After clicking the Vote button, the otv variable will be processed by the script in the golos.php file. Initial data must
be written to the data.txt file, which will then be read and processed from there. Create a file called data.txt and in a
text editor write the following lines into it:

Voting results:
0

0
0
0

0
0
The first line will not be taken into account.
In the remaining six lines, you must enter zeros, pressing the Enter key after each digit .
In the golos.php file, which is responsible for processing the results, write the following:
<html>
<head>
<title> Processing Voting </title>
</head>
<body>
<?
if (@ $ golos) {
// Here we start data processing only if
// the Vote key was pressed
$ file_name = "data.txt";
// Variable $ file_name sets the name of the file with the results
$ file = file ($ file_name);
// Write the data file to the $ file array
$ file_len = count ($ file);
//'$ file_len - number of lines in the data.txt file
for($i=1,$n=0; $i<$ file_len; $i ++) {
$ file [$ i] = trim ($ file [$ i]);
$n=5%n+§file [$i];
b
// In this loop, we remove the line feed characters and write to
// variable $ n how many people have already voted
echo "<center> <h2> Thank you, your opinion was taken into account! </h2> </center>";
$ file [$ otv] ++;
$n++;
// Here we take into account the number of the answer that came to us from the form,
// increasing the corresponding value in the array and the number of voters by 1
$ rez = "Voting results: \ n";
// The variable $ rez will contain the voting data,
/I which we then write back to the file
for ($i=1; $i<$file_len; $i++) $rez. = $ file [$ i]. "\ n";
$ rez = trim ($ rez);
$ file_rec = @ fopen ($ file_name, "w");
/I Here we create a new file, which we then write the updated data to
if ($ file_rec) {
$ counter = fputs ($ file_rec, $ rez);
// Write updated data to data.txt file
fclose ($ file_rec);
}
else echo "An error occurred while writing the results!";
for ($i=1; $i<$ file_len; $i++) $ pr[$i] = round (($ file [$ i] / $ n) * 100);
// Write to the $ pr array, what percentage of the total number of voters
// takes each answer
// Next is a piece of HTML code that
// responsible for displaying our data on the screen
>
<center> <h2> Your opinion about the site : </h2> </center>

<table border = 1 align = center>
<tr> <td>
 Just super! (<? echo $ file [1];?>):
</td> <td>
<img src = "img.php? pr = <? echo $ pr [1];?>" height = 15>
</td> </tr>
<tr> <td>
 Normal. (<? echo $ file [2];?>):
</td> <td>

<img src = "img.php? pr = <? echo $ pr [2];?>" height = 15>
</td> </tr>
<tr> <td>
 So so. (<? echo $ file [3];?>):
</td> <td>
<img src = "img.php? pr = <? echo $ pr [3];?>" height = 15>
<ftd> </tr>
<tr> <td>
 I don't care. (<? echo $ file [4];?>):
</td> <td>
<img src = "img.php? pr = <? echo $ pr [4];?>" height = 15>
</td> </tr>
<tr> <td>
 Bad . (<? echo $ file [5];?>):
</td> <td>
<img src = "img.php? pr = <? echo $ pr [5];?>" height = 15>
<ftd> </tr>
<tr> <td>
 I have not seen worse! (<? echo $ file [6];?>):
</td> <td>
<img src = "img.php? pr = <? echo $ pr [6];?>" height = 15>
</td> </tr>
</table>
<table border = 1 align = center>
<tr> <td align = center> Total voted : </td> </tr>
<tr> <td align = center> <? echo $ n. " person ";?> </td> </tr>
</table>
<?
%
>
</body>
</html>
By writing the value "img.php? Pr = percentage " to the SRC attribute of the tag , we thereby pass to the
img.php file (which is responsible for displaying graphic information) a value based on which the voting image will
be generated on the fly. Below is a listing of the img.php file:
<?
$ otstup = 35;
//'$ otstup - sets the indentation in which
/] write a percentage value into the picture
$ string = $ pr. "%";
//'$ string - contains the percent value plus the percent sign
$ im = imageCreate ($ pr * 2 + $ otstup, 15);
// Create an identifier here using
/I which we will work with the picture
$ fon = imageColorAllocate ($ im, 220,20,60);
$ fon1 = imageColorAllocate ($ im, 255,20,147);
// Set the background color
$ col_b = imageColorAllocate ($ im, 0,0,0);
/I Set the stroke color
$ shrift = imageColorAllocate ($ im, 255,255,255);
// Output color of the percentage value
imageFill ($ im, 2,2, $ fon);
// Fill our rectangle with the main background
$x1=0;$x2=9pr*2+$ otstup-1;
$yl=0;$y2=14;
// Shaping the catch for the outline
imageLine ($ im, $ x1, $ y1, $ x2, $ y1, $ col_b);
imageLine ($ im, $ x2, $ y1, $ x2, $ y2, $ col_b);
imageLine ($ im, $ x2, $ y2, $ x1, $ y2, $ col_b);
imageLine ($ im, $ x1, $ y1, $ x1, $ y2, $ col_b);

imageLine ($ im, $ x1 + $ otstup, $ y1, $ x1 + $ otstup, $ y2, $ col_b);
// Create an outline and dividing strip
if ($ pr! = 0) imageFill ($ im, $ otstup + 1,2, $ fon1);
// 1f the percentage value is not 0, then fill
// right side with color $ fon1
imageString ($ im, 3,5,1, $ string, $ shrift);
/I Write a percentage value to the right side of the picture
header ("Content-type: image / png");
imagePng ($ im);
imageDestroy ($ im);
// Here we output the resulting image in
// stdout and destroy the identifier
>
As a result, you get something like:

Your opinion about the site:

Just super! (fifteen):
Normal. (12):

So-so. (ten):

I do not care. (ten):

Bad. (2):
I have not seen worse! (1):
Total Voted:
50 people

Sending emails with PHP

General questions, encoding issues, HIML submission

General features

Sooner or later, every site owner is faced with the need to send letters directly from the site through a script,
and not through mail programs. These can be letters sent by the guestbook script, informing the site owner
that a new message has appeared in his guestbook, or by a forum to notify about a new question.

In all these cases, it is necessary to automatically send letters bypassing a variety of mail programs and
utilities.

This can be done using the mail () function, which we will now study.

The syntax for the mail () function is:
bool mail (string $ to, string $ subject, string $ msg [, string $ header]);

The mail () function sends an email with subject $ subject and content $ msg to $ to.
If you want the letter to go to several addresses, separate them with spaces.
The message itself can be multi-line. For a newline, put a newline "\ n" at the end of each line.

mail ("name@mail.ru", "my subject"”, "strokal \ nstroka2 \ nstroka3");
Or the same thing can be written like this:
mail ("name@mail.ru", "my subject", "strokal
stroka2
stroka3 ");
In the fourth optional parameter, $ header, you can specify the headers of our message.
By headers, I mean information transmitted along with the letter to the mail client, which will contain some
technical data, such as: letter encoding, sender's name, sender's return address, etc. This is similar to using the

<META> tag in HTML.

To make it clearer what the headers are and where they are in the letter, open the mail client and look at any letter as
it came (For Outlook, this can be done by right-clicking on the message-> Properties-> Details-> Original message).

As we can see, the letter is a simple text file consisting of two general sections:
At the top are the letter headers, then two lines later the letter itself.

There are a lot of email headers, but not all of them are used when writing a mail sending script.
Some of the most commonly used are:

From: " Sender Username " < Sender Return Address >

To: < Address to which the letter is sent >

Subject: Email subject

Solving the problem of encodings

It was not for nothing that I gave an example of sending a letter with words of the Latin alphabet above. Any mail
client will read them without difficulty. But with the Russian alphabet it is more difficult. There are many Russian
encodings. And it will depend on how skillfully you recode the letter whether the recipient will read it, or will not
bother with setting the desired encoding and will simply delete it into the trash.
The message encoding is set by the Content-type header:

$ header = "From:" \ Evgen "\ <evgen@mail.ru>";

$ header. = "Content-type: text / plain; charset = \" windows-1251 \"";

$ subject = "Email subject";

$ msg = "Storaka 1 \ nLine 2 \ nLine 3";

mail ("name@mail.ru", $ subject, $ msg, $ header);
In the title, we indicated that the letter type will be plain text, and the encoding will be Windows.
Now our letter will come in an encoding understandable for the mail client.
But it should be noted that in some cases only the letter itself will be displayed in the correct encoding. The
headline will remain unreadable. This is due to where the Content-type header is located relative to the Subject
header, which contains the email subject. The fact is that there are mailers that understand the Content-type header,
but do not understand the Russian text in the Subject field, if this field comes before the Content-type. At the same
time, other mailers oblige us to specify the Content-type as the last header in the list. To get around these obstacles,
you can place the Content-type field immediately at the beginning and end of the header list:

$ subject = " Subject letters ";

$ header = "Content-type: text / plain; charset = \" windows-1251\"";

$ header. = "From:" \ Evgen "\ <evgen@mail.ru>";

$ header. = "Subject: $ subject";

$ header. = "Content-type: text / plain; charset = \" windows-1251\"";

$ msg =" Storaka 1 \ n Line 2 \ n Line 3";

mail ("name@mail.ru", $ subject, $ msg, $ header);
Now this letter can be read by any mail program!

Sending an email in HTML form

To send an email in HTML, it is enough to specify the document type in the Content-type header not text / plain
(plain text), but text / html (html-text). And write the letter itself in html-form:

$ subject = "Email subject";

$ header = "Content-type: text / html; charset = \" windows-1251\"";

$ header. = "From:" \ Evgen "\ <evgen@mail.ru>";

$ header. = "Subject: $ subject";

$ header. = "Content-type: text / html; charset = \" windows-1251 \ "";

$ msg = "<body>

 Storaka 1

 Storaka 2

 Storaka 3

</body>";

mail ("name@mail.ru", $ subject, $ msg, $ header);

Attaching a file

The letter containing the attached file is somewhat different from the simple one. It adds some headers and changes
the structure a bit, although the letter itself is undoubtedly a text file. But let's take everything in order.

One of the features is the presence of the Mime-Version header .

This header indicates the standard to which the message body conforms.
MIME conformant messages must contain such a header field with the following text:
MIME-Version: 1.0
If we want to send an email with attached files, then we need to use the Content-type: multipart / mixed header ,
which means that the email consists of several parts, each of which contains its own Content-type header.
To indicate the boundaries of these parts, you must use the boundary parameter, which is also called a boundary
marker.
Any string can be used as the value for this parameter. But we must take into account that it must be unique and did
not appear in the body of the letter. Otherwise, the letter may be broken into parts incorrectly.
From: "Uspenskii Evgeny" <evgeny@spravkaweb.ru>
To: user@domain.ru
Subject: Hello
Mime-Version: 1.0
Content-Type: multipart / mixed; boundary = "spravkaweb-12345"
When dividing a letter into parts, two hyphens should be placed before the marker.
And the last marker, which marks the end of the letter, must contain two hyphens at the end.
Each part needs to set its own titles.
After the headings, you must put two line feed characters.
From: "Uspenskii Evgeny" <evgeny@spravkaweb.ru>
To: user@domain.ru
Subject: Hello
Mime-Version: 1.0
Content-Type: multipart / mixed; boundary = "spravkaweb-12345"
--spravkaweb-1234
Content-type: text / plain; charset = "windows-1251"
Content-Transfer-Encoding: quoted-printable

Hi!
Here's that my file!

--spravkaweb-1234

Content-Type: application / x-rar-compressed; name = "file.rar"
Content-Transfer-Encoding: base64

Content-Disposition: attachment

UmFyIRoHAM + QcwAADQAAAAAAAABVYXQg

spravkaweb-1234--
If at us is a part of a text, it is necessary header Content-Transfer-Encoding assign value quoted-printable, or 7bit,
or 8bit. For the file part, this header must be base64. The Content-Disposition header, present in the second part,
indicates how the mailer should display this part of the letter. It can take the value attachment (this section is not
part of the letter, but is simply attached to it as a file) and inline (an inclusion that is used directly in the letter, for
example, a picture inserted into HTML). In the first part heading

Content-type: text / plain; charset = "windows-1251"
indicated that it is plain text encoded by Windows.
In the second as part of the title
Content-Type: application / x-rar-compressed; name = "file.rar"
indicated that the file type is rar-archive, and the file name is file.rar.
If we send a gif image, its Content-type will look like:
Content-Type: image / gif; name = "file.gif"
If it is not known in advance what type of file we are sending, or the file format is not standard, set the Content-type
header to application / octet-stream.
Content-Type: application / octet-stream; name = "file.dat"
Attached files must be placed in a letter in base64 format. You can convert a file to this format using the
base64_encode () function:
// Open the file for reading in binary format

$ file = fopen ("file.zip", "rb");
// Read it into string $ str_file
$ str_file = fread ($ file, filesize ("file.zip"));
// Convert this string to base64 format
$ str_file = base64_encode ($ str_file);
Now the variable $ str_file , which contains the file, can be inserted into the letter.

For the final consolidation of the material, we will write a function that sends a letter in HTML format to the
specified addressee with an attached file:
/ 3k
$ to - email recipient address
$ from_mail - mail sender address
$ from_name - name of the message sender
$ subject - email subject
$ message - the message itself in HTML format
$ file_name - path to the file to be attached to the letter
(this could be the name of the file selected in the <input type = file name = file_name> field)
*/
function sendMail ($ to, $ from_mail, $ from_name, $ subject, $ message, $ file_name) {
$ bound = "spravkaweb-1234";
$ header = "From: \" $ from_name \ "<$ from_mail> \n";
$ header. = "To: $to \ n";
$ header. = "Subject: $ subject \ n";
$ header. = "Mime-Version: 1.0\ n";
$ header. = "Content-Type: multipart / mixed; boundary =\" $ bound \ "";
$ body = "\n\n - $ bound \ n";
$ body. = "Content-type: text / html; charset = \" windows-1251 \ "\ n";
$ body. = "Content-Transfer-Encoding: quoted-printable \n\ n";
$ body. = "$ message";
$ file = fopen ($ file_name, "rb");
$ body. ="\n\n - $ bound \ n";
$ body. = "Content-Type: application / octet-stream,";
$ body. = "name =\"". basename ($ file_name)." \ "\ n";
$ body. = "Content-Transfer-Encoding: base64 \ n";
$ body. = "Content-Disposition: attachment \ n \ n";
$ body. = base64_encode (fread ($ file, filesize ($ file_name))). "\ n";
$ body. = "$ bound -\ n \ n";
if (mail ($ to, $ subject, $ body, $ header)) {
echo "<center> Email was sent successfully! </center>";
} else {
echo "<center> Message not sent! </center>";
I
if

How to insert a picture into an email

Let's say our task is to insert our banner (button) into a letter sent from the site to the user.
This can be done in two ways:

First - in the HTML-code of the letter, we indicate the address of the picture as on a simple page <IMG src =
"http://spravkaweb.ru/img/88x31.gif">

In this case, if the user reads your letter online , the picture will be successfully downloaded from the specified
server and displayed in the letter. But if the user is not online, the picture will not be able to load.

The second way is to place the picture in the letter itself as an attached file (read more about attaching files to the
letter here), assign a unique identifier to this file, and then refer to this identifier in the body of the letter when

specifying the address of the picture.

Thus, not only images can be inserted into a letter, but also flash videos, music, ActiveX controls.

Of course, this will increase the size of the letter, but we will be sure that the user will see the inserted image for
sure (unless, of course, the display of images is disabled in his email program).

To assign an identifier to a picture, you need to place the following title in the section of the letter where it is
located:

Content-ID: < ID >
where the identifier is a string that will be unique for this message (for example, the boundary parameter of the
Content-Type header).
Now, in the letter itself, you can substitute its identifier in the address of the picture.

The mail program will analyze it, extract a picture from the corresponding section and display it.
This is what a letter might look like:

Date: Sat, 13 Mar 2004 09:56:31 -0300

Subject: Send image

From: "Evgen" <admin@spravkaweb.ru>

To: admin@localhost.ru

Subject: Send image

Mime-Version: 1.0

Content-Type: multipart / alternative; boundary = "spravkaweb-1234"

--spravkaweb-1234
Content-type: text / html; charset = "windows-1251"
Content-Transfer-Encoding: 8bit

<h3> Hello </h3>

This is a sample of sending a letter with an attached picture.

And here is the picture itself:

--spravkaweb-1234

Content-Type: image / jpeg; name = "5.jpg"
Content-Transfer-Encoding: base64
Content-ID: <spravkaweb_img_1>

/9j / AAAQSKZJRgABAQAAAQABAAD / 2wBD

--spravkaweb-1234--
How , and in the case with the attachable files , if we advance not known, a type of image to be fixed , header
Content-Type , you can assign a value of application / octet-stream. To fix this topic, we will write a program that
sends an email with a picture:

<? php

/ 3k

Let's set the path to the inserted image in the $ file_name variable.

In our case, it is located in the same directory as

file sending the letter. But instead, you can substitute here

file , the resulting scenario of the <INPUT type = file name = file_name >.
*/

$ file_name = "5.jpg";

$ subj = "Submit Image";

$ bound = "spravkaweb-1234";

$ headers = "From: \" Evgen \ "<admin@spravkaweb.ru> \ n";

$ headers. = "To: admin@localhost.ru \ n";

$ headers. = "Subject: $ subj \ n";

$ headers. = "Mime-Version: 1.0 \ n";

$ headers. = "Content-Type: multipart / alternative; boundary = \" $ bound \ "\ n";
$ body = "- $ bound \ n";

$ body. = "Content-type: text / html; charset = \" windows-1251\ "\ n";
$ body. = "Content-Transfer-Encoding: 8bit \ n \ n";
$ body. = "<h3> Hello </h3>
This is a sample of sending a letter with an attached picture.

And here is the picture itself:

";
$ body. ="\ n\n - $ bound \ n";
$ body. = "Content-Type: image / jpeg; name = \" ". basename ($ file_name)." \ "\ n";
$ body. = "Content-Transfer-Encoding: base64 \ n";
$ body. = "Content-ID: <spravkaweb_img_1>\n\n";
$ f = fopen ($ file_name, "rb");
$ body. = base64_encode (fread ($ f, filesize ($ file_name))). "\ n";
$ body. ="- $ bound - \n\n";
mail ("admin@localhost.ru", $ subj, $ body, $ headers);
7>
I want to note that in a similar way, you can insert into the letter not only pictures, but, for example, flash videos,
sound, and other elements that should be loaded to the page from files.

PHP to Excel: Working with COM Objects

Introduction

This article series focuses on creating Excel documents with PHP. This feature may be needed, for example, if you
need to provide the user with downloadable data in the form of Excel sheets. These can be prices for products that

are automatically generated from a database on the server, or some documents that also need to be presented in the
form of Excel documents.

Here we consider the possibility of working with Excel documents through a COM object. Unfortunately,
working with COM objects in PHP is only possible on Windows platforms. Therefore, if you use Unix
hosting, then you will not be able to create and edit Excel documents in the following way.

Working with COM objects is done using syntax

$ com_object = new COM ($ object);
Where
« $ com_object - new COM object ;
* $ object - id-class of the required object.

To create Excel documents, the $ object variable must be set to "Excel. Application" or "Excel.sheet".

$ xsl = new COM ("Excel.Application");

After creating a new COM object, you can access its properties and methods:
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; // Make it display
$ xIs-> Workbooks-> Add (); / Add a new document

$ rangeValue = $ xIs-> Range ("A1");

$ rangeValue-> Value = "In the selected block, the text will be bold, underlined, italic";
$ rangeValue = $ xIs-> Range ("A2");

$ rangeValue-> Value = " The font will have a height of 12";

$ rangeValue = $ xls-> Range ("A3");

$ rangeValue-> Value = " Font name - Times New Roman",;

$ range = $ xIs-> Range ("A1: J10"); // Define the area of the cells
$ range-> Select (); // Select it
$ fontRange = $ xIs-> Selection (); // Set the selection to a variable

// Next, set the parameters for formatting the text in the selected area
$ fontRange-> Font-> Bold = true; // Bold

$ fontRange-> Font-> Italic = true; // Italic

$ fontRange-> Font-> Underline = true; // Underlined

$ fontRange-> Font-> Name = "Times New Roman"; // Font name
$ fontRange-> Font-> Size = 12; // Font size

7>
Later in this section I will give examples of working with the main most used properties and methods:
* Opening, recording, closing a document
* Cell Format: Alignment
* Cell format: Font
» Working with strings
* Working with columns
* Add / Delete / Rename Sheets

 Drawing tables
 Copy / paste cells

Opening, recording, closing a document

General features:

In Excel, using PHP, you can perform the following actions with documents:
 create a new document;

« open a previously created document;

* save the open document;

* close the document.

Creating a new document:
Creating a new document in Excel takes three steps:

1. - We create a "link" between PHP and Excel (a descriptor is created, as when working with files);
2. - We indicate whether the program will be visually open or not;
3. - We indicate to the program through the descriptor that you need to open a new document.

To create a descriptor ("connection"), you need to use a call to Excel through a COM object:
$ xIs = new COM ("Excel.Application");
Now, through the $ xIs descriptor, we can access all the properties and methods of Excel.
Whether Excel is visible or not is specified in the Visible () property of the Application () object .
If we assign the value 1 to this property, then the program will be displayed, if 0, then no:
$ xIs-> Application-> Visible = 1;
Finally, you can add a new document using the Add () method of the Workbooks () object :
$ xls-> Workbooks-> Add ();
Those. to just run it with PHP Excel, you need to run the following code:
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xIs-> Workbooks-> Add (); / Add a new document
>
The first two lines of this example should always be used when working with Excel via PHP.

Opening a previously created document:

Opening a document can be done using the Open () method of the Workbooks () object . In the parameter passed
to the Open () method, you need to specify the name of the file to open:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xIs-> Workbooks-> Open ("C: \ test.xls"); // Open a previously saved document

>
If you specify not the full but a relative path, then the search for the file to be opened will be performed not on the
server but on the user's computer (by default, this is the "My Documents" folder).

Saving an open document:
Saving the open document produced by the method SaveAs () object the Workbooks () :

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add ();

$ range = $ xIs-> Range ("A1"); // Selected cell A1l

$ range-> Value = "Trial Write"; // Insert value

// Save the document
$ xls-> Workbooks [1] -> SaveAs ("test.xIs");

$ xIs-> Quit (); // Close the application
$ xls-> Release (); // Free objects

$ xls = Null;
$ range = Null;
7>

Closing a document:

The document is closed by the Quit () method .
<? php
$ xIs = new COM ("Excel.Application"); / Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add ();
$ range = $ xIs-> Range ("A1"); // Selected cell A1
$ range-> Value = "Write something down"; // Insert value

// Save the document
$ xIs-> Workbooks [1] -> SaveAs ("test.xls");

$ xIs-> Quit (); // Close the application
$ xIs-> Release (); // Free objects

$ xIs = Null;
$ range = Null;
>

Cell Format: Alignment

In Excel, using PHP, you can align data in cells both vertically and horizontally.

General features:
The following actions are available:

alignment by value;
left alignment;
center alignment;
right alignment;
fill alignment;
justified alignment;
distribution in the center of the selection;
horizontal distribution;
top alignment;
vertical centering;
bottom alignment;
height alignment;
vertical distribution;

setting cell indentation.

Horizontal alignment:

The Horizontal Alignment () property is responsible for horizontal alignment .
You can align a value in a single cell or in a range of cells. To do this, select a cell (or a range of cells) and set the

Horizontal Alignment () property to one of the 8 predefined values:

* HorizontalAlignment = 1

- alignment by value (used by default);

* HorizontalAlignment = 2

- alignment to the left;

* HorizontalAlignment = 3

- center alignment;

* HorizontalAlignment = 4

- right alignment;

* HorizontalAlignment = 5

- alignment with filling;

* HorizontalAlignment = 6

- justified alignment;

* HorizontalAlignment = 7

- center alignment of the selection;

* HorizontalAlignment = 8

- horizontal distribution.

In the example below, the top line of the "1: 1" table will align all values to the center.
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; / Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Center align
$ rangeAlignment = $ xlIs-> Range ("1: 1");
$ rangeAlignmeny-> Horizontal Alignment = 3;

$ rangeAlignment-> Value = "Hello";
>

Vertical alignment:

The VerticalAlignment () property is responsible for vertical alignment .
As well as horizontally, you can align a value in one cell or in a range of cells. To do this, select a cell (or a range of
cells), and assign one of 5 predefined values to the VerticalAlignment () property:
 VerticalAlignment = 1
- top alignment;
* VerticalAlignment = 2
- center alignment;
 VerticalAlignment = 3
- bottom alignment (default);
* VerticalAlignment = 4
- height alignment;
 VerticalAlignment = 5
- vertical distribution.
In the example below, the top line of the "1: 1" table will align all values to the top.
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Center align

$ rangeAlignment = $ xls-> Range ("1: 1");
// Set the alignment for the cells: top edge

$ rangeAlignment-> VerticalAlignment = 1;
// Set the font size: 8

$ rangeAlignment-> Font-> Size = 8;

// Set the line height: 25

$ rangeAlignment-> RowHeight = 25;

// Display the inscription : Hello

$ rangeAlignment-> Value = "Hello";
7>

Setting the indentation:

The cell indentation is set using the IndentLevel () property .
This property equates to a value equal to the number of characters by which the data should be shifted to the left.

In the following example, we will write the text in cell A1 with an indent of 5 characters, and in cell A2 -
without an indent:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; / Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the indent

$ rangeAlignment = $ xIs-> Range ("A1");

$ rangeAlignment-> IndentLevel = 5;

$ rangeAlignment-> Value = "The indent is 5 characters ";

// No indentation

$ rangeAlignment = $ xls-> Range ("A2");
$ rangeAlignment-> Value = "No Indent";
7>

Cell format: Font

General features:

In Excel, using PHP with text written in cells, you can do the following:
* make it bold;

 highlight in italics;

* make it underlined;

 install the font;

* set the font size;

» set the color of the text;

Text formatting:

The technique for accessing text properties is as follows:
« first, in a previously created document, set the range of cells to which text formatting will be applied;
o selectit;
 assign the selected range of values to the variable;
 using the Font () object, we get access to the formatting of the selection.
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; / Make it display
$ xls-> Workbooks-> Add (); // Add a new document

$ rangeValue = $ xIs-> Range ("A1");

$ rangeValue-> Value = "In the selected block, the text will be bold, underlined, italic";
$ rangeValue = $ xIs-> Range ("A2");

$ rangeValue-> Value = " The font will have a height of 12";

$ rangeValue = $ xls-> Range ("A3");

$ rangeValue-> Value = " Font name - Times New Roman",;

$ range = $ xls-> Range ("A1: J10"); // Define the area of the cells
$ range-> Select (); // Select it
$ fontRange = $ xIs-> Selection (); // Set the selection to a variable

// Next, set the parameters for formatting the text in the selected area
$ fontRange-> Font-> Bold = true; // Bold

$ fontRange-> Font-> Italic = true; // Italic

$ fontRange-> Font-> Underline = true; // Underlined

$ fontRange-> Font-> Name = "Times New Roman"; // Font name

$ fontRange-> Font-> Size = 12; // Font size
7>

Setting text color:

The color of the text is set using the ColorIndex () property of the same Font () object .
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add (); // Add a new document

$ range = $ xIs-> Range ("A1");

$ range-> Value = "Text will be written in red";

$ range-> Font-> ColorIndex = 3;

>
There is one peculiarity: the color of the text is not specified in any format (RGB, CMYK, etc.), but the number
under which it is located in the Excel palette.
There are 55 colors in total in the palette and one value is reserved for auto color. In total, 56 color values can be
set using the ColorIndex () property.

The following example will print all possible values for the ColorIndex () property in an Excel document:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

$ min_color_index = 0; // Initial color index

$ max_color_index = 55; // End color index

$ start_position = 2; // Position number from which the display will start
// color indices

// Display the inscription "Color number"

$ range = $ xIs-> Range ("Al: B1");

$ range-> Font-> Bold = true;

$ range = $ xIs-> Range ("A1");

$ range-> Value = "Color numbers";

// Print out the color index values and color these values

// appropriate color

for ($i=$ min_color_index; $ i <= $ max_color_index; $i ++) {
$ range = $ xlIs-> Range ("A". ($i + $ start_position));
$ range-> Value = "ColorIndex =". $ i;
$ range-> Font-> ColorIndex = $ i;

b

>

Working with strings

General features:

In Excel, using PHP, you can perform the following actions with strings:
e add a line;

* delete a line;

 set the height of one line or group of lines;

« auto-fit the height of one line or a group of lines;

 hide a line or group of lines;

 display a previously hidden row or group of rows.

Adding a line:

You can add a row using the Insert () method of the EntireRow () object :
<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; / Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Insert the values in the 1st, 2nd and 3rd cells

$ range = $ xIs-> Range ("A1"); // Selected cell A1l
$ range-> Value = "1st line"; // Insert value

$ range = $ xls-> Range ("A2"); // Selected cell A2
$ range-> Value = "2nd line; // Insert value

$ range = $ xIs-> Range ("A3"); // Selected cell A3
$ range-> Value = "3rd line"; // Insert value

// Insert the line
$ range = $ xIs-> Range ("2: 2"); // Determine the location

$ range-> EntireRow-> Insert (); // Insert the line
7>

Deleting a line:

A row is deleted using the Delete () method of the EntireRow () object :
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Insert the values in the 1st, 2nd and 3rd cells

$ range = $ xIs-> Range ("A1"); // Selected cell A1l
$ range-> Value = "1st line"; // Insert value

$ range = $ xls-> Range ("A2"); // Selected cell A2
$ range-> Value = "2nd line"; // Insert value

$ range = $ xIs-> Range ("A3"); // Selected cell A3
$ range-> Value = "3rd line"; // Insert value

// Delete the line

$ range = $ xIs-> Range ("'2: 2"); // Define a string
$ range-> EntireRow-> Delete (); // Delete it

7>

Setting the line height:

You can set the row height using the RowHeight property . The height is specified in millimeters.
The following example sets the string "2: 2" to a height of 25 mm:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xls-> Application-> Visible = 1; / Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Change the line height
$ range = $ xIs-> Range ("2: 2"); // Select the 2nd line
$ range-> Select (); // Select it
$ rowRange = $ xls-> Selection; // Define $ rowRange as the selection
$ rowRange-> RowHeight = 25; // Set the line height
>
By analogy, you can set the height for several lines:
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xIs-> Workbooks-> Add (); / Add a new document

// Change the line height
$ range = $ xIs-> Range (""2: 7"); // Select lines 2 to 7
$ range-> Select (); // Select them

$ rowRange = $ xIs-> Selection; // Define $ rowRange as the selection

$ rowRange-> RowHeight = 25; // Set the height of the lines
>

Auto-fit line heights:

Auto-fit for line heights is used for better readability of the displayed data. Those. if the font size of the text placed
in the lines is much less than the line height, or much more than the height, then such text is not very pleasant to
read.
The AutoFit () method of the Rows object is used for auto- fitting :

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

$ range = $ xls-> Range ("B1"); // Set the 1st cell

$ range-> Font-> Size = 20; // Set the font size

// Output the value in the 1st selected cell

$ range-> Value = "Web-languages reference: www.spravkaweb.ru";

$ range = $ xIs-> Range ("B2"); // Set the 2nd cell

$ range-> Font-> Size = 20; // Set the font size

// Output the value to the 2nd selected cell

$ range-> Value = "Web-languages reference: www.spravkaweb.ru";

$ range = $ xIs-> Range ("1: 2"); // Set 2 lines to work

$ range-> Select (); // Highlight these lines

$ rangeRows = $ xIs-> Selection (); / Set $ rangeRows as selection
$ rangeRows-> RowHeight = 15; // Set the line height = 15mm

$ rowRange = $ xlIs-> Range ("'2: 2"); // Highlight the 2nd line

$ rowRange-> Rows-> AutoFit (); // Do auto-fit height
// for the third line
7>
Those. we got the following:
On the first and second lines, we wrote down the text Web-languages reference: www.spravkaweb.ru . The font for
the text was set to 20. Then the line height was set to 15, and the second line was auto-sized. As a result, the first
line is displayed incorrectly (the upper part of the letters is not visible), and the second is normal.

Hiding / showing lines:
The Hidden () property of the EntireRow () object is responsible for the visual display of rows .
If you set this property to True, then the selected rows will be hidden, if False, then shown.
The following example will hide lines 5 through 10:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xIs-> Workbooks-> Add (); / Add a new document

$ range = $ xIs-> Range ("5:10"); // Select lines 5 through 10

$ range-> EntireRow-> Hidden = True; // Hide selected rows
7>

Working with columns

General features:

In Excel, using PHP, you can perform the following actions with columns:
e add a column;
* delete a column;

» set the width of one or more columns;

 auto-fit one or more columns;

* hide a column or group of columns;

 display a previously hidden column or group of columns;
 set the width for all columns.

Adding a column:

You can add a column using the Insert () method of the EntireColumn () object :
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Insert into the first and second top cell values

$ range = $ xIs-> Range ("A1"); // Selected cell A1l
$ range-> Value = "1st column"; // Insert value

$ range = $ xIs-> Range ("B1"); // Selected cell B1
$ range-> Value = "2nd column"; // Insert value

// Add a column
$ range = $ xls-> Range ("B: B"); / Define the horse
$ range-> EntireColumn-> Insert (); / Insert a new column in its place

// Write new value
$ range = $ xls-> Range ("B1"); // Select the second top cell

$ range-> Value = "Insert"; // Write a value to it
7>

Removing a column:

A column is deleted using the Delete () method of the EntireColumn () object :
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Insert the values in the 1st, 2nd and 3rd cells

$ range = $ xIs-> Range ("A1"); // Selected cell A1l
$ range-> Value = "1st column"; // Insert value

$ range = $ xIs-> Range ("B1"); // Selected cell B1
$ range-> Value = "2nd column"; // Insert value

$ range = $ xIs-> Range ("C1"); // Selected cell C1
$ range-> Value = "3rd column"; // Insert value

// Delete the column

$ range = $ xls-> Range ("B: B"); // Define the horse
$ range-> EntireColumn-> Delete (); // Delete it

7>

Column width setting:

The principle of setting the width of a column or group of columns is generally similar to setting the height of rows
, except that the width is controlled by the ColumnWidth () property and not by RowHeight () . The height is
specified in millimeters.
The following example sets column "A: A" to a width of 40 mm:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Change the column width
$ range = $ xls-> Range ("A: A"); // Select the 1st column

$ range-> Select (); // Select it
$ cellRange = $ xIs-> Selection; // Define $ cellRange as the selection
$ cellRange-> ColumnWidth = 40; // Set the column width
7>
By analogy, you can set the width for several columns
<? php
$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display
$ xls-> Workbooks-> Add (); // Add a new document

// Change the width of the columns

$ range = $ xls-> Range ("A: E"); // Select columns A through E

$ range-> Select (); // Select them

$ cellRange = $ xIs-> Selection; / Define $ cellRange as the selection

$ cellRange-> ColumnWidth = 40; // Set the width of the columns
?>

Auto-fit column widths:

Auto-fitting column widths are used for better readability of the displayed data. Those. if the text length is much
larger or much less than the column width, then it is possible to "fit" the column width to this text.
To quickly auto-used method AutoFit () object the Columns () :

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xls-> Application-> Visible = 1; / Make it display

$ xls-> Workbooks-> Add (); // Add a new document

$ range = $ xIs-> Range ("A1"); / Defining the 1- th cell

$ range-> Font-> Size = 20; // Set the font size

// Output the value in the 1st selected cell

$ range-> Value = "Web-languages reference: www.spravkaweb.ru";

$ range = $ xls-> Range ("B2"); // Set the 2nd cell

$ range-> Font-> Size = 20; // Set the font size

// Output the value to the 2nd selected cell

$ range-> Value = "Web-languages reference: www.spravkaweb.ru";

$ range = $ xIs-> Range ("A: B"); // Set 2 lines to work

$ range-> Select (); // Highlight these lines

$ rangeCells = $ xIs-> Selection (); // Set $ rangeCells as selection
$ rangeCells-> ColumnWidth = 5; // Set Column Width = 5mm

$ rangeCells = $ xIs-> Range ("B: B"); // Highlight the 2nd column
$ rangeCells-> Columns-> AutoFit (); // Do auto-fit width
// for the second column

7>
Those. we got the following:
In cells A1 and B2, we wrote the text Web-languages reference: www.spravkaweb.ru . The font for the text was set
to 20. Then we set the width of the columns to 5, and auto-fit the width of the second column. As a result, the first
column remained 5 mm wide, and the second in width stretched over the entire length of the inscription.

Hiding / showing columns:

The Hidden () property of the EntireColumn () object is responsible for the visual display of columns .
If you set this property to True, then the selected columns will be hidden, if False, then shown.
The following example will hide columns B through D:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

$ range = $ xIs-> Range ("B: D"); // Select columns B through D

$ range-> EntireColumn-> Hidden = True; // Hide selected columns
7>

Setting the width for all columns:

If it becomes necessary to set the width for all columns different from the default, then this can be done using the
StandardWidth () property of the ActiveSheet () object :

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the width for all columns
$ xls-> ActiveSheet-> StandardWidth = 5;
>

Add / Delete / Rename Sheets

General features:

In Excel, using PHP, you can perform the following actions with sheets:
* select a sheet;

* add a new sheet;

* move the sheet;

* remove the sheet;

* rename the sheet;

Working with sheets:

Sheets in Excel are accessed through the Sheets object .

The Select () method allows you to make a particular sheet of the document active:
$ rangeSheet = $ xls-> Sheets (" Sheet 2");
$ rangeSheet-> Select ();

where "Sheet2" is the name of the sheet to be active.

You can add a new sheet using the Add () method :

$ rangeSheet = $ xIs-> Sheets;

$ rangeSheet-> Add ();
If this is the first addition of a new sheet, then it is named "Sheet4". Usually a sheet is added before the active sheet.
Those. if the Select () sheet selection method was not called before calling the Add () method, then the new sheet is
added to the beginning of the sheet list.

The sheet name is contained in the Name () property of the Sheets () object .
In the following example, create a new document and rename the sheets "Sheet1", "Sheet2" and "Sheet3"
(which are created automatically) to "Prices", "Contact information", "Order", respectively:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

$ rangeSheet = $ xls-> Sheets (" Sheet 1");

$ rangeSheet-> Name = " Prices ";

$ rangeSheet = $ xIs-> Sheets (" Sheet 2");

$ rangeSheet-> Name = " Contact Information ";
$ rangeSheet = $ xls-> Sheets (" Sheet 3");

$ rangeSheet-> Name = " Order ";
>

Drawing tables

General features:

In Excel, using PHP, you can do the following operations with tables:
 set the thickness and style of the table border lines;

 set the thickness and style of the lines of the internal grid of the table;
 set the color of the border and the inner grid of the table;

Working with a table:

All table properties are located in the Borders () object . Or rather, not in an object, but in an array of Borders []
objects. Each element of this array is responsible for a specific part of the table (top border of the table, bottom,
inner lines, etc.). And already each element of the array has its own properties that are defined only for this object:

Thus, if we want to draw a plate with a bold outer border in blue and thin inner lines in red, then we must
execute the following code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; / Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xls-> Selection ();

// Set the properties of the left side of the table
$ rangeBordersLeft = $ range-> Borders ("7");
$ rangeBordersLeft-> LineStyle = 1;
$ rangeBordersLeft-> Weight = 3;
$ rangeBordersLeft-> ColorIndex = 5;
// Set the properties of the table top wall
$ rangeBordersTop = $ range-> Borders ("8");
$ rangeBordersTop-> LineStyle = 1;
$ rangeBordersTop-> Weight = 3;
$ rangeBordersTop-> ColorIndex = 5;
// Set the properties of the bottom wall of the table
$ rangeBordersBottom = $ range-> Borders ("9");
$ rangeBordersBottom-> LineStyle = 1;
$ rangeBordersBottom-> Weight = 3;
$ rangeBordersBottom-> ColorIndex = 5;
// Set the properties of the right side of the table
$ rangeBordersRight = $ range-> Borders ("10");
$ rangeBordersRight-> LineStyle = 1;
$ rangeBordersRight-> Weight = 3;
$ rangeBordersRight-> ColorIndex = 5;
// Set the properties of the inner vertical lines
$ rangeBordersVertical = $ range-> Borders ("11");
$ rangeBordersVertical-> LineStyle = 1;
$ rangeBordersVertical-> Weight = 2;
$ rangeBordersVertical-> ColorIndex = 3;
// Set the properties of the inner horizontal lines
$ rangeBordersHorizontal = $ range-> Borders ("12");
$ rangeBordersHorizontal-> LineStyle = 1;
$ rangeBordersHorizontal-> Weight = 2;
$ rangeBordersHorizontal-> ColorIndex = 3;
7>
T . e . first the left side of the table is taken
$ rangeBordersLeft = $ range-> Borders ("7");
For her, they are asked : line type (solid),
$ rangeBordersLeft-> LineStyle = 1;

line thickness (bold),

$ rangeBordersLeft-> Weight = 3;
line color (blue)

$ rangeBordersLeft-> ColorIndex = 5;
We do the same for the right, top, bottom walls.
For internal vertical lines

$ rangeBordersVertical = $ range-> Borders ("11");
and internal horizontal lines

$ rangeBordersHorizontal = $ range-> Borders ("12");
set the line type to solid, line thickness to normal, line color to red:

$ rangeBordersVertical-> LineStyle = 1;

$ rangeBordersVertical-> Weight = 2;

$ rangeBordersVertical-> ColorIndex = 3;
and

$ rangeBordersHorizontal-> LineStyle = 1;

$ rangeBordersHorizontal-> Weight = 2;

$ rangeBordersHorizontal-> ColorIndex = 3;
The LineStyle () property (line type) can take values from 1 to 13, and the Weight property (thickness) can take
values from 1 to 4.
How the lines will look with different values of the LineStyle and Weight properties is shown in the following
table:

LineStyle Weight = 1Weight = 2Weight = 3Weight = 4

LineStyle =1
LineStyle = 2
LineStyle = 3
LineStyle = 4
LineStyle =5
LineStyle = 6
LineStyle =7
LineStyle = 8
LineStyle =9
LineStyle = 10
LineStyle =11
LineStyle = 12
LineStyle = 13

An example of forming such a table in Excel using PHP:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the whole range to center align
// font size: 8

// column width: 12

$ range = $ xIs-> Range ("A1l: E14");
$ range-> Horizontal Alignment = 3;
$ range-> Font-> Size = 8;

$ range-> ColumnWidth = 12;

// Form the " header "

$ range = $ xIs-> Range ("A1");
$ range-> Font-> Bold = true;

$ range-> Value = "LineStyle";

$ range = $ xIs-> Range ("B1");
$ range-> Font-> Bold = true;
$ range-> Value = "Weight = 1";

$ range = $ xls-> Range ("C1");
$ range-> Font-> Bold = true;
$ range-> Value = "Weight = 2";

$ range = $ xls-> Range ("D1");
$ range-> Font-> Bold = true;
$ range-> Value = "Weight = 3";

$ range = $ xIs-> Range ("E1");
$ range-> Font-> Bold = true;
$ range-> Value = "Weight = 4";

// For each column, display the bottom border of the cell
// with the appropriate values for the LineStyle and Width properties
for($i=1;$i<=13;%i++){
$ range = $ xIs-> Range ("A". ($i + 1));
$ range-> Value = "LineStyle = $ i";
$ range = $ xIs-> Range ("B". ($i + 1));
$ rangeBordersRight = $ range-> Borders ("9");
$ rangeBordersRight-> LineStyle = $ i;
$ rangeBordersRight-> Weight = 1;
b5

for($i=1;$i<=13;%i++){
$ range = $ xIs-> Range ("C". ($i + 1));
$ rangeBordersRight = $ range-> Borders ("9");
$ rangeBordersRight-> LineStyle = $ i;

$ rangeBordersRight-> Weight = 2;

b5

for($i=1;$i<=13;$i++) {
$ range = $ xIs-> Range ("D". ($i + 1));
$ rangeBordersRight = $ range-> Borders ("9");
$ rangeBordersRight-> LineStyle = $ i;

$ rangeBordersRight-> Weight = 3;

Iif

for($i=1;$i<=13;$i++) {
$ range = $ xIs-> Range ("E". ($i + 1));
$ rangeBordersRight = $ range-> Borders ("9");
$ rangeBordersRight-> LineStyle = $ i;

$ rangeBordersRight-> Weight = 4;

Iif

7>
To consolidate the material, we will consider how to implement the formation of table borders in PHP using the
example of some standard Excel tools.

How it works:
Removes all borders, frames, etc. in the selected range.

How to implement:
Set the display style for all walls and internal lines: none (LineStyle = Null)

The code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xIs-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xls-> Selection ();

// Set properties for the entire table

$ rangeDiagonalDown = $ range-> Borders ("5");
$ rangeDiagonalDown-> LineStyle = Null;

$ rangeDiagonalUp = $ range-> Borders ("6");

$ rangeDiagonalUp-> LineStyle = Null;

$ rangeBordersLeft = $ range-> Borders ("7");

$ rangeBordersLeft-> LineStyle = Null;

$ rangeBordersTop = $ range-> Borders ("8");

$ rangeBordersTop-> LineStyle = Null;

$ rangeBordersBottom = $ range-> Borders ("9");
$ rangeBordersBottom-> LineStyle = Null;

$ rangeBordersRight = $ range-> Borders ("10");

$ rangeBordersRight-> LineStyle = Null;

$ rangeBordersVertical = $ range-> Borders ("11");
$ rangeBordersVertical-> LineStyle = Null;

$ rangeBordersHorizontal = $ range-> Borders ("12");
$ rangeBordersHorizontal-> LineStyle = Null;

How it works: Draws the bottom border of the selection with a
solid line of single thickness.

How to implement:

Set the line style for the bottom border: solid (LineStyle = 1), thickness: single
(Weight = 2)

The code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xlIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xls-> Selection ();

// Set properties for the bottom wall of the table

$ rangeBordersBottom = $ range-> Borders ("9");
$ rangeBordersBottom-> LineStyle = 1;

$ rangeBordersBottom-> Weight = 2;

How it works: Draws the left border of the selection with a

solid line of single thickness.

How to implement:

Set the line style for the left border: solid (LineStyle = 1), thickness: single (Weight =
2)

The code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xls-> Application-> Visible = 1; // Make it display

$ xIs-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xls-> Selection ();

// Set properties for the left side of the table

$ rangeBordersLeft = $ range-> Borders ("7");
$ rangeBordersLeft-> LineStyle = 1;

$ rangeBordersLeft-> Weight = 2;

How it works: Draws the right border of the selection with a
solid line of single thickness.

How to implement:

Set the line style for the right border: solid (LineStyle = 1), thickness: single (Weight =
2)

The code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xls-> Selection ();

// Set properties for the right side of the table

$ rangeBordersRight = $ range-> Borders ("10");
$ rangeBordersRight-> LineStyle = 1;

$ rangeBordersRight-> Weight = 2;

How it works: Draws the bottom border of the selection with a
solid double line.

How to implement:
Set the line style for the bottom border: double (LineStyle = 9), thickness: Weight = 4

The code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xls-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xIs-> Selection ();

// Set properties for the right side of the table

$ rangeBordersRight = $ range-> Borders ("10");
$ rangeBordersRight-> LineStyle = 9;

$ rangeBordersRight-> Weight = 4;

Principle of action: Draws the bottom border of the selection with a
solid line of double thickness.

How to implement:
Set the line style for the bottom border: single (LineStyle = 1), thickness: Weight = 3

The code:

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object
$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the table area

$ range = $ xIs-> Range ("B2: E10");

// Select it

$ range-> Select ();

// Assign the selection to the $ range variable
$ range = $ xIs-> Selection ();

// Set properties for the right side of the table

$ rangeBordersRight = $ range-> Borders ("10");
$ rangeBordersRight-> LineStyle = 1;

$ rangeBordersRight-> Weight = 3;

/] some further action

Copying / pasting cells

In Excel, using PHP, you can copy cells and paste previously copied cells.

General features:

copying cells;
pasting copied cells;

moving cells;

Copying / pasting cells:
Copying cells occurs in two stages: first, you need to select the copied area and copy it using the Copy () method ,
and then you need to select the area into which the copied cells will be pasted and paste them

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xls-> Application-> Visible = 1; / Make it display

$ xIs-> Workbooks-> Add (); / Add a new document

// Set the copied cell

$ range = $ xIs-> Range ("A1");
$ range-> Value = "Web Language Reference";
// Copy it
$ range-> Copy ();
// Set the area where the cell will be copied
$ range = $ xIs-> Range ("A3: A9");
$ range-> Select ();
$ range = $ xls-> Selection ();
// Insert
$ xls-> ActiveSheet-> Paste ();
>
Here ActiveSheet is a link to the selected cells .

Moving cells:

If during copying the copied cells remained in place, then when moving the copied cells are deleted.
Moving is performed by the Cut () method .

<? php

$ xIs = new COM ("Excel.Application"); // Create a new COM object

$ xIs-> Application-> Visible = 1; // Make it display

$ xls-> Workbooks-> Add (); // Add a new document

// Set the copied cell

$ range = $ xIs-> Range ("A1");

$ range-> Value = "Web Language Reference";
// Copy it

$ range-> Cut ();

// Set the area where the cell will be copied

$ range = $ xIs-> Range ("A3");

$ range-> Select ();

$ range = $ xls-> Selection ();

// Insert

$ xls-> ActiveSheet-> Paste ();
>

