

PHP 8 for Absolute
Beginners

Basic Website and Web Application
Development

Third Edition

Jason Lengstorf
Thomas Blom Hansen
Steve Prettyman

PHP 8 for Absolute Beginners: Basic Website and Web Application Development

ISBN-13 (pbk): 978-1-4842-8204-5		 ISBN-13 (electronic): 978-1-4842-8205-2
https://doi.org/10.1007/978-1-4842-8205-2

Copyright © 2022 by Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Li Zhang on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Jason Lengstorf
No 392
Portland, OR, USA

Thomas Blom Hansen
Kirke Saaby, Denmark

Steve Prettyman
Palm Bay, FL, USA

https://doi.org/10.1007/978-1-4842-8205-2

This book is dedicated to every volunteer who provides open source
code and training (videos and tutorials) for anyone who wants to
improve their skills and learning. Without your dedication to help

fellow programmers, we would not progress as an industry to
providing the best, most reliable, and most secure programs possible.

v

Part �I�� 1

Chapter 1: ��Getting Ready to Program�� 3

Objectives�� 3

Setting Up a Development Environment�� 12

What Is PHP? How Does PHP Work?��� 13

Apache and What It Does�� 15

Storing Info with MySQL/MariaDB�� 15

Installing PHP, Apache, and MySQL/MariaDB��� 16

Installing XAMPP�� 17

Open the XAMPP Control Panel�� 28

What If Apache Isn’t Running?��� 30

Verify That Apache and PHP Are Running��� 31

Choosing a PHP Editor��� 32

Creating Your First PHP Program��� 34

Running Your First PHP Script�� 35

Summary��� 36

Projects�� 37

Chapter 2: ��Understanding PHP: Language Basics��� 39

Objectives�� 39

Embedding PHP Scripts��� 40

About the Authors���xv

About the Technical Reviewer��xvii

Introduction���xix

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_1
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_1#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec2

vi

Program Design and Logic��� 42

Program Design and Logic��� 42

Using echo�� 43

What Is a Variable?��� 43

Program Design and Logic��� 45

Displaying PHP Errors��� 46

Secure Programming�� 46

Creating an HTML5 Page with PHP�� 49

HTML Review�� 49

Including a Simple Page Template��� 51

Including the Template��� 52

Secure Programming�� 53

Commenting Your Code�� 54

Avoiding Naming Conflicts�� 55

Page Views��� 59

HTML Review�� 60

Making a Dynamic Site Navigation��� 61

HTML Review�� 62

Passing Information with PHP�� 63

Accessing URL Variables�� 64

Using isset() to Test If a Variable Is Set�� 64

Secure Programming�� 65

$_GET, a Superglobal Array�� 66

Including Page Views Dynamically��� 67

Strict Naming Convention��� 68

Displaying a Default Page��� 69

Securing the Program�� 69

Validating Your HTML��� 70

Styling the Site with CSS��� 71

CSS Review�� 72

Declaring a Page_Data Class��� 74

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_2#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec23
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec24
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec25
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec26
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec27
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec28
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec29
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec30
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec31
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec32
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec33
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec34
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec35
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec36
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec37
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec38
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec39

vii

Program Design and Logic��� 75

Classes Make Objects�� 76

Highlighting Current Navigation Item with a Dynamic Style Rule��� 77

Summary��� 77

Projects�� 77

Chapter 3: ��Form Management��� 79

Objectives�� 79

What Are Forms?��� 80

Setting Up a New PHP Project�� 82

Seeing for Yourself��� 82

Creating a Dynamic Navigation�� 83

Creating Page Views for the Form�� 84

Program Design and Logic��� 86

A Simple Search Form��� 87

The <input> Element and Some Common Types��� 88

Understanding the Method Attribute�� 88

Named PHP Functions�� 89

Program Design and Logic��� 89

The Basic Syntax for Named Functions�� 89

Program Design and Logic��� 90

Program Design and Logic��� 93

Using Function Arguments for Increased Flexibility��� 93

Creating a Form for the Quiz�� 95

HTML Review�� 96

Showing the Quiz Form�� 97

Secure Programming�� 98

Program Design and Logic��� 99

Secure Programming�� 104

Curly’s Law: Do One Thing��� 104

Program Design and Logic��� 105

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_2#Sec40
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec41
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec42
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec43
https://doi.org/10.1007/978-1-4842-8205-2_2#Sec44
https://doi.org/10.1007/978-1-4842-8205-2_3
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec9
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec19
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec22
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec24
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec26
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec27
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec28

viii

OOP: Using Constructors, Getters, and Setters�� 105

Secure Programming�� 109

Summary��� 112

Exercises�� 113

Chapter 4: ��Building a Dynamic Image Gallery��� 115

Objectives�� 115

Setting Up a Dynamic Site��� 116

Prerequisites: A Folder with Some Images��� 116

Copyright Laws��� 116

Creating a Navigation��� 117

Creating Two Dummy Page View Files�� 118

Creating the Index File�� 118

Time to Test�� 119

Preparing a Function for Displaying Images�� 120

Iteration�� 121

While Loop�� 121

For Loop�� 123

Using glob to Find Files in a Folder�� 125

For Each Loop��� 125

Showing All Images�� 125

Secure Programming�� 127

CSS Review�� 129

Creating a Form View��� 132

Showing a Form for Uploading Images�� 133

php.ini��� 135

$_FILES�� 136

Secure Programming�� 137

Uploading Files with PHP��� 140

Planning an Uploader Class�� 140

Using the Uploader Class�� 145

The Single Responsibility Principle�� 147

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_3#Sec30
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec31
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec32
https://doi.org/10.1007/978-1-4842-8205-2_3#Sec33
https://doi.org/10.1007/978-1-4842-8205-2_4
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec9
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec19
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec21
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec22
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec23
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec24
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec29
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec30

ix

Summary��� 148

Projects�� 148

Chapter 5: ��Reviewing PHP 8 Basic Syntax�� 151

Objectives�� 151

From the Beginning�� 151

Comments�� 152

PHP Functions�� 153

Variables��� 154

Conditional Statements�� 160

Logical Operators��� 166

Functions�� 171

Arrays��� 177

Loops�� 180

Enums��� 183

Summary��� 184

Projects�� 184

Part �II... 185

Chapter 6: ��Databases, MVC, and Data Objects��� 187

Objectives�� 187

The Basics of MySQL/MariaDB Data Storage��� 188

Manipulating Data with SQL�� 190

Developing a Database for the Poll�� 192

Building a Database Using CREATE�� 193

Secure Programming�� 195

The INSERT Statement��� 198

The SELECT Statement��� 199

Secure Programming�� 200

The UPDATE Statement��� 201

Secure Programming�� 202

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_4#Sec31
https://doi.org/10.1007/978-1-4842-8205-2_4#Sec32
https://doi.org/10.1007/978-1-4842-8205-2_5
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec9
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_5#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_6
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec14

x

Coding a Database-Driven Site Poll��� 202

Separating Concerns with MVC�� 203

Creating the Poll Project��� 205

Making a Poll Controller��� 206

Making a Poll Model��� 207

Making a Poll View��� 209

Hooking Up Poll View with Poll Model�� 209

Connecting to MySQL/MariaDB from PHP�� 211

Sharing the Database Connection with the Poll Model�� 212

Retrieving Data with a PDOStatement�� 214

Showing a Poll Form�� 218

Updating a Database Table According to Form Input�� 219

Secure Programming�� 221

Summary��� 223

Projects�� 224

Chapter 7: ��Building the Basic Blog System��� 225

Objectives�� 225

Creating the blog_entry Database Table�� 226

Planning the PHP Scripts��� 227

Admin View: Creating the Admin Blog Site��� 228

Creating the Admin Entry Manager Navigation�� 229

Loading Admin Module Controllers��� 231

Creating the Admin Entry Input Form��� 233

Styling the Admin Editor��� 235

Connecting to the Database��� 237

Using Design Patterns�� 238

Writing the Entry_Table Class��� 239

Secure Programming�� 241

Processing the Admin Form Input and Saving the Entry�� 242

User View: Getting Data for All Blog Entries�� 244

Using an SQL SUBSTRING Clause��� 245

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_6#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec19
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec21
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec21
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec22
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec25
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec26
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec27
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec28
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec29
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec31
https://doi.org/10.1007/978-1-4842-8205-2_6#Sec32
https://doi.org/10.1007/978-1-4842-8205-2_7
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec9
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec16

xi

Using an SQL Alias�� 246

Preparing a User View for All Blog Entries�� 246

Hooking Up the User View and User Model�� 248

Responding to User Requests to Read More�� 249

Getting Entry Data�� 250

Secure Programming�� 251

Secure Programming�� 260

Summary��� 261

Projects�� 261

Chapter 8: ��Basic Blog: Entries and Comments�� 263

Objectives�� 263

Creating a Model for the Administrative Module�� 264

Displaying Administrative Links��� 265

Populating the Form with the Entry to Be Edited��� 267

Handling Entry Deletion�� 271

Deleting Entries from the Database�� 271

Responding to Delete Requests�� 272

Preparing a Model to Update Entries in the Database�� 274

Controller: Should I Insert or Update?�� 275

Secure Programming�� 276

Insisting on a Title�� 278

Secure Programming�� 278

User View: Building and Displaying the Comment Entry Form��� 281

A Combined View�� 283

Creating a Comment Table in the Database��� 285

Using a Foreign Key�� 286

Building a Comment_Table Class��� 287

Inheritance��� 287

Is-a Relationships��� 288

Using Inheritance in Our Code�� 288

Inserting a Comment Through the Comment Form�� 293

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_7#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec19
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec21
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec22
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec28
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec29
https://doi.org/10.1007/978-1-4842-8205-2_7#Sec30
https://doi.org/10.1007/978-1-4842-8205-2_8
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec9
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec19
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec23

xii

Searching for Entries��� 296

The Search View��� 297

Responding to a User Search��� 299

The Search Model��� 301

A Search Result View�� 302

Loading a Search Result View from the Controller��� 303

Exercise: Improving Search�� 304

Summary��� 305

Projects�� 305

Chapter 9: ��Basic Blog: Images and Authentication��� 307

Objectives�� 307

Deleting Entries in Related Tables�� 309

Understanding Foreign Key Constraints��� 309

Deleting Comments Before Blog Entry��� 310

Creating an Image Manager��� 311

Showing a Form for Uploading Images�� 312

A Quick Refresher on the $_FILES Superglobal Array�� 314

Uploading an Image�� 315

Displaying Images�� 320

Using an Image in a Blog Entry�� 324

Improving Security with Authentication��� 329

Creating an admin_table in the Database�� 330

Hashing the Password with BCRYPT�� 331

One-Way Hashing��� 331

Sufficient Security�� 332

Adding Administrators in the Database�� 332

Building an HTML Form�� 332

Saving New Administrators in the Database�� 335

Planning Login��� 341

Creating a Login Form�� 341

Hiding Controls from Unauthorized Users�� 342

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_8#Sec24
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec25
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec26
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec27
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec29
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec30
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec31
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec32
https://doi.org/10.1007/978-1-4842-8205-2_8#Sec33
https://doi.org/10.1007/978-1-4842-8205-2_9
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec10
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec11
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec12
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec13
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec14
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec15
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec16
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec17
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec18
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec19
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec20
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec21
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec22

xiii

HTTP Is Stateless�� 344

Superglobal: $_SESSION�� 344

Persisting State with a Session�� 345

Logging Users Out�� 347

Allowing Authorized Users Only�� 349

Summary��� 355

Projects�� 355

Chapter 10: ��Data Dashboard and Gaming�� 357

Objectives�� 357

Setting Up a Data Dashboard��� 358

Gathering Microsoft Excel, CSV, JSON, and Database Data�� 360

Creating the Model Data Class��� 365

Creating the Drop-Down and File Type Views��� 379

Creating the Front Door Controller and the Subcontrollers�� 382

Creating the Logic for a Checkers Game��� 397

Summary��� 418

Projects�� 418

Index�� 421

Table of Contents

https://doi.org/10.1007/978-1-4842-8205-2_9#Sec23
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec24
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec25
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec26
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec27
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec29
https://doi.org/10.1007/978-1-4842-8205-2_9#Sec30
https://doi.org/10.1007/978-1-4842-8205-2_10
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec1
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec2
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec3
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec4
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec5
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec6
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec7
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec8
https://doi.org/10.1007/978-1-4842-8205-2_10#Sec9

xv

About the Authors

Jason Lengstorf is a turbogeek from Portland, OR. He started building websites in his

late teens when his band couldn’t afford to pay someone to do it, and he continued

building websites after he realized his band wasn’t actually very good. He’s been a

full-time freelance web developer since 2007 and expanded his business under the

name Copter Labs, which is now a distributed freelance collective, keeping about ten

freelancers worldwide busy. He is also the author of PHP for Absolute Beginners and Pro

PHP and jQuery. 

Thomas Blom Hansen has extensive experience teaching web programming in the

Digital section of the Copenhagen School of Design and Technology. When he is not

teaching, you can find Thomas fly-fishing for sea-run brown trout in the coastal waters

around Denmark or possibly hiking some wilderness area in southern Scandinavia.

Thomas lives in a small village with his wife, three kids, too few fly rods, and a lightweight

camping hammock. 

Steve Prettyman is a college instructor on PHP programming, web development, and

related technologies. He is and has been a practicing web developer and is a book

author. He has authored several books on PHP including Learn PHP 7 and PHP Arrays

for Apress.

xvii

About the Technical Reviewer

Satej Kumar Sahu works in the role of Senior Enterprise Architect at Honeywell. He is

passionate about technology, people, and nature. He believes through technology and

conscientious decision-making, each of us has the power to make this world a better

place. In his free time, he can be found reading books, playing basketball, and having fun

with friends and family.

xix

Introduction

Modern web development relies on the successful integration of several technologies.

Content is mostly formatted as HTML. With server-side technologies, you can create

highly dynamic web applications. PHP is the single most used server-side scripting

language for delivering browser-based web applications. PHP is the backbone of online

giants such as Facebook, Flickr, and Yahoo.

There are other server-side languages available for web application development,

but PHP is the workhorse of the Internet. For an absolute beginner, it should be

comforting to know that PHP is a relatively easy language to learn. You can do many

things with a little PHP. Also, there is a thriving, friendly community supporting PHP. It

will be easy to get help with your own PHP projects.

�Who Should Read This Book
This book is intended for those who know some HTML and CSS. It is for those who are

ready to take their web developer skills to the next level. You will learn to generate HTML

and CSS dynamically, using PHP and MySQL. You will learn the difference between

client-side and server-side scripting through hands-on experience with PHP/MySQL

projects. Emphasis will be on getting up and running with PHP, but you will also get

to use some MySQL in your projects. By the end of the book, you will have created a

number of PHP-driven projects, including the following:

•	 A personal portfolio site with dynamic navigation

•	 A dynamic image gallery where users can upload images through an

HTML form

•	 A personal blogging system, complete with a login and an

administration module

In the process, you will become acquainted with such topics as object-oriented

programming, design patterns, progressive enhancement, and database design. You will

not get to learn everything there is to know about PHP, but you will be off to a good start.

xx

�How to Read This Book
This book is divided into two main parts. Part I will quickly get you started writing PHP

for small, dynamic projects. You will be introduced to a relatively small subset of PHP –

just enough for you to develop entry-level web applications. Part I will also teach you the

basic vocabulary of PHP.

Part II is a long hands-on project. You will be guided through the development of the

aforementioned personal blogging system, starting from scratch. Part II will show you

how to use your PHP vocabulary to design dynamic, database-driven web applications.

�Source Code
All code used in this book can be downloaded from github.com/apress/php8-for-

absolute-beginners.

Introduction

3

CHAPTER 1

Getting Ready to Program

�Objectives
After completing this chapter, you will be able to

•	 Understand how operating systems make programming easier

•	 Understand how PHP works with Apache and MySQL/MariaDB to

create dynamic web pages

•	 Install a PHP test environment

•	 Determine if the test environment is working properly

•	 Create a simple PHP program

•	 Execute and test a simple PHP program

Welcome to the world of programming! Whether you have never attempted to write

a program before or you have been creating programs for a while, we hope that this

book will help you to understand the basics of program development. Every minute

of your life has been surrounded by computers. From the monitors in the delivery

room the moment you were born to the coffee maker that brewed your dark roast

this morning (assuming you like coffee), computers and programs attempt to make

our lives easier. Your interest in programming might have grown due to your ability

to shine in the gaming world, from using social media applications, or, maybe, from

watching entrepreneurs on TV pitch their inventions in an attempt to create a successful

business. No matter the reason, you are here to discover how to create programs in the

PHP language and, more importantly, determine if programming is something you

want to do.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_1

https://doi.org/10.1007/978-1-4842-8205-2_1#DOI

4

The IT (information technology) industry provides unlimited potential for you to

be creative and a true pioneer. There is no limit to what you can design and create.

Your creation could help save the planet or make life easier for a disabled person. It is

truly up to you to determine what you will invent. You can choose to work for a large

multinational corporation, a small startup, or venture out on your own. As your career

progresses, you can change your path as many times as you need. You might start

with a larger company to build up experience, slide into a startup once you discover

your expertise, and finally develop your own application which will pave your way to

retirement. The IT industry provides you the freedom to determine your path.

So, let’s begin this adventure. Since we assume you want to start programming as

quickly as possible (that is why you bought this book, right?), let’s briefly cover some

groundwork, so we can all start from the same level of understanding.

Here we go! First and foremost, “Computers are dumb.” What? But they provide us

with so many amazing tools, how can they be dumb? To keep it simple, computers only

know two things, 0 and 1. This is based on the idea that a circuit either has electricity (1)

or it does not (0). This is the basic building block of how computer hardware and

software is designed. Hardware is what we commonly think of when someone mentions

a computer. The physical components, such as the keyboard, screen, circuits, memory

chips, and other internal components. The software is the actual programs (applications)

that communicate with the hardware. Every computer has an operating system which

provides the ability for an application (and possibly a human) to communicate with the

hardware. The operating system is like a language interpreter; it converts the information

it receives (from an application or human) into the language the computer understands.

Just like a human interpreter can convert English to Spanish.

A program is usually defined as a set of code that accomplishes a task. An application (app)

can be many programs, types of hardware, and even people working together to

accomplish the task. However, don’t get hung up on these definitions, because in the

real world we tend to use these two words interchangeably. As you will note, we have

already done so in this book. The application software is usually not designed to directly

communicate with the hardware of the computer. It talks to the operating system, which

then talks to the hardware.

As an example, think about the applications you use. When you want to print

something from an application, a print window appears, giving you options for your task.

If you were then to open up another application on your computer and print from that

application, the same print window appears. Where did that come from? The operating

Chapter 1 Getting Ready to Program

5

system. Operating systems include coding for common tasks that applications request.

These modules include blocks of code and the interface (graphical window) when

required. An application uses an API (application programming interface) call when

using one of these tools. An API is simply a line of code that tells the operating system

what block of code to execute and what parameters (information) to use when executing

the code.

The print API might request the operating system place the requested document into

the print queue. The print queue is a list of documents waiting to be printed. Not only

can the operating system talk to the printer, but the printer can also talk to the operating

system. It actually sends a special signal (interrupt) back to the operating system letting

it know when a print job is complete (or if there is a problem, such as out of paper). The

operating system, once a print job is complete, will remove that job from the queue and

send the next job to the printer.

We have greatly simplified the actual process. For example, when the requests are

sent back and forth between the operating system and the printer, the instructions

(language) are converted back and forth from what the operating system understands

to what the printer understands. Where does this conversion happen? With the help of

a little application called the print driver. Actually, we could dig into this even deeper,

but the point is that the application, the operating system, and the hardware (including

the printer) work together to accomplish tasks. Hardware is worthless without software

(except maybe as a doorstop), and software can’t exist without hardware (except maybe

in our imagination).

Remember, we stated that computers only know 0 and 1. So how do they accomplish

so much if that is all they know? As we know, computers have the ability to store

information. They can store this information in the memory, on an internal storage

device (hard drive, chip), or even on an external server (the cloud). Information that

is stored by a computer is stored as a series of 0s and 1s. A bit is a single 0 or 1. A byte

is a series of multiple 0s and 1s. The size (number of 0s and 1s) of a byte might vary

depending on the computer (…, 32, 64, 128, …), but it accomplishes the same task of

either storing information or executing a task. A word size is the number of bits that can

be stored within a computer at one location (in memory or a storage device) or executed

at one time. The larger the word size, the more information that can be saved or executed

at one time. Computers with larger word sizes process information faster.

Chapter 1 Getting Ready to Program

6

Unicode is a standard that combines bits together to represent many symbols and

languages used throughout the world. Quite a task indeed! At one time, programming

was mostly designed for English-speaking countries. However, today, programmers

exist in all regions of the world. Let’s look at an example of following a simple process

of typing a character on the keyboard into a document. Assuming we have opened our

favorite text processor (such as Microsoft Word), we can begin typing. When we click the

letter “s” on the keyboard, it magically appears on the screen (in the document). How

does that happen? When a key on the keyboard is pressed, the bit pattern (0s and 1s) for

the letter is sent to the text editor via the operating system. However, most people don’t

understand patterns of 0s and 1s. So, when the text editor receives the information, the

information that is displayed is converted on the monitor to the letter we pressed (“s”).

Notice, we stated that the display is converted, not the actual data itself. When we store

the data, it is still stored in bit format.

Again, we have simplified it, because the conversion actually involves memory,

the text editor, its driver, the operating system, a graphics card, and the monitor and its

driver. A lot goes on very quickly. Luckily, we can just understand that this all happens,

without digging into the details. Just remember, what the computer understands, and

what we understand is different.

In addition to being a language interpreter, the operating system is also a memory

manager. In all higher-level programming languages (such as PHP), when data needs

to be temporarily stored in memory or more permanently stored on a storage device (or

cloud server), the operating system takes over. As a programmer, we ask the operating

system to store data in memory by creating variables or constants. A variable is similar to

the variables we used in algebra. In algebra, when A + B = C, A, B, and C are all variables.

We know that they can represent any number. In programming, the same variables can

also store numbers, or even characters, while, at the same time, informing the operating

system to temporarily store these items in memory.

Most program languages (including PHP) reverse the algebra equation to C = A + B.

Why? Glad you asked. While A, B, and C are variables, the equal sign in programming is

actually an assignment operator. It takes whatever is on the right side (A + B) and stores

it into whatever is on the left side (C). Thus, it takes the value (number) stored in A and

adds it to the value stored in B and places the result into the variable C. All three of these

variables reside in the memory of the computer.

Chapter 1 Getting Ready to Program

7

The result of our addition program is stored someplace in memory, and we don’t

know where. What? We really don’t care where, as long as we can use the variable C to

retrieve it anytime we need it. We trust that the operating system has our back (it does

the right thing by properly storing and protecting our information).

The operating system will either look at the values that are being stored in the

variable or look at a variable declaration statement in the program code to help

determine how to store the variable. Remember that bit patterns are used to represent all

characters (including numbers) in a computer. When information is stored in memory

or a storage device, it is stored in bit format. Thus, the operating system needs to know if

a number is being stored or a character is being stored. There is a difference between the

number 1 and the character 1. Basically, we usually don’t do mathematics on a character,

and we do on a number. Thus, the system needs to know if we might do mathematics. If

we are going to use it in a calculation, it is stored in a format that allows us to do so. We

will explore this more when we do calculations in PHP.

This also brings up another difference between us and the computer. We create

numbers using the base 10 system. We count from 0 to 9 (ten different numbers). Then

when we need to go to the next number, we add a digit to form the number 10. As you

know, eventually we’ll add a digit when we go to 100 (10 sets of 10). Computers, however,

use the binary system (base 2) to store a 0 or a 1 (two different numbers). When the

computer needs to store a number bigger than that, it adds a digit (10). You might have

noticed when you are using a computer or shop for one that everything seems to actually

be based on eighths (8, 16, 32, 64, …). Why? Actually, that occurs logically as we add

more bits.

When converting from binary 0 to base 10 zero (or from binary 1 to base ten 1) is easy

because they mean the same value (zero or one). However, a binary 10 is not the same as

a base ten 10. A base ten 10 represents 10 values (ten fingers). In the last paragraph, we

mentioned that when a binary number needs to go above 1, it needs to add a digit.

A binary 10 is one more than 1; it is the number 2 in base ten (two fingers).

Confused? Let’s look at some examples.

Chapter 1 Getting Ready to Program

8

Table 1-1.  Comparing Base Ten to Binary

Base Ten Binary (Base Two)

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

Remember, the first digit (to the right) in binary is a 0 or 1. The second digit

represents a 2. Thus, 10 is 2 (2 + 0). 11 is 3 (2 + 1). Since 11 is 3, we have to add a digit

to produce a 4 (100). Five is 101 (4 + 0 + 1). Six is 110 (4 + 2 + 0). Seven is 111 (4 + 2 + 1).

It takes some practice to get comfortable with this. Don’t get hung up on the details;

if you understand the basic idea, eventually you will have an “aha” moment as your

programming skills increase. Notice that when we reach three digits (111), we have

actually created eight values (0–7). This logically shows that bits can be collected based

on eighths. 111 111 would be two sets of 8s (8 × 2 = 16). 111 111 111 is three sets of 8s (8 ×

3 = 24). 111 111 111 111 is 32 (8 × 4). It becomes logical that we look at multiples of eight

when determining how the computer stores information. Let’s move on; we will look at

this again later.

Let’s return to our operating system discussion. The operating system also will

determine where in memory a variable is stored. The algorithm (code) the operating

system uses to determine where it stores the data is well refined and very efficient. It has

been tweaked for many years and provides the best solution for storage of information.

The operating system looks at a lot of factors (too many for us to explore in a beginner’s

book) to determine where to store the data. Some of what it considers is how frequent

it might be used, what program is using it, how big the data is, and what type of data is

being stored.

Chapter 1 Getting Ready to Program

9

We hope you are now seeing that the operating system makes our lives easier as

programmers. We don’t have to worry about details of where to store information and

even where our actual program runs in memory. The operating system will allocate

locations in memory for everything our program needs. It will also try to protect our

program from other programs trying to cause it harm and even handle problems when

our program decides to crash. Depending on what caused our program to crash, it might

even let us know, via error messages, what happened. For example, if there is not enough

memory available to run our program (or continue running our program), it will let

us know.

When a program ends (either because it is done or has crashed), the operating

system will clean up the memory the program used and make it available for the next

program that may need it. Actually, technically, it just sets a flag (bit) in the memory

locations which declares them as available. When another program or data is stored in

these locations, the old 0s and 1s are written over. It’s not necessary to empty out the

location before using it again because new code or data will be placed in that location.

Thus, overwriting it anyway.

Let’s look at one final thing that an operating system does to help our program. The

operating system is a task manager. It decides on when and how long our program can

run before it stops or gets interrupted. Let’s do a quick exercise to look at tasks running.

Exercise: Locate the task manager for your operating system. You can do a search on

your computer for “task manager,” or if you are using a Microsoft Windows machine, you

can click the ctrl (lower left of keyboard), alt (lower left of keyboard), and delete (upper

right of keyboard) keys at the same time. Then click “task manager” on the list that

appears.

Your manager should be similar to Figure 1-1. The chart presented gives us a hint

of many tasks the operating system is maintaining on our computer. It is managing

CPU, memory, disk, and network usage. This includes any applications we are using

(like Microsoft Word). Other programs, which we may or may not have directly used

ourselves, are also running in the background (such as Amazon Photos). As the tabs in

your manager or in Figure 1-1 indicate, the operating system also manages performance

and other services.

Chapter 1 Getting Ready to Program

10

Figure 1-1.  Task manager

When we start a program, as stated before, the system will determine memory usage

and memory location for the program. It will also determine when and how long the

program will run before it stops or is interrupted. The system determines the priority

of the program (system programs like the operating system itself have the highest

priority) and how much of a time slice it will allow for the program to run. The system’s

algorithms are very accurate in determining runtimes for programs. However, outside

factors can slow a program down, such as emergency system problems (might be a

memory shortage). The operating system can swap out your program when necessary

to run other programs with higher priority. But, normally, we never even notice because

everything executes extremely fast.

Note I f you have been using computers for a while, you may have experienced
using applications that never seem to work (they seem to be hung). This could be
caused by a shortage of memory (or storage), which the system is trying to resolve
by swapping programs in and out of memory to share what limited memory is
available. However, it can cause the system to spend a lot of time swapping and
allowing very little time for the application to run. It’s important that you pay
attention to the amount of memory (and storage) any application you install will
need to run efficiently. Otherwise, not only might your application not run properly,
but it could tie up your computer with constant swapping, so nothing will run
properly.

Chapter 1 Getting Ready to Program

11

We have only skimmed the surface of a very deep ocean when talking about how

computers operate. There are many books, videos, and courses you can discover which

can provide a much deeper understanding. Our goal, however, is to give us enough

knowledge on how all of this affects any program we create. Hopefully, we have built a

basic understanding of this, so let’s move on to another subject.

Why start with PHP?

A very good question indeed. There are a lot of programming languages that we

could choose. Why select PHP as our first experience? First, PHP is one of the easier

languages to learn. You can accomplish a lot with just some basic commands and

concepts. It is one of the more popular languages used because it can manage web pages

and applications. It is commonly considered one of the skills needed to become a full

stack developer.

Note A full stack developer understands both the front end of a web application
(the web page displayed to the user) and the back end (code used by the web
page existing on the web server). They have knowledge of front-end tools, such
as HTML, CSS, and JavaScript. They have experience using languages that can
support the web page on the back end (such as PHP and Java). They also may use
additional tools to manage the development cycle.

With PHP 8, the language has become much more efficient in operation and in

computations than ever before. While, as of the creation of this book, PHP is not known

as a language for developing gaming platforms or big data operations due to its previous

limitations, the efficiency of the newest versions could soon make this a reality. There are

some groups beginning development of smartphone applications using PHP. But even

if it never becomes a gaming platform, there is plenty of work for PHP to accomplish by

just hosting web pages and creating applications.

Exercise: Is PHP alive and well? Don’t believe us. Go to your favorite search engine

and ask the following question: “Who uses PHP?” or “Is PHP alive and well?” What

did you find? The answer should tell you, “Yes, PHP is alive and well” and “Lots of

organizations use PHP.” What organizations are currently using PHP? What are they

using it for? What does the future hold for PHP? You will discover that there is current

development in creating big data dashboards, smartphone applications, and gaming

applications, along with web applications. Lookout Python, PHP might be after your job!

Chapter 1 Getting Ready to Program

12

�Setting Up a Development Environment
Getting a working development environment put together might initially be intimidating,

especially for the absolute beginner. However, developers have created many types

of software packages, which can install everything we need, with default settings.

No longer do we need to go into the setup files to connect our environment together

(unless we choose to do so). The environment is automatically linked together for us.

To follow along with the projects in this book, we will need to have access to a working

development (test) environment which contains Apache (web server), PHP, and MySQL/

MariaDB (database). It’s always desirable to test locally (on a single machine, not a

server), both for speed and security. Doing this both shelters your work in progress from

the hackers on the open Internet and decreases the amount of time spent uploading files

to a web server. It allows you to completely test and secure your programs before placing

them in a live environment.

PHP is a powerful scripting language that can be run by itself. However, PHP alone

isn’t sufficient for building dynamic website applications. To use PHP for a website, we

need a web server that knows how to process PHP scripts. Apache is a free web server

that, once installed on a computer, allows developers to test PHP scripts locally; this

makes it an invaluable piece for a local development environment. Apache is the most

popular web server used in conjunction with PHP.

Additionally, web applications need to store information. PHP code can be

developed to store this information in a database, so it can be modified quickly and

easily. This is the significant difference between a PHP application and an HTML site.

Strictly HTML-only sites cannot store information. This is where a relational database

management system such as MySQL can come into play. Many of the book’s examples

store information using the MySQL/MariaDB database systems.

Note  Without going into too much detail, MySQL and MariaDB are very similar
systems. When Oracle purchased MySQL, some developers wanted to ensure
that a free version of MySQL would still exist (although Oracle does still provide
a free version as of the release of this book). MariaDB was the result of this
collaborative effort. They ensured that no coding changes would be needed when
creating programs using either database system. You will even discover some of
the software packages still use the term MySQL when they are really referring to a
MariaDB database.

Chapter 1 Getting Ready to Program

13

�What Is PHP? How Does PHP Work?
PHP is a general-purpose scripting language that was originally conceived by Rasmus

Lerdorf in 1995. Lerdorf created PHP to satisfy the need for an easy way to process data

when creating pages for the World Wide Web.

Note PHP was born out of Rasmus Lerdorf’s desire to create a script that
would keep track of how many visits his online résumé received. Due to the wild
popularity of the script he created, Lerdorf continued developing the language.
Over time, other developers joined him in creating the software. Today, PHP is one
of the most popular scripting languages.

PHP originally stood for Personal Home Page and was released as a free, open source

project. Over time, the language was reworked to meet the needs of its users. In 1997,

PHP was renamed PHP: Hypertext Preprocessor, as it is known currently. At the time we

are writing this, PHP 8.1.1 is the current stable version. Older versions of PHP are still in

use on many servers. However, they might not be as secure. PHP 8 has provided many

powerful changes to the language which has increased usability, speed, and security.

All code provided in this book works with PHP 8 (or later). Some of the code will also

work with previous versions. We suggest you install and use the most current version

available.

HTML is parsed by a browser on the user’s computer after the page downloads. The

browsers determine how to display the information provided from the code provided by

the HTML and CSS. Since, unlike HTML, PHP code is retained on a remote web server,

browsers cannot process PHP code. PHP is processed by a PHP interpreter connected

to a web server (such as Apache). The results of the execution of the PHP code (not

the actual PHP code) are included in the document (web page) before it is sent to the

user’s browser to be interpreted. Because PHP is processed on a server, it is a server-side

scripting language.

Exercise: Search for a company that uses PHP. Go to their website. View the source

code of the main page of their site. You can view the code by selecting “View Source”

within your browser. Did you find some PHP code? The answer is no. Why? Because your

browser shows the results after the PHP code has been processed by the web server. You

can see HTML, CSS, and JavaScript code, but you will not see any PHP code. Where can

you see the PHP code? If you had access, you could view it on the server itself.

Chapter 1 Getting Ready to Program

14

With PHP, you can create dynamic web pages (web pages that can change according

to conditions). For example: When you log in to your Facebook account, you can see

your content. When you log in to another Facebook account, you see different content.

We are loading the same resource (www.facebook.com) and code, but we are served

different content dynamically. This would be impossible with strictly HTML web pages

because they are static, meaning they can’t change. Every user would see exactly the

same HTML page. We will soon explore many more examples of dynamic web pages in

this book.

PHP is an interpreted language, which is another great advantage for PHP

programmers. Many programming languages require that you compile files into machine

code before they can be run, which can be a time-consuming process. Bypassing the

need to compile every time you make a code change means you’re able to edit and test

code much more quickly. However, this also can cause PHP to be slower than compiled

programs in a live environment. Compiled programs are already machine-level

programs that the server can directly run. Script programs (like PHP) have to first be

interpreted before they can run. With PHP 8, this disadvantage has been removed. PHP

8 includes a JIT (just-in-time) compiler which can be used to compile PHP code for live

sites. This removes the delay.

Note  While doing initial testing of our code, we first are concerned with removing
all syntax and logical errors. During this phase, we can test PHP using the original
interpreted mode. After errors are removed, for heavily used web applications, we
can use the JIT compiler to speed up the PHP application in the live environment.
Since this is a beginner’s book, most of our testing will be using the interpretive
mode of PHP, to save debugging time and effort.

Because PHP is a server-side language, running PHP scripts requires a server. To

develop PHP projects in a local development environment means we need to install a

server on our local machine. The examples in this book rely on the Apache web server to

deliver our web pages, since it is the most popular server used with PHP.

Chapter 1 Getting Ready to Program

http://www.facebook.com

15

�Apache and What It Does
Apache hosts just under 40% of all websites that exist as of the release of this book.

Apache is an open source server that runs on virtually all available operating systems.

Apache is a community-driven project, with many developers contributing to its

progress. Apache’s open source roots also means that the software is available free

of charge, which probably contributes heavily to Apache’s overwhelming popularity

relative to its competitors.

On the Apache HTTP Server Project website (http://httpd.apache.org), Apache

HTTP Server is described as “an effort to develop and maintain an open-source HTTP

server for modern operating systems including UNIX and Windows NT. The goal of this

project is to provide a secure, efficient, and extensible server that provides HTTP services

in sync with the current HTTP standards.” The Apache Project provides billions of free

lines of open source code for anyone to use.

As with all web servers, Apache accepts an HTTP request and serves an HTTP

response. When you enter a URL (www.apress.com) into your browser, the browser

transforms the information into an HTTP request. This information is sent to the web

server (Apache). The server determines what has been requested (access to the Apress

website). It then creates an HTTP response which includes the information requested

(the main page for Apress) and sends that information back to the browser. While the

server is creating the response, the web server sends any noncompiled PHP code to the

PHP processor to be interpreted. All the PHP code is then executed, and the results are

included in the response along with any HTML, CSS, or JavaScript. Along with displaying

the results of the PHP code, the user’s browser will interpret the HTML, CSS, and

JavaScript code to format the web page requested within the browser.

�Storing Info with MySQL/MariaDB
MySQL and MariaDB are relational database management systems (RDBMS).

Essentially, this means that they allow users to store information in a table-based

structure, using rows and columns to organize different pieces of data. There are many

other relational database management systems and nonrelational systems (such as

NoSQL databases). Since MySQL/MariaDB is one of the most popular RDBMS systems,

many examples in this book rely on them to store relational data.

Chapter 1 Getting Ready to Program

http://httpd.apache.org
http://www.apress.com

16

Now that we are familiar with the tools that we need, let’s get the ball rolling by

installing these tools.

Exercise: Before starting the installation process, visit the PHP (php.org), Apache

(apache.org), and MySQL (mysql.com) websites. What are the current stable releases

of each? When determining which software package to install, look for one that has the

most recent versions available.

�Installing PHP, Apache, and MySQL/MariaDB
One of the biggest hurdles for new programmers is starting. In the past, before you could

write your first line of PHP, you had to download Apache, PHP, and MySQL/MariaDB,

separately, then fight through installation instructions that are full of technical jargon

you might not understand yet. This experience left many developers feeling unsure of

themselves, doubting whether they’ve installed the required software correctly. Just

trying to get each tool to communicate with the other was a major hassle requiring

changing settings within the setup files that you had little knowledge or understanding

about what the files accomplished.

This hurdle kept many new programmers from learning programming for months,

even though they desperately wanted to move beyond plain ole HTML. It took many

unsuccessful attempts to install PHP before being able to run the first command

successfully.

Fortunately, the development community has responded to the frustration of

beginning developers with many software packages that take all the pain out of setting

up your development environment, whether you create applications for Windows,

Mac, or Linux machines. These options include all-in-one solutions for setting up

Apache, MySQL, and PHP. We refer to these packages as LAMP (Linux, Apache, MySQL/

MariaDB, PHP), WAMP (Windows, Apache, MySQL/MariaDB, PHP), and MAMP

(MacOS, Apache, MySQL/MariaDB, PHP) stacks.

As of the end of 2021, some of the most popular and best packages included

AMPPS: Provides LAMP, WAMP, and MAMP versions –

www.ampps.com

WAMPSERVER: Provides only a WAMP version –

www.wampserver.com

Chapter 1 Getting Ready to Program

http://www.ampps.com
http://www.wampserver.com

17

XAMPP: Provides LAMP, WAMP, and MAMP versions –

www.apachefriends.org

Neard: Provides a WAMP-only version – www.neard.io

WAMP.NET: Provides a WAMP-only version – www.wamp.net

EasyPHP: Provides only a WAMP version – www.easyphp.org

Exercise: Go to each of the preceding websites and explore what is included

in each package. Many of these packages have additional tools to assist in program

development. Compare the versions of PHP, Apache, and MySQL/MariaDB provided

with each package. Currently is one more up to date than another? Does one package

interest you more than another? In this book, we will use XAMPP. But you may find that

one of the other packages meets your needs better. You will find videos on YouTube

which will demonstrate the installation process for each package. We recommend

installing XAMPP for now, but after you gain experience, make your own decision as to

the package that is best for you.

It would be redundant to demonstrate how to install each of the most popular stacks

available. Therefore, we will show the installation process for the package we used to

create the examples in this book. The author’s personal choice for PHP code creation

and testing is XAMPP, which is one of the most common all-in-one free solutions; it has

been available for many years. XAMPP is used by thousands of programmers across

the globe to create dynamic PHP programs. XAMPP has earned an almost perfect five-

star rating from its users for ease of use and reliability. It’s a good choice for beginning

programmers.

Note M ost Linux distributions ship with one flavor or another of the LAMP stack
bundled in by default. Certain versions of Mac OS X also have PHP and Apache
installed by default.

�Installing XAMPP
Enough background. You’re now ready to install XAMPP on your development machine.

This process should take just a few minutes and, hopefully, is completely painless.

Chapter 1 Getting Ready to Program

http://www.apachefriends.org
http://www.neard.io
http://www.wamp.net
http://www.easyphp.org

18

Note N ew versions of XAMPP are released frequently. If you discover that the
current version of XAMPP has major differences than the version shown in the
following, don’t panic. You can discover the current installation process from the
videos located on the XAMPP website and from YouTube. When searching YouTube,
be sure to include the XAMPP release number, such as “Installing XAMPP 8.1.1.”
Make sure to also check the creation date of the video to make sure it was created
recently.

�Step 1: Download XAMPP

In this demonstration, we will install a Windows version of XAMPP. The process is

similar for other operating systems. If you are confused on how to install XAMPP for your

operating system, search YouTube for a related video.

Your first task is to obtain a copy of the XAMPP software. Head over to the XAMPP

site (www.apachefriends.org). Then click “Download” on the menu. Select the newest

stable version for your operating system by clicking the Download button to the right of

the version. These steps and the examples in this book are created using version 8.1.1 for

Windows.

Chapter 1 Getting Ready to Program

http://www.apachefriends.org

19

Figure 1-2.  XAMPP versions

After clicking the button, you may be asked if you want to open or save the

installation file. Select “save” as shown in Figure 1-3.

Chapter 1 Getting Ready to Program

20

Figure 1-3.  Saving installation file

After clicking the OK button, the installation program will be downloaded to

your computer. Depending on the browser you are using, you will need to access the

downloaded file. In Firefox, you can find the downloaded file by clicking the download

arrow at the upper right corner of the browser. Once you find the installation file, click

the file to begin the installation process.

�Step 2: Follow the Instructions

In the Windows environment, the operating system may ask if you want to allow this

application to make changes. Answer “yes.” You may also get a warning about an Active

User Account Control (UAC) on your system. You can choose to turn off this security

feature on your machine, or (better choice), as the warning states, install XAMPP in a

different location, other than “Program Files.”

Chapter 1 Getting Ready to Program

21

Figure 1-4.  UAC warning message

After clicking OK for the warning message, or OK on the initial window, you should

now see a screen similar to Figure 1-5.

Figure 1-5.  Initial setup screen

Chapter 1 Getting Ready to Program

22

Note A ll screenshots used in this book were taken on a computer running
Windows 10. Your installation might differ slightly, if you use a different operating
system. XAMPP for Windows offers additional options, such as the ability to
install FileZilla (an FTP server) as one of its services. This is unnecessary and will
consume computer resources, even when they are not being used, so it’s probably
best to leave these services off. Additionally, Windows users should select to install
XAMPP in the c:\xampp directory for the sake of following this book’s examples
more easily.

Click the Next button to move to the next screen (see Figure 1-6), to choose which

components to install. Let’s just go with the default selections to make life easier. This

will install some tools we will not use in this book. However, they are very useful in

program development. The XAMPP installer will guide you through the installation

process.

Figure 1-6.  Select components to install

Chapter 1 Getting Ready to Program

23

Leave the default location, as shown in the following, for the creation of the XAMPP

files. If you already have a previous version of XAMPP, you can change this location. Just

remember that the examples in this book assume the files are located at C:\xampp.

Pick your language of choice.

Figure 1-7.  Installation folder

Chapter 1 Getting Ready to Program

24

Figure 1-8.  Language of choice

Uncheck the Learn More selection, to save time and space. You can install one or

more of these tools at any time.

Chapter 1 Getting Ready to Program

25

Figure 1-9.  Learn more about Bitnami

Click next in the screen shown in Figure 1-10.

Chapter 1 Getting Ready to Program

26

Figure 1-10.  Ready to install

Finally, the installation begins!

Chapter 1 Getting Ready to Program

27

Figure 1-11.  The installation begins

The installation is complete! Click finish.

Chapter 1 Getting Ready to Program

28

Figure 1-12.  Installation complete

�Step 3: Test XAMPP to Ensure Proper Installation

So far, we’ve used the XAMPP wizard to install Apache, PHP, and MySQL. The next step

is to activate Apache, so we can write some PHP.

�Open the XAMPP Control Panel
In Figure 1-12, we left the start control panel button checked. This will automatically

show us the control panel (Figure 1-13). Whenever you need the panel, you can locate it

in your start menu for your operating system. If you need to access it after it has started,

click the XAMPP icon located in your system tray (the menu line at the bottom of your

operating system window). This icon will only appear after the panel has initially been

started.

Chapter 1 Getting Ready to Program

29

Figure 1-13.  Control panel

Note T he author has stored the files in the folder xampp8.1.1 because other
versions exist on the demo machine. Your message should indicate the files are
stored in the folder xampp.

Activating Apache, PHP, and MySQL on your development machine is as simple as

clicking the Start buttons next to Apache and MySQL in the XAMPP manager. You might

be prompted to confirm that the server is allowed to run on your computer, and you

might be required to enter your system password. After you do this, the Status should

indicate that Apache is running, as shown in Figure 1-14.

Chapter 1 Getting Ready to Program

30

Figure 1-14.  Apache and MySQL running successfully

Note T here is an FTP FileZilla (file transfer protocol) option available in
XAMPP. FTP provides a method for moving files between networks. The examples
in this book don’t require this option, so there is no need to activate it in the
XAMPP control panel. Mercury and Tomcat also do not need to be activated. The
first few chapters don’t even require a MySQL database.

�What If Apache Isn’t Running?
Sometimes, XAMPP Apache Server doesn’t run, even if you try to start it. The most

common problem is that it conflicts with some other service using the same port on your

computer. Check if you have Skype or Messenger or some similar networking service

running. Shut them completely down, and if you’re lucky, your Apache can run. If you

Chapter 1 Getting Ready to Program

31

are brave, you can also click the config button in the control panel to change the port in

which Apache (or MySQL) is running.

If it still doesn’t run, you could turn to the Internet for help. The XAMPP online

community is extremely helpful, and most installation issues have been addressed in the

Apache Friends forum at https://community.apachefriends.org/f/. You could also

check http://stackoverflow.com/. Remember the Internet is your friend; someone

has run into the same problem. If you receive an error message, copy and paste it into

the browser. You will discover suggested solutions to your problem. Don’t ever pay for a

solution. There are free sites and blogs that will provide the answers you are seeking.

�Verify That Apache and PHP Are Running
It’s a simple matter to check whether Apache is running properly on your development

machine. Simply open a browser and go to the following address: http://localhost. If

everything has gone correctly, you should see a screen similar to Figure 1-15.

Figure 1-15.  Apache works!

If this screen loads, you’ve installed Apache and PHP on your development machine

successfully! We have not checked the status of MySQL/MariaDB; we will check that

status when we create programs using databases. The address http://localhost is an

alias for the current computer you’re working on. When using XAMPP, navigating to

Chapter 1 Getting Ready to Program

https://community.apachefriends.org/f/
http://stackoverflow.com/

32

http://localhost in a browser tells the server to open the root web directory. This is the

htdocs folder contained in the XAMPP install directory. Another way to use your server

to access the root web directory on your local machine is to navigate to the IP address

(a numerical identifier assigned to any device connected to a computer network) that

serves as the “home” address for all HTTP servers: http://127.0.0.1.

�Choosing a PHP Editor
Your development machine is now running all the necessary programs for executing

PHP. The next step is to decide how you’re going to write your scripts. PHP scripts are

text based, so you have a myriad of options, ranging from the simple Notepad.exe and

text-edit programs to highly specialized integrated development environments (IDEs).

You can probably write PHP code using whichever program you have used for

writing HTML and CSS. There are some features you should expect from a good editor:

•	 Syntax highlighting: This is the ability to recognize certain words

in a programming language, such as variables, control structures,

and various other special texts. This special text is highlighted or

otherwise differentiated to make scanning your code much easier.

•	 Built-in function references: When you enter the name of a function or

an object method, this feature displays available parameters, as well

as the file that declares the function, a short description of what the

function does, and a more in-depth breakdown of parameters and

return values. This feature proves invaluable when dealing with large

libraries, and it can save you trips to the PHP website to check the

order of parameters or acceptable arguments for a function.

•	 Auto-complete features: This feature adds available PHP keywords to

a drop-down list, allowing you to select the intended keyword from

the list quickly and easily, saving you the effort of remembering and

typing it out every time. When it comes to productivity, every second

counts, and this feature is a great way to save time.

•	 Code folding: This feature lets you collapse snippets of code, making

your workspace clutter-free and your code easy to navigate.

Chapter 1 Getting Ready to Program

33

•	 Auto-indent: This automatically indents the code you write in a

consistent manner. Such indented code is vastly easier to read for

human readers, because indentation indicates relationships between

code blocks.

•	 Built-in FTP: You need FTP to upload your PHP files to an online web

server when you want to publish your project on the World Wide

Web. You can use a stand-alone FTP program, but if it is built into

your IDE, you can upload an entire project with a single click.

There are many good IDEs and editors to choose from. Beginners may find it easier

to start with a simpler editor. The examples in this book were created with Notepad++

(notepadplusplus.com) to keep development simple. However, feel free to explore other

options. The following list includes download links for four of the most popular free IDEs

for PHP:

•	 NetBeans – https://netbeans.org/

•	 Aptana – www.aptana.com/

•	 Eclipse – www.eclipse.org/

•	 Visual Studio – https://visualstudio.microsoft.com/

There are also many PHP IDEs for purchase, some of which provide a 30-day free

trial. We have chosen to promote those that don’t charge us to use them.

Exercise: Explore your different options for editing PHP programs. Choose an editor

or IDE that you feel most comfortable using. For assistance in installing your selection,

go to YouTube and search for a video demonstrating the installation. Don’t forget to

include the version number in your search. In the next section, we will create our first

program. Thus, we need an editor to do so.

As stated, previously, we will use Notepad++ for the examples in this book. You

should have no difficulties following the examples with any other editor. If you decide to

use an IDE, you will have to consult online documentation to learn how to set up a new

project in your chosen IDE.

Chapter 1 Getting Ready to Program

https://netbeans.org/
http://www.aptana.com/
http://www.eclipse.org/
https://visualstudio.microsoft.com/

34

�Creating Your First PHP Program
With everything set up and running as it should, it is time to take the plunge and write

our first PHP script.

As a server-side scripting language, PHP requires a web server such as Apache to

run. You have just installed Apache on your local computer, so your system is ready.

Apache will interpret any PHP files saved inside a folder called htdocs. You can find it

inside your XAMPP installation in XAMPP/xamppfiles/htdocs.

You’ll be making many PHP files soon, so it is a good idea to keep them organized.

Create a new folder inside htdocs and call it ch1.

Note T o fully grasp and understand PHP programming, it is imperative that you
attempt to program all examples provided in the book. While the completed code
can be downloaded, you will only learn and remember by doing. It is worth the time
and effort to create your own programs. As with all programming books, publishing
errors might occur. If you are sure that you have created code as shown in the
book and still are receiving errors, check the code files provided for the chapter.
Each code file has been tested for accuracy and completeness.

Now open your editor or IDE of choice. Determine how to create a “new” file within

your editor, so you can begin coding. Then enter the following program exactly as

shown. If you have problems with this code, verify your code with the example provided

in the code files (test.php) for Chapter 1, which can be downloaded using the directions

provided in the preamble of this book.

Listing 1-1.  test.php

<?php

echo "Hello from PHP";

?>

Chapter 1 Getting Ready to Program

https://doi.org/10.1007/978-1-4842-8205-2_1

35

Make sure to save the file as test.php in the ch1 folder that you created under htdocs.

Your editor may require you to either “save as” “all files” or “save as” “php.” It is very

important that you make sure the file ending is .php, not .txt or some other ending.

PHP files will only execute if they have a .php file ending. This is a simple process that

can be a “got ya” moment, if not saved properly.

�Running Your First PHP Script
The next step is to get Apache to process your PHP script. That happens automatically,

if you request the script through a browser. So, open a web browser and navigate to

http://localhost/ch1/test.php and marvel at the PHP-generated output you should

see in your browser (Figure 1-17). You have successfully created and executed your first

PHP script!

Figure 1-16.  Saving test.php in Notepad++

Chapter 1 Getting Ready to Program

36

Figure 1-17.  Seeing the output from test.php

If you accidently save your file with a .txt ending, your code will not execute

(Figure 1-18), and you will see a listing of your code. This will also occur if your code is

not saved under the htdocs folder or Apache is not running. If this occurs, correct either

the file ending, the location of your file, or turn on Apache, and attempt to run it again.

Once you’re successful, pat yourself on the back. You did it! You created your first PHP

program (and made it to the end of the chapter).

Figure 1-18.  Saving test and running it with an improper file ending

�Summary
In this chapter, we learned about operating systems and their interactions with

programs. We discovered how operating systems make our lives easier as program

developers. We learned a little bit about PHP, MySQL, and Apache. We found out what

they are and what role they play in the development of dynamic websites. We completed

a quick and easy installation of a fully functional development environment on our local

computer to create a safe and secure place to test programs.

Chapter 1 Getting Ready to Program

37

In the next chapter, we’ll learn a small but potent subset of PHP, including variables,

objects, and some native language constructs and statements. Nearly everything you

learn will be tested in your new development environment, so keep XAMPP’s Apache

Server open and running.

�Projects

	 1.	 Create a simple PHP program which displays your name,

address, and paragraph of information about you using the echo

instruction shown in this chapter.

	 2.	 Create a PHP program which displays HTML code within the echo

instruction. How could this be useful for dynamic websites?

Chapter 1 Getting Ready to Program

39

CHAPTER 2

Understanding PHP:
Language Basics

�Objectives
After completing this chapter, you will be able to

•	 Embed PHP in web pages

•	 Add comments in code

•	 Create and use variables

•	 Decipher PHP errors

•	 Create an HTML5 template

•	 Create and use basic objects

•	 Concatenate strings

•	 Access URL variables with $_GET

•	 Declare a class

•	 Embed CSS

In the first chapter, we developed our very first PHP program. While it was basic, we

were able to test the development environment and even display some information. As

we stated, PHP is a powerful tool for creating dynamic web applications. With this in

mind, we will, over the next several chapters, develop the skills to create a basic blog. The

tools used to develop a blog can also be used to create other dynamic sites. One goal of

this book is to “learn by doing.” Thus, we will use our examples and projects to build our

knowledge.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_2

https://doi.org/10.1007/978-1-4842-8205-2_2#DOI

40

As a stepping stone to blog development, we first need to determine how to create

a basic dynamic website. In this chapter, we will create a simple personal website with

dynamic web pages. Along the way, we will learn how to create, store, manipulate, and

display data using PHP.

Note  This chapter discusses basic aspects of the PHP language, but not in
complete detail. Our goal is to develop skills which can help you be productive as
quickly as possible. For clarification, more examples, or for concept reinforcement,
you should visit the PHP manual at www.php.net and search for additional
information. Alternatively, you can search YouTube for demonstration videos.
Always check the PHP version discussed (PHP 8), as some PHP coding has
changed over time. Don’t forget to read the comments, because many of your
fellow programmers offer insight, tips, and even additional functions in their
commentary.

�Embedding PHP Scripts
In Chapter 1, we mentioned that web servers look for PHP only in files that end with

the .php extension. But a .php file can contain elements that aren’t part of our PHP

script, and searching the entire file for potential scripts can be confusing and resource

intensive. To solve this issue, all PHP scripts are provided between PHP delimiters. To

begin a PHP script, we start with the opening delimiter <?php. To complete a PHP script,

we add the closing delimiter ?>. Anything outside of these delimiters will be treated as

HTML, CSS, JavaScript, or plain text by the web server.

Let’s look at some examples. First, we want to continue to keep our programs

organized, so let’s create a new folder, ch2, in /xampp/htdocs/. Using our favorite editor,

we will create a new file, test.php. Let’s enter the following code within the file.

Chapter 2 Understanding PHP: Language Basics

http://www.php.net
https://doi.org/10.1007/978-1-4842-8205-2_1

41

Listing 2-1.  test.php

<p>Static Text</p>

<?php

 echo "<p>This text was generated by PHP!</p>";

?>

<p>This text was not.</p>

Save the file and then test it by navigating to http://localhost/ch2/test.php in a

browser.

Hint  Most PHP code lines require a semicolon at the end to indicate where the
line ends. Did you remember to include it at the end of the echo statement?

If we did not make any typing mistakes, our output should be similar to the

following.

Even in this simple program, we can discover several aspects. First, the display

included both the results of the browser parsing the HTML code and the results of the

PHP code being interpreted. The results from the PHP code were even displayed in the

same location (between the HTML results) as existed in the code itself. The code inside

the PHP delimiters was handled as a PHP script, but the code outside was rendered as

regular HTML. The PHP interpreter executed the PHP code, while the browser executed

the remaining code.

Figure 2-1.  test.php output

Chapter 2 Understanding PHP: Language Basics

42

�Program Design and Logic
There is no limit to how many blocks of PHP you can include in a web page. However,

do not go overboard. All programmers should create clear organized code that is as easy

as possible to maintain. As a programmer, you will constantly modify code. Make your

experience easier by keeping the code clean and logical.

The following snippet is completely valid, but is it clean and logical?

Listing 2-2.  test2.php

<?php

echo "<p>This is some text.</p>";

?>

<p>Some of this text is static, <?php echo "but this sure isn't!"; ?></p>

<?php echo "<p>"; ?>

This text is enclosed in paragraph tags that were generated by PHP.

<?php echo "</p>"; ?>

The preceding code snippet outputs the following to the browser.

�Program Design and Logic
When we write a PHP script that holds nothing but PHP, we don’t have to end it with the

PHP delimiter. However, should we? We can open the refrigerator door to get a snack

without closing it. Mom will eventually come around and close it. But is that right? It only

makes more logical sense that if we opened it, we should close it. For consistency and

ease of debugging, a programmer should always use closing delimiters for each opening

delimiter. It also makes debugging code easier as you trace down missing required

delimiters.

Figure 2-2.  test2.php output

Chapter 2 Understanding PHP: Language Basics

43

�Using echo
Let’s take an extra look at the use of echo in the preceding code examples. PHP’s echo is a

language construct (a basic syntactic unit of PHP code). Without much discussion, we have

discovered that this statement will display a string of text that is placed between double

quotes. The echo statement is probably the most common approach for outputting text from

PHP to the browser. However, there are other constructs we can use to display information.

Exercise: Go to the php.net website and search for information on the print

command. What is the difference in how echo and print are used?

Notice that echo outputs strings that are delimited with double quotes. The initial

double quote indicates the beginning of a string of characters. The second double quote

marks the end of the string to output. In PHP, we must delimit (use quotes) for any

strings in our code. The string delimiters tell PHP when a string of characters begin and

end, something PHP needs to know in order to process your code.

Note  String is a geeky word for “text.” Because computers are not human, they
don’t really see texts, much less words. They see strings of characters, which to a
computer is a lot of 1s and 0s.

�What Is a Variable?
In Chapter 1, we introduced the concept of variables. We discovered that a variable acts

as an identifier for a value stored in a system’s memory. This is useful, because it allows

us to write programs that will perform a set of actions on a variable value, without being

concerned about how and where the variable is stored in memory. The program can

change output simply by changing what is stored in the variable, rather than changing

the program code itself. Variables help us begin to create dynamic coding!

Chapter 2 Understanding PHP: Language Basics

http://php.net
https://doi.org/10.1007/978-1-4842-8205-2_1

44

�Storing Values in a Variable

It is quite straightforward to store a value in a variable. In PHP, with one single line of

code, we can declare a new variable and assign a value to it.

Listing 2-3.  test3.php

<?php

$myName = "Thomas";

$friendsName = "Brennan";

echo "<p>I am $myName and I have a friend called $friendsName.</p>";

?>

The result of executing the code in Listing 2-3 within a browser is shown in

Figure 2-3.

Figure 2-3.  test3.php output

As mentioned in Chapter 1, the equal sign is an assignment operator. It tells the

interpreter to take whatever is on the right-hand side, a string in these examples, and

place it into the variable on the left-hand side. In many languages, we also need to tell

the system what type of information will be stored, such as a string, number, or single

character. PHP allows us to optionally declare data types.

The operating system needs the data type to determine what set of bits to use

to represent the data in memory. If a data type is not declared, PHP will look at the

information first stored in the variable, strings in this example, to inform the operating

system of the type of data being stored.

�A Variable Is a Placeholder

Variables are used extensively in programming. They provide programs the flexibility

to temporarily store data while the program is running and to change the data used

whenever necessary. Let’s look at more details from the previous listing.

Chapter 2 Understanding PHP: Language Basics

https://doi.org/10.1007/978-1-4842-8205-2_1

45

echo "<p>I am $myName and I have a friend called $friendsName.</p>";

When the program was executed, the variable $friendsName displayed Brennan and

the variable $myName displayed Thomas. The information displayed replaced each

corresponding PHP variable in the original string.

Did you notice that we had some HTML code within the string? Remember that

the results of the execution of PHP code are sent to the browser. The completed string,

including the <p> tags, is sent to the browser to be interpreted. If we view the source

code within the browser, we will see that the <p> tags exist and have been interpreted.

We can pass any HTML, CSS, or even JavaScript code to the browser to be interpreted by

including it in an echo string. We will soon see great benefits to using this technique.

In some other programming languages, a variable cannot be contained within a

string. The string has to be broken apart, as shown in the following line.

echo "<p>I am $myName and I have a friend called " . $friendsName" .

".</p>";

The period is a string concatenator character, which allows us to connect multiple

strings together. We can replace our previous code line with this example, and it will

produce the same result. However, hopefully, you can see that it becomes much more

of a problem to keep up with all the periods and quotes. Debugging becomes more

difficult. Thank you, PHP developers, for making our job easier!

�Valid PHP Variable Names

In PHP, all variables must begin with a dollar sign character ($). Variable names are case

sensitive. Variables can also contain underscores (_). Usually, when we create a variable,

we start with an alphabetic character. However, some special variables begin with

underscores.

�Program Design and Logic
When creating variable names, be consistent. Each programmer has their own style in

designing names; the key is to use the same style throughout your program. You may

prefer camel hump ($myName), underscores ($my_name), a combination ($my_Name),

or a different technique. All are acceptable. Some programmers will also include the

type of data stored within the name ($stringMyName) to allow easier debugging. For

Chapter 2 Understanding PHP: Language Basics

46

readability, we suggest using names that are meaningful. As you note in our simple

examples, so far, we did not name our variables $name1 or $name2. We provided some

meaning to the variable by using $myName and $friendsName. This allows anyone

reviewing our code some understanding of what type of data will be stored. Remember,

when creating larger programs, this will be important in helping to determine which

variable relates to what areas of a program.

Note  You can actually use numbers in variable names but not in initial positions.
So, $1a is an invalid variable name, whereas $a1 is perfectly valid.

�Displaying PHP Errors
On your journey toward learning PHP, you will produce code errors. It is easy to think

that you have done something bad when you have written some erroneous PHP. In a

sense, it is, of course, bad. You would probably prefer to write perfect PHP from the very

start, but even experts sometimes make coding mistakes.

In another sense, errors are a very good thing. Many such errors present a learning

opportunity. If you understand the cause of an error, you are less likely to repeat it, and

even if you do repeat it, you can easily correct the error if you recognize it.

PHP error messages are not always displayed; it depends on your environment. Why

are errors not always displayed? The simple answer is in a live environment, we don’t

want to display errors to our users. This shows both poor programming on our part and

might even cause a security breach.

�Secure Programming
Error messages can sometimes display some of our code in an attempt to help us

determine how to fix a syntax problem. For example, the error might show the locations

or even userids and passwords to access our databases. A user is more likely to come

back to our site if a “temporarily unavailable” message is displayed instead of an error

indicating the system crashed.

Chapter 2 Understanding PHP: Language Basics

47

Note  By default, the setup file for PHP sets the display of all errors to on. In a live
environment, we would need to turn this parameter off by modifying its setting in
the php.ini configuration file.

If you are creating programs in an environment in which you do not have access

to the php.ini file, the display of errors might be turned off. In this situation, you can

include the following two lines of PHP at the beginning of your scripts to display all error

messages.

error_reporting(E_ALL);

ini_set("display_errors", 1);

All example programs shown in this book will not include these statements, as we

are assuming you are creating code in a test environment in which all errors can be

displayed.

Hint  Learn the location of the log files created in your LAMP, WAMP, or MAMP
stack. On occasion, some errors that are not directly related to your program code
may be listed in these files. If your program does not execute and seems to also
not produce an error, the actual error might be in a log file.

Let’s produce an error.

Listing 2-4.  test4.php

<?php

//here comes the error

echo "This string never ends;

?>

Do you see the error? PHP might not display the error, but there is a problem. There

is only one string delimiter (double quote). To write valid PHP, we must wrap our strings

in string delimiters. In the preceding example, since the end delimiter is missing, PHP

cannot see where the output ends. If we run the code, we might see the following error

message in our browser.

Chapter 2 Understanding PHP: Language Basics

48

Figure 2-4.  test4.php error

Error messages are friendly but not always as precise as you might prefer. When PHP

is unable to process code, an error is triggered. The previous message clearly does not

point out that a double quote is missing in the code. PHP will make an educated guess

about what the problem might be. In the example, PHP has encountered an “unexpected

end of file” on line 6. But wait, the error was on line 4, not line 6! Why did it miss the

correct line? Remember that the starting delimiter indicates the start of a string; the

interpreter will assume everything after the double quote is a string until it finds another

one. However, it never finds another double quote. It is assuming that the rest of the

code, including ?>, is part of the string. Thus, it complains about the program ending too

soon before the string was complete.

Hint  When working with error messages, if you do not see an error in the line
indicated by the message, check one or more lines above the line indicated. You
probably forgot to include a double quote or a semicolon.

Exercise: Return to the example programs we have covered previously in this

chapter. Adjust the programs to remove or change code to cause errors. Run the

programs to discover what error messages will display. You might want to even keep a

list of error messages and possible problems in a text file, for reference, while you are

learning PHP. Being familiar with the most common errors and possible solutions will

greatly increase your time used to debug programs.

If you encounter an error message you don’t understand, search the Internet for an

explanation. A site such as www.stackoverflow.com is very likely to have an explanation

for your particular error message. Someone in this world has had the same error as your

program produced. There are many free sites and blogs that will help you determine a

solution.

Chapter 2 Understanding PHP: Language Basics

http://www.stackoverflow.com

49

�Creating an HTML5 Page with PHP
PHP is a wonderful language for creating dynamic HTML pages. With a tiny bit of PHP,

we can create a valid HTML5 page with variable content in memory and have PHP

output the created page to the browser.

�HTML Review
HTML requires a few tags to be properly formatted. Additional tags are available in html5

to organize the information in a more logical design.

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8'/>

</head>

<body>

<p> The page body </p>

</body>

</html>

All HTML must exist between the opening (<html>) and closing (</html>) tags. After

the opening tag, a head section (<head></head>) should be included to provide the title

of the page (<title></title>) and other page information. The actual HTML tags used to

display contents of a web page are placed between the body tags (<body></body>). The

<p></p> tags will display the string in paragraph form.

For additional details on these HTML tags, visit one of the free online tutorial sites,

such as w3schools.com.

We will use this basic HTML structure to create a bare-bones skeleton for a personal

portfolio site. Let’s create index.php with the code shown in Listing 2-5.

Listing 2-5.  index.php

<?php

$title = "Test title";

$content = "<h1>Hello World</h1>";

Chapter 2 Understanding PHP: Language Basics

http://w3schools.com

50

$page = "

<!DOCTYPE html>

<html>

<head>

<title>$title</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8'/>

</head>

<body>

$content

</body>

</html>";

echo $page;

?>

This index.php program includes three variables: $title, $content, and $page. The

first two set information within the HTML provided in $page. The only actual instruction

that sends information to the browser is the final echo statement. This statement sends

all the HTML tags within $page to be interpreted, producing the output shown in

Figure 2-5a.

Figure 2-5a.  index.php output

Chapter 2 Understanding PHP: Language Basics

51

Figure 2-5b.  index.php source code

When we view the source code produced in the browser (Figure 2-5b), we discover

a well-formed HTML5 page with a title and a heading. It’s a good habit to inspect

the source code of your PHP-generated HTML pages. Any HTML errors are usually

highlighted by the browser in the source view.

�Including a Simple Page Template
Creating a valid HTML5 page with PHP is a very, very common task. Let’s try to create

the same output in a way that’s easier to reuse in other projects. If you can reuse your

code in other projects, you can develop solutions faster and more efficiently. We will

keep the HTML5 page template in a separate file.

We will create a new folder called templates in our existing PHP project. The PHP

file page.php will be placed in the templates folder, containing the code shown in

Listing 2-6.

Listing 2-6.  page.php

<?php

$page=

 "<!DOCTYPE html>

<html>

<head>

<title>$title</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8'/>

Chapter 2 Understanding PHP: Language Basics

52

</head>

<body>

$content

</body>

</html>";

?>

The page.php file contains only the $page variable seen in Listing 2-6. The other two

variables and the echo statement will exist in the newindex.php file.

�Including the Template
Our template is our first entry into our library. A library is a set of existing code that can

be reused in other programs. To use the template in the newindex.php file, we will need

to pull it into the program. PHP provides four instructions that can access information

from a library.

include: This instruction attempts to insert the code from a library

file from within the calling program. If the library file does not

exist, the command will not raise an error. If an attempt to insert

the same library file occurs more than once in the program, the

instruction will not raise an error.

include_once: This instruction will attempt to insert the library

file code. If the library file does not exist, it will not raise an error.

However, if the same program attempts to insert the same library

file more than once, it will not include it again.

require: When an attempt is made to include a nonexisting library

file, this instruction will raise an error. However, if more than one

attempt is made in the same program to include the same library

file, it will not raise an error.

require_once: Attempting to use a nonexisting library file or

attempting to use an existing library file more than once in the

same program, it will not include it again.

Chapter 2 Understanding PHP: Language Basics

53

Our program will not work properly if the page.php file does not exist. Logically, we

will use either the require or require_once instruction because the contents are required.

Since our program is short, we don’t need to be concerned about an attempt to use the

page.php file more than once. It would be harmless, anyway, because the library file

would just reset the $page variable to the same contents we are already using. We can

safely use the require command.

�Secure Programming
As we are learning the basics of PHP, we should always attempt to create secure

programs. The programmer should take the time to select the most secure option

when including library files. There is always a chance that the file might be missing.

Will a missing library file make the program inoperable? If so, use one of the require

instructions. Otherwise, use one of the include instructions. If including the library file

more than once in a program will cause potential harm to the outcome of the program,

use one of the commands with the once option. Currently, with our programming skills,

any error raised will be displayed in the browser. This example would not be considered

safe for a live site. We will learn how to handle errors in a more professional manner in a

later chapter.

Why not just use require_once or require for every attempt to pull in a library file?

The answer is efficiency. Using require_once causes multiple checking for an existing

file and for the use of the file used more than once. If this is not required, we are adding

unnecessary commands into our program. Always keep an eye out for efficiency, as we

want to develop programs that execute correctly as quickly as possible.

Listing 2-7.  newindex.php

<?php

//complete code for index.php

$title = "Test title";

$content = "<h1>Hello World</h1>";

//indicate the relative path to the file to include

require "templates/page.php";

echo $page;

?>

Chapter 2 Understanding PHP: Language Basics

54

The newindex.php file is now a very short program. The program now sets the $title

and $content variables, pulls in the code from the page.php file, and echoes out its

contents. The output of the preceding code will be identical to that from the previous

program. There are no functional changes, but there are some aesthetic changes in code

architecture. A reusable page template is now kept in a separate file. We’re really splitting

different parts of the code into different files. The result is that more of the code becomes

readily reusable in other projects. This process of separating different parts is also known

as separation of concerns.

�Commenting Your Code
You should always place comments (nonexecutable text) in your programs. Such

comments should remind you what the code does and why. In the real world, you will

be creating hundreds of programs. If changes need to be made to an existing program,

comments can help the programmer quickly determine the logical design. Even if you

created the program years ago, you would appreciate the reminder of how the program

is designed. Many companies also require comments which include a description of

what the program will accomplish, a list of the inputs and outputs, the creator, and

information on any changes to the program since its first release.

Note  We are using a limited number of comments in this book to reduce
the number of printed pages. This is not to be construed as an indication that
comments are not important. They are very important!

�Block and Single-Line Comments

In PHP, we must clearly delimit comments, so PHP will not try to interpret comments as

if they were actual production code. Let’s look at two ways of writing code comments in

PHP: block and single-line comments.

<?php

//this is a single-line comment

/*

This is a comment block

It may span across

Chapter 2 Understanding PHP: Language Basics

55

several lines

*/

?>

Single-line comments begin with //. The comments exist in just one line. Of course,

we can include additional // to add several lines of comments. However, the block

format allows you to use an opening delimiter, /*, and a closing delimiter, */. With

the block format, several lines of comments can be included without repeating // on

each line.

�Avoiding Naming Conflicts
Programs can contain hundreds of lines of code. These programs will use many

variables, and each one must be named uniquely and meaningfully. It is easy to make

the mistake of accidentally reusing a variable in PHP. Since variables are created and

updated using similar instructions, a program could replace data existing within a

variable by mistake. We need to avoid potential name conflicts, so this does not occur.

Note I n languages that declare variables before they can be used, an error would
be raised if there is another attempt to declare the variable. PHP does not require
variables to be declared and does not raise an error if the variable is reused by
accident. However, efficient programs can reuse variables, by design, rather than
using unnecessary memory to create additional variables.

<?php

$title = "Welcome to my blog";

/*

hundreds lines of code later

*/

$title = "Web developer";

Do you see a problem with the preceding code? Initially, a variable named $title is

used to indicate the value of an HTML page’s <title> element. Much later in the same

program, a variable also named $title is used to store a job title. This can especially

occur when importing library files into an existing program. The library file might

Chapter 2 Understanding PHP: Language Basics

56

contain variable names that are the same as used in the calling program. The namespace

instruction can be used to separate portions of a program to avoid a potential conflict.

This is especially useful for programs using many libraries.

Exercise: Go to the php.net website and search for information on namespaces. You

can also view videos on YouTube covering PHP namespaces. How can we adjust the

example programs shown to use namespaces instead of an object?

We can also avoid a naming conflict by creating an object. In object-oriented

programming, an object can include multiple variables (properties) and functions

(methods – blocks of code). For example, an object can contain information about where

we live and the ability to generate directions to drive to the location. A class, which

declares the contents of the object, is similar to a blueprint for a house. The blueprint

provides many details about the house, but it is not an actual house. The actual house

must be built following the blueprints. Then the house exists. For an object to exist in

programming, it must be declared (using a class) and then an instance must be created

(using the new keyword). The instance of a class is the object. The object exists within

memory (with its own variables and blocks of code) for the calling program to use. When

the object is no longer needed, it can be released within the program itself. All existing

objects will automatically be released when a program ends.

<?php

$pageData = new StdClass();

$pageData->title = "Welcome to my blog";

/*

hundreds lines of code later

*/

$jobData = new StdClass();

$jobData->title = "Web developer";

?>

Without digging too deep into object-oriented programming, after all this is only

Chapter 2, we can easily create an object to hold multiple values. We will use PHP’s

native StdClass class to do so. In the preceding code example, we see two different

objects, each with a title property. The new keyword is used to create the objects

from the existing class. In this example, $pageData and $jobData are created from the

Chapter 2 Understanding PHP: Language Basics

http://php.net
https://doi.org/10.1007/978-1-4842-8205-2_2

57

StdClass. Each object then creates a title variable (property) within itself. $pageData-

>title creates its own separate title property. Later in this program, the instruction

$jobData->title creates a different title property for $jobData.

The object provides a context, and that will make it easier for us to use the right title

in the right place in our code. We can use objects to organize our code into meaningful

units that belong together. We could say that an object and its properties are much like a

folder and the files inside.

Note  For developing a quick list of variables (properties) which are associated
with a specific name (object), stdClass is useful. However, it is not as efficient as
arrays, because it creates unnecessary object code for this type of task. It also
does not allow the creation of set and get routines which can increase the objects
data security and reliability. Later in the chapter, we will create our own class
and object which will allow us more control over the data, its accessibility, and
its reliability. Using objects in your code is a de facto standard for dealing with
complexity in systems, without introducing unnecessary complexity in your code.
We will learn much more about programming with objects throughout the book.

�The Object Operator

To get values from an object property, we must specify two things: which object and

which of its properties to get. To that end, we can use PHP’s object operator. The general

syntax is as follows:

$objectName->propertyName;

PHP’s object operator looks like an arrow. It indicates that you are using a particular

property (indicated on the right side) from inside a specific object (indicated on the left

side). We can alternatively use dot notation. As stated before, be consistent, pick a style

that you are comfortable using, and use the same style throughout your program.

Exercise: Go to php.net and research the use of dot notation in PHP. Adjust our

previous coding example to use dot notation instead of the object operator. Which style

do you prefer? Why?

Chapter 2 Understanding PHP: Language Basics

http://php.net

58

�Using a StdClass Object for Page Data

Let’s refactor newindex.php and the page template with an object to prevent annoying

naming conflicts. Here is the newerindex.php file.

Listing 2-8.  newerindex.php

<?php

//complete code for index.php

$pageData = new stdClass();

$pageData->title = "New, object-oriented test title";

$pageData->content = "<h1>Hello from an object</h1>";

require "templates/newerpage.php";

echo $page;

?>

We will also need to update page.php, so it uses the newly created object and its

properties in the right places. We will now call it newerpage.php.

Listing 2-9.  newerpage.php

<?php

$page = "<!DOCTYPE html>

<html>

<head>

<title>$pageData->title</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8' />

</head>

<body>

$pageData->content

</body>

</html>";

?>

Load newerindex.php in your browser. You should expect to see the changed values

in the <title> and <body> elements. However, all other display and source code is

unchanged.

Chapter 2 Understanding PHP: Language Basics

59

�Page Views
A personal portfolio site is likely to have a few different pages. Perhaps one page about

skills and educational background, and another page with links to examples of work.

Because we are making a dynamic website, we will use our template to display pages

for the portfolio. We actually are not creating multiple pages; we are creating multiple

page views. A page view is something that looks like an individual page. One page view

may be composed of several smaller views. We could think of a page view as a Lego

house and a view as a Lego brick: the smaller parts are combined to build something

bigger. Where did I put that Lego pirate ship anyway?

Remember, one key to successful programming is to stay organized. With that in

mind, we will keep all views in one folder. Let’s create a new folder called views inside

the existing project folder. We will also create a new file, skills.php, saved in the views

folder, with the contents shown in Listing 2-10.

Listing 2-10.  skills.php

<?php

$info= "<h1>Skills and educational background</h1>

<p>Read all about my skills and my formal training</p>

";

?>

We only need to include any information we want displayed in the file. The template

will do all the other work. The complete file is a quite small view at this point. It is often

a good idea to begin small when you are developing code. Any error that might creep

in will be easier to spot in fewer lines of code. Let’s also create another small view (file)

containing project information.

Listing 2-11.  projects.php

<?php

$info= "<h1>Projects I have worked on</h1>

Ahem, this will soon be updated

";

?>

Chapter 2 Understanding PHP: Language Basics

60

�HTML Review
In Listing 2-10, the HTML tag <h1> is introduced. This tag, along with other similar tags,

displays header text for logically dividing information in a web page. Figure 2-6 provides

a display of some of the most popular header tag sizes.

Figure 2-6.  headers.php output

In Listing 2-11, the tag creates an unordered list (not numbered). The tag is

used to create the individual list items. Listing 2-12 provides an additional example of an

unordered list.

Listing 2-12.  unorderedlist.php

<html>

<head>

<title>An unordered list</title>

</head>

<body>

Food I like To Eat

Pizza

Snails

Lizards

</body>

</html>

Chapter 2 Understanding PHP: Language Basics

61

The results of executing this HTML will produce the display shown in Figure 2-7.

Figure 2-7.  unorderedlist.php output

There are many additional options for both the header tags and lists. For more

information, visit a free tutorial website, such as w3schools.com.

�Making a Dynamic Site Navigation
We must display the correct view at the right time. We can make a global, persistent site

navigation, i.e., a navigation that will be the same on every page of the website, with

just a few lines of code. Because PHP can include files, we can store the code for the

navigation in one file and include it in every script that needs it. An advantage to saving

it as a separate file is the ability to change the navigation in that one file, and the change

automatically be reflected on every site page, however many pages exist. Let’s create our

new file, navigation.php, in the views folder, with the code shown in Listing 2-13.

Listing 2-13.  navigation.php

<?php

$nav= "

<nav>

 My skills and background

 Some projects

</nav>

";

?>

Chapter 2 Understanding PHP: Language Basics

http://w3schools.com

62

The entire navigation string is delimited with double quotes. We use single quotes

to delimit the href attribute values. Double quotes (or even single quotes) cannot be

placed within other double quotes (or single quotes). This would confuse the interpreter.

It would be unable to determine where a string begins and ends. Attempting to do so will

cause an error.

�HTML Review
The HTML <nav> tag is used to identify any navigation within a page. The <a href> tag

will create a hyperlink within a page. The page to be displayed is included after the equal

sign, within the quotes. The text to click is placed between the actual tags. Additional

information can be passed to the page being called using the HTTP GET method

discussed in the following.

We now need to add the navigation to the newerindex.php file. We will rename this

file indexnav.php.

Listing 2-14.  indexnav.php

<?php

//complete code for index.php

include_once "views/navigation.php";

$pageData = new stdClass();

$pageData->title = "Thomas Blom Hansen: Portfolio site";

$pageData->content = $nav;

require "templates/newerpage.php";

echo $page;

?>

We are using include_once because while the navigation would make our page

completely functional, if the navigation is missing, we could still display valuable

information. Using the once option ensures that our navigation only appears once on

the page, even if we mistakenly try to include the navigation file again. Let’s save and run

the code. We should see a page with a navigation. Don’t expect to see any of the views

just yet.

Chapter 2 Understanding PHP: Language Basics

63

�Passing Information with PHP
The ability to pass data is what separates dynamic web pages from static ones. By

customizing an experience based on the user’s choices, we are able to add an entirely

new level of value to a website.

We have two choices we can use to pass information: HTTP GET and HTTP POST.

HTTP GET: Information is passed by creating URL variables in the

actual URL line. This does not require additional server memory

but does expose the information passed to all users of the website.

HTTP POST: Information is passed to the server memory. The

information can then be retrieved by the PHP program from

memory. While we don’t want to say that this information is more

secure than HTTP variables, it is not displayed for every user to

see. However, since this process uses server memory, for high-

traffic websites, if possible, HTTP GET might be a better choice.

For example, Google uses HTTP GET to pass search information

as this is not secure information which in turn does not need to

use server memory.

Since our information does not require high security measures, we will pass it to PHP

through URL variables using the HTTP GET method. In Listing 2-13, we saw two URL

variables in the navigation. Let’s take a closer look at the href attributes in the navigation

<a> elements.

newindexnav.php?page=skills

newindexnav.php?page=projects

The href indicates that clicking the navigation item will load newindexnav.php

(this page will be created soon) and place the word skills or projects into a URL variable

named page. If you click one link, the URL variable named page will get a value of

skills. If you click the other link, page will get the value of projects.

Our PHP program can access the URL variable and use it to determine the right page

view at the right time. URL variables are the lifeblood of dynamic sites.

Chapter 2 Understanding PHP: Language Basics

64

�Accessing URL Variables
To access URL variables, we use the $_GET superglobal array. Here’s how we will use it in

our new program, newindexnav.php.

Listing 2-15.  newindexnav.php

<?php

//complete code for index.php

include_once "views/navigation.php";

$pageData = new stdClass();

$pageData->title = "Thomas Blom Hansen: Portfolio site";

$pageData->content = $nav;

//changes begin here

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

 $pageData->content .= "<p>Will soon load $fileToLoad.php</p>";

}

//end of changes

require "templates/newerpage.php";

echo $page;

?>

The few lines added to the code actually accomplish quite a lot! We are using HTTP

GET to access our URL variables. To access the value of the URL variable named page, we

use the PHP instruction $_GET['page']. The value contained in page (skills or projects)

is then saved into the variable $fileToLoad. Remember, this value is set depending on

if the user clicked the link requesting the skills or projects. There will be a URL variable

named page only when a user has clicked one of the navigation items.

�Using isset() to Test If a Variable Is Set
If we attempt to use a variable that does not exist, we will trigger a PHP error. So, before

we try to access a variable, we should be sure that the variable is set. PHP has a language

construct (isset()) to that end. We have already seen it in action.

Chapter 2 Understanding PHP: Language Basics

65

�Secure Programming
It is easy to fall into the habit of assuming that everything is going to work properly in a

program. Whenever a program is dependent on files that exist outside of a program, the

program becomes vulnerable. The files (such as our library files) might be corrupted or

might not exist. We need to program with the view that everything might not all fall into

place and work properly. We need to check for missing or corrupted files and determine

how to handle the situation. Depending on the program, it may require shutting the

program down and asking the user to come back later or, if it’s minor, allowing the user

to continue with what does work in the program. Remember that programs also depend

on users to do the right thing. In our program, we expect the user to click on a navigation

link, which will load information into our URL variable, soon causing the proper

information to be displayed. However, what happens if the user plays around with the

URL line and attempts to load a different page or create a different URL variable? We

must prepare for this possibility. Not all attempts to change what is expected are caused

by a hackers attempt to change data but sometimes others do too. Expect the unexpected

and prepare for it.

$navigationIsClicked = isset($_GET['page']);

The isset() function will return TRUE if the item inside the parentheses (page) is set.

If a user has done what is expected and clicked a navigation item, $navigationIsClicked

will be TRUE; if not, it will be FALSE.

Note  The item passed into $_GET does not include a dollar sign since it is not a
PHP variable. It is a URL variable, which does not require a dollar sign.

if ($navigationIsClicked) {

A conditional statement (if statement) will determine if the information contained in

the parentheses is TRUE or FALSE. If $navigationIsClicked is TRUE, the if statement will

execute any code contained within the curly brackets ({}).

$fileToLoad = $_GET['page'];

Chapter 2 Understanding PHP: Language Basics

66

If True, the program will declare a PHP variable named $fileToLoad to store the value

of the URL variable named page. Next, it will add a string to the $pageData->content

property to display the value of the URL variable named page. Save and run the code. Once

loaded in the browser, click the “My skills” navigation item. This action should produce the

following output.

Click the other navigation item to see the output change. We are seeing that output

changes dynamically, according to how the user interacts with the site.

What happens if the user does not click on a link or passes a different URL variable?

Nothing. The page remains unchanged. Even though our program is small, it still is

able to handle these possible situations.

Exercise: Try to break the newindexnav.php program. A skilled programmer will

continuously feed unexpected information into their program to try and catch all

possible vulnerabilities. Once these weaknesses are identified, we can fix them. Did you

find any in the program? If you did, then use your current knowledge to strengthen this

example.

�$_GET, a Superglobal Array
PHP can access URL variables through a superglobal array called $_GET. PHP also

includes other superglobal arrays for other uses. With $_GET, we can access URL

variables by their name. In the navigation program, we have two <a> elements. Clicking

either one will encode a unique value for a URL variable named page.

We can see a URL variable in the browser’s address bar in Figure 2-8. Notice how the

value of the URL variable page is represented in the output.

$pageData->content .= "<p>Will soon load $fileToLoad.php</p>";

Figure 2-8.  newindexnav.php output after skills link selected

Chapter 2 Understanding PHP: Language Basics

67

To use the value of the URL variable in the information displayed on the page, we

placed $fileToLoad in our string and added it to the content variable. You may not

have noticed that there is a period right before the equal sign. The .= is a concatenation

symbol which tells the interpreter to append the string to whatever is already in the

variable content, which already contains some other information. When we echo the

contents of $page, this appended information will be included in our output, as we have

seen in Figure 2-8.

�Including Page Views Dynamically
The dynamic site navigation is nearly complete. It works perfectly, except that page

views are not loaded when navigation items are clicked. Let’s change that, by placing our

updated code in newestindexnav.php.

Listing 2-16.  newestindexnav.php

<?php

//complete code for index.php

include_once "views/newestnavigation.php";

$pageData = new stdClass();

$pageData->title = "Thomas Blom Hansen: Portfolio site";

$pageData->content = $nav;

//changes begin here

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

 include_once "views/$fileToLoad.php";

 $pageData->content .= $info;

}

//end of changes

require "templates/newerpage.php";

echo $page;

?>

Chapter 2 Understanding PHP: Language Basics

68

Note  newestnavigation.php has been updated to link to the current version of the
program.

Only two other changes have occurred in the newestindexnav.php program.

include_once "views/$fileToLoad.php";

$pageData->content .= $info;

The include statement loads the contents of the selected view (which populates the

$info variable). The $info information is appended to the contents of $pageData.

It works! This is a basic, dynamic site with a persistent, global navigation.

Congratulations, together, we have accomplished a lot!

�Strict Naming Convention
It is great to see our first dynamic site working, isn’t it? It depends on a strict naming

convention. The navigation items encode different values for a URL variable named

page. The corresponding page view file must be named identically and be saved inside

the views folder. As long as we follow this convention, we can add additional pages with

relative ease.

Href URL variable view file

newestindexnav.php?page=skills page=skills views/skills.php

newestindexnav.php?page=projects page=projects views/projects.php

Figure 2-9.  newestindexnav.php after skills selected

Chapter 2 Understanding PHP: Language Basics

69

�Displaying a Default Page
The dynamic navigation works wonderfully, but it has one flaw: there is no default page

view displayed when a user navigates to newestindexnav.php, in which case the URL

variable named page does not have a value. It is easy to change this; we simply have to

change the if statement a tiny bit.

Listing 2-17.  updatedindexnav.php – partial

//partial code for index.php

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "skills";

}

 include_once "views/$fileToLoad.php";

 $pageData->content .= $info;

The program now includes an if/else statement. The code within the else statement

is executed if the value checked in the if statement is FALSE. Thus, if a navigation

link was not clicked by the user, the line of code contained in the else section would

execute instead of the line in the if section. This allows the program to load a value into

$fileToLoad from the URL variable page if that is set. If page is not set, $fileToLoad

will have a default value of skills. Once $fileToLoad has a value, we can use it to load

either the page view requested by a user or the default page view about “My skills.”

�Securing the Program
We will make one more update to our PHP code to provide a more secure and stable

program. The program depends on the existence of variables from our library files. $nav,

$page, and $info are all populated with contents from various files. However, what if

those variables do not exist?

Listing 2-18.  secureindexnav.php

<?php

//complete code for index.php

string $nav = "";

Chapter 2 Understanding PHP: Language Basics

70

string $info = "";

include_once "views/securenavigation.php";

$pageData = new stdClass();

$pageData->title = "Thomas Blom Hansen: Portfolio site";

$pageData->content = $nav;

//changes begin here

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "skills";

}

include_once "views/$fileToLoad.php";

$pageData->content .= $info;

require "templates/newerpage.php";

echo $page;

?>

Note  securenavigation.php has been updated to link to the current version of the
program.

You might have thought that we would again use isset to check on the existence of

the variables; we could. However, an easier way is to provide default values for $nav and

$info. Both are created with a string data type and set to ““ in Listing 2-18 to provide

a holder for future information. $page was already given a default value earlier. Now

our program can handle situations in which these variables might be missing due to

corruption or missing information. A more stable program for sure.

�Validating Your HTML
The process of generating HTML pages is a bit abstract. It is easy to assume that

everything is perfect if the right page view is displayed at the right time. If you see the

right action, your PHP script works perfectly. But that does not mean your HTML is

Chapter 2 Understanding PHP: Language Basics

71

perfectly valid. Remember that any contents within the echo text strings are treated as

a nonexecutable string by the PHP interpreter. Thus, the interpreter does not check the

validity of any code (HTML) within the string.

How can we check our HTML contents?

Remember, dynamic web pages should conform to web standards, just as static

HTML pages should.

Note  You could load a dynamic page in your browser and view the generated
HTML source code through your browser. When you see the generated HTML source
code, you can select it all, copy it, and paste it into an online HTML validation service,
such as http://validator.w3.org/, to determine if the code is valid.

�Styling the Site with CSS
When the HTML of all page views validates, we can start styling our site with CSS. We

add CSS exactly as we would normally style a static HTML site: create an external style

sheet with style rules for the visual design of our site. Using an external page will allow us

to attach the CSS to all pages within the website, providing a consistent feel and look. To

do that for the portfolio site, we will create a new folder called css in our project folder.

Then we will create a new file called layout.css in the css folder.

Listing 2-19.  layout.css

nav {

 background-color: #CCCCDE;

 padding-top: 10px;

}

nav a{

 display:inline-block;

 text-decoration:none;

 color: #000;

 margin-left: 10px;

}

nav a:hover{text-decoration: underline;}

Chapter 2 Understanding PHP: Language Basics

http://validator.w3.org/

72

�CSS Review
The CSS nav tags define the area of navigation as defined by the <nav> HTML tags in

our pages. The background color displays a light gray. The padding setting provides a

small amount of space padding above the navigation menu. “Nav a” defines the look and

feel of the link itself. It translates the display into an inline block, which creates a block

(box) for the links, instead of the original text links. The text itself is unchanged (text-

decoration: none). The color is set to black (#000). Space is provided between each link

as specified with the margin-left setting.

For more information on CSS, review the free tutorials on the Web, such as

www.w3schools.com, or a free video series on YouTube.

You can change or add any style rules you prefer. The preceding css is just to get us

started. We will style all our dynamic HTML pages, so let’s build this functionality into

the page template. We will add one new placeholder for <link> elements pointing to

external style sheets.

Listing 2-20.  pagewithcss.php

<?php

$page= "<!DOCTYPE html>

<html>

<head>

<title>$pageData->title</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8' />

$pageData->css

</head>

<body>

$pageData->content

</body>

</html>";

?>

The new property css is used as placeholder for <link> elements referencing

external style sheets. To use the updated page template, we must update our index file

and declare a value for the new property.

Chapter 2 Understanding PHP: Language Basics

http://www.w3schools.com

73

Listing 2-21.  indexwithcss.php

<?php

//complete code for index.php

string $nav = "";

string $info = "";

include_once "views/cssnavigation.php";

$pageData = new stdClass();

$pageData->title = "Thomas Blom Hansen: Portfolio site";

$pageData->css = "<link href='css/layout.css' rel='stylesheet' />";

$pageData->content = $nav;

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "skills";

}

include_once "views/$fileToLoad.php";

$pageData->content .= $info;

require "templates/pagewithcss.php";

echo $page;

?>

Note  cssnavigation.php has been updated to link to the current version of the
program.

$pageData->css = "<link href='css/layout.css' rel='stylesheet' />";

The css variable in $pageData is set to a link which will attach the external style

sheet. The output is shown in Figure 2-10.

Chapter 2 Understanding PHP: Language Basics

74

Figure 2-10.  indexwithcss.php output

Exercise: Adjust the CSS file to create a better-looking navigation bar which is more

pleasing to the user.

�Declaring a Page_Data Class
Sometimes, it can be quite useful to use internal CSS to supplement external style sheets.

We can easily update the page template with a placeholder for a <style> element.

Listing 2-22.  pagewithstyle.php

<?php

$page= "<!DOCTYPE html>

<html>

<head>

<title>$pageData->title</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8' />

$pageData->css

$pageData->embeddedStyle

</head>

<body>

$pageData->content

</body>

</html>";

?>

Chapter 2 Understanding PHP: Language Basics

75

We can declare a property value from indexwithcss.php, but let’s do something

different. The problem is that sometimes you don’t need any embedded <style>

element and sometimes you do.

Now that our template has a placeholder for embedded CSS, that property must

always have a value. We don’t want to waste time declaring a value for a redundant

<style> element, so let’s make a more intelligent solution. Let’s take the next step

toward object-oriented programming and create a custom class for page data. We will

create a new folder called classes in our project folder. Then let’s create a new file called

Page_Data.class.php in this folder.

Listing 2-23.  Page_Data.class.php

<?php

class Page_Data {

 public string $title = "";

 public string $content = "";

 public string $css = "";

 public string $embeddedStyle = "";

}

 ?>

�Program Design and Logic
We have saved the class information in a file with the ending class.php. There is nothing

magical about this file ending. However, by including the class name in the file ending,

it makes it more apparent that a stand-alone class is contained in the file. Also note that

the file name begins with a capital letter. This is also a common style to indicate that it is

a class file. PHP does not care what file name is used. However, it is a good programming

technique to use common practices that the industry uses for identification.

The class structure is defined with the lowercase word class. The class name (Page_

Data) is an exact match for the file name containing the class. Class names should match

file names. Variables (properties) and methods used by the class are created between

the curly brackets. We created this class with predefined empty string values for those

properties required by the page template. We have declared each string with the string

data type. This declaration will help increase security within our program by only

Chapter 2 Understanding PHP: Language Basics

76

allowing strings to be saved. In later chapters, we will increase the security of our classes

by setting access to private and use get and set methods to update values. The use of

declared class within our program, rather than using stdClass, provides us the ability to

protect the data we are storing.

�Classes Make Objects
We can use the new class definition in the index file. It will require a tiny change.

Listing 2-24.  indexwithclass.php

<?php

//complete code for index.php

string $nav = "";

string $info = "";

include_once "views/classnavigation.php";

include_once "classes/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->title = "Thomas Blom Hansen: Portfolio site";

$pageData->css = "<link href='css/layout.css' rel='stylesheet' />";

$pageData->content = $nav;

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "skills";

}

include_once "views/$fileToLoad.php";

$pageData->content .= $info;

require "templates/pagewithcss.php";

echo $page;

?>

The stdClass has been removed and replaced with the Page_Data class. If we load

indexwithclass.php into our browser, we will discover that the outcome is the same as

we discovered in Figure 2-10. The results are the same, but the program has become

more secure.

Chapter 2 Understanding PHP: Language Basics

77

The Page_Data class enables us to keep a placeholder for embedded styles in the

page template and only assign an actual value to that property whenever we need a page

with an embedded <style> element.

�Highlighting Current Navigation Item with a Dynamic
Style Rule
We have created a page template and a Page_Data object, each with embedded styles.

We kept common styles used throughout a web page in an external style sheet. But there

are a few cases in which dynamic styles on individual pages are quite powerful.

Exercise: We could use a dynamic style rule to highlight the current navigation item.

Review your CSS skills and adjust the indexwithclass program to include a dynamic

internal style sheet which highlights the current navigation selected on the menu, and

use the embeddedStyle property to save and interpret the new CSS code.

�Summary
We have discovered how to use a little basic PHP to build a very dynamic site. Your

learning process will probably benefit from a bit of experimenting at this point. Try

attempting some of the project suggestions at the end of this chapter. In the next chapter,

we will learn about HTML forms, PHP functions, and more details on conditional

statements.

�Projects

	 1.	 Complete the personal portfolio site from this chapter. Add

however many page views you see fit and update your navigation

accordingly.

	 2.	 Create some more comprehensive, detailed page views. In the

process, you should gradually become more comfortable with

the dynamic site structure and how page views are returned to be

displayed in the index file.

Chapter 2 Understanding PHP: Language Basics

78

	 3.	 Use your existing CSS skills to develop a consistent website design

for the portfolio. It will be a very good exercise to use your existing

HTML and CSS skills in this new context of dynamic sites. It is a

good idea to do this exercise while the site you are working on

is simple.

Chapter 2 Understanding PHP: Language Basics

79

CHAPTER 3

Form Management

�Objectives
After completing this chapter, you will be able to

•	 Create and use HTML forms

•	 Use superglobal arrays

•	 Encode URL variables with HTML forms using the GET method

•	 Encode URL variables with HTML forms using the POST method

•	 Create a dynamic PHP quiz program

•	 Use if-else conditional statements

•	 Create and use named functions

•	 Create secure classes and objects using constructors, setters,

and getters

•	 Understand how an American western film can teach you about

clean code

•	 Discover why code really is poetry

In Chapter 2, we built a dynamic, personal portfolio site. In the process, we saw how

to encode URL variables with <a> elements and how to access such URL variables using

the $_GET superglobal. Passing data is what separates dynamic web pages from static

ones. By customizing an experience based on the user’s choices, we are able to add an

entirely new level of value to a website.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_3

https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_3#DOI

80

Now that we have seen a little PHP and written a basic dynamic site, we are ready

to go deeper into URL variables. HTML <form> elements are commonly used to create

interfaces that allow users to interact with a dynamic site. If you have spent any time on

the Web, you have used an HTML form to submit information. To create an interactive

website, we need to learn how to create and use these HTML forms.

�What Are Forms?
HTML forms allow visitors to interact and provide information on a website. Figure 3-1

shows Google’s search form. When a user visits www.google.com, types a search

term into the text input field, and then clicks Google Search, Google will perform the

requested search.

Figure 3-1.  Search form from www.google.com

Another kind of form you probably have come across is a login form, through which

registered users can log in and enter a restricted area. You may have seen such forms

when you log in to your Facebook account, your bank account, or your Gmail account.

The login in Figure 3-2 is from Facebook.

Chapter 3 Form Management

http://www.google.com
http://www.google.com

81

Figure 3-2.  Login form from www.facebook.com

A final familiar example could be the star rating system. You may have come across

a star rating system when you bought a book from an online bookstore. Figure 3-3 shows

the star rating form from Amazon.

Figure 3-3.  Star rating form from www.amazon.com

Chapter 3 Form Management

http://www.facebook.com
http://www.amazon.com

82

If you are going to work as a web developer or web designer, you will develop and

design usable, functional forms. Web forms are the interface between a system and its

users; developing and designing web forms is extremely important.

�Setting Up a New PHP Project
Let’s create a new project folder called ch3 in the XAMPP/htdocs folder to hold all the

work we will accomplish in this chapter. Inside ch3, we will need copies of the templates

and classes folders, and the PHP scripts, from Chapter 2. We can copy these from our

Chapter 2 folder or by downloading them from the publisher’s website. We also need to

create an empty folder called views.

Let’s add a basic PHP template for the index.php file. Notice that we are reusing

classes/Page_Data.class.php and templates/page.php, from Chapter 2, without

changing a single line of code inside either script. Efficient and effective programmers

reuse library files within their programs. Whether the files were provided by PHP or

created by the programmer (or someone else in a corporation), stable and secure

programs can be developed with more efficiency and speed by reusing code that is

known to be reliable. Just solve it once; don’t reinvent the wheel over and over again!

Listing 3-1.  index.php

<?php

//complete code for index.php

include_once "classes/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->title = "Building and processing HTML forms with PHP";;

$pageData->content = "<nav>will soon show a navigation...</nav>";

$pageData->content .= "<div>...and a form here</div>";

require "templates/pagewithcss.php";

echo $page;

?>

�Seeing for Yourself
To check if everything has been entered correctly, save the index.php and navigate using a

browser to http://localhost/ch3/index.php. The expected output is shown in Figure 3-4.

Chapter 3 Form Management

https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_2

83

Figure 3-4.  Output of index.php

Exercise: There is no Zen master to prod you with a stick but see if you can answer

these questions. Your answers will indicate what you have learned so far. If you’re in

doubt, you can consult Chapter 2 for explanations.

•	 What does include_once do?

•	 How can $pageData->title change the <title> of the generated

HTML page?

•	 What does .= mean? What is the technical name for it?

•	 What happens when we echo $page?

�Creating a Dynamic Navigation
We will be creating two different forms. Thus, we will require a site menu to navigate

between these forms. Let’s create a new file, ch3/views/navigation.php, with the

following code.

Listing 3-2.  navigation.php

<?php

$nav= "

<nav>

 Search on bing

 Dynamic quiz

</nav>

";

?>

Notice that the code we are using for navigation is very similar to the code used in

Chapter 2. We only changed the pages and the strings to be displayed in the navigation.

Now let’s add the code required to display this navigation in the index file.

Chapter 3 Form Management

https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_2

84

Listing 3-3.  indexwithnavigation.php

<?php

//complete code for index.php

include_once "views/navigation.php";

include_once "classes/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->title = "Building and processing HTML forms with PHP";

$pageData->content = $nav;

$pageData->content .= "<div>...and a form here</div>";

require "templates/pagewithcss.php";

echo $page;

?>

The output is not pretty, yet. But we are making progress. We now have a new index

page with navigation by using similar code to what we learned in Chapter 2.

�Creating Page Views for the Form
We can follow the naming convention from Chapter 2, because it provides a solid code

architecture for dynamic websites. This way of organizing and naming page views can

give us a mental framework for building dynamic sites. When we have the framework

internalized, we’ll know which files we need to develop for the site. We don’t need to

reinvent a good dynamic architecture every time we make a new site.

The navigation described in the preceding section has links to pages called search

and quiz. So, we will have to create two new PHP files in the views folder.

Figure 3-5.  Output from indexwithnavigation.php

Chapter 3 Form Management

https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_2

85

Href url variable view file

index.php?page = search page =

search
views/search.

php

index.php?page = quiz page = quiz views/quiz.php

Let’s create the two new files as follows.

Listing 3-4.  search.php

<?php

$info= "will soon show the search form";

?>

Listing 3-5.  quiz.php

<?php

$info= "quiz will go here";

?>

Very simple code. But enough to help us start testing our navigation.

�Displaying Page Views on the Index Page

To display these page views when requested, we have to write a few extra lines of code

almost identical to those we wrote in the index file for Chapter 2. The only changes from

the Chapter 2 project are the use of the quiz and search views. Professional programmers

develop a style of coding and stick with that style to increase reliability, security, and

code development time.

Listing 3-6.  indexwithclass.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "views/classnavigation.php";

include_once "classes/Page_Data.class.php";

$pageData = new Page_Data();

Chapter 3 Form Management

https://doi.org/10.1007/978-1-4842-8205-2_2
https://doi.org/10.1007/978-1-4842-8205-2_2

86

$pageData->title = "Building and processing HTML forms with PHP";

$pageData->content = $nav;

$pageData->content .= "<div>...and a form here</div>";

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "search";

}

include_once "views/$fileToLoad.php";

$pageData->content .= $info;

require "templates/pagewithcss.php";

echo $page;

?>

The page will now load any view requested by a user. If no navigation item is clicked,

it will display views/search.php. We can test our code by loading http://localhost/

ch3/indexwithclass.php in a browser.

�Program Design and Logic
Reusing code is a good idea, because this allows the programmer to develop solutions

much faster, more reliable, and more secure. If you have scripts that work in one project

that has been well tested, you can trust them to do the same in other projects. Hence,

code reuse decreases debugging time and speeds up development time.

Figure 3-6.  Output from indexwithclass.php

Chapter 3 Form Management

87

There will always be parts you can’t easily reuse, such as the navigation. But if you

get into the habit of creating dynamic navigations in much the same way across different

projects, you’ll be able to develop new dynamic navigations quickly and painlessly. So,

when you can’t reuse code as is, you can still reuse the principles underpinning the code

that is already tested and reliable.

�A Simple Search Form
HTML forms are created with the <form> element. There are a number of other HTML

elements that are made specifically for forms. Perhaps the most essential one is the

<input> element to accept values from the user. Let’s create a short form as follows.

Listing 3-7.  simplesearch.php

 <?php

$info= "<form method='get' action='http://www.bing.com/search'>

 <input type='text' name='q' />

 <input type='submit' value='search on bing' />

</form>";

?>

Note T he navigation (simplenavigation.php) and index (simpleindex.php) files
were also updated to use the simple search form. Take some time to view the
changes to these files.

Let’s test our new search form by calling it from simpleindex.php.

Figure 3-7.  Output from simpleindex.php

Chapter 3 Form Management

88

We can type a search string in the text field and click the button. The browser will

load bing.com because the action setting in the form tag will pass the information via

the get command to the Bing search engine. Bing will perform a search for whatever

we enter. If we type cats and click the search button, then “cats” is passed to Bing. After

passing “cats,” the URL for Bing will contain www.bing.com/search?q=cats.

As we have stated previously, search engines accept information via the get method

to avoid using extra server memory when completing searches. Thus, Bing was expecting

a URL variable and we provided it. Notice that Bing uses the variable q for the search

information. Listing 3-7 shows that this variable is created with the text box from the

simple search form.

Note  When using a form, clicking the Submit button will cause any GET or
POST variables to be sent to the application on the web server listed in the action
parameter. The application can then retrieve that information for its use. The
application will execute within the web server, and the results of that execution
will be sent to the user’s browser to be displayed. In our example, the browser will
display the results of Bing’s search for cats.

�The <input> Element and Some Common Types
Did you notice that <input type='text' /> displays as a single-line text field and that

<input type='submit'/> displays as a Submit button? There are many possible values

for the input type attribute. In this book, we will see a small handful of input types.

Once you can work with those, you should have no problems learning how to use the

remaining input types.

�Understanding the Method Attribute
So far, we have only seen variables that could be seen in the URL, in the browser’s

address bar. This kind of URL variable is encoded using the HTTP method GET. We have

used such variables to create a dynamic navigation and a form that can perform a search

at www.bing.com.

Chapter 3 Form Management

http://www.bing.com/search?q=cats
http://www.bing.com

89

Any URL variable encoded with GET is limited to relatively few characters. The exact

number varies from browser to browser. Because GET variables are evident from the URL,

pages can be bookmarked and linked. Therefore, GET variables are perfectly suited for

site navigation or in any situation in which server memory usage must be limited, such

as websites with a lot of traffic. Too much dependence on the use of server memory can

cause the server to quickly run out of memory and shut down. Not something you want

to happen when your site is busy!

�Named PHP Functions
Perhaps one of the most powerful features of a programming language is the ability to

define and execute functions. A function is a named block of code we declare within our

scripts that we can call at any time.

�Program Design and Logic
Many new programmers assume that program code is executed from the top of the

program, one instruction after the other, to the bottom of the program. However, this

is not the case. Programs have many instructions that cause the flow to go a different

path. For example, the if statement that we introduced in Chapter 2 will make a choice

whether to execute the code within the first set of brackets or execute the code after an

else statement. We say that the code jumps to the else structure or jumps over the else

structure depending on whether the conditional statement was true or false.

The page object we have been using in our examples resides within its own location

in memory. The program jumps to the page object whenever we use it and jumps back to

the next instruction in the main code afterward. Functions cause a similar flow change.

The program jumps to the function when called, executes the code within the function,

and then returns to the main code afterward. We will soon discover other instructions

that change our program flow.

�The Basic Syntax for Named Functions
Let’s take a first look into the basics of named functions in PHP.

function functionName () {

Chapter 3 Form Management

https://doi.org/10.1007/978-1-4842-8205-2_2

90

 //function body

}

The syntax format of a function requires that we first declare the function using the

function keyword and then create a function name to uniquely identify the function.

Function names can contain any alphanumeric characters and underscores, but they

must not start with a number. The function name is followed with a set of parentheses

and a code block delimited by curly braces.

�Program Design and Logic
While we have the freedom to create function names in almost any format we choose,

the goal is to create a program that is easy to read and understand. With this in mind,

one standard way to declare function names is to use an action verb and a subject, such

as getFirstName. By declaring functions using this standard, it is clear that this function

will bring back the first name, without us having to look at the actual code. It is also

common to use camel hump (first word lowercase, all other words uppercase). Some

programmers will separate the words with an underscore, such as get_First_Name.

Determine your own style and use it consistently throughout your programs.

Let’s create a new PHP file which contains a function within our ch3 folder.

Listing 3-8.  testfunction.php

<?php

function getParagraph(){

 echo "<p>This paragraph came from a function</p>";

}

?>

If we load http://localhost/ch3/testfunction.php into our browser, we will see

no output. Many beginners would expect to see an output from the preceding code. But

functions don’t always behave as beginners assume. The code inside the function body

will not be executed until the function name is explicitly called. We can add a function

call in the new file testfunction.php to execute the code as follows.

Chapter 3 Form Management

91

Listing 3-9.  calltestfunction.php

<?php

function getParagraph(){

 echo "<p>This paragraph came from a function</p>";

}

getParagraph();

?>

If we run this new file in a browser, we will see the expected output.

A really interesting feature of functions is that they can be reused very easily. Simply

call a function twice, and it runs twice. Let’s do it.

Listing 3-10.  calltwicetestfunction.php

<?php

function getParagraph(){

 echo "<p>This paragraph came from a function</p>";

}

getParagraph();

getParagraph();

?>

You can probably correctly guess that the code will output two <p> elements, each

with the same text: This paragraph came from a function. What is more important

is that we can see the difference between function declarations and function calls. The

example has two distinct function calls.

Figure 3-8.  Output of calltestfunction.php

Chapter 3 Form Management

92

This function isn’t very flexible. It can only do one thing, i.e., output that one string.

When we create functions, we should consider all possible uses for the function. Instead

of making a beginning programmer’s mistake of using echo to output the string within

the function, a better choice is to “return” the string and allow the code that called the

function the decision on how to use the string returned. Let’s adjust our example.

Listing 3-11.  returntestfunction.php

<?php

function getParagraph(){

 return "<p>This paragraph came from a function</p>";

}

$output = getParagraph();

$output .= "<h1>Just some heading</h1>";

$output .= getParagraph();

echo $output;

echo getParagraph();

?>

Let’s look at the output when we run this.

Now this is much, much better! Why? Let’s take a look.

 return "<p>This paragraph came from a function</p>";

Figure 3-9.  Output from returntestfunction.php

Chapter 3 Form Management

93

The function return statement passes the string provided back to the instruction that

called the function. This then allows that instruction to determine how to use the string.

$output = getParagraph();

We can create a variable to hold the string.

$output .= getParagraph();

We can append the string passed to the existing contents of a string variable.

echo getParagraph();

Or we can simply echo out the string to the user. We have a lot more flexibility!

�Program Design and Logic
Experienced programmers rarely echo out information (strings) directly in a function.

It is much better to use a return statement. This provides a much more useful function

that can be used in many ways, as seen earlier. Useful functions can be placed in

libraries. This allows the function to be used by other programs. These programs can use

the function in the manner that works best for their needs.

Exercise: Adjust the previous example by placing the function into a library file.

Then import the function into the original program. Keep the original code for the

$output string. Run the program. The output should be the same as Figure 3-9. However,

now you have a function that can be used in any program!

�Using Function Arguments for Increased Flexibility
This function is still not as flexible as it could be. So, let’s improve the function

getParagraph() with a function argument.

Listing 3-12.  argumenttestfunction.php

<?php

function getParagraph(string $content) : string {

 return "<p>$content</p>";

}

$output = getParagraph("I want this text in my first paragraph");

Chapter 3 Form Management

94

$output .= "<h1>Just some heading</h1>";

$output .= getParagraph("...and this in my last paragraph.");

echo $output;

echo getParagraph("But I want to finish it with this paragraph");

?>

The output of each function call now displays whatever we pass into the function.

We made some changes to the function header.

function getParagraph(string $content) : string {

The argument (string $content) now restricts all input into the function to allow

strings only. But it allows any string passed by the instruction that calls the function. The

return statement in the function is also restricted (:string) to returning only strings.

 return "<p>$content</p>";

The return statement now uses the argument (whatever was passed into the

function) to build the paragraph string and then passes that string back to the instruction

that called it. We could have also declared $output as a string. However, since the return

statement already restricts the output to be a string, it’s not necessary.

PHP provides four scalar data hints (types) for our use in functions.

int: An integer (whole number) which can be used in calculations.

string: A series of characters that will not be used in a calculation.

Figure 3-10.  Output of argumenttextfunction.php

Chapter 3 Form Management

95

float: A number with decimal places, such as 32.23, which can be used in

calculations.

bool: Boolean. The value is true or false only.

Let’s look at other possible uses.

function getParagraph(?string $content) : string {

If we include a question mark, as shown in the preceding code, with our data type

hint, the function will also allow null values (empty values) to be passed. If no value is

passed, it will raise an error. We can also include the question mark to allow the function

to return a null value or string.

function getParagraph(?string $content) : ?string {

We can even allow different data types to be passed back to the calling instruction by

using the pipe symbol.

function getParagraph(?string $content) : int | string {

Note  For more information on data type hints and functions, visit www.php.net.

Function arguments are extremely cool, because they allow us to write one function

that can be reused with many different values. We will get to see many more examples

of functions with parameters later in the book. Next, Let’s write a dynamic quiz using

functions.

�Creating a Form for the Quiz
Let’s create a new PHP file called quizform.php in the views folder.

Listing 3-13.  quizform.php

<?php

//complete code for views/quizform.php

$info = "<form method='post' action='index.php?page=quiz'>

 <p>Is it hard fun to learn PHP?</p>

 <select name='answer'>

Chapter 3 Form Management

http://www.php.net

96

 <option value='yes'>Yes, it is</option>

 <option value='no'>No, not really</option>

 </select>

 <input type='submit' name='quiz-submitted' value='post' />

 </form>";

?>

We have seen a similar form tag before that includes the call to an index file and the

passing of a page URL variable. However, we are including some new HTML statements.

�HTML Review
Let’s look deeper at our HTML strings.

<select name='answer'>

The select tag creates a variable (answer) that can be passed to another program

using Get or Post. It also indicates that we are creating a drop-down list.

<option value='yes'>Yes, it is</option>

<option value='no'>No, not really</option>

The option tags provide the user a choice of “Yes, it is” or “No, not really.” However,

the values ‘yes’ and ‘no’ are what is set in the variable answer.

<input type='submit' name='quiz-submitted' value='post' />

We have seen a submit input type before. The submit button must be included in

order for the answer variable to pass to the program indicated in the form tag. Did you

notice we are passing the variable using POST? We will soon discover how to accept this

value into the program.

Hint  It is common for beginning programmers to forget that the HTML drop-
down list box only sets the variable; it does not pass it on to other programs. We
must include an input submit tag along with the list to pass the set information to
another program.

Chapter 3 Form Management

97

�Showing the Quiz Form
To show the quiz form, we need to make a couple of minor changes to our index and

navigation files. In the index file, we will change our include statement for the navigation

to call an updated version.

include_once "views/quiznavigation.php";

Note  In the new navigation file (quiznavigation.php), we will call the quizform
program instead of the quiz program.

Dynamic quiz

Review the indexquiz.php and navigationquiz.php files to note these changes.

Try running this program and determine the results, after selecting a value in the

drop-down list box. What did you discover? We are not, yet, using the value passed. We

will soon fix this problem.

�The POST Method

The first form used the GET method, but it is not the only possible HTTP method. There is

another method called POST. The POST method has no defined maximum of characters –

in fact, the POST method is not even limited to text. When using the HTTP POST method,

it is even possible to upload files through a form.

Figure 3-11.  Output from indexquiz.php using navigationquiz.php

Chapter 3 Form Management

98

HTTP POST variables are not visible in the URL. They are sent hidden from view. This

makes HTTP POST the perfect candidate for forms that have to deal with larger amounts

of content and forms with sensitive information.

�Secure Programming
Don’t confuse the hiding of sensitive information with the idea that the data is secure.

POST does hide the information. However, it does not encrypt the information. Hackers

can still gain access to the information passed. POST does, however, eliminate the user’s

ability to bookmark a page that has URL variables. With the POST method, the variables

are no longer contained in the URL string.

�Using the $_POST Superglobal

Let’s use the superglobal called $_POST to process the form when it is submitted. Let’s

update the quiz program to display our response.

Listing 3-14.  newquiz.php

<?php

//add a new variable and an if statement

$quizIsSubmitted = isset($_POST['quiz-submitted']);

if ($quizIsSubmitted){

 $answer = $_POST['answer'];

 $info = showQuizResponse($answer);

} else {

 include_once "views/newquizform.php";

}

//declare a new function

function showQuizResponse(string $answer) : string {

 $response = "<p>You clicked $answer</p>";

 $response .= "<p>

 Try quiz again?

 </p>";

 return $response;

}

?>

Chapter 3 Form Management

99

$quizIsSubmitted = isset($_POST['quiz-submitted']);

Using the isset PHP function, the program first will determine if the user submitted

the quiz. They have to click the submit button in the quiz form for the true part of the if

statement to be executed.

�Program Design and Logic
Programs should allow users to change their minds when selecting from a list of choices,

especially if it is a quiz! By requiring the user to click a submit button after decisions have

been made, the user can double-check their selections before committing their answers.

Otherwise, the program would only go with their first choice.

if ($quizIsSubmitted){

 $answer = $_POST['answer'];

 $info = showQuizResponse($answer);

} else {

 include_once "views/newquizform.php";

}

If the user did click the submit button, the answer will be placed in $answer using

$_POST. Then the value is passed into a function called showQuizResponse. If the user

did not click the submit button, the program will display the form, until they click the

submit button, or navigate somewhere else.

function showQuizResponse(string $answer) : string {

 $response = "<p>You clicked $answer</p>";

 $response .= "<p>

 Try quiz again?

 </p>";

 return $response;

}

If the submit button was clicked, the function accepts the response (located in

$answer) and builds a string ($response) which includes the answer selected and a link

asking the user if they want to try the quiz again. This string is returned by the function.

$info = showQuizResponse($answer);

Chapter 3 Form Management

100

The returned string is placed into $info. The index program (indexnewquiz.php) will

then display the contents of $info.

Note M inor changes have been made to indexnewquiz.php, newquiznavigation.
php, and newquizform.php to call the new versions of these programs. However, no
logic changes have taken place.

Exercise: Adjust the newquizform.php program to ask more than one

question. Adjust the indexnewquiz.php program to display the responses to all the

questions asked.

�$_POST Is an Array

We stated that $_GET is a superglobal array. $_POST is another superglobal array. But

what is an array really? Basically, an array can hold multiple items. Each item is stored

under an index. In PHP, the index can be numeric, or it can be a string. Arrays with string

indexes are called associate arrays. $_POST and $_GET create associative arrays to hold

the values that are passed from one program to another. When we retrieve the values, we

are accessing them from the associative array that PHP created in memory.

We can create our own associative arrays. Let’s look at an example.

Listing 3-15.  testAssocArray.php

<?php

//complete code for ch3/testAssocArray.php

$my['name'] = "Thomas";

Figure 3-12.  Results from clicking yes

Chapter 3 Form Management

101

$my['year-of-birth'] = 1972;

$my['height'] = "193cm";

$out = "My name is " . $my['name'];

echo $out;

?>

If we run this program in our browser, we will see “My name is Thomas.” In this

example, $my is an associate array. We can see that it holds a collection of data stored in

the same name ($my) but with different indexes (name, year-of-birth, height). In order

to retrieve data from an array, we must use the array name with an index. “Thomas” is

stored in array $my under the index ['name'].

PHP allows the storage of different types of data within the same array. In our

example, two strings and an integer are stored. Remember, PHP usually determines

data types when the first values are stored. Thus, the data types are actually determined

after the array has already been initially created. In many other programming languages,

arrays are restricted to one data type which must be declared when the array is created.

It can often be handy to inspect all items in an array. PHP has a function to do just

that. It is called print_r(). Here’s one way to use it.

Listing 3-16.  printAssocArray.php

<?php

//complete code for ch3/printAssocArray.php

$my['name'] = "Thomas";

$my['year-of-birth'] = 1972;

$my['height'] = "193cm";

$out = "<pre>";

$out .=print_r($my, true);

$out .= "</pre>";

echo $out;

If we run this code, we will see every index of $my and its corresponding value.

Chapter 3 Form Management

102

Figure 3-13.  Output from printAssocArray.php

Arrays can be very helpful, because they allow us to group items together. The $_GET

and $_POST arrays are provided by PHP to give us easy access to all data encoded with

the HTTP methods GET and POST. Let’s update our quiz program to look at the associate

array that is created.

Listing 3-17.  printnewquiz.php

<?php

//add a new variable and an if statement

$quizIsSubmitted = isset($_POST['quiz-submitted']);

if ($quizIsSubmitted){

 $answer = $_POST['answer'];

 $info = showQuizResponse($answer);

 $answer = $_POST['answer'];

 $info = showQuizResponse($answer);

 //inspect the $_POST superglobal array

 $info .= "<pre>";

 $info .= print_r($_POST, true);

 $info .= "</pre>";

} else {

 include_once "views/printnewquizform.php";

}

//declare a new function

function showQuizResponse(string $answer) : string {

 $response = "<p>You clicked $answer</p>";

 $response .= "<p>

 Try quiz

again?

Chapter 3 Form Management

103

 </p>";

 return $response;

}

?>

Note T he following files have also been changed to use the new version of
printnewquiz.php

indexprintnewquiz.php, printnewquizform.php

A print_r statement has been added to printnewquiz.php to display the contents of

the array.

We can see from the output that both answer and quiz-submitted indexes are

created. The answer index has a value of yes because the user answered the question

with this selection. The value stored in quiz-submitted gives us an indication that the

array was created via the POST method. The use of print_r can be a great debugging tool

that allows us to see what is being passed from one program to another.

Figure 3-14.  Output of quiz results with array

Chapter 3 Form Management

104

�Secure Programming
Don’t expose information to the user that they don’t need to know. In a live

environment, we would not use print_r to display information to the user because it will

show them all information we are passing between the programs. This might cause a

major security problem with the data we are using in the program.

�Curly’s Law: Do One Thing
Have you ever seen the 1991 movie City Slickers? Yes, that feel-good western comedy

featuring Billy Crystal. Jack Palance played Curly, a rugged, old cowboy who knew the

secret of life and reluctantly shared it with Crystal’s character, Mitch:

Curly: Do you know what the secret of life is?

(Holds up one finger)

Curly: This!

Mitch: Your finger?

Curly: One thing. Just one thing. You stick to that, and the rest

don’t mean shit.

Mitch: But what is the “one thing”?

Curly: (smiles) That’s what you have to find out.

We can probably rest assured that Curly wasn’t talking about principles of clean

code. But incidentally, he formulated a principle we can use to write clean functions.

Every function should do one thing. Just one thing.

Note  Jeff Atwood wrote a funny and interesting blog entry about applying Curly’s
law to clean code. Read it at http://blog.codinghorror.com/curlys-law-
do-one-thing/.

Chapter 3 Form Management

http://blog.codinghorror.com/curlys-law-do-one-thing/
http://blog.codinghorror.com/curlys-law-do-one-thing/

105

�Program Design and Logic
Clean code is code that is easier to understand. If functions do just one thing, they

normally will be short. Short code is easier to read and understand than long code.

A function should almost never be more than a screen’s worth of instructions. If you

discover that your functions become long, reevaluate the logic of your design. Can

the function be broken down into multiple simpler functions? If we can read and

understand our code, it becomes much easier to find errors – and we will make errors!

Don’t be surprised if you spend 50% of your development time chasing errors in

your code.

In the earlier code examples, we saw two clean functions, each doing just one thing.

One function shows the quiz; the other function shows a response.

�Code Is Poetry

Strive for expressive, beautiful code. Strive for code that is easy to read. When you

develop new solutions with code, you will spend a very significant part of your time

reading your own code. Code is like poetry. You write it once but read it many times. So,

write your code as if you were writing poetry: choose your words carefully.

Before we finish with our coding examples, let’s make some changes to the Page Data

Class to tighten down security.

�OOP: Using Constructors, Getters, and Setters
It has been a while since we updated the Page Data Class. In case you forgot its current

structure, see the following code.

Listing 3-18.  Page_Data.class.php

<?php

class Page_Data {

 public string $title = "";

 public string $content = "";

 public string $css = "";

 public string $embeddedStyle = "";

}

 ?>

Chapter 3 Form Management

106

As we can see, the class name and file name are the same. It is standard practice

in object-oriented languages to have this relationship. We initially created our strings

within the class itself and set them to empty strings. However, classes include a unique

method (function) called a constructor, whose main purpose is to initiate properties

(variables). We can provide default values within the constructor for each of our strings.

The constructor is automatically called when an object is created from the class, using

the new keyword.

function __construct() {

 print "In constructor";

 }

For PHP classes, two underscore symbols (__) and the word construct identify the

constructor. In this example, we are simply printing out a message. However, we will

soon provide some meaningful information.

Let’s look a little deeper at object-oriented programming to understand why the use

of constructors is important.

A true object-oriented program must provide three methodologies. These include

Encapsulation: Protecting all parts of the program by forming a shield (capsule)

around the code, using classes, objects, and other object-oriented techniques.

Polymorphism: The ability to call and use items (such as methods/functions) with

the same name but accepting and producing different results. For example, the ability

to have two functions called adder. One function adds two integers, and one adds two

floating-point numbers.

How does the program know which to use?

By what is passed into the function (integers or floating point) and what is returned

by the function, commonly called the function header information.

Inheritance: The ability for one object to inherit the characteristics of another object.

The same as us inheriting the characteristics of our parents, but still keeping some

uniqueness about ourselves.

Let’s provide some improved encapsulation of our class while, at the same time,

increasing both the reliability, integrity, and security of our program.

Listing 3-19.  Construct_Page_Data.class.php

<?php

class Page_Data {

Chapter 3 Form Management

107

 public string $title = "";

 public string $content = "";

 public string $css = "";

 public string $embeddedStyle = "";

 function __construct() {

 $title = "Title Goes Here";

 $content = "Page Content Goes Here";

 $css = "CSS Goes Here";

 $embeddedStyle = "Embedded CSS Goes Here";

 }

}

 ?>

In the preceding example, we are declaring (creating) each property at the beginning

of the class. Then the constructor is called to give each property an initial value in case

whatever program uses this class does not use the property. However, we still have

a potential problem that almost anything can be loaded into the properties by any

program. This could cause harm to the display of the web page, or even worse, when we

discuss databases, open up the ability for a hacker to attempt to access our information.

Let’s add a little better security and reliability by rejecting content submitted that does

not meet our requirements. To accomplish this, we will create setter and getter methods.

Listing 3-20.  Partial Listing of Private_Page_Data.class.php

<?php

class Page_Data {

 private string $title = "";

 private string $content = "";

 private string $css = "";

 private string $embeddedStyle = "";

 function __construct() {

 $this->title = "Title Goes Here";

 $this->content = "Page Content Goes Here";

 $this->css = "CSS Goes Here";

 $this->embeddedStyle = "Embedded CSS Goes Here";

 }

 public function getTitle() : string {

Chapter 3 Form Management

108

 return $this->title;

 }

 public function setTitle(string $value) {

 if (strpos($value, '^')) {

 $this->title = $value;

 }

 }

 public function getContent() : string {

 return $this->content;

 }

 public function setContent(string $value) {

 if (strpos($value, '<')) {

 $this->content = $value;

 }

 }

 public function appendContent(string $value) {

 if (strpos($value, '<')) {

 $this->content .= $value;

 }

 }

Listing 3-20 is a partial listing of the code changes for the Page Data Class. For a

complete listing, review the code in Private_Page_data.class.php.

 private string $title = "";

The first change to the program is the change in the access modifier for each property

from public to private. The public modifier allows open access to any program. A public

variable is vulnerable while the program is residing in memory (executing). A private

variable can only be accessed by the class that creates it. A protected variable can be

accessed by the class itself and any inheriting classes or parent classes. By setting our

variables to private, we can control any changes to the contents of the variables.

$this->title = "Title Goes Here";

Chapter 3 Form Management

109

The use of the property has been changed from $title to $this->title. This is a direct

result of changing the variable to private. $this is a special PHP pointer that provides

access to items that are not declared as public within an object. In our example, $this

indicates that we are accessing the private variable $title and placing the provided string

within it.

public function getTitle() : string {

 return $this->title;

 }

To allow programs outside of the class access to our private variables, we create

getter and setter methods. Think of this as providing read and write access to the

variable. A get method provides read access. A set method provides write access. We

can actually create variables that are only readable by just providing a get method. We

can also create variables that are just writable by only providing a set method. Most

get methods are simple methods, as shown in the example; they just return the value

requested to the calling program.

public function setTitle(string $value) {

 if (strpos($value, '^')) {

 $this->title = $value;

 }

 }

The goal of a set method is to protect the data (encapsulation). Set methods should

check the validity of the information before making any changes to the variable. In the

example, an if statement uses the PHP function strpos to determine if the variable $value

(the information passed into the function) contains a carrot (^) symbol. If it does, it

allows the title variable to be updated with the information passed. This example will

actually fail because our title string does not contain a carrot. If you run the program, you

will discover that the default value is used for the title.

�Secure Programming
A secure and reliable program will reject attempts to update information with invalid

data without causing the program to raise errors and/or crash. In this example, an

invalid string has been submitted to update the title variable. The program merely

rejects the invalid data and keeps the default value. The user of the program will only

Chapter 3 Form Management

110

see that the title is set to the default, which does not affect what the user is attempting

to accomplish. Thus, the program is more secure and more reliable than using public

variables. If the program could not continue due to invalid data, an informative message

should be provided to the user, which does not raise errors or cause the program

to crash.

public function appendContent(string $value) {

 if (strpos($value, '<')) {

 $this->content .= $value;

 }

 }

In the code example, the content variable has an additional method which appends

the information, instead of replacing (setting) the information. Our index program

sets and appends information to the content variable. Thus, the additional method is

necessary for this operation.

Should we always use setters and getters?

The answer is no. If there is no reason to protect the data, then the data can remain

public. Many textbooks demonstrate the user of setters and getters but do not emphasize

that a set routine which does not do any validation is just a waste of efficiency. If

validation is not required, just set the variable to public access. However, with the

amount of hacking that occurs in the program environment, the programmer should

think long and hard about leaving any variable as a wide-open public variable.

Note T he strpos method searches a string to determine if the value checked
exists within the string. If it does, it returns the location of the value within the
string. String positions are numbered starting with a 0 for the first position. If the
value is not within the string, the function returns a -1. A TRUE result is determined
by any value greater than or equal to 1. A FALSE value is any value less than or
equal to zero. Thus, the if statement will be TRUE whenever the value is discovered
and become FALSE if the value is not found. For more information on strpos, visit
www.php.net/manual/en/function.strpos.

Chapter 3 Form Management

http://www.php.net/manual/en/function.strpos

111

Listing 3-21.  Privateindex.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "views/printnewquiznavigation.php";

include_once "classes/Private_Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("Building and processing HTML forms with PHP");

$pageData->setContent($nav);

$pageData->appendContent("<div>...and a form here</div>");

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "search";

}

include_once "views/$fileToLoad.php";

$pageData->appendContent($info);

require "templates/privatepage.php";

echo $page;

?>

Since we can no longer directly place values into the variables in the class, we need

to make some adjustments to our index file.

$pageData->setTitle("Building and processing HTML forms with PHP");

$pageData->setContent($nav);

$pageData->appendContent("<div>...and a form here</div>");

The instructions to pass strings into our variables have now been replaced with calls

to the set and append methods within the class.

Listing 3-22.  privatepage.php

<?php

$page= "<!DOCTYPE html><html><head><title>";

Chapter 3 Form Management

112

$page .= $pageData->getTitle();

$page .= "</title>

<meta http-equiv='Content-Type' content='text/html;charset=utf-8' />";

$page .= $pageData->getCss();

$page .= "</head><body>";

$page .= $pageData->getContent();

$page .="</body></html>";

?>

Adjustments have also been made to the page program to read the information in

the variables.

$page .= $pageData->getTitle();

The getter methods are now called to retrieve the information. The updating of the

$page variable was also broken down into multiple lines to allow for better readability of

the process taking place.

Exercise: The strings checked by the strpos function in the Private_Page_Data.class.

php have intentionally been set to information that does not make logical sense. Scan

over the files used in this chapter and determine what content would make logical sense

to check for existence. Make the required updates and run the program to verify that it

works properly. After adjusting, go back to the program and change the strings to check

for something not expected to be placed in the variables. Run the program and look

at the results. What occurred? The program should display the default results, but not

cause any errors to be raised.

We now have a more secure and reliable program. A great place to complete our

discussion for this chapter.

�Summary
We covered a lot of ground in this chapter. We learned how to write HTML forms. HTML

forms can encode URL variables when they are submitted. URL variables are passed

from the browser to the web server with a GET HTTP request. We also learned that we

could pass variables using the POST HTTP request which passes the variables to the

server memory. Actually, the request creates an array that contains the information

passed. We learned how to retrieve the information passed into our PHP programs by

Chapter 3 Form Management

113

using $_GET or $_POST. We discovered how to organize our code and control the flow of

our program with named functions. We dug deeper into object-oriented programming

by securing our information stored in a class with the private access modifier, and the

use of a constructor, and getter and setter methods. But most important, we learned how

Curly’s law can be applied to enhance the logic and efficiency of our code.

�Exercises
1. � If you are familiar with CSS, create an external style sheet to

control the look and design of the pages we have created. Link

the style sheet to the index page (see Chapter 2 for hints). Make

any additional adjustments needed. Don’t forget to test your

pages in more than one browser. Sometimes, CSS can behave

differently in different browsers.

2. � Redesign the dynamic quiz. Add additional questions and

additional question formats. How would we create multiple-

choice questions, True/False questions, or short answer

questions? This will require some research to determine the use

of other HTML form input objects. If you are unfamiliar with

them, you can find additional information on www.w3schools.

com or on YouTube.com. Adjust the output that is produced from

the quiz results to be more meaningful.

3. � Create another HTML form that can calculate a person’s body

mass index (BMI), based on the person’s height and weight.

The formula for calculating BMI follows. The task is to create a

form, on which users can input height and weight, and to write

some PHP code to calculate BMI based on the input. There are

examples on the Web to help guide you. But attempt to complete

it yourself before looking for possible solutions.

//metric

bmi = kg/ (2 * m)

//for UK and US readers

bmi = (lb/(2 * in)) * 703

Chapter 3 Form Management

https://doi.org/10.1007/978-1-4842-8205-2_2
http://www.w3schools.com
http://www.w3schools.com

114

4. � Create a form that converts money from one currency to another.

If you want it to be really advanced, you could have a <select>

element with a list of possible currencies to convert. Again, there

are example programs on the Web, but first, attempt it yourself

before looking at these examples.

Chapter 3 Form Management

115

CHAPTER 4

Building a Dynamic Image
Gallery

�Objectives
After completing this chapter, you will be able to

•	 Set up a dynamic site

•	 Create named functions

•	 Use $_GET and $_POST superglobal arrays

•	 Create and iterate with a foreach loop

•	 Use PHP’s glob to limit access to specific file types

•	 Write custom object methods

•	 Upload files with PHP’s $_FILES superglobal array

We now know how to make a simple dynamic website. We also know how to create a

dynamic form. We learned how to access URL variables with $_GET or $_POST. It is time

to put our new knowledge to good use. Let us build a dynamic image gallery with a form

to allow users to upload new images to the gallery. Along the way, we will discover how

to upload files, use loops, and improve our ability to create dynamic websites.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_4

https://doi.org/10.1007/978-1-4842-8205-2_4#DOI

116

�Setting Up a Dynamic Site
Let us make a new project folder called ch4. We can then copy the folders and the PHP

files from the publisher’s website into these locations. Of course, you can also create the

files as you move through the chapter. Practice makes perfect. If you choose to do so, you

will need to create several folders: classes, views, templates, and imgs.

�Prerequisites: A Folder with Some Images
Our image gallery needs some images. We will restrict this image gallery to use JPEG

images only. Let us prepare a small handful of JPEG images for the gallery. These images

will reside in the img folder.

�Copyright Laws
As a developer, we must be aware of the copyright laws for any country in which our site

might be used. We must respect and abide by these laws. In the United States, images

very often are copyrighted, which means we must ask permission of the owner to use the

image. There are some exceptions, including educational purposes. However, we should

not get in the habit of just grabbing whatever image we like.

How can we tell if an image is copyrighted?

Figure 4-1.  Google Search for green pig

Chapter 4 Building a Dynamic Image Gallery

117

In Google, the Tools menu selection allows you to narrow down your image

search related to the type of restrictions for their use. However, this is not a perfect

method (even Google agrees). Once you have discovered an image that might not be

copyrighted, visit the website that contains the image. Find the copyright information on

the site. If you still are unsure, email the owner of the website to obtain permission to use

the image. Once you get a response (if you do), save that email. It can keep you out of hot

water later.

The safest method to obtain noncopyright images is to search for noncopyright

image sites on the Web. There are lots of sites out there. Some are free and some charge a

small fee. The fee is well worth the money to avoid any future problems!

Exercise: Search the Web for copyright laws in the country, region, and/or state in

which you live. How are these different from other areas? Remember, you must follow

all the copyright laws for countries that may use your website. Search the Web and find a

handful of noncopyrighted images for use in the photo gallery we are about to create.

By the way, we are sticking to a site architecture that was used in the previous

chapters. This will make it easier to reuse code from previous projects. Reusing existing

code will help develop reliable solutions faster. Let us get started!

�Creating a Navigation
This site will have two main page views: one for displaying the gallery and one to show a

form to allow users to upload new images. Because we know we will need these two page

views, we can prepare a site navigation with two navigation items. Let us create a new file

in the views folder and call it navigation.php.

Listing 4-1.  navigation.php

<?php

$nav = "

<nav>

 Gallery

 Upload new image

</nav>

";

?>

Chapter 4 Building a Dynamic Image Gallery

118

�Creating Two Dummy Page View Files
It is always a clever idea to start small when coding something new. Let us prepare two

separate page views: one for the gallery and one for the upload form. Each page view

will be generated and returned from separate files. So, we create two files inside the

views folder.

Listing 4-2.  gallery.php

<?php

//complete source code for views/gallery.php

$info = "<h1>Images Gallery</h1>";

?>

Listing 4-3.  upload.php

<?php

//complete source code for views/upload.php

$info = "<h1>Upload New Images</h1>";

?>

�Creating the Index File
As mentioned earlier, every site has an index page. This is the default page that is

displayed in a browser when the user enters a URL (such as www.google.com). As the

main door to the site, it is important that the page be clean, clear, reliable, and attractive.

Our first version of the index page will display a functional, dynamic navigation linking

to two quite simple page views.

Listing 4-4.  index.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "views/navigation.php";

include_once "classes/Page_Data.class.php";

$pageData = new Page_Data();

Chapter 4 Building a Dynamic Image Gallery

http://www.google.com

119

$pageData->setTitle("Dynamic image gallery");

$pageData->setContent($nav);

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 $fileToLoad = $_GET['page'];

} else {

 $fileToLoad = "gallery";

}

include_once "views/$fileToLoad.php";

$pageData->appendContent($info);

require "templates/page.php";

echo $page;

?>

As we can see, the index page is similar to the last version in Chapter 3. Reusing code

speeds creation time and increases reliability at the same time. The Page_Data class and

the page file are not shown because, at this point, we have made no changes from the

previous versions.

�Time to Test
All code so far has been just like that we have been working on in the first few chapters.

In total, we have very few lines of code, but this code is enough to perform an initial test.

When we are working with code, it is recommended that we write a little code, test it, and

then write a little more.

While frequently testing progress, we will be able to identify errors in their infancy.

An error is much easier to find in fewer lines of code. It only takes a few moments to test

our progress. Let us make it a habit to test often and catch errors as early as possible.

As mentioned before, a good programmer plans for the unexpected to occur. When

testing programs, make a valid attempt to try and break the code. See if you can cause

the code to produce errors. If errors are produced, adjust the code so it will gracefully

handle the unexpected. Let us test the code and look at the results.

Chapter 4 Building a Dynamic Image Gallery

https://doi.org/10.1007/978-1-4842-8205-2_3

120

Figure 4-2.  Default view for index.php

Figure 4-3.  index.php view after clicking Upload new image

Exercise: Try to break the current code. Make changes to the Page Data class which

will cause the upload pages to not display properly. Hint: Change the values checked

within the if statements. At least one if statement currently needs to be adjusted to

allow all information to be properly displayed. Can you find it? Remember the class is

designed to display default values if it does not validate information passed.

�Preparing a Function for Displaying Images
Let us update the gallery file to declare a short function that simply returns an HTML

string including a with one . This change is a step toward the site’s ability to

display all images that are contained within a given folder (directory).

Listing 4-5.  showgallery.php

<?php

//complete source code for views/gallery.php

//function definition

function showImages() : string{

 $out = "<h1>Image Gallery</h1>";

 $out .= "<ul id='images'>";

Chapter 4 Building a Dynamic Image Gallery

121

 $out .= "I will soon list all images";

 $out .= "";

 return $out;

}

//function call

$info = showImages();

?>

See how the variable $out inside the function showImages() gradually gets increased

content over several lines of code, using incremental concatenation. In the end, when the

HTML string is complete, the content of the variable $out is returned to the line of code

that calls the function.

$info = showImages();

The generated string is returned to index.php, via the $info variable, where it will

be added to the $pageData object, merged with the page template, and echoed to the

browser.

�Iteration
Hopefully, function, variables, and incremental concatenation are slowly beginning

to make sense. Since we will be using multiple images, we need to take some time to

understand iteration: repeating the use of the same code several times.

�While Loop
Let us begin with while loops. while loops will repeat the same code block, as long as a

condition is true. The basic syntax is

while ($condition) {

 //repeat code here

}

A while loop is syntactically quite similar to an if statement. If the condition holds

true, the code in the subsequent code block will repeat until the condition becomes

false. Here is an example to illustrate the concept.

Chapter 4 Building a Dynamic Image Gallery

122

Listing 4-6.  whileloop.php

<?php

$number = 1;

while ($number < 5) {

 echo "the while loop has concluded $number loops
";

 $number = $number + 1;

}

?>

while ($number < 5) {

The code block is repeated four times. That is because of the condition declared

inside the parentheses of the while statement. It looks at $number to determine if it is

smaller than five. The first time the loop executes, the $number is set to one.

$number = $number + 1;

Every time the code block runs, $number is increased by one. The counting variable

$number has a value of 5 when the while loop has repeated four times. Because five is not

smaller than five, the while loop terminates, and a fifth line is never echoed.

Note  What happens if the programmer forgets to increment the variable used to
count loops? If the variable is not incremented, it does not change. The loop would
continue to evaluate the expression as true, because the value of one does not
change and it still is less than five. This creates an infinite loop. This is a common
mistake, especially for beginning programmers. Always double-check that you
remembered to include incrementing the counting variable.

Figure 4-4.  Output from whileloop.php

Chapter 4 Building a Dynamic Image Gallery

123

�For Loop
As a new programmer, we want to be reminded, as much as possible, of any code

required to successfully create iterations. While loops are a great general loop for any

time, we need to iterate until a condition changes. However, a for loop is designed

specifically for situations in which we know how many times we want to loop.

Listing 4-7.  forloop.php

<?php

for ($number = 1; $number < 5 ; $number++) {

 echo "the for loop has concluded $number loops
";

}

?>

As we can see, the for loop takes less lines of code than the while loop to accomplish

the same result.

for ($number = 1; $number < 5 ; $number++) {

The counting variable $number is initialized to one, compared to the number five,

and incremented in the same program statement. Actually, for loops automatically

execute statements in the first position (before the first semicolon) once at the beginning

of the loop. They then execute the code in the second position (between the semicolons)

whenever they reach the top of the loop (including the first time entering the loop). The

code in the third position (between the last semicolon and the parentheses) is executed

whenever they reach the bottom of the loop. In other words, the for loop produces the

same result as the while loop. However, it helps remind us to create a counting variable,

to give it an initial value, to compare it, and most importantly to increment it every time.

Before we move on, one change we did add to the previous example was another

way to increment a value. In the for statement $number is incremented using ++, instead

of $number = $number + 1. There are actually several ways we can increment values.

$number = $number + 1;

$number++;

$number += 1;

Chapter 4 Building a Dynamic Image Gallery

124

All the preceding statements increment the variable by one. Each increments the

value after it has been used. What?

$number = 1;

echo $number++;

echo $number;

The preceding statements will display the value of 1 with the first echo and 2 with

the second echo. The value is increased, using $number++, after it has been echoed the

first time.

$number = 1;

echo ++$number;

echo $number;

If we move the ++ symbols to the left, the variable will be incremented before it is

used. Thus, the first echo statement will display two and the second will display three.

We could have switched our incrementation to occur before use in the for statement.

Since we are not actually using the value (such as displaying it with an echo), it will

not actually change any result with this for-loop example. Most of the time, it does not

matter if you increment before or after, but, as we just discovered, we should be careful

that we produce the results we expect.

$number = 2;

echo $number--;

echo --$number;

We can also decrement variables using --. The process is the same; if it is on the right

side, it will decrement after use. If it is on the left side, it will decrement before use. In

this example. The first echo will display two and the second zero. Zero? Did you think

it was one? The value is decremented with the first echo to one. Then it is decremented

again to zero before the second echo displays the results.

Exercise: Adjust the for-loop example to loop ten times. Then adjust the loop to only

display odd numbers. Hint: Change the incrementation to add two each time. Finally

look up the use of the continue and break statements at www.php.net. How can we skip

the value of four, but continue the loop? How can we exit the loop early if the counting

variable holds the value of six?

Let us get back to creating our images gallery.

Chapter 4 Building a Dynamic Image Gallery

http://www.php.net

125

�Using glob to Find Files in a Folder
The PHP glob method can be used to find pathnames that match a pattern. It can quickly

scan a directory and create an array which contains all items that match the pattern.

We could use the for loop to retrieve the results, because we do not know how many

results will be returned. We could discover this information with the length property

of the array. However, there is an even better option, the foreach loop. This loop was

specifically created to iterate arrays and other lists.

�For Each Loop
foreach ($arrayname as $value) {

 statement

}

The foreach syntax requires an array (or list) name and a variable to hold the current

item being viewed. For example:

<?php

$cars = array("ford", "chevy", "honda", "kia");

foreach ($cars as $value) {

 echo "$value
";

}

?>

In this example, an array of cars has been declared. The foreach loop will increment

through the array and place each value (car) in the variable $value. It then displays the

value. The loop continues until there are no more cars. We do not need to worry about

the size of the array and can easily change the array without having to change the loop!

�Showing All Images
Let us use the foreach loop to retrieve images for our gallery.

Chapter 4 Building a Dynamic Image Gallery

126

Listing 4-8.  listgallery.php

<?php

//complete source code for views/gallery.php

//edit existing function

function showImages() : string{

 $out = "<h1>Images Gallery</h1>";

 $out .= "<ul id='images'>";

 $dir_name = "imgs";

 chdir($dir_name);

 $images = glob("*.jpg");

 foreach($images as $image) {

 $out .= '';

 }

 $out .= "";

 return $out;

}

$info = showImages();

?>}

The first few lines of the function pass HTML code to the $out variable to format the

display of the images. We will clean up this display in another example.

$dir_name = "imgs";

The $dir_name variable holds the directory that contains the images. Since the

directory is located within our ch4 folder, no additional path is necessary. Although we

can include a path if needed.

chdir($dir_name);

The chdir command will change our current location from the ch4 directory to the

imgs directory in preparation for searching the directory for images.

$images = glob("*.jpg");

Chapter 4 Building a Dynamic Image Gallery

127

This is a very powerful statement. Glob will filter out all values within the current

folder which do not have the file ending shown. It will then create an array in a format

similar to the following.

Array ([0] => image4-1.jpg [1] => image4-2.jpg [2] => image4-3.jpg [3] =>

image4-4.jpg)

Since we placed the results into $images, glob automatically formatted $images as an

array holding the file names for any JPEG images in the directory. If we want to include

more than one type of image, we can separate them with commas as shown in the

following.

$images = glob("*.{jpg,jpeg,png,gif,JPG,JPEG,PNG,GIF}");

The foreach loop displays the images.

foreach($images as $image) {

 $out .= '';

 }

 $out .= "";

Each image is placed into the list with the directory name because the index program

runs from the ch4 folder, while the images are in the imgs folder.

Note M inor changes have been made to the navigation and the index programs
to use the listgallery.php program. To test the current version, run the listindex.php
program in the browser.

�Secure Programming
Let us make some changes to the gallery code to reduce the chances of overloading the

system with files that are too large, or a total file size that is not reasonable.

Chapter 4 Building a Dynamic Image Gallery

128

Note  Denial-of-service (DOS) attacks are common attempts by hackers to cause
websites and servers to crash. All programmers should be aware that hackers will,
at some point, attempt to bring down a web page and/or server. Anytime files are
being retrieved from another location or uploaded from the user, file limits should
be set to stop these attempts.

Listing 4-9.  securelistgallery.php

<?php

//complete source code for views/gallery.php

//edit existing function

function showImages() : string{

 $out = "<h1>Images Gallery</h1>";

 $out .= "<ul id='images'

 style='

 list-style-type:none;

 width: 550px;

 border: 5px solid black;

 padding: 50px;

 margin: 20px;'

 >";

 $totalSize = 0;

 $numberOfImages = 0;

 $dir_name = "imgs";

 chdir($dir_name);

 $images = glob("*.jpg");

 foreach($images as $image) {

 if((filesize($image) < 500000) and ($totalSize < 2500000)) {

 $out .= '<img src="'.$dir_name. '/' .$image.'"

 style="

 height: 200px;

 width: 250px;

 border: 2px solid black;

Chapter 4 Building a Dynamic Image Gallery

129

 padding: 5px;

 margin: 5px;

 "/>';

 $totalSize += filesize($image);

 $numberOfImages++;

 }

 if (($numberOfImages % 2) == 0) {

 $out .= "";

 }

 }

 $out .= "";

 return $out;

}

$info = showImages();

?>

Note M inor changes occurred in the index and navigation files to use
securelistgallery.php. To test this version, use securelistindex.php.

At first, this version looks a lot more complicated than the previous version.

However, most of the added code was CSS to format the display of the images.

�CSS Review
style='

 list-style-type:none;

 width: 550px;

 border: 5px solid black;

 padding: 50px;

 margin: 20px;'

List-style-type allows flexibility in the type of images (circle, dot) that are displayed

in an unordered list. In this example, the value is set to none to not display any images

next to the pictures. The width is set to 550 pixels to allow enough room for two pictures,

Chapter 4 Building a Dynamic Image Gallery

130

each with a width of 250 pixels. Padding (50px) is the amount of space within the box

between the images and the border. The border is set to five pixels with a color of black.

The margin (20px) is the amount of space outside the box (border).

if((filesize($image) < 500000) and ($totalSize < 2500000)) {

The filesize method returns the size of the file in bytes. Thus, a size of 500000 is

equivalent to 500KB (kilobytes). $totalSize will keep track of the total of all the pictures

being displayed. In this example, the total will not exceed 2500 KB. This simple if

statement increases the security of our program.

$totalSize += filesize($image);

$numberOfImages++;

Do not forget to add the file size of each image to $totalSize and increment the

number of images. Why are we keeping track of the number of images?

 if (($numberOfImages % 2) == 0) {

 $out .= "";

 }

We have set up our display to allow two images per row. Thus, we can use an if

statement to determine if we need to go to the next row, by closing the list element

() and opening a new list element (). The % operator is a modulus operator. It

looks at the remainder of a division. If there is no remainder, then the number of images

is divisible by two – which indicates we have a multiple of two images (0, 2, 4, …), which

would be the time to start a new row.

We now have a good-looking secure gallery.

Chapter 4 Building a Dynamic Image Gallery

131

Figure 4-5.  Output from securelistgallery.php via securelistindex.php

Exercise: Adjust the settings in the securelistgallery.php program to not display

some of the images provided. Does it handle the removal of these pictures well? Add

your own images to the folder and adjust the file size and total size allowed to display

your images. How would we add captions below the images? How would we add an

Alt parameter for each image? Add each. Remember, to provide the best experience for

visually impaired viewers, we must include Alt parameters.

Chapter 4 Building a Dynamic Image Gallery

132

�Creating a Form View
Let us create an HTML form to upload new images to the gallery. We will create a file in

the views folder and name it uploadForm.php.

Listing 4-10.  uploadForm.php

<?php

$info = "

<h1>Upload New jpg Images</h1>

<form method='post' action='index.php?page=upload' enctype='multipart/

form-data' >

 <label>Find a jpg image to upload</label>

 <input type='file' name='image-data' accept='image/jpeg'/>

 <input type='submit' value='upload' name='new-image' />

 </form>";

?>

Some of the preceding code should look familiar. We have an HTML form with

method and action attributes. But this form does have some differences from the

previous forms we have written.

<form method='post' action='index.php?page=upload' enctype='multipart/

form-data' >

Did you notice the enctype attribute declared for the form? The default encoding

used by forms will not allow file uploads. We must specifically declare that this particular

form should use multipart/form-data as content-type, because this is required to

upload files through HTTP. This information is attached to the http get command that is

created by the browser to request information from the server.

<input type='file' name='image-data' accept='image/jpeg'/>

Another notable difference is the new input type='file' attribute. It will create a file

upload control to allow users to browse their own hard drives for image files to upload.

Notice the accept attribute on the same <input> element. It sets the default file format to

a content-type of image/jpeg.

Chapter 4 Building a Dynamic Image Gallery

133

Declaring an accept attribute is quite helpful for end users. When it is declared, it

will narrow down which files users can see through the form. Users are directed to select

a file with an appropriate file type.

Note T he accept attribute can be used with any Internet media type. An Internet
media type is a standard way of identifying a file type. See more about Internet
media types at http://en.wikipedia.org/wiki/Internet_media_type.
Remember, hackers can change the restrictions set by the HTML code. Also, the
file upload window still allows the user to change the file type to “all files.” We will
also need to restrict the file type using PHP to ensure that no unapproved file types
sneak through.

�Showing a Form for Uploading Images
Let us change the upload program to use this form when the user clicks the “Upload new

image” selection in the navigation.

Listing 4-11.  imageUpload.php

<?php

//complete source code for views/upload.php

include_once "views/imageuploadForm.php";

?>

There is not much to the imageUpload.php file. However, we will add more to

it soon.

Figure 4-6.  Output from imageUpload.php

Chapter 4 Building a Dynamic Image Gallery

http://en.wikipedia.org/wiki/Internet_media_type

134

Note M inor changes have been made to the navigation and index programs to
call the new imageUpload.php program. To test this program, load imagelistindex.
php in the browser. At this point, the image will still not be uploaded. But we will fix
this soon.

Notice that when the user clicks the browse button, the HTML retrieves a familiar

file upload window. This window is actually called using a hidden API (application

programming interface) call to the user’s operating system. This keeps consistency in the

user experience. Also, the limitation to only allow JPEG images is passed as a parameter

through the API call, which is set to the default display of the files available to only

JPEG images.

Figure 4-7.  Output when browse button clicked in imageUpload.php

Chapter 4 Building a Dynamic Image Gallery

135

�php.ini
There are several settings we need to check or adjust within the php.ini file to allow and

limit file uploads. The php.ini file contains all initialization settings that are accessed

whenever a PHP program is interpreted. Depending on the Apache/PHP/MySQL

package you have chosen to install, the location of this file will vary. However, it is

located in the same location as other PHP files. If you installed XAMPP, it is located in the

PHP folder under the XAMPP folder. You can view and edit this file with any text editor

(such as Notepad or Notepad++). However, if you do make changes, first make a backup

copy, in case you make a mistake. In order for the changes to take effect, the Apache

server must be stopped and restarted again.

Note T he php function php_ini_loaded_file() can be displayed (echoed) within a
simple PHP program to discover the location of the php.ini file.

;;;;;;;;;;;;;;;;

; File Uploads ;

;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.

; http://php.net/file-uploads

file_uploads=On

; Temporary directory for HTTP uploaded files (will use system

default if not

; specified).

; http://php.net/upload-tmp-dir

upload_tmp_dir="C:\xampp8.1.1\tmp"

; Maximum allowed size for uploaded files.

; http://php.net/upload-max-filesize

upload_max_filesize=40M

; Maximum number of files that can be uploaded via a single request

max_file_uploads=20

Chapter 4 Building a Dynamic Image Gallery

136

Within the php.ini file, we need to make sure that file_upload is set to On. We can

also specify a different location to temporarily hold our upload files (if we choose). We

can adjust the maximum file size to be uploaded and the maximum number of files

that can be uploaded in a single request. Careful thought should be given to what limits

should be used. We should always assume that someone will attempt to bring down our

server by attempting to flood it with a massive amount of file uploads.

�$_FILES
When files are uploaded into PHP, the metadata associated with the file are stored into

an associative array. This superglobal array is named $_FILES. The array contains several

important aspects about the file uploaded.

Array (

 [image-data] => Array (

 [name] => alberte-lea.jpg

 [type] => image/jpeg

 [tmp_name] => /Applications/XAMPP/xamppfiles/temp/phpYPcBjK

 [error] => 0

 [size] => 119090

)

)

The name and type are self-explanatory. The tmp_name is the temporary name of

the file after it has been uploaded. If the file size is too big (according to the settings in

php.ini), then this will be set to “none.” An error code of 0 or UPLOAD_ERR_OK indicates

that the file was uploaded successfully. The file size is the number of bytes. Additional

possible error messages are listed in the following.

 UPLOAD_ERR_OK = File uploaded successfully

 UPLOAD_ERR_INI_SIZE = File is too big to upload

 UPLOAD_ERR_FORM_SIZE = File is too big to upload

 UPLOAD_ERR_PARTIAL = File was only partially uploaded

 UPLOAD_ERR_NO_FILE = No file was uploaded

 UPLOAD_ERR_NO_TMP_DIR = Missing a temporary directory on the server

 UPLOAD_ERR_CANT_WRITE = File cannot be saved to disk

 UPLOAD_ERR_EXTENSION = Invalid file extension

Chapter 4 Building a Dynamic Image Gallery

137

�Secure Programming
Hackers can manipulate the contents of the $_File associate array. The one exception

is that the tmp_name cannot be changed. Thus, when using the information from this

array, we need to validate it.

We can create a function to validate the file and its size before we move it.

Listing 4-12.  checkFile.php

<?php

function checkFile($tmpName, $variableName) {

$valid_File_Types = array('image/jpeg' => 'jpg');

$max_Size = 40 * 1024 * 1024;

// 40MB must be the same size or less than the setting in php.ini

$errorStatus = false;

if(!isset($_FILES[$variableName])) {

 // error $_FILE does not exist

 $errorStatus = true;

} else {

 $info = finfo_open(FILEINFO_MIME_TYPE);

 if (!$info) {

 // error Can't open finfo using mime type

 $errorStatus = true;

 } else {

 $mime_type = finfo_file($info, $tmpName);

 �if (!in_array($mime_type, array_keys($valid_File_

Types))) {

 // error invalid file type

 $errorStatus = true;

 } else {

 �if (filesize($_FILES[$variableName]

['tmp_name']) > $max_Size) {

 // error file size too big

 $errorStatus = true;

 }

Chapter 4 Building a Dynamic Image Gallery

138

 finfo_close($info);

 }

}

}

return $errorStatus;

}

// Code below used for testing only

$variableName ='image-data';

$tmp = $_FILES['image-data']['tmp_name'];

if (!checkFile($tmp, $variableName))

 { echo "File is valid";}

else { echo "Invalid File"; }

?>

Wow. A lot of new code. But let’s break it down one part at a time to see what is

happening.

$valid_File_Types = array('image/jpeg' => 'jpg');

$max_Size = 40 * 1024 * 1024;

// 40MB must be the same size or less than the setting in php.ini

$errorStatus = false;

$valid_File_Types is an array of our acceptable file types. Currently, there is only one

entry, but we can easily add additional file types. $max_Size is our allowable maximum

size for an individual file. This must be the same or less than the value stored in the php.

ini file. $errorStatus is set to false, which, by default, indicates there are no problems with

the file we are uploading.

if(!isset($_FILES[$variableName])) {

 // error $_FILE does not exist

 $errorStatus = true;

If the variable name (image_data) passed from the HTML form does not exist in

the $_FILE array, we set the error status to true. This would be a possible indication that

someone corrupted the array.

Chapter 4 Building a Dynamic Image Gallery

139

 $info = finfo_open(FILEINFO_MIME_TYPE);

 if (!$info) {

 // error Can't open finfo using mime type

 $errorStatus = true;

If $info is not set, something happened when we attempted to create the ability to

look at mime types using finfo. This is not an indication of a problem with our uploaded

file but is an indication we have some other problem.

 $mime_type = finfo_file($info, $tmpName);

 �if (!in_array($mime_type, array_keys($valid_File_

Types))) {

 // error invalid file type

 $errorStatus = true;

If the mime type (file ending) does not match one in our $valid_File_Types array,

then we set the error status to true.

 �if (filesize($_FILES[$variableName]['tmp_name']) >

$max_Size) {

 // error file size too big

 $errorStatus = true;

If the file size of the temporary file uploaded is larger than the maximum we are

allowing, the error status is set to true.

return $errorStatus;

}

$variableName ='image-data';

$tmp = $_FILES['image-data']['tmp_name'];

if (!checkFile($tmp, $variableName))

 { echo "File is valid";}

else { echo "Invalid File"; }

Note Y ou can run this program using testUploadForm.php available under the
views folder under the ch4 folder.

Chapter 4 Building a Dynamic Image Gallery

140

The error status is returned to whatever program called it. In this test, we called it

right below the function and set the variable name and gathered the temporary name

of the file from the $_FILES array created when the file was uploaded from the HTML

form. This information was then passed into the function. If the function returns false,

everything is OK. If it returns true, we have a problem.

Now that we have an ability to validate our uploaded file, we can finish the process

by moving the file from the temporary location.

�Uploading Files with PHP
When the file is initially uploaded, it is placed in a temporary directory on the server

with a temporary name as shown in the tmp_name value in the array. Remember that

this location is determined in the php.ini file and can be changed by updating the php.

ini and restarting Apache. To permanently store the file, we must move it from the

temporary location to a permanent one.

move_uploaded_file($fileName, $destination);

The function move_uploaded_ files will accomplish this task. It takes two arguments.

The first, $fileName, should hold the valid temporary file name (located in tmp_name

in the $_File associate array). The second, $destination, is the folder to store the

file permanently. This location must be writable and already exist. The function

move_uploaded_file() will return TRUE, if the file was saved successfully, and FALSE, if

something went wrong.

�Planning an Uploader Class
You will write code to upload files many times in your life as a PHP or full stack

developer. It would be a clever idea to write some code for uploading in such a way that

you can easily reuse it in later projects. Objects are easily reused, so let us plan a class we

can reuse anytime we want to upload files.

�UML

UML provides a simple diagram for planning how to organize a class. The basic design is

shown in the following.

Chapter 4 Building a Dynamic Image Gallery

141

Figure 4-8.  Basic UML diagram

Figure 4-9.  UML diagram of the Uploader class

Remember, class names always begin the first name with an uppercase letter. If the

class name is a compound word, we can uppercase the first letter for each additional

word. We can also choose to separate each with an underscore. If the class is in a

separate file from the main program, the file name which contains the class should be

the same name as the class itself.

Note UML is an acronym for “Unified Modeling Language.” The language
provides a standard syntax for documenting code. There is more to UML than just
class diagrams. For more information on UML, visit www.uml.org.

�Uploader Class Requirements

As we discovered, we will need to save file data received from a form by moving it from

the temporary directory to a permanent location. Thus, the class needs a property for

storing the file metadata and a method for saving the file. The method will need a file

name, so let us create a $filename property. We also need to save it someplace, so let us

create a property to remember the location called $destination and a method to save it.

We can now begin to plan our new class definition.

Chapter 4 Building a Dynamic Image Gallery

http://www.uml.org

142

With a plan and a UML class diagram, it is easy to get started writing the class

definition. Let us create a new file, classes/Uploader.class.php, as follows:

Listing 4-13.  Uploader.class.php

<?php

class Uploader {

 private $filename;

 private $fileData;

 private $destination;

 public function saveIn($folder) {

 $this->destination = $folder;

 }

 public function save(){

 //no code here yet

 }

}

?>

The preceding code declares a class with a class name and class code block

delimited with curly braces. Inside the class, there are three properties and two methods

declared. It makes it much easier to create a class when we have already created a UML

class diagram.

The property destination will get its value whenever the method saveIn is called.

The properties filename and fileData do not currently have any values. We can retrieve

both filename and fileData values from the superglobal array $_FILES. It would be nice

if they got values whenever a new Uploader object was created, so their values reflect

whatever file we wanted to upload at that point.

�The Magic Method __construct()

It just so happens that we can use the __construct() constructor method to accomplish

our task. It will run only once, whenever a new Uploader object is created, using the new

keyword. Remember there are two underscore characters before the method name. Let

us declare a constructor method for the Uploader, so filename and fileData properties

can get their values from $_FILES whenever a new Uploader object is created.

Chapter 4 Building a Dynamic Image Gallery

143

Listing 4-14.  ImageUploader.class.php

<?php

//complete code for classes/Uploader.class.php

class ImageUploader {

 private $filename;

 private $fileData;

 private $destination;

 //declare a constructor method

 public function __construct($key) {

 $this->filename = $_FILES[$key]['name'];

 $this->fileData = $_FILES[$key]['tmp_name'];

 }

 public function saveIn($folder) {

 $this->destination = $folder;

 }

 public function save(){

 //no code here yet

 }

}

?>

Remember, we must know the name attribute of the <input type='file'> element

used to upload a file. As we discovered earlier, we need the name attribute to access

all file data in $_FILES. In the preceding code, the constructor method uses $key as

an argument. The $key value will be used to pass the name attribute value into the

constructor. With that in place, the constructor method can access all the metadata for

the uploaded file.

�Saving the Uploaded File

The Uploader class is getting close to completion. We need to complete the method

for saving the new file and verify that the file we are attempting to upload is valid.

Remember to always prepare for the unexpected. There is one frequent problem we are

likely to come across while performing file uploads: the destination folder might not be

writable. We can prepare for it in our code.

Chapter 4 Building a Dynamic Image Gallery

144

Listing 4-15.  ImagesUploader.class.php

<?php

//complete code for classes/Uploader.class.php

require_once "views/checkImageFile.php";

class ImagesUploader {

 private $filename;

 private $fileData;

 private $destination;

 private $keyValue;

 //declare a constructor method

 public function __construct(string $key) {

 $this->keyValue = $key;

 $this->filename = $_FILES[$key]['name'];

 $this->fileData = $_FILES[$key]['tmp_name'];

 }

 public function saveIn($folder) {

 $this->destination = $folder;

 }

 public function save(){

 $variableName = $this->keyValue;

 $tmp = $_FILES[$this->keyValue]['tmp_name'];

 $folderIsWriteAble = is_writable($this->destination);

 $notValid = checkImageFile($tmp, $variableName);

 if(!$notValid and $folderIsWriteAble) {

 $name = "$this->destination/$this->filename";

 $success = move_uploaded_file($this->fileData, $name);

 } else {

 $success = false;

 }

 return $success;

 }

}

?>

Chapter 4 Building a Dynamic Image Gallery

145

Let’s look at the changes.

require_once "views/checkImageFile.php";

The previous function to check the validity of the image has been slightly modified

by removing the call to the function, which will now occur in the save method in

the ImagesUploader class. The new name of the file containing the verify method is

checkImageFile.php.

 $variableName = $this->keyValue;

 $tmp = $_FILES[$this->keyValue]['tmp_name'];

 $folderIsWriteAble = is_writable($this->destination);

 $notValid = checkImageFile($tmp, $variableName);

 if(!$notValid and $folderIsWriteAble) {

 $name = "$this->destination/$this->filename";

 $success = move_uploaded_file($this->fileData, $name);

The $variableName and $tmp variables are set within the save method, with the

same values as they were previously set in the original check file method. Also, the PHP

is_writable function is used to determine if the directory in which the file will be moved

is writable. If the file passes verification and the directory is writable, the if statement

produces a true result and the file is moved to the permanent location.

 } else {

 $success = false;

 }

 return $success;

 }

If there is a problem, the else part of the if statement is executed. We have set

$success to false, which indicates there is a problem, and have passed the value in

$success (true or false) back to the calling program.

�Using the Uploader Class
We can now put the Uploader class to effective use and upload a file. It does not take a lot

of code because most code is written inside the Uploader class.

Chapter 4 Building a Dynamic Image Gallery

146

Listing 4-16.  imagesUpload.php

<?php

//complete source code for views/upload.php

function upload(){

 include_once "classes/ImagesUploader.class.php";

 //image-data is the name attribute used in <input type='file' />

 $uploader = new ImagesUploader("image-data");

 $uploader->saveIn("imgs");

 $fileUploaded = $uploader->save();

 if ($fileUploaded) {

 $out = "New file uploaded to Images Gallery";

 } else {

 $out = "Something went wrong";

 }

 return $out;

}

$info = upload();

?>

Note M inor adjustments have occurred in the following files to access
the current versions: ImagesUploader.class.php, imageslistnavigation.php,
imageslistindex.php, imagesUploadForm.php. Take the time to view these changes
from the files provided by the publisher.

The upload function pulls in the uploader class. It then creates an instance of the

uploader (object $uploader) and passes the property name which holds the image

information. This name was set in the HTML upload form. The permanent file location

(imgs) is also passed into saveIn which stores it in the object. Then the save function is

called from $uploader, which validates the image and checks to make sure the folder

(imgs) is writable. If the file does get moved, $out is set to “New file uploaded to Images

Gallery.” If it does not get moved due to invalidation or the folder not being writable, the

message “Something went wrong file not uploaded to Images Gallery” is passed into

$out. $out is returned and set to $info, which will cause it to be displayed on the page.

Chapter 4 Building a Dynamic Image Gallery

147

Test the program using imageslistindex.php. The program should allow the upload

of any JPEG files that don’t exceed the size requirements.

Exercise: What can be added to these final programs to make them more secure?

Scan each of the programs and use the knowledge you have gained so far to provide

more secure programs. How can we limit the total size of all files to be uploaded into

the final destination? Add code to provide this limitation. This will also help reduce

the chance of successful DOS attacks. Also, go to www.php.net and discover how to

create constants. Constants cannot be changed once they are initially created. Edit the

programs and change any variables that do not change after being given an initial value

to constants. Constants do add another tool in creating secure programs.

How cool is that? We have a completely dynamic image gallery, and users can upload

their own images through the website. It is not quite flickr.com yet, but we hope you

will agree that you are really starting to use PHP to create something fun and useful.

�The Single Responsibility Principle
We hope you marvel at the beauty of the Uploader class definition. It is planned and

written with a single focus: It wants to upload files. It has properties and methods used

to accomplish only one task. The properties are all about the file to be uploaded, and the

methods are about uploading a valid file.

The single responsibility principle is a common principle used in object-oriented

programming. The single responsibility principle states that a class should be written for

a single purpose. All properties and methods of the class should relate directly to that

single purpose. The class should only have a single reason to change.

For example: The Uploader has only one reason to change. It will change if you want

to use it for uploading a different file. The single responsibility principle is a beautiful

ideal to strive for in code. It is really Curly’s law again, only this time, applied to object-

oriented programming.

Note Y ou can read more about the single responsibility principle at http://
en.wikipedia.org/wiki/Single_responsibility_principle.

Chapter 4 Building a Dynamic Image Gallery

http://www.php.net
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle

148

�Summary
In this chapter, we have seen how we can make a dynamic image gallery, using objects

and object methods. We also declared a custom class definition with properties and

methods. We learned about the several types of loops and discovered that the foreach

loop is designed to access information within an array, especially arrays in which we

might not know the actual size.

We now have written two class definitions: the Uploader and the Page_Data. We

are just starting to learn about classes and objects. We will get to work with many more

classes and objects throughout the rest of this book. There are plenty of examples and

explanations waiting for you in the pages to come, so hang in there. Learning takes time,

and we are just getting started.

�Projects

	 1.	 Explore examples on the Web about uploading multiple files using

HTML and PHP. Adjust the examples in this chapter to upload

multiple files at the same time. Discover and use the HTML setting

which limits the size of upload to the same size contained in

the php.ini file. However, be aware that a hacker can change the

HTML and avoid this limitation. To plan for this possibility, add

code to the PHP uploader class to limit the multi-file upload to

the value in php.ini. Also, add code to the HTML form to limit the

number of files uploaded at the same time to the value set in the

php.ini file. Add PHP code in the uploader class to also limit the

number of files to be uploaded.

	 2. 	 Add PHP code that will determine the number of files in the imgs

folder before the images are displayed. Only display the number of

images to the value set in the php.ini file.

Chapter 4 Building a Dynamic Image Gallery

149

	 3.	 Explore examples on the Web to restrict access to the HTML

upload form to specific users by requiring a userid and password

be entered before the file(s) is uploaded. Again, expect that a

hacker might try to bypass this restriction. Use PHP code to check

the userid and password before calling the uploader program.

If you want a challenge, how can we hash the password and

verify it when hashed? Check www.php.net for the most current

techniques to secure passwords.

	 4. 	 Change the program examples to upload documents (such as

pdfs) instead of images. Instead of displaying the images, display

HTML links to the documents.

Chapter 4 Building a Dynamic Image Gallery

http://www.php.net

151

CHAPTER 5

Reviewing PHP 8 Basic
Syntax

�Objectives
After completing this chapter, you will be able to

•	 Understand the use and value of conditional statements

•	 Understand the use and value of for, while, and foreach loops

•	 Understand the use and value of functions

•	 Understand the use and value of arrays

Now that we have successfully created our first usable project, let us take a minute

to review the basic PHP syntax. We will review some topics already covered and explore

additional new topics in this chapter. After gathering the knowledge from this chapter

and the previous chapters, we will be ready to explore the use of databases and other

external files and tackle a much larger project: a blogging system. Take the time to enter

in the code from the examples in this chapter and alter it to challenge yourself to become

a better programmer. The more you work with code, the more you will get comfortable

with quick efficient code development.

�From the Beginning
<?php

 // code goes here

?>

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_5

https://doi.org/10.1007/978-1-4842-8205-2_5#DOI

152

As stated earlier, all PHP code must be placed between the <?php and ?> tags.

The web server first looks at the file ending (.php) for an indication of the existence of

PHP code. Once it determines its existence, it uses the tags to indicate the location of

the code.

<h1> I love Green Tomatoes</h1>

<?php

 echo "The greener the better!";

?>

<h2> My partner hates Green Tomatoes</h2>

<?php

 echo "Yes I do!";

?>

As shown in the preceding, PHP code can be scattered into different areas of the

file (web page) by simply using the opening and closing tags. However, each time this

occurs, it requires sending the code to the PHP interpreter for processing. So, do not

get too carried away with the thrill of doing so. You want code that is easy to read and

understand. You reduce the chances of creating logical errors when the flow of the code

is easy to follow.

�Comments
Comments can be created using // or /*. Remember, comments are not executed.

However, they are very important. Good programmers provide comments so others

can understand any complicated code. Gone are the days in which only one person

maintains a program. Anyone that supports the code you created will really appreciate

the effort you put forth in providing comments.

<?php

 // �Description: This program produces a monthly departmental

sales report

 /* Inputs: Department ID (DID), Department Name (DN) : DepartTBL

 �Department ID (DID), Sales Date (Date), Sales

Amount (SA): SaleTBL

 from widgetTools database (mySQL 8) */

Chapter 5 Reviewing PHP 8 Basic Syntax

153

 // Outputs: Monthly Widget Sales Report (widgetsales.html)

 // �Updates: (02/12/2022) : Adjust output format, Sexton Jones:

Programmer

?>

Many organizations keep track of change management within a program by providing

details on who created the program, when it was created, and any changes that have

occurred. Comments can also provide a list of the inputs and outputs of the program and

a description of the program itself. Additionally, similar descriptions are provided for

functions (methods or procedures) which have been created within the program.

�PHP Functions
<?php

 echo "Hello World";

?>

All executable code must include a semicolon at the end of the statement. As a

standard, adopt the policy that any text strings (such as the preceding Hello World)

should be included in double quotes. PHP does allow some exceptions to the rule (such

as using single quotes in some instances), but you will seldom run into a problem if you

are consistent in providing them. The use of echo demonstrates the ability to use a PHP

function.

PHP provides a large number of other functions (blocks of code), besides the echo

statement shown in the preceding. The functions contain well-tested efficient secure

code. Whenever possible, a smart programmer will use existing functions to save time

and to reduce programming errors and possible security vulnerabilities.

When creating your own PHP functions, they should begin with a lowercase letter.

Additional words can be started with an uppercase letter, such as myFunction. Some

programmers also use underscores between the words. In the following example, the

string “Hello World” is passed into a function named “myFunction.” We will explore a

lot of PHP functions throughout this book. Later in this chapter, we will see additional

examples on how a programmer can create their own functions.

<?php

 myFunction("Hello World");

?>

Chapter 5 Reviewing PHP 8 Basic Syntax

154

�Variables
Variables temporarily store information in memory. As we have seen, PHP does not

require you to declare a data type when using a variable. However, when the opportunity

is available, you should consider defining the data type, as this will increase security by

restricting the type of information that can be stored.

Note A data type describes the data that you plan on storing, such as strings (text),
integers (whole numbers), or floating-point numbers (decimals). This information is
used by the operating system to determine the amount of space required to store
the information.

We have the option to declare data types in many situations. It is a good idea to

declare data types when we want to limit the type of data to be stored in memory.

Remember, PHP will do data type conversion (such as converting a string “10”

to a numeric 10) unless you stop it. Let us look at the standard way to declare

variables in PHP.

In PHP, we usually do not need to declare a variable separately before using it. When

declaring variables or functions, the developer can use many styles. The most common

is the camel case. In camel case, the first word is lowercase, and the remaining words

have a capitalized first letter, such as addIt. However, other styles are acceptable, such as

 $first_number = 0;

 $second_Number = 1;

 $number1 = 12;

The key is to be consistent within your code with whatever style you choose. There is

really no advantage as to which format is better. Although plenty of programmers will be

happy to tell you their opinion! In my opinion, you should use meaningful names such

as “total_Sales.” Some also include the data type in the name, such as “int_Total_Sales.”

In large programs, it will be much easier to keep track of variable usage with a good

naming convention.

Chapter 5 Reviewing PHP 8 Basic Syntax

155

Note V ariables must always include the $ as the first character and other
alphanumeric characters to complete the name. You can also include the
underscore (_). However, no other special symbols or spaces are allowed.

In the following example, a variable ($result) will hold whatever is returned by a

function called addIt. Since we have not declared a data type, this variable could hold

a numerical result, a string result, or some other possible format. As a programmer,

we might want this flexibility. For example, if the function is able to produce a result,

we return the result. If it is not able to return a result, we can return a string (“Invalid

Result”) or we could pass back NULL (which indicates no result, different from passing

a zero).

Since this function accepts two parameters (12, 13), we assume it will add the

numbers together and return the result. The echo statement will then display whatever is

contained in the variable.

<?php

 $result = addIt(12, 13);

 echo $result;

?>

If we have not declared data types to limit what is passed into the function (see in the

following), then it is possible that the following examples will also produce good results

with other types of information passed. However, there could be something within

the function that will not properly execute when information that is not expected is

passed. A good programmer always creates code that avoids any possible error situation

caused by invalid data being saved or passed into a function. Every situation must be

considered, even once the programmer may consider as illogical or next to impossible.

<?php

 $result = addIt(12.1, 13.3);

 echo $result;

?>

<?php

Chapter 5 Reviewing PHP 8 Basic Syntax

156

 $result = addIt(12, "13");

 echo $result;

?>

If we want to restrict what information to accept or use, we could declare data types.

We will explore a few examples soon. For now, by default, remember, the data type of a

variable is determined the first time a variable is used.

V-1: The data type is string (characters).

 $myValue = "Help";

V-2: The data type is set to an integer (whole numbers).

 $myValue = 123;

V-3: Two integers added together produce an integer which is then stored into the

variable.

 $myValue = 123 + 456;

 Result: $myValue now contains 579

V-4: Two floating-point numbers added together produce a floating-point number

stored in the variable.

 $myValue = 123.123 + 123.456;

 Result: $myValue now contains 246.579

V-5: A floating-point number added to an integer will produce a floating-

point number.

 $myValue = 123.233 + 12;

 Result: $myValue now contains 135.233

V-6: An attempt to add a number to a string number will be successful, if the string

can be converted to a number. Adding the values together will produce results similar to

the preceding examples.

 $myValue = 123 + "456";

 Result: $myValue now contains 579

Chapter 5 Reviewing PHP 8 Basic Syntax

157

The string concatenation character (.) can be used to merge the two strings together.

The result then can be placed in the variable (which you guessed it now contains a

string). In the following example, the existing two strings are merged together to create a

new string stored in $myValue.

 $myValue = "Help" . " me!";

 Result: $myValue now contains "Help me!"

C-1: When merging a string and integer, PHP will convert the integer to a string (123)

to allow it to be concatenated with the other string (Help) to produce a string “Help 123”

which will be placed into the variable.

 $myValue = "Help " . 123;

 Result: $myValue now contains "Help 123"

C-2: When a merger is attempted with a string and two values (which in this case

are to be added together), PHP will first do the calculation and then convert the result to

a string.

 $num1 = 1;

 $num2 = 2;

 $myValue = "Help " . $num1 + $num2;

 Result: $myValue now contains "Help 3"

Let’s take a look at restricting our data types with data type hints.

<?php

 function myFunction(bool $value = null) : bool {}

?>

In the preceding example, the function limits $value to only contain Boolean (true/

false) type values. It also limits the value returned to be Boolean.

<?php

 $value = myFunction();

 $value = myFunction(true);

?>

Chapter 5 Reviewing PHP 8 Basic Syntax

158

Note  true is not a string, it is a Boolean value. Thus, it does not require quotes.

Both of the preceding statements could be valid when calling the myFunction

function. If there is no value passed, then the variable $value is set to the default value,

which is null. Null indicates that the variable is empty. However, we could also pass a

Boolean value (true) which would be used instead of null.

Arithmetic operations work in a similar way to mathematics. The exception is that

the calculation is done on the right side of the assignment operator (right side of the =

sign) and the result is placed into the variable, function, or other object on the left side

of the expression. PHP already includes many functions to produce results seen on a

calculator.

Note  For more information on available math functions, visit www.php.net/
manual/en/ref.math.php.

PHP allows you to use parentheses () to change the order in which values are

calculated. Otherwise, for numerical values, the language usually follows a mathematical

order of operations. This order is similar to normal mathematics but does have a few

differences. We will see some of these as we explore the remainder of the book.

Note  For more information on order of operations, visit www.php.net/manual/
en/language.operators.precedence.php.

Let us look at some examples.

The assignment operator (=) will take the value from the right side of the expression

(1) and place it into the variable ($my_num) on the left side of the expression. If the

variable does not exist, it will be created in memory.

 $my_num = 1;

Both the following statements add the value on the right side of the expression ($my_

num) to the content that exists in the variable ($value) on the left side of the expression.

If the variable has not existed before, zero will be added to the value on the right side and

the result is placed into the variable ($value). If a string exists in the variable, an attempt

will be made to convert it to a number before adding it.

Chapter 5 Reviewing PHP 8 Basic Syntax

http://www.php.net/manual/en/ref.math.php
http://www.php.net/manual/en/ref.math.php
http://www.php.net/manual/en/language.operators.precedence.php
http://www.php.net/manual/en/language.operators.precedence.php

159

 $value += $my_num;

 $value = $value + $my_num;

The following example is similar to the previous example, except the value on the

right side is subtracted from the value contained in the variable. If the variable did not

previously exist, the value on the right side ($my_num) is subtracted from 0. If a string

exists in the variable, an attempt will be made to convert it to a number.

 $value -= $my_num;

 $value = $value - $my_num;

The following example is similar to the previous example, except the value is

multiplied instead of subtracted. If the variable did not previously exist, the value on the

right side ($my_num) is multiplied by 0. If a string exists in the variable, an attempt will

be made to convert it to a number.

 $value *= $my_num;

 $value = $value * $my_num;

The following example is similar to the previous example, except the value from the

right side ($my_num) is divided into the value contained in the variable. The division

will return a floating-point number, unless both values were integers and divided evenly

(without any decimal places). If a string exists in the variable, an attempt will be made to

convert it to a number.

Note I f the variable $my_num does not exist, it will be set to 0. This would cause
the throwing of an exception because you cannot divide by zero! The function fdiv()
will return INF (infinity), -INF (negative infinity), or NAN (not a number), instead of
throwing an exception, when dividing by zero.

 $value /= $my_num;

 $value = $value / $my_num;

The following example is similar to the previous one, except the remainder of the

division is placed into the variable. If a string exists in the variable, an attempt will be

made to convert it to a number.

Chapter 5 Reviewing PHP 8 Basic Syntax

160

 $value %= $my_num;

 $value = $value % $my_num;

The following statement will raise $value to the power contained in $my_num and

place the result back into $value.

 $value = $value ** $my_num;

Variables can be incremented/decremented before they are used (++$num, --$num)

or after they are used ($num++, $num--).

(Assume $num = 1 before each statement is executed.)

 $value = $num++ - 5; // $value is -4, $num is 2

 $value = $num-- + 5; // $value is 6, $num is 0

 $value = ++$num – 5; // $value is -3, $num is 2

 $value = --$num + 5; // $value is 5, $num is 0

Exercise: Create a program that sets two numerical values to two different variables.

Then calculate the values when adding, subtracting, dividing, and multiplying the

numbers. After each calculation, display the results in a sentence, such as “The sum of 1

and 2 is 3.”

Hint I n most cases, PHP allows you to place variable names inside of strings. For
example, “The sum of $firstNumber and $secondNumber is $sum” could produce
the requested results.

�Conditional Statements
Conditional statements determine if a comparison is “true” or “false.” If the statement is

true, then the code right after the if statement is executed. If the statement is false, the code

after the else statement (if there is one) is executed. Unlike the assignment operator (=), shown

in the previous section, comparing two values to determine if they are equal requires two

(==) or three (===) equal signs. Two signs ignore the case or data type. An “A” and “a”

would be equal. Also, a 5 and a 5.0 would be equal. Three signs require an exact match.

Both of the examples would not be considered equal with three signs.

Chapter 5 Reviewing PHP 8 Basic Syntax

161

Note I f the programmer mistakenly only uses one equal sign, the program will
not produce an error. It will assume a “true” state and the conditional statement
might produce invalid results.

 if(statement to compare) {

 // Executed if the comparison is true

 }

 // �Code after the if statement is executed whether the result is true

or false

 if(statement to compare) {

 // Executed if the comparison is true

 }

 else {

 // Executed if the comparison is false

 }

 // �Code after the if/else statement executed whether the result is

true or false

The basic structure of a conditional statement is shown in the preceding. In the

first example, the code inside the if statement is only executed if the statement is true.

No additional code is executed if the statement is false. In the second example, code is

provided after the else statement to be executed if the statement is false. Embedded if/

else statements can also be used.

Let us look at some examples using conditional statements with comparison

operators.

I-1:

<?php

 $a = 25; $b = 36;

 if($a == $b) {

 echo "$b equals $a";

 }

 else {

Chapter 5 Reviewing PHP 8 Basic Syntax

162

 echo "$b and $a are not equal";

 }

?>

Output: 36 and 25 are not equal.

Why: The value in $a (25) and $b (36) are not the same. Thus, the code in the else

section will be executed.

I-2:

<?php

 $a = "a"; $b = "A";

 if($a === $b) {

 echo "$b equals $a";

 }

 else {

 echo "$b and $a are not equal";

 }

?>

Output: A and a are not equal.

Why: Using three equal signs (===) also compares cases. In this example, the

comparison is false due to the case. If you remove one of the equal signs, the result will

become true.

Note I n this example, double quotes are used which creates a string. Since each
of these is only one character, single quotes could also have been used.

I-3:

<?php

 $a = 25; $b = 36;

 if($a != $b) {

 echo "$b and $a are not equal";

 }

Chapter 5 Reviewing PHP 8 Basic Syntax

163

 else {

 echo "$b and $a are equal";

 }

?>

Output: 36 and 25 are not equal.

Why: The not operator (!) works in reverse of the results of the equals operator (see #1).

The condition is reversed from a false state to a true state. The code right after the if

expression is executed.

I-4:

<?php

 $a = "A"; $b = "a";

 if($a !== $b) {

 echo "$b and $a are not equal";

 }

 else {

 echo "$b and $a are equal";

 }

?>

Output: a and A are not equal.

Why: The not case operator (!==) works in reverse of the case operator (see #2). The

comparison becomes true. The code right after the if statement is executed.

I-5:

<?php

 $a = 25.1; $b = 36;

 if($a < $b) {

 echo "$a is less than $b";

 }

 else {

 echo "$b is greater than $a";

 }

?>

Chapter 5 Reviewing PHP 8 Basic Syntax

164

Output: 25.1 is less than 36.

Why: Less than returns true if the value on the left is less than the value on the right.

We can mix floating-point (decimal) and whole number (integer) comparisons. In this

example, 36 will be converted to 36.0 before they are compared.

I-6:

<?php

 $a = 36; $b = 36;

 if($a <= $b) {

 echo "$a is less than or equal to $b";

 }

 else {

 echo "$b is greater than $a";

 }

?>

Output: 36 is less than or equal to 36.

Why: The less than or equal to comparison works similar to #5. However, if the values

are equal, then it returns true.

I-7:

<?php

 $a = 25; $b = 36;

 if($a > $b) {

 echo "$a is greater than $b";

 }

 else {

 echo "$b is greater than $a";

 }

?>

Output: 36 is greater than 25.

Chapter 5 Reviewing PHP 8 Basic Syntax

165

Why: The greater than comparison returns true if the left value is greater than the

right value. In this example, 25 is less than 36. The else portion of the code is executed.

I-8:

<?php

 $a = 36; $b = 36;

 if($a >= $b) {

 echo "$a is greater than or equal to $b";

 }

 else {

 echo "$b is greater than $a";

 }

?>

Output: 36 is greater than or equal to 36.

Why: The greater than or equal to comparison works similar to #7. However, if the

two values are equal, it returns true.

I-9:

<?php

 $a = 36; $b = 36;

 $result = $a <=> $b;

 if($result === 0) {

 print "Both are equal";

 } else if($result === 1) {

 echo "$a is greater than $b";

 } else {

 echo "$b is greater than $a";

 }

?>

Chapter 5 Reviewing PHP 8 Basic Syntax

166

Output: Both are equal.

Why: The rocket ship operator returns -1 if $a < b, returns 0 if $a equals $b, or returns

1 if $a > $b. The if statement shown determines that status returned by the rocket ship

operator and displays the appropriate result. The use of the if/else/elseif structure is

shown here to determine a range of possible values.

�Logical Operators
Logical operators allow you to ask more than one question in a conditional statement.

Let us look at some examples.

L-1:

<?php

 $a = 25; $b = 25; $c = 25; $d = 35;

 If ($a == $b or $c == $d) {

 echo "Some or all of us are equal!";

 } else {

 echo "We are not equal";

 }

?>

Output: Some or all of us are equal.

Why: Both sides of the or statement evaluate to true. If either or both sides of an or

operator are true, then the complete expression is true.

Note T he symbols || can also be used instead of or.

L-2:

<?php

 $a = 25; $b = 25; $c = 35; $d = 35;

 If ($a == $b and $c == $d) {

 echo "All of us are equal!";

Chapter 5 Reviewing PHP 8 Basic Syntax

167

 } else {

 echo "No one is equal";

 }

?>

Output: All of us are equal.

Why: Both sides of the expression must be true for complete expression to be true

when using an and operator. In this example, both sides are true.

Note T he symbols && can also be used instead of and.

L-3:

<?php

 $a = 25; $b = 25; $c = 25; $d = 25;

 If ($a == $b xor $c == $d) {

 echo "Everyone is equal!";

 } else {

 echo "Someone is not equal";

 }

?>

Output: Someone is not equal.

Why: With exclusive or (xor), only one side of the expression can be true. In this

example, both sides were true, so it evaluates to false. If this were an or statement, it

would have been evaluated to be true.

L-4:

<?php

 $a = 25; $b = 25; $c = 25; $d = 25;

 If (! ($a == $b xor $c == $d)) {

 echo “Everyone is equal!”;

 } else {

Chapter 5 Reviewing PHP 8 Basic Syntax

168

 echo "Someone is not equal";

 }

?>

Output: Everyone is equal.

Why: The not expression (!) reverses the result. This exclusive or (xor) returned false

because both sides are true. However, the not reversed.

The ? operator is a short coding version of a conditional if-then-else statement.

<?php

 $a = 36; $b = 36;

 echo $a == $b ? "They are equal" : "They are not equal";

?>

Output: They are equal.

Why: The statement placed between the ? and : is executed if the comparison is

true. The statement between the : and ; is executed if the statement is false. Since a print

command is to the left of the comparison, the result of the comparison will be printed.

$a and $b are the same value; thus, the first string is displayed.

 <?php

 $a = 36; $b = 24;

 �echo $a <=> $b ? "They are equal" : "$a is greater than $b" :

"$b is greater than $a";

?>

Output: 36 is greater than 24.

Why: You can also evaluate for equal (0), greater than (-1), and less than (1) using

the spaceship operator. This comparison becomes very short and efficient to determine

whether the values are equal or who is greater. Since $a is greater than $b, the statement

between the two colons (:) is displayed. If $a were less than $b, the statement between

the last colon and the semicolon would be displayed. Otherwise, when the values are

equal, the statement between the question mark (?) and first colon would be displayed.

Let us take a look at some invalid comparisons and the resulting error messages.

E-1:

Chapter 5 Reviewing PHP 8 Basic Syntax

169

“ten” > "eleven";

Result: Error: "Unsupported type string for comparison"

E-2:

"eleven" > 10;

Result: Error: “Operator type mismatch string and int for comparison”

E-3:

"ten" == 10;

Result: Error: “Operator type mismatch string and int for comparison”

E-4:

"120" > "99.9";

Result: Error: “Unsupported type string for comparison”

E-5:

"120" <=> "99.9";

Result: Error: “Unsupported type string for comparison”

The switch statement can be used to eliminate embedded if-then-else statements

when determining a value within a variable.

switch (value to compare) {

 case value:

 // code to execute if true

 break;

 case value;

 // code to execute if true

 break;

 default:

 // code to execute if there are no matches

 break;

}

The structure of the switch statement requires break commands (break;) at the end

of each possible case situation. The colon (:) is used in each header of the case(s) after

the value to compare.

Chapter 5 Reviewing PHP 8 Basic Syntax

170

<?php

 $a = 36;

 switch ($a) {

 case 10:

 echo "10";

 break;

 case 20:

 echo "20";

 break;

 case 30:

 echo "30";

 break;

 default:

 echo "Number was not found";

 break;

 }

?>

Result: Number was not found.

Why: The value 36 is not caught in any of the case statements. PHP will do

conversion, when possible. In this example, it will compare the value in the strings to

the number presented. The flow of the structure will drop into the default statement

since there are no matches. The default statement acts in a similar fashion to the else

statement; it catches all remaining possibilities. It is a good idea to include a default

statement in all case structures to handle the unexpected values rather than the

possibility of causing an exceptional situation.

Exercise: Create a program which uses a conditional statement that will determine

what color is contained in a string. If the color is green, display “I love the earth.” If the

color is blue, display “The sky is beautiful.” If the color is yellow or orange, display “I love

sunsets.” For any other color, display “selectedcolor is my favorite color.” Replacing the

selectedcolor with the color chosen.

Chapter 5 Reviewing PHP 8 Basic Syntax

171

Hint Y ou can put a variable inside of a string.

�Functions
In addition to the 1000s of built-in or easily importable PHP functions available for your

use, you can also create your own functions.

function function_Name(attribute1, attribute2, …) {

 // code goes here

}

function_name(attribute, attribute, …);

// next statement after function has completed

The general format of a function is shown in the preceding. The function keyword

is lowercase. The name you provide for the function uses almost the same format

as variables, except you do not include the $. Variables or values can be passed as

parameters into the function in the parentheses. All code goes between the brackets {}.

The function is called using the function name and the passing of any required

attributes. When a function is called, the execution of the program jumps to the function.

After all code has been executed, the program flow jumps to the instruction after the call

to the function.

Let us look at some examples.

F-1:

<?php

 function display_hello() {

 echo "Hello";

 }

 display_hello();

?>

Chapter 5 Reviewing PHP 8 Basic Syntax

172

Output: Hello

Why: No values are passed into the function. However, the print statement is

executed.

The function can also be placed at the bottom of the code. However, be consistent.

Either place your functions at the top of the code of the bottom of the code. Functions

can also be included in a separate file that can then be imported into the main PHP

program. We will look at that example soon.

F-2:

<?php

function display_hello($value) {

 echo $value;

}

display_hello("Hello");

?>

Output: Hello

Why: This example accomplishes the same task. However, it allows some flexibility

by allowing the user to pass the value to be displayed. Notice that the string was passed

within the parentheses when the function was called. The string will drop into the

variable $value (it determines where values go by the position they are passed). The

print statement in the function then uses the variable $value to display the information.

This function would actually display almost anything passed (including numbers), even

though it is called display_hello.

F-3:

 <?php

 function display_names($first_name, $last_name = "none") {

 echo "Your first name is $first_name";

 if ($last_name != "none") {

 echo "Your last name is $last_name";

 }

Chapter 5 Reviewing PHP 8 Basic Syntax

173

}

display_names("James");

display_names("Jackie", "Jones");

?>

Output: Your first name is James

Your first name is Jackie

Your last name is Jones

Why: The preceding display_names function accepts two values ($first_name, $last_

name). However, it also provides a default value for the second parameter. In the first call

to the function, “James” will pass into $first_name. Since there is not a second parameter

passed, $last_name will contain “none.” “Your first name is James” will be displayed. The

if statement will determine that a second value has not been passed and will not attempt

to display $last_name. In the second call, both values are passed. “Jackie” will be passed

into $first_name. “Jones” will be passed into $last_name. The function will display “Your

first name is Jackie” and “Your last name is Jones.”

F-4:

<?php

 function addtwo($first_value, $second_value) {

 $result = $first_value + $second_value;

 return $result;

 }

 echo addtwo(12, 14);

?>

Output: 26

Why: In the addtwo example, two numerical values are passed into the function.

The call to the function causes 12 to be passed into $first_value and 14 to be placed

into $second_value. The two numbers are added together, and the result is placed into

$result. A return statement returns the value back to the program that called it (instead of

Chapter 5 Reviewing PHP 8 Basic Syntax

174

displaying it). This allows the calling code the flexibility to determine what to do with the

returned value. In this example, the function was called within a print execution. This

will cause the value returned by the addtwo function (26) to be displayed.

F-5:

<?php

function addtwo(int $first_value, int $second_value) : int {

 $result = $first_value + $second_value;

 return $result;

 }

 echo addtwo(12, 14);

?>

Output: 26

Why: We can add scalar type hints to restrict the type of information passed into and

out of a function. In the preceding example, the parameters passed in are restricted to

integers only as indicated by the int keyword before the variable’s names. The return

value is also restricted to integers as indicated by the : int as part of the function header.

F-6:

<?php

function addtwo(int | float $first_value, int | float $second_value) : int

| float {

 $result = $first_value + $second_value;

 return $result;

 }

 echo addtwo(12.1, 14);

?>

Output: 26.1

Chapter 5 Reviewing PHP 8 Basic Syntax

175

Why: This example demonstrates the union of different data types. The function now

provides the ability to accept either integers or floating-point numbers for $first_value

and $second_value. It also provides the ability to return either an integer or a float. This

provides added validation of data while still allowing flexibility of the actual use of the

function itself.

As of PHP 8, the current valid data types are

•	 array

•	 bool

•	 callable

•	 int

•	 float

•	 null

•	 object

•	 resource

•	 string

As you use functions, you will discover that some could be used in other

applications. You can move these functions in a separate file and imported into an

application.

<?php

 function addtwo(int $first_value, int $second_value) : int {

 $result = $first_value + $second_value;

 return $result;

}

?>

Functions that reside within their own files should still include the opening and

closing php tags as shown in the preceding.

<?php

Chapter 5 Reviewing PHP 8 Basic Syntax

176

 include "addtwo.php";

 echo addtwo(12, 14);

?>

The preceding program will import the addtwo.php file (which contains the addtwo

function). Once it is imported, it can call the function as shown.

Caution  When importing more than one file, you can cause a conflict if more
than one function imported has the same signature (name and parameters).

The include keyword will search for the file and attempt to include it in the program.

If the file does not exist, the program will continue. The include_once keyword is similar

to the include. However, it makes an additional check to discover if the file has already

been imported. If it has, it ignores the request (does not produce an error). include

would produce errors if the file has already been imported.

The require keyword is similar to the include keyword. However, if the file does not

exist, an error will be produced. The require_once keyword is similar to the require

keyword with the additional check to not load the file if it has already been loaded.

The examples shown do not attempt to handle any errors. There are multiple

possible problems with these examples, if the user does not enter what it expected.

We can adjust the calling program to handle possible problems by adding a try/catch

structure.

 <?php

 try {

 include "addtwo.php";

 echo dividetwo(12, 14);

 }

 catch(zeroException $e) {

 echo "Don't try to divide by zero!";

 }

 catch(Throwable $t) {

 echo $t->getMessage();

Chapter 5 Reviewing PHP 8 Basic Syntax

177

 }

 finally {

 echo "This message is over.";

 }

?>

In the preceding example, both the include statement and the print statement are

placed in a try block. The program will execute statements in a try block until it runs into

a problem. When a problem occurs, it will look for a catch block to handle the problem.

Since the include statement depends on a file existing external to the program, it is

important that the program be able to handle the possibility that the file might not exist.

This example also places the dividetwo function within the try block. If this dividetwo

function attempts to divide by zero, PHP will raise an exception.

The code specially captures the zeroException exception which would be raised by

PHP if an attempt were made to divide by zero. If that occurs, the message shown in the

block would be displayed and the program would shut down properly (not crash).

Additional catch blocks are shown. The Throwable catch captures all other

exceptions caused by the program. If the execution of the code jumps the flow into

one of these blocks, the standard error message would be displayed, and the program

will execute the finally block. The finally block is executed even when no exceptions

are discovered. It is important to assure that live programs do not crash. It is better to

capture any problems and then display a message to the user requesting that they try

using the system again later.

Exercise: Create a function which accepts two numbers and a symbol to indicate if

the user wants to add, subtract, multiply, or divide. Use a switch statement to determine

which operation will take place. Include the call to the function in a try/catch structure

to capture any attempt to divide by zero.

�Arrays
Arrays hold multiple related information in memory. The ability to save information in

arrays greatly reduces the amount of coding that would be necessary to create multiple

variables to store information. Arrays also provide the ability to easily increase the

amount of storage locations when needed. In PHP, arrays can be created on the fly, when

needed, or formatted before actual use. The data type for each individual item in a PHP

array is determined at the time when a value is stored.

Chapter 5 Reviewing PHP 8 Basic Syntax

178

Let us look at an example; an array might contain class information such as class

number, class name, description, room, instructor, and size (number of students).

$class_array[0] = "CS122"; // class number

$class_array[1] = "Programming Concepts 1"; // class name

$class_array[2] = "Basic concepts of the PHP language."; // description

$class_array[3] = "B123"; // room

$class_array[4] = "Dr. Abraham Excel"; // instructor

$class_array[5] = 50; // number of students

This array has been created dynamically (on the fly). All numerical arrays in PHP

begin with a subscript (index) of zero. However, when dynamically creating an array,

you can start at any subscript and even skip positions. Array names require the same

syntax as variables with the addition of the array subscript which is contained in square

brackets ([]).

We can also allow PHP to create the subscript numbering for us, using the

following format.

$class_array[] = "CS122"; // class number

$class_array[] = "Programming Concepts 1"; // class name

$class_array[] = "Basic concepts of the PHP language."; // description

$class_array[] = "B123"; // room

$class_array[] = "Dr. Abraham Excel"; // instructor

$class_array[] = 50; // number of students

We can also accomplish the same task with a more common format used in other

programming languages.

$class_array = array ("CS122",

 "Programming Concepts 1",

 "Basic concepts of the PHP language.",

Chapter 5 Reviewing PHP 8 Basic Syntax

179

 "B123", "Dr. Abraham Excel", 50);

This format will also create the array, using fewer lines of code. The array keyword

must be located to the right of the assignment operator followed by the items to be

stored with parentheses. Each item is separated by a comma. PHP will place the first

item in subscript position zero (0) and each additional item will be placed in the next

positions, which will result in the same array structure as in the previous example.

The array itself actually behaves in exactly the same way as the previous array. Both

of these arrays require us to remember what content is placed in which position. We

as humans tend to remember words better than numbers. Thus, PHP provides us with

associative arrays, which allow us to name our position (key) instead of using numbers

(although technically we could name them with a number) and to associate the key with

a value.

$class_array["class number"] = "CS122";

$class_array["class name"] = "Programming Concepts 1";

$class_array["description"] = "Basic concepts of the PHP language.";

$class_array["room"] = "B123";

$class_array["instructor"] = "Dr. Abraham Excel";

$class_array["number of students"] = 50;

This provides an easier-to-understand relationship between the values and the array

itself. We can also create the same relationship with the other more common format.

$class_array = array ("class number” =>"CS122",

 "class name" => "Programming Concepts 1",

 � "description" => "Basic concepts of the PHP

language.",

 � "room" => "B123", “instructor" => "Dr.

Abraham Excel",

 "number of students" => 50);

The arrow (=>) symbol provides a visual association between the key and the value

in each position in the array.

Chapter 5 Reviewing PHP 8 Basic Syntax

180

Let us take a moment to look at multidimensional arrays.

$class_array = array (

 array ("CS122", "Programming Concepts 1",

 "Basic concepts of the PHP language.",

 "B123", "Dr. Abraham Excel", 50),

 array ("CS123", "Programming Concepts 2",

 "Advanced concepts of the PHP language.",

 "B124", "Dr. Abraham Excel", 50)

);

Arrays can also be multidimensional. The preceding array contains two rows

representing two different classes. Arrays are not limited to two dimensions. However,

once we go beyond three or four dimensions, it is harder for us humans to associate

the relationships between the dimensions. Also, the more dimensions you define, the

more memory the program consumes to store the data and the associations between the

dimensions. Keep your structures as simple as possible.

�Loops
Let’s review what we have learned about loops. Loops provide the ability to execute the

same code multiple times. As we will see in a moment, loops work hand in hand with

retrieving and storing information into arrays.

for ($I = 1; $I <= 10; $I++) {

 echo "$I times ";

}

// next statement after loop has completed

Output: 1 times 2 times 3 times 4 times 5 times 6 times 7 times 8 times 9

times 10 times

Chapter 5 Reviewing PHP 8 Basic Syntax

181

The for loop works well when you know exactly how many times you want to loop.

In the preceding example, $I is initially set to 1. Then the loop iterates as long as $I is

less than or equal to 10. Each time the loop reaches the top, the value of I is increased

by 1. When the value of $I reaches 11, the loop stops. The program will then execute any

statements following the end of the loop.

$I = 1;

while ($I <= 10) {

 echo "$I times";

 $I++;

}

Output: 1 times 2 times 3 times 4 times 5 times 6 times 7 times 8 times 9

times 10 times

The same task can be accomplished with a while loop. However, as you can see, it

does take slightly more code. You have to remember to include the incrementing of the

counting variable ($I++). If that statement is forgotten, it will become an infinite loop.

With the for loop, you are easily reminded to increment the variable in the top statement

in the loop. While loops are good for conditions that might change – such as looping

until you reach the end of a file or end of an array.

foreach($class_array as $value)

{

 echo $value;

}

foreach loops work well with arrays. The preceding example loops through the one-

dimensional numerical array ($class_array) shown in previous examples and displays

each value. $value represents the current value that the loop is looking at in the array.

foreach loops do not require the programmer to create code that checks for the end of

the array. This eliminates any possibility that an “out of bounds” error message could

occur. Also, foreach loops automatically skip over any positions in the array that have not

yet been declared. This eliminates any possible “null value” messages being displayed

when it loops through the array.

Chapter 5 Reviewing PHP 8 Basic Syntax

182

There are lots of php functions available to work with arrays. Let us take a moment

to look at a couple of examples. array_merge can be used to add the contents of one or

more arrays to the end of any existing array or to an array that has been defined but does

not currently contain any values.

<?php

 $colors1 = array("red", "green");

 $colors2 = array("blue", "yellow");

 $result = array_merge($colors1, $colors2);

 print_r($result);

?>

The $color2 array is merged to the end of the $color1 array, and the result is placed

into the new $result array. The original arrays do not change. The print_r function is a

handy tool that will display the contents of the array $result as follows.

Array

(

 [0] => red

 [1] => green

 [2] => blue

 [3] => yellow

)

You can also use the spread operator to merge two arrays together.

<?php

$fords = ['falcon', 'mustang'];

$cars = ['civic', 'smart', ...$fords, 'tuson'];

var_dump($cars);

?>

The spread operator (…) allows you to place one array inside of another array at any

location. The var_dump function is a great tool to discover what is inside of any array

and the data type for the position in the array. It provides more details than the print_f

function. The $cars array now contains

array(5) {

 [0]=>

Chapter 5 Reviewing PHP 8 Basic Syntax

183

 string(5) "civic"

 [1]=>

 string(5) "smart"

 [2]=>

 string(5) "falcon"

 [3]=>

 string(7) "mustang"

 [4]=>

 string(5) "tuson"

}

�Enums
Enumerations (enums) are a collection of a type with a fixed number of possible values.

As an example, let us define a Food enum with certain allowed food types.

enum Food {

 case: Hotdog;

 case: Fish;

 case: Steak;

 case: Salad;

}

Once declared, you can use enums as type hints to restrict the values accepted or

returned from a function.

function eating(Food $type)

{

 echo "I like $type";

}

To pass a value or return a value, you must include the enum and its value)with (::)

or it will produce an error.

For more information on enums, visit www.zend.com/blog/php-8-1.

Chapter 5 Reviewing PHP 8 Basic Syntax

http://www.zend.com/blog/php-8-1

184

�Summary
As we stated in the beginning of the chapter, the goal was to introduce you to the

basic structure of the language. We have reviewed the use and creation of functions,

conditional statements, and variables. We do not expect you to be a php expert, yet.

There are plenty more chapters ahead which will build your knowledge. Now that you

have a general understanding, we are ready to explore the use of databases. We will soon

use this knowledge to build a blogging system.

�Projects

	 1.	 Create a numerical array which contains the information about

your house or apartment including number of bedrooms, number

of bathrooms, and the street address. Use one of the looping

structures to output the information in a well-formatted table.

Hint: You can use HTML and CSS code within print or echo

statements to create your table.

	 2.	 Complete #1 using an associative array.

	 3.	 Change #1 to include a two-dimensional array which will include

all houses on your street or apartments in your complex. To

output the information, you will need two embedded loops.

You can either skim ahead in the book to discover examples

or research “displaying a php two-dimensional array” in your

favorite search engine on the Web.

Chapter 5 Reviewing PHP 8 Basic Syntax

187

CHAPTER 6

Databases, MVC, and Data
Objects

�Objectives
After completing this chapter, you will be able to

•	 Understand how to create MySQL/MariaDB databases

•	 Manipulate data in MySQL/MariaDB tables

•	 Design a database table structure

•	 Use PHP for secure interaction with MySQL/MariaDB databases

•	 Organize PHP scripts with a model-view-controller approach

•	 Create and use PHP Data Objects

Modern websites are incredibly powerful, and much of this power derives from their

ability to store information. Storing information creates highly customizable interactions

between software and the user. These interactions can range from entry-based blogs

and commenting systems to high-powered banking applications that handle sensitive

transactions securely.

This chapter covers the basics of MySQL/MariaDB, a powerful, open source

database platform. We will also explore an object-oriented approach to accessing data

within PHP projects.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_6

https://doi.org/10.1007/978-1-4842-8205-2_6#DOI

188

Note  In 2009, Sun Microsystems purchased MySQL. Within a brief period of time,
Oracle purchased Sun Microsystems. There was a concern that MySQL would not
continue to be open source. Some of the developers of MySQL banded together to
create a free and open source database system, MariaDB, which would be highly
compatible with MySQL. While over the years, each product has added additional
features not replicated in the other product, the basic commands and routines
used to access and manipulate databases have remained the same. Many WAMP,
MAMP, and LAMP stack software packages actually include MariaDB instead of
MySQL (even though there is still a free version of MySQL available). Some of these
products even use commands and references which indicate the database used
is MySQL when it is actually MariaDB. However, since both products use virtually
the same commands to access and manipulate databases, the code shown in this
book and many others will work with either database system.

�The Basics of MySQL/MariaDB Data Storage
MySQL/MariaDB is a relational database management system that lets us store data in

multiple tables. Each table contains a set of named columns, and each row consists of a

data entry into the table. Tables will often contain information about other table entries.

This allows tables to be linked together using a value stored in both tables.

When comparing Tables 6-1 and 6-2, the value in one table (artist_id in the artist

table) can be associated with the same value (artist_id in album table) in another

table. artist_id in the artist table is the primary key for that table as it uniquely

identifies each row. artist_id in the album table is the secondary key because it is not

used to uniquely identify the rows in the album table (album_id uniquely identifies the

rows; it is the primary key). However, it is used to link to another table.

Table 6-1.  The Artist Table

artist_id artist_name

1 Bon Iver

2 Feist

Chapter 6 Databases, MVC, and Data Objects

189

Table 6-2.  The Album Table

album_id artist_id album_name

1 1 For Emma, Forever Ago

2 1 Blood Bank - EP3

3 2 Let It Die

4 2 The Reminder

The artist table includes two columns. The first column, artist_id, stores a unique

numerical identifier for each artist. The second column, artist_name, stores the

artist’s name.

The album table stores a unique identifier for each album in the album_id column

and the album name in – you guessed it – the album_name column. The album table

includes a third column, artist_id, that relates the artist and album tables. This column

stores the unique artist identifier that corresponds to the artist who recorded the album.

At first glance, it might seem like a silly way of storing data. Why keep an abstract,

incomprehensible number, instead of simply writing the artist’s name for every album?

Table 6-3 gives an example of why this is not a good idea.

Table 6-3.  The Badly Designed Album Table

album_id artist album_name

1 Bon Iver For Emma, Forever Ago

2 Bon Iver Blood Bank - EP3

3 Feist Let It Die

4 fiest The Reminder

Did you notice the spelling error for album_id? Because the artist’s name is spelled

out separately for every album, it is possible to store different names for the same artist.

In a tiny table with four entries, like the one preceding, it is easy to spot and correct

errors. But tables are rarely that small in the real world. Imagine building a database for a

music store. We would have to keep track of thousands of albums.

Chapter 6 Databases, MVC, and Data Objects

190

This problem also demonstrates the need to design databases in third-normal

form. Without going into too much detail, a database is in third-normal form if data

redundancy is reduced, and records can easily be uniquely identified. By creating an

artist table, we eliminate the need to duplicate the artist’s name in the album table. We

also eliminate the possibility that two artists might have the same name. Using an artist

id keeps each artist name unique, even if the spelling of the name is the same. If we did

not use an id, to uniquely identify an album row, we would need to include both the

album id and the artist’s name (hopefully spelled correctly).

By designing tables that store one piece of data once, and only once, you design a

robust database with data integrity. Joe Celko, a prominent figure in the SQL community,

has aptly coined the slogan “One simple fact, in one place, one time.” Memorize that

slogan and let your database tables follow this one rule.

�Manipulating Data with SQL
We can manipulate the data in a MySQL/MariaDB table via the Structured Query

Language (SQL). SQL is a language which manages data in a relational database system.

A relational database system (such as MySQL/MariaDB) formats data into tables and

builds relationships between the tables, using primary and secondary keys. In this

section, we will discover the basics of SQL, including the ability to create a database,

create tables, insert data, update data, and display data.

phpMyAdmin is provided in many WAMP, LAMP, and MAMP stacks to easily create

and maintain databases. In addition, other tools, such as MySQL Workbench (www.

mysql.com/products/workbench/), provide additional ways to design, develop, and

secure MySQL/MariaDB databases. We will start by looking at phpMyAdmin because it

is included in the XAMPP stack. But first, we must activate both Apache and MySQL from

the XAMPP control panel.

Chapter 6 Databases, MVC, and Data Objects

http://www.mysql.com/products/workbench/
http://www.mysql.com/products/workbench/

191

Figure 6-1.  The XAMPP control panel

To start both Apache and MySQL, simply click the start button to the right of each.

Once they have properly started, each will be highlighted in green, and the start button

will change to a stop button. If there are problems, the program will be highlighted in

red, with error messages displayed in the view box. If this occurs, copy the error message

into a browser to discover what others have done to fix the problem.

With MySQL and Apache running, open a browser and navigate to http://

localhost/. The XAMPP Dashboard will display. On the menu of the dashboard, select

phpMyAdmin to open the phpMyAdmin control panel.

Chapter 6 Databases, MVC, and Data Objects

192

Figure 6-2.  The phpMyAdmin control panel

We are now ready to create our first MySQL/MariaDB database!

�Developing a Database for the Poll
The best way to get a feel for database-driven web pages is to create one for testing.

Over the next pages, we will create a database-driven site poll. It is a simple example

of database-driven development, but it is quite sufficient to demonstrate the essential

principles. The simplest possible site poll will present one question to which site visitors

can reply yes or no. All replies from users will be displayed, so every site user can see how

others replied.

As simple as the example is, it will use many of the skills we have gained so far, and it

will teach us how to integrate database-driven data in PHP projects.

The site poll relies on a database table to store the poll question and the poll replies.

PHP will connect to MySQL/MariaDB and retrieve the relevant data, so it can be

displayed in a browser. Using PHP, we will output an HTML form allowing site visitors

to interact with the site poll. Whenever a visitor submits the form, PHP will then submit

the answer and update the MySQL/MariaDB database table accordingly. Let’s begin by

creating a database with a table and some poll data.

Chapter 6 Databases, MVC, and Data Objects

193

�Building a Database Using CREATE
SQL uses the keyword CREATE to build a database or a database table. The CREATE

statement must include the CREATE keyword and a keyword to indicate if we want to

build a database or table. Logically, we must first create the database before we place

any tables within it. Thus, we will use the keyword DATABASE along with the CREATE

keyword to build a database. Of course, we also need to provide a name for our database.

CREATE DATABASE playground

To execute an SQL statement, we can select the SQL tab in the phpMyAdmin control

panel (Figure 6-3). Once selected, a text field will be displayed to enter in any valid SQL

commands. To execute the SQL, click the Go button beneath the text field.

Figure 6-3.  The SQL tab in phpMyAdmin

We can also create a database by selecting the Databases tab.

Chapter 6 Databases, MVC, and Data Objects

194

Figure 6-4.  The Databases tab in phpMyAdmin

Just enter the database name and click CREATE. We could also select the type of

collation to use with the database. However, the default is acceptable.

Note  A collation is a set of rules that specify which characters in the character
set come first. We know that a comes before b, but how about the character 7?
Should that come before or after alphabetical characters? What about special
characters such as #”#€%&? A collation explicitly states how characters should be
ordered.

�The CREATE TABLE Statement

As mentioned earlier, since MySQL/MariaDB is a relational database, it stores data in

tables. Naturally, after creating the database, we need to create a table. We need a little

more SQL knowledge to accomplish this. The general syntax for creating a table is as

follows:

CREATE TABLE table_name (

 column_name datatype [any constraints or default values],

 column_name datatype [any constraints or default values]

)

Chapter 6 Databases, MVC, and Data Objects

195

Again, we use the CREATE statement to build a table, in a similar format to building

the database. We will declare names for our attributes (columns) and the data type for

each column or attribute. We can always add or delete columns or attributes at any time.

The CREATE statement can also declare constraints or default values.

�Secure Programming
When creating columns within databases, special care and consideration should be

given to the data types, constraints, and default values. A secure database will restrict

values entered that do not meet these parameters. If the program using the database

is dependent on a value existing within a field, default values should be provided.

Remember, the program might reject an invalid value before attempting to update the

table. It might be acceptable to use the default value when this occurs. However, there

may be cases in which the value is required in order for enough information to exist

within the record created. In this case, the database column should be set to require

the information. If it is not provided, the database management system will reject the

attempt to enter the data.

Let’s access the playground database by clicking its name in the left column of the

phpMyAdmin control panel. Click the SQL tab at the top of the screen, and we’re ready

to create our first table.

CREATE TABLE poll (

 poll_id INT NOT NULL AUTO_INCREMENT,

 poll_question TEXT,

 yes INT DEFAULT 0,

 no INT DEFAULT 0,

 PRIMARY KEY (poll_id)

)

Notice the format of the CREATE statement. It is very vital that the proper

parentheses and commas are included between each statement. The last line does not

require a comma. Once we have entered the SQL into the text field, we can click Go to

execute it. This will create the new table.

Chapter 6 Databases, MVC, and Data Objects

196

Figure 6-5.  Create a new table in the playground database

We can also create a table using the default window after selecting the database from

the left-hand column. Once the table name is entered, we must also select the number of

columns to create. After clicking the button, the next screen will display boxes to enter in

the attributes for each column. The information entered is the same as what was shown

in the preceding program code.

Let’s explore the new table we created by selecting the poll table from the panel at

the left side of phpMyAdmin. Next, we will select the Structure tab from the menu.

Chapter 6 Databases, MVC, and Data Objects

197

Figure 6-6.  Poll table structure

The poll table has four attributes or columns: poll_id, poll_question, yes, and

no. Each attribute has a type (data type). The fields of a table can only hold data of the

correct type. For example, we can only store integers in poll_id, yes, and no as indicated

by the int type. The number 11 is the default size of the integer. This can be adjusted with

SQL code or by making changes when clicking the Change keyword to the right of the

column. We will use the default settings. The type setting for poll_question restricts

entries to text only. Finally, the yes and no attributes are created with a default value of 0.

None of the other attributes has default values.

�Understanding PRIMARY KEY

The poll_id attribute includes a visual key to the right of the name. Also, it is listed

at the bottom of the screen with a PRIMARY keyname. This indicates poll_id is now

the primary key of poll entities. When an attribute is declared as the primary key, it

must hold a unique value. So, however many rows of data the poll table will eventually

contain, there can be no two identical poll_id values.

If we have a row of data with a poll_id of 1. Then if we attempt to insert another row

of data also with a poll_id of 1, the new row will display an error message. A primary

key is used to unambiguously identify one row of data. As an example, think about how

many John Smiths there are. We could not use name as a unique identifier. However, we

could give each a unique id to determine which John Smith we want to explore.

Chapter 6 Databases, MVC, and Data Objects

198

We can actually create tables in MySQL/MariaDB without a primary key, but such

tables are special cases. Most of the time, you will want to create tables with a primary

key, because data isn’t really useful if you can’t identify entries uniquely.

We now know that the poll table is created in such a way that a primary key poll_id

must have a value which is unique. The poll_id attribute is declared as NOT NULL,

meaning that a null value (null is basically the same as no entry at all) will not be

accepted for poll_id. The poll_id attribute must invariably hold an integer value. The

poll_id attribute cannot be left empty.

�Understanding AUTO_INCREMENT

What about the auto-increment setting for poll id? It is a simple but powerful tool: The

first row of data in the poll table will get a poll_id of 1. The next row will automatically

get a poll_id of 2. The next row will get a poll_id of 3, and so forth. The value of poll_

id will automatically increment! A great way to make sure each row is identified by a

unique value.

�The INSERT Statement
With our table created, we’re ready to start storing data. Every new entry into the poll

table will be stored as a separate row. For the sake of simplicity, we can start with

inserting a single row of data.

INSERT INTO poll (

 poll_question

) VALUES (

 "Is PHP hard fun?"

)

This SQL statement will insert a new row of data into the table called poll. It will

declare a value for the poll_question column or attribute. More specifically, the poll_

question column will get a value of Is PHP hard fun? Remember how the poll table has

a total of four attributes or columns? The remaining columns poll_id, yes, and no will

simply be created with default values. poll_id will get a value of 1, while yes and no will

both get a value of 0.

We can execute the SQL statement in the same manner as we did when creating the

table. First, we select the playground database in the phpMyAdmin control panel. Then,

Chapter 6 Databases, MVC, and Data Objects

199

we click the SQL tab and enter the preceding SQL statement. Finally, we click Go to

execute the entered SQL statement. The system will then indicate that one row has been

inserted.

Alternatively, we can select the database from the control panel. Then click insert in

the menu provided. Text fields will be presented to allow us to enter data. We can then

enter the “Is PHP hard fun?” statement in the pool_question text box. Then click the

“Go” button at the bottom of the screen. This will generate an SQL statement similar to

the one presented earlier. The system will also include the default values not previously

shown. To execute the generated statement, click the “Go” button at the bottom of

the screen.

To insert values for more than one column (attribute), the syntax of the INSERT

statement will slightly vary.

 �INSERT INTO `poll` (`poll_id`, `poll_question`, `yes`, `no`) VALUES

(NULL, '"Is PHP hard fun?" ', '0', '0');)

As shown, we can specify the attribute (such as ‘yes’) in the first set of parentheses

and then its related setting (‘0’) in the second set of parentheses. The positions must

be the same. ‘yes’ is in the third position, and its value is also in the third position. For

any attribute listed, there must be an associated value. Remember that any attributes

not listed will be given a default value if one was defined in the table. Notice that in

this example, poll_id is set to NULL. This setting is required for any auto numerated

attributes. The NULL setting (remember, we set the restrictions to not allow NULL) will

be rejected which prompts the system to generate a new number by incrementing the

previous number. There are other formats that can be used to insert data. However, we

will use this format because we can see clearly which value is associated with which

attribute.

�The SELECT Statement
Once we have inserted a row of data into the poll table, it would be nice to see the

new row displayed. To retrieve data from database tables, we will use the SQL SELECT

statement.

SELECT column_name, column_name FROM table_name

Chapter 6 Databases, MVC, and Data Objects

200

The SELECT keyword is used to retrieve data. The FROM keyword specifies the table in

the database to retrieve the information. The SELECT statement returns a temporary table

populated with any retrieved data. The temporary table will have exactly the properties

indicated immediately after the SELECT keyword.

SELECT poll_id, poll_question, yes, no FROM poll

We can then paste this statement into the SQL text box, as previously mentioned, to

produce the required results.

There is one row of data in the table. It has a poll_id of 1 and a poll_question. The

yes and no columns are 1 and 0, respectively.

�Secure Programming
Alternatively, we could have used the * symbol to request all fields be displayed.

SELECT * FROM poll

While this format is certainly quick and easy to create, it can cause possible

vulnerabilities. Remember that a temporary table will be created with all attributes

returned by the SELECT statement. This table might be accessible to hackers. Only

Figure 6-7.  Poll table with one row inserted

Chapter 6 Databases, MVC, and Data Objects

201

expose those columns that are necessary for the completion of the task at hand. We can

use the * symbol for quickly testing that the data was stored. But we don’t want to use it

in the final product.

It is not much to look at in its present state, but this is all the data required to have a

site poll displayed on a website. The website will display the poll question. Site visitors

can then post their responses through an HTML form. Possible options would be yes or

no. All responses from site visitors will then be stored in the yes or no fields. So, with a

tiny bit of math, we could calculate the relative responses and display a message such as

the following: 79% of all site visitors think PHP is hard and fun to learn.

Exercise: Using phpMyAdmin, execute code to accomplish the following. You can

accomplish this task without coding, but this exercise is designed to help you practice

your SQL coding skills. Start by creating a database named Students. Within that

database, create a student table. Within the table, create the following attributes (fields):

StudentID, Name, Address, City, State, Zip code, and Major. Populate at least three rows

of information. Now display the information using the SELECT statement.

�The UPDATE Statement
As you can probably determine, the yes or no values in the poll table will change every

time a site visitor submits a response. We need one more SQL statement to make these

changes. Let’s assume a site user just agrees that PHP is hard to learn. We would need

to generate an SQL statement to increase the stored value for the yes property by a

value of 1.

UPDATE poll SET yes = yes + 1

WHERE poll_id = 1

We can execute this statement in the same matter as previously discussed.

Chapter 6 Databases, MVC, and Data Objects

202

Figure 6-8.  Result after update to poll table

We can see that the yes property of the first row of data in the poll is incremented to 1.

If we run the same SQL statement again, yes will be incremented to a value of 2.

Note how the WHERE clause limits which rows will be affected by the update. Only the

row with a poll_id of 1 will be affected. Any other rows in the table will not be updated,

because of the WHERE clause.

�Secure Programming
An UPDATE statement without a WHERE clause would update the yes attribute of all rows

in the poll table. In this case, there is just one row, so the WHERE clause isn’t absolutely

necessary. However, most tables you will work with will have much more than just one

row, so it’s vital that the row(s) be explicitly declared. Otherwise, attributes might be

updated that should not have, which will corrupt the data in the database.

Now that we have gained some basic SQL knowledge, it is time to code for our

database-driven site poll.

�Coding a Database-Driven Site Poll
Obviously, our program will connect to a database from PHP, and additional PHP

scripts will display the content for the site. PHP is a very forgiving language, and we can

Chapter 6 Databases, MVC, and Data Objects

203

approach this task in many ways. But some ways are more scalable than others. Some

that seem easy at first can transform code into a completely disorganized, tangled,

spaghetti mess. Let’s use a tried-and-tested approach to code architecture that can be

scaled to accommodate complex projects. While this is overkill for our simple site poll, it

gives us an opportunity to introduce the model-view-controller (MVC) design technique.

�Separating Concerns with MVC
The model-view-controller (MVC) design pattern is a common approach to organizing

scripts consistently. Using a consistent approach to organizing your scripts can help you

develop and debug faster and more efficiently.

The MVC framework is built upon the basic principles as defined by model-

view-controller. Once you are familiar with the basic concepts, there are many MVC

frameworks available to logically organize your PHP projects. Some of these include

CodeIgniter, CakePHP, and Yii. These frameworks will aid in designing and developing

more complex web applications.

At its most basic, MVC separates coding concerns into, you guessed it, three

categories: models, views, and controllers. A model is a piece of code that represents

data. Your models should also hold most logic involved in the system you’re building. A

view is a piece of code that shows information visually. The information to be displayed

by the view is received from a model. A controller is a piece of code that retrieves input

from users and sends commands to relevant model(s). In short, MVC separates user

interactions from visual representation from system logic and data. This provides the

ability to divide large projects in which an HTML expert can create the views, a database

expert can create the models, and a PHP programmer can create the controllers. We can

also include multiple views which allow the code to be used both on the Web and in

applications, without any major changes.

Note  You can read much more about MVC at http://en.wikipedia.org/
wiki/Model-view-controller.

We have already seen examples of separating code into model, view, and controller.

Remember how we made a template for HTML pages? We worked with a view that held

a bare-bones HTML page skeleton. You can find it in the gallery we started building in

Chapter 4. The view is located in ch4/templates/page.php.

Chapter 6 Databases, MVC, and Data Objects

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
https://doi.org/10.1007/978-1-4842-8205-2_4

204

In the same project, we created a model related to that view: the ch4/classes/

Page_Data.class.php, which declares a number of methods and properties related to

the content of the HTML pages.

The model and view were hooked up through a controller. In ch4/index.php, we

assigned values to the model and made the model available to the view. It displayed a

well-formed HTML5 page. Thus, index.php was our controller.

In this book, the aim is to use a simple implementation of MVC. Most other MVC

implementations you will come across are likely to be much more elaborate. You can

easily find many MVC examples that are not meant for beginning programmers. Once

you understand the basic MVC principles and have gained some experience working

with those principles in a simple context, you will find it much easier to understand the

more elaborate implementations.

Exercise: Now that we have discovered that we have used MVC for our previous

projects, return to the last project in Chapter 4. Change the folder names to indicate

the model, view, and controller for the project. Make the necessary coding changes (it

should not be very much) to reference the proper files within the new folders.

�Planning the Logic

Let’s keep the poll simple. We will create an index.php to output a valid HTML5 page

that will show the poll. The index will be a front controller.

A front controller is a design pattern very often seen in MVC web applications. A

front controller is a single “entrance door” to a web application. We have already used a

front controller in previous projects. Remember how index.php has been the only script

loaded directly in your browser? It’s a front controller.

Note  The front controller design pattern is well documented online. You could
start your own research at http://en.wikipedia.org/wiki/Front_
Controller_pattern.

As in the previous projects, index.php will output a valid HTML5 page, and it will

load the poll controller. The poll controller should return the poll as HTML, so it can

be displayed on index.php. Note how every one view has its own model and its own

controller (Figure 6-7).

Chapter 6 Databases, MVC, and Data Objects

https://doi.org/10.1007/978-1-4842-8205-2_4
http://en.wikipedia.org/wiki/Front_Controller_pattern
http://en.wikipedia.org/wiki/Front_Controller_pattern

205

Figure 6-9.  Distribution of responsibilities

Notice the poll model, the poll controller, and the poll view. These three work

together to display a functional poll. We can also see that the page has its own model,

view, and controller. The front controller is the page controller.

�Creating the Poll Project
Let’s organize our project logically using the basic MVC structure. We will create a new

folder, ch6, in our executable folder (in XAMPP it’s the htdocs folder) and another folder,

poll, inside this folder. We will also create three folders inside of the poll folder: models,

views, and controllers. We can now copy the Privatepage.php program from the

template folder in ch4 to the views folder under poll (rename it page.php). We can also

copy the Private_Page_Data.class.php program from the ch4 classes folder into the

models folder (rename it Page_Data.class.php). Of course, we could also download the

files for this chapter from the publisher’s website.

Now let’s create our first version of the index.php program to test everything. It will

be placed directly under the poll folder.

Listing 6-1.  index.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle(“PHP/MySQL site poll example");

$pageData->setContent("<h1>Everything works so far!</h1>");

$pageData->appendContent("<div>...and content goes here.</div>");

Chapter 6 Databases, MVC, and Data Objects

206

require "views/page.php";

echo $page;

?>

This index program is just a slight modification from the original privateindex

program seen previously. Some content has been removed, and the folder names and

the values for title and content have changed! Let’s test it.

Our view has now changed. We are now looking at this code with a model-view-

controller perspective. We can see how the created HTML page is a combination of a

view merged with a model. We can see how the front controller hooks up the model and

the view and outputs a well-formed HTML5 page to the browser for the user to see.

�Making a Poll Controller
With a nearly blank page created with its own model and view and a front controller

setup, we can prepare a file for displaying our poll example in the browser. Sticking to the

MVC approach, we will eventually need a poll model, a poll view, and a poll controller.

Let’s create a bare-bones poll controller and load that from the front controller (index.

php). Let’s create a new file, poll.php, in the controllers folder.

Listing 6-2.  poll.php

<?php

//complete code listing for controllers/poll.php

$info = "<h1>Poll will show here soon</h1>";

?>

Figure 6-10.  Output of new index.php program

Chapter 6 Databases, MVC, and Data Objects

207

Next, we will load the poll controller from the front controller (which we will now

name pollindex.php).

Listing 6-3.  pollindex.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle(“PHP/MySQL site poll example");

include_once "controllers/poll.php”;

$pageData->setContent($info);

$pageData->appendContent("<div>...and content goes here.</div>");

require "views/page.php";

echo $page;

?>

This format should look familiar, as it is very similar to the previous index examples

in this textbook.

Now our front controller and poll controller are working together to create a dynamic

web page for our poll! Let’s work on our poll model next.

�Making a Poll Model
With a preliminary poll controller in place, we can develop a preliminary poll model.

Figure 6-11.  Output from pollindex.php

Chapter 6 Databases, MVC, and Data Objects

208

Listing 6-4.  Poll.class.php

<?php

//complete code for models/Poll.class.php

class Poll {

 private string $poll_question = "Default Question";

 private int $yes = 0;

 private int $no = 0;

 public function getPollData() {

 return $this;

 }

 public function getPollQuestion() : string {

 return $this->poll_question;

 }

 public function getYes() : int {

 return $this->yes;

 }

 public function getNo() : int {

 return $this->no;

 }

}

?>

The Poll class defines a blueprint for all Poll objects. The Poll class includes a

method, getPollData(), which returns $this. What does the return accomplish? The

simple answer is that it returns a pointer (address in memory) to the object for whatever

code calls this method. What object, there is not one in this program? Before this method

is called, an instance of this class (which we will see soon) must be created. Once it is

created, then the getPollData() method can be called. At that point, an object with the

contents of this class will exist in its own space in memory. The return statement passes

a reference (pointer) to the object to the code that has called the function. This will allow

the calling code to directly access and use the object and its contents.

The $pollData object has properties and get methods for poll_question, yes, and

no. The $pollData object represents all the content required to show a poll. In other

words, the $pollData models poll data.

Chapter 6 Databases, MVC, and Data Objects

209

�Making a Poll View
We can now create a poll view to look at our data (contained in the model we just

created).

Listing 6-5.  poll-html.php

<?php

//complete code for views/poll-html.php

$info = "

<aside id='poll'>

<h1>Poll results</h1>

" . $pollData->getYes() . " said yes

" . $pollData->getNo() . " said no

</aside>";

?>

This view uses the get methods to retrieve the results of the poll (currently defaulting

to zero values) and places them into an unordered list.

Hooking Up Poll View with Poll Model

With a preliminary poll model and poll view created, we can update the poll

controller to hook up model and view and, finally, show something in the browser.

Listing 6-6.  newpoll.php

<?php

//complete code listing for controllers/poll.php

include_once "models/Poll.class.php";

$poll = new Poll();

$pollData = $poll->getPollData();

include_once "views/poll-html.php";

?>

Chapter 6 Databases, MVC, and Data Objects

210

The Poll class model is included into the controller, and an instance ($poll) is

created. The getPollData method is called which creates the reference to the $poll

object named $pollData. We say that $pollData is now a pointer which points to the

object. We can now access anything in the object using $pollData. Finally, the poll-

html.php view is attached which displays the poll results. That’s it! We have an MVC poll.

Perhaps you’re dying to ask a question such as, Why should I create three different

files to show a simple element? It would be a completely justified question to ask.

If all you wanted was to show a element with a few hard-coded values, the MVC

approach would be complete overkill. The best approach would probably be to write a

short HTML program.

The point here is to introduce the MVC design pattern with a very simple example,

so there is no overly complex code hiding the basic principles of MVC from your eyes.

With the MVC approach, you are perfectly set up for creating a database-driven web

application. The MVC architecture is hardly necessary for something this simple,

but it can really solve some challenges you will come across with projects of greater

complexity, such as the blogging system we will start making in the next chapter.

MVC encapsulates views from models and from controllers. That means we can

change a view without changing anything else. Imagine we didn’t want a element

for the poll. We could simply change the HTML tags used in views/poll-html.php and

trust the rest of the code to run correctly. We can easily change a view without changing

anything else.

Similarly, we could change the content and still trust our code to run as expected. It

would be a simple task to set the no property to 9. We would only need to change a tiny

bit of code. This poll application is built with self-contained elements.

Figure 6-12.  Output from newpollindex.php

Chapter 6 Databases, MVC, and Data Objects

211

�Connecting to MySQL/MariaDB from PHP
The MVC architecture will make it a fairly straightforward task to connect the database

and use database-driven data for the poll. Once we have established such a connection,

we can retrieve data from our database and view it with HTML. That is the essence of an

MVC database-driven website.

�PHP Data Objects (PDO)

PHP provides several ways to access MySQL/MariaDB databases. In this book, we will

exclusively use PHP Data Objects (PDO). It is a very safe and efficient way of connecting

to a database from PHP. PDO supports multiple databases and provides a uniform

set of methods for handling most database interactions. This is a great advantage for

applications that have to support multiple database types, such as PostgreSQL, Firebird,

or Oracle.

�Opening a Connection

It is time to connect to our database. Remember that models contain all code that

retrieves data. Thus, we will create a model program to connect to our database, and

soon, a program to retrieve our database information. The following code assumes that

the database does not require a userid and password for access. However, in production,

it is essential that the database be secured with login credentials. This requires only a

simple change to update the code with the proper userid and password.

Listing 6-7.  database.php

<?php

$dbInfo = "mysql:host=localhost;dbname=playground";

$dbUser = "root";

$dbPassword = "";

try {

 //create a database connection with a PDO object

 $db = new PDO($dbInfo, $dbUser, $dbPassword);

 }

 catch (PDOException $e) {

 $error_message = $e->getMessage();

Chapter 6 Databases, MVC, and Data Objects

212

 $pageData->setContent ("<h1>Connection failed!</h1><p>$e</p>");

 exit();

 }

?>

The preceding code uses the try/catch blocks introduced previously to handle any

code which might throw exceptions. When attempting to open the database, we might

not be successful. Thus, this line of code is placed in the try block. If an exception is

raised, the catch block will execute, displaying the exception message, our own message

and exiting the program. If all works correctly, we can proceed with attempting to

retrieve the data. If successful, the code creates a PDO object and stores it in the $db

variable.

Note  There are other possible settings you might use for creating a PDO
connection to a database. You can consult www.php.net/manual/en/book.
pdo.php for complete and detailed coverage.

We will import this program into our controller soon.

�Sharing the Database Connection with the Poll Model
We can use a constructor with arguments to share a database connection with the

poll model.

Listing 6-8.  NewPoll.class.php

<?php

//complete code for models/Poll.class.php

class Poll {

 private string $poll_question = "Default Question";

 private int $yes = 0;

 private int $no = 0;

 private $db;

 //new code: declare a constructor

 //method requires a database connection as argument

 public function __construct($dbConnection){

Chapter 6 Databases, MVC, and Data Objects

http://www.php.net/manual/en/book.pdo.php
http://www.php.net/manual/en/book.pdo.php

213

 //store the received connection in the $this->db property

 $this->db = $dbConnection;

 }

 public function getPollData() {

 return $this;

 }

 public function getPollQuestion() : string {

 return $this->poll_question;

 }

 public function getYes() : int {

 return $this->yes;

 }

 public function getNo() : int {

 return $this->no;

 }

}

?>

The constructor now accepts the pointer to the database connection object and

places it in $db. Next, we will call the Poll class’s constructor and pass the PDO object

pointer as an argument. Take a pause to reflect. Where in our code would we load the

poll model?

From the poll controller!

Listing 6-9.  newestpoll.php

<?php

//complete code listing for controllers/poll.php

include_once "models/Poll.class.php";

$poll = new Poll($db);

$pollData = $poll->getPollData();

include_once "views/poll-html.php";

?>

Now, we have passed the database connection to the poll model. The code shares a

database connection, but it doesn’t use it for anything yet. Let’s update the index.php file

to now include our database connection.

Chapter 6 Databases, MVC, and Data Objects

214

Listing 6-10.  newestpollindex.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL site poll example");

include_once "models/database.php";

include_once "controllers/newestpoll.php";

$pageData->setContent($info);

require "views/page.php";

echo $page;

?>

There are only a couple of minor changes. The database.php program has been

included and the controller has been updated to the newest version. If we execute this

index file, we will see no changes in the output. However, we have connected to the

database and passed the pointer to the data object. We are getting close to a complete

program!

The variable $db is declared in newestpollindex.php. It is available in newestpoll.php

because it is included in newestpollindex.php. Including a file is a lot like copying all

the code from one file and pasting it into another file. As a consequence, all variables

declared in any including file can be available in other included files, if those files are

included afterward.

�Retrieving Data with a PDOStatement
Inside the database, we have a poll table with a poll_question and values for its yes

and no attributes. We are ready to retrieve data from the database.

Remember, code dealing with the data for the poll belongs in the poll model. Thus,

we need to modify the getPollData method in the Poll class. At this point, the method

returns hard-coded poll data; we want to return database-driven poll data.

Chapter 6 Databases, MVC, and Data Objects

215

Listing 6-11.  NewestPoll.class.php

?php

//complete code for models/Poll.class.php

class Poll {

 private $db;

 //method requires a database connection as argument

 public function __construct($dbConnection){

 //store the received connection in the $this->db property

 $this->db = $dbConnection;

 }

 public function getPollData() {

 $sql = "SELECT poll_question, yes, no FROM poll WHERE poll_id = 1";

 $statement = $this->db->prepare($sql);

 $statement->execute();

 $pollData = $statement->fetchObject();

 return $pollData;

 }

}

?>

The Poll class actually becomes a much smaller program. We no longer need to

store the values for the question and the responses because we are passing the object

which contains the information from the database back to the calling program. Thus, the

properties and get methods are no longer required. It only takes a few lines of code to

retrieve our information.

$sql = "SELECT poll_question, yes, no FROM poll WHERE poll_id = 1";

The property $sql contains the SQL statement to retrieve the information needed.

$statement = $this->db->prepare($sql);

The SQL string is converted to a PDOStatement object before it can be executed.

prepare() converts a simple SQL string to a PDOStatement object.

$statement->execute();

Chapter 6 Databases, MVC, and Data Objects

216

The PDOStatement method called execute() executes the SQL against the MySQL/

MariaDB database.

 $pollData = $statement->fetchObject();

fetchObject() retrieves the one row of data from the queried database table

creating a StdClass object ($pollData). This object will publicly expose all the data we

have retrieved. However, this is not much of a security concern, since we only intend

to display the data to everyone, anyways. If we intended to use this data to update our

database, we would need to use a more secure approach. The returned StdClass object

is automatically created with properties for poll_question, yes, and no.

 return $pollData;

The object is returned to the calling program (finalpoll.php).

Note  You can consult the official documentation for PDOStatement objects at
www.php.net/manual/en/class.pdostatement.php.

Listing 6-12.  finalpoll.php

<?php

//complete code listing for controllers/poll.php

include_once "models/NewestPoll.class.php";

$poll = new Poll($db);

$pollData = $poll->getPollData();

include_once "views/finalpoll-html.php";

?>

finalpoll.php has only been modified to call the updated Poll class and a slightly

modified HTML view.

Listing 6-13.  finalpoll-html.php

<?php

//complete code for views/poll-html.php

$info = "

<aside id='poll'>

Chapter 6 Databases, MVC, and Data Objects

http://www.php.net/manual/en/class.pdostatement.php

217

 <h1>Poll results</h1>

 $pollData->yes said yes

 $pollData->no said no

</aside>

";

?>

Since a StdObject is returned from the database, we can directly access the

properties without using get methods. Therefore, a slight change has occurred in the

view program (finalpoll-html.php).

Listing 6-14.  finalpollindex.php

<?php

//complete code for index.php

$nav = "";

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL site poll example");

include_once "models/database.php";

include_once "controllers/finalpoll.php";

$pageData->setContent($info);

require "views/page.php";

echo $page;

?>

The index file (controller) was also only slightly modified to call the new version of

the poll controller. If we execute the finalpollindex.php program in our browser, we

will discover the same output format as Figure 6-12. However, the one big difference is

now the data is being pulled from the database. A true database-driven website!

Chapter 6 Databases, MVC, and Data Objects

218

�Showing a Poll Form
We don’t have much of a site poll yet. Site visitors should be allowed to submit their

opinions and, thus, contribute to the poll results. We must provide a form for the site

visitors. Remember, all displays are views. So, let’s update our view not only to display

poll results but also to accept the site visitor’s opinion.

Listing 6-15.  completepoll-html.php

<?php

//complete code listing for views/poll-html.php

$dataFound = isset($pollData);

if($dataFound === false){

 �trigger_error('views/completepoll-html.php needs an $pollData

object');

}

$info = "

<aside id='poll'>

 <form method='post' action='completepollindex.php'>

 <p>$pollData->poll_question</p>

 <select name='user-input'>

 <option value='yes'>Yes, it is!</option>

 <option value='no'>No, not really!</option>

 </select>

 <input type='submit' value='post' />

 </form>

 <h1>Poll results</h1>

 $pollData->yes said yes

 $pollData->no said no

</aside>

";

?>

Chapter 6 Databases, MVC, and Data Objects

219

$dataFound = isset($pollData);

if($dataFound === false){

 �trigger_error('views/completepoll-html.php needs an $pollData

object');

}

To increase reliability of the program, we have added an if statement which

determines if the $pollData information was properly created. We assumed it was

previously. But we should never assume. Always expect the unexpected and check for

the possibility that something went wrong. trigger_error will create a custom error

message. You can create a try/catch to capture this possible error whenever the form is

used in another program (such as the controller).

form method='post' action='completepollindex.php'>

 <p>$pollData->poll_question</p>

 <select name='user-input'>

 <option value='yes'>Yes, it is!</option>

 <option value='no'>No, not really!</option>

 </select>

 <input type='submit' value='post' />

 </form>

A form was created to obtain the customer’s opinion. Once the customer responds

by clicking the submit button, the response is passed, via post, to the index (controller).

�Updating a Database Table According to Form Input
There is one final step required to complete the site poll example. We need to retrieve

any user input submitted through the form and update the poll table with the received

input. If a site visitor submits a no, we will increment the value of the no attribute in the

poll database table.

All data interactions are a task for a model. Let’s update the poll model class with a

method for updating the database table.

Listing 6-16.  FinalPoll.class.php

<?php

//complete code for models/Poll.class.php

Chapter 6 Databases, MVC, and Data Objects

220

class Poll {

 private $db;

 //method requires a database connection as argument

 public function __construct($dbConnection){

 //store the received conection in the $this->db property

 $this->db = $dbConnection;

 }

 public function getPollData() {

 $sql = "SELECT poll_question, yes, no FROM poll WHERE poll_id = 1";

 $statement = $this->db->prepare($sql);

 $statement->execute();

 $pollData = $statement->fetchObject();

 return $pollData;

 }

 public function updatePoll ($input) {

 if ($input === "yes") {

 $updateSQL = "UPDATE poll SET yes = yes+1 WHERE poll_id = 1";

 } else if ($input === "no") {

 $updateSQL = "UPDATE poll SET no = no+1 WHERE poll_id = 1";

 }

 $updateStatement = $this->db->prepare($updateSQL);

 $updateStatement->execute();

}

}

?>

The new method updatePoll() is similar to the getPollData method. However, if

the user submitted a yes, we format an SQL string that can update the yes attribute in

the poll table. If the user submitted a no, we format a different SQL string to update the

no attribute. Notice that the yes or no values are incremented by one to add the user’s

choice into the proper location in the database table. Whichever SQL string is created, it

is stored in a variable called $updateSQL. Once the $updateSQL string is created, we again

use the PDO method prepare() to convert the SQL string to a PDOStatement object,

which is stored in the variable $updateStatement. We then call execute() to update the

poll table.

Chapter 6 Databases, MVC, and Data Objects

221

�Secure Programming
We should always be aware that a hacker can attempt to use SQL Injection to corrupt

our tables and databases. SQL Injection is an attempt to insert SQL statements into a

program’s use of SQL to insert or update data in the database. In future chapters, we will

use prepared statements to create our SQL commands, which will reduce the possibility

of successful injection. We will also validate the data before making any updates to the

database. In the previous example, we did not use any information gathered from the

user to format the SQL statement. Thus, the SQL statement created was secure and

resistant to SQL Injection.

�Responding to User Input

Controllers are responsible for dealing with user interactions. So, the poll controller is

the right place to intercept user input from the poll form. There are a couple of things to

add to the script.

Listing 6-17.  completepoll.php

<?php

//complete code listing for controllers/poll.php

include_once "models/FinalPoll.class.php";

$poll = new Poll($db);

//check if form was submitted

$isPollSubmitted = isset($_POST['user-input']);

//if it was just submitted...

if ($isPollSubmitted) {

 //get input received from form

 $input = $_POST['user-input'];

 //...update model

 $poll->updatePoll($input);

}

$pollData = $poll->getPollData();

include_once "views/completepoll-html.php";

?>

Chapter 6 Databases, MVC, and Data Objects

222

//check if form was submitted

$isPollSubmitted = isset($_POST['user-input']);

//if it was just submitted...

if ($isPollSubmitted) {

We will use the isset method to determine if the user has chosen to give their

opinion in the survey. If they have, we will update the results.

 //get input received from form

 $input = $_POST['user-input'];

 //...update model

 $poll->updatePoll($input);

}

If they did, we will retrieve the value selected and place it into $input. Then we

will pass that value to the updatePoll method, which will make the changes to the

database table.

$pollData = $poll->getPollData();

include_once "views/completepoll-html.php";

Whether or not the user provides their opinion, the program will get the current poll

results and display them by calling the HTML page.

Note  A minor change has occurred to the index (controller) program to call
completepoll.php. You can view this change in the files downloaded from the
publisher’s website.

To see the results, run completepollindex.php in the browser.

Chapter 6 Databases, MVC, and Data Objects

223

Figure 6-13.  Output from completepollindex.php

We now have a completely functional poll site!

There is one weakness to this final version. Can you see it? Once the user has entered

their opinion, the program allows them to enter it again. How can this be corrected? We

can change the output to only display the question the first time the page is shown. Once

the opinion has been given, then we can display the page that does not ask the question

again, but does display the results. We can change the results to use finalpoll-html.

php which was created earlier. This will require just a change to the include statement

discussed earlier.

Exercise: Adjust the final poll project to accept more than one input from the user.

Adjust the controller, model, and view to request, store, and display this information.

�Summary
In this chapter, we’ve learned the basics of SQL statements, as well as how to interact

with a database using PHP. We learned how MVC provides a logical structure to creating

programs which require data and interfaces. In the next chapters, we’ll learn how to

build a blog with a basic entry manager that will allow us to create, modify, and delete

entries, as well as display them on a public page.

Chapter 6 Databases, MVC, and Data Objects

224

�Projects
1. � The power of MVC design is the ability to change the model or

view with little or no changes to the other components of the

project. Review the PHP documentation (www.php.net/manual/

en/function.file.php) on reading and writing to files. Change

the model code from the examples to read and store the poll

information into a file, instead of a database. You should be

able to make these changes within very minimal changes to

the controller or the viewer. Most of your changes should occur

within the model.

2. � Visit www.w3schools.in/laravel-tutorial/ and discover how

Laravel can help create robust data-driven web applications

using PHP and other tools.

Chapter 6 Databases, MVC, and Data Objects

http://www.php.net/manual/en/function.file.php
http://www.php.net/manual/en/function.file.php
http://www.w3schools.in/laravel-tutorial/

225

CHAPTER 7

Building the Basic Blog
System

�Objectives
After completing this chapter, you will be able to

•	 Create a view, containing an HTML form to accept a new blog entry

•	 Create a controller, to handle input from the form

•	 Create a model, to save and retrieve any entry using a database table

•	 Design and create a MySQL/MariaDB database with a table

•	 Use a design pattern for the front controller

•	 Use the table data gateway design pattern for database access

•	 Use a while loop to iterate through a data set

In this chapter, we will begin to build our blog system. We will start by creating an

entry manager (front controller). We will create two front pages for the blog system,

one for the administrator and one for the user. By the end of the chapter, the basic blog

system will be able to save new blogs and display all entries stored within a database.

Along the way, we will use the concepts and topics we have previously covered: database

design, SQL, and MVC. We will also learn new techniques including design practices and

prepared SQL statements.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_7

https://doi.org/10.1007/978-1-4842-8205-2_7#DOI

226

�Creating the blog_entry Database Table
One of the most important steps with any new application is the planning of the tables

that will hold data. This has an enormous impact on the ease of scaling the application

later. Scaling is the expansion of an application to manage more information and/or

users, and it can be a tremendous pain, if we do not look ahead when starting a new

project. At first, the blog needs to store several types of entry information to function,

including the following:

•	 Unique ID

•	 Entry title

•	 Entry text

•	 Date created

The first step is to determine the types of fields for the entries table.

•	 entry_id: A unique number identifying the entry. This will be a

positive integer, and it makes sense for this number to increment

automatically, ensuring the number is unique. The entry_id will be

the primary key for the table.

•	 title: An alphanumeric string that will be relatively short. We’ll limit

the string to 150 characters.

•	 entry_text: An alphanumeric string of indeterminate length. We

won’t limit the length of this field (within reason).

•	 date_created: The timestamp generated automatically at the

original creation date of the entry. We’ll use this to sort the entries

chronologically, as well as for letting the users know when an entry

was posted originally.

Now that we have determined the fields needed, it’s time to create the database.

Using the techniques we learned in the previous chapter, let us begin. Remember that

both Apache and MySQL/MariaDB need to be running for our application to work

properly.

CREATE DATABASE simple_blog

Chapter 7 Building the Basic Blog System

227

We can enter the preceding code into the SQL window of phpMyAdmin or create the

database using the phpMyAdmin Databases menu item.

The next step is to create the entries table. Remember to select the simple_blog

database from the menu at the left side of the phpMyAdmin control panel.

CREATE TABLE blog_entry (

 entry_id INT NOT NULL AUTO_INCREMENT,

 title VARCHAR(150),

 entry_text TEXT,

 date_created TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (entry_id)

)

We can enter the preceding code in the SQL window. Alternatively, we can use the

create table text boxes provided by phpMyAdmin after selecting the database. If you

choose to enter the values using the text boxes, make sure all information entered is the

same as what is provided in the preceding code.

The title attribute has a new data type: VARCHAR(150). As a consequence, any title

must contain CHARacters of VARiable length. Blog entry titles can be a string of characters

between 0 and 150 characters long. If we insert a title that is 151 characters long, only the

first 150 characters would be saved in the blog_entry table. The database has ensured

that our value entered is valid before it is saved.

The date_created attribute is also declared with a new data type: TIMESTAMP. A

TIMESTAMP holds precise information about a moment in time. It stores year, month, day,

hour, minute, and second as YYYY-MM-DD HH:MM:SS.

We have already discussed using default values in our MySQL tables. Here, it is used

again for the date_created attribute. When a new entry is inserted for the first time,

MySQL/MariaDB will automatically store the current TIMESTAMP based on the server’s

clock. The server clock will be based on the time zone in which the server is located.

�Planning the PHP Scripts
Our next logical step is to create a blog entry editor, so that we can create new blog

entries. This blog entry editor is only meant for the blog author. Ordinary site visitors will

not be able to create new entries. Normal site visitors should simply see the blog entries,

without being able to edit existing entries or create new ones.

Chapter 7 Building the Basic Blog System

228

One approach to such a task is to create two main site entrances: index.php for

regular visitors and admin.php. In MVC terminology, index.php and admin.php will both

be front controllers. In a later chapter, we will learn how to restrict access to admin.php,

with a login.

The admin page will list all blog entries, and provide access to the entry editor, to

create new entries and edit or delete existing entries. This will require separate views:

one for listing all entries and one for showing the editor.

The program admin.php will display an HTML5 page. It will allow the administrator

to decide whether to show the editor or list all entries. Figure 7-1 uses the MVC

architecture to develop a schematic overview of the blog administration module.

Figure 7-1.  Distribution of responsibilities

Notice that every view has a corresponding controller. The entry model displays all

entries and saves any new entry.

�Admin View: Creating the Admin Blog Site
Let us create a new folder called ch7 and a folder blog inside the ch7 folder. Inside the

blog folder, we will also create four other folders: models, views, controllers, and CSS.

We can now copy the page.php program from the template folder in ch4 to the views

folder under blog. We can also copy the Page_Data.class.php program from the ch4

classes folder into the models folder. We will create a blank style sheet, which we will

code later, and place it in the CSS folder with the name of blog.css. Of course, we can

download the files for this chapter from the publisher’s website.

Now it is time to create a test version of admin.php, our front controller, to see if

everything works together properly.

Chapter 7 Building the Basic Blog System

229

Listing 7-1.  admin.php

<?php

//complete code for blog/admin.php

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL blog demo");

$pageData->setCss("<link rel='stylesheet' href='css/blog.css'>");

$pageData->setContent("<h1>YES!</h1>");

include_once "views/page.php";

echo $page;

?>

Note I f you copied the Page_Data.class.php from the ch4 folder, the
validation using the if statements will need to be adjusted to allow the values
passed in this listing and future listings in this chapter. If you don’t see the
expected results, check the security restrictions within this file. The Page_Data.
class.php file from the publisher’s website already has the required adjustments.

This code should look familiar, as it is similar to the basic front controllers that we

created in previous chapters. The only addition is the included style sheet.

When testing this program, everything should work as expected; we should get a

well-formed HTML5 with a <title> of PHP/MySQL blog demo and an <h1> element

happily exclaiming YES! Seeing YES in the browser is visual confirmation that the

project is set up correctly. If we view the source code, we will also see the HTML link for

accessing the CSS style sheet has been properly located in the title section.

�Creating the Admin Entry Manager Navigation
The entry manager (front controller) will have two views: one to list all entries and one to

show an entry editor. Let us make a navigation to access these views.

But first, we can expect this project to contain many PHP files before we are done.

Let us create some folders to keep scripts related to the administration module grouped

together. We will create a folder called admin in the existing views folder. We will place

our first version of the admin navigation in this folder.

Chapter 7 Building the Basic Blog System

230

Listing 7-2.  admin-navigation.php

<?php

//complete code for views/admin/admin-navigation.php

$nav = "

<nav id='admin-navigation'>

 All entries

 Editor

</nav>";

?>

We can see that the entry manager navigation is very similar to the navigation we

made previously.

The admin navigation is a static view, meaning there is no dynamic or database-

driven information in the script. We do not need a model for the navigation because

all content is hard-coded. We do need a controller to load the navigation whenever

it should be loaded. The navigation will be loaded and displayed all the time. We will

control this from a new version of the front controller.

Listing 7-3.  adminWithNavigation.php

<?php

//complete code for blog/admin.php

 include_once "views/admin/new-admin-navigation.php";

 include_once "models/Page_Data.class.php";

 $pageData = new Page_Data();

 $pageData->setTitle("PHP/MySQL blog demo");

 $pageData->setCss("<link rel='stylesheet' href='css/blog.css'>");

 $pageData->setContent($nav . "<h1>YES!</h1>");

 include_once "views/page.php";

 echo $page;

?>

Only three minor adjustments have been made to the program. The navigation

program has been included at the top of the code. The $nav variable has been added to

the string passed into the setContent method. The navigation program has also been

adjusted to call this new version of admin.

Chapter 7 Building the Basic Blog System

231

Figure 7-2.  Output from adminWithNavigation.php

When running the program within our browser, we should see the navigation

displayed in the top of the browser window. Clicking a navigation item will not have any

immediately visible effect; the navigation is just a view. Clicking any navigation item will

encode a URL variable named page. We can see it if we look in the browser’s address bar.

Next, we will create the controller code to respond to these user interactions.

�Loading Admin Module Controllers
As already mentioned, the admin.php program is our front controller. As such, it will load

any other controller(s) associated with the navigation item the user clicked. There are

two links in the navigation, so we will need two controllers.

Let us create two preliminary controllers so we can see visible changes in the

browser when we click a navigation item. Let us add an admin folder to the controllers

folder. We will create a program for the editor view within this folder.

Listing 7-4.  editor.php

<?php

//complete source code for controllers/admin/editor.php

$info = "<h1>editor controller loaded!</h1>";

?>

The editor controller will not be doing a whole lot to start. Initially, we just want to

check that it hooks up the right files. With that in place, we can develop code of greater

complexity. Let us create another file for controlling the view that will eventually list all

entries.

Chapter 7 Building the Basic Blog System

232

Listing 7-5.  entries.php

<?php

//complete source code for controllers/admin/entries.php

$info = "<h1>entries controller loaded!</h1>";

?>

Now we can adjust the admin program to process these controllers.

Listing 7-6.  newadminWithNavigation.php

<?php

//complete code for blog/admin.php

$nav = "";

$info = "";

include_once 'views/admin/newest-admin-navigation.php';

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL blog demo");

$pageData->setCss("<link rel='stylesheet' href='css/blog.css'>");

$pageData->setContent($nav);

//new code begins here

$navigationIsClicked = isset($_GET['page']);

if ($navigationIsClicked) {

 //prepare to load corresponding controller

 $contrl = $_GET['page'];

} else {

 //prepare to load default controller

 $contrl = "entries";

}

//load the controller

include_once "controllers/admin/$contrl.php";

$pageData->appendContent($info);

include_once "views/page.php";

echo $page;

?>

Chapter 7 Building the Basic Blog System

233

Again, the style of this front controller should look very familiar. It is similar to

previous chapters. Remember the file names entries.php and editor.php. These

names are essential. They must be matched with corresponding values of the URL

variable page declared when a user clicks a navigation item. Let us take a closer look at

the href values used in the navigation:

All entries

Editor

When a user clicks the All entries item, the URL variable page gets a value of

entries. The URL variable page is fetched using $_GET. The string value entries are

stored inside a variable called $contrl and subsequently used to include controllers/

admin/$contrl.php, which will really translate to including controllers/admin/

entries.php, because the variable $contrl holds the value entries. If the user clicks

the Editor item, controllers/admin/editor.php will be included.

At this point, we can test the system again to make sure everything is still working

properly. By default, we will see the message returned from the entries controller. If we

click the navigation item for the editor, we will see the returned message from the editor

controller.

�Creating the Admin Entry Input Form
Now that we have dynamic navigation, it’s time to create a form to accept blog entries.

While we are at it, let us create a button for deleting an entry. We will create code for

deletion in a later chapter.

Listing 7-7.  editor-html.php

<?php

//complete source code for views/admin/editor-html.php

return "

<form method='post' action='admin.php?page=editor' id='editor'>

 <fieldset>

 <legend>New Entry Submission</legend>

 <label>Title</label>

 <input type='text' name='title' maxlength='150' />

 <label>Entry</label>

 <textarea name='entry'></textarea>

Chapter 7 Building the Basic Blog System

234

 <fieldset id='editor-buttons'>

 <input type='submit' name='action' value='save' />

 <input type='submit' name='action' value='delete' />

 </fieldset>

 </fieldset>

</form>

";

?>

If you have used HTML before, most of the preceding code should be familiar. We

included two <fieldset> elements. They are used to group related form fields together.

The main <fieldset> has a <legend> element. A <legend> is like a heading for a

<fieldset> element.

The <input> element for the entry title has a maxlength attribute set to 150. You

can probably guess that the displayed text field will only accept 150 characters. That is

perfect, because our entry table in the database accepts a maximum of 150 characters for

new title attributes. We should always make sure that any limits placed in HTML forms

match the limits placed in the database table that will store this information.

The maxlength attribute enhances form usability, in that it becomes harder for users

to create an invalid title through the form. The maxlength attribute performs client-side

validation and will only allow submission of valid titles. One thing to keep in mind is the

fact that client-side validation is great for enhancing usability.

A first attempt is made to validate information before it is sent to the server. This

increases efficiency because the information is not sent to the server until it is valid.

However, it does not improve security, because a malicious user can override client-side

validation. We will also need to validate the information submitted to the server, within

PHP, to make sure we received the information we expected.

With a new editor view created, we must update the controller, so it shows the new

view. You can now test our current progress by placing the following controller in your

browser.

Listing 7-8.  neweditor.php

<?php

//complete source code for controllers/admin/neweditor.php

include_once "views/admin/editor-html.php";

?>

Chapter 7 Building the Basic Blog System

235

At the moment, the editor simply includes the HTML page. We will also need to

update the navigation to now call this new version.

Listing 7-9.  updatedadminWithNavigation.php

<?php

//complete code for views/admin/admin-navigation.php

$nav = "

<nav id='admin-navigation'>

 All entries

 Editor

</nav>";

?>

A simple change has now set the page to neweditor. Finally, we need to update our

front controller to use the new navigation. The line changed is included in the following.

The new front controller is now newestadminWithNavigation.php.

include_once 'views/admin/updatedadminWithNavigation.php';

After completing these changes, we can open the front controller, and click the Editor

menu item to see the form. However, let us add a little CSS to make the form look better.

�Styling the Admin Editor
You will probably agree that the unstyled entry editor form is not professional. A little

CSS can take us a long way toward improved aesthetics.

Listing 7-10.  newblog.css

/* code listing for blog/css/blog.css */

form#editor{

 width: 300px;

 margin-top:10px;

 padding:0px;

 background-color: #dedede;

}

form#editor label, form#editor input[type='text']{

Chapter 7 Building the Basic Blog System

236

 display:block;

}

form#editor #editor-buttons{

 border:none;

 text-align:right;

}

form#editor textarea, form#editor input[type='text']{

 width:90%;

 margin-bottom:2em;

}

form#editor textarea{

 height:10em;

}

One line in the front controller must be updated to use the new CSS style sheet.

$pageData->setCss("<link rel='stylesheet' href='css/newblog.css'>");

Finally, we can see our results by loading updatedadminWithNavigation.php into

our browser and by clicking the Editor menu item.

Chapter 7 Building the Basic Blog System

237

Figure 7-3.  Output after clicking the Editor menu item

The best way to learn CSS is by using an existing style sheet and adjusting it to what

you like. This sheet gives a simple display of the form – enough to make it look more

professional.

Exercise: Adjust the CSS file to make the form more appealing. Make the buttons

more rounded and curve off the edges of the form box. Adjust the menu items so they

display a more professional look.

�Connecting to the Database
We have completed the basic editor view. Soon, we will be able to insert new blog entries

into the blog_entry database table through the editor form. To do that, we will need a

database connection from the application to the database.

We will take the same approach we used for the poll: use PDO for making

a connection and include the connection in the front controller to share it with

subsequently loaded controllers.

Chapter 7 Building the Basic Blog System

238

Listing 7-11.  database.php located in the models folder

<?php

$dbInfo = "mysql:host=localhost;dbname=simple_blog";

$dbUser = "root";

$dbPassword = "";

try {

 //create a database connection with a PDO object

 $db = new PDO($dbInfo, $dbUser, $dbPassword);

}catch (PDOException $e) {

 $error_message = $e->getMessage();

 $pageData->setContent("<h1>Connection failed!</h1><p>$e</p>");

 exit();

 }

?>

We can use the database.php file located in the models folder of the poll program

from Chapter 6 to access our database. The only change we need to make is to change

the database to simple_blog. We will soon include it into our front controller.

�Using Design Patterns
A design pattern is a general, best-practice solution to a common task. Some design

patterns are defined comprehensively. As your experience grows, you will come across

more design patterns. As an absolute beginner, you do not need a comprehensive

treatment of design patterns – that would likely be more confusing than helpful.

This book uses simple implementations of a few design patterns. We have already

seen a simple implementation of the front controller design pattern and an equally

simple implementation of MVC. It is possible to combine several design patterns in the

same project.

Note  For more information on design patterns, visit http://en.wikipedia.
org/wiki/Software_design_pattern.

Chapter 7 Building the Basic Blog System

https://doi.org/10.1007/978-1-4842-8205-2_6
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Software_design_pattern

239

�The Table Data Gateway Design Pattern

The table data gateway design pattern is a relatively simple design pattern to

understand. The table data gateway pattern specifies that one PHP class be created

for every one table in a database. The idea is that all communication between the

system and the one table happens through one specific object. The table data gateway

encapsulates data communication between the system and a specific database table.

All SQL statements for this communication will be declared in a table data gateway

class definition. This has a couple of advantages: One is that we know where to write

your SQL statements. Consequently, we also know where to find our SQL statements

related to the particular database table.

If you as a PHP developer keep all your SQL encapsulated in relatively few class

definitions, then any database expert on your team will only have to work with these few

classes. That is a huge advantage over having your SQL statements scattered all through

your code base. Always remember, keep your coding as clean and simple as possible.

This helps to reduce logical coding errors.

�Writing the Entry_Table Class
Initially, we will need to be able to insert new blog entries received from the editor form.

We can create a new table gateway class definition for the blog_entry table.

Let us create the new class definition in the models folder; we will call it Blog_Entry_

Table.class.php.

Listing 7-12.  Blog_Entry_Table.class.php

<?php

//complete code listing for models/Blog_Entry_Table.class.php

class Blog_Entry_Table {

 private $db;

 //notice there are two underscore characters in __construct

 public function __construct ($db) {

 $this->db = $db;

 }

Chapter 7 Building the Basic Blog System

240

 public function saveEntry ($title, $entry) {

 //notice placeholders in SQL string. ? is a placeholder

 //notice the order of attributes: first title, next entry_text

 $entrySQL = "INSERT INTO blog_entry (title, entry_text)

 VALUES (?, ?)";

 $entryStatement = $this->db->prepare($entrySQL);

 //create an array with dynamic data

 //Order is important: $title must come first, $entry second

 $formData = array($title, $entry);

 try{

 //pass $formData as argument to execute

 $entryStatement->execute($formData);

 } catch (Exception $e){

 $msg = "<p>You tried to run this sql: $entrySQL<p>

 <p>Exception: $e</p>";

 trigger_error($msg);

 }

}

}

?>

The Blog_Entry_Table will not do anything until it is used from another script.

The Blog_Entry_Table has one property db and two methods: the constructor and

saveEntry(). The constructor takes a PDO object as argument. The received PDO object

will be stored in the db property. This way, all methods of Blog_Entry_Table will have

access to the PDO object and access to the simple_blog database.

In object-oriented terminology, Blog_Entry_Table and PDO are now associated

through a has-a relationship. The Blog_Entry_Table has-a PDO object.

At this point, we will only be saving new entries. So, the Blog_Entry_Table class has

just one method besides the constructor. The saveEntry() method takes two arguments:

the title and the blog_entry.

The code provided uses prepared statements to insert data into the table. When

we created the poll application, we did not directly insert any information the user

provided into the database. However, in our blog, we want to save the title and blog entry

information.

Chapter 7 Building the Basic Blog System

241

�Secure Programming
You might discover some PHP and SQL code on the Internet that directly save

information into a database. However, this is a major security risk. A hacker can use SQL

Injection to destroy our database information. Simply stated, the hacker can alter the

SQL statement we intended to create, change, or delete information.

Note  For more information on SQL injections, visit http://en.wikipedia.
org/wiki/SQL_injection.

Prepared statements also have a positive side effect of allowing the user to pass

information containing quotes into the database. Prepared statements treat all input as

nonexecutable strings which eliminates both of these concerns.

There are three equally important requirements for our use of prepared statements:

	 1.	 Characters are used as placeholders in the SQL string.

 $entrySQL = "INSERT INTO blog_entry (title, entry_text)

VALUES (?, ?)"; // ? ? are used as placeholders

	 2.	 An array is created with the dynamic data. The order of items must

match the order used in the SQL string.

//$formdata is an array with dynamic data

//Order is important: $title must come first, $entry second

$formData = array($title, $entry);

	 3.	 The array with dynamic data is passed as an argument to the

execute() method.

// pass $formData as argument to execute

$entryStatement->execute($formData);

When the statement is executed, the values in the array will be inserted where the

placeholders existed. The information inserted will not allow any SQL Injection.

} catch (Exception $e){

 $msg = "<p>You tried to run this sql: $entrySQL<p>

Chapter 7 Building the Basic Blog System

http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection

242

 <p>Exception: $e</p>";

 trigger_error($msg);

 }

In case an exception occurs, the code will trigger an error showing the SQL string

that caused the exception and a more detailed look at the exception. In production, we

do not want to display all this information to the user, but it’s a good technique to help us

debug any problems doing development.

�Processing the Admin Form Input and Saving the Entry
With the Blog_Entry_Table class created, we can continue development. A logical

next step is to process input received from the editor form and use a Blog_Entry_Table

object to save a new blog entry in the database. Let us update our editor controller.

Listing 7-13.  newesteditor.php

<?php

//complete source code for controllers/admin/editor.php

//include class definition and create an object

include_once "models/Blog_Entry_Table.class.php";

$entryTable = new Blog_Entry_Table($db);

//was editor form submitted?

$editorSubmitted = isset($_POST['action']);

if ($editorSubmitted) {

 $buttonClicked = $_POST['action'];

 if ($buttonClicked === 'save') {

 //get title and entry data from editor form

 $title = $_POST['title'];

 $entry = $_POST['entry'];

 //save the new entry

 $entryTable->saveEntry($title, $entry);

 }

}

include_once "views/admin/insert-editor-html.php";

?>

Chapter 7 Building the Basic Blog System

243

include_once "models/Blog_Entry_Table.class.php";

$entryTable = new Blog_Entry_Table($db);

The class is included, and the database connection is passed into the constructor.

if ($buttonClicked === 'save') {

 //get title and entry data from editor form

 $title = $_POST['title'];

 $entry = $_POST['entry'];

 //save the new entry

 $entryTable->saveEntry($title, $entry);

 }

If the save button is clicked, the title and entry are retrieved and passed to the

saveEntry method to insert them into the database.

Note T he following programs have been updated to link to the newest
versions. All code changes are minor. The insertadminWithNavigation.
php front controller also now includes an include_once statement to insert the
database.php program.

insert-editor-html.php, insert-admin-navigation.php,
insertadminWithNavigation.php

We can now test the insert process by executing the insertadminWithNavigation.

php program in our browser. Then we can click the Editor menu item, enter some test

data, and click the save button. The information will now be properly placed into the

blog_entry table in the database. The form will automatically clear all data, which is a

common indication to the user that the data was inserted. You can browse the content of

the blog_entry table using the phpMyAdmin control panel.

Exercise: Use either the code provided or the code you have developed and do a

complete test on the current system. Try to break the system. Enter in SQL information

and see if you can hack the program. Did you find any weaknesses?

Chapter 7 Building the Basic Blog System

244

�User View: Getting Data for All Blog Entries
Let’s now provide the ability for our users to see the blog entries. We are switching from

what the administrator will see (which eventually will be controlled with a userid and

password) to what the user will see. Thus, we will create a different entrance (front

controller) for the user, which does not require a userid and password, a different model,

and a different view. We can use a stripped-down version of the administrator’s front

controller for the user controller.

Listing 7-14.  index.php

<?php

//complete code for blog/index.php

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL blog demo");

include_once "models/database.php";

include_once "controllers/blog.php";

$pageData->setContent($info);

include_once "views/page.php";

echo $page;

?>

As we can see, currently, there is no need for navigation, as the user only has permission

to view blog entries. The same Page_Data class, database.php, and page.php scripts are

used. Since there is no menu, the determination of what menu item was selected is not

currently needed. Of course, the controller and view are changed to the user versions.

Let us work on the changes required in the blog_entry class. We will show a list of all

blog entries found in the database. Let us display the title, the first 150 characters of the

entry_text, and a Read more link for each of the blog entries.

Let us start by creating a new method to retrieve the blog entries from the blog_

entry table.

Listing 7-15.  Partial Listing of New_Blog_Entry_Table.class.php

//declare a new method inside the Blog_Entry_Table class

public function getAllEntries () {

Chapter 7 Building the Basic Blog System

245

 $sql = "SELECT entry_id, title,

 SUBSTRING(entry_text, 1, 150) AS intro

 FROM blog_entry";

 $statement = $this->db->prepare($sql);

 try {

 $statement->execute();

 } catch (Exception $e) {

 $exceptionMessage = "<p>You tried to run this sql: $sql <p>

 <p>Exception: $e</p>";

 trigger_error($exceptionMessage);

 }

 return $statement;

}

This method will be placed right before the saveEntries method within the class.

This method has a similar format to the previous saveEntry method. There are a few

minor changes, such as retrieving the information, instead of inserting it.

The getAllEntries() method will return a PDOStatement object, through which

we can get access to all blog entries, one at a time. The statement involves some SQL we

have not seen before, so it might be a bit tricky to understand initially. Let us go through

it step by step.

�Using an SQL SUBSTRING Clause
 $sql = "SELECT entry_id, title,

 SUBSTRING(entry_text, 1, 150) AS intro

 FROM blog_entry";

The first thing to notice is that the SELECT statement selects three columns –

entry_id, title, and entry_text – from the blog_entry table. But we are not selecting

everything from the entry_text column. We are only selecting the first 150 characters.

We can accomplish this with the SQL SUBSTRING() function. The general syntax for the

SUBSTRING() function is as follows:

SUBSTRING(string, start position, length)

Chapter 7 Building the Basic Blog System

246

The SUBSTRING() returns the part of a string requested: a substring. The string

argument indicates which partial string to return. As you might guess, the start position

argument indicates at which position to start the substring. The length argument

specifies how long a substring to return. Thus, in the SELECT statement, we are selecting

the first 150 characters from the string found in the entry_text field.

�Using an SQL Alias
In SQL statements, we can use an alias to rename a table or a column. In the SQL used to

select all blog entries, we have named the substring result intro. It was not necessary to

rename it, but it provides us with a straightforward way to access the information in the

substring.

�Preparing a User View for All Blog Entries
It is time to create a user view. This view will list all blog entries. The number of blog

entries is likely to change, so it would be a bad idea to create a view for a specific number

of entries. The view should automatically change to accommodate however many –

or few – blog entries are found in the database. We will iterate over blog entries by

using a loop.

Listing 7-16.  list-entries-html.php

<?php

//complete code for views/list-entries-html.php

$entriesFound = isset($entries);

if ($entriesFound === false) {

 trigger_error('views/list-entries-html.php needs $entries');

}

//create a element

$info = "<h1>Blog Entries</h1>";

$info .= "<ul id='blog-entries'>";

//loop through all $entries from the database

//remember each one row temporarily as $entry

//$entry will be a StdClass object with entry_id, title and intro

Chapter 7 Building the Basic Blog System

247

while ($entry = $entries->fetchObject()) {

 $href = "index.php?page=blog&id=$entry->entry_id";

 //create an for each of the entries

 $info .= "

 <h2>$entry->title</h2>

 <div>$entry->intro

 <p>Read more</p>

 </div>

 ";

}

//end the

$info .= "";

?>

$entriesFound = isset($entries);

if ($entriesFound === false) {

 trigger_error('views/list-entries-html.php needs $entries');

}

$entries will contain the blog entries contained in the database. If they are missing,

an error will be raised to indicate the problem. In production, this will need to be

replaced with an informative statement to the user that there are not currently any blogs.

while ($entry = $entries->fetchObject()) {

 $href = "index.php?page=blog&id=$entry->entry_id";

 //create an for each of the entries

 $info .= "

 <h2>$entry->title</h2>

 <div>$entry->intro

 <p>Read more</p>

 </div>

 ";

}

The while loop first attempts to fetch the next object (entry from the database table)

and places it in $entry. The while loop considers a successful fetch as a true status.

If the fetch is not successful (there are no more records), a false value is placed into

Chapter 7 Building the Basic Blog System

248

$entry and the loop will stop. As long as the status is true, the loop will dynamically

create an element for however many rows are in the blog_entry database table. If

there is one blog entry in the database, there will be one . If there are ten blog entries

in your database, there will be ten elements.

The $href variable contains a link which will recall the index page, passing the two

attributes – page which is set to blog and id which is set to the entry_id contained in the

record in the database table. This information will be used if the user wants to read more

of the blog entry. In addition to the title and the intro (substring) being displayed,

the actual href link is provided, allowing the user to click Read more for the complete

blog entry.

�Hooking Up the User View and User Model
The last step is to hook up the user view with the data from the user model. It does not

take much code, but it will produce a simple display of our entries.

Listing 7-17.  blog.php

<?php

//complete code for controllers/blog.php

include_once "models/New_Blog_Entry_Table.class.php";

$entryTable = new New_Blog_Entry_Table($db);

$entries = $entryTable->getAllEntries();

//load the view

include_once "views/list-entries-html.php";

?>

We simply include the model, make an instance of the class, pass the database

connection object to the entry table object, call the getAllEntries method, and use the

viewer to display the results. That is it!

Chapter 7 Building the Basic Blog System

249

Figure 7-4.  Output from index.php

Our view could use some CSS, but we can see that the test is successful. We can visit

http://localhost/blog/insertadminWithNavigation.php, to create new entries, and

then reload the index in the browser, to see the newly created blog entries listed. The

blogging system is really starting to look like a proper blog.

It is very tempting to click Read more, isn’t it? Don’t you just want to click it and read

a blog entry? Well, clicking Read more at this point will not have a significant impact. We

have not written the code to display all content of individual blog entries, so nothing will

change when you click.

Exercise: Update the navigation in the admin front controller to use this program

to display all entries. Evaluate the results. What is missing? When displaying all entries

from the admin controller, we currently lose the navigation. We will correct this later in

the book.

�Responding to User Requests to Read More
We will show all the content for one blog entry when the user clicks Read more. We can

find individual blog entries in the database table by the entry_id, the primary key. It is

already available in the code, as mentioned before.

Which part of the code should respond when a user clicks Read more: model, view,

or controller? The controller! A controller manages user interactions. Clicking a link is a

Chapter 7 Building the Basic Blog System

250

user interaction. So, we need to make changes to the blog controller to deal with users

who click Read more.

�Getting Entry Data
Let us tackle the problem of displaying the entry. To do that, we will retrieve data from

the blog_entry table. We already have a class that provides access to the blog_entry

table. We will continue to use this class to maintain a single point of access to the table.

 $href = "index.php?page=blog&id=$entry->entry_id";

Remember, the entry_id is passed through the URL call to the index page (blog

controller) from the fetchObject() method we created previously. We can access this

value to retrieve the record requested from the database table. Thus, we can declare a

method that takes this entry_id as an argument (currently stored in the id attribute)

and returns a StdClass object with all the content for the corresponding blog entry.

Listing 7-18.  Partial Listing of Newest_Blog_Entry_Table.class.php

public function getEntry($id) {

 $sql = "SELECT entry_id, title, entry_text, date_created

 FROM blog_entry

 WHERE entry_id = ?";

 $statement = $this->db->prepare($sql);

 $data = array($id);

 try{

 $statement->execute($data);

 } catch (Exception $e) {

 $exceptionMessage = "<p>You tried to run this sql: $sql <p>

 <p>Exception: $e</p>";

 trigger_error($exceptionMessage);

 }

 $model = $statement->fetchObject();

 return $model;

}

Chapter 7 Building the Basic Blog System

251

We can place this method within the class just above the getAllEntries() method.

Now we have two methods to access entries: one which pulls all entries and one which

pulls a specific entry. This new method is quite similar to the getAllEntries() method.

$sql = "SELECT entry_id, title, entry_text, date_created

 FROM blog_entry

 WHERE entry_id = ?";

The SQL string is almost the same as the one created in getAllEntries, except that

the WHERE clause will restrict the selection to only one record with the correct entry_id.

 $statement = $this->db->prepare($sql);

The prepare() method converts the SQL string to a PDOStatement object.

 $data = array($id);

An array is declared to hold the value in $id, which will be populated with the

entry_id.

$statement->execute($data);

The execute method will replace the placeholder (?) with the value in $id and

attempt to retrieve the requested record.

$model = $statement->fetchObject();

The fetchObject() method will attempt to retrieve the first row of data from the

returned table. The return method will pass the StdClass object created to the blog

controller. It was not necessary to include a loop since we are only retrieving one record

from the database table.

�Secure Programming
Why did we use a prepared statement?

The $id came from a URL variable and as such can be manipulated; it should be

treated as unsafe. A malicious hacker might try to change the value in the variable and

attempt an SQL Injection attack. A prepared statement stops any such attempts.

Now we are ready to create our view for the specific entry selected by the user.

Chapter 7 Building the Basic Blog System

252

�Creating a Blog View

Again, the code we create for our single entry will be similar to the code we created to

view all entries.

Listing 7-19.  entry-html.php

<?php

//complete source code for views/entry-html.php

$entryFound = isset($entryData);

if ($entryFound === false) {

 trigger_error('views/entry-html.php needs an $entryData object');

}

$info = "<h1>Detailed Blog</h1>";

//properties available in $entry: entry_id, title, entry_text, date_created

$info .= "<article>

 <h1>$entryData->title</h1>

 <div class='date'>$entryData->date_created</div>

 $entryData->entry_text

</article>";

?>

$info .= "<article>

 <h1>$entryData->title</h1>

 <div class='date'>$entryData->date_created</div>

 $entryData->entry_text

</article>";

$info is populated from retrieving the title, date created, and entry text for the

individual entry. This process is similar to the method which retrieves all the blog

entries, except we did not need a loop. The essence is quite familiar: merge some data

stored in a StdClass object with a predefined HTML structure. The view requires a

StdClass object saved in a variable called $entryData. So, the first few lines of code

check the availability of $entryData. If it is not found, the code will trigger a custom

error. Remember, in production, we will display a different more user-friendly message

if a problem occurs. However, during development, this provides us the information

needed to correct the problem.

Chapter 7 Building the Basic Blog System

253

�Displaying an Entry

We have got the model; we have got the view. The last step is to update the blog

controller. It is responsible for fetching entry data from the model, sharing it with the

entry view, and returning the resulting HTML string to index controller, where it will

be displayed.

Listing 7-20.  newblog.php

<?php

//complete code for controllers/blog.php

include_once "models/Newest_Blog_Entry_Table.class.php";

$entryTable = new Newest_Blog_Entry_Table($db);

$isEntryClicked = isset($_GET['id']);

if ($isEntryClicked) {

 $entryId = $_GET['id'];

 //new code begins here

 $entryData = $entryTable->getEntry($entryId);

 include_once "views/entry-html.php";

 //end of code changes

} else {

 $entries = $entryTable->getAllEntries();

 include_once "views/new-list-entries-html.php";

}

?>

$isEntryClicked = isset($_GET['id']);

If the user clicks the More details link, the id will be populated in the URL used to call

the index page. isset will return a true value into $isEntryClicked.

if ($isEntryClicked) {

 $entryId = $_GET['id'];

 //new code begins here

 $entryData = $entryTable->getEntry($entryId);

 include_once "views/entry-html.php";

Chapter 7 Building the Basic Blog System

254

If it was clicked, the id is fetched from the URL using $_GET. This value is then passed

into the getEntry() method. The entry view is then included to display the single entry

retrieved. If the link is not clicked, the else part of the if statement is executed, which

displays all entries.

Note  list-entries-html.php has been updated to now call newindex.
php instead of index.php. It is now named new-list-entries-html.php.
index.php has also now been updated to include newblog.php, instead of
blog.php. It is now named newindex.php.

We can now test our program by loading newindex.php in our browser and by

clicking the Read more link.

Again, we could use some CSS, but we do now have a functional blog which allows

users to select more information. It includes both administrative abilities (adding new

blog entries) and normal user abilities. Now would be an enjoyable time to celebrate our

progress! We have come a long way since the first chapter. But…

Exercise: Update the project, by adding code similar to previously seen in this

chapter, to use the same CSS style sheet to professionally design the display of all the

entries and the detailed display of an individual entry. Add CSS to the style sheet which

will display all current views in a similar professional user-friendly design.

Figure 7-5.  Results from clicking the Read more link in newindex.php

Chapter 7 Building the Basic Blog System

255

�Code Smell: Duplicate Code

Can you smell it? There is a bad smell coming from our code. It is one of those classic

code smells every coder knows about. It is one of those things you should learn to avoid,

as your proficiency with code grows.

Note  Find a long list of typical code smells at http://en.wikipedia.org/
wiki/Code_smell.

Duplicate code is when identical or similar code exists in multiple places. Do you

already know where to find the smell? It is in models/Newest_Blog_Entry_Table.class.

php. Here is an example:

//partial code for models/Blog_Entry_Table.class.php

public function getEntry($id) {

 $sql = "SELECT entry_id, title, entry_text, date_created

 FROM blog_entry

 WHERE entry_id = ?";

 $statement = $this->db->prepare($sql);

 $data = array($id);

 try{

 $statement->execute($data);

 } catch (Exception $e) {

 $exceptionMessage = "<p>You tried to run this sql: $sql <p>

 <p>Exception: $e</p>";

 trigger_error($exceptionMessage);

 }

 $model = $statement->fetchObject();

 return $model;

}

There are a couple of other similar methods in the Newest_Blog_Entry_Table class.

They all prepare() a PDOStatement and try() to execute() it. In all three methods, we

can find many lines of code that are nearly identical. That is bad!

Chapter 7 Building the Basic Blog System

http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Code_smell

256

�Staying DRY with Curly

Duplicate code is bad for a number of reasons. One is that it is not efficient; we are

simply using more lines than necessary. The code is unnecessarily long. Longer code

can invariably cause more potential errors. Less code means fewer chances for errors.

Another reason duplicate code is bad is that it complicates the maintenance of the

program over time. It is highly likely, over time, that the code will need to be updated. If

the code is identical or remarkably similar code in multiple different methods, changes

might need to occur in all of those methods. We always should create code that is as easy

as possible to maintain.

We can place the duplicate code in a separate method, so any change to the code

can be made in one place. Each method can then call the new method. This decreases

maintenance time and increases reliability.

It is really just another case of coding by Curly’s law or at least a variant of Curly’s law.

Curly’s original law was: Do one thing. This particular variant should be: Do one thing

once. There is another geek expression for it: staying DRY. DRY is an acronym that means

“don’t repeat yourself.”

�Refactoring with Curly

Refactoring is the process of changing code without changing what it does. It is a big deal

for coders. We should refactor our code whenever we realize the project requirements

have outgrown the code architecture, or, in other words, when the code architecture

does not support the features, your project needs in a beautiful way. Simply, when we

discover duplicate logic in multiple places, it needs to be fixed.

It is time to refactor the Newest_Blog_Entry_Table class, so it becomes

DRIER. Let us begin by encapsulating the code that prepares an SQL statement into a

separate method.

//$sql argument must be an SQL string

//$data must be an array of dynamic data to use in the SQL

private function executeSQL ($sql, $data) {

 //create a PDOStatement object

 $statement = $this->db->prepare($sql);

 try{

 //use the dynamic data and run the query

 $statement->execute($data);

Chapter 7 Building the Basic Blog System

257

 } catch (Exception $e) {

 $exceptionMessage = "<p>You tried to run this sql: $sql <p>

 <p>Exception: $e</p>";

 trigger_error($exceptionMessage);

 }

 //return the PDOStatement object

 return $statement;

}

public function executeSQL ($sql, $data) {

This new method accepts the prepared statement in $sql and the array of data to

be placed into the prepared statement when called from another program or method. It

then uses this information in the same manner that we discovered in the other methods

contained within the Blog Entry class.

With the new method declared, we can refactor one of the existing methods to use

the new method.

Listing 7-21.  getEntry Method of Updated_Blog_Entry_Table.class.php

public function getEntry($id){

 $sql = "SELECT entry_id, title, entry_text, date_created

 FROM blog_entry

 WHERE entry_id = ?";

 $data = array($id);

 //call the new DRY method

 $statement = $this->executeSQL($sql, $data);

 $model = $statement->fetchObject();

 return $model;

}

The new executeSQL() method makes the getEntry() method a little shorter. The

code is also easier to follow as it only creates the prepared statement, and the array, then

it calls the executeSQL method. It then fetches the results and returns them.

There is a little syntactical detail to notice. See how we used the $this keyword when

one method calls another method declared in the same class? It is not really different

from using $this to get to a property. In both cases, $this is an object’s reference to

itself. It is the object-oriented way of saying “my.”

Chapter 7 Building the Basic Blog System

258

Let us refactor the saveEntry() method.

Listing 7-22.  saveEntry of Updated_Blog_Entry_Table.class.php

 public function saveEntry ($title, $entry) {

 $entrySQL = "INSERT INTO blog_entry (title, entry_text)

 VALUES (?, ?)";

 $formData = array($title, $entry);

 //changes start here

 //$this is the object's way of saying 'my'

 //so $this->makeStatement calls makeStatement of Blog_Entry_Table

 $entryStatement = $this->executeSQL($entrySQL, $formData);

 //end of changes

}

Finally, let us refactor the getAllEntries() method.

Listing 7-23.  getAllEntries of Updated_Blog_Entry_Table.class.php

public function getAllEntries () {

 $sql = "SELECT entry_id, title, SUBSTRING(entry_text, 1, 150) AS

intro FROM blog_entry";

 $statement = $this->executeSQL($sql);

 return $statement;

}

We have a slight problem here. We only need the SQL string and not the array to

retrieve all the records because we are not using a prepared statement. However, when

we call the executeSQL(), it requires two arguments. We only want to pass one.

Sometimes, we want to call executeSQL() with one argument, and sometimes

we want to call it with two arguments. The second argument needs to be optional.

Luckily, PHP has a very easy way to make an argument optional. We simply declare the

argument with a default value, which will be used if nothing is passed. Let us update the

executeSQL method to allow this.

Listing 7-24.  executeSQL of Updated_Blog_Entry_Table.class.php

private function executeSQL ($sql, $data = NULL){

 //end of code changes

Chapter 7 Building the Basic Blog System

259

 $statement = $this->db->prepare($sql);

 try{

 $statement->execute($data);

 } catch (Exception $e){

 $exceptionMessage = "<p>You tried to run this sql: $sql <p>

 <p>Exception: $e</p>";

 trigger_error($exceptionMessage);

 }

 return $statement;

}

In the preceding code, the argument $data gets a default value of NULL. So, if

executeSQL() is called without a second argument, the created PDOStatement object

will execute with NULL. No dynamic values will replace placeholders in the prepared

statement. And that is exactly what we want, because there are no placeholders in the

SQL for this statement.

Note Y ou can consult www.w3schools.com/php/php_functions.asp to
learn a little more about function arguments with default values.

In the other cases where executeSQL() is called with two arguments, the second

argument will be used to replace SQL placeholders with actual values. Using optional

arguments is a very powerful concept in code. It can often lead to a clean solution when

encapsulating nearly duplicate code into a single separate method.

Note M inor changes have been made to the following files to properly use the
new Blog Entry Table class.

updated-entries-html.php, updatedblog.php, updatedindex.php

We can test our changes by executing updatedindex.php in our browser. The same

output will occur when displaying all entries and retrieving more information for an

individual entry.

Chapter 7 Building the Basic Blog System

http://www.w3schools.com/php/php_functions.asp

260

Remember: Refactoring is to change code without changing what it does. So, a

successful test confirms when the code behaves exactly as it did before refactoring.

Refactoring is done with the sole purpose of making the code easier to maintain and

more efficient.

�Secure Programming
You may have noticed that the executeSQL() method is private instead of public. It

is a fragile member of the Blog Entry Table class. It is only meant to be called internally

and only by other methods in the class. It is certainly not meant to be called from outside

the class.

The executeSQL() method is a submethod used by the other methods. This method

makes the actual changes to the data in the database table. It is very vulnerable to attacks

by hackers. Thus, it needs to be protected from any attempt to use it outside of the

class. Simply setting it to private provides this extra protection. It can only be used by a

method within the class itself.

Remember: The single responsibility principle, also known as Curly’s law, applied to

classes. A class should have a single purpose, and all its properties and behaviors should

be strictly aligned with that purpose. A class with one responsibility is simpler than a

class with many, and a simple class is easier to use than a complex class. By hiding some

properties and methods using a private access modifier, we present a public interface

that’s even simpler and easier to use. So, as a rule of thumb, use private by default,

public when you need it.

Note T here is a third access modifier: protected. In PHP, it is similar to
private, except it can be shared with subclasses through inheritance. You can
find a nice tutorial covering inheritance, access modifiers, and other central OOP
topics at www.killerphp.com/tutorials/object-oriented-php/.

Chapter 7 Building the Basic Blog System

http://www.killerphp.com/tutorials/object-oriented-php/

261

�Summary
In this chapter, we have created a basic blog. The blog provides administrative ability

to create new entries and user ability to display blog entries. In the process, we learned

about prepared statements, and we were introduced to design patterns. We also

discovered how to refactor duplicate code. We created a Blog Entry Table class which is

the data gateway that provides a single point of access from the PHP code to the blog_

entry database table. We have eliminated smelly code and have produced DRY code in

the process.

While our code provides us a good functioning blog, it is missing some key

components. For example, we do not have the ability to update or delete a blog entry. We

will enhance the features of this blog next.

�Projects
1. � Using the design practices from this and previous chapters,

create a student registration system. The basic system will accept

student information (name, address, date of birth, and major)

and save the information in a database. The system will also

display the name of all students registered. Next to each student

name will be a link to provide additional student information.

When the link is clicked, the name, address, date of birth, and

major will be displayed.

2. � Using MVC, create a web page that the user can use to request

more information. The page should accept the user’s name,

email, subject, and detailed description. This information will

be stored in a database. Create administrator pages to display

the subjects entered by all users. Next to each subject provides a

link to display the user’s name, email, and detailed description.

For an extra challenge, search www.php.net to discover how to

send emails using PHP. After the user submits the information,

send an email to your email address (in addition to saving the

information in the database).

Chapter 7 Building the Basic Blog System

http://www.php.net

263

CHAPTER 8

Basic Blog: Entries
and Comments

�Objectives
After completing this chapter, you will be able to

•	 Create a view containing an interactive HTML form

•	 Create a controller to handle input from the form

•	 Create a model to save and retrieve any entry using a database table

•	 Use a foreign key to associate rows and tables comments in a

database

•	 Use inheritance to avoid redundant code

•	 Create a search algorithm to find data in a database table

In this chapter, we will make improvements to both the administrator module and

the user (blog) module. We will begin with the administrator module.

The second iteration of the administration module will update and delete existing

entries through the entry editor (front controller). In the process of improving the

entry manager, we will start by writing small, informal code tests. These tests check the

logical flow of the information between the controller, model, and view before adding

additional code which can complicate the debugging process. Integrating testing into the

development process will improve the overall code quality and decrease debugging time.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_8

https://doi.org/10.1007/978-1-4842-8205-2_8#DOI

264

�Creating a Model for the Administrative Module
When looking at the version of our administrative module from the previous chapter,

we can clearly see that there are already buttons that can be used for saving or deleting

existing entries. We can also see that something is missing. Where would we click to load

an existing entry into the entry editor, so that we could edit or delete it?

Let us start our development process to solve this problem by copying the files from

the publisher’s website. You can choose to copy files from the ch7 folder and modify

them, as discussed in the next paragraph. However, due to the number of changes, this

is not recommended. If you do want to venture into that swamp, follow the directions in

the following.

Start by creating a ch8 folder. Under this folder, create a blog folder. Under the blog

folder, create the controllers, css, models, and views folders. Under the controllers

folder, create an admin folder. Under the views folder, create an admin folder. Then copy

the programs from the ch7 folder as shown in the following table.

Original Name New Name Location

newesteditor.php editor.php controllers/admin

database.php database.php Models

Page_Data.class.php Page_Data.class.php Models

Updated_Blog_Entry_Table.

class.php

Blog_Entry_Table.class.php Models

updated-admin-navigation.php admin-navigation.php views/admin

insert-editor-html.php editor-html.php views/admin

insertadminWithNavigation.php admin.php Blog

newblog.css blog.css css

page.php page.php views

Note  Each file copied will need to be updated to use any of the renamed
programs.

Chapter 8 Basic Blog: Entries and Comments

265

Next, to accomplish the task for update and delete, let us display a list of all entries

to our administrators. Clicking one entry will load it into the entry editor. We can use the

getAllEntries() method from the Blog Class to accomplish our task.

�Displaying Administrative Links
With the previous model (Blog_Entry_Table.class.php) tried, tested, and understood,

we can start working on the view. Let us create a list of clickable blog entry titles. This

allows us to take an approach similar to logic used with the blog.php program. We can use

a while loop to iterate through database records using the PDO Statement object. Every

row of data from the database table will be represented by a separate element. We

can wrap the individual blog titles in <a> elements to create a clickable list of entries. Let us

make these adjustments to the Chapter 7 updated-entries-html.php program.

Listing 8-1.  entries-html.php

<?php

//complete code for views/admin/entries-html.php

$entriesFound = isset($entries);

if ($entriesFound === false) {

 trigger_error('views/admin/entries-html.php needs $entries');

}

//create a element

$info = "<h1>Blog Entries</h1>";

$info .= "<ul id='blog-entries'>";

$info .= "";

//loop through all $entries from the database

//remember each one row temporarily as $entry

//$entry will be a StdClass object with entry_id, title and intro

while ($entry = $entries->fetchObject()) {

 $href = "admin.php?page=editor&id=$entry->entry_id";

 //create an for each of the entries

 $info .= "$entry->title";

}

//end the

$info .= "";

?>

Chapter 8 Basic Blog: Entries and Comments

https://doi.org/10.1007/978-1-4842-8205-2_7

266

Clicking an entry will request a URL like admin.php?page=editor&id=2. This way,

the editor controller will have access to the entry_id of the clicked entry. This code is

similar to the code we created previously.

Now we can create an entries controller for administration access.

Listing 8-2.  entries.php

<?php

//complete code for controller/admin/entries.php

include_once "models/Blog_Entry_Table.class.php";

$entryTable = new Blog_Entry_Table($db);

$entries = $entryTable->getAllEntries();

include_once "views/admin/entries-html.php";

?>

This code is similar to updatedblog.php in Chapter 7. It is actually a simplified

version because we are not checking to see if the user has clicked a button. We are

displaying all entries by default.

We can test the logical flow of our program by loading http://localhost/ch8/blog/

admin.php?page=entries into a browser. Once we are satisfied that everything works, we

can add additional details to our code.

We now see a list of clickable blog entry titles. If we click a title, the empty entry

editor will be displayed. We can change this, so that the entry editor will be loaded with

the contents of the clicked blog entry displayed inside the editor.

Figure 8-1.  Output from admin.php?page=entries

Chapter 8 Basic Blog: Entries and Comments

https://doi.org/10.1007/978-1-4842-8205-2_7

267

�Populating the Form with the Entry to Be Edited
Sometimes, the entry editor form should be displayed with blank fields, so that we can

create new entries. At other times, the editor should display an existing entry, so that

it can be edited. A user can click a blog title to load the values into the editor. Clicking

the blog title will encode the entry’s entry_id into the HTTP request as a URL variable.

It follows that if an entry’s entry_id is available as a URL variable, we can load the

corresponding entry into the editor. If no such URL variable is found, we can display a

blank editor.

Let us adjust the editor view to display the contents when an id is found; otherwise, it

will still display an empty form.

Listing 8-3.  new-editor-html.php

<?php

//complete source code for views/admin/editor-html.php

//new code added here

//check if required data is available

$entryDataFound = isset($entryData);

if($entryDataFound === false){

 //default values for an empty editor

 $entryData = new StdClass();

 $entryData->entry_id = 0;

 $entryData->title = "";

 $entryData->entry_text = "";

}

$info = "

<form method='post' action='admin.php?page=neweditor' id='editor'>

 <input type='hidden' name='id' value='$entryData->entry_id' />

 <fieldset>

 <legend>New Entry Submission</legend>

 <label>Title</label>

 <input type='text' name='title' maxlength='150'

 value='$entryData->title' />

 <label>Entry</label>

 <textarea name='entry'>$entryData->entry_text</textarea>

Chapter 8 Basic Blog: Entries and Comments

268

 <fieldset id='editor-buttons'>

 <input type='submit' name='action' value='save' />

 <input type='submit' name='action' value='delete' />

 </fieldset>

 </fieldset>

</form>";

?>

$entryDataFound = isset($entryData);

if($entryDataFound === false){

 //default values for an empty editor

 $entryData = new StdClass();

 $entryData->entry_id = 0;

 $entryData->title = "";

 $entryData->entry_text = "";

}

If there is information contained in $entryData (which will be populated from

pulling a record from the database, if the user clicked the title), then that information

will be placed into $entryDataFound. The information is contained in a StdClass. If

there was no information pulled (the user wants to enter a new blog), then default values

are used.

<input type='hidden' name='id' value='$entryData->entry_id' />

The entry_id is saved into a hidden variable id since the value has no meaning to

the user. It will be hidden from view when displaying the page. However, if the user looks

at the HTML code formed in the browser (view source), the value will be visible. Thus, it

is hidden, but not considered secure.

<input type='text' name='title' maxlength='150'

 value='$entryData->title' />

 <label>Entry</label>

 <textarea name='entry'>$entryData->entry_text</textarea>

Both the title and entry fields are populated with values from the StdClass. This

will display the blog data to be updated or the default values if the user wants to enter a

new blog.

Chapter 8 Basic Blog: Entries and Comments

269

The last step is to update the editor.php program to use the getEntry() method

from the Blog_Entry_Table to retrieve the data for any blog entry the user requested.

Listing 8-4.  neweditor.php

<?php

//complete source code for controllers/admin/editor.php

//include class definition and create an object

include_once "models/Blog_Entry_Table.class.php";

$entryTable = new Blog_Entry_Table($db);

//was the editor form submitted?

$editorSubmitted = isset($_POST['action']);

if ($editorSubmitted) {

 $buttonClicked = $_POST['action'];

 if ($buttonClicked === 'save') {

 //get title and entry data from editor form

 $title = $_POST['title'];

 $entry = $_POST['entry'];

 //save the new entry

 $entryTable->saveEntry($title, $entry);

 }

}

$entryRequested = isset($_GET['id']);

//create a new if-statement

if ($entryRequested) {

 $id = $_GET['id'];

 //load model of existing entry

 $entryData = $entryTable->getEntry($id);

 $entryData->entry_id = $id;

}

include_once "views/admin/new-editor-html.php";

?>

$entryRequested = isset($_GET['id']);

//create a new if-statement

if ($entryRequested) {

Chapter 8 Basic Blog: Entries and Comments

270

 $id = $_GET['id'];

 //load model of existing entry

 $entryData = $entryTable->getEntry($id);

 $entryData->entry_id = $id;

}

isset is used to determine if the hidden id value has been set. If it has, then it is

retrieved and placed into $id. The $id value is then passed into the getEntry() method

to retrieve the data from that particular record in the database table. The $id value

then is added to the entry_id property in the StdObject named $entryData which was

created when the data was retrieved.

Note T he following new versions, with minor changes, have been created to
access neweditor.php and new-editor-html.php: new-entries-html.
php, newentries.php.

Let us take time to test the logic of our code before we continue. We can test our code

by entering http://localhost/ch8/blog/admin.php?page=newentries into a browser –

then by selecting one of the blogs that are displayed.

Figure 8-2.  Output from calling neweditor.php via admin.php and selecting a blog

Chapter 8 Basic Blog: Entries and Comments

271

The editor is not perfect yet. We can see any existing entry in the editor, but we

cannot save any changes. If we click the Save button, a new entry will be inserted, but an

existing blog cannot be updated. The editor cannot properly handle existing entries yet,

nor can it delete existing entries. Deleting is easy, so we will implement that first.

�Handling Entry Deletion
The model will logically contain code to delete entry data from the database. The view

already has a Delete button, so no changes are necessary. The controller must also be

updated to execute code when a user clicks the Delete button.

�Deleting Entries from the Database
To delete a row of data from the blog_entry table in the database, we will need to create

more SQL. Let us take a minute to reflect. Where would we write the code to delete an

entry? The PHP code to delete an entry in the blog_entry table belongs in the Blog_

Entry_Table class, our single gateway to the database table. We will create a new

method to accomplish this task.

Listing 8-5.  Partial Listing from New_Blog_Entry_Table.class.php

//partial code for models/New_Blog_Entry_Table.class.php

//declare a new method inside the Blog_Entry_Table class

public function deleteEntry ($id) {

 $sql = "DELETE FROM blog_entry WHERE entry_id = ?";

 $data = array($id);

 $statement = $this->executeSQL($sql, $data);

}

The code within this method should look familiar. It uses the same logic as other

methods in the Blog Entry Table. The only difference is the SQL statement.

Deleting data from a database is a final action; there is no undo! It is important that

we never accidentally delete something. The database table is properly designed: every

record has a primary key. That means every single record can be uniquely identified if

we have the primary key of an entry. It follows that we also know which record to delete

by the entry_id.

Chapter 8 Basic Blog: Entries and Comments

272

�Responding to Delete Requests
With the editor model ready to delete entries, it is time to update the controller with

code, to determine if the Delete button was clicked. If the Delete button was clicked, the

controller should call the model, to have the relevant entry deleted.

//partial code for views/admin/editor-html.php

//two buttons, one name, different values

<fieldset id='editor-buttons'>

 <input type='submit' name='action' value='save' />

 <input type='submit' name='action' value='delete' />

</fieldset>

Clicking any of the submit buttons in the editor form will encode a URL variable

named action. The action will have a value of save, if the Save button is clicked, and

a value of delete, if the Delete button is clicked. Knowing this, let us update the editor

program.

Listing 8-6.  newesteditor.php

<?php

//complete source code for controllers/admin/newesteditor.php

include_once "models/New_Blog_Entry_Table.class.php";

$entryTable = new New_Blog_Entry_Table($db);

//was the editor form submitted?

$editorSubmitted = isset($_POST['action']);

if ($editorSubmitted) {

 $buttonClicked = $_POST['action'];

 $id = $_POST['id'];

 if ($buttonClicked === 'save') {

 //get title and entry data from editor form

 $title = $_POST['title'];

 $entry = $_POST['entry'];

 //save the new entry

 $entryTable->saveEntry($title, $entry);

 } else if ($buttonClicked === 'delete') {

Chapter 8 Basic Blog: Entries and Comments

273

 $entryTable->deleteEntry($id);

 }

}

$entryRequested = isset($_GET['id']);

//create a new if-statement

if ($entryRequested) {

 $id = $_GET['id'];

 //load model of existing entry

 $entryData = $entryTable->getEntry($id);

 $entryData->entry_id = $id;

}

include_once "views/admin/new-editor-html.php";

?>

There are actually only a few changes necessary.

$id = $_POST['id'];

The hidden value in id is saved into $id.

 } else if ($buttonClicked === 'delete') {

 $entryTable->deleteEntry($id);

 }

An else if statement is added to check if the Delete button was clicked. If it was,

then the $id value is passed to the new deleteEntry() method.

Note T he following programs have been updated to call the new versions of
newesteditor.php and New_Blog_Entry_Table.php: new-entries-html.
php, newestentries.php, newadmin.php, newest-editor-html.php,
newest-admin-navigation.php.

We can pause again to test our updates to the model, controller, and view.

We can check our progress by entering http://localhost/ch8/blog/newadmin.

php?page=newestentries into a browser.

Chapter 8 Basic Blog: Entries and Comments

274

After selecting a blog to delete and clicking the Delete button, the form will clear.

This gives the user an indication that the record has been deleted. We can click the All

entries menu item to discover that the entry is no longer listed. We can also verify this

by looking in the database table.

Note T he entry_id can be found in two different places. In one part of the
program, the code looks for the entry_id using $_POST['id']; in another part
of the program, the code looks for it using $_GET['id']. It is a little peculiar that
they hold identical values but serve different purposes.

The $_GET['id'] gets encoded every time a user clicks a blog title listed. So,

$_GET['id'] represents the entry_id of a blog entry a user would like to see in the

entry editor.

The $_POST['id'] gets encoded every time an entry has been loaded into the entry

editor. It represents the entry_id of the entry the user has just seen in the editor. So,

$_GET['id'] represents the entry to be loaded, whereas $_POST['id'] represents the

already loaded entry.

We now have an editor that can create new entries and delete existing ones. Let us

complete the process by allowing the administrator to update entries.

�Preparing a Model to Update Entries in the Database
Updating an existing entry in the database is definitely a job for the model. Let us add an

update method to our Blog Entry Table.

Listing 8-7.  Partial Listing of Newest_Blog_Entry_Table.class.php

//Partial code for models/Newest_Blog_Entry_Table.class.php

//declare new method

 public function updateEntry ($id, $title, $entry) {

 $sql = "UPDATE blog_entry

 SET title = ?,

 entry_text = ?

 WHERE entry_id = ?";

Chapter 8 Basic Blog: Entries and Comments

275

 $data = array($title, $entry, $id);

 $statement = $this->executeSQL($sql, $data) ;

 return $statement;

}

The logic of this function and the basic structure of the SQL should look familiar.

We used the update SQL statement when we updated our poll. However, we are using a

prepared statement to place the changes into the record in the database table to ensure

that any attempt at SQL Injection will fail. Now we can update the code to call this

method when the user clicks the Save button. The Save button will accept both a new

entry and an updated entry.

�Controller: Should I Insert or Update?
When the user clicks Save, the displayed entry should either be inserted or updated in

the database. Which action to take depends on which entry was displayed in the entry

editor form.

Remember the hidden input from the editor view? It stores the currently displayed

entry’s entry_id, or 0, if the editor fields are blank (set to the defaults). We can use this

information to check whether the administrator is trying to insert a new row in the blog_

entry table or update an existing row.

When the Save button is clicked, we will retrieve the value from the hidden

input. If the editor was empty, the hidden input holds a value of 0. This indicates the

administrator has just created a new entry. The code will then insert a new row into

blog_entry. If it holds any other integer, the code will update the blog_entry with the

corresponding entry_id. Let us update the controller to accomplish these tasks.

Listing 8-8.  updatededitor.php

<?php

//complete source code for controllers/admin/updatededitor.php

include_once "models/Newest_Blog_Entry_Table.class.php";

$entryTable = new Newest_Blog_Entry_Table($db);

//was the editor form submitted?

$editorSubmitted = isset($_POST['action']);

if ($editorSubmitted) {

Chapter 8 Basic Blog: Entries and Comments

276

 $buttonClicked = $_POST['action'];

 $id = clean_input($_POST['id']);

 $title = clean_input($_POST['title']);

 $entry = clean_input($_POST['entry']);

 if (($buttonClicked === 'save') and ($id === '0')) {

 $entryTable->saveEntry($title, $entry);

 } else if (($buttonClicked === 'save') and ($id != '0')) {

 $entryTable->updateEntry($id, $title, $entry);

 } else if ($buttonClicked === 'delete') {

 $entryTable->deleteEntry($id);

 }

}

$entryRequested = isset($_GET['id']);

//create a new if-statement

if ($entryRequested) {

 $id = $_GET['id'];

 //load model of existing entry

 $entryData = $entryTable->getEntry($id);

 $entryData->entry_id = $id;

}

include_once "views/admin/updated-editor-html.php";

//New function to remove invalid code

function clean_input($value) {

 $value = trim($value);

 $value = stripslashes($value);

 $value = strip_tags($value);

 return $value;

}

?>

�Secure Programming
 $id = clean_input($_POST['id']);

 $title = clean_input($_POST['title']);

 $entry = clean_input($_POST['entry']);

...

Chapter 8 Basic Blog: Entries and Comments

277

function clean_input($value) {

 $value = trim($value);

 $value = stripslashes($value);

 $value = strip_tags($value);

 return $value;

}

In addition to the changes mentioned, we have taken the opportunity to improve the

validity of the data being entered by using three PHP functions: trim(), stripslashes(),

and strip_tags(). trim() will remove extra spaces, tabs, and/or newline characters.

Backslashes will be removed using stripslashes(). strip_tags() will remove any PHP

or HTML tags entered, which will keep it from being executed.

Note T he following programs have been updated to access the most current
versions of the updated files: updated-editor-html.php, updated-
entries-html.php, updatedentries.php, updatedadmin.php,
updated-admin-navigation.php.

The code must be able to differentiate between two user actions (save, update).

When the user clicks the Save button, and entry_id is 0, the user is really trying to insert

a new entry.

 $id = clean_input($_POST['id']);

 $title = clean_input($_POST['title']);

 $entry = clean_input($_POST['entry']);

All three values are saved if the user clicked a button. The values will be default

values, and $id will contain a zero, if the user wants to save a new entry. $id will contain

the entry id number if the user wants to update an existing entry.

 if (($buttonClicked === 'save') and ($id === '0')) {

 $entryTable->saveEntry($title, $entry);

 } else if (($buttonClicked === 'save') and ($id != '0')) {

 $entryTable->updateEntry($id, $title, $entry);

 } else if ($buttonClicked === 'delete') {

 $entryTable->deleteEntry($id);

 }

Chapter 8 Basic Blog: Entries and Comments

278

If it is a new entry, then the saveEntry() method is called, with $title and $entry

passed. If it is an updated entry, the updateEntry() method is called, with $id, $title,

and $entry. If the Delete button was clicked, deleteEntry() is called, with $id.

We can now take another pause and test our changes by entering http://

localhost/ch8/blog/updatedadmin.php?page=updatedentries into our browser.

After clicking on a blog listed, we can make updates to the blog and click the submit

button. The form will be clear which is an indication that the changes took place. Then

we can use the navigation menu to display all blogs (again) and click on the updated

blog to see that the update did occur.

�Insisting on a Title
We have a usability flaw in our logic; it is possible to create a new blog entry without

specifying a title for it!

The problem is that a blog entry without a title cannot be clicked, and consequently,

such an entry is not loaded into the entry editor form. If we really wanted to edit the

blog entry, we could change the entry in the database table. We might say that this is a

usability problem rather than a functional problem. Functionally speaking, it is possible

to edit the entry, but it would be much more convenient, and much easier for users, if all

blog entries could be edited through the entry editor.

�Secure Programming
This might be considered a security flaw in our program or, at least, a validation flaw.

Remember, we must make sure all data is valid before it is entered into the database. We

certainly have not done so here. For secure validation, it must occur in two locations:

Figure 8-3.  Entering a blog without a title

Chapter 8 Basic Blog: Entries and Comments

279

the client side and the server side. We must remember that hackers can bypass our

forms and attempt to send information directly to our program on the server. If we only

validate on the client machine, we leave a hole for this to occur.

So why not validate everything on the server, and just skip validation on the client?

The answer is efficiency. Every time we use PHP code, we are interacting with

the server. Thus, if we only validate using PHP, we must pass the information to the

server, validate, pass back the information and error messages to the form on the client

machine, and do it again if the user still does not enter correct information. If we validate

on the client machine first, we can make sure that valid information (when sent from the

form) is only sent to the server – thus reducing the server calls and making the program

more user-friendly and more efficient. Of course, we still will validate using PHP to make

sure that the data was not corrupted on the way to the server or that a hacker is not

attempting to send invalid data to the server.

Let us start by making a small change to our editor HTML code for client-side validation.

Although we already cleaned our data on the server side, let us update the user side to not

allow special characters, which may indicate an attempt to enter HTML code. We also will

require that a title be entered. This will eliminate the problem shown in Figure 8-3.

//partial code for views/admin/another-editor-html.php

<input type='text' name='title' maxlength='150' ";

if ($entryData->title !="") {

 $info .= "value='$entryData->title' ";

}

 $info .= "pattern='[A-Za-z]{,150}'"

 �title='Title can contain only alphabetic letters, no special

characters. Title is required.'

 required />

The pattern

pattern='[a-z][A-Z]{,150}'

will allow only alphabetic characters, and requires at least one character, with a

maximum of 150 characters. The HTML required attribute also checks that the user has

entered information. The title attribute defines the error message to be displayed if the

user does not enter the correct required information. The title text box will only be set

with a value if it is not the default value. Otherwise, the pattern test will fail.

Chapter 8 Basic Blog: Entries and Comments

280

Figure 8-4.  Output from another-editor-html.php with invalid input

Note T he following files have been updated with minor changes to use the
modified form: another-admin-navigation.php, anothereditor.
php, anotheradmin.php, another-entries-html.php,
anotherentries.php.

For more information on input patterns, visit www.w3schools.com/tags/att_
input_pattern.asp.

This solution will work beautifully in most modern browsers. However, any older

browsers will ignore HTML that it cannot execute and simply pass the values entered to

the PHP program on the server.

To verify that the title has a value, we only need to change one code line in the

anothereditor.php program.

if (($editorSubmitted) && (isset($_POST['title']))) {

Exercise: Adjust the HTML code for the text field in the another-editor-html.

php form and the PHP code in anothereditor.php to allow a few types of HTML (and/

or CSS) formatting. To accomplish this, you will need to create a JavaScript function for

validation on the user side and update the clean function on the server side.

Chapter 8 Basic Blog: Entries and Comments

http://www.w3schools.com/tags/att_input_pattern.asp
http://www.w3schools.com/tags/att_input_pattern.asp

281

�User View: Building and Displaying the Comment
Entry Form
Let us switch over to the user side of our application and correct another missing

required function of our blog. Any blogging system should allow the user to compose

comments for existing blog entries. We will start by creating a comment form (view)

to accept these user comments. This form will also need a corresponding model and a

controller.

Note T he following files have been copied from the ch7/blog folder and
renamed as shown in the following. The files have also been modified to use the
current versions of other related files. It is recommended that you copy the files
from the Chapter 8 folder on the publisher’s website to avoid issues.

Original Name New Name Location

updatedindex.php index.php Blog

updatedblog.php blog.php blog/controllers

updated-entries-html.php entries-html.php blog/views

entry-html.php entry-html.php blog/views

Let us look at the code for the comments form.

Listing 8-9.  comments-html.php

<?php

//complete code for views/comment-form-html.php

$idIsFound = isset($entryId);

if($idIsFound === false) {

 trigger_error('views/comments-html.php needs an $entryId');

}

Chapter 8 Basic Blog: Entries and Comments

https://doi.org/10.1007/978-1-4842-8205-2_8

282

$info .= "

<form action='newindex.php?page=blog&id=$entryId' method='post'

id='comment-form'>

 <input type='hidden' name='entry-id' value='$entryId' />

 <label>Your name</label>

 <input type='text' name='user-name' maxlength='30'

 pattern='[a-zA-Z]{1,30}'

 �title='Name can contain only alphabetic letters, no special

characters. Name is required.'

 required />

 <label>Your Comment</label>

 <textarea name='new-comment'></textarea>

 <input type='submit' value='post!' />

</form>";

?>

$idIsFound = isset($entryId);

if($idIsFound === false) {

 trigger_error('views/comments-html.php needs an $entryId');

}

If an entry id is not passed, then no attempt will be made to accept comments. The user

should only be on this form if they have selected a blog entry (which has an entry id) and are

attempting to add a comment related to the blog. If the entry id is missing, an error is raised.

<form action='newindex.php?page=blog&id=$entryId' method='post'

id='comment-form'>

 <input type='hidden' name='entry-id' value='$entryId' />

When the form is submitted, page is set to blog, and the id is set to the value in

$entryid. $entryid is also stored in a hidden property, entry-id. This logic is similar to

the logic shown in the previous chapter.

<input type='text' name='user-name' maxlength='30'

 pattern='[a-zA-Z]{1,30}'

 �title='Name can contain only alphabetic letters, no special

characters. Name is required.'

 required />

Chapter 8 Basic Blog: Entries and Comments

283

The name text box also restricts entries to alphabetic characters, required, with a

maximum of 30 characters. We will also filter out any invalid data in our PHP code which

will reside on the server.

To display the comment form, we need a comment controller. Its job at this early

stage is to simply load the view and return the HTML to have the comment form

displayed.

Listing 8-10.  comments.php

<?php

//complete code for controllers/comments.php

include_once "views/comment-form-html.php";

?>

So far, the code is short, to the point, and very much like previous code examples.

The comment controller loads the comment view. But who should load the comment

controller and actually show the comment form?

�A Combined View
A comment form should only be displayed when a complete entry is displayed (more

details have been selected). So, the page that shows an entry should also show a

comment form: it is a complex view composed of other views. Figure 8-5 shows a simple

solution to combine views.

Figure 8-5.  Constructing complex views

Chapter 8 Basic Blog: Entries and Comments

284

Some of our previous front controllers also provided multiple views. The code in

anotheradmin.php loads a model and a view for making HTML5 pages. Depending

on conditions, anotheradmin.php loads either the editor controller or the list-entries

controller, each of which will return some content to be embedded on the generated

page. Thus, anotheradmin.php is the primary controller, and the subsequently loaded

controller is a secondary controller.

In this example, the primary controller is the blog controller. The comment form is

only meaningful in the context of a blog entry. The blog controller loads blog entries.

Then the blog controller will load the comment controller (secondary controller).

Listing 8-11.  newblog.php

<?php

//complete code for controllers/newblog.php

include_once "models/Newest_Blog_Entry_Table.class.php";

$entryTable = new Newest_Blog_Entry_Table($db);

$isEntryClicked = isset($_GET['id']);

if ($isEntryClicked) {

 $entryId = $_GET['id'];

 //new code begins here

 $entryData = $entryTable->getEntry($entryId);

 include_once "views/entry-html.php";

 include_once "controllers/comments.php";

} else {

 $entries = $entryTable->getAllEntries();

 include_once "views/new-entries-html.php";

}

?>

include_once "controllers/comments.php";

The only change from our previous blog controller is the preceding one code line to

include the comments.php secondary controller.

Exercise: The form is completely unstyled. It is not a pretty sight. Go ahead and style

the comment form however you prefer. A little CSS has been included in the newblog.

css file under the css folder. However, use your own creativity. Make sure to add the

required code to use as CSS style sheet as shown in previous chapters.

Chapter 8 Basic Blog: Entries and Comments

285

Of course, we cannot yet display or store our comments. Let us create the database

table which will hold this information provided by the user.

�Creating a Comment Table in the Database
Let us create a table named comment in the simple_blog database. We will use this

to store all information about comments. We will include several different kinds of

information in this table as follows:

•	 comment_id: A unique identifier for the comment. This is the table’s

primary key. We will use the AUTO_INCREMENT property, so that new

comments are automatically assigned a unique id number.

•	 entry_id: The identifier of the blog entry to which the comment

corresponds. This column is an INT (integer) value. The entry_id

refers to a primary key in another table. The entry_id is a foreign key

in the comments table.

•	 author: The name of the comment author. This column accepts a

maximum of 30 characters and is of the VARCHAR (string) type.

•	 txt: The actual comment text. The column’s data type is TEXT.

•	 date: The date the comment was posted is stored as a TIME_

STAMP. We can set a default value for this column: the CURRENT_

TIMESTAMP, which will provide a TIME_STAMP for the exact date and

time when a user adds a new comment to the table.

To create this table, we will navigate to http://localhost/phpmyadmin in a browser,

select the simple_blog database, and open the SQL tab. Then we will execute the

following command to create the comment table:

CREATE TABLE comment (

 comment_id INT NOT NULL AUTO_INCREMENT,

 entry_id INT NOT NULL,

 author VARCHAR(75),

 txt TEXT,

 date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (comment_id),

 FOREIGN KEY (entry_id) REFERENCES blog_entry (entry_id)

)

Chapter 8 Basic Blog: Entries and Comments

286

Note  You can alternatively use the GUI screens within phpmyadmin to create the
comment table and its contents as previously discussed in other chapters.

A comment is a user’s response to one particular blog entry. So, every new comment

must be uniquely associated with one blog entry. When a particular blog entry is

displayed, only comments related to that blog entry will be displayed.

It follows that the database must be designed in such a way as to represent a

relationship between blog entries and comments. The database design must support

that any one comment can be related to only one blog entry. A logical solution is to

create the comment table with a column for entry_id, as shown in Table 8-1. That way,

one comment will know the related entry_id of the specific entry.

Table 8-1.  Comment Rows Related to Specific Entries

comment_id entry_id Author txt date

1 1 Thomas […] 2022-09-02 12:54:15

2 8 Thomas […] 2022-09-02 13:25:41

3 1 Brennan […] 2022-09-07 01:43:19

Let us take a look at the populated comment table shown in Table 8-1. See how

anyone’s comment will be explicitly related to a particular entry’s entry_id? This way,

every comment knows the associated blog entry. Notice also that one blog entry may

have many associated comments. The entry with entry_id = 1 has two comments in

the preceding example. This kind of relationship is known as a one-to-many relationship

in relational database terminology.

�Using a Foreign Key
It is very common to use a foreign key when establishing relationships between two

tables. You can see how a foreign key is declared in the previous SQL statement. But what

is it really for?

A foreign key is also a reference to a primary key column in a foreign table. In the

preceding example, the comment table’s entry_id is a reference to the blog_entry

table’s entry_id column.

Chapter 8 Basic Blog: Entries and Comments

287

The foreign key helps maintain data integrity, because the comment table will only

accept comments with an entry_id that can be found in the blog_entry table. In other

words, the comment table will only accept comments related to blog entries that exist.

�Building a Comment_Table Class
Let us now create the model for our comments which will be used to access the new

comment table in the database. We are continuing to use the table data gateway design

which provides a single point of access from PHP code to one database table.

The Blog_Entry_Table class contains several items which we will also use in our

comment table. This includes the constructor, which accepts the PDO object, and the

executeSQL() method, which will execute our new SQL statements. We could simply

copy the code we are reusing into the new class. However, this is not code efficiency. This

situation provides us another opportunity to learn something new, using inheritance to

share common code among different classes.

�Inheritance
When using inheritance, we can create a single class definition to keep the code to be

shared among several classes. We will create separate subclasses which will contain the

unique code for individual classes.

Figure 8-6.  Subclasses inherit properties and methods from a parent class

Chapter 8 Basic Blog: Entries and Comments

288

Figure 8-6 illustrates how some code to be shared among a number of classes can be

declared in a parent class. All children of the parent will be born with these properties. In

Figure 8-6, we can see that both A_Child and Another_Child have a $sharedProperty and

a sharedMethod(). These were inherited from the parent class. In Figure 8-6, we can also

see that A_Child and Another_Child each have special properties and methods. These are

declared in the child class definition. For example, only A_Child has a changeA() method.

We will use this idea to share the contents of $db and the function executeSQL()

between the Blog_Entry_Table and the Comment_Table classes. The Comment_Table and

Blog_Entry_Table classes will both be born with a $db property and an executeSQL()

method inherited from the Table class (parent class).

�Is-a Relationships
In object-oriented terminology, the relationship between a parent class and child class

is referred to as an is-a relationship. A Comment_Table is a Table. The Table is a general

abstraction that represents a database table. The Comment_Table is a representation of a

specific database table.

The concept of is-a relationships between objects is something you use in your

everyday thinking. Coffee is a beverage. Orange juice also is a beverage. Orange juice

and coffee share some characteristics, though they are clearly different. A beverage is

the abstract idea of a consumable liquid. Coffee and orange juice are specific kinds of

consumable liquids. Object-oriented programming has borrowed a widely used human

mode of reasoning and used it to bring hierarchical order to computer programs.

�Using Inheritance in Our Code
The code we will share among subclasses must have public or protected access

modifiers. Any property or method with a private access modifier is not shared through

inheritance. Let us create a general Table class which will contain those items shared by

the subclasses.

Listing 8-12.  Table.class.php

<?php

//complete code listing for models/Table.class.php

class Table {

Chapter 8 Basic Blog: Entries and Comments

289

 protected $db;

 //notice there are two underscore characters in __construct

 public function __construct ($db) {

 $this->db = $db;

 }

 protected function executeSQL ($sql, $data = NULL) {

 //create a PDOStatement object

 $statement = $this->db->prepare($sql);

 try{

 //use the dynamic data and run the query

 $statement->execute($data);

 } catch (Exception $e) {

 $exceptionMessage = "<p>You tried to run this sql: $sql <p>

 <p>Exception: $e</p>";

 trigger_error($exceptionMessage);

 }

 //return the PDOStatement object

 return $statement;

}

}

?>

This code should look very familiar as it is copied from the Blog Entry class with just

a few minor modifications.

protected $db;

...

protected function executeSQL ($sql, $data = NULL) {

The protected access modifier is quite similar to the private access modifier we have

already used. Protected methods and properties cannot be accessed from outside of a

class. However, they can be accessed from inside the class itself. If we used private for

these statements, they would not be accessible to the subclasses that need to use them.

To make this code available to a subclass such as Comment_Table, we will have

to include the Table class script in our code and indicate it is used with the keyword

extends.

Chapter 8 Basic Blog: Entries and Comments

290

Listing 8-13.  Table.class.php

<?php

//complete code for models/Comment_Table.class.php

include_once "models/Table.class.php";

class Comment_Table extends Table{

 public function saveComment ($entryId, $author, $txt) {

 $sql = "INSERT INTO comment (entry_id, author, txt)

 VALUES (?, ?, ?)";

 $data = array($entryId, $author, $txt);

 $statement = $this->executeSQL($sql, $data);

 return $statement;

 }

 public function getAllById ($id) {

 $sql = "SELECT author, txt, date FROM comment

 WHERE entry_id = ?

 ORDER BY comment_id DESC";

 $data = array($id);

 $statement = $this->executeSQL($sql, $data);

 return $statement;

}

}

?>

Now the Comment_Table class contains only code that is specific to accessing and

updating the comment table in the database. The saveComment() function uses familiar

code to insert comments into the table. The getAllById() function uses familiar code

to retrieve all comments related to a particular entry_id. Notice that both functions use

the executeSQL() function contained in the Table class to execute each SQL command.

This function was inherited from the Table class and, thus, is available for use by both

functions. The getAllById() function also sorts the results in descending order (DESC),

to display the most recent comments displayed at the top of the results.

Chapter 8 Basic Blog: Entries and Comments

291

Note I t is possible to code long inheritance chains. You could make a Dog class,
which is a child of Wolf, which is a child of Canine, which is a child of Quadruped,
which is a child of Mammal. But experience shows that shallow inheritance
relationships are preferable. Long inheritance chains lead to dependency
issues, because the Dog would depend on the presence of the Wolf, which, in
turn, depends on Canine, which depends on the Quadruped. Keep inheritance
chains short.

Take a moment to read the select SQL statement used in the preceding code. It will

SELECT author, txt, and date columns for all comments associated with a particular

entry_id. Remember that the entry_id was declared as a foreign key. It is a reference to

the primary key of the blog_entry table. Through the entry_id, we can unambiguously

identify one particular blog_entry: we know which comment is related to which

blog entry.

In the insert SQL statement, the comment_id column is declared as auto_

incrementing, which means the very first comment inserted will automatically get a

comment_id value of 1. The next comment will get a comment_id value of 2, and so forth.

So, the newest comments will have the highest comment_id value. Thus, descending

order will list new comments first, older comments later.

Now that the model is created, it is time to create a view, to see if everything is

working correctly.

�Creating a View for Listing Comments

The view we are creating will use similar logic to other views we have created previously.

Listing 8-14.  comments-html.php

<?php

$commentsFound = isset($allComments);

if($commentsFound === false){

 trigger_error('views/comments-html.php needs $allComments');

}

$allCommentsHTML = "<ul id='comments'>";

//iterate through all rows returned from database

Chapter 8 Basic Blog: Entries and Comments

292

while ($commentData = $allComments->fetchObject()) {

 //notice incremental concatenation operator

 //it adds elements to the

 $allCommentsHTML .= "

 $commentData->author wrote:

 <p>$commentData->txt</p>

 ";

 }

$allCommentsHTML .= "";

$info .= $allCommentsHTML;

?>

while ($commentData = $allComments->fetchObject()) {

 //notice incremental concatenation operator .=

 //it adds elements to the

 $allCommentsHTML .= "

 $commentData->author wrote:

 <p>$commentData->txt</p>

 ";

}

The while loop will loop through the standard object containing the comments

retrieved from the database table. As long as there is a comment, the contents of the txt

property (the actual comment) are displayed from $commentData which contains the

current record pulled from the standard object. The loop will continue until there are no

more comments related to the particular blog entry.

�Hooking Up View and Model to Display Comments

The final step to displaying comments is to load the view that will display all comments

retrieved from the database.

Listing 8-15.  newcomments.php

<?php

//complete code for controllers/comments.php

include_once "models/Comment_Table.class.php";

Chapter 8 Basic Blog: Entries and Comments

293

$commentTable = new Comment_Table($db);

include_once "views/comment-form-html.php";

$allComments = $commentTable->getAllById($entryId);

include_once "views/comments-html.php";

?>

The preceding code will display a blog entry, then the comment form, and, finally, a

list of all comments associated with that blog entry. We could manually enter a comment

into the database table. However, let us go ahead and create the ability to do so with a

form – especially since we already created our insert function.

�Inserting a Comment Through the Comment Form
Using PHP to retrieve form input is a very common task for web developers. It is

something you should be starting to understand at this point of the book.

Listing 8-16.  comment-form-html.php

<?php

//complete code for views/comment-form-html.php

$idIsFound = isset($entryId);

if($idIsFound === false) {

 trigger_error('views/comments-html.php needs an $entryId');

}

$info .= "

<form action='newindex.php?page=blog&id=$entryId' method='post'

id='comment-form'>

 <input type='hidden' name='entry-id' value='$entryId' />

 <label>Your name</label>

 <input type='text' name='user-name' maxlength='30'

 pattern='[a-zA-Z]{1,30}'

 �title='Name can contain only alphabetic letters, no special

characters. Name is required.'

 required />

Chapter 8 Basic Blog: Entries and Comments

294

 <label>Your Comment</label>

 <textarea name='new-comment'></textarea>

 <input type='submit' value='post!' />

</form>";

?>

<form action='newindex.php?page=blog&id=$entryId' method='post'

id='comment-form'>

The form method is post. The page attribute is set to blog, and the id attribute holds

the value in $entryId.

There is also an <input> field named user-name, a hidden <input> named entry-id,

and a <textarea> named new-comment. Knowing this, we can write a little PHP in the

comment controller to insert new comments from users.

Listing 8-17.  updatedcomments.php

<?php

//complete code for controllers/updatedcomments.php

include_once "models/Comment_Table.class.php";

$commentTable = new Comment_Table($db);

//new code here

$newCommentSubmitted = isset($_POST['new-comment']);

if ($newCommentSubmitted) {

 $whichEntry = $_POST['entry-id'];

 $user = clean_input($_POST['user-name']);

 $comment = clean_input($_POST['new-comment']);

 $commentTable->saveComment($whichEntry, $user, $comment);

}

//end of new code

include_once "views/updated-comment-form-html.php";

$allComments = $commentTable->getAllById($entryId);

include_once "views/comments-html.php";

function clean_input($value) {

 $value = trim($value);

 $value = stripslashes($value);

Chapter 8 Basic Blog: Entries and Comments

295

 $value = strip_tags($value);

 return $value;

}

?>

$newCommentSubmitted = isset($_POST['new-comment']);

if ($newCommentSubmitted) {

 $whichEntry = $_POST['entry-id'];

 $user = clean_input($_POST['user-name']);

 $comment = clean_input($_POST['new-comment']);

 $commentTable->saveComment($whichEntry, $user, $comment);

}

The new loop added to the code will now pull the comment left by the user, remove

any invalid code, and pass the information to the saveComment() function. The function

will then place the comment into the comment database table.

Note T he following files have been updated to use the most current versions of
the comment’s logic: updatedblog.php, updatedindex.php, updated-
comment-form-html.php, updated-entries-html.php.

Let us take a moment to test our logic. Let us open our browser and execute

updatedindex.php, then point our browser to any blog entry and submit a new comment

through the form. We should expect to see the submitted comment listed alongside any

other comments that exist for that blog entry. The commenting system works!

Chapter 8 Basic Blog: Entries and Comments

296

Figure 8-7.  Output from selecting more details in updatedindex.php

Exercise: Change the Blog_Entry_Table class, so that it inherits from Table, to

practice inheritance. It will be very similar to what we did with the Comment_Table class.

�Searching for Entries
We have come a long way with our blogging system. Somebody visiting the blog might

want to look for something specific written at one time, and they might not remember

which entry contained the information. We can provide them an option to search

through entries.

We will show a search form, so that visitors can enter a search text. We will accept

any entered search text to perform a search in our database and return any entries that

match the entered search information.

We will need a view to show the search form and another view to show the search

results. We will need a model to perform the database search and return a result. We

will need a controller to respond to user interactions. If the form was submitted, the

controller should show search results; if not, it will show the search form.

Chapter 8 Basic Blog: Entries and Comments

297

�The Search View
It is always a good idea to begin with a small step. We will start by creating an HTML

form for the search view. We will keep it simple. It will be nothing fancy. Create a new file

in views/search-form-html.php.

Listing 8-18.  search-form-html.php

<?php

//complete code for views/search-form-html.php

$info .= "<aside id='search-bar'>

 <form method='post' action='index.php?page=search'>

 <input type='search' name='search-term' />

 <input type='submit' value='search'>

 </form>

</aside>";

?>

The view will display an HTML search form. A search input type is simply a special

single-line text field. Search fields will remember a user’s previous search terms and

present the user with a drop-down list suggesting previous search terms. Older browsers

may not support the search type. But any browser that does not support it will default to

a basic <input type='text'>, so the search form will still work, even if a browser does

not support the search type.

To display the search form, we should consider where we want it to be displayed. It

would be nice to display the search form on every page view. To show the search form

regardless of what else is displayed, we could load it from the front controller, from

index.php. We will add one line of code near the end of index.php.

Listing 8-19.  searchindex.php

<?php

//complete code for blog/index.php

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL blog demo");

include_once "models/database.php";

Chapter 8 Basic Blog: Entries and Comments

298

include_once "controllers/searchblog.php";

//new code: include the search view before the blog controller

include_once "views/search-form-html.php";

//end of new code

$pageData->setContent($info);

include_once "views/page.php";

echo $page;

?>

Let us take another break and test our logic. We can view our progress by loading

http://localhost/blog/searchindex.php in a browser.

We can see the search area displayed at the bottom of the listing. If we select one of

the “Read more” links, we will also see the search area at the bottom of the information

provided.

Figure 8-8.  Output from searchindex.php

Chapter 8 Basic Blog: Entries and Comments

299

Figure 8-9.  Output from selecting “Read more” in searchindex.php

We could alternatively place the search area at the top of the display and/or just

display it in the initial display of searchindex.php. Of course, at the moment, the actual

search does not work. But soon it will!

Exercise: Adjust the location of the search area to the top of the display. How can

you only display it on the original display of searchindex.php?

�Responding to a User Search
We will load the search controller from the index, when a search has been performed.

If no search has been performed, the index should load the blog controller. Notice the

action attribute of the search form:

//partial code from views/search-form-html.php, don't change anything

<form method='post' action='index.php?page=search'>

Chapter 8 Basic Blog: Entries and Comments

300

Whenever a user submits the search form, a URL variable named page with a value

of search will be encoded as part of the request. So, when a page has a value of search,

the web application should show search results. This will be quite easy to achieve in the

index program.

Listing 8-20.  searchingindex.php

<?php

//complete code for blog/index.php

$info = "";

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP/MySQL blog demo");

include_once "models/database.php";

$pageRequested = isset($_GET['page']);

//default controller is searchingblog

$controller = "searchingblog";

if ($pageRequested) {

 //if user submitted the search form

 if ($_GET['page'] === "search") {

 //load the search by overwriting default controller

 $controller = "search";

 }

}

include_once "controllers/$controller.php";

include_once "views/searching-form-html.php";

$pageData->setContent($info);

include_once "views/page.php";

echo $page;

?>

//default controller is searchingblog

$controller = "searchingblog";

if ($pageRequested) {

 //if user submitted the search form

Chapter 8 Basic Blog: Entries and Comments

301

 if ($_GET['page'] === "search") {

 //load the search by overwriting default controller

 $controller = "search";

 }

}

By default, the searchingblog.php controller will be displayed. However, if the user

has entered a value in the search box and clicked the search button, the search.php

controller will be displayed.

�The Search Model
We have a search form view, and we have a preliminary search controller. It is time to

work on a search model, so that we can perform an actual search. To perform a search,

we will have to query our blog_entry database table. We already have a Blog_Entry_

Table class to provide a single point of access to that table. The sensible thing to do

would be to add another method to the Blog_Entry_Table.

Listing 8-21.  Partial Listing Searched_Blog_Entry_Table.class.php

//Declare new method in Blog_Entry_Table class

public function searchEntry ($searchTerm) {

 $sql = "SELECT entry_id, title FROM blog_entry

 WHERE title LIKE ?

 OR entry_text LIKE ?";

 $data = array("%$searchTerm%", "%$searchTerm%");

 $statement = $this->executeSQL($sql, $data);

 return $statement;

}

Perhaps the $data array warrants a few words of explanation. Isn’t it strange to create

an array with two separate items when the items are identical? Well, the number of

unnamed placeholders in your SQL must exactly match the number of items in the array

executed. Because there are two placeholders in the SQL, we need an array with two

values to use in the search. In the preceding example, the code will search for the same

search term in two different table columns (title and entry_text).

Chapter 8 Basic Blog: Entries and Comments

302

�Searching with a LIKE Condition

The preceding SQL statement demonstrates an SQL keyword we have not used in the

previous examples in this book: LIKE.

 $sql = "SELECT entry_id, title FROM blog_entry

 WHERE title LIKE ?

 OR entry_text LIKE ?";

 $data = array("%$searchTerm%", "%$searchTerm%");

The % character represents a wildcard character. A wildcard character represents

anything. The query would return a result set of all rows where the title or the entry_text

contains the search value, wherever it exists within these columns. For example, if the

search value is “test,” a row with a title of “test if it works” could be returned. A row with

an entry_text value of “This is a test” could also be returned. Since the wildcard character

is both in the front and back of the term to be searched, both are possible results.

�A Search Result View
To show a search result in a way a user might appreciate, we will need a search view. We

will wrap some HTML around the returned data.

Listing 8-22.  searched-results-html.php

<?php

//complete code for views/searched-results-html.php

$searchDataFound = isset($searchData);

if($searchDataFound === false){

 trigger_error('views/searched-results-html.php needs $searchData');

}

$searchedHTML = "<section id='search'> <h1>

 You searched for $searchTerm</h1>";

while ($searchRow = $searchData->fetchObject()){

 $href = "seaarchedindex.php?page=searchedblog&id=$searchRow->entry_id";

 $searchedHTML .= "$searchRow->title";

}

Chapter 8 Basic Blog: Entries and Comments

303

$searchedHTML .= "</section>";

$info .= $searchedHTML;

?>

The preceding code assumes the existence of a $searchData variable. If it is not

found, an error will be triggered. If the $searchData variable is found, the code will

iterate through the result set with a while statement. The while loop will create an

element for each blog_entry that matches the search.

�Loading a Search Result View from the Controller
To display the search results in a browser, we must load the search result view. Hooking

up a view with a model is a task for a controller.

Listing 8-23.  searched.php

<?php

//complete code for controllers/searched.php

include_once "models/Searched_Blog_Entry_Table.class.php";

$blogTable = new Searched_Blog_Entry_Table($db);

$searchOutput = "";

if (isset($_POST['search-term'])){

 $searchTerm = $_POST['search-term'];

 $searchData = $blogTable->searchEntry($searchTerm) ;

 include_once "views/searched-results-html.php";

}

?>

That is it. The front controller will only show either the blog or the search page. The

search page will show search results – even if there were no matches.

Chapter 8 Basic Blog: Entries and Comments

304

Note T he following files have been updated to reference the most current
versions of the search method: Searchedindex.php, searchedblog.php,
searched.php, searchedcomments.php, Searched_Blog_Entry_
Table.class.php, searched-comments-form-html.php, searched-
comments-html.php, searched-entries-html.php, searched-form-
html.php, searched-results-html.php.

Figure 8-10.  Results from searching for “Blog” within searchedindex.php

The search successfully finds all occurrences of the search string as shown when

searching for “Blog” in Figure 8-10.

�Exercise: Improving Search
Did you notice a minor problem with the search? Try to search for a term you absolutely

know has no match in the database. If we look at the generated HTML source code, we

find the following:

<section id='search'>

 <h1>You searched for </h1>

</section>

Make changes to the code to detect when no results are returned. Hint: The

PDOStatement will contain FALSE. Display a message such as “No entries match your

search.”

Chapter 8 Basic Blog: Entries and Comments

305

�Summary
We have covered a lot of ground in this chapter, both in terms of learning and in

improving the blog. The commenting system is a game changer, as far as interactive

communication is concerned. All of a sudden, the site is not just publishing blogs for

the world to see. With a commenting system, we are inviting two-way communication

between the author and the readers.

We still want to refine our blog system with additional security and the ability to post

an image. We will complete our discussion of this system in the next chapter.

�Projects

	 1.	 Using the design practices from this and previous chapters,

update the student registration system from Chapter 7. Provide a

search program which will allow the user to search for a student

record by name or major. The program should display all students

with similar names or all students with the same major.

	 2.	 Update the information request site from Chapter 7 to allow the

administrator to search for information contained in the detailed

description field. The results should display all information (user’s

name, email, and complete description) for all records found

which contain the data in the search string.

Chapter 8 Basic Blog: Entries and Comments

https://doi.org/10.1007/978-1-4842-8205-2_7
https://doi.org/10.1007/978-1-4842-8205-2_7

307

CHAPTER 9

Basic Blog: Images
and Authentication

�Objectives
After completing this chapter, you will be able to

•	 Delete entries from related tables in a database

•	 Create a dynamic select drop-down box

•	 Hash passwords using password_hash()

•	 Determine the size of a string using strlen()

•	 Validate a string using preg_match(), regular expressions, and

filter_var()

•	 Authenticate user access using password_hash and password_

verify()

•	 Secure a web application using sessions

•	 Log errors and exceptions

The basic blog is almost complete! Sure, there’s room for improvement, but it is fully

functional. The administration module can be used to create blog entries, but there are

some serious shortcomings:

•	 It cannot delete blog entries if there are comments in the database

related to the entry.

•	 It cannot add images to blog entries.

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_9

https://doi.org/10.1007/978-1-4842-8205-2_9#DOI

308

Let’s work on fixing these now.

Let us start our development process to fix these flaws by copying the files from the

publisher’s website. You can choose to copy files from the ch8 folder and modify them,

as discussed in the next paragraph. However, due to the number of changes, this is not

recommended. If you like living dangerously, follow the directions in the following.

Start by creating a ch9 folder. Under this folder, create a blog folder. Under the blog

folder, create the controllers, CSS, models, and views folders. Under the controllers

folder, create an admin folder. Under the views folder, create an admin folder. Then copy

the programs from the ch8 folder as shown in the following table.

Original Name New Name Location

anotheradmin.php admin.php Blog

anothereditor.php editor.php controllers/admin

updatedentries.php entries.php controllers/admin

blog.css blog.css Css

Comment_Table.class.php Comment_Table.class.php Models

Searched_Blog_Entry_Table.

class.php

Blog_Entry_Table.class.ph p models

database.php database.php Models

Page_Data.class.php Page_Data.class.php models

Table.class.php Table.class.php models

another-admin-navigation.php admin-navigation.php views/admin

another-editor-html.php editor-html.php views/admin

updated-entries-html.php entries-html.php views/admin

page.php page.php views

Note  Each file copied will need to be updated to use any of the renamed
programs.

Chapter 9 Basic Blog: Images and Authentication

309

�Deleting Entries in Related Tables
The commenting system is a great improvement. Unfortunately, the comments have

also introduced unwanted system behavior in the administration module. It has become

impossible to delete an entry with comments. We can test this by attempting to delete a

blog that has comments. The system will ignore the request. This is an integrity violation.

You may even see the following error displayed, indicating the problem.

Exception: exception 'PDOException' with message 'SQLSTATE[23000]:

Integrity constraint violation: 1451 Cannot delete or update a parent row:

a foreign key constraint fails

�Understanding Foreign Key Constraints
It is always a bit annoying to come across errors, but this one is a friendly error. It is really

preventing us from undermining the integrity of the database. Table 9-1 takes a look

inside the blog_entry table.

Table 9-1.  One Row from the blog_entry Table

entry_id Title entry_text Created

17 delete me Testing 2022-07-23 10:26:18

A comment might be related to that particular blog entry. Table 9-2 shows the

corresponding row from the comment table.

Table 9-2.  One Row from the Comment Table

comment_id entry_id author Txt Date

4 17 Thomas test comment 2022-07-23 10:26:40

Imagine that the blog_entry with entry_id = 17 is deleted. There would be a

comment related to a blog entry that no longer exists. Comments are only meaningful

in the right context. The comment with comment_id = 4 would have lost its context;

Chapter 9 Basic Blog: Images and Authentication

310

it would have lost its integrity. Imagine what would happen if we inserted a new blog

entry with entry_id = 17. That blog entry would be born with a completely irrelevant

comment!

The purpose of a foreign key is to maintain data integrity. So, when we try to delete

a blog_entry that has a comment, MySQL/MariaDB will stop us, because the delete

action would leave a renegade comment floating around in the database, without a

meaningful context. Remember, only blog entries without comments can be deleted

without losing data integrity.

�Deleting Comments Before Blog Entry
When deleting a blog entry, we will first delete any comments related to the entry. We

already have a class that provides a single point of access to the comment table. We can

add a new method to delete all comments related to a particular entry_id.

Listing 9-1.  Partial Listing from Comments_Table.class.php

//partial code for models/Comment_Table.class.php

public function deleteByEntryId($id) {

 $sql = "DELETE FROM comment WHERE entry_id = ?";

 $data = array($id);

 $statement = $this->executeSQL($sql, $data);

}

This method will be called before a blog entry is deleted. Blog entries are deleted

from the Blog_Entry_Table class.

Listing 9-2.  Partial Listing from Blog_Entry_Table.class.php

//partial code for models/Blog_Entry_Table.class.php

//edit existing method

public function deleteEntry ($id) {

 //new code: delete any comments before deleting entry

 $this->deleteCommentsByID($id);

 $sql = "DELETE FROM blog_entry WHERE entry_id = ?";

Chapter 9 Basic Blog: Images and Authentication

311

 $data = array($id);

 $statement = $this->executeSQL($sql, $data);

}

//new code: declare a new private method inside Blog_Entry_Table.class.php

private function deleteCommentsByID($id) {

 include_once "models/Comment_Table.class.php";

 //create a Comment_Table object

 $comments = new Comment_Table($this->db);

 //delete any comments before deleting entry

 $comments->deleteByEntryId($id);

}

Now, if there are any comments related to the blog_entry, those comments will be

deleted first, to avoid violating foreign key constraints!

�Creating an Image Manager
The admin module has two different page views at this point: the list of entries and the

entry editor. We will now add a third page for uploading and deleting the images that we

will be using in our blog entries. We can start by creating the menu item for the image

manager.

Listing 9-3.  admin-navigation.php

<?php

//complete code for views/admin/admin-navigation.php

$nav = "

<nav id='admin-navigation'>

 All entries

 Editor

 Image manager

</nav>";

?>

Chapter 9 Basic Blog: Images and Authentication

312

Clicking the Image manager link will encode a URL variable named page and set its

value to images. The front controller admin.php will require a new controller script called

images.php. As always, we will start with a tiny step to catch errors while they are still

easy to correct.

Listing 9-4.  images.php

<?php

//complete code for controllers/admin/images.php

$info = "<h1>Image manager coming soon!</h1>";

?>

If we load http://localhost/ch9/blog/admin.php?page=images in our browser, we

should see a new menu and the message display.

�Showing a Form for Uploading Images
Now that we have the image manager controller script, we can create an image

manager view. Let us start with a basic HTML form, which we can eventually use to

upload images.

Listing 9-5.  images-html.php

<?php

//complete code for views/admin/images-html.php

if (isset($uploadMessage) === false){

 $uploadMessage = "Upload a new image";

}

Figure 9-1.  Output from http://localhost/ch9/blog/admin.php?page=images

Chapter 9 Basic Blog: Images and Authentication

313

$info = "<h1>Image Upload</h1>

<form method='post' action='admin.php?page=images'

 enctype='multipart/form-data'>

 <p>$uploadMessage</p>

 <input type='file' name='image-data' accept='image/jpeg' />

 <input type='submit' name='new-image' value='upload' />

</form>

";

?>

We can see that the views code is prepared with a placeholder for displaying upload

messages to users. The default upload message is Upload a new image. Soon, the system

will let our users know if an upload was successful or not.

Remember, to allow users to upload files such as images, we need an HTML form.

We must use the HTTP method POST, and the form’s encoding type must explicitly be

declared, to allow for file upload. We must set the enctype of the form to multipart/

form-data, which will accept files and ordinary URL encoded form data.

As mentioned before, an <input> element with type=file will retrieve the file

window from the operating system; this allows users to browse their local computers for

a file to upload. The accept attribute has been set to allow only JPEG images.

Keep in mind that client-side validation can improve usability but not security. The

file type can be changed to “All Files” within the file window. We should also expect that

a malicious user will work around any client-side validation. To protect our system from

attacks, we will also implement server-side validation. We will add this soon. But first, let

us update the image manager controller, so the upload form is displayed.

Listing 9-6.  newimages.com

<?php

//complete code for controllers/admin/newimages.php

 include_once "views/admin/images-html.php";

?>

We can now point our browser to http://localhost/ch9/blog/newadmin.

php?page=newimages, to confirm that the form is, in fact, displayed in the browser.

Chapter 9 Basic Blog: Images and Authentication

314

Note T he following files have been updated to access the new images controller:
newadmin.php, new-admin-navigation.php.

�A Quick Refresher on the $_FILES Superglobal Array
We learned about the $_FILES superglobal in Chapter 4, but it might be helpful to review

what it does, before moving on. Whenever a file is uploaded via an HTML form, that file

is stored in temporary memory, and information about the file is passed in the $_FILES

superglobal array. The array contains several important aspects about the file uploaded.

Array (

 [image-data] => Array (

 [name] => alberte-lea.jpg

 [type] => image/jpeg

 [tmp_name] => /Applications/XAMPP/xamppfiles/temp/phpYPcBjK

 [error] => 0

 [size] => 119090

)

)

The name and type are self-explanatory. The tmp_name is the temporary name of the

file after it has been uploaded. If the file size is too big (according to the settings in php.

ini), then this will be set to "none." An error code of 0 or UPLOAD_ERR_OK indicates that

the file was uploaded successfully. The file size is the number of bytes.

Where did the name image-data come from?

//one line of code from views/admin/images-html.php

<input type='file' name='image-data' accept='image/jpeg' />

The answer is that we provided it! The image-data is there because of the name

attribute for the file chooser window. If we look at the code in views/admin/images-

html.php, we see that it was set in the file input.

We are just one or two lines of code away from uploading the image. All we have

to do is to save the file data on the server. The file data is already uploaded and saved

temporarily under tmp_name, inside image-data array, inside $_FILES. To grab the file

data, we would simply have to write something similar to the following lines:

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4

315

//don't write this anywhere...yet

$fileData = $_FILES['image-data']['tmp_name'];

Instead of reinventing a solution every time we need one, we can write a reusable

class for uploading. That way, we can reuse the upload code in many projects without

changing it.

Come to think of it, we already wrote an Uploader class back in Chapter 4. Let us

copy the Uploader class from ch4/classes/ImagesUploader.class.php and save it

into ch9/blog/models/Uploader.class.php. Alternatively, we can also download the

class from the publisher’s website. Let us also copy the checkImageFile.php program

(used in the uploader) from ch4/views/CheckImageFile.php to ch9/blog/views/

CheckImageFile.php. We can also copy this file from the publisher’s website.

�Uploading an Image
To upload an image using the Uploader class, we begin by creating a new folder for

images (imgs) directly under the ch9/blog folder location.

When the image manager upload form is submitted, the code will attempt to upload

the indicated file. Submitting a form is a user interaction, so the code belongs in a

controller. We will copy the code from ch4/views/imagesUpload.php with only a very

small modification. It is always logical to reuse code that has been well tested and used

successfully.

Listing 9-7.  newestimages.php

<?php

//complete source code for controllers/admin/newestimages.php

function upload(){

 include_once "models/Uploader.class.php";

 //image-data is the name attribute used in <input type='file' />

 $uploader = new ImagesUploader("image-data");

 $uploader->saveIn("imgs");

 $fileUploaded = $uploader->save();

 if ($fileUploaded) {

 $out = "<h1>New image uploaded</h1>";

 } else {

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4

316

 throw new Exception("Error: File not uploaded to Imgs folder");

 }

 return $out;

}

$imageSubmitted = isset($_POST['new-image']);

//if the upload form was submitted

if ($imageSubmitted) {

$info = upload();

}

else {

include_once "views/admin/newest-images-html.php";

}

?>

<?php

//complete source code for controllers/admin/newestimages.php

function upload(){

 include_once "models/Uploader.class.php";

 //image-data is the name attribute used in <input type='file' />

 $uploader = new ImagesUploader("image-data");

 $uploader->saveIn("imgs");

 $fileUploaded = $uploader->save();

 if ($fileUploaded) {

 $out = "<h1>New image uploaded</h1>";

 } else {

 �$out = "File not uploaded to Imgs folder. Check file size and

type.");

 }

 return $out;

}

The upload function from Chapter 4 remains unchanged, except for changing the

display messages. The method uses the Uploader class to set location for the image to

be stored. Then the save() method of the Uploader class is called to attempt to save the

image. The corresponding message is then displayed, if the upload was successful or not.

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4

317

if ($imageSubmitted) {

$info = upload();

}

else {

include_once "views/admin/newest-images-html.php";

}

The function is called, only if an image has been selected from the newest-images-

html.php page. If an image has not been selected, then the page is displayed to allow the

user to select a file.

Listing 9-8.  Uploader.class.php

<?php

//complete code for models/Uploader.class.php

require_once "views/checkImageFile.php";

class ImagesUploader {

 private $filename;

 private $fileData;

 private $destination;

 private $keyValue;

 //declare a constructor method

 public function __construct(string $key) {

 $this->keyValue = $key;

 $this->filename = $_FILES[$key]['name'];

 $this->fileData = $_FILES[$key]['tmp_name'];

 }

 public function saveIn($folder) {

 $this->destination = $folder;

 }

 public function save(){

 $variableName = $this->keyValue;

 $tmp = $_FILES[$this->keyValue]['tmp_name'];

 $folderIsWriteAble = is_writable($this->destination);

 $notValid = checkImageFile($tmp, $variableName);

Chapter 9 Basic Blog: Images and Authentication

318

 if (!$notValid and $folderIsWriteAble) {

 $name = "$this->destination/$this->filename";

 $success = move_uploaded_file($this->fileData, $name);

 } else {

 $success = false;

 }

 return $success;

 }

}

?>

The Uploader class is unchanged from Chapter 4. However, it is worth reviewing the

code that is included to validate the file which the user is attempting to upload.

 $folderIsWriteAble = is_writable($this->destination);

 $notValid = checkImageFile($tmp, $variableName);

 if (!$notValid and $folderIsWriteAble) {

 $name = "$this->destination/$this->filename";

 $success = move_uploaded_file($this->fileData, $name);

 } else {

 $success = false;

 }

The folder is checked to assure it is writable. The checkImageFile() function from

checkimagefile.php is called to verify the file. If it is valid, the file is stored in the imgs

folder. $success is set to true if the move is successful. It is set to false if the move was

not successful or the file was not valid.

Listing 9-9.  checkImageFile.php

<?php

function checkImageFile($tmpName, $variableName) {

$valid_File_Types = array('image/jpeg' => 'jpg');

$max_Size = 40 * 1024 * 1024;

// 40MB must be the same size or less than the setting in php.ini

$errorStatus = false;

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4

319

if(!isset($_FILES[$variableName])) {

 // error $_FILE does not exist

 $errorStatus = true;

} else {

 $info = finfo_open(FILEINFO_MIME_TYPE);

 if (!$info) {

 // error Can't open finfo using mime type

 $errorStatus = true;

 } else {

 $mime_type = finfo_file($info, $tmpName);

 if (!in_array($mime_type, array_keys($valid_File_Types))) {

 // error invalid file type

 $errorStatus = true;

 } else {

 if (filesize($_FILES[$variableName]['tmp_name']) > $max_Size) {

 // error file size too big

 $errorStatus = true;

 }

 finfo_close($info);

 }

}

}

return $errorStatus;

}

?>

The function will check to see if the file exists (if(!isset($_

FILES[$variableName])) and if the mime information can be accessed ($info =

finfo_open(FILEINFO_MIME_TYPE);). If it does exist, it will check for the valid file type

(if (!in_array($mime_type, array_keys($valid_File_Types))) and if the file does

not exceed the maximum file size (if (filesize($_FILES[$variableName]['tmp_

name']) > $max_Size) {). If any test fails, $errorStatus will be set to true. Otherwise, it

will be sent to false. This status is then returned to the Uploader class.

We can test the upload procedure by entering http://localhost/ch9/blog/

newestadmin.php in the browser and by selecting the Image manager menu item – then

by selecting a file to upload.

Chapter 9 Basic Blog: Images and Authentication

320

The single most common error to encounter at this point relates to folder

permissions. If the destination folder is write-protected, PHP cannot save the upload file.

So, if we cannot upload a file, the permissions of the img folder must be changed to read

& write.

�Exercises

1. We can improve the error messages further. We can check for the error codes (see

the listing provided in Chapter 4) and provide custom error messages for them. To

accomplish this task, you will need to learn how to trigger these errors and display

meaningful error messages to the users.

2. It would be a significant improvement if we could check for name conflicts before

upload. The system should throw an exception and prompt the user to rename the image

before upload? Or we could even change the upload form to allow users to rename the

image through the form?

�Displaying Images
We now have an image manager that allows image upload. It should be possible for a

blog administrator to see all available images and use any one of those in a blog entry.

We can reuse the code from Chapter 4, with some changes, to meet most of these

requirements.

The following additional files have been copied and renamed from Chapter 4 and

Chapter 8 to begin our journey into displaying the uploaded images. Each file has been

adjusted to use additional files with their new names. It is recommended that you use

the files from the editor’s website to avoid any logical errors.

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4
https://doi.org/10.1007/978-1-4842-8205-2_4
https://doi.org/10.1007/978-1-4842-8205-2_4
https://doi.org/10.1007/978-1-4842-8205-2_8

321

Original Name New Name Location From->To

ImagesUploader.class.php Uploader.class.php ch4 classes ->

models

gallery.php gallery.php ch4 views -> views/

admin

searchedblog.php blog.php ch8 controller->

controllers

searchedcomments.php comments.php ch8 controller-

>controller

searched.php searched.php ch8 controller-

>controller

searched-comment-form-html.php comment-form-html.php ch8 views-> views

searched-comments-html.php comments-html.php ch8 views-> views

searched-entry-html.php entry-html.php ch8 views-> views

searched-form-html.php form-html.php ch8 views-> views

searched-results-html.php results-html.php ch8 views-> views

Let us review the contents of the gallery.php file now located in views/admin.

Listing 9-10.  gallery.php

<?php

//complete source code for views/gallery.php

//edit existing function

function showImages() : string{

 $out = "<h1>Images Gallery</h1>";

 $out .= "<ul id='images'

 style='

 list-style-type:none;

 width: 550px;

 border: 5px solid black;

 padding: 5px;

Chapter 9 Basic Blog: Images and Authentication

322

 margin: 20px;'

 ><p>";

 $totalSize = 0;

 $numberOfImages = 0;

 $dir_name = "imgs";

 chdir($dir_name);

 $images = glob("*.jpg");

 foreach($images as $image) {

 if((filesize($image) < 500000) and ($totalSize < 2500000)) {

 �$out .= '<img src="'.$dir_name. '/' .$image.'" alt="'.$image.'"

title="'.$image.'"

 style="

 height: 200px;

 width: 250px;

 border: 2px solid black;

 padding: 5px;

 margin: 5px;

 "/>';

 $totalSize += filesize($image);

 $numberOfImages++;

 }

 if (($numberOfImages % 2) == 0) {

 $out .= "";

 }

 }

 $out .= "";

 return $out;

}

$info = showImages();

Only a minor change was required from the original Chapter 4 gallery program. We will

look at this change in a moment. But first, let’s look at what showimages() accomplishes.

Function showImages() uses CSS to format the container for the images. It sets default values

for the size requirements and uses glob to retrieve the images from the img folder. Then, if the

images are the proper size, it formats the images using CSS and displays two images per row.

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4

323

$out .= '<img src="'.$dir_name. '/' .$image.'" alt="'.$image.'"

title="'.$image.'"

The only change is the addition of the alt and title values. The administrator will

now be able to scroll over the image to determine its file name. This will be useful as the

administrator will soon be able to select an image to associate with a blog.

The navigation has also been updated to allow the administrator to select the

viewing of all images.

Listing 9-11.  updated-admin-navigation.php

<?php

//complete code for views/admin/updated-admin-navigation.php

$nav = "

<nav id='admin-navigation'>

 All entries

 Editor

 Image manager

 Image gallery

</nav>";

?>

This new navigation is now accessed in updatedadmin.php.

Once these updates have been saved, the gallery can be tested by loading

updateadmin.php into a browser. Of course, some images must exist within the imgs

folder before they are displayed. The display of the images is the same as in Chapter 4,

except for the addition of the tool tip (scroll over the image) will display the image name.

Exercise: While our program does a great job of displaying images, it does not

provide a delete function to remove unwanted images from the folder. Add links to the

image manager to delete each image. Then use the unlink function to remove the image

from the folder. The following function can be used to complete the process.

if ($deleteImage) {

 //grab the src of the image to delete

 $whichImage = $_GET['delete-image'];

 unlink($whichImage);

}

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_4

324

You could format a URL string similar to the following to be used by the function.

 delete

See how a URL variable, page, is set to images and another URL variable, delete-

image, is set to img/coffee.jpg? Clicking this delete link will load the images controller

and then can use the if statement to determine if a request to delete the image is desired.

Hint: Place the link within the loop so each picture has its own delete link.

�Using an Image in a Blog Entry
We can now make changes to our editor to allow the administrator to select which image

they would like to use in their blog.

Listing 9-12.  Partial Listing of updated-editor-html.php

if ($entryData->title !="") {

 $info .= "value='$entryData->title' ";

}

 $info .= "pattern='[A-Za-z]{,150}'

 �title='Title can contain only alphabetic letters, no special

characters. Title is required.'

 required />

 <p>Image

 <select name='image'>";

 $dir_name = "imgs";

 chdir($dir_name);

 $images = glob("*.jpg");

 $info .="<option value='None'";

 if ($entryData->image =="") { $info .=" selected "; }

 $info .= ">None</option>";

 foreach($images as $value) {

 $info .= "<option value='$value'";

Chapter 9 Basic Blog: Images and Authentication

325

 if ($entryData->image == $value) { $info .=" selected "; }

 $info .= ">$value</option>";

 }

 $info .= "</select>";

This partial listing from updated-editor-html.php shows a very commonly used

algorithm to create an HTML select list using the contents from the imgs folder. The glob

function creates a $images array. The foreach loop goes through the array and places the

file names into the option statements for the select statement. If this is an update, the

if statement will compare the contents of $entryData->image to the current file name

from the folder. If they match, the selected value is also appended to the option tag to

highlight the previous choice of image.

But wait, where did $entryData->image come from? Ah you caught me. Let’s look at

a few other changes.

First, we must add a column to the database table using phpMyAdmin. phpMyAdmin can

be found in the Adobe dashboard. Simply enter http://localhost/ into a browser. Then

click the menu item on the right. Select the database (simple_blog) from the left side

menu. Then select the table (blog_entry). Click the structure menu tab.

Figure 9-2.  phpMyAdmin

Chapter 9 Basic Blog: Images and Authentication

326

Near the bottom of the window is an add area. In Figure 9-2, it indicates that one

column will be added after the entry_text column. Click the Go button.

Enter the information shown earlier and click the Save button. The column will now

be added to the table.

Note I n the examples in this chapter, a copy of the table (simple_blog1)
has been produced with the new column to keep the integrity of the original
table intact.

Now that we have the table adjusted, we need to make some minor adjustments to

the functions that use this table, to retrieve and save the information whenever needed.

In the Blog Entry Table (now named Updated_Blog_Entry_Table.class.php), each

function has been updated to access the new column.

Listing 9-13.  Partial Listing of Updated_Blog_Entry_Table.class.php

public function searchEntry ($searchTerm) {

 $sql = "SELECT entry_id, title, image FROM blog_entry

 WHERE title LIKE ?

 OR entry_text LIKE ?";

 $data = array("%$searchTerm%", "%$searchTerm%");

 $statement = $this->executeSQL($sql, $data);

 return $statement;

Figure 9-3.  phpMyAdmin insert

Chapter 9 Basic Blog: Images and Authentication

327

For example, in Listing 9-13, the searchEntry() function has been updated to return

the image column in addition to the other columns. Once we include these updates, the

select list will be populated and the administrator can use it to create a new entry or

update an existing entry. We can now enter updatedadmin.php program into a browser

and click the Editor menu item to test the functionality.

OK, but how do we attach the image to the display of a blog?

Actually, now that everything else is working. That task is pretty straightforward.

Listing 9-14.  entry-html.php

<?php

//complete source code for views/entry-html.php

$entryFound = isset($entryData);

if ($entryFound === false) {

 trigger_error('views/entry-html.php needs an $entryData object');

}

$info = "<h1>Detailed Blog</h1>";

Figure 9-4.  updatededitor.php

Chapter 9 Basic Blog: Images and Authentication

328

//properties available in $entry: entry_id, title, entry_text, image,

date_created

$info .= "<article>

 <h1>$entryData->title</h1>";

 if((isset($entryData->image)))

 {

 if(($entryData->image == "None") or ($entryData->image == "")) {

 $info .="";

 }

 else {

 �$info .= "image'

alt='$entryData->image'

 style='height: 200px;

 width: 250px;

 border: 2px solid black;

 padding: 5px;

 margin: 5px;'/>";

 }

 }

 $info .= "<div class='date'>$entryData->date_created</div>

 $entryData->entry_text

</article>";

?>

In the entry-html.php program, we can determine if the blog has an associated

picture. If the value in $entryData->image is None or “”, this indicates the administrator

did not assign a picture. If so, we will not make any changes. If the blog does have an

associated picture, it will be displayed using the same CSS that was used to display the

gallery. By placing the code in entry-html, the user will see the picture after clicking the

Read more link. Test this process by entering index.php in a browser and selecting a blog

with an image. Of course, you might need to create one first!

Chapter 9 Basic Blog: Images and Authentication

329

Figure 9-5.  entry-html.php

Finally, it works! We have a blogging system with images!

Exercise: In entry-html.php, the if statement does not add anything to $info if

there is no picture available. Create code to display a default image if the administrator

has not chosen an image.

�Improving Security with Authentication
One of the last things we need to do is to close a big security hole. Our administration

module is wide open and available for all users. Let us create a procedure which requires

all administrators to log in before using the system. Creating this requires that we

perform the following tasks:

•	 Create an admin table in the simple_blog database

•	 Use one-way hashing of passwords

Chapter 9 Basic Blog: Images and Authentication

330

•	 Create an HTML form for creating new administrators

•	 Create a login form for administrators

•	 Hide administration module from unauthorized users

•	 Use sessions to persist a login state across multiple HTTP requests

�Creating an admin_table in the Database
Enabling authorized administrators for our site requires that we create a table to store

their data. We will create an admin table to store the following information about

administrators:

admin_id: A unique number identifying an administrator

email: The administrator’s email address

userid: The administrator’s userid

password: The administrator’s password

We will hash the password using BCRYPT (the default hash in PHP 8) which

currently creates a string of 72 characters. However, future versions will expand this

string. Consequently, we will create the password column using the VARCHAR data type

and limit input to 255 characters for future expansion. We will also allow a userid with a

VARCHAR data type and size of 255 characters. However, we will require a minimum size

of eight characters, for both the userid and password, which will be verified using both

HTML and PHP code.

To create the admin table, we will navigate to http://localhost/phpmyadmin in a

browser, select the simple blog database, and open the SQL tab. Then we will enter the

following command to create the table.

create table admin(

 admin_id INT NOT NULL AUTO_INCREMENT,

 email TEXT,

 userid VARCHAR(72),

 password VARCHAR(72),

 primary key (admin_id)

)

Chapter 9 Basic Blog: Images and Authentication

331

Note  You can also select the database, then scroll down to the create table area
and enter the table name (admin). Then click the Go button. The system will then
provide a form for completing the fields in the table. Entering the same information
as shown in the preceding script will produce the same results, after you click the
Save button.

�Hashing the Password with BCRYPT
Once we get around to inserting new users into the admin table, we will discover how to

hash a string with BCRYPT. The BCRYPT algorithm provides one-way hashing.

Hashing passwords is an absolute requirement for strong security because a hashed

password is harder to steal. Let us imagine the password is Test. If we hash it using

BCRYPT, then Test becomes

$2y$10$xJN9J3cSlTp25rqS5MNYFepRs5Mkcs0y.zya6MFshLPDllWBTav4S

This certainly becomes a very difficult password to crack! Even if the database suffers

a serious attack, and all usernames and passwords are exposed, attackers still will have a

difficult time trying to misuse the usernames and passwords.

�One-Way Hashing
Passwords should always be protected through one-way hashing. If a password is hashed

with a one-way hashing algorithm, it will be nearly impossible to determine the real

password.

Any system that can recover a lost password is inherently unsafe. If the original

password can be recovered, the system must have somehow remembered the password.

If the password is remembered by the system, it is likely that system administrators can

see the password. If the password can be seen, it is vulnerable. A secure system only

stores hashed passwords. If someone forgets their password, a secure system will provide

an opportunity to reset the password.

In the context of the blogging system, it means that administrator passwords are

protected from all blog administrators. If a user loses their password, it cannot be sent to

them again. Instead, the system could offer them a chance to reset the password.

Chapter 9 Basic Blog: Images and Authentication

332

�Sufficient Security
Always assume that even the most secure systems can be hacked. The question is how

much time and effort are required from the attacker. Our task is to provide enough

security to discourage attackers from trying to access the content of the database.

Note  For more information on hashing passwords with PHP, visit www.php.net/
manual/en/function.password-hash.php.

�Adding Administrators in the Database
We now have a database table to save administrator credentials; we are ready to start

creating blog administrators. Our first step is to create a form that allows us to enter an

email address, a userid, and a corresponding password. Once we accomplish this, we

will store the information in the database for later use.

�Building an HTML Form
As we have already learned, it is best to create forms that provide feedback to users. We

can prepare the form for user feedback right away. Let us look at the code.

Listing 9-15.  new-admin-form-html.php

<?php

//complete code for views/admin/new-admin-form-html.php

if(isset($adminFormMessage) === false) {

 $adminFormMessage = "";

}

$info = "<form method='post' action='admin.php?page=users'>

 <fieldset>

 <legend>Create new admin user</legend>

 <label for='userid'>Userid</label>

 <input type='text' name='userid' id='userid'

 minlength='8' required>

Chapter 9 Basic Blog: Images and Authentication

http://www.php.net/manual/en/function.password-hash.php
http://www.php.net/manual/en/function.password-hash.php

333

 <label for='password'>Password</label>

 <input type='password' name='password'

 pattern='(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,}'

 �title='Password must contain: at least one number, one uppercase

letter, one lowercase letter, and 8 or more characters' required>

 <label for='email'>e-mail</label>

 <input type='email' name='email' required/>

 <input type='submit' value='create user' name='new-admin'/>

 </fieldset>

 <p id='admin-form-message'>$adminFormMessage</p>

</form>

";

?>

<label for='userid'>Userid</label>

 <input type='text' name='userid' id='userid'

 minlength='8' required>

The userid is set with a minimum length of eight characters and is required.

<label for='password'>Password</label>

 <input type='password' name='password'

 pattern='(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,}'

 �title='Password must contain: at least one number, one uppercase

letter, one lowercase letter, and 8 or more characters' required>

The password is set with a required combination of one number, one uppercase

letter, one lowercase letter, and at least eight characters.

<label for='email'>e-mail</label>

 <input type='email' name='email' required/>

The email input type will validate the email format.

All three entries will also soon be validated on the server side via PHP.

To display the form, we need a controller to load it and return it to the front door

admin controller. We need to create a new navigation item and a corresponding

controller. Let us begin by updating the navigation with an additional link.

Chapter 9 Basic Blog: Images and Authentication

334

Listing 9-16.  secure-admin-navigation.php

<?php

//complete code for views/admin/secure-admin-navigation.php

$nav = "

<nav id='admin-navigation'>

 All entries

 Editor

 Image manager

 Image gallery

 Create Admin User

</nav>";

?>

With the form’s view and a new navigation item created, the next step is to create

a controller to load the view. In the previous example, the href for the new link that

requests a new page is called users. So, the system expects a controller called users.php.

Listing 9-17.  users.php

<?php

//complete code for controllers/admin/users.php

include_once "views/admin/new-admin-form-html.php";

?>

We can now test our work by loading http://localhost/ch9/blog/secureadmin.

php?page=users in a browser.

Note T he following files have been updated to access the new file versions:
secureeditor.php, secureimages.php, secureentries.php,
secure-editor-html.php, secure-entries-html.php, secure-
images-html.php.

Chapter 9 Basic Blog: Images and Authentication

335

Figure 9-6.  Output from new-admin-form-html.php

We should see a valid HTML form. We cannot really use it yet: it cannot insert new

administrators into the database table. Let us work on that now.

�Saving New Administrators in the Database
Inserting new rows into a database table is a job for a model program. We have already

made good use of the table data gateway design pattern a couple of times. We already

have a base Table class, which we can extend to create a table data gateway for the

admin table.

We want to avoid name conflicts, so before a new admin user is created, the code

should check whether the email and/or userid is already used in the table. If the email

and userid are not in use, the model script can insert a new entry into the admin table.

We will create a new file which will inherit the information from the Table class.

Listing 9-18.  Admin_Table.class.php

<?php

//complete code for models/Admin_Table.class.php

//include parent class' definition

include_once "models/Table.class.php";

class Admin_Table extends Table {

 �public function create(string $email, string $userid, string

$password) {

 $valid_email = filter_var($email, FILTER_VALIDATE_EMAIL);

 �if (($this->validate_password($password)) and ($valid_email) and

(strlen($userid) >= 8)) {

Chapter 9 Basic Blog: Images and Authentication

336

 //check if email is available

 if ($this->checkAvailable($email, $userid)) {

 //hash password with BCYRPT

 �$hashedpassword = password_hash($password, PASSWORD_

DEFAULT);

 $sql = "INSERT INTO admin (email, userid, password)

 VALUES(?, ?, ?)";

 $data= array($email, $userid, $hashedpassword);

 $this->executeSQL($sql, $data); }

 �else { throw new Exception("E-mail and/or Userid already

used."); }

 }

 else { throw new Exception("Userid and/or Password not valid."); }

 }

 private function checkAvailable (string $email, string $userid) : bool {

 $sql = "SELECT email FROM admin WHERE email = ? OR userid = ?";

 $data = array($email, $userid);

 $this->executeSQL($sql, $data);

 $statement = $this->executeSQL($sql, $data);

 //if a user with that email is found in database

 if ($statement->rowCount() >= 1) {

 return false;

 } else {

 return true;

 }

 }

 private function validate_password(string $password) : bool {

 // Validate password strength

 $uppercase = preg_match('@[A-Z]@', $password);

 $lowercase = preg_match('@[a-z]@', $password);

 $number = preg_match('@[0-9]@', $password);

 // Do not allow special characters

 $specialCharacters = !(preg_match('@[^\w]@', $password));

 $length = strlen($password);

Chapter 9 Basic Blog: Images and Authentication

337

 �if ((strlen($length >=8)) and ($uppercase) and ($lowercase) and

($number) and ($specialCharacters)) {

 return true; }

 else {

 return false; }

 }

}

?>

$valid_email = filter_var($email, FILTER_VALIDATE_EMAIL);

The email is validated using the PHP function filter_var() with the parameter

FILTER_VALIDATE_EMAIL, which will return true if the email format is correct, false

otherwise.

Note  For more information on using the PHP function filter_var( ), visit www.php.
net/manual/en/filter.examples.validation.php.

 �if (($this->validate_password($password)) and ($valid_email) and

(strlen(userid) >= 8)) {

 //check if email is available

 if ($this->checkAvailable($email, $userid)) {

The password is validated using a validate_password() function (which we will

look at shortly) and the userid is validated by using the PHP function strlen() to

determine that it has at least eight characters. The email was already validated. Also, the

database table is checked, via a checkAvailable() function to see if the email and userid

have been used before.

 //hash password with BCYRPT

 $hashedpassword = password_hash($password, PASSWORD_DEFAULT);

 $sql = "INSERT INTO admin (email, userid, password)

 VALUES(?, ?, ?)";

 $data= array($email, $userid, $hashedpassword);

 $this->executeSQL($sql, $data); }

Chapter 9 Basic Blog: Images and Authentication

http://www.php.net/manual/en/filter.examples.validation.php
http://www.php.net/manual/en/filter.examples.validation.php

338

The PHP function password_hash() is used to create a hashed version using BCRYPT,

which is the current default algorithm for PHP. We could have directly specified BCRYPT;

however, by using the default parameter, the program will automatically use the latest

version of hashing available. At this point, everything is valid and properly prepared.

Thus, the email, userid, and password are inserted into the database table.

else { throw new Exception("E-mail and/or Userid already used."); }

 }

 else { throw new Exception("Userid and/or Password not valid."); }

 }

If the email and/or userid already exists in the database table, an exception is raised.

If the userid and/or password is not valid, a different exception is raised. We will handle

these exceptions soon.

private function checkAvailable (string $email, string $userid) : bool {

 $sql = "SELECT email FROM admin WHERE email = ? OR userid = ?";

 $data = array($email, $userid);

 $this->executeSQL($sql, $data);

 $statement = $this->executeSQL($sql, $data);

 //if a user with that email is found in database

 if ($statement->rowCount() >= 1) {

 return false;

 } else {

 return true;

 }

The function checkAvailable() uses an SQL SELECT statement to attempt to retrieve

a record with a matching email or userid. If either of these matches, as indicated by one

or more rows being found, then false is returned. Otherwise, true is returned.

private function validate_password(string $password) : bool {

 // Validate password strength

 $uppercase = preg_match('@[A-Z]@', $password);

 $lowercase = preg_match('@[a-z]@', $password);

 $number = preg_match('@[0-9]@', $password);

 // Do not allow special characters

 $specialCharacters = !(preg_match('@[^\w]@', $password));

Chapter 9 Basic Blog: Images and Authentication

339

 $length = strlen($password);

 �if (($length >=8) and ($uppercase) and ($lowercase) and

($number) and ($specialCharacters)) {

 return true; }

 else { return false; }

 }

The function validate_password() uses the PHP function preg_match() to

determine if the password contains at least one uppercase letter, one lowercase letter,

and a number. It does not allow special characters out of a concern the user might be

attempting to do SQL Injection. If this format is correct, and the password is eight or

more characters, true is returned. Otherwise, false is returned.

Note  For more information on preg_match, visit www.php.net/manual/en/
function.preg-match.php.

Exercise: In the create() function, the userid is only checked to determine if it has

eight or more characters. What other limits should we place on the userid? Update the

function and the form to validate the userids with these new limits.

The preceding code is just waiting to be called from a controller. This code throws

two exceptions. We now use a try-catch statement to capture the exceptions. If an

operation fails, the code should fail gracefully, by catching the exception and providing

relevant feedback to the user. Let us go back to the controller script and change some

code to insert new admin userids.

Listing 9-19.  validusers.php

<?php

//complete code for controllers/admin/validusers.php

//new code starts here

include_once "models/Admin_Table.class.php";

//is the form submitted?

$createNewAdmin = isset($_POST['new-admin']);

//if it is...

Chapter 9 Basic Blog: Images and Authentication

http://www.php.net/manual/en/function.preg-match.php
http://www.php.net/manual/en/function.preg-match.php

340

if($createNewAdmin) {

 //grab form input

 $newEmail = $_POST['email'];

 $newUserid = $_POST['userid'];

 $newPassword = $_POST['password'];

 $adminTable = new Admin_Table($db);

 try {

 //try to create a new admin user

 $adminTable->create($newEmail, $newUserid, $newPassword);

 //tell user how it went

 $adminFormMessage = "New user created for $newEmail!";

 } catch (Exception $e) {

 //if operation failed, tell user what went wrong

 $adminFormMessage = $e->getMessage();

 }

}

//end of new code

include_once "views/admin/new-admin-form-html.php";

?>

Most of this code should look familiar. We have, however, included a try/catch

block to handle any of the exceptions that might be raised. The HTML code will usually

catch invalid attempts to enter new user information. However, we must expect that a

hacker may try to bypass the input form. If an exception is raised, the message from the

exception will be passed to the $adminFormMessage variable, which will be displayed on

the create admin userid form.

Note T he following files have been updated to access the new versions:
valideditor.php, validimages.php, validentries.php, valid-
editor-html.php, valid-entries-html.php, valid-images-
html.php.

Let us take some time to test it by running http://localhost/ch9/blog/

validadmin.php?page=validusers in the browser. Try to create an admin user. You

should get a confirmation message displayed in the form. Check in http://localhost/

Chapter 9 Basic Blog: Images and Authentication

341

phpmyadmin to see whether the admin user was in fact inserted into the admin database

table. You should create at least one user, because you will need it to be able to create

other users. Remember to write down the userid and password!

Once you have created a new admin user, try to create one more admin user using

the same email address. It should not be allowed, and you should receive an error

message in the form.

Exercise: Try to create a password with special characters. The current HTML will

not catch this attempt. However, the PHP code will catch it and raise an exception.

Adjust the HTML code to catch the attempt before it is passed to the server.

�Planning Login
Let us now use our userid and password for authentication to restrict access to the

administration blog modules. We will need two views: a login form and a logout form.

We will need a controller to handle user interactions received from these two views and a

model to actually perform login and logout. The model should also remember a state: it

should remember if the user is logged in or not.

�Creating a Login Form
We will begin with the login form. Our goal is to create a system in which a user must

provide a valid userid and a matching password to be allowed access to the blog

administration module. Thus, we need a userid and password field.

Listing 9-20.  login-form-html.php

<?php

//complete code for views/admin/login-form-html.php

$info = " <form method='post' action='loginadmin.php'>

 <h1>Login to access restricted area</h1>

 <label>userid</label><input type='userid' name='userid' required />

 <label>password</label>

 <input type='password' name='password' required />

 <input type='submit' value='login' name='log-in' />

</form>";

?>

Chapter 9 Basic Blog: Images and Authentication

342

A very simple, straightforward form is all that is required. We can also create a simple

controller to test our logic.

Listing 9-21.  login.php

<?php

//complete code for controllers/admin/login.php

include_once "views/admin/login-form-html.php";

?>

The admin navigation does not provide a menu item for the login, and it shouldn’t.

We want the login form to be displayed as the default view of the front controller for the

administration module. Only when a user is authenticated and logged in should the user

be allowed to see the blog administration module.

�Hiding Controls from Unauthorized Users
It is very important that a login actually hides parts of a system from unauthorized users.

So far, the administration module has been readily available to anybody visiting the front

administration controller. We will fix this by making a few changes here:

•	 We will create an Admin_User object to remember login state.

•	 If a visitor is not logged in, we will show only the login form.

•	 If a user is logged in, we will show the admin navigation and the

administration module.

To do that, we need to make some changes to the front controller for the

administration module.

Listing 9-22.  loginadmin.php

<?php

//complete code for blog/loginadmin.php

$nav = "";

$info = "";

//include_once 'views/admin/valid-admin-navigation.php';

include_once "models/Page_Data.class.php";

$pageData = new Page_Data();

Chapter 9 Basic Blog: Images and Authentication

343

$pageData->setTitle("PHP/MySQL blog demo");

$pageData->setCss("<link rel='stylesheet' href='css/blog.css'>");

include_once "models/updateddatabase.php";

include_once "models/Admin_User.class.php";

$admin = new Admin_User();

//load the login controller, which will show the login form

include_once "controllers/admin/login.php";

$pageData->setContent($info);

//add a new if statement

//show admin module only if user is logged in

if($admin->isLoggedIn()) {

 include "views/admin/login-admin-navigation.php";

 $pageData->setContent($nav);

 $navigationIsClicked = isset($_GET['page']);

 if ($navigationIsClicked) {

 $controller = $_GET['page'];

 } else {

 $controller = "loginentries";

 }

 include_once "controllers/admin/$controller.php";

 $pageData->appendContent($info);

} //end if-statement

include_once "views/page.php";

echo $page;

?>

include_once "models/Admin_User.class.php";

$admin = new Admin_User();

A new Admin_User class is included, and an instance is declared, $admin. This class

will determine if the user is logged in or not. We will look at the code in a moment.

include_once "controllers/admin/login.php";

$pageData->setContent($info);

The login page is displayed.

Chapter 9 Basic Blog: Images and Authentication

344

if($admin->isLoggedIn()) {

 include "views/admin/login-navigation.php";

 $pageData->setContent($nav);

 $navigationIsClicked = isset($_GET['page']);

 if ($navigationIsClicked) {

 $controller = $_GET['page'];

 } else {

 $controller = "loginentries";

 }

If the user is logged in, the default entries page or the page selected by the user is

displayed. This is the same code as before but is now controlled by the if statement.

�HTTP Is Stateless
Hypertext transfer protocol (HTTP) is the foundation of much data communication

on the Internet. It is stateless, which means it treats each new request as a separate

transaction. In practical terms, it means that all PHP variables and objects are created

from scratch with every new request.

That has some consequences for us. When we submit the login form, we are making

an HTTP request. PHP will run, and the $admin object will remember that we are logged

in. If we try to click an entry, this will make a new HTTP request, and thus, a new $admin

object will be created. PHP will not remember that we just logged in, because the new

HTTP request is treated as an independent, separate transaction. The previous HTTP

request is completely forgotten.

�Superglobal: $_SESSION
This stateless HTTP is bad news for our login. No matter how many times we log in, PHP

will forget about it with every new request. It is very impractical, and of course, there

is a solution: forming a persistent state across requests. We need a way to force PHP to

remember that a given user is logged in. The PHP session will accomplish this task.

When a PHP session is started, the visiting user’s browser will be assigned a unique

identification number: a session id. The server will create a small, temporary file on the

server side (by default). Any information we require for our application to remember

across requests can be stored in this file. A PHP session duration can be configured in

the php.ini file.

Chapter 9 Basic Blog: Images and Authentication

345

Note R ead more at www.php.net/manual/en/intro.session.php.

PHP provides a superglobal to make a session. Now, it is time for us to meet $_SESSION.

�Persisting State with a Session
To use a session, we must start a session. With that in place, we can create a session

variable, which is a variable whose value is stateful, meaning a variable whose value can

persist across HTTP requests.

Let us use a session variable to remember our login status.

Listing 9-23.  Admin_User.class.php

<?php

//complete code for models/Admin_User.class.php

class Admin_User {

 //declare a new method, a constructor

 public function __construct(){

 //start a session

 session_start();

 }

 public function isLoggedIn(){

 $sessionIsSet = isset($_SESSION['logged_in']);

 if ($sessionIsSet) {

 $out = $_SESSION['logged_in'];

 } else {

 $out = false;

 }

 return $out;

 }

 public function login () {

 //set session variable ['logged_in'] to true

 $_SESSION['logged_in'] = true;

 }

Chapter 9 Basic Blog: Images and Authentication

http://www.php.net/manual/en/intro.session.php

346

 public function logout () {

 //set session variable ['logged_in'] to false

 $_SESSION['logged_in'] = false;

 }

}

public function __construct(){

 //start a session

 session_start();

 }

The constructor starts a session when an instance of Admin_User is created.

 public function isLoggedIn(){

 $sessionIsSet = isset($_SESSION['logged_in']);

 if ($sessionIsSet) {

 $out = $_SESSION['logged_in'];

 } else {

 $out = false;

 }

 return $out;

 }

The isLoggedIn() function determines if the session variable has been created. If it

has, the content is placed into $out. If it has not (not logged in), then false is stored into

$out. Then $out is returned.

public function login () {

 //set session variable ['logged_in'] to true

 $_SESSION['logged_in'] = true;

 }

 public function logout () {

 //set session variable ['logged_in'] to false

 $_SESSION['logged_in'] = false;

 }

The login() function will set the contents of the session variable to true. The

logout() function will set the contents of the session variable to false.

Chapter 9 Basic Blog: Images and Authentication

347

�Logging Users Out
It is customary to provide a logout option for logged-in users. It is also a good idea: we

do not want administrators to stay logged in with no option for logging out. What if an

administrator has to leave the computer to get a fresh cup of coffee? We would not want

to leave the administration module exposed. Let us create a new view for logging out.

Listing 9-24.  logout-form-html.php

<?php

//complete code for views/admin/logout-form-html.php

$info = "

<form method='post' action='loginadmin.php'>

 <label>logged in as administrator</label>

 <input type='submit' value='log out' name='logout' />

</form>";

?>

This view should be displayed whenever a user is logged in. But simply showing a

logout form will not actually log out users. If a user clicks the Logout button, this should

run a script to log out the user. These are tasks for the controller.

Let us update the code for the login controller to allow logging out.

Listing 9-25.  newlogin.php

<?php

//complete code for controllers/admin/newlogin.php

$loginFormSubmitted = isset($_POST['log-in']);

if($loginFormSubmitted) {

 $admin->login();

}

$loggingOut = isset ($_POST['logout']);

if ($loggingOut){

 $admin->logout();

}

Chapter 9 Basic Blog: Images and Authentication

348

if ($admin->isLoggedIn()) {

 include_once "views/admin/logout-form-html.php";

} else {

 include_once "views/admin/login-form-html.php";

}

?>

$loginFormSubmitted = isset($_POST['log-in']);

if($loginFormSubmitted) {

 $admin->login();

}

If the user arrived here by using the login form, then log-in will be set and the code

will call the $admin->login() function.

$loggingOut = isset ($_POST['logout']);

if ($loggingOut){

 $admin->logout();

}

If the user arrived here by using the logout form, then the logout will be set, and the

code will call the $admin->logout() function.

if ($admin->isLoggedIn()) {

 include_once "views/admin/logout-form-html.php";

} else {

 include_once "views/admin/login-form-html.php";

}

If logged in, the logout form will display. If logged out, the login form will display.

Note T he following files have been updated to access the new
versions: newsessioneditor.php, newsessionimages.php,
newsessionentries.php, new-session-editor-html.php, new-
session-entries-html.php, new-session-images-html.php.

Chapter 9 Basic Blog: Images and Authentication

349

We can now take a break from coding and test the system. We can open up

newsessionadmin.php in a browser. The system should jump to the login screen. Once a

userid and password are entered, the newsessionadmin.php screen will display.

We now see our admin screen with an indication that we are logged in and an ability

to log out. Clicking the Logout button will log the user out and display the login screen.

Try any userid/password. Did you notice anything? The system accepts any value. Let us

fix that next.

We have covered a lot. But soon it will be complete. Just hang in there. We now have

the ability to have a login and logout using a session variable to determine the status. We

are almost complete!

�Allowing Authorized Users Only
We now need to check whether the supplied userid and password match exactly one

record in the database. The information is available in the admin table, and we already

have a table data gateway called Admin_Table. We can create a new method to check

whether submitted credentials are valid.

Figure 9-7.  newsessionadmin.php after login

Chapter 9 Basic Blog: Images and Authentication

350

Listing 9-26.  New_Admin_User.class.php

//partial code for models/admin/New_Admin_Table.class.php

public function checkCredentials($userid, $password){

 $sql = "SELECT userid, password FROM admin

 WHERE userid = ?";

 $data = array($userid);

 $statement = $this->executeSQL($sql, $data);

 if ($statement->rowCount() === 1) {

 $userData = $statement->fetchObject();

 if((password_verify($password, $userData->password))) {

 return "Valid";

 } else { return "Password not valid!";}

 } else { return "Userid not valid"; }

}

 $sql = "SELECT userid, password FROM admin

 WHERE userid = ?";

The function tries to match the userid and retrieves both the userid and password

from the table, if one exists.

if ($statement->rowCount() === 1) {

 if((password_verify($password, $statement->password)) {

 return "Valid";

 } else { return "Password not valid!";}

 } else { return "Userid not valid"; }

If one record is returned, then the password is verified using the PHP function

password_verify(). A direct comparison cannot be done because the hash algorithm

must be determined to compare the values. The function retrieves this, along with other

information needed to do the comparison. If this comparison does not match, the string

“Password not valid” is returned. If the userid was not found in the database, the string

“Userid not valid!” is returned. If everything matches, the string “Valid” is returned.

Note  For more information on the PHP function password_verify(), visit www.
php.net/manual/en/function.password-verify.php.

Chapter 9 Basic Blog: Images and Authentication

http://www.php.net/manual/en/function.password-verify.php
http://www.php.net/manual/en/function.password-verify.php

351

With this method declared, we are ready to call it from the login controller whenever

a user tries to log in.

Listing 9-27.  completelogin.php

<?php

//complete code for controllers/admin/completelogin.php

include_once "models/New_Admin_Table.class.php";

$loginFormSubmitted = isset($_POST['log-in']);

if($loginFormSubmitted) {

 $userid = $_POST['userid'];

 $password = $_POST['password'];

 $adminTable = new Admin_Table($db);

 $message = $adminTable->checkCredentials($userid, $password);

 if($message === "Valid") {

 $admin->login();

 } else {

 $loginFormMessage = $message;

 }

 }

$loggingOut = isset ($_POST['logout']);

if ($loggingOut){

 $admin->logout();

}

if ($admin->isLoggedIn()) {

 include_once "views/admin/complete-logout-form-html.php";

} else {

 include_once "views/admin/complete-login-form-html.php";

}

?>

include_once "models/New_Admin_Table.class.php";

The newest version of the Admin Table class is included.

Chapter 9 Basic Blog: Images and Authentication

352

$loginFormSubmitted = isset($_POST['log-in']);

if($loginFormSubmitted) {

 $userid = $_POST['userid'];

 $password = $_POST['password'];

 $adminTable = new Admin_Table($db);

 $message = $adminTable->checkCredentials($userid, $password);

 if($message === "Valid") {

 $admin->login();

 } else {

 $loginFormMessage = $message;

 }

The if statement checks to make sure that the user clicked the login button from the

login form. If so, the userid and password are retrieved. Then an instance of the Admin

Table class ($adminTable) is created, passing $db into the constructor. Then the userid

and password are passed into the new checkCredentials() function. If “Valid” is

returned, all is good, and the login() function is called. Otherwise, whatever message

that was returned is placed into $loginFormMessage. The login form has been modified

to accept and display this message.

Listing 9-28.  complete-login-form-html.php

<?php

//complete code for views/admin/complete-login-form-html.php

if(isset($loginFormMessage) === false) {

 $loginFormMessage = "";

}

$info = " <form method='post' action='completeadmin.php'>

 <h1>Login to access restricted area</h1>

 <label>userid</label><input type='userid' name='userid' required />

 <label>password</label>

 <input type='password' name='password' required />

 <input type='submit' value='login' name='log-in' />

</form>

<p id='login-form-message'>$loginFormMessage</p>";

?>

Chapter 9 Basic Blog: Images and Authentication

353

The format used is the same as the code in the create userid form.

Now that the userid and password can be validated, let us make a final change or two

to the admin front controller.

Listing 9-29.  completeadmin.php

<?php

//complete code for blog/completeadmin.php

$nav = "";

$info = "";

try {

 include_once "models/Page_Data.class.php";

 $pageData = new Page_Data();

 $pageData->setTitle("PHP/MySQL blog demo");

 $pageData->setCss("<link rel='stylesheet' href='css/blog.css'>");

 include_once "models/updateddatabase.php";

 include_once "models/New_Admin_User.class.php";

 $admin = new Admin_User();

 include_once "controllers/admin/completelogin.php";

 $pageData->setContent($info);

 if($admin->isLoggedIn()) {

 include "views/admin/complete-admin-navigation.php";

 $pageData->setContent($nav);

 $navigationIsClicked = isset($_GET['page']);

 if ($navigationIsClicked) {

 $controller = $_GET['page'];

 } else {

 $controller = "completeentries";

 }

 include_once "controllers/admin/$controller.php";

 $pageData->appendContent($info);

 }

include_once "views/page.php";

echo $page;

}

Chapter 9 Basic Blog: Images and Authentication

354

catch(Exception $e) {

 echo "System Busy. Please come back later";

 $currentDateTime = date('Y-m-d H:i:s');

 $errorString = $currentDateTime . "-" . $e->getMessage();

 error_log($errorString, 3, "error-log.log");

}

?>

A try/catch block has been added to catch any unexpected errors or exceptions. In

the catch block, a generic message is displayed to the user. They don’t need to know any

details of what occurred. We don’t want to expose any potential security leaks.

 $currentDateTime = date('Y-m-d H:i:s');

 $errorString = $currentDateTime . "-" . $e->getMessage();

 error_log($errorString, 3, "error-log.log");

The current time and date are gathered using the date() function with the format

shown. This information is then appended to a string which includes the message. The

string is then placed into an error log file using the error_log() function. You can test

this by raising an exception inside of completeadmin.php and open the error-log.log

file in a text editor to discover the message has been saved.

Note  For more information on the PHP error logs, visit www.php.net/manual/
en/function.error-log.php.

The use of the try/catch block, along with the logging of errors, properly prepares

the system for real-world use. This would be a good point to invite users to beta test the

system to completely check its vulnerabilities and usability.

The following files have been modified to access the new versions: completeeditor.

php, completeimages.php, completeentries.php, complete-editor-html.php,

complete-entries-html.php, complete-images-html.php.

We can now complete our final test by placing completeadmin.php into a browser to

test the authentication and all other functionality of the system.

Chapter 9 Basic Blog: Images and Authentication

http://www.php.net/manual/en/function.error-log.php
http://www.php.net/manual/en/function.error-log.php

355

�Exercises

1. Unless you have already done so, the menu needs work before the program should be

released. The CSS file newblog.css contains some code that could be used or create your

own. Add the ability for the menu to use the new CSS.

2. Attempt to access other files in the system without logging in. Some files will just

display blank pages; others will display exceptions for missing files. While the program

is much more secure, it would be better if, whenever the user tries to access a page that

requires administration access, they get redirected to the login page. Use some of the

code from completeadmin.php to check the login status on each page and redirect them

to the login page if they did not login.

�Summary
This was a long chapter. We covered a lot. Too much to list here. But some of the most

important new skills we have gained include one-way encryption for privacy, a session

for stateful memory, and effectively restricting access to the administration module of

the blog. I hope you will agree it was very rewarding to implement a login system. As

mentioned before, the blog is ready for beta testing. Have your significant other or a

friend test the system out. It is not perfect, but close. Whatever potential problems the

tester finds, take the time to fix them.

Remember, PHP programs can do more than manage websites. In the last chapter,

we will diverge from creating websites to look at creating a data dashboard and the logic

for a checkers game.

�Projects

	 1.	 Using the design practices from this and previous chapters,

update the student registration system from Chapter 7. Provide

the requirement that users must log in to the system before they

can access student records.

Chapter 9 Basic Blog: Images and Authentication

https://doi.org/10.1007/978-1-4842-8205-2_7

356

	 2.	 Update the blog application to provide the ability to recover

from a lost password. The program should require that the user

verify either the userid or password. Then, once verified, the

user will have access to a form to change the password. For a

bigger challenge, discover how PHP can send emails. Have the

system send the user an email with a temporary passcode. Then

require the user to enter the passcode before they can change the

password.

	 3.	 Update the blog application to provide the ability for the deletion

of unused administrative userids from the system.

	 4.	 Update the admin user verification system of the blog application

to limit the number of attempts to sign in to four. After four, the

system should reject all attempts from the same userid for ten

minutes. This can be accomplished by creating another session

variable to populate the last time attempted after four tries. Then

clear the variable after ten minutes has expired. This is a common

authorization requirement in the IT industry.

Chapter 9 Basic Blog: Images and Authentication

357

CHAPTER 10

Data Dashboard
and Gaming

�Objectives
After completing this chapter, you will be able to

•	 Convert data from one data type to another

•	 Use the PHP function json_encode() to create JSON data

•	 Use the PHP function fputcsv() to create CSV data

•	 Use SQL statements to determine a database name, table name, and

column names

•	 Use SQL statements to determine if the values in a column

are numeric

•	 Convert a database table to a PHP array

•	 Use the PHP function fopen() to read and write to a file

•	 Use the PHP function fgetcsv() to convert a CSV file into an array

•	 Use the PHP function file_get_contents() to retrieve all the

contents of a file at one time

•	 Use the PHP function json_decode() to convert a JSON file into

an array

•	 Use the open source class SIMPLEXLSX to read data from a Microsoft

Excel spreadsheet into an array

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2_10

https://doi.org/10.1007/978-1-4842-8205-2_10#DOI

358

•	 Use the PHP function explode() to break a string into an array based

on a delimiter

•	 Use the PHP function is_numeric() to determine if a value contains

a number

•	 Use the PHP function is_string() to determine if a value is a string

•	 Use the PHP continue statement to skip an iteration of a loop

•	 Create a Google Data Table from a PHP array

•	 Use JavaScript and the Google Charts Library to create a data

dashboard

•	 Create the logic for a checkers game using two-dimensional arrays

•	 Use a switch control to determine multiple outcomes from a single

variable

In this final chapter, we will explore other tasks that PHP can accomplish besides

controlling the interactivity of a standard website. Although PHP is not known as a

tool for data analysis and gaming, we will demonstrate that it can be used for just that

purpose. Let’s first take a brief look at data analysis and discover how we can display a

dashboard and related charts.

�Setting Up a Data Dashboard
Data mining and data collection are vital for both medium-size and large corporations.

The ability to quickly analyze data can have a major impact on the bottom line for any

company. Companies must be able to determine the best strategies using available

information (such as sales data) to be successful. Data can be collected from multiple

sources, including internally, externally (competition), environmentally (economics of

a geographical area), and via the government. The ability to combine and compare this

information is essential.

The popularity of the Python programming language is partially due to the number

of available libraries within the language to manipulate and display data efficiently.

However, there are techniques that other languages can use to accomplish similar goals.

One of these tools is Google Charts.

Chapter 10 Data Dashboard and Gaming

359

Google Charts are JavaScript classes which are specially designed to interact with

HTML5 web pages. This provides a natural ability for charts to interact with PHP, since

PHP, HTML, and JavaScript work well together. Charts retrieve information from Data

Tables (special types of arrays). Thus, any data source that can display data into an array

can be a provider for a Google Chart.

We will build a data dashboard to display our charts. A data dashboard is simply a

screen (web page) that displays data in multiple formats. Google has over 30 distinct

types of Charts which can be placed within a dashboard. To demonstrate the ability to

use different data sources, our example will allow the user to determine the source of

the information. We will demonstrate this ability by allowing data to be pulled from a

database table, JSON file, CSV file, or a Microsoft Excel Worksheet. The information will

then be displayed in several charts within a dashboard.

Let us discuss some of the process before we begin the task. A Google Dashboard

is defined using google.visualization.Dashboard Classes. The Dashboard instance uses

a data table which contains the data to be displayed and distributes this data to all the

charts that are part of the dashboard.

Controls provide the ability for the user to interface with data and to change the

subset of data used within the charts. These controls are common widgets, pickers,

sliders, and auto completers, which can easily be manipulated by the user.

Now that we have a general idea of what can exist within a dashboard, let us look at

the steps needed to accomplish our goal.

•	 HTML dashboard skeleton: We will design an HTML framework

which will position and hold charts to be displayed in the dashboard.

•	 Libraries: We must load two Google libraries (a Google AJAX API and

a Google Visualization Control Package) to access the dashboard

and charts.

•	 Data: We will retrieve the data from several sources, allowing the

user to select which data source to use when displaying results

within the dashboard. The selected data will be placed within a two-

dimensional array which will be converted to a Google Data Table for

easy use by the charts within the dashboard.

•	 Dashboard: We will use the Google Dashboard Class, by creating an

instance of it (object) and by passing a reference to the location of the

dashboard within the HTML (div tag location).

Chapter 10 Data Dashboard and Gaming

360

•	 Controls/charts: We will create controls for users to manipulate and

charts which will display the data within the dashboard.

•	 Dependencies: We will bind together the dashboard and charts

which will automatically update the data displayed when the user

manipulates a control.

•	 Display dashboard: We will draw the dashboard and pass the data to

it, which will, in turn, be displayed in the charts.

•	 Programming: We will finally include additional programming code

to allow the charts within the dashboard to be updated whenever a

user manipulates a control.

First, we will need to develop programs which will retrieve our information, which is

dependent on the type of data the user selects. Remember, the key to successful program

development is to not reinvent the wheel. We will use some existing open source code to

make our program as reliable and simple as possible.

�Gathering Microsoft Excel, CSV, JSON, and Database Data
The code included with this chapter contains several data files (data.csv, data.json,

and datatest.xlsx). The Excel spreadsheet provided was used to design the data format

and contents used for our testing. The CSV file, JSON file, and database table were

created by extracting the spreadsheet data and reformatting it for each data type. While

these programs would not be used in production, it gives us examples of how to retrieve

information from an Excel spreadsheet and reformat it to another data format.

Listing 10-1.  createCSV.php

<?php

use Shuchkin\SimpleXLSX;

require_once __DIR__.'/simplexlsx-master/src/SimpleXLSX.php';

if ($xlsx = SimpleXLSX::parse('testdata.xlsx')) {

 $values = $xlsx->rows();

 $file = fopen("data.csv","w");

 foreach ($values as $value) {

 fputcsv($file, $value);

Chapter 10 Data Dashboard and Gaming

361

 }

 echo "data.csv created";

 fclose($file);

} else {

 echo SimpleXLSX::parseError();

}

?>

One of the popular ways to access Microsoft Excel data using PHP is with the

open source SimpleXLSX class available on GitHub: https://github.com/shuchkin/

simplexlsx.

This class can be downloaded from the link provided and placed within the ch10

folder after decompression. Code examples are provided at the web location and within

the comments of the class itself. For your convenience, the files are already included

within the ch10 folder on the publisher’s website.

use Shuchkin\SimpleXLSX;

The class includes a namespace (which will make sure it does not conflict with other

existing classes). The use statement declares that any classes or functions used will be

accessible through the namespace (Shuchkin) and the class name (SimpleXLSX).

require_once __DIR__.'/simplexlsx-master/src/SimpleXLSX.php';

The require_once statement includes the PHP constant __DIR__ which returns the

current directory location. Thus, the class is imported from the simplexlsx_master

source (src) directory within the current directory.

if ($xlsx = SimpleXLSX::parse('testdata.xlsx')) {

 $values = $xlsx->rows();

The parse() method of the SimpleXLSX class will retrieve all data from an Excel

spreadsheet. This data includes more than just the values with the cells. Since we only

are using the values stored in the cells, we can use the SimpleXLSX function rows() to

retrieve the data in all rows. This function creates a two-dimensional array containing

only the data, which we have named $values.

$file = fopen("data.csv","w");

 foreach ($values as $value) {

Chapter 10 Data Dashboard and Gaming

https://github.com/shuchkin/simplexlsx
https://github.com/shuchkin/simplexlsx

362

 fputcsv($file, $value);

 }

 echo "data.csv created";

 fclose($file);

Using the PHP function fopen(), we can create a new file (data.csv) and declare

that we want to write (w) to the file. The foreach loop will now loop through each data

item within the $values array. The PHP function fputcsv() will pass the information

into the file in comma separated format. Finally, once all information has been written,

the file is closed using fclose(). We changed the format of our data with just a few lines

of code!

Note  Visit www.php.net/manual/en/function.fopen.php for more
information on fopen(). Visit www.php.net/manual/en/function.fputcsv.
php for more information on fputcsv().

Listing 10-2.  createJSON.php

<?php

use Shuchkin\SimpleXLSX;

require_once __DIR__.'/simplexlsx-master/src/SimpleXLSX.php';

if ($xlsx = SimpleXLSX::parse('testdata.xlsx')) {

 $netJSON = json_encode($xlsx->rows());

 file_put_contents("data.json", $netJSON);

 echo "data.json created";

} else {

 echo SimpleXLSX::parseError();

}

?>

 $netJSON = json_encode($xlsx->rows());

 file_put_contents("data.json", $netJSON);

Chapter 10 Data Dashboard and Gaming

https://www.php.net/manual/en/function.fopen.php
https://www.php.net/manual/en/function.fputcsv.php
https://www.php.net/manual/en/function.fputcsv.php

363

The logic to creating the JSON file is similar to the previous logic. However, to convert

the data, we use the PHP function json_encode(). Once the data has been changed into

JSON format, we can copy the complete contents of the JSON formatted data into a file

using the PHP function file_put_contents(). Pretty quick and efficient!

Note  For more information on file_put_contents(), visit www.php.net/manual/
en/function.file-put-contents.

Listing 10-3.  populateDatabase.php

$<?php

use Shuchkin\SimpleXLSX;

include_once "models/Table.class.php";

require_once __DIR__.'/simplexlsx-master/src/SimpleXLSX.php';

if ($xlsx = SimpleXLSX::parse('testdata.xlsx')) {

 $dbInfo = "mysql:host=localhost;dbname=studentresults";

 $dbUser = "root";

 $dbPassword = "";

 $db = new PDO($dbInfo, $dbUser, $dbPassword);

 $rows = $xlsx->rows();

 foreach($rows as $row) {

 if($row[0]=="Last Name") {

 continue;

 }

 �$lastname = $row[0]; $firstname = $row[1]; $gender = $row[2];

$assignmentaverage = $row[3];

 $discussionaverage = $row[4]; $researchaverage = $row[5];

 $semesteraverage = $row[6]; $semestergrade = $row[7];

 �$entrySQL = "INSERT INTO student_data(lastname, firstname,

gender, assignmentaverage, discussionaverage,

 �researchaverage, semesteraverage, semestergrade) VALUES

(?, ?, ?, ?, ?, ?, ?, ?)";

Chapter 10 Data Dashboard and Gaming

http://www.php.net/manual/en/function.file-put-contents
http://www.php.net/manual/en/function.file-put-contents

364

 �$formData = array($lastname, $firstname, $gender,

$assignmentaverage, $discussionaverage, $researchaverage,

 $semesteraverage, $semestergrade);

 $statement = $db->prepare($entrySQL);

 $statement->execute($formData);

}

 �echo "Database studentresults, database table student_data

populated";

} else {

 echo SimpleXLSX::parseError();

}

?>

Most of the logic for this program should now look familiar, as the program retrieves

the data from the Excel spreadsheet using the same logic as before. It then opens the

database and inserts the information into the database table.

Note I n order to use a different set of data, the code in this program would need
to be modified for the new format. To populate your database table for testing, you
can use this program in combination with the spreadsheet data provided with the
chapter files. However, first, you would need to create the database and table using
phpMyAdmin. The following fields should be created in the student_data table
(which is located in the studentresults database): studentindex (auto
increment) lastname (varchar), firstname (varchar), gender
(varchar), assignmentaverage (float), discussionaverage
(float), researchaverage (float), semesteraverage (float),
semestergrade (varchar).

Now we have four types of test data available that we can use to populate our charts!

We are ready to move onto the next steps!

But before we look at more code, we need to decide on the logic of our program. Let

us think about the steps required for the user to provide us the necessary information

along with the process of creating the dashboard and the charts.

•	 Choose a file format: Database, Excel spreadsheet, JSON, or CSV.

Chapter 10 Data Dashboard and Gaming

365

•	 If database is chosen: Determine the database to use and determine

the table within the database.

•	 If Excel spreadsheet is chosen: Select the spreadsheet to use.

•	 If JSON is chosen: Select the JSON file to use.

•	 If CSV is chosen: Select the comma separated file to use.

•	 For any choice: Determine which numeric column to use and one

additional column. One column must be numeric for the population

of a slider control to display a chosen subset of data.

•	 For any choice: Retrieve the columns selected (array) and format

them into a Google Data Table, which can be accessed by the

dashboard and charts.

•	 Display the charts: Create the chart wrappers, bind the data, and draw

the dashboard and charts (the steps we previously mentioned).

We will also use our basic MVC logic that we have developed from the previous

chapters. This includes the use of the Page_data.class.php model from Chapter 9 to

organize our program flow. We will make only slight modifications to the class to only

accept information related to the dashboard program. To see the modifications, copy

the files for this chapter from the publisher’s website. Then open the file in a browser.

We will create another model next to retrieve our data. We will also create any necessary

controllers and views to complete the design of our application.

�Creating the Model Data Class
From the list of tasks needed for the program, many of these require the ability to access

the data selected. These tasks all belong in a model class which will include functions to

return the requested data from the requested data source (database, spreadsheet, JSON

file, CSV file). Let us look at the functions required for each task. All the functions will

reside in the accessData.class.php file.

Let us look at the functions required when selecting database data first.

Chapter 10 Data Dashboard and Gaming

https://doi.org/10.1007/978-1-4842-8205-2_9

366

Listing 10-4.  Function returnDatabases from accessData.class.php

 function returnDatabases() {

 $user = 'root';

 $password = '';

 $dbInfo = "mysql:host=localhost";

 $pdo = new PDO($dbInfo, $user, $password);

 $stmt = $pdo->query('SHOW DATABASES');

 $databases = $stmt->fetchAll(PDO::FETCH_COLUMN);

 $data = "<select name='columns' id='columns'>";

 foreach($databases as $database){

 �if(($database=="information_schema" or

$database=="mysql" or

 �$database=="performance_schema" or

$database=="phpmyadmin"))

 { continue; }

 $data .= "<option value='$database'>$database</option>";

 }

 $data .= "</select>";

 return $data;

 }

The function returnDatabases() creates a drop-down list of databases.

$pdo = new PDO($dbInfo, $user, $password);

$stmt = $pdo->query('SHOW DATABASES');

$databases = $stmt->fetchAll(PDO::FETCH_COLUMN);

The MySQL/MariaDB database management system is opened using the provided

location (localhost), userid (root), and password (“”). The SQL command SHOW

DATABASES is then executed to return the databases and related information. Since we

want only the database names, we use the PDO function fetchAll() with the FETCH_

COLUMN parameter to create an array ($databases).

 foreach($databases as $database){

 if(($database=="information_schema" or $database=="mysql" or

 $database=="performance_schema" or $database=="phpmyadmin"))

Chapter 10 Data Dashboard and Gaming

367

 { continue; }

 $data .= "<option value='$database'>$database</option>";

We will skip any standard databases which are populated by MySQL/MariaDB by

using the command continue, which skips an iteration of the loop.

Once we have selected the database, we need to select a table within the selected

database for our chart information.

Listing 10-5.  Function returnDatabaseTables from accessData.class.php

 function returnDatabaseTables($database){

 $user = 'root';

 $password = '';

 $dbInfo = "mysql:host=localhost;dbname=$database";

 $pdo = new PDO($dbInfo, $user, $password);

 $stmt = $pdo->query('SHOW TABLES');

 $tables = $stmt->fetchAll(PDO::FETCH_COLUMN);

 �$data = "<input type='hidden' id='database' name='database'

value='$database'>";

 $data .= "<select name='columns' id='columns'>";

 foreach($tables as $table){

 $data .= "<option value='$table'>$table</option>";

 }

 $data .= "</select>";

 return $data;

 }

 $pdo = new PDO($dbInfo, $user, $password);

 $stmt = $pdo->query('SHOW TABLES');

 $tables = $stmt->fetchAll(PDO::FETCH_COLUMN);

 �$data = "<input type='hidden' id='database' name='database'

value='$database'>";

First, we open access to the database by creating a new PDP Object ($pdo). Then we

submit the SQL query SHOW TABLES to retrieve all table information from the database.

We use the fetchAll() function with the FETCH_COLUMN parameter to create an array of

table names ($tables). We save the database name in a hidden variable so we can use it

in the next function called.

Chapter 10 Data Dashboard and Gaming

368

foreach($tables as $table){

 $data .= "<option value='$table'>$table</option>";

}

We create a drop-down list of all table names using a foreach loop. Next, we need to

retrieve the column names in the table selected.

Listing 10-6.  Function returnDatabaseTitles from accessData.class.php

function returnDatabaseTitles($database, $table, $title, $flag=false) {

// $flag == false - all columns, == true only numeric columns

 $user = 'root';

 $password = '';

 $dbInfo = "mysql:host=localhost;dbname=$database";

 $pdo = new PDO($dbInfo, $user, $password);

 $sqlstring = "select * from " . $table . " limit 1";

 $result = $pdo->query($sqlstring);

 �$data = "<input type='hidden' id='database' name='database'

value='$database'>";

 �$data .= "<input type='hidden' id='table' name='table'

value='$table'>";

 �$data .= "<input type='hidden' id='title' name='title'

value='$title'>";

 $data .= "<select name='titles' id='titles'>";

 $fields = array_keys($result->fetch(PDO::FETCH_ASSOC));

 $column_count = 0;

 foreach($fields as $column) {

 if($column_count == 0) {

 $column_count = 1;

 continue;

 }

 if($flag==true) {

 �$meta = $result->getColumnMeta

($column_count);

 if($meta["native_type"]=="VAR_STRING") {

 // assume string or number only

 $column_count++;

Chapter 10 Data Dashboard and Gaming

369

 continue;

 }

 }

 $data .= "<option value='$column'>$column</option>";

 $column_count++;

 } //foreach

 $data .= "</select>";

 return $data;

}

function returnDatabaseTitles($database, $table, $title, $flag=false) {

The function call accepts four parameters. The $flag parameter is set to the default

(false) if the parameter is not passed.

$pdo = new PDO($dbInfo, $user, $password);

$sqlstring = "select * from " . $table . " limit 1";

$result = $pdo->query($sqlstring);

Next, we connect to the database table. Then execute an SQL command to retrieve

just the first line of the table requested within the database. This will also retrieve other

information about the table, including the column names.

$fields = array_keys($result->fetch(PDO::FETCH_ASSOC));

The PDO fetch() function, with the FETCH_ASSOC parameter, will create an

associative array containing table information including the column names. The PHP

function array_keys() will create an array of only the keys (not the values). The keys are

the actual column names. These column names are stored in the array $fields.

if($column_count == 0) {

 $column_count = 1;

 continue;

}

The first column contains the auto numbered id field, which we do not need for

our data. Thus, it will increment the counter and skip the rest of the current iteration of

the loop.

if($flag==true) {

Chapter 10 Data Dashboard and Gaming

370

 $meta = $result->getColumnMeta($column_count);

 if($meta["native_type"]=="VAR_STRING") {

 // assume string or number only

 $column_count++;

 continue;

}}

The user will select two columns, one that is numeric and one that can be any type.

This function accepts a parameter ($flag) which will indicate if the call to the function

will return only numeric columns ($flag==true) or all columns ($flag==false). If

numeric only, the metadata for the current column is retrieved and placed into $meta.

The associative array created includes a key “native_type” which provides the data

type set for the column in the database table. If the value is “VAR_STRING”, we skip it,

increment the counter, and go to the next column.

$data .= "<option value='$column'>$column</option>";

$column_count++;

If the flag is true, and we found a numeric column, or the flag is false, we create an

entry in the drop-down list for the current column. We now have the ability to select the

columns. Let us retrieve the data for those columns.

Listing 10-7.  Function returnDatabaseData from accessData.class.php

function returnDatabaseData($database, $table, $row, $column){

 $user = 'root';

 $password = '';

 $dbInfo = "mysql:host=localhost;dbname=$database";

 $pdo = new PDO($dbInfo, $user, $password);

 �$sqlString = "SELECT " . $row . " , " . $column . " From "

. $table;

 $results = $pdo->prepare($sqlString);

 $results->execute();

 $result = $results->fetchAll();

 return $result;

}

Chapter 10 Data Dashboard and Gaming

371

Hopefully, this listing is logical at this point. It is similar to what we have shown in

the previous chapters.

Exercise: Function returnDatabaseData() and function returnDatabaseTitles()

do not use prepared statements. Although it might be pretty safe in this circumstance,

change both functions to use prepared statements, to provide the best security possible.

Now that we have the ability to retrieve database data, let us look at retrieving

Microsoft Excel data. We will assume that we only have one spreadsheet within an Excel

workbook. We will also assume the column titles are in the first row of the spreadsheet.

Listing 10-8.  Function returnExcelTitles from accessData.class.php

function returnExcelTitles($file, $title, $title_Name, $flag=false) {

 //$flag==true return only numbers, $flag==false return all

 if ($xlsx = SimpleXLSX::parse($file)) {

 $rows = $xlsx->rows();

 �$data = "<input type='hidden' id='numeric_Title'

name='numeric_Title' value='$title'>";

 �$data .= "<input type='hidden' id='numeric_Name'

name='numeric_Name' value='$title_Name'>";

 �$data .= "<input type='hidden' id='filename'

name='filename' value='$file'>";

 $data .= "<select name='all_Columns' id='all_Columns'>";

 $count = 0;

 foreach($rows[0] as $column) {

 if($flag==true) {

 if(is_string($rows[1][$count])) {

 //assume values numbers or strings $count++;

 continue;

 }

 }

 $value = $count . ',' . $column;

 $data .= "<option value='$value'>$column</option>";

 $count++;

 }

 $data .="</select>";

 return $data;

Chapter 10 Data Dashboard and Gaming

372

 } else {

 echo SimpleXLSX::parseError();

 }

}

Most of the logic from the function is similar to the database function, with a few

exceptions.

if ($xlsx = SimpleXLSX::parse($file)) {

 $rows = $xlsx->rows(); }

The Excel spreadsheet is parsed using the SimpleXLSX class. The parse() function

returns a standard object containing the spreadsheet and its related information. The

rows() function will retrieve the data only from the object and create an array ($rows).

foreach($rows[0] as $column) {

 if($flag==true) {

 if(is_string($rows[1][$count])) {

 //assume values numbers or strings

 $count++;

 continue;

 }}

The foreach loop will look at the first row only (which contains the titles of the

columns). If $flag is true (only retrieves numerical columns), the PHP function is_

string() will look at the next row (the first row of actual data), in the same column to

determine if it is a string. If it is, the column is skipped.

$data = "<input type='hidden' id='numeric_Title' name='numeric_Title'

value='$title'>";

$data .= "<input type='hidden' id='numeric_Name' name='numeric_Name'

value='$title_Name'>";

$data .= "<input type='hidden' id='filename' name='filename'

value='$file'>";

$data .= "<select name='all_Columns' id='all_Columns'>";

$count++;

Chapter 10 Data Dashboard and Gaming

373

If the flag equals true and the column is numeric, or when the flag is false, the

numeric title (which was passed into the function), the title (column) name, and the file

name are saved for future use in hidden variables. The column name is placed into a

drop-down box. The counter is then incremented.

} else {

 echo SimpleXLSX::parseError();

}

If there is a problem parsing the spreadsheet, the parsing error is displayed.

Exercise: In function returnExcelTitles() instead of echoing the error, raise and

capture the error using try/catch. Also, adjust any other programs that need try/catch

to capture problems.

We now have determined the columns; let us retrieve the actual data in the columns.

Listing 10-9.  Function returnExcelData in accessData.class.php

function returnExcelData($file, $row, $col) {

 if ($xlsx = SimpleXLSX::parse($file)) {

 $rows = $xlsx->rows();

 $i = 0;

 foreach($rows as $column) {

 $results[$i][0] = $column[$row];

 $results[$i][1] = $column[$col];

 $i++;

 }

 return $results;

 } else {

 echo SimpleXLSX::parseError();

 }

 }

$i = 0;

foreach($rows as $column) {

 $results[$i][0] = $column[$row];

 $results[$i][1] = $column[$col];

 $i++;

}

Chapter 10 Data Dashboard and Gaming

374

The only actual change in the code from the previous example is what occurs within

the foreach loop. The first column to retrieve is in $row, and the second column to

retrieve is in $col. The column information is placed into the $results array, which is

returned. The values for $row and $col will be set when the user selects the columns

they want to use.

Let us move on to the CSV file and the ability to access its column names and

column data.

Listing 10-10.  Function returnCSVTitles from accessData.class.php

function returnCSVTitles($file, $title, $title_Name, $flag=false) {

 //$flag==true return only numbers, $flag==false return all

 $file_to_read = fopen($file, 'r');

 if($file_to_read !== FALSE){

 �$data ="<input type='hidden' id='CSV_Numeric_Title' name='CSV_

Numeric_Title' value='$title'>";

 �$data .= "<input type='hidden' id='CSV_Numeric_

Name' name='CSV_Numeric_Name' value='$title_

Name'>";

 �$data .= "<input type='hidden' id='CSV_

Filename' name='CSV_Filename' value='$file'>";

 �$data .= "<select name='columns'

id='columns'>";

 $info = fgetcsv($file_to_read, 1000, ',');

 $info2 = fgetcsv($file_to_read, 1000, ',');

 for($i = 0; $i < count($info); $i++) {

 if($flag==true) {

 if(!is_numeric($info2[$i])) {

 continue;

 }

 }

 $value = $i . ',' . $info[$i];

 $data .= "<option value='$value'>$info[$i]</option>";

 }

 $data .= "</select>";

 fclose($file_to_read);

Chapter 10 Data Dashboard and Gaming

375

 return $data;

 }

}

The general logic is the same, but there are several differences from the previous

example.

$file_to_read = fopen($file, 'r');

if($file_to_read !== FALSE){

The CSV file will be opened using the PHP function fopen(). The r parameter

indicates that it is open for read mode. We now have a channel to access the file data. If

we were able to open the file, we would retrieve the column titles.

$info = fgetcsv($file_to_read, 1000, ',');

$info2 = fgetcsv($file_to_read, 1000, ',');

We will grab two rows of information (up to 1000 characters). fgetcsv() will create

an array, using the comma as the delimiter to determine what values are placed in each

column in the array. $info will contain the column names (assuming the column names

are in the first row). $info2 will contain the first row of data.

for($i = 0; $i < count($info); $i++) {

 if($flag==true) {

 if(!is_numeric($info2[$i])) {

 continue;

 }

}}

If the flag is set to true, we only want numerical data. The PHP function is_

numeric() will look at the same column in the second row to see if it is numeric or not. If

it is not numeric, the iteration of the loop will be skipped.

$data .= "<option value='$i'>$info[$i]</option>";

If the flag was set to true, and the data is numeric, or if the flag is set to false, the

current column name is placed into the drop-down list.

Let us retrieve the CSV data.

Chapter 10 Data Dashboard and Gaming

376

Listing 10-11.  Function returnCSVData from accessData.class.php

 function returnCSVData($file, $row, $col) {

 $file_to_read = fopen($file, 'r');

 if($file_to_read !== FALSE){

 $lines = array();

 �while(!feof($file_to_read) && ($line =

fgetcsv($file_to_read)) !== false) {

 $lines[] = $line;

 }

 $i = 0;

 foreach($lines as $line) {

 $results[$i][0] = $line[$row];

 $results[$i][1] = $line[$col];

 $i++;

 }

 return $results;

 fclose($file_to_read);

 }

 }

 $file_to_read = fopen($file, 'r');

 if($file_to_read !== FALSE){

 $lines = array();

If we can open the file, an empty array, $lines, is created.

 while(!feof($file_to_read) && ($line =

fgetcsv($file_to_read)) !== false) {

 $lines[] = $line;

}

If we are not at the end of the file (feof) and we can read data from the CSV file, then

we place that data into the $lines array. fgetcsv() will create an array of the data from

the current line. That array is actually added to the $lines array. A lot in just two lines!

 foreach($lines as $line) {

Chapter 10 Data Dashboard and Gaming

377

 $results[$i][0] = $line[$row];

 $results[$i][1] = $line[$col];

 $i++;

}

However, we only want the two columns the user specifies, so we retrieve each

column using the $row and $col as the indexes and create a new $results array which

contains only the two columns.

Finally, let us look at the process for a JSON file.

Listing 10-12.  Function returnJSONTitles from accessData.class.php

 function returnJSONTitles($file, $title, $title_Name, $flag=false) {

 // Read the JSON file

 $json = file_get_contents($file);

 // Decode the JSON file

 $json_data = json_decode($json,true);

 �$data = "<input type='hidden' id='JSON_Numeric_Title' name='JSON_

Numeric_Title' value='$title'>";

 �$data .= "<input type='hidden' id='JSON_Numeric_Name' name='JSON_

Numeric_Name' value='$title_Name'>";

 �$data .= "<input type='hidden' id='JSON_Filename' name='JSON_

Filename' value='$file'>";

 $data .= "<select name='columns' id='columns'>";

 // Display data

 $i = 0;

 foreach($json_data[0] as $title) {

 if($flag==true) {

 if(!is_numeric($json_data[1][$i])) {

 $i++;

 continue;

 }

 }

 $value = $i . ',' . $title;

 $data .= "<option value='$value'>$title</option>";

 $i++;

 }

Chapter 10 Data Dashboard and Gaming

378

 $data .= "</select>";

 return $data;

}

// Read the JSON file

$json = file_get_contents($file);

// Decode the JSON file

$json_data = json_decode($json,true);

We will use the PHP function file_get_contents() to retrieve the complete file

at once and place it into $json. We will then use the PHP function json_decode() to

convert the JSON data into a PHP array ($json_data).

 foreach($json_data[0] as $title) {

 if($flag==true) {

 if(!is_numeric($json_data[1][$i])) {

 $i++;

 continue;

 }

 }

We will loop through the first row of data (where the titles are kept). If the flag is true,

we will check the same column of the second row (the first row that actually has data) to

see if it is not numeric. If it is not, we skip the result of the iteration of the loop.

$data .= "<option value='$i'>$title</option>";

If the flag is true and the data is numeric, or the flag is false, we save the column

name in the drop-down box.

Let us retrieve the actual JSON data.

Listing 10-13.  Function returnJSONData from accessData.class.php

function returnJSONData($file, $row, $col) {

 // Read the JSON file

 $json = file_get_contents($file);

 // Decode the JSON file

 $json_data = json_decode($json,true);

Chapter 10 Data Dashboard and Gaming

379

 $i = 0;

 foreach($json_data as $column) {

 $results[$i][0] = $column[$row];

 $results[$i][1] = $column[$col];

 $i++;

 }

 return $results;

 }

 }

This code is similar to the last example.

// Read the JSON file

 $json = file_get_contents($file);

 // Decode the JSON file

 $json_data = json_decode($json,true);

We first dump the complete contents of the file into $json. Then we use json_

decode() to create an array of the JSON data ($json_data).

foreach($json_data as $column) {

 $results[$i][0] = $column[$row];

 $results[$i][1] = $column[$col];

 $i++;

}

For each row of data in the $json_data array, we pull the two columns of data

requested by the user and place them into the array $result, which is then returned.

Exercise: Create a test program that will test each of the functions provided in the

accessData.class.php program. Did you discover any problems? If so, correct those

problems before moving on.

�Creating the Drop-Down and File Type Views
Let us create some views to handle our information we are requesting from the user.

First, we need to request the file type of the data to be used. We can use a simple radio

button collection to gather this information.

Chapter 10 Data Dashboard and Gaming

380

Listing 10-14.  filetype-form-html.php

<?php

//complete code for views/fileType-form-html.php

$info .= "

<form action='index.php?page=fileType' method='post' id='fileType-form'>

 <label>Select the data file type</label>

 �<input type='radio' id='Database' name='file_type'

value='Database'>

 <label for='Database'>mySQL/MariaDB Database</label>

 <input type='radio' id='Excel' name='file_type' value='Excel'>

 <label for='Excel'>Microsoft Excel</label>

 <input type='radio' id='JSON' name='file_type' value='JSON'

 <label for='JSON'> JSON - JavaScript Array</label>

 <input type='radio' id='CSV' name='file_type' value='CSV'>

 <label for='CSV'>CSV - Comma Separated</label>

 <input type='submit' value='submit' />

</form>";

?>

This form provides four selections for the data file type (Database, Excel, JSON, CSV).

Whichever the user chooses, the value is saved into the file_type name and passed

back to the index.php page, along with the page value which is set to filetype.

After the user selects the data file type, if they select "Database", the list of databases

must be provided, followed by the list of tables within the database, finally followed

by the list of numerical columns and all columns. If the user selects any of the other

choices, after selecting the file to open, the logic will jump to listing the numerical

columns and all columns.

In the functions created in the accessData class, drop-down boxes were already

created. Our form(s) need only provide the form information and submit button along

with the drop-down box. This process is the same for most of the views (except for

gathering the name of any nondatabase file to open). Thus, we can create one shell

HTML view which will accept the drop-down box code and display a form around it.

This will reduce our coding from many forms to gather this information to just one.

Chapter 10 Data Dashboard and Gaming

381

Listing 10-15.  dropdown-form-html.php

<?php

//complete code for views/dropdown-form-html.php

$idIsFound = isset($type);

$DDIsFound = isset($dropdown);

if($idIsFound === false) {

 trigger_error('views/dropdown-html.php needs an $type');

}

if($DDIsFound === false) {

 trigger_error('views/dropdown-html.php needs an $dropdown');

}

$info .= "

<form action='index.php?page=$type' method='post' id='comment-form'>

 <label>Select one $type</label>
"

 . $dropdown .

 "

<input type='submit' value='submit!' />

</form>";

?>

The code expects two values to be set ($type, $dropdown). $type will describe what

type of data we are requesting ("Database", "Table", ...). If either is missing, the

program will raise an error. If they are provided, then the form tag uses the $type value to

set the page parameter. The code in $dropdown is displayed between the label requesting

the user selection and the submit button. A simple shell that does a lot of work for us!

To complete gathering information from the user, we need a form to select any

nondatabase file to open.

Listing 10-16.  file-form-html.php

<?php

//complete code for views/admin/file-form-html.php

$idIsFound = isset($type);

$FTIsFound = isset($file_type);

if($idIsFound === false) {

Chapter 10 Data Dashboard and Gaming

382

 trigger_error('views/file-form-html.php needs an $type');

}

if($FTIsFound === false) {

 trigger_error('views/dropdown-html.php needs an $file_type');

}

$info .= "<h1>Select $type Data File<h1>

<form method='post' action='index.php?page=$type'

 enctype='multipart/form-data'>

 <input type='file' name='filename' id='filename' accept='$file_type' />

 <input type='submit' name='submit' id='submit' value='upload' />

</form>

";

?>

If $type and $file_type are set, then the form will restrict the file type selection to

the value in $file_type, and it will use $type to display the request for a file to open.

$type will also be passed into the page parameter when the information is passed to the

index file. We now have the ability to request all the required information from the user.

Let us take a look at the main controller and the other controllers.

�Creating the Front Door Controller and the Subcontrollers
Most of the code for the front door controller (index.php) should look familiar.

Listing 10-17.  index.php

<?php

//complete code for ch10/index.php

$info = "";

require_once __DIR__.'/simplexlsx-master/src/SimpleXLSX.php';

require_once "models/Page_Data.class.php";

$pageData = new Page_Data();

$pageData->setTitle("PHP Dashboard demo");

$pageRequested = isset($_GET['page']);

//default controller file_type

$controller = "file_type";

Chapter 10 Data Dashboard and Gaming

383

if ($pageRequested) {

 $controller = $_GET['page'];

}

include_once "controllers/$controller.php";

$pageData->setContent($info);

include_once "views/page.php";

echo $page;

?>

Let us look at a couple of differences from our previous main controllers.

require_once __DIR__.'/simplexlsx-master/src/SimpleXLSX.php';

We will use the open source class SimpleXLSX to access our Excel file. Thus, we will

retrieve the code from its folder location.

$controller = "file_type";

Our default program will be file_type.php which requests the user to select the

file type.

Note T his current version of the program requires the file which contains the
data to exist within the same folder as the program. This can be adjusted by the
reader to accept the full pathname.

Let us take a look at the other controllers. Once the file type is selected, the file type

controller is called.

Listing 10-18.  filetype.php

<?php

// complete code for controllers/fileType.php

if(isset($_POST['file_type'])) {

 $file_type = $_POST['file_type'];

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 if($file_type == "Database") {

 $type = "Database";

Chapter 10 Data Dashboard and Gaming

384

 $dropdown = $dataObject->returnDatabases();

 require_once "views/dropdown-form-html.php";

 }

 else if($file_type == "Excel") {

 $type = "Excel";

 $file_type = ".xlsx";

 require_once "views/file-form-html.php";

 }

 else if($file_type == "JSON") {

 $type = "JSON";

 $file_type = ".json";

 require_once "views/file-form-html.php";

 }

 else if($file_type == "CSV") {

 $type = "CSV";

 $file_type = ".csv";

 require_once "views/file-form-html.php";

 }

}

?>

$file_type = $_POST['file_type'];

require_once "models/accessData.class.php";

$dataObject = new accessData();

if($file_type == "Database") {

 $type = "Database";

 $dropdown = $dataObject->returnDatabases();

 require_once "views/dropdown-form-html.php";

}

If the file_type is populated, an instance of the accessData() class is created. If

the file type chosen is "Database", then the $type variable is set to "Database" and

the returnDatabases() function is called and passed to the dropdown-form-html.php,

which will display the databases available to choose.

else if($file_type == "Excel") {

 $type = "Excel";

Chapter 10 Data Dashboard and Gaming

385

 $file_type = ".xlsx";

 require_once "views/file-form-html.php";

}

If any of the other file types are chosen, the $type variable is set to the type of file,

and the $file_type variable is set to the required file ending, which is then used in the

file-form-html.php form to request the user pick a file of the set file type.

Once the database or file is selected, each type of file (Database, Excel, JSON, CSV)

will require a controller which will be called when the particular file type is chosen. Let

us look at each of these controllers.

Listing 10-19.  Database.php

<?php

// complete code for controllers/Database.php

if(isset($_POST['columns'])) {

 $database = $_POST['columns'];

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 $type = "Table";

 $dropdown = $dataObject->returnDatabaseTables($database);

 require_once "views/dropdown-form-html.php";

 }

?>

The columns variable (which contains the database selected) must be set. If it is,

the database name is placed in $database. An instance of accessData() is created

($dataObject); the $type variable is set to "Table", which is then used by the

returnDatabaseTables() function to create the drop-down list. It is then displayed

using dropdown-form-html.php, which displays the tables within the database selected.

Listing 10-20.  Excel.php

<?php

// complete code for controllers/Excel.php

use Shuchkin\SimpleXLSX;

if(isset($_FILES['filename']['name'])){

 $file =$_FILES['filename']['name'];

Chapter 10 Data Dashboard and Gaming

386

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 $type = "Numeric_Column";

 $dropdown = $dataObject->returnExcelTitles($file,'','', true);

 require_once "views/dropdown-form-html.php";

 }

?>

If Excel was chosen as the file type, the if statement will verify that an Excel file

was also chosen. If it was chosen, the file name will be placed into $file. An instance

($dataObject) of accessData() is created. The $type is set to "Numeric_Column", which

will be used by the drop-down form. The function returnExcelTitles() is called, with

the $file variable, and the Boolean value true is passed. This will cause the function to

only retrieve numeric column names. The middle two parameters are set to "", because

they are not needed in this process. The form including a drop-down list of the numeric

columns is displayed for the user to make a selection.

Both the JSON.php and CSV.php controllers use similar logic to the Excel.php

program. Once a numeric column has been selected, then another column must

be selected. All the file types will call the Numeric_Column.php controller to request

another column.

Listing 10-21.  Partial Listing of Numeric_Column.php

use Shuchkin\SimpleXLSX;

if((isset($_POST['table'])) and (isset($_POST['database']))and (isset

($_POST['titles']))){

 // database

 $columns = $_POST['table'];

 $database = $_POST['database'];

 $title = $_POST['titles'];

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 $type = "Column";

 �$dropdown = $dataObject->returnDatabaseTitles($database,

$columns, $title);

 require_once "views/dropdown-form-html.php";

 }

Chapter 10 Data Dashboard and Gaming

387

If the database, the table, and the numeric column have been selected (as

determined by the if statement), the table name, database name, and numeric column

are stored in variables. An instance of the accessData() class is created, the $type

variable is set to "Column", and this information is passed into the returnDataTitles()

function. Because no value is passed into the fourth parameter, the function will set the

flag to false to display all columns in the drop-down list. The drop-down form will then

display the list for the user to select another column.

Listing 10-22.  Partial Listing of Numeric_Column.php

else if((isset($_POST['filename'])) and (isset($_POST['all_Columns']))) {

 // Excel

 $file = $_POST['filename'];

 $numeric_Column = $_POST['all_Columns'];

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 $type = "Column";

 $numeric_Info = explode(",", $numeric_Column);

 �$dropdown = $dataObject->returnExcelTitles($file,$numeric_

Info[0],$numeric_Info[1]);

 require_once "views/dropdown-form-html.php";

}

If the Excel file type was selected, the function will verify that an Excel file has

been selected, and a numeric column has been chosen. If so, the file name and

numeric column name are stored in variables. The $type variable is set to "Column".

The information retrieved from the previous call to this function will pass back both

the column number and column name. The PHP function explode() will create

an array by breaking apart a string with a delimiter (,). This will place the column

number in the zero position and the column name in the first position of the array.

The file name, the column number, and the column name are passed into the function

returnExcelTitles(). Again, since the fourth parameter is not passed, the function

will create a drop-down list of all columns, which is displayed using the function

returnExcelTitles(). The user can now select another column. The logic for the JSON

and CSV code within the Numeric_Column.php file is the same as the Excel logic.

Chapter 10 Data Dashboard and Gaming

388

Once a second column has been selected, the program will finally have enough

information to display the dashboard. Each of the file types will call the Column.php

controller to finish the process.

Listing 10-23.  Partial Listing of Column.php

if((isset($_POST['table'])) and (isset($_POST['database'])) and

 (isset($_POST['titles'])) and (isset($_POST['title']))){

 // Database

 $columns = $_POST['table'];

 $database = $_POST['database'];

 $Label = $_POST['titles'];

 $RangeLabel = $_POST['title'];

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 �$Data = $dataObject->returnDatabaseData($database, $columns,

$Label, $RangeLabel);

 require_once "views/googleDashboard.php";

 $info .= displayDashboard($Data, $RangeLabel, $Label);

 }

If the database, table, numeric column, and another column (as verified by the if

statement) have all been determined, the program can finish the process of displaying

the dashboard. All four of these values are placed into corresponding variables. An

instance of the accessData() class is created. Then all the variables are passed into the

returndatabaseData() function. This function will return a two-column array with the

information requested. Now that the table has been created, the googleDashboard.

php program will be included. This program includes the function displayDashboard()

which will use the array ($Data) and the column names ($Rangelabel, $label) to create

the dashboard.

Listing 10-24.  Partial Listing of Column.php

else if((isset($_POST['filename'])) and (isset($_POST['numeric_Title']))

and ($_POST['all_Columns']) and ($_POST['numeric_Name'])) {

 //Excel

 $file = $_POST['filename'];

Chapter 10 Data Dashboard and Gaming

389

 $numeric_Column = $_POST['numeric_Title'];

 $numeric_Name = $_POST['numeric_Name'];

 $columns = $_POST['all_Columns'];

 $columns_Info = explode(',',$columns);

 require_once "models/accessData.class.php";

 $dataObject = new accessData();

 �$Data = $dataObject->returnExcelData($file, $columns_

Info[0], $numeric_Column);

 require_once "views/googleDashboard.php";

 �$info .= displayDashboard($Data, $numeric_Name, $columns_

Info[1]);

 }

If any of the nondatabase types are selected, similar logic is used to prepare for

the display of the dashboard. The file name, numeric column name, numeric column

number, and the column information for the other column are stored in variables. The

information for the other column is transformed into an array using explode(). An

instance of the accessData() class is created. The file name, numeric column name,

and the other column name are all passed into the returnExcelData() function. This

function will return a two-dimensional array containing the requested information.

The Dashboard.php file is then imported. The displayDashboard() function is called,

passing the array data ($Data), the name of the numeric column, and the name of the

other column. This will display our dashboard.

It is finally time to display our dashboard! The code used to prepare our dashboard

is a mixture of PHP, HTML, and JavaScript. To allow the learner ability to relate this

example to other Google Dashboard examples, we borrowed code directly from the

Google Charts website, with a few modifications.

Note T his exercise provides us practice in preparing data for display within
graphical charts. The code, up until this point, is not actually dependent on using
Google Charts for the actual display of information. The programmer (you) can
modify this code to prepare data for any charting tool available. Google Charts
is not designed for displaying large amounts of data (thousands of records). The
actual data is uploaded into the Google Charts API (application programming
interface) on the Google website. Thus, you would not want the inefficiency of

Chapter 10 Data Dashboard and Gaming

390

trying to upload thousands of records. Also, because the data is sent to Google, we
must consider security risks. If this data is intended to be public information (or not
secure information), then Google Charts is a good choice. If the information needs
to be secure, then another application should be used.

Listing 10-25.  Partial Listing of googleDashboard.php

<?php

function displayDashboard($Data, $RangeLabel, $Label) {

$info = "<html>

 <head>

 <!--Load the AJAX API-->

 �<script type='text/javascript' src='https://www.gstatic.com/charts/

loader.js'></script>

 <script type='text/javascript'>

 // Load the Visualization API and the controls package.

 �google.charts.load('current', {'packages':['corechart',

'controls']});

 // Set a callback to run when the Google Visualization API is loaded.

 google.charts.setOnLoadCallback(drawDashboard);

 // Callback that creates and populates a data table,

 // instantiates a dashboard, a range slider, and charts,

 // passes in the data and draws it.

 function drawDashboard() {

 var data = new google.visualization.DataTable();

 // Add columns

 data.addColumn('string','" . $Label . "');

 data.addColumn('number','" . $RangeLabel . "');

 ";

We can now complete the requirements to display our dashboard. First, we will

import the Google Charts JavaScript Loader code, which is an AJAX API. AJAX is a

JavaScript code which provides asynchronous display of information within a web page.

It allows portions of the page to be updated, without having to reload the complete

Chapter 10 Data Dashboard and Gaming

391

web page (like we have been doing up until now). This allows the program to change

chart information without affecting the rest of the page. Next, we call the Google

Visualization API, with parameters that indicate which items will be displayed using

AJAX. In this example, we include the charts and the controls. The OnLoadCallback()

function redraws the dashboard every time an attempt is made to reload the page. The

function drawDashboard() is a JavaScript function which creates the DataTable from

the array and sets the parameters for the dashboard, slider, and charts. An instance of

the DataTable (data) is created. Then the $RangeLabel variable (passed into the PHP

function (displayDashBoard()) containing the numeric column name, which is added

to the data table as a 'number' column. The other column name ($Label) is also passed

into the PHP function, as a 'string' column.

Listing 10-26.  Partial Listing of googleDashBoard.php

$info .="data.addRows([";

 $count = 0;

 foreach($Data as $row) {

 if($count == 0) { $count++; continue; }

 $info .= "['" . $row[0] . "'," . $row[1] . "],";

 $count++;

 }

$info .= "]);

 // Create a dashboard.

 var dashboard = new google.visualization.Dashboard(

 document.getElementById('dashboard_div'));

Once the columns are defined, then we use PHP to "addRows" to our data table by

pulling the information from the $Data array (passed into the PHP function). Once we

have established the data table, we can complete the dashboard, controls, and charts

information. We create an instance of the dashboard (dashboard) and define where it

will exist in the web page (inside the HTML div tag identified as 'dashboard_div').

Listing 10-27.  Partial Listing of googleDashboard.php

// Create a range slider, passing some options";

 $info .="

 var donutRangeSlider = new google.visualization.ControlWrapper({

Chapter 10 Data Dashboard and Gaming

392

 'controlType': 'NumberRangeFilter',

 'containerId': 'filter_div',

 'options': {

 'filterColumnLabel': '" . $RangeLabel . "'

 }

 });

 var pieChart = new google.visualization.ChartWrapper({

 'chartType': 'PieChart',

 'containerId': 'chart_div',

 'options': {

 'width': 300,

 'height': 300,

 'pieSliceText': '" . $Label . "',

 'legend': 'right'

 }

 });

 var lineChart = new google.visualization.ChartWrapper({

 chartType: 'LineChart',

 options: {'title': '". $Label . "'},

 containerId: 'vis_div'

 });

 var columnChart = new google.visualization.ChartWrapper({

 chartType: 'ColumnChart',

 options: {'title': '" . $Label . "'},

 containerId: 'column_div'

 });

 var tableChart = new google.visualization.ChartWrapper({

 chartType: 'Table',

 containerId: 'table_div',

 options: {

 'allowHtml': true,

 'page': 'enable',

 'width':'48%',

Chapter 10 Data Dashboard and Gaming

393

 'height':'250px',

 'pageSize': 10,

 'alternatingRowStyle' : true

 }

 });

// Create a range slider, passing some options";

 $info .="

 var donutRangeSlider = new google.visualization.ControlWrapper({

 'controlType': 'NumberRangeFilter',

 'containerId': 'filter_div',

 'options': {

 'filterColumnLabel': '" . $RangeLabel . "'

 }

 });

We use Control Wrappers to set up each item we want to display in the dashboard.

For the range slider (which the user can adjust and will automatically adjust the data

displayed), we declare the div tag (filter_div) which will hold the slider, declare the

actual range control to use (NumberRangeFilter), and declare that the numeric column

name be displayed.

var pieChart = new google.visualization.ChartWrapper({

 'chartType': 'PieChart',

 'containerId': 'chart_div',

 'options': {

 'width': 300,

 'height': 300,

 'pieSliceText': '" . $Label . "',

 'legend': 'right'

 }

});

For the PieChart, we have similar settings, but also include some formatting, such as

width and height. The label displayed will be the column name which is not specifically

numeric. The line chart and column chart have similar settings.

var tableChart = new google.visualization.ChartWrapper({

Chapter 10 Data Dashboard and Gaming

394

 chartType: 'Table',

 containerId: 'table_div',

 options: {

 'allowHtml': true,

 'page': 'enable',

 'width':'48%',

 'height':'250px',

 'pageSize': 10,

 'alternatingRowStyle' : true

 }

 });

The Table chart has additional settings, including the ability to display HTML, paging

ability (for more than ten rows), alternating row colors, and width and height settings.

Listing 10-28.  Partial Listing of googleDashboard.php

var formatter = new google.visualization.BarFormat({width: 120});

 formatter.format(data, 1); // Apply formatter to second column

 // �Establish dependencies, declaring that 'filter' drives 'pieChart',

 // �so that the pie chart will only display entries that are let through

 // given the chosen slider range.

 �dashboard.bind(donutRangeSlider, [pieChart, tableChart,

columnChart, lineChart]);

 // Draw the dashboard.

 dashboard.draw(data);

 }

 </script>

We can now bind the charts to the dashboard. This will cause all the charts bound

to adjust (via AJAX) whenever the user slides the range bar. Finally, we can draw the

dashboard. Of course, we need a place to display all the dashboard information.

Listing 10-29.  Partial Listing of googleDashboard.php

<body>

 <!--Div that will hold the dashboard-->

Chapter 10 Data Dashboard and Gaming

395

 <div id='dashboard_div'>

 <!--Divs that will hold each control and chart-->

 <div id='filter_div'

 style='display: flex;

 padding: 10px;

 justify-content: center;

 align-items: center;

 border: 3px solid black; '>

 </div>

 <div id='container_div' style=' width: 100%; margin-top: 20px;'>

 <div id='chart_div'

 style='

 justify-content: center;

 align-items: center;

 width: 48%;

 padding-left: 40px;

 margin-bottom: 20px;

 float: left;'>

 </div>

 <div id='table_div'></div>

 </div>

 <div id='column_div'

 style='float: clear;'>

 </div>

 <div id='vis_div'>

 </div>

 </div>

 </body>

</html>";

return $info;

The HTML code contains the div tags to define the location of the dashboard, slider,

and charts. It also includes some formatting with CSS.

We can now run index.php from our browser, pick the data type, file (or database

and table), and columns. Then our dashboard appears!

Chapter 10 Data Dashboard and Gaming

396

Figure 10-1.  Dashboard display from index.php

Not a bad-looking dashboard! Play with the slider control. Select different columns.

It is very interactive! There is a lot more that we can do and display. However, the

formatting logic is similar for the over 30 charts you can use in a Google Dashboard.

Note  For more information on Google Charts, visit https://developers.
google.com/chart.

Hopefully, this has increased your interest in what else PHP can do besides display

web pages. When we receive data from outside sources, it can come in many formats.

We used four common formats in this example. Sometimes, we need to merge data and

eliminate any data that is invalid. While we can use one of PHP’s many array functions

(there are a lot) to merge our data, it will not be as efficient as using our source data

platform to merge data. For example, if our data is all MySQL/MariaDB, we will have a

much more efficient merging of data using the SQL JOIN clause.

Note  For more information on the SQL JOIN clause, visit www.w3schools.com/
sql/sql_join.asp.

For multiple data sources that are Excel, we can use the Consolidate Data Tool.

Chapter 10 Data Dashboard and Gaming

https://developers.google.com/chart
https://developers.google.com/chart
http://www.w3schools.com/sql/sql_join.asp
http://www.w3schools.com/sql/sql_join.asp

397

Note  For more information on the merging Excel spreadsheets, visit https://
support.microsoft.com/en-us/office/combine-data-from-
multiple-sheets-dd7c7a2a-4648-4dbe-9a11-eedeba1546b4.

For mixed data sources, we can either use an open source merging tool or transform

our data using PHP into either MySQL/MariaDB or Excel data and use the methods

we just mentioned. Anytime we want to merge data (even if we are using another

programming language), we should use a data management system function, when

available. They are efficient and, in many cases, can manage the merging of a lot of data.

Always error on the side of efficiency!

Exercise: Using one of the techniques mentioned, merge data from multiple sources

and then display the results using our Google Charts program.

One final note, the same should be said for any calculations we want to perform,

such as creating averages, means, and modes. Use the tools available in the data

management application to perform the math required, and then return the results

back to the PHP program to be displayed in the dashboard. Using these techniques will

improve the performance of data analysis using PHP.

Let us look at one last logical example before we close our last chapter.

�Creating the Logic for a Checkers Game
In this section, we will look at the logic in creating a checkers game. The intent is to

demonstrate the important use of arrays to accomplish our mission. Hopefully, this

example will demonstrate that an understanding of arrays is essential in becoming a

good programmer. This exercise will also give us an opportunity to use embedded if/

then/else structures and case statements. Along the way, we will also discover the use of

the PHP substring function.

This example will provide several demonstrations on creating and updating a two-

dimensional array which represents a checkerboard. It is not the intent of this example to

provide the complete working code or the most efficient code. A more efficient example

would include the use of recursive looping with objects. Something that is much more

advanced than a beginning programmer should try to tackle. Once you have grasped this

example (which might take a while to completely absorb), you can expand your knowledge

by looking at the many examples on creating a checkers game on the Internet.

Chapter 10 Data Dashboard and Gaming

https://support.microsoft.com/en-us/office/combine-data-from-multiple-sheets-dd7c7a2a-4648-4dbe-9a11-eedeba1546b4
https://support.microsoft.com/en-us/office/combine-data-from-multiple-sheets-dd7c7a2a-4648-4dbe-9a11-eedeba1546b4
https://support.microsoft.com/en-us/office/combine-data-from-multiple-sheets-dd7c7a2a-4648-4dbe-9a11-eedeba1546b4

398

Figure 10-2.  Empty checkerboard

1. What is the first thing we do when we play checkers? Open the box and lay the

board out on a table.

This would map directly to the first logical step in creating a checkers game. A

display_board() function could be designed to show the initial board. Each time the

user makes a move, the board will need to be redrawn to indicate a change in what is

displayed. Thus, the display_board() function would be called every time the board

must be redrawn.

Since the location of checkers on the board continuously changes, there needs to be

a way to save these changes. As you can see from Figure 10-2, the checkerboard has rows

and columns just like a two-dimensional array. We can use a two-dimensional array to

represent the board and its contents.

The board has eight columns and eight rows. The red and black colors alternate by

column and by row.

Listing 10-30.  Initial Checkerboard Array (checkerarray.php)

<?php

$checker_board = array (

 �array ("black", "red", "black", "red", "black",

"red", "black", "red"),

 �array ("red", "black", "red", "black", "red" , "black",

"red", "black"),

 �array ("black", "red", "black", "red", "black", "red",

"black", "red"),

 �array ("red", "black", "red", "black", "red" , "black",

"red", "black"),

Chapter 10 Data Dashboard and Gaming

399

 �array ("black", "red", "black", "red", "black", "red",

"black", "red"),

 �array ("red", "black", "red", "black", "red" ,

"black", "red", "black"),

 �array ("black", "red", "black", "red", "black", "red",

"black", "red"),

 �array ("red", "black", "red", "black", "red" , "black",

"red", "black")

);

?>

Note I n the image above the red and black squares are reversed from the image
below. The arrays demonstrated are related to the images discussed.

Once the array has been created, as shown, the display_board() function can loop

through the array, display the proper board, and color combinations using either a

series of embedded if statements or a switch statement. While the switch statement was

discussed in Chapter 5, we have not had an opportunity to demonstrate it. The following

example shows how the switch statement can make it easier to understand the logic of

the code.

Listing 10-31.  display_board Function (display_board.php)

<?php

function display_board() {

 foreach($checker_board as $position) {

 switch ($position) {

 case "red" :

 // display a red square or image

 break;

 case "black":

 // display a black square or image

 break;

Chapter 10 Data Dashboard and Gaming

https://doi.org/10.1007/978-1-4842-8205-2_5

400

 default:

 print "Error displaying board";

 break;

 }

 }

 }

?>

The basic structure will loop through each position in the array, determine the color

needed, and then display the color. Since there are many ways that the actual board

image could be created, this code is left to the reader to determine.

We might create a two-dimensional table to contain each square. The squares then

can be created using color blocks designed with HTML or we could insert small images

for each position.

Exercise: Decide how you would like to display your red and white squares and add

code to the switch structure to display the checkerboard.

2. After the player lays out the board on a table, the pieces are then placed in their

proper positions. In an application, this can be done by replacing the positions in the

array with the checkers pieces.

The programmer could choose to start the game with the pieces already on the

board or require the user to indicate they are ready to play (such as clicking a ‘start game’

button). We will assume that the player must indicate they want to start a game (or a

new game).

Figure 10-3.  Checkerboard with pieces

Chapter 10 Data Dashboard and Gaming

401

A start_game() function could execute each time the 'start game' button is

clicked. This function places the checker pieces in the proper positions by updating the

array containing the board and then calling the display_board() function to show the

board with the checker pieces. As we know or can see from the previous image, all pieces

go on the black squares. For the white pieces, the first-row pieces are in odd locations,

the second row is even (assuming zero is even), and the third row odd again. The red

pieces work in reverse.

Listing 10-32.  start_game Function (start_game.php)

<?php

function start_game() {

for ($I=0; $I < 8; $I++) {

if(($I % 2 == 0)&& ($I != 4)) {

 for($J=1; $J < 8; $J = $J +2) {

 �$checker_board[$I][$j] = ($J == 6) ? "red checker" : "white

checker";

 }

 }

 else if(($I % 2 !=0) && ($I != 3)) {

 for($J=0; $J < 8; $J = $J + 2) {

 �$checker_board[$I][$J] = ($J == 1) ? "white checker" :

"red checker";

 }

 }

 }

 display_board();

}

?>

The outside for loop (containing $I) controls the rows. Then the initial if statement

uses $I to determine if the row is even (again assuming that zero is even). If the row

is even and not the empty row (4), then the $J for loop is called. This loop starts at

column 1 (because a checker is not placed in column 0 on the zero row) and places a red

or white checker in each black square on the board. If it is the sixth row, a "red checker"

is placed. If it is any other row, a "white checker" is placed.

Chapter 10 Data Dashboard and Gaming

402

Suggestion: Either use a checkerboard or draw a checkerboard on paper and follow

along with the logic of these examples.

Note T his example does not wipe out any checkers that are in the “blank”
rows. This could be accomplished by coding a loop for the two rows involved and
setting each usable position to "black".

The else part of the if statement manages the odd numbered rows. The logic is

the same except $I start at 0 instead of 1. Also, if the row is 1, then a "white checker"

is placed in the position. Otherwise, a "red checker" is placed. It skips the third empty

row. After executing the start_game() function, the array would now contain the

following.

Listing 10-33.  Checkerboard Array After Executing Start Game Function (game_

start_array.php)

<?php

$checker_board = array (

 �array ("red", "white checker", "red", "white checker",

"red", "white checker", "red", "white checker"),

 �array ("white checker", "red", "white checker", "red", "white

checker" , "red", "white checker", "red"),

 �array ("red", "white checker", "red", "white checker",

"red", "white checker", "red", "white checker"),

 �array ("black", "red", "black", "red", "black" , "red", "black",

"red"),

 �array ("red", "black", "red", "black", "red", "black", "red",

"black"),

 �array ("red checker", "red", "red checker", "red", "red checker" ,

"red", "red checker", "red"),

 �array ("red", "red checker", "red", "red checker", "red", "red

checker", "red", "red checker"),

 �array ("red checker", "red", "red checker", "red", "red

checker" , "red", "red checker", "red")

);

?>

Chapter 10 Data Dashboard and Gaming

403

We will need to make some changes to the display_board() function to manage the

addition of the checkers.

Listing 10-34.  Display Board Function Version 2 (display_board_version2.php)

<?php

function display_board() {

foreach($checker_board as $position) {

 switch ($position) {

 case "red" :

 // display a red square or image

 break;

 case "black" :

 // display a black square or image

 break;

 case "white checker" :

 // display a white square or checker image

 break;

 case "red checker" :

 // display a reddish square or a checker image

 break;

 default:

 print "Error displaying board";

 break;

 }

 }

}

?>

We have added case procedures to manage the white and red checkers that now

exist in the array. When the start_game() function calls this display_board() function,

the board will display with the checkers in the proper positions.

3. It is now time for one of our players to move a checker. Let’s only be concerned

with trying to move a piece and not all the other factors that may affect our movement.

We can always add to a working function after we determine the basic moves.

Chapter 10 Data Dashboard and Gaming

404

Top of board

x w x w x

w x start x w

x a x b x

Using the preceding diagram, following the rules of checkers, if we want to move

the 'start' white checker (not yet a king), it can only move to position 'a' or 'b'. All

other positions are not valid. Notice that position 'a' is one row more than 'start'. Also

notice that position 'b' is one more row than 'start'.

Thus, part of a valid move is movement only to the next row (we are not concerned

with jumps yet). The column of 'a' is one less than the column of 'start'. The column

of 'b' is one more than the column of 'start'. This indicates that a valid move is also

determined if the column move is one less or one more than the original column. Try

this logic and you will discover that this holds true for all moves from the top of the board

toward the bottom of the board (until it becomes a king).

X a x b x

w x start x w

x w x w x

Bottom of board

If we want to move a ‘start’ red checker, it moves in the reverse direction. The

valid moves are indicated by positions ‘a’ and ‘b’. Notice that the valid columns, again,

are either one more or one less than the column of ‘start’. The only difference is that

the row will be one less than the row of ‘start’. With the white ‘start’ checker, it was

one more.

In order to determine valid moves, we will need to collect the original position (row,

column) of the checker about to be moved and the location that the user is attempting to

move the checker. Then we will need to make the comparison just described in the last

couple of paragraphs.

Note  We could do the following collection of information by creating objects for
each position in the board. However, to simplify this example, as much as possible,
we will use a different technique.

Chapter 10 Data Dashboard and Gaming

405

If every black square on the board is a button and every red square is just an image,

we eliminate the worry about the user trying to jump to a red square or even outside the

board itself. We just have to concern ourselves with the restrictions already discussed.

Each black button will actually perform the same code, with one exception – the

saving of its location in the $checker_board() array.

We can call a function from any of the buttons and pass the location in the array of

that button.

make_move(3, 3);

Each button can pass the row and column of its location in the array into the make_

move() function. The make_move() function will then determine if this is the first click

(selecting the checker) or second click (indicating where the checker will move).

Listing 10-35.  Make Move Function (make_move.php)

<?php

$first_click = false;

$first_row = -1;

$first_column = -1;

$second_row = -1;

$second_column= -1;

function make_move($row,$column) {

 If ($first_click == false) { // first click

 $first_click = true;

 $first_row = $row;

 $first_column = $column;

 }

 else { // second move because $first_click is true

 $first_click = false; // �clears flag even if move is not

valid to allow user to try again

 $second_row = $row;

 $second_column = $column;

 �valid_move($first_row, $first_column, $second_row, $second_

column);

 }

}

?>

Chapter 10 Data Dashboard and Gaming

406

The make_move() function must determine if it is the first click or second click. If it is

the first click, the $first_click flag is set to true. Then the row and column that were

passed into the function are saved into $first_row and $first_column. That is all that is

needed with the first click. If it is a second click, then $first_click is set back to false,

the values for the row and column are saved in $second_row and $second_column, and

the four row and column values are passed into a valid_move() function.

Listing 10-36.  Valid Move Function (If Statement) (valid_move.php)

<?php

function valid_move($first_row, $first_column, $second_row, $second_

column) {

If (($checker_board[$first_row] [$first_column] == "white checker") &&

 (checker_board[$second_row] [$second_column] == "black")){

 If(($second_row - $first_row == 1) &&

 (($second_column - $first_column == 1) ||

 ($second_column - $first_column == -1))) {

 $checker_board[$second_row][$second_column] = "white checker";

 $checker_board[$first_row][$first_column] = "black";

 }

 }

}

?>

The valid_move() function must determine what type of checker we are moving

to determine the direction. If it is a white checker, we are moving from top to bottom. It

must also make sure that the second clicked area is empty ("black" square). The second

row must be one more than the first row. The second column must be one more or one

less than the first column. If this is true, the "white checker" is placed in the array at

the location of the second click. The position of the first click is changed to be empty

("black" square).

Listing 10-37.  Partial Valid Move Function (Else Statement) (valid_move_with_

else.php)

} else {

Chapter 10 Data Dashboard and Gaming

407

 �If (($checker_board[$first_row] [$first_column] == "red

checker") &&

 ($checker_board[$second_row] [$second_column] == "black"))

 {

 �If(($second_row - $first_row == -1) && (($second_column -

$first_column == 1) ||

 ($second_column - $first_column == -1))) {

 $checker_board[$second_row][$second_column] = "red checker";

 $checker_board[$first_row][$first_column] = "black";

 }

 } // if both if statements fail it is not a valid move

 }

 display_board();

}

If the red checker is moved and the second clicked area is empty ("black" square),

the valid_move() function will determine if the second row selected is one less than

the first row. It will also determine if the column is one more or one less than the first

column. If this is true, then the "red checker" is moved into the array at the position of

the second click. The first click position is set to empty ("black" square).

If any of the following happens, the function will not make a move:

•	 The first click selected an empty space.

•	 The second click selected an occupied space.

•	 The second click did not select a proper square to move.

If a move is not made, the user can try again, because the $first_click flag was

already set to false. The board is redisplayed (display_board()) whether or not a move

took place. If it did take place, the display_board() function will show the changes.

4. Let us now consider the process of a checker becoming a 'King'. This would

occur if a red checker reached row zero or a white checker reached row 7. We can add

some if statements within our valid_move() function to determine this situation. Also,

a king can move in a forward or backward direction. However, they still must follow the

other rules.

Chapter 10 Data Dashboard and Gaming

408

Listing 10-38.  Valid Move Function Version 2 (If Statement) (valid_move_

version_2.php)

<?php

function valid_move($first_row, $first_column, $second_row, $second_

column) {

 � If (($checker_board[$first_row][$first_column] != "red

checker") &&

 (checker_board[$second_row][$second_column] == "black")){

 �If(($second_row - $first_row == 1) && (($second_column - $first_

column == 1) ||

 ($second_column - $first_column == -1))) {

 �If((second_row == 7) && ($checker_board[$first_row][$first_

column] == "white checker"))

 {

 �$checker_board[$second_row] [$second_column] = "white

king"; }

 else {

 $checker_board[$second_row] [$second_column] =

 $checker_board[$first_row] [$first_column]; }

 $checker_board[$first_row] [$first_column] = "black";

 }

 }

 }

?>

Instead of checking for a white checker, white king, or red king to allow movement

down the board, it is a much shorter code to look for any object that is not a red checker.

Only red checkers cannot move down the board. However, when we check for row 7 to

determine if we need to crown a checker, we also need to make sure it is a white checker

in row 7. We cannot crown a red checker and do not need to crown a white or red king! If

we are not crowning a white checker, we are moving either a white checker, white king,

or red king to a new location. Since we do not know what is moving, we can take the

value from the first clicked location and copy it into the second clicked location. This will

move the proper item.

Chapter 10 Data Dashboard and Gaming

409

Listing 10-39.  Partial Valid Move Function Version 2 (Else Statement) (valid_

move_version_2_with_else.php)

} } else {

 �If (($checker_board[$first_row] [$first_column] != "white

checker") &&

 ($checker_board[$second_row] [$second_column] == "black"))

 {

 If(($second_row - $first_row == -1) &&

 (($second_column - $first_column == 1) ||

 ($second_column - $first_column == -1))) {

 If((second_row == 0) &&

 �($checker_board[$first_row] [$first_column] == "red

checker")) {

 �$checker_board[$second_row][$second_column] =

 "red king";

 } else {

 $checker_board[$second_row] [$second_column] =

 $checker_board[$first_row] [$first_column];

 } // else

 $checker_board[$first_row] [$first_column] = "black";

 } // end if $second_column - $first_column == -1

 } // �not white checker - if both if statements fail it is not a

valid move

 }

 display_board();

}

To move up the board, only a white checker is restricted. If a red checker reaches

row 0, it is time to become a "red king". Now that we have movement down, we need to

make an adjustment to our display_board() function to allow it to display "red king"s

and "white king"s.

Chapter 10 Data Dashboard and Gaming

410

Listing 10-40.  Display Board Function Version 3 (display_board_version_3.php)

<?php

function display_board() {

 foreach($checker_board as $position) {

 switch ($position) {

 case "red" :

 // display a red square or image

 break;

 case "black" :

 // display a black square or image

 break;

 case "white checker" :

 // display a white square or checker image

 break;

 case "red checker" :

 // display a reddish square or a checker image

 break;

 case "white king" :

 // �display a king color square king

checker image

 break;

 case "red king" :

 // �display a king color square king

checker image

 break;

 default:

 print "Error displaying board";

 break;

 }

 }

}

?>

Chapter 10 Data Dashboard and Gaming

411

As you can see, it only became necessary to add two additional case statements for

the "white king" and the "red king".

5. Of course, there is no way to win this game unless we can jump the opponent and

remove the piece from the board.

} // end if $second_column - $first_column == -1

} // not white checker - if both if statements fail it’s not a valid move

}

display_board();

}

In the valid_move() function, if the flow of the code falls between the last two

brackets, it is not a valid move. However, it might be a valid jump.

}

 } else { // not white checker, could it be a jump?

 �valid_jump(($first_row, $first_column, $second_row, $second_

column);

 }

 }

 display_board();

}

Instead of adding more code within the valid_move() function, it makes sense to

instead create a valid_jump() function and call it if there was not a valid move.

Top of board

W x w x w x w

X w x start x w x

W x ar x br x w

X a x w x b x

Two valid jumps for the white ‘start’ checker would land the checker on ‘a’ or

‘b’. One additional concern is that a red checker or red king must exist in the ‘ar’ or

‘br’ positions (the checker being jumped over). If a king does exist, in some checkers

rules, it is not a valid jump. However, we will assume it is valid.

Chapter 10 Data Dashboard and Gaming

412

Logically, most of this is similar to the move process. Looking at this example, a

valid jump for a white checker’s row is two more than the original row. The column of

a valid jump is two less or two more than the original column. If the checker jumps to

‘a’, we also need to check the position that is one less row and one more column than

position ‘a’ to determine if a red checker or red king exists. If the checker jumps to ‘b’,

we need to check the position that is one less row and one less column than position ‘b’

to determine if a red checker or red king exists. If the jump is valid, the ‘start’ position

changes to an empty square, the ‘ar’ (or ‘br’) position changes to an empty square,

and the ‘a’ position or ‘b’ position will now contain the checker that did the jumping.

Listing 10-41.  Partial Valid Jump Function (Right Side) (valid_jump.php)

function <?php

function valid_jump($first_row, $first_column, $second_row, $second_

column) {

 �if (($checker_board[$first_row] [$first_column] != "red

checker") &&

 (checker_board[$second_row] [$second_column] == "black")){

 if($second_row - $first_row == 2) {

 if($second_column - $first_column == 2) {

 // right side jump attempted

 �if((($checker_board[$first_row + 1][$first_

column + 1] !=

 "black") && // not jumping empty space

 (substr(

 �$checker_board[$first_row +1] [$first_

column + 1],0,3) !=

 substr(

 �$checker_board[$first_row] [$first_

column],0,3))))

 // not jumping its own color

 {

 if((second_row == 7) &&

 �($checker_board[$first_row] [$first_

column] ==

Chapter 10 Data Dashboard and Gaming

413

 �"white checker")) { $checker_

board[$second_row][$second_

column] =

 "white king";

 } else {

 �$checker_board[$second_row]

[$second_column] = $checker_

board[$first_row][$first_column];

 }

 �$checker_board[$first_row]

[$first_column] =

 "black";

 �$checker_board[$first_row + 1]

[$first_column + 1] =

 "black";

 }

 } // �end not jump own checker and not

jump empty

 } // end right side jump attempted

 else {

 if ($second_column - $first_column == -2) {

 // left side jump attempted

 i�f((($checker_board[$first_row+1][$first_

column-1] !=

 "black") &&

 // not jumping empty space

 (substr(

 �$checker_board[$first_row+1][$first_

column-1],0,3) !=

 substr(

 �$checker_board[$first_row][$first_

column],0,3))))

 // not jumping its own color

 {

 if((second_row == 7) &&

Chapter 10 Data Dashboard and Gaming

414

($checker_board[$first_row][$first_column] == "white checker")) {

 �$checker_board[$second_

row][$second_column] =

 "white king";

 } else {

 �$checker_board[$second_row][$second_

column] =

 �$checker_board[$first_row][$first_

column];

 }

 �$checker_board[$first_row] [$first_

column]= "black";

 �$checker_board[$first_row + 1][$first_

column - 1] =

 "black";

 } // end not jump own checker and not jump empty

 } // end left side jump attempted

 } // end jumped two rows

 } // end not red and empty place to jump

}

?>

This is a lot of code. Take your time and break it down. Try to follow the logic

discussed here. Looking at this half of the code, the logic (in order) that occurs is

	 1.	 If the checker is not red, it can make a jump down the board. The

place it is jumping to must also be empty (“black”).

	 2.	 If the jump is two rows more than the original position and two

columns more than the original position, then a right side of the

board jump is being attempted. (See #7 for left side jump.)

	 3.	 If the checker did not jump over an empty (“black”) space and

the checker did not jump its own kind, then it is a valid jump. The

code looks at the first three characters to match “red” or “white”

for both the checkers and kings.

Chapter 10 Data Dashboard and Gaming

415

	 4.	 Did the jumper checker land on row 7? If so, and the checker is

white, then make it a king. If not, move the checker from the first

position to the second position.

	 5.	 Set the first position to empty ("black").

	 6.	 Set the position jumped to black.

	 7.	 Did the checker jump two columns to the left? If so, it is

attempting to jump on the left side of the board.

	 8.	 If the position jumped not empty (not "black") and not the

checkers own type, then the jump is valid.

	 9.	 Did the jumper checker land on row 7? If so, and the checker is

white, then make it a king. If not, move the checker from the first

position to the second position.

	 10.	 Set the first position to empty ("black").

	 11.	 Set the position jumped to black.

Listing 10-42.  Partial Valid Jump Function (Left Side) (valid_jump_with_

else.php)

else {

 �if (($checker_board[$first_row] [$first_column] != "white

checker") &&

 (checker_board[$second_row] [$second_column] == "black")){

 if($second_row - $first_row == -2) {

 if($second_column - $first_column == 2) {

 // right side jump attempted

 �if((($checker_board[$first_row-1] [$first_

column+1] !=

 "black") && // not jumping empty space

 (substr(

 �$checker_board[$first_row-1] [$first_

column+1],0,3) !=

 substr(

 $checker_board[$first_row] [$first_column],0,3))))

Chapter 10 Data Dashboard and Gaming

416

 // not jumping its own color

 {

 if((second_row == 0) &&

 ($checker_board[$first_row] [$first_column] ==

 "red checker")) {

 �$checker_board[$second_row]

[$second_column] =

 "red king";

 } else {

 �$checker_board[$second_row] [$second_

column] =

 $checker_board[$first_row] [$first_column];

 }

 �$checker_board[$first_row] [$first_column] =

"black";

 $checker_board[$first_row-1] [$first_column+1] =

 "black";

 } // end not jump own checker and not jump empty

 } // end right side jump attempted else

 }

 if ($second_column - $first_column == -2) {

 // left side jump attempted

 �if((($checker_board[$first_row-1]

[$first_column-1] !=

 "black") &&

 // not jumping empty space

 (substr(

 �$checker_board[$first_row-1] [$first_

column-1],0,3) !=

 substr(

 �$checker_board[$first_row] [$first_

column],0,3))))

 // not jumping its own color

 {

 if((second_row == 0) &&

Chapter 10 Data Dashboard and Gaming

417

 ($checker_board[$first_row] [$first_column] ==

 "white checker")) {

 �$checker_board[$second_row] [$second_

column] =

 "white king";

 } else {

 �$checker_board[$second_row] [$second_

column] =

 $checker_board[$first_row] [$first_column];

}

 $checker_board[$first_row] [$first_column] = "black";

 $checker_board[$first_row-1] [$first_column-1] = "black";

 } // end not jump own checker and not jump empty

 } // end left side jump attempted

 } // end jumped two rows

 } // end not white and empty place to jump

}

You thought we were done with the logic? That was only half the fun. The else part

of the main if statement manages the jumping from the bottom of the board toward the

top of the board. The logic is the same except for minor changes. The second row must

be two less than the first row (instead of two more).

There are no requirements to change in the display_board() function to manage

jumps because all changes occur in how items are positioned in the array. There are no

new items in the array.

As stated at the beginning of this example, the goal is to show the necessity of arrays,

especially in the gaming industry. There are more efficient ways to design this type of

application with object arrays and recursion. However, these techniques are beyond the

scope of this book.

To complete the coding of a checkers game, additional code would be required

to enforce the following rules and techniques. Try designing some of the logic to see

how well you are doing. Remember, the Internet has plenty of examples to help you be

successful:

	 1.	 A scoring ability must keep track of the number of checkers and

be reduced each time a checker is removed from the board. A

player wins when all the other opponents’ checkers are removed.

Chapter 10 Data Dashboard and Gaming

418

However, a player also wins when the opponent cannot make

any other moves. This would require the program to look at all

possible moves a player can accomplish. A technique to keep

track of the number of wins for each player is needed.

	 2.	 A technique to keep the wrong player from trying to move a piece

when it is not their turn is necessary.

	 3.	 Depending on the version of checkers, some versions do not allow

checker pieces to jump kings. Some versions do not allow checker

pieces to jump at all. The code shown does allow checker pieces to

jump kings.

	 4.	 A recursion technique is needed to allow multiple jumps in the

same turn. Depending on the version of checkers, players may

be required to jump if they can. This would require coding to

determine all jumps after the player selects a piece to move.

�Summary
Another long chapter! We covered a lot. We now know we can use PHP to access many

data types and to display dashboards and charts, via an open source class. We also began

to look at the logic of game development, by using arrays to set up a checkers game.

It’s time to depart from our adventure. We hope that you learned a lot and realize

how much PHP can accomplish. We have barely skimmed the surface of possibilities.

Keep up your learning process by working through free tutorials and viewing free videos

on the Web. Good luck. You are on your way to becoming a great programmer!

�Projects

	 1.	 Using the design practices (MVC) from this and previous chapters,

complete the programming and design for the checker’s game.

First test the example functions provided and link them together.

Attack one part at a time, test the logic and code, then tackle the

next part.

Chapter 10 Data Dashboard and Gaming

419

	 2.	 Update the Google Dashboard program to display the file type

request. Then once it is selected, display it again, along with the

next requirement for the user (either the database name or file

name). Continue this process to display all the drop-down lists

when the user has selected all requirements. Allow the user to

change selections and redisplay the changes.

	 3.	 Investigate the ability for PHP to access other database types.

Make changes to the Google Dashboard program to allow the

user to select a type of database, and then select the databases

available for the type selected. Continue the process to select the

table and columns from the new database type(s).

Chapter 10 Data Dashboard and Gaming

421

Index

A
Admin blog site

admin.php, 228
adminWithNavigation.php, 230
alias, 246
database connection, 237
design patterns

Entry_Table class, 239, 240
implementation, 238
requirements, 241
secure programming, 241, 242
table data gateway pattern, 239

editor menu item, 237
editor.php, 231
entries.php, 232
entry data, 250, 251
entry manager (front

controller), 229–231
fetchObject() method, 250, 251
getAllEntries() method, 251
hook up/user view, 248, 249
index.php, 244, 249
input form, 233–235
list-entries-html.php, 246–248
models folder, 238
module controllers, 231–233
navigation.php, 230
newadminWithNavigation.php, 232
neweditor.php, 234
page.php program, 228
prepare() method, 251
process input, 242, 243

requests, 249
secure programming

Curly’s law, 256, 260
DRY, 256
duplicate code, 255
entry-html.php, 252
executeSQL() method, 260
fetching entry data, 253, 254
getAllEntries() method, 258
getEntry method, 257
identical/similar code, 255
newindex.php, 254
refactoring, 256–260
saveEntry() method, 258
user view, 251

styling entry editor, 235–237
SUBSTRING() function, 245
updatedadminWithNavigation.php, 235
user view, 244, 245

Administration module
another-editor-html.php, 280
deleting entries, 271
development process, 264, 265
editor model/delete requests, 272–274
entries-html.php, 265
entries.php, 266
entry editor form, 267–271
getAllEntries() method, 265
getEntry() method, 269
handling entry deletion, 271
insert/update controller, 275, 276
links, 265, 266

© Jason Lengstorf, Thomas Blom Hansen, Steve Prettyman 2022
J. Lengstorf et al., PHP 8 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-8205-2

https://doi.org/10.1007/978-1-4842-8205-2#DOI

422

new-editor-html.php, 267
neweditor.php via admin.php, 270
newesteditor.php, 272
objectives, 263
secure programming, 277–280
title entry, 278
updating entries, 274

Apache
hosts, 15
installation, 16
working process, 31
XAMPP Server, 30–32

Application programming interface (API), 5
Authentication, 329

B
Block and single-line comments, 54
Blogging system

admin (see Admin blog site)
administration module, 228, 307
administrators

Admin_Table.class.php, 335–337
checkAvailable() function, 338
filter_var() function, 337
model program, 335
password_hash() function, 338
validate_password() function, 337
validusers.php, 339–341

database table, 226, 227
deleting entries, 309–311
development process, 308
entries (see Entries)
front controllers, 228
HTML forms, 332–335
image (see Image manager)
objective, 225

phpMyAdmin control panel, 227
PHP scripts, 227, 228
planning login/logout form

authorization, 349–355
completeadmin.php, 353
complete-login-form-html.php, 352
completelogin.php, 351
creation, 341
HTTP stateless, 344
logging users out, 347–349
loginadmin.php, 342
newlogin.php, 347
newsessionadmin.php, 349
session variable, 345, 346
unauthorized users, 342–344
superglobal/$_SESSION, 345

scaling, 226
secure-admin-navigation.php, 334
users.php, 334

C
Cascading Style Sheets (CSS)

dynamic image gallery, 129–131
indexwithcss.php, 73, 74
layout.css file, 71
navigation menu, 72
page_data class

class definition, 76, 77
navigation item, 77
Page_Data.class.php, 75
pagewithstyle.php, 74
program design/logic view, 75

pagewithcss.php, 72
Checkers game

display_board() function, 399, 400,
403, 409, 410

display pieces, 400

Administration module (cont.)

INDEX

423

empty checkerboard, 397
jump function, 412–415, 417
move() function

else statement, 406, 407, 409
if statement, 406, 408
make_move() function, 405, 406
valid_move() function, 411

rules and techniques, 417, 418
start_game() function, 401, 402
top/bottom board, 404
two-dimensional array, 398

Comment entry form
combined view, 283–285
comments-html.php, 281, 282
comments.php, 283
comment_table class, 287
constructing complex views, 283
dynamic data, 289
foreign key, 286
getAllById() function, 290
inheritance, 287
inserting data, 293–296
is-a relationships, 288
newblog.php, 284
public/protected access

modifiers, 288, 289
Table.class.php, 290
table creation, 285, 286
updatedindex.php, 296
user view, 281
view creation

comments-html.php, 291
displaying comments, 292
newcomments.php, 292
updatedcomments.php, 294

Conditional statements
arrays, 177–180
comparison, 160, 161

enumerations (enums), 183
finally block, 177
functions, 171–177
greater than/equal to comparison, 165
if/else statements, 161, 162
less than/equal to comparison, 164, 165
logical operators

error messages, 168, 169
and operator, 167
? operator, 168
or statement, 167
source code, 166
switch statement, 169, 170

loops, 180–183
multidimensional arrays, 180
not operator (!), 163, 164
spread operator, 182
try block, 177

Constructor, 106
Copyright laws, 116, 117
Curly’s law, 256, 260

clean code, 105
features, 104
poetry code, 105

D
Data dashboard

controls, 359
drop-down/file type views, 379–382
Excel spreadsheet/CSV/JSON

files, 360–365
front door controller/subcontrollers

Column.php, 388
dashboard creation, 391
Database.php, 385
displayDashboard()

function, 389, 390

INDEX

424

draw dashboard, 394, 395
drawDashboard() function, 391
Excel.php, 385
filetype.php, 383
Google Charts website, 389
index.php, 382, 383, 396
line chart and column

chart, 393
merging tool/transform, 397
Numeric_Column.php, 386, 387
OnLoadCallback() function, 391
range slider, 391, 393
table chart, 394

Google Charts, 359
mining/collection, 358
model data class

fetchAll() function, 366
metadata, 370
parse()/rows() function, 372
returnCSVData, 375, 376
returnCSVTitles, 374
returnDatabaseData, 370
returnDatabases, 366
returnDatabaseTables, 367
returnDatabaseTitles, 368, 369
returnExcelData, 373
returnExcelTitles, 371
returnJSONData, 378, 379
returnJSONTitles, 377, 378

steps, 359, 360
Deleting entries

administration module, 271
Blog_Entry_Table class, 310
comments, 310, 311
foreign key constraints, 309, 310
integrity violation, 309

Denial-of-service (DOS), 127

Development environment, 12–16
Dynamic image gallery

copyright laws, 116, 117
default view, 120
function

CSS, 129–131
foreach, 125
incremental

concatenation, 121
iteration, 121
for loop, 123, 124
retrieve images, 125–127
secure programming, 127–129
showgallery.php, 120
while loop, 121, 122

glob method, 125
images, 116
index page, 118
navigation, 117
page view files, 118
project folder, 116
testing progress, 119

E
Embedding scripts

delimiters, 40
echo, 43
error messages, 46, 48
logical/program design, 42
outputs, 42
program design/logic values, 45
secure programming, 47–49
test.php file, 41
variables, 43

data types, 44
names, 45
placeholder, 44, 45

Data dashboard (cont.)

INDEX

425

storing values, 44
string concatenator, 45

Encapsulation, 106
Entries

blog_entry database table, 301
controller view, 303
HTML source code, 304
LIKE condition, 302
result view, 302
searchindex.php, 298
search view, 297–299
user search, 299–301
view model, 296

Enumerations (enums), 183

F
File transfer protocol (FTP), 30, 33
filetype.php, 384
Form management

Amazon, 81
Facebook account, 80, 81
Google’s search form, 80

Form view
checkFile.php, 137
content-type, 132
file upload control, 132
manipulation, 137–140
mime type, 139
php.ini file, 135, 136
uploadForm.php, 132
upload program, 133, 134
$_FILES, 136

Full stack developer, 11

G
Gaming program, see Checkers game

H
Hypertext Markup Language (HTML)

code validation, 70
commenting code, 54

block/single-line comments, 54
dot notation, 57
namespaces, 56
naming conflicts, 55–57
newerindex.php file, 58
object operator, 57
StdClass object, 58

CSS (see Cascading Style Sheets (CSS))
form (see Form management)
index.php file, 49
newindex.php file, 53
page creation, 49
page views, 60, 62
quiz form, 96
review, 49–51
search forms, 87–89
secure programming, 53, 54
simple page template, 51
source code, 51
templates, 52

HyperText Markup Language (HTML)
forms, 332–335

Hypertext Preprocessor, 13
Hypertext transfer protocol

(HTTP), 344

I
Image manager

administrator credentials, 332
admin-navigation.php, 311
admin_table, 330
authentication, 329
blog entry table, 326

INDEX

426

blogging system, 331
checkImageFile.php, 318
displaying images, 320–324
entry-html.php, 327–329
gallery.php file, 321
hashing passwords, 331
images.php, 312
newestimages.php, 315–320
one-way hashing, 331
phpMyAdmin, 325, 326
save() method, 316
searchEntry() function, 327
sufficient security, 332
updated-editor-html.php, 324
updatededitor.php, 327
Uploader.class.php, 317
upload images, 312–314
$_FILES superglobal array, 314, 315

Information technology (IT), 4
Inheritance, 106
Integrated development environments

(IDEs), 32, 33

J, K, L
Just-in-time (JIT), 14

M
Model-view-controller (MVC)

approaches, 203
completepoll-html.php, 218
connection, 211
database.php, 211
design technique, 203
form input/database table, 219, 220
front controller, 204

HTML pages, 203
MySQL/MariaDB, 211, 212
PDOStatement object, 215–218
poll form, 218, 219
poll project

controllers folder, 206, 207
getPollData() method, 208
hook up model and view, 209, 210
index.php program, 205, 206
preliminary model, 207, 208
view process, 209

responsibilities, 205
secure programming

completepollindex.php, 223
SQL Injection, 221
user interactions, 221–223

share database connection, 212–214
MySQL and MariaDB

installation, 16
storing info, 15

MySQL/MariaDB databases
CREATE keyword

CREATE TABLE statement, 195
databases tab, 194
database table, 193
SQL tab, 193

database-driven development, 192
INSERT statement, 198, 199
objectives, 187
phpMyAdmin control panel, 192
poll table, 200
secure programming

auto-increment, 198
phpMyAdmin control panel, 195
playground database, 196
poll table structure, 197
PRIMARY KEY, 197
temporary table, 200, 201

Image manager (cont.)

INDEX

427

SELECT keyword, 200, 201
SQL data manipulation, 190–192
table entries, 188–190
UPDATE statement, 201, 202
WHERE clause, 202
XAMPP control panel, 191

N
Named functions

argumenttextfunction.php, 94
function argument, 93–95
program code, 89
program design/logic

calltestfunction.php, 91
calltwicetestfunction.php, 91
return statement, 93
returntestfunction.php, 92
testfunction.php, 90

syntax format, 89
Nonrelational systems, 15
NoSQL databases, 15

O
Object-oriented programming (OOP), 56

access modifier, 108
constructor, 106
Construct_Page_Data.class.php, 106
encapsulation/polymorphism, 106
getter and setter methods, 109
inheritance, 106
Page_Data.class.php, 105
Privateindex.php, 111
Private_Page_Data.class.php, 107, 108
privatepage.php, 111, 112
secure and reliable program, 109, 110
setter and getter methods, 107

P
Page views

conditional statement, 65
dynamic site navigation, 61, 67, 68
headers.php/unorderedlist.php, 60
HTML tag, 60, 61
indexnav.php, 62
isset() function, 64
newindexnav.php, 66
overview, 59
passing information, 63
projects.php file, 59
secuing programs, 69, 70
secure programming, 65, 66
skills.php file, 59
strict naming convention, 68
updatedindexnav.php, 69
URL variables, 63, 64
$_GET/superglobal array, 66

PDOStatement object, 215–218
Personal Home Page (PHP)

Apache hosts, 15
auto-complete features, 32
built-in function references, 32
code folding/auto-indent, 32
comments, 152
conditional statements (see

Conditional statements)
dynamic navigation, 83, 84
dynamic web pages, 14
embedding scripts (see Embedding

scripts)
features, 32
file execution, 35, 36
FTP program, 33
functions (see Named functions)
htdocs, 34
HTML5 page, 49–58

INDEX

428

IDEs and editors, 33
index.php file, 82, 83
indexwithnavigation.php, 84
installation, 16
just-in-time compiler, 14
MySQL/MariaDB, 15
named functions, 89
Notepad++, 35
open source, 13
overview, 11
page views (see Page views)

creation, 84
index file, 85, 86
program design/logic views, 86
search and quiz, 84

PDO data objects, 211, 212
quiz form, 95–104
request/response, 15
scripting language, 12, 13
source code, 151, 152
syntax highlighting, 32
test.php, 34
time-consuming process, 14
uploading files

checkImageFile.php, 145
class definition, 141, 142
constructor method, 142, 143
saving files, 143–145
single responsibility principle, 147
temporary directory, 140
UML diagram, 141
Uploader class, 145–147

variables, 156
arithmetic operations, 158
assignment operator (=), 158–160
Boolean type, 157
data declaration, 154

echo statement, 155
floating-point numbers, 156
increment/decrement

operations, 160
merging option, 157
string concatenation

character (.), 157
type conversion, 154
types, 156

XAMPP (see XAMPP)
PHP Data Objects (PDO), 211
Polymorphism, 106
Program development

applications (app), 4
assignment operator, 6
binary system, 7, 8
bit format, 6
declaration statement, 7
error messages, 9
external server, 5
hardware/software, 4
interface (graphical window), 5
internal storage device, 5
memory manager, 6
operating system, 4
overview, 3
print driver, 5
print queue, 5
priority, 10
task manager, 9, 10
unicode, 6
variables, 6

Q
Quiz form

HTML strings, 96
indexquiz.php/navigationquiz.php, 97

Personal Home Page (PHP) (cont.)

INDEX

429

POST method, 97
programs designing

associate arrays, 100
$_POST and $_GET, 100–103
printAssocArray.php, 101, 102
printnewquiz.php, 102, 103
results/output, 100
secure programming, 104
selection process, 99
submit button, 99

quizform.php file, 95
secure programming, 98
$_POST, 98

R
Relational database management systems

(RDBMS), 15

S, T
Search forms

<input> element/types, 88
method attribute, 88
simpleindex.php, 87
simplesearch.php, 87

Server-side scripting language, 13

Structured Query Language (SQL)
blog entries, 246
data manipulation, 190–192
SUBSTRING() function, 245

U, V, W
Unified Modeling Language

(UML), 140
User Account Control (UAC), 20, 21

X, Y, Z
XAMPP

Apache Server, 30–32
Bitnami, 25
choice language, 24
components, 22
control panel button, 28–30
download process, 18–20
folder installation, 23
initial setup screen, 21
installation file, 17, 20, 27, 28
screen installation, 26
test information, 28
UAC warning message, 21
versions, 19

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Ready to Program
	Objectives
	Setting Up a Development Environment
	What Is PHP? How Does PHP Work?
	Apache and What It Does
	Storing Info with MySQL/MariaDB

	Installing PHP, Apache, and MySQL/MariaDB
	Installing XAMPP
	Step 1: Download XAMPP
	Step 2: Follow the Instructions
	Step 3: Test XAMPP to Ensure Proper Installation

	Open the XAMPP Control Panel
	What If Apache Isn’t Running?
	Verify That Apache and PHP Are Running

	Choosing a PHP Editor
	Creating Your First PHP Program
	Running Your First PHP Script
	Summary
	Projects

	Chapter 2: Understanding PHP: Language Basics
	Objectives
	Embedding PHP Scripts
	Program Design and Logic
	Program Design and Logic
	Using echo
	What Is a Variable?
	Storing Values in a Variable
	A Variable Is a Placeholder
	Valid PHP Variable Names

	Program Design and Logic
	Displaying PHP Errors
	Secure Programming

	Creating an HTML5 Page with PHP
	HTML Review
	Including a Simple Page Template
	Including the Template
	Secure Programming
	Commenting Your Code
	Block and Single-Line Comments

	Avoiding Naming Conflicts
	The Object Operator
	Using a StdClass Object for Page Data

	Page Views
	HTML Review
	Making a Dynamic Site Navigation
	HTML Review
	Passing Information with PHP
	Accessing URL Variables
	Using isset() to Test If a Variable Is Set
	Secure Programming
	$_GET, a Superglobal Array
	Including Page Views Dynamically
	Strict Naming Convention
	Displaying a Default Page
	Securing the Program

	Validating Your HTML
	Styling the Site with CSS
	CSS Review

	Declaring a Page_Data Class
	Program Design and Logic
	Classes Make Objects
	Highlighting Current Navigation Item with a Dynamic Style Rule

	Summary
	Projects

	Chapter 3: Form Management
	Objectives
	What Are Forms?
	Setting Up a New PHP Project
	Seeing for Yourself
	Creating a Dynamic Navigation
	Creating Page Views for the Form
	Displaying Page Views on the Index Page

	Program Design and Logic

	A Simple Search Form
	The <input> Element and Some Common Types
	Understanding the Method Attribute

	Named PHP Functions
	Program Design and Logic
	The Basic Syntax for Named Functions
	Program Design and Logic
	Program Design and Logic
	Using Function Arguments for Increased Flexibility

	Creating a Form for the Quiz
	HTML Review
	Showing the Quiz Form
	The POST Method

	Secure Programming
	Using the $_POST Superglobal

	Program Design and Logic
	$_POST Is an Array

	Secure Programming

	Curly’s Law: Do One Thing
	Program Design and Logic
	Code Is Poetry

	OOP: Using Constructors, Getters, and Setters
	Secure Programming

	Summary
	Exercises

	Chapter 4: Building a Dynamic Image Gallery
	Objectives
	Setting Up a Dynamic Site
	Prerequisites: A Folder with Some Images
	Copyright Laws
	Creating a Navigation
	Creating Two Dummy Page View Files
	Creating the Index File
	Time to Test

	Preparing a Function for Displaying Images
	Iteration
	While Loop
	For Loop
	Using glob to Find Files in a Folder
	For Each Loop
	Showing All Images
	Secure Programming
	CSS Review

	Creating a Form View
	Showing a Form for Uploading Images
	php.ini
	$_FILES
	Secure Programming

	Uploading Files with PHP
	Planning an Uploader Class
	UML
	Uploader Class Requirements
	The Magic Method __construct()
	Saving the Uploaded File

	Using the Uploader Class
	The Single Responsibility Principle

	Summary
	Projects

	Chapter 5: Reviewing PHP 8 Basic Syntax
	Objectives
	From the Beginning
	Comments
	PHP Functions
	Variables
	Conditional Statements
	Logical Operators
	Functions
	Arrays
	Loops
	Enums

	Summary
	Projects

	Chapter 6: Databases, MVC, and Data Objects
	Objectives
	The Basics of MySQL/MariaDB Data Storage
	Manipulating Data with SQL
	Developing a Database for the Poll
	Building a Database Using CREATE
	The CREATE TABLE Statement

	Secure Programming
	Understanding PRIMARY KEY
	Understanding AUTO_INCREMENT

	The INSERT Statement
	The SELECT Statement
	Secure Programming
	The UPDATE Statement
	Secure Programming

	Coding a Database-Driven Site Poll
	Separating Concerns with MVC
	Planning the Logic

	Creating the Poll Project
	Making a Poll Controller
	Making a Poll Model
	Making a Poll View
	Hooking Up Poll View with Poll Model

	Connecting to MySQL/MariaDB from PHP
	PHP Data Objects (PDO)
	Opening a Connection

	Sharing the Database Connection with the Poll Model
	Retrieving Data with a PDOStatement
	Showing a Poll Form
	Updating a Database Table According to Form Input
	Secure Programming
	Responding to User Input

	Summary
	Projects

	Chapter 7: Building the Basic Blog System
	Objectives
	Creating the blog_entry Database Table
	Planning the PHP Scripts
	Admin View: Creating the Admin Blog Site
	Creating the Admin Entry Manager Navigation
	Loading Admin Module Controllers
	Creating the Admin Entry Input Form
	Styling the Admin Editor
	Connecting to the Database
	Using Design Patterns
	The Table Data Gateway Design Pattern

	Writing the Entry_Table Class
	Secure Programming
	Processing the Admin Form Input and Saving the Entry
	User View: Getting Data for All Blog Entries
	Using an SQL SUBSTRING Clause
	Using an SQL Alias
	Preparing a User View for All Blog Entries
	Hooking Up the User View and User Model
	Responding to User Requests to Read More
	Getting Entry Data
	Secure Programming
	Creating a Blog View
	Displaying an Entry
	Code Smell: Duplicate Code
	Staying DRY with Curly
	Refactoring with Curly

	Secure Programming

	Summary
	Projects

	Chapter 8: Basic Blog: Entries and Comments
	Objectives
	Creating a Model for the Administrative Module
	Displaying Administrative Links
	Populating the Form with the Entry to Be Edited
	Handling Entry Deletion
	Deleting Entries from the Database
	Responding to Delete Requests
	Preparing a Model to Update Entries in the Database
	Controller: Should I Insert or Update?
	Secure Programming
	Insisting on a Title
	Secure Programming

	User View: Building and Displaying the Comment Entry Form
	A Combined View
	Creating a Comment Table in the Database
	Using a Foreign Key
	Building a Comment_Table Class
	Inheritance
	Is-a Relationships
	Using Inheritance in Our Code
	Creating a View for Listing Comments
	Hooking Up View and Model to Display Comments

	Inserting a Comment Through the Comment Form

	Searching for Entries
	The Search View
	Responding to a User Search
	The Search Model
	Searching with a LIKE Condition

	A Search Result View
	Loading a Search Result View from the Controller
	Exercise: Improving Search

	Summary
	Projects

	Chapter 9: Basic Blog: Images and Authentication
	Objectives
	Deleting Entries in Related Tables
	Understanding Foreign Key Constraints
	Deleting Comments Before Blog Entry

	Creating an Image Manager
	Showing a Form for Uploading Images
	A Quick Refresher on the $_FILES Superglobal Array
	Uploading an Image
	Exercises

	Displaying Images
	Using an Image in a Blog Entry
	Improving Security with Authentication
	Creating an admin_table in the Database
	Hashing the Password with BCRYPT
	One-Way Hashing
	Sufficient Security
	Adding Administrators in the Database

	Building an HTML Form
	Saving New Administrators in the Database
	Planning Login
	Creating a Login Form
	Hiding Controls from Unauthorized Users
	HTTP Is Stateless
	Superglobal: $_SESSION
	Persisting State with a Session
	Logging Users Out
	Allowing Authorized Users Only
	Exercises

	Summary
	Projects

	Chapter 10: Data Dashboard and Gaming
	Objectives
	Setting Up a Data Dashboard
	Gathering Microsoft Excel, CSV, JSON, and Database Data
	Creating the Model Data Class
	Creating the Drop-Down and File Type Views
	Creating the Front Door Controller and the Subcontrollers

	Creating the Logic for a Checkers Game
	Summary
	Projects

	Index

